Computing and Library Services - delivering an inspiring information environment

Expression of the chloride channel CLC-K in human airway epithelial cells

Mummery, Jennifer L., Killey, Jennifer and Linsdell, Paul (2005) Expression of the chloride channel CLC-K in human airway epithelial cells. Canadian Journal of Physiology and Pharmacology, 83 (12). p. 1123. ISSN 00084212

[img] PDF
Download (1MB)


Airway submucosal gland function is severely disrupted in cystic fibrosis (CF), as a result of genetic mutation
of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane Cl– channel. To identify other
Cl– channel types that could potentially substitute for lost CFTR function in these cells, we investigated the functional and
molecular expression of Cl– channels in Calu-3 cells, a human cell line model of the submucosal gland serous cell. Whole
cell patch clamp recording from these cells identified outwardly rectified, pH- and calcium-sensitive Cl– currents that resemble
those previously ascribed to ClC-K type chloride channels. Using reverse transcription – polymerase chain reaction,
we identified expression of mRNA for ClC-2, ClC-3, ClC-4, ClC-5, ClC-6, ClC-7, ClC-Ka, and ClC-Kb, as well as the
common ClC-K channel b subunit barttin. Western blotting confirmed that Calu-3 cells express both ClC-K and barttin
protein. Thus, Calu-3 cells express multiple members of the ClC family of Cl– channels that, if also expressed in native
submucosal gland serous cells within the CF lung, could perhaps act to partially substitute lost CFTR function. Furthermore,
this work represents the first evidence for functional ClC-K chloride channel expression within the lung.

▼ Jump to Download Statistics
Item Type: Article
Additional Information: © 2005 NRC Canada
Uncontrolled Keywords: chloride channel, epithelial transport, airway, cystic fibrosis.
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Human and Health Sciences
References: Ando, M., and Takeuchi, S. 2000. mRNA encoding ‘ClC-K1, a kidney Cl–-channel’ is expressed in marginal cells of the stria vascularis of rat cochlea: its possible contribution to Cl– currents. Neurosci. Lett. 284: 171–174. doi: 10.1016/S0304- 3940(00)01021-1. PMID: 10773426. Ballard, S.T., and Inglis, S.K. 2004. Liquid secretion properties of airway submucosal glands. J. Physiol. 556: 1–10. PMID: 14660706. Basbaum, C.B., Jany, B., and Finkbeiner, W.E. 1990. The serous cell. Annu. Rev. Physiol. 52: 97–113. doi: 10.1146/ 52.030190.000525. PMID: 2158772. Catala´n, M., Cornejo, I., Figueroa, C.D., Niemeyer, M.I., Sepu´lveda, F.V., and Cid, L.P. 2002. ClC-2 in guinea-pig colon: mRNA, immunolabeling, and functional evidence for surface epithelium localization. Am. J. Physiol. 283: G1004–G1013. PMID: 12223361. Cowley, E.A., and Linsdell, P. 2002a. Characterization of basolateral K+ channels underlying anion secretion in the human airway cell line Calu-3. J. Physiol. 538: 747–757. doi: 10.1113/jphysiol. 2001.013300. PMID: 11826162. Cowley, E.A., and Linsdell, P. 2002b. Oxidant stress stimulates anion secretion from the human airway epithelial cell line Calu-3: implications for cystic fibrosis lung disease. J. Physiol. 543: 201–209. doi: 10.1113/jphysiol.2002.022400. PMID: 12181292. Cuppoletti, J., Tewari, K.P., Sherry, A.M., and Malinowska, D.H. 2000. Activation of human ClC-2 Cl– channels: implications in cystic fibrosis. Clin. Exp. Pharmacol. Physiol. 27: 896–900. doi: 10.1046/j.1440-1681.2000.03357.x. PMID: 11071306. Este´vez, R., Boetter, T., Stein, V., Birkenha¨ger, R., Otto, E., Hildebrandt, F., and Jentsch, T.J. 2001. Barttin is a Cl– channel bsubunit crucial for renal Cl– reabsorption and inner ear K+ secretion. Nature (London), 414: 558–561. PMID: 11734858. Finkbeiner, W.E. 1999. Physiology and pathology of tracheobronchial glands. Respir. Physiol. 118: 77–83. doi: 10.1016/ S0034-5687(99)00080-8. PMID: 10647853. Friedrich, T., Briederhoff, T., and Jentsch, T.J. 1999. Mutational analysis demonstrates that ClC-4 and ClC-5 directly mediate plasma membrane currents. J. Biol. Chem. 274: 896–902. doi: 10.1074/jbc.274.2.896. PMID: 9873029. Fuller, C.M., Ji, H.-L., Tousson, A., Elble, R.C., Pauli, B.U., and Benos, D.J. 2001. Ca2+-activated Cl– channels: a newly emerging anion transport family. Pflugers Arch. 443: S107–S110. doi: 10.1007/s004240100655. PMID: 11845314. Gibson, R.L., Burns, J.L., and Ramsey, B.W. 2003. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 168: 918–951. doi: 10.1164/ rccm.200304-505SO. PMID: 14555458. Gyo¨mo¨rey, K., Yeger, H., Ackerley, C., Garami, E., and Bear, C.E. 2000. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am. J. Physiol. 279: C1787–C1794. PMID: 11078693. Haws, C., Finkbeiner, W.E., Widdicombe, J.H., and Wine, J.J. 1994. CFTR in Calu-3 human airway cells: channel properties and role in cAMP-activated Cl– conductance. Am. J. Physiol. 266: L502–L512. PMID: 7515579. Huang, P., Liu, J., Di, A., Robinson, N.C., Musch, M.W., Kaetzel, M.A., and Nelson, D.J. 2001. Regulation of human ClC-3 channelsnase. J. Biol. Chem. 276: 20093–20100. doi: 10.1074/jbc. M009376200. PMID: 11274166. Hug, M.J., Tamada, T., and Bridges, R.J. 2003. CFTR and bicarbonate secretion to epithelial cells. News Physiol. Sci. 18: 38–42. PMID: 12531931. Illek, B., Tam, A.W.-K., Fischer, H., and Machen, T.E. 1999. Anion selectivity of apical membrane conductance of Calu 3 human airway epithelium. Pflugers Arch. 437: 812–822. doi: 10. 1007/s004240050850. PMID: 10370058. Jeck, N., Waldegger, P., Doroszewicz, J., Seyberth, H., and Waldegger, S. 2004. A common sequence variation of the CLCNKB gene strongly activates ClC-Kb chloride channel activity. Kidney Int. 65: 190–197. doi: 10.1111/j.1523-1755.2004.00363.x. PMID: 14675050. Jentsch, T.J., Stein, V., Weinreich, F., and Zdebik, A.A. 2002. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82: 503–568. PMID: 11917096. Jiang, Q., and Engelhardt, J.F. 1998. Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis. Eur. J. Hum. Genet. 6: 12–31. doi: 10.1038/sj.ejhg.5200158. PMID: 9781011. Lourdel, S., Paulais, M., Marvao, P., Nissant, A., and Teulon, J. 2003. A chloride channel at the basolateral membrane of the distal-convoluted tubule: a candidate ClC-K channel. J. Gen. Physiol. 121: 287–300. doi: 10.1085/jgp.200208737. PMID: 12668733. Mohammad-Panah, R., Gyomorey, K., Rommens, J., Choudhury, M., Li, C., Wang, Y., and Bear, C.E. 2001. ClC-2 contributes to native chloride secretion by a human intestinal cell line, Caco-2. J. Biol. Chem. 276: 8306–8313. doi: 10.1074/jbc.M006764200. PMID: 11096079. Mohammad-Panah, R., Ackerley, C., Rommens, J., Choudhury, M., Wang, Y., and Bear, C.E. 2002. The chloride channel ClC-4 colocalizes with cystic fibrosis transmembrane conductance regulator and may mediate chloride flux across the apical membrane of intestinal epithelia. J. Biol. Chem. 277: 566–574. PMID: 11675385. Nilius, B., and Droogmans, G. 2003. Amazing chloride channels: an overview. Acta Physiol. Scand. 177: 119–147. doi: 10.1046/ j.1365-201X.2003.01060.x. PMID: 12558550. Picollo, A., Liantonio, A., Didonna, M.P., Elia, L., Conte Camerino, D., and Pusch, M. 2004. Molecular determinants of differential pore blocking of kidney CLC-K chloride channels. EMBO Rep. 5: 584–589. doi: 10.1038/sj.embor.7400169. PMID: 15167890. Pilewski, J.M., and Frizzell, R.A. 1999. Role of CFTR in airway disease. Physiol. Rev. 79: S215–S255. PMID: 9922383. Sauve´, R., Cai, S., Garneau, L., Klein, H., and Parent, L. 2000. pH and external Ca2+ regulation of a small conductance Cl– channel in kidney distal tubule. Biochim. Biophys. Acta, 1509: 73–85. PMID: 11118519. Shen, B.-Q., Finkbeiner, W.E., Wine, J.J., Mrsny, R.J., and Widdicombe, J.H. 1994. Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl– secretion. Am. J. Physiol. 266: L493–L501. PMID: 7515578. Sheppard, D.N., and Welsh, M.J. 1999. Structure and function of the CFTR chloride channel. Physiol. Rev. 79: S23–S45. PMID: 9922375. Szkotak, A.J., Man, S.F.P., and Duszyk, M. 2003. The role of the basolateral outwardly rectifying chloride channel in human airway epithelial anion secretion. Am. J. Respir. Cell Mol. Biol. 29: 710–720. doi: 10.1165/rcmb.2003-0109OC. PMID: 12777250. Uchida, S., and Sasaki, S. 2005. Function of chloride channels in the kidney. Annu. Rev. Physiol. 67: 759–778. PMID: 15709977. Uyekubo, S.N., Fischer, H., Maminishkis, A., Illek, B., Miller, S.S., and Widdicombe, J.H. 1998. cAMP-dependent absorption of chloride across airway epithelium. Am. J. Physiol. 275: L1219– L1227. PMID: 9843860. Verkman, A.S., Song, Y., and Thiagarajah, J.R. 2003. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiol. 284: C2–C15. PMID: 12475759. Vessey, J.P., Shi, C., Jollimore, C.A.B., Stevens, K.T., Coca-Prados, M., Barnes, S., and Kelly, M.E.M. 2005. Hyposmotic activation of ICl,swell in rabbit nonpigmented ciliary epithelial cells involves increased ClC-3 trafficking to the plasma membrane. Biochem. Cell Biol. 82: 708–718. PMID: 15674438. Waldegger, S., Jeck, N., Barth, P., Peters, M., Vitzthum, H., Wolf, K., et al. 2002. Barttin increases surface expression and changes current properties of ClC-K channels. Pflugers Arch. 444: 411– 418. doi: 10.1007/s00424-002-0819-8. PMID: 12111250. Wang, G.-X., Hatton, W.J., Wang, G.L., Zhong, J., Yamboliev, I., Duan, D., and Hume, J.R. 2003. Functional effects of novel anti- ClC-3 antibodies on native volume-sensitive osmolyte and anion channels in cardiac and smooth muscle cells. Am. J. Physiol. 285: H1453–H1463. PMID: 12816749. Wills, N.K., and Fong, P. 2001. ClC chloride channels in epithelia: recent progress and remaining puzzles. News Physiol. Sci. 16: 161–166. PMID: 11479365. by multifunctional Ca2+/calmodulin-dependent protein ki-
Depositing User: Sara Taylor
Date Deposited: 01 May 2008 14:09
Last Modified: 28 Aug 2021 23:25


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©