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Non-parametric models in the monitoring of engine
performance and condition
Part 1: modelling of non-linear engine processes

P J Jacob*, F Gu and A D Ball
School of Engineering, University of Manchester, UK

Abstract: This paper proposes the use of radial basis function (RBF) networks in the modelling of
non-linear engine processes. A pertinent application of such a model is the reconstruction of cylinder
pressure based upon the instantaneous angular velocity of the engine crankshaft. Distinction is made
between parametric and non-parametric models and applications to which each is suited. The
structure of an RBF model is presented and the use of this model in combustion pressure
reconstruction is discussed. The paper concludes with a treatment of the practicalities associated
with the implementation of an RBF model to typify a non-linear engine process.

Keywords: angular speed, cylinder pressure measurement, non-parametric engine model, radial basis
function network, regressor selection, regularization

1 NON-LINEAR ENGINE MODELS

Many of the systems and processes operating within
internal combustion engines are inherently non-linear;
because of this, simple but accurate analytical models
cannot be derived for them. A classic example of a
non-linear engine process is the cyclic pressure variation
within a combusting diesel engine cylinder. Owing to its
practical importance, cylinder pressure estimation has
been used as the process upon which to develop the
non-linear modelling techniques illustrated in this pa-
per. Combustion pressure waveform measurement and
analysis play an important role in the improvement of
performance, emissions control and condition monitor-
ing in internal combustion engines. Conventional tech-
niques are inapplicable for reliable, high-resolution
cylinder pressure measurement on a routine or in-ser-
vice basis. For these reasons an alternative approach to
cylinder pressure estimation, based on easy-to-measure
variables, is attractive. This paper introduces a family
of non-parametric models, radial basis function (RBF)
networks, which may be applied to the task of recon-
structing cylinder pressure based on easy-to-obtain
measurements of instantaneous crankshaft angular ve-
locity and cylinder head vibration.

At this stage it is worthwhile formally distinguishing
between parametric and non-parametric models. Para-
metric models are differentiated from non-parametric
models by the inference which may be drawn from their
coefficients. In the case of the former, the aim is to
arrive at values for a select few terms that are meaning-
ful in the real world. It is assumed that a set of
deterministic mathematical models of the system can be
derived using physical laws. The system can then usu-
ally be written as a set of ordinary differential equa-
tions and algebraic equations:

y= f(q, q; , q̈,x,t,U) (1)

where q represents the degrees of freedom, y the ob-
served output variables, x the input variables and t the
explicit time. Vector U represents the unknown model
parameters. Sufficient initial conditions must be sup-
plied to arrive at values for q and its first and second
derivatives. In order to determine the model parame-
ters, U, it is necessary to substitute the measured time
histories of all variables. This assumes that the mea-
sured variables are exact, which is certainly not the case
for a real system where they will be polluted with noise
and biased by instrumentation errors. Hopefully it is
possible to have some idea of the error in each of the
measurements, in which case it is possible to use this
information to improve the prediction of the unknown
model parameters.
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In non-parametric modelling we have little a priori
knowledge about the form of the true system. The
system is still modelled (or it may be better to say
typified) using an equation containing free parame-
ters, but in a way in which the class of systems that
the model can represent is very broad. The free
parameters probably have no meaningful interpreta-
tion to real-world phenomena such as pipe diame-
ters, expansion rates or specific heat capacity. Any
meaning is purely coincidental. This does not imply
that such parameters are useless and that attention
should be paid only to system inputs and outputs,
since their variation in a model that is updated some
later time can reveal worthwhile information on
changes to the system.

1.1 Parametric engine models

Considerable effort has been expended to reconstruct
the pressure waveform indirectly and non-intrusively.
Two previous approaches include:

(a) vibration measurement based reconstruction,
(b) crankshaft angular speed measurement recon-

struction.

The vibration measurement based approach in-
volves recording vibrations at a position either on
the engine block or on the cylinder head. An appro-
priately identified transfer function, usually in the
form of a parametric model, is used to compute the
pressure waveform from the filtered vibration acceler-
ation signal [1–4]. It has been established that the
monitored vibration signal is highly linearly corre-
lated with the pressure waveform, particularly over
the section of the waveform that corresponds to the
combustion. Owing to the dispersion of the vibration
signal as it propagates through the engine block, the
transfer function has traditionally been estimated by
cepstral analysis of both the vibration signals and
the pressure signals in order to obtain robust recon-
struction results. Although this method has been em-
ployed successfully in the detection of certain types
of fault, distortion exists in the critical cylinder com-
pression and combustion sections of the recon-
structed pressure waveform. Therefore, these transfer
function based procedures cannot model accurately
the characteristic features associated with the onset
of combustion.

An approach based on the instantaneous angular
speed of the crankshaft is considered to be more
successful and is therefore more widely used. The
measurement system is non-intrusive and is relatively
convenient to set up. Moreover, the reconstruction
process makes use of the identified engine model and
provides insight into the physical mechanisms respon-
sible for crankshaft speed fluctuations. Unfortunately,

the major difficulties with this method lie in the re-
construction algorithms and model simplification.
Previous attempts at overcoming these difficulties
have been made through two approaches:

(a) improvement of the model based algorithm,
(b) introduction of pattern recognition techniques.

In the model based algorithm, an inverse equation
is derived algebraically or using an iterative proce-
dure. By solving the engine momentum equation, the
instantaneous pressure waveform can then be com-
puted using the measured instantaneous angular
speed as an input [5–12]. In common with many in-
verse problems, the solution suffers from instability
at certain points owing to near singularity of the in-
verse matrix. This occurs at TDC and BDC during
the engine cycle when the effective torque radius is
near to zero. The result is an unstable reconstruction
over the crucial central section of the pressure wave-
form. Generally speaking, the model based approach
has the disadvantage of being inextricably tied to the
simplifying assumptions needed to construct the
model. Model errors and inadequate assumptions
lead to considerable deviations. In fact, a compre-
hensive comparison of the reconstructed pressure
waveforms with empirical measurements has not been
found in any of the previously mentioned work.

1.2 Pattern recognition

A novel concept in pressure waveform reconstruction
has been the use of pattern recognition techniques.
In this approach, a knowledge base of signature pat-
terns is collected. Each pattern corresponds to a
known operating parameter of the engine system. A
measured speed signature is then compared with the
patterns in the knowledge base using pattern recogni-
tion techniques. The magnitude of the cylinder pres-
sure is then obtained from the magnitude of similar
patterns taken from each cylinder. Since no assump-
tions are made about the engine model involved in
the pattern recognition based method, this approach
has the advantage of typifying the behaviour of the
real, physical system. However, only a limited size of
knowledge base can be formed and it cannot reflect
the continuous nature of possible engine operating
regimes. Therefore, interpolation techniques have
been introduced to overcome this difficulty. In
Brown [13], pattern recognition was employed in as-
sociation with linear interpolation in order to predict
the peak pressure of the cylinder waveform. The
overall standard deviation of the prediction errors is
less than 6 per cent. However, because the technique
is still a prototype, the overall waveform of the
cylinder pressure cannot be given. Hence many im-
portant pressure parameters cannot be analysed.
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1.3 Non-parametric models

Following on from these novel pattern recognition con-
cepts, this paper investigates waveform reconstruction
using a radial basis function network. This form of
non-parametric model combines features of both pat-
tern recognition and interpolation. Moreover, the
trained network is, in effect, a series of locally valid
models with non-linear interpolation between the sub-
models. In operation, the most relevant local models
are activated and the results are combined to form an
overall prediction. Through use of an appropriate train-
ing regime, this is likely to ensure a parsimonious
representation of the model. This procedure allows
accurate predictions to be produced from a relatively
small amount of stored data, using a compact model
with relatively few free parameters.

2 CYLINDER PRESSURE AND CRANKSHAFT
SPEED

Conventional parametric models of the cylinder pres-
sure in engines have been derived from balance equa-
tions for the angular momentum of reciprocating
components. When the engine is operating in a steady
state condition and the crankshaft system is modelled
as rigid, the engine crankshaft motion is described by
the torque balance equation [5, 8, 10, 11]:

J(u)u8 =Mg−Mm−Mf−Ml (2)

Here the crank angle is a function of time u=u(t),
u8 =d2u/dt2, and J(u) is the time-varying engine inertia.
This non-linear term is necessary to describe engine
operation at high speeds. Mg represents the gas torque
generated by the combustion pressure, P(u). The effec-
tive torque radius, R(u), derived using the engine ge-
ometry, is introduced to enable the transformation
from piston force to crank torque as

R(u)=r
!

sin(u)+
r
l

sin u cos u


[1− (r2/l2)sin2 u ]

"
(3)

If the piston area is A, the gas torque may then be
calculated from

Mg(u)=AR(u)P(u) (4)

Mm is the torque due to the effective reciprocating mass
and the piston motion. This torque does not contribute
net kinetic energy to the system but creates significant
fluctuation in the resultant torque at the combustion
frequency; it is determined by the engine geometry and
speed. For the non-linear engine model [10, 11], this
torque is expressed as a function of the instantaneous
crankshaft speed and angular momentum:

Mm=
1
2

dJ(u)
du

u: 2 (5)

Mf is the torque due to friction and the pumping action
of the engine, and Ml is the external load torque. In the
general case, this external load torque cannot be calcu-
lated as a dependent variable using terms related to the
instantaneous angular velocity, u: .

The four components of torque, Mg, Mm, Mf and Ml,
can either be measured or estimated and then substi-
tuted in equation (2). This is then solved to give the
combustion pressure as a function of u, u: , u8 , the load
torque Ml(u) and the friction torque Mf(u):

Pg(u)=
1

AR(u)
�

J(u)u8 +1
2

dJ(u)
du

u: 2+Ml(u)+Mf(u)
n

(6)

From this equation, the gas pressure, Pg, may be rewrit-
ten as a function of three independent variables:

Pg(u)=C(u8 , u: , u, Mf+Ml) (7)

Owing to the ease of pressure, torque and speed mea-
surement and the low cost of the hardware involved,
crank speed based cylinder pressure reconstruction
has been explored by many researchers [5, 8–11, etc.].
However, the results obtained by researchers in solving
equation (6) using measured data have involved a num-
ber of assumptions because of the non-linearity in the
angular momentum term J(u) at high speed, the
stochastic nature of the combustion process and the
extra measurement required in determination of the
external mean load. A non-parametric model circum-
vents many of the difficulties inherent in the model
based approach to cylinder pressure reconstruction.
RBF networks have been shown to possess universal
function approximation capabilities and can be used to
establish a mapping between the instantaneous
crankshaft angular velocity and the cylinder pressure.

In the work reported in references [10], [11] and [14],
the friction and pump torques were estimated using the
engine speed and geometry. Ribbens [15] argued that
crankshaft acceleration measurements contain informa-
tion on both the average and time-varying engine
torque applied to the crankshaft. Owing to the follow-
ing relationship between crankshaft acceleration and
torque,

u8 =d2u

dt2 =
du:
du

du

dt
=u: du:

du
(8)

previous work suggests that the torque measurement
can be avoided in neural network modelling. Hence, the
neural network development can be based on the as-
sumption that the cylinder pressure may be expressed
as a function of the instantaneous angular velocity
alone:

Pg=P(u: ) (9)
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The combustion pressure can then be determined
uniquely by the angular speed, obviating the need for
the measurement of external load torque.

The function P(u: ) can be modelled to an arbitrary
accuracy by many series expansions such as the Tay-
lor series or by using kernel-type methods of which
the radial basis function network may be regarded as
a subclass. Provided that such series are capable of
universal approximation the most appropriate series is
selected by the degree of parsimony of representation
that the series exhibits.

3 RADIAL BASIS FUNCTION NETWORKS

3.1 Architecture of a radial basis function network

A radial basis function (RBF) network is a linear
model of a function. This model is constructed from
a linear combination of the responses of a set of fixed
non-linear basis functions. The input is applied to
radial Gaussian functions so each hidden unit simu-
lates the effect of overlapping and locally tuned re-
ceptive fields:

fj(x)=e (− �x−cj �)/82

(10)

The exponential decay of the Gaussian function as x
moves away from the location of the centre, cj, en-
sures the local properties of the Gaussian RBF
model. Figure 1 illustrates a univariate Gaussian with
centre cj=0 and radius 8=1. The width, 8, of the
Gaussian function parameters also affects the nature
and scope of the hidden unit output. When a larger
8 is used, the output is less sensitive to a change in
the Euclidean distance and a better extrapolation be-
tween the centres can be obtained. However, for test
data locations that are similar to training data sites
the accuracy of the reconstructed pressure waveform
is reduced, since the locality of the model representa-
tion is itself reduced. On the other hand, a smaller

radius enables the network to predict a slight change
in the speed signature but gives poor interpolation
between the centres. This indicates that, to reach a
certain waveform reconstruction accuracy over the
range of engine operation, a large number of training
centres must be used when the interpolation between
the centres is not sufficiently smooth. An appropriate
value for the Gaussian radius needs to be identified.
This is usually set using heuristics, such as defining it
to be half the Euclidean distance to the nearest N
other centres.

The linear layer creates a mapping from the RBF
outputs to the output units. It calculates linear com-
binations of the activation values of the radial basis
functions. A two-stage supervised training process is
used to set the free parameters in the network. Can-
didate centres, ci, are chosen for each of the m RBF
neurons using a regularized forward selection al-
gorithm. Since an RBF network is a linear network,
the weights, wij, connecting the RBF neurons to the
output units may then be calculated by a least mean
squares minimization. As mentioned earlier, a regu-
larization term may be introduced into the cost func-
tion or matrix inversion can be carried out using
singular value decomposition. This avoids the danger
of numerical instabilities associated with direct solu-
tion of the normal equation.

If each training data vector, x1,…xp, is used as a
centre, then the network will implement strict interpo-
lation. This, however, is not usually desirable since
the number of degrees of freedom in the network
model will often greatly exceed the degrees of free-
dom of the underlying process that gave rise to the
training data. In this case the problem is overdeter-
mined and the network will likely fit many random
features of the training data, resulting in poor gener-
alization to unseen inputs. It is desirable, then, that a
model is constructed with as few non-linear terms as
possible. The aim is to be able to reconstruct the
mapping (hypersurface) indicated by the underlying
system with as parsimonious a model as possible.

There is no limit to the number of inputs or out-
puts in the network. However, it should be borne in
mind that networks with very many free parameters
will require a great deal of training data to arrive at
statistically significant values for the network parame-
ters. The network then has the form

gi(x)= %
m

j=1

wijhj(x) (11)

or matrix notation

G=HW (12)

In this case, {hj(•)}1m are the responses of the m non-
linear layer neurons to the p vectors in the input
training data, X= [x1,…,xp ], where x�RQ.Fig. 1 Gaussian decay (width 8=1.0)
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Fig. 2 RBF network for cylinder pressure waveform reconstruction from the angular speed signature of the
crankshaft

3.2 Replicating cylinder pressure with an RBF
network

If an RBF network is used to model cylinder pres-
sure, where pressure and speed are represented by y
and u respectively, then equation (9) can be rewritten
as

yi(u)= %
m

j=1

wijhj(u: ) (13)

The detailed RBF model structure is presented in
Fig. 2. It can be seen that a subspace is constructed
by the outputs of the hidden layer, radial basis func-
tions from which the target vectors may be linearly
projected. The model input space is sparsely occupied,
since only a small subset of x�RN can represent pos-
sible pressure waveforms. The compressed RM space
generated in the middle layer is more densely occu-
pied. The pressure is now expressed as a linear com-
bination of a set of M fixed basis functions hi(•), and
the coefficients of the linear combinations, wij, are the
network weights or model parameters. The following

section describes the forward selection approach to
performing the non-linear optimization which is re-
quired to derive values for the model parameters.

4 DERIVATION OF MODEL PARAMETERS

4.1 Cost functions

It is usual to define some form of ‘merit’ or ‘cost’
function for the model given a particular set of
weight coefficient estimates, W. This cost function is
based on the square distance of the model predictions
from the measured output vectors, Y= [y1,…,yp ],
where y�RN. Such a cost function is shown in the
following equation for a model with N outputs:

Ò2= %
N

j=1

%
P

i=1

�
yji− %

M

k=1

wjkhk(xi)
n2

(14)

Translating this into matrix notation, an equation is
obtained for this cost function:
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C(W)=1
2(Y−HW)T(Y−HW) (15)

The freedom of the model to fit many functions is
due to the freedom to pick different values for the
weights, the basis functions and any parameters of the
basis functions such as their width. In an RBF network,
it is usual that the basis functions are set during the first
stage of training and remain fixed. This means that a
linear training rule may be applied to calculate the
weights matrix W= [wij ]. Such a linear network can
have its weights set by a linear least squares technique.

The optimum selection for the weights in W occurs
when all elements of the matrix C(W) are minimized:

(C
(W

=HTHW−HTY (16)

This occurs when the first differential of C(W) with
respect to the weight matrix W is the zero matrix:

HTHW=HTY (17)

Solved for W this gives

W. = (HTH)−1HTY (18)

(HTH)−1 is normally evaluated using Gauss–Jordan
elimination. However, in many applications the solu-
tion to the normal equation is very close to singular. A
zero pivot element may be encountered during the
elimination procedure, giving rise to fitted parameters
wij that are very large and cancel out almost precisely
when the fitted model is evaluated at the training data
points. However, these predictions are unstable and
invalid away from the support points. However, these
predictions are unstable and invalid away from the
support points. As mentioned, this difficulty can be
avoided by using singular value decomposition to cal-
culate the weights matrix W (substitute Y=HW=
USVTW) or by perturbing matrix H to H+lI, as is
achieved by regularization (discussed in Section 4.3).

If the basis functions are allowed to vary, then the
network parameters would become non-linear and an
iterative numerical procedure such as that of Leven-
berg-Marquardt [16] would have to be employed to
determine the weights. Such procedures tend to be time
consuming and suffer from local minima problems.

4.2 Forward selection of centres

In forward selection of RBF centres (see Chen [17]) a
model is built from a set of regressors which are added
one at a time from a finite set of possibilities. The
criterion chosen to select the next centre to be added is
usually a minimization of the squared error of the
network outputs over some subset of the training data.
Forward selection is a suboptimal heuristic procedure
for picking the centres. Selection of an optimal subset
would involve a combinatorial search, which would
certainly be computationally prohibitive. There are

2m−1 possible sets which may be chosen from a library
of m original centres. Other approaches could be the
use of directed search techniques such as genetic al-
gorithms [18] using minimization of prediction error as
the fitness function. Whatever the selection procedure
used, termination occurs when the network error is
reduced to an acceptable value. The criterion used for
stopping may be the mean squared error or it may
involve some form of bootstrap method such as gener-
alized cross validation (see Section 4.5) to reflect that
the model should generalize well to unseen data and to
discourage bias.

Minimization of the squared error term can lead to
overfitting of the training data, a danger highlighted
above, even when relatively few regressors are used. It
must therefore be combined with a technique such as
regularization to build parsimonious networks that gen-
eralize well. Unfortunately, the methods highlighted
will not counteract major deficiencies in the training
data such as the presence of wild outliers which will
significantly distort the weight optimization procedure
because they encourage the network to fit the outlying
data points. Regularization will help counteract this to
some extent. Preprocessing of the data with a clustering
algorithm such as k-means clustering or Kohonen’s
self-organizing feature map may be a more effective
way of removing such outliers [19].

4.3 Regularization

Overfitting, whereby the network learns features that
are specific to the training data, resulting in poor
generalization, may be reduced by using a weight de-
cay term in the network cost function. This technique
is known to statisticians as ridge regression or as regu-
larization within the neural network community. Take,
for example, a physical process described by the func-
tion y=J(x). Knowledge of this process is limited to
observation of its input–output behaviour, {(xi, yi)}p

i=1.
The aim is to reconstruct the entire function from
examples of this behaviour. This is an ill-posed prob-
lem, but, by making some assumptions about the form
of the function and its smoothness, it should be possi-
ble to derive a reasonable approximation to J(x). The
hypersurface reconstruction problem is one of a
generic class of problems known as inverse problems.

In regularization, the cost function [see equation
(15)] is altered by the addition of a penalty term,
V(Y), whose influence is tempered by a factor, l :

C(W)=1
2(Y−HW)T(Y−HW)+lV(Y) (19)

The penalty term controls the variance of the network
and sets a balance between an a priori form for the
model with a strong bias towards prior knowledge of
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its form (suggested by relatively large values of l) and
a posteriori determination of the model shape based
primarily on the training data.

In zero-order regularization, or weight decay as it is
commonly referred to, the regularization term has the
form

V(Y)=lWTW (20)

This term is a measure of the smoothness, or stability,
of the desired solution. It penalizes large weight values,
hence encouraging solutions with small weight values.
The additional smoothness is achieved because it is more
likely that large weights will be required to produce an
extremely rough output function. One effect of such a
ridge regression technique is to reduce the effective
number of degrees of freedom in the model, making it
less flexible and unable to fit as many functions. The
advantage is that the model is more stable. If C(W) were
to be minimized with respect to this term alone, then a
solution would be arrived at that was very smooth but
had nothing to do with the shape of the measured data.
Other regularization terms may be used rather than
equation (20), depending on a priori knowledge of the
shape of the function [16].

The optimal solution for the weight matrix to minimize
the altered network cost function [equation (19)] is given
by the equation

Wm= (Hm
THm+lIm)−1Hm

TY (21)

The introduction of regularization leaves one further
parameter in the network training procedure for which
a value must be sought. The aim is to choose a value for
the regularization parameter, l, that produces the lowest
prediction error on unseen data, in that it does not lead
to overfitting of the training data but still pays sufficient
attention to its shape to set the model free parameters
so that they reflect the general shape of the hypersurface.
In Section 4.5 the way in which the model order may be
estimated will be discussed; the criterion used in this
paper is known as generalized cross validation (GCV).
Since generalized cross validation is used to predict the
network error on unseen data, this will also be used to
set the regularization coefficient, l.

4.4 Fast forward selection and re-estimation of
regularization coefficient

As stated, forward selection of centres in a radial basis
function network involves picking centres one at a time
from the training data set. These are added to an initially
empty subset until the termination criterion (discussed in
Section 4.5) is reached. This subset is maintained in the
design matrix, Hm, which, when the procedure begins, is
the empty set:

H=¥ (22)

At the mth step in the procedure, the old design matrix,
Hm−1, is augmented with a new column

Hm
T = [Hm−1fi ] (23)

where fi is chosen from the columns of the full design
matrix F. This full design matrix is simply the non-linear
function, f(•), applied to each item of the training data
set, X= [x1,…,xN ]:

F=Ã
Æ

È

f1(x1)
�

fM(x1)

· · ·
· · ·

· · ·

f1(xP)
�

fM(xP)
Ã
Ç

É
(24)

After adding a candidate column from the full design
matrix and recalculating the weight matrix Wm from
equation (21), the network cost function [equation (19)]
can be re-evaluated. This cost function may be written
as the sum of the network error over the training data
error penalized by the roughness:

Ci(Wm)=1
2(Y−Hm

i Wm)T(Y−Hm
i Wm)+lWm

TWm

=YTPmY (25)

where the projection matrix Pm is given by

Pm=Ip−Hm
i (Hm

i THm
i +lIm)−1Hm

i TY (26)

The criterion used to choose the best column, fr
m, from

the full design matrix, F, and corresponding to the best
choice of centre is that the mth choice of best column
should be selected according to

rm=argmin
i

[Ci(Wm
i )] (27)

This is equivalent to maximizing

Cm(Wm)−Cm−1
i (Wm−1

i )=
trace(YTPm−1fi)2

l+ fi
TPm−1fi

(28)

Recalculating the projection matrix, Pm, p times for
each iteration of the forward selection algorithm appears
an onerous and time consuming task, but an update
formula exists which requires far fewer operations; this
is given in equation (29) (see reference [19] for details).
This speed-up may be further advanced by orthogonal-
izing the design matrix:

Pm=Pm−1−
Pm−1fjfj

TPm−1

lj+ fj
TPm−1fj

(29)

Orr [19] derives a re-estimation formula for l which
is based on minimization of the GCV error (see Section
4.5). By differentiating the formula for the GCV error
[equation (31)] with respect to l and setting the result to
zero, a minimum value for GCV is obtained. The
resultant re-estimation formula may then be applied each
time a new centre is added to the network and is given
by

l :=
[( trace(Pm)/(l ]YTPm

2 Y
trace(Pm)Wm

T(Hm
THm+lIm)−1Wm

(30)
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where

( trace(Pm)
(l

=% hj
Thj

(l+hj
Thj)2

YTPm
2 Y=YTY− %

m

j=1

(2l+hj
Thj)(YThj)2

(l+hj
Thj)2

trace(Pm)=p− %
m

j=1

hj
Thj

l+hj
Thj

4.5 Model order selection

The model order selection criterion does not employ
the mean squared error to judge the optimal model
order, i.e. the number of regressors producing the
lowest value for the mean squared error in the model
predicted output. Rather it uses the generalized cross-
validation (GCV) error, which is based not merely on
the ability of the model to fit the training data but
on future inputs which ideally are unseen as far as
the fitting is concerned. This is also described in de-
tail in reference [19]. GCV is a variant of cross-
validation whereby the data are divided into two
parts: one part is used for fitting the parameters and
the other for assessing the model structure that per-
forms best on the section of the data not used for
fitting. The partitioning process is repeated many
times, removing a different section of the data for
testing (validation) each time. This helps to avoid the
problem of overfitting mentioned previously. An ana-
lytical, closed-form expression exists for the GCV er-
ror of a linear network. This is given by

ŝGCV
2 =

PYTPY
[trace(P)]2

(31)

Other model order selection criteria exist such as
the unbiased estimate of variance, the final prediction
error and the Bayesian information criterion. Again,
see reference [19] for more details. The forward selec-
tion procedure for addition of centres is terminated
on the basis of the GCV error. After GCV has
reached a minimum, forward selection continues for a
further two centres to provide some assurance that it
is not a local minimum in the optimization procedure
that has been reached. However, since it is impossible
to know for certain the location of local minima, the
decision may well be suboptimal.

5 SUMMARY

RBF networks offer a flexible and robust approach to
the typification of non-linear engine processes. The
representation of the data is translucent in so much
as the RBF neurons can be regarded as locally appli-
cable submodels which are linearly combined to
reflect the behaviour of the process over the training

data range. Moreover, by the use of stabilization
techniques, such as regularization, the model can be
made robust. Part 2 of this paper deals in detail with
the non-intrusive estimation of diesel engine cylinder
pressure and presents experimental results which high-
light the potential that this technique offers to the
improvement of engine performance and condition
monitoring.
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