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SUMMARY 

Aldehyde oxidase (AO) and xanthine oxidoreductase (XOR) are molybdenum 
hydroxylases involved in endogenous compound and drug metabolism. Molybdenum 

hydroxylase deficiencies have been observed in rat strains and humans. The absence of 
XOR activity is responsible for type I hereditary xanthinuria in humans. To date, only 6 

families have been studied worldwide for the molecular genetic basis of hereditary 

xanthinuria, none of which were of European descent. Discontinuous variations of AO 

activity have been noted in the Sprague Dawley (SD) strain of rat but the molecular 
basis for this variation is unknown. Studies previously carried out in this laboratory 

have identified both an AO-active wild type rat strain (Wistar) and an AO-deficient rat 

strain (Fischer). 

In this study all three strains of rat (Wistar, SD and Fischer) were phenotyped and the 

two AO-deficient strains were found to possess up to six-fold less AO activity towards 

dimethylaminocinnarnaldehyde (DMAC) than the Wistar rat strain and had a complete 
lack of activity towards a N-heterocyclic AO substrate (phenanthridine). 

Polymorphisms found previously in the SD rat by another laboratory were examined for 

cosegregation with the deficiency, however all three rat strains were found to be 

identical at these polymorphic sites. Cloning and DNA sequencing of the AO cDNA in 

the three strains of rat revealed two differences between the wild type and AO-deficient 

strains. Comparison of these two differences with an evolutionary diverse range of 

molybdenum hydroxylases, suggested that the GII OS difference was most likely to 

cause the AO deficiency in the AO-deficient rat strains. 
Cellulose acetate electrophoresis determined that there were two AO homologues in rat 
liver and the activity of the aldehyde oxidase homologue I (AOH I) responsible for N- 

heterocycle oxidase activity was absent in the AO-deficient rat strains. Cloning and 
DNA sequencing of this novel AOHI cDNA from the three strains of rat revealed five 

codon differences between the strains. Comparison of these differences with an 

evolutionary diverse range of molybdenum hydroxylases suggested that the R39Q 

difference was most likely to be responsible for the AOHI deficiency in the SD and 

Fischer rat strains. 
In this study the XOR gene sequence of a British hereditary xanthinuric patient was 

studied to identify the mutation causing the disease. Cloning and DNA sequencing 

analysis of the patient's XOR gene determined a novel mutation (33T>G) in exon 1. 
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This was predicted to cause an asparagine to lysine substitution at amino acid positio: 
II of the predicted protein sequence. Analysis of this difference with an evolutionar, 
diverse range of molybdenum hydroxylases from bacteria to man established that thi 

asparagine residue was 100% conserved through evolution. This suggested that ý 

positively charged lysine residue at this position in the mutant XOR protein is the caus, 

of hereditary xanthinuria in this patient. 
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I Introduction. 

1.1 Overview of molybdenum hydroxylase catalysis and distribution. 

In mammals there are three enzymes present which contain a molybdenum cofactor, 

aldehyde oxidase (AO) (E. C. 1.2.3.1), sulphite oxidase (SO) (E. C. 1.8.3.1) and xanthme 

oxidoreductase (XOR). AO and XOR are referred to as molybdenum hydroxylases due 

to the reaction they catalyse (Beedham., 1987). Molybdenum hydroxylases catalyse the 

oxidation of substrates via a complex internal electron transfer pathway (Hille & 

Nishino, 1995). These enzymes are homodimeric with two subunits of approximately 
150,000 Da each. Each subunit contains one molybdenum-pterin cofactor (MoCo), one 
flavin adenine dinucleotide (FAD) and two different iron sulphur (2FeS-, ) clusters as 

prosthetic groups (Garattini et al., 2003; Rajagopalan, 1997). 

The molybdenum hydroxylases are capable of catalysing 2 reactions at once as the 

molybdenum redox group oxidises one compound while the FAD site is capable of 

simultaneously reducing another (Figure 1) (Beedham., 1987). The iron-sulphur centres 

act to transfer electrons from the oxidised compound at the molybdenum site to the 

FAD site where a reduction can take place. AO and XOR catalyse the oxidation of a 

number of aldehydes and nitrogenous heterocyclic compounds (Beedham., 1985; 

Beedham., 1997). The presence of an electron donor mediates reduction of a number of 

compounds (Beedham., 1985; Krenitsky et al., 1972). The proposed electron transfer 

pathway and reactive sites of molybdenum hydroxylases are summarised in figure 1. 

-I,. R11 
-2e 

0, or X 

MOCO --W 217e? *ý-' --W I"'") 

ROH +oil- 
02' or 

reduced X 
--DO- Electron transfer 

Figure I- Illustration of the catalytic capabilities of molybdenum hydroxylases. 
A schematic diagram showing at which cofactor sites reactions occur and the proposed path of electrons 

through the enzyme based on Iwasaki et al., 2000, Fnroth et al, 2000, Beedham., 1987. 

RH - Aldehyde or N-Heterocycle (electron donor). 

X= Electron Acceptor e. g. NAD (with XOR only) or xenobiotic electron acceptor (XOR and AO). 



The general catalytic reaction of molybdenum hydroxylases takes the form of a 
hydroxyl transfer from water to an aldehyde forming the carboxylic acid or to an N- 

heterocycle forming the hydroxylated N-heterocycle (Beedham., 1987). The catalytic 

properties of these enzymes such as substrate specificity and susceptibility to inhibitors 

are very different although the substrate specificities overlap (Krenitsky et aL, 1972). 

For example, menadione is an inhibitor of AO but not XOR, while oxipurinol inhibits 

XOR but not AO (Beedham., 1987). 

AO is present in a wide range of species and is found in almost all animals, several 
insects and some plants (Beedham., 1985). Several groups have studied the location of 
AO in various species. It is found mainly in the liver of animals, (Moriwaki et al., 1998; 

Wright et aL, 1999; Yoshihara & Tatsumi, 1997) although it has been observed in other 

tissues such as the lung (Beedharn et aL, 1987; Calzi et aL, 1995; Moriwaki et aL, 1998; 

Wright et aL, 1999), the spleen (Beedharn et aL, 1987; Calzi et aL, 1995; Wright et aL, 
1999), the kidney (Beedharn et aL, 1987; Calzi et aL, 1995; Wright et aL, 1999), the 

epithelium of the tongue (Moriwaki et aL, 1998), the eye (Calzi et aL, 1995), the heart 

(Wright et aL, 1999), the epithelial component of the choroid plexus and in the spinal 

cord (Bendotti et aL, 1997) which is consistent with its toxicological and 

pharmacological relevance. 

Due to its obligatory role in purine catabolism in most organisms, XOR has been found 

in an evolutionary diverse range of organisms and has been isolated and/or cloned from 

prokaryotes (Beedham., 1985; Harrison, 2002; Leimkuhler et al., 1998; Xiang & 

Edmondson, 1996), fungi (Glatigny & Scazzocchio, 1995; Rajagopalan, 1997), plants 
(Montalbini, 2000; Sauer & Frebort, 2003), insects (Beedham., 1985; Hille & Nishino, 

1995; Komoto et al., 1999; Rajagopalan, 1997) and mammals (Beedham., 1985; Enroth 

et al., 2000; Garattini et al., 2003; Harrison, 2002; Hille & Nishino, 1995; Krenitsky et 

al., 1986; McManaman et al., 1999; Rajagopalan, 1997). It is abundant in the liver and 

intestine and is also present at high levels in the mammary gland of lactating mammals 

(Kurosaki et aL, 1996; Vorbach et aL, 2002; Yamamoto et aL, 2001). 
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1.2 Role of aldehyde oxidase in endogenous and exogenous compound metabolism. 

With regards to the substrate specificity of AO the name aldehyde oxidase is misleading 

as it implies that it only oxidises aldehydes, when its actual substrate specificity is much 

wider than this and includes N-heterocycles as substrates. Alternative names that have 

been proposed such as quinine oxidase or methotrexate oxidase imply an even smaller 

specificity for the enzyme, while the broader term molybdenum hydroxylase may also 
be used to describe XOR as well. As it was historically known as aldehyde oxidase, this 

nomenclature has been kept to the present day (Beedham., 1987; Garattini et aL, 2003). 

Whereas the role of AO in endogenous compound metabolism has not yet been 

unequivocally identified its role as a enzyme involved in xenobiotic metabolism has 

been well established (Beedham., 1985). It serves as a detoxification enzyme whose 

substrates include exogenously derived compounds of wide structural diversity 

(Beedham., 1985; Krenitsky et aL, 1972) 

1.2.1 Role of aldehyde oxidase in endogenous compound metabolism. 

One physiological role of AO that has been proposed is that it could be a regulator of 

vitamin B6 (nicotinamide) concentration, due to the formation of pyridones from the 

vitamin catabolism product, Nl-methylnicotinamide, by AO (Stanulovic & Chaykin, 

1971 a; Stanulovic & Chaykin, 1971b). 

AO is also known to metabolise endogenous substrates such as retinaldehyde (Terao et 

aL, 1998), which is the main component of the visual pigments and is a potential 

precursor of the active metabolite of vitamin A, retinoic acid (Ambroziak el aL, 1999). 

It has been speculated that AO may also play a role in visual processes due to its ability 

to metabolise retinaldehyde. AO has been shown to be the same enzyme as retinal 

oxidase (Tomita. et aL, 1993) which catalyses the oxidation of retinaldehyde to retinoic 

acid (Huang & Ichikawa, 1994). Retinoic acid has multiple functions in the body, for 

example it is responsible for the formation of limb buds and plays a part in cellular 

differentiation and morphogenesis. A ma or role of aldchyde oxidase therefore could be 

the synthesis of retinoic acid from retinaldehyde (Tomita et aL, 1993). 
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Studies by Berger et aL (Berger et aL, 1995) have demonstrated that AO is also 

expressed in the human ventral horn glial cells, which form approximately 90% of the 

cells within the nervous system. These cells support the environment around nerve cells 

and are responsible for removing and inactivating neurotransmitter molecules (Berger et 

aL, 1995). In addition, it has also been suggested that AO may metabolise 
dihydroxymandelaldehyde, a product of the catabolic pathway of adrenaline and 

noradrenaline, which could indicate another possible physiological role for AO (Terao 

et al., 1998). 

1.2.2 Role of aldehyde oxidase in exogenous compound metabolism. 

Although AO's role in endogenous compound metabolism has not been unequivocally 

proven the main reason for the interest in AO is as a xenobiotic/drug metabolising 

enzyme. AO catalyses phase one drug metabolism with a complementary substrate 

specificity to the microsomal cytochrome P450 monooxygenases (Beedham., 1985; 

Beedham., 1987). Phase one drug metabolism reactions are usually oxidation, reduction 

or hydrolysis reactions, which introduce or expose a functional group. As mentioned in 

section 1.1 AO oxidises a multitude of substrates including N-heterocycles such as 

phenanthridine and aldehydes such as benzaldehyde. It also oxidises many N- 

heterocyclic drugs including several anticancer and anti-viral agents such as those 

described in more detail below. 

As there are many xenobiotics and drugs that arc substrates for this enzyme only a few 

arc described in more detail here. Several different types of drugs arc substrates for AO 

these include anti-viral agents such as famciclovir (2-[2-(2-amino-9H-purin-9-yl) ethyl]- 
1,3-propanediol diacetate (ester)), which undergoes rapid hydrolysis and oxidation in 

man to yield the active anti-herpes agent penciclovir by AO (figure 2a) (Clarke et aL, 
1995; Rashidi et aL, 1997). Pcnciclovir is active against herpes simplex virus types I 

and 2 (causing herpes), varicella zoster virus (causing chicken pox), Epstein-Barr virus 

and hepatitis B (Rashidi el aL, 1997). Various anti-cancer drugs are also substrates for 

AO examples of these include 

N-[(2'-Dimethylamino)ethyl]acridine-4-carboxamide (DACA) which is undergoing 

phase II clinical trials and shows high activity against various solid murine turnours and 

various multidrug resistant human tumour cell lines (Schofield et al., 2000). DACA is 
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metabolised to acridone metabolites by AO, which appears to play a major role in its 

elimination in patients and rodents (figure 2b) (Robertson et aL, 1993; Schlemper et aL, 
1993; Schofield et aL, 2000). Another drug metabolised by AO is methotrexate (4- 

amino-Nlo-methylpteroglutamic acid), which is widely used to treat acute lymphocytic 

leukaemia in children, osteosarcomas, lymphomas and various other malignancies in 

both adults and children (Kitamura et aL, 1999a; Kitamura et aL, 1999b). Methotrexate 

has also become a standard therapy for the treatment of rheumatoid arthritis (Grosflam 

& Weinblatt, 1991). The metabolism of methotrexate to 7-hydroxymethotrexate occurs 
due to the activity of AO (figure 2c) (Kitamura et aL, 1999a). Another example of an 

anti-cancer agent is thioguanine, (a thiopurine antimetabolite), which is used for the 

treatment of acute leukaemia. The thiopurines are prodrugs, which are converted to 

nucleotides intracellularly before they are able to exert their cytotoxic effect. 

Thioguanine is oxidised by AO to form 8-hydroxy-thioguanine which is in turn 

dearninated by guanine deaminase to thiouric acid (figure 2e) (Kitchen et aL, 1999). The 

last example is zaleplon (N-[3-(3-cyanopyrazdo[1,5-a]pyrimidine-7-yl)phenyl]-N-ethyl- 

acetamide), a nonbenzodiazepine compound being developed as a ultra-short acting 

sleep inducer with a prompt onset of action (Kitamura et aL, 1999b). Zaleplon is 

oxidised to 5-oxo-zaleplon by AO (figure 2d) (Kawashima et aL, 1999). 

As well as hydroxylation of compounds AO also catalyses the reduction of many 

compounds such as sulphoxides, N-oxides, nitrosamines, hydroxamic acids, azo 

compounds, oximes, epoxides and aromatic nitrocompounds (Beedham., 1985; 

Krenitsky et aL, 1972). 
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Figure 2- Examples of the role of aldehyde oxidase in N-heterocyclic drug metabolism. 

a, b, c, d&e shows the role of AO in the metabolism of famciclovir, DACA, methotrexate, zaleplon and 
thioguanine respectively. 



1.3 Role of xanthine oxidoreductase in endogenous and exogenous compound 

metabolism. 

Like AO, XOR has roles in both endogenous and exogenous metabolism but unlike AO, 

XORs role in endogenous compound metabolism is definitively proven. Also unlike AO 

the name xanthine oxidoreductase accurately describes the enzyme but it should be 

pointed out that XOR can exist in two forms, which has important implications in 

disease processes (section 1.6). The two forms that are found naturally are a 
dehydrogenase form (XD) (E. C. I. I. I. 204) and an oxidase form (XO) (E. C. I. I. 3.22). 

The oxidase form is formed from the dehydrogenase form by two mechanisms, 

reversible oxidation of thiol groups and irreversible partial proteolytic cleavage, which 

occurs rapidly when atmospheric oxygen is introduced to the dehydrogenase form 

(Marti et aL, 2001). Whereas all the mammalian XORs so far studied undergo 

conversion (Amaya et aL, 1990; Enroth et aL, 2000), XOR in the prokaryote 

Rhodobacter capsulatus (R. capsulatus) (Truglio et aL, 2002) and the chicken XOR 

(Sato et aL, 1995) are examples of species that have no capability to undergo 

conversion and exists as XD only. 

1.3.1 Role of xanthine oxidoreductase in endogenous purine metabolism. 

XOR is an obligatory enzyme in the endogenous purine degradation pathway. It is 

responsible for converting xanthine and hypoxanthine to uric acid, which is the final 

product of purine degradation in humans (Voet et aL, 1999) (figure 3). Loss of function 

of this enzyme results in a condition known as xanthinuria where a build up of xanthine 

and to a lesser extent hypoxanthine in the body occurs (Simmonds et aL, 1995). 

Xanthinuria is described in more detail in section 1.6.3. 
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Figure 3 -The role of xanthine oxidoreductase in purine catabolism in man (based on Voet et aL 
1999). 
ADase - adenosine deaminase, PNPase - purine nucleoside phosphorylase, GDase - guanine deaminase 

1.3.2 Role of xanthine oxidoreductase in exogenous compound metabolism. 

As well as endogenous compound metabolism, XOR is also important as a xenobiotic 
drug metabolism enzyme. Like AO, it also has complementary substrate specificities to 

the cytochrome P450s and catalyses phase one drug metabolism. Aciclovir is an 

antiviral drug effective against herpes simplcx virus and varicella zoster virus, however 

high doses need to be given due to the ineffective oral absorption of the drug. The 

prodrug 6-deoxyaciclovir was developed which is activated to aciclovir by XOR (figure 

S 



4b), unfortunately high toxicity problems highlighted in animal studies resulted in 

further development being terminated (Beedham., 1997). An example of a cancer 

chemotherapeutic agent oxidised by XOR is 6-mercaptopurine (Van Scoik et aL, 1985) 

(figure 4b). XOR also plays a role in the breakdown of caffeine, which undergoes 3- 

dernethylation by a cytochrome P450 to fonn paraxanthine which is then 7- 

demethylated to 1-methylxanthine which is then 8-hydroxylated by XOR resulting in 

the formation of I -methylurate (Kalow & Tang, 199 1) (figure 4c). 
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Figure 4- Examples of the role of xanthine oxidoreductase in N-heterocyclic 
drug metabolism. 

a, b and c shows the role of XOR in the metabolism of 6-deoxyaciclovir, 
and 1-methylxanthine respectively. 
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1.4 Structural features of molybdenum hydroxylases. 

As summarised in section 1.1 AO and XOR contain one FAD, one MoCo and two iron- 

sulphur centres per subunit. Insight into the domain structure of molybdenum 
hydroxylases have recently been provided by the successful crystallization of three 

molybdenum hydroxylases from a mammalian (Enroth et aL, 2000) and two bacterial 

species (Romao et aL, 1995; Truglio et aL, 2002). X-ray crystallography data has 

determined that each subunit of the bovine XOR enzyme may be divided into three 

subdomains. The first subdomain (residues 1-165) at the N-terminus contains both the 
iron-sulphur cofactors. It is connected to the FAD-binding domain (residues 226-531) 
by a long segment of amino acids (residues 166-225). Another linker segment (residues 

532-861), connects this subdomain to the molybdenum cofactor binding domain 

(residues 590-1,332), which is spatially positioned close to the interfaces of the iron 

sulphur and FAD binding domains (Enroth et aL, 2000). Interestingly the XOR enzyme 
from the prokaryote R. capsulatus contains a ((XP)2 heterotetramic structure with the 

cofactors located on two different polypeptide chains. The two iron sulphur cofactors 

and the FAD cofactor bind to the XD subunit A and the molybdenum cofactor binds to 

the XD subunit B. Each subunit of the bovine enzyme is equal to one heterodimer of R. 

capsulatus (Truglio et al., 2002). Another interesting point is that aldehyde 

oxidoreductase (AOR), a related bacterial enzyme from Desul(ovibrio gigas (D. gigas), 

only possesses the molybdopterin cofactor and the two iron-sulphur binding domains as 
the protein domain associated with FAD binding is missing, which results in a smaller 

enzyme (Romao et aL, 1995). This D. Gigas enzyme was the first of the three crystal 

structures to be determined (Romao et aL, 1995). Three-dimensional structural analysis 

of this molybdoenzyme identified that the first iron sulphur domain chain fold was very 

similar to that of the plant and cyanobacterial iron-sulphur ferredoxins but the second 
iron sulphur domain had a previously undescribed iron sulphur ferredoxin type fold. 

Further work by Enroth et al. using X-ray crystallography data obtained from bovine 

milk XOR also noted the two distinct binding sites and found that the plant ferredoxin- 

like N-terminal iron-sulphur centre was spatially situated close to the FAD cofactor and 
that the C-terminal unique iron-sulphur centre was spatially situated close to the MoCo 

site (Enroth et aL, 2000). Iwasaki et aL studied these iron sulphur clusters in more 
detail. By comparing the primary amino acid sequence of XOR and AO with other iron- 

sulphur proteins they identified that the N-terminal iron-sulphur centre was plant 
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ferredoxin-like following the same binding motif as found in plant 1erredoxins (figure 

5) (Iwasaki et al., 2000), but the C-ten-ninal iron-sulphur centre was unique to the 

molybdenum hydroxylases exhibiting an unusual binding motif as illustrated in figure 5 

(Iwasaki et al., 2000). 

N-lerminal plant lCt-recloxii n-I ike illotil' 

Rat xanthine oxidoreductase: 

-Ilcys-x-"cys-x-l 
I CYS-//-"CYS- 

A gigas aldehyde oxidoreductase: 

_40CYS_X_45CYS_X_48CYS_H_60CYS_ 

Anabaena 7120 vegetative ferredoxin: 

_4 
1 CYS_X_46CYS_X_49CYS_//_79CYS_ 

C-tcl-111111,11 unlisli'll Illotil, 

-1 
"Cys-X- "'Cys-H- 147CYS_X_ 149CYS_ 

-Ilcys-x-", 
Cys-//- I Ilcys-x- 139CYS_ 

Figure 5- The iron-sulphur binding domains of molybdenum hydroxylases. 

Schematic diagram of the two iron sulphur binding motifs in the iron sulphur domain of rat XOR, D. 

giga. v AOR and the plant-type ferredoxin motif of Antibuena 7120 vegetative ferredoxin. Based on 
(Iwasaki et aL, 2000). The N-terminal plant ferredoxin-like motif is highlighted in pink and the C- 

terminal unusual motif is highlighted in green. 

Enroth el al. also found that the FAD molecule binds within a deep cleft of the bovine 

XOR enzyme allowing space for interaction with the NAD molecule. This cofactor is 

situated between the iron-sulphur centres and the MoCo binding domains (Enroth ef al., 

2000). In their structural analysis of XOR from R. capsulalus Trugho et al. noted 

several residues that form hydrogen bonding with the FAD molecule that were 

conserved in all the XORs they studied. The corresponding residues in the human XOR 

protein are Asn349, Asp358 and Lys424 (Trugho et al., 2002). In addition to FAD 

binding residues five binding sites have been identified with regard to MoCo binding 

situated towards the C-terrmnus of the protein. MoCo I spans residues 797-804 in the 

mouse XOR protein sequence, MoCo 11 spans residues 913-921 in the mouse XOR 

protein sequence, MoCo III spans residues 1041-1044 in the mouse XOR protein 

sequence, MoCo IV spans residues 1080-1083 in the mouse XOR protein sequence and 



MoCo V spans residues 2262-2267 in the mouse XOR protein sequence (Terao et al., 
2000). In their thorough analysis Enroth el al. propose that as there are no obvious 
"through bond" pathways connecting the two iron-sulphur domains and the FAD 

domain, that tunnelling is the most probable mechanism for electron transport between 

the cofactors. The geometrical arrangements and redox potentials of the cofactors also 

provide support for the theory that the electrons are transferred from MoCo to the two 

iron-sulphur centres to the FAD cofactor proposed by Iwasaki et al (Enroth et al., 2000; 

Iwasaki et al., 2000). 

These crystal structures reveal a wealth of information previously unknown about these 

enzymes. With knowledge of these structures effects of misense mutations found in 

other species might be predicted, as has been done for human dihydropyrimidine 

dehydrogenase gene mutations (Kuilenburg et aL, 2002). As time progresses more 

crystal structures will probably be elucidated which will reveal even more information 

about this group of enzymes. 
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1.5 Genes involved in molybdenum hydroxylase biosynthesis. 

In the past decade there have been several genes identified involved in molybdenum 
hydroxylase biosynthesis. These include genes that encode the apoenzymes and several 

genes that are involved in the synthesis of the molybdenum cofactor (Garattini et aL, 
2003; Reiss & Johnson, 2003). A summary of what is known about these genes is 

outlined in this section with special emphasis on XOR and AO apoprotein genes, which 

were the focus of the research project described in this thesis. 

1.5.1 The xanthine oxidoreductase gene. 

Xanthine oxidoreductase is well characterised from a wide range of species. It has been 

cloned from many species from bacteria to humans (Glatigny & Scazzocchio, 1995; 

Komoto et aL, 1999; Saksela & Raivio, 1996; Sato et aL, 1995; Terao et aL, 1992; 

Tsuchida et aL, 2001). The first XOR cDNA sequence to be cloned was rat liver XOR 

by Amaya et aL in 1990 (Amaya et aL, 1990) which subsequently enabled the mouse 

and human XOR cDNA to be cloned (Ichida et aL, 1993; Saksela & Raivio, 1996; 

Terao et aL, 1992; Wright et aL, 1993; Xu et aL, 1994a). Interestingly there have been 

four separate sequences published for human XOR cDNA (Ichida et aL, 1993; Saksela 

& Raivio, 1996; Wright et aL, 1993; Xu et aL, 1994a). There was confusion about 

which of the published sequences were correct. In July 1993 Ichida et aL published the 

first cDNA sequence and detailed differences found between individual clones (Ichida 

et aL, 1993). Wright et aL (1993) published another cDNA sequence in November 

1993, which they claimed was human XOR, however it contained no coding 
information for a NAD binding site and was only 60% identical to rat XOR and Ichida 

et ars cDNA sequences (Wright et aL, 1993). This was later suggested to be AO 

(Glatigny & Scazzocchio, 1995). Xu et aL also published a sequence for human XOR 

cDNA (Xu et aL, 1994a) which was different again to the previous two however in 

1995 they revealed several corrections to their sequence in a published erraturn (Xu et 
d, 1995), after Stratagene reported that the oligo(dT)-primed human liver cDNA 

library which Xu et aL had used was in fact not human. As three different sequences for 

human XOR had been published Saksela and Raivio also cloned human XOR in 1996 to 

try and determine which sequence was correct. They found that their sequence was over 

99% identical to Ichida's sequence but only 60% identical to Wright's sequence 
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supporting the theory that this sequence was not XOR. Xu's original sequence showed 

94% identity but the revised sequence showed 99.65% identity with Saksela's (Saksela 

& Raivio, 1996). It is now recognised that Saksela's sequence is the correct one. 

Following the cloning of the XOR cDNA this enabled Ichida et aL to map the 

chromosomal location of human XOR to chromosome 2 (Ichida et aL, 1993) and Xu et 

aL later published the subchromosomal location of XOR to chromosome 2p22 (Xu et 

aL, 1994b) which was independently confirmed (Rytkonen et aL, 1995). The 

intron/exon structure of the XOR gene was also determined by Xu et al (Xu et aL, 

1996). 

Analysis of both the cDNA and gene has revealed several important structural features 

of human XOR. The cDNA sequence of human XOR contains an open reading frame of 

3999 nucleotides, which encodes a protein of 1333 amino acids. The gene spans a 

region of at least 60 kb (Xu et aL, 1996). This is over twice the size of the average 

human gene which only spans approximately 27 kb (Venter et aL, 2001). The coding 

sequence of XOR is split into 36 exons which vary in size from 53 bp to 279 bp. 

Interestingly the number of exons in the XOR gene is considerably greater than the 

average human gene which is split into approximately 7 cxons (Venter et aL, 2001). In 

addition to the large number of exons the intron sizes of XOR are up to 5 kb which 

makes working with this gene tedious (Xu et aL, 1996). 

1.5.2 The aldehyde oxidase gene. 

As previously mentioned the cDNA encoding human AO was first reported to be XOR 

(Wright et aL, 1993). Subsequently the mRNA encoding AO has been cloned in several 

species including bovine (Calzi et aL, 1995), mouse (Demontis et aL, 1999; Huang et 

aL, 1999), rabbit (Huang et aL, 1999), rat (Wright et aL, 1999) and several plants 

(Barabas et aL, 2000; Min et aL, 2000). There is a high degree of similarity between 

species (greater than 80% in mammals) with several highly conserved regions, which 

have been found in all AO mRNAs cloned so far. Following the cloning of these 

cDNAs the gene was subsequently cloned in humans (Wright et aL, 1997) and mice 

(Demontis et aL, 1999). Mammalian AO is a single copy gene, which covers 

approximately 85 kb of DNA containing 35 exons (Terao et aL, 1998). Like the XOR 
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gene the AO gene has an open reading frame, 3999 nucleotides long, which encodes for 

a polypeptide chain of 1333 amino acids. 

1.5.3 Similarity of aldchyde oxidase and xanthine oxidoreductase proteins and 

genes. 

Comparison of the deduced AO and XOR primary amino acid sequences reveal that 

they are approximately 50% identical but have a high degree of sequence identity at 

certain regions allowing a consensus eukaryotic protein map to be proposed (Garattini 

et aL, 2003) (figure 6a). Comparison of the genes of AO and XOR reveal that they are 

very similar in structure. 34 out of 36 of the intron boundaries are exactly conserved 
between the two genes. Intron 26 in XOR is suppressed in AO and the sum of exons 26 

and 27 in XOR are exactly the same size as exon 26 in AO (Terao et aL, 1998). This is 

illustrated in figure 6. All these similarities between the two genes have led to the 

conclusion that they probably arose from a gene duplication event despite the fact that 

they are located at opposite ends of chromosome 2 which is the second largest 

chromosome in humans (Terao et aL, 1998). 
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Figure 6- Diagram showing the human xanthine oxidoreductase and aldehyde oxidase 
protein map and gene structure. 

Schematic diagrams of the intron/exon structure of the human XOR and AO genes and molybdenum 
hydroxylase protein map. a is a molybdenum hydroxylase protein map illustrating the binding domains of 
the four cofactors, b is the human XOR gene and c is the human AO gene. The two iron sulphur binding 
domains are depicted in red, the FAD binding domain is depicted in blue and the MoCo binding domain 
is depicted in green. 

1.5.4 Aldehyde oxidase gene hornologues. 

Although prior to the initiation of the project detailed in this thesis, it was widely 

accepted that a single AO enzyme carried out all AO activity in mammals. A study by 

Holmes in 1978 suggested that there may be two AO enzymes in mice based on 

cellulose acetate zymograms (Holmes, 1978). It was not until over two decades later 

that irrefutable proof of more than one AO enzyme existed. In September 2000 a paper 

was published detailing the discovery of two aldehyde oxidase mRNA homologues in 

mice (Terao et al., 2000), this was followed by a sister paper in December of 2001 

detailing more information on the genes and characteristics of the homologues (Terao el 

al., 2001). Aldehyde oxidase homologue I (AOHI) is expressed in the hepatocytes of 

the liver and in spen-natogonia while aldehyde oxidase homologue 2 (AOH2) expression 

16 



is limited to keratinized epithelia and the basal layer of the epidermis and hair folliculi 

(Terao et aL, 2001; Terao et aL, 2000). The mouse AOHI and AOH2 cDNAs were 
found to code for polypeptides of 1335 and 1336 amino acids respectively. As they 

were more similar to AO than XOR and showed phenanthridine but not hypoxanthine 

oxidising activity they were presumed to be AO homologues rather than XOR 

homologues. Further evidence for the enzymes being AO homologues as opposed to 

XOR homologues was that the AOHI and AOI-12 sequences lacked the typical NAD 

binding consensus sequence, which is found in all XOR's. Like AO the AOHI and 
AOI-12 proteins also showed benzaldehyde oxidising activity when stained on a 

cellulose acetate plate (Terao et al., 200 1; Terao et al., 2000). 

Very recently a review on molybdenum hydroxylases in mammals reported the presence 

of a third AO homologue in mice (Garattini et aL, 2003). They reported that aldehyde 

oxidase homologue 3 (AOH3) was located approximately 9 kb downstream of the 

AOH2 locus summarised in figure 7. They have also carried out work on the human AO 

locus using various cDNA libraries and have found that the human genome is likely to 

contain only one functional AO gene and three tandem gene duplications homologueous 

to AOHI, AOI-12 and AOH3. They propose that these duplications are pseudogcnes 

which have replaced the AO homologues present in mice (Garattini et aL, 2003). 

mRNA 

Exons 35 35 35 ? 

Gene 

A01i I AOH2 AOH3 AO 

I11 
350 300 250 200 150 100 50 0 (kb) 

Figure 7- Schematic diagram of the aldehyde oxidase gene cluster on mouse chromosome 
1. 

The arrows show the direction of transcript. The number of exons where known is shown above the gene. 
?= unknown. 
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Interestingly around the same time that the murine AO homologues were reported it was 

also discovered that plants contain several AO genes (Barabas et aL, 2000; Min et aL, 
2000). 

1.5.5 Molybdenum cofactor synthesis. 

As well as the structural genes that encode AO and XOR there are also several genes 
involved in the biosynthesis of the molybdenum cofactor that are essential for the 

formation of functionally active molybdenum hydroxylase holoenzymes. 

The molybdenum cofactor synthesis step I (MOCSI) gene product catalyses the 

formation of precursor Z from the guanine triphosphate (GTP). The molybdenum 

cofactor synthesis step 2 (MOCS2) gene product, activated by the molybdenum cofactor 

synthesis step 3 (MOCS3) gene product, synthase sulphotransferase, then catalyses the 

formation of molybdopterin from precursor Z. Gephyrin then catalyses the insertion of 

the molybdenum atom into the molybdopterin to create an active molybdenum cofactor 

suitable for use in sulphite oxidase (Reiss, 2000). However a sulphur atom needs to be 

added in order for AO and XOR to utilise the cofactor. This is achieved by a recently 

cloned enzyme, molybdenum cofactor sulphurase (MCS) (Ichida et aL, 2001). Figure 8 

summarises the steps involved in the biosynthesis of the molybdenum cofactor. 
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Figure 8- Summary of molybdenum cofactor synthesis based on Reiss, 2000. 

This schematic diagram shows the structure of the molybdenum cofactor illustrating where and at what 
step the sulphur is added to enable the cofactor to function in AO and XOR, MOCSx - molybdenum 

cofactor synthesis step x is], 2 and 3 respectively. GTP is guanine triphosphate. 
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1.6 The role of molybdoenzymes in disease. 

Molybdoenzymes are responsible, at least in part, for several disease states. In this 

section the aim is to give an overview of the links of molybdenum hydroxylases with 
disease with particular emphasis on hereditary xanthinuria, which was the subject of one 

of the research objectives described in this thesis. 

1.6.1 The role of aldehyde oxidase and xanthine oxidoreductase in free radical 
diseases. 

Both AO and XOR have been implicated to either cause or play a part in several 

pathological conditions. Both AO and the oxidase form of XOR are potent sources of 

the reactive oxygen species (ROS) hydrogen peroxide and the superoxide anion that 

have been related to numerous human pathologies (McCord, 1985; Mira et aL, 1995; 

Saugstad, 1996; Wright & Repine, 1997; Yee & Pritsos, 1997). ROS are generated from 

AO in an oxidative half-reaction following the reduction of the enzyme by the substrate. 

The Fe2S2, FAD and molybdopterin cofactors comprise an internal electron transfer 

chain in which the electrons are passed from the active site molybdenum ccntre to the 

iron-sulphur centres and finally to FAD where partial reduction of oxygen occurs to 

produce ROS (Terao et aL, 1998). This transfer chain is illustrated in figure 1. The 

conversion of XOR from its NAD-reducing form into its 02-reducing XO forrn is an 
important early step in the pathophysiological involvement of XO in ischaemia- 

reperflasion injury (Brass et aL, 1991; McCord, 1985; Saugstad, 1996). The induction of 

molecular oxygen during reperfusion leads to the formation of ROS which cause 

peroxidation of fatty acids within the phospholipid structure of the cellular membrane 

generating a chain reaction of radical species production thereby enhancing the ultimate 
destructive effect (Brass et aL, 199 1; McCord, 1985). 

XOR is also thought to play a role in alcohol-promoted breast cancer (Castro et aL, 

2001). It has been shown that the XO form of XOR participates in the ethanol oxidation 

to acetaldehyde in breast cytosol thereby producing ROS (Castro et aL, 2001). 

Acetaldehyde is a known mutagenic and carcinogenic chemical and ROS are thought to 

be involved in the initiation and promotion stages of ethanol-induced cancers in various 

different tissues (Castro et aL, 2001). During acute alcohol intake there is an increase in 

purine degradation resulting in higher levels of xanthine and hypoxanthine in the blood 
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and serum. This coupled with intakes of caffeine such as coffee or certain soft drinks 

may significantly increase the formation of acetaldehyde in breast tissue (Castro et al., 
2001). 

AO has also been shown to produce free radicals during ethanol metabolism (Mira et 

aL, 1995; Shaw & Jayatilleke, 1990), during which there is an increase in the 
NADH/NAD + ratio resulting from ethanol oxidation into acetaldehyde by alcohol 
dehydrogenase and from acetaldehyde oxidation into acetate by aldehyde 
dehydrogenase. As acetaldehyde is a substrate for AO these processes contribute to a 
higher amount of ROS being produced which initiates lipid peroxidation of the liver 

XOR also contributes to the ROS production. (Mira et aL, 1995; Shaw & Jayatilleke, 

1990). 

1.6.2 Role of xanthine oxidoreductase in defence against pathogenic organisms. 

It has been shown that XOR activity increases in mice after infection with the influenza 

virus (Oda et aL, 1989). Treatment of these mice with superoxide dismutase (a 

superoxide scavenger) conjugated with a pyran copolymer protected mice against a 

potentially lethal influenza virus infection if administered 5-8 days after infection. This 

illustrates that oxygen radicals of which XOR is a source are important in the 

pathogenesis of influenza virus infection (Oda et aL, 1989). 

XOR expression is also induced by the presence of interferons and it appears to mediate 

some of the toxic effects produced by interferons and their inducers such as bacterial 

lipopolysaccharides (Terao, et aL, 1992). Terao, et aL proposed that the increased 

production of superoxides derived from the XOR system may be related to the 

antiproliferative or antiviral activity of interferons (Terao et aL, 1992). 

In a study of infant rats that were infected with Streptococcus pneumoniae (type 3), 

which causes bacterial meningitis in these rats XOR activity also increased (Christen et 

aL, 2001). However it is thought that rather than aggravating the disease, the formation 

of urate due to this activation exerts a protective effect. Further evidence of XOR's 

protective role is provided by the p47phox-l- mouse model, in which the relative 

contributions of the NADPH oxidase and XOR to superoxide generation have been 
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evaluated. Following infection of the p47 phox-1- mice with Burkholderia cepacia, which 

are sensitive to superoxide-derived reactive oxidants, the superoxides produced by XOR 

aided clearance of the pathogenic bacteria as shown by inhibition experiments by pre- 
treatment of the mice by the specific XOR inhibitor allopurinol (Segal et al., 2000). 

Studies carried out on mice infected with Salmonella typhimurium, which is responsible 
for the symptoms of typhoid fever, and administered allopurinol, a specific XOR 

inhibitor, have established that XOR activity plays an important role in the 

antimicrobial mechanism against this bacterium in mice (Umezawa et al., 1997). 

1.6.3 Molybdenum cofactor deficiencies. 

Molybdenum cofactor deficiency leads to a combined deficiency of all three 

molybdenum cofactor containing enzymes AO, XOR and SO. This rare disease is 

characterised by neonatal seizures and other neurological symptoms identical to those 

found in isolated SO deficiency. It is a rare disease with only about 100 cases known 

worldwide, in all ethnic groups, although the actual figure is likely to be higher due to 

its similarity to isolated SO deficiency resulting in misdiagnosis (Reiss, 2000; Reiss & 

Johnson, 2003; Rhoden et aL, 2000). No therapy is known for this disease, which leads 

to death in early childhood. MoCo deficiency can be divided into two groups with 

identical phenotypes. Type A is the most common (two-thirds of patients) with the 

mutation occurring in the MOCS I gene. Type B is less common (one-third of patients) 

with the mutation occurring in the MOCS2 gene (Reiss, 2000). Approximately 50 

unrelated families worldwide have been studied at the molecular level with 16 different 

mutations identified in the MOCSI gene and 15 different mutations identified in the 

MOCS2 gene (Reiss & Johnson, 2003). Figure 8 illustrates where each of these genes 

fit into the pathway of MoCo synthesis. 

1.6.4 Hereditary xanthinuria. 

Xanthinuria is an inherited deficiency of XOR, which results in the inability to convert 

xanthine and hypoxanthine to uric acid (Dent & Philpot, 1954; Holmes & Wyngaarden, 

1989). The exact incidence is not known but is thought to be approximately I in 6000 

although this is likely to be an underestimation as many sufferers go undiagnosed 
(Simmonds el aL, 1995). The main clinical manifestation in xanthinuria is the formation 
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of urinary xanthine calculi due to the extreme insolubility of xanthine, which in extreme 

cases can lead to renal failure. Other symptoms can include arthropathy, irritability, 

hernaturia, urinary tract infection, renal colic, myopathy and duodenal ulcers 
(Simmonds et aL, 1995). However classical xanthinuria is often benign and not always 
diagnosed and most often discovered while the patient is undergoing investigation for 

an unrelated disorder (Holmes & Wyngaarden, 1989; Simmonds et aL, 1995). 

Hereditary xanthinuria can be subdivided into two types. Hereditary xanthinuria type I 

is caused by a defect in the structural gene for XOR so only XOR is absent (Sinurionds 

et aL, 1995). Hereditary xanthinuria type II is distinguished from hereditary xanthinuria 

type I by the oral administration of the AO substrates allopurinol, nicotinamide or 

pyrazinamide. Hereditary xanthinuria type I patients show a normal ability to oxidise 

these compounds whereas patients with hereditary xanthinuria type 11 show a defective 

ability to oxidise these compounds indicating a dual deficiency of both AO and XOR 

(Levartovsky et aL, 2000) (caused by a defect in the molybdenum cofactor sulphurase 

(MCS) gene (Ichida et aL, 2001)). To date only 6 families have been studied for the 

mutations that causes hereditary xanthinuria type 1. Ichida et al. found two mutations 

one of which R682X was present in two unrelated subjects (Ichida et aL, 1997). 

Levartovsky et al used genomic DNA from blood to screen the gene using single-strand 

conformation polymorphism (SSCP) analysis and PCR sequencing in an Iranian-Jewish 

patient (Levartovsky et aL, 2000), while the disease causing mutations in all Japanese 

patients were determined by sequencing XOR cDNA prepared from duodenal mucosal 
biopsy RNA (Ichida et aL, 1997; Sakamoto et aL, 2001; Yamamoto et aL, 2001). 

Mutations have been found in the XOR gene in 5 unrelated hereditary xanthinuric type I 

patients (summarised in table 1). 
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Nucleotide - Base .., ý Amino ý acid Amino acid Nationality Reference 

site - change site change, 
(Sakarnoto et aL, 445 C>T 149 Arg-Cys Japanese 

2001) 

682 C>T 228 Arg-Ter Japanese (Ichida ef aL, 1997) 

(Levartovsky et aL, 1660 Ins C Frarneshift Iranian-Jewish 
2000) 

2567 Del C Frarneshift Japanese (Ichida et aL, 1997) 

Table 1- Mutations characterised in hereditary xanthinuria type I. 

Table showing the mutations found so far in hereditary xanthinuric type I patients. * found in two 
brothers and another, unrelated xanthinuric patient. The other mutations were only found in one patient. 

In addition to the patients indicated in table I another Japanese patient's XOR cDNA 
has been cloned, but no mutation was found in the coding region, however severely 

reduced XOR mRNA levels were noted (Yamamoto el aL, 200 1). 

Although it had been speculated for many years that hereditary xanthinuria type II was 

due to a deficiency of a proposed MCS it was not until 2000 that a gene encoding a 

putative sulphurase was found in mammals (Watanabe et aL, 2000). The gene was 

identified by the study of a herd of cattle in Japan affected by xanthinuria type Il (July 

2000). Pedigree analysis indicated that the condition was inherited as an autosomal 

recessive trait (Watanabe et aL, 2000). As the gene involved was unknown, genotyping 

and linkage analysis was used to link the putative xanthinuria type 11 locus to the 

centromeric region of bovine chromosome 24. A mouse EST homologueous to a 

putative Drosophila MCS gene (called ma-1) was used for primer design which cloned a 

I 10 bp product. FISH analysis was then used to physically map the position of the 

homologue to the centromeric region of bovine chromosome 24 (Watanabe et aL, 

2000). This subsequently led to the bovine MCS gene being cloned and sequenced. The 

bovine MCS gene has an open reading frame of 2547 nucleotides, which encodes a 

protein of 849 amino acids. This amino acid sequence was 40% identical to the 

Drosophila ma-1 protein (Watanabe et aL, 2000). When compared to the sequence 

obtained from the affected offspring in the herd a three base pair deletion from 

nucleotides 769-771 resulting in the loss of tyrosine 257 was discovered (Watanabe et 

aL, 2000). 
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Following the studies in cattle the human MCS gene has recently been cloned and the 

mutation that causes hereditary xanthinuria type II in two independent xanthinuric 

patients from the Kanto region of Japan identified (Ichida et aL, 2001). Both patients 

possessed a base change from aC to aT at nucleotide 1255 that resulted in an arginine 
419 becoming a stop codon that is predicted to lead to the formation of an inactive 

truncated protein (Ichida et aL, 200 1). 
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1.7 Animal models for drug metabolising enzyme and molybdenum hydroxylase 

deficiencies. 

1.7.1 Animal models for drug metabolising enzyme deficiencies. 

Pharmacogenetics is the study of the hereditary basis of interindividual differences in 

drug metabolism (Bertilsson et aL, 1995). Single nucleotide polymorphisms (SNPs) in 

drug metabolising genes have been demonstrated to be responsible for many 

pharmacogenetic based aberrations in drug metabolism. These include rapid and slow 

metabolisers that may result in a drug having no beneficial effect or high toxicity 

respectively. 

Obviously the applied aspect of such studies pertains to humans however the use of 

animal models to study deficiencies in drug metabolising enzymes (DME) is invaluable 

for ethical and safety reasons. Review of the literature reveals that there are many 
laboratory strains of rodent that have been discovered that are models for DME 

deficiencies some of which are described here as examples. 

The Gunn rat strain has a nonsense mutation in a shared exon that encodes the C- 

terminus of several UDP-glucuronosyltransferases (UGT) isoenzymes. This strain has 

been used to assess the role of these UGT isoenzymes play in the detoxification of the 

food derived carcinogen 2-amino-l-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) 

(Dietrich et aL, 2001) and the analgesic acetaminophen (paracetamol) (de Morais & 

Wells, 1988). Gunn rats are also used as an animal model for the study of the human 

genetic disease Crigler-Najjar syndrome (Li el aL, 1998). 

A study was carried out on arylamine N-acetyltransferase (NAT) which had been shown 

to have repercussions on the susceptibility to drug toxicity and cancer in humans 

(Boukouvala et aL, 2002). C57BL/6J mice are representative of the rapid acetylator 

phenotype and A/J mice are a representative strain of the slow acetylator phenotype. 

While the NAT] protein is identical in both rapid and slow acetylator mice NAT2 has 

been shown to be polymorphic with a single nucleotide substitution causing a D991 

codon substitution that results in the slow acetylator phenotype in the A/J strain of 
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mouse (Boukouvala et aL, 2002; Levy et aL, 1992). This strain of mouse has been 

invaluable in assessing the role of NAT in toxicology studies. 

As well as naturally occurring variants the first gene knockout mice have been created 
to evaluate cytochrome P450s role in detoxification (Buters et aL, 1999; Gonzalez & 

Kimura, 2001; Otto et aL, 2003; Pineau et aL, 1998). This group of enzymes are 

responsible for the oxidation of a wide range of xenobiotics the lack of which could 
have serious consequences on drug metabolism (Gonzalez & Kimura, 2001). Several 

mice have been genetically engineered to lack activity in one or more of these enzymes 

to examine the role of some of the cytochrome P450 enzymes in drug metabolism in 

more detail and identify similarities between the human and mouse systems with a view 

to using mouse models in drug toxicity testing and establishing the effects of 
deficiencies in one or more of these enzymes on drug metabolism in humans (Buters et 

aL, 1999; Gonzalez & Kimura, 2001; Pineau et aL, 1998). Recently studies done in 

mice which lack all the cytochrome P450's died in early to middle gestation indicating 

that these enzymes are essential for the development of the embryo (Otto et aL, 2003). 

1.7.2 Animal models for molybdenum hydroxylase deficiencies. 

As described in the introduction both AO and XOR are involved in drug and exogenous 

compound metabolism so laboratory animals that have deficiencies in these enzymes 

would be invaluable in studies of the relationship between the pharmacological action 

of a drug and its rate of metabolism catalysed by these enzymes. 

Interestingly studies have recently been carried on mice which are deficient in XOR 

using mice which had undergone targeted gene disruption to create the XOR deficient 

animals (Vorbach et aL, 2002). They found that mice homozygous (-/-) for the mutation 

in XOR are runted and do not survive beyond 6 weeks postpartum, however XOR 

heterozygous (+/-) mice are viable and show normal fertility, litter size and matcrnal 

behaviour but all pups from XOR +/- females, regardless of genotype, die of starvation 

at around 12 days postpartum. Fostering experiments showed that pups from +/- female 

mice may be raised normally by wild type mothers indicating that the +/- female mice 
have a problem with milk production (Vorbach et aL, 2002). The association of XOR in 

milk lipid production has begun to be characterized (Berglund et aL, 1996; Kurosaki et 
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aL, 1996; McManaman et aL, 1999; Vorbach et aL, 2002) and is thought to play a 

structural role, as a membrane-associated protein, in the secretion of milk fat droplets 

(Vorbach et aL, 2002). However lactation problems in xanthinuric patients have not 

been reported, one potential explanation for this difference between humans and mice is 

the difference in milk fat content between the two species as human milk is only 

approximately 4% fat compared with a milk fat content of between 20-30% in mice. 

Therefore a mutation in the XOR gene resulting in a defect in milk fat droplet secretion 

may have a stronger impact on murine lactation than human. 

As far as rats are concerned there have been several studies that show natural AO 

activity variations between rat strains and within a strain. There have been several 

studies done on the AO activity in rats which have found not only differences in AO 

activity between different strains of rat but also variations in AO activity within a single 

strain. Sugihara et al studied AO activity between twelve different rat strains using 

benzaldehyde, 2-hydroxypyrimidine and phthalazine as substrates. They found that 

between the highest AO activity rat strain tested (Sea: SD) and the lowest AO activity 

rat strain tested (WKA: Sea) there was a 63.5-fold difference. They also tested XOR 

activity in these strains and found no significant differences in this activity between the 

strains (Sugihara et aL, 1995). Kitamura et al followed up this work testing eight of the 

twelve strains using methotrexate as substrate and found a 104-fold difference between 

the above strains (Kitamura et aL, 1999a). 

Of relevance to the study reported in this thesis are two reports that describe AO 

deficiency in Sprague Dawley (SD) rats. In 1971 Stanulovic and Chaykin (Stanulovic & 

Chaykin, 1971a) detailed an investigation into the genetics of AO in mice and rats 

demonstrating that the SD strain of rat in their institute exhibited a discontinuous 

variation in AO activity. They established that the activity was inherited in an 

autosomal recessive fashion and that the presence of activity was dominant over the 

absence of activity. They grouped the rats into three categories, with approximately 

equal numbers of animals, high activity animals, intermediate activity animals and 

deficient animals using the N-heterocycle, Nl-methylnicotinamide as substrate. In a 

more recent study Rashidi et aL had also found an AO variation in the SD strain using 

three different AO substrates (Rashidi et aL, 1997). They found that their colony of SD 

rats fell into two groups each containing approximately equal numbers of animals. 
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Group A rats were active towards the AO N-heterocyclic substrates famciclovir, 

phenanthridine, phthalazine and the XOR substrate xanthine while group B rats were 
devoid of famciclovir, phenanthridine and plithalazine activity but retained activity 
towards xanthine. No significant differences were found in aldehyde oxidase activity 
between male and female animals of either group (Rashidi et aL, 1997). 

Unpublished studies in my supervisor's (Dr. Dougie Clarke) laboratories at Dundee and 
Huddersfield Universities have shown that the colonies of SD and Fischer rats studied 
in this laboratory have low activity towards aldehydes and a complete inability to 

oxidise various N-heterocycles including phenanthridine and various anti-cancer drugs 

(Clarke, D. J., Marshall, L., and Meehan, W., unpublished results). In contrast the Wistar 

rat strain exhibited AO activity typical of mammalian species as it had high AO activity 

towards N-heterocycles and aldehydes. (Clarke, D. J., Marshall, L., and Meehan, W., 

unpublished results). The fact that both these AO-deficient rat strains are normal 

phenotypically suggests that as with other drug metabolising enzyme null-mutants (de 

Morais & Wells, 1988; Levy et aL, 1992; Otto et aL, 2003) the lack of the N- 

heterocyclic AO enzyme activity would only be noticed in unusual circumstances of a 

high intake of xenobiotics that are substrates for this enzyme. 

Interestingly when an American group cloned AO from the SD strain of rat in 1999 they 

found 10 differences between rat AO cDNAs, 5 of which result in a predicted amino 

acid change as detailed in table 2 (Wright et aL, 1999). 

No.: -Nucleotide - 
-7 . "' ,, site,,. 

Base Change Amino acid change 
Amino acid 

site 

1 356 C>G A>G 119 

2 359 G>T R>M 120 

3 1,945 A>G T>A 649 

4 3,826 C>T L>F 1,276 

5 3,944 G>C R>T 1,315 

Table 2- Nucleotide and predicted amino acid differences found in Sprague Dawley rats 
by Wright and co-workers (Wright et aL, 1999). 
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Wright and co-workers (1999) did not detail the functional significance of the SNPs that 

they found in rat AO cDNA or their incidence (Wright el aL, 1999). Although these 

SNPs might explain the AO deficiencies found in the SD strain by Stanulovic and 
Chaykin (Stanulovic & Chaykin, 1971a) or by Rashidi et al (Rashidi et al., 1997) no 
link was made. At present the molecular basis for the differences in AO activity are 

unknown however possible codon changes in the SD rat strain described by Wrights' 

group (1999) could be the cause. 
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1.8 Aims of this study. 

The general aim of this study was to study the molecular genetic basis of molybdenum 
hydroxylase deficiency in laboratory rat strains and in humans. 

Specifically the purpose of the study with laboratory rats was to determine the 

molecular basis for the deficiency of AO activity in SD and Fischer rats by comparing 

the nucleotide sequence of their genes/cDNAs with that of the Wistar rat strain. In the 

first instance this would be done by determining if the polymorphisms found by Wright 

el al (1999) (section 1.7, table 2), correlated with the AO deficiencies in our rat strains. 

If this did not reveal the reason for the genetic deficiency then the entire rat AO cDNAs 

would be cloned from Wistar, Fischer and SD rats and the sequences obtained 

compared to determine the probable genetic basis of the deficiency. 

With regard to the study of the human molybdenum hydroxylase deficiency the aim was 

to determine the molecular genetic basis of hereditary xanthinuria in a British patient. 

This would be the first time a xanthinuric patient of European descent has been studied 

(see section 1.6.3. for background information). 
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2. Materials and Methods. 

2.1 Animals and chemicals. 

Chemicals were obtained from Merck Ltd, Poole UK; Sigma Chemical Company, 

Poole, UK; Roche Molecular Biochemicals, Penzburg, Germany; Invitrogen Ltd, 

Paisley, UK; Promega corporation, Southampton, UK; ID labs, Ontario, Canada or 
Qiagen, Crawley, UK. 

All strains of rat were obtained from the Biomedical Services Unit, Ninewells Hospital, 

Dundee. They were housed in groups and maintained on standard rat chow ad fibtum 

under standard conditions and weighed between 200 and 250 g. 

2.2 Preparation of cytosol. 

Wistar, Fischer 344 and Sprague Dawley rats were aged matched, stunned and 

sacrificed by cervical dislocation between 9am and l2noon. The livers of the rats were 

quickly excised, placed in ice cold 0.25 M sucrose, blotted dry then frozen in liquid 

nitrogen and stored at -80'C until use. For the preparation of cytosol all steps were 

carried out at 0-4'C. Approximately 2.5g of each liver were weighed out and finely 

chopped using scissors and homogenised in 4 volumes of buffer (0.25 M sucrose, 10 

m. M Tris HCI pH 7.4) using a TeflonTm/glass homogeniser to produce a 20% w/v 
homogenate. The homogenates were then centrifuged at 10,000 xg for 15 minutes at 

40C. The supernatant was collected and centrifuged for a further 60 minutes at 105,000 

xg at 40C to obtain the cytosolic fraction which was aliquoted into 1.6ml tubes and 

stored at -80'C. 

2.3 Gel filtration of cytosol. 

In order to remove endogenous substrates and inhibitors prior to the xanthine 

oxidoreductase assay, cytosols were gel filtered. This was required because endogenous 

substrates and inhibitors present in unfiltered cytosol interfere with the assay. This was 

carried out according to the manufacturers instructions as follows: I'D 10 G25 Sephadex 

colurrins (Amersham Biosciences, Bucks, UK. ) were equilibrated with 50 mM Tris HCl 
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pH 7.4.2.5 ml of cytosol was applied to the column and eluted with 50 mM Tris HCI 

pH 7.4 and the red coloured protein-containing fraction collected. This fraction was 

aliquoted into 1.6 ml tubes and stored at -800C. 

2.4 Protein determination. 

The amount of protein in each sample was calculated using a modification of the 

method described by Lowry et al. using bovine serum albumin (BSA) as standard 
(Lowry et al., 195 1). A standard curve (appendix 1) was prepared using known amounts 

of BSA following the protocol as described below. 

2.4.1 Lowry stock solutions. 

Copper/tartrate/carbonate solution. 

To make the copper/tartrate/carbonate solution 10 g of Na2CO3 was dissolved in 500 ml 
distilled water. 0.5 9 Of CUS0451120 and Ig Na tartrate was then dissolved in 500 ml 

distilled water. The sodium carbonate solution was then slowly added to the copper 
tartrate solution. 

5% (w/v) Sodium dodecyle sulphate (SDS) 

0.8 M (w/v) Sodium hydroxide (NaOH) 

10% (w/v)Trichloracctic acid (TCA) 

These stock solutions were stored at 4'C until use. Reagent A was prepared fresh as 

required by mixing one volume of the copper/tartrate/carbonate solution with two 

volumes 5% (w/v) SDS and one volume 0.8 M NaOH. Reagent B was also freshly 

prepared by mixing one volume of 2N Folin-Ciocalteau's phenol reagent with 5 

volumes of distilled water. 
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2.4.2 Lowry methodology. 

All assays were carried out in duplicate and at two different dilutions to ensure that they 

contained a protein content within the effective range of the assay (10 to 40 pg protein). 

500 gl of 10% (w/v) trichloroacetic acid was added to 500 ptl of each diluted sample. 
Following mixing this was then centrifuged for 5 minutes at 12,000 xg in a bench top 

microcentrifuge and the supernatant discarded. 500 gI of reagent A was then added to 

each sample, vortex mixed and incubated at room temperature for 10 minutes. 250 gl of 

reagent B was added and the sample mixed. The sample was then incubated at room 

temperature for 30 minutes, and diluted with 500 gI distilled water. The absorbance at 

750 run was measured on a spectrophotometer. 

2.5 Spectrophotometric determination of molybdenum hydroxylase activity. 

Molybdenum hydroxylase assays were conducted using a robotic centrifugal 

spectrophotometer analyser (Cobas Fara 11, Roche Molecular Biochemicals, Penzburg, 

Gen-nany) at 37C. All assays were carried out in duplicate in I ml reaction volumes. 

All samples were frozen and thawed only once. 

2.5.1 Spectrophotometric determination of dimethylaminocinnamaldehyde 

oxidase activity. 

The oxidation of dimethylaminocinnamaldehyde (DMAQ was assayed by monitoring 

the decrease in absorbancc at 398 nm (Kurth & Kubicel, 1984). The reaction was 

carried out with 100 gl of cytosol in a final concentration of 0.125 mM DMAC and 50 

mM Tris HCI pH 7.4 in the Wistar rat strain. As the SD and Fischer rat strains had a 

much lower activity the cytosol volume was increased to 300 gl in these assays. The 

DMAC concentration and Tris HCI pH 7.4 concentration was kept the same throughout. 

The specific activity was calculated using the molar extinction coefficient for DMAC 

which is 9600 M-1cm-1. 
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2.5.2 Spectrophotometric determination of phenanthridine oxidase activity. 

The oxidation of phenanthridine was assayed by monitoring the increase in absorbance 

at 322 run (Johnson et aL, 1984). The reaction was carried out with 100 Ptl of cytosol in 

a final concentration 0.05 mM phenanthridine and 50 mM Tris HCI pH 7.4 with the 
Wistar rat samples. As a lower level of DMAC oxidase activity was found in the SD 

and Fischer rat strains the cytosol was increased to 300 gl in both strains. The 

phenanthridine and Tris HCI pH 7.4 concentrations were kept the same throughout. The 

specific activity was calculated using the molar extinction coefficient for 

phenanthridine, which is 6,400 M"cm-1. 

2.5.3 Spectroph oto metric determination of xanthine oxidoreductase activity. 

The oxidation of xanthine was assayed by monitoring the increase in absorbance at 295 

nm (Waud & Rajagopalan, 1976). The reaction was carried out with 400 RI of gcl- 
filtered cytosol in a final concentration of 0.15 mM xanthine and 100 mM Tris HCI pH 
8. This standard assay was used for all the rat strains studied. The specific activity was 

calculated using the molar extinction coefficient for xanthine, which is 30,500 M"'cm". 

2.6 Cellulose acetate electrophoresis. 

Cellulose acetate electrophoresis was carried out using a Zip Zonee chamber from 

Helena Laboratories (Sunderland, UK. ) according to the manufacturers instructions with 

modifications. The cytosols were loaded onto a cellulose acetate (Titan III) plate that 
had been pre-soaked for 30 minutes in 25 mM Tris, 192 mM glycine pH 8.5 buffer and 

clectrophoresed in a negative to positive direction in 25 mM Tris, 192 mM glycine pH 
8.5 buffer for 30 minutes. The plates were developed for enzyme activity by overlaying 

a 1.5% (w/v) agarose solution containing 0.9 mM (3-, (4,5-dimcthylthiazol-2-y)-2,5- 

diphenyl tetrazolium. bromide, 0.3 mM phenazinc mcthosulphate and 5 mM 
benzaldehyde or 0.5 mM phenanthridinc and incubating for 30 minutes at 37T. 
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2.7 Bioinformatics. 

Alignment of sequences and primer design was performed using GenejockeyTm 

(Biosoft, Cambridge). In some cases primers had to be manually designed and checked 
for primer dimer and hairpin loop formation using AmplifY*1 a freeware program 

obtained from Bill Engles, Department of Genetics, University of Wisconsin, USA. 

Both programs were run on an Apple Macintosh computer with operating system 8.6 

installed. Published sequences were obtained from the National Center for 

Bioinformatics website (NCBI) situated at http: //www. ncbi. nlm. nih. gov/. The accession 

numbers for each sequence are listed in appendix 2. 

After the primers were designed a BLAST alignment was carried out online at 
http: //www. ncbi. nlm. nih. gov/, this program aligns the inputted sequences with all of the 

sequences found on the NCBI database. Primers were discarded if they were found to 

bind to the target gene in more than one place, or if they bound to other genes found 

within the organism of interest. 

The sequences were translated using the genetic code as shown in appendix 3. The one 
letter and three letter amino acid codes are also listed in appendix 4. 

2.8 Isolation of DNA and RNA from rat liver. 

DNA and RNA were isolated from rat liver using Sigmao Tri ReagentTm, which 

simultaneously isolates DNA, RNA and proteins. The livers of the rats were quickly 

excised, washed in ice cold 0.25 M sucrose, blotted dry then frozen in liquid nitrogen 

and stored at -80'C until use. The following method was carried out as detailed in the 

manufacturers instructions. 

All plasticware except for the pellet pestles were purchased as guaranteed RNase free 

(Sigma, Poole, UK. ). Water was rendered RNase free by treating with 0.2% (v/v) 

diethylpyrocarbonate (DEPQ for 16 hours prior to autoclaving. The pellet pestles 

(Sigma, Poole, UK. ) were treated with RNase away (Merck Ltd, Poole, UK. ) and rinsed 

with DEPC treated water before use. 
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50-100 mg of frozen tissue was homogenized with I ml of Tri ReagentTm in a 1.6 ml 

tube using a polypropylene disposable pellet pestle homogeniser (Sigma, Poole, UK. ). 

The homogenate was then centrifuged at 12,000 xg for 10 minutes at 4'C to remove the 

insoluble material. The supernatant was transferred into a clean 1.6 ml tube for RNA 

isolation and the pellet was stored at 4'C for DNA isolation. 

2.8.1 Isolation of rat liver RNA. 

The supernatant was incubated for 5 minutes at room temperature. 0.2 ml of chloroform 

was then added and the sample vigorously shaken for 15 seconds. After another 15 

minute incubation at room temperature the sample was centrifuged at 12,000 xg for 15 

minutes at 4'C. The colourless upper aqueous phase was carefully transferred into a 
fresh 1.6 ml tube with care being taken not to remove any of the interphase layer, which 

would result in DNA contamination. 0.5 ml of isopropanol was then added and the 

sample was mixed and incubated at room temperature for 5 minutes. The sample was 

then centrifuged at 7,500 x. g for 5 minutes at 4'C to precipitate the RNA. The pellet 

was then washed by adding 1.2 ml 75% (v/v) ethanol, vortex mixed and centrifuged at 

7,500 xg for 5 minutes at 4'C. The pellet was then left to air-dry for 10 minutes after 

which the RNA was then dissolved in 200 jil RNase free water. 

2.8.2 Isolation of rat liver DNA. 

1.5 ml of 0.1 M sodium citrate, 10% (v/v) ethanol solution was added to the pellet 
(section 2.8) containing the high molecular weight DNA. The pellet was then incubated 

at room temperature for 30 to 90 minutes then centrifuged at 12,000 xg for 5 minutes at 

4'C. The washing with 0.1 M sodium citrate, 10% (v/v) ethanol solution was repeated 

three times then the pellet was resuspended in 75% (v/v) ethanol and centrifuged at 

12,000 xg for five minutes at 4*C. The supernatant was discarded and the pellet was 

then allowed to air dry for 10-20 minutes at room temperature. The DNA pellet was 

then resuspended in 300 gl TE buffer (10 mM Tris, I mM EDTA pH 8-0). 
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2.9 The xanthinuric patient. 

A 52 year old British female was diagnosed with hereditary xanthinuria after 

persistently low plasma urate levels were noted over a period of several years while 

undergoing investigation for a variety of clinical problems resulting in the diagnosis of 
idiopathic thrombocytopenic purpura. She was on appropriate medications, prednisole, 

nalidoxic acid, atenolol and nifedipine for the latter disease at the time of diagnosis. Her 

creatinine clearance was normal 95.6 ml/min, which is within the normal range (85-130 

ml/min) indicating that she had no renal impairment. The daily excretion of uric acid 

was undetectable, whilst excretion levels of xanthine and hypoxanthine were 1.46 and 
0.37 mmol/24 hrs respectively (normal 0.05 and 0.05 mmol/24 hrs respectively). 

2.10 Extraction of DNA from blood. 

The xanthinuric patient's DNA was extracted from a blood sample provided with 

ethical approval from the Purine Research Laboratory, Guy's Hospital, London, UK. 

using the QIAamp DNA blood midi kit from Qiagen Ltd (Crawley, UK. ). This was 

stored at -80'C until use. All steps were carried out using 15 ml polypropylene tubes 

and carried out as detailed in the manufacturers instructions 

200 gI Qiagen protease stock solution and 2.4 ml buffer AL was added to 2 ml of the 

blood sample and incubated at 70 'C for 10 minutes. 2 mls of 100% ethanol was added 

to the sample and this was vortex mixed. Half of the sample was then applied to the 

QlAamp column. This was centrifuged for 3 minutes at 1850 x g. The filtrate was then 

discarded and the remainder of the sample applied to the column and centrifuged as 
before. The filtrate was then discarded and 2 mls of buffer AWI added to the column 

which was the centrifuged at 4500 xg for I minute. Without discarding the filtrate 

another 2 mls of buffer AWI was applied to the column and centrifuged as before. The 

filtrate was discarded and the column was placed into a clean 15 ml tube. 300 gl of 

buffer AE was placed onto the QlAarnp membrane and incubated at room temperature 

for 5 minutes. This step was repeated in order to acquire the maximum DNA yield from 

the blood sample. The sample was then centrifuged at 4500 xg for 5 minutes and the 

filtrate aliquoted into 1.6 ml tubes and stored in the fridge until required. 
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2.11 DNA and RNA quantitation. 

DNA or RNA yield may be determined by measuring the absorbance of a DNA/RNA 

sample at 260 run as detailed in (Maniatis et aL, 1982). 

5 gI of DNA or RNA sample was added to I ml distilled water and the absorbance at 
260 run was measured on a spectrophotometer. If the absorbance did not fall between 

0.1 and 1.0 then the amount of DNA/RNA was adjusted accordingly as values outside 
this range do not give an accurate determination of the concentration. The amount of 
DNA/RNA was calculated using the following calculations. 

DNA 50 gg/ml x A260 x dilution factor = amount of DNA in ptg/mI 

RNA 40 gg/mI x A260 x dilution factor = amount of RNA in ptg/mI 

Also the absorbance at 280 nm was recorded. To give the purity of the DNA/RNA the 
A260 is divided by the A280- Pure DNA gives a ratio of 1.7-2.0, pure RNA gives a ratio 

of 1.9-2.1. 

2.12 Reverse transcription of RNA. 

First strand cDNA synthesis was carried out using the OmniscriptTm reverse 

transcriptasc kit from Qiagen Ltd (Crawley, UK. ) following the instructions provided 

with the kit. The reaction was carried out in RNasc free 1.6 ml tubes. The reverse 

primer designed for each clone was used to synthesize the cDNA. 
RNase inhibitor (purchased from ID labs, Ontario, Canada) was diluted to a final 

concentration of 10 units/gl in Ix Buffer RT. All other reagents except for the primers 

were supplied with the kit. 2gl I Ox buffer RT, 2 gI dNTP mix, 0.5 gL of 100 pmol/gI 

primer, I [d RNase inhibitor, I gI Omniscript reverse transcriptase, I gg RNA and 

RNase free water to a volume of 20 gl was mixe d on ice in a 1.6 ml RNase free tube. 

This was briefly centrifuged in a benchtop microcentrifuge to ensure the reaction is 

mixed and to bring the reaction to the bottom of the tube. The reaction was then 

incubated at 37'C for 60 minutes. 2 gI of this reaction was then added in place of DNA 

into the PCR reaction, which was carried out as described in section 2.13. 

40 



2.13 Polymerase chain reaction amplification of DNA. 

The polymerase chain reaction (PCR) was carried out with modifications to the 

manufacturers instructions. 

The basic components for the PCR are a final concentration of IX PCR buffer (ID 

Labs, Ontario, Canada. ), 0.2 mM of each of the dNTPs, 0.5 pM of each primer (forward 

and reverse) (MWG Biotech, Ebersberg, Germany), 1.5 mm MgC12 (ID labs, Ontario, 

Canada), 1.25 U Taq DNA polymerase (ID labs, Ontario, Canada) and 0.5 Pg template 

DNA. 

The components that may be varied in the optimisation process are primer, MgC12 and 

the annealing temperature. 

A typical PCR reaction was carried out using the following conditions. 

Cycle I 

1. Denature 94"C for 3 minutes 

2. Anneal 45-67'C for I minute 

3. Extend 72'C for 30 seconds -2 minutes 

Cycles 2-35 

1. Denature 94"C for I minute 

2. Anneal 45-67'C for I minute 

3. Extend 721C for 30 seconds -2 minutes (variable depending on size of 

product) 
On Cycle 35 an extra extension was carried out for 10 minutes. 

Although once the primers were optimiscd as described in the results they would 

occasionally need to be repeated when changes were made to reagents. 
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2.14 Agarose gel electrophoresis. 

Agarose gel electrophoresis was carried out according to the methods described by 

Maniatis et aL, 1982 with modifications. 
Products larger than 300 bp were visualised on a 1% (w/v) agarose gel, while smaller 

products were visualised using a 2.5% (w/v) agarose gel. 
For a 1% (w/v) agarose gel, Ig of agarose was added to 100 ml 0.5 X TBE (44.5 mM 
Tris, 44.5 mM boric acid, I mM EDTA pH 8). This mixture was then heated in a 

microwave oven until all the agarose was dissolved. The heated mixture was allowed to 

cool to 60'C and 10 gg of ethidiurn bromide added. This was poured into aIIx 14 cm 

gel tray, a2 mm wide well former inserted and the gel allowed to set for approximately 

30 minutes. The gel was then placed into a horizontal gel electrophoresis apparatus with 

the wells at the anode side. 0.5 X TBE was then poured into the tank until the gel was 

submerged to a depth of 2-3 mm. 

For the analysis of PCR products 10 gl of PCR product was mixed with I gl loading 

dye. In order to approximate the size of the PCR products 5 gl of I kb DNA ladder 

purchased from Promega (Southampton, UK. ) was mixed with 0.5 Al loading dye. This 

I kb ladder produced 13 fragments of 250 bp, 253 bp, 500 bp, 750 bp, 1,000 bp, 2,000 

bp, 2,500bp, 3,000 bp, 4,000 bp, 5,000 bp, 6,000 bp, 8,000 bp and 10,000 bp. 

The PCR products or size markers were loaded into individual wells of the gel and 

electrophoresed for I hr at 100 V. The gels were then visualised on an UV 

transillurninator and photographs taken when required. 

2.15 Preparation of PCR samples for sequencing. 

The PCR samples were prepared for sequencing using the QIAquickTm purification kit. 

All centriftigation steps were carried out in a benchtop microcentrifuge at 12,000 x g. 

The method followed manufacturers instructions as follows 500 ttl of buffer PB were 

added to 100 jil PCR product and mixed. This was then applied to the QIAquickTm 

column and centrifuged for 60 seconds. The flow through was discarded and 750 111 of 
buffer PE added to the column. This was centrifuged for 60 seconds and the flow 

through discarded then centrifuged again for another 60 seconds. Finally the 
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QlAquickTm column was placed into a clean tube and 50 gl buffer EB applied to the 

centre of the membrane and centrifuged for 60 seconds to elute the DNA. 

2.16 Sequencing of the PCR samples. 

The purified PCR samples were sent either to the University Of Dundee for sequencing 

analysis on an ABI automated sequencer or at the University of Huddersfield on a 
Beckman CEQ8000 automated sequencer using dideoxy dye terminator methodologies. 

RT-PCR products encoding rat AO or AOH I cDNAs were sequenced in both forward 

and reverse directions using the primers designed for the PCR reaction and the 

sequencing repeated until the PCR product contig contained no ambiguities in the 

sequence obtained. 

PCR products encoding the human XOR gene were sequenced in the forward direction 

only unless a difference was noted between the patient's and a normal individual's 

nucleotide sequence. If a difference was observed the PCR product was sequenced in 

the reverse direction. The sequencing was repeated until the whole of the exon and the 

intron/exon splice sites contained no ambiguities. 
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3. RESULTS 
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3. Results. 

This results section is split into 5 main sections as follows. Firstly in section 3.1 the 

phenotyping of aldehyde oxidase activity in the various strains of rat with particular 

emphasis on the SD strain is described. The differences found between clones in the SD 

strain by Wright et ah (Wright et aL, 1999) are then compared with our SD, Fischer and 
Wistar strains (section 3.2). The cloning and DNA sequencing of rat liver AO and 
AOHI from the AO-active and AO-deficient strains are subsequently described in 

sections 3.3 and 3.4. Finally in section 3.5 an investigation into the genetic cause of 
hereditary xanthinuria in a British patient is described. 

3.1 Molybdenum hydroxylase activities in rat strains. 

As mentioned in the introduction (section 1.7.2) Stanulovic and Chaykin had described 

a discontinuous variation in N-heterocyclic AO activity towards the substrate NI- 

methy1nicotinamide in the SD strain of rat (Stanulovic & Chaykin, 1971a). More 

recently Rashidi et al also found that in their colony of SD rats two groups existed that 

were AO-active and AO-null towards three N-heterocycles (phenanthridine, phthalazine 

and famciclovir) (Rashidi et aL, 1997), therefore our colony of SD rats were screened to 

determine if a discontinuous variation in AO-activity was present. A detailed study 

previously completed in our laboratory had established that the Fischer strain exhibited 

a low level of activity towards aldehydes and a complete absence of activity towards N- 

heterocycles in comparison to Wistar rats, which had typical mammalian activity 

towards both N-heterocyclic and aldehyde AO substrates (Clarke, D. J., Marshall, L., 

and Meehan, W., unpublished results). As the Wistar and Fischer strains had previously 

been extensively studied enzymologically only a few rats of these strains were assayed 

in this study as a comparison with the SD strain. 

In order to determine if there was any AO activity towards N-hetcrocycles present in the 

three different rat strains, assays were carried out with the AO substrate phcnanthridine. 

The results are shown in table 3. 

45 



Rat strain 
Phenanthridine oxidase activity 

(nmol/min/nig protein) 

Male Wistar rats (N=4) 12.12 1.43 

Male Fischer rats (N=4) N. D. * 

Male Sprague Dawley rats (N=24) N. D. * 

Female Sprague Dawley rats (N=35) N. D. * 

Table 3- Phenanthridine oxidase activity in liver cytosol of different strains of rat. 

Activities were determined as described in materials and methods (section . 3.5.1) The activities are shown 
as nmol phenanthridine hydroxylated / min / mg protein and are expressed as means ± s. d. of N animals 
*N. D. - not detectable. As a large number of male and female rats had already been studied in the Fischer 
and Wistar rat strains and as no gender differences were observed only male Wistar and Fischer animals 
are shown here. 

No phenanthridine oxidase activity was detected in the Fischer or SD rats in contrast to 

the Wistar rats. In order to detennine if aldehyde oxidase activity was present in the 

three rat strains, liver cytosols were phenotyped using DMAC oxidase assays (table 4). 

Dimethylaminocinnamaldeb de y 

-'Rat Strain, "', oxidase activity (nmol/min/mg i,, -. 
protein) 

Male Wistar rats (N=4) 10.86 1.06 

Male Fischer rats (N=4) 1.65 ± 0.53 

Male Sprague Dawley rats (N=24) 3.03 ± 1.44 

Female Sprague Dawley rats (N=35) 3.11 ± 1.67 

Table 4- Dimethylaminocinnamaldehyde oxidase activity in liver cytosol of different 
strains of rat. 
Activities were determined as described in materials and methods (section 2.5.2). The activities are shown 
as nmol dimethylaminocinnamaldehyde hydroxylated/min/mg protein and are expressed as means ± s. d. 
of N animals. 
As a large number of male and female rats had already been studied in the Fischer and Wistar strains and 
no gender differences were observed only male Wistar and Fischer animals were analysed in this study. 

Reduced DMAC oxidase activity was observed in the SD and Fischer rats and no 

gender differences were found in the SD rat strain. 
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These assays demonstrated that the strains of SD and Fischer rats used in this study had 
low AO activity animals towards an aldehyde substrate compared to the Wistar rat 

strain and a complete absence of phenanthridine oxidase activity. No discontinuous 

variation in phenanthridine oxidase activity was present in the SD rat as previously 
reported (Rashidi et aL, 1997; Stanulovic & Chaykin, 1971 a). 
Rat liver cytosols were also tested for XOR activity to determine whether the 
deficiencies were due to a deficiency in the molybdenum cofactor (table 5), which can 
result in a dual AO and XOR deficiencies as described in the introduction sections 1.6.2 

and 1.6.3. 

Rat Strain 
Xanthine oxidoreductase activity 

(ninol/inin/mg protein) 
Male Wistar rats (N=4) 6.48 ± 0.53 

Male Fischer rats (N=4) 6.24 ± 0.42 

Male Sprague Dawley rats (N=4) 6.13 ± 0.37 

Female Sprague Dawley rats (N=4) 6.36 ± 0.48 

Table 5- Xanthine oxidoreductase activity in liver cytosol of different strains of rat. 

Activities were determined as described in materials and methods (section 2.5.3). The activities are shown 
as nmol uric acid formed per min per mg protein and are expressed as means ± s. d. of N animals. As a 
large number of male and female rats had already been studied in the Fischer and Wistar strains and no 
gender differences were observed only male Wistar and Fischer animals are shown here. 

The presence of XOR activity at similar levels in all the rat strains, indicates that the 
AO deficiencies are due to a defect in the AO gene and not a deficiency in the synthesis 

of the molybdenum cofactor. For the same reasons it also excludes the lack of the other 
two molybdenum hydroxylase cofactors (Fe2S2 and FAD) as the cause of the deficiency. 

As the studies described in this thesis were ongoing this laboratory also developed 

HPLC assays for N-heterocycle xenobiotics and drugs that are AO substrates. These 

more sensitive assays definitely confirmed that the SD and Fischer rat strains were 
deficient in the oxidation of N-heterocycle substrates such as phenanthridine, DACA 

and methotrexate (Clarke, D. J. and Meehan W., 2003, unpublished results) 
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3.2 Are known single nucleotide polyrnorphisms the cause of the aldehyde oxidase 
deficiencies in rat strains? 

As Wright et aL (1999) had already identified several deduced amino acid changes in 

the AO cDNA occurring in the SD strain of rat (Wright et aL, 1999), but did not 

mention or measure the activity of the well-documented AO deficiency in these rats it 

was decided to clone these regions to determine if they correlated with the AO 

deficiencies in the SD and Fischer rat strains. 

3.2.1 Design of PCR primers for amplification of the polymorphic areas of the 

aldehyde oxidase gene in rats. 

As PCR from genomic DNA is simpler, quicker and not as expensive as RT-PCR from 

RNA, it was decided to use this method for the amplification of the specific positions in 

the rat AO gene. The initial step in cloning of these regions of the rat AO gene was to 
deduce all the intron/exon boundaries in the rat AO cDNA sequence as the rat AO gene 
had not been published and was not available on any publicly accessible database 

(December 1999). When this work was initiated the only published intron/exon 

information was for the human AO gene (Terao et aL, 1998) (see figure 8 in 

introduction). In addition, although the details were unpublished the individual exons of 
the mouse AO sequence were available on the NCBI database. By using a pairwise 

alignment program (BLAST) the individual mouse AO exons were aligned with the 

mouse AO cDNA and the splice donor/splice acceptor sites identified in the mouse AO 

cDNA sequence. The mouse cDNA was then aligned with the human cDNA and the 

exon boundaries compared to identify the degree of conservation. This revealed that all 

of the exon boundaries between the species were 100% conserved therefore it was 

reasonable to postulate that the intron/exon boundaries would be conserved in another 

closely related mammalian cDNA. Following mapping of the likely exons in the rat AO 

cDNA each exon in the rat was then separated from the complete cDNA and primers 
designed using computer programs as described the materials and methods (section 2.7). 

The first two amino acid differences observed by Wright et al (1999) (A I 19G & 

R120M) were encoded by exon 5, however the nucleotide sequence of this exon 

prevented suitable primer pairs being designed. It was therefore decided to ligate exons 
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4 and 5 in silico to provide a larger template for primers to be designed from. A similar 

strategy was employed for the R1315T polymorphism encoded by exon 34 as the 

change was situated 8 bp from the end of the exon. On this occasion, predicted exons 34 

and 35 were spliced together to enable primers to be designed. The L1276F 

polymorphic codon is encoded by exon 34 and in contrast to the other regions primers 
were easily designed. Unfortunately it proved impossible to design primers to examine 
the T649A polymorphic site in exon 18 using these methodologies for primer design, 
due to its small size and the fact that adjacent introns are predicted to be >3 kb in 

genomic DNA. Table 6 lists the primers designed for amplification of the polymorphic 

areas of the rat AO gene. 

Primer 
Code 

Primer Sequence* 
POlymorphism 

Detected 

Expected 

Product Size 
Notes 

RA04/51F ATAGGCAACACCAGGACC Al 19G 
-2 kb* 

Includes 

RA04/5R GTGGTTCCTGAGCAGAGCATAC R120M intron 4 

RA034F GGAGAGTCT GGGTGTTCCTGGG 
L1276F 153 bp 

RA034R GAACTTATCTTCACAAGCCAT TTC 

RA034/35F CTCCAGAGAAAATCAGAATGGC 
R1315T -950 bp* 

Includes 

RA034/35R GTGCGT-rCTGTAGTTGTrGAGC intron 34 

Table 6- Summary of the primers designed for the PCR amplification of polymorphic 
areas of the rat aldchyde oxidase gene described by Wright et al (1999). 
The table shows the primers used, the sequence of the primers *reading 5'-3', the polymorphism each 
primer pair is designed to detect and the expected size of the product. The notes column indicates the 
introns (if applicable) that the primer pair spans. * Estimate based on human intron 4 being -1.9 kb. * 
Estimate based on human intron 34 being -0.8 kb. F and R signify sense and antisense primers 
respectively 

3.2.2 Optimisation of the PCR conditions for amplification of the polymorphic 

areas of the aldehyde oxidase gene in rats. 

PCR optimisation was achieved by using the basic components as listed in materials and 

methods (section 2.11), varying one component at a time. The basic variable 

components were the temperature the PCR was carried out at, the concentration of the 

primers and the concentration of the M902. Also a PCR additive, Q solutionTm (Qiagcn 

Ltd) was occasionally used, this modifies the melting behaviour of DNA to facilitate the 

amplification of difficult templates. 

49 



As the hundreds of agarose gel images are too numerous to include in this thesis only a 

few examples of gels displaying examples of the PCR optimisation process are shown. 

The agarose gel image shown in figure 9a demonstrates the effect that temperature and 

magnesium concentration can have on the performance of the PCR reaction. Lanes 1-6 

contained 1-5 MM MgC12 and lanes 7-12 contained 3 MM M902. As illustrated in 

figure 9a this primer pair works more efficiently with the lower concentration Of MgC12- 

It also illustrates the effect of temperature with the temperature increasing from left to 

right along the gel. It demonstrates that this primer pair works more effectively at the 

higher temperatures with one fragment present at 62'C but several fragments are present 

at 52'C (figure 9a, lanes 7-12). Figure 9b illustrates the effect that primer concentration 

can have on the performance of the PCR reaction. Lanes 1-5 contain 0.25 pM primer 

and lanes 6-10 contain I pM primer. This gel shows that too high a primer 

concentration can lower the amount of product formed and alter the range of 

temperatures that a primer pair works over. 

Table 7 shows a summary of the conditions used and the results obtained using SD rat 

genomic DNA. The optimal conditions for each primer pair are highlighted in yellow. 
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aM123456789 10 11 12 

-2kb 

b 
M123456789 10 

lkb 

Figure 9- Agarose gel images showing the optimised conditions for the PCR of rat 
aldehyde oxidase gene regions. 

a- Agarose gel image showing the products formed using pimici set RA04,5. Lanes 1-6 ýkcrc carried out 

using 0.5 pM primer and 1.5 mM MgCl, The annealing temperatures of lanes 1-6 are at 52"C, 54"C' 

56'C, 58'C, 60'C and 62'C respectively. Lanes 7-12 were carried out using 0.5 pM primer and 3 IIIM 

MgC],. The annealing temperatures of lanes 7-12 are at 52'C, 54"C, 56"C, 58"C, 60')C and 62"C 

respectively. Lane M is I kb DNA marker purchased from Promcga. 

b- Agarose gel image showing the products fortned using primer set RA034/35. Lancs 1-5 were carried 

out using 0.25 pM primer and 3 mM MgCl,. The annealing temperatures of lanes 1-5 are at 52C, 530C, 

54"C, 55'C and 56"C respectively. Lanes 6-10 were carried out at 0.5 pM primer and 3 mM MgCl,. Tile 

annealing temperatures of lanes 6-10 arc at 51 "U, 52"C, 53"C, 54"Cand 55"C respectively. Lane M iýs I kb 

DNA marker purchased from Promega. 
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Primers used 
Q 

solution* 

Annealing 

temperatures 'C 

Primer 

cone. ** 

MgC12 

cone. ** 

Fragments 

Generated 

48,50, S2,54, S0,58 0.5 pM 1.5 mM Several Cragmcnts 

RA04 sf- RA04 ýR 48,50,52,54,56,58,60,62 0.5 PM 3 mM Several fragments 

60,62 0.5 pM 1.5 mM -2 kb fragment 

47,49,51,53,55,57,60,62 0.5 pM 1.5 mM No fragments 

48,50,52,54,56,58,60,62 0.5 pM 3mM Several fragments 

47,49,51,53,55,57 0.5 pM 2 mM Several fragments 

47,49,51,53,55,57,60,62 0.5 pM 2.5 mM Several fragments 

RA034135F RA034 35R 57,58,59,60,61,62 0.5 PM 3.5 mM Several fragments 

1/10 52,53,54,55,56 0.5 pM 1.5 mM Several fragments 
7 

47,49,51,53,55,57 0.5 pM 1.5 mM Several fragments 
1/20 47,49,51,53,55,57 0.5 pM 3 mM -1 kb fragment faint 
1/ 

20 51,52,53,54,55 0.25 pM 3 mM -1 kb fragment 

RA034F RA034R 47,49,51,53,55,57 0.5 pM 1.5 mM 
I 

- 150 bp fragment 
I 

Table 7- Summary of the experimental conditions and outcomes of the PCR of the rat 

aldehyde oxidase gene spanning the single nucleotide polymorphisms as listed in table 6. 

This table shows the optimisation process for primer sets RA04/5, RA034/35 and RA034. It illustrates 

the temperatures used with each set of conditions and the outcomes from each set of conditions used. *Q 

solution is a PCR additive 1/1() and '/, () indicates 1/1()th or '/, 
(, th volume of PCR reaction is Q solution 

respectively. ** concentration 

To confirrn that the correct products had been arnplified the three PCR products 

obtained were sequenced as described in materials and methods (section 2.11 ). The 

DNA sequencing confirmed that all the PCR products were to the required regions of 

the rat AO. 

Unfortunately the -2 kb product produced with priniers designed to exon 4 and 5 did 

not sequence over the SNPs, as the changes were too close (10 bp) to the start of the 

reverse primer. The -950 bp product obtained with the primers designed to exon 34 and 

35 also did not sequence over the SNP, as it was only 18 bp from the end of the forward 

primer (figure 10). As the sequencing chromatogram only provided approximately 700 

bp of usable sequence from the fragments 5'and 3' termini, the opposite ends of the 

intron from each primer were not obtained. Unfortunately the first 60 bp of each termini 

of the fragment was ambiguous so the SNP could not be determined frorn the primer 
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closest to the change. Figure 10 shows a sequencing chromatogram of the product 

obtained showing some of the novel intronic sequence obtained for intron 34. 

GG t- Gý t, :GGGGC, tý UG1, G 

: C: IC, C: ICTG-. CCCC: GGC-. T-. IGGCCGCIIC CC, CICIGGGIICCGGGGGG Gý 

,(I, *1: 

1 
1) 

iý 
iI111, 

I', 
Iý "I 

I 

fj 

GGCCCGICGTG, G: CCGGýGGGCCGGGCGGG-CýGIGCICICGCIT GGC I G: CIG, 

V 

LA lvl"A 
1ý C;, - GGGG- ý- GG Gl- GGGGC, 6 

GGGCGGGGGGGG 

'A 1)ý A 
GC GGG GI C, CCCCCGC (7, C'GC, CCiG. i GG CC GGG G G, G. G 

Figure 10 - Chromatogram of the novel sequence obtained for intron 34. 

Chromatogram illustrating a portion of the novel intronic sequence, which was obtained when the PCR 

product of primers RA034/35F and RA034/35R was sequenced using RA034/35F as the sequencing 

primer. 

In order to obtain new sequence data for these areas new primers were designed using 

the novel intronic sequence obtained to produce a smaller product enabling clear 

sequence to be obtained over the polymorphic region of codons 119,120 and 1315 

(table 8). The novel Intron 4 sequence used to design primers, which amplify over the 

polymorphic region of codons 119 and 120 is shown in appendix 5. 

53 



Primer code Primer sequence* 
Polymorphism 

detected 

Expected 

product size 

RAOEX5F CI GCI -1 GGAACFI GCI CI Ci FC(' Al 19G 
543 bp 

RAOEX5R GGTTCCTGAGCAGACiCA I-TACA I R120M 

RA034aF GCAGGAGAGAGGCATCT 
RI 315T 474 bp 

RA034aR C('A('AG('('*l ('I'(iA('('l ('("I AACC 

Table 8- Primers designed, using the novel intronic sequence, for the PCR amplification 

of Wright et al's (1999) polymorphic areas of the rat aldehyde oxidase gene. 

The table shows the primers used the sequence of the primers *reading 5'-3', the polymorphism each 

primer pair is designed to detect and the expected size of the product. F and R signify sense and antisense 

primers respectively 

These primers were then optimised in the same way as described above and the 

outcomes are summarised in table 9. 

Primers used 
Annealing 

temperatures 'C 

Primer 

conc. ** 
M902 Conc. ** 

Fragments 

Generated 

RAOI: XSF/ RAOFX5R 47,49,5 1,53,55,57 0.5 pM 1.5 mM -500 bp fragment 

---- 
RA034aF/ RA034aR 1 47,49,51,53,55,57 0.5 pM 1.5 iýM F-500 bp fragment 

Table 9- Summary of the experimental conditions and outcomes of PCR of rat aldehyde 
oxidase spanning the single nucleotide polymorphisms as listed in table 8. 

This table shows the optimisation process for primer sets RAOEX5 and RA034a. It illustrates the 
temperatures used with each set of conditions and the outcomes from each set of conditions used. The 

optimal conditions for each primer pair are highlighted. ** Concentration. 

Following the successful amplification of all of the PCR products, these exonic regions 

were amplified in eight animals (four of each gender) from the Wistar, SID and Fischer 

344 strains. The products were then sequenced and the codon changes observed by 

Wright et al scrutinised. No differences were found between the AO sequences from 

different strains or genders of rat. For each of Wright et al's polymorphic areas 

representative chromatograms and a summary of the results are shown in figure II and 

table 10 respectively. 
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Codon 119 120 1276 1315 

GGG TG TTT iý C "I 

Wistar I 

LILL 

GGGTGC 

Fischer 

GGGGTTTC 

Sprague 
Dawley 

Figure II- Sequencing chromatograms illustrating the codon present in this laboratory's 

rat strains over four of the polymorphic sites found by Wright el aL (1999). 

Chromatograms showing the codons representing the changes fiound by Wright et al. in the diflerent 

strains of rat. As no interindividual or gender differences were observed only one representative 

chronmlo, L, rýim fiom cach IMý, hCCII '; l)0%%TI. 

Table 10 compares the possible codons as described by Wright CI al. with the codons 

found at four of the polymorphic sites in the Wistar, SID and Fischer strairis of rat. 
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Exon 5 5 34 34 

Codon Position 119 120 1,276 1,315 

Possible codons* 
GCG/GGG AGG/ATG CTT/TTT AGA/ACA 

Ala/Gly Arg/Met Leu/Phe Arg/Thr 

SD rats 
GGG ATG TTT ACA 

Gly Met Phe Thr 

Wistar rats 
GGG ATG TTT ACA 

Gly Met Phe Thr 

Fischer rats 
GGG ATG TTT ACA 

Gly Met Phe Thr 

Table 10 - The codons present in this laboratory's rats at four of the polyrnorphic 
observed by Wright el aL (1999) 
* As reported in (Wright el al., 1999). As no differences were found between the male and female 

animals only one representative animal from each strain is shown. 

As no differences were found between the 3 rat strains or individual animals at these 

positions it was decided to clone the last polymorphic site (T649A) using RT-PCR. 

Primers were designed using computer programs and are listed in table 11. 

bp at which Code for 
Primer Expected 

Primer Sequence* primers start PCR 
Code Product Size 

and finish" product 

RA05F 1ý26 
--- 

906 bp RAO-5 
GTGUTTCCTGAGCAGAGCATAC 2431 

l 

Table II- Summary of primers designed for the RT-PCR amplification of rat aldehyde 

oxidase cDNA spanning codon 649. 

This table shows the primers used, the sequence of the primers *reading 5'-3', ** bp at which the 5' base 

of the primer binds, +1 represents the A of the ATG start codon. F and R signify sense and antisense 

primers respectively. 

Table 12 shows a summary of the conditions used and the results obtained for the 

amplification of the rat AO cDNA clone encoding codon 649. 
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Primers used Annealing 

temperature 'C 

Primer 

cone. ** 

M902 Cone-** Fragments 

Generated 

47,49,5 1,53,55,57 0.5pM 1.5mM Several fragments 

RA05F/ RA05R 
55,56,57,58 0.25pM 1.5mM Two fragments 

55,56,57,58 0.5pM 2mM Several fragments 

55,56,57,58 0.25pM IMM -900bp fragment 

Table 12 - Summary of the conditions used and outcomes for the RT- PCR of the rat 
aldehyde oxidase cDNA RAO-5 clone. 
This table shows the optimisation process for primer set RAO-5. It illustrates the temperatures used with 
each set of conditions and the outcomes from each set of conditions used. The optimal conditions for 

each primer pair are highlighted. ** concentration. 

The cDNA product was then sequenced from two Wistar and Fischer animals and t1our 

SID animals. Figure 12 shows a representative sequencing chromatogram over the 

polymorphic codon 649 for each of the three rat strains. 

GC 

Wistar 

GC 

Fischer 

L 

GC 

Sprague 

Dawley 

Figure 12 - Sequencing chrornatograms illustrating the codon present in this laboratory's 

rat strains at codon 649. 
Chromatograms showing the nucleotide sequence ofcodons 649 in the different strains of rat. As, no 
gender differences were observed only one representative chromatogram from each strain has 
been shown. 
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Comparison of the possible codons (ACA/GCA) as found by Wright et aL (1999) 

encoding for threonine and alanine at position 649 in the Wistar, SD and Fischer rat, 

revealed that in all three rats strains a GCA codon was present, which resulted in an 

alanine residue at position 649 in the predicted protein sequence. 

In conclusion the data showed no differences between the three strains of rat at the five 

polymorphic positions studied. All rat strains possessed a glycine, methionine, arginine, 

phenylalanine and threonine codon at positions 119,120,649,1276 and 1315 

respectively. It was therefore concluded that the differences observed by Wright et al 
(1999) did not correlate with the deficiency found in these rat strains. 

58 



3ACIoning and sequencing of aldehyde oxidase cDNA from Wistar, Sprague 

Dawley and Fischer rat strains. 

As none of the changes observed by Wright el al. (1999) correlated with the genetic 
deficiency of AO in these rat strains. It was decided to clone the whole AO mRNA 

sequence using RT-PCR. Male and female rats were sequenced as Wright et al. (1999) 

had suggested a difference in their male and female SD rats (Wright et aL, 1999). 

3.3.1 Design of PCR primers for the amplification of the rat aidehyde oxidase 

cDNA. 

Primers were selected from the published SD rat AO cDNA sequence using the 

computer programs as previously camed out. Several primer sets were selected which 

amplified the cDNA with an overlap between individual clones (table 13 and figure 13). 

RAO-5 had already been designed and optimised for the study of the T649A change 
(tables II and 12). 

Primer 
Code 

Pnrner Sequence* 

bp at which 
primers 

start and 
finish" 

Expected 
Product Size 

Code for PCR 
product 

RAOIaF ATCTACTAGG(; A('('TGCTA(; 6 -28 502 b RAO-1 
RAOiR CGTCAATTAT(; GGC('TGTATC 474 p 

RA02F AA(; AACCTCCGACTCACG 93 Z 
903 b RAO-2 

RA02R ATGTCTGTGTC(; TCTCTTCTGG 6--ý p 

RA03F CTGGAGGAACTTGTGGA; ýý ýý41 1 730 bp RAO-3 
RA03R (; TGTCCA(, CATCTCTTCATTCC 147 1 

RA04F GTCTTGGTCTCAGTGAACATCC 1224 699 b RAO-4 
RA04R TAATGATGTCCACCACGCCT(; G 1923 p 

RA06F TCTACCGAGACTTGGAG(7 2071 
b 938 RAO-6 

RA06R CGGCCATTC7CCCTCTTC 3009 p 

RA07F GCTGGTCACC(; AAGCCTCjTG 2771 
- -d 629 bp 

I 
RAO-7 

RA07R CTGGTCAAAA(; CA(; TCT(; (i(i 34 00 

RA06F TATCTTGATGGCTCT(iC' 3081 
922 bp RAO-8 

RA06R 1 TTCACTCACACAG(jTAT( 3 

Table 13 - Summary of the primers designed for the RT-PCR amplification of rat 
aldehyde oxidase cDNA. 
*reading 5'-3' ** bp at which the 5' base of the primer binds, +I represents the A of the ATG start 
codon. F and R signify sense and antisense primers respectively. 
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Rat AO mRNA 0.5 kb 

RAO-1 RAO-3 RAO-5 RAO-7 

RAO-2 RAO-4 RAO-6 RAO-8 

I Key - Non-coding sequence cDNA coding sequence 

Individual PCR clones RAO = rat aldehyde oxidase 

- ], -2, -3, -4, -5, -6, -7, -8 = PCR clone number 

Figure 13 - Diagram showing the position and degree of overlap between the predicted rat 

aldehyde oxidase PCR clones. 

3.3.2 Optimisation of the RT-PCR primers for amplification of the individual 

clones of rat aldehyde oxidase cDNA. 

The PCR was then optimised in the same manner as for the genomic DNA 

amplification. As mentioned previously, the agarose gel images are too numerous to 

show so only a gel displaying an example of the optirnisation process is shown. Figure 

14 shows how critical annealing temperature can be in the successful amplification of 

the PCR reaction changing just one degree under or above the optimum results in the 

formation of non-specific products. 
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M1234 

500bp 

Figure 14 - Agarose gel image showing the effect of annealing temperature on PCR. 
The PCR amplification was carried out using primers RAO IF and RAO I R. The reaction was carried out 
using, 0.25 pM primer and 1.5 mM MgCl, The annealing temperatures oflanes 1-4 are at 55"C. 56"(', 
57"C and 58"(' respectively. Lane M is I kb DNA ladder purchased from Proniega. 

Table 14 shows a summary of the conditions used and the results obtained with the 

optimal conditions for each primer pair highlighted. 
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Primers used 
Annealing 

temperatures 'C 

Primer 

conc. ** 

MgC12 

Conc. ** 

Fragments 

Generated 

RAO I aF/ RAO IR 
47,49,5 1,53,55,57 0.5 pM 1.5 niM Sc, ýcral fragments 

56,57 0.25 pM 1.5 mM -500 bp fragment 

47,49,5 1,53,55,57,59,61.63 0.25 pM 1.5 mM Several fragments 

57,58,59,60 0.5 pM 2 mM Several fragments 

RA02F/RAO2R 55,56,57,58 0.25 pM I mm No fragments 

52,53,54,55 0.5 pM 1.5 mM -900 bp fragment 

RA03F/ RA03R 
47,49,5 1,53,55,57 0.5 pM 1.5 jnM Several fragments 

55,54,55,56,57,58 0.25 pM 1.5 mM -750 bp fragment 

47,49,5 1,53,55,57 0.5 pM 1.5 mM Several fragments 

56,57,58,59 0.5 pM 2 mM Several fragments 

RA04F/ RA04R 
54,55,56,57 0.25 pM I mm Several fragments 

58,59,60,61 0.25 pM 1.5 mM Two fragments 

58,59,60,61 0.25 pM 2 mM Two fragments 

58,59,60,61 0.25 pM I mm -700 bp fragment 

RA06F/RAO6R 
52,4,56,58,60,62 0.25 pM 1.5 mM Several fragments 

52,54,56,58,60 0.5 pM 1.5 mM -950 bp fragment 

RA07F/ RA07R 52,54,56,58,60,62 0.25 pM 1.5 MM -600 bp fragment 

RAO8F/ RA08R 52,54,56,58,60,62 0.25 pM 1.5 mM - 900 bp fragment 

Table 14 - Summary of the conditions used and outcomes for the RT-PCR of the rat 
aldchyde oxidase cDNA clones. 

This table shows the optimisation process for primer sets RAO-1, RAO-2, RAO-3, RAO-4, RAO-6, 
RAO-7 and RAO-8. It illustrates the range ofarmealing temperatures used with each set of conditions and 
the outcomes from each set of conditions used. The optimal conditions for each primer pair are 
highlighted. ** Concentration. 

3.3.3 Nucleotide differences in the aldehyde oxidase cDNA identified between 

different rat strains. 

Once optimised the primers were used to amplify the entire AO cDNA in male and 

female animals of the 3 different strains. These clones were then subjected to DNA 

sequencing and the sequences obtained were used to make a contig of the complete 

cDNA sequence from each strain. Figure 15 shows the sequence of rat liver AO 

obtained from our SID strain. The differences fiound between the strains are indicated as 
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are the various cofactor binding sites and domains. The sequences obtained from the 
different rat strains were aligned and the differences found are shown in figure 16 and 
table 15. The next two pages (figure 16) show the cDNA sequence obtained interleaved 

with the predicted amino acid sequence. The four different binding sites ofthe cofactors 

are highlighted and changes found both in our strains and Wright et als. (1999) SD 

strain are indicated beneath the sequence. 

Met Amy Pro Pro Gln Le, Le, Ph* Tyr Val Ann Gly Gln Lys Val Val 01, Ann Ann Val Amp Pro 01, Met Met Lou Lou Pro 28 
ATG GAT CCC CCG CAG CTG CTC TTC TAC QTG AAT GOC CAG AAG GTO OTA GAA AAC AAT OTT GAT CCT GAG ATG ATO CT7 TTA CCO 

Tyr Lou Aýg Ly. Ann Lou Arg Lou Thý Gly Thr Ly. Ty, Gly cy. Gly Gly Gly Gly Cys Gly Ala cy. Th. Val Mot X1. Sr 56 
85 TAC CTG AGO AAG AAC CTC CGh CTC ACO GOA ACT AAG TAT OW TOT GOA Ow GOC OW TOC GOT am TOC ACA OW ATO ATC TCA 

Arg Tyr Asn Pro Bar Thr Ly. Bar 11. A19 mi. mi. Pro Val Ann Ala cy. I- Thr Pro 11. cy. S. r Lou Tyr Gly Thr Al. 84 
169 Coo TAC AAC CCC AOC ACC AAG AQC ATC ASG CAT CAT CCT OTC AhT OCC 79T CTO ACC CCC ATC TOC TCT CTO TAC GOT ACA OCA 

Val Thr Thr Val Glu Gly Il. Gly Ann Thr Arg Thr Ag Lou Hi. Pro Val Qln Glu Arg Il. Al. Ly. cy. mi. So, Thr Oln 112 
253 OTC ACC ACA GTA GAG GGC ATA GGC AAC ACC AGO ACC A" CTT CAT CCT OTT CAG GAG AOG ATC GCC AAG TO? CAC AOC ACC CAG 

CY. Gly ph. Cy. Thr Pro Gly Mat Val Mat Bar Kt Tyr Al. Lou Lau Arg Asn Hi. Pro al. Pro S. r Lau Av Gln L- Th. 140 
337 TOT OW TTC TOT ACC CCT GOO ATO a" ATO TCC Am TAT OCT CM CTC Ana AAC CAC CCA GAG COC TCT CTA GAT CAG TTA ACT 

A. p Al. L- Gly Gly Aan Lou Cy. Arg Cy. Thr Gly Tyr "a Pro 11. Il. Ap Al. Cy. Ly. Thr Ph. Cy. Arg Al. Sor Gly 168 
421 13AT OCC CTT GOG OW Ahr CTQ TOC Coe TOT ACC GGA TAC AGO CCC ATA ATT GAC OCT TGC AAG ACT TTC TOT AGA OCT TCT OOT 

Cy. Cy. G1. so. Ly. al. A.. Gly Val CY. Cy. L- A. p GI. Gly Il. A.. Gly S. r Ala Glu Ph. Oln Qlu Gly A. p Glu Thr 196 
505 TGC TOT GAA AGT A&A GAA AAT Goo GTO TOC TOT TTQ GAT CAA GO& ATA AAT GOA TCG GCA GAA TTT CAU Q&A GOA GAT GAO ACA 

Sor pro G1. Lau Ph. S. r Olu Ly. al. Ph. Gln Pro Lau Ap Pro Thr Gln 01. Lou 11. Ph. Pro Pro Glu Lau K. t Ara Il. 224 
589 Acpr CCA GAA CM TTC TCG GAA AAG GAA TTT CAG CCA Cm GAC CCA ACC CAA GAG CTO ATA TTT CCT CCA GAG CTA Am AGA ATA 

Ala Glu Ly. Gln Fro Pro Ly. Thr krg Val Ph. Tyr S. r A.. Arg Not Thr Try Il. S. r Pro Val Thr Lau alu Glu Lau Val 252 
673 OCC GAG AAA CAG CC& CCA AAG ACC AGA Gm TTC TAC AGT A&T AaA Am ACA TOO ATC Tee CCO am Ace CTG GAG GAA CTT GTO 

Olu Al. Ly. Ph. Ly. Tyr Pro Gly Al. Pro 11. Val Kt Gly Tyr Thr S. r Val Gly Pro Glu Val Ly. Ph. Ly. Gly Val Ph. 280 
757 GAA OCT AAG TTC AAG TAT CCT OGG OCC CCC ATT OTC Am Goo TAC ACC TCT OTO GOO CCT GAh GTA AAG TTT AAA GOT G71C TTC 

Hi. Pro 11.110 Il. S.. Pro Ap "a 11. Glu Glu L, eu S. r 11.11. A. n Gln Thr Gly kay Gly lou Th. Lou Gly Al. Gly 308 
841 CAC CCC ATC ATA ATT TCT CCT GAC AGA ATT GAA GAG CTG AGT ATC ATA AAC CAG ACT OGO OAT 000 CM ACC CTO GOT OCT We 

Lau Bar Lau A. p Gln Val Ly. kap 11. Th. Ap Val Val 01. Ly. Lu Pro Glu Glu Thr Thr Oln Thr Tyr Arg Ala L- 336 
925 CTC AQC CTO GAC CAG GTO AAG GAC ATT CTC ACT GAC GTO OTC CAG AAG CTT CCA GAA GAG ACO ACA CAG ACA TAC COT OCO CTC 

Lou Ly. Hi. Lou Arg Thr Lau Ala Gly S. r Qln 11. Arg Aan Mat Ala S. r Lau Gly Gly Hi. 11. Val S. r Arg mi. Lau Ap 36A 
1009 Cm kka CAC Cm AGA ACT CTO OCT GOC TCT ekQ Are AGO AhT Am OCT TCT TTA GOO GOC CAC Are OM AOC AGA CAT cm GAC 

S. r A. p Lau Ago Pro Lau Lau Al. Val Gly An CY. Thr L, ou An L. u Lau S.. Ly. A. 0 Gly Ly. Ara Oln Il. Pro Lau S. r 392 
1093 TCQ GAT CTO AAT CCC CTT CM OCT Gm GOT AAT TOT Ace CTC Ake TTA CTA Tee AAA GAT GOA AAA COG CAG ATC CCT TTA AOT 

Olu Gln ph. L- Arg LYM Cys Pro Amp S. r A. p Leu Ly. Pro al. Glu Val Lau Val S. r Val A. n 11. Pro Cy. Bar Arg Ly. 420 
1177 GAG C" TTr c7c Cac AAG Wr CCT O&C Tea GAT CTT AAG CCT CAG GAA am TTG OTC TCA am AAC ATC CCC TOT Tee AGO AAG 

Trp 91. Ph. Val S. r Ala ph. Arg Oln Al. Gl. Arg Gln al. A.. Ala ýu Al. 11. Val Aa. Bar Gly Mat Ara Val Lau ph. 448 
1261 TOO GAG TTT am TCA ace TTC CO. CAA OCC CAU AGA CAG C&O AAT OCA CTA Oca ATT OTC AAC TCT GOA Am AGA OTC CTT TTT 

"a Olu Gly Gly Gly Val Il. Ly. G1. Lou S. r 11. Lou Tyr Gly Gly Val Gly Fro Thr Th, 11. Gly Al. Ly- Ann S. r Cy. 476 
1345 AGA G&A a" OOT GOC OTC ATT AAA GAG TTA Tee ATT Tm TAT Oak GOT OTC GOT CCA Ace Ace ATC GOT OCC AAG AAC TCC TOT 

Gln Ly. Lau 11. Gly Arg Pro Try An Glu GlU Mat l, eu Ap Thr Al. Cy. Ara L- Val Lau A. v 01. Val Thr Lau Ala Gly 504 
1429 CAG AAA CTC ATT GOA AGO CCC TOG AAT GAA GAG AM Cm QhC ACA GCA TOC AGO CM OTT TTO GAT GAA OTC ACC CTT OCA GOT 

S.. Al. Pro Gly Gly Ly. Val Olu Ph. Ly. Arg Thr Lau 11.11. Bar Ph. Lou Ph. Ly. Ph. Tyr Lou Glu Val Lau Oln Gly 532 

1513 TCA OCT CCT OOT OGG AAG GTO GAG TTC AAG AOG ACC CTC ATC ATC AGC TTC CTT TTC AAG TTC TAC Cm GAG Om Cm CAG GOT 

Lou Ly. A. g Glu A. p Pro Gly Ri. Tyr Pro S. r Thr As. AAn Tyr Glu S. r Al. Lau Ulu A. p Lau Hi. Bar Ly. Hi. mi. 560 

1597 CTO AAG Ago GAO OAC CrA OOT CAC TAT CCT AQC Tm ACA AAC AAT TAT GAG AG'r OCT TTA GAA GAT CTC CAT TCA AAA CAT eke 

TrW "g Thr Lau Thr Hi. Oln A. n V&l Ap S. r Mt al. Lau Pro al. As' Pro 11. Gly krg Pro Il. Mat Hi. Lau S. r Oly so@ 

1681 TOG AGA ACA TTA Ace CAC CAG AAC OTC OAC TCO ATO CAG CTT CCT CAG GAC CCA ATT GOC COT CCC ATC ATO CAC CTT TCT GOT 

11. Ly. Hi. Ala Thr Gly Glu Ala 11. Tyr Cy. Ap Asp Kt Pro Al. Val Amy Arg Glu Lau Ph. Lau Th, Ph. Val Thr S. r 616 

176S ATT AAQ CAC OCT ACC GOC GAG OCC ATC TAC TOT OAC GAC Am CCT OCA OTA GAC COG aAa CTT TTC CTO ACT TTr OTA ACA AOT 

Bar Arg Al. Hi. Al. Ly. 11. Val Bar 11. Asp Lou S. r Glu Al& Lau S. r L- Pro Gly Val Val Ap 11. Il. Thr Ala Ap 644 

1849 TCA AGA OCA CAC OCT AAG ATT OW Tee ATT GAT CTO TCA G&A OCT CTC AGC CTO CCA OW OTC GTO GAC ATC ATT ACT GCO GAT 

Hi. Lou Gln A. p Thr Thr Thr ph. Gly Thr alu Th. Lou Lou Thr Thr Ap Ly. Val Hi. Cy. Val Gly 01. Lau Val Cy. Al. 672 
1933 CAT CTT CAG GAC "CA Ace Ace TTC GOC ACA GAG ACQ CT? CTO Ace ACA GAT AAD OTC CAC TOC QTG Oac CAA CTT OTC TOT OCC 
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Val 11. Al. Asp S. r Glu Thr Arg Al. Lys Gln Ala Ala Lys His Val Lys Val Val Tyr Arg Asp Lou Glu Pro Lou Ila Lou 700 
2017 GIG ATT GCG GAT TC? GAG ACA COG GCA AAG CAA GCG GCG AAG C&C GIG AAG GTO OTC TAC CGA GAC TTG GAG CCT CTO ATC CTA 

Thr 11. Glu Glu Ala Ila Gln His Lys S. r Ph. Ph. Glu So. Glu Arg Lys Lou Glu Cy. Gly As. Val Asp Glu Ala Ph. Lys 728 
2 101 ACT AW GAG GAA OCT ATA CAA CAC AAG TCC WC WC GAG TCA GAA COG AAG CIO GAG TOT GGA AAT OTT GAT GAA GCO TIT AAA 

11. Al. Asp Gln Ila Lou Glu Gly Glu 11. His 110 Gly Gly G1. Glu His Ph. Tyr Hot Glu Thr Gln a.. Hot Lou Val Val 756 
2185 AW GCT GAT CAA ATT CTT G&A GOT GAG ATA CAC ATA GGC Gac CAG G" CAT WT TAT ATO GAA ACC CAA AGC ATG CTT OTT OTC 

Pro Lys Gly Glu Asp Gly Glu Ile Asp 11. Tyr Val S. r Thr Gln Phe Pro Lys His 11. Gln Asp 11. Val Al. Ala Thr Lou 784 
22650 CCC AAA GGA GAG GAC GOA GAG AW GAC ATC TAT GTG TCC ACA CAG WC CCC AAG CAT ATA CAG GAT ATA OTT OCT OCA ACC ITO 

Lys Lou Ser Val A. n Lys Val met Cy. mi. Val Arg Arg Val 02Y CKLY Ala PIM air OU Lys Val Gly Lys Thr S. r 11. Net 012 
2353 AAG CW TCA OTC AAC AAG OTC ATG TOT CAT GTA AGO COT OTT an a= am Tw am am AAG OTA 00C AAG ACC AOC ATC ATO 

Ala Ala Ile Thr Ala Ph. Al. Ala S. r Lys His Gly Ara, Al. Val Arg Cy. Thr Lou Glu Arg Gly 01. A. p net Lau 11. Thr ado 
2437 GCG GCC ATC ACT GCA WC OCT GCC AGC AAA CAC OOT COC GCG OTC CGC TGC ACT CIO GAA CGA. GOG GAA GAC ATO WA ATA ACT 

Gly Gly Arg His Pro Tyr Lou Gly Lys Tyr Lys Val Gly Ph. Net Axg Asp Gly Arg 11. Val Ala Lou A. p Val Glu His Tyr 868 
2521 GGG GOC COC CAT CCT TAC CTT GG& AAG TAT AAA OTT GGA TIC ATG AGO GAC GOC AGA ATC OTG WC CTG GAT GTG GAG CAC TAT 

A- 

Cy. As. Gly Gly S. r S. r I- Asp Glu S. r Lou Trp Val Ile Glu Ket Gly Lou Lou Lys met Asp A. n Al. Tyr Lys Ph. Pro 996 
2605 TOC AAT GG& GGG AGC TCC CTG GAT GAG TCC TMA TOO GTG ATA GAA ATG GGG CTT CTG AAG ATG GAC AAC OCT TAC AAG WT CCC 

A. n Lou Ara, CY. Arg Gly Trp Ala Cy. Arg Thr An Lou Pro S. r AAn Thr jile JAM A&V OJT V3W 017 File Pro Gas Ala Gly 924 
2689 AAT CIA COC TOC COG GGC TOG GCC TGC AGA ACC AAC CTC CCG TCC AAC ACT on CS9 cm an 277 420c TTT ccr cm OCA GGQ 

I- Val Thr Glu Al. Cy. Val Thr Glu Val Ala 11. "a Cyx Gly Lou S. r Pro Glu Gln Val Arg Thr 11. As. Hot Tyr Lys 952 
3773 CTO OTC ACC OCC TOT GTC ACA GILA GTO OCA ATC AGA TOT OW CTG TCC CCT GAG CAG OTT CGA ACC AT^ AhT ATG TAC AAG 

Oln 11. Awp As. Thr His Tyr Lys Gln Glu Ph. S. r Ala Lys Thr Lou Ph. Glu Cy. Trp Arg, Glu Cy. met Ala Lys Cy. S. r 980 
2857 CAA AW GAT AAM ACC CAT TAC AAa CAA GAA WC AGC GCC AAG ACC CTC WT GAG TGC TOO AGA GAA TOC ATG OCC AAG TOT TCC 

G1. 

Tyr S. r Glu Arg Lys Thr Ala Val Gly Lys ph. Ann Al. Glu Ann S. r Trp Lys Lys Arg Gly K. t Al. Val Ile Pro Lou Lys 1008 
2911 TAC TCT GAG AGG AAA ACG OCT GTA GGA AAA TTC AAT OCA GAG AAT TCC TIGG AAG AAG AGO GGA ATG OCC GTO ATT CCA TTO AAG 

ph. P Gly Val Gly S. r Val Ala Ket Gly Gln Al. Al. Ala Lu Val His 11. Tyr L. U ASP Gly S. r Ala L. u, Val Bar Val 1036 
CC; 3025 TTT GTG GOT GTT GGC TCA GTA GCC ATG a" CAG GCG GCT OCC CTG OTC CAT ATT TAT CTT GAT Ow TCT GcA CTO Grc TCT 

His Gly Gly Ile Glu Not gly Oln 017 Val His Thr Lys met Ile al. Val Val S. r Arg G1. L.. Lys met Pro K. t S., Bar 1064 
3109 CAC GOT GOG ATT GAG MO GOO cAa GOT GTC CAC ACT AAA, ATO ATC CAG GTG GTC AGC CGG GAA TTA AAG ATO CCA ATG TCO AGT 

Val His L. u Ara Gly Thr S. r Thr G1. Thr Val Pro AS. Thr Ann Ala ftr fly Gly am Val Val Al. Amp Leu Ann Gly Le. 1092 
3193 Gw CAC CTG CGT GGG ACA Aac AC^ GAA ACC OTC Ccc AAC ACC AAT OCA I" am Ow Ift OTG OTO GcA GAT CTC AAT GGA TTO 

Al. Val Lys ASP Ala cy. G1. Thr Lu Lu Lys Ara Lou 01. Pro 11.11. S- Lys Ann Pro al. Gly Thr Trp Lys ASP Trp 1120 
3277 GCA GTA AAG GAT OCT TGC CAr ACC CTT CTA AAA COC CTT GAG CCC ATC ATC KOC AAG AAC CCC CAG GGA ACT TOO AAG GAT TGG 

Al. al. Thr Al. Ph. ASP Gln S. r Val S. r L. U S.. Al. Val Gly Tyr ph. Arg Gly Tyr Glu Bar Ann Ile Ann Trp Glu Lys 1140 
3361 OCC CAG ACT GCT TTT GAC CAG AGC GrrC KOT CTIC TCG OCT OTT GGA TAT TTC AGG GGC TAC GAG TCO AAT ATA AAC TGO GAG AAA 

Gly Glu Gly His Pro ph. Glu Tyr ph. Val Tyr Gly Ala Ala Cys S. r 01. Val Glu 11. ASP Cyn L.. Thr Gly ASP His Lys 1176 
3445 GOO GAA GGC CAT CCC TTC GAA TAC TTT GTO TAT GGA OCT GCc TOC TCA GAG GTT a" ATA GAC TOC CTO ACC GOO GAC CAT AAG 

Ann 11. Arg Thr ASP 11. Val met ASP Val Gly His Ser Ile Ann Pro Ala I- ASP Ile Gly Gln Val Glu Gly Al. Ph. 11. 1204 
3529 AAT ATC AGA ACA GAC ATC GIG ATG GAT a" QGC CAC AGC ATA AAC CCA OCC CTT akc ATA OW CAG OTT Gas, GOT OCA TTT ATT 

Gln Gly met Gly L. u Tyr Thr 11. Glu G1. LSU S. r Tyr S. r Pro al. Gly 11. Lau Tyr S. r Ara Gly Pro Ann Gln Tyr Lys 1232 
3613 CAK OG& ATG GGA CTT TAC ACG ATA GAG GAG CTO AGC TAC TCT CCT CAG GGC ATT CTG TAC AW COT GOT CCA AAC C TAC Asa 

Ile Pro Ala Ile Cys Amp Ile Pro Thr Glu Hot His Ile Bar Phe Lou Pro Pro Ser Glu Him So, Amn Thr Lou Tyr Ser Bar 1260 
3697 ATC CCT GCC ATC TGC GAC ATIC CCC ACC GAG ATO CAC ATT TCT ITT ITO CCC CCA TCC GAA CAC TCA Ahc ACC CIO TAT ICA TCT 

Lys Gly town Gly OJU ger Gly Val Phe Lou Gly Cys Bar Val Phe Phe Ala 11, Him Asp Ala Val Krg Ala Al. Arg Ole Olu 1288 
37 81 AAG GOT C29 QM OW TCT GM QM TIC CIO GOC TOT TCG OTA TTT TTT OCC CAT GAC OCA OTO AGO OCA GCO COO CAQ G&Q 

Arg Gly Ile Ser Gly Pro Tr, Lys Lou Thr S*r Pro L,, Thr Pro GI, Lys 110 Arg Net All CYO 01, Alp Lys Phe Thr Lys 1316 
3865 AGA GOC ATC TCT ý CCA TOO AAG CTC ACT KOT CCT CTO ACT CCA GAG A&A ATC AGA ATO OCT TGT (MA GAT AAG TTC ACA AAA 

Met Ile Pro Arg Asp Glu Pro Gly Ser Tyr Val Pro Try Amn Ile Pro VA1 1333 

3949 ATG ATT CCA AGA GAT GAA CCT QGA TCC TAT OTT CCC TOO AAC ATA CCT QTG TGA 

Figure 15 - Sprague Dawley aldchyde oxidase cDNA sequence interleaved with the 
deduced amino acid sequence. 

The iron-sulphur, FAD and MoCo binding sites are highlighted in yellow, grey and blue respectively 
(Terao et al., 2000). Nucleotide changes leading to amino acid differences between the SD and Wistar 
rats are indicated in purple. Nucleotide changes not resulting in an amino acid change are indicated in 
green. The difference between the SD and the other two strains is indicated in pink. Changes found by 
Wright et al (1999) are shown in brown. 
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GI IOS 

Wistar 

Fischer 

Sprague 
Dawley 

GTCCGGCCC 

GCCGCCC 

GCCGCCC 

A852V 

GC-, GG 

GG 

GG 

Figure 16 - Sequencing chromatograms showing the codon differences between the 

different rat strains. 
As no gender differences were observed only one representative chromatogram frorn each strain has 

been shown. 

Table 15 summanses all the differences found between the strains in the nucleotide 

sequence of the rat AO cDNA. Changes predicted to cause an amino acid change in the 

translated sequence are highlighted in yellow. 
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No Nucleotide Amino Acid 

Site Pub 

SD* 

Wistar Sprague 

Dawley 

Fischer Site Pub 

SD* 

Wistar Sprague 

Dawley 

Fischer 

Ia 84 G A G G 28 Pro Pro Pro Pro 

2 328 A G A A 110 Ser Gly Ser Ser 

7ý 1630 T C T T 544 Leu Leu Lcu Leu 

4 2555 T C T T 852 Val Ala Val Val 

5 2886 A A A G 962 Glu Glu Glu Glu 

6 3690 G A G G 1230 Asp Asp Asp Asp 

Table 15 - Summary of differences found in aldehyde oxidase between the different rat 

strains. 

The highlighted rows indicate an amino acid change *Published SID rat cDNA (Wright el 411., 1999). 

**no gender differences were observed in our rats. ' Wright reported this as a male/female difference with 
G in the male and A in the female. b Wright reported this as a male/female difference with T in the male 

and C in the female. 

66 



3.4 Cloning and sequencing of aldehyde oxidase homologue 1 cDNA from Wistar, 

Sprague Dawley and Fischer rat strains. 

During the course of this investigation two AO homologues were discovered to be 

present in mice (September 2000) (Terao et aL, 2000). One of these (AOH 1) was found 

in liver and was therefore of a concern to this study as even though differences were 
found between the AO-active Wistar strain and the AO-deficient strains in the AO 

cDNA sequence, if AOHI is present in rats this enzyme may also be involved in the 
deficiency. 

3.4.1 Characterisation of aldehyde oxidase and aldehyde oxidase hornologue 1 in 

the different strains of rats using cellulose acetate electrophoresis. 

The research publication on the mouse AO homologues used cellulose acetate 

electrophoresis to demonstrate that two polypeptides were found in mouse liver, which 
they designated AO and AOH L (Terao et aL, 2000). In order to determine if there were 
AO homologues in rat liver the same cellulose acetate electrophoresis method was used 

to characterise rat liver cytosol from the SD, Wistar and Fischer strains (figure 17). This 

revealed that there were two enzymes present in wild type Wistar rat liver when stained 

with benzaldehyde but only one polypeptide stained in the SD and Fischer strains. 
Staining with phenanthridine as substrate indicated that only the furthest migrating 

polypeptide showed phenanthridine oxidising activity (figure 17) and confirmed that 

this enzyme is missing in the SD and Fischer rats. This band corresponded to the 

furthest migrating polypeptide in mice suggesting that AOHI is responsible solely for 

the activity of phenanthridine oxidation in rat liver. 
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Figure 17 - Cellulose acetate zymogram of molybdenum hydroxylases in the different rat 
strains. 
Lanes 1,2and 3 were stained using benzaldehyde, Lanes 4,5 and 6 were stained using phenanthridine, 
and lanes 7,8 and 9 were stained using hypoxanthine as described in materials and methods section 2.6. 
Lanes 1,4 and 7 are Wistar rat cytosol. Lanes 2,5 and 8 are SID rat cytosol and lanes 3,6 and 9 are 
Fischer rat cytosol. The direction of migration is from the anode (-) to the cathode (+) as indicated on the 
left. I 

3.4.2 The cloning of aldehyde oxidase homologue I cDNAs from different rat 
strains. 

As the zymograms in figure 17 demonstrated that the AO holoenzyme is present in the 

SID and Fischer rats but AOHI activity is absent it was decided to clone the AOHI 

enzyme from rat liver to establish if any differences in its amino acid sequence could 

account for the lack of N-heterocyclic oxidase activity in the SID and Fischer rats. 

As the only mammalian cDNA sequence available for AOH I was the mouse cDNA, 

primers were designed to the mouse AOH I sequence with care being taken not to select 

primers, which bound to any regions of' high nucleotide identity between AO and 

AOHI. As the mouse and rat are evolutionary very closely related and the AO cDNAs 

are 92% identical, it would be reasonable to presume that most ol'the primers designcd 

68 



to the mouse AOHI cDNA sequence would bind to the rat sequence and produce a 

successful amplification. 

RT-PCR primers were once again selected using computer programs and several sets 

selected which amplified the cDNA in a series of overlapping clones (table 16 and 
figure 18). 

Primer Code Primer Sequence* 

bp at which 

primers 

start and 

finish" 

Predicted 

product 

Size*** 

Code for 

PCR 

product 

MAOFI IIF C('T('AA(iTAAT(; T('T('('TT(' -9 770 bp MAOH 1 -1 a 
MAOH II aR GA(; T(; (; A(; CC; CTG(i(; AT(jCTTC 761 

MAOH II aF CAGCCCCTGGATCCAACTCA(jG 621 
866 bp MAOH 1-2 

MAOH IIR CATCTTGCCAGCATCATCCAGC 1487 

MAOH 12F GCATCAACAGAAG(; AATACAGC 1143 
909 bp MAOH 1-3 

MAOH 12aR CCTGCTGG(, CATGA(iCATAAG 2052 

MAOH l2aF GGTAACCAGCAG(; AA(; TCAC 1841 
996 kb MAOH 14 

MAOH 12R AACCTTCTCTGGTGGTAAGCGG 2837 

MAOH13F ATGTGTCAAGCCA(, GATGCT(jC 2292 
949 bp MAOH 1-5a 

MAOH 13aR GTAACCGTGTTGGGGACGGTCAC 3241 

MAOH l3aF 

- 

CGCTTTGOTCCAGATCTACA 3068 
942 bp MAOIII-6 

F-MA OH 13 R 4010 

Table 16 - Summary of the primers designed for the RT-PCR amplification of aldehyde 
oxidase homologue I cDNA. 
*reading 5'-3' from left to right ** bp at which the 5' base of the primer binds, +1 represents the A of 
the ATG start codon. ***based on mouse AOH I cDNA sequence (Terao el al., 2000). F and R signify 

sense and antisense primers respectively. 
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A0111 CDNA 0.5 kh 

MAOHI-Ia NIAOHI-3 NIAOHI-5a 

NIAOHI-2 MAOHI-4 MA0111-6 

Key Non-coding sequence ý cDNA coding sequence Indi%idual PCR clones 

MAOH I= mouse aldchyde oxidasc homologuc I-Ia, -2, -3, -4, -5a, -6 PCR clone number 

Figure 18 - Diagram showing the degree of overlap between the predicted aldehyde 

oxidase homologue I PCR clones. 

3.4.3 Optimization of the RT-PCR primers for amplification of the individual 

clones of rat aldehyde oxidase homologue I cDNA. 

The cDNA was cloned from the Wistar rat RNA in the first instance as the cellulose 

acetate electrophoresis (figure 17) demonstrated the presence of' the enzyme therelbre 

the AOH I mRNA should also be present. As the enzyme activity was absent in the SD 

and Fischer strains ]It was possible that this was due to the lack of AOH I mRNA 

synthesis. The primers were then optirmsed in a similar manner as for the DNA 

amplification. Table 17 shows a summary of the conditions used and the results 

obtained with the optimal conditions for each primer pair are highlighted. 

Despite many different conditions being used to attempt to clone the MAOH I -I a and 

the MAOH 1-5 fragments these could not be optimised. As the primers were designed to 

the mouse AOH I cDNA sequence and not the rat it is reasonable to presume that one of 

the primers is binding in a non-conserved region. Thereflore new primers needed to be 

designed in the hope that they will bind in a conserved region resulting in a successful 

amplification. 
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Primers used 
Annealing 

temperatures 'C 

Primer 

conc. ** 
M902 Conc. ** 

Fragments 
Generated 

47,49,5 1,53,55,57,59,61,63 0.25 pM 1.5 mM No fiagniclits 

47,49,5 1,53,55,57,59,61,63 0.25 pM I mm No fragments 

47,49,5 1,53,55,57 0.5 pM 2mM No fragments 
MAOIIF, 'MAOI]aR 

47,49,5 1,53,55,57 0.5 pM 2.5 mM No fragments 

48,50,52,54,56,58 0.5 pM 3 mM No fragments 

S3,55,57,59,61,63 0.25 pM 3mM No fragments 

50,52,54,56,58,60 
I 

0.25 pM 2 mM No fragments 

47,49,5 1,53,55,57,59,61,63 0.25 pM 1.5 mM No fragments 

47,49,5 1,53,55,57 0.5 pM 1.5 mM No fragments 

MAOH I ]aF' MAOH IIR 
47,49,5 1,53,55,57 0.5 pM 2 mM No fragments 

47,49,5 1,53,55,57 0.5 pM 2.5 mM Several fragments 

48. ýO. S2.54.56. ý8 0.5 pM 3 mM No 1ragments 

53,55,57,59,61,63 0.25 pM 2.5 mM -800 bp fragment 

MAOH12F MAOH12aR 47,49,51,53,55,57 0.25 pM 1.5 mM -900 bp fragment 

MAOH12aF MAOH12R 47,49,51,53,55,57 0.25 pM 1.5 mM -1 kb fragment 

47,49,5 1,53,55,57,59,61,63 0.25 pM 1.5 mM Several fragments 

47,49,5 1,53,55,57 0.25 pM I MM Several fragments 

47,49,5 1,53,55,57 0.5 pM 2 mM Several fragments 

MAOH13F MAMMA 47,49,5 1,53,55,57 0.5 pM 2.5 mM Several fragments 

48,50,52,54,56,58 0.5 pM 3mM Several fragments 

50,52,54,56,58,60 0.25 pM 2 mM 
- 

Several fragments 

53,55,57,59,61,63 0.25 pM MM No fragments 

47,49,51,53,55,57,59,61,63 0.25 pM 1.5 mM No fragments 

47,49,51,53,55,57 0.25 pM ImM Several fragments 

47,49,5 1,53,55,57 0.5 pM 2 mM Several fragments 

M 0 13 , 0 3 
47,49,5 1,53,55,57 0.5 pM 2 mM Several fragments 

A 11 aF MA 111 R 
48,50,52,54,56,58 0.5 pM 3 mM Several fragments 

53,55,57,59,61,63 0.25 pM .3 mM Several fragments 

50,52,54,56,58,60 0.25 pM -3 niM Several fragments 

57,59,61,63,65,67 0.25 pM I mm -950 bp fragment 

Table 17 - Summary of the conditions used and outcomes for PCR of the aldehyde oxidase 
homologue I cDNA clones. 
This table shows the optimisation process for primer sets MAOFI-la, MAOH 1-2, MAOII 1-3, MAOH 1-4, 

MAOH I-5a and MAOH 1-6. It illustrates the annealing temperatures used with each set ofconditions and 

the outcomes from each set of' conditions used. The optimal conditions for each primer pair are 
highlighted. ** concentration. 
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3.4.4 Design of the new RT-PCR primers for amplification of the individual clones 

of rat aldehyde oxidase homologue I cDNA. 

As MAOH- Ia fragment could not be optimised new primers were designed using the rat 

AOH I cDNA sequence obtained from product MAOH 1-2 to design the reverse primer. 

The mouse AOH I sequence had to be used for the forward primer, as this was the only 

information available for the start of the sequence. New primers were designed for 

MAOH 1 -5 from the Wistar sequence obtained from MAOH 1-4 and MAOH 1-6 cDNA 

clones (table 18 and figure 19). 

bp at which 
Expected Code for 

primers 
Primer Code Primer Sequence* product PCR 

start and 
Size product 

finish" 

MAOH II cF A(; A(i('AC'A(i('A(iTT('('Al'('T(iA(i -81 
-- 

856 bp MAOIII-lb 
RAOH II bR GTGTT(jCCAATCACGAGT(iGAC 

1 
7735 

RAOH5F A CAAGGCAG(: AGACATCCA 2780 
772 bp RAOH 1-5 

RAOH5R CAGTCACCATTAGGATTCTGG 3552 

Table 18 - Summary of the primers designed for the RT-PCR amplification of rat 
aldehyde oxidase homologue I cDNA (revised). 

*reading 5'-3' from left to right ** bp at which the 5' base of the primer binds, +I represents the A of' 
fy c the ATG start codon. ***if similar to mouse AOHI (Terao c/ al., 2000). F and R signi sens and 

antisense primers respectively. 

XOI 11 0.5 kb 

MAOHI-lb MAOHI-3 RAOHI-5 

MAOHI-2 MA01-11-4 MAOHI-6 

Key Non-coding sequence ý cl)NAcodingscquence ý Indi%idualft'Rcloncs 

MAOH I- mouse aldchyde oxidase hornologue 1 -1h, -2, -3, -4, -S, -6 PCR Clone lulmher 

Figure 19 - Diagram showing the degree of overlap between the predicted aldchyde 

oxidase homologue I PCR clones (revised). 
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3.4.5 Optimization of the new RT-PCR primers for amplification of the individual 

clones of rat aldehyde oxidase homologue I cDNA. 

The new primers were then optimised in the same way as for the previous 

amplifications (table 19). Once again the optimal conditions for each primer pair are 
highlighted in yellow. 

Primers used 
Annealing 

temperatures 'C 
Primer conc. ** 

MgcI2 

Conc. ** 

Fragments 

Generated 

5154,56,58,60,62 0.25pM 1.5rnM No fragnicnis 

52,54,56,58,60,62 0.5pM 1.5mM Many fragments 

MAOH II cF/ RAOH II bR 
52,54,56,58,60,62 0.25pM Imm No fragments 

48,50,52,54,56,58 0.25pM Imm No fragments 

52,54,56,58,60,62 0.5pM Imm No fragments 

53,55,57,59,61,63 0.5pM 2mM -900bp fragment 

RAOH5F/ RAOH5R 48,50,52,54,56,58 0.25pM 1.5mM -750bp fragment 

Table 19 Summary of the conditions used and outcomes for PCR of the MAOHI-lb and 

RAOHI-5 cDNA clones. 

This table shows the optimisation process for primer sets MAOH-lb and RAOHI-5. It illustrates the 

annealing temperatures used with each set of conditions and the outcomes from each set of conditions 

used. The optimal conditions for each primer pair are highlighted. ** concentration 

Once the complete sequence for the Wistar rat was obtained new primers were designed 

which were specific for the rat sequence. Table 20 shows the sequence of the newly 

designed rat AOHI primers. RAOHI-5 was kept from before as this was already 

designed to the rat sequence. Figure 20 shows a schematic diagram of the degree of 

overlap between the clones. 
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Primer Code Pnrner Sequence* bp at which 
primers 
start and 
finish** 

Expected 

product 
Size 

Code for 
PCR 

product 

MAOH II bF CGTCTGTCTATTGAACAAC'G -52 512bp RAOIII-A 
RAOH II cR GA(jTTAGGGATGAAACTTCTCG 564 

RAOH I IF TACAGTAGAAGGCATA6GAAGC 270 
897 bp RAOIJI-I 

RAOH IIR TTG('TGTGTTCCTTCT(; TTG 1167 

RAOH 12F TCT CTGAAGCACCT(iAG 1008 
852 bp RAOIII-2 

RAOH 12R ATC; TGGCTTGCT(; CT(; (; TTAC(' 1860 

RAOH13F ACACCATTACAGACTT6AGC 1361 
- 

676 bp RAOIII-3 
RAOH 13R A(; CATAC(; AGT('AC; ('A(; C 2037 

RAOH 14F GTGTGGTTGATGTGATAACAGC 1907 
- 

747 bp RAOI 11-4 
RAOH 14R 6CATACT('TATCAC('A6TTCA(; 2654 

RAOH 16F AC GGT(; CCGAT(; T('AAC 3253 
590 bp RAOI 11-6 

RAOH 16R GGCA(iCA(i('AATA(; ('(iAA(jAAC - 3843 

Table 20 - Summary of the primers designed for the RT-PCR amplification of rat 
aldchyde oxidase homologue 1 cDNA. 
*reading 5'-3' from left to right, ** bp at which the 5' base of the primer binds, +1 represents the A of' 

the ATG start codon. IF and R signify sense and antisense primers respectively. 

RatAOli I cDNA 
0.5 kh 

RAOHI-A RAOHI-2 RAOHI-4 RAOIII-6 

RAOHI-l RAOHI-3 RAOH 1-5 

Key - Non-coding sequence ý cDNA coding sequence Indi%ldual PCR cloncý 

RAOH I= rat aldchyde oxidasc hornologue I -A - 1, -2, -3, -4, -5, -6 PCR clone number 

Figure 20 - Diagram showing the degree of overlap between the predicted rat aldchýde 

oxidase homologue I PCR clones. 
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The primers were then optimised in the same way as for the DNA amplifications (table 

21). The highlighted rows indicate the optimal conditions for each primer pair. 

Primers used 
Annealing 

temperatures 'C 

Primer 

conc. ** 
MgC12 Conc. ** 

Fragments 

Generated 

S I, S3, Sý, S7, ý9,61,63 0.25 pM 1.5 n1M No fragments 

MAO] IcF'RAOI IcR 5 1,53,55,5 7,59,61,63 0.25 pM I 111M No fragments 

47,49,51,53,55,57 0.5 pM I mm - 500 bp fragment 

51,53,55,57,59,61,63 0.25 pM 1.5 niM No fragments 

RAOH II F'RAOH IIR 5 1,53,55,57,59,61,63 0.25 pM I mM No fragments 

48,50,52,54 0.5 pM I mm -900 bp fragment 

IRAOH12R RAOH12F 
5 1,53,55,57,59,61,63 0.25 pM 1.5 rnM No fragments 

, 47,49, 0.25 pM 1.5 mM -850 bp fragment 

RAOH I 3F RAOH I 3R 54,56,58,60,62 0.25 pM 1.5 mM -700 bp fragment 

RAOH141'RAOH14R 5 1,53,55,57,59,61,63 0.25 pM 1.5 mM -750 bp fragment 

RAOH16FRAO1116R 5 1,53,55,57,59,61,63 0.25 pM 1.5 mM -600 bp fragment 

Table 21 - Summary of the conditions used and outcomes for the RT-PCR of the RAOH 11- 

A, RAOH1-1 to RAOHI-4 and RAOHI-6 cDNA clones. 
This table shows the optimisation process for primer sets RAOH I-A, RAOII 1-1, RAOH 1-2, RAOII 1-3, 

RAOH 1-4 and RAOH 1-6. It illustrates the annealing temperatures used with each set of conditions and 

the outcomes from each set of conditions used. The optimal conditions for each primer pair are 
highlighted. ** concentration 

While the amplification and sequencing was progressing a bacteria] artificial 

chromosome (BAC) (AC126841) became available on the NCBI database deposited by 

the rat genome sequencing consortium containing the rat AOH I gene sequence. As the 

3' end of the rat cDNA. was not successfully cloned it was decided to use the newly 

available intronic sequence to amplify exons 34 and 35 thereby acquiring the full cDNA 

of the rat AOHI. Once again primers were designed that would amplify the required 

regions which are shown in table 22. 
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Expected Code for 
exon 

Primer Code Primer Sequence* product PCR 
covered 

Size product 

RAOH I E34F TCTTCA(; AGTCACTGCGTCAGC 
34 476 bp RAOHIE34 

RAOH I E34R GGT6AAGAAGGTAGATTGT(; AC 

RAOH I E35F TT(iC: (: TTACTAT(; CCAAG 
35 543 bp RAOH I E35 

RAOHIE35R TA('ACACAGCATCA('AATACCG 

Table 22 - Summary of the primers designed for the PCR amplification of rat aldchyde 
oxidase homologue I exons 34 and 35. 

*reading 5'-3'. F and R signify sense and antisense primers respectively 

Once again these primers were optimised in the same way as bel'ore and the optimal 

conditions are highlighted in yellow in table 23. 

Primers used Annealing 

temperatures 'C 

Primer conc. ** M902 

Conc. ** 

Fragments 

Generated 

RAOH I 1`34F/ RAOH I E34F 48,50,52,54,56,58 0.25 pM 1.5 mM -500bp fragment 

-- -- RAOH I F35F/ RAOI II F35F 
1 48,50,52,54,56,58 1 0.25 pM T 1.5 mM 550bp fragment 

Table 23 - Summary of the conditions used and outcomes for PCR amplification of exons 

34 and 35 of rat aldchyde oxidase homologue 1. 

This table shows the optimisation process for primer sets RAOH I E34 and RAOH 11-135. It illustrates the 

annealing temperatures used with each set of conditions and the outcomes from each set of' conditions 

used. The optimal conditions for each primer pair are highlighted. ** concentration. 

3.4.6 Differences found between Sprague Dawley and Wistar strains of rat in the 

aldehyde oxidase homologue I cDNA. 

The optimised RT-PCR conditions were used to amplify Wistar, Fischer and SD rat 

liver cDNA in both male and female animals. These clones were then subjected to DNA 

sequencing and the sequences obtained were used to make a contig of the complete 

cDNA sequence from each strain. The sequences obtained From the different rat strains 

were aligned and the changes faund were noted (figures 21 and 22, table 24). Figure 21 

over the next two pages shows the sequence of rat liver AOH I obtained from the Wistar 

strain. The differences found between the strains are indicated as are the various 

cofactor binding sites and domains. 
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M. t Ser Arg Ser Lys G1. Set Asp Glo L- Ile Phe Phý Val Asn Gly Lys Lys Val Ile GIýA to A. o Ala Alp P". Glu V. 1 

I ATG TCT CGT TCT AAG GAG TCA GAT GAG CTC ATT TTC TTT GTG AAT GGG AAA AAA OTC ATT GAG AGO AAT GCA GAC CCT ; AG GTT 

A- Leu I, - Phe Tyr Leu A, g Lys Ile Ile Arg Lea Thr Gly Thr LYS Tyr Gly Cy. Gly Gly Gly ASP Cys Gly Ala Cys Thr 
Rý, AAT TTA TTG TTC TAT TTG AGA AAA ATC ATC CGA CTC ACA GGG ACA AAG TAT GGC TGT GGA GGA GGT GAC TGT GGC GCC TGC ACA 

Gl. Gly 
CAA 

Val Met Ile Ser Arg Tyr Asn Pro Ile Ser Lys Lys Ile Ser His Phe Ser Ala Ala Ala CYS LaU Val pro Ile CYS Set Leu ý, l 

169 GTIG ATC ATC TCA AGA TAC AAC CCC ATC TICC AAA AAG ATC AGT CAT TTC TCC GCC GCT GCC T10C C7G GTIC CCC ATC TGC TCT CTC 

His Gly Ala Ala Val Th, Thr Val Gls Gly Ile Gly Set Thr Lys Thr Arg 11. His Pro Val Clo Glo Atq 11. Ala Lys Gly Ii. 

253 CAT GGG OCT OCT GTC ACT ACA GTA GAA GGC ATA GGA AGC ACC AAA ACC AGA ATA CAC CCT GTC, CAG GAA AGO ATT OCT AAA GGC 

His Gly Thr Gln CYS Gly Phe Cys Thr Pro Gly Met Val Met Ser Ile Tyr Thr Lau Lau Arg Asn His Pro Glu Pro Set Thr 140 

337 CAT GGT ACC CAG TOT GOA TTC TGC ACT CCC GOO AM GTG ATG AGC ATC TAC ACT CTC C71G AGA AAC CAC CCC GAG CCC TCC ACC 

GlU Gln Ile Met GlU Thr Leu Gly Gly All Leu Cys Arg Cys Thr Gly Tyr Arg Pro flý Val (! Is -r Ala At,, :; " Phý ý! - 16. 

421 GAA CAG ATA ATO GAA ACC TIC GOT CIGG AAT CTA TGC COT TGC ACT GGA TAC AGO CCC AI'r G, rý GAG AGT GCG AGA AGT TTC Ac, 
mi. 
CAT 

Pro A. n -q- Al. CYS Cys Pro Met Asn GIs Lys Trp Lys Cys cy. Les Asp Glu Gly Lys Asr. Glý 11- C, Iu Arg 1, Y1 All. ! I, r i 96 

505 CCT AAC TI'A OCT TIGC TGC CCG ATG AAT GAG AAA TOO AAA TCT TGC TTG GAT GAA GGA AAA AAC' GAG CCT GAG AGA AAA AA" AGT 

Val Cys Thr Lys Leu Tyr Glu Lys Glý Glu ph. Gln Pro Leu Alp Pro Thr Glo clo I, - Ile Phe Pro Pro Glu Leu met Alg ý24 

589 OTT TOT ACC AAG TTA TAT GAA AAA GAA GAA TTT CAA CCC TTG GAC CCA ACT CAG GAG CTT ATA TTT CCA CCT GAA CTG ATIG AGA 

met Ala GlU ASP Set Pro A. n Thr Val Leu Thr Phe Arg Gly Glu A, g Thr Th, Trp 11. Ala Pro Gly Thr Leu Asn Asp Leu 2ý 

673 ATGG GCA GAG GAT TCC CCA AAT ACA OTT CTG ACT Trc COT GGG GAA AGO ACG ACC TOO ATT GCC CCA GGA ACC CIA AAT GAC CTT 

Leu GlU L. U Lys Met Glu Tyr Pro Ser Ala Pro L. u Val 11. Gly Asn Thr CY. Le. Gly Leu Asp Met Lys Ph. Lys Asp Val 280 

757 CTG GAA CM AAA ATIG GAG TAC CCC AGT OCT CCG CTC GTG ATC GGC AAC ACG TOT CTT GGG CTT GAT ATU AAG TTC AAA GAC OTT 

S. r Tyr Pro Ile Ile Ile S. r Pro Ala Arg Ile Leu Glu Leu Phe Val Val Thr A. n Th, Asn Glu Gly L. a Thr Leo Gly Ala IPl 

841 TCT TAT CCA ATT ATC ATC TCT CCT GCA AGO ATC TTA CAA TTA T-rT GTG GTG ACT AAT ACA AAT GAA GGG CTG ACA CTG GGC OCT 

Gly L. u Ser Leu Thr Gln Val LYS A- Ile Leu Ser Asp Val Val Set Arg Leu Pro Lys Glu Arg Thr GIn Th, Tyr Arg Ala lil, 

925 GGC CTC AGC CM ACC CAG GTG- AAG AAT ATC Tm TCT GAT GTG OTC TCC AGO CTC CCG AAG GAG AGO ACG CAG ACA TAC COT OCT 

Leu I, - Lys His L. u Atg Thr Leu Ala Gly Glý Gln Ile Aýg Aso Val Al. S., Leu Gly Gly His Ile Ile Set Arg Leu Pro 364 

1009 CTC CTG AAG CAC CTU AGO ACT CM OCT GGG CAG CAG ATC AGO AAT GTG OCT TCC TTA GOT GOT CAT Arr ATC AGT AGA CTG CCG 

Glo 
CAA 

Thr Ser Asp Leu A- Pro Ile Phe Gly Val Gly Asn CY. LYS L.. A. o Val Ala Set Thr Glu Gly Thr Gln Glý Ile Pro 1, - 19. 

1094 ACC TCT GAC CTC AAC C('7 ATT TTC GGT GTA GGC AAT TGC AAA CTC AAT OTT OCT TCA ACA GAA GOA ACA CAG CAA ATC CCT CTG 

Aso ASP His Phe Lý Ala Gly Val Pro G1. Ala Ile Leu Lys Pro Glu Gln Val Leu Ile Ser Val Phe Val Pro Leu Ser Arg 420 

1177 AAC GAT CAT TTT CTC GCT GGA GTC CCA GAA GCC ATC CTG AAG CCA GAG CAA GTC; CTC ATC TCG OTT TTC GTG CCC CTC TCC AGO 

Lys Trp G1. Ph. Val Her Ala Ph. Arg Gln Ala Pro Arg Glý Glo A- Ala Phe Ala 11. Val Asn Al. Gly Met Arg Val Ala 44H 

1261 AAG TOO GAG TTC GTA TCA OCT TTC AGA CAG GCC CCG CCT CAG CAA AAT GCG TTT GCG ATA GTG AAT OCT GOA ATG CGA OTC OCT 

Phe Lys Glý Alp Thr A. n Thr Ile Thr Asp L. u Set Ile I, - Tyr Gly Gly 11. Gly Ala Thr Val Val Ser Ala Lys S. r CY. 471, 

1345 TTC AAA GAG GAT ACA AAC ACC ATT ACA GAC TTG AGC ATC TTA TAT GGA GGG ATC GOT CCC ACT GTA OTC AW GCC AAG TCC TGC 

11. 
A= 

GIn Glo L.. Ile Gly A,, Cy. Tp Alp Glu Glý Met L- Asp Alp Ala Gly A, q met Ile Arg Glu GlU Val ger Leu Leu Thr 504 

1429 CAG CAG CTG AW GGA AGO TOT TOO GAT GAG GAA ATC CTG CAT GAC GCT GGC COG ATG ATT CGT GAA GAA GTC TCC CTC CTC ACA 

Ala Ala Pro Gly Gly Met Val Glu Tyr A, 9 Lys Thr L. u Ala 11. Ser Phe Leu Phe Lys Ph. Tyr Leu Asp Val Lau Lys Gln 5U 

GCA GCC CCC GGA GOA AT'S OTIS GAA TAC COG AAG ACC CTT GCC ATC AGT TTC CTr TTC AAG TTT TAC TTA GAT GTIG TTG AAG CAG 

L- Lys Arg Arg Asn Pro His Arg CYS Pro Asp 11. GIs Lys Les 1- GIo Val 1-, GIý, Alp Phý Pr, 'Ph, M- Pr. 111; 

1597 CTA AAG AGO AGO AAT CCC CAT AGO TGC CCT GAC ATC TCG 'AG AAA CTC UTA I Aý; GTT C 11; I; AA ý; M 1,:, r ( 'T A' I AT(; 

-A 

His Gly Thr Gln Se, Ph, Lys Asp Val Asp Set GIs Glý Pr, 1- Clý Asp P- V. ýl G! y Arl] MIr H. s 1'!!, y 

16RI CAT GOO ACA CAG TCA TTT AAA CAT OTA GAC TCC CAG CA(; CCT CT(I CAA GAC ('( A (; '11c (! (; (; ('(; T (ý'C ATI Alý; IA I' ý A'; 1( , 1- 

ý1 T 

Ile Lys His Al. Thr Gly Glý Ala Val Phe cyý ASP Asp Met S. r Val Leu Ala Gly Glu Leu Phe L.. Al. Val Val Thr Ser 6 16 

17 b, ATC AAA CAC GCC ACA GGG GAG GCC GTA TTT T<; T GAT GAT ATG TCT GTG TTG GCA GGG GAA CTC TTC TTG GCT GTG GTA ACC AGC 

Ser Lys Pro Hi. Ala Arg 11. Ile Ser Leu Asp Ala Ser Glu Ala LeU Al. Ser Pro Gly Val Val Asp Val Ile Thr Ala GIn 644 

1849 AGC AAG CCA CAT GCT AGA ATC ATC TCC CTC GAT GCC TCC GAG GCC TTG GCA TCA CCT GGT GTG GTT GAT GTG ATA ACA GCT CAA 

ASP Val Pro Gly Asp A- Gly Arg Glo Glu Glu Ser Le. Tyr Ala Glý ASP Glu Val Ile Cy. Val Gly Gln Ile Val Cys Ala 61. ý 

1933 GAT GT(3 CCT GGT GAC AAT GGC AGA GAA GAG GAA AGC CTG TAT GCA CAG GAT GAG GTIG ATC TGC GTG GGT CAG ATT GTC TGC GCC 

Val Ala Al. ASP Ser Tyr Ala Arg Ala LYS GIn Al. Th, Lys Lys Val Lys 12. Val Tyr Glo Asp Met Glý Pro Met Ile Val 7no 

2017 GTIG GCT GCT GAC TCG TAT GCT CGC CCC AAG CAG GCC ACA AAA AAA GTA AAG ATT GTC TAT GAA GAC ATC GAG CCC ATG ATT GTG 

Thr Val Glo A. p Ala Leu Glo H'. GlU Ser Phe Ile Gly pro Glu LYS Lys Lau Glo GIn Gly Asn Val GIn Leo Ala Phe GIn 728 

2101 ACC GTT CAG GAT GCA CTG CAA CAT GAA TCA TTC ATT GGA CCT GAA AAA AAA CTA GAA CAA GGA AAT GIr CAG TTA GCA TTT CAA 

S. r Al. ASP Gln Ile Leu clu Gly Glý Val Hi. L. ý Gly Gly Gln Glý His Phe Tyr Met Glu Thr Gln Ser Val Arg Val 11.7'ý6 

2185 AGT GCT GAT CAA ATC CTC GAA GGG GAA GTG CAC TTG GGA GGC CAG GAG CAT TTT TAC ATC GAG ACT CAA AW GTA CGA GTG ATC 

ýAC 

Pro Ly. ý Gly Glu Asp Met Glu Met AP Ile Tyr Val Ser Ser GIn ASP Ala Ala Phe Thr Gln Glu Met Val Ala Arg Thr L- IN4 

2,69 CCC AAG GCA GAG GAC ATG GAG ATC GAC ATA TAT G'PG TCC AGC CAG GAT GCA GCG TTT ACC CAG GAA ATG GTG GCT CCA ACU 'ý-, 
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I . 1i LY, Arý Va I Gly Gly Ala Phe GlY 01Y : ý. r :y 
,: Gý A': " CIA AAG AAI Aý ATý A(I TG, A, CTG AAA AGG GTT IW GOA OCC TTC 00400 AAA A, *,; A';,: AAA (I"l' (; 11; 1, ('11; 
A-P 
(LAC 

---: A:. A:. A: , A: , C,: n j, 7inr II: y Ar, pr'' : 1ý Ar. PýIý I;: i A,, A:;; I M" 
AA(;,:, 1 Gl A 61 1 'ýýA CAII AAG ACC I'IC I UA A 1"' CGý TTT PITT I ': ýA AG I";: ý (; (; (; (; A: (IAI F- AA 

A r, ;, r" --, :y Ly, A! . 1; 1yP:,, M- A- As, (;: y :. yý; : :1A:, I A:, ý A, P 
:AAI ýý: c, "( A -A C AAA TAI A17G 1; 7: (; I; c -1, AT,; AA, AAT III; AAA A: " AAG II A :(A A' A'! '(' I A(, I : 'A: 

',, n G] " I-Y n: Il:,. Asý, A, P II Tyr A:. A, A : , 
' CA AAC ';,; A OIC A"C I(A GAT C A, 77 ; AA Al A IAA TAT IX"I AAA I : Ii AA A"': I-: ;, A( AN; A: " (I I 

A- L- A r, Val Arg Gly An; "'. I Cy, Iy, Thr Asn I, - Pr, Ser A- Th, Ala Phe Arg Gly Ph@ Gly Ph* Pro 070 yA!, ý ". -; 
,6 ý9 AAC CTC C(; 7 GT(' CGA GG7 CGC GTC TG7 AAG ACC AAC TTG CCA TCC AAT ACA WA TTT COG CM TTT Wr TTT CCC CAG G( A 

A. ' 

r 1: 1 ! 'ýIr Trl I- A!. A- A!. 'Iln Cys H- L- P- Pr, GI,:. Y-, V. i A, (, GIUI Aý; 11 1. I T` Y M" y " ; : 
ATG T AC AAA AAAA (1, A AA TGC CAC TTG CCA CCA CA(; AA1; G-1, I GA (; A'; TTA AA( 

AAA 

Aýp A1n (I. I't., A'; T, P ". Thr Asn L.. Ile Lys Cy. TrP Glu Thr Cys met Clý Aso Ser Ser "I 

AA", A Aý AIA, AAC 'A I% ; A, A ACG AAT CTG ATA AAG TGC TGG GAG ACA TGT ATGG GAA AAT TCT TCC AA 'TT 

Tyr Tyr Se, Arg Lys Lys Ala Val Asp G- Phe A- GIn GIn S- Phe Trp Lys Lys Arg Gly Ile Al. 11. Ile Pr. Mt Lys :ý 1ý 

, AAG 
_941 TAC TAC AGC AGA AAG AAG GCT GTA GAT CAA TTT AAC CAG CAG AGT TTT TIGG AAG AAG AGA GGA ATT GCC ATC ATC CCC A 

pl]rIý S- . 'a: C. y P!;, Pr,, Lys Thr phý -Y, H., s CI:,. A: a Al. Al. Leu V, 1 GIn !: ý Tyr Thr A-; I, I', Iy 'I, r V. 1 1,11 A ýI 
I- ': CA T7T ICA AAG ACA 'C T, ýT (; 11; 1 ": A 7T(' TCA TAT UAT "AG GCT GCT GCT - GTC CAG ATC TAC ACA (IA: ' I- 

1ý Gly Qln Gly A (I: Al,, r Ar, 1 (; ý, ! ", I 'Y' 1 :1 PT11 MI, r : ýY! 

A ; 'A C7G GGA CAA am AA Aý AI (IT GAA :A AAA A: AAA: 

: YA l , A J, A- yAr, A,,!, A :: r M- Thr Gly Gly SOW 
( : , 

ý 
' ' 

: 
AC Iý I AA 1% .1AA, ;, A(' A A, '( A" <= 00C IM A( 1 1; A! AN ; (;,; A1; A 

A Va: Asr. A: . -Y, 1. Y- YS A! 1 : -1 Pr. Ilý llý S. I ulý Asn Pro A. n Gly Asp TrP GlU Glý TIP III 

i('T (:: " AA,: ý;, , 'y': 1, Alý A-I, C-1, *, "; I ý:, 1 7,1 CCC ATC ATC AGC CAG AAT CCT AAT GGT GAC TIGG GAA GAG TrG 

Ile A. n Glu Ala Pre I le Gln Set Ile S- I, - S. r Ala Thr Gly Tyr Phe Arg Gly Tyr Gln Ala ASP Met ASP Trp Glý Lys II 

ATT AAT GAA GCT TTC ATT CAA AGC ATT ACC CTC TCT GCC ACT GGA TAT TTT AGG GGT TAC CAA GCT GAC ATG GAC TGG GAG AAG 

G1 y G1. Gly Asp Ile Tyr Pro Tyr Phe Val Phe Gly Al. Ala Cys Ser Clu Val Glu Ile Asp Cys Leu Thr Gly Ala His Ly. 111, 

GGA GAA GGT GAC ATT TAT CCC TAT TTT GTT TTT GGA GCT GCC TGT TCT GAG GTT GAA ATT GAT TGT CTG ACG GGA GCT CAC AAG 

Asn Ile A19 Thr ASP Ile Val Met ASP Gly Ser Phe Set llý ASn Pro Ala Val Asp Ile Gly Gln Ile Glu Gly Ala Ph. Val 12,, ý 

1', 2 9 AAC ATC AGA ACT GAC ATT GTC ATG GAT GGA TCT TTC AGT ATA AAC CCT GCT GTG GAC ATA GGC CAG ATC GAA GGG GCA TTT GTT 

Gln Gly Leu Gly Leu Tyr Thr L- Glu Glu L- Lys Tyr Ser Pro Glu Gly Val Leu Tyr Thr Arg Gly Pro mi. Gln Tyr LyS lil. 

161, CAA CGT CT'r GGA CTT TAT ACT CTA GAG GAA CTG AAA TAT TCC CCT GAA GGA GTC CTA TAC ACC CGT GGT CCA CAC CAG TAC AAA 

Ile Ala Ser Val F, rAý, p 11. Pro Clu Glu Phe mi. Val S. r I, - Leu Thr Pro Thr Glý Asn Pro Lys Ala Ile Tyr Set S., I ý. f, 

ý1,97 ATA GCA TCA G-T A'; (' (; AC ATC CCA GAA GAA TTC CAT GTA TCA TTG TTG ACA CCA ACC CAA AAC CCC AAA GCC ATC TAC TCT TCT 

Lys Gly IM'Sly Glu Ala CIIYIM Phe Leu Gly Ser Ser Val Phý Ph. Ala 11. Al. Ala Ala Val Ala Ala Ala Arg LYS Glý 12- 

I AAG CC,, CWT GOT GAA WT O"'M TTT CTA GGT TCT TCT GTG TTC TTC GCT ATT GCT GCT GCC GTG GCT GCC GCC CGC AAG GAG 

Ary G: y I-. Pr, : 1,; Ala Ile Asn Ser Pro Al. Thr Ala Glu Val Ile Arg Met Ala Cys Glu Asp Gln Phe Thr A- liif 

AGA GII 1 : 1; 1, ", ATA AAC AGC CCT GCC ACA GCA GAA GTA ATT CGA ATG GCC TGT GAG GAC CAG TT'r ACA AAC 

, ý, I, s ry,, "Y , I, Y, N"T, P 11, pr, "', 1 1 A!, 
:, 11 

ý 3119 (_ C TT A AAA AI C CAT TV', AAA T, I, 71:: AAI; 11 A 1,, T(I A': I 'I Aý IT:, Ir, ý 1, !A 

Figure 21 Wistar aldchyde oxidase homologue I cDNA sequence interleaved with the 
deduced amino acid sequence. 

The iron-sulphur, FAD and MoCo binding sites are highlighted in yellow, grey and blue respectively 
(Terao et al., 2000). Nucleotide changes leading to an amino acid change present between Wistar and 
both AO-deficient strains are indicated in purple. Nucleotide changes leading to an amino acid change 

present between Wistar and Fisher only are indicated in blue. Nucleotide changes not leading to an amino 

acid change present between Wistar and both AO-deficient strains are indicated in green. Nuclcotide 

changes not leading to an amino acid change present between Wistar and Fisher only are indicated in pink 
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R39Q 

Wistar 

Fischer 

Sprague 
Dawley 

CCCC 

TccAAc 

ITCC-; 

r\ 1" \/\/ 

Wistar 
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Sprague 
Dawley 
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ý. 
ýý, ý -, A 
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GCc 11 11 - 
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MA 
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IGGGCý, T 

G 

Figure 22 - Sequencing chromatogram showing the codon changes found between rat 

strains in the aldehyde oxidase homologue I cDNA- 

M 1078T 

CGI 

GCCGTGGGG 
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Several changes were noted between the strains of rat. They are surnmarised in table 22. 

No Nucleotide Amino Acid 

Site Wistar Sprague 
Dawley 

Fischer BAC Site Wistar Sprague 
Dawley Fischer BAC 

1 116 G A A A 39 ARG GLN GLN GLN 
2 159 C C T C 53 GLY GLY 

I 
GLY GL 

3 458 G G A G 153 ARG ARG HIS ARG 

4 1044 G A A G 348 GLN GLN GLN GLN 

5 1206 A G G G 402 GLU I GLU GLU GLU 

6 1398 C T T T 466 ILE ILE ILE ILE 

7 1635 G A A A 545 SER SER SER SER 

8 1761 C T T C 587 SER SER SER SER 

9 1887 C T T T 629 SER SER SER SER 

10 2316 T C C C 772 ASP ASP ASP ASP 

11 2354 G G A G 785 GLY GLY ASP GLY 

12 2442 A G G G 814 SER SER SER SER 

13 2577 A G G G 859 LYS LYS LYS LYS 

14 2742 A G G G 914 ALA ALA ALA ALA 

15 2809 C A A A 937 GLN LYS LYS LYS 

16 3099 G A A A 1033 VAL VAL VAL VAL 

17 
I 

3162 C T T T 1054 ALA ALA ALA ALA 

18 C C 
ýTH R THR THR] 

Table 24 - The differences found in the cDNA of rat aldehyde oxiclase hornologue I and deduced 

protein sequence between Wistar and Sprague Dawley rat strains. 

The highlighted rows indicate an amino acid change. * The BAC sequence is the sequence obtained when the 

individual exons of the BAC were ligated insilico No gender differences were observed in our rats. 
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3.4.7 Comparison of levels of alclehyde oxiclase and alclehyde oxiclase homologue I 

mRNA in the different rat strains. 

During the course of the RT-PCR amplifications no significant differences were noted 
between the different strains in either the amount of RNA needed for a successful 

amplification or the amounts of product formed, however it was decided to amplify one 

segment of both AO and AOH I with identical amounts of RNA simultaneously in each 

strain to confirm that different mRNA levels were not responsible for the difTerences in 

levels of enzyme activity, Published glyceraldehydes-3 -phosphate dehydrogenase 

(GAPDH) primers were used to normalize for the amount of RNA in the reaction 

mixture. Primer sets RAO-8 and RAOHI-4 were used for amplification of' AO and 

AOHI mRNA respectively (figure 23). Visual inspection of the result indicated that 

there were no differences significant enough that would account for the loss of' N- 

heterocycle activity in Fischer and SD rat strains. 

12 

AO 900 bp 

AOH 1 700 bp 

GAPDH 
250 bp 

Figure 23 - Agarose gel image showing the comparison of mRNA levels of aldchyde 

oxidase and aidehyde oxidase homologue I in the different strains of rat. 

Lanes 1,2 and 3 are SD, Wistar and Fischer rat respectively The 900 bp product is AO and Was 
amplified from primer set RAO-8, the 700 bp product is AOH I and was arnpli fied from primer set 
RAOHI-4, the 250 bp is GAPDII and was amplified using published primers as detailed in the 
materials and methods. The conditions used were 0.25 pM primer, 1.5 rnM Mg('I, at 58"U. 
Published primers (Hoen et al., 2000) were used for the gI yccra Idehydes-3 -phosphate dehydrogenase 
(GAIIDH) the sequence of these primers are 

GAPDHF TTCAACGG('ACAGT('AA(; 
GAPDIIR CACACCCATCACAAACAT 
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3.5 The molecular genetic basis of hereditary xanthinuria in a British patient. 

The aim of this section was to identify the molecular genetic basis of hereditary 

xanthinuria in a British patient. To date no European patients have been studied for the 

molecular genetic basis of this disease. 

3.5.1 Cloning and sequencing of the human xanthine oxidoreductase gene. 

As the gene sequence for human XOR was available due to the human genome 

sequencing project it was decided to amplify each cxon individually using primers, 

which bind in the intron sequence. This data was obtained from two bacterial artificial 

chromosomes (BAC) (accession numbers AL 121654 and AL 12165 7). 

In order to delineate the intron/exon boundaries in the BAC sequence the human XOR 

mRNA sequence was aligned with each BAC and the exon highlighted. Computer 

programs were used (as described in materials and methods section 2.7) to find primers 

that would hybridise to regions located within approximately I kb of intronic sequence 

surrounding each of the XOR gene's exons (tables 25 and 26) 
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Primer" 
Code 

Primer Sequence bp of intron 
covered 

Expected 
product 

Code for PCR 
produce 

HXDIF AGTGCCAAGTCAACAACCTTAC 71 
HXDIR GCCTCTGAGTATCTTGTCTGTG 211 548 HXDEXON I (23a) 

HXD2F TTAAACATGAGATTTAGAGG 153 
HXD2R TAGGATTCTTACCTCACG 453 

664 HXDEXON2 (23a) 

HXD3F TCACACATAGAAGACCTCAACC ý33Cý 
HXD3R 

_ITTATCAGCAGTTCGGAGCCTGG 
1212 638 HXDEXON3 (23a) 

HXD4F ICACTGGTAGAAGAGACAAGAAC - 1 142 
HXD4R ICACCAGATTCAGTTGGCCTCTT 1270 511 HXDEXON4 (23a) 

HXD5F ITAACACTGGCTGACTGCCTG 1 311 
HXD5R IATCTTAGTCACCACCTTGTTGG 1 141 

579 HXDEXON5 (23a) 

HXD6F CTGATAGGCTAACTGATGAAGC 291 
HXD6R TAAGAATGGCAGACTCTACTCC 176 

d 
528 HXDEXON6 (23a) 

HXD7/8F JAGTGGCCTTGTTGCTCCTAT 179 329 
HXD7/8R IGGACTCACAGTACAGACCCG 149 -d 770 HXDEXON7/8 (23b) 

HXD9F ] CAATGGAGTTCCTGCCTC ý 

. 
HXD9R ITGAGGTCACACATCCAGCAAGG 23 l 

539 HXDEXON9 (23a) 

HXDIOF CCCTGGTCTACTGAGTTTCC 201 

_HXDIOR 
ICTTTCCCTGTGCAAGGTGAG 140 

403 HXDEXONIO(23a) 

_HXDIIF 
TTAGGTCACTCAACCACTCTGG 598 HXDEXONI I 23 HXDIIR J ACAGAATGAAGCCTATGAGTCG 1 282 

( a) 

HXD12F I G4CCAAGTTACCAGGAAGTTCAG 1 420 2 HXDEXON12 2 HXD12R I AATGACCTATCTGGTGAGAC 1 68 
58 ( 3a) 

_HXD13F 
I CCTACACGGAACTGGTTG :ý ý 

HXD13R ATGGCTCACTCAGGACCAAGT 255 255 
586 HXDEXON13 (23a) 

HXD14F GAATGTTATCTGGAACCTCTCC 194 525 HXDEXON14 23 
HXD14R TAGCAGTAGTAGCAGCAGTAGC 147 

( a) 

HXD15F ýATGAGGAAACAGGCTCAATG 178 510 HXDEXON 15 23 HXD15R I GGTCACTCCCATTTCCAAGC 157 
( a) 

- - HXD16F ] CAAGGAAGGAGGAGAAGG -- ý 9ý T 
496 XDEXON H HXD16R J AGTCATTAGCCGATGGTCAGCC 1 84 16 (23a) 

_HXD17F 
CCTTGCTATCACTTATGCAC 1 175 560 HXDEXON17(23 

HXD17R CATACCCTGCTTGTGCCTTA 1 215 a) 

HXD18F CCAGCAACATTCAGCTAGTGGC 1 219 705 HXDEXON 18 23 
HXD18R I CACGTAGTGGTGGTATTGTG 362 

( a) 

HXD19F -r CCTCAATCAGTAGGATAAGG ýl 62 4,83 
_d 871 

1 
HXDEXON19(23 

HXD19R I CAGCTCTACCTGACACAACAT 1 _ 9 c) 

- -- HXD20F I CCATCTGGTCCTTGTGGTATTC 1 251 871 HXDEXON20 (23 
] 

I HXD20R J AGAGGTAAGGCTGTCAGGC 1 301 a) 

Table 25 - Summary of the primers designed for the amplification of human xanthine 
oxidoreductase exons 1-20. 

* reading 5'-3' ** red = position of 5' nucleotide of forward primer before the start of the exon blue = 
position of 3' nucleotide of reverse primer after the end of the exon green = size of the intron between 
the exons S the numbers in brackets refers to figure 24 showing the binding of the primers. F and R 
signify sense and antisense primers respectively. 
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Primer 
Code 

Primer Sequence* bp of intron 
covered 

Expected 
product 
size bp 

Code for PCR 
products 

HXD21F TAGCCATTGCT CCTGCC 1 10 
416 HXDEXON21 23 

HXD2]R ATGGAACAAGGTCAGTGATACC 182 
( a) 

HXD22F AGTATTCTGTGACCAACTGC -44 
1- 

783 FiXDEXON22 (23 ) 
HXD22R GTTACCGACAGTGTTAGAAGCC 425 a 

HXD23F TATTCTGTGACCAACTGCTTGC: 
ýý14 

543 UIXDEXON23 (23a) 
HXD23R ATCCACAGAAGTCACGAATGCC 230 

HXD24F ATCTCTCCTACTGGCTGTGAGC 101 
525 HXDEXON24 (23 ) 

HXD24R ATCCACAGAAGTCACGAATGCC 279 a 

HXD25/26F CAGCCCTCAAAGTTCCTACT 71) 1, ), ) 760 HXDEXON25/26 (23b) 
HXD25/26R AAGAGATGGCTGTGAATGAG 142 

HXD27F GGAAGAAGAGTGTTGACAAGAC I Ws , 
544 HXDEXON27 (23a) 

HXD27R ATCTGTCCTCACTCTGTAAG 296 

HXD28F GCTGCTGGTTCTCTTGTTCCTG 101 
746 HXDEXON28 (23a) 

HXD28R GACAGGATTCACATTCACTG 

HXD29F AACTCCACCAAGTGCTCC HXDEXON29 (23a) 
HXD29R CCAGAGAGGTGTCTTCTTCC 411 

HXD30F CATTGCTTGGAGGTAGCCTTGC 99 
579 HXDEXON30 (23a) 

HXD30R TAGACTCAGACTCAAGAGATGG 406 

HXD3 IF TCAGATAATGAGGACCTGGTGC IX4 
458 HXDEXON31 (23a) 

HXD3 IR GGTCTTCTGACACACAGC 222 

HXD32F CAGTCCTGAAGACCTTGGATTC 719 HXDEXON32 (23a) 
HXD32R TGCTGTCACACTTCAATGGTAG 225 

HXD33F GAACTCTACCATTGAAGTGTGAC 1 ý')() I 
754 HXDEXON33 (23a) 

HXD33R GACAACCTTGGACAACAT ()g 

HXD34F TTGTGTCCATTGTGGCAAGTGG 7Q 
483 HXDEXON34 (23a) 

HXD34R TACTAAGGTGCTCTCCTCAACC 

HXD35F GCTTGATTGTTCTTAGCC N5 
466 1 IXDEXON35 (23a) 

HXD35R CCAACACCTCTCCTCTGTG 144 

HXD36F TTGGAATGATGGTTGGCACTGG I ()-l 498 HXDEXON36 (23a) 
HXD36R CAGACACCATCAGAACTTGAGC IS 

Table 26 - Summary of the primers designed for the amplification of human xanthine 
oxidoreductase exons 21-36. 

* reading 5'-3' **iýd= position of 5' nucleotide of forward primer before the start of the exon blue 
position of 3' nucleotide of reverse primer after the end of the exon IýL 1) ý size of the intron between 
the exons. S the numbers in brackets refers to figure diagram showing the binding of the primers. F and R 
signify sense and antisense primers respectively. 

Figure 24 shows a schematic representation of the primer binding in relation to tile 

XOR gene exons for each of three different situations, primers spanning one exon, 

primers spanning two exons and primers spanning the splice site junction of the 

neighbouring exon (exon 19). 
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a 

b 

x 

xY 

c xY 

Key 

Forward primer reverse primer 5'intron exon 

Intemal intron 3' intron 

Figure 24 - Schematic diagram showing the primer binding within the introns of the 

xanthine oxidoreductase gene. 
a Schematic representation of PCR spanning exons 1-6,9-18,20-24 and 27-36. X represents the exon 

number. 
b Schematic representation of PCR spanning exons 7/8 and 25/26. X and Y represent exons 7 and 8 or 25 

and 26 respectively. 
c Schematic representation of PCR spanning exon 19. X and Y represent exons 19 and 20 respectively. 
As no suitable primer pairs could be found in spanning exon 19 primers had to be designed encompassing 
intron 19. The same primer pair could not be used for amplification of exon 20 as the primer spanned the 
3' splice site of exon 20. 

3.5.2 Optimization of the PCR for the amplification of the individual exons of 

human xanthine oxidoreductase. 

The PCRs were optirmsed in the same manner as for the rat AO and AOH I cDNAs. 

Tables 27 and 28 show a summary of the conditions used and the results obtained with 

the optimal conditions for each primer pair highlighted. 
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Primers used 
Annealing 

temperatures 'C 
Primer conc. ** MgC12 Conc. ** 

Fragments 

Generated 

I IXD11-/ I IXDIR 52,54,56,58,60,62 0.25 pM 1.5 mM -550 bp fragment 

IIXD2F/ IfXD2R 52,54,56,58,60 0.25 pM 1.5 mM 650 bp fragment 

IIXD3F/ IiXD3R 54,56,58,60 0.25 pM 1.5 mM -650 bp fragment 

IIXD4F/ HXD4R 54,56,58,60,62 0.25 pM 1.5 mM -500 bp fragment 

IIXD5F/ HXD5R 54,56,58 0.25 pM 1.5 mM -600 bp fragment 

IIXD6F/ IJXD6R 52,54,56,58,60,62 0.25 pM 1.5 mM -550 bp fragment 

IIXI)7, '8F/ IIXI)7'SR 48,50,52,54,56,58 0.25 pM 1.5 mM -700 bp fragment 

IIXD9F/ IIXD9R 
52,54,56,58,60,62 0.25 pM 1.5 mM several fragments 

- 52,54,56,58,60,62 0.5 pM 1.5 mM -550 bp fragment 

IIXDIOF/ IIXDIOR 48,50,52,54,56,58 0.25 pM 1.5 mM fragment 

IIXDI I F/ IIXDI IR 52,54,56,58,60,62 0.25 pM 1.5 mM -600 bp fragment 

52,54,56,58,60,62 0.25 pM 1.5 mM several fragments 

48,50,52,54,56,58 0.25 pM 1.5 mM 2 fragments 

IIXD12F/ IIXD12R 48,50,52,54,56,58 0.5 pM 1.5 mM no fragments 

48,50,52,54,56,58 0.5 pM 2MM no fragments 

52,54,56,58,60,62 0.5 pM 1.5 mM -600 bp fragment 

HXD13F/ HXD13R 52,54,56,58 0.25 pM 1.5 mM -600 bp fragment 

- HXD14F/ IIXD14R 52,54,56,58,60,62 0.25 pM 1 5 mM -500 bp fragment 

IIXD15F/ [IXD15R 
52,54,56,58,60,62 0.25 pM 1.5 mM No fragments 

48,50 0.25 pM 1.5 mM -600 bp fragment 

- 
IIXD16F/ IIXD]6R 5 0.25 pM 1 5 mM -500 bp fragment 

- IIXD17F/ HXD17R 52,54,56,58,60,62 0.25 pM 
F I .5 

mý 
-55: 0: b: p: fragmcnt 

fIXDISaF/IfXDI8aR I 52,54,56,58,65,6a- F F 0.25pM .5 MM -700 bp fragment 

HXD19F/ IIXD19R II 48,50,52,54 0.25 pM 1.5 mM -850 bp fragment 

Table 27- Summary of the conditions used and outcomes for PCR amplification of 

xanthine oxidoreductase exons 1-19. 

This table shows the optimisation process for the amplification ofexons 1- 19. It illustrates the annealing 
temperatures used with each set of conditions and the outcomes frorn each set ofconditions used. The 

optimal conditions for each primer pair are highlighted. ** concentration 
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Primers used 
Annealing 

temperatures 'C 

Primer 

cone. ** 
M902 Cone. ** 

Fragments 

Generated 

FIXD201:, ' I IXD20R 52,54,56,58,60,62 0.25 pM 1.5 mM -650 bp fragment 

FIX[)21f-'/ IiXD2IR 48,50,52,54,56,58 0.25 pM 1.5 mM -400 bp fragment 

IIXD22F/ IIXD22R 52,54,56,58,60,62 0.5 pM 1.5 mM -750 bp fragment 

HXD23F/ HXD23R 52,54,56,58,60,62 0.25 pM 1.5 mM -550 bp fragment 

48,50,52,54,56,58 0.25 pM 1.5 mM two fragments 

IIXD24F/ HXD24R 48,50,52,54,56,58 0.25 pM I mm No fragments 

48,50,52,54,56,58 0.5 pM 1.5 mM -500 bp fragment 

IIXI)25 26F'HXD2S'26R 48,50,52,54,56,58 0.25 pM -750 bp fragment 

IIXD27F/ HXD27R 48,50,52,54,56,58 0.25 pM -500 bp fragment 

IIXD28aF/ HXD28aR 48,50,52,54,56,58 0.25 pM 1.5 mM -750 bp fragment 

HXD29F/ HXD29R 48,50,52,54,56,58 0.25 pM 1.5 mM -750 bp fragment 

I IXD30/ HXD30R 48,50,52,54,56,58 0.25 pM 1.5 mM -600 bp fragment 

HXD3 I F/ IIXD3 IR 52,54,56,58,60,62 0.25 pM 1.5 mM -450 bp fragment 

HXD32F/ HXD32R 48,50,52,54,56,58 0.25 pM 1.5 mM -700 bp fragment 

- 
- 

HXD33F/ IIXD33R 48,50,52,54,56,58 0.25 pM T I 
5mM i fragment 

F]Xf)34F/ HXD34R 60,62 0.25 pM 1.5 mM -500 bp fragment 

IIXD35F/ IfXD35R 48,50,52,54,56,58 0.25 pM 1.5 rn -450 bp fragment 

IIXD36F/ IIXD36R 48,50,52,54,56,58 0.25 pM 1.5 mM -500 bp fragment 

Table 28- Summary of the conditions used and outcomes for PCR amplification of 
xanthine oxidoreductase exons 20-36. 

This table shows the optimisation process for the amplification of exons 20-36. It illustrates the annealing 
temperatures used with each set of conditions and the outcomes from each set of conditions used. The 
optimal conditions for each primer pair are highlighted. ** concentration. 
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3.5.3 Comparison of the xanthinuric patient's and a normal subject's xanthine 

oxidoreductase gene sequences. 

The DNA sequence obtained for the xanthinuric patient was compared to the published 

XOR sequence produced by Saksela and Raivio and the BAC sequences (accession 

numbers AL121654 and AL121657). Only one difference (33T>G) was identified in the 

coding region of the xanthinuric sample. This was predicted to cause an asparagine to 

lysine change at codon position 11. This change was also sequenced in a non- 

xanthinuric individual as comparison (figure 25). 

GGCGG 

Normal 

Xanthinuric 

Figure 25 - Chromatogram showing the missense mutation found in the xanthinuric 

patient's xanthine oxidoreductase gene. 

The codon changed is underlined with the change in red and the nucleotidc change boxed. 

As well as the difference found in the coding region seven intronic changes were found 

between the BAC sequences and our xanthinuric patient's DNA (table 29). These are 

not predicted to affect the expression of the enzyme, as they are not present at the splice 

sites. In addition no differences were fibLind in the promoter region (224 bp upstream of' 

the ATG) (Martelln et aL, 2000) of the xanthinuric patient when compared to the BAC 

sequence. 
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Intron Nonnal > xanthinuric patient 

7 IVS7+64C>T 

8 IVS8-25T>G 

II IVS 11-273 G>A 

15 IVS15+137T>G 

18 IVS18+39A>G 

23 IVS23+22T>A 

32 IVS32-153G>A 

Table 29 - Nucleotide differences found in the intronic sequence of the xanthine 

oxidoreductase gene of the xanthinuric patient. 
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4. Discussion 

This discussion section follows the order of the results section with sections 4.1 - 4.4 
describing the phenotyping and genotyping of the rat strains with enzyme assays and 
cloning of AO and AOH I cDNA. The final section (4.5) discusses the significance of a 
novel mutation found in the XOR gene of a patient with hereditary xanthinuria. 

4.1 Phenotyping the rat strains for molybdenum hydroxylase activities. 

Assays using phenanthridine as substrate demonstrated that SD and Fischer rats were 

unable to oxidise this N-heterocycle. Unlike the SD strains studied elsewhere that 
display a discontinuous variation in N-heterocycle activity, all SD rats (n=24) examined 
in this laboratory (studies reported in this thesis and Clarke, D. J., Marshall, L., and 
Meehan, W., unpublished results) were completely devoid of N-heterocycle oxidase 

activity (table 3). Assays using the aldehyde DMAC as substrate showed that the SD 

and Fischer rats studied in this laboratory all had low levels of DMAC oxidase, which 

were approximately four-fold and six-fold lower than Wistar rat activity in SD and 
Fischer rats respectively (table 4). In order to determine whether the AO deficiency 

found in these rat strains was due to a defect in molybdenum cofactor synthesis, which 

would also cause a defect in XOR activity as has been demonstrated in man (Reiss & 

Johnson, 2003) and plants (Mendel & Schwarz, 1999), the XOR activity in the AO- 

deficient rat strains was compared to the Wistar strain. The presence of XOR activity at 

similar levels in all the rat strains indicated that the AO deficiency was not due to a 
defect in any cofactor synthesis. This suggested that the cause of the AO deficiency was 

most likely to be due to a mutation in the gene for AO. 
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4.2. Cloning of polymorphic areas of the aldehyde oxidase gene in rats. 

As mentioned in the introduction at the time the project was initiated it was thought that 

only one aldehyde oxidase gene existed. Five SNPs that resulted in non-synonymous 

amino acid substitutions in the AO cDNA, (AING, R120M, T649A, L1276F and 
R1315T), had been reported in a SD colony of rats in the Webb-Waring Antioxidant 

Research Institute in Colorado, however no functional analysis has been carried out to 

determine the effects of these polymorphisms. It was therefore decided to clone these 

polymorphic areas of the AO gene, to identify if any of the changes observed correlated 

with the AO deficiency found in the SD and Fischer rat strains. This was achieved by 

PCR or RT-PCR and DNA sequence analysis of the relevant areas of the AO gene and 

cDNA. The data showed no differences between the strains at the five positions studied 

(figures II and 12, table 10). It was therefore concluded that the differences observed 
by Wright el al (1999) did not correlate with the deficiency found in the rat strains 

examined in this study. Possible reasons why Wright et al (1999) found a discontinuous 

variation of nucleotide polymorphisms in their colony of SD rats and we did not could 

be because we had a different substrain of SD rat in our laboratory or that Wright et al 

(1999) did not have a pure SD colony. It is also possible that the changes found by 

Wright et al (1999) were induced by the cloning method they used as they amplified 

large stretches of cDNA (-2 kb), which can result in mistakes being made by the Taq 

polymerase enzyme. 
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4.3 Cloning and sequencing of aldehyde oxidase cDNA from Wistar, Sprague 

Dawley and Fischer rat strains. 

As the polymorphisms identified by Wright et al. (1999) did not correlate with the 
deficiency found between the strains, the whole coding region of the AO gene was 

cloned. This was achieved by using RT-PCR to clone the AO cDNA from the different 

rat strains. This revealed that six nucleotide differences existed between the Wistar and 
the two AO-deficient strains (84A>G, 328G>A, 1630C>T, 2555C>T, 2886A>G and 
3690A>G) (table 15). Five of these differences (84A>G, 328G>A, 1630C>T, 2555C>T 

and 3690A>G) were conserved between the SD and Fischer rat strains (figure 15, table 

15). Two differences, 328G>A and 2555C>T, resulted in the amino acid changes, 
GIIOS and A852V, respectively, both of which are conserved between the SD and 
Fischer strains (figures 15 and 16, table 15). The other four changes (84A>G, 1630C>T, 

2886A>G and 3690A>G) had no effect on the predicted amino acid sequence (figure 

15, table 15). 

In order to speculate the effect of the GI IOS and A852V amino acid differences on the 

activity of AO, the relevant regions were aligned with other molybdenum hydroxylases 

to identify the degree of sequence conservation. Their position in relation to the cofactor 
binding domains was also investigated. The first difference (G II OS) consists of a scrine 

present in the published SD rat AO sequence and both our AO-deficient rat strains and a 

glycine present in the Wistar rat sequence. Both glycine and serine are aliphatic amino 

acids although serine contains a hydroxyl side chain which results in it being highly 

hydrophilic in comparison to glycine and these two amino acids are not considered 
interchangeable (Bordo & Argos, 1991). When aligned with the related bovine XOR 

sequence and the corresponding amino acid position examined in the 3-D structure 
(Enroth et aL, 2000) this residue was found to be situated in a highly conserved region 
linking a ot-helix (residues 100- 107) and a P-turn (residues II 1- 114). Due to the close 

proximity to two of the cysteines responsible for the binding of the second iron-sulphur 

molecule to the protein, the 28.9 A3 increase in size (Zamyatin, 1972) and increased 

hydrophilicity (due to this substitution), could disrupt the folding of this region and 

therefore interfere with the iron-sulphur cofactor binding that may affect the activity of 

the enzyme. Comparison of this residue through alignment with other molybdenum 
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hydroxylases from an evolutionary diverse range of species revealed that this glycine is 

conserved between all non-plant molybdenum hydroxylases (figure 26). The degree of 

conservation and positioning suggests that this glycine is a very important residue. 

The second difference (A852V) observed between the Wistar and shared in the AO- 

deficient strains is situated in the molybdenum cofactor binding domain between the 
MoCol and MoColl binding sites (figure 15) and consists of an alanine present in the 
Wistar sequence and a valine present in the published SD AO sequence and both AO- 

deficient strains. Both alanine and valine contain a small non-polar side chain and may 
be substituted with 95% confidence (Bordo & Argos, 1991). A comparison of 

molybdenum hydroxylases illustrated that globally all eukaryotic molybdenum 
hydroxylases have a non-polar amino acid (alanine, valine or isoleucine), which are 

considered interchangeable at this position (figure 27). 

In conclusion it is more likely that GII OS might be responsible for the reduced activity 

seen in the SD and Fischer strains, however in order to determine this the AO enzyme 

would need to be expressed in a cell culture system and the wild type enzyme mutated 

separately at these two positions to determine definitively which change is responsible 
for the deficiency. 
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* 

AO Rat Wistar 96 TRLHPVQERIAYCHGTQCGFCTPGKVMSM 125 
AO Rat SD 96 TRLHPVQERIAKCHSTQCGFCTPGMVMSM 125 
AO Rat Fischer 96 TRLHPVQERIAKCHSTQCGFCTPGMVMSM 125 
AO Rat SD published 96 TRLHPVQERIARCHSTQCGFCTPGMVMSM 125 
AO Mouse 96 TRLHPIQERIAYCHGTQCGFCTPGMVMSM 125 
AO Rabbit 97 TRLHPVQERIAKFHGTQCGFCTPGMVMSM 126 
AO Bovine 97 TRIHPVQERIARCHGTQCGFCTPGKVMSL 126 
AO Human 97 TRIHPVQERIARCHGTQCGFCTPGMVMS1 126 
AOHl Wistar 100 TRIHPVQERIAKGHGTQCGFCTPGMVMS1 129 
AOHl Mouse 100 TRIHPVQERIRYGHGTQCGFCTPGMn4SI 129 
AOH2 Mouse 100 KRVHPVRERLAKCHGTQCGFCSPGMVMS1 129 
XOR Rat 96 -KLHPVQERIARSHGSQCGFCTPGIVMSM 124 
XOR Mouse 99 -KLHPVQERIARSHGSQCGFCTPGIVMSM 127 
XOR Cat 96 SRLHPVQERIARSHGSQCGFCTPGIVMSM 125 
XOR Bovine 96 TRLHPVQERIARSHGSQCGFCTPGIVMSM 125 
XOR Human 96 TRLHPVQERIAY%SHGSQCGFCTPGIVMSM 125 
XOR Chicken 100 SRLHPAQERIAKSHGSQCGFCTPGIVMSM 129 
XDH D. melanogaster 96 TRLHPVQERLPKA. HGSQCGFCTPGIVMSM 125 
XDH Silkworm 107 TKLHPVQERIAKAHGSQCGFCTPGIVMSM 136 
XDH E. nidulans 126 -NPRAIQQRLAIGNGSQCGFCTPGIVMSL 154 
XDH A. thaliana 109 LGLHPLQESLASSHGSQCGFCTPGFVMSM 138 
XDH R. capsulates 85 GRLHPVQQAMIDHHGSQCGFCTPGFIVSM 114 
AO A. thaliana 113 VGFHAVHERIAGFRATQCGFCTP(-, MSVý, M 142 
AOR D. Gigas 83 -NLHPLQKAWVLHGGAQCGFCSP(, FIVSA 111 

Figure 26 - Rat aldchyde oxidase deduced amino acid sequences aligned "ith 
representative molybdenum hydroxylases from other species over the region flanking 
GIIOS. 
Residues coloured red are conserved at the same position, residues coloured blue are synonymous to other 
amino acids at the same position and residues coloured black possess different properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in this 

research study. "The (x-helix (residues PVQERIA) and P-pleated sheet (residues SOCG) Jio%%n in the 

crystal structure of bovine XOR are also underlined. 
The point where the change occurs is highlighted in yel low and marked .% ith 

The second iron sulphur binding site is shaded grey (Terao et ed., 2000). 

1). inelanogaster - Drosophila melanogaster. E. nidulans -Emericella nithilan v. 

A. thaliana - Arabidopsis thaliana, R, capsulatus - Rhodobacter capsuhilus, 
1). gigas - Desuffio vibrio gigav. 
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AO Rat Wistar 838 ITGGRHPYLGKYYAGFMRDGRIVA. LDVE 867 
AO Rat SD 838 ITGGRHPYLGKYKVGFMRDGRIVA. LDVE 867 
AO Rat Fischer 838 ITGGRHPYLGKYKVGFMRDGRIVA. LDVE 867 
AO Rat SD Published 838 ITGGRHPYLGKYKVGFMRDGRIVA. LDVE 867 
AO Mouse 838 ITGGRHPYLGKYYAGFMNEGRILALDVE 867 
AO Rabbit 839 ITGGRHPYLGKYYAGFMNDGRIVALDVE 869 
AO Bovine 844 ITGGRHPYLGKYYAGFMNDGRIT-ATDME 873 
AO Human 843 ITGGRHPYLGKYKAGFMNDGRILALDME 872 
AOHl Wistar 838 ITGGRHPLLGKYRVGFMNNGKIKAADIQ 867 
AOHl Mouse 839 ITGGRHPLLGKYKIGFMNNGKIKAADIQ 868 
AOH2 Mouse 841 ITAGRHPLLGKYKIGFMNNGEIRAAI)VE 870 
XOR Rat 834 ITGGRHPFLAKYKVGFMKTGTVVALEVA 863 
XOR Mouse 837 ITGGRHPFLAKYKVGFMKTGTIVALEVA 866 
XOR Cat 833 ITGGRHPFIJLRYKVGFMKTGRVVA-LKVE 862 
XOR Bovine 834 ITGGRHPFLARYKVGFMKTGTIVALEVD 863 
XOR Human 835 ITGGRHPFLARYKVGFMKTGTVVA. LEVD 864 
XOR Chicken 863 ISGGRHPFLGRYKVGFMKNGKIKSLEVS 892 
XDH Bluebottle 857 ITGTRHPFLFKYKIAFTSEGRLTGCYIE 886 
XDH D. melanogaster 839 ITGTRHPFLFKYK-VGFTKEGLITACDIE 868 
XDH Silk-worm 861 MTGTRHPFLIKYKAAATKEGKIVGAVVN 890 
XDH E. nidulans 865 TSGQRHPFYCKW"GVTREGKLT-ATDAD 894 
XDH A. thaliana 866 ITGHRHSFVGKYKVGFTNEGKIT-ATDLE 895 
XDH R. capsulates 264 ITGKRHDFRIRYRIGADASGKLLGAI)PV 293 

AO Mosquito 809 AVGKRASCISNYQIEVDEDGRICKLLNN 838 

AO A. thaliana 868 TTGGRHPMKVTYSVGFKSNGKITALDVE 897 

AOR D. gigas 455 YTGKRSPWEMNVKFAAKKDGTLLAMESD 484 

Figure 27 - Rat aldehyde oxidase cDNA sequences aligned with representative 
molybdenum hydroxylases from other species over the region flanking A852V- 

Residues coloured red are conserved at the same position, residues coloured blue are synonymous to other 

aniino acids at the same position and residues coloured black possess different properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in this 

research study. The point where the change occurs is highlighted in yellow and marked %ý, ith * 

1), melanogaster - Drosophila melanogaster. F. nidulans -Emeric-ella nidulans, 

A. Ihaliana - Arabidopsis thaliana, R. - Rhodobat ler ý 
1). gigas Dcvuýfiwibrio gigus. 
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4.4 Evidence for aldehyde oxidase homologue 1 deficiency in Sprague Dawley and 
Fischer rats. 

Following the publication of the AOHI homologue in mice (Terao et aL, 2000) the 

presence of this enzyme in rat liver was investigated. The same method as Terao et al 

used to establish the presence of AOHI in mice was used to establish the presence of 

more than one AO in rat liver. Using benzaldehyde as substrate this technique suggested 

that there were two AOs present in the Wistar rat strain (figure 17). As mouse AO and 

rat AO are 95% identical, mouse AOHland rat AOHI are 93% identical (section 3.4) 

and mouse XOR and rat XOR are 96% identical at the amino acid level it is reasonable 

to suggest that the slowest and fastest migrating benzaldehyde staining polypeptide in 

rat liver cytosol probably corresponded to AO and AOHI respectively as with the 

zymograms generated from mouse liver extract (Terao, et aL, 2000). Staining with 

benzaldehyde also revealed that only the slowest migrating band (thought to be AO) 

was present in the SD and Fischer strains (figure 17). When the staining was repeated 

with phenanthridine (figure 17) it was established that the fastest migrating band 

(thought to be AOH I) was responsible for N-heterocyclic oxidase activity in Wistar rat 

liver and that no polypeptides stained with this substrate in the AO-deficient strains. It 

was also noted that surprisingly the intensity of the slowest migrating benzaldehyde 

staining polypeptide was similar in all strains despite the fact that the DMAC oxidase 

activity was up to 6 fold higher in the wild type Wistar strain. it is possible that this may 

be due to the majority of the benzaldehyde staining being due to XOR as it is 

documented that benzaldehyde is also a substrate for XOR as well as AO (Beedham., 

1987), and staining with hypoxanthine revealed that XOR comigrated with the slowest 

AO migrating polypeptide on these plates (figure 17). In order for this conflict to be 

resolved each polypeptide would need to be individually expressed in a cell culture 

system and analysed using cellulose acetate electrophoresis, as was carried out with the 

mouse liver enzymes (Terao et aL, 2000). 

In order to determine whether the lack of AO or AOH I transcripts was the cause of the 

deficiency RT-PCR was perfonned as described in the results (sections 3.3 and 3.4). 

This indicated that the levels of transcription of the AO and AOHI Series did not 

account for the loss of activity in the AO-deficient strains (figure 17). This suggested 
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that mutations in either or both AO and AOH I may be the cause of the AO deficiency 

in SD and Fischer rat strains. 
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4.5 Cloning and sequencing of the aldehyde oxidase homologue 1 cDNAs from rat 
strains. 

As the cellulose acetate zymogram. suggested that AOH I was absent in the AO-deficient 

rats (Figure 17), AOH I cDNA was cloned from the three rat strains. 
This was achieved by RT-PCR first using primers to the mouse AOH I cDNA ortholog 
then by using specific rat AOH I cDNA primers as described in the results section 3.4. 
This enabled the cloning of the entire 3999 bp coding region of AOHI from the three 
rat strains. Comparison of the Wistar rat AOHI cDNA with other known rat 
molybdenum hydroxylases established that the predicted amino acid sequence was 60 % 

and 50 % identical to AO and XOR respectively. 

Comparison of the AOHI cDNA sequences obtained for Wistar and SD rat strains 
revealed 14 changes (figures 21,22 and table 25) 3 of which resulted in a deduced 

amino acid difference between the protein sequences (R39Q, Q937K and M1078T). The 
first two differences to be discussed (Q937K and MI 078T) are surprising as the changes 
found are opposite to what would be expected. In each case comparison with other 
molybdenum hydroxylases established that the deficient rat strains have an amino acid 
which shows more conservation than the Wistar strain's amino acid at these positions 
(figure 28 and 29). 

The amino acid difference Q937K consists of a glutamine codon in the Wistar AOH I 

cDNA sequence changing to a lysine codon in the SD AOH I cDNA sequences. These 
two amino acids may be substituted for each other with 95% confidence (Bordo & 
Argos, 1991). Alignment of the rat AOHI sequences with other molybdenum 
hydroxylases reveals that this lysine residue is conserved in the mouse AOHI, bovine 

AO, human AO and rabbit AO, however rat AO possesses an arginine at this position. 
Mammalian XORs possess a threonine at this position but less evolved species in 

evolution possess a variety of amino acids at this position (figure 28). The amino acid 
difference closest to the amino terminus of the protein (MI078T) consists of a 

methionine present in the Wistar AOHI and a threonine present in the SD AOHI 

predicted protein sequences. The AO-deficient strains have a threonine at position 1078 

that is highly conserved in mammalian molybdenum hydroxylases, from bacteria to 
humans which all possess either a threonine or the highly related amino acid serine at 
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this position (figure 29). As these two differences show the wild type Wistar strain 
differing from the others it appears that these differences cannot be detrimental to the 

activity of the enzyme otherwise reduced AOHI activity would be apparent in the 
Wistar strain. 

Of the three differences found between SD and Wistar the R39Q difference, which 

consists of the substitution of an arginine in the Wistar by a glutamine in the SD 

appeared to be the most significant. Arginine contains a basic side chain, which is 

positively charged making it highly hydrophilic. Glutarnine contains an acidic side 

chain, however the overall charge on this amino acid is negated. Aligning the rat AOH I 

protein sequence with the bovine XOR sequence and examining the corresponding 

amino acid position in the 3-D structure (Enroth et aL, 2000) indicated that this residue 

was situated five amino acids after a (x-helix and just two amino acids before a P-turn. 

The amino acids comprising the P-turn are 100% conserved between the rat AOH I and 

bovine XOR sequences suggesting that the P-turn could be conserved between the two 

enzymes. In addition this change is situated seven amino acids prior to the start of the 

first iron-sulphur binding site so the loss of the positive charge and the reduction in 

volume of the amino acid by 29.6 A3 (Lagziel et aL, 2001), could disrupt the complex 

folding of this region possibly resulting in disruption of the iron-sulphur cofactor which 

may inactivate the protein. Comparison of this residue with other molybdenum 

hydroxylases found that all mammalian AOs characterised to date, with the exception of 

one (mouse AOH2) possess an arginine in this position (figure 30). However D. Gigas 

AO possesses a glycine in this position, as do most of the XORs. The conservation in 

mammalian AO enzymes suggestg that this residue is important for activity at this 

position in mammalian AOs. 

Comparison of Wistar and Fischer AOHI deduced amino acid sequences revealed the 

same three non-synonymous codon differences as found in the SD rat strain, but in 

addition a further two non-synonymous codon differences were also found. The 

additional differences were an arginine codon changing to a histidine codon at position 

153 and a glycine codon to asparagine codon at position 785 in Wistar and Fischer 

AOH I predicted protein sequences respectively. 

100 



Arginine is a basic hydrophilic positively charged molecule whilst histidine contains a 
basic side chain, which can be either positively charged or uncharged depending upon 
its surroundings. Figure 31 illustrates that this amino acid is very conserved between 

molybdenum hydroxylases of all the evolutionary diverse species from bacteria to 
humans suggesting that an arginine is essential at this position. This difference is 

situated in the unique iron-sulphur binding site (figure 5) between the second two 

cysteine residues (CXC), which are responsible for binding the iron-sulphur cofactor to 
the protein (Figure 5). Interestingly a mutation of this residue had been reported to 

cause xanthinuria in humans in which the arginine residue in the non-afflicted human 

XOR protein was found to be a cysteine in the xanthinuric individual (Sakamoto et aL, 
2001). 

The second additional codon change found between Wistar and Fischer AOH I deduced 

amino acid sequences, consists of a glycine present in the Wistar strain changing to an 

asPartate at codon position 785 in the Fischer strain's AOH I predicted protein. Glycine 

is the smallest of all the amino acids and contains an aliphatic side chain while aspartate 

contains a negatively charged acidic side chain. Aspartate is almost double the size of 

glycine (I 11.1 and 60.1 A3 respectively) (Zamyatin, 1972), which coupled with the 

addition of a negative charge could be detrimental to the enzyme activity. Glycine is 

conserved in the mouse AOHI, mammalian XORs, and plant molybdenum 
hydroxylases but not in mammalian AOs (figure 32), which indicates that it may be 

important for the activity of AOHI and XOR. As these two additional changes are not 

conserved between the SID and Fischer sequences it is likely that these mutations were 

acquired after the strains diverged rather than being the original mutation, which is 

responsible for causing the deficiency in these strains of rat. 

In conclusion these results suggest that the R39Q codon difference found between the 

Wistar and both the AO-deficient strains (SD and Fischer) was the ancestral mutation 

which resulted in the loss of AOH I activity in the AO-deficient strains of rat. 

This difference coupled with the GII OS difference found in the AO cDNA could result 

in the AO phenotype seen in these strains. However as it has not been conclusively 

detennined which polypeptide is responsible for AO and AOH I activity it could be that 

the R39Q difference is responsible for the reduced DMAC oxidase activity and the 

GII OS difference is responsible for the lack of phenanthridine oxidase activity. 
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AOH1 Rat Wistar 923 GAFVTETWVSAVAAQCHLPPEKVRELNM 951 
AOHl Rat SD 923 GAFVTETWVSAVAAECHLPPEKVRELNM 951 
AOHl Rat Fischer 923 GAFVTETWVSAVAARCHLPPEKVRELNM 951 
AOHl Mouse 922 GAPVTETCMSAVAAKCRLPPEKVRELNM 950 
AO Rat Wistar 923 AGLVTEACVTEVAIRCGLSPEQVRTINM 951 
AO Mouse 923 AGLVTEACITEVAIKCGLSPEQVRTINM 951 
AO Rabbit 922 AGLITECCITEVAA. KCGLSPEKVRAINF 950 
AO Bovine 929 AGLITEACITEVAAKCGLPPEKVRMINM 957 
AO Human 928 AVLITESCITEVAAXCGLSPEKVRIINM 956 
AOH2 Mouse 926 ATVVVEAYIAAVASKCNLLPEEVREINM 954 
XOR Rat 919 GMLIAEYWMSEVAITCGLPAEEVRRKNM 947 
XOR Mouse 922 GMLIAEYWMSEVAVTCGLPAEEVRRKNM 950 
XOR Cat 918 GMLIAEHWMSEVAVTCGLPAEEVRRKNM 946 
XOR Bovine 919 ALFIAENWMSEVAVTCGLPAEEVRWKNM 947 
XOR Human 920 GMLIAECWMSEVAVTCGMPAEEVRRKNL 948 
XOR Chicken 948 GMMIAECWMSDLARKCGLPPEEVRKINL 976 
XOR D. melanogaster 924 GMYAGEHIIRDVARIVGRDVVDVMRLNF 952 
XOR Silk-worm 946 GMFGA. ENMVREIAHRLGKSPEEISRLNL 974 
XOR E. nidulans 950 GLFFA. ESIISEVADHLDLQVEQLRILNM 978 
XOR A. thaliana 951 GMLITENWIQRIAA. ELDKIPEEIKEMNF 979 
XOR R. capsulates 349 GALGMERAIEHLARGMGRDPA. ELRALNF 377 
AO A. thaliana 952 GSYIGEAIIERVASYLSVDVDEIRKVNL 980 
AOR D. gigas 540 SMFASECLMDMLAEKLGMDPLELRYKNA 568 

Figure 28 - Rat aldchyde oxidase homologue I deduced amino acid sequences aligned 'A ith 

representative molybdenum hydroxylases from other species over the region flanking 

Q937K. 

Residues coloured red are conserved at the same position, residues coloured blue are synonymous to other 

amino acids at the same position and residues coloured black possess diffierent properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in this 

research study. The point where the change occurs is highlighted in yellow and marked with * 

A melanogaster - Drosophila melanogavter. E. nidukins - EmeriCella nidulans. 

A. thaliana -A rabidopsis thaliam z, R. -cipsillatus - Rhoelobact"t- Cell'S"Illf" I, 

D. gigas - Desuýlbvibrio gigay. 
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AOHl Rat Wistar 1064 YIHLDEMNTMTVPN14ITTGGSTGADVNGRA 1094 
AOHl Rat SD 1064 YIHLDEMNTMTVPNTITTGGSTGADVNGRA 1094 
AOHl Rat Fischer 1064 YIHLDEMNTMTVPNTITTGGSTGADVNGRA 1094 
AOHl mouse 1065 YIHLDEMSTVTVPNTVTTGASTGADVNGRA 1095 
AO Wistar 1064 SVELRGTSTETVPNTNASGGSVVADLNGLA 1094 
AO Mouse 1064 SVHLRGTSTETVPNTNASGGSVVADLNGLA 1094 
AO Rabbit 1065 NVHLRGTSTETVPNTNASGGSVVADLNGLA 1095 
AO Bovine 1070 SIHLRGTSTETIPNITNPSGGSVVADLNGLA 1100 
AO Human 1069 NVHLRGTSTETVPNANISGGSVVADLNGLA 1099 
AOH2 Mouse 1067 YVHFSETSTTTVPNSA. FTAGSMGADINGKA 1097 
XOR Rat 1060 KIHISETSTNTVPNTSPTAASASADLNGQG 1090 
XOR mouse 1063 KIHITETSTNTVPNTSPTAASASADLNGQA 1093 
XOR Cat 1059 KIYISETSTNTVPNTSPTAASVSTDINGQA 1089 
XOR Bovine 1030 KIYISETSTNTVPNSSPTAASVSTDIYGQA 1060 
XOR Human 1061 KIYISETSTNTVPNTSPTAASVSADLNGQA 1091 
XOR Chicken 1089 KIYISETSTNTVPNTSPTAASVSADINGMA 1119 
XOR Guppy 1062 KIFLSETSTGTVPNTCPSAASFGTDANGMA 1092 
XOR D. melanogaster 1065 LIHISETATDKVPNTSPTAASVGSDLNGMA 1096 
XOR Silkworm 1087 KIHISETSTDKVPNTSATAASAGSDLNGMA 1117 
XOR E. nidulans 1091 DVFISETATNTVANTSSTAASASSDLNGYA 1121 
XOR A. thaliana 1092 SVFVSETSTDRVPNASPTAASASSDMYGAA 1122 
XOR R. capsulates 510 QVRITATDTSKVPNTSATAASSGADMNGMA 540 
AO A. thaliana 1092 KIRVIQSDTLSMVQGSMTAGSTTSEASSEA 1122 

AOR D. gigas 675 KIKFTWPNTATTPNSGPSGGSRQQVMTGNA 705 

Figure 29 - Rat aldehyde oxidase hom ologue I deduced amino acid sequences alig ned 'A ith 

representative molybdenum h,, droxv lases from other species over the region flanking 

M 1078T. 

Residues coloured red are conserved at the same position, residues coloured blue are synonymo us to other 

amino acids at the same position and resid ues coloured black possess different properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtain ed in this 

research study. The point where the change occurs is highlighted in yellow and marked with 

D. melanogaster - Drosophila melanogaster. E. nidulans - Emericella nidulans, 

A. thaliana - Arabidopsis thaliana, R. capvuhitus - Rhodohacter capsulatus, 

D. gigas - Desllýfovibrio gigay. 
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AOH1 Rat Wistar 25 DPEVNLLFYLRKIIRLTGTKYGCGGGDCGA 55 
AOH1 Rat SD 25 DPEVNLLFYLRXIIQLTGTKYGCGGGDCGA 55 
AOH1 Rat Fischer 25 DPEVNLLFYLRKIIQLTGTKYGCGGGDCGA 55 
AOH1 Mouse 25 DPEVNLLFYLRKVIRLTGTKYGCGGGDCGA 55 
AO Rat Wistar 21 DPEMMLLPYLRKNLRLTGTKYGCGGGGCGA 51 
AO Mouse 21 DPEMMLLPYLRKNLRLTGTKYGCG(; GGCGA 51 
AO Rabbit 22 DPETMLLPYLRKKLRLTGTKYGCGGG4GCC; A 52 
AO Bovine 22 DPETMLLPYLRKKLRLTGTKYGCG43GGCGA 52 
AO Human 22 DPETMLLPYLRKFLRLTGTPYGCGOGGCGA 52 
AOH2 Mouse 25 DPEKNLLFYTRKVLNLTGTKYSCGTGGCGA 55 
XOR Rat 21 DPETTLLVYLRRKLGLCGTKLGCGEGGCGA 51 
XOR Mouse 24 DPETTLLVYLRRKLGLCGTKLGCGEGGCGA 54 
XOR Cat 21 DPETTLLAYLRRKLGLSGTKLGCGEGGCGA 51 
XOR Bovine 21 DPETTLLAYLRRKLGLRGTKLGCGEGGCGA 51 
XOR Human 21 DPETTLLAYLRRKLGLSGTKLGCGEGGCGA 51 
XOR Chicken 27 DPETTLLTYLRRKLGLCGTKLGCGEGGCGA 57 
XOR D. melanogaster 21 DPECTLLTFLREF. LRLCGTKLGCAEGGCGA 51 
XOR Silkworm 32 DPEWTLLWYLRKKLRLTGTKLGCAEGGCGA 62 
XOR E. nidulans 52 DPEITLLEYLRG-IGLTGTKLGCAZGGCGA 82 
XOR A. thaliana 24 LAHMTLLEYLR --- GLTGTKLGCGZGGCGS 54 
XOR R. capsulates 17 DPTQSLLELLRA-EGLTGTKEGCNZGDCGA 37 
AO A. thaliana 38 DPSTTLVDFLRNKTPFKSVKLGCGEGGCGA 68 

Figure 30- Rat aldehyde oxidase homologue deduced amino acid sequences aligned 'A it h 
representative molybdenum hydroxylases from other species over the region flanking 
R39Q. 

Residues coloured red are conserved at the same position, residues coloured blue are synonymous to other 

amino acids at the same position and residues coloured black possess different properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in thts 

research study. The point where the change occurs is highlighted in yellow and marked with * 

"The cc-helix (residues DPETMLLPY) and P-turn (residues TGTKY) shown in the crystal structure of 

bovine XOR are underlined. 
The second iron sulphur binding site is shaded grey (Terao el al., 2000) 

1). melanogaster - Drosophila melanogaster. E. nidulans -L, 
A. thatiana - Arabiclopsis thaliana, R. (-, jp. vu1cjtu, %7 Rliotiol)tit, li"*(', 'I)vlihlfll%:. 

gigels - Desuýfovibrio gigus. 
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* 

AOH1 Rat Wistar 138 PSTEQIMETLGGNLCRCTGYRPIVESA-RSFSPN 171 
AOH1 Rat SD 138 PSTEQIMETLGGNLCRCTGYRPIV'ESARSFSPN 171 
AOH1 Rat Fischer 138 PSTEQIMETLGGNLCHCTGYRPIVESARSFSPN 171 
AOHl Mouse 138 PSTEQIMETLGGNLCRCTGYRPIV"ESA. KSFCPS 171 
AO Rat Wistar 134 PSLDQLTDALGGNLCRCTGYRPIIDACKTFCRA 167 
AO Mouse 134 PTLDQLTDALGGNLCRCTGYRPIIDACKTFCKA 167 
AO Rabbit 135 PTLDQLJLDALGGNLCRCTGYRPIIEAYKTFCKT 168 
AO Bovine 135 PTLTQLNDALGGNLCRCTGYRPIINACKTFCKT 168 
AO Human 135 PTLDQLTDALGGNLCRCHGYRPIIDACKTFCKT 168 
AOH2 Mouse 138 PTPDQITEALGGNLCRCTGYRPIVESGKTFSQK 171 
XOR Rat 133 PTVEEIENAFQGNLCRCTGYRPILQGFRTFAYD 166 
XOR Mouse 136 PTVEEIENAFQGNLCRCTGYRPILQGFRTFAYD 169 
XOR Cat 134 PTIEEZEDAFQGNLCRCTGYRPILQGFRTFARD 167 
XOR Bovine 134 PTVEEIEDAFQGNLCRCTGYRPILQGFRTFA. KN 167 
XOR Human 134 PTMEEIENAFQGNLCRCTGYRPILQGFRTFARD 167 
XOR Chicken 138 PKMEDIEDAFQGNLCRCTGYRFILEGYRTFAVD 171 
XOR D. melanogaster 134 PSMRDLEVAFQGNLCRCTGYRPILEGYKTFTKE 167 
XOR Silkworm 145 IQYSDLLVAFQGNLCRCTGYRAIIEGYKTFIED 178 
XOR E. nidulans 163 PSERAVEEAFDGNLCRCTGYRPILDAAQSFTSP 196 
XOR A. thaliana 147 PSEEEIEECrAGNLCRCTGYRPIID"RVFAKS 180 
XOR R. capsulates 119 RDRKDYDDLLAGNLCRCTGYAPILRA ------- 152 

AO A. thaliana 151 LTAVEAEKAVSGNLCRCTGYRPLVI)ACKSFAAD 184 

AOR D. gigas 121 --DVRDWFQMIRNACRCTGYKPLVD -------- 154 

Figure 31 - Rat aldehyde oxidase homologue 1 deduced amino acid sequences aligned " ith 

representative molybdenum hydroxylases from other species over the region flanking 

R153H. 

Residues coloured red are conserved at the same position, residues coloured blue are synonymous to othcr 

amino acids at the same position and residues coloured black possess different properties to the offict 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in tims 

research study. The point where the change occurs is highlighted in yellow and marked .N ith * 

The iron sulphur binding site is shaded grey (Terao et al., 2000) 

D. melanogaster - Drosophila melanogaster. E. nidulans - Emericella nithil"ll". 

A. thaliana - Arabidopsis thaliana, R. (.,,,,. vulitus - Rhodobacter capsultifuS, 

1). gigas - Desuýfbvihrio gigas. 
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AOHl Rat Wistar 755 SQDAAFTQEMVARTLGIPKNRITCHVKRVG 785 
AOHl Rat SD 755 SQDAA. FTQEMVARTLGIPKNRITCHVKRVG 785 
AOHl Rat Fischer 755 SQDAAFTQEMVARTLDIPKNRITCHVKRVG 785 
AOHl Mouse 756 SQDAAFTQEMVARTLGIPKNRINCHVKRVG 786 
AO Rat Wistar 755 TQFPKHIQDIVAATLKLSVNKVMCKVRRVG 785 
AO Mouse 755 TQFPKYIQDIVAATLKLSANKVMCHVRRVG 785 
AO Rabbit 756 TQFPKYIQD14VAAVLKLPVNKVMCHVKRVG 786 
AO Bovine 761 AQFPKYIQDITASVLKVSANKVMCHVKRVG 791 
AO Human 760 TQFPKYIQDIVASTLKLPANKVMCHVRRVG 790 
AOH2 Mouse 758 TQFPTHVQEFVSAALNVPRSRIACHMKRAG 788 
XOR Rat 751 TQNTMKTQSFVA. KMLGVPDNRIVVRVKRMG 781 
XOR Mouse 754 TQNTMKTQSFIAKMLGVPDNRIVVRVKRMG 784 
XOR Cat 750 TQNTTKTQSFVANMLGVPANRILVRVKRMG 780 
XOR Bovine 751 TQNAMKTQSFVAKMLGVPVNRILVRVKRMG 781 
XOR Human 752 TQNTMKTQSFVAKMLGVPANRIVVRVKRMG 782 
XOR Chicken 780 TQNLMKTQEFTASALGVPSNRIVVRVKRMG 810 
XOR D. melanogaster 757 TQHPSEVQKLvAHVTALPAHRVVCRAKRLG 787 
XOR Silkworm 778 SQHPSEIAKLVSHILHVPMNRIVARVKRMG 808 
XOR E. nidulans 782 TQNPTETQSYVAQVTGVAANKIVSRVKRLG 818 
XOR A. thaliana 783 TQAPQQHQKYVSHVLGLPMSKVVCKTKRLG 813 
XOR R. capsulates 183 SQHPSEIQHKVAHALGLAFHDVRVEMRRMG 213 
AO A. thaliana 786 TQTPEFVHQTIAGCLGVPENNVRVITRRVG 816 

AOR D. gigas 375 SIGVHLHLYMIAPGVGLEPDQLVLVANPMG 405 

Figure 32 - Rat aldehyde oxidase homologue 1 deduced amino acid sequences aligned 
with representative molybdenum hydroxylases from other species over the region flanking 
G785D. 

Residues coloured red are conserved at the same position, residues coloured blue are synonymous to ollief 

amino acids at the same position and residues coloured black possess different properties to the othcr 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in thlý 

research study. The point where the change occurs is highlighted in yellow and marked with 

D. melanogaster - Drosophila melanogaster. E. nidulans - Emericellej nOulan. v. 

A. thaliana - Arabidopsis thaliana, R. capsulatus - Rhoelobacter cal-1hillis. 

D. gigas - Dcsuýfovibrio gigas. 
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4.6 Identification of a novel mutation in the xanthine oxidoreductase gene of a 
British xanthinuric patient. 

As explained in the introduction (section 1.6.3) only 5 mutations causing hereditary 

xanthinuria are known worldwide and there has been no molecular genetic study of any 
European patients. The patient described in this thesis was a British female of 52 years 

of age at diagnosis. She was tested for purine metabolic disorders because of a 

persistently low plasma urate level that had been noted over seven years while she was 

undergoing investigation for a variety of clinical problems, which resulted in the 

diagnosis of idiopathic thrombocytopenic purpura. 
Comparison of the biochemical features of this xanthinuric patient (table 30) with the 

normal British population indicated that the xanthine to hypoxanthine ratio was 

approximately 4 times the level of unaffected British females, which is typical of severe 

xanthinuria (Simmonds et aL, 1995) (table 30). The xanthine and hypoxanthine levels of 

this patient were 29-fold and 7-fold higher respectively than in the normal British 

population. As UK patients are not diagnosed by using XOR enzyme assays of 
duodenal mucosal biopsy as in Japan, we were unable to confirm the complete absence 

of XOR activity. However comparison of our patient with a Japanese patient, whose 
XOR activity in the duodenal mucosal was undetectable, indicated that our patient 

suffers from a more severe form of hereditary xanthinuria based on oxypurine levels in 

urine (table 30). 
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Subject 
British 

xanthinuric 
patient 

Japanese 

xanthinuric 
patient 

Normal Normal 

Sex (male/female) Female Male Female Male 

Age at presentation (Years) 52 60 N/A N/A 

Xanthine in urine (mmol/24hrs) 1.46 0.36 0.05 0.05 

Hypoxanthine in urine 
(mmol/24hrs) 

0.37 0.17 0.05 0.07 
II 

Uric Acid (mmol/24hrs) N. D. 0.02 2.7 3.0 

Oxypurines (mmol/24hrs) 1.83 0.53 0.1 0.12 

Xanthine: hypoxanthine ratio 3.9 2.1 1 0.7 

Duodenal XOR activity 
(nmol/hr/mg protein) 

unknown N. D. N. S. 12.1 

Type of xanthinuria unknown I N/A N/A 

Mutation NIIK R149C N/A N/A 

Table 30 - Clinical data for xanthinuric and control subjects. 

The data from the xanthinuric patient reported in this thesis is shaded pink. Data from a Japanese patient 

reported by Sakamoto et cd, (Sakamoto el aL, 2001) is also listed. The normal male and 1ernale data 

represents the normal British population (Simmonds, A., 2003, personal communication). N. D not 
detected, N/A not applicable. 

Unfortunately only one patient could be directly compared to our patient as most 

Japanese research groups use the xanthine to creatinine clearance ratio to study the 

excretion of oxypurines from the body. Personal communication with Dr A. Sirnmonds 

of the Purine Research Laboratory in Guy's Hospital, London revealed that the Japanese 

method is flawed as it does not take into account liquid consumption and sampling close 

to mealtimes which can affect the result and problems with oxypurme and creatinine 

clearance such as found in patients with diabetes (Ichida et al., 1997). The 24 hour unne 

collection is a much more accurate way of determining excretion of'oxypurines because 

these factors do not have an adverse effect on the result of' the test (Simmonds, A., 

2003, personal communication). Comparison of the biochemical features ofthe British 

patient with the one genetically characterised Japanese patient, that had a 24 hour urine 

test performed, revealed that the Japanese patient had much lower levels ofoxypurines 
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in the urine and a lower xanthine to hypoxanthine ratio compared to the British patient. 
The total absence of uric acid in the urine of the British patient also suggests that the 
XOR enzyme was totally inactive further indicating the severity of the disease. 

Cloning and DNA sequencing of the XOR promoter, exons and intron/exon splice sites 
in the British xanthinuric patient revealed a novel single nucleotide difference (33T'>G) 

situated in the coding region of exon I between the xanthinuric patient's XOR gene and 
normal XOR sequence. This resulted in a codon substitution at position II consisting of 

an asparagine found in the normal XOR sequence changing to a lysine in the 

xanthinuric's XOR sequence. This codon difference is not one of the SNPs observed for 

the XOR gene in the normal population (Ichida et aL, 1993; Lagziel et aL, 2001)(SNP 

database, http: //www. ncbi. nlm. nih. gov/) which suggests that this base change is not a 

common benign polymorphism. 

With regards to the NI IK substitution asparagine is a small uncharged polar molecule 

and lysine is a positively charged polar molecule. When aligned with other 

molybdenum hydroxylases from an evolutionary diverse range of species from bacteria 

to humans this asparagine residue shows 100% conservation (figure 33), this suggests 

that an asparagine is essential at this position. Comparison with the bovine XOR protein 

sequence and examination of this residue in the 3-D structure (Enroth et aL, 2000) 

found that this residue was situated in a P-turn. The change is positioned in the iron- 

sulphur binding domain 31 residues prior to the first iron-sulphur binding site (Garattini 

et aL, 2003). As lysine is 54.5 A3 larger (Zamyatin, 1972) than the asparagine, this size 
difference could disrupt the physical folding of the protein thereby disrupting the P-tum. 

Also the addition of a charge at this position could prove detrimental to the activity of 

the protein. 

As the patient had not been tested for aldehyde oxidase activity and the nature of the 

xanthinuria not characterised, another member of this laboratory examined the human 

molybdenum cofactor sulphurase gene of this patient and found no mutations (Kelly, M. 

L., 2003, personal communication). This suggests that our patient suffers from 

hereditary xanthinuria type 1. 

109 



In conclusion it seems likely that the NIIK mutation in the XOR gene is responsible for 

the hereditary xanthinuria in this patient. Definitive proof will require the expression 
and assay of the NIIK mutant XOR in a cel I culture system. 

XOR Human xanthinuric 1 ----- MTADKLVFFVKGR--KVVEKNADPETTLL 27 
XOR Human normal 1 ----- MTADKLVFFVNGR--KVV"EKNAI)PETTLL 27 
XOR Cat 1 ----- MTADELVFFVNGK--KVVEKNADPETTLL 26 
XOR Bovine 1 ----- MTADELVFP-MGK--KVVEKNADPETTLL 26 
XOR Mouse 1 --MTRTTVDELVFP'VNGK--KVVEKNAI)PETTLL 29 
XOR Rat 1 ----- MTADELVFFVNGK--KVVEKNAI)PETTLL 27 
XOR Chicken 1 -MAPPETGDELVFFVNGK--KVVEKDVDPETTLL 31 
XOR D. melanogaster 1 ----- MSNSVLVFFVNGK--KVTEVSPDPECTLL 27 
XOR Silkworm 6 EEDPNYICKELVFYVNGK--KVIESSPDPEWTLL 38 
XOR E. nidulans 26 LQLTEEWDDTIRFYLNGT--KVILDSVDPEITLL 58 
XOR A. thaliana 1 --MEQNEFMEAIMYVNGV--RRVLPDGLARMTLL 30 
XOR R. capsulates 1 -------- MEIAFLLNGE--TRRVRIEDPTQSLL 27 
AO A. thaliana 8 VEAMKSSKTSLVFAINGQRFELELSSIDPSTTLL 42 
AO Bovine 1 ---- MEGGSELLFYVNGR--KVTEKNVDPETMLL 28 
AO, Human 1 ---- MDRASELLFYVNGR--KVIEKNVDPETMLL 28 
AO Rabbit 1 ---- MEPAPELLFYVNGR--KVVEKQVDPETMLL 28 
AO Rat Wistar 1 ---- MDP-PQLLFYVNGQ--KVVENNVDPE14MLL 27 
AO Mouse 1 ---- MDP-IQLLFYVNGQ--K-VVEKNVDPEMMLL 27 
AOH1 Wistar 1 -MSRSKESDELIFFVNGK--KVIERNADPEVNLL 31 
AOHl Mouse 1 -MSPSKESDELIFFVNGK--KVTERNADPEVNLL 31 
AOH2 Mouse 1 -MPSVSESDELIFFVNGK--KVIEFNPDPEKNLL 31 
AOR D. gigas 1 ------- MIQFVITVNGI---EQNLFVDAEALLS 24 

Figure 33 - Comparison between the xanthinuric predicted xanthine oxidoreductase 

sequence with representative molybdenum hydroxylases from a range of species. 

Residues coloured red are conserý, ed at the same position, residues colourcd blue are synonyinou" to Awl 

amino acids at the same position and residues coloured black possess different properties to the other 

amino acids at the same position. Sequences, which are underlined, are the sequences obtained in this 

research study. The point where the change occurs is highlighted in yellow and marked with 

**The P-tum (residues FVNG) shown in the crystal structure of bovine XOR is underlined. 

[). melcinogavter - Drosophila melanogaster. E. nielultins - Emericelhi ni(hihm %. 

A. thaliana - Arabidopsis thaliana, R. capsuhitus - Rhodobacter capsuhaw. 

A gigas - Desuffiovibrio gigas. 

It should also be noted that although this patient appears to be honiozygous for tills 

mutation it is possible that only one allele was amplified during tile PCR reactions and 

that another mutation exists in the other allele, which was not seen in this study. 
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Expression studies will determine if this mutation alone is enough to account for the 
deficiency observed in this patient. 
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4.7 Conclusions. 

Phenotyping of the three rat strains revealed that the SD and Fischer rats possessed a 4- 

fold and 6-fold lower DMAC oxidase activity respectively in comparison with the wild 
type Wistar strain. It also revealed that the SD and Fischer rat strains were completely 
deficient in phenanthridine oxidase activity. The non-synonymous polymorphisms 

observed by Wright et aL (1999) did not correlate with the deficiency found in these 

strains of rat, therefore the entire coding region of the AO cDNA was cloned and two 

differences found. Comparison of the two differences with an evolutionary diverse 

range of molybdenum hydroxylases suggested that the GIIOS difference was most 
likely to cause the AO deficiency in the SD and Fischer strains. Cellulose acetate 

electrophoresis revealed two AO homologues present in Wistar rat liver and determined 

that AOH I was absent in the SD and Fischer rat strains. Cloning of this novel A011 I 

cDNA from rat liver revealed five predicted amino acid changes of which only three 

were conserved between the two AO-deficient strains. Comparison of these differences 

with an evolutionary diverse range of molybdenum hydroxylases suggested that the 

R39Q difference was most likely to be responsible for the AOHI deficiency in the SD 

and Fischer rat strains. 
In addition to the study of molybdenum hydroxylase deficiency in rat, a British patient 

with hereditary xanthinuria was analysed for mutations in the XOR gene. This revealed 

aNIIK missense mutation in the coding region of the gene. Analysis of this difference 

with an evolutionary diverse range of molybdenum hydroxylases suggested that as the 

asparagine residue was 100% conserved through evolution the missense NIIK mutation 

was the cause of hereditary xanthinuria in this patient. 
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4.8 Future work. 

4.8.1 Identification of aldehyde oxidase and aldehyde oxidase homologue I in rat 
liver cytosol. 

To definitively determine which polypeptide on the cellulose acetate electrophorcsis 
zYmograms is AO and which is AOHI each cDNA would need to be individually 

expressed in a cell culture system and analysed using cellulose acetate electrophorcsis 
as has been carried out for the mouse molybdenum hydroxylases (Terao et aL, 2000). 

Rather than use cellulose acetate electrophoresis isoelectric focusing might also help 

resolve the apparent comigration problem of AO and XOR polypeptides (see figure 17). 

4.8.2 Identification of the effect of the codon differences found in rat aldchyde 

oxidase and aldehyde oxidase homologue 1 cDNAs. 

To unequivocally determine the effect of the non-synonymous codon differences found 

in the AO and AOHI cDNA sequences of the deficient rat strains, the enzymes will 

need to be expressed in a cell culture system. The wild type cDNA will need to be 

mutated at the relevant positions and the mutant enzymes expressed. Each of the amino 

acid differences would need to be studied individually to determine the effect of each 

change on the enzyme activity. 
Each of the identified codon differences will also need to be determined in a larger 

number of animals to determine if there is any interindividual variation in the strains. 
This could be achieved by either restriction fragment length polymorphisin (RFLP) or 

amplification refractory mutation system (ARMS) tests 

4.8.3 Identification of the effect of the difference found in the xanthinuric patient. 

To determine if the NIIK missense mutation is definitely responsible for xanthinuria in 

the British patient the enzyme would need to be expressed in a cell culture system with 

the wild type cDNA sequence mutated at this position and cell extracts assayed for 

XOR activity. In order to determine that the NIIK amino acid difference is not a benign 

polymorphism, the normal British population will also need to be screened to ensure 
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that this difference is a disease causing mutation. This could be achieved by RFLP or 
ARMS tests. 
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APPENDIX 1 

Example of a standard curve for the Lowry method of protein determination. 

Lowry standard curve 
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Example of a standard curve obtained using known amounts of bovine serum albumin for 
the calculation of the protein concentration in an unknown sample. 
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APPENDIX 2 

Accession numbers for the sequences used in this thesis. 

Protein/ nucleic acid Species Accession numbers 

sequence 

AO A. thaliana AB005804 

AO bovine X87251 

AO human NM-001 159 

AO mouse NM009676 

AO rabbit AB009345 

AO rat female NM019363 

AO rat male AF 110478 

AOHI BAC (rat) AC126841 

AOHI mouse AAL36596 

A0112 mouse AAL38126 

AOR D. gigas A57429 

XOR A. thaliana CAB45451 

XOR BACs (human) AL121654 & AL121657 

XOR bovine CAA67117 

XOR cat AF286379 

XOR chicken BAA02502 

XOR D. melanogaster CAA6849 

XOR E. nidulans A55875 

XOR human U39487 

XOR mouse CAA52997 

XOR rat ACAA52997 

XOR R. capsulatus lJRP-A 

XOR silkworm BAA21640 
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APPENDIX 3 

Table showing the genetic code. 

First base 

Second 

base 
T C A G 

TTT 
Phe 

CTT ATT GTT 

T 
TTC CTC 

Leu 
ATC Ile GTC 

- Val 
TTA 

Leu 
- CTA ATA GTA 

- [-ITGI -CYG-] ATG Met 6ffG] 

TCT CCT ACT GCT 

C 
TCC 

Ser 
CCC 

Pro 
ACC 

Thr 
GCC 

- Ala 
- TCA - CCA ACA GCA 

TCG CCG ACG GCG 

TAT 
T r 

CAT 
His 

AAT 
Asn 

GAT 
Asp 

A 
TAC 

y - CAC AAC 71A-C 

TAA 
STOP 

CAA 
Gln 

AAA 
Lys 

GAA 
Glu 

TA-G] AAG GAG] 

TGT 
C s 

CGT AGT 
Ser 

GGT 

G 
TGC 

y 
CGC 

Arg 
AGC GGC 

Gly 
TGA STOP - CGA AGA 

Arg 
GGA 

I[ 
TG-G I Trp [ TýG 

, 
I AGG 

- 

FG; U] 

-. j 
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APPENDIX 4 

Single letter and triple letter codes for the amino acids. 

Amino acid Single letter code Triple letter code 

Alanine A Ala 

Arginine R Arg 

Asparagine N Asn 

Aspartic acid D Asp 

Cysteine C Cys 

Glutamic acid E Glu 

Glutamine Q Gln 

Glycine G Gly 

Histidine H His 

Isoleucine I Ile 

Leucine, L Leu 

Lysine K Lys 

Methionine M Met 

Phenylalanine F Phe 

Proline P Pro 

Serine S Ser 

Threonine T Thr 

Tryptophan. w Trp 

Tyrosine Y Tyr 

Valine V Val 
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Appendix 5 

Partial sequence obtained for rat AO intron 4. 

CTGCTTGGAACTTGCTCTGTCCCAGGCTGGCCTTGATCTCAGAGATCTGC 
TTGTTTTCGTCTCCTGGGAATAAAGGTGTGCACCACCTTGCCTGGGCCTA 
AGCTTTTCATGGCTACTCTGTCTCAAAATCAGGATCAAAAATACGTGTCT 
CTCAGCCTCAAGATCTGGATCACAGGGTGCGCCCTCCATTTCTGGATGGT 
AGTTCATTCCAGAAATAGTCATGTTGACAACTGGGAATAACCATCAGAAA 
TGATAAACTGATTCTTCAAGGGCTCAGAAACCAGTGTCTTAAAGTCAGGC 
AGCTCAGAAGGCTCAAAAGTCAGACTGACCAGCCCAAAGGAGATGAGTTG 
AAGGCTTTTGGGAGGTCTTCTCTCCAAATTCAGTGAATGCAAACATGTCC 
TGTGGAAGTTGCTTTGATGCTTCAGGCCTGGCCTTCTAACCTTGCTGTGC 
TTTCCAGGAGAGGATCGCCAAGT 

The partial exon 5 sequence is in bold. Intron 4 is in normal type font. The sequence 

was obtained by sequencing the PCR products from RA04/5F and RA04/5R using the 

reverse primer and then reverse complemented using GenejockeyTM. 
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