Javid, Farideh A. (2002) The effect of serotonin and serotonin receptor antagonists on motion sickness in Suncus murinus. Pharmacology Biochemistry and Behavior, 73 (4). pp. 979-989. ISSN 00913057
Abstract

In the present study, we investigated the effect of 5-hydroxytryptamine (5-HT) and 5-HT receptor agonists and antagonists on motion sickness in Suncus murinus, and the possibility that the emetic stimulus of 5-HT can alter the sensitivity of the animals to the different emetic stimulus of motion sickness. 5-HT (1.0, 2.0, 4.0 and 8.0 mg/kg ip) induced emesis and that was antagonised by methysergide (1.0 mg/kg ip), the 5-HT4 receptor antagonist sulphamate[1-[2-[(methylsulphonyl)amino]ethyl]-4-piperidinyl]methyl-5-fluoro-2-methoxy-1H-indole-3-carboxylate (GR125487D; 1.0 mg/kg ip) and granisetron (0.5 mg/kg ip). Pretreatment with 5-HT caused a dose-related attenuation of the emetic response induced by a subsequent motion stimulus, which was not significantly modified by methysergide, granisetron or GR125487D pretreatment. (+)-1-(2,5-Dimethoxy-4-iodophenyl)-2-amino-propane (DOI; 0.5 and 1.0 mg/kg ip), 8-hydroxy-2(di-n-propylamino)tetralin (8-OH-DPAT; 0.1 mg/kg ip) but not methysergide, GR125487D or granisetron, attenuated motion-induced emesis, and that was not affected by pretreatment with ketanserin (2.0 mg/kg, ip) or N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide trihydrocholoride (WAY-100635; 1.0 mg/kg ip), respectively. Indeed, ketanserin alone (0.1, 0.3, 1.0 and 2.0 mg/kg ip) attenuated motion sickness. These data indicate that 5-HT1/2, 5-HT3 and 5-HT4 receptors are involved in the induction of 5-HT-induced emesis. However, agonist action at the 5-HT1A/7 and 5-HT2 receptors, and antagonist action at the 5-HT2A receptors can attenuate motion sickness in S. murinus

Information
Library
Statistics

View Item (login required)
View Item (login required)
Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email