Müller, M. and Blunt, Liam

Predicting The Axial Load Of Capacity Of Joints Formed By V-Band Retainers

Original Citation


This version is available at http://eprints.hud.ac.uk/id/eprint/5230/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
Predicting the Axial Load Capacity of joints formed by V-Band Retainers

Objectives
• Generate Finite Element (FE) modelling techniques to predict work hardening development during manufacture cold rolling process • Understand the relationship between V-band tightening force, internal stresses and joint axial load capacity by conducting experimental tests • Produce FE models, validated by experimental data to predict V-band joint axial load capacity and study internal stresses • Extend existing theory of V-band behaviour including plastic deformation

Aim
To provide a robust method of predicting the axial load capacity of joints formed by V-Band retainers

Introduction
V-band retainers are widely used in the automotive, aircraft and aerospace industries to connect a pair of circular flanges to provide a joint with good axial strength and torsional rigidity. V-band retainers are manufactured using a cold rolling process. Despite their wide application, once assembled to a pair of flanges little is known about the interaction between flange and band. Moreover the failure mode of V-band clamps when applying an axial load is not fully understood.

2D Finite Element Analysis
• 2 dimensional FE- analysis of first stage of cold rolling process including all six passes forming the sections • Numerical plastic strain values showed very good correlation with measured work hardening values

Further Work
• Generate a methodology to determine contact pressure between V-band retainer and circular flanges measuring roughness of inner side of V-band • Generate an analysis in which the retainer from the 3D FE-analysis is assembled to a pair of circular flanges and an axial load is applied, so the ultimate axial load capacity can be predicted taking into account the plastic strain induced by rolling process

Predicting Axial Load Capacity
• Axisymmetric 2 dimensional FE-analysis of V-band retainer assembled to flanges • Increasing V-band diameter leads to more and more elastic deformation • Analysis is not capable of predicting influence of T-bolt, but results correlate well with experiments

3D Finite Element Analysis
• 3 dimensional FE-analysis of cold rolling process including both stages and seven passes forming a complete circular V-band retainer • Unlike 2D model, this analysis is able to predict influence of band length, distance between roller pairs, forming length, springback, buckling and longitudinal strain development on the resulting product

Müller M, Barrans S, Blunt L
Centre for Precision Technologies
School of Computing and Engineering
University of Huddersfield

For more information see: Ultimate Axial Load Capacity of V-Section Band Clamps, submitted to Institute of Physics, 7th International Conference on Modern Practice in Stress and Vibration Analysis’ 2009

www.hud.ac.uk/researchfestival

This work is supported by: University of Huddersfield, Teconnex Ltd, Borg Warner Automotive