University of Huddersfield Repository

Mian, Naeem S., Fletcher, Simon, Longstaff, Andrew P., Myers, Alan and Pislaru, Crinela

Novel and Efficient Thermal Error Reduction Strategy For Machine Tool Performance Improvement

Original Citation

This version is available at http://eprints.hud.ac.uk/id/eprint/5226/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/
1. INTRODUCTION

CNC Machine tool
- Massive production
- Reduced timescales
- Accuracy

Customer satisfaction

2. THE PROBLEM

Volumetric error = $e_T + e_G + e_{NR}$

Scrap
Rework
Time waste

CNC Machine tool

Thermal error represents 70% of the total volumetric error

3. OBJECTIVES AND METHODOLOGY

- Prediction of Thermal behaviour
- Machine CAD simplifications

4. THERMAL ANALYSIS

4.1 EXPERIMENTAL MACHINE TESTING - ONLINE ANALYSIS

- Thermal Sensors
- Displacement Transducers
- Thermal Imaging

4.2 FINITE ELEMENT ANALYSIS (FEA) - OFFLINE ANALYSIS

- Experimental temperature and displacement profiles
- Simulated temperature and displacement profiles

Machine head
Tool
Machine's front view

70% to 86% correlation achieved in experimental and FEA simulated displacement results

5. RESULTS

Experimental temperature and displacement profiles

Simulated temperature and displacement profiles

6. NOVELTY

- Simplified machine CAD
- Accurate thermal coefficients
- FEA offline thermal assessment
- Quickly applicable to machines
- Reduce machine downtime
- Internal heating and varying Environment modelling
- Robust machine thermal assessment
- Long term ambient FEA models
- Long term stability

Thermal condition assessment
- Thermal imaging/Sensors
- Parameter correlation between
- FEA estimations/Actual temperature comparison
- FEA results/Actual machine data obtaining
- Thermal algorithms using existing approaches