Computing and Library Services - delivering an inspiring information environment

β-sultams-mechanism of reactions and use as inhibitors of serine proteases

Page, Michael I. (2004) β-sultams-mechanism of reactions and use as inhibitors of serine proteases. Accounts of Chemical Research, 37 (5). pp. 297-303. ISSN 0001-4842

Metadata only available from this repository.


β-Sultams are reactive sulfonyl analogues of -lactams and show enormous rate enhancements over analogous reactions of sulfonamides. N-Acyl -sultams undergo S-N rather than C-N fission, although -alkenyl substituents direct nucleophilic attack to the acyl center. They also inactivate serine enzymes such as elastase and -lactamase by sulfonylation of the active site serine. Structure-activity relationships are used to identify differences in transition state structures

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: (1) Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms; Addison-Wesley Longman: Harlow, U.K., 1997. Williams, A. Concerted Organic and Bio-organic Mechanisms; CRC Press: Boca Raton, FL, 1999. (2) Page, M. I. The Mechanisms of Reactions of â-Lactam Antibiotics. Adv. Phys. Org. Chem. 1987, 23, 165-270. Page, M. I. In The Chemistry of â-Lactams; Page, M. I., Ed.; Blackie: London, 1992; pp 79-100. Page, M. I. The Mechanism of Reactions of â-Lactam Antibiotics. Acc. Chem. Res. 1984, 17, 144-151. (3) Massova, I.; Mobashery, S. Molecular Bases for Interactions between â-Lactam Antiobiotics and â-Lactamases. Acc. Chem. Res. 1997, 30, 162-168. Matagne, A.; Dubus, A.; Galleni, M.; Fre` re, J.-M. The â-Lactamase Cycle: A Taste of Selective Pressure and Bacterial Ingenuity. Nat. Prod. Res. 1999, 16, 1-19. (4) Kice, J. L. Mechanisms and Reactivity in Reactions of Organic Oxyacids of Sulfur and their Anhydrides. Adv. Phys. Org. Chem. 1980, 17, 65-181. Gordon, I. M.; Maskill, H.; Ruasse, M. F. Sulfonyl Transfer Reactions. Chem. Soc. Rev. 1989, 18, 123-151. King, J. F.; Gill, M. S.; Klassen, D. F. Mechanisms of Reactions of Sulfonyl Compounds with Nucleophiles. Pure Appl. Chem. 1996, 68, 825- 830. (5) D’Roazario, P.; Smyth, R. L.; Williams, A. Evidence for a Single Transition States in the Intermolecular Transfer of a Sulfonyl Group between Oxyanion Donor and Acceptors. J. Am. Chem. Soc. 1984, 106, 5027-5034. (6) Laughlin, R. G. The Basicity of Aliphatic Sulfonamides. J. Am. Chem. Soc. 1967, 89, 4268-4271. (7) Chiarione, A.; Riche, C.; Loiseau, P.; Bonnafous, M.; Adam, Y. Structure de la Methyl-2-Diphenyl-3,4 Thiazetidine-1,2-Dioxyde- 1,1. Acta Crystallogr. 1985, C41, 1265-1267. (8) Baxter, N. J.; Laws, A. P.; Rigoreau, L. J. M.; Page, M. I. Reactivity and Mechanism in the Hydrolysis of â-Sultams. J. Am. Chem. Soc. 2000, 122, 3375-3385. (9) Hinchliffe, P. S.; Wood, J. M.; Davis, A. M.; Austin, R. P.; Beckett, R. P.; Page, M. I. Unusual Steric Effects in Sulfonyl Transfer Reactions, J. Chem. Soc., Perkin Trans. 2 2001, 1503-1505. (10) Courtesy of J. C. Jeffery, School of Chemistry, University of Bristol, England. Courtesy of B. Stensland, Preformulation and Biopharmaceutics, Solid State Analysis, AstraZeneca PAR & D, So¨ derta¨ lje, Sweden. (11) Terrier, F.; Kizilian, E.; Goumont, R.; Faucher, N.; Wakselman, C. R-Sulfonyl Carbanions: Combined Kinetic, Thermodynamic, and NMR Approaches for the Study of the Ionization of Benzyltriflones in Me2SO and H2O-Me2SO Mixtures. J. Am. Chem. Soc. 1998, 120, 9496-9503. (12) Baxter, N. J.; Laws, A. P.; Rigoreau, L.; Page, M. I. The Hydrolytic Reactivity of â-Sultams. J. Chem. Soc., Perkin Trans. 2 1996, 2245-2246. (13) King, J. F.; Rathore, R.; Lam, J. Y. L.; Gao, L. E. R.; Klassen, D. F. pH Optimisations of Nucleophilic Reactions in Water. J. Am. Chem. Soc. 1992, 114, 3028-3033. Wood, J. M.; Page, M. I. The Mechanism of Sulfonyl Transfer in Strained Cyclic Sulfonamides. Trends Heterocycl. Chem. 2002, 8, 19-34. (14) Buglass, A.; Tillett, J. G. Sultones and Sultams. In The Chemistry of Sulfonic Acids, Esters and their Derivatives; Patai, S., Rappoport, Z., Eds.; Wiley: Chichester, U.K., 1991; Chapter 19, pp 789-878. (15) Baxter, N. J.; Laws, A. P.; Rigoreau, L. J. M.; Page, M. I. Evidence for a Trigonal Bipyramidal Intermediate During Nucleophilic Substitution at a Sulfonyl Centre and for a Sulfonylium Cation in the Acid-Catalyzed Reaction. Chem. Commun. 1997, 2037-2038. (16) Webster, P.; Ghosez, L.; Page, M. I. The Hydrolysis of Azetidinyl/ Amidinium Salts. J. Chem. Soc., Perkin Trans. 2 1990, 805-811. Page, M. I. The Energetics of Intramolecular Reactions and Enzyme Catalysis. Philos. Trans. R. Soc. London, Ser. B 1991, 32, 149-156. (17) Proctor, P.; Gensmantel, N. P.; Page, M. I. The Chemical Reactivity of Penicillins. J. Chem. Soc., Perkin Trans. 2 1982, 1185-1192. Cox, R. A.; Yates, K. The Hydrolyses of Benzamides and Lactams in Aqueous Sulfuric Acid. Can. J. Chem. 1981, 59, 2853-2863. Page, M. I.; Laws, A P.; Slater, M. J.; Stone, J. R. Reactivity of â-Lactams and Phosphonamidates and Reactions with â-Lactamase. Pure Appl. Chem. 1995, 67, 711-717. (18) Beardsell, M.; Hinchliffe, P. S.; Wood, J. M.; Wilmouth, R. C.; Schofield, C. J.; Page, M. I. â-Sultams - A Novel Class of Serine Protease Inhibitors. Chem. Commun. 2001, 497-498. (19) Hinchliffe, P. S.; Wood, J. M.; Davis, A. M.; Austin, R. P.; Page, M. I. Structure-activity relationships in the inactivation of elastase by â-sultams. Org. Biomol. Chem. 2003, 1, 67-80. (20) Davis, A. M.; Proctor, P.; Page, M. I. Alcohol Catalysed Hydrolysis of Benzylpenicillin. J. Chem. Soc., Perkin. Trans. 2, 1991, 1213. (21) Baxter, N. J.; Laws, A. P.; Rigoreau, L. J. H.; Page, M. I. General Acid Catalysed Hydrolysis of â-Sultams Involves Nucleophilic Catalysis. Chem. Commun. 1999, 2401-2402. (22) Gensmantel, N. P.; Page, M. I. The Aminolysis of Penicillin Derivatives. J. Chem. Soc., Perkin Trans. 2 1979, 137-142. Morris, J. J.; Page, M. I. Buffer Catalysis in the Hydrazinolysis of Benzylpenicillin. J. Chem. Soc., Perkin Trans. 2 1980, 220-224. Proctor, P.; Page, M. I. Mechanism of â-Lactam Ring Opening in Cephalosporins. J. Am. Chem. Soc. 1984, 106, 3820-3825. (23) Rogne, O. Substituent effects on the kinetics of pyridine-catalysed hydrolysis of aromatic sulphonyl chlorides; Brønsted and Hammett correlations. J. Chem. Soc., Perkin Trans. 2 1972, 489-492. (24) Rogne, O. Rates of Reaction of Benzenesulphonyl Chloride with Some Nucleophiles. J. Chem. Soc. B 1970, 1056-1058. (25) Monjoint, P.; Guillot, G.; Laloi-Diard, M. Reaction of p-Nitrophenyl p-Toluenesulfonate with Nucleophilic Reagents. Phosphorus Sulfur 1976, 2, 192-197. (26) Wood, J. M.; Hinchliffe, P. S.; Laws, A. P.; Page, M. I. Reactivity and the Mechanisms of Reactions of â-Sultams with Nucleophiles. J. Chem. Soc., Perkin Trans. 2 2002, 938-946. (27) Kice, J. L.; Walters, C. A.; Burton, S. B. Mechanisms of substitution reactions at sulfonyl sulfur. IV. Catalysis of the hydrolysis of sulfonyl compounds by tertiary amines. J. Org. Chem. 1974, 39, 346-351. (28) Ahmed, N.; Tsang, W. Y.; Page, M. I. Acyl vs Sulfonyl Transfer in N-Acyl â-Sultams and 3-oxo-â-Sultams. Org. Lett. 2004, 6, 201- 203. (29) Wharton, C. W. The Serine Proteinases. In Comprehensive Biological Catalysis; Sinnott, M., Ed.; Academic Press: London, 1997; Vol. 1, Chapter 11, pp 345-379. (30) Underwood, D. J.; Green, B. G.; Chabin, R.; Mills, S.; Doherty, J. B.; Finke, P. E.; MacCoss, M.; Shah, S. K.; Burgey, C. S.; Dickinson, T. A.; Griffin, P. R.; Lee, T. E.; Swiderek, K. M.; Covey, T.; Westler, W. M.; Knight, W. B. Mechanism of Inhibition of Human Leucocyte Elastase by â-Lactams. Biochemistry 1995, 34, 14344-14355. (31) Migaud, M. E.; Wilmouth, R. C.; Mill, G. I.; Wayne, G. J.; McDonald, S. J. F.; Schofield, C. J. 5,5-Fused Thiopene ç-Lactams as Templates for Serine Protease Inhibition. Chem. Commun. 2002, 1274-1275. (32) Page, M. I.; Laws, A. P. The Mechanism of Catalysis and the Inhibition of â-Lactamases. Chem. Commun. 1998, 1609-1617. (33) Page, M. I.; Vilanova, B.; Layland, N. J. pH Dependence and Kinetic Solvent Isotope Effects on the Methanolysis of â-Lactams Catalysed by Class C â-Lactamase. J. Am. Chem. Soc. 1995, 117, 12092- 12095. (34) Page, M. I.; Hinchliffe, P. S.; Wood, J. M.; Harding, L. P.; Laws, A. P. Novel Mechanism of Inhibiting â-Lactamases by Sulfonylation using â-Sultams. Bioorg. Med. Chem. Lett. 2003, 13, 4489-4492. (35) Williams, A. Effective charge and transition state structure in solution. Adv. Phys. Org. Chem. 1991, 27, 1-55. AR0200899 â-Sultams Page
Depositing User: Sara Taylor
Date Deposited: 08 Feb 2008 12:48
Last Modified: 28 Aug 2021 10:38


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©