Search:
Computing and Library Services - delivering an inspiring information environment

The activity of the dinuclear cobalt-β-lactamase from bacillus cereus in catalysing the hydrolysis of β-lactams

Badarau, Adriana, Damblon, Christian and Page, Michael I. (2007) The activity of the dinuclear cobalt-β-lactamase from bacillus cereus in catalysing the hydrolysis of β-lactams. Biochemical Journal, 401. pp. 197-203. ISSN 0264-6021

Metadata only available from this repository.

Abstract

Metallo-b-lactamases are native zinc enzymes that catalyse the hydrolysis of b-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted b-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pKa 6.52±0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some b-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Biomolecular Sciences Research Centre
Related URLs:
References: 1 Fr`ere, J. M. (1995) β-Lactamases and bacterial resistance to antibiotics. Mol. Microbiol. 16, 385–395 2 Galleni, M., Lamotte-Brasseur, J., Rossolini, G. M., Spencer, J., Dideberg, O. and Fr`ere, J. M. (2001) Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45, 660–663 3 Fabiane, S. M., Sohi, M. K., Wan, T., Payne, D. J., Bateson, J. H., Mitchell, T. and Sutton, B. J. (1998) Crystal structure of the zinc-dependent β-lactamase from Bacillus cereus at 1.9A° resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37, 12404–12411 4 Orellano, E. G., Girardini, J. E., Cricco, J. A., Ceccarelli, E. A. and Vila, A. J. (1998) Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry 37, 10173–10180 5 Paul-Soto, R., Bauer, R., Fr`ere, J. M., Galleni, M., Meyer-Klaucke, W., Nolting, H., Rossolini, G. M., de Seny, D., Hernandez-Valladares, M., Zeppezauer, M. and Adolph, H. W. (1999) Mono- and binuclear Zn2+-β-lactamase. Role of the conserved cysteine in the catalytic mechanism. J. Biol. Chem. 274, 13242–13249 6 Concha, N. O., Rasmussen, B. A., Bush, K. and Herzberg, O. (1996) Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4, 823–836 7 Paul-Soto, R., Hernadez-Valladares, M., Galleni, M., Bauer, R., Zeppezauer, M., Fr`ere, J. M. and Adolph, H. W. (1998) Mono- and binuclear Zn2+-β-lactamase from Bacteroides fragilis: catalytic and structural roles of the zinc ions. FEBS Lett. 438, 137–140 8 Yang, Y., Keeney, D., Tang, X., Canfield, N. and Rasmussen, B. A. (1999) Kinetic properties and metal content of the metallo-β-lactamase CcrA harboring selective amino acid substitutions. J. Biol. Chem. 274, 15706–15711 9 Wang, Z., Fast, W. and Benkovic, S. J. (1999) On the mechanism of the Bacteroides fragilis metallo-β-lactamase. Biochemistry 38, 10013–10023 10 Laraki, N., Franceschini, N., Rossolini, G. M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Fr`ere, J. M. and Galleni, M. (1999) Biochemical characterisation of the Pseudomonas aeruginosa 101/1477 metallo-β-lactamase IMP-1 produced by Escherichia coli. Antimicrob. Agents Chemother. 43, 902–906 11 Haruta, S., Yamaguchi, H., Yamamoto, E. T., Eriguchi, Y., Nukaga, M., O’Hara, K. and Sawai, T. (2000) Functional analysis of the active site of a metallo-β-lactamase proliferating in Japan. Antimicrob. Agents Chemother. 44, 2304–2309 12 Concha, N. O., Janson, C. A., Rowling, P., Pearson, S., Cheever, C. A., Clarke, B. P., Lewis, C., Galleni, M., Fr`ere, J. M., Payne, D. J. et al. (2000) Crystal structure of the IMP-1 metallo-β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39, 4288–4298 13 Garcia-Saez, I., Hopkins, J., Papamicael, C., Franceschini, N., Amicosante, G., Rossolini, G. M., Galleni, M., Fr`ere, J. M. and Dideberg, O. (2003) The 1.5A° structure of Chryseobacterium meningosepticum zinc β-lactamase in complex with the inhibitor, D-captopril. J. Biol. Chem. 278, 23868–23873 14 Crowder, M. W. and Walsh, T. R. (1999) Structure and function of metallo-β-lactamases. Recent Res. Dev. Antimicrob. Agents Chemother. 3, 105–132 15 Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H. W., Zeppezauer, M., Rossolini, G. M., Amicosante, G., Fr`ere, J. M. and Galleni, M. (1997) Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 36, 11534–11541 16 Crawford, P. A., Yang, K. W., Sharma, N., Bennett, B. and Crowder, M. W. (2005) Spectroscopic studies on cobalt(II)-substituted metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria . Biochemistry 44, 5168–5176 17 Rasmussen, B. A. and Bush, K. (1997) Carbapenem hydrolysing β-lactamases. Antimicrob. Agents Chemother. 41, 223–232 18 Felici, A., Amicosante, G., Oratore, A., Strom, R., Ledent, P., Joris, B., Fanuel, L. and Fr`ere, J. M. (1993) An overview of the kinetic parameters of class B β-lactamases. Biochem. J. 291, 151–155 19 Felici, A. and Amicosante, G. (1995) Kinetic analysis of extension of substrate specificity with Xanthomonas maltophilia , Aeromonas hydrophila, and Bacillus cereus metallo-β-lactamases. Antimicrob. Agents Chemother. 39, 192–199 20 Crowder, M. W., Walsh, T. R., Banovic, L., Pettit, M. and Spencer, J. (1998) Overexpression, purification, and characterization of the cloned metallo-β-lactamase (L1) from Stenotrophomonas maltophilia . Antimicrob. Agents Chemother. 42, 921–926 21 Mercuri, P. S., Bouillenne, F., Boschi, L., Lammote-Brasseur, J., Amicosante, G., Devreese, B., Van Beeumen, J., Fr`ere, J. M., Rossolini, G. M. and Galleni, M. (2001) Biochemical characterization of the FEZ-1 metallo-β-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli. Antimicrob. Agents Chemother. 45, 1254–1262 22 Carfi, A., Du´ee, E., Galleni, M., Fr`ere, J. M. and Dideberg, O. (1998) 1.85A° resolution structure of the zinc (II) β-lactamase from Bacillus cereus. Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 313–323 23 Carfi, A., Duee, E., Paul-Soto, R., Galleni, M., Fr`ere, J. M. and Dideberg, O. (1998) X-ray structure of the Zn(II) β-lactamase from Bacteroides fragilis in an orthorhombic crystal form. Acta Crystallogr. Sect. D Biol. Crystallogr. 54, 45–57 24 Concha, N. O., Rasmussen, B. A., Bush, K. and Herzberg, O. (1997) Crystal structure of the cadmium- and mercury-substituted metallo-β-lactamase from Bacteroides fragilis. Protein Sci. 6, 2671–2676 25 Paul-Soto, R., Zeppezauer, M., Adolph, H. W., Galleni, M., Fr`ere, J. M., Carfi, A., Dideberg, O., Wouter, J., Hemmingsen, L. and Bauer, R. (1999) Preference of Cd(II) and Zn(II) for the two metal sites in Bacillus cereus β-lactamase II: a perturbed angular correlation of γ -rays (PAC) spectroscopy study. Biochemistry 38, 16500–16506 26 Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Fr`ere, J. M. and Dideberg, O. (1995) The 3-D structure of a zinc metallo-β-lactamase from Bacillus cereus reveals a new type of protein fold. EMBO J. 14, 4914–4921 27 de Seny, D., Heinz, U., Wommer, S., Kiefer, M., Meyer-Klaucke, W., Galleni, M., Fr`ere, J. M., Bauer, R. and Adolph, H. W. (2001) Metal ion binding and coordination geometry for wild type and mutants of metallo-β-lactamase from Bacillus cereus 569/H/9 (BcII); a combined thermodynamic, kinetic and spectroscopic approach. J. Biol. Chem. 276, 45065–45078 28 Wommer, S., Rival, S., Heinz, U., Galleni, M., Fr`ere, J. M., Franceschini, N., Amicosante, G., Rasmussen, B., Bauer, R. and Adolph, H. W. (2002) Substrate activated zinc binding of metallo-β-lactamases; physiological importance of the mononuclear enzymes. J. Biol. Chem. 277, 24142–24147 29 Crowder, M. W., Wang, Z., Franklin, S. L., Zovinka, E. P. and Benkovic, S. J. (1996) Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis. Biochemistry 35, 12126–12132 30 Fast, W., Wang, Z. and Benkovic, S. J. (2001) Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-β-lactamase from Bacteroides fragilis. Biochemistry 40, 1640–1650 31 Bounaga, S., Laws, A. P., Galleni, M. and Page, M. I. (1998) The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem. J. 331, 703–711 32 Auld, D. S. (1995) Removal and replacement of metal ions in metallopepatidases. Methods Enzymol. 248, 228–24232a Maret, W. and Vallee, B. L. (1993) Cobalt as probe and label of proteins. Methods Enzymol. 226, 52–71 33 Vila, A. J. and Fernandez, C. O. (1997) Alkaline transition of Rhus vernicifera stellacyanin, an unusual Blue copper protein. Biochemistry 36, 10566–10570 33a Guo, J. Q., Wang, S. K., Dong, J., Qiu, H. W., Scott, R. A. and Giedroc, D. P. (1995) X-ray and visible absorption spectroscopy of wild-type and mutant T4 gene 32 proteins: His61, not His81 is the non-thiolate zinc ligand. J. Am. Chem. Soc. 117, 9437–9440 34 Bertini, I., Johnsson, B. H., Luchinat, C., Pierattelli, R. and Vila, A. J. (1994) Strategies of signal assignments in paramagnetic metalloproteins. An NMR investigation of the thiocyanate adduct of the cobalt (II) substituted human carbonic anhydrase II. J. Magn. Reson. Ser. B 104, 230–239 35 Oz, G., Pountney, D. L. and Armitage, I. M. (1998) NMR spectroscopic studies of I=1/2 metal ions in biological systems. Biochem. Cell Biol. 76, 223–234 36 Bennet, B. and and Holz, R. C. (1997) EPR studies on the mono- and dicobalt(II)-substituted forms of the aminopeptidase from Aeromonas proteolytica . Insight into the catalytic mechanism of dinuclear hydrolases. J. Am. Chem. Soc. 119, 1923–1933 37 Bauer, R., Adolph, H. W., Andersson, I., Danielsen, E., Formicka, G. and Zeppezauer, M. (1991) Coordination geometry for cadmium in the catalytic zinc site of horse liver alcohol dehydrogenase: studies by PAC spectroscopy. Eur. Biophys. J. 20, 215–221 38 Bicknell, R., Knott-Hunziker, Y. and Waley, S. G. (1983) The pH-dependence of class B and class C β-lactamases. Biochem. J. 213, 61–66 39 Baldwin, G. S., Edwards, G. F., Kiener, P. A., Tully, M. J., Waley, S. G. and Abraham, E. P. (1980) Production of a variant of β-lactamase II with selectively decreased cephalosporinase activity by a mutant of Bacillus cereus 569/H/9. Biochem. J. 191, 111–116 40 Wang, Z. and Benkovic, S. J. (1998) Purification, characterization, and kinetic studies of a soluble Bacteroides fragilis metallo-β-lactamase that provides multiple antibiotic resistance, J. Biol. Chem. 273, 22402–22408 41 Myers, J. L. and Shaw, R. W. (1989) Production, purification and spectral properties of metal-dependent β-lactamase from Bacillus cereus. Biochim. Biophys. Acta 995, 264–272 42 Garrity, J. D., Bennet, B. and Crowder, M. W. (2005) Direct evidence that the reaction intermediate of metallo-β-lactamase L1 is metal bound. Biochemistry 44, 1078–1087 43 Crawford, P. A., Sharma, N., Chandrasekar, S., Sigdel, T., Walsh, T. R., Spencer, J. and Crowder, M. W. (2004) Over-expression, purification, and characterization of metallo-β-lactamase ImiS from Aeromonas veronii bv. sobria . Protein Expression Purif. 36, 272–279 44 Bicknell, R. and Waley, S. G. (1985) Cryoenzymology of Bacillus cereus β-lactamase II. Biochemistry 24, 6876–6887 45 Bicknell, R., Schaffer, A, Waley, S. G. and Auld, D. S. (1986) Changes in the coordination geometry of the active-site metal during catalysis of benzylpenicillin hydrolysis by Bacillus cereus β-lactamase II. Biochemistry 25, 7208–7215 46 Badarau, A. (2006) Reactivity and inhibition of metallo-β-lactamases, Ph.D. Thesis, University of Huddersfield, Huddersfield, U.K. 47 Damblon, C., Jensen, M., Ababou, A., Barsukov, I., Papamicael, C., Schofield, C. J., Olsen, L., Bauer, R. and Roberts, G. C. (2003) The inhibitor thiomandelic acid binds to both metal ions in metallo-β-lactamase and induces positive cooperativity in metal binding. J. Biol. Chem. 31, 29240–29251 48 Rasia, R. M. and Vila, A. J. (2004) Structural determinants of substrate binding to Bacillus cereus metallo-β-lactamase. J. Biol. Chem. 279, 26046–26051
Depositing User: Sara Taylor
Date Deposited: 04 Feb 2008 12:21
Last Modified: 07 Apr 2018 20:15
URI: http://eprints.hud.ac.uk/id/eprint/507

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©