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Abstract

In this paper an object-centric perspective on planning domain definition is presented along with

an overview of GIPO (graphical interface for planning with objects), a supporting tools environ-

ment. It is argued that the object-centric view assists the domain developer in conceptualizing the

domain’s structure, and we show how GIPO enables the developer to capture that conceptualiza-

tion at an appropriate and matching conceptual level. GIPO is an experimental environment

which provides a platform for exploring and demonstrating the range and scope of tools required

to support the knowledge engineering aspects of creating and validating planning systems, both

for classical pre-condition planning and hierarchical planning. GIPO embodies the object-

centric view, leading to a range of benefits typically associated with object-oriented methods in

other fields of software engineering such as highly visual development methods, code reuse and

efficient, reliable development.

1 Introduction

This article postulates an object-centric medium for the formulation of planning domain defini-

tions, and describes GIPO (graphical interface for planning with objects), a tools environment

which embodies this approach. Our work is concerned with simplifying the task faced by know-

ledge engineers when developing problem and domain definitions suitable for use with domain-

independent planning software. The aspect of knowledge engineering supported by the object-

centric approach is that of the formulation of the problem scenario. Its use presupposes that a

problem scenario appropriate for the deployment of domain-independent planning technology

has already been identified and analysed, but has not been formally encoded in a planning speci-

fication language. Formulating the domain model normally requires great skill and understanding

of the specification language.

GIPO is an experimental research environment, used both as a research platform and in educa-

tion. It has been used to support teaching of artificial intelligence (AI) planning at undergraduate

level. The use in education has motivated the development of a succession of revisions each intro-

ducing higher level conceptualizations and visualization of planning domain knowledge. Our

experience using GIPO in teaching indicates that it simplifies the task of grasping the structure

of existing planning domains and the task of creating and validating new domain definitions

(McCluskey & Simpson, 2005). In order to use GIPO one must conceptualize the planning pro-

blem as involving a set of objects, where each object is a member of one type — here called the

object’s ‘sort’. For each sort, a set of states is specified such that each object of that sort must

occupy exactly one of the states. Additionally, objects of each sort may have a list of properties

describing them. Consequently, domains can be formulated by defining the possible transitions

that can occur within each sort and the properties of each sort Then plan execution involves

executing actions which change the state and properties of these objects. This is illustrated in
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the Dock Worker Robots (DWR) example, a domain in which automated cranes and robot trucks

manage and transport containers around a shipping dock port (for a detailed description of the

DWR example see Ghallab et al., 2004). The domain can be modelled by describing the changes

that can happen to the object sorts, that is, the robots, the containers and the cranes. Tradition-

ally, creating specifications for AI planning domains involved the author focusing on the actions

available to solve given problem instances. These actions are modelled by parameterized struc-

tures called action (or operator) schema (we use the term actions in this paper). In the object-

centric view, the focus is on the possible significant changes of state that the objects populating

the problem scenario can make. In the DWR world the focus changes from considering, for exam-

ple, how the ‘lifting’ of the robot arm may be specified to describing the states of the robot arm as

‘free’ or ‘busy’, and the states of the containers as ‘lifted’ or ‘stacked on a container pile’ or

‘loaded on a ship’. Action definitions are then synthesized from the component descriptions of

the changes that occur to the individual objects. In this way, the object-centric method provides

guidance on how the author can create action definitions. In this manner the domain definition

task has, we believe, been decomposed into smaller more manageable sub-tasks. The object-

centric view is also capable of being captured by state machine representations which can be

a useful aid in understanding.

A method for formulating domain definitions based on the object-centric idea was introduced

by McCluskey et al. (1996); McCluskey & Porteous, (1997), and was linked to the development of

the definition language OCL, later refined into OCLh (McCluskey & Kitchin, 1998). The object-

centric approach has its roots in OCL but is capable of being lifted above the particular language

that the definition is encoded in. Tool support enables the domain definition to be translated into

other languages, principally PDDL, the dominant language used for the communication of

domain definitions in AI planning (Ghallab et al., 1998; Fox & Long, 2001).

The current version of GIPO has two major operating modes. The standard mode allows the

creation of classical planning domains. The internal representation allows the capture of domains

of the complexity of those describable in PDDL version 1.7 without the use of any hierarchical

task network (HTN) features. The second major mode enables HTN planning and is supported

by the HyHTN planner (McCluskey et al., 2003). In both modes the tool set contains graphical

editors to assist in the creation of the domains, built-in planners to solve developed problems

and animators to graphically inspect the plans produced. Manual steppers are provided by

GIPO in both modes to assist in dynamically validating domain specifications. The steppers allow

the user to create plans for well-understood example problems and inspect points of failure in

cases where no plan (or no correct plan) is generated by the available planners. GIPO has an

open API to link public domain AI planning engines to the system. Planning systems that process

PDDL domain and problem descriptions from a command line interface can be executed by

planner-specific scripts from within the GIPO environment. After a plan is generated it is returned

to GIPO and loaded into the plan animator allowing the solution to be visualized. We aim to

develop GIPO in step with the expressiveness of standard AI planner domain description

languages to preserve this external planner link.

This paper presents an introduction to the underlying philosophy of the ‘object-centric’ view

and shows how it supports a visual state machine type representation. We show the essential

structure of the state machine representation and demonstrate how it maps to PDDL domain

definitions. In the second part of the paper, an overview of the scope of the GIPO tool set is

presented and we show how it capitalizes on the underlying ‘object-centric’ view.

2 The object-centric view

2.1 Ontological assumptions of the object view

The basic assumption of the object view is that within any problem scenario that presents a plan-

ning problem there will be objects that are changed in some way during the execution of plans.
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This set of dynamic objects can be partitioned into subsets such that each member of a subset is

distinguishable, relative to the planning task, by name only. Each object belonging to such a sub-

set is capable of making the same changes. For each of these dynamic subsets of objects, which we

call sorts (deriving from many-sorted logics; Manzano, 1993) the primary changes they undergo

can be described by identifying named states that they change between. Additionally, for each

such sort there may be properties, which are functions on an object’s state, that characterize the

sort’s individuals. These properties may be static in the sense that they do not change during

plan execution or they may be dynamic and are subject to change. Changes either to an object’s

state or to its dynamic properties are brought about by actions that can be controlled by the plan-

ning executive. A change may be accompanied by a constraint that requires the properties of the

object to meet some condition. The distinction between what is classified as a named state and

what as a property is to some extent pragmatic. In many cases the distinction will be intuitively

obvious. A ‘robot truck’ may be described as having states ‘available’ or ‘out of service’ but

have the property of being located. Factoring out properties of objects allows for a more succinct

state machine representation of an object’s ‘life history’ as described in the following text.

Given the above categorization of planning domain scenarios, we can represent the possible

changes objects may make during plan execution with a form of finite state machine. Consider

an object o1 of sort O capable of being in state s1 or s2. Objects of sort O have a property P

that can take on the values p1, p2 or p3. Let us assume that an object of sort O can change

between states s1 and s2 by performing action a1, and between s2 and s1 by performing action

a2, and that during these changes the property P does not change. Such a scenario could be

depicted by three disconnected state machines. Further, if we allow action a3 to change the pro-

perty P from p1 to p2 or from p2 to p3 or from p3 to p1, the three connected state machines could

be shown as in Figure 1. If we have multiple objects of sort O then their potential changes would

each be shown on a structurally identical state machine. Such forests of state machine diagrams

are clearly unwieldy but they can be simplified into a compact form: we can use one diagram to

represent each object of the same sort, and we can remove the duplication resulting from different

property values. The result of such simplification allows us to represent the same information in

the state machine shown in Figure 2(a), where the constraint on action a3 is given by the relation,

next(p1,p2),next(p2,p3),next(p3,p1). In this diagram, we present along side the abstract machine

a possible realization within the DWR domain where we have robots that require to be enabled

before they can move between adjacent locations. The arrows labelled only by action names are

assumed to leave properties of the objects unchanged. The ‘abstract state machine’ diagrams

form the basis of the history view of planning domains. We call such diagrams ‘object life history

diagrams’. The propositional description of the domain can be derived from the diagrams.

2.2 Deriving propositional descriptions from state diagrams

Propositional descriptions of domains may be easily derived from abstract state machines. The

described domain fragment and shown in Figure 2(a) supports two PPDL types o and p for the

dynamic objects and their properties. The predicates are then formed to identify the states of

Figure 1 State machine view
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the dynamic objects and to associate each object with the current value of its property. The pro-

perty P is given some appropriate name and a type chosen for its potential values. In this example,

the name and type are ‘prop’ and ‘p’, respectively. The next constraint, which limits the range of

property changes, is defined by instances of the ‘next’ predicate. In the translations that follow we

show both the translation of the abstract example and the corresponding example drawn from the

DWR domain.

In this way we see that thinking of the domain’s dynamic objects as embodying state machines has

given us the propositional descriptions (Listing 1). The action descriptions also follow as easily.

For the actions such as a1 and a2 that only involve state changes the action description simply

requires a precondition that the object is in the source state and has the effect that the object is

asserted to be in the target state and no longer in the source state. Listing 2 shows the PDDL defi-

nition for the actions (actions) a1 and enable from DWR.

Actions involving property changes, such as a3 (Listing 3), in addition to referencing the state

predicate in the precondition also require that the object’s property prop has a value that appears

in the constraint clause next. The effect list retracts that value of the property and asserts the new

value as dictated by the next predicate. The instances of the next predicate are given in PDDL as

part of a problem definition.

Figure 2 Abstract state machine view (a), Realization in DWR domain (b)

(:types o p) (:types robot location)

(:predicates (:predicates
(s1 ?o1 - o) (disabled ?r1 - robot)
(prop ?o1 - o ?p1 - p) (location ?r1 - robot ?loc1 - location)
(s2 ?o1 - o) (enabled ?r1 - robot)
(next ?p1 - p ?p2 - p) (adjacent ?loc1 - location ?loc2 - location)

) )

Listing 1 Propositions and types

(:action a1 (:action enable
:parameters ( ?O - o) :parameters ( ?R - robot)
:precondition :precondition

(s1 ?O) (disabled ?R)
:effect (and :effect (and

(not (s1 ?O)) (not (disabled ?R))
(s2 ?O) (enabled ?R)

) )
) )

Listing 2 Simple state changing actions

(:action a3 (:action move
:parameters (?O - o ?PA - p ?PB - p) :parameters (?R - robot ?LA ?LB - location)
:precondition (and :precondition (and

(s2 ?O) (enabled ?R)
(prop ?O ?PA) (location ?R ?LA)
(next ?PA ?PB) (adjacent ?LA ?LB)

) )
:effect (and :effect (and

(not (prop ?O ?PA)) (not (location ?R ?LA))
(prop ?O ?PB) (location ?R ?LB)

) )
) )

Listing 3 Actions that change property values
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At this level it is a simple extension to allow an action to bring about both state changes and

property changes. It is also straightforward to allow objects to have multiple properties.

2.3 Combining object state machines

Domain definitions normally involve changes to objects drawn from different dynamic sorts, and

the changes made in the life history of one object sort may be dependent on coordinating with the

states and changes made to some other object sorts. We will illustrate the ways in which state

machines may combine with reference to Figure 3 which introduces a second state machine for

objects of sort O2. This state machine is structurally identical to that in Figure 2. Again, we

also give an example drawn from the DWR domain. We describe variations on three different

combinations where coordination among state machines occur.

1. Prevail requires that for an object of sort O to make a transition, some object, normally

of some other sort O2, must be in a required state, and remains in that state during action

execution.

2. Necessary combinations require two or more objects, normally of different sorts to make tran-

sitions simultaneously.

3. Conditional combinations require one object, if in the appropriate state, to make a transition

only if a second object, normally of a different sort, makes a specified transition.

2.3.1 Prevail combinations

In Figure 3(a) the action a1 for sort O may require that an object instance of sort O2 is in state s21

and remains in that state.

This requires a parameter for an object of type O2 to be added to the action definition and also

that the predicate asserting that the object instance? O2 is in state s21 is added to the actions

precondition as shown in Listing 4.

The prevail condition can be more complex in that the connection may set up an enduring asso-

ciation between the object of sort O and the object of sort O2. This, for example, could happen in

(:action a1 (:action load
:parameters ( ?O - o, ?02 o2) :parameters (?C - container, ?R - robot)
:precondition (and :precondition (and

(s1 ?O) (held ?C)
(s21 ?O2) (disabled ?R)

) )
:effect (and :effect (and

(not (s1 ?O)) (not (held ?C))
(s2 ?O) (loaded ?C)

) )
) )

Listing 4 Actions requiring a prevail combination

Figure 3 Multi sort state machines - abstract (a) DWR realization (b)
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the DWR domain when a container is loaded onto a robot truck. It must be remembered onto

which truck the container is loaded so that it can eventually be unloaded from the same truck.

The association needs to be remembered in all the states reachable as a result of performing the

action until such time that the association is explicitly ended. In the DWR example the unload

action will explicitly end the association. To capture such associations diagrammatically we can

add connecting arrows suitably annotated to show the intention, as in Figure 4, and this is

what is done in the object life history editor (OLHE) of GIPO. In terms of the propositional

code for the resulting action a1, the association is captured by adding an extra argument to the

target state of the action. In fact an extra argument will be added to all states reachable from

the action and removed only when an action explicitly ends the association. In this example the

state predicate for the state s2 has been modified to include an argument for a value of type

O2. This definition of the state predicate replaces the old one and must be used in all references

to state s2 (Listing 5).

There are other features that can be present in a prevail condition. For example, the properties

of the connected objects may be required to be coordinated in some way, and there may also be a

need for multiple instances of object of sort O2 to be associated with the action. In the DWR

example above, the properties of ‘location’ for the container and robot would be required to

have the same value. How we deal with such elaborations is fully described in the GIPO manual,

but essentially it involves annotating the arrows showing the connection between actions

and states.

2.3.2 Necessary combinations

A second major way in which the actions of differing object sorts may need to be coordinated is

where transitions from differing sorts both refer to the same action. It may, for example, be the

case that both actions a1 and a21 are required to occur together. From the perspective of the plan-

ning executive they may refer to the same action. This is easily accomplished at the propositional

level where the bodies of the two distinct actions are combined into a single description and the

result given a common action name (Listing 6).

Figure 4 Multi sort state machines showing prevail connection. Abstract (a) DWR (b)

(:action a1 (:action load
:parameters (?O - o, ?02 - o2) :parameters (?C - container, ?R - robot)
:precondition (and :precondition (and

(s1 ?O) (held ?C)
(s21 ?O2) (disabled ?R)

) )
:effect (and :effect (and

(not (s1 ?O)) (not (held ?C))
(s2 ?O ?O2) (loaded ?C ?R)

) )
) )

Listing 5 Actions requiring prevail combinations with remembered association
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A second example might be where the self-loop transitions a3 and a23, as in Figure 4, are required

to occur together. Both have the property changing restriction that requires their declared property

‘prop’ to change value as dictated by the ‘next’ propositional restriction. In terms of the DWR

example we could require that the transport and move actions occur together, and the container

and robot to make the same change in location. We show such restrictions on the diagrams by

using double-headed arrows connecting the specified transitions. As with prevail conditions, neces-

sary conditions can be further elaborated to allow associations to be created and ended and also to

allow the properties of the connected objects to be required to match in some way.

2.3.3 Conditional combinations

Conditional combinations occur where the primary transition is joined with a secondary such that

the primary transition may occur without the secondary but not the secondary without the

primary. If the above-described connection between a1 and a2 was a conditional combination

rather than a necessary combination, the resulting action would be as seen in Listing 7.

The conditional combination requires that every object capable of making the secondary transi-

tion, that is, where the precondition is met, must make the transition to the new state. The second-

ary transition cannot be made if there is no accompanying object making the primary transition.

In the DWR example, the connections between the ‘transport’ action of the container and ‘move’

action of the robot are most plausibly treated as a conditional combination. The robot may move

without any container being loaded, whereas the container may only be transported once loaded

on a robot. The full move action (automatically generated by GIPO) with the restriction that the

robot can only move to adjacent locations is shown in Listing 8.

(:action a1 (:action a21
:parameters ( ?O - o) :parameters ( ?O2 - o2)
:precondition (and :precondition (and

(s1 ?O) (s21 ?O2)
) )
:effect (and :effect (and

(not (s1 ?O)) (not (s21 ?O2))
(s2 ?O) (s22 ?O2)

) )
) )

becomes

(:action a1
:parameters ( ?O - o ?O2 -o2)
:precondition (and

(s1 ?O)
(s21 ?O2)

)
:effect (and

(not (s1 ?O))
(not (s21 ?O2)
(s2 ?O)
(s22 ?O2)

)
)

Listing 6 Action requiring necessary combinations

(:action a1
:parameters ( ?O - o)
:precondition

(s1 ?O)
:effect (and

(not (s1 ?O))
(s2 ?O)
(forall (?O2 - o2)

(when (s21 ?O2)
(and

(not (s21 ?O2)
(s22 ?O2)))))

)
)

Listing 7 Action requiring conditional coordination
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3 The GIPO environment

Our intention in creating the GIPO Environment is not simply to develop a tool for the creation

of planning domains in the internal object-centric representation language, but to promote the

tool as a modelling tool irrespective of the final target language. The overall architecture of the

environment is shown in Figure 5. Central to GIPO is the object-centric internal representation

of domains which is manipulated by all major tool elements. The environment contains a range

of domain acquisition tools and associated static validation routines to promote the accuracy of

the formulation. The global static validation tool can be used to report on likely faults and omis-

sions in the model. Once a model appears to be acceptable the plan stepper and plan animator,

with the associated internal planners, can be used to further dynamically check the model. To

enable GIPO to be used as a general domain modelling tool we have developed translators

between our internal language OCLh and PDDL (Simpson et al., 2000). We also provide an

API to enable external planning systems to interface to the tools to provide scope for testing

and fielding alternative planning algorithms to those internal to GIPO. Currently the interface

allows planners which can input OCL or typed and optionally conditional PDDL. As an example,

we have successfully tested the embedding of FF version 2.3 (Hoffmann, 2000) and LPG version

2.1 (Gerevini & Serina, 2002) into GIPO to allow running the planners on selected problems and

viewing output in tools such as the plan animator. There is no requirement to amend any of the

distributed code for third party planners: pre- and post-processing scripts take care of differences

among individual systems.

3.1 Initial domain definition within GIPO

GIPO provides a range of graphical editors to enable the initial creation of domain definitions. To

use the basic editors the user follows the ‘Domain Definition Methodology’ as presented in the

GIPO tutorials. These basic editors closely follow the structure of domains expressed in OCL

or OCLh, where the user must first name the classes of objects which can participate in the pro-

blem domain. The user, in sequence, defines the predicates that are used to describe object

instances, and defines object class states, which characterize the legal combinations of predicates

that may be used to describe object instances. The concluding steps are to define the domain

actions and HTN methods, if appropriate. Problem instances can then be defined and dynamic

domain testing carried out.

The basic method of domain editing, although removing the need to have a deep understanding

of the domain formulation at a textual level, has been superceded by the OLHE as described in

the next subsection. A major limitation of the basic method is that it does not naturally give

any guidance as to how the appropriate predicates should be chosen to describe the object types

in the domain. To provide a rationale for the choice of predicates, the user needs to be provided

(:action move
:parameters ( ?R - robot ?L1 - location ?L2 - location)
:precondition

(enabled ?R)
(rLocation ?R ?L1)
(adjacent ?L1 ?l2)

:effect (and
(not (rLocation ?R ?l1))
(rLocation ?R ?L2)
(forall (?C - container)

(when (and
(loaded ?C ?R)
(cLocation C? ?L1))

(and
(not (cLocation ?C ?L1)

(cLocation ?C ?L2)))))
)

)

Listing 8 DWR action requiring conditional connection
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with a guide to the potential role that the predicates can play in the description of the objects.

Creating object life histories focuses the user on such roles, rather than on the predicates required

to describe them.

3.2 Object life histories in GIPO

The OLHE allows the user to draw state machines that describe the domain’s dynamic object

classes. GIPO then automatically generates the domain definition from those diagrams.

In Figure 6(a) we show the state machine for the crane as modelled in the DWR example. States

are shown in rectangles with appropriate icons and state names, where as state transitions are

shown as roundtangles and labelled with the name of an action that would bring about the change

in state as shown by the transition arrows. The figure shows that a crane is in one of two

states and that there are two different actions that can trigger state changes from either state to

the other.

In Figure 6(b) we show the robot state machine and show how we diagrammatically

represent the ability of a robot to change location by driving along the dock track. The

‘moveTo’ and ‘takeTo’ transitions are property changing transitions, which are distinguished

from other transitions by colour. When a robot makes one of these transitions, it will change

property value — in this case the location of the robot. Viewing the property inspector in the

editor (Figure 7) reveals the properties associated with the objects and any constraints placed

on property changes.

Figure 5 Architectural breakdown of GIPO

Figure 6 DWR crane life history (a) DWR robot life history (b)
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An indication of how the connections are shown between the state machines for the different

dynamic sorts is given in Figure 8, where the complete model for the DWR domain is presented.

3.3 Scaling to large domains

Using the basic OHLE, designing a large domain specification at the level of charting every object

transition and all connections among them is still a complex task. We do believe, however, that

the visualizations greatly expedite the task of domain definition. To assist further in providing

visualizations that are easy to grasp, we provide features such as the ability to selectively view

part of the emerging domain and switch on and off connections linking the different sort state dia-

grams. More importantly, to aid both visualization and reuse, GIPO provides methods to allow

some of the complexity to be encapsulated in higher order structures. Such higher order structures

form ‘packages’. We need this both to simplify diagrams to allow the essential structure of the

domain to be more easily envisaged, and to allow for reuse of complex but often repeated struc-

tural elements. We require reuse for different object types within the same domain and across mul-

tiple domains. GIPO provides mechanisms to allow domain developers to isolate diagrams which

may be formulated into package structures. These provide a public interface to private substruc-

tures and store these in a library for reuse. Packages are used in the completed DWR model as

shown in Figure 8. In this diagram the states of the container while on a stack are encapsulated

in the package ‘onStack’.

By constructing complex state machines and showing how action transitions coordinate, com-

plete domain definitions can be built up. The textual representation of the domain is generated

automatically from the diagram. To produce a testable domain all the user needs do is to add

Figure 7 Property inspector

Figure 8 Screen-shot of GIPO editing DWR domain
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the information to create problem instances. GIPO provides support for this in the ‘Task Editor’.

The user is presented with lists of predicates defining the possible states of each object class and is

allowed to select possible values to instantiate both initial and goal states for tasks. This process is

shown in Figure 9.

3.4 Opmaker

To lower the threshold of prior knowledge required to develop planning domain models GIPO

incorporates an action induction process, called opmaker (the reader is referred to McCluskey

et al. (2002) for a more detailed description and evaluation of the tool). This tool is aimed at

the knowledge engineer with good domain knowledge but weaker general knowledge of AI plan-

ning. Opmaker requires as input an initial structural description of the domain along with a well-

understood training problem accompanied by an action sequence adequate to solve the training

problem. In particular we assume that the modeller’s partial construction of the domain definition

has reached the stage where there exists at least a class hierarchy, predicate and state definitions.

This may have been done using either the basic editors of GIPO or by partially describing the

domain using the OLHE.

To run Opmaker the user must specify the training problem, using the task editor (see Figure 9).

A task specification defines an initial state for every object in the problem and the desired state of

a subset of these objects as the goal state to be achieved. The user now supplies opmaker with the

training sequence of actions. An action is simply the chosen name for the action followed by the

names of all objects that participate in the application of the action. A good sequence of actions

would ideally include instances of all actions required in the domain, though this is not required

by opmaker; the action set can be built up incrementally using different problem instances. A

snapshot of an element of the dialogue carried out by opmaker to help infer action structure is

shown in Figure 10.

The strategy opmaker uses relies on the structural knowledge within the partial domain defini-

tion already specified. In particular for each type of object in the domain there will exist an

abstract specification of each possible state that objects of that sort can be in. Opmaker works

by stepping through the training example, advancing the state of each referenced object from

the initial state to the next legal state by deducing the possible legal states of the affected objects

referenced in the training action step. When there are multiple possible legal states that an object

may advance to, the user is queried to determine which of the possible states the object should be

in. This is shown in Figure 10, where actions are being derived for a domain with trains moving on

a single line track. The drop-down list contains all possible legal states for the ‘track’ instance ‘t1’.

Before the application of the ‘drive’ action the track segment ‘t1’ was ‘occupied’. The user should

confirm in this case that the result of the action will be that ‘t1’ is now in the state ‘free’. Once the

state transitions of the named object instances are known this information can be generalized to

produce action schema. The derived action schema will be used in future uses of the action in

Figure 9 The GIPO task editor
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the training sequence and may be refined in cases where the derived action only provides a partial

match with the new instance. In this way opmaker steps through the training sequence, querying

the user and advancing the state of each object referenced in the action schema until the training

sequence is exhausted.

3.5 HTN planning

GIPO provides editors and tools to support HTN planning as expressed in the OCLh language

(McCluskey & Kitchin, 1998). In brief, GIPO allows the definition of methods which are actions

that can be specified in terms of a composition of actions as defined for classical planning. Primi-

tive actions are the non-composite actions defined in GIPO as already described.

HTN methods are defined in terms of three elements:

1. A declaration of the changes that the composite action guarantees to bring about for identified

object types.

2. A definition of any precondition applying to any associated required object referenced in the

guarantee.

3. A graph of subactions which if performed would bring about the guaranteed changes. This

graph can contain nodes that we call ‘achieve goals’ that represent preconditions that may

have to be achieved before a specific action in the subgraph can be carried out.

In GIPO the method editor allows each of these segments to be represented in a graphical form. In

Figure 11 we see a method called ‘carry_direct’ being defined. This is a method that might be used

in a logistics type domain, where packages have to be delivered by a variety of forms of transpor-

tation. The top two roundtangles define the changes guaranteed when the package is transported.

The guarantee requires that the package be in a state that would form a ground instance of the

LHS roundtangle, namely that it is at some location O and that it is waiting and certified. The

RHS or post condition states that the package will end up at a new destination D. The bottom

roundtangle expresses the precondition that the city of origin of the package and of the destina-

tion be the same. The graph of actions forming the decomposition of the method is shown in

Figure 12. Both primitive actions and other methods can be used in the definition of a decompo-

sition. Method definitions may be recursive. A decomposition may include pre-conditions that

apply to the actions forming the decomposition. In Figure 12 the rectangle containing the

predicate at(V, O) expresses the precondition that the vehicle used to load-package must be at

the same location O as the package.

To support HTN planning, GIPO contains a hybrid task-reduction planner called HyHTN.

This planner is similar to SHOP (Nau et al., 1999) in that it is a state-advancing planner, but it

is also capable of combining hierarchical decomposition with a state-space search using the plan

graph heuristic. In experiments HyHTN performed well in comparison to SHOP (McCluskey

et al., 2003). GIPO also contains an animator for plans produced by HyHTN, as well as an

Figure 10 Opmaker querying user
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hierarchical plan stepper. A partial snapshot of the animator in use with a logistics domain is

shown in Figure 13.

3.6 Static validation

The validation of a domain definition cannot be done entirely automatically, although automated

assistance in this task can be provided. Within an HTN GIPO can check that the transparency

property (McCluskey et al., 2003) is not broken by any method definition. The transparency prop-

erty gives a guarantee that if a method’s preconditions are met then the body of the method will

bring about the method’s postconditions. The property is checked by performing abstract execu-

tion of a method’s decomposition body. Warnings are then displayed to the user if a step cannot

be fulfilled, given the specified preconditions of the method. In Figure 14, we see a DWR style

domain where an object is to be loaded from a gripper but where the gripper cannot be guaran-

teed to hold the object.

Within classical domains the automatic checks that GIPO can carry out tend to be at a lower

syntactic level, but absence of such problems as misspelt predicate names can still save the domain

developer many hours of dynamic testing. The action schema analysis tool checks the usage of

each of the defined states and predicates as they are referenced in the action’s components. This

Figure 12 Method decomposition

Figure 11 Method guarantee and preconditions
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is particularly useful in conjunction with Opmaker. That a state definition is not referenced by any

action would most likely indicate that the action coverage of the domain is still incomplete. Like-

wise, states that are only ever referenced in the precondition, or the postcondition, act as a poten-

tial indicator of incompleteness. When the OLHE is used, internal consistency checking is applied

before generation of the domain definition.

3.7 Dynamic validation

The most powerful facility that GIPO provides for dynamic validation of domains are the

manual steppers. The role of the steppers is to allow the domain engineer to check that the

Figure 13 Partial animation of an HTN planner’s output

Figure 14 Output from the transparency tool
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domain specification does support known plans for well-understood problems within the domain.

This may be checked by running planners with the known problems, but failure to find the plan

may indicate a problem or limitation of the planner, rather than the domain specification. To

check the domain independently of any particular planner, the plan needs to be manually pro-

duced, which is done using GIPO’s steppers. The stepper for classical planning works as a forward

planner where the user selects the actions to solve the problem. As the application of each action is

checked, the user can isolate the point where a domain definition fails to allow an action to be

performed, where the user thinks the action should be allowed. The stepper is adept at helping

the user discovering subtle bugs and their location within a domain definition. In Figure 15

a domain to test a model of multiple trains moving on a single line track is being stepped. The

user is instantiating an instance of the ‘drive’ action to step through the growing plan.

For HTN domains the stepper works in a top–down left to right mode. When a user selects a

method as part of a plan the decomposition of that method must be manually stepped. The HTN

stepper incrementally produces a diagram with a structure identical to that produced by the HTN

plan animator as shown in Figure 13.

3.8 Implementation

GIPO is largely written in Java and is hence platform independent. The integrated planners,

including HyHTN, are written in Prolog as are some of the other tools. The GIPO distribution

includes Sicstus Prolog run time environments to support the Prolog subsystem. External third

party planners can be run from within GIPO if they have a command line interface that allows

the specification of input domain and problem files and they process classical PDDL. Planner spe-

cific scripts are required to pre- and post-process the planner input and output to enable the plan-

ner to be fully integrated in the system. The GIPO distribution is binary though the Java sources

are also made freely available.

4 Related work

4.1 Related tool sets

Environments of the complexity of GIPO to support domain-independent planning have been

created previously. Both SIPE (Wilkins, 1999, 2000) and O-Plan (Tate et al., 1994, 2005) are

such environments. Both are large complex systems and have user interfaces designed to assist

Figure 15 GIPO’s stepper used to validate actions in a domain definition
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in the task of domain definition. Both systems, however, were designed to be highly coupled to

their own built-in HTN planning engines. In contrast GIPO has an open API to link public

domain planning engines to the system. Similar work to our own in knowledge acquisition and

engineering tends to be aimed at general KBS rather than being specific to AI Planning. For

example, systems such as those based on EXPECT (Blythe et al., 2001) or PROTEGE

(Gennari et al., 2003) are more general purpose and do not aim at providing support to the

very specific task of acquiring domain knowledge with a view to producing a formal specification

as an output to be used with planning engines.

A recent tools environment called itSIMPLE (Vacquero, Tonidanel & Silva, 2005) is, like

GIPO, based on an object-centric perspective and aimed at the acquisition of planning knowledge.

It includes tools for the acquisition and manipulation of domain definitions, but it differs in that it

adopts the widely used software system modelling language UML as its underlying philosophy.

This approach may well help to make AI planning techniques more accessible by using an

approach that is well known to software engineers. However, it is yet to be shown that the use

of the general UML framework would be appropriate to engineer the peculiarities of planning

domain definitions.

Edelkamp and Mehler’s ModPlan (Edelkamp & Mehler, 2005) is another recently developed

tool which helps in planning knowledge acquisition and engineering. Their workbench includes

a range of functions including static analysis, goal ordering generation and domain inference.

Their work can be seem as complementary to ours, as the functions of ModPlan have the per-

spective of acquiring heuristics to aid in the efficiency of AI planners. The functions of GIPO,

however, are aimed less at acquiring heuristics and more at acquiring and validating domain

structure.

4.2 Representational issues

The use of state machines to describe elements of planning domains is not new. State machines are

used by Fox & Long (1997) in domain analysis to extract and describe useful structure from

domain specifications with a view to enhance the efficiency of planning software. The novel angle

of our work is to use state machines allied to the object-centric view to form a basis for the crea-

tion and systematic description of complete domain definitions. The work on analogical reasoning

(Garagnani, 2004) bears some superficial similarities to this work, but differs in its purpose, in

that it introduces a notation that is designed to be more efficient than symbolic notations.

Further, Garagnani postulates a diagrammatic inter-lingua for domain definitions themselves,

whereas diagrams in our work are used as an interface to help in the formulation of a symbolic

definition.

The diagrammatic formalism introduced in this paper clearly approximates in expressive power

the classical planning representational forms such as STRIPS (Fikes & Nilsson, 1971) and SAS

(Backstrom & Nebel, 1991). In the sections above we showed how the ‘life history view’ can be

translated into PDDL which can be regarded as a STRIPS derivative. To demonstrate equivalent

expressive power we need to demonstrate how domains in PDDL can be translated into life his-

tory diagrams. Informally it is easier to show how SAS encodings can be translated into life his-

tory diagrams, and as the equivalence of SAS and STRIPS encodings is already established in the

literature (Nebel, 2000), such a translation would demonstrate that for classical domains the life

history model is equivalent in expressive power. In outline, the object properties are functions

on object states, but object states can be regarded as functions on the global state. To encode

any SAS state, the variables of the state need to be partitioned with reference to object sorts

and then each such variable is regarded either as an object state function or a property function

on such object states. Our current diagrammatic formalizm falls short of ADL-type languages

in that explicit quantification over objects is not possible. This aspect is subject to ongoing

research.
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GIPO’s internal representation language is based on previous work by McCluskey & Porteous

(1997). The reader is referred to that reference for more information on the representation

language and a further discussion of related work.

5 Conclusion and future work

In this paper we have shown how an object-centric view can assist planning domain formulation.

We have also shown how that view can be used to superimpose structure and guide specification

in languages such as PDDL. Environments such as O-Plan (Tate et al., 1994, 2005) and SIPE-2

(Wilkins, 1999, 2000) amply demonstrate that complex tools environments are required to enable

AI planning solutions to be adopted in organizational contexts. GIPO provides much of this

support when deploying the range of currently available planning systems using either

PDDL or OCL.

GIPO is still under development. Its OLHE is at a beta level of release. We are still experiment-

ing with the nature of the visualization and with the editing mechanisms to allow the life histories

to be easily produced, edited and encapsulated into reusable library structures. Although GIPO’s

OLHE is being used in undergraduate teaching, a full user evaluation is still to be carried out.

Two main enhancements are desirable:

1. A significant engineering challenge in AI Planning is the efficient acquisition of HTN actions.

Currently, the OLHE is restricted to non-hierarchical domains. A very useful development of

the OLHE would be to enable it to capture HTN actions and hierarchical domain structure in

general.

2. The scope of domains capable of being modelled within GIPO needs extending, to be able

to keep apace with new versions of PDDL. There is a partial implementation of PDDL level

5 in the current release, together with an updated OLHE, but with reduced tool support.

For example, currently we have no planner integrated into GIPO that can generate plans in

such continuous domains.

GIPO is available from http://scom.hud.ac.uk/planform/gipo.
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