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ABSTRACT

There is increased concern regarding the effect of traffic related pollution on public
heath. As the number of vehicles on the roads continues to rise, it is becoming
increasingly more important to identify areas where the population may be at a greater
risk to raised levels of pollution and areas where the implementation of policy to
control and monitor levels of pollution would be beneficial.

Traditionally, levels of air pollution have been established through dispersion modelling
or monitoring. However, for modelling traffic related pollution for large populations,
these methods have proved inappropriate.

Three new approaches have been developed to model traffic related air pollution and
are reported in this thesis. The approaches have been developed in a Geographical
Information System (GIS) and involve generating detailed maps of the pollution
surface from monitored data and information about the pollution sources. The new
methods are compared against the geostatistical technique kriging.

The first approach combines spatial interpolation from monitoring sites and dispersion
modelling, linking the dispersion model to the GIS, the second combines GIS
techniques for filtering data and spatial interpolation, and the third uses a combination
of GIS techniques for filtering and statistical techniques.

The three approaches are tested and validated by predicting levels of pollution at
monitoring sites not used to develop the models. It was found that the new
approaches provided more reliable estimates of pollution at unsampled locations than
kriging, with the last of these proving to be the most effective. The adjusted r2 values
for kriging, interpolation and dispersion, interpolation and filtering, and filtering and
statistics were found to be 0.44, 0.63, 0.67 and 0.82 respectively.

The approaches therefore have clear potential in the areas of air pollution management
and epidemiology, where the maps can be used to help identify locations where levels
of pollution exceed air quality standards, assess the relationship between air pollution
and health outcome and examine the risk of exposure to raised levels of pollution.
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CHAPTER 1 INTRODUCTION

The last decade has seen a renewed and growing concern about the effects of air pollution

on human health and the environment. Accurate and detailed estimates of the spatial

variations in air quality across major cities are essential to help monitor and control levels

of air pollution. This thesis presents research that has been undertaken to evaluate

existing techniques and develop new methods of modelling air quality in complex urban

environments.

The term air pollution could potentially embrace a number of aspects - from indoor air

pollution to greenhouse gases; the research presented here, however, is primarily

concerned with outdoor air pollution that could have an adverse effect on public health.

The vast majority of people live in cities. Atmospheric pollution is a direct result of

human activity and consequently higher in areas where the majority of the population is

concentrated. The Commission for the European Communities (1992) estimate that at

least 70% of the population of Europe live in cities with greater than 20,000 people and

therefore may be subject to potentially high levels of atmospheric pollution.

1.1	 Urban Air Pollution

Urban air pollution derives from a wide range of emission sources, including motor

vehicles, industry and domestic activity. The main pollutants tend to be airborne particles

(for example, black smoke), sulphur dioxide, nitrogen dioxide, carbon monoxide, ozone
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and volatile organic compounds (VOCs), for example benzene. Emission sources of the

major urban air pollutants, as identified by Godlee (1991), are summarized in Table 1.1.

Table 1. / Major urban air pollutants and their sources.

Pollutant	 Sources

Airborne particulates	 Emitted from diesel exhausts and burning of fossil fuels.
Sulphur dioxide	 Burning of fossil fuels, emissions from power stations
_________________________ and diesel exhausts.
Nitrogen dioxide	 Motor vehicles and power stations
Carbon monoxide	 Incomplete combustion of fossil fuels and tobacco
________________________ smoke
Ozone	 Photochemical reaction between nitrogen oxides and
__________________________ hydrocarbons
Benzene	 Emissions and evaporation from petrol engine

(Source: Godlee, 1991)

Pollutants that are emitted directly into the atmosphere (for example, carbon monoxide

and sulphur dioxide) are collectively termed primary pollutants; pollutants formed by

chemical reactions in the atmosphere (for example, ozone) are referred to as secondary

pollutants. Some pollutants, such as nitrogen dioxide, can be both a primary and a

secondary pollutant. In the case of nitrogen dioxide, the pollutant can be emitted (from

vehicle exhausts or power stations) or it can be produced from the oxidation of nitric

oxide in the air.

As the Quality of Urban Atmospheric Review Group (1993) illustrates, this distinction has

an important bearing on the development of control strategies. In general, levels of

primary pollutants are proportional to rates of emissions, and therefore direct control of

primary pollutants is possible through emission control. Reductions in secondary

pollutants, however, are more difficult to achieve because of their more complex histories.
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1.1.1 Sources of Air Pollution

Urban air pollution arises from a variety of processes. For most pollutants (with the

exception of VOCs) the combustion of fossil fuels is currently the main process leading to

urban air pollution. Emissions vary depending upon the type of fossil fuel used.

Emissions by type of fuel in the UK are presented in Table 1 .2. At a national level, as

Table 1.3 shows, road transport represents the single most important source of many of

the more common air pollutants.

Table 1.2. UK Emissions by type offuel (1994)

PollutantType of Fuel	 ________ ________ ________

___________________________J_Coal 	 Petrol	 DERV Fuel Oil [Other
SulphurDioxide	 72%	 _______ _______ 21%	 _______
BlackSmoke	 24%	 _______ 55%	 _______ _______

Nitrogen Oxides 	 24%	 29%	 20%	 _______ _______

CarbonMonoxide	 _______ 84%	 _______ _______ _______

Volatile Organic Compounds ________ 26% 	 ________ ________ 67%

(Figures from Department of the Environment 1996 - where other indicates a type of
fuel other than coal or a form of petroleum).

Table 1.3. Sources of the Principal Pollutants in the UK (1994,)

_____________ __________ % Total Emissions 	 __________ ____________
Source	 Sulphur	 Black	 Nitrogen	 Carbon	 Volatile

Dioxide	 Smoke	 Oxides	 Monoxide Organic
_____________ __________ ________ _________ _________ Compounds
Road Transport 2	 58	 49	 88	 29
Electricity	 65	 4	 24	 0	 -
Supply
Industry ___________ _________ ___________ ___________ _____________

Other Industry 16	 3	 6	 1	 19
Domestic	 3	 22	 3	 7	 2
Other	 14	 13	 18	 4	 50

(Figures from Department of the Environment, 1996)
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This thesis is concerned with emissions from road transport and, as will be discussed in

Chapter 3, concentrates on nitrogen dioxide as a proxy for the complex of traffic related

pollutants.

The major sources of man-made emissions of nitrogen oxides into the atmosphere are the

combustion of fossil fuels in stationary sources (for example, heating, power generation)

and in mobile sources (for example, the internal combustion engines of motor vehicles).

There are, however, other industrial and domestic contributors, including specific non-

combustion industrial processes, such as the manufacture of nitric acid and the use of

explosives and welding processes, and indoor sources - for example smoking, gas-fired

appliances and oil-stoves. Nevertheless, the majority of NO entering the atmosphere

from pollution sources today does so as NO generated from internal combustion engines.

Variations in NO2 between different countries are mainly attributed to differences in the

fossil-fuel consumption (World Health Organisation, 1987).

NO2 is also produced naturally by bacterial and volcanic action, as well as by lightning.

Globally, far more NO2 is produced by natural processes than by human activity; however,

since this is spread across the surface of the Earth, it is reduced to low background

concentrations.

1.1.2 Processes

Many of the processes by which the air pollutants are produced are dependent upon

reactions with other gases and elements in the atmosphere. Some form of energy, such as

sunlight or heat, is often necessary to activate the reaction. Nitrogen dioxide, for example,

is the product of a reaction with nitric oxide and ozone in the presence of sunlight.
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Nitric oxide and nitrogen dioxide are collectively know as oxides of nitrogen (NO).

Nitric oxide is colourless and odourless and is the primary form of NO emitted into the

atmosphere. Nitrogen dioxide on the other hand is a red-brown pungent gas and is the

secondary pollutant of NOR.

In the case of road transport, at very high temperatures the combustion of petroleum

causes nitrogen to combine with oxygen to give nitric oxide (NO). Nitric oxide is emitted

from vehicle exhausts and transformed into NO 2 in the atmosphere through oxidation with

gases such as ozone (equation 1.1).

NO+03 ->NO2 +02	[Equation 1.1]

In the presence of hydrocarbons, NO2 is then transformed photochemically to NO and

atomic oxygen (0) (equation 1.2).

NO2 + energy -> NO + 0
	

[Equation 1.2]

Oxygen then combines with the atomic oxygen to form ozone (equation 1.3).

02 ± O->03	 [Equation 1.3]

It can therefore be seen that nitrogen dioxide is a product of a reaction between ozone and

the nitrogen oxide emitted from car exhausts. Ozone itself is formed by the action of

sunlight on nitrogen dioxide. In urban areas, large sources of nitric oxide (NO) convert a

significant fraction of the ambient ozone concentration to NO2. Since NO2 is readily

photolysed to NO, the urban excess of NO2 is often regarded as a reservoir of

photochemical oxidants (Photochemical Oxidents Review Group, 1993). Consequently,

ozone concentrations in city centres are often lower than would otherwise be expected

due to its reaction with nitrogen oxide emitted from car exhausts.
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1.1.3 Trends in Air Pollution

Over recent decades, the profile of urban air pollution has changed considerably, with

marked variations in levels of air pollution, due to the combined effect of environmental

policy, technical innovation and changes in levels of human activity.

A major change has been the reduction in the levels of sulphur dioxide and black smoke.

An important influence in this context was the 1956 Clean Air Act. This introduced

controls on emissions from power stations and made it an offence to emit smoke from

households in most urban areas. Largely as a result, levels of sulphur dioxide and black

smoke in the 15K fell by over 50% between 1970 and 1993 (Department of the

Environment, 1996).

At the same time, however, emissions from road vehicles have increased (Table 1.4 shows

increased emissions in the UK between 1970 and 1994) leading to a marked rise in levels

of traffic-related pollutants such as NOx, CO, 03, airborne particulates and VOCs.

Table 1.4 Increases in UK Estimated Emissions from Road Transport (19 70-1994)

Pollutant	 % Increase

Carbon monoxide	 31
Nitrogen oxides	 72
Volatile organic compounds 	 29
Black smoke	 147
Sulphur dioxide	 43

(Figures from Department of the Environment, 1996)

In the case of NOR, over recent years, decreases in industrial emissions in urban areas have

been offset by increases in emissions from motor vehicles (Eggleston et a!, 1992). Road

transport emissions in the UK increased by 72% during the period 1981-1991,

contributing 51% of the N0 emissions in 1991, while power station emissions declined by
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about 14% and represented only 26% of the UK total emissions in 1991 (Photochemical

Oxidents Review Group, 1993). However, emissions of NO have declined in recent years

due to the increasing number of diesel cars, which emit less NO than non-catalyst petrol-

fueled cars, and also due to increases in road fuel duty (Department of the Environment,

1996). Projected trends in emissions of NO show that while emissions have decreased in

recent years, predicted increases in the number of cars on the roads will result in a

stablisation of emissions by the year 2010 (Quality of Urban Atmospheric Review Group,

1993) and are likely to increase thereafter (Committee on the Medical Effects of Air

Pollutants, 1995).

Internal combustion engines in vehicles produce large amounts of reactive hydrocarbons

and nitrogen oxides, as well as fine particulates and carbon monoxide. Since 1971, the

European Union has introduced a wide range of legislation to control these. This has

helped to stimulate the development of both vehicle and fuel technologies, aimed at

reducing emission levels - for example, unleaded gasoline, catalytic converters, low

sulphur diesel fuel and advanced electronic engine management systems have all been

introduced. Catalytic converters are designed to perform a dual role: to reduce NO in the

exhaust gas and to oxidise hydrocarbons and CO. They nevertheless tend to be relatively

inefficient - and indeed may actually increase emissions - at low engine temperatures and

low speeds. Since the majority of car journeys in Briton are less than 5km (Department of

Transport, 1996a), this means that their impact on emissions has been relatively limited.

The Department of Transport (1 996b) estimated that the number of private cars licensed

in the UK rose from 3.1 million vehicles in 1955 to over 20 million in 1995 (Figure 1.1);

the total number of all vehicles on UK roads increased by 32% between 1980 and 1995.

In 1989, the UK Government predicted that traffic volume would have increased by

between 83% and 142% by the year 2025 (Department of the Environment, 1989). These

increases are not restricted to the UK. In the European Union, the number of vehicles on

the roads has more than doubled since 1970, and is set to increase by a further 40-50% in

the next 20 years (Commission of the European Communities, 1992).
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Future increases in the number of vehicles will be at least partly offset by continuing

improvements in vehicle and fuel technology. This is likely to limit the rise in pollution

levels to some extent.
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Figure 1.1. Private cars currently licensed: 1955 - 1995.

Changes in the number of vehicles on the road do not tell the full story, for emissions also

depend on the level of usage of the vehicles - itself a reflection of lifestyle. Since the early

1 980s there has been a distinct change in lifestyle, partly related to increased earnings, but

also related to a higher proportion of women in work and a greater emphasis on

recreational activities. These changes have had a direct effect on numbers of vehicles and

vehicle usage. The number of cars per household has increased. According to the

Census, for example, the percentage of total households with 2 or more cars in England

increased from 15.9% to 24.0% between 1981 and 1991. The use of public transport,

such as coaches and buses, has decreased. Many people prefer to use their own car rather

than public transport due primarily to convenience, comfort and reliability, but also

increasingly to cost.
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Since more women are working full-time they are, therefore, more likely to take their

children to school by car and go shopping after work in larger, often out-of-town, stores.

According to the Department of Transport (1 996a) in the last decade there has been a

32% increase in miles travelled for shopping and a 108% increase in miles travelled to

escort children to school. With the development of late-night shopping, people are more

willing to travel further for shopping and leisure facilities, especially with many of the

larger complexes combining the two. Health and fitness awareness campaigns have

resulted in many people travelling to sports centres or to the countryside. Furthermore,

the increased availability of company cars has contributed to greater use and longer travel

to work distances. All this activity has had an impact on congestion, which is now not

only a problem in the city centres but is also moving into the surrounding areas (Royal

Commission on Environmental Pollution, 1994).

As a result of these changes, level of vehicle use in the UK rose from 77 billion vehicle

kilometres in 1955 to 430 billion vehicle kilometres in 1995 in the UK (Department of

Transport, 1996b). According to the Department of Transport (1996a) over the last 20

years the average daily distance travelled by car in Britain has risen by 57% to nearly 22

km. At the same time, the number of journeys made by car has risen by 45%. Although

the number of journeys and the daily distance travelled has increased, it is interesting to

note that 94% of all car journeys are less than 40 km (Department of Transport, 1996a).

This has a direct impact on levels of emissions in urban environments.

1.2	 Air Pollution and Health

Against this background, there is growing concern about the effect of traffic related

pollution on public health. This concern has been reflected in the media. The article

'Gasping for Breath' in the 'Independent on Sunday' in October 1993, for example,

reported anxieties about the effect of exhaust fumes on children's health. The

'Independent on Sunday' published a review entitled 'You Hardly Dare Breathe: A Special
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Report on Air Pollution in Britain' (3rd March 1995), highlighting the issues of pollution

for ozone, nitrogen dioxide and sulphur dioxide and the rising prevalence in asthma. In

addition, these issues were also raised in a programme in Channel 4's Cutting Edge

'Fighting for Breath', on the 9th October, 1995. More recently, there have been a number

of national and regional health surveys focusing on asthma and respiratory illness, for

example, the Health Survey for England 1996, commissioned by the Department of Health

and carried out by the Joint Surveys Unit of Social and Community Planning Research and

the Department of Epidemiology and Public Health at University College.

Concern is far more wide-spread than the UK. Traffic related air pollution is now of

international concern, not least because of the health effects of exposure, but also because

of the longer-term, and potentially hazardous, implications on the environment and

society. Road transport contributes to two major global atmospheric pollution issues:

global warming and stratospheric ozone depletion. These issues may well, in the future,

have substantial implications for public health.

In Europe alone, concern is reflected through a heightened research agenda for air

pollution and health. The European Commission, for example, initiated the STEP,

ENVIRONMENT, and Environment and Climate research programmes (European

Commission, 1995) which all have air quality components. The World Health

Organisation produced the Air Quality Guidelines for Europe (World Health Organisation,

1987). In addition, there have been a number of workshops and symposia: the Workshop

on Air Pollution Epidemiology [Basel 1991], PHARE Symposium on Environment and

Health [Bilthoven 1993], Workshop on Health Risk Assessment and Air Pollution

Epidemiology [Brussels 1994] are just a few examples. These have coincided with the

introduction of new annual conferences on the theme of air pollution and health, including

'Air Pollution' which is now in its fifth year, 'International Society for Exposure Analysis'

which is in its sixth year and eight annual meetings of the 'International Society for

Environmental Epidemiology'.
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Much research has been undertaken in recent years to examine the association between

exposure to outdoor air pollution and health. The major pollutants and their health effects

are summarized in Table 1.5.

Table 1.5 The health effects of the major pollutants.

Pollutant	 Groups at risk	 Clinical consequences
___________ (levels above NAAQS) 	 ____________________________
Airborne	 Children	 Increased respiratory symptoms,
particulates	 increased respiratory illness,
(e.g. black	 decreased lung function
smoke)	 Chronic lung/heart disease Excess mortality
____________ Asthmatics	 Increased asthma exacerbations
Nitrogen	 Healthy adults	 Increased airway reactivity
dioxide	 Asthmatics	 Decreased lung Ilinction
____________ Children	 Increased respiratory symptoms
Carbon	 Healthy adults	 Decreased exercise capacity
monoxide	 Patients with ischemic heart Decreased exercise capacity,
____________ disease	 angina pectoris
Ozone	 Healthy adults and children Decreased lung function,

increased airway reactivity, lung
inflammation, increased
respiratory symptoms

____________ Athletes, outdoor workers Decreased exercise capacity
Acid	 Healthy adults	 Altered mucociliary clearance
aerosols	 Children	 Increased respiratory illness
____________ Asthmatics and others 	 Decreased lung function
Lead	 Children	 Altered neurobehavioral function
____________ Adults 	 Increased blood pressure
Sulphur	 Healthy adults and patients Increased respiratory symptoms,
dioxide	 with chronic obstructive 	 increased respiratory mortality

pulmonary disease	 and increased hospital visits for
respiratory disease

Asthmatics	 Decreased lung function

(* 1991 air quality data. Does not reflect exposure indoors or to brief peak levels of
pollutants outdoors. NAAQS: National Air Quality and Emissions Trends Report, US
Environment Protection Agency, 1991. Source: Committee of the Environmental and
Occupational Health Assembly of the American Thoracic Society, 1996.)
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1.2.1 Acute Verses Chronic Health Effects

The public health effects (respiratory and non/respiratory) of air pollution fall into two

categories:

acute - health effects caused by exposure to short-term (often extreme)

exposure

chronic - health effects caused by long-term, possibly cumulative, exposure

to pollution

Studies looking at acute health effects often consider the association between short-term,

specific pollution events and the incidence of illness. Most of these studies analyse daily

time-series data and observe temporal associations between pollution events and measures

of illness, such as hospital admissions or deaths. Acute health effects often occur when

exposure triggers an existing illness, which brings forward symptoms of the illness (for

example, asthma attack). Consequently, acute health effects are of greater risk, but

relatively small numbers of people are affected.

Chronic health effects, on the other hand, are typically examined through population

studies looking at the effects of long-term exposure on prevalence of health outcome, and

may be associated with initial sensitisation to pollutants. Over long periods of time (i.e.

one year or more), the cumulative effect of exposure may result in the onset of illness. In

comparison to acute health effects, there is a low individual risk to chronic health effects,

but large numbers of people can be affected, and therefore there is a greater public health

concern.

Both types of health effects are difficult to quantify due to other factors that may be

associated with the incidence of illness. These factors are known as confounding factors,

and in order accurately to measure the association between pollution and ill health, they

need to be taken into consideration and controlled for. In the case of acute health effects

12



confounding factors might include seasonal and daily variations in weather conditions,

pollen levels and temperature. Chronic health effects may be associated with variations in

population-based lifestyle factors such as socio-economic status, smoking habits,

education (or parent's education), personal (or parental) history of asthma and housing

conditions. It is important that information about confounders is collected as well as

information on health effects and that the results of any analysis are adjusted for the

confounders. Sophisticated statistical techniques are used to measure the association

between air pollution and ill health, especially in the presence of confounding factors.

1.3	 Trends in Respiratory Illness

One of the major health concerns is the link between air pollution and respiratory illness,

particularly asthma. At the same time as increases in many of the air pollutants have been

recorded, increases in respiratory disorders and asthma have also been observed. Much of

the knowledge about prevalence of asthma and its association with air pollution, however,

comes from eçdemiological studies.

Over the past 20 years, the proportion of children in the UK showing wheezing symptoms

in the last year has increased by about 50%. Furthermore, currently 4-6% of adults and

10% of children in the UK have been diagnosed as having asthma and there may also be

many others that remain undiagnosed (Committee on the Medical Effects of Air

Pollutants, 1995). Figure 1.2 shows the percent prevalence of wheeze in the last year in

schoolchildren in British surveys between 1965 and 1992. In addition, there has been a

three-fold increase in hospital admissions for asthma since 1965. Figure 1.3 shows trends

in hospital admissions for asthma in England and Wales between 1965 and 1985 and for

England between 1985 and 1992.
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Figure 1.2 Percent prevalence of wheeze in the last year, British surveys 1965-1992.

!U	 Oil

Year

Source Committee onthe MedicalEffcctsofAj Pollution, 1995 I

Figure 1.3 Hospital admission rates.

In recent years, several studies in the UK have shown increased admissions to hospital for

respiratory diseases. Burr (1987), for example, reported increases in deaths from asthma

in England and Wales between the 1 970s and I 980s. Deaths among young persons aged 5

to 24 years have not only been rising since the mid 1970s, but have nearly doubled. In

Wales, hospital admissions showed that the number of children between 5 and 14 years
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admitted to hospital with a diagnosis of asthma increased fourfold from 1978 to 1984.

Trends in hospital admissions for asthma in the South West Thames Region have also been

shown to be on the increase. Between 1970 and 1985, the number of admissions rose by

186% for children aged 0 to 4 years and 56% for children aged 5 to 14 years (Anderson,

1989).

Other studies have looked at the prevalence of asthma over time by comparing results

from two different studies a number of years apart, but in the same geographical location.

Anderson et a! (1994), for example, compared two studies, 13 years apart, in the London

Borough of Croydon. The two studies were based on children aged between 7.5 and 8.5

in 1978 and 1991. Comparison of the two studies showed a 16% relative increase in the

prevalence of wheezing in the last 12 months.

Another study (Nystad et a!, 1997), compared two studies of schoolchildren aged between

6 and 16 years in Oslo. The two studies were undertaken in 1981 and 1994, with samples

of 1772 and 2577 children respectively from school classes selected at random. The

children's parents were interviewed by questionnaire, with questions focusing on asthma

and respiratory symptoms. The lifetime prevalence of physician-diagnosed asthma was

found to have increased nearly three-fold, from 3.4% to 9.3%, in the 13 year period

between the two studies. At the same time, attacks of wheezing in the last three years had

also increased from 3.7% to 6.8%.

Changes in the prevalence of asthma over time have also been observed in Busselton,

Western Australia (Peat et a!, 1992). A study of men and women aged 18-55 in 1981

was compared with a similar study in the same area in 1990. In the 1981 study 553 people

were selected at random and in the 1990 study 1028 people were selected at random. The

authors found that over the time period recent wheeze in the subjects had increased from

17.5% to 28.8% and diagnosed asthma from 9.0% to 16.3%. These increases were found

to be greatest among people under 30 years old.
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Many epidemiological studies have been applied to examine the link between increases in

asthma and increases in air pollution. Epidemiological studies examine the association

between exposure and public health effects, usually for sample populations. However, in

some cases, for example in the study of rare diseases, large numbers of people are required

to achieve statistical significance. The health effects of air pollution have important

implications for the public as a whole, as the Committee on the Medical Effects of Air

Pollutants (1995, p7) proclaim, 'outdoor air pollution is a public concern, since all citizens

are potentially exposed and outdoor air is a community resource'. The Committee on the

Medical Effects of Air Pollutants (1995) splits epidemiological studies into two categories:

temporal and spatial.

Temporal studies can be panel or time-series and provide information about acute effects

of pollution on respiratory health. Panel studies are prospective studies where individuals

are selected in advance depending upon the purpose of the study. Individuals can be

healthy or suffer from respiratory disorders and are closely monitored, usually making a

record of their daily activities and movements during the study period in diaries. The

associations between health outcomes, such as lung function, respiratory symptoms or

medication use, and air pollution are examined. Time-series studies observe the

relationship between fluctuations in air pollution and fluctuations in hospital admissions

and mortality due to respiratory illness over time.

In spatial studies, the association between health outcomes and levels of pollution for

sample populations in different geographical locations is examined. The geographical

locations are often chosen to reflect differences in levels of pollution and information

pertaining to health outcomes is usually obtained through questionnaires. The measures of

pollution used in such studies are normally the long-term averages - typically one year or

more. Spatial studies are therefore often implemented to examine the chronic, cumulative,

effects of exposure on health and are often termed ecological or cross-sectional studies.
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1.3.1 Time-Series Studies

Time-series studies generally examine acute health effects - predominantly the short-term

temporal association between lung ftinction or respiratory symptoms, measured in terms of

hospital admissions or asthma attacks, and raised concentrations or pollution episodes.

Most studies of these studies use daily time-series data. The relationship between air

pollution and ill health is usually analysed through regression modelling. However, one of

the problems associated with using daily time-series data is that many days have very small

numbers of admissions - and in some cases no admissions at all. This results in a strongly

skewed distribution with a lot of zero values. Thus one additional case, which may be

random, can represent an apparently large increase in risk. This problem is often

overcome by using a regression model with Poisson errors which assigns less weight to

days with zero counts. Another problem is the presence of autocorrelation. This occurs

when the respiratory symptoms and air pollution measurements exhibit cyclical

fluctuations throughout the year which may result in unusually high daily correlations.

This long-term trend can either be removed from the data before analysis or entered as an

additional term in the regression model. Alternatively, an autoregressive model could be

applied to the data to account for the autocorrelation (Committee on the Medical Effects

of Air Pollutants, 1995).

There has been an abundance of time-series studies looking at the relationship between air

pollution and respiratory disorders, and the methods and techniques are now well

established and documented. A summary of articles pertaining to time-series studies can

be found in Pope et a! (1 995b). There are also many more recent articles. For example,

Ponka et a! (1996) report on a study analysing daily hospital admissions for asthma in

relation to ambient levels of SO 2, NO2, total suspended particles (TSP) and 0 3 in Finland,

Helsinki, between 1987 and 1989, and found significant positive associations for 0 3 after

adjusting for confounders.
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Wordley ei a! (1997) assessed the relationship between particulate matter with a diameter

less than 10 m (PM 10) and hospital admissions and mortality for all respiratory diseases in

Birmingham, UK, between April 1992 and March 1994. The results were adjusted for

confounders and significant associations were found.

A further study looking at hospital admissions is reported by Ponce de Leon ci a! (1996).

The authors examined the relationship between hospital admissions for respiratory disease

and black smoke, SO2, 03 and NO2 in London, UK, during two periods: 1987 -1988, and

1991 - 1992. After taking into account the confounders, significant associations were

found with 03.

Other studies have focused on pre-selected sample populations showing symptoms of

respiratory illness. Peters ci a! (1997) report on one such panel study to examine the

short-term effects of SO 2, TSP, PM 10, particle strong acidity (PSA) and fine particle

sulphate concentration (SO 4) on children with asthma or related chronic respiratory

disease in Sokolov, Czech Republic, during the winter of 1991 to 1992. After adjusting

for counfounders, decreased peak respiratory flow rates, increased respiratory symptoms

and increased medication use were found to be associated with elevated levels of air

pollution.

In another study, the incidence of acute childhood wheezy episodes, measured in terms of

hospital admissions for 1025 children, over a period of one year between March 1992 and

February 1993 in the London Borough of Hillingdon, UK, were examined in relation to

03, SO2 and NO2 (Buchdahl ci a!, 1996). Strong associations were found with 0 3 and

SO2, and weaker, but significant, associations with NO 2 after controlling for confounding

factors.

One of the main limitations in the majority of these studies is that the pollution data used

in the studies is often collected for just one site. It is therefore assumed that variations at

that site reflect variations in the wider geographical area, and in levels of exposure of the
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study population as a whole. However, levels of pollution vary spatially, as well as

temporarily, due to changes in pollution sources and features on the surface of the Earth

over distance. Pollution measured at a site is therefore unlikely to be representative of

pollution at locations further away from the site. Thus levels of exposure will also vary

spatially.

1.3.2 Spatial Studies

In comparison to studies looking at acute health effects, very few studies have been

undertaken to look at chronic health effects and consequently relatively little is known

about the long-term health effects of air pollution.

In the USA, Dockery et al (1993) examined the relationship between mortality rates and

so2, 03 and suspended sulphates in six US cities (controlling for confounding factors).

Results suggested that particulate air pollution was positively associated with death from

lung cancer and cardiopulmonary disease, and that mortality was most strongly associated

with fine particulates, including suiphates.

Schwartz (1993) reported on a study undertaken in 53 urban areas in the U.S. The author

examined the relationship between rates of chronic respiratory illness and TSP. After

controlling for confounders, TSP was found to be associated with increased risk of

chronic bronchitis and a respiratory diagnosis by an examining physician.

In another study, the relative risk of mortality for half a million adults in 151 U.S.

metropolitan areas was assessed with respect to sulphates and fine particulates through a

prospective study between 1982 and 1989 (Pope et al, 1995a). Particulate air pollution

was found to be associated with cardiopulmonary and lung cancer mortality after adjusting

for confounding factors.
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1.3.2.1 Vehicle Emissions and Respiratory Illness

Although these studies have concentrated on particulate air pollution in general, attention

is increasingly being directed towards the specific relationship between traffic related

pollution (i.e. vehicle emissions) and respiratory disorders. There is evidence to suggest

that emissions from road traffic are having an effect on health. In an attempt to clarify this

association a number of spatial studies have been undertaken that have analysed the

relationship between respiratory disorders and indicators of exposure to vehicle emissions

(for example, distance to major roads or traffic density) for sample populations. Several

of the studies reported positive and significant associations between the indicators and the

prevalence of some respiratory disorders.

Edwards et a! (1994), for example, report on a study of pre-school children admitted to

hospital for asthma and an association with traffic flow in Birmingham, UK. Pre-school

children (i.e. under the age of 5) were chosen mainly because they spend much of their

time at home, but also because asthma is most prevalent in this age group. Three groups

of children were chosen: cases, hospital controls and community controls. The cases

correspond to hospital admissions for asthma, the hospital controls to hospital admissions

for non-respiratory cases (excluding road accidents) and the community control consisted

of a random sample of pre-school children. The authors state that in the county of West

Midlands, which includes the city of Birmingham, hospital admissions for all cases has

been found to be closely related to deprivation and therefore the hospital control was

included partially to account for socio-economic confounding. The postcode was used to

locate the place of residence for all groups and each child classified according to distance

from the nearest major road (O-200m, 200-500m and >500m). Traffic flow data were

attributed to all major roads and each child also classified according to traffic flow on the

nearest major road. The authors found that children admitted to hospital for asthma were

significantly more likely to have high traffic flow along the nearest segment of main road

compared to the two controls. They also found a significantly greater risk of hospital

20



admissions for asthma amongst children living less than 500m from main roads, but only

compared to the hospital control.

The impact of road transport on residents living along main busy roads has been studied in

Japan (Murakami ef a!, 1990). The 4 day averages of indoor and outdoor concentrations

of nitrogen dioxide and suspended particulate matter were measured five times during four

seasons. The measurements were taken at the same time in 200 houses where the

households consisted of families. Members of the families were interviewed by

questionnaire. Distance from the nearest main road was used to classiIy the houses into

three groups, based upon the following distance bands: 0-20m, 20-50m and 50-150m.

Prevalence rates of respiratory symptoms were found to be higher in families (children and

parents) located within 20m of a main road than those in the 20-50m and 50-150m bands.

Prevalence rates were found to be as much as 50% higher in these locations for asthma-

like symptoms such as wheezing.

Another study, reported by Ishizaki et a! (1987), looked at the prevalence of allergic

rhinitis among people with different exposures to vehicle emissions and cedar pollen in the

Nikko-Imaichi district of Japan. In a questionnaire survey, 3133 children and parents from

631 families provided information on the prevalence of cedar pollinosis (hay fever) during

the months of March and April. A statistically significant difference between the

prevalence of cedar pollinosis in different areas of the district was observed. In areas close

to tree-lined inter-city highways, the prevalence of cedar pollinosis was 13.2%,

approximately 1.5 times greater than the prevalence in city farming areas close to, and far

away from, cedar forests. In forest areas with little traffic there was a prevalence of 5.1%

and prevalence was as low as 1.7% in mountainous areas above the treeline (area

descriptions and figures from Committee on the Medical Effects of Air Pollutants, 1995).

Results from these studies present a strong argument to suggest an association between

health and respiratory disorders; however, the results could be misleading due to the lack

of information about socio-economic confounding. Factors such as socio-economic
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status, housing conditions (dampness, overcrowding), pets, parental asthma and parental

cigarette smoking have not always been taken fully into account. Furthermore, the study

reported by Ishizaki and colleagues does not provide any quantitative estimate of exposure

to vehicle emissions, and in several of the studies the exposure indicator is relatively weak.

Nevertheless, other studies which have adjusted for potential confounders have still

displayed positive associations.

In Bochum, Gei-many, for example, schoolchildren were interviewed by questionnaire in

June and July 1991, focusing on respiratory disorders and related indicators (Weiland el

al, 1994). The schoolchildren were 7th and 8th graders from 13 schools, chosen at

random from 38 schools in the area. The questionnaire concentrated on wheezing during

the last 12 months (a video was used to aid correct diagnosis) and included questions on

socio-economic characteristics and exposure to traffic density. On the questionnaire,

exposure was defined in terms of two indicators of traffic density: type of street (main

road or side street) and frequency of trunk traffic (never, seldom, frequent or constant).

Results were adjusted for identified confounders and an increase in the prevalence of

wheezing and allergic rhinitis for children living on main streets, as opposed to side

streets, was observed. A positive and significant association was also observed between

the frequency of trunk traffic and both the prevalence of wheezing and allergic rhinitis.

Results from this study, however, are not wholly conclusive due the nature of data

collection, in that measures for social characteristics and traffic exposure were obtained

through children's self-reporting, which cannot always be considered reliable.

In another study in Germany, Wjst et a! (1993) examined the prevalence of allergic and

asthmatic diseases in children aged 9-11 in Munich in relation to traffic volumes. The

study took place during 1989 and 1990. A questionnaire was sent to the parents of 7445

children (with a response rate of 88%) and included questions on respiratory symptoms,

for example, physician diagnosis of asthma and wheezing, along with demographic data.

All the children, selected in random order, participated in lung function tests throughout

the year. Children with a nationality other than German, who had been resident in Munich
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for less that 5 years, or with acute respiratory infections, were excluded from the study.

In Munich there are 117 primary school districts and the results from the questionnaire

and lung function tests were aggregated for these districts. Using data from the traffic

census survey, a measure of traffic volume was also attributed to each district based upon

the street with the highest volume of traffic in that district. Results were controlled for the

following confounders: parental history of asthma, parental school education, number of

people in the house, use of gas or coal for cooking or heating, month of the survey,

number of cigarettes smoked in the home and who compiled the questionnaire.

Associations were observed between traffic load and reduced pulmonary function and

increased respiratory symptoms. Lifetime prevalence of recurrent wheezing was found to

be significantly and positively related to traffic volume.

Nitta et al (1993) report on a study where a total of 4822 women were interviewed in

three separate surveys, between 1979 and 1983, and the responses were compared with

distance of the home to the nearest major road. All the women were aged between 40 and

59 and lived in Tokyo, but had not recently moved there. After adjusting for confounders

the prevalence of long-term wheeze was found to be significantly greater in women living

within 20m of a busy road in two of the surveys.

A further study in Germany collected data for 3 areas in the Baden-Wurttemberg region:

Stuttgart, TUbingenlReutlingen and Freudenstadt (Wichmann et a!, 1989). Parents of

8420 children aged 6 years were interviewed by questionnaire, with a 93% response rate.

Crude prevalence for croup syndrome and obstructive bronchitis was found to be 9%.

Pollution data was only available for Stuttgart and after adjusting for confounders,

prevalence of croup syndrome was found to be slightly greater in streets with high traffic

load. For childhood asthma, the authors also observed a correlation with traffic-

dependent pollutants (NO2, NO, CO) and traffic load.

Oosterlee et a! (1996) report on a study researching the chronic respiratory symptoms of

children and adults living on streets with high traffic volume in Horalem, The Netherlands.
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Parents of 291 children and 1485 adults were interviewed by questionnaire with questions

relating to respiratory illness, including chronic cough, wheeze, dyspnoea, doctor's

diagnosis of asthma and medication. The children and adults either lived on streets with

heavy traffic or on quiet control streets. Selected streets were identified from

environmental traffic maps. Results from the study showed higher prevalences for most

respiratory conditions of children who live along busy traffic roads compared to the

control after adjusting for confounders. In adults, only dyspnoea was found to be

significant.

Lung function in children living near motorways in the Netherlands was examined by

Brunekerf et a! (1997). Children living in one of six areas near motorways and in one of

13 schools were selected for the study. The lung function of the children was measured in

the schools and exposure to traffic-related air pollutants assessed through traffic counts of

automobiles and trucks on the motorways. In addition, concentrations of PM10 and NO2

were measured in the schools. Information about confounders was collected through a

questionnaire. All children living within 1 000m of the motorway, with a valid lung

function test and a usable questionnaire were included in the analysis; 778 children in total.

After adjusting for confounders, lung function was found to be associated with truck

traffic volume and the association was stronger in children living nearer to the motorway.

Lung function was also found to be associated with black smoke in schools.

These studies have identified a range of possible associations between air pollution and

health. In epidemiology, however, one of the major problems associated with examining

the health effects of exposure to air pollution is estimating an individuals level of exposure.

Many different factors will affect an individuals exposure, for example, time spent indoors

and outdoors, daily activities such as travel to work or travel to school, age and health of

the individual.

Against this background, doubts must be raised about the accuracy of many of the

exposure indicators used in studies examining the relationship between traffic-related
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pollution and health. Although estimates of exposure such as distance to the nearest main

road or traffic volume on the nearest main road may give an impression of community

exposure, the relationship between air pollution and health is difficult to interpret, as they

are unlikely to provide reliable estimates of individual exposure. As a result, the true

effect of exposure to traffic-related pollution on health is not known with any degree of

certainty. As the Advisory Group on the Medical Aspects of Air Pollution Episodes

(1993, p119) stress, 'there are no systematic measurements of the levels to which people

are actually exposed'.

Despite these problems, there continues to be widespread concern about the relationship

between air pollution and health. One solution to help overcome these problems would be

to provide better estimates of individual exposure. Measuring exposure at a personal level

is likely to provide the most reliable estimates of individual exposure. However, in spatial

studies, where the association between health outcome and pollution for populations in

different geographical locations is examined, personal monitoring would be extremely

difficult to achieve due to the size of the study population. An alternative approach to

personal monitoring - air pollution mapping - may provide more reliable estimates of

exposure for sample populations than the exposure indicators described in this section.

1.4	 Environmental and Health Policy

In response to the increasing levels of air pollution and the possible link with respiratory

illness, many agencies and government bodies have established committees, expert panels

and advisory groups to report on the health issues of air pollution and present standards,

legislation and recommendations for levels of air pollution and emissions.

In 1985, The Commission of the European Communities established air quality standards

and published limit values for pollution in their 85/203/EEC directive. The limit values are

levels of pollution which must not be exceeded without subsequent action designed to
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prevent its recurrence. In 1987 the World Health Organisation also published guidelines

on levels of pollution based upon the protection of human health. The guidelines relate to

concentrations above which health effects may be discernible, and have formed the basis

for many national air quality standards.

More recently, in the UK, the Department of the Environment has set standards and

objectives for the main air pollutants representing the Government's present judgment of

air quality targets. The standards are reproduced in Table 1.6 - the different pollutants

have different averaging times depending upon whether chronic or acute exposure is

considered important. The United Kingdom National Air Quality Strategy (1997) now

recommends that local authorities identify air quality management areas if air pollution

exceeds these standards.

Table 1.6 The United Kingdom 1'Jational A Ar Quality Strategy standardc for the major
pollutants.

PollutantStandard	 __________________
Concentration Measured as

Benzene	 5 ppb	 running annual mean
1,3-	 1 ppb	 running annual mean
Butadine_____________ ___________________
Carbon	 10 ppm	 running 8-hour mean
monoxide____________ __________________
Lead	 0.5 l.tg/m3	annual mean
Nitrogen	 104.6 ppb	 1 hour mean
dioxide	 20 ppb	 annual mean
Ozone	 50 ppb	 running 8-hour mean
PM10	50 ig/m3	running 24-hour

mean

Sulphur	 100 ppb	 15 minute mean

dioxide

(Source: The United Kingdom National Air Quality Strategy, 1997)

26



In the case of traffic-related emissions, the vast majority of policy is directed towards

maintaining these standards and ensuring that pollution levels do not exceed these

standards, primarily through strategies to reduce and control the volume of traffic on the

roads. As the Royal Commission on Environmental Pollution (1994, p234) states, one of

the main objectives for a sustainable transport policy is 'to achieve standards of air quality

that will prevent damage to human health and the environment'. The aim is to achieve this

by reducing the dominance of cars and lorries and providing alternative means of

transport, and therefore improving the quality of life in towns and cities.

As previously discussed, one solution to help meet these standards will be the

implementation of technological changes in vehicle design to try and reduce emissions.

However, as the Royal Commission on Environmental Pollution (1994, p233) suggest in

their conclusions and recommendations,

'even allowing for technical improvements in vehicle design, the consequences of

growth on such a scale [the Government's 1989 figures for increases in traffic

volume - between 70% and 140% by the year 2025] would be unacceptable in

terms of emissions, noise, resource depletion, declining physical fitness and

disruption of community life'.

Improved technology will, nevertheless, be necessary, but clearly other actions are also

essential. The most important of these will be the introduction of new traffic schemes

designed to ease congestion and thereby reduce emission-generating stops and starts; this

might include new roads, such as orbital routes or by-passes. However, these will need to

be introduced in conjunction with policies to reduce the number of vehicles on the roads,

for example, policies to encourage alternative means of transport, such as park and ride

schemes, improvements to the rail network, and pedestrian, cycle and public transport

priorities.
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In order to introduce these actions it is important to understand where such schemes will

have the greatest impact and, as highlighted in the Design Manual for Roads and Bridges

(1994, 6/1), it is necessary to 'identif,' areas where it is likely that air quality will be

improved as a result of reduced traffic flows, changes in traffic speed or reduced

congestion or queuing times'. To date, there have been very few studies looking at the

effect of traffic management strategies on vehicle emissions. It is, however, imperative

that detailed studies are undertaken before and after schemes are implemented to monitor

the impact on levels of pollution. This is difficult in cities, where measurements of air

quality are based upon a limited number of monitoring stations and in some cases, just one

monitoring station which is assumed to be representative of air pollution across the city.

In order to implement effectively new traffic schemes it is important to understand the

spatial distribution and variations of city-wide air pollution. One of the most efficient

methods of providing this information is to produce a map of the pollution surface.

Variations in urban traffic-related air pollution occur over very small distances, reflecting

changes in the local and global environments, such as meteorology, topography, housing

density, industry and traffic volume. To help establish accurate and reliable city-wide

predictions of air quality it is essential that detailed maps are produced.

The research presented in this thesis examines the problem of predicting variations in air

pollution and producing detailed maps of the pollution surface in urban environments.

Pollution surfaces are very complex - varying in both spatial and temporal dimensions. A

model, which is a simplified representation of the pollution surface, is therefore applied to

portray the variations in air pollution. The pollution surface is then visualised through

mapping. Maps can be used to help investigate spatial patterns of air pollution, identify

hot spots and areas where pollution levels exceed guide-lines and standards. Analysis of

the spatial distribution of air quality can aid the design of monitoring networks and the

selection of new locations for monitoring stations.
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Maps have an important role from a health perspective. Epidemiologists looking at the

geographical distribution of health are looking at sample populations in different

geographical locations. The epidemiologists require accurate estimates of human

exposure to air pollution in order to identify at-risk populations and quantify the levels of

exposure involved. Studies of the links between air pollution and health have been

hampered by the lack of accurate and precise estimates of exposure. Maps offer an

effective method of estimating exposure at the individual and small area scale and thus

helping to establish associations between pollution and health.

Against this background it is vital that a true picture of the pattern of air pollution is

drawn. It is clear, however, that the accuracy of the maps will have a direct impact on the

success of control strategies. It is therefore essential that reliable predictions of air quality

can be derived. To achieve this the spatial variations in air quality that exist at street level,

in urban environments, need to be identified and modelled.

Understanding the pattern and pathways of pollution at ground level is of great value to

the policy makers and planners. As the Quality of Urban Atmospheric Review Group

(1993, p12) illustrates,

'predicting air quality in urban areas serves a number of important roles. At a local

level it allows the impact of a new schemes to be assessed, e.g. a new road or

industrial plant. At a broader level, modelling can be used to help policy

formulation by testing the impact of various policy options on air quality'.

Proposals to amend the legislation on air pollution are likely to benefit from information

on the distribution and character of major emission sources and levels of pollution.

Identifying the main contributors to air pollution and areas that do not comply with EC

directives will aid the development of targeted control strategies. Models can be used to

forecast future (and past) levels in air quality, thus informing the design and

implementation of control strategies. The models can then be used to monitor the effect
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of control strategies on levels of pollution after implementation. Furthermore, modelling

air quality will help identify and define effective indicators of emissions thereby helping to

establish more reliable predictions in areas where the sampling density is low or non-

existent.

1.5	 Aims and Objectives

Against this background, the overall aim of this thesis is to examine the problem of

producing detailed maps of pollution surfaces in urban environments. In order to achieve

this, the research presented in the thesis is based upon the following specific objectives:

to develop a range of different methods for mapping air pollution within a

Geographical Information System (GIS) environment;

to apply these methods to examine air pollution in urban environments, in

particular in Huddersfield, UK;

to compare and evaluate the performance of the different methods as a

basis for informing policy management and epidemiology investigations.

To encompass the overall aim and objectives, the thesis is structured as follows:

Chapter 1	 reviews the issues associated with traffic-related air pollution and

respiratory illness, and introduces the problem of pollution

mapping;

Chapter 2	 reviews the traditional approaches to air pollution mapping and

introduces the application of GIS and three new methods;

Chapter 3	 describes the data used to develop, test and validate the different

traffic-related air pollution mapping methods;

Chapter 4	 demonstrates the application of the geostatistical technique, kriging;

30



Chapter 5	 describes the development of an automatic approach based upon a

combination of dispersion modelling and kriging;

Chapter 6	 describes the development of a moving window approach based

upon GIS neighbourhood operations and kriging;

Chapter 7	 describes the development of a regression based model using GIS

neighbourhood operations and statistical techniques;

Chapter 8	 compares and evaluates the different methods;

Chapter 9	 presents conclusions and further research.

31



CHAPTER 2 MAPPING AIR QUALITY

It was established in Chapter 1 that there is a need for accurate and reliable area-wide

estimates of air quality and one way of achieving this is through mapping. The production

of maps of the pollution surface involves estimating pollution concentrations at unsampled

locations.

2.1	 Spatial Variations in Urban Air Pollution

Deriving estimates at unsampled locations is a difficult task due to the complex nature of

urban air pollution - which, at a local level, reflects patterns in emission sources, the

dispersion environment, turbulence and chemistry of the pollutants. Levels of pollution in

urban areas change in response to local variations in emission sources. In the case of

vehicle emissions, density of the road network, type of road, composition of traffic,

volume and speed of traffic, will all influence emission patterns. The environment through

which the pollutants then move affects the rates and pathways of dispersion, for example

the density of buildings adjacent to the sources and the climatic conditions. As a result,

variations in the levels of air pollution in urban environments occur over very small

distances.

In the case of NO2, for example, research undertaken by Laxen and Noordally (1987) to

investigate the distribution of NO 2 in street canyons suggested that NO2 concentrations

decline very rapidly from the center of roads, with concentrations close to local

background levels at a distance of 30m. The research also showed that at some locations

nearly two-fold variations in NO2 were present over distances less than lOOm. High
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degrees of local variation in urban areas have also been found by Hewitt (1991), who

examined spatial variations of NO2 in the city of Lancaster, UK (based on diffusion tube

measurements at 49 sites).

Motor vehicle emissions dominate NO2 concentrations in cities and near to roads, with the

heights of emissions from the vehicles strongly influencing the spatial patterns in NO2

concentrations at ground level. As Wardlaw (1993) points out, 'outdoor concentrations

are very localised being highest by the kerbside and falling rapidly away from the

pavement and with height above the pavement. Concentrations correlate with density of

cars, maximum concentrations occurring during rush hours'.

Furthermore, as Larssen et a! (1993) suggest, 'the relationship between air pollution

exposure and health effects associated with it are often hampered by the inaccuracy of

determination of the air pollution concentrations that the group or individuals being

studied are actually exposed to'. It is evident, therefore, that air pollution needs to

modelled and mapped at a resolution that reflects these spatial variations.

There are two main approaches to mapping air quality:

dispersion modelling - estimating pollution concentration from emissions

data based upon a model of dispersion processes (generally Gaussian)

spatial interpolation - estimating patterns of pollution from point data

derived from field monitoring

2.2	 Dispersion Modelling

Air quality dispersion models can be characterised as either point, line or area dispersion

models. The earliest dispersion models were developed to model the path of pollution

from industrial point sources. As highlighted in Chapter 1, in recent years concern has
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begun to change from industrial pollution to vehicle pollution. As a result, a number of

line dispersion models have been developed for road transport. Both line and point

models are source-receptor models and can be used either to calculate pollution

concentration at one, or a number, of specific locations (e.g. the place of residence of an

individual subject), or to produce an array of points as a means of producing a pollution

map.

The models use information on two main sets of factors: characteristics of the emission

source and characteristics of the dispersion environment. Point dispersion models use

information about the source of pollution - for example stack height, stack diameter and

emissions data - and meteorological data. The model calculates the plume of dispersion

around the stack using this data. The width and depth of the plume depends primarily on

the wind speed and turbulence of the atmosphere. The pattern of dispersion over distance

from the source is described by fitting a model, such as a Gaussian model.

Line dispersion models provide estimates based on emissions from one or more linear

sources, such as roads. The linear sources are represented by links, where a link is usually

characterised as a straight segment of unifonn conditions. The models use information

about emission source (e.g. composition of traffic, traffic volume, emission rates, traffic

idling time, traffic speed) and the dispersion environment (e.g. meteorology, mixing

height, information about the surface adjacent to the road).

An early example of a line dispersion model is described by Dabberdt et a! (1973) and

Johnson et a! (1973), who report on the development of a sub-model to the APRAC

model. APRAC was a multipurpose urban diffusion model for predicting concentrations

of CO. The sub-model, STREET, describes the microscale Street effects (i.e. the effects

of street canyons) and was developed because 'cross-street CO concentrations often differ

by a factor of 2 to 3' (Dabberdt et a!, 1973). Other dispersion models based on the street

canyon theory have since been developed to try and improve on the STREET model.
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One such example is the Canyon Plume-Box Model (Yamartino and Wiegand, 1986)

developed in Germany for modelling the dispersion of NO N, NO2 and CO.

In the late I 970s several models to predict pollution near roadways were developed in the

USA (Rodden et a!, 1982). Over time a number of these models have grown into

commercially available products, of which the most notable and widely used is the

CALINE suite of models (Quality of Urban Atmospheric Review Group, 1993).

CALINE4 is the latest version of the California Line Source Dispersion Model,

developments on which were reported as early as 1972 (Benson, 1992), and predicts CO.

NO2 and aerosols. CALINE4, and its predecessors, have been widely used across the

USA and now also in the UK.

More recently a model has been developed in The Netherlands to determine City Street air

quality, the CAR model (Eerens et a!, 1993). This is widely used throughout the

Netherlands by municipalities and central government. The model was developed to take

account of circumstances when streets do not behave like street canyons - for example

where there are open spaces in cities, such as parks, squares and gaps between houses -

that the authors felt other models had neglected. As Eerens et a! (1993) note, 'at most

locations near city traffic, including intersections of streets, the buildings and trees do not

form a street canyon'. The CAR model calculates the annual percentile values and average

concentrations at the kerbside of roads for non-reactive air pollutants and NO 2. The

model is predominately used for implementation of national air quality decrees, traflic and

environmental planning, and the evaluation of current policy and the consequences of new

policy proposals (Eerens eta!, 1993).

Over the last few years, changes in computer technology have resulted in the adoption of

Windows based software products, encouraging the development of dispersion modelling

packages such as ADMS. ADMS is an expansion of the Highways Agency Design

Manual for Road and Bridges (DMIRB) model developed by Cambridge Environmental

Research Consultants Ltd. Using windows functionality, ADMS models the dispersion of
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pollution from point, line, area or volume sources for a variety of pollutants and the results

can be graphically displayed within the system.

Line dispersion models are relatively effective at estimating pollution levels for small

localised situations, for example, at a road junction. The models, however, tend to be

extremely data intensive and it is often the case that all the data are not available. Using

point source models to create maps is relatively straightforward, but this is not the case for

line source pollution. Variations in the characteristics of a road change quite rapidly in

urban areas - for example due to changes in the housing density at the side of a road,

variations in traffic volume and changes in the direction of the road. Consequently, in

area-wide studies, a great many road segments need to be modelled. Where a whole city

has to be modelled, the demands on data are therefore very high. This tends to render the

method inappropriate for area-wide studies.

Furthermore, line dispersion models can only accurately model pollution levels close to the

source, for example up to a distance of 35m in the case of the CAR model and about

200m in the CALINE and DMRB models. In the case of the CAR model, a city-wide

background concentration is calculated based on the regional background concentration

and the radius of the city. Most line dispersion models, however, provide no estimate of

background concentrations and the use of a constant for the background concentration

fails to reflect the variation in pollution levels which may occur.

Another disadvantage of dispersion models is that they only model dispersion from those

sources which have been identified. As Table 1.3 demonstrated, a high proportion of the

pollutants associated with road transport also derive from other sources, such as industrial

or domestic. In order to establish area-wide estimates of pollution, it is necessary to

model pollution from these different sources. This is often achieved by undertaking a full

emissions inventory for a study area. All sources of pollution are identified and the total

emissions recorded for grid cells superimposed over the study area. An alternative is to

use models that predict dispersion from a combination of pollution sources. In practice
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this is often achieved by aggregating emissions to a grid and then using an area-based

dispersion model, such as a box-model. The grid dimensions for this type of model are

usually of the order of I to 10 km (Russell, 1988).

Simpson et a! (1990), for example, calculated NO concentrations in the UK at a 10 km

resolution using a source-receptor dispersion model, the results from which were

combined with the European contribution of NO N, calculated using the EMEP NO model

(with UK emissions set to zero) at 150 x 150 km resolution. The source-receptor

dispersion model included two sub-models: one to describe the long range transport, ^

5km from the source, and the other to describe the shorter range transport of NO R. The

model used data on emissions from motor vehicles (obtained from the national database at

Warren Springs Laboratory on a 10 x 10 km grid), data related to point sources (i.e.

power stations) and meteorological data.

Her Majesty's Inspectorate of Pollution (1993) undertook a study to look at the effect on

levels of NO in the East Thames corridor in the UK, if new industrial sources of NO

were introduced. Concentrations of NO 2 were estimated on a 5 x 5 km resolution grid,

based upon modelled concentrations, using the PLUMES dispersion model and emissions

data from present industrial sources in the East Thames corridor, and the spatial

distribution of NO2 on a 5 x 5 km resolution from the national database at Warren Springs

Laboratory.

Alexopoulos et a! (1993) developed a model to estimate emissions from traffic in Athens

at a 1 km resolution. A grid was superimposed over Athens and the contribution of

emissions from line sources within each cell was established, using information on traffic

composition, type of road and road length.

Although these area-wide methods are useful on a regional or national scale - to give a

generalised impression of the spatial distribution of air quality (for regional or national

comparisons) - from a policy or health perspective they do not reflect the true variations
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that occur at ground level, and consequently are not readily applicable to city-wide

studies. This is especially true for vehicle-related pollution where the major variation

occurs at street level, close to the sources. As Russell (1988) points out, there are

problems associated with grid-based air quality modelling at such coarse resolutions, due

primarily to 'a mismatch between the high concentrations that in fact do exist near the

sources versus the lower concentrations computed by a model that immediately mixes

those emissions throughout a grid cell of several kilometres'. Exposure estimates are thus

rendered homogenous across the grid cell.

2.3	 Spatial Interpolation

An alternative to dispersion modelling in area-wide studies is spatial interpolation from

monitoring sites. Pollution at any one location is the product of combinations of pollution

from all sources within the surrounding area. The advantage of using monitored data is

that the different sources of pollution at a location do not need to be identified.

Air quality is a spatially continuous variable. The locations of the monitoring sites and the

air pollution values measured at those sites are used to describe the spatial distribution of

air pollution across the whole of the study area. Predictions of values at points where the

attribute has not been sampled can then be established (Bailey and Gatrell, 1995). Spatial

interpolation is the term applied to techniques employed to derive predictions at

unsampled locations.

A variety of spatial interpolation techniques exist, differing in terms of the underlying

algorithm used to describe spatial patterns and each with its own advantages and

disadvantages. The most commonly used techniques include distance weighted averages,

Delaunay triangulation, splines, trend surface analysis and kriging. Visual representation

of the results is usually achieved by contouring. Reviews and comparisons of the various

techniques can be found in El Abbass et a! (1990), Lam (1983), Dubrule (1984),
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Burrough (1986), Laslett et a! (1987) and Knotters et a! (1995). Many of these authors

conclude that the choice of technique is largely dependent upon the application, the

required accuracy of the end result and the spatial distribution and number of sampling

points.

For distance weighted averages, estimates at unsampled locations are found by averaging

a set of neighbouring sample points which are weighted by distance, so that nearer points

have greater influence on the estimate than distant points. In the case of Delaunay

triangulation, triangles, as close to equilateral as possible, are created between sample

points. If the values at the vertices of triangles are assumed to be heights, then the value

at an unsampled location can be calculated by simple geometry. An alternative to

Delaunay triangulation, albeit conceptually less sophisticated, is the Theissen (or Voronoi)

polygon, whereby every location is assigned the value of its nearest sample point. Splines

are computationally more complex: a series of polynomials, usually cubic or quadratic, are

fitted to small neighbouring sub-sets of the total sample. The polynomials are constrained

to give a continuous surface.

The local estimators, described above, could be used to predict values at unsampled

locations. However, as Bailey and Gatrell (1995) highlight, 'the justification for doing so

is weak. The techniques do not involve an explicit statistical model for the data under

consideration and make no attempt to incorporate explicitly the possibility of spatial

dependence. As a result none of the methods provide any estimate of the errors that can

be expected in the results.'

One method that does involve an explicit statistical model is trend surface analysis. This is

by far the most commonly applied technique for describing global trends in the data.

Polynomials are fitted by least squares regression on the spatial co-ordinates. This has a

number of disadvantages, as Oliver and Webster (1990) have identified. In the first

instance, the powerfiul smoothing inherent in the technique results in a loss of detail; any
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outliers or errors in the data cause instability in the model and variation in one part of the

region will affect the fit of the surface everywhere.

Oliver and Webster (1990) explain that 'the nature of most spatial properties is such that it

defies simple mathematical description. Rather, properties of the natural environment, at

least, seem to behave as random variables'. A technique that will take this into account

must therefore involve an explicit statistical model and provide estimates of the errors. A

group of geostatistical techniques, known collectively as kriging, has been developed for

this purpose.

Kriging is an optimal interpolator the estimates from which are unbiased and have known

minimum variance (Oliver and Webster, 1990). The technique is based upon the theory of

regionalized variables and utilises the spatial structure of the data. The theory of

regionalized variables is discussed in detail in Journel and Huijbregts (1978). Kriging

involves the construction of a semi-variogram and the fitting of an appropriate model.

The most common and widely-used techniques are ordinary and universal kriging - where

an estimate is found for a point of a grid. Other more complex techniques, such as block

or co-kriking, are more difficult to apply and hence are often only used in specific

applications. In block kriging the estimates are established for areas, as opposed to points.

In co-kriging, other variables which have been sampled at the same location, but often

with a higher density of sample locations, are used to help calculate the estimate by

incorporating the correlation between the variables into the calculations. As a means of

describing the kriging technique in further detail, however, the remainder of the discussion

will focus on the more commonly used techniques.

In kriging, the first order component of the data is removed: in the case of ordinary

kriging this is the mean and in the case of universal kriging this is the trend in the data.

The remaining variance, the second order component, is the local (random spatially

dependent) variation in the data. The semi-variogram is then applied to the second order
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component to explore the spatial dependence of the variance. The semi-variogram is

found using equation 2.1.

1	 M(h)

5(h)=

	

	 +hfl2
2M

[Equation 2.1]

in which x and x + h are two points with values z, h distance apart, and M(h) is the

number of pairs h distance apart, referred to as the lag. In most cases, there are only a

small number of observations available and therefore distances are oflen grouped into

classes of equal intervals. The semi-variogram typically increases with distance (lag) until

a point where it levels out, known as the sill; the distance to the sill is referred to as the

range. At zero distance, the semi-variogram can be greater than zero, due to noise in the

data (for example when two different observations have been recorded at the same

location) and is known as the nugget effect. Where the semi-variogram is increasing with

distance (i.e. where the distance is less than the range), a correlation or covariance exists

between pairs of points, reflecting spatial dependency in the data. Beyond the range (i.e.

when the semi-variogram levels out) covariance is zero and therefore there is no spatial

dependence (Schaug eta!, 1993).

A model, in the form of a smooth curve, is fitted to the semi-variogram by generalised

least squares to obtain an overall description of the covariance structure. Generally,

spherical, exponential or gaussian models are fitted. More information about fitting

models to the semi-variogram can be found in McBratney and Webster (1986).

The model provides values for the intercept, the sill and the range. This information is

then used in the kriging calculations. The kriging interpolation estimates are found by

local weighted averaging, using equation 2.2, where the weights (A1) have been

determined by the variogram and the configuration of the data (Oliver and Webster,

1990). The estimates are calculated for a series of points, usually a grid across the study
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area. In the kriging calculation the Lagrange multiplier is used to ensure that the variance

errors are minimised by setting the sum of the weights to 1.

1(B) = 2 z(x1 )
	

[Equation 2.2]

Spatial dependence, the variogram and kriging are covered in greater detail in Webster and

Oliver (1990) and Bailey and Gatrell (1995). Further mathematical description of spatial

prediction and kriging can be found in Cressie (1993).

Kriging has been widely used in the environmental sciences. For example, Gambolati and

Volpi (1979) used kriging to create contour maps of groundwater in an attempt to help

understand and control land subsidence in Vience. Three major aquifers underlying the

Venetian lagoon were sampled on three separate occasions, two in 1973 and one in 1977;

kriging was then applied to the sample observations. The sampling density for the three

aquifers ranged from 27 to 40 observations.

Wood et al (1990) mapped the salinity of the soil in the Bet Shean Valley of Israel by

applying disjunctive kriging to 201 measurements of electrical conductivity.

Measurements were undertaken in two separate surveys in two consecutive years. The

maps were subsequently used to observe spatial variations over time, and to identify areas

where critical thresholds were exceeded or where deficits occurred.

Another application of kriging is demonstrated by Vauclin el a! (1983) who used kriging

and co-kriging to study the variability in sand, silt, clay, available water content (AWC)

and water stored at the 1/3 bar (pF2.5) and the relationships between them. The study

was undertaken in Tunisia and 40 samples were taken on a 1 Om grid. The kriging

techniques were used to calculate estimates of the sampled data at a finer grid. It is

interesting to note that co-kriging was found to be the better interpolator.
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Knotters et a! (1995) examined the application of auxilIary variables for estimating soil

horizon depths. The authors compared kriging with co-kriging and kriging combined with

regression. Soft layer depth and soil electrical conductivity were sampled at 117 random

locations and 539 locations in a regular grid in Lickebaert-polder in the Netherlands. The

539 samples were used for interpolation (kriging and co-kriging) and the 117 samples for

analysing the accuracy of the interpolation. The 117 samples were also used for the

regression analysis; the regression model was used to predict the depth of soft layers from

soil electrical conductivity at the 539 regular grid locations. Kriging was then applied to

the prediction error. The use of auxiliary variables was found to improve the kriging

estimates and kriging combined with regression provided better estimates that co-kriging.

Cassiani and Medina (1997) used co-kriging to estimate aquifer transmissivity of a land fill

site contaminated by leachate from medical and chemical wastes in Duke Forest, Durham,

North Carolina, USA. Transmissivity measurements were taken at 27 wdls and auxiliary

measurements of vertical electrical surrounding were taken at 10 of the 27 wells and also

at 111 other sites. The auxiliary data were found to improve the known estimations of

transmissivity at the wells.

Recently, kriging has been applied in studies of air quality, where area-wide levels of air

pollution have been estimated from values recorded at monitoring sites. For example,

Atkins and Lee (1995) used kriging to look at spatial and temporal variations in rural

levels of NO2 for the UK. NO2 was recorded at 57 rural sites during two surveys, one in

April 1987 and the other in June 1988.

Liu et a! (1995) examined the use of kriging and co-kriging to estimate levels of ozone

concentration in Toronto, USA. Ozone was measured at a total of 40 outdoor residential

locations between June and August 1992, though measurements were only taken at 4 of

the locations at any one time. Within the study area of Metropolitan Toronto there are 19

ambient monitoring sites measuring ozone. For selected days, between June and August

1992, kriging was applied to the 19 monitoring sites. On those selected days, the
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measurements at the 4 residential locations where ozone was also measured were

compared with the interpolated values. Kriging was found to provide better estimates of

measured ozone at the residential locations than selecting the nearest monitoring site. Co-

kriging, taking into account traffic conditions, provided slightly better estimates.

The differences between modelled values of sulphate and nitrate in precipitation and

sulphate in aerosols and measurements at EMEP sites have been mapped using kriging, as

reported in Schaug et a! (1993). The modelled values were calculated using the

Lagrangian model - which calculates values for sites in the EMEP network and points on a

regular grid. The maps were used to identify areas of systematic under- or over-

estimation in modelled values across Europe. Points on the regular grid could then be

adjusted to compensate for these systematic differences.

2.4	 Adapted Statistical Methods

An alternative to the traditional methods of mapping air pollution is regression mapping.

If two variables are related, i.e. they are significantly correlated, then known values of one

of the variables can be used to predict unknown values of the other variable. Where more

than one known variable is used to predict the unknown variable, then the statistical

technique is termed multiple regression and the regression equation thus takes the form of

Equation 7.1. The known variables are termed the independent variables and the variable

to be predicted is termed the dependent variable. The coefficient of determination (r2) can

be used as an estimate of the amount of variation in the dependent variable that is

statistically explained by the independent variable.

y=a+/31 x1 +/32 x2 + .... . +/jnxn	 [Equation 7.1]

The regression equation describes the relationship between the dependent variable and the

independent variables. In the case of regression mapping, the dependent and independent
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variables have a spatial element related to the location of sample sites. In the

environmental sciences, the sample sites are usually locations on the surface of the earth.

If the independent variables have been sampled to a higher density than the dependent

variable then the regression equation can be applied to predict the values of the dependent

variable at the locations where it has not been sampled. This is very useful in situations

where the independent variables are a lot easier to measure than the dependent variable.

It is, however, essential that an adequate number of sample sites are established to provide

statistical rigour and that meaningful variables are chosen to optimise the predictive power

of the relationship. One of the main restrictions of regression mapping is that the spatial

locations of the sample sites are not taken into consideration. This has important

implications for the residuals of the regression analysis. Spatial autocorrelation - where

residuals at sample locations closer together are more likely to resemble each other than

residuals at sample locations further apart - may be present in the data. Spatial

autocorrelation is an indication of spatial dependence in the data and its presence,

therefore, implies that the residuals are not random and that explanatory variation in the

dependent variable remains. The problem is discussed further in Chapter 7 and detailed in

Haining (1990) and Bailey and Gatrell (1995).

The application of regression as a predictive tool has been used extensively in the

environmental sciences. Tyler et a! (1996), for example, applied multiple regression to

predict General Yield Class (GYC) of Douglas fir, Japanese larch and Scots pine in

Scotland. Data on GYC, soil, climate and topographic factors were collected at sample

sites and the regression model used to estimate mean productivity at regional and national

levels. Regression has also been applied to predict the presence of the red squirrel in

fragmented habitats in the Netherlands based upon the area per wood-lot covered with

conifers (van Apeldoorn et a!, 1994).

Regression has also been widely used in the field of remote sensing, not just for prediction,

but also to help classify and interpolate images. In remote sensing, samples on the ground
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are compared with training sites on the image (i.e. areas of pixels corresponding to areas

on the ground) and regression is applied to establish the relationship between the two.

The linear relationships are then used to classify other pixels in the image.

Examples of the application of regression in remote sensing are numerous. Pratt el a!

(1997) used remotely sensed data to estimate the areas of different crops in North-east

Nigeria. Regression was applied to calibrate the classification based on sample field data.

George (1997) estimated the concentration of chlorophyll in lakes in the Lake District,

UK, from the relationship between maximum reflectance wavelength band of imagery and

concentration of chlorophyll at sample locations across the lake. Rasmasses (1997)

established a linear relationship between operational millet yield in the field and remotely

sensed data to help forecast millet yield in Senegal from AVHRR data. Guo and O'Leary

(1997) derived estimates of suspended solids in Waitemata Harbour in Auckland from the

relationship between samples of suspended solids and reflectance on scanned aerial

photographs. Trotter et a! (1997) applied regression to help estimate timber volumes

from remotely sensed imagery and forest inventory data to support the design of

harvesting strategies in New Zealand.

There are, however, very few examples of regression applied to air pollution modelling.

Campbell et a! (1994), applied a statistical model to map air quality in the UK. Levels of

NO2 for the UK were estimated for 5 x 5 km grid squares. NO 2 was measured at 363

urban locations during a six month period in 1991. Regression analysis was applied to the

six month mean concentrations of NO2 and population density for all 5 x 5 km grid

squares containing a monitoring site. Population density was used as an indication of

vehicle density - it was assumed that population density was highly correlated with vehicle

density. The rural background was removed from the NO 2 values before the regression

equation was applied. The rural background was found by applying kriging to 39 rural

sites. When the corrected NO 2 values were regressed against population, population was

found to explain 56% of the variation in NO2. The equation was then used to produce a
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concentration map for the UK from the spatial distribution of population and the

interpolated rural background.

This technique has since been used by AEA Technology to map other pollutants including

SO2, CO and non-methane VOC's (Stedman, 1996).

Given the size and complexity of traffic-related pollution surfaces in urban environments,

however, it is unlikely that the techniques described above - dispersion modelling, spatial

interpolation and regression - will provide reliable estimates of pollution in unsampled

locations at this scale. Recent developments in information systems and spatial analysis

provide new opportunities to develop approaches to modelling air pollution.

Geographical Information Systems (GIS), for example, have the capacity to analyse large

volumes of spatially referenced data, in a timely fashion, and produce high quality maps of

the resulting pollution surfaces.

All the techniques discussed above could benefit from the use of GIS. Indeed, point

source dispersion models, spatial interpolation techniques and regression for remote

sensing applications have already been implemented into the more sophisticated GIS, for

example in the GIS ARC/INFO. For general regression applications, GIS have also been

used in combination with statistical packages.

Mattson and Godfrey (1994), for example, used a combination of regression and GIS

techniques to examine road salt contamination in streams in Massachusetts, United States.

Samples of sodium were collected from 162 streams - the watersheds of which fell within

the boundaries of Massachusetts. The GIS was used to calculate the total length of four

classes of road in each watershed. The sodium values were regressed against the four

classes of road and values for sea spray precipitation. All the variables were found to be

significant. The regression equation was then used to predict samples in other streams

that were not used in the model.
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Iverson et a! (1997) also used a combination of GIS and regression to predict forest

productivity and species composition for forests in Ohio, USA. GIS was used with forest-

plot data to develop an integrated moisture index (JIMI) based upon several landscape

features. Regression was then used to estimate the relationship between DAT and oak site

index and the percentage of composition of oak and yellow poplar. The statistical

relationships were then applied in the GIS to create maps of site index and composition.

2.5	 Geographical Information Systems

GIS have the capacity to store large volumes of spatially referenced data, at a fine

resolution, and also have the capability to analyse the data in a spatial manner. This might

simply involve overlaying two different data sets (e.g. a point-in-polygon operation) or

more complex analyses of the data on the basis of data in neighbouring locations (e.g.

neighbourhood operations). GIS are also very flexible systems - many have their own

languages to help customise existing fI.inctions and operations, and to help develop new

ones - for example, ARC/1NFOs' Advanced Macro Language (AML). The results of any

analysis or operation can then be presented visually as a map, either on screen or as a hard

copy.

An important role of GIS is the ability to bring together data from a variety of sources,

such as health, social-economic data and environmental data, within a common

framework. Once a map of air pollution has been created in the GIS it can be integrated

with other information, such as the locations of sample populations and their associated

health outcomes. GIS can useftully be applied to help produce more realistic maps of the

spatial distribution of air quality and hence, more reliable estimates of exposure.

The data can be stored and analysed in either vector or raster (grid) format. The vector

format stores information as x and y co-ordinates, whereas grid format stores information

as an array of cells - where each cell contains some information. In the case of a road
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network, for example, vector format describes the roads as a series of co-ordinates,

whereas in grid, one numerical value indicates that a road exists at a location and another

numerical value indicates that it does not. When the resolution of the grid gets smaller

(i.e. to provide greater detail) then the grid structure begins to take up far more space than

the vector structure. In the past vector format was often chosen in preference to grid due

to its ability to store data at a finer resolution and with less space. Today, however,

advances in computer technology (i.e. larger discs and faster processors) have, to some

extent, reduced this problem and although grid format at a fine resolution involves large

amounts of data, it does have its advantages. In particular, it is extremely useful for

modelling environmental phenomena, such as air quality, which do not vary according to

administrative and political boundaries, or some other aggregation.

The grid functionality is a powerful tool for modelling spatial variations. Once the data

are stored in grid format, then techniques such as moving windows or kernel estimators

can easily be applied to analyse the data. Here, at any location, the data are analysed on

the basis of the neighbouring cells, perhaps calculating the local average or the local sum.

Neighbourhood techniques are often used to smooth data and remove random variation.

Although neighbourhood techniques are not restricted to data stored as a regular grid and

can also be applied to point data or irregular area data, the tools are not readily available,

due to the complex nature of regions (i.e. variations in shape and size) and the irregular

distribution of points. The techniques and their applications are discussed in greater detail

in Haining (1990) and Bailey and Gatrell (1995).

2.6	 Producing Detailed Maps of Air Pollution

There are many different ways in which GIS could be applied to produce detailed maps of

air pollution. In order to examine the capacity of GIS to model air pollution and produce

reliable predictions at unsampled locations three new approaches have been developed by

the author. The research presented in this thesis demonstrates the development, testing
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and comparison of the methods. All three methods have been developed in a GIS

framework and have been applied and tested in Huddersfield, UK, using data that is

described in Chapter 3.

The first method presented is an automatic approach to modelling traffic related air

pollution. The approach applies a combination of the two traditional pollution mapping

techniques: dispersion modelling and spatial interpolation. A line dispersion model was

adapted to work automatically within a GIS to model near-source pollution from road

traffic. The near-source pollution was combined with background concentrations, which

were generated by kriging pollution data measured at monitoring sites in background

locations. While many of the spatial interpolation techniques, including kriging, have now

been incorporated within the more sophisticated GIS, there has been no real attempt to

link line dispersion models with GIS.

The second method is also a combination of two different techniques: spatial analysis and

spatial interpolation. Within GIS, a moving window is used to estimate near-source

pollution concentrations from road traffic. In a similar manner to the first method, the

background pollution is generated by kriging and the near-source concentrations are

added to the background concentrations. As previously discussed, the moving window

technique has primarily been employed to smooth data; it has not, however, been applied

to air pollution mapping.

The third method is a regression approach that employs spatial analysis and statistical

techniques. Variables that provide measures of the emission sources and dispersion

patterns of pollution are identified and defined within the GIS. The regression analysis is

applied outside the GIS. The relationship between these variables and the monitored data

is then used to estimate concentrations within the GIS at unsampled locations. Although

regression has been used for mapping purposes, the technique has rarely been applied to

air pollution mapping, and in particular, when used in combination with GIS techniques

for analysing spatial data.
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Since kriging is the most sophisticated and widely-used of the traditional mapping

techniques, kriging was chosen as a control against which to compare the performance of

the new methods.

The four approaches - kriging, automatic modelling, moving window and regression

mapping - are discussed in detail in Chapters 4 to 7 and are reviewed and compared in

Chapter 8.
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CHAPTER 3 DATA COLLECTION

The data used to undertake this research were collected as part of the Small Area

Variations in Air Quality and Health (SAVIAH) project.

3.1 The SAVIAH Project

The SAVIAH project was an EU-funded methodological study aimed to apply, test and

evaluate new and emerging methodologies in the fields of epidemiology, geography, air

pollution modelling and small area health statistics, as a basis for informing environmental

health policy (Elliott et a!, 1995). The SAVIAH project was undertaken in four study

areas: Huddersfield (UK), Amsterdam (The Netherlands), Prague (Czech Republic) and

Poznan (Poland). The project was designed to look at the long-term, chronic health

effects of pollution. Further information pertaining to the project can be found in Briggs

eta! (1997), Lebret eta! (1997) and Pikhart eta! (1997).

Air quality monitoring was undertaken in each area, using nitrogen dioxide as the

measured pollutant in Huddersfield, Amsterdam and Prague, and sulphur dioxide in

Poznan. Although the profile of air pollution in Western and Central Europe has changed

from industrial to traffic-related pollution over the last few decades, as discussed in

Chapter 1, in certain areas of Eastern Europe, such as Poznan in Poland, industrial

pollution is still considered to have greater long-term chronic health effects than traffic-

related pollution. Consequently, in Poznan sulphur dioxide was selected as a proxy for

industrial pollution. In Huddersfield, Amsterdam and Prague, nitrogen dioxide was

selected as a proxy for the complex of traffic related pollutants. Both pollutants were
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chosen for their ease of measurement and the fact that they are the predominant pollutants

measured in similar studies, which allows comparisons to be made.

In each study area all children in a selected age band between 7 and 11 were surveyed by

questionnaire. The questionnaires were sent to the parents / guardians of the children via

the schools in Huddersfield, Prague and Poznan, and by post in Amsterdam. The number

of returned questionnaires and response rates for each study area are shown in Table 3.1.

The questionnaire included questions relating to health, with particular reference to

respiratory disorders, and socio-economic conditions. The questionnaire is discussed in

further detail later in this Chapter.

Table 3.1 Number of returned questionnaires and response rates.

________________ Prague 	 Amsterdam Poznan	 Huddersfield
Age band	 7-10	 7-1 1	 7-8	 7-9
Number of eligible 3680	 3811	 4633	 5027
returns____________ _____________
Response rate	 88.1%	 62.6%	 95.6%	 90.7%

One component of the project was the collection of geographical data for each study area.

In HuddersfieId, the data were collected and stored in the GIS ARC/INFO version 6.0.2,

running on a UNIX platform. All the data sets were spatially referenced to the National

Grid co-ordinate system within the GIS. Geographical data included road network, land

cover, altitude, monitoring sites and the children's place of residence. All the data were

stored as either point, line, polygon or grid coverages with associated attributes (Table

3.2) and are described in more detail later in the Chapter.

The SAVIAH study was a large project and many people were involved in the air quality

monitoring, the health survey and the collection and capture of geographical data in the

GIS. In Huddersfleld, this included members of staff at the Institute of Environmental and
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Policy Analysis, and other researchers at the University of Huddersfield. Part of the

purpose of the SAVIAH project was to develop, test and apply new methodologies for air

pollution modelling. The author was primarily responsible for this aspect of the project,

which included the development of the GIS (i.e. the bringing together of the different data

sets within a consistent geographical framework).

Table 3.2 Geographical data and associated attributes.

Geographical data	 Coverage	 Attributes
Road network	 Line	 Road type, traffic volume
Land cover	 Polygon	 Land cover class
Altitude	 Grid	 Height above sea level
Monitoring sites	 Point	 Measured NO2 values
Place of residence	 Point	 Responses to the health questionnaire

3.2	 Measuring Air Pollution

Air quality monitoring in the UK is the responsibility of a number of different agencies and

is undertaken through a range of different networks, using different devices. In the UK

there is a network of 47 automatic stations which measure 0 3, NO2, SO2, CO, PM 10 and

speciated HC; NO2 is measured at 26 of these sites (Bower and Vallance-Plews, 1995).

Automatic monitoring stations consist of pump samplers and chemiluminescent analysers.

These enable short-term measurements of exposure to be undertaken, and allow specific

pollution events to be identified and analysed. Unfortunately, they are very expensive to

purchase and operate, and consequently there are very few sites - although more sites are

planned for the future. The stations therefore provide a great deal of temporal information

but fail to reflect spatial variations.

Agencies, such as local authorities, also undertake fixed site sampling, however, the data

are not held centrally, nor in the public domain, and therefore it can be very difficult to

obtain the data. Even if the data were readily available, issues of comparability between
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data readings from different automatic monitors are raised. The samples and analysers at

the different monitoring stations and sites are not calibrated against a standard or against

each other. This type of measurement error is very difficult to quantif'.

An inexpensive alternative to the automatic station and fixed site sampler is the diffi.ision

tube. Measurements using diffusion tubes allow for a higher density of sample locations,

thus providing a more detailed spatial resolution of the concentration surface. Through

government funded national monitoring programmes there are now 1200 sample sites

using diffusion tubes for NO 2 as part the UK monitoring networks (Bower and Valiance-

Plews, 1995). In addition, many local authorities are using difihision tubes for local

monitoring surveys.

The main disadvantage to using diffusion tubes is that short-term measurements - for

example, hourly measurements - cannot be recorded and hence the acute effect of short

term pollution events cannot be determined. Diffusion tubes do, nevertheless, allow the

long term, chronic, effects of pollution to be investigated.

A diffusion tube is a passive sampler which measures the time weighted average

concentration of airborne oxides in ambient air (such as NO 2 and SO2). The most

commonly used sampler is the Palmes Tube, designed to measure NO2 (Paimes et al,

1976), which is a passive diffusion device consisting of an acrylic tube open at one end

with coated stainless steel screens at the closed end. The airborne oxides diffuse through

the air in the tube and are trapped as nitrite ions in the triethanolamine which coats the

screens (Miller, 1988). The tubes are exposed for specific periods, usually 1 to 4 weeks,

and measure the mean concentration over that period (Her Majesty's Inspectorate of

Pollution, 1993). The diffusion tubes are not really sensitive for periods shorter than one

week. Long term monitoring can be undertaken by successively replacing the tube at the

end of the period of measurement. The uptake of airborne oxides may vary with changes

in pollutant concentration, exposure time, atmospheric temperature, humidity and

turbulence.
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Palmes tubes have been tested by the U.S. National Bureau of Standards and Warren

Spring Laboratory in the UK where accuracy was determined to be better than +or- 10%

and precision was better than 4 ug/m3 for a 1-week sampling period (Boleij et a!, 1986).

Recent studies, however, have suggested that Palmes difThsion tubes overestimate NO2

concentrations by as much as 28% (Heal and Cape, 1997) and a 1.26 mean ratio of

concentration measured by diffusion tube over that by chemiluminescent monitor has been

reported (Campbell et a!, 1994). One possible explanation for the overestimation is

turbulence generated in the mouth of the tube, which Atkins and Lee (1995) suggest could

be avoided by careful selection of the sampling sites. The accuracy and precision of two

different types of passive samplers - a tube-type sampler and a badge-type sampler - were

examined as part of the SAVIAH study.

Despite uncertainty about the accuracy of the concentrations, diffusion tubes have been

widely used to measure ambient air pollution both indoors (Boleij et a!, 1986 and Fisher et

a!, 1989) and outdoors (Atkins et a!, 1986; Atkins and Lee, 1995; Bower et a!, 1991;

Campbell et a!, 1994; Heal and Cape, 1997; Hewitt 1991 and Laxen and Noordally,

1987). The continued use of diffusion tubes is primarily due to their low-cost and

mobility, which makes it possible to undertake relatively detailed long-term surveys and

enables surveys to be designed to meet a particular purpose. Even with the inherent

uncertainty in measurements provided by diffusion tube sampling, the spatial resolution

achieved is very valuable in identif,'ing areas exposed to large concentrations

(Photochemical Oxidents Review Group, 1993)

3.3	 Survey Design

In the SAVIAH project NO2 and SO2 were measured as two-weekly averages during four

surveys throughout a twelve month period: NO2 in Amsterdam, Prague and Huddersfield,

and SO 2 in Poznan. In the different study areas the surveys were undertaken at slightly

different times - dependent upon local logistics - but within the following time framework:
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Survey 1 - June-July 1993

Survey 2 - October-November 1993

Survey 3 - February-March 1994

Survey 4 - May-June 1994

The first survey acted as a pilot for the project and was used to compare the performance

of two different types of passive samplers and select the most suitable device to be used in

the remainder of the surveys. The two passive samplers compared were the Willems

badge (Willems and Hofschreuder, 1991), a badge-type sampler, and the Palmes tube.

In Amsterdam, Prague and Huddersfield the Willems-badge was placed at 60 sites and the

Palmes-tube at 20 sites. Duplicate badges and tubes were placed at each site. Precision of

the duplicates was established by calculating the combined coefficient of variation (Table

3.3) - this was found to be 11.0% for the Willems-badge and 7.7% for the Palmes-tube

(Reeuwijk et a!, 1997). Precision of the tubes is within the 5 to 8% range reported by

Atkins et al (1986).

Table 3.3 Coefficient of variation for the Willems badge and Palmes tube

Accuracy of the badges and tubes was determined using reference methods. The total

diffusional resistance (Ri) of the two types of samplers is calculated using NO 2 values

recorded at chemiluminescent monitors. The accuracy of the tubes and badges is then

expressed as the variability of the calculated R1 of the two designs at the reference sites.

In Amsterdam, Prague and Huddersfield duplicates of both types of samplers were located

at 3, 4 and 2 real-time chemiluminescent monitors respectively. The mean R values and
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the coefficient of variation for the badges and tubes at the reference sites are presented in

Table 3.4.

Table 3.4 Mean diffusional resistance (7?) and coefficient of variation of R for Willems
badges and Palmes tubes.

_________________ ___________E Amsterdam Prague	 Huddersfield
Willems badge	 Mean R	 913	 1564	 957
___________ CV R	 6%	 40%	 20%
Palmes tube	 MeanR	 4595	 6878	 5165
___________ CVR	 12%	 25%	 20%

As can be seen from the table, the mean R values are quite different for badges and tubes -

due to variations in the design of the samplers. Further details can be found in Reeuwijk

et al (1997). Briefly, the badges have an entrance filter which introduces diffijsional

resistance, resulting in a non-fixed sampling rate. For each survey period, therefore, the

sampling rate needs to be determined empirically by the reference method. The R value

calculated at the monitoring stations is then used to calculate badge concentrations at

other sites. For the comparison of concentrations measured by samplers with that by

chemiluminescent monitors, the mean R value for Amsterdam was chosen as the reference

value for the calculation of badge concentrations due to the relatively small CV of R. The

mean ratio of the concentration measured by the badges compared to the reference

methods was found to be 0.95 and 0.58 for Huddersfield and Prague respectively. For the

tubes, the mean ratio of concentration measured by the tubes compared to

chemiluminescent monitors was 1.16, 1.03 and 0.77 for Amsterdam, Huddersfield and

Prague respectively (Reeuwijk et a!, 1997).

The Palmes tubes were ultimately chosen in preference to the Willems-badge due to their

greater precision, durability and robustness (i.e. fewer values were lost due to damaged

entrance filters).
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In Poznan two-week averages of SO2 concentrations were measured at 16 sites with the

Willems-badge and at 69 sites with the Palmes-tube. Again duplicates were placed at each

site and precision for the Willems-badge was found to be 7% and 26% for the Palmes-

tube. The R values for the two samplers was established using reference measurements at

six fixed-site manual monitoring stations. Variation in the R values at the six sites was

found to be 60% for the Palmes-tube and 15% for the Willems-badge (Reeuwijk et a!,

1995). The Willems-badge was therefore adopted for monitoring SO2.

In Amsterdam, Prague and Huddersfield, for each individual survey, NO 2 was measured at

80 permanent monitoring sites, i.e. sites for which the location remained the same for each

survey.

Throughout the study period, approximately 10% of the readings were lost through

stealing, vandalism, damage or local factors (e.g. temporary road works) rendering the

reading invalid. To compensate for the loss of data, mean concentrations were established

for the permanent sites using multi-level modelling techniques at RIVM in the Netherlands

(Lebret et al, 1995). Multi-level modelling was applied using the mixed model - PROC

MIXED - in the statistical package SAS, to model the variation between sites and between

surveys. The model takes into account repeated measurements at the same locations and

dependency between measurements. Within the model, new, adjusted concentrations are

calculated for each site using maximum likelihood estimation. Thus, concentrations can be

established for sites with missing data. The model is based upon equation 3.4.

Xijku+ai+bj+eijk

where Xijk = adjusted mean concentration at site i, survey j, duplicate k

u = overall mean

ai = site-effect, i = 1 to 80

bj = survey-effect, j = I to 4

eijk residual error, k = 1,2 (pairs)

[Equation 3.4]
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In Poznan, SO2 was measured at 68 permanent sites for each individual survey. However,

there is a substantial difference between SO 2 concentrations in summer and winter - with

winter concentrations been far greater than summer concentrations due to the burning of

fossil ftiels for domestic heating. In Poznan therefore only the 2nd and 3rd surveys,

which were undertaken in the winter months (November 1993 and February 1994

respectively), were taken into consideration and the mean of these two surveys was

calculated for all 68 sites.

3.4	 The Huddersfieid Study

The Huddersfield study area (Figure 3.1) represents the Huddersfield District Health

Authority as it was at the time of the SAVIAH study. The boundaries of the Health

Authority were chosen to facilitate the collection of health data. Huddersfield Health

Authority covers an area of 304 Km 2 and has a population of approximately 160,000. The

area is characterised by a mixture of dense urban land and rural farmland and moorland.

The altitude ranges from 33m in the east to 580m above sea level in the west.

3.4.1 Monitored Data

In Huddersfield, the SAVIAH surveys were undertaken in June 1993, October 1993,

March 1994 and June 1994. For each survey the tubes were placed at 80 permanent sites

and 40 variable sites. Variable sites were relocated for each survey in order to examine

specific patterns and sources of variation. In addition, there were 8 consecutive

monitoring sites, which were exposed for the full duration of the study period, i.e. from

June 1993 to June 1994. Tubes at consecutive sites were exposed on a monthly basis,

apart from when the individual surveys were undertaken, when they were exposed for the

same period as the survey tubes (i.e. two weeks). The consecutive sites were used purely

for validation of the air pollution modelling. The permanent sites were used to develop
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the models and the variable sites were used for further validation and to provide additional

information. Two tubes were exposed at all sites to provide a measure of the at-site

variation and also to provide insurance against loss or damage of tubes.

The geographical locations of the monitoring sites were chosen to reflect differences in

rural and urban areas, and differences in NO emissions from road vehicles and industrial

sources. Additional sites were chosen in background locations, away from the sources of

pollution, to a) act as a control and b) help establish the background level of NO2.

Locations therefore fell into 6 categories:

•	 urban areas - near traffic sources

•	 urban areas - near industrial sources

•	 urban background

•	 rural areas - near traffic source

•	 rural areas - near industrial source

•	 rural background

Further consideration was also given to the spatial distribution of the sites, in so far as:

•	 where possible the sites should be evenly spread across the study area and

avoid excessive distance between neighbouring points

•	 the sites should be denser in the more densely populated areas

•	 at most roadside locations one site should be placed at the kerbside and

another approximately 50-lOOm back from the kerbside

The adjusted mean concentrations (section 3.3) for the permanent sites in Huddersfield

can be seen in Figure 3.2.
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3.4.2 Road Network

The road network was digitised from Ordnance Survey 1: 10,000 topographic map sheets.

The road network was classified according to road type:

Motorway

Trunk roads

Main roads

Secondary roads

Road > 4m width

Road <4m width

Small residential road, drive or track

Traffic volumes were attributed to individual road segments. For the motorways the

traffic volume data were obtained from the Department of Transport, Leeds, based upon

automatic traffic counts. Where possible, traffic flow for the remaining roads was obtained

from automatic traffic counts from West Yorkshire Highways and Technical Joint

Committee, Leeds, and manual traffic counts from Kirklees Highways Services,

Huddersfleld. For the major roads, where information was not available, the traffic

volumes were interpolated from the known points. The minor roads were assigned traffic

volumes by the author based upon local knowledge of the study area as follows: road>

4m width 200 vehicles per day; road <4m width 100 vehicles per day and small residential

road, drive or track 50 vehicles per day. Traffic flow for all road types were expressed as

24 hour counts in the first instance. The road network and average daily traffic volume by

type of road can be seen in Figure 3.3.

Data presented in the Kirklees Traffic Monitoring Report (1992) were used to establish

the day-time hourly traffic volumes on all roads. The report indicated that day-time traffic

flows lasted for 16 hours, starting at 6 am. in the morning and finishing at 10 p.m. in the

evening. The report presented a profile of daily (24 hour) traffic volume, on an hourly
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basis. The total day-time and night-time traffic volumes were calculated from this profile.

The proportion of day-time to night-time traffic volume was found to be 93.5% to 6.5%

respectively. For each road segment the average day-time hourly traffic volume was

therefore calculated using equation 3.5:

dhtv1 = (tv1 * p) / h
	

[Equation 3.5]

where dhtv, is the average day-time hourly traffic volume for road segment i

tv is the 24h traffic volume for road segment i

p is the proportion of day-time traffic (0.935)

Ii is the number of day-time hours (16)

3.4.3 Land Cover

Information about the land cover in the study area was obtained from aerial photographs

(at a scale of 1:10,000). The different land cover types identified on the aerial

photographs were classified into categories according to the land cover classification

scheme shown in Table 3.5 (Smalibone, 1998). Sheets of transparent film were overlaid

on top of Ordnance Survey 1:10,000 maps - which were used as a reference. Parcels of

land were identified on the aerial photographs, classified and the boundaries drawn on the

transparent film. The parcels of land were then digitised (Figure 3.4).

3.4.4 Altitude

The altitude data was held in the GIS as a Digital Terrain Model (DTM). The DTM was

created from height data supplied by the Institute of Hydrology. The data were supplied

in the Hydrological DTM Data Transfer Format in an ASCII text file. The heights were
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Table 3.5 Land cover classf1cation scheme.

for 1km square blocks with a header for each block that included the Easting and Northing

of the south-west corner of the block. The heights were recorded at 50m intervals and

therefore each block contained 20 rows x 20 columns of data items. One row of data is

stored on two lines of the text file. A FORTRAN program was written by the author (see

Appendix I) to transform the data from the Hydrological DTM Data Transfer Format into

IDRISI (IDRISI is a PC based GIS). The data were then transferred to ARC/INFO. The

program was written in the early stages of the research when FORTRAN for DOS was the

only version of FORTRAN available. Under these circumstances it was more efficient to

transform the data into IDIUSI and then convert the data in IDRISI to a format

compatible with ARC/INFO. The result was a 50m resolution DIM representing heights
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above sea level (Figure 3.5). All other FORTRAN programs presented in this research

have been written in FORTRAN for UNIX.

3.4.5 Field Data

During each survey, data were also collected in the field for each site. The data included

the height of the sampler above the ground and the mean angle to the horizon (topex).

The protocol for monitoring in the SAVIAFI study gave a guideline for the height of the

samplers at 2 to 3 m above the ground. This height was attained at most sites. At some

urban sites the sampler had to be placed slightly higher to counteract the threat of

vandalism which had proved a potential threat in two pilot surveys. Topex provides a

measure of the topographic exposure of the site and was calculated as the mean angle to

the visible horizon from the site, in eight directions - north, north-east, east, south-east,

south, south-west, west and north-west - measured with a clinometer.

3.4.6 Health Data

Data on health were collected through a questionnaire survey by researchers at the

Institute of Environmental and Policy Analysis under the direction of the SAVIAH co-

ordinator, Prof. Elliott, then from the London School of Hygiene and Tropical Medicine.

The questionnaire was sent to parents of all children aged between 7 and 9 living within

and attending a school in the Huddersfleld study area.

The questionnaire was designed by the SAVIAH project team, but incorporated questions

previously used by the World Health Organistation and the International Study of Asthma

and Allergies in Childhood (Asher et a!, 1995).
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The questionnaire (Appendix 2) included a range of questions relating to the child, broadly

falling into the following categories:

place of residence - address and postcode, length of time at that address,

previous address if valid

school of the child - address and postcode

home exposures - heating, damp, pets, perceived exposure to traffic flumes

and noise

parents - education, smoking habits, respiratory disorders

health of the child - with particular reference to respiratory disorders.

The questionnaire included 16 questions related to the health of the child, with some

specific questions on respiratory wheeze and cough, such as:

'Has the child ever had wheezing or whistling in the chest at any time in

the past?'

'Has this child in the last 12 months had wheezing or whistling in the

chest?'

•	 'Has the child had a dry cough at night in the last 12 months apart from a

cough associated with a cold or chest infection?'

•	 'Does the child usually cough in the morning in the autumn-winter

season?'

Questions were designed to represent measures of increasing severity of symptoms, over

the two time-scales of concern - the previous 12 months and the full life of the child.

Table 3.6 shows the health outcomes for two of the questions on the questionnaire; life-

time prevalence of wheezing or whistling and prevalence of wheezing or whistling in the

last twelve months (Kriz et a!, 1995).
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Table 3.6 Health outcomes.

Praue	 Amsterdam Poznan Huddersfield
Life-time prevalence of	 26.5%	 22.8%	 29.1%	 30.0%
wheezingor whistling 	 _________ ____________ _________ ____________
Prevalence of wheezing or 11.5%	 10.2%	 12.7%	 17.8%
whistling in the last
twelve
months

For inclusion in the GIS, the addresses of the children were geo-coded by colleagues at

London School of Hygiene and Tropical Medicine using the postcode. The process of

geo-coding enables national grid co-ordinates to be linked to the individual addresses of

the children. The co-ordinates can then be used to map the geographical location of the

place of residence. The postcodes were matched to postcodes in the Office for National

Statistics (ONS) Central Postcode Directory (CPD). The CPD contains the lOOm

centroids of the postcodes, these were extracted for the matched postcodes and then

imported into ARC/INFO (Figure 3.6).
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CHAPTER 4 KRIGLNG

As discussed in Chapter 2, kriging was chosen as a control against which to compare

the new methods. Kriging was applied to the Huddersfield adjusted annual mean NO2

data in ARC/INFO. However, as will be seen, the ARC/INFO kriging routine does

have limitations and is not very flexible.

In the SAVIAH study, in addition to kriging the NO 2 data, the author also applied

kriging in ARC/INFO to the Poznan SO2 data. Applying kriging to this data set had an

important asset - kriging was also applied to the Poznan SO 2 data at RIVM

(Bilthoven) using the FORTRAN library gslib and the spatial statistical package Splus

(Dekkers, 1995). The SO 2 data, kriged by the two different methods, therefore

afforded the opportunity to validate the ARC/INFO routine. In the case of the

Huddersfield NO2 data, access was not available to the gslib and Splus packages so

only the ARC/INFO version was used.

4.1	 Kriging Routines

Many different kriging programs exist. As a general mie, the programs allow the user

to calculate the semi-variogram for a data set, based upon a user-defined lag. The

semi-variogram will then be displayed on the screen as a graph. A number of models

will often be available (for example, spherical, exponential, gaussian): the user can

select a model and the program will fit the model to the data (Figure 4.1). The user

can interactively change the parameters of the model (e.g. the intercept of the curve,

the range and the sill) until the model provides the best fit for the data - where the

goodness of fit is often selected visually. The chosen parameters are then saved or

recorded and used in the kriging calculations to provide estimates for a regular array of

points.
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Figure 4.1 The semivariogram.

Some of the programs come in the form of subroutines of FORTRAN or C code that

are called from libraries. An example of one such library of subroutines is GSLIB

(Deutsch and Journel, 1992). There are also packages especially designed to produce

the semi-variogram, such as VARIOWIN (Pannatier, 1994), which has a Windows

interface, or packages designed to undertake a range of spatial statistical functions,

including kriging, for example, InfoMap (Bailey and Gatrell, 1995). Other packages,

such as the statistical packages Splus, contain graphic and statistical functions. Splus

also has its own language which allows new functions to be written. Kriging functions

for Splus are available as user-developed code (e.g. Venables and Ripley, 1994).

Finally, kriging functions have also been integrated 'with other types of packages, for

example ARC/INFO.

Not all programs, however, have the same degree of flexibility. The kriging routine in

ARC/INFO, for example (which includes a simple kriging function and variogram

plot), does not allow the user interactively to change the parameters of the model.
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Changing the parameters enables the user to modify the model until a model that best

reflects the overall structure of the variograrn is attained. If the parameters cannot be

altered, then it is more difficult to achieve a good fit model for the variogram, in which

case, the result may not be as statistically robust as the best fit model.

4.2	 Kriging the Huddersfield NO2 Data

Kriging was applied to the annual mean adjusted concentrations (section 3.3) for the

80 permanent monitoring sites. The spatial distribution and NO2 value at each site can

be seen in Figure 3.2.

In ARC/INFO, the NO2 data were stored as a point coverage which holds information

about the locations of the monitoring sites and the attribute values. The kriging

routine was applied to the point coverage and values are entered for the lag, search

radius and also the model. In the case of ARC/INFO the model could be spherical,

exponential, gaussian or linear. The variogram was calculated and the distance and

semi-variance values written to an INFO data file. The parameters of the fitted model

are written to the display screen and stored internally in ARC/INFO. The data file and

parameters are then used by ARC/INFO to draw the variogram and fitted model in a

graphics window. The kriging routine is run for different models and lags until the

best fit is visually attained. A spherical model for the Huddersfield annual mean NO2

data was chosen with the following parameters:

Nugget	 39.9 ug/m3

Range	 2830m

Sill	 87.9 ug/m3

Lag	 550m

The kriging routine can then be used to calculate estimates for an array of grid points.

A prediction of the variance (a measure of confidence) at each grid point can also be
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calculated. The pollution map and the variance can be seen in Figures 4.2 and 4.3

respectively.

In Huddersfield, an additional 8 sites were monitored continuously throughout the

study period. These 8 sites were not used in the kriging calculations. Estimates of

NO2 were derived for these 8 sites from the kriged pollution map. The annual mean

measured values and estimates for the 8 sites can be seen in Table 4.1 and the scatter

plot can be seen in Figure 4.4. The graph indicates that kriging may be overestimating

for the lower NO2 values and underestimating for the higher NO2 values. The adjusted

r2 value between the annual mean and the kriged estimates was found to be 0.439 (se =

6.45 ug/m3).

Table 4.1 Annual mean NO2 values and kriging estimates from ARC/INFO for the 8
consecutive monitoring sites (ug m3).

Site-id	 Annual Mean	 Kriging	 Difference
______ NO2	 __________ __________
103	 31.3	 33.4	 -2.1
104	 28.6	 32.3	 -3.7
105	 34.3	 31.7	 '2.6
106	 19.9	 23.5	 -3.6
107	 21.7	 29.1	 -7.4
108	 44.6	 40.9	 3.7
109	 31.0	 24.5	 6.5
110	 41.5	 31.0	 10.5

4.3	 Kriging the Poznan S02 Data

In Poznan the predominant source of pollution is S02 from industrial point sources

(i.e. chimneys). The geography and distribution of major chimneys in Poznan can be

seen in Figure 4.5.
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Figure 4.4 Monitored animal mean NO 2 against kriging predictions for the 8
consecutive monitoring sites.

As discussed in Chapter 3, SO2 was measured at 68 locations (Figure 4.6). For each

site, the average concentrations from the second and third surveys (November 1993

and February 1994) were calculated. Kriging was applied to the Poznan data at RIVM

using GSLIB and Splus.

An analysis of the data showed that there was no anisotrophy in the data (i.e. the data

behaved the same in all directions) so the data could be described by one variogram,

rather than modelling separate components in different directions. A spherical model

was fitted to the semi-variogram with the following parameters:

Nugget	 149 ug/m3

Range	 3140m

Sill	 704 ug/m3

Lag	 200m
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Ordinary kriging was then used to calculate estimates of SO2 on a lOOxlOOm grid

across the Poznan study area using the spherical model.

In Huddersfield, the author applied kriging to the same S02 data set in ARC/INFO.

The kriging routine was run for different models and lags. A spherical model with the

following parameters was found to visually provide the best fit:

Nugget	 201 ug/m3

Range	 4320 m

Sill	 981 ug/m3

Lag	 350m

The maps representing the kriging estimates from ARC/INFO and the GSLIB/Splus

combination can be seen in Figures 4.7 and 4.8 respectively.

In Poznan, as in Huddersfield, an additional 8 sites, not used in the kriging

calculations, were monitored continuously throughout the study period. Both methods

were used to calculate estimates for the 8 sites as can be seen in Table 4.2 and Figure

4.9. At low concentrations, both kriging methods provide reasonable predictions of

SO2; at high concentrations, however, kriging appears considerably to underestimate

levels of SO2. The two methods were compared by calculating the correlation

coefficients between the measured values (the average of surveys 2 and 3) and the

estimated values. The correlation coefficients can be seen in Table 4.3. As can be seen

in the table and Figures 4.9 and 4.10, the two methods provide very similar estimates

at the 8 sites.

As Figure 4.10 and Tables 4.2 and 4.3 show, there is very little difference in the ability

of the two kriging routines to estimate the measured values - both provide very similar

estimates at the 8 points with similar degrees of variation between the measured values

and the estimated values. The correlation coefficients between the ARC/INFO kriging

and the GSLIB/Splus combination and the measured SO2 values are almost identical -

0.733 and 0.730 respectively.
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Table 4.2 Average SO2 values and krigirzg estimates from ARC/INFO and GSLIB

and Splus for the 8 consecutive monitoring sites.

Site-id Average SO 2 Kriging	 Difference Kriging	 Difference
(ug!m3)	 ARC/INFO	 GSLIB/

______ ___________ __________ __________ Splus 	 _________
171	 91.7	 99.2	 -7.5	 99.9	 -8.2
172	 144.7	 92.8	 51.9	 91.5	 53.2
173	 73.3	 90.7	 -17.4	 91.6	 -18.3
174	 58.7	 60.7	 -2.0	 62.4	 -3.7
185	 74.5	 59.8	 14.7	 63.0	 11.5
186	 48.6	 54.3	 -5.7	 54.2	 5.6
187	 56.3	 72.3	 -16.0	 72.2	 -15.9
188	 138.8	 95.4	 43.4	 96.8	 42.0
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Figure 4.9 Monitored average SO2 against kriging predictions by the ARC/INFO and
GSLIB/Splus methods for the 8 consecutive monitoring sites.

Table 4.3 Correlation coefficients.

Correlation	 Average SO2 Kriging	 Kriging
Coefficient	 (ug/m3)	 ARC/INFO	 GSLIB/Splus
Average SO2 1.000	 0.733	 0.730
__________ __________ (p=0.039)	 (pO.O4O)
Kriging	 1.000	 0.997
ARC/INFO __________ __________ (p = 0.000)
Kriging	 1.000
gslib/Splus	 _____________ ______________ ______________
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Figure 4.10 Kriging predictions for GSLIB/Splus against kriging predictions for
ARC/INFO for the 8 consecutive monitoring sites.

The degree to which the two routines differ, with respect to providing estimates at

unsampled location, can be tested further by taking a random sample of points across

the study area and comparing the two estimates for those points. To this end, 20 sets

of co-ordinates within the Poznan study area were randomly generated (Figure 4.11).

Estimates of the pollution surface from the ARC/INFO kriging and the GSLIB/Splus

combination were established for all 20 points - 2 of the points were subsequently

found to lie outside the extents of the grids created by the two kriging routines. The

estimated SO2 values for the remaining 18 sites are presented in Table 4.4. The

correlation coefficient between the estimates from the ARC/INFO kriging routine and

the GSLIB/Splus combination for the 18 points was found to be 0.993 (p = 0.000) and

the scatter plot can be seen in Figure 4.12. As the graph shows, there is a strong linear

relationship between the two estimates, with the slope of the regression line very close

to 1. In this case, therefore, the lack of flexibility in the ARC/INFO kriging routine

does not appear significantly to affect the ability of the routine to provide estimates at

unsampled locations compared to the more interactive routines of GSLIB and Splus.
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Table 4.4 Kriging estimates of SO2 from ARC/INFO and GSLIB/Splus combination
for a random set ofpoints.

Random	 Kriging	 Kriging	 Difference
point ID	 ARC/INFO	 GSLIB/Splus .1

2	 65.7	 62.1	 3.6
3	 90.6	 88.8	 1.8
4	 53.0	 52.1	 0.9
5	 52.5	 54.6	 -0.1
6	 70.3	 71.9	 -1.6
8	 68.9	 70.3	 -1.4
9	 59.3	 59.9	 -0.6
10	 56.2	 56.1	 0.1
11	 50.5	 49.4	 1.1
12	 91.4	 87.6	 3.8
13	 46.5	 44.9	 1.6
14	 49.1	 49.7	 -0.6
15	 67.0	 60.1	 6.9
16	 76.0	 76.4	 -0.4
17	 122.8	 124.5	 -1.7
18	 90.5	 91.9	 -1.4
19	 55.7	 55.5	 0.2
20	 60.3	 60.4	 -0.1
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Figure 4.12. Estimated SO2 values for Kriging by the GSLIB Splus method against
Kriging by the ARC'INFO methodfor the 18 random locations.
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4.4	 Applying Kriging to Traffic Related Pollution

Kriging has been applied to model two different pollutants: NO 2 and SO2. The

pollutants are products of two very different sources of pollution. In Huddersfield, the

major source of pollution is NO2 from road transport, whereas in Poznan the major

source of pollution is SO2 from industrial chimneys and domestic heating. The two

pollution surfaces are therefore likely to be very different.

Emissions from road transport occur at ground level, with peaks of NO2 reflecting the

linear patterns of the road network. In urban environments, NO2 has a short range of

transport due to the effect of height and density of buildings on either side of the road.

In comparison, emissions from chimneys occur above ground level and the pattern of

dispersion is less affected by buildings, and therefore the pollutant has a longer range

of transport than NO2.

Although kriging, which uses local variations in the data to describe the surface, is a

sophisticated interpolation technique, emissions from road traffic are much more

difficult to represent by interpolation methods. The nature of traffic related pollution is

that it will peak strongly close to main roads and decline rapidly with distance away

from the roads. Unless there is a dense network of sites, which adequately represents

the relatively small near-source areas as well as more distant, background areas,

interpolation will tend to smooth the variation that occurs between the points. To

model the complexity of spatial variation in urban areas without smoothing would

require an unrealistically large number of sites.

As discussed in Chapter 2, kriging has been widely used to model and map variations

in air pollution. Where only monitored data are available, kriging is the most

appropriate tool with which to generate maps of the pollution surface. However,

where other information is available, then other techniques, such as co-kriging (section

2.2), which uses additional information sampled at the same location and also at other

locations (providing a denser network of sample points), may help overcome the

problems associated with a sparse network of monitoring sites. Nevertheless, as a

90



sophisticated interpolation technique, that also provides estimates of the errors, kriging

remains the most widely applied technique for producing maps of pollution surfaces

and is therefore a good standard against which to compare other methods.
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CHAPTER 5 AUTOMATIC MODELLING OF TRAFFIC RELATED AIR
PoLLuTIoN (AMTRAP)

As was noted in Chapter 2, two main approaches to air pollution mapping can be

defined: spatial interpolation and dispersion modelling. Individually, neither might be

considered ideal in order to represent the complex pollution fields seen in urban

environments: as has been seen with kriging, without an overly dense network of

monitoring sites spatial interpolation techniques tend to smooth the surface, whilst the

available line dispersion models may only be considered accurate close to the emission

source. For this reason, a hybrid approach was developed as part of this research -

AMTRAP (Automated Model for Traffic Related Air Pollution). AMTRAP is the only

method developed that uses daily meteorological data. The method is based upon the

principle that patterns of air pollution in urban environments can be described by two

different, but related, components of variation (Collins, et a!., 1995):

near-source variation - related to the dispersion processes associated with

distinct point or line sources

background variation - reflecting differences in diffuse sources, broader

(e.g. local topographic) controls on dispersion and long-distance transport

of pollutants across the study area

The two components were predicted separately within a GIS environment using

different techniques. The near-source pollution was modelled by adapting the line

dispersion model CALINE3 to operate automatically within the GIS. This provides a

close link between the GIS and the dispersion model. The advantages of linking the

dispersion model to the GIS in this manner are (Collins, 1998):

high resolution modelling.

•	 many road segments can be modelled automatically - this is especially useful
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for large study areas.

•	 the user does not need to transfer data from one system to another - running

the dispersion model outside the GIS and then transferring the results back into

the GIS for mapping.

•	 the user does not need to learn two different software packages (probably

running on two different operating systems).

The background variation is modelled using the kriging routine available in the GIS.

The two separate components were then additively combined to produce the final air

pollution map.

5.1	 Modelling Near-Source Air Pollution

The near-source pollution changes in response to local variations in emission sources,

influenced primarily by:

•	 road type

•	 traffic volume

•	 traffic composition

•	 traffic speed

•	 emission rates

and the dispersion environment, defined by:

•	 the rate of dispersion over distance from the source

•	 the surface roughness of the land adjacent to the roads

•	 wind direction

•	 wind speed

•	 atmospheric stability
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A line source dispersion model was chosen to model the near-source component of

pollution which could be adapted to work within the GIS. As discussed in Chapter 2,

there are many different line-source dispersion models available; in this case, the

dispersion model CALINE3 was chosen for the AMTRAP approach. Although

CALINE3 is not the most sophisticated model, it was chosen in preference to more

complex models due to its ease of use, its relatively simple data requirements and the

fact that the input data were available. CALIINE3 predicts concentrations of the traffic

related pollutant, CO or other inert gases, at road-side locations based on meteorology

and traffic flow. The transport and dispersion element of the model is a revised version

of the Gaussian point source plume dispersion model and applies vertical and

horizontal dispersion curves modified for the effects of surface roughness, averaging

time and vehicle-induced turbulence (Benson, 1992).

CALINE4 is the most recent version of the CALINE group of dispersion models and

does offer a number of improvements over the CALINE3 model, including new

provisions for lateral plume spread and vehicle-induced thermal turbulence, an intersect

option and options for modelling NO2 and aerosols, as well as CO. However, the new

provisions for lateral plume spread and vehicle-induced thermal turbulence were found

to be ineffective in complex terrain, the intersect option is impracticable in large study

areas due to the additional data requirements for deceleration time, acceleration time,

cruising speed and idling time, and the NO2 option is not recommended where parallel

wind conditions occur and it also requires some measure of the background ozone

level (Benson, 1992). The Huddersfield study area is very hilly and requires many road

segments to be modelled under different wind conditions. Against this background,

running CALINE4 was felt to offer no significant advantage over running the simpler

CALINE3 model. However, in the CALINE3 model, NO2 has to be treated as an inert

gas, which may introduce some uncertainty into the measurements.

The input variables for CALINE3 include: traffic volume, emission rate, surface

roughness, mixing zone (width of traffic lanes plus 3m on either side of the road), wind

speed, wind direction, stability class, source height, receptor height, averaging time,

the start and end co-ordinates of a straight length of road and the co-ordinates of the
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receptors. CALINE3 predicts pollution concentrations for road links (road segments

of uniform conditions) and can model up to 20 links and 20 receptors at any one time.

It should be noted, however, that these constraints can be adjusted in the source code,

but to do so adds considerably to the processing time required to run the model. Each

link is a straight segment of constant width, traffic volume and emission rate. Real

world situations can be approximated by analysing multiple links, but the background

pollution value must be specified by the user. Surface roughness, atmospheric stability,

wind speed and direction are assumed to be geographically constant over the study

area. The links and the receptors are oriented within a co-ordinate reference system.

As mentioned in Chapter 2, once concentrations have been established at the receptors,

the values could be entered into a mapping package and a pollution surface generated.

In area-wide detailed studies, road networks are extremely complex, with constantly

changing conditions - reflecting changes in emission sources, the surface adjacent to

the road and temporal variations in meteorology. In these situations, CALINE3 would

have to be run a great many times in order to model the many different conditions -

every change in conditions along the road network would have to be represented by a

new link in the model. Furthermore, changes in the surface roughness, atmospheric

stability, wind speed and direction would need to be modelled in separate runs of

CALINE3. For a large study area, running these many links through CALINE3 and

then creating a pollution map would take excessive amounts of time and effort. In the

light of this complexity, an automated approach to pollution modelling was developed

by adapting the CALINE3 model to operate within the GIS.

The automated method in GIS was used to predict pollution concentrations in near-

source areas - a 200m band adjacent to the road links. As opposed to predicting

pollution concentrations for specified receptor locations, the automated method

generates a prediction every lOm, within this 200m band. To achieve this, a new

command was created by the author in ARC/INFO using a combination of ArvIL

(Advanced Macro Language), which is ARC/INFO's own language for developing

customised routines, and compiled FORTRAN programs. The command is described

in more detail later in this Chapter.
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Within AMTRAP, the input variables are characterised at every location on a lOm grid

and a concentration, pre-defined in CAL]INE3, is extracted for those characteristics.

The pre-defined values were generated by running CAL1NE3 for a simplified set of

conditions, chosen to represent the fill range of possible weather conditions, surface

roughness, road width and distance from the road (as explained in the next section).

For example, in CALINE3, a value for wind direction could be entered between 0 and

360 degrees: this was simplified to 12 classes, each class representing 30 degree

intervals. The pre-defined values were generated using a single (reference) traffic

flow. The generated concentrations could then be proportionally increased or

decreased to reflect the actual traffic volume.

As previously mentioned, the near-source concentrations are then added to the

background concentrations - generated with the kriging routine - to produce the final

pollution estimates.

5.1.1 Generating Pollution Concentrations for a Set of Pre-Defined Variables

To help establish the pollution concentrations for a pre-defined set of conditions, 5 of

the input variables were entered as constants:

emission factor 	 1.62 g/km

traffic volume	 4000 vehicles/hour

averaging time	 1 hour

source height	 0

receptor height	 2 m

The co-ordinates of the road link were also kept constant, fixing the length of the road

link to 200m. The emission factor of 1.62 g/km was derived from Gillam et a! (1992)

to represent an average urban mixture of light and heavy traffic.
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The remaining variables - surface roughness, mixing zone, wind speed, wind direction

and stability class - were assumed to vary spatially and temporarily across the study

area. A simplified set of conditions, chosen to reflect the frill range of possible values

available (Benson, 1979), were therefore established for these variables. Reference

values were chosen to reflect the simplified conditions and code numbers were

assigned to the reference values. In the case of the Pasquill Stability Scheme, the

values range from very unstable (A) through to very stable (F), where D is considered

to be the most neutral value. The code numbers and reference values for surface

roughness, mixing zone, wind direction, wind speed and atmospheric stability are

presented in Table 5.1. It can be seen from the table, that the reference values for wind

direction only range from 0 to 150 degrees. This is due to the fact that pollution

concentrations are a mirror image about 180 degrees and therefore the full range can

be represented by half the circle. The derivation of these parameters is explained in the

next section.

Table 5.1 Codes and reference values for wind direction, wind speed, atmospheric
stability, surface roughness and mixing zone.

Code Wind	 Wind	 Stability	 Surface	 Mixing
Direction	 Speed	 (Pasquill	 Roughness Zone

_______ (degrees)	 (mis)	 Scheme)	 (cm)	 (m)
1	 0	 1	 A	 5	 28
2	 30	 3	 B	 100	 21
3	 60	 5	 C	 250	 13.5
4	 90	 8	 D	 300	 11.5
5	 120	 15	 E	 350	 __________
6	 150	 _________ F	 _________ _________

Pollution concentrations were calculated for receptors at distances 5, 20, 40, 65, 100

and 1 50m perpendicular to the road links. Output from CALINIE3 was presented as a

series of tables in ASCII format. The FORTRAN program concsext (Appendix 3),

written by the author, was applied to extract the concentrations and write them to a

new text file, in a format compatible with INFO. The information was then transferred

to a defined table in INFO (concs.dat), a sample of which can be seen in table 5.2.
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Table 5.2 Sample data from the concs. dat data file.

CONCCODE RP1

11111	 0
11112	 0
11113	 0

23413	 112
23423	 49

45656	 19

RP2 RP3 RP4 RP5 RP6 RP7 RP8 RP9 RP1O RP1I RP12

o	 o	 0	 0	 0	 152	 94	 62	 41	 26	 17
o	 o	 0	 0	 0	 72	 43	 28	 18	 11	 7
o	 0	 0	 0	 0	 47	 28	 18	 12	 7	 5

36	 11	 2	 0	 0	 112	 36	 11	 2	 0	 0
15	 5	 1	 0	 0	 49	 15	 5	 1	 0	 0

12	 9	 7	 5	 4	 0	 0	 0	 0	 0	 0

CONCCODE is a unique code number. The five digits are formed from a combination

of the codes for mixing zone, surface roughness, wind direction, wind speed and

atmospheric stability class. RP# is the receptor location; receptors 1 to 6 are located

on the opposite side of the road to receptors 7 to 12. Receptors 1 and 7 are located

nearest to the roads, as in Figure 5.1.

Receptors
	

6	 5	 4 3 21 78 9 10	 11	 12

Figure 5.1 Location of receptors.

5.1.2 Description of the TRAFFPOL Routine

Near-source pollution concentrations were generated in ARC/INFO at the arc prompt

with the command traffpol (Appendix 4), written by the author using a combination of

AML and compiled FORTRAN programs. The traffpol routine requires three sources

of input: a line coverage of roads in ARC/INFO format, with road type code and traffic

volume attributes; a polygon coverage for surface roughness in ARC/INFO format; an
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ASCII text file containing the weather data (wind direction, wind speed and

atmospheric stability class). The form of the command line is (Collins, 1997):

&run traffpol <cover> <outgrid> <roadtype_item> <traffvol_item>

<surface_rough> <weather_data>

	

arguments: <cover>	 line coverage of roads to be analysed

	

<outgrid>	 output grid of near-source air pollution

<roadtype item> item containing the code for road type

<traffVol_item> item containing the traffic volumes in

vehicles/hour

<surface_rough> polygon coverage of classified surface

roughness (with a surface roughness item

named SUR CODE)

<weather_data> text file containing the weather data (with

extension)

Within Iraffpol, the line coverage was converted to co-ordinates with the ungenerate

command in ARC. The compiled program arcdirection, generated from the adirect

program (Appendix 5), written by the author, scans the arcs and calculates the bearing

between successive vertices (pairs of co-ordinates). The maximum arc ID is identified

and the individual sectors between vertices are classified according to direction. The

arcs were scanned again and split for changes of class (i.e. change of direction),

assigning new JI)s to new arcs. The segmented arcs were then written to a new file in

arc ungenerated format and the arc iDs and direction classes written to a further text

file for import into iNFO.

The arcs were then transformed back to ARC/INFO format with the generate

command. The direction class is attached to the new arc coverage with the joinitem

command. Three grids were then created with the linegrid command. The grids were
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created on items stored in the arc attribute table, namely: arc direction, road type and

traffic volume. In GRID, for all cells within the near-source area (i.e. less than 200m

from the roads), the commands eucdistance and eucallocation are applied to calculate:

•	 the distance to the nearest road (Figure 5.2)

•	 the value of the nearest road by type, i.e. motorway, A-road (Figure

5.3)

•	 the orientation of the nearest road, between 0 and 1800, with respect to

North (Figure 5.4)

the perpendicular direction to the nearest road (Figure 5.5)

•	 the traffic volume on the nearest road (Figure 5.6)

Distances from the nearest road were then reclassified into six zones, with the central

value of each zone corresponding to the location of the receptors (section 5.1.1). The

orientation of the nearest road and the six wind direction classes were used to create

grids of relative road orientation, where relative orientation is the difference between

the orientation of the nearest road and the wind direction. The wind direction, relative

road orientation and perpendicular direction to the nearest road were then used to

identify active cells, i.e. those cells that will be in receipt of pollution for a particular

wind direction.

The compiled program weatherweight, generated from the FORTRAN program

weather (Appendix 6), written by the author, was then applied to the weather data. In

the first instance, the program classifies the wind directions and wind speeds into 12

and 5 classes respectively, as shown in Tables 5.3 and 5.4. The atmospheric stability

class is based upon the Pasquill stability scheme and the classes A to F are reclassed 1

to 6. The program then calculates the frequency of each unique combination of wind

direction class, wind speed class and atmospheric stability class, referred to as a

'weather period' (Collins et a!, 1995).
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Table 5.3 Wind direction classfi cation scheme for the weather data.

Code	 Wind Direction
___________ (degrees)

11	 345- 15
12	 15-45
13	 45-75
14	 75 -105
15	 105 - 135
16	 135 - 165
21	 165 - 195
22	 195-225
23	 225 - 255
24	 255 - 285
25	 285-315
26	 315-345

Table 5.4 Wind speed classdIcation scheme for the weather data.

Code	 Wind Speed (mis)
1	 0-2
2	 2-4
3	 4-6
4	 6-10
5	 >10

Within the program, a new text file is generated containing the weather period and a

weight for that weather period (based upon its frequency in relation to the total

number of records in the original weather file). The file is then converted into an

INFO data file, where each record contains a unique weather period and its respective

weight. The cursor functionality in ARC/INFO is employed to select one record of the

data file at a time. For each record the grid of active cells and the grid of relative road

orientation, for that weather period, is selected.
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The selected grids are used in combination with the grids of nearest road type, surface

roughness, classified distance from roads, wind speed code and atmospheric stability

class to give a seven digit code for each cell. The seven digit code is then used to

extract the concentrations from the concs.exp table. The first two digits correspond to

the receptor number (RP#) and the last five digits to the unique code CONCODE (see

Table 5.2). The concentrations are then weighted for that weather period and the

active cells updated to include the weighted concentration, using equation 5.1.

C4 =E(c4k.wk.v)

	
[Equation 5.1]

where Cj = the estimated concentration at cell location row i columnj

Cyk = the modelled concentration for weather period k at cell location row 1

columnj

Wk = the weighting factor for weather period k

v j = traffic volume at cell location row i columnj (adjusted for the reference

traffic volume)

The next record is then selected and the whole procedure is repeated. The new

weighted concentrations are added to the previously calculated concentrations. The

process is repeated until all the records have been selected. The final concentrations

are then adjusted for hourly day-time traffic volume by dividing by 4000.

5.1.3 Applying the TRAFFPOL Routine to the SAVIAH Data

The traffpol command was applied to the SAVIAH data to estimate annual near-

source pollution concentrations. Using the road network, described in section 3.3.3,

major emission sources were identified (i.e. roads with day-time traffic flows > 250

vehicles/hour (Figure 5.7)) and classified according to road type, as shown in Table

5.5, using the simplified road widths and codes identified in Table 5.1. A new line

coverage was created for the major emission sources (MAIN_ROADS) with items for
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the classified road type (ROAD_TYPE) and day-time hourly traffic volume

(DH_TVOL).

Table 5.5 Road type class/i cation scheme.

Using the land cover data, described in section 3.3.4, a surface roughness coverage

(SURF_ROUGH) was generated by applying the classification scheme outlined in

Table 5.6; results can be seen in Figure 5.8. The land cover classification is based

upon the different surface types and associated surface roughness (cm) presented in

Benson (1979).

Table 5.6 Surface roughness classfication scheme.

Data on meteorology were obtained from the Meteorological Office at Leeds. The

data were collected on an hourly basis for the duration of the study period, from June

1993 to June 1994. Daily averages for wind direction, wind speed and atmospheric

stability were then calculated and written to an ASCII text file (an_weather.txt). Thus,
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each record in the text file corresponded to one day of the study period. Three

columns of data represented wind direction, wind speed and atmospheric stability.

The traffpol routine was run for the Huddersfield study area with the following

command line:

Arc: &run traffpol main roads near_source road_type dh_tvol surf_rough

an_weather.txt

The resultant 1 Om grid (NEAR_SOURCE) contains pollution concentrations for those

cells within the 200m near-source band, Figure 5.9. The resultant grid was then added

to the kriged background pollution.

5.2	 Background Pollution

The background pollution surface was generated by applying ordinary kriging in

ARC/INFO to the adjusted annual mean for the permanent monitoring sites that fall in

the background areas (i.e. beyond the 200m near-source band). In the study, 24 of the

80 permanent sites were found to fall in these areas (Figure 5.10). A number of

variograms were then created using different models and lags (see Section 4.1.2). The

set of parameters which visually provided the best-fit and with the least variance were

selected. This was found to be a spherical model with the following parameters:

Nugget	 0.00

Range	 4442

Sill	 26.64

Lag	 575

The kriged map and the map of variance can be seen in Figures 5.11 and 5.12. The

near-source component was then added to the kriged map to produce a final pollution
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map. The pollution map for the Huddersfield study area can be seen in Figure 5.13.

The structure of the AMTRAP model is shown in Figure 5.14.

5.3	 Validation of the Method

The final pollution map represents predictions of pollution concentrations at unsampled

locations. How accurately the hybrid approach predicts pollution concentrations in

these locations was tested by comparing two sets of monitored data - which had not

been used to develop the model - with predicted values. In the first instance,

predictions were derived for the 8 consecutive monitoring sites (section 3.3.1). The

annual mean measured values and the predicted values for the 8 sites can be seen in

Table 5.7 and the scatter plot in Figure 5.15. The adjusted r2 value between the annual

mean and the AMTRAP predictions was found to be 0.628 (se = 5.25 uglm3). The

graph shows that there is a good linear relationship between the measured and

predicted values; however, the site with the highest prediction does appear to be an

outlier, overestimating NO2, influencing the slope of the regression line.

Table 5.7 Annual mean NO2 values and AMTRAP predictions for the 8 consecutive
monitoring sites.

Site-id	 Annual Mean AMTRAP	 Difference
________ NO2 (ug/m3)	 Prediction
103	 31.3	 23.4	 7.9
104	 28.6	 26.1	 2.5
105	 34.3	 27.5	 6.8
106	 19.9	 20.8	 -0.9
107	 21.7	 25.1	 -3.4
108	 44.6	 58.4	 -13.8
109	 31.0	 31.8	 -0.8
110	 41.5	 37.0	 4.5

Predictions were also derived for the 56 monitoring sites in the near-source areas

(which again had not been used to develop the model). Out of the 56 near-sources
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Figure 5.14 The structure of the AMTRAP model.
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sites, 2 fell beyond the extents of the kriged map and were therefore not used in the

evaluation. Monitored data were compared with the modelled estimates at 54 sites and

the adjusted r2 was found to be 0.309 (Se = 7.59 ug/m3). There is a weak linear

correlation between the predicted values and the monitored values, as Figure 5.16

demonstrates.
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Figure 5.15 Monitored annual mean NO2 against AMTRL4P predictions for the 8
consecutive monitoring sites.

The residuals between the measured annual means and the values predicted using the

full set of meteorology at the 54 sites were calculated and mapped (Figure 5.17).

Positive residuals indicate under-estimates of the pollution concentration and negative

residuals indicate over-estimates. The residuals suggest that the model did not

accurately predict pollution in areas where there were multiple sources, for example, at

road junctions or where roads ran parallel and very close to each other. This reflects

the structure of the model: whereas pollution levels are a function of all the emission

sources in the near vicinity, the AMTRAP model is only based upon the characteristics

of the nearest road.
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The problem of multiple sources would be difficult to implement within the AMTRAP

model. The AMTRAP model was not, therefore, developed further to overcome this

problem; this is discussed more fully in Chapter 8.
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Figure 5.16 Monitored annual mean NO 2 against AMIRAP predictions at the 54
near-source monitoring sites.

5.4	 The Application of the Meteorological Data

The AMTRAP approach is quite data intensive and computationally expensive,

primarily due to the extensive amount of meteorology data used in the near-source

component of the model. In long-term (annual) studies, this degree of complexity

may, in fact, be unnecessary; it is possible that the many different weather conditions

that occur over the course of a year effectively cancel each other out, making the use

of short-term (e.g. daily) meteorological data redundant. Similarly, the effect of

roadside buildings may have only a marginal effect in relation to estimates of mean

annual concentrations. Eerens et a! (1993) quote Tonkelaar and Hout (1980) as

saying:
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'although short-term (hourly) concentration values are strongly affected by the

buildings in the streets, the long-term (yearly) average concentration pattern is

much less sensitive to these than it is often assumed. Further, it was found that

the ratio between the annual average values and the high percentiles of the

frequency distribution of concentrations did not vary much from street to

street. This is mainly due to the fairly constant diurnal emission patterns and

the linear source configuration, which strongly reduce the variability of the

concentration as a function of wind direction'.

Over long periods of time, therefore, the effects due to meteorology and local

buildings may become negligible. To test this assumption, the model was then run with

an annual average wind rose for wind direction and annual mean values for wind speed

and atmospheric stability. Predictions were derived for the 54 near-source monitoring

sites. The monitored data were compared with the predicted values and the adjusted r2

was found to be 0.322 (Se = 7.52 ug/m3). The scatter plot of monitored data against

predicted values (with average meteorology conditions) can be seen in Figure 5.18.

When average conditions are applied, the model appears to provide similar predictions

to the full meteorology model. The only noticeable difference, is that the average

conditions model overestimates high concentrations to a greater extent than the full

meteorology model.

The predictions with mean annual meteorology data were then compared with

predictions at the same sites using the fi.ill set of meteorological data (section 5.3).

Figure 5.19 shows that there is a very good correlation between the predicted values

with full meteorology and the predicted values with average meteorology. The

adjusted r2 value was found to be 0.975 (se = 1.59 ug/m3).

These results suggest that, when measuring the long-term (annual) pollution

concentrations, additional data relating to meteorology do not significantly improve the

accuracy of the model. Furthermore, using annual mean meteorological data makes

the application of the model computationally more efficient and less data intensive,

while still providing the same degree of accuracy.
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Figure 5.18 Monitored animal mean NO2 against AMTRAP predictions (with
average meteorology conditions) at the 54 near-source monitoring sites.
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Figure 5.19 Predicted values with full meteorology against predicted values with
average meteorology conditions.
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5.5 Applying the AMTRAP Model to Traffic Related Pollution

The AMTRAP model has shown how it is possible to link closely line dispersion

models to GIS and that the result of the modelling is moderately good. The

performance of the model, and how it compares to the other approaches, is discussed

in detail in Chapter 8.

124



CHAPTER 6 THE MOVING WINDow APPROACH

Moving windows is a technique that has not been widely used for air pollution

mapping, but can effectively be applied within a GIS environment using techniques

readily available for analysing spatial data. The moving window is applied to data in a

regular grid on a cell by cell basis. As discussed in section 2.5, at every location in the

grid a value is computed based upon the values in neighbouring cells. The number of

neighbouring cells included in the calculation is defined by the size of the window,

which equates to an area or zone surrounding the central cell. The computed value at

the centre of the window is therefore a function of the local neighbourhood.

The moving window approach developed here uses a combination of spatial analysis

techniques and spatial interpolation. The spatial analysis component of the approach

(i.e. the moving window) is applied to predict near-source pollution at any location.

Spatial interpolation (i.e. kriging) is then applied to pollution data measured at

background pollution sites. As with the AMTRAP approach, the two separate

components are added together to produce the final pollution map.

The approach is based upon the principle that pollution at any location is a function of

all the emission sources in the near vicinity and that nearer sources contribute more

pollution to a location than distant sources. The approach therefore assumes that the

effect of traffic volume on a location is a function of the distance to roads and traffic

volume on those roads. For example, roads the same distance away and carrying the

same volume of traffic will have equal effect on a location, a road the same distance

away with greater traffic volume will have more of an effect and a road further away

with the same traffic volume will have less of an effect.

Figure 6.1 is a simple example. The central location of a sample grid is marked with an

X and two roads (A-A and B-B) are indicated close by. Assuming that both roads
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carry the same traffic volume, then the section of road B that falls in the first ring of

cells around X will have a greater effect on X than the sections of road B and A that

fall in the second ring of cells, and so on. If the decay of concentration away from the

source, over distance, is known, then a weight can be applied to each ring of cells to

calculate pollution at X.

A

A	 B

Figure 6.1. An example of a grid showing the location of two roads, A and B.

6.1. Moving Windows

Using moving windows involves passing a template (or kernel) over a grid, one cell at

a time. Instead of a calculation being applied to the whole grid - for example, the sum

or mean of all cells in the grid - the calculation is applied only to those values that fall

under the kernel. The result is calculated for the central cell of the template and placed

in a new grid in the location of the central cell. A new grid is created so that the values

in the original grid are not altered as the window passes over the data. Since the result

is calculated for the central cell, templates tend to have an odd number of cells - for

example, 3x3 window, 5x5 'vindow or 9x9 window - to include the surrounding

ring(s) of cells and the middle cell.

In Figure 6.2 a 3x3 window is passed over a grid. In Figure 6.2.a the mean of all 9

values under the template is calculated and the result placed in a new grid in a cell

126



location equivalent to the location of the central cell (Figure 6.2.c). The window then

moves to the next cell (Figure 6.2.b) and calculates the mean again and places the

result in the central value of the template in the new grid (Figure 6.2.d). Once the

window reaches the end of the first row, it moves down to the start of the next row

and continues to calculate the mean.

4211357

4321454

3123445

2245476

a)

7TTTTTT
4321454

3123445

4233566

2245476

b)

2.4
	

2.4 1.8

c)	 d)

Figure 6.2 A 3x3 window passes over a grid a) and b) calculating the mean value
and placing the result in a new grid c) and d).

As can be seen from Figure 6.2, however, one of the problems with moving windows

is how to deal with the boundary problem (i.e. the outermost ring of the grid - or rings,

depending on the size of window), where some of the values in the template fall

outside the grid (Figure 6.3). One solution is to ignore these locations and only apply

the template where the data is complete. In this case the output grid will be smaller

than the input grid. Another solution is to adapt the calculation to the number of cells

that contain values; for example, in Figure 6.3 the new value in the cell in the upper-

left-hand corner will be the mean of 4 values.
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Figure 6.3 Moving window in the outermost ring of the grid

In order to simulate the effects of distance from source on pollution levels, weights can

be attached to the template and values in the grid multiplied by the weights in the

template before the calculation is applied. Figure 6.4. shows a possible weighted

template that could be applied to the data in Figure 6.2.a.

	

0.1	 0.1	 0.1

	

0.1	 2.0	 0.1

	

0.1	 0.1	 0.1

Figure 6.4 An example of a weighted template.

In Figure 6.4 the central value has been given a higher weight than the neighbouring

values. Thus the central value has a greater influence over the sum total. The total for

the output cell would therefore be:

(0.1 x4)+(0.I x2)+(0.1 x I)+(0.1 x4)+(2.0x3)+(0.1 x2)+(O.1 x3)+(0.1 x 1)+(0.1 x2)=7.9
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6.2	 Modelling Near-Source Pollution

The contribution of any source to the pollution concentration at a location is a function

of the decay of concentration over distance from source: where concentration declines

in a curvilinear manner with increasing distance from the roadside. In order to model

the contribution of different road sources to pollution levels at the centre of the

template it is necessary to derive weights which represent this distance effect. Thus, if

the weights in the template represent the decay of concentration away from the source

over distance then the total pollution at a location can be calculated.

6.2.1 Defining the Air Pollution Template

If near-source pollution is presumed to be a 200m band either side of the road, and the

road network is represented as a lOm grid, then a 41 x 41 template (410m diameter) is

necessary to reflect the near-source pollution.

The template consists of4l rows and 41 columns of values and is stored as a text file.

The values in the template are weights which are applied to the data in the grid. The

weights are a function of the cell's distance to the central location of the template. The

value of the weight is derived from the curve which is a function of the decay of

concentration with distance from the source. The weights are therefore defined byf

(D Cd), where D is the distance from the centre of the template and Cd is the decay of

concentration over D. The following steps were applied to derive the weights.

Step 1. Define the decay of concentration over distance curve.

CALINE3 was run for eight wind directions at 45° intervals starting from 00, with

average wind speed and atmospheric stability for the study period. A constant traffic

volume of 4000 vehicles/hour and emission rate of 1.62 g/km were entered into the
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28.3m 22.4m 20m 22.4m 28.3m

22.4m 14.lm lOm 14.lm 22.4m

20m lOm _lQm 20m

22.4m 14.4i lOm 14.lm 22.4m

28.3m 22.4m 20m 22.4m 28.3m

Figure 6.5 Distance between the central point of the cell and the centre of the

template.

Step 3. Create a text file of weights.

The weights were then entered into a text file with 41 columns and 41 rows (Figure

6.6). Although the text file consists of4l columns and 41 rows, the template is in fact

a circular template; since concentrations were only established for distances 200m or

less, any cell with a distance between its centre and the centre of the template greater

than 200m has a value of zero.

6.2.2 Applying the Air Pollution Template

A 1 Om grid of the main emission sources (section 5.1.3) was created from the road

network and hourly day-time traffic volumes assigned as the values of the cells. Cells

containing data existed where roads existed and the value of each cell corresponded to

the mean day-time-hourly traffic volume at that location. The template was then

applied to the grid on a cell by cell basis with the command focalsum - with the

WEIGHT option - in the GRID module of ARC/INFO. The syntax for the command

is as follows:

nsgrid =focalsum (tvolgrid,WEIGHT,template.txt)
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where nsjrid	 the output grid of near-source pollution

tvol_grid	 = the input grid of hourly day-time traffic volume for the

main emission sources

template.txt = text file containing the values for the weights
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Figure 6.6 The weighted template.

At every location of the input grid the weights in the template are multiplied by the

values in the grid. Where a road exists then the weight in the template is multiplied by
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day-time traffic volume. Where a road does not exist, the value in the grid is zero and

therefore the weighted value is zero. The sum of weighted values is calculated and the

total placed in the output grid at the location of the central cell of the template. The

contribution of air pollution to the central cell is therefore equal to the sum of all

weighted values under the template. Figure 6.7 shows a sample grid and a 5 x 5 filter;

traffic volumes on roads A and B are 50 and 25 day-time vehicles per hour

respectively. The output value at location row 4, column 4, is therefore equal to 845,

calculated as follows:

(1.6 * 50)+ (2.0 25)+(3.8 * 25)+ (2.0 50)+ (6.2 * 25)+ (2.4 50)+ (3.8 * 25)+ (2.0 * 50)+ (2.0 * 25)
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Figure 6.7 A sample grid and template.

The resultant concentrations in the output grid were then adjusted to account for the

reference traffic volume of 4000 vehicles per hour. In addition, in CALINE3,

concentrations at the individual receptors were calculated for a 200m road link. The

moving window method, however, assumes a 1 Om road link; therefore, all the total

concentrations were divided by 20 to provide a comparable value.
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6.3	 Background Pollution

The kriged coverage created for the hybrid approach (section 5.2) was used for the

background pollution. This was added to the near-source pollution to produce a final

pollution map (Figure 6.8).

6.4	 Validation of the Method

The final pollution map represents predictions of pollution concentrations at unsampled

locations. The accuracy of the moving window approach was examined by comparing

two sets of predicted pollution concentrations in these locations with monitored data;

concentrations at the 8 consecutive monitoring sites and at the 54 near-source sites.

The 8 consecutive monitoring sites (section 3.3.1) were used to test the accuracy of

the model - these sites were not used to develop the model. The annual mean

measured values and the predicted values for the 8 sites can be seen in Table 6.1. The

moving window model appears to be systematically underestimating levels of pollution

at these sites (Figure 6.9). The adjusted r2 value between the annual mean values and

predictions from the moving window method was found to be 0.673 (Se 4.93 ug/m3)

Table 6.1 Annual mean NO2 values and filtering predictions for the 8 consecutive
monitoring sites.

Site-id	 Annual Mean Filtering	 Difference
________ NO2 (ug/m3)	 Prediction	 _____________
103	 31.3	 23.4	 7.9
104	 28.6	 26.1	 2.5
105	 34.3	 27.5	 6.8
106	 19.9	 20.8	 -0.9
107	 21.7	 25.1	 -3.4
108	 44.6	 40.2	 4.4
109	 31.0	 29.0	 2.0
110	 41.5	 30.4	 11.1
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Figure 6.9 Monitored annual mean NO2 against moving window predictions for the 8

coiisecutive monitoring sites.

Predictions from the moving window approach were also derived for the 54 near-

source monitoring sites - not used to develop the model (described in section 5.3). The

adjusted r value between the measured annual mean data and the moving window

predictions at the 54 sites was found to be 0.360 (se = 7.23 ug/m3). The measured

annual means plotted against the moving window predictions are shown in Figure 6.10.

The graph shows that predictions at some of the sites are outliers. These sites apart,

there is a reasonably good linear relationship between the monitored and predicted

values at the remaining sites.

6.5 Applying Moving Windows to Traffic Related Air Pollution

As this Chapter has demonstrated, it is possible to use a moving window to model

traffic related pollution and it has worked reasonably well in relation to NO2

concentrations in Huddersfield. The moving window has the capacity to model the

contribution of pollution at a location from all sources in the immediate area.

Modelling pollution as a function of the decay of concentration over distance from
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source, using a readily available tool, has proved a simple and effective approach.

How the moving window performs in comparison to the other models is covered in

detail in Chapter 8.
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Figure 6.10 Monitored annual mean NO2 against moving window predictions at the

54 near-source monitoring sites.
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CHAPTER 7 THE REGRESSION APPROACH

The final approach examined in this research was regression mapping. As outlined in

section 2.4, this refers to the use of empirically derived multiple regression equations,

describing the relationship between environmental factors and monitored air pollution

levels, as a basis for mapping spatial patterns of pollution. It is a technique which has

not been widely used in air pollution studies before, but which in many ways would

seem well-suited as an application in a GIS environment for it draws upon the ability of

GIS to predict conditions at each unsampled point by weighted combination of a series

of map layers, each representing the independent variables in the regression model.

7.1 Identifying the Independent Variables

Regression mapping proceeds by first establishing a relationship between a range of

predictor variables and the dependent variable of interest - in this case NO2

concentration - then applying this model to unsampled locations. The choice of

predictor variables for entry into the regression analysis is clearly crucial in this

process, for this determines to a large extent the explanatory power of the regression

model.

In the case of traffic related air pollution, three main sets of factors can readily be

identified, which can be expected to account for much of the variation in air pollution

levels:

emissions from vehicles

•	 other diffuse sources (e.g. industrial or residential activities)

•	 dispersion patterns and rates (e.g. surface roughness, microclimate)
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Although variables such as length of road, road density and traffic volume are all

acceptable indicators of vehicle emissions, they are all very highly correlated. One of

the variables - total traffic volume in km/hour - was therefore chosen here as the

emission indicator. Traffic volume was felt to be the most reliable indicator of vehicle

emissions, providing the best measure of vehicle density in urban environments.

Potential measures of emission sources and dispersion patterns can be derived by

drawing a circular zone of influence, radius r, around the monitoring site and

calculating variables as a firnction of the data within that zone. The radius can be set

to reflect the area of influence around the site. However, as suggested in Chapter 6,

nearby sources will tend to contribute more pollution at a location than distant sources.

Similarly, nearby topographic conditions will have a greater effect on dispersion

processes around a site than more distant conditions. Against this background, these

independent variables were calculated for 20m bands (up to a maximum of 300m)

around each monitoring site. Data from different bands were then combined, by

weighted aggregation, to produce compound indicators, as will be demonstrated later

in this Chapter. Least squares regression techniques were used to identify the best

combination of band width and weights that explained the greatest degree of variation

in NO2.

The independent variables were entered into a multiple regression analysis with the

annual mean NO2 as the dependent variable. The resultant regression equation was

then used to estimate NO 2 at every location across the study area. The approach is

described in further detail later in this Chapter.

7.2	 Calculating the Independent Variables

7.2.1 Traffic Volume

A grid, with a 1 Om resolution, was created for the road network with values

representing day-time hourly traffic volume. A cell with a value greater than zero
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2
3
4
5
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7
8
9

indicates the presence of the road - the value of the cell reflects traffic volume on the

road - and a cell with a value of zero indicates the absence of a road. In the GRID

module of ARC/INFO, the command focalsum is applied to the traffic volume grid to

calculate the total traffic volume within 15 zones of varying radii from 20m to 300m at

20m intervals (i.e. 0-20m, O-40m, 0-60m etc.). A circular filter of radius r is passed

over the grid, the total sum of all cells under the filter is calculated and the result

pLaced in the Location of the central cell. The command latticespot was then used to

find the total traffic volumes in the different zones for all permanent monitoring sites.

Lat/icespot calculates the value at a point by interpolating from the central points of

the four nearest grid cells.

Figure 7.2 shows a sample grid. A 40m filter is applied to the grid cell at location row

5, column 5. Focalsum adds together all the values in the filter and places the total in

the output grid at location row 5, column 5. In Figure 7.2 the total sum is 550.

Taking into consideration the fact that the cell size is lOm, traffic volume in metres per

hour can be approximated by multiplying the output value by 10 - then dividing by

1000 to give traffic volume in km per hour. In the example shown in Figure 7.2, the

traffic volume in km per hour within a radius of 40m is therefore 5.5. It should be

noted, however, that at the edge of the circle, only cells with more than 50% of their

area within the circle are included in the calculation.

1 2 34 5678 9

Figure 7.2. A sample of the traffic volume grid and a 50m filter.
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In the first stage of the approach - identifiying the best combination of band widths and

weights - the filtering technique had to be applied many times. As the radius is

increased from 20m to 300m this becomes extremely time consuming. At this stage in

the approach, however, the filter only needs to be applied at the location of the

monitoring sites and not to the whole grid.

To make the technique more efficient a mask was created around the monitoring sites,

to ensure that the filtering was only applied at the location of the monitoring sites.

This was achieved by creating a lOm grid from the monitored point data. Thus, a cell

containing a value greater than zero in the resultant grid indicated the location of a

monitoring site and all other cells had a value of zero. The eucaiocation command in

GRID was used to calculate the distance to the nearest monitoring site for all cells.

Those cells within 350m (a radius set to just beyond the 300m maximum) of the

monitoring sites were set to zero and all other cells were set to NODATA. This

created a mask.

The traffic volume grid was overlaid with the mask by adding the two grids together

on a cell by cell basis. The traffic volume grid represents hourly day-time tra.ffic

volumes and contains values above zero where roads exist and zero where roads do

not exist. Where values in the mask contain NODATA, values in the output grid

contain NODATA. Thus, traffic volume data only exists in the 350m zone around the

monitored points (Figure 7.3). When the filter is passed over the data, if a NODATA

value is encountered in any location of the filter, the filter is not applied to that location

and moves onto the next cell. The filtering therefore only works in the small nuclei

around the monitoring sites. Applying the mask in this manner dramatically speeded

up the experimental stage of the regression approach.

The adjusted mean NO2 concentrations and the total traffic volumes within the 15

zones for the 80 permanent monitoring sites were then imported into the statistical

package SPSS. The 15 zones of traffic volume were used to calculate traffic volume

for 2 or 3 bands whose widths were chosen to reflect the rapid fall in concentrations
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from the source - for example, 0-20m, 20-lOOm, 100-300m; 0-60, 60-300m; 0-40,

40m- I 40m, 140-3 OOm.

NODATA

NODATA

Figure 7.3. Creating a 350m mask for traffic volume around the monitoring sites.

Within SPSS, multiple regression techniques were used to establish a weighted traffic

variable (TRAVOL). Traffic volumes within the different bands were entered into a

multiple regression analysis against the adjusted mean NO2 concentrations with the

monitored data as the dependent variable and the traffic volumes as the independent

variables. Different combinations of band width were entered into the regression

analysis and compared in terms of their r2 values on a trial and error basis. A range of

combinations were found to give broadly similar results: a combination of the 0-40m

and 40-300m bands was selected on the basis of a marginally higher r2 value (adjusted

= 0.432).

The slope coefficients for the 0-40m band and the 40-300m band were used to help

establish the weights for each band. The ratio between the two slope coefficients was

used to define the weights. The coefficients were found to be 75x10 and 5x10 for

the 0-40m and the 40-300m bands respectively, providing a ratio of approximately 15

for the 0-40 band to 1 for the 40-300m band. This resulted in the compound indicator

represented by equation 7.1.
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TRAVOL = (15 * traflic volume O-40m band) +	 [Equation 7.1]

(1 * traffic volume 40-300m band)

7.2.2 Land Cover

All land cover categories thought to reflect spatial variations in air pollutant were

selected from the land cover data for analysis. These included:

Very low density housing

Low density housing

High density housing

Very high density housing

High density commercial

Industry

Public institutions

Using the land cover coverage, 1 Om Boolean grids were created for all selected land

cover categories. A cell with a value of 1 indicates the presence of the land cover and

a cell with a value of zero indicates its absence. The total number of cells with a value

of I for each category within 15 zones of varying radii (from 20m to 300m at 20m

intervals) were found in GRID using the focalsum command. The number of cells

were multiplied by 100 to give total area in square metres and then divided by 10000

to give the area in hectares. Total industrial land in the 0-300m zone for industry can

be seen in Figure 7.4. The total areas, in hectares, for the 80 permanent monitoring

sites were imported into SPSS. Once again, the focalsum command was applied in an

efficient manner by overlaying the mask, described in section 7.2.1, with the Boolean

grids.

Results were entered into a multiple regression analysis against the residuals from the

TRAVOL analysis - to examine the extent to which land cover explained the remaining

variation. A compound land cover variable (LANDCOV) was established by
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comparing the r2 values from different combinations of land cover categories and radii

to find the best-fit combination. The best combination was found to be high density

housing and industry in the 0-300m band (adjusted r2 = 0.138) and was thus selected

for inclusion in the model. Examination of the slope coefficients (49x10 for high

density residential and 28x10 for industry) again gave the weighted compound

indicator, presented in equation 7.2.

LANDCOV = (1.8 * high density residential 	 [Equation 7.2]

0-300m band) + (1 * industry 0-300m band)

7.2.3 Topography

The 50m Digital Terrain Model (DTM) stored in the GIS was also used to provide two

potential measures of dispersion patterns and rates. The first one is simply the altitude

at a location; the second is a measure of relative relief at a location. Relative relief

(RRELIEF) was calculated from the DTM in GRID as a function of the difference

between the central cell and its eight neighbouring cells. The DTM was exported as an

ASCII text file and the FORTRAN program rel_relief (Appendix 7), written by the

author, applied to the data. Within the program the difference between the central cell

and each of the eight neighbouring cells is calculated in turn and the resultant output

value is the sum of the differences. The program works in a similar manner to a filter

and results are placed in the location of the central cell. The output values were

written to a new text file and imported into ARC/iNFO as a new grid. Negative

RRELIEF values indicate that the site is open and positive RRELIIEF values indicate

that the sites is sheltered.

Latticespot was also used to find the altitude and relative relief (RRELIEF) at the 80

sites from the 50m Digital Terrain Model (DTM) and grid of RRELIEF values

respectively.
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7.2.4 Height of the Sampler and Topex

Other independent variables, related to the monitoring sites, were also identified.

These included the height of the sampler and mean angle to the visible horizon, topex

(see section 3.4.5).

7.4	 The Regression Equation

The variables BUILT, TRAVOL, RRELIEF and altitude (variously transformed),

along with the sample height and topex, were all entered into a stepwise regression

analysis against the annual mean NO 2 concentrations for the 80 permanent monitoring

sites to give a regression equation for NO 2. The annual mean NO 2 concentrations were

entered as the dependent variable.

It was found that RRELIEF, altitude and topex did not contribute significantly to the

equation and were therefore removed from the analysis. An inverse sine

transformation of altitude (SIN(altitudeY'), however, was found to be significant and

was used in the final analysis. Equation 7.3 represents the final regression equation.

MeanNO2 = 11.83 + (0.00398 * TRAVOL) +	 [Equation 7.3]

(0.268 * BUILT) - (0.03 55 * SIN(altitude)') ±

(6.777 * sample height)

All the variables included within the equation were found to be significant at the 0.005

level (i.e. <0.005) and the t values were also found to be significant (i.e. > 2 or < -2).

The regression coefficients, confidence intervals, significance values, standard errors

and t values for the four variables are shown in Table 7.1.
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Table 7.1 Regression coefficients, confidence intervals, sign/Icance values, standard
errors and I values for the variables in the regression equation.

Variable	 Regression 95% Confidence	 Signifi- Standard t value
coefficient Interval	 cance	 error

TRAVOL	 0.00398	 0.00027 0.00053 0.0000 0.00065 	 6.07
BUILT	 0.268	 0.0137 0.0398	 0.0001	 0.0656	 4.08

SIN(altitude)1	 0.0355	 -0.598	 -0.0111	 0.0049	 0.0122	 -2.90

sample height	 6.777	 5.305	 18.356	 0.0005	 1.6374	 4.14

The weighted traffic volume variable was found to explain 44.0% of the NO 2 variation

within the study area whilst the weighted measure of high density housing and industry

explained a further 8.5% of the variation. Inclusion of the sample height and altitude

variables increased the explanation of NO 2 variation within the study area to 60.7%.

7.4.1 Generating the Air Pollution Map

Within the GIS the variables TRAVOL and BUILT were calculated for all locations by

applying Equations 7.3 and 7.4 to all cells in the grids. The inverse sine of altitude was

calculated and a constant sample height of 2m was applied for the whole of the study

area. Equation 7.5 was then applied in the GIS on a cell by cell basis to calculate area-

wide estimates of annual mean NO 2. The final pollution map for the estimated NO 2 in

the Huddersfield study area is shown in Figure 7.5.

7.5	 Results and Validation

The measured annual means against the predicted values for the 80 permanent sites can

be seen in Figure 7.6. The graph shows that the regression line fits the data well, with

slight over-estimation for the lower concentrations and under-estimation for the higher

concentrations. A plot of normal scores for the residuals (Figure 7.7) shows that the
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residuals appear to be acting normally, i.e. there are no visible outliers nor any

significant departures from normality.

As discussed in Chapter 2, the problem with applying regression to spatial data is that

the geographical location of the monitoring sites is not taken into consideration. Due

to the spatial nature of the data, the residuals may show some degree of spatial

autocorrelation, i.e. the residuals are more likely to resemble their neighbouring

residuals than distant residuals. This would imply that spatial dependence still existed

in the data and that the residuals were not random. The disadvantage of the regression

technique is that it assumes that there is no spatial autocorrelation. This is where

kriging has the advantage over regression, because spatial autocorrelation of the

residuals is taken into account.

20	 30	 40	 50	 60

Monitored (tIth3)

Figure 7.6 Monitored values against predicted values at the 80 permanent
monitoring sites.

Spatial autocorrelation is more likely to occur when the percentage of variation

explained is small and the independent variables are not significantly related to the

dependent variable. Introducing more predictive variables into the regression model

may help explain more of the spatial dependence in the data. As Knotters et a! (1995)
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suggest, 'by adding additional variables to the regression model, thereby explaining a

greater part of the variance, we expect that the assumption of the absence of

autocorrelation of the errors will be satisfied more'. If spatial dependence remained in

the data, however, one solution would be to apply kriging to the residuals.

-2.5	 -1.5	 -0.5	 0.5	 1.5	 2.5

Noriml Scores

Figure 7.7 Normal scores for ihe residuals.

In the case of the NO2 data, analysis of the first, second and third order nearest

neighbour residuals did not reveal any further spatial dependence in the data, as can be

seen in Figures 7.8.a, 7.8.b and 7.8.c. Kriging was also applied to the regression

residuals, but, as expected, this confirmed that there was no remaining spatial

dependence in the data. This is substantiated by the strong relationship between NO2

and the explanatory variables and the high percentage of variation explained.

To examine how good the regression model predicts concentrations in unsampled

locations, predictions were calculated for the 8 consecutive monitoring sites (section

3.3.1) and these were compared with the monitored annual means (the consecutive

monitoring sites were not used to develop the regression model). The monitored

annual means and the predicted values for the 8 sites can be seen in Table 7.2 and in

Figure 7.9, the adjusted r2 was found to be 0.817 (Se = 3.68 ug/m3). There is a very

151



-10

•.

	

10 .	 *

'I

	

I 0	
.	 I •

$ .*
.

I	 •• S•

	

.10.	 •

.10	 0	 10

t Order Neereet Nàgtthoii

•	 •
..

.4

•	 .	 •. .

	

•. .	 .••	 •
.00	 0	 10

2m0 derNeeue.t NagithoIx

c)

40

-10

good linear relationship between the monitored and predicted values, as the table and

graph show, with the slope of the regression line very close to I.
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Figure 7.8 First, second and third order nearest neighbour residuals.

Table 7.2 Annual mean NO2 values and regression predictions for the 8 consecutive
monitoring sites.

Site-id [Annual Mean Regression 	 Difference
[NO2 (ug/m3)	 Prediction	 ______________

103	 31.3	 28.9	 2.4
104	 28.6	 28.3	 0.3
105	 34.3	 31.5	 2.8
106	 19.9	 26.4	 -6.5
107	 21.7	 24.7	 -3.0
108	 44.6	 48.0	 -3.4
109	 31.0	 29.7	 1.3
110	 41.5	 39.2	 2.3
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Figure 7.9 Monitored annual mean NO2 against regression predictions for the 8
consecutive monitoring sites.

7.6 Applying Regression Mapping to Traffic Related Pollution

This approach has shown that regression mapping can be applied to air pollution

mapping in urban environments to help identifj small area variations in traffic related

air pollution. Equally, the approach has demonstrated how statistical techniques and

GIS tools can be applied to provide high resolution estimates of the pollution surface.

Furthermore, measures of the independent variables can be easily and effectively

generated in the GIS. The technique appears to have worked moderately well.

The method can easily be transferred to other cities. As part of the SAVIAH study,

the methodology was successfully applied in Amsterdam and Prague (Briggs et a!,

1997). Due to differences in the availability of data, topography and methods of data

collection in Amsterdam and Prague, compared to Huddersfield, a unique regression

model was developed for each country. Development of the different models was,

however, subject to the constraints that the models included terms for traffic volume,

land cover and topography, and that the same approach for generating band widths

(section 7.2) was applied. In each centre, the regression maps were validated against
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8-10 consecutive monitoring sites. These sites were not used to establish the

regression equations. The adjusted r2 values were found to be 0.79 (se = 4.45 ug/m3)

and 0.87 (se = 4.67 uglm 3) in Amsterdam and Prague respectively. Further details

regarding the development of the regression models and the resultant regression

equations in the two cities can be found in Briggs eta! (1997).

As part of the SAVIAH study, pollution data were also collected for 20 monitoring

sites in Huddersfield in the year following the four surveys described in section 3.3.

The measured concentrations were compared against the pollution map produced from

the regression approach outlined in Chapter 7 and a good correlation was found

between the two, with an adjusted r2 value of 0.59 (Briggs et a!, 1997). This indicates

that the air pollution map derived from the regression approach could be used in the

same area for other years.

Recently, the regression model has been applied, unaltered, in other areas of the UK,

namely Hammersmith, Ealing (Wills, 1998) and Sheffield (de Hoogh, 1998), to

produce maps of air pollution. Strong correlations were again found between the

pollution maps and measured concentrations. In each case, the adjusted r2 was found

to be about 0.7 across 10 to 30 monitoring sites. These studies suggest that in order

to apply the regression model in other areas, there is no need to recalculate the

coefficients for the regression equation using locally derived data. It would, however,

be necessary to validate, and even calibrate, the model with locally monitored pollution

data.

The rationale underpinning these studies is that most of the spatial variation in traffic-

related pollution is local (i.e. within 50 metres) and related to road vehicles. The

regression model is thus providing an accurate picture of the pollution surface.

The performance of the model compared to the other approaches used is considered in

more detail in Chapter 8.
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CHAPTER 8 EVALUATION AM) COMPARISON OF THE DIFFERENT
APPROACHES

Three different approaches have been developed to model air pollution (NO 2) in urban

environments as part of this study and four approaches have been applied, tested and

validated:

•	 kriging - geostatistical techniques

•	 AMTRAP - geostatistical techniques and dispersion modelling

•	 moving window - geostatistical techniques and spatial analysis

•	 regression - statistical techniques and spatial analysis

As has been demonstrated in Chapters 4 to 7, all these approaches can be used to

generate maps of air pollution. However, they all have different advantages and

disadvantages related to the data requirements and the processing time. The accuracy

of the methods and the degree to which they explain variations in air pollution also

varies.

This Chapter evaluates and compares the different methods. The Chapter is split into

three distinct sections. In the first section, the pollution maps generated by the four

different approaches are compared. In the second section, the methods are further

compared by reviewing their potential application in epidemiology, and, in the final

section, the advantages and disadvantages of the four techniques are discussed in detail.

8.1	 Comparison of the Pollution Maps

The pollution surfaces generated with the kriging, AMTRAP, moving window and

regression approaches for the residential area of Huddersfield are shown in Figures
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8.1, 8.2, 8.3 and 8.4 respectively. It can be seen that the pollution surface generated

with the kriging technique is markedly smoother than the other three surfaces and not

as detailed - with a comparatively small range between the minimum and maximum

pollution values. The map shows gradual changes from low areas of pollution to high

areas. The overall trend in levels of pollution across the residential area is quite

distinctive, with high levels of pollution over the centre of the town, and a general

decline towards peripheral areas.

The pollution surfaces generated with the AMTRAP and moving window models are

very similar. The effects of meteorology on pollution levels is visible, however, in the

AMTRAP map, with different levels of pollution at different sides of the roads. Both

the AMTRAP and moving window approaches display a wide range of pollution

values compared to kriging, with smooth low background levels in pollution,

punctuated by the marked peaks of high levels that follow the pattern of the road

network. At the apex of the peaks, levels in pollution can be nearly three times higher

than background levels. The change between background levels and near-source levels

is very sudden and occurs over a very short distance.

The pollution surface generated with the regression approach maintains the high peaks

where the roads are displayed in the AMTRAP and moving window approaches, but

overall changes in levels of pollution are much more gradual. The maximum pollution

values are not as high as the AMTRAP and moving window approaches, but variation

in levels of pollution is greater than for the kriging technique. High levels of pollution

can also be found in the industrial areas and areas of high density residential housing.

The background levels of pollution also reflect variations in topography. Overall, the

regression map displays far greater variation in levels of pollution across the residential

area than the AMTRAP and moving window approaches and a distinctive pattern

across the city is visible.

The performance of the different methods was further compared by examination of the

predicted annual mean NO2 values for the 8 consecutive monitoring sites (section

3.3.1). Graphs of annual mean NO2 against predicted NO2 for kriging, AMTRAP,
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moving window and regression approaches can be seen in Figure 8.5. The adjusted r2

values, constant, slope coefficients, standard errors and range for the four approaches

can be seen in Table 8.1. In the AMTRAP approach, one of the monitoring sites was

identified as an outlier; in the second AMTRAP run (AMTRAP*) the outlier has been

removed.

Table 8.1. Adjusted r2, constant, slope coefficients, standard error and range for the
kriging, AMTRAP, moving window and regression approaches.

Approach	 Adjusted r2 Constant	 Slope	 Standard	 Range
coefficient error of the (mm-max)

________________	 estimate
Kriging	 43.9%	 -3.44	 1.14	 6.45	 21.6-41.7
AMTRAP	 62.8%	 13.21	 0.59	 5.25	 18.1-125.5
AMTRAP*	 60.6%	 -1.07	 1.11	 4.63	 18.1-125.5
Movingwindow 67.3%	 -2.97	 1.24	 4.92	 18.1-94.5
Regression	 81.7%	 -0.60	 102	 3.68	 21.3-73.7

60

20	 30	 40	 50	 60

Iedicted (ug/m3)

Figure 8.5 Monitored annual mean NO2 against kriging, AMTRAP, moving windows
and regression predictions at the 8 consecutive monitoring sites.

Kriging has the largest standard error and the r2 value is low compared to the other

approaches. The relationship between the monitored and predicted values is relatively
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poor with a high degree of under- and over-predicting. This reflects the smoothing

produced by the technique and the small range in variation between the minimum and

maximum pollution values. The AMTRAP approach has a lower standard error and,

apart from the one outlier where the AMTRAP model has overestimated the pollution

concentration by 25%, the predicted and monitored values display a good linear

relationship. The outlier reflects the very high maximum pollution values at the side of

the roads generated by the AMTRAP model compared to the other approaches. The

standard error for the moving window approach is similar to that of the AMTRAP

method, but the model appears to be systematically under-estimating the pollution

concentrations. The standard error for the regression method is the lowest of all the

approaches and the predicted and monitored values display a good linear relationship,

with a regression slope of almost 1. There is, however, a tendency for the model to

over-estimate at low concentrations and under-estimate at high concentrations, but this

effect is small compared to the other methods.

The regression approach, therefore, appears to be the best predictor of levels of

pollution for the 8 consecutive monitoring sites. The adjusted r2 value for the

regression approach is nearly twice that of the kriging technique, with the AMTRAP

and moving window approaches falling approximately halfway between the two. This

indicates that the additional near-source variation described by the AMTR.AP and

moving window approaches helps to provide better predictions of levels of pollution

compared to kriging. However, even more accurate predictions can be attained by

establishing a relationship between monitored data and predictive variables - as in the

case of the regression approach. Furthermore, at 81.7%, the r2 value for the

regression approach is exceptionally good, indicating that the approach is accounting

for almost all the spatial variation in the monitored data.

8.2	 Estimating the Population at Risk

One of the main purposes of developing air pollution maps is to estimate and identify

the population at risk, for example by overlaying the pollution surface on maps of
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population distribution. How well this procedure works depends upon the accuracy of

the pollution maps and thus upon the methodology used for air pollution mapping.

As Figures 8.1 - 8.4 demonstrate, the maps created by the four different approaches

show very different patterns of pollution in the residential areas and therefore the

population at risk will vary for the different approaches. The extent of this problem

can easily be demonstrated using one of the available data sets collected for the

SAVIAH study: the place of residence of the children

The 1 OOm grid references relating to the postcodes of the children are stored in the

GIS (section 3.3.6). The co-ordinates can be overlaid with a pollution map and an

individual pollution score attached to the place of residence. This is just one method

of estimating individual exposure; the appropriateness of this approach and alternative

methods are discussed in Chapter 9. It should be noted, however, that the lOOm grid

reference represents the south-west corner of the grid square within which the first

address in the unit postcode lies. Since the first address often lies at the edge of the

postcode, this process may result in large errors between the actual location of the

address and the lOOm grid reference. To help reduce this error, Gatrell (1989)

suggests adding 50m to the 1 OOm grid references, shifting them North and East to the

centre of the 1 OOm grid squares. Following Gatrell' s (1989) suggestion, therefore,

50m were added to the place of residence co-ordinates.

The co-ordinates for all 5027 children were overlaid with the four different pollution

maps and four different pollution scores were established for each location. The kriged

map, however, does not cover the full extent of the Huddersfield study area and

therefore not all children had pollution scores for all methods. Only those children

with four pollution scores (a total of 4357) were selected to help demonstrate the

differences in the pollution maps.

The extent to which the pollution maps provide different pollution scores for the same

locations was examined by calculating the minimum, maximum, interquartile range,

mean and standard deviations for all scores for the four pollution maps. The results
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can be seen in Table 8.2. Histograms (Figure 8.6) of the distribution of the pollution

scores for the different pollution maps were also used to compare the approaches.

Table 8.2 Minimum, maximum, interquartile range, mean and standard deviation
pollution scores for the icriging, AMTRAP, moving window and regression
approaches.

Approach	 mm	 25% 50% 75% max mean SD
______________ ug/m 3 ug/m3 ug/m3 ug!m3 ug/m3 ug/m3 ug/m3

Kriging	 22.11	 28.85	 31.66	 34.83	 41.51	 31.57	 4.415
AMTRAP	 18.15 23.98 26.67 28.53 63.25 27.09 4.983
Movingwindow 18.15 23.99 26.71 28.52 67.06 26.93 4.390
Regression	 23.44 26.99 28.62 31.77 61.72 30.00 4.471

i0004
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Figure 8.6 Histograms ofpollution scores for the kriging, AMTRI4P, moving window
and regression approaches.
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The histograms in Figure 8.8 and the values in Table 8.4 show how the distribution of

pollution scores differs for the different approaches. Pollution scores from the kriging

map represent an almost normal distribution, with a relatively small range between the

minimum and maximum values and a relatively large range between the 25% and 75%

quartile values compared to the other approaches.

The distributions of the pollution scores for the AMTRAP and moving window

approaches are very similar. The histograms are negatively skewed and the range

between the 25% and 75% quartile values is smaller than for any of the other

approaches; they also have the lowest pollution scores falling between these values.

The regression approach falls somewhere between kriging and the AMTRAP and

moving window approaches. The histogram is also negatively skewed, but the spread

of pollution scores falling between the minimum and maximum values displays a

smoother distribution than for the AMTRAP and moving window approaches. The

range between the 25% and 75% quantile values is slightly larger than the AMTRAP

and moving window approaches and the pollution scores fail approximately half way

between these and the kriging approach. The mean pollution scores for all four

pollution maps show a 5 ug/m3 range.

These results reflect the way in which the kriging technique has smoothed the pollution

surface and fails to detect the linear variations in the pollution surface. In the case of

the AMTRAP and moving window approaches most of the pollution scores are very

low compared to the kriging and regression approaches, with the very high pollution

scores representing locations very close to the emission sources. This can be further

illustrated by calculating the percentage of children living in locations above the UK

National Air Quality Strategy standard annual mean for NO2 of 37.6 ug/m3 for the four

pollution maps. In addition, the annual average NO 2 monitored value was calculated

for the study area from the 80 permanent monitoring sites and the percentage of

children with scores above and below this value calculated to help demonstrate

variations in the pollution surfaces. This was found to be 33.1 ug/m 3 . The results are

shown in Table 8.3.
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Table 8.3. Percentage of children with a pollution score greater than the National Air
Quality Strategy standard and the study average monitored value for the kriging,
AMTRAP, moving window and regression approaches.

Approach	 National Air Quality Strategy Study monitored average:
standard: pollution scores>	 pollution scores> 33.1 ug/m3

____________ 37.6 ug!m3	_____________________
Kriging	 8.0%	 40.2%
AMTRAP	 4.3%	 7.2%
Moving window	 2.9 %	 7.0 %
Regression	 7.5 %	 19.6 %

As the table demonstrates, there is nearly a three-fold difference in the percentage of

children with pollution scores above the National Air Quality Strategy standard for

NO2 calculated from the different methods. The kriging approach suggests that nearly

three times as many children live in locations above the standard compared to the

moving window approach. In the case of the study area average NO 2 value, at one

extreme, kriging suggests that nearly half the children live in locations where the

pollution level is above the monitored average, while at the other extreme the

AMTRAP and moving window approaches indicate that less than one tenth of children

fall in this category. These figures demonstrate how the different mapping approaches

applied to the data provide different estimates of exposure, and thus affect

epidemiological inferences.

It is, however, also useftil to examine the health risk associated with the high pollution

areas identified by the four different mapping approaches. In order to achieve this, the

response to two questions on the health questionnaire - life-time prevalence of

wheezing or whistling and prevalence of wheezing or whistling in the last twelve

months (section 3.4.6) - were compared against the four different pollution scores for

the 4357 children. All children with positive responses to these questions (i.e. either a

1 for 'no' or a 2 for 'yes') were selected for inclusion in the analysis. Parents were

only asked to respond to the second question if the response to the first was a 'yes'.

This resulted in 4202 children for life-time prevalence of wheezing or whistling and

1357 children for wheezing or whistling in the last twelve months. Logistic regression
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was applied to the data to measure the risk associated with raised levels of pollution.

Odds ratios and 95% confidence intervals for the two health related questions against

the four pollution approaches can be seen in Table 8.4.

Table 8.4 Odds ratios and 95% confidence intervals for the four pollution
approaches against health outcome.

Kriging AMTRAP Moving Regression
_____________________J 	 II	 __________ Window __________
Life-time prevalence of Odds Ratio 0.98744	 1.00653	 1.00419	 0.97795
wheezing or whistling 	 L 95% CI	 0.97267 0.99332	 0.98929 0.96295
__________________ U95%CI 1.00244 1.01992 	 1.01930 0.99321
Prevalence of wheezing Odds Ratio 0.99623	 1.00727	 1.00460	 1.00069
orwhistlinginthe last	 L95%CI	 0.97118	 0.98656	 0.98140	 0.97686
twelvemonths	 U95%CI	 1.02191	 1.02840	 1.02835	 1.02510

These results show that there is no evidence of an increased risk to health in areas of

high levels of pollution. This in turn suggests that there is no effect of exposure on the

chronic respiratory health of children at these pollution levels. While this may indeed

be a true interpretation of the results, it should, however, be taken into consideration

that the lack of a relationship between levels of pollution and respiratory health in

children may be due to other factors, such as inaccuracies in the data and the chosen

measure of exposure.

In particular, this could be related to limitations in the health data, where there may be

inconsistencies in the doctors diagnosis of asthma and respiratory disorders. In

addition, parents coming from different social backgrounds may have different levels of

knowledge and awareness of the symptoms of asthma, which may results in

geographical variations in the response to the questionnaire. Furthermore, the logistic

regression was applied to health data which had not been controlled for other risk

factors (for example, house dust mite and pollen), nor the effects of cumulative

exposure over time, which had not been modelled in the SAVIAH study.

With regard to the chosen measure of exposure, as discussed earlier in this section,

individual exposure scores were established for the children by overlaying lOOm grid
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references with the pollution maps. However, changes in traffic related pollution have

been shown to occur over very small distances, and indeed, the AMTRAP, moving

window and regression maps have all been generated at a I Om resolution to reflect

this. It is unlikely, therefore, that the 1 OOm grid references are accurate enough to

provide a true estimate of exposure at an address. The Ordnance Survey's

AddressPoint data would, for example, provide a more accurate reference point for the

postal addresses. The co-ordinates are referenced to a point that falls inside the

permanent structure of an address to a resolution of 0. im.

Equally, exposure at the address of residence alone may be a poor measure of

exposure for the children. As discussed in Chapter 1, people are very mobile and

individuals are exposed to different levels and combinations of pollutants as they go

about their daily routines. The degree of exposure is often dependent upon other

factors such as the age and health of the individual, their activities during exposure and

the duration of exposure. Children, for example, spend a great deal of time at school

and travelling to and from school. Furthermore, this thesis concentrates on outdoor

exposure, however, sources of pollution can also be found inside the home (section

1.1.1) and a measure of indoor pollution may also help to provide more reliable

estimates of exposure. It is possible, therefore, that the pollution scores defined here

may only represent a measure of pollution and not a measure of exposure.

8.3	 Advantages and disadvantages

The different approaches vary not only in terms of their ability to model the variations

in air pollution in urban areas, but also in terms of their data requirements, their

complexity and the time it takes to apply the approaches. Before the approaches are

discussed in detail their data requirements and processing times are presented in Table

8.5.

It should be noted that, apart from kriging, these processing times are based upon 1 Om

resolution grids for the Huddersfield study area - which is approximately 30km x
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20km. They also represent relative processing times, in that they are clearly dependent

upon the speed and age of the machine on which they were run.

Table 8.5 Processing times and data requirements.

Kriging AMTRAP	 AMTRAP no Moving	 Regression
___________ _________ ____________ meteorology window
Processing	 2 minutes 10 hours 	 2 hours	 30 minutes	 24 hours
times
Datasets	 _________ _____________ ____________ ____________ ____________
Monitored	 dense	 background background background semi-dense
datanetwork ____________ ____________ ____________ network
Geographical	 road network road network road network road network
data	 land cover	 land cover	 land cover
____________ _________ ____________ ____________ ____________ topography
Meteorology	 hourly or	 study period
_____________ _________ daily	 average	 ____________ ____________
Field data	 sample
____________ _________ ____________ ____________ ____________ height

8.3.1 Knging

The geostatistical technique - kriging - is used to interpolate from a set of monitored

data to a continuous surface. The main advantage of using kriging is that the only data

that needs to be collected is the monitoring data. In the case of air pollution, data is

collected for a set of monitored sites. Depending on the scale of the study, this could

be data collected from automatic monitoring stations, fixed site samplers or diffusion

tubes. At unsampled locations kriging also calculates the variance, which is a measure

of the confidence of the estimates. The only constraints on the collection of the data

are that - a) air pollution is monitored at enough sites to ensure that a minimum

number of pairs of points fall into each class of the semi-variogram and - b) there is an

even distribution of sites to insure against large estimation errors due to gaps in the

sampling network. In some cases the sampling may need to be stratified in order to

ensure that particular pollution environments are taken into account. One advantage

of using the monitored data is that the resultant pollution surface reflects the measured
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values and the time period for which the measurements were taken. Conversely, the

technique cannot readily be used to predict air pollution beyond the extremities of the

sampling network or the study period. A disadvantage of only using monitored data is

that random errors in the collection and measurement of the pollutant are difficult to

detect and easily transferred to the pollution surface.

Kriging has on occasions been used to model background or rural levels of pollution

(Campbell et a!, 1994; Atkins and Lee, 1995). For urban areas, however, where

marked variations in the level of pollution occur, an unmanageable density of

monitoring sites would be necessary in order to pick up the peaks in levels of pollution

that correspond to the roads. Due to lack of monitoring sites, it is likely that kriging

will smooth the peaks that are present in urban environments.

It is possible that other kriging techniques, such as co-kriging using co-variates, may

produce better estimates. Vauclin et a! (1983), Knotters et a! (1995) and Liu et a!

(1995) all compare kriging with co-kriging and conclude that co-kriging provides

better estimates than kriging. As discussed in Chapter 2, co-kriging uses the

correlation with other variables sampled at the same location, but which have also been

sampled or measured at other locations, to help calculate estimates at these other

locations. The geographical information stored in the GIS, for example land cover and

total traffic volume in the surrounding area, could be sampled at the monitoring sites

and also at locations on a regular grid and then used in the co-kriging calculations.

However, since the regression approach explains so much of the variation in monitored

NO2 (81.7%), it is likely the variation would be adequately explained by the co-variates

and that the kriging element of co-kriging would add little in terms of accuracy. This

is, in fact, implied by the analysis of the results from the regression mapping method; as

noted in section 7.5, no spatial dependence remained in the residuals from the

regression analysis, showing that the covariates had explained all the spatially-

dependent variation in the data.
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8.3.2 AMTRAP

With the AM)LTRAP approach, kriging is used to interpolate from the background

monitoring sites to a continuous surface and dispersion modelling is used to model

pollution from road traffic. The two components were additively combined. The main

advantage of the AMTRAP approach is that the peaks in levels of pollution,

corresponding to the road network, are identified and mapped. The AMTRAP

approach requires only a limited number of sites in background locations to create a

background surface - considerations regarding the number and distribution of sites, as

with the kriging approach, still apply.

The approach uses data related to the road network (including traffic volume and road

type), information about the land cover (to help establish surface roughness) and

meteorology. The model can easily be altered to reflect changes to the road network

or surface roughness. This is useful for modelling scenarios such as increases in traffic

volume on the roads or the effect of building a new road. The model could also be

adapted to reflect daily (rush-hour traffic) or seasonal variations in levels of pollution.

Compared to the other approaches, AMTRAP has the greatest demands on data and is

the most complex of all the methods. This is primarily due to the application of the

meteorological data in AMTRAP. There are a number of reasons why including

meteorology causes so many problems. In the first instance, there is only a sparse

network of meteorological sites and the data therefore are not always readily available.

Even where data are available it is likely that there will only be one site, or at most a

few sites, in the study area and consequently the meteorology has to be assumed to be

constant across the whole of the study area. Secondly, because different temporal

meteorological conditions have to be taken into account, levels of pollution have to be

established for each unique set of conditions and this is very time consuming. The

longer the study period the more difficult it becomes to model all the different

meteorological conditions.
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AMTRAP is the only one of the four methods to use daily meteorological data.

However, meteorology was found to have little effect on levels of pollution over long

periods of time (section 5.4). Taking into consideration the fact that the methods were

developed to model long-term pollution, short-term changes in meteorology can

therefore be disregarded and average values for meteorology can be used instead. The

other two methods developed use no meteorology and provide similar or better

estimates of pollution at unsampled locations.

One of the disadvantages of the AMTRAP approach is that the near-source pollution

concentrations are only based upon the traffic volume on the nearest main road.

Where two main roads run very close together this is not always an appropriate

measure - the pollution concentration at these locations is likely to be a product of

both roads. However, since the regression method produced better estimates than the

AMTRAP method, the model was not developed further to accommodate this

problem.

As discussed in Chapter 5, the CALINE3 dispersion model used to develop the

AMTRAP approach only predicts concentrations of CO and other inert gases, and

therefore NO2 had to be treated as an inert gas, which may have introduced some

errors into the measurements. Other line dispersion models, such as CALIINE4 and

ADMS (discussed in detail in section 2.2.2), do have the capacity to model NO2 and

may provide more accurate estimates of pollution. However, these more sophisticated

line dispersion models, do have far greater data requirements, and for a large study

area, such as Huddersfield, it would have been extremely difficult and very time

consuming to collect all the relevant data.

In addition, the dispersion model - adapted to work in the GIS - is designed to model

pollution for detailed, short-term, small-scale situations and is sensitive to variations in

the input data. Small variations in traffic volume, for example, result in noticeable

changes to the pollution concentrations. The Huddersfield study is a large-scale, long-

term study, and consequently, to develop an automatic approach in the GIS, many of
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the input variables had to be generalised. This may have introduced further errors into

the AMTRAP model.

Where short-term pollution levels need to be estimated - for example, for specific

pollution events - there are likely to be significant advantages in including meteorology

in the analysis; in these cases, the AMTRAP approach may out-perform the other

methods used here. Nevertheless, it should also be noted that the AMTRAP approach

was applied in this case only with estimates for the mean daily traffic flow. If shorter-

term modelling is to be conducted, more detailed (e.g. hourly) traffic flow data will

also be required. This greatly adds to the data demands and computational burden of

the approach.

8.3.3 Moving Window

The moving window approach is similar to the AMTRAP approach, in so far as it is a

combination of two separate components. Once again kriging is used to interpolate

from the background monitoring sites to a continuous surface, but, with the moving

window approach, a weighted template is passed over the road network to model the

pollution from the road traffic. The two different components were again additively

combined. As with the AMTRAP approach, only a limited number of sites in

background locations are required to create a background surface, so long as the

number and distribution of the sites satisfy the kriging requirements.

One of the advantages of the moving window approach is that, apart from the

monitored data, once the template has been defined - and this only needs to be done

once - it requires very little additional data. The approach is applied to the road

network and the only information that is needed is the traffic volume. At any one

location, all sources of pollution from motor vehicles in the surrounding area were

identified and estimates of the pollution concentration calculated to reflect this. Thus

the peaks in levels of pollution were identified and modelled. A further advantage is

that the approach can be applied using techniques readily available in the GIS.
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The approach is relatively quick to apply because the moving window only has to be

applied to the data once. The model can easily be altered to reflect changes to the road

network and traffic volume and the moving window simply applied again. Different

measures of traffic volume - for example, representing seasonal or daily variations -

could be stored in the database and the moving window applied to any of these items.

To derive the weights for the template, the approach assumes that meteorology is

constant with average conditions. Consequently, the approach is likely to be more

applicable to long term studies of air pollution.

Like the AMTRAP approach, the moving window approach also used estimated data

from the dispersion model - this time to help establish weights for the template.

Alternatively, weights might be derived from simple 'first principles' - for example, by

assuming that the contribution of any source varies with the square of the distance.

Again, generalisation of the input variables may introduce errors into the approach.

However, due to the aggregation of data under the template, it is unlikely to be as

sensitive to variations in the input data as the AMTRAP approach.

8.3.4 Regression

The regression approach uses spatial analysis techniques to establish variables which

are a measure of emission sources and dispersion patterns in the area surrounding the

monitoring sites. The approach then uses statistical techniques to produce a regression

equation for NO2 from the monitored data and the measures of emission sources and

dispersion patterns. The regression equation is then used to predict levels of NO2 at

locations where NO2 has not been monitored. The approach could easily be applied to

estimate levels of other pollutants.

The regression approach differs from the other three approaches in that it does not use

spatial interpolation techniques. As previously mentioned, there are problems

associated with spatial interpolation, primarily related to the distribution and number of
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sites. The advantage of the regression approach, therefore, is that the distribution and

number of monitoring sites are not as important as for the other three approaches - so

long as they provide a representative sample of locations across the study area. Hence,

the technique can be used to predict pollution concentrations beyond the geographical

extents of the sampling network. Enough monitoring sites, however, are needed to

build a robust regression model. In the case of the SAVIAH study, 80 monitoring sites

were thought to be adequate. In practice, fewer sites, strategically located, would

probably have been sufficient to establish a robust model.

The regression approach requires a number of geographical data sets, including the

road network (with traffic volumes), land cover and topography. However, in

different study areas, and for different pollutants, other variables may be more

appropriate and significant. One of the disadvantages of the regression approach is

that the experimental stage of the approach is relatively time consuming. Nevertheless,

once the predictive variables have been identified and defined, applying the equation

only takes a few minutes. A further disadvantage is that the variables have to be

exported out of the GIS and the statistical analysis undertaken elsewhere - often on

another platform.

One of the major advantages of the regression approach is that detailed knowledge

about emission sources and dispersion patterns which reflect changes in levels of air

pollution between the monitoring points is applied and modelled. Using so much

predictive information is likely to provide more reliable estimates of pollution

concentrations.

8.3.5 Summary

The advantages and disadvantages of the four different approaches are summarised in

Table 8.6.
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Table 8.6 Advantages and disadvantages

Approach	 Advantages	 Disadvantages

Kriging	 - requires very little data	 - dependent on the distribution and
- quick to apply	 number of sites
- provides a measure of the	 - ideally requires a dense network
confidence of the estimates	 of monitoring sites

- smoothes the pollution surface
- errors in the measured data are

____________ ________________________________ difficult_to_detect
AMTRAP	 - links dispersion models to GIS	 - background concentrations are

- models the peaks of pollution	 dependent upon the distribution
related to road traffic	 and number of monitoring sites
- easily altered to reflect changes	 - computationally complex model
in the road network or surface	 - long processing time
roughness	 - requires meteorological data
- can be applied to predict future 	 - estimates are based upon traffic
and past levels of pollution	 volume on the nearest road
- can be applied to model short-

___________ term levels of pollution 	 _______________________________
Moving	 - computationally efficient	 - background concentrations are
window	 - quick to apply	 dependent upon the distribution

- uses readily available tools in GIS and number of monitoring sites
- models the peaks of pollution
related to road traffic
- easily altered to reflect changes
in the road network or surface
roughness
- can be applied to predict future

___________ and past levels of pollution	 ______________________________
Regression	 - can predict levels of pollution - experimental stage of the

beyond the extents of the sampling approach is time consuming
network	 - statistical analysis has to be
- can be adapted to suit a particular applied outside the GIS
study area or available data	 - assumes no spatial auto-
- applies well known and	 correlation

____________ established statistical techniques	 _________________________________

8.4	 Discussion

The four approaches have been shown to differ in terms of their data requirements and

efficiency, their ability to predict in unsampled areas and the final pollution maps that
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are created. It should be taken into consideration, however, that all the models are

sensitive to, and only as accurate as, the input data. As previously discussed, the

AMTR.AP, moving window and regression approaches all model variations in levels of

pollution on a 1 Om grid, it is therefore essential that the input data, such as the location

of the roads and the place of residence of the children, are at least as accurate, if not

more so. The attribute data also needs to be accurate, changes in traffic volume and

measured pollution concentrations, for example, will result in changes in the pollution

surface. Applying the most accurate data possible will help to ensure that errors are

not introduced into the models.

The final pollution maps produced by the different methods are markedly different.

Choosing an appropriate method for pollution mapping is therefore very important and

largely depends upon how the map is going to be used. In the case of traffic related

pollution, areas of high levels of pollution are very localised and close to the sources of

pollution, it is therefore extremely important that the pollution surface has been

accurately generated. Where additional data relating to emission sources and

dispersion patterns are available, then the use of exogenous information clearly helps to

provide more reliable estimates of the pollution surface.

Although the different methods have been applied to estimate levels of NO 2, all the

methods could be adapted to estimate levels of other traffic related pollutants. If the

main pollution sources could be identified, then the regression and moving window

approaches would work just as well for CO and possibly PM 10. The AMTRAP

approach could be applied to any pollutant that can be modelled in an appropriate

dispersion model. The dispersion model would then be linked to the GIS in a similar

manner as the CAL1INE model. In the case of CO and PM 10, it would be possible to

apply the CALINE model again. For industry based pollutants, such as SO 2, which

have long ranges of dispersion compared to traffic related pollutants, other, point

dispersion models, for example the Industrial Source Complex Short Term (ISCST)

model, could also be linked to the GIS.
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The regression approach proved to provide the most reliable estimates and, as

discussed in Chapter 7, the approach can easily be transferred to other cities.

Furthermore, so long as the model is validated and calibrated, the regression equation

described in Chapter 7 can be applied in the UK without recalculating the coefficients.
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CHAPTER 9 CoNcLusioN

In urban environments, spatial variations in air pollution have been shown to occur

over very small distances. In the SAVIAH study, air pollution data collected at

monitoring sites showed two-fold variations in levels of NO2 at distances of less than

lOOm. Variations in air pollution reflect the complex pattern of emission sources in

urban environments, related to road traffic, industrial and domestic activities, and

characteristics of the built environment, such as housing density and street canyons,

which influence dispersion rates and patterns.

As discussed in Chapter 3, there are only a small number of automatic monitoring

stations regularly measuring air pollution in the UK. Consequently, levels of pollution

in an urban environment are usually measured at only a single monitoring site. Since

variations occur over such small distances, one site will not normally be representative

of city-wide levels of air pollution. Furthermore, interpolation of the air pollution

surface from the limited network of monitoring stations is unlikely to provide a

meaningful measure of spatial variations in air pollution.

Chapter 1 emphasised how growth in the number of vehicles on the roads will cause

major traffic congestion in many of the cities and towns. The problem will be further

augmented by changes in lifestyle, with more and more people using cars for journeys

of less than 5 km. In the future, with concerns about traffic congestion and the rise in

emissions and its effect on public health, it will become increasingly more important to

monitor and manage traffic volume and air pollution in urban environments.

Providing meaningful measures of air pollution in cities, therefore, has implications for

policy makers, planners and epidemiologists.

In major cities it will be necessary to control and reduce levels of air pollution and this

can only realistically be achieved at the local level (i.e. at the street level). A major
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part of transport policy is directed towards maintaining standards and ensuring that

pollution levels do not exceed these standards. Measures of air pollution need to be

derived at the local level if areas where pollution levels exceed guidelines and

standards are to be identified. Transport and planning strategies can then be targeted

to the areas where pollution levels are high and areas where the public may be at risk

to ill-health effects.

In epidemiological research, it is important that areas where pollution levels are high

can be easily identified. Overlaying the population with pollution surfaces can help to

provide estimates of the population at risk and also help to establish relationships

between health outcomes and pollution.

As previously mentioned, using information from automatic monitoring sites to

estimate spatial variations in pollution tends to result in a poor representation of the

pollution surface. The need is thus for methods which can generate more detailed and

accurate pollution surfaces, across relatively wide urban areas. The application of

diffusion tubes for low-cost monitoring of airborne dioxides, such as NO 2 and SO2,

which are simple and cheap to operate, provides a higher density of sample sites, to

underpin this approach. Mapping methods are then required which can use these data

to generate a pollution map.

One such method is kriging. This was used here to generate pollution maps on the

basis of a network of 80 passive sampler sites. One of the advantages of kriging is that

a map of the error variance is produced; to help identify locations where additional

monitoring sites could be placed (i.e. in locations where the estimates are not very

accurate). Nevertheless, in the case of large population or city-wide studies, where

estimates are required for many unsampled locations, interpolating from monitoring

sites is not always a viable option. Spatial variations in air pollution from vehicle

emissions occur over such small distances that it would require an unrealistic density of

monitoring sites to pick up all the local variation that occurs.
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The research presented in this thesis demonstrates how GIS can be applied to help

provide more reliable estimates of the pollution surface by identifying and mapping the

linear patterns associated with transport emissions. The AMTRAP model used a line-

source dispersion model, in association with kriging; the moving window approach

linked a spatial analysis technique developed in the GIS with kriging; the regression

mapping method predicted variations in air pollution on the basis of a small number of

covariates.

In many cases, the choice between these various approaches is largely dependent upon

the application and the available resources. The three approaches developed here

require far more data and have greater processing times than the kriging technique and

the generalised surface generated by kriging may be adequate for some applications.

However, in urban environments where detailed city-wide information about pollution

levels is required, for control strategies and transport policies, or where associations

with health need to be examined, then more detailed estimates are likely to be required.

In terms of exposure assessment, for example, kriging could result in significant

misrepresentation of the data, which is likely to dilute any association between air

pollution and health. Furthermore, a map produced from monitored data will only

reflect the measured values and the time period for which the measurements were

taken. With the introduction of exogenous information, it is possible to predict

variations in pollution, including extreme values (i.e. peaks and troughs), and introduce

daily and seasonal variations into the model, without additional monitoring. Equally, it

is possible to estimate past pollution levels in order to assess historic exposure

patterns.

The capability to use these methods to analyse pollution levels beyond (either before or

after) the period and area of available monitoring is also extremely useful for policy

makers and planners. For example, models can be used to assess or compare the

impact of new schemes, such as building a new road or giving restricted access to an

existing road before implementation, and monitor the effect on levels of pollution after

implementation. The models can also be used to predict ftaure levels of air pollution
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using projected estimates of traffic volumes and help inform the design and

implementation of control schemes.

The performance of the three methods was examined by comparison with each other

and also with the geostatistical technique kriging. All four methods were validated

against independent, monitored data. Comparison of the methods showed that, by

incorporating additional information in this way, it is possible to develop more accurate

pollution maps than is possible by using kriging alone. In general, the regression

mapping method was found to give the most accurate results, AMTRAP and the

moving window methods were intermediate, and kriging the least accurate.

As these results imply, the choice of mapping method can, in some circumstances, have

a major effect on the accuracy and utility of the results. When the various methods

were used to estimate the percentage of children above the National Air Quality

Strategy standard, for example, three-fold differences were found across the four

methods. Potentially, these differences might significantly affect correlations between

pollution levels and health outcome and any estimates of health risk. In the case of the

SAVIAH study, however, it was seen that none of the methods showed any

relationship between pollution levels and respiratory health in children. The apparent

reliability of the regression mapping method, at least, in modelling pollution levels

suggests that this lack of relationship was not due to errors in pollution modelling. As

discussed in Chapter 8, however, it might be due to a number of other factors,

including:

. poor estimates of exposure (e.g due to the use of postcode centroids on a

1 OOm grid instead of actual address location to define place of residence,

and failure to take account of children's mobility)

• failure to consider other sources of exposure (e.g. indoor sources, other

pollutants)

• inadequacies in the health data

• lack of control of confounding
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. the lack of any effect of exposures on chronic respiratory health of children,

at the pollution levels studied

The link between vehicle emissions and health is extremely complex, the associations

with health are difficult to define and there is often an inconsistent diagnosis across the

study population. In order to understand the association between air quality and

health, therefore, there is a need to understand and model not only the spatial

variations in pollution, but also the activities and mobility of the population. Against

this background, the pollution maps can only reliably be used to give a general and

relative exposure score, rather than to quantify actual, total exposure.

9.1	 Future Research Issues

In view of these conclusions, one of the most important areas for further research will

be to try and provide better estimates of exposure. This would involve mapping the

activities of the sample populations, identifying other locations - apart from their place

of residence - where they spend extended periods of time, and also taking into account

their exposure to indoor pollution.

The SAVIAI-I study concentrated on long-term exposure to pollution and the

estimated pollution concentrations are based upon mean annual measurements. There

is, however, a distinctive pattern of temporal variation in levels of pollution and this

also varies from place to place. The next step in pollution modelling would be to

incorporate the temporal element and map changes in pollution over time and space

with a time-space pollution model. This is likely to provide even more reliable

estimates of pollution and will not only help inform studies looking at the chronic

health effects of pollution, but may also help inform studies examining the acute health

effects.

The methods presented in this thesis were developed and tested in Huddersfield, UK,

and although they work well in this study area, it would be useful to test the models in
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other cities. Indeed, as mentioned in Chapter 7, the regression model has been

successfully applied in other cities, the results of which are reported in Briggs et a!

(1997).

Furthermore, the methods presented here have only been applied to model NO 2, but

there are other important traffic related pollutants, for example, PM 10 and PM25, that

are associated with ill-health effects. The development, application and testing of these

models for other pollutants is clearly an important area for future research.

Other techniques may also prove useful in the application of traffic related pollution

mapping. One method that is likely to be beneficial, and worthy of further

examination, is the application of co-kriging.

At the present time, traffic related pollution and its effect on the health of the public is

one of the most prominent issues in environmental health. To be able to produce

accurate and reliable estimates of levels of pollution is therefore extremely important;

without doubt, pollution mapping and exposure assessment are two topics that demand

continued and further research.
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HYDRO.F

program hydro

* Program to transform hydrological DTM data to a format
* compatible with Idrisi.
*

* Author: Susan Collins
* Last updated: 26/10/92

* Parameter statements

paramter (size8692)

* Dimension the arrays

integer value( 1: size, 1:10)
integer totalc(1 :50),a
integer column( 1: 50),gap,endgap
integer zero( 1:8000)

* Open the files for input and output

open (unit 1 2,file'kirk. inf,status'old')
open (unit= 1 6,file'inf2. dat',status='unknown')

* Format statements

10 format (17x,i6,6x,i4)
20 format (10i8)
30 format (18)

* Loop to set the zero values to 0

do 100 1=1,8000
zero(i)=0

100 continue

* Set the minimum and maximum values

min999
max=0

* Loop to read the casting and northing of the south west
* corners of the I km squared data blocks and find the minimum
* and maximum casting values



do 120 i=1,size,41
read (12,10) value(i,l),value(i,2)
if (value(i, I ).le.min) min=value(i, 1)
if (value(i, 1 ).ge.max) maxvalue(i, 1)

* Loop to read the hydrological data for the 1 km squared data
* block

do 110 k=i+1,i+40
read (12,20) (value(k,j), j 1,10)

110	 continue
120 continue

* Set kmeast to the northing of the first km block and the count
* to zero, to find the number of km blocks in an east direction
* for each northing value

kmeast=value( 1,2)
count0

do 130 i=1,size,41
if (value(i+4 1,2). eq. kmeast) then

count=count+1
else

total c(kmeast)count+ 1
count0
kmeast=value(i+4 1,2)

endif
130 continue

* Set the width to the maximum number of km blocks in an
* east direction, kmeast to the first northing and the count
* to one

width=max-min
kmeastvalue(1 ,2)
count 1

* For all the east km blocks with a constant northing

do 180 i=1,size,41
if (i.eq.count) then

gap=value(i, 1)
column(gap)value(i, 1 )-min
endgapwidth-column(gap)-totalc(kmeast)+ 1

do 170 a1,39,2
do 140 l=1,column(gap)*20

write (16,30) zero(l)



140	 continue

do 150 n=i,i+(totalc(kmeast) *41)..1 ,4 1
write (16,30) (value(n+a,j), j=1,10)
write (16,30) (value(n+a+ Ij), j=1,10

150	 continue

do 160 11,endgap*20
write (16,30) zero(l)

160	 continue
170	 continue

count=count+(totalc(kmeast)*4 1)
kmeastkmeast+ 1

endif

180 continue

* Close 110

close (unit=12)
close (unit=16)

end
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QUESTIONNAIRE SURVEY OF CHEST PROBLEMS IN SCHOOL CHILDREN
AGED 7-9 IN THE HUDDERSFIELD AREA

INFORMATION 1N TIfl QUESTIONNAIRE WILL BE TREATED AS STRICTLY CONFIDEN-
TIAL AND WILL BE USED FOR STATISTICAL PURPOSES ONLY. PLEASE ANSWER THE
QUESTIONS BY TICKING ONE OF THE BOXES OR WRITING IN THE SPACES PROVIDED. IF
YOU DO NOT KNOW THE ANSWER TO A QUESTION, PLEASE LEAVE THE BOXES BLANK.

What is the name of the child who brought this questionnaire home from school?

Firstname _____________________________ Surname ___________________________________

What is the post code of the child's address?

Which school does he or she attend?

1.	 Es this child a boy or a girl?	 Boy	 jJ
Girl

2. What is the child's date of birth? 	 - _/_ _/. -
day	 month	 year

3. Wherewasthechildborn?	 InthcKirkleesarea	 []
Outside the Kirklees area	 [I]

ABOUT THE HEALTH OF THE CHILD WHO BROUGHT THIS QUESTIONNAIRE HOME FROM
SCHOOL:

4.	 Has the child ever had wheezing or whistling in the chest at any time in the past?	 Yes [I]
NoD

JNO, skip to que.stioit 10 over the page.
[ YES, then please answer questions 5-9.

1-9

10-11

2	 12

13-18

1

2	 19

At what age did the wheezing first occur?

Has this child in the last 12 months had wheezing or whistling

in the chest?

Before age 1	 [Iii
Agelto3	 LII
Age4to6	 LII
Age7to9	 Elilil

yesO

NoD

7
	

How many attacks of wheezing in the last 12 months has
	

None	 0
	

1

he or she had?
	

Lto3	 LIII
	

2

4to12	 LII]
	

3

Morc than 12	 [III]
	

4	 23

Has wheezing in the last 12 months ever been severe enough to Iimii tlw

child's speech to only one or two words at a lime bcts ccii breatIis'

Has the child's chest in 11w lust 12 nwnths sotmndcd t hcc,. diariiit i'i

after cxcrcisc?
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FOR EVERYONE:

10. How many days in the last 12 months has the child been absent 	 None	 LI
from school because of illness?

	
1-5	 LI
6-10	 11i
11-15	 U
Morcthanl5 C]

11. Has this child been bothered in the last 12 months by a wheezy chest, apart	 Yes []
from colds?	 No [J

12. Has this child ever been bothered by attacks of shortness of breath with wheezing? 	 Yes fl
NOD

3. Has this child bad a dry cough at night in the last 12 months apart from a
	 Yesfl

cough associated with a cold or chest infection?
	

NOD

4. Has a doctor ever said this child had asthma?
	

Yes LI
NOD

NO, skip to question 16.

ri YES, then please answer question 15.

15.	 Has this child been treated for asthma byadoctorin the last 12
	

Yesfl	 1
months!
	

NO D 	 2 31

Did your child suffer from a serious chest illness or severe cold, going to 	 Yes C]
the chest, in the first tyears of life?	 No C]
Apart from after vigorous exercise, has this child ever been too breathless to talk? 	 Yes

NOD

Has a doctor ever said this child had bronchitis?
	

YesC]

NOD

Does the child usually cough in the morning in the autumn-winter season? 	 Yes f]
NOD

How long has the child lived at this address?
	

Less than one year [I]
lto3years	 LI
4to6years	 El
7to9years	 LI

If less than 3 years please give previous address and post code:

___________________________________________ Post code 	 37-43
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ABOUT THE HOME:

22.	 Do you cook by:	 Gas	 [J
TICK ALL BOXES THAT APPLY 	 Ekctricitv	 0

• .,:	 flthDr - nIei cnifr

23
	

Does the home have central heating, or district (communal) heating? 	 Yes

NOD

24,	 Do you have other forms of heating in the home?	 No other heating	 [J
TICK ALL BOXES THAT APPLY	 Open gas fire 	 []

Electricity	 [I]
Open coal fire	 []
Gas wall heater	 [J

Other- please specit': ____________________

25
	

Is the child's bedroom heated by: 	 No heating	 []
TICK ALL BOXES THAT APPLY	 Open gas fire	 []

Electricity	 [I]
Central heating radiator [J

Other - please speci': ____________________

26.	 Have you noticed any damp spots or mould on the walls of your home	 Yes[J

during the past two years?	 No D
27
	

Areyoudistuibedbytrafficnoiseand/ortrafficfumes inyourhome? 	 Yesfl

NoD
28.	 Door did you have pets with fur orfeathers in the home?	 Yes, since 19__

No. not since 19

No. never

ABOUT CIGAREITE SMOKING IN THE HOME:

29. Does the mother of this child smoke at present?	 Yes, started smoking in 19 	 -

No. stopped smoking in 19__
ycar

No. has never smoked	 []
If YES, then:

How many cigarettes does the mother smoke on average per day inside Ike home?	 - -

30. How many other members of thc household smoke inside the home?

3 I.	 In total about ho many cigaretics arc smoked on average per day i,,.ide the !so,,it'?

66-67

68-69

70

7(-72
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OUT THE CHILD:

Is the child:	 White
	

D
Asian (Indian, Pakistani, Bangladeshi)

	
LI

Chinese, Malaysian
	

LI
Afro-Caribbean
	

D
Mixed race
	

LI
Other
	

Li

How many older brothers and sisters does the child have?

4.	 How many younger brothers and sisters does the child have?

How does the child normally travel to and from school?
	

Walks	 [II]

	

TICK ALL BOXES
	

Cycles LI

	

THAT APPLY
	

Car	 LI
Bus/train L]

Other- please specify : _____________________

Has the mother or the father of the child had any of the following conditions, new or in the past?

MOTHER	 FATHER
TICK ALL BOXES	 Asthma	 Li	 Asthma	 [I]

THAT APPLY	 Hay fever	 []	 Hay	 LI
Atopic eczema	 LI	 Atopic eczema	 El
None of the above D	 None &the above Li

YOU:

OFfICE
USE

6 78

79-80

81-82

2
3

5	 83-87

What is your relationship to the child?
	

Mother of the child LI
Father of the child LI 2

Other - please specify: ___________________

	

What type of school (or course of education) didyou last attend? 	 None	 LI
Primary	 LI

LI

	

-	 Further education []

University	 LI
.	 About how many years of schooling or formal education have you completed?	 - -

e would like to be able to contact you, if we need to, for fuilher information. Could you please provide your
me and address. PLEASE PRINT CLEARLY.

ur name

ur address

_______________________________________________ Post code

ankyoufor taking the time to answer these questionL If you wish to odd anything please use a separate
eel of paper. Please check carefully that you have not missed anything, then return the questionnaire
r)mplIV 1oyo child's school in the envelope provided.

3 96

1

2

'3

4
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98-99



APPENDIX 3

The consect Program



CONSEcT.F

program consect

* Program to reduce the results from the CAL1NE3 dispersion
* model, extract the concentrations, then give each scenario a
* unique code number and finally export the data to INFO
* format. Storing with each record, the code and concenrations
* at all receptors for that scenario.
*

* Author: Susan Collins
* Last Update: 03/02/94

* Call the 'reformat' subroutine to remove unwanted lines from
* the imput file, leaving the wind speed and direction, stability and
* the concentrations

CALL REFORMAT

* Call the 'dataret' subroutine to create a unique code and transform
* the data to INFO format.

CALL DATARET

end

* Reformat subroutine

SUBROUTINE REFORMAT

* Parameter statements

parameter (n=7570)

* Dimension the arrays

character cdata(n)*70

* Open the files for input and output

open (unitl 2,flle='mwayl .lst',status='old')
open (unit=14,file'mway2.lst',status='unknown')

* Format statements

10 format (a70)



* Read input data

do 100 i1,n
read (12,10) cdata(i)

100 continue

* Mainloop-startatline9andthenloopevery42lines

do 400 i=9,n,42

* For every run of the main loop write lines 1+10 and 1+11
* to the new file

do 200 k=i+10,i+1 1
write (14,10) cdata(k)

200 continue

* For every run of the main loop write line i+30 to 1+41
* to the new file

do 300 ki+30,i+41
write (14,10) cdata(k)

300 continue

400 continue

* Close 110

close (unitl2)
close (unitl4)

end

* Dataret subroutine

SUBROUTINE DATARET

* Parameter statements

parameter (n=2520)

* Dimension the arrays

dimension speed(n)
integer stab(n)
dimension wind(n)
dimension conc(1:n,l: 12)
integer code,rd



* Open the input and output files

open (unitl2,flle='mway2.lst',status='old')
open (unitl 4,flle='mway3 .lst',status='unknown')

* Format Statements

10 format (1 lx,f5.2,24x,il)
20 format (11x,f.1)
30 format (62x,f.1)
40 format (il,il,i3,',',12(f5.2,','j)

* Enter the road type and land class in coded form

write (*,4)
4 format ('Enter the code for road type: '$)

read (*,*) rd
6 format ('Enter the code for land class: 'S)

read (*,*) ic

* Main loop

do 200 i=1,n,14

* Read in the wind speed and stability

read (12,10) speed(i),stab(i)

* Code the wind speed (stability is already in code)

if(speed(i).eq. 1) speed(i)=10
if (speed(i).eq.3) specd(i)=20
if (speed(i).eq.5) speed(i)=30
if (speed(i).eq. 8) speed(i)=40
if(speed(i).eq. 15) speed(i)=50

* Read in the wind direction

read (12,20) wind(i+1)

* Code the wind direction

if(wind(i+1).eq.0) wind(i+1)=1 00
if(wind(i+1).eq.30) wind(i+1)=200
if(wind(i+1).eq.60) wind(i+1)=300
if(wind(i+1).eq.90) wind(i+1)=400
if(wind(i+1).eq. 120) wind(i+1)=500
if(wind(i+1).eq. 150) wind(i+1)=600



* Define the last three digits of the unique code

code = wing(i+1)+speed(i)+stab(i)

* Loop to read the concentrations for the 12 receptors and then
* write the full unique code, followed by all the concentrations
* for that code, on one line in INFO format to the new ifie

do 100 k=i+2
read (12,30) (conc(k,j), j=1,12)
write (14,40) rd,lc,code,(conc(kj), j=1, 12)

100	 continue

200 continue

* CloseJ/O

close (unitl2)
close (unitl4)

end



APPENDIX 4

The TRAFFPOL Program



TRAFFPOLAML

1* *************************************************
1* AML to calculate the near-source pollution concentrations.
Is
1 Author: Susan Collins
/ Last update: 15/5/95
1 * * * * * * *** * ** * * 5* * ** ** 5*5 * * 5*5*55*5* * * * * * * * ** * ** ** *

/5 Set the argwnements

&args cover roadtype traffvolume surfacerough weatherfile

/ Check that all arguments present

&if [null %cover%] &then &call show_usage
&if [null %roadtype%] &then &call show usage
&if [null %traffvolume%] &then &call show_usage
&if [null %surfacerough%] &then &call show usage
&if [null %weatherflle%] &then

&return &inform Invalid number of argwnents

&s closestat = [close -all]

/5 Check that all coverages, items and files exist

&if not [exists %cover% -coverage] &then
&return The coverage [translate %cover%] does not exist

&if not [iteminfo %cover% -arc %roadtype% -exists] &then
&return The item [translate %roadtype%} does not exist

&if not [iteminfo %cover% -arc %traffvohrne% -exists] &then
&return The item [translate %traffvolume%] does not exist

&if not [exists %surfacerough% -coverage] &then
&return The coverage [translate %surfacerough%] does not exist

&if not [exists %weatherflle%] &then
&return The file %weatherflle% does not exist

&if [exists %cover%.txt} &then
&return The file %cover%.txt already exists

/5 Open the file to hold the name of the ungenerated line file

&s fileunit = [open roads. save openstat -write]

&if%openstat% ne 0 &then



&return Could not open file

1* Ungenerate the line coverage of roads and write results to * new file

ungenerate line %CoVer% %cover%.txt

&s writestat = [write %flleunit% %coveT%.txt]

&s closestat = [close -all]

1* Run the compiled arcdirection program to establish the direction of the
1* lines

arcdirection

&sv ok = [delete holdall2.txt -file]
&sv ok = [delete holdall3.txt -file]
&sv ok = [delete %cover%.txt -file]

1* Convert the ungenerated data back into a new line coverage and import
1* associated line directions into an INFO table

&type
&if [exists %cover%6 -coverage] &then
&return The coverage [translate %cover%6] already exists

generate %cover%6;input outarcs.txtlines;q
build %cover%6 lines

&sv ok = [delete outarcs.txt -file]

&type
&if [exists %cover%6 exp -info] &then

&return The info data file [translate %cover%6.exp] already exists

&data arc tables
DEFINE [translate %cover%]6.EXP
[translate cover%]6-ID,4,5,B
DIRECTION,I ,2,1

ADD FROM [translate outarcs].REL
Q STOP
&end

&sv ok = [delete outarcs.rel -file]

1* Join the INFO table to the new line coverage

joinitem %covei%6.aat %coveT%6.exp %covei%6. sat %cover%6-id %covei%6-id



1* Delete the INFO table
&sv ok = [delete %cover%6.exp -info]

I Generate the grids of arc direction, road type, traflic volume and surface
/ roughness

linegnd %cover%6 %cov&/o6giid directionlO;yNODATA

kill %troads%6

linegrid %cover% rdtypeg %roadtype%;1O;yNODATA

linegiid %cover% traffgrid %traffvolume%;1O;yNODATA

polygrid %surfacerough% roughgiid surf_code;1O;yNODATA

1* Start grid

grid

1* Run the eucdistance and eucallocation commands on the line grids
/* in the 200m near-source zone

%cover%6dist = eucdistance (%cover%6grid,%cover%6dir,%cover%6allo,200)
rdtypeallo = eucallocation (rdtypeg,#,#,200)

trafi'allo = eucallocation (traffgrid,#,#,200)

kill %cover%6grid
kill rdtypeg

1* Reclassity the grids

%troads%dist2 = reclass(%troads%6dist,remapdist34.table)

kill %troads%ódist

%troads%ódir2 = reclass (%troads%6dir,remapdir.table)
kill %troaLls%6dir

/ Establish which side of the road the cell is on (down-wind or up-wind)

docell;abwa := %troads%6dir2 - 0if(abwa It 0) abwa := abwa + 360;-
aballol = %troads%6allo;&sv .var = 1 ;&call section,end
docell;abwa %troads%6dir2 - 30if(abwa it 0) abwa abwa + 36()-
aballo2 = %troads%6allo - Iif(aballo2 le 0) aballo2 = aballo2 + 6;-

&sv var = 2&call section,end
docell;abwa := %troads%ódir2 - 60if(abwa it 0) abwa abwa +360;-



aballo3 = %troads%6allo - 2;if(aballo3 le 0) aballo3 = aballo3 + 6;-

&sv .var = 3;&call section;end
docell;abwa : %troads%6dir2 - 90if(abwa it 0) abwa := abwa + 360;-'-
aballo4 = %troads%6allo - 31f (aballo4 le 0) aballo4 = aballo4 + 6;-
&sv .var = 4;&call section;end
docell;abwa %troads%6dir2 - 120if(abwa it 0) abwa : abwa + 360;-
aballo5 = %troads%6allo - 4if(aballo5 le 0) aballo5 = aballo5 + 6;-

&sv .var = 5;&call section;end
doceil;abwa := %troads%6dir2 - 150if(abwa It 0) abwa := abwa + 360;-
aballo6 = %troads%6allo - 5if(aballo6 ie 0) aballo6 = aballo6 + 6;-

&sv .var = 6;&call section;end

kill %troads%6dir2
kill %troads%6allo

1* Open the ifie to hold the name of the file which contains the weather data
1* and write the file name to it

&s fileunit = [open weather, save openstat -write]

&s wiitestat = [write %fileunit% %weatherffle%]

&s closestat = [close -all]

1* Run the compiled program wp to establish weights for unique
1* weather periods

&data arc
wp
q
&end

1* Transfer the results to an iNFO table

&data arc tables
DEFINE WEATHEREXP
HALF,l,2,I
WINDDIR, 1,2,1
SPEEDSTAB,2,3,I
WEIGHT,5,6,N,3

ADD FROM WEATHER.WGTS
Q STOP
&end

/* Pull out the first record of the INFO file with the weighted weather data

cursor wp declare weather. exp info
cursor wp open



&sv .hf= %:wp.halWo
&sv .wd = %:wp.winddii%
&sv ss = %:wp.speedstab%
&sv wg = %:wp.weight%

1 Calculate the five digit CONCODE for all cells

surface2 = (rdtypeallo * 10000) + %roughgrid% + (aballo%.wd% * 100) + %ss%

/* Establish which side of the road will be in receipt of pollution

&if%.hI% = 1 &then
leftright ablr%.wd%

&else &if%.hfYo = 2 &then
&do

if(ablr%.wd% = 1) leftright =2
else if(ablr%.wd% =2) leftright = 1
endif

&end

1* Combine the CONCODE grid with the grid that identifies cells
1* that will be in receipt of pollution and cells that will not

surface3 = combine (surface2,Ieftright,%troads%dist2)

/* Add a new item to the grid to store the pollution concentrations

&data arc
additem surface3.vat surface3.vat conc 5 6 n 1
&sv ok = [delete weather.wgts -file]
q
&end

calculate surface3 vat info conc = 0.0

/ Link the grid to the table that contains the CONCODEs and concentrations
/* for the 12 receptors

relate add
concsurf
concs.exp
info
surface2
surface2
ordered
ro

1* Calculate the weighted concentrations



&sv numb = 1

&do i = 1 &to 2
&doj= 1&to6

reselect surface3.vat info lefhight = %i% and %troads%dist2 = %j%
calculate surface3.vat info conc = cone + (concsurO'/rcpt%numb% * %wg%)
aselect surface3.vat info
&sv numb = %numb% + 1

&end
&end

surface4 = surface3.conc

kill lefiright
kill surface2
kill surface3

1* The whole process - from selecting a record of weather conditions - is repeated
1* in a ioop until the last record is reached

1* Pull out the next record of the INFO ifie with the weighted weather data

cursor wp next

&do &while %:wp.AML$NEXT% = .TRUE.

&sv .hf %:wp.hallVo
&sv .wd %:wp.winddir%
&sv ss = %:wp.speedstab%
&sv wg %:wp.weight%

/* Calculate the five digit CONCODE for all cells

surface2 = (rdtypeallo * 10000) + roughgrid2 + (aballo%.wd% * 100) + %ss%

/* Establish which side of the road will be in receipt of pollution

&if%.h?/o 1 &then
leftright = ablr%.wd%

&else &if%.hI% = 2 &then
&do

if(abWo.wd% =1) Ieftiight =2
else if(ablr%.wd% =2) leftiight = 1
endif

&end

/* Combine the CONCODE grid with the grid that identifies cells



1* that will be in receipt of pollution and cells that will not

tempsurfl = combine (surface2,leftright,%troads%dist2)

/* Add a new item to the grid to store the pollution concentrations

&data arc
additem tempsurfl .vat tempsurfl .vat conc 56 n 1
q
&end

calculate tempsurfl vat info conc = 0.0

/ Calculate the weighted concentrations

&sv numb = 1

&do i = 1 &to 2
&doj1&to6

aselect tempsurfl.vat info
reselect tempsurfl .vat info lefiright = %i% and %troads%dist2 = %j%
calculate tempsurfl .vat info conc = conc +

(concsurf7/rcpt%numb% * %wg%)
&Sv numb = %numb% + 1

&end
&end

tempsurf2 surface4 + tempsurfl .conc

kill leftnght
kill surface2
kill surface4
kill tempsurfl

surface4 tempsurf2

kill tempsurf2
cursor wp next

&end

1* traffic vol - hourly rate

surfaceS = (surface4 /4000) * traffallo

relate drop
concsurf



q

&sv ok = [delete weather.exp -info]

kill surface4
kill %troads%dist2

&do i = 1 &to 6

kill aballo%i%
kill ablr%i%

&end
&return

/* Command line

&routine show_usage

&type
&return &inform Usage: trafio1 <cover> <roadtype item> <traffvoL item> -
<surface_rough> <weather_data>;

&type

&return

1* Called section routine

&routine section

&sv i = %.var%

if(aballo%i% =1 && abwa <= 180) ablr%i% =2
else if (aballo%i% =1 && abwa> 180) ablr%i% 1
else if(aballo%i% =2 && (abwa> 30 and abwa <= 210)) abh%i% = 1
else if(aballo%i% =2 && (abwa> 210 or abwa <= 30)) ablr%i% =2
else if(aballo%i% =3 && (abwa> 60 and abwa <:= 240)) ablr%i% = 1
else if(aballo%i% = 3 && (abwa> 240 or abwa <= 60)) ablr%i% =2
else if(aballo%i% =4 && (abwa> 90 and abwa <= 270)) ablr%i% = I
else if(aballo%i% =4 && (abwa> 270 or abwa <= 90)) ablr%i% =2
else if(aballo%i% = 5 && (abwa> 120 and abwa < 300)) ablr%i% 2
else if(aballo%i% = 5 && (abwa> 300 or abwa <= 120)) abh%i% = 1
else if (aballo%i% = 6 && (abwa> 150 and abwa < 330)) ablr%i% = 2
else if(aballo%i% = 6 && (abwa> 330 or abwa <= 150)) abh%i% =1

end
&return



APPENDIX 5

The adirect Program



ADIRECT.F

program adirect

* Program to code ungenerated arcs from ARC/INFO into six
* classes of direction.
*
* Author: Susan Collins
* Last update: 28.7.94

character textcov*20

* Open file which contains the name of ungenerate data file

open (unit=4,flle='roads. save',status='old')

* Format statement

10 format (a20)
read (4,10) textcov

* Call subroutine to count the number of lines in a file

CALL COUNTLINES (textcov,numb)

* Call subroutine to re-format data from ARC/INFO ungenerate
* to a format that is easier to read in FORTRAN

CALL REFORMAT (textcov,numb)

* Call subroutine to find the bearing between consecutive
* pairs of coordinates (i.e. road direction) and to classi!y
* them according to direction

CALL COUNTLINES (holdall2.txt',numb2)

CALL BEARINGS (nuznb2)

* Call subroutine to split arcs according to class

CALL SPLITARC (numb2)

close (unit4)

end



* Countlines subroutine

SUBROUTiNE COUNTLINES (filename,count)

character fi1ename20
character value*20
integer count

open (unit=12,fi1e=fi1enarne,statuso1d')

10 format (a20)

count =0

do while (count.ge.0)
count = count + 1
read (12,10,end=100) value

end do

100 continue

count = count - 1

close (unitl2)

end

* Reformat subroutine

SUBROUTINE REFORMAT (covname,nrecs)

* Parameter statements

parameter (lines = 100000)

* Dimension the arrays

character covname*20
doubleprecision vertex
dimension id(1 :lines)
dimension vertex(1 :lines,1 :2)
character endch*5

* Open the files

open (unit=1 2,flle=covname,statusoId')
open (unit=14,flle='holdall2.txt',status'unknown')



* Format statements

10 format (aS,f13.6,5x,f13.6)
20 format (i6)
30 fonnat (2(6x,f13.6))

* Loop to read vertex coordinates and find maximum II)

do 100 i1,nrecs
read(12, 10) endch,(vertex(ij), j1,2)

if (endch.ne.END') then

if (vertex(i,2).eq.0) then
id(i)vertex(i, 1 )* 1000000
write(14,20) (id(i))

else
write(14,30) (vertex(ij), j1,2)

endif

endif
100 continue

close (unitl2)
close (unit=14)

end

* Bearings subroutine

SUBROUTINE BEARiNGS (nrecs2)

parameter (Iines=l 00000)

* Dimension the arrays

doubleprecision vertex
dimension vertex(1 :Iines, 1:2)
dimension id(1 :Iines)

* Open the files

open (unit=12,flIe='holdalI2.txt',statuso1d')
open (unit14,flle=ho1daII3 .txt',statusunknown')

*Forat statements

10 format (i6,f13.6,6x,f13.6)



20 format (2(6x,f13.6),6x,f8.4,6x,il)

Loop to calculate bearing between consecutive pairs
* of coordinates

do 100 i1,nrecs2
read(1 2,10) id(i),(vertex(i.j), j=1,2)

100 continue

signeast=1
signnrth1

do 200 i=1,nrecs2
if (id(i).eq.0.and.vertex(i+1 ,2).gt.0) then
diffeast=vertex(i+1, I )-vertex(i, 1)
diffnrth=vertex(i+1 ,2)-vertex(i,2)

if(diffeast.lt.0) then
signeast2
diffeast=diffeast*( 1.0)

endif

if(diffhrth.lt.0) then
signnrth2
diffnrth=diffnrth*( 1.0)

endif

if(signeast.eq. I .and.diffiirth.eq.0) then
theta=90.0

else if(signeast.eq.2.and.diffnrth.eq.0) then
theta=270.0

else if (diffeast.eq.O.and.signnrth eq. 1) then
theta=0.0

else if(diffeast.eq.0.and.signnrth.eq.2) then
theta=1 80.0

else
theta=atand(diffeast/diffnrth)
if(signeast.eq. 1 .and.signnrth.eq.2) theta=1 80-theta
if(signeasteq.2.and.signnrth.eq.2) theta=1 80+theta
if(signeast.eq.2.and.signnrth.eq. 1) theta=360-theta

end if

if (theta.ge.345.or.theta.lt. 1 5.or.theta.ge . 165 .and.
+	 theta.lt.195) medclass=1

if(theta.ge. 1 5.and.theta.lt.45.or.theta.ge . 195 .and.
+ theta.lt.225) medclass=2

if (theta.ge.45.and.theta.lt.75 .or.theta.ge.225 .and.
+ theta.lt.255) medclass=3



if (theta.ge.75.and.theta.lt . I 05.or.theta.ge.255 .and.
+ theta.lt.285) medclass=4

if (theta.ge. 105.and.theta.lt . 13 5.or.theta.ge.285.and.
+ theta.lt.315) medclass=5

if (theta.ge. 135.and.theta.lt. 1 65.or.theta.ge.3 1 5.and.
+ theta.lt.345) medclass=6

write( 14,20) (vertex(ij), j=1 ,2),theta,medclass
else

write( 14,10) id(i),(vertex(i,j), j=1,2)
endif

signeastl
signnrth= 1

200 continue

close (unit=12)
close (unit=14)

end

* Splitarc subroutine

SUBROUTINE SPLITARC (nrecs2)

parameter (lines=100000)

* Dimension the arrays

doubleprecision vertex
dimension vertex(1 :lines, 1:2)
dimension id(1:lines)
dimension medclass( 1 :lines)

Open the files

open (unit=1 2,flle=!holdall3 .txt',status='old')
open (unit=14,flle=outarcs.txt',status='unknown')
open (unit=l 6,flle='outarcs.rel',status='unknown')

* Format statements

10 fonnat (i6,fl3.6,6x,f13.6,20x,il)
20 format (2(6x,f13.6))
30 format (i6)
40 format(a3)
50 format(i6,al,il)



LooptoreadindataandflndmaximumlD

maxid=0

do 100 i1,nrecs2
read(12, 10) id(i),(vertex(ij), j1 ,2),medclass(i)
if(id(i).gt.maxid) maxidid(i)

100 continue

* Loop to generalise classes for any single changes in class

do 200 i=2,nrecs2
if (medclass(i- 1).eq.0.and.medclass(i).ne.medclass(i+1 ). and.

+	 medclass(i).ne.0.and.medclass(i+1).ne.0)
+ medclass(i)=medclass(i+1)

if (medcl(i-1).gt.0.and.medclass(i).ne.medclass(i-1).
+	 and.medclass(i).ne.medclass(i+1)) inedclass(i)=medclass(i- 1)

200 continue

* Loop to split arcs for changes in class

write(14,30) id(1)
write(1 6,50) id(1),',',medclass(2)

do 300 i=2,nrecs2-1
if (medclass(i).eq. 0.and.medclass(i+ 1).gt. 0) then

write(14,40) 'END'
write(l 4,3 0) id(i)
write(1 6,50) id(i),',',medclass(i+I)

else if (medclass(i). eq. 0.and.niedclass(i+1).eq.0) then
write(14,20) (vertex(ij), j=1,2)

* This section splits an arc if (and then where) the medclass
* changes along its length.

else if(medclass(i).gt.0.and.medclass(i+1).gt.0.and.
+ medclass(i).ne.medclass(i+1)) then

write(14,20) (vertex(ij), j=1,2)
write(14,20) (vertex(i+lj), j=1,2) !create end node
write(14,40) 'END'
maxid=maxid+ 1
write(14,30) maxid
write(16,50) maxid,',',medclass(i+l)

else
write(14,20) (vertex(ij), j=1,2)

endif
300 continue

write(1 4,20) (vertex(nrecs2j), j1 ,2),medclass(i)



write(14,40) 'END'
write(14,40) 'END'

close (uniV=12)
close (unit=14)
close (unit=16)

end



APPENDIX 6

The weather Program



WEATHER.F

program weather

* Program to generate weather periods and asssociated weights.
*
* Author: Susan Collins
* Last update: 25.05.95

character inflle*20

open (unit=14,flleweather. save', status='old')

* Read indata

5 format (a20)
read (14,5) infile

* Call the subroutine to count the number of lines in a file

CALL COUNTLINES (infile,numb)

* Call the subroutine to establish the weather periods and weights

CALL PERIOD (inflle,numb)

close (unit=14)

end

* Countlines subroutine

SUBROUTINE COUNUINES (fllenaine,count)

character fllename*20
character value*20
integer count

open (unit=12,fllefllename,status='old')

10 format (a20)

count0

do while (count.ge.0)
count = count + I



read (12,10,endlOO) value
end do

100 continue

count = count - 1

close (unit12)

end

* Subroutine period

SUBROUTINE PERIOD (filename,numb)

* Parameter statements

parameter (lines =40000)
parameter (unip = 2699)

* Dimension the arrays

character fllename*20
integer wdata(1 :lines, 1:4)
integer freq(1:unip)
integer unival(1:lines)
real weight( 1 :unip)
integer lr(1:unip)
integer wd(1:unip)
integer ss(1:unip)

* Open the files for input and output

open (unit=12,file=fllename,status='old')
open (unit=4,flle='weather.wgts',status='new')

10 format (3x,i3,2x,il,3x,il)

* Set all the variables to zero

do 100 m=1,unip
freq(m) =0
Ir(m)0
wd(m) =0
ss(m)0

100 continue

* Read in the wind direction, speed and stability



do 150 i=1,numb
read (12,10) (wdata(i,j), j2,4)

150 continue

* Check that the wind direction is within the 0-360 degrees range

do 200 i=1,numb
if (wdata(i, 1).gt.360.or.wdata(i, I ).lt.0) then
write (*,*) DATA INPUT ERROR - degrees
goto 999

endif
200 continue

* Establish up-wind or down-wind code depending on wind direction

do 250 i1,numb
if (wdata(i,2).ge.345.or.wdata(i,2).lt. 165) wdata(i, 1) = I
if (wdata(i,2).ge. 1 65.and.wdata(i,2).lt.345) wdata(i, 1) =2

250 continue

* Code wind direction into one of 6 classes

do 300 i=1,numb
if(wdata(i,2).ge. 345.or.wdata(i,2).lt. 15) wdata(i,2) = I

if(wdata(i,2).ge. 15.and.wdata(i,2).lt.45) wdata(i,2) =2
if (wdata(i,2).ge.45 .and.wdata(i,2).lt.75) wdata(i,2) =3
if (wdata(i,2).ge.75.and.wdata(i,2).lt. 105) wdata(i,2) 4
if(wdata(i,2).ge. 105.and.wdata(i,2).lt. 135) wdata(i,2) =5
if (wdata(i,2).ge. 13 5.and.wdata(i,2).lt. 165) wdata(i,2) =6
if (wdata(i,2).ge. 165 .and.wdata(i,2).lt. 195) wdata(i,2) = 1
if (wdata(i,2).ge. 195 .and.wdata(i,2).lt.225) wdata(i,2) =2
if (wdata(i,2).ge.225.and.wdata(i,2).It.255) wdata(i,2) =3
if(wdata(i,2).ge.255.and.wdata(i,2).lt.285) wdata(i,2) =4
if(wdata(i,2)ge.285.and.wdata(i,2).1t.3 15) wdata(i,2) =5
if (wdata(i,2).ge.3 1 5.and.wdata(i,2).lt.345) wdata(i,2) =6

300 continue

* Code wind speed into one of five classes

do 350 i1,numb
if(wdata(i,3).ge.0.and.wdata(i,3).lt.2) wdata(i,3) = 1
if(wdata(i,3).ge.2.and.wdata(i,3).lt.4) wdata(i,3) =2
if (wdata(i,3).ge.4.and.wdata(i,3).lt.6) wdata(i,3) =3
if(wdata(i,3).ge.6.and.wdata(i,3).lt. 10) wclata(i,3) =4
if(wdata(i,3).ge. 10) wdata(i,3) 5

350 continue

* Calculate the individual weather period



do 400 i=1,numb
unival(i) = (wdata(i, l)* 1000) + (wdata(i,2)* 100) +

+	 (wdata(i,3)* 10) + wdata(i,4)
400 continue

* Calculate the frequency of individual weather periods

do 500 m=1,unip
do 450 i=1,numb

if (unival(i).eq.m) then
freq(m) = freq(m) + 1
fr(m) wdata(i,1)
wd(m) = wdata(i,2)
ss(m) = (wdata(i,3)*10) + wdata(i,4)

endif
450 continue
500 continue

20 format (il,',',il ''' '' f5.3),

* Calculate the weigths for the weather periods based upon the frequency

do 550 m1,unip
if(freq(m).gt.0) weight(m) = real(freq(m))/real(numb)

550 continue

* Write the weather periods and weights to a new file

do 600 m1,unip
if (freq(m).gt.0) write (4,20) lr(m),wd(m),ss(m),weight(m)

600 continue

* Close 110

999 close (unitl2)
close (unit4)

end



APPENDIX 7

The rel relief Program



REL_RELLEF.F

program rel_reief

* Program to calculate the relative relief (degree of
* exposure from the DTM for a 3x3 neighbourhood.
*
* Author: Susan Collins
* Last updated: 01/08/94

* Dimension the arrays

character*20 head(6)
integer cell (1:566,1:640)
integer outcell (1:566,1:640)
integer difitopvalue

* Open the files for input and output

open (unit=12,file='dtm2.txt',status'old')
open (unit=1 4,flle='topex.txt',status='unknown')

* Format statements

10 format (640i4)

* Read in the data and remove header

do 100 i=1,6
read (12,*) head(i)

100 continue

* Read in the data

write (*,*)''
wnte(*,*)' Reading inthe data....'

do 200 i=7,566
read (12,10)(cell(i,j),j4,640)

200 continue

* Set the output cells to zero

do 400 i=7,566
do 300 j=1,640

outcell(ij) =0
300 continue



400 continue

* Calculate relative value with 3x3 filter

write (*,*)	 Filtering the data....'

do 800 i=8,565
do 700 j=2,639

if(cell(i,j).ne.999) then

topvalue 0

do 600 k=i-1,i+l
do 500 1=j-lj+l

if(cell(k,l).ne.999) then

if (cell(k,1).ge.800.and.cell(k,1).lt.900) then
cell(k,I) = topvalue - 800

endif

diff cell(i,j) - cell(k,I)
topvalue = topvalue + duff

endif

500	 continue
600	 continue

outcell(i,j) = topvalue

endif

700	 continue
800 continue

* Write the results to a new file

write (*,*) Writing the results to a new file...'
write (*,*)

write (14,*) 'ncols	 640'
write (14,*) 'nrows	 560'
write (14,*) 'xllcorner	 398000'
write (14,*) 'yllcorner	 402000'
write (14,*) 'fl5j 	 50'
write (14,*) 'NODATA_value -9999'



do 900 i=7,566
write (14,10) (outcell(i,j), j=1,640)

900 continue

* Close 1/0

close (unit12)
close (unitl4)

end
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