
University of Huddersfield Repository

Duan, Wenbo, Gu, Fengshou, Dupère, Iain, Zhong, Shan and Ball, Andrew

The Effects of Blockage on the Propagation of Acoustic Waves in the Liquid-Shell Coupled System

Original Citation

Duan, Wenbo, Gu, Fengshou, Dupère, Iain, Zhong, Shan and Ball, Andrew (2009) The Effects of 
Blockage on the Propagation of Acoustic Waves in the Liquid-Shell Coupled System. Key 
Engineering Materials, 413-41. pp. 327-333. ISSN 1013-9826 

This version is available at http://eprints.hud.ac.uk/id/eprint/4535/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/



The Effects of Blockage on the Propagation of Acoustic Waves in the 
Liquid-Shell Coupled System 

Wenbo Duan1,a, Fengshou Gu2,b, Iain Dupère3,c, Shan Zhong3,d,  
Andrew Ball2,e  

1School of Mechanical, Aerospace and Civil Engineering, 

The University of Manchester, Pariser Building, M13 9PL, UK 
2School of Computing and Engineering, The University of Huddersfield, Queensgate, Huddersfield 

HD1 3DH, UK 
3School of Mechanical, Aerospace and Civil Engineering, 

The University of Manchester, George Begg Building, M13 9PL, UK 
aWenbo.Duan@postgrad.manchester.ac.uk 

bf.gu@hud.ac.uk 
cIain.Dupere@manchester.ac.uk 
dshan.zhong@manchester.ac.uk 

ea.ball@hud.ac.uk 

Keywords: fluid/structure coupling system; reflection and transmission characteristics; blockage 
detection.  
 
Abstract. The free vibration of a fluid/structure system consisting of a cylindrical blockage 
submerged in a liquid enclosed by a cylindrical shell is investigated for the purpose of pipe line 
transportation monitoring. The wavenumbers are obtained and the reflection and transmission 
characteristics of these waves at the blockage interfaces are investigated theoretically. Reflection 
and transmission ratios are obtained in the axisymmetric mode, as functions of frequency. High 
order modes play an important role in the near field of the discontinuity and are taken into account. 

Introduction 

Pipelines are a very efficient method of transporting fluids in industry. A common problem of pipe 
transportation systems is associated with the occurrence of blockage. The existence of the blockage 
reduces the transporting efficiency of a pipeline system and endangers the safety of the system if the 
blockage is not cleared in a timely manner[1]. Acoustical signals are widely used for the detection 
of the blockage or leakage in a pipeline by various time delay estimation methods. However, the 
wave propagation behaviour at the blockage introduced discontinuities is poorly understood at 
present.  
 
Harmonic wave propagation in the fluid-shell coupled system and in the cylinder has been studied 
by many authors. Fuller and Fahy [2] investigated the waves in a fluid-filled pipe by solving the 
coupled equations between the pipe and the fluid in the pipe. Wavenumbers in all circumferential 
modes are calculated, and physical interpretations of the results are presented in terms of shell 
motions, energy distributions, etc. Hudson et al[3, 4] comprehensively investigated the three-
dimensional propagation of harmonic waves in an infinitely long circular cylinder. Fuller 



investigated the reflection and transmission of flexural waves through various discontinuities in the 
walls of cylindrical shells[5]. The transmission loss curves are obtained for different wave modes in 
different circumferential orders. Muggleton et al investigated the transmission and reflection 
characteristics of two basic waves at a wall discontinuity in a fluid-filled piping system[6]. Simple 
expression for the wavenumbers of the two wave types were derived and used in the low frequency 
range.  
 
In this paper, the vibration of the block, the acoustic field of the liquid and the vibration of the shell are 
studied separately, and the wavenumbers of the infinitely long coupling system are obtained by 
applying Snell’s law at the coupling interfaces. Then, the effects of a finite length block are 
investigated. Due to the finite length of the block, acoustic waves will be reflected and transmitted 
at the two ends of the block. Two discontinuity interfaces can be drawn at the two ends of the block. 
Across the interfaces, it is required that the shell axial, radial, circumferential, and bending 
velocities and forces are equal because of the system equilibrium conditions. The liquid mass flow 
should be equal, and the normal velocity and pressure of the fluid equals the normal velocity and 
the stress of the block at the discontinuity interfaces.  
 
High order modes are taken into account. Although high order modes don’t transfer energy, they 
play an important role in the near field for the satisfaction of the boundary continuity equation.  

Motion equations of the coupling system 

The wavenumbers are obtained by considering the vibration of the block, the acoustic field of the 
liquid and the vibration of the shell separately, and combining them by applying appropriate 
boundary conditions at the coupling interfaces. 
 
The co-ordinate system used in this analysis is shown in Fig. 1. The displacement components of 
the shell and the block are denoted by su , sv , sw , and bu , bv , bw  along the axial, x , circumferential, 

θ , and radial, r , directions respectively. Young’s modulus, the Poisson ratio and mass density are 
denoted by iE , iν , iρ  ( ,i s b= ) respectively, where the subscripts s   andb  refer to the shell ( i s= ) 
and the block ( i b= ) respectively. The radius of the block is denoted by 1R  and the radius of the 
middle surface of the surrounding shell is denoted by 2R . The thickness of the shell is denoted by h .  



 
Fig. 1. A cylindrical block submerged in the liquid surround by a shell.  

 

2.1 The vibration of the block 

The displacement equation of motion of an isotropic, elastic block is given by: 
2
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where ur ( bu , bv , bw ) is the vector displacement of the block, λ  and μ  are the Lamé constants of 

the block, and 2∇  is the Laplace operator.  
The most general solutions of Eq. (1) can be expressed in cylindrical co-ordinate as[4]: 
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where φ  is a dilatational scalar potential and H
r

( rH , Hθ , xH ) is an equi-voluminal (rotational) 

vector potential. The chosen value of H
r

 has to satisfy the gauge invariance [7] of the field 
transformation described by Eqs. (2).  

2.2 Acoustic field of the liquid 

The wave equation for the liquid is described by the Helmholtz equation: 
2 2 0f fp k p∇ + =          (8) 

The pressure field between the block and the shell is expressed as: 
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The fluid radial wavenumber fk  is related to the axial wavenumber k  by 
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where ( )fc  is the free wavespeed in the liquid.  
 
2.3 The vibration of the shell 
 
The free, simple harmonic vibration of a thin-walled shell is described by Flügge’s shell 
equations[8]: 
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where β  is the non-dimensional thickness parameter of the shell defined by 2 2
2/12h Rβ =  

 
The displacements of the shell wall are assumed to be: 
 

( / 2)cos( ) i t kx
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( )sin( ) i t kx
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Substitution of Eqs. (9) and (12) into Eqs. (11) gives the motion equations of the shell.  

2.4 The boundary conditions at the coupling interfaces 

The boundary conditions at the inner and outer surfaces of the liquid have to be considered for the 
completion of the system characteristic equations. For an inviscid fluid-solid interface, the radial velocities 
of the fluid and the solid must be equal; however, the axial and circumferential velocities are allowed to be 
discontinuous. The three surface stresses must also be equal. Since the inviscid fluid cannot sustain shear 
stresses, the shear stresses at the inner and the outer surfaces of the liquid must be zero.  

2.5 Wavenumbers of the coupling system 

The system characteristic equation constitutes a relation between the axial wavenumber k , the 
circumferential order number n , and the wave frequency ω . For any value of circumferential order 
number n  and wave frequency ω , the characteristic equation yields an infinite number of values of 



k . The dispersion curves are obtained for the coupled system. The shell has a middle-surface 
diameter of 85mm and a thickness of 4mm.  
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Fig. 2. (a) Wavenumbers of the travelling modes and the real part of the wavenumbers for the 
complex modes; (b) wavenumbers of the decaying modes and the imaginary part of the 

wavenumbers for the complex modes; solid line: wavenumbers of the block-liquid-shell coupled 
system; dashed line: wavenumbers of the liquid; dash-dotted line: wavenumbers of the shell; dotted 

line: wavenumbers of the block.  
 
Fig. 2 shows the axial wavenumbers in the circumferential order 0n =  for free waves in the 
coupling system with a 20mm radius block immersed in the centre of a pipe with radius 42.5mm, 
thickness 4mm. The axial wavenumbers represent the modes that can possibly propagate inside the 
coupling system. In the frequency range below 17kHz, there are three travelling modes representing 
the vibration of the fluid, shell and block mainly. However, as the frequency is increased, their 
coupling becomes stronger and the behaviour of the modes becomes extremely complicated. The 
wave modes for the vibration of an empty shell, the vibration of the liquid with a pressure release or 
a rigid boundary, the vibration of a block are also drawn on the figure for comparison. The torsional 
modes of the shell and the block have been omitted in the figure as it is uncoupled from all the other 
motions.  



Wave reflection and transmission at the block interfaces 

3.1 Continuity equations 

The configuration of a finite length block immersed in a liquid surrounded by an infinitely long 
shell is shown in Fig. 3. The system is divided into three sections a , b  and c . The characteristics 
of the wave propagation in section b  are clearly different from those in sections a  and c  due to the 
inclusion of the vibration of the block. As a result, the incident wave will be partially reflected and 
partially transmitted at the discontinuity interfaces. Furthermore, it is assumed that an incident wave 
of mode order n  will only produce reflected and transmitted waves with the identical mode order, 
since the system is symmetric with respect to its original configuration. The complex evanescent 
modes and the imaginary decaying modes play a very important role in the near field in order to 
satisfy the boundary conditions and, therefore, must be taken into consideration.  

 
Fig. 3. Configuration of the discontinuity 

 
The boundary conditions at each discontinuity in the shell wall are continuity of angular bending 
velocity, radial, axial and tangential velocity and continuity of angular bending moment, transverse 
shear, axial force and torsional shear. In the fluid, the boundary conditions to be satisfied are 
continuity of pressure at every point in the region [ ]1 2,R R of interfaces (1) and (2) and continuity of 

the volume velocity which indicates the equilibrium of the mass flow since the mean density of the 
water considered is assumed to be constant. In the block, the normal velocity of the block is 
assumed to be equal to the axial velocity of the fluid at every point in the region [ ]10, R  of the 

interfaces.  
 
In the present paper, all the travelling modes and a finite number of near-field modes with small 
wavenumbers are included. The continuity points in the fluid and in the block are distributed evenly. 
The pressure and velocity continuity conditions are verified by comparing their values at every 

Incident wave I 

Reflected wave R 

Transmitted wave A 

Reflected wave B 

x=0 x=L 

○a ○b ○c

Transmitted wave T 



point across the interfaces. If the maximum error is larger than 10%, more near-field modes and 
boundary conditions are taken into consideration until the continuity conditions are satisfied.  

Conclusions 

In this paper, the wavenumbers of a block-liquid-shell coupled system are obtained and the 
reflection and transmission characteristics of two basic incident waves at the blockage interfaces are 
investigated. All the travelling modes and a finite number of decaying modes as well as complex 
modes excited by the discontinuity are considered in order to satisfy the boundary continuity 
equations at the near field. The coupled nature of these waves was taken into consideration.  
 
Reflection and transmission ratios are obtained in the axisymmetric mode, as functions of frequency. 
It is found that the reflection ratios are very low at low frequency range up to 14kHz for both the 

(0,1)s  and the (0,2)s  incident waves. With a long wavelength compared to the size of the block, 
the incident wave passes around the block. At the resonance frequency both the (0,1)s  and the 

(0,2)s  incident waves have very strong reflection ratios due to the coupling between the shell and 

the fluid. At higher frequency, the reflection ratios are dependent on the type of the incident wave as 
well as the new cut-on travelling modes. 
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