Computing and Library Services - delivering an inspiring information environment

Crystal structure and dielectric properties of LaYbO3 ceramics

Feteira, A., Gillie, Lisa .J., Elsebrock, R. and Sinclair, D.C. (2007) Crystal structure and dielectric properties of LaYbO3 ceramics. Journal of the American Ceramic Society, 90 (5). pp. 1475-1482. ISSN 0002-7820

[img] PDF
Restricted to Registered users only

Download (1MB)


The crystal structure and dielectric properties of LaYbO3 ceramics prepared by the mixed-oxide route have been investigated. Rietveld refinements performed on X-ray and neutron diffraction data show the room-temperature structure to be best described by the orthorhombic Pnma space group [a=6.02628(9) Å, b=8.39857(11) Å, and c=5.82717(7) Å; Z=4, and theoretical density, Dx=8.1 g/cm3] in agreement with electron diffraction experiments. LaYbO3 ceramics fired at 1600°C for 4 h attain 97% of Dx and their microstructures consist of randomly distributed equiaxed grains with an average size of 8 μm. Conventional transmission electron microscopy shows densification to occur in the absence of a liquid phase and reveals domain-free grains. The relative permittivity, r, of LaYbO3 ceramics at radio frequencies is 26 in the range 10–300 K; however, a small dielectric anomaly is detected at 15 K. At room temperature and microwave frequencies, LaYbO3 ceramics exhibit r 26, Q × fr20 613 GHz (at 7 GHz), and τf−22 ppm/K. Q × fr show complex subambient behavior, decreasing from a plateau value of 20 000 GHz between 300 and 200 K to a second plateau value of 6000 GHz at 90 K before decreasing to <1000 GHz at 10 K. The large decrease in Q × fr at low temperature may be related to the onset of antiferromagnetism at 2.7 K.1

Item Type: Article
Additional Information: © 2007 The American Ceramic Society
Subjects: Q Science > QD Chemistry
Schools: School of Applied Sciences
School of Applied Sciences > Materials and Catalysis Research Centre
Related URLs:
References: 1K. Ito, K. Tezuka, and Y. Hinatsu, "Preparation, Magnetic Susceptibility, and Specific Heat on Interlanthanide Perovskites ABO3 (A=La–Nd, B=Dy–Lu)," J. Solid State Chem., 157, 173–9 (2001). CrossRef, ISI, Chemport 2W. Wersing, "Microwave Ceramics for Resonators and Filters," Curr. Opinion Solid State Mater. Sci., 1, 715–31 (1996). CrossRef, ISI 3S. Y. Cho, K. S. Hong, and K. H. Ko, "Mixture-Like Behavior in the Microwave Dielectric Properties of the (1−x)LaAlO3−xSrTiO3 System," Mater. Res. Bull., 34, 511–6 (1999). CrossRef, ISI, Chemport 4E. A. Nenasheva, L. P. Mudroliubova, and N. F. Kartenko, "Microwave Dielectric Properties of Ceramics Based on CaTiO3–LnMO3 System (Ln–La, Nd; M–Al, Ga)," J. Eur. Ceram. Soc., 23, 2443–8 (2003). CrossRef, ISI 5S. Skapin, D. Kolar, and D. Suvorov, "Chemical Reactions and Dielectric Properties of the BaTiO3–LaAlO3 and BaTiO3–LaAlO3–LaTi3/4O3 Systems," J. Solid State Chem., 129, 223–30 (1997). CrossRef, ISI, Chemport 6A. Feteira, R. Elsebrock, A. Dias, R. L. Moreira, D. C. Sinclair, and M. T. Lanagan, "Synthesis and Characterisation of La0.4Ba0.6Ti0.6Re0.4O3 (Where Re=Y, Yb) Ceramics," J. Eur. Ceram. Soc., 26, 1947–51 (2006). CrossRef, ISI, Chemport 7H. Müller-Buschbaum and C. Teske, "Crystal Structure of LaYbO3," Zeitschrift Fur Anorganische Und Allgemeine Chemie, 369, 255 (1969). CrossRef 8J. M. Moreau, "Crystallographic and Magnetic Study in Double Oxides of Rare Earths of LaTO3 Type Where T=Ho,Y,Er,Tm,Yb,Lu," Mater. Res. Bull., 3, 427 (1968). CrossRef, ISI, Chemport 9J. M. Moreau, M. J. Marescha, and E. F. Bertaut, "Neutron Diffraction Study of LaErO3," Solid State Commun., 6, 751 (1968). CrossRef, ISI, Chemport 10R. L. Moreira, A. Feteira, and A. Dias, "Raman and Infrared Spectroscopic Investigations on the Crystal Structure and Phonon Modes of LaYbO3 Ceramics," J. Phys.-Condensed Matter, 17, 2775–81 (2005). CrossRef, ISI, Chemport 11E. Ruiz-Trejo, G. Tavizon, and A. Affoyo-Landeros, "Structure, Point Defects and Ion Migration in LaInO3," J. Phys. Chem. Solids, 64, 515–21 (2003). CrossRef, ISI, Chemport 12E. Ruiz-Trejo, M. S. Islam, and J. A. Kilner, "Atomistic Simulation of Defects and Ion Migration in LaYO3," Solid State Ionics, 123, 121–9 (1999). CrossRef, ISI, Chemport 13A. C. Larson and R. B. Von Dreele, "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Report LAUR, 86–748 (2004). 14R. D. Shannon and C. T. Prewitt, "Revised Values of Effective Ionic Radii," Acta Crystallographica Section B-Structural Crystallography and Crystal Chemistry, B 26, 1046 (1970). CrossRef 15V. A. Dubok, V. V. Lashneva, and Y. N. Kryuchkov, "Electrophysical Properties of Oxide Interlanthanides and Solid Solutions Based on Them," Glass Ceram., 60, 115–7 (2003). CrossRef, ISI, Chemport 16A. M. Glazer, "Simple Ways of Determining Perovskite Structures," Acta Crystallographica Section A, 31, 756–62 (1975). CrossRef, ISI 17I. M. Reaney, E. L. Colla, and N. Setter, "Dielectric and Structural Characteristics of Ba-Based and Sr-Based Complex Perovskites as a Function of Tolerance Factor," Japanese J. Appl. Phys. Part 1-Regular Papers Short Notes & Review Papers, 33, 3984–90 (1994). CrossRef, ISI 18Y. S. Zhao, D. J. Weidner, J. B. Parise, and D. E. Cox, "Thermal-Expansion and Structural Distortion of Perovskite—Data for NaMgF3 Perovskite .1," Phys. Earth Planetary Interiors, 76, 1–16 (1993). CrossRef, ISI, Chemport 19N. Orlovskaya, N. Browning, and A. Nichols, "Ferroelasticity in Mixed Conducting LaCoO3 Based Perovskites: A Ferroelastic Phase Transition," Acta Mater., 51, 503–5071 (2003). CrossRef 20C. H. Kim, J. W. Jang, S. Y. Cho, I. T. Kim, and K. S. Hong, "Ferroelastic Twins in LaAlO3 Polycrystals," Phys. B, 262, 438–43 (1999). CrossRef, Chemport 21W. L. Wang and H. Y. Lu, "Phase-Transformation-Induced Twinning in Orthorhombic LaGaO3: {121} and 010 Twins," J. Am. Ceram. Soc., 89, 281–91 (2006). Synergy, ISI 22A. Rouanet, J. Coutures, and M. Foex, "High-Temperature Study on Equilibrium Diagram of System La2O3–Yb2O3," J. Solid State Chem., 4, 219 (1972). CrossRef, ISI, Chemport 23R. D. Shannon, "Dielectric Polarizabilities of Ions in Oxides and Fluorides," J. Appl. Phys., 73, 348–66 (1993). CrossRef, ISI, Chemport 24C. Vineis, P. K. Davies, T. Negas, and S. Bell, "Microwave Dielectric Properties of Hexagonal, Perovskites," Mater. Res. Bull., 31, 431–7 (1996). CrossRef, ISI 25D. C. Dube, H. J. Scheel, I. Reaney, M. Daglish, and N. Setter, "Dielectric-Properties of Lanthanum Gallate (LaGaO3) Crystal," J. Appl. Phys., 75, 4126–30 (1994). CrossRef, ISI, Chemport 26R. Zurmuhlen, J. Petzelt, S. Kamba, G. Kozlov, A. Volkov, B. Gorshunov, D. Dube, A. Tagantsev, and N. Setter, "Dielectric-Spectroscopy of Ba(B'1/2B"1/2)O3 Complex Perovskite Ceramics—Correlations between Ionic Parameters and Microwave Dielectric-Properties .2. Studies Below the Phonon Eigenfrequencies (1012–1012 Hz)," J. Appl. Phys., 77, 5351–64 (1995). CrossRef, ISI 27S. Y. Cho, I. T. Kim, and K. S. Hong, "Microwave Dielectric Properties and Applications of Rare-Earth Aluminates," J. Mater. Res., 14, 114–9 (1999). ISI, Chemport This Article Abstract References Full Text HTML Full Text PDF (1,102 KB) Rights & Permissions Search In Synergy CrossRef By author Antonio Feteira Lisa J. Gillie Ralf Elsebrock Derek C. Sinclair
Depositing User: Briony Heyhoe
Date Deposited: 10 Oct 2007
Last Modified: 28 Aug 2021 23:28


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©