Computing and Library Services - delivering an inspiring information environment

Results of an aqueous source term model for a radiological risk assessment of the Drigg LLW site

Small, J., Humphreys, Paul, Johnstone, T. J., Plant, R., Randall, M. G. and Trivedi, D. P. (2000) Results of an aqueous source term model for a radiological risk assessment of the Drigg LLW site. Materials Research Society Proceedings (608). ISSN 0272-9172

PDF - Published Version
Download (387kB) | Preview


A radionuclide source term model has been developed which simulates the biogeochemical evolution of the Drigg low level waste (LLW) disposal site. The DRINK (DRIgg Near field Kinetic) model provides data regarding radionuclide concentrations in groundwater over a period of 100,000 years, which are used as inputs to safety assessment calculations. The DRINK model considers the coupled interaction of the effects of fluid flow, microbiology, corrosion, chemical reaction, sorption and radioactive decay. The model simulates the development of a period of reducing conditions resulting from degradation of cellulose and steel wastes. Under these conditions U and Th remain as solubility controlling solids for periods over 30,000 years and provide an important source of daughter nuclides such as Ra. The fraction of 14C is followed through all reactions involving carbon. Less than 5% of 14C is present as mobile aqueous species

Item Type: Article
Subjects: Q Science > Q Science (General)
Q Science > QD Chemistry
Schools: School of Applied Sciences
Related URLs:
Depositing User: Sara Taylor
Date Deposited: 12 May 2009 08:56
Last Modified: 28 Aug 2021 23:09


Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©