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Automotive Diesel Engine Performance and Condition 

Monitoring using Downpipe Acoustic Waveform Analysis 
 

J. Jiang, F. Gu, A.D. Ball 
School of Computing and Engineering 

The University of Huddersfield,  
Queensgate, Huddersfield HD1 3DH, UK 

ABSTRACT 
It would seem logical that acoustic signals measured from within a diesel engine’s exhaust pipe would 
contain useful information for engine monitoring. Preliminary experimental results, however, are found to 
be influenced significantly by changes in sensor positions and silencer configurations due to acoustic 
reflections inside the exhaust pipe. In order to suppress the contamination of reflection, this paper develops 
an effective acoustic method using two sensors mounted along the exhaust pipe. In addition to simulation 
modelling and theoretical study, experimental investigations are conducted to verify the reliability of this 
method. The experimental results show that using peak and shape indices of the incident waveforms, 
derived from measurements of the two sensors, accurate and reliable detection and diagnosis results are 
obtained for a range of realistic incipient faults under different operating conditions.  

 
Key words: Exhaust Acoustics, Reflection Suppression, Diesel Engine; Combustion Diagnosis, 
Condition Monitoring 
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1 INTRODUCTION 
To maintain internal combustion engines running at optimized conditions, many condition monitoring 
techniques have been investigated for early fault detection and diagnosis [1]. The exhaust stream is directly 
related to the combustion process and contains rich information about combustion conditions [2]. For these 
reasons, several recent publications have concentrated on exhaust measurements for combustion 
monitoring [3, 4 and 5].  

Exhaust gas temperature techniques measure the temperature pulsation associated with the exhaust gas 
pulses in each cylinder port using fast response thermocouples and correlation with burned fuel mass. 
Using this method, thermo-dynamic properties can be determined and dispersion between the injectors can 
be obtained [2]. 

Turbocharger speed has been used in conjunction with exhaust gas pulsation in the exhaust manifold for 
the diagnosis of abnormal fuel injector operation and the control of fuel supply [6 and 7]. The results 
demonstrate a good fault detection capability using this method. In addition, this approach benefits from 
the fact that the measurement of the speed signal is very simple. 

Exhaust pressure fluctuation based methods have also been investigated for engine monitoring in several 
publications [3, 8 and 9]. Authors have used pressure fluctuation measured at a single position for the fault 
detection of engine misfires and manifold leakage in spark ignition engines. However, Markus [3] also 
mentions in his paper that the pressure pulsations and the resulting spectral amplitudes are strongly 
influenced by the standing pressure waves caused by reflections. He concludes that the measurement 
position must be carefully chosen by taking into account reflection, propagation and attenuation. Although 
this work performed experiments for a misfire fault only, it showed the potential of exhaust pressure 
fluctuation for fault detection. This method has also been studied in [5] for valve fault detection in diesel 
engines. It has been found that the capability of this method is effective but it too suffers adversely from 
wave reflections in the exhaust systems. 

In addition to the use of exhaust information, airborne acoustic measurements have also been investigated 
in recent years for monitoring engine condition. Authors in [10, 11 and 12] have used advanced signal 
processing methods to reduce the background noise from airborne acoustic measurements, whilst targeting 
faults within the fuel injection and valve systems. The monitoring results are impressive but the authors 



acknowledge that performance will likely be degraded when the signal to noise ratio is low because of 
strong reverberations inside engine rooms of power stations and ships. 

To improve the usability and performance of an exhaust acoustic measurement approach to the condition 
and performance monitoring of diesel engines, this paper investigates a reflection suppression method 
based on the understanding of the theoretical characteristics of acoustic waveforms from the engine exhaust 
system. It models the engine and its exhaust system as a linear time-variant source and simulates the 
acoustic wave behaviour under a wide range of realistic operating conditions and reflection circumstances. 
From these understandings, a two-sensor method is investigated to suppress reflected waves. An 
experimental investigation is then conducted on a four cylinder diesel engine for the detection and 
diagnosis of common combustion faults from valve and fuel injection systems to evaluate the usability of 
the developed method.  

2 ACOUSTIC CHARACTERISTICS OF EXHAUST SYSTEMS 
Pressure fluctuations in the exhaust system should contain rich information about engine combustion and 
exhaust processes. Conceptually, from the characteristics of the source it should be possible to monitor the 
condition of the engine. The problem is how to retain and thereafter extract the useful information in the 
signal whilst suppressing the contaminating components at the same time. A source modelling and 
simulation study were hence conducted first to gain an understanding of how the pressure waveform could 
be used as a detection signal. This understanding is then used to develop measurement and signal 
processing methods for monitoring information extraction.  

2.1 CHARACTERISTICS OF THE PRESSURE WAVEFORM 
Many advanced acoustic models have been developed for engine exhaust systems to predict noise radiation 
and hence to design more effective exhaust components [13, 14, 15, 16 and 17]. An equivalent acoustic 
one-port source is often the basis for the description of the exhaust source in terms of impedance and 
strength in the frequency domain. This one-port source method allows the acoustic generation of the engine 
valve system and the wave propagation inside exhaust ducts to be combined together and it produces good 
results validated by experimental investigations.  

However, such models have only been developed for the examination of the acoustics when the engine is 
operating under healthy conditions. Little information about the waveforms under abnormal conditions can 
be obtained with these models. For condition monitoring based upon exhaust pressure measurement, it is 
important to understand the waveforms for a variety of conditions both when processing the measured 
signals and when developing fault detection and diagnosis features. An acoustic model has to be developed 
so that the variations of the pressure waveforms can be investigated over different operating conditions 
including those of abnormal combustions. Rather than combining the acoustic generation with the wave 
propagation, this study deals with this two issues separately to highlight the details of the acoustics 
generation process (including various valve motions and combustion variations). Furthermore, the analysis 
of pressure is focused on the time domain because it provides more interpretable information for the 
diagnosis of abnormal combusting cylinders compared to frequency domain analysis.  

Based on the studies in [16 and 17], the acoustic process of the engine exhaust can be modelled as a time-
variant source. For a typical four-cylinder diesel engine exhaust system, illustrated in Figure 1, the 
volumetric velocity of the flow of a particular cylinder  through a discharge valve during the period 
of a discharge stroke can be expressed [16] 
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where subscript i  is the cylinder number;  is the pressure in cylinder number i ;  is the pressure 

inside the exhaust pipe; C  is the discharge coefficient of the valve; A  is the effective flow area of the 
valve; and 
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iρ  and  are the density and speed of sound of the gas flow through the valve respectively.  ic

Since the exhaust flow is restricted by downstream components such as the changes in pipe shape and joint 
and the resistance effects of the silencers and catalytic converters, the manifold and its down pipe can be 
treated as a flow-in/flow-out chamber of volume [18]. Without considering the effects of acoustic wave 

propagation (mainly the effect of reflections from downstream), the exhaust pressure  in the chamber 
can be derived from the first law of thermodynamics as 
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As the discharge coefficient and the effective flow area are controlled by the nonlinear process of the valve 
lift, the volumetric velocity and the exhaust pressure will vary accordingly and hence it is difficult to 
produce an analytic solution for the analysis of the exhaust pressure over a wide range operating 
conditions. A numerical study therefore, has been adapted for the analysis. 

 

 
Figure 1 Schematic of a typical exhaust system for a four cylinder diesel engine 

 

Using equations (1) and (2) together with piston motion dynamics, combustion thermodynamics and valve 
motion behaviour[18] the exhaust pressure can be calculated numerically at different conditions including 
when experiencing different forms of faulty combustion. To simulate the combustion process this study 
introduces a cylinder pressure rise process, with a controlled amplitude and duration, around the top dead 
centre (TDC) position of the crankshaft. Based on previous study[5], the pressure rise is adjusted to 
correspond to different engine loads, with a half-sinusoidal profile being used to represent the valve 
opening and closing processes. These simplicities will inevitably detract the accuracy of the predicted 
waveforms, however, they will nevertheless incorporate the critical features of the engine combustion and 
exhaust process, allowing the fundamental features of exhaust pressure to be studied with low 
computational overhead.  

Figure 2 shows the exhaust pressure characteristics from a four cylinder diesel engine, detailed in section 4, 
with a firing order: 1-2-4-3. The predicted exhaust pressures were obtained under two engine speeds: 
1500rpm for low speed and 3000rpm for high speed, and three different engine loads, represented by 
cylinder pressure rises of 5bar, 10bar and 20bar. To emphasise the oscillatory feature of the pressure 
waveform, the mean value is firstly removed and then each waveform is normalised by the largest peak 
value from the case when the combustion pressure rise is 5bar at high speed; illustrated by the solid line in 
Figure 2(b). In addition, the exhaust pressure waveforms are presented for a complete engine cycle, which 
starts at TDC of the combustion occurring in the first cylinder, corresponding to a crankshaft angle of 0°.  
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Figure 2 Simulated exhaust pressures for healthy engine condition 

 

It can be seen from Figure 2(a) that the exhaust pressure waveform has four distinctive peaks in a complete 
engine cycle, each of them indicating the exhaust stroke for a particular cylinder of the four cylinder 
engine. Each peak appears just after the onset of each exhaust process, illustrated for the first cylinder by a 
bold line in Figure 2. These peak features are each formed by the superposition of the exhaust pressures 
from two characteristic exhaust effects. The first is the exhaust flow driven by the cylinder residual 
pressure at the moment of exhaust valve opening and the second is the exhaust flow forced by the upward 
piston motion. Because the exhaust valve opens in advance of BDC and closes beyond TDC the exhaust 
pressure from the first characteristic effect adds to the pressure from the second effect. The first exhaust 
effect, resulting from residual expansion upon the exhaust valve first opening, causes a burst of pressure in 
the exhaust pipe and a peak in the waveform within around 40° (referring to the bold line) of crank rotation. 
This is followed by a steady decrease in pressure as the residual pressure pulse dissipates, before the second 
exhaust effect associated with the upwards movement of the piston starts to take effect. As a result the 
pressure waveform rises to a second peak at around 30° before the exhaust valve closes.  

. At low engine speeds, the exhaust flow driven by the residual pressure is more pronounced. It leads to a 
clear sharp pressure rise before the peak pressure. In addition, the peak value also becomes higher and 
shifts later as the cylinder pressure rise increases. This is understandable because at higher engine load the 
residual pressure is higher and hence it results in a higher exhaust peak. In contrast, at high engine speed, 
the exhaust flow forced by the piston motion upwards is more pronounced and hence the sharp pressure 
rise cannot be seen. Interestingly, the peak value becomes lower with increase in engine load, resulting 
from the phase delay of the pressure waveform from the first exhaust effect. 

Moreover, the exhaust pressure waveforms are uniform over the four cylinders at different peak pressure 
rises and speeds. It is upon these features that combustion condition monitoring can be based for a multiple 
cylinder engine, without the extra requirement for baseline signatures, which is often difficult for engine 
user to be obtained. 
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Figure 3 Simulated exhaust pressures for faulty engine conditions at 1500 rpm and 10bar pressure rise 

Figure 3 shows the simulation results when cylinder 1 has different fault conditions including retarded 
combustion and erroneous exhaust valve timing. It is clear that there are distinctive differences between the 
normally combusting cylinders and the faulty one. One of the features, shown in Figure 3(a), is that the 
peak value corresponding to the faulty cylinder is higher than others and becomes larger as the severity of 
the fault increases. Another feature is that the overall waveform profile also changes significantly, shown in 
Figure 3(b). In addition, the valve faults cause more distortion to the waveforms than the faults of retarded 
combustion. From these observations it would be seen that the differences in peak values and waveform 
profiles between cylinders can be used for engine fault detection and diagnosis. Potentially a useful scheme 
based on waveform uniformity evaluation can be developed for fault detection without the baseline 
signature, a situation which is a rare luxury in the field of condition monitoring.  

2.2 REFLECTION CONTAMINATION 
For the majority of instances, pressure measurements are influenced by acoustic reflections inside the 
exhaust pipe. This will make the raw signal, which is obtained from the sensor and used as the detection 
evidence traditionally, vary with position. This difference makes it difficult to choose the position of 
measurement using a single sensor method [3]. The influence would be obvious when the reflection 
coefficient at the end of the exhaust pipe is large and thus the measurement result is not reliable.  

Figure 4 shows the simulation results of the pressure measurements in three different positions when a 
reflection coefficient value of 0.5 is used to simulate the reflection for the third of the successive 
waveforms in Figure 3(b) i.e. for the case of 20° of shift in valve timing. The waveforms in Figure 4 show 
the three typical waveforms obtained at different measurement positions. Waveform (a) displays a clear 
difference between the first wave and the other three, allowing the faulty valve to be identified. However, 
the measured waveforms at two other positions, shown in (b) and (c) of Figure 4 respectively, have very 
different characteristics from the original wave. The Waveform (b) is comprised of only three distinctive 
major waves with very different amplitudes. The Waveform (c) exhibits two large peaks of similar 
amplitudes, together with two small waves of different amplitudes. Obviously, it is not possible to use 
waveforms (b) and (c) to identify the abnormal combustion cylinder. 
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Figure 4 Influences of reflection on measurements 

 

This simulation analysis demonstrates that the use of one sensor measurement for fault detection is neither 
reliable nor accurate due to the reflections. Therefore, effective methods for reflection reduction have to be 
investigated to use the exhaust acoustic information for engine diagnosis.  

 

3 REFLECTION SUPPRESSION 
 

The two-microphone scheme has been used widely for the measurement of the one-dimensional acoustics 
properties in a duct. In particular, it has been studied to determine the characteristics of acoustic sources 
experimentally when it was relied on to predict the noise radiation from the exhaust system of an I.C. 
engine [19, 20 and 21]. As this scheme has the potential for easy on-line implementations, it is re-examined 
in time domain to gain more understandings of the acoustic field inside a duct and hence to develop an 
effective noise suppression method. 

3.1 In-Duct Acoustic Field 
To analyse the acoustic field in the exhaust pipeline more accurately, an in-duct wave propagation model is 
used as shown in Figure 5. Defining  as the reflection wave,  as the incident wave consisting of , 

the source wave, and , the reflection of at the source end,  can be expressed as: 
RP IP
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Figure 5 Waves propagating in the exhaust pipe 

Defining the reflection coefficients at the exhaust end and the source end as  and  respectively, the 
following can be derived  
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Take into account (4) and (5), the source pressure is  
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In equation (6),  is easily obtained by an off-line test or empirical calculations, however, is much 
more difficult to determine by calculation because of nonlinearity of flow at exhaust port. There are two 
unknowns in equation (6),  and . In order to determine them, two equations may be formed based on 
experimental data obtained with a special test procedure. This test can be achieved by changing the 
acoustic loads at the exhaust end. Assuming that the two loads conditions are A and B respectively,  

and  can be calculated by using equation (7). 
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This method using two acoustic loads is referred as the multi-load method. The authors have investigated 
the use of this method for abnormal combustion detection and have achieved satisfactory results [4]. 
However, this method needs two acoustic loads which is inconvenient to set up for on-line monitoring 
because extra devices have to be installed in the exhaust system. 

However, if the reflection coefficients satisfy a condition 121 <<rr , then source wave may be 

approximated by the incident wave only. In practice,  is usually very small. The condition  

can be satisfied even if the value of  is high. This is the common case for most practical engine exhaust 

systems. Therefore, the incident waveform  may be used to represent the source wave . 
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3.2 Two-sensor Measurement 

To find  from measurements of two sensors for the reflection suppression, a more simplified analysis is 

performed without considering the reflections at source end. As shown in Figure 1,  propagates from 

the engine to the silencer while  moves in the opposite direction. Ignoring influences of flow and its 
turbulence, taking 

IP

IP

RP
0=x  as the reference position, acoustic pressures at position 0, 1 and 2 can be 

expressed respectively as follows: 
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In order to use the pressure waveform for condition monitoring, the influence of the reflection must be 
suppressed. Based on the previous discussion a two-sensor method is developed to achieve an on-line 
measurement. 

If a two-sensor approach is used, the incident wave and reflected wave can be separated to a certain degree 
by a straightforward methodology. Based on equations (9) and (10), two equations sets can be obtained as: 
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By solving the equations sets (11) and (12), the two waves,  and  can be expressed by the 
measurements from the two sensors as 
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where is the distance between two sensors. Equation (13) means that the measurement from 

sensor 1 needs to shift backward by a time period 
12 lll −=Δ

cll /)( 12 − so that the reflected waves measured by 
sensor 1 are aligned with that of sensor 2 and hence they can be cancelled out by the subtraction, resulting 
in only the incident waves from the engine source. Similarly, if the measurement from sensor 1 shifts 
forward by a time period , the subtraction in equation (14) will yield the reflected wave only. 
This approach then produces two cleaner waveforms for fault detection. 
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The effective frequency range in reducing the reflection can be derived by standing wave analysis as 
follows 
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For the experimental study, a 0.32m distance was set between the two sensors, and this allowed waveforms 
with a frequency range up to 800Hz to be used in the analysis. This range covers up to the 10th order 
harmonics of the engine firing frequency and is sufficient to resolve the small changes in the waveform. 

 



4 FAULT DETECTION AND DIAGNOSIS 

4.1 EXPERIMENTAL SET-UP 
To evaluate the theoretical analyses and benchmark the fault detection performance, experimentation was 
performed on a Ford FSD 425 four cylinder 2.5 litre direct injection diesel engine. A special exhaust 
system was fitted to the engine for the evaluation of the influence of reflections. As shown in Figure 6, the 
exhaust can flow out through two different exhaust systems via a ‘Y’ junction fitted with two throttle 
valves. This configuration allows the application of at least three different degrees of acoustic reflections 
achieved by adjusting the valves into three combinations of position: 1) both valves open; 2) valve A is 
open with valve B closed; and 3) valve B is open with valve A closed. 

Two water-cooled pressure transducers and temperature sensors were mounted at different positions along 
the straight portion of the exhaust pipe as shown in Figure 6. The measured waves from these positions will 
have a minimising influence due to the difference in pipe shapes and random noise due to turbulences. As 
mentioned earlier, the distance between the two pressures sensors was 32cm to ensure that the calculation 
would be accurate in a frequency range of 20 to 800Hz.  

Two types of fault, in several severities each, were introduced to the first cylinder of the engine. One was a 
changing of the fuel injector cracking pressure from 250bar to 150bar, 190bar and 280 bar, and the other 
was the changing of the exhaust valve open time from 51º BTDC (before top dead centre) to 40º and 20º. 
Both of these are common faults occurring in diesel engines and cause power losses and high pollutant 
emissions. Three different engine loads: 20Nm, 40Nm and 60Nm at three different engine speeds: 
1500rpm, 1800rpm and 2100rpm were tested to check the fault detection and diagnosis capabilities. 
 

 

P1 P2 

A 

B 

Figure 6: Photographs of the test facility showing valve and pressure transducer locations on the 
engine exhaust pipe. 

4.2 RESULTS AND DISCUSSION 
Figure 7(a) shows typical measured waveforms from the two sensors when the injection pressure in 
cylinder 1 is set at 280bar. The portion of the waveform due to the upward piston motion shows much 
higher amplitudes than that due to the residual pressure, and this is visibly inconsistent with the simulation 
waveforms shown in Figure 3(a). Moreover, the faulty cylinder, shown in the crankshaft angles between 0º 
and 180º, is difficult to isolate from both of the two waveforms. 

However, the incident waveform obtained by equation (5), illustrated in Figure 7(b) using a solid line, 
exhibits a more consistent profile with that in Figure 3. Compared with the measured waveforms, the 
waveform portion due to the upward piston motion is reduced considerably. This then enhances the portion 
due to the residual pressure, providing a better rapid pressure rise. As shown in Figure 7, the peak value 
becomes the highest amplitude and the waveform shape also shows a clear difference from the other three. 
From these two features, the abnormality in cylinder 1 can be separated from the other cylinders. This 
demonstrates that the proposed method is effective in suppressing reflections and improving greatly the 
quality of the waveforms. Hence, in doing so, it will enhances the performance of fault detection and 
diagnosis significantly.  
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Figure 7 Measured and reconstructed signals from 280bar injection pressure 

To produce more accurate detection results and subsequently to evaluate the performance of the detection 
method over different engine operating conditions, two key features can be derived based on the evaluation 
of the uniformity over the cylinders. If )}(),2(),1({ kxxx nnn K=nx denotes the waveform portion for 

cylinder n, which corresponds to a crankshaft angle from ( )°− 51nTDC  to ( )°+129nTDC , and is 
normalised to dimensionless unit Euclidean length, the peak value of this portion waveform is denoted as  
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where  is the maximum of the 4 peak values; and a shape index is calculated based on the 
Euclidean distance: 
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where  is the waveform portion corresponding to the maximum peak value and k is the sample 
number covering the waveform portion of cylinder n. 

pmaxx

As discussed above and in section 2, the peak value index measures the difference between the peak values 
corresponding to each cylinder. It will be close to 0 if the peak values close to each other. Otherwise it will 
be close to its maximum 1 if the difference between the peak values is very large. The shape index value is 
large when two portions of waveform is different and its maximum will be 2 when two portions of 
waveform are opposite in phase. Combining these two indices together can provide a quantitative measure 
on a two dimensional plane, which allows different types of faults under different operating conditions and 



different measurement configurations to be represented. Based on this presentation, accurate comparisons 
can be made to examine performance differences for different engine conditions. 
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Figure 8 Detection and diagnosis results from reconstructed waveforms for three different silencers 

at 1500rpm and 20Nm 

Figure 8 presents the detection and diagnosis results in the two dimensional plane for the same injector 
fault but with three different silencer characteristics i.e. three different degrees of reflections. The numbers: 
1, 2, 3 and 4 in the plot denote the cylinder number. As shown in Figure 8(a), for the three different silencer 
configurations the index values for cylinders 2, 3 and 4 are similar but differ significantly from cylinder 1, 
indicating that the combustion in cylinder number 1 is abnormal. The top three plots also show that the 
index values extracted from the incident waveform are similar for all three different reflective conditions. 
This means that the incident waveforms are influenced slightly by the reflections and hence the results are 
consistent even if different silencers are used. However, the results are unable to distinguish cylinder 1 
from the others when the reflective wave is used. This confirms that only the incident wave can be used to 
obtain reliable detection results. 

To demonstrate the detection performance of the incident waveform, the index values from the raw 
waveform of each sensor are presented in Figure 9. Comparing the results with those obtained directly 
from the sensors, it is found that the results from the two sensors are not consistent with each other because 
the index value differences are significant between three different reflection conditions even if the fault 
case is the same. Especially, the results from the third silencer configuration where many wrong 
classifications have occurred. It can therefore be concluded that the use of individual sensors for 
monitoring is not reliable.  

The proposed method was further explored to check if it was able to detect and diagnose all the different 
faults at various engine operating conditions. Figure 10 shows the results obtained for six cases: (a) normal 
exhaust valve setting, (b) a small degree retard; (c) a large degree of retard; (d) a small injection deviation, 
(e) a medium injection deviation and (f) a large injection deviation. It can be seen that the index values for 
cylinders 2, 3 and 4 are differ significantly from cylinder 1, This confirms that the method can separates all 
the faults successfully at different operating conditions. Importantly, it is also seen that the clusters drift 
gradually to the right top corner of each plot and become more spread out as the fault condition becomes 
larger, showing that the method also gives a clear indication of the fault severity.  
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Figure 9 Detection and diagnosis results from raw waveforms for three different silencers at 

1500rpm and 20Nm 
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Figure 10 Detection and diagnosis results for different fault cases at different operating conditions 



5 CONCLUSION 
From a developed acoustic model it is straightforward to gain an understanding of the waveform 
characteristics inside exhaust pipes for both normal and abnormal conditions. A fault detection and 
diagnosis scheme can thus be developed based upon the evaluation of the uniformity over different 
waveform portion corresponding to different cylinders. In addition, the understanding also permits the 
development of a two-sensor reflection suppression method. 

Experimental results have shown that the waveforms (incident waves) obtained from the measurements of 
two sensors correlate closely with simulated results. Using the peak and shape indices derived from the 
incident waveforms, accurate and reliable detection and diagnosis results are obtained in monitoring 
different types of faults under different operating conditions. As the method is developed by evaluating 
combustion uniformity over multiple cylinders, it can be implemented without the need of baseline data. In 
addition, the technique can be applied to different types of silencers, demonstrating that it forms a novel 
and yet reliable technique for engine condition monitoring using acoustic measurements of the exhaust 
system. 
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