
University of Huddersfield Repository

Mahmood, Qazafi, Thabtah, Fadi and McCluskey, T.L.

Looking at the class associative classification training algorithm

Original Citation

Mahmood, Qazafi, Thabtah, Fadi and McCluskey, T.L. (2007) Looking at the class associative
classification training algorithm. In: Proceedings of Computing and Engineering Annual
Researchers' Conference 2007: CEARC’07. University of Huddersfield, Huddersfield, pp. 1-9.

This version is available at https://eprints.hud.ac.uk/id/eprint/3705/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

LOOKING AT THE CLASS ASSSOCIATIVE CLASSIFICATION
ALGORITHM

 Q. Mahmood1, F. Thabtah1 and L.McCluskey1

1 University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK

ABSTRACT

 Associative classification (AC) is a branch in data mining that utilises association rule discovery
methods in classification problems. In this paper, we propose a new training method called
Looking at the Class (LC), which can be adapted by any rule-based AC algorithm. Unlike the
traditional Classification based on Association rule (CBA) training method, which joins disjoint
itemsets regardless of their class labels, our method joins only itemsets with similar class labels
during the training phase. This prevents the accumulation of too many unnecessary mergings
during the learning step, and consequently results in huge saving in computational time and
memory.

Keywords: Associative Classification, Classification, Data Mining, Itemset, Training Phase

1. INTRODUCTION

Information science is developing very rapidly and resulting in a significant increase in data
warehousing. The computer hardware storage capabilities have grown by leaps and bounds in
recent years, which have contributed to the large amount of information storage in almost all
fields of life. Due to the wide variety of data being captured, efficient management and quick
retrieval of information is very important for decision making. Data mining is the science of
extracting meaningful information from these large data warehouses (Witten and Frank, 2000).
Data mining and knowledge discovery techniques have been applied to several areas including,
market analysis, industrial retail, decision support and financial analysis. Knowledge Discovery
from Databases (KDD) (Fayyad, et al., 1998) involves data mining as one of its main phases to
discover useful patterns. Other phases in KDD are data selection, data cleansing, data reduction,
pattern evaluation and visualisation of discovered information (Elmasri and Navathe, 1999).

Two common data mining tasks are classification rule mining and association rule mining
(ARM). The task of ARM can be defined according to (Agrawal, 1993) as follows: Let D be a
database of sales transactions, and I = {i1, i2, …, im} be a set of binary literals called items. A
transaction T in D contains a set of non empty items called an itemset, such that T ⊆ I.
Definition: The support of an itemset is defined as the proportion of transactions in D that contain
that itemset.
Definition: An association rule is an expression , where X, Y ⊆ I andYX → θ=∩YX .
Definition: The confidence of an association rule is defined as the probability that a transaction
contains Y given that it contains X, and given as support (X∪Y)/support(X).

Given a transactional database D, the association rule problem is to find all rules that have
supports and confidences greater than certain user-specified thresholds, denoted by minimum
support (MinSupp) and minimum confidence (MinConf), respectively. In ARM, the ultimate aim is
the discovery of the most significant associations between the items in a transactional data set
(Agrawal and Srikant, 1994). This process involves primarily the discovery of so called frequent
itemsets, i.e. itemsets that occurred in the transactional data set above MinSupp and MinConf.
The discovered association rules represent useful information presented in the transactional data
set that relates to item relationships and trends. These rules are very useful and can help in
making necessary planning decisions such as item shelving (Agarwal et al., 1993).

The main difference between classification and ARM is the outcome of the rules generated.
In case of classification, the outcome is pre-determined, i.e. the class attribute. Classification also

 1

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

tends to discover only a small set of rules in order to build a model (classifier), which is then used
to forecast the class labels of previously unseen data sets as accurately as possible. On the other
hand, the main goal of ARM is to discover correlations between items in a transactional data set.
In other words, the search for rules in classification is directed to the class attribute, whereas, the
search for association rules are not directed to any specific attribute.

AC is a branch in data mining that combine’s classification and association rule mining. In
other words, it utilises association rule discovery methods in classification data sets. Many AC
algorithms have been proposed in the last few years, i.e. (Liu et al., 1998, Li et al., 2001, Thabtah
et al., 2004, Thabtah, et al., 2005), and produced highly competitive experimental results with
respect to classification accuracy if compared with that of traditional classification approaches
such as decision trees (Quinlan, 1993), probabilistic (Duda and Hart, 1973) and rule induction
(Cohen, 1995).

 The rule generation phase is the common first step in most AC algorithms, and the
number of rules generated in this phase might be very large especially when the data set is
massive or dense. The ultimate aim of introducing our new Looking at Class (LC) training
approach is to focus on the processing time taken to generate the rules. In all AC algorithms, the
process of rule generation combines disjoint itemsets irrespective of their class labels. For
example, if two itemsets have uncommon class labels, the majority of AC methods join them in
the rule discovery step. We argue in this paper that if we only merge itemsets with common class
labels, this may significantly reduce the costs associated with processing time and memory usage.

This paper is organised as follows: Section 2 defines the AC problem and discusses some of
its related works. In Section 3, we present our training algorithm and explain it using an example.
Section 4 is devoted to the experimental results and finally we conclude this paper in Section 5.

2. ASSOCIATIVE CLASSIFICATION PROBLEM AND RELATED WORK

(Thabtah, et al., 2005) defined the AC problem as: Let a training data set T has m distinct

attributes A1, A2, … , Am and C is a list of class labels. The number of rows in T is denoted |T|.
Attributes could be categorical (meaning they take a value from a finite set of possible values) or
continuous (where they are real or integer). In the case of categorical attributes, all possible
values are mapped to a set of positive integers. For continuous attributes, a discretisation method
is first used to transform these attributes into categorical ones.

Definition 1: An item can be described as an attribute name Ai and its value ai, denoted (Ai, ai).
Definition 2: The jth row or a training object in T can be described as a list of items (Aj1, aj1), …,
(Ajk, ajk), plus a class denoted by cj.
Definition 3: An itemset can be described as a set of disjoint attribute values contained in a
training object, denoted < (Ai1, ai1), …, (Aik, aik)>.
Definition 4: A ruleitem r is of the form <cond, c>, where condition cond is an itemset and cεC is
a class.
Definition 5: The actual occurrence (actoccr) of a ruleitem r in T is the number of rows in T that
match r’s itemset.
Definition 6: The support count (suppcount) of ruleitem r = <cond, c> is the number of rows in T
that matches r’s itemset, and belongs to a class c.
Definition 7: The occurrence (occitm) of an itemset I in T is the number of rows in T that match I.
Definition 8: An itemset i passes the minimum support (minsupp) threshold if (occitm(i)/|T|) ≥
minsupp. Such an itemset is called frequent itemset.
Definition 9: A ruleitem r passes the minsupp threshold if, suppcount(r)/ |T| ≥ minsupp. Such a
ruleitem is said to be a frequent ruleitem.
Definition 10: A ruleitem r passes the minimum confidence (minconf) threshold if suppcount(r) /
actoccr(r) ≥ minconf.
Definition 11: An associative rule is represented in the form: , where the antecedent is
an itemset and the consequent is a class.

ccond →

 2

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

The problem of AC is to discover a subset of rules with significant supports and high
confidences. This subset is then used to build an automated classifier that could be used to
predict the classes of previously unseen data. It should be noted that MinSupp and MinConf
terms in ARM are different than those defined in AC since classes are not considered in ARM,
only itemsets occurrences are used for the computation of support and confidence.

Classification Based on Associations (CBA) was presented by (Liu et al., 1998) and it uses
Apriori candidate generation method (Agrawal and Srikant, 1994) for the rule discovery step. CBA
operates in three steps, where in step 1, it discretises continuous attributes before mining starts.
In step 2, all frequent ruleitems which pass the MinSupp threshold are found, finally a subset of
these that have high confidence are chosen to form the classifier in step3. Due to a problem of
generating many rules for the dominant classes or few and sometime no rules for the minority
classes, CBA (2) has introduced by (Liu et al. 1999), which uses multiple support thresholds for
each class based on class frequency in the training data set. Experiment results have shown that
CBA (2) outperforms CBA and C4.5 in terms of accuracy.

Classification based on Multiple Association Rules (CMAR) adopts the FP-growth ARM
algorithm (Han et al., 2000) for discovering the rules and constructs an FP-tree to mine large
databases efficiently (Li et al., 2001). It consists of two phases, rule generation and classification.
It adopts a FP- growth algorithm to scan the training data to find the complete set of rules that
meet certain support and confidence thresholds. The frequent attributes found in the first scan are
sorted in a descending order, i.e. F-list. Then it scans the training data set again to construct an
FP-tree. For each tuple in the training data set, attribute values appearing in the F-list are
extracted and sorted according to their ordering in the F-list. Experimental results have shown
that CMAR is faster than CBA and more accurate than CBA and C4.5. The main drawback
documented in CMAR is the need of large memory resources for its training phase.

Classification based on Predictive Association Rules (CPAR) is a greedy method proposed
by (Yin and Han, 2003). The algorithm inherits the basic idea of FOIL in rule generation (Cohen,
1995) and integrates it with the features of AC. Multi-class Classification based on Association
Rule (MCAR) is the first AC algorithm that used a vertical mining layout approach (Zaki et al.,
1997) for finding rules. As it uses vertical layout, the rule discovery method is achieved through
simple intersections of the itemsets Tid-lists, where a Tid-list contains the item’s transaction
identification numbers rather than their actual values. The MCAR algorithm consists of two main
phases: rules generation and a classifier builder. In the first phase, the training data set is
scanned once to discover the potential rules of size one, and then MCAR intersects the potential
rules Tid-lists of size one to find potential rules of size two and so forth. In the second phase, the
rules created are used to build a classifier by considering their effectiveness on the training data
set. Potential rules that cover a certain number of training objects will be kept in the final classifier.
Experimental results have shown that MCAR achieves 2-4% higher accuracy than C4.5, and CBA.

Multi-class, Multi-label Associative Classification (MMAC) algorithm consists of three
steps: rules generation, recursive learning and classification. It passes over the training data set
in the first step to discover and generate a complete set of rules. Training instances that are
associated with the produced rules are discarded. In the second step, MMAC proceeds to
discover more rules that pass MinSupp and MinConf from the remaining unclassified instances,
until no further potential rules can be found. Finally, rule sets derived during each iteration are
merged to form a multi-label classifier that is then evaluated against test data. The distinguishing
feature of MMAC is its ability to generate rules with multiple classes from data sets where each
data objects is associated with just a single class. This provides decision makers with useful
knowledge discarded by other current AC algorithms.

 3

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

3. THE PROPOSED RULE DISCOVERY ALGORITHM

Since CBA adopts Apriori candidate generation method in its rule discovery step, the
discovery of frequent itemsets is accomplished by levels wise search, where in the first level,
CBA counts the support of itemsets of length one (1-itemsets), and determines whether or not
they are frequent. Then, in each subsequent level, the procedure starts with itemsets found to be
frequent in the previous level and merges them, regardless of their class labels, in order to
produce candidate itemsets in the current level. Our idea is to improve the merging of the disjoint
frequent itemsets in the CBA training phase at each level by looking at itemsets class labels. If
both itemsets are associated with the same class, join them, otherwise don’t join them.

In the training phase of CBA (Liu et al., 1998) and CBA (2)(Liu et al., 1999), we noticed after
the initial iteration that the merging of itemsets of size K in order to produce itemsets of size K+1,
is done without considering the class labels of these itemsets and thus, wasting a considerable
amount of CPU time. We aimed to decrease the computational time during the frequent itemsets
discovery phase of CBA by considering the class labels of any frequent itemset pairs prior to
merging. For instance, if A and B are two itemsets found at iteration 1, our approach considers
merging itemsets A and B only if A and B share a common class. This may improve the search
process by reducing the number of mergings during each iteration and consequently reduce the
computational time significantly, especially for large and dense data sets.

We can summarise the LC algorithm as follows:
1. Scans the database to find candidate 1- itemsets, which are then pruned using the

support threshold to generate frequent 1- itemsets
2. Candidate 1- ruleitems of the form < Ai c>, where Ai represents an itemset and

‘c’ a class label, are formed by scanning the database again.
3. Frequent 1 – ruleitems are generated, those are ruleitems which pass the MinSupp

threshold. It should be noted that there may be more than one class associated
with an itemset, in this case we consider the highest frequency class associated
with that itemset.

4. Frequent 1-ruleitems are used for the generation of candidate 2-ruleitems, with the
consideration of common class labels. In other words, only 1-ruleitems with
common class labels are joined to form candidate 2-ruleitems.

5. The process is repeated at each iteration until all the frequent ruleitem are formed.
6. After all ruleitems are found, we generate them as rules and rank them based on

confidence, support and rule length.

To explain our proposed training algorithm, consider for example Table 1 which contains
three attributes (Age, Income, Has_car) and a class label (Buy_car) and represents whether an
individual will buy a new car. Assume that MinSupp is set to 2. After the first iteration, frequent
1- ruleitems can be seen in Table 1(a). In the second iteration, disjoint frequent ruleitems are
merged based on their classes; so in this case, <Age=Senior, yes> and <Income=Middle, yes>
are merged because they have the same class, i.e., “YES”, “Senior” and “high” are also merged
in the same way. Our method does not consider joining “Senior” with “Low” since they have
uncommon classes, whereas, CBA would consider joining these itemsets without checking their
classes. Table 2 illustrates the itemsets produced by CBA from Table 1 using a MinSupp of 2,
and Table 2(a) displays the possible 2-candidate itemsets obtained after merging frequent 1-
itemsets. It is obvious from Table 2(a) that the number of merges performed by CBA is larger
that LC. The difference between two approaches LC and CBA is the consideration of class labels
before merging disjoint frequent ruleitems in LC, which is not the case in CBA. Significant
advantage of new approach LC over CBA can be clearly seen in reduction of execution times and
memory usage. This is achieved by reducing considerably the number of merging in each
iteration of LC algorithm.

 4

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

Table 1: Training data used By Both
Approaches (LC & CBA)

Age Income Has_Car Buy_car

senior middle n yes
youth low y no
junior high y yes
youth middle y yes
senior high n yes
junior high n no
senior low n no

Table 1(a): Frequent 1-
ruleitems generated By New

Approach (LC)

ITEMSET CLASS support

senior yes 2/7

middle yes 2/7

low no 2/7

high yes 2/7

y yes 2/7

n no 2/7

n yes 2/7

Table 1 (b): Candidate-2

itemsets Generated By New
Approach (LC)

Itemset Itemset CLASS

senior middle yes

senior high yes

senior n yes

senior y yes

middle n yes

middle y yes

high n yes

high y yes

low n no

 Table 2 (a): Candidate-2 itemsets generated by

CBA using frequent 1- itemsets in the previous
iteration

ITEMSET ITEMSET ITEMSET ITEMSET

 senior middle junior middle

senior high junior high

senior low junior low

senior y junior y

senior n junior n

youth middle middle y

youth high middle n

youth low low y

youth y low n

youth n high y

high n

Table 2: Frequent
1-itemsets produced

by CBA

ITEMSET support

senior 3/7

junior 2/7

youth 2/7

middle 2/7

low 2/7

high 3/7

y 2/7

n 4/7

 5

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

Table 3: The number of merging difference of all iterations of both approaches

COMPARISON OF THE NUMBER OF MERGING AT EACH STAGE(CYCLE) FOR CBA AND OR APPROACH

Number of times itemsets have been merges at each iteration
Approach Data set Iteration

1
Iteration
2

Iteration
3

Iteration
4

Iteration
5

Iteration
6

Total Number of
merging in all stages

LC* Balloon 14 12 4 30
 CBA** 14 32 16 62

LC Contact 23 28 3 54
CBA 23 44 0 67
LC Iris-Id 27 12 3 42
CBA 27 52 19 98
LC Vote 60 423 775 897 791 0 2946
CBA 2605 8832 17396 21159 8386 58438
LC Zoo 196 208 296 318 235 0 1253
CBA 196 4374 10220 15187 14875 6414 51266
LC Led7 140 14 0 0 0 0 154
CBA 140 280 560 669 432 62 2143
LC Glassd 90 66 32 9 1 0 198
CBA 90 525 885 759 325 42 2626
LC Lymph 93 631 909 642 212 0 2487
CBA 93 2585 8460 16103 18549 7381 53171
LC Sick 45 537 1173 1721 1722 0 5198
CBA 45 1103 3136 5650 6669 2829 19432
LC Cleaved 50 380 697 935 796 3 2861
CBA 50 2008 8356 21794 35928 16959 85095
LC Weather 19 20 3 42
CBA 19 44 14 77
LC*= Looking at the class CBA **= without looking at the class

4. EXPERIMENTAL RESULTS

Experiments on different data sets from UCI data collection (Merz and Murphy, 1996) were

conducted. The experiments have been performed using visual C++.net implementations for both
the CBA training step and our proposed algorithm on a 1 GHz processor machine with 256MB
memory. We compared between our rule learning algorithm and CBA rule generation method
(Agrawal and Srikant, 1994) with reference to CPU time, memory usage and more importantly the
number of times itemsets are merged in the training phase in each method. The MinSupp and
MinConf used in the experiments were set to 5% and 40%, respectively as in (Thabtah, at al.,
2004; Thabtah, et al., 2005).

The ultimate aim of the experiments is to compute the number of times itemsets have been
joined (merged) during each iteration in both CBA and our proposed method. We would like also
to investigate whether reducing the number of merging during the training phase has an impact
on processing time and memory usage (paged memory, physical memory and virtual memory). It
should be noted that we are only investigating the training phase (learning the rules) and not the
classification step (building a classifier). In other words, only the rule generation phase is
experimented in this paper.

Table 3 shows the number of times itemsets have been joined in each iteration for different
classification benchmark problems (Merz and Murphy, 1996) using the two approaches we
consider, LC and CBA. Particularly, we compute the number of times itemsets have been merged
at each iteration and for each data set we use. With the new approach, the number of itemsets
that have been joined during each iteration is reduced significantly for “Vote”, “Zoo”, “Led7”,
“Glassd”, “Lymph” and “Cleaved” data sets. LC has also reduced the number of joinings in the
training phase for the rest of the data sets.

 6

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

Furthermore, it is notable from Table 3 that the differences in the number of joinings between
LC and CBA in the later iterations of large data sets like “Lymph” and “Zoo” are significant. This is
because the number of itemsets available before any merging in the latter iterations is often
larger that of the early iterations. For instance in the “Lymph” data set, the number of times
itemsets have been merged using CBA are 2585, 8460, 16103, 18549, and 7381 for iterations,
2,3,4,5,6, respectively. Whereas, LC significantly drops the number of times itemsets have been
merged during the same iterations to 631, 909, 642, 212, and 0, respectively. In general and
according to Table 3, our approach saves many unnecessary itemsets merging for most data sets,
which therefore should reduce the processing time and memory usage.

The processing time for both approaches is recorded and presented in Table 4. As an
example, for “Lymph” data set, the execution time has reduced from 320080 ms in the CBA
approach to 26007 ms in the LC, a significant difference of 91%. It should be noted that the
values in iterations 3, 4 5, and 6 of the “Led7” data set for LC algorithm are zero’s in Table 3 due
to the fact that “Led7” data set has several different classes. In other words, after iteration 2, the
remaining itemsets have different class labels which explain the zero value, and consequently
lead to a large saving of 88% with reference to processing time.

It is obvious from the numbers displayed in Table 4 that the proposed algorithm saves a large
amount of processing time if compared to CBA. This is because LC avoids unnecessary merging
of itemsets that have uncommon class labels in iterations that follow the initial iteration. This
eventually reduces the search and consequently decreases CPU time and memory usage. The
processing time results of our approach on the ten data sets are consistently better than the CBA
approach with the exception of the “Sick” data set. After analyzing the “Sick” data set, it turns out
that it contains only two classes and the frequency of one class is much higher than the other one.
In fact, almost all the itemsets in this data set are associated with the dominant class “negative”,
which means that the majority of the itemsets that survived the MinSupp threshold at iteration 1
are associated with an identical class. Further, since our approach looks at the class labels while
merging itemsets, it will consume longer time than the CBA rule generation phase, which merges
itemsets without the need to look at class labels. This explains the high CPU time and higher
memory results for LC on this particular data set over that of CBA.

Table 5 shows the memory usage in terms of physical, paged and virtual for both the
approaches during the training phase. The memory usage of LC in terms of physical, paged and
virtual is also less for all the data sets except “Sick” than CBA because of the facts described
above.

5. CONCLUSIONS

In this paper, we propose a training algorithm called LC in AC mining that merges itemsets with
common class labels. We compare the proposed algorithm with the CBA rule generation
algorithm on ten data sets from the UCI data repository. The proposed algorithm has shown good
results, especially in terms of number of mergings in each iteration and execution times for almost
all the data sets we consider. The physical memory usage is also reduced for most the data sets
used in the experimental section. For future development, the LC classifier approach will be
tested and validated against further test data sets. This new approach of merging itemsets can be
used in most rule-based associative algorithms, to improve the execution times and to decrease
the memory usage.

 7

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

Table 4: Execution Time (milliseconds)

Data set LC CBA Difference (%)
Balloon 140 992 85.8871

Contact 160 241 33.60996

Iris-Id 181 190 4.736842

Vote 244612 770828 68.26633

Sick 1316453 550765 -139.023

Cleved 359146 1009219 64.41347

Led7 8052 68999 88.33027

Zoo 20229 164697 87.71744

lymph 26007 320080 91.87484

weather 140 151 7.284768

glassd 1271 3054 58.38245

 Table 5: Physical Memory Usage (bytes) and paged memory virtual memory
Physical Paged Virtual

Data set LC Apriori LC

Apriori

LC

Apriori

Balloon

3432448

3440640 6307840 6307840 82763776 82763776

Contact

2719744 3432448 3846144 7340032 69636096 82763776

Iris-Id 3428352 3432448 6307840 6307840 82763776 82763776

Vote 12066816 12103680 14458880 14462976 130703360 130703360

Sick 12070912 11382784 14450688 13963264 130678784 126967808

Cleved 12075008 12107776 14458880 14458880 131203072 130678784

Led7 11313152 11354112 13946880 13971456 126418944 126967808

Zoo 12013568 12029952 14446592 14446592 130678784 130703360

lymph 12029952 12038144 14454784 14450688 130703360 130703360

weather 3432448 3440640 6307840 7340032 82763776 82763776

glassd 10354688 11476992 13750272 14254080 126078976 129814528

REFERENCES

1. Agrawal, R., Amielinski, T., and Swami, A. (1993) Mining association rule between sets of items

in large databases. Proceedings of the ACM SIGMOD International Conference on
Management of Data, (pp. 207-216). Washington, DC.

2. Agrawal, R., and Srikant, R. (1994) Fast algorithms for mining association rule. Proceedings of
the 20th International Conference on Very Large Data Bases (pp. 487-499). Santiago, Chile.

3. Cohen, W. (1995) Fast effective rule induction. Proceedings of the 12th Internaional Conference
on Machine Learning, (pp. 115-123). CA, USA.

4. Duda, R., and Hart, P. (1973) Pattern classification and scene analysis. John Wiley & son, 1973.

 8

 School of Computing and Engineering Researchers’ Conference, University of Huddersfield, Dec 2007

 9

5. Elmasri, R., Navathe, S. (1999) Fundamentals of database systems, Fourth Edition, Addison-
Wesley.

6. Fayyad, U., Piatetsky-Shapiro, G., Smith, G., and Uthurusamy, R. (1998) Advances in
knowledge discovery and data mining. AAAI Press, 1998.

7. Han, J., Pei, J., and Yin, Y. (2000) Mining frequent patterns without candidate generation.
Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, (pp.
1-12). Dallas, Texas.

8. Li, W., Han, J., and Pei, J. (2001) CMAR: Accurate and efficient classification based on
multiple-class association rule. Proceedings of the ICDM’01 (pp. 369-376). San Jose, CA.

9. Liu, B., Hsu, W., and Ma, Y. (1999) Mining association rules with multiple minimum supports.
Proceedings of the fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, (pp.337-341). San Diego, California.

10. Liu, B., Hsu, W., and Ma, Y. (1998) Integrating classification and association rule mining.
Proceedings of the KDD, (pp. 80-86). New York, NY.

11. Merz, C., and Murphy, P. (1996) UCI repository of machine learning databases. Irvine, CA,
University of California, Department of Information and Computer Science.

12. Quinlan, J. (1993) C4.5: Programs for machine learning. San Mateo, CA: Morgan Kaufmann.
13. Thabtah, F., Cowling, P., and Peng, Y. (2005x2) MCAR: Multi-class classification based on

association rule approach. Proceeding of the 3rd IEEE International Conference on Computer
Systems and Applications (pp. 1-7).Cairo, Egypt.

14. Thabtah, F., Cowling, P., and Peng, Y. (2004x1) MMAC: A new multi-class, multi-label
associative classification approach. Proceedings of the Fourth IEEE International Conference
on Data Mining (ICDM ’04), (pp. 217-224). Brighton, UK. (Nominated for the Best paper award).

15. Witten, I., and Frank, E. (2000) Data mining: practical machine learning tools and techniques
with Java implementations. San Francisco: Morgan Kaufmann.

16. Yin, X., and Han, J. (2003) CPAR: Classification based on predictive association rule.
Proceedings of the SDM (pp. 369-376). San Francisco, CA.

17. Zaki, M., Parthasarathy, S., Ogihara, M., and Li, W. (1997) New algorithms for fast discovery
of association rules. Proceedings of the 3rd KDD Conference (pp. 283-286). Menlo Park, CA.

	LOOKING AT THE CLASS ASSSOCIATIVE CLASSIFICATION ALGORITHM
	 Q. Mahmood1, F. Thabtah1 and L.McCluskey1

