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Abstract  

Recent research into tent map (TM) based analogue to digital converter (ADC) architectures, 
has demonstrated that practical implementations are able to detect small analogue signal 
variations over relatively large voltage ranges. However, the non-ideal nature of the 
fundamental TM function slope gain (μ) affects the absolute accuracy and the digital output 
precision. Although there has been a successful attempt at compensating for non-ideal μ, the 
high levels of computational resources required makes realising embedded digital system 
implementations, within a TM-based ADC, unfeasible. This in turn limits the prospect of real-
time operation and thus viable commercial TM-based ADC devices. 

This work aimed to further develop TM-based ADC performance, to enable more precise and 
accurate real-time operations, within a data acquisition (DAQ) system, for an ultrasonic 
measurement system (UMS) application. To facilitate this, an embedded digital 
implementation of a real-time processing µ compensation algorithm (µCA) was required to 
adjust the incorrect digital output signal of a TM-based ADC implementation towards the ideal 
digital output response for a given analogue input signal. To aid analysis of how non-ideal μ 
affects the TM-based ADC output accuracy, a mathematical model of a TM-based ADC, 
emulating an electronic implementation operational performance, was created. A novel µCA 
was then developed, with further compensation for non-ideal behaviours within the 
electronic circuit implementations of the TM function. Additionally, a VHDL implementation 
(for configuring a field programmable gate array (FPGA)) enabled the embedment of a digital 
system performing real-time μ compensation within a TM-based ADC. This digital system was 
tested using functional simulation and an electronic 8-bit TM-based ADC implementation.  

The mathematical model of a TM-based ADC structure, comprising 7 cascaded TM and 
comparator stages implemented with a 12-bit commercial off the shelf (COTS) ADC digitising 
the final TM stage output, demonstrated that the bit accuracy improved from 5.81 bits 
uncompensated, to 15.68 bits after employing the µCA. This established that the proposed 
TM-based ADC met the UMS DAQ system specification. With the practical implementation, 
which was prototyped using discrete components, a bit accuracy improvement from 4.19 bits 
to 5 bits was observed. Both the functional simulations and practical experiments employing 
the VHDL/FPGA implementation of the µCA proved the concept of a standalone TM-based 
ADC (comprising 7 cascaded TM and comparator stages with a comparator digitising the final 
TM stage output) with embedded, real-time µ compensation was achievable.  
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algorithm. 

µ±stage µ+ and µ- TM slope gains for each TM stage. 

µADC µ of a TM-based ADC. 

µalgorithm µ employed by the algorithm. 

µc Employed by the SA DM approximation method. The actual TM 
gain of the TM circuit. 

µCA µ compensation algorithm. 

µCA-1 Fundamental µ compensation algorithm analysed in this 
research. 

µCA-2 Enhanced version of the µ compensation algorithm (µCA) 
analysed in this research. Enhancements enable the µCA to 
accommodate non-matching TM stage and slope gain.  

µCA-3 Final enhanced version of the µ compensation algorithm (µCA) 
analysed in this research. Enhancements enable the µCA to 
accommodate non-matching TM stage and slope gain, as well 
as the final TM stage output being digitised by a multibit sub-
ranging COTS ADC. 

µCS µ compensation system 
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µo Employed by the SA DM approximation method. The µ 
employed in the equation to determine the ideal DM values. 

µstage TM-stage µ. 

1-D One dimensional. 

ADC Analogue to digital converter [4]. 

b Equivalent binary code representation of the TM-based ADC 
digital output. 

CBC Compensated binary code. Produced by the µCA-1, µCA-2 and 
µCA-3. 

COTS Commercial off the shelf. 

D Digital output of an ADC.  

DAC Digital to analogue converter [4]. 

DAQ Data acquisition, the process which samples and converts the 
analogue signal (representing a physical phenomenon) into 
digital words [5].  

DM Difference measure. These are values employed by µCA-1,  
µCA-2 and µCA-3 (for each bit of the TM-based ADC digital 
output) to compensate for non-ideal µ. 

DMbinary DM values in binary code format. 

DMmod1 First modification in determining DM values for µCA-2 and  
µCA-3. 

DMmod2 Second modification in determining DM values for µCA-2 and  
µCA-3. 

DMtheoretical Theoretical DM values represented as non-integer, decimal 
numbers. 

DNL Differential non-linearity, which is the maximum deviation of 
the step width from the ideal value of 1 LSB [6].  

DV Difference value. This value (employed by µCA-1, µCA-2 and 
µCA-3) provides the overall magnitude and direction of the 
cumulative difference between the ideal TM-based ADC output 
and the actual TM based ADC output due to non-ideal µ output. 

DVpolarity  Polarity of DV. 
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ECMPG Engineering Control and Machine Performance Research 
Group. A research group based at the University of 
Huddersfield. 

ENOB Effective number of bits. This represents the number of bits 
that an ADC can accurately represent analogue input signals as 
digital words [4, 7]. 

FFT Fast Fourier transform [8]. 

fin Input frequency. 

FPGA Field programmable gate array. This is a device consisting of a 
two-dimensional array of logic cells which can be configured to 
produce highly complex digital electronic circuits [9]. 

fsample Sampling frequency. 

GCO Gray code output from the TM-based ADC which is employed 
by the µCA-1, µCA-2 and µCA-3 to establish the DV to be 
applied to the digital output due to non-ideal µ. 

gn Polarity of the TM digital output on the nth iteration (or stage 
if considering a series TM-based ADC configuration). 

HDL Hardware descriptive language [10]. 

IC Integrated circuit [11]. 

INL Integral non-linearity. This is the greatest divergence from 
either the line of best fit through the digital output versus 
analogue input plot (best straight-line INL), or the line through 
the two end-points of this plot (end-point INL). The latter of 
these two INL measurements provides the worst-case scenario, 
as the method always provides the greater deviation from the 
line [6].   

LSB Least significant bit [12] 

M A value employed to represents the number of signal cycles, in 
order to calculate the input frequency of a sinusoidal signal to 
supply an ADC when performing dynamic testing. The value 
should be an odd integer number in order to minimise spectral 
leakage [7]. 

MSB Most significant bit [12]. 
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N A value employed, to represents the number of data points 
employed by the FFT, in order to calculate the input frequency 
of a sinusoidal signal to supply an ADC when performing 
dynamic testing [7]. 

n Iteration (or TM stage) number of a TM-based ADC. When n = 
0, this represents the initial input value [13]. 

PCB Printed circuit board [11] 

R ADC resolution. 

r Resolution of the binary DM values. 

SA Scalar approximation method. Method developed to 
approximate the DM values employed by the µCA-1, in order to 
reduce resource requirements if DM values required 
calculating within the FPGA.  

SAR ADC Successive approximation register ADC. 

SDM Sign of difference measure. This provides the direction of the 
difference, for each bit of the TM-based ADC, between the ideal 
output and that due to the non-ideal µ for each TM stage. 

SFDR Spurious free dynamic ratio, which is the difference in 
magnitude between the signal (the fundamental peak) and the 
harmonic with the highest magnitude [14].   

SINAD or SNDR Signal to noise and distortion ratio, which is the same as SNR 
except the signal power is compared to the magnitudes of the 
noise and harmonics [4, 15]. 

SL&EA Straight-line and error approximation method. Method 
developed to approximate the DM values employed by the 
µCA-1, in order to reduce resource requirements if DM values 
required calculating within the FPGA. 

SNR Signal to noise ratio, which is the ratio between the signal 
power and the average noise power (excluding the power 
within the signal harmonics) [4]. 

THD 
 

Total harmonic distortion, which is the magnitude of the 
harmonics within a signal summed together [14]. 

TM Tent map, which is a chaotic non-linear, folding function [16]. 
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TM-ARCHα-n The name given to a TM-based ADC structure. The design 
consists of n TM stages and employs n+1 comparators. 

TM-ARCHβ-n-Rsub-ranging The name given to a TM-based ADC structure. The design 
consists of n TM stages, and employs n comparators, as well as 
a sub-ranging ADC on the final TM stage output (the resolution 
of this ADC is represented by Rsub-ranging). 

UBC Uncompensated binary code. This is the binary code equivalent 
of the GCO employed by the µCA-1, µCA-2 and µCA-3. The 
determined DV is applied to this binary code to compensate for 
non-ideal µ within the TM-based ADC. 

UMS Ultrasonic measurement system. 

VHDL Very high-speed integrated circuits Hardware Description 
Language, which is a language that enables digital electronic 
systems to be described [17]. 

Vref Partition point voltage. 

x0 Input signal to a chaotic map or system, such as a TM-based 
ADC [18]. 

xn Output signal from the nth iteration (or TM stage) of a TM-
based ADC. 

Δμ+ Deviation from positive TM slope gain. 

λ Lyapunov exponent, which is a measure of sensitivity 
dependence a chaotic map might have on the initial conditions 
[19]. 
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Terminology 

Accuracy The degree of proximity to the actual value [20]. 

Aliasing The effect of a higher frequency ADC input signal appearing as a lower 
frequency signal due to under-sampling [21]. 

Aperiodic A system which does not produce a periodically repeating output [22]. 

ADC architecture An overview description of how a certain class of ADCs with similar 
operation function [4]. 

Bandwidth The range of input frequencies an ADC can accept [23]. 

Bernoulli map A type of chaotic map [3]. 

Bifurcation diagram Final state plot of a chaotic map over a range of control parameters 
(e.g., µ for a TM) [22]. 

Binary DM values DM values in binary code format. 

Bit accuracy A measure of the minimum number of bits for which an ADC can 
accurately represent an analogue input as a digital word. Determined 
using the following equation. 
 

𝑏𝑖𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑅 − 𝑙𝑜𝑔2⌈𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑚𝑎𝑥⌉ − 1 
 

Where differencemax is the maximum absolute quantisation error when 
the ADC is supplied a ramp signal whose amplitude extends across the 
entire valid input range. R is the ADC resolution. 

Bounded When the maximum difference between two points within the output of 
the system is less than infinity [22]. 

Chaotic Describes a system which is deterministic and follows simple rules, but 
the behaviour is non-linear and complex [19]. 

Chaotic behaviour A system which is deterministic and follows simple rules, but the 
behaviour is non-linear and complex [19]. 

Chaotic flow A mathematical function representing a continuous chaotic system [19]. 

Chaotic map A mathematical function representing a discrete chaotic system [19]. 

Chaotic system A system which exhibits chaotic behaviour [19]. 
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Comparator An electronic component which compares the amplitudes of two 
analogue signals and outputs a digital signal whose level is dependent 
on which input has the lower amplitude [23]. 

Comparator hysteresis  A trait where two triggering levels enable the switching of the 
comparator output to be delayed [23]. 

Continuous system Refers to a system which can be defined for all of time during a certain 
period [24]. 

Conversion speed The time taken to convert a data sample from one format to another 
[25]. 

Data conversion  The process of converting data from one format to another [4]. 

Data converter A device which converts data from one format to another [4]. 

Decimation The process of deleting samples [26]. 

Deterministic Produces the same output for a given input [22].  

Difference equations  Mathematical method of describing the behaviour of a discrete, 
recursive system [19]. 

Discrete system Refers to a system which can only be defined at set intervals during a 
certain period [24]. 

Dual-slope ADC A type of integrating ADC architecture [27]. 

Dynamic performance  The behaviour of the ADC being supplied considerably varying input 
signals [4]. 

End-point INL See INL. 

Feedback 
configuration 

Type of TM-based ADC configuration consisting of a single TM, whose 
output signal is fed back and is supplied as the next input signal. 

Folding Process of bending the signal over itself. 

Full-scale error The difference between the maximum digital output of the actual and 
ideal ADC [28]. 

Gain error The difference between the full-scale error and the offset error [28]. 

Gain factor The inverse product of the current and preceding µ±stage values 
employed to establish a given digital output produced by the TM-based 
ADC. 
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Gray code  A way of representing digital data where adjacent values vary by only 
one bit [9]. 

Gray-code algorithmic 
ADCs 

A type of ADC which employs folding and amplification circuits as part of 
the data conversion process, and outputs the digital data in Gray code 
format [29]. 

Integrating ADC A type of ADC that employs integrator circuits as part of the analogue to 
digital conversion process [27]. 

Latency Time taken to complete the data conversion process [4]. 

MATLAB A software platform, with a dedicated programming language, used for 
numerical computing and mathematical model development [30]. 

Missing codes Codes which an ADC does not produce, out of all possible digital 
combinations, when the input analogue signal is swept across the valid 
input range [28]. 

ModelSim A software programme for simulating HDL designs [31]. 

Monotonic An ADC is monotonic when the DNL is within the threshold of ± 1 LSB. 

Multi-slope ADC A type of integrating ADC architecture [27]. 

Nyquist frequency Half of the sampling frequency of an ADC [32]. 

Offset error Corresponds to the minimum input required to provide a zero output 
code [15], or where the transfer characteristic end-point plot of the ADC 
intercepts the axis representing the digital output [4]. 

Operational current 
conveyors 

A device which transfers current from one impedance level to another 
[33]. 

Oversampling When a signal is being sampled at a rate larger than double the ADC 
bandwidth [8]. 

Partition point The minimum input signal amplitude which causes the TM to transition 
from one difference equation to the other [34]. 

Pipelined ADC  A type of ADC architecture [35]. 

Precision The degree of repeatability and reproducibility of a reading [20]. 

Quantisation error  Also referred to as quantisation noise. The difference in LSBs between 
the equivalent ADC output voltage versus the input voltage [4, 36]. 
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Resolution The number of bits which are employed in the digital representation of 
the analogue sample [8]. 

Sampling speed The rate at which a signal can be sampled [25]. 

Series configuration Type of TM-based ADC configuration consisting of multiple TM circuits, 
which are connected in series.  

Sigma delta ADC A type of ADC architecture [37]. 

Spectral leakage When discontinuities at the ends of the sinusoidal signal, which an FFT is 
being performed on, causes the peak in the resulting spectrum to spread 
into adjacent frequency bins and affect the spectral distribution [8]. 

Static performance  The behaviour of the ADC when the amplitude of the input signal is 
slowly changing. 

Step size The minimum change in the analogue input signal which an ADC can 
detect and is also the equivalent of the LSB in the digital output [38]. 

Sub-ranging ADC A general purpose ADC used within a data conversion process [15, 39]. 

Theoretical DM values Theoretical DM values represented as non-integer, decimal numbers. 

Time-interleaved ADC A type of ADC architecture which switches between parallel sub-ranging 
ADCs in order to increase the sampling speed [39]. 

Tolerances The range which the value or dimension of a component must lie [11]. 

Transconductance 
amplifier 

An amplifier which takes an input voltage signal and outputs a current 
signal [23]. 

Ultrasonic Concerns frequencies which are in the acoustic bandwidth above the 
audible limit [40]. 
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1 Introduction  

Highly precise and high accurate signal measurement systems are essential in order to 

repeatably detect small signal variations across an input signal range with a high degree of 

confidence. Furthermore, signal measurements are generally within the analogue domain, so 

need converting to the digital domain to enable efficient storage, analysis or digital post 

processing. This requires analogue to digital converters (ADCs) with sufficient resolution to 

acquire and convert the minimum variation needing to be detected. 

This work considers an alternative ADC architecture for employment within measurement 

systems that need to detect small signal variations. This architecture employs folding 

(bending a signal over itself) and amplification circuits, based on the tent map (TM) function, 

as part of the analogue to digital conversion process. Previous research has proven that TM-

based ADCs are a viable option for measurement systems requiring small signal variations to 

be detected across the entire valid range of signal amplitude. However, the inherent, non-

ideal amplification gain effects of a practical device reduce the accuracy of the digital output 

codes produced from such an ADC. A solution, proposed to compensate for these errors, 

requires unfeasibly high levels of computational resources to enable a compensation system 

to be embedded within the device [41, 42]. 

This work details an enhanced solution to this problem, through the development of a TM-

based ADC, with an embedded compensation system which employs a novel compensation 

algorithm. This algorithm requires fewer computation resources than previous approaches 

and enables signal sample compensation during each TM-based ADC conversion cycle, thus 

allowing real-time operation. By developing the ADC for a specific type of measurement 

system application, this research also assesses the viability of employing this TM-based ADC, 
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with an embedded compensation system, within other high precision and high accuracy 

measurement systems. Further enhancements incorporated into the compensation 

algorithm will enable the development of non-ideal amplification gain compensation systems 

for different TM-based ADCs configurations. This will further advance the potential 

employment of such devices in a wide range of applications, where consistently detecting 

small signal variations, across the whole valid signal range, is required. 

 

1.1 Background  

Many signal measurement systems needing to produce repeatable measurements with a low 

degree of error require high precision (high degree of repeatability and reproducibility) and 

high accuracy (high degree of proximity to the actual value) [20] signal measurement. This 

requires the measurement systems to be capable of reliably detecting small variations within 

the signal being measured. 

If these signal measurements of an analogue signal also require storing, analysis or digital 

post-processing, then the signal measurements need converting to the digital domain. When 

the measured physical phenomenon needs displaying or transmitting as digital values, 

measurement systems require data acquisition (DAQ). DAQ is the process which samples and 

converts the analogue signal (representing a physical phenomenon) into digital words [5]. The 

measured value tends to be represented by an analogue output signal from a sensor, 

therefore the DAQ system employed by the measurement set-up requires an ADC [4] to 

perform the conversion to the digital domain [5]. 
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1.2 Analogue to Digital Converters 

When assessing the performance of an ADC, there are four categories which are considered:  

• resolution, which refers to the number of bits which are employed in the digital 

representation of the analogue sample [8];  

• speed, which concerns both the sampling speed (the rate at which a signal can be 

sampled) [25] and the conversion speed (the time taken to convert a sample to the 

digital domain) [25];  

• power consumption; and  

• the silicon die area required to fabricate the ADC if an integrated circuit (IC) [11] is 

being produced [43].  

Ideally the performance of an ADC should simultaneously achieve:  

• high resolution to enable small signal variations to be represented in digital format;  

• high sampling speed to allow high frequency input signals to be acquired and 

converted;  

• high conversion speeds, so digital data can be obtained and employed faster; low 

power consumption in order to reduce energy requirements, as well as methods of 

heat dissipation, which minimises costs; and  

• low fabrication area, which will keep fabrication costs down [43].  

Simultaneously meeting all these requirements is challenging, especially when approaching 

the current extremes of any one requirement; being at such a point often has a negative effect 

on other characteristics [43] and can increase cost. 
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For measurement systems to be able to detect smaller signal variations over a larger signal 

range, the ADC employed needs to have a sufficient resolution to distinguish those variations. 

The ADC should also have a linear response when detecting those variations across the whole 

signal range. The minimum change in the analogue input signal which an ADC can detect, and 

is also the equivalent of the least significant bit (LSB) in the digital output, is known as a step 

size [38]. (1-1) details how the step size can be determined from the ADC resolution (R) and 

the full-scale input signal range which an ADC can accept [15]. An increase in the valid input 

signal range requires a higher resolution ADC in order to maintain the same step size. 

 

 
𝐿𝑆𝐵 = 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 =

𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑛𝑔𝑒

2𝑅
 (1-1) 

 

Simultaneously achieving high resolutions and one of high speeds, low power, low cost or low 

area of fabrication is challenging and results in trade-offs in the other categories. For example, 

ADCs which simultaneously achieve high resolutions and high sampling speeds are more 

expensive than those with lower sampling speeds, as illustrated in Figure 1-1 which compares 

the normalised cost of ADCs of different resolution with the fastest and slowest sampling 

speeds [44-55]. Also the majority of higher resolution ADCs currently on the market employ 

architectures (a description of the circuit operation) [17] which hinder the conversion speed, 

as the data conversion process establishes each bit (or a small group of bits) in order from the 

most significant bit (MSB) to the LSB, rather than concurrently. This in turn impacts the ADC 

latency (time taken to complete the data conversion process) [4], and often the sampling 

speed if the architecture requires one sample to be fully converted to the digital domain prior 

to the next sample being acquired. 
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Figure 1-1: Comparing sampling speed, cost and resolution of ADCs available on the market [44-55]. 

 

1.3 Overview of Tent Map Based ADCs 

Alternative ADC architectures, other than those found in commercial off the shelf (COTS) 

ADCs, which employ folding functions called tent maps (TM) within the data conversion (in 

this scenario, the analogue signal samples are converted to the digital domain) [4] process 

have been explored. The TMs within these type of ADC architectures fold (in effect bend the 

signal over itself) and amplify the sampled analogue signal. The digital representation is then 

determined by feeding the folded signals through comparators1 or sub-ranging ADCs2 [13, 16, 

56, 57]. 

 
1 Comparators are electronic components which compares the amplitudes of two signals and outputs a digital 
signal whose level is dependent on which input has a lower amplitude [23].  
2 Sub-ranging ADCs are general purpose ADCs used within the analogue to digital data conversion process [39]. 
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A TM is a discrete, one-dimensional (1-D) mathematical model representing one type of 

chaotic system [58]. A chaotic system is deterministic and follows simple rules, but the 

behaviour is non-linear and complex [19].  A TM is summarised by the difference equations 

(a mathematical method of describing the behaviour of a discrete, recursive system) shown 

in (1-2) [19].  

 

 
𝑥𝑛+1 = {

𝜇𝑥𝑛
𝜇(1 − 𝑥𝑛)

  when    
𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 
(1-2) 

  

xn and xn+1 represent the input and output of the TM respectively (the original input, x0, is 

referred to as an initial condition), whilst n signifies the number of iterations. µ is the TM gain 

and the TM will not exhibit chaotic behaviour if µ > 2 or ≤ 1 (as will be explained in more detail 

in Section 2.3 [3]). The value of xn where the TM transitions between the two difference 

equations is known as the partition point [34]. When the TM exhibits chaotic (1 < µ ≤ 2) 

behaviour both xn and xn+1 are bounded between 0 and 1 [41, 42]. If µ < 1, the TM output goes 

towards zero with each iteration, whilst when µ > 2 the TM output becomes unbounded and 

goes towards -∞. 

Analysis of research, conducted over the past 8 years [13, 16, 56, 57], suggests that TM-based 

ADCs are well-suited for detecting small variations within signals with a wide range of input 

signal amplitudes [16]. This trait, which is desired in signal measurement systems, is due to 

the TMs effectively zooming into the analogue sample during the data conversion process 

[16]. Research also suggests that different configurations of the TM-based ADC architecture 

can be employed reduce different combinations of trade-off costs [13, 16, 56, 57], which 

increases the potential of the architecture being employed to a wider range of applications. 
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Berberkic developed two types of TM-based ADCs which measured and converted the 

difference in magnitude between two successive samples to the digital domain (rather than 

representing each analogue sample as an absolute digital value). One of these ADCs had the 

TMs arranged in a series configuration and employed an inexpensive COTS 10-bit sub-ranging 

ADC to acquire the TM output signals and determine the digital output. The prototype of this 

configuration was capable of detecting 5 µV changes in successive samples (although the 

error was > 10% with variations < 50 µ V), over a relatively large voltage range of 0 – 10 V (the 

equivalent of 20 bits resolution) [16], which highlighted the ability to achieve sufficient 

resolutions to detect small signal variations. Configuring the TMs in series also enabled higher 

sampling speeds, which were less restricted by the conversion speed, as the next analogue 

sample was acquired after the preceding sample had been processed by the first TM stage, 

and the TM output signal acquired by the corresponding sub-ranging ADC [16]. This TM-based 

ADC was also inexpensive to prototype, when compared to ADCs fabricated onto silicon, as 

the integral TMs blocks were constructed from discreet, COTS components [16]. 

The other TM-based ADC configuration proposed by Berberkic also achieved sufficient 

resolution to detect small signal variations, although not to the same level as the series 

configuration [16]. This configuration employed a single TM circuit that fed the output signal 

back to the input and used a sub-ranging ADC to convert the folded signal to the digital 

domain in order to determine the difference between successive samples. The prototype of 

this configuration detected 50 µV changes in successive samples (although the error was  

> 10% with variations < 200 µ V), over a range of 0 – 10 V, thus achieving a resolution of 17 

bits [16]. The small reduction in resolution is reimbursed in terms of smaller circuit area (if 

this TM-based ADC were to be fabricated onto silicon) and hence cost, because the feedback 

configuration required less circuitry than the series configuration. 
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Upton developed a TM-based ADC, which employed comparators in place of sub-ranging 

ADCs, producing a simpler, but lower resolution, design. Unlike Berberkic [16], the TM-based 

ADC determined the absolute digital representation of each sample through the addition of 

a single comparator at the input of the first TM stage. This design reduced power consumption 

by implementing a trigger circuit which only enabled the clocking signals to the ADC when a 

signal was present. The design also enabled the next sample to be acquired after the MSB of 

the digital representation had been determined, enabling higher sampling speeds which were 

less restricted by the conversion speed. This meant that several additional samples were 

acquired (and conversion started) during the time taken to convert the first sample to the 

digital domain. The ADC devised by Upton was also inexpensive to prototype, being 

constructed out of discreet components [56, 57]. 

Finally, Liu et al. developed a TM-based ADC which employed a single TM circuit in a feedback 

configuration [13]. Liu et al. employed a comparator to determine each bit of the digital 

representation, before the signal went through the TM, in order to produce the digital 

representation of the individual samples. The sampling rate was restricted by the conversion 

speed, as the analogue sample had to be completely digitised before the next sample was 

acquired. However, this variation of the TM-based ADC required less circuitry as only one TM 

stage and comparator were required, reducing the silicon area required for fabrication. This 

enabled multiple versions of this ADC variation to be employed on an IC to allow parallel 

sampling of a tactile sensor outputs without becoming too costly in terms of the circuitry and 

the fabrication area required [13]. 
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In order to establish the benefits and trade-offs of the different TM-based ADC structures 

observed in literature, a comparison through ranking was undertaken as part this research. 

Table 1-1 compares the resolution, sampling speed, conversion speed and potential silicon 

area the four TM-based ADCs discussed above would require, if fabricated in silicon. How 

each ADC was ranked was based on the information provided in the literature, however some 

sources did not declare the sampling speed, potential fabrication area, conversion speed and 

power consumption information. With the former three points, the relative performance in 

these two categories was estimated from the TM-based ADC circuitry. None of the literature 

provided enough information to determine the power consumption of most of the TM-based 

ADCs to provide a meaningful comparison, so this category was omitted in the comparison. 

 Ranking TM-based ADCs based on Relative Performance 

 Resolution 
(1 = lowest  
5 = highest) 

Sampling 
Speed 
(1 = slowest  
5 = fastest) 

Conversion 
Speed3 
(1 = slowest  
5 = fastest) 

Fabrication 
Area3 

(1 = largest  
5 = smallest) 

Berberkic's Series 
Configuration 

5 2 2 1 

Berberkic's Feedback 
Configuration 

4 1 1 4 

Upton's Series 
Configuration 

1 5 5 3 

Liu et al's feedback 
configuration 

1 34 3 5 

TM-ARCHβ-7-12 ADC 
presented in this 
work 

3 5 5 2 

Table 1-1: Comparison of the TM-based ADCs observed in literature. Aided by [13, 16, 56, 57]. 

 

 
3 This information was not provided in the literature [13, 16, 56, 57] and was estimated from the TM-based ADC 
structure. 
4 This information was not provided in the literature [13] and was estimated from the TM-based ADC structure. 
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1.4 Tent Map Based ADC Output Accuracy and Tent Map Gain 

All the TM-based ADCs found in literature, except for the examples developed by Berberkic 

[16], convert an analogue sample to the digital domain using the same method [13, 56, 57]. 

The input signal (x0) is compared with the partition point voltage using a comparator to 

determine the MSB. Then the amplitude of the output signals after each TM stage are also 

compared to the partition point voltage to determine the remaining bits. (1-3) demonstrates 

this process [13, 42, 56, 57].   

 

 
𝐷(𝑛) = {

0, 𝑥𝑛 ≤ 0.5
1, 𝑥𝑛 > 0.5

 (1-3) 

 

Where n represents the TM iteration for a feedback configuration (or TM stage output for a 

series configuration) and D(n) represents the equivalent bit produced for xn (the TM iteration 

output voltage, or the original input signal if n equals 0). The format of the digital data 

produced by the TM-based ADC is in Gray code representation [9].  

TM-based ADCs found in literature rely on amplifying the folded signals back to full-scale, thus 

the µ must be exactly two. A µ less than 2 affects the output accuracy of the TM-based ADC, 

and this can be demonstrated using a theoretical MATLAB model of a series configuration of 

a TM-based ADC developed for this research (developed script given in B.1.1). Figure 1-2 and 

Figure 1-3 presents the input signal (x0) and the output of three TM stages, when µ = 2 and 

1.9 respectively, when x0 is set at different amplitudes.  

These plots highlight how a difference in the value of µ results in the TM producing a different 

output for a given x0 with each TM stage. This includes the amplitude of the maximum and 

minimum points produced by the TM outputs, when supplied a ramp input signal. Where the 
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TM outputs cross the partition point voltage differs depending on the µ employed, as 

highlighted in Figure 1-4 which is a plot of the third TM stage outputs when µ = 2 and µ = 1.9, 

along with the partition point voltage. 

 

 

Figure 1-2: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-based ADC, 
when µ = 2. 

 

 

Figure 1-3: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-based ADC, 
when µ = 1.9. 
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Figure 1-4: Plot comparing output signals of the third TM stage when µ = 2 and µ = 1.9. 

 

Table 1-2 summarises the equivalent Gray code output produced by the theoretical TM based 

ADC (which has a resolution of 4 bits) for µ = 1.9 and 2, when 0 ≤ x0 ≤ 1 V (in increments of 

0.1 V). The rows highlighted in red show when the digital representation differs for the two µ 

values used, caused by the value of µ changing where the TM outputs cross the partition point 

voltage. These points are also highlighted using double ended arrows on the plot presented 

in Figure 1-4. 
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 Two values of µ demonstrating the impact on the output accuracy of a 4-bit 
TM-based ADC 

µ = 2 µ = 1.9 

x0 (V) D(0) D(1) D(2) D(3) D(0) D(1) D(2) D(3) 

0 0 0 0 0 0 0 0 0 

0.1 0 0 0 1 0 0 0 1 

0.2 0 0 1 1 0 0 1 0 

0.3 0 1 1 0 0 1 1 0 

0.4 0 1 0 1 0 1 0 1 

0.5 0 1 0 0 0 1 0 0 

0.6 1 1 0 1 1 1 0 1 

0.7 1 1 1 0 1 1 1 0 

0.8 1 0 1 0 1 0 1 1 

0.9 1 0 0 1 1 0 0 1 

1 1 0 0 0 1 0 0 0 

Table 1-2: Gray code output of a 4-bit TM-based ADC when µ = 2 and 1.9. 

 

Certain output codes given for set values of x0  are different when µ ≠ 2, thus a deviation from 

the ideal µ significantly affects the accuracy of the TM-based ADCs [1]. Figure 1-5 presents a 

plot highlighting how reducing the µ employed in a theoretical 16-bit TM-based ADC results 

in the equivalent binary output of the ADC producing a less accurate representation of the 

original input signal. This is due to the generation of incorrect digital output codes and missing 

codes (an ADC with no missing codes presents all possible digital combinations when the input 

analogue signal is swept across the valid input range [28]). 
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Figure 1-5: Graphs showing the effects non-ideal µ has on the accuracy of a 16-bit TM-based ADC. 

 

The left-hand plot in Figure 1-5 presents the equivalent normalised voltage of a 16-bit TM-

based ADC output versus the input voltage with different µ values. The voltage equivalent of 

the ADC output was determined from the sum of weightings of the binary code equivalent to 

the original Gray code. (1-4) summarises the conversion process from Gray to binary code, 

whilst (1-5) details how the sum of weightings is determined from the binary code [59, 60].  

 

 𝑏(𝑛) = {
𝐷(0), 𝑛 = 0

𝐷(𝑛 − 1)⊕ 𝐷(𝑛), 𝑛 ≥ 1
 (1-4) 

 

 
𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = ∑

𝑏(𝑛)

2𝑛

𝑁

𝑛=0

 (1-5) 

 

Where:  

• b(n) refers to the bit of the binary code representing xn,  
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• D(n) is the respective bit of the Gray code representation,  

• n refers to the TM stage (or initial condition if n = 0) and  

• N is the total number of TM stages in the TM-based ADC. 

The µ values examined in Figure 1-5 were 2 (the ideal value), 1.99 and 1.9 (0.5 % and 5 % less 

than the ideal value respectively). The TM-based ADC output when µ = 2 produced an 

accurate reproduction of the original input signal, whilst the reconstructed output signal 

when µ = 1.9 is a noticeably less accurate representation of the ramp input signal. The right-

hand plot in Figure 1-5 presents the quantisation error (also referred to as quantisation noise), 

which is the difference, in LSBs, between the equivalent ADC output voltage and the input 

voltage and is calculated using (1-6) [4, 36].  

 

 𝑄𝑢𝑎𝑛𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑖𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒
 (1-6) 

 

The maximum positive and negative quantisation error values for each µ are summarised in 

Table 1-3, along with the bit accuracy of the TM-based ADC output. The ADC bit accuracy is a 

measure of the minimum number of bits for which an ADC can accurately represent an 

analogue input as a digital word and defined in this research using (1-7), from the absolute 

quantisation error.  

TM Gain Quantisation error (LSBs) Bit accuracy (bits) 

2 ±1 15.00 

1.99 ±162 7.66 

1.9 ±1543 4.41 

Table 1-3 Reduction in the TM-based ADC accuracy due to µ. 
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 𝑏𝑖𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑅 − 𝑙𝑜𝑔2⌈𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑚𝑎𝑥⌉ − 1 (1-7) 

 

In (1-7), differencemax is the maximum absolute difference (in LSBs) between the input signal 

and the voltage representation of the digital output (i.e., the maximum absolute quantisation 

error). An additional bit is subtracted from the ADC resolution (R) as log2|differencemax| 

equates to zero if differencemax = 1 bit, but the bit accuracy will be one bit less than the stated 

resolution of the ADC, due to quantisation error [4]. 

The results highlight how a small reduction of 0.5 % in µ (1.99) results in a deviation from the 

ideal, equating to the loss of 8 bits in accuracy (although this loss in accuracy was less visibly 

noticeable in the reconstructed output signal of the TM-based ADC). This loss of accuracy 

increases the further µ deviates from the ideal value. 

The µ of the electronic TM implementations employed within the TM-based ADCs seen in [13, 

16, 56, 57] were set by resistors. Resistors have tolerances (the range which the value or 

dimension of a component must lie [11]) which makes practically achieving precise and 

accurate µ values more challenging than when silicon matched parts are used. Resistors with 

tight tolerance bands can be employed to achieve good µ precision, but this generally leads 

to an increase in cost. Also the stability of the µ value will remain affected by uncontrollable 

factors such as resistance varying over time, due to the resistors aging, as well as fluctuations 

in operating temperature [61]. An alternative solution to the use of precision components is 

to evaluate the effects a non-ideal µ has on the performance of a TM-based ADC output. The 

deviation from the ideal digital codes can then be compensated for, by processing the non-

ideal ADC output, to estimate the initial conditions (the input signal(s) to the system) [22], 

thus enabling the correction of incorrect codes and improving the ADC accuracy. 
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TMs are non-linear and non-invertible (each output value could have been formed from two 

input values rather than one) as illustrated in Figure 1-2 and Figure 1-3, which makes 

estimating the initial conditions of these chaotic maps challenging. Basu successfully 

estimated the initial conditions of TM-based ADCs [41, 42], and can be considered to be 

compensating for non-ideal µ in the process. However the algorithm required significant 

computational resources, as division was employed to estimate the initial condition (division 

being computationally resource intensive) [62]. Moreover the algorithm developed was not 

implemented as an electronic system, but was proven using off-line batch processing of data 

acquired from a TM-based ADC [41, 42]. 

This thesis details a new algorithm requiring less computation resources, to estimate the 

initial conditions (and thus compensate for non-ideal µ within a TM-based ADC), compared 

to the one presented by Basu [41, 42]. The viability of implementing the algorithm, as an 

embedded electronic system, that compensates the output of a TM-based ADC in real-time 

(the ADC output for a given sample is compensated for, whilst the digital output for the 

subsequent sample is being converted), was also investigated. The feasibility of applying this 

real-time TM-based ADC, with embedded µ compensation system, to a specific real-world 

application (an ultrasonic measurement system), was also considered. 

Figure 1-6 presents a block diagram of the TM-based ADC and µ compensation algorithm 

(µCA) implemented as an electronic solution. An adaption of the TM-based ADC design by 

Upton [56, 57], (consisting of a printed circuit board (PCB) [11]) was connected to a field 

programmable gate array (FPGA, which is a device comprising a two-dimensional array of 

logic cells which can be configured to produce highly complex digital electronic circuits) [9]. 

The PCB comprised the analogue circuitry for performing the data conversion, while the FPGA 
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both coordinated this process via clock signals, as well as aligning and converting the Gray 

code data from the PCB to binary code [56, 57]. In this research the µCA was embedded in 

the FPGA in order to produce a standalone TM-based ADC and µ compensation system (µCS). 

 

 

Figure 1-6: Block diagram of how the TM-based ADC and µCA were integrated. 

  

A later adaption of the TM-based ADC developed was also based on the design proposed by 

Upton [56, 57] and, employed techniques used by Berberkic [16]. This ADC was analysed by 

simulation. Table 1-1 compares the design to other TM-based ADCs found in literature over 

the past 8 years. This TM-based ADC achieves higher resolution than the designs proposed by 

Upton [56, 57] and Liu et al. [13], as well as matching the high sampling and conversion speeds 

(when compared to the other TM-based ADCs found in literature) achieved by Upton [56, 57]. 

An enhanced version of the µCA was also developed for the adapted TM-based ADC design.  
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1.5 Ultrasonic Measurement System  

Researchers, within the Engineering Control and Machine Performance Research Group 

(ECMPG), at the University of Huddersfield are developing a highly sensitive Ultrasonic 

Measurement System (to be referred to as UMS) for detecting temperature variations in 

metal undergoing precision manufacturing cutting processes. This typically needs a 

dimensional error less than 5 µm [63]. The temperature of metal undergoing cutting varies 

and causes expansion, which in turn introduces errors. Such temperature variations can 

increase by 10 °C, which for a 200 mm part of tungsten (a high density metal renown for a 

high melting point [64]) can result in a 9.2 µm expansion [65]. 

The UMS will enable precise, non-invasive, in-process monitoring of the metal temperature 

and allow the process to compensate for errors introduced from metal expansion caused by 

temperature variations. This will produce higher quality work pieces, as the compensation for 

temperature variation will improve the accuracy of the cutting process. In addition, more 

work pieces will meet the required specifications, resulting in a higher yield, less material 

wastage and a fall in rework time [63]. 

The proposed UMS employs an ultrasonic, piezoelectric transceiver to transmit and receive 

sinusoidal waves from the piece of metal under observation (Figure 1-7 outlines the set up) 

[63]. The transmitted and received sinusoidal waves then go through a phase detection board 

[66] which outputs a voltage signal (Φ1) representing the phase difference. A DAQ board 

acquires this signal and transmits a digital representation to a computer, where the 

temperature variations in the metal are established [40, 63].   
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Figure 1-7: Block diagram of the UMS proposed by the ECMPG. Aided by [63]. 

 

Ideally, the UMS should establish temperature variations to an accuracy of at least 0.1 °C to 

enable the manufacturing process to compensate for metal expansion and achieve precision 

machining [63]. Early research suggested a temperature variation of 0.1 °C equated to a 1 mV 

change in the output voltage signal from the phase detection circuitry (over a 0 - 1.8 V range) 

[66], but the preference is for the system to detect 100 µV variations. To detect these 

variations in the output signal, of the phase detection circuitry, a DAQ board containing an 

ADC with a minimum resolution of 15 bits will be required. (1-8), which was derived from (1-1) 

[15], highlights how the minimum resolution was determined.  

 
𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ⌈𝑙𝑜𝑔2 (

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
)⌉ = 

⌈𝑙𝑜𝑔2 (
1.8 − 0

100 × 10−6
)⌉ = 15 𝑏𝑖𝑡𝑠 

(1-8) 

 

Where voltage range refers to the input voltage signal range which the ADC can accept, whilst 

voltage variation indicates the minimum change within the input signal that must be detected 
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and digitised. For this application, the voltage variation needed to be 100 µV and the voltage 

range must equal that of the phase detection circuitry output. 

The maximum frequency of the transmitted signals will be 5 MHz, thus the sampling 

frequency of the ADC needed to exceed 10 MHz in order to meet the Nyquist criterion. The 

Nyquist criterion states the maximum input frequency should be less than half the sampling 

frequency in order to avoid aliasing, which is the effect of a higher frequency signal appearing 

as a lower frequency signal due to under-sampling [21, 25]. 

The research project described in this thesis explores the viability of a stand-alone TM-based 

ADC with embedded µ compensation (performed in real-time), within a DAQ system, which 

meets the requirements for the above application. There was an additional requirement that 

the ADC needed to be constructed from discrete components, in order to be low-cost to 

develop when compared to an ADC fabricated in silicon. 
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1.6 Aim and Objectives  

This project assesses the viability of a standalone TM-based ADC, with an embedded digital 

implementation of a compensation algorithm for non-ideal µ, to be employed within a DAQ 

system for an UMS application. The objectives are to:  

• Develop a mathematical model of a TM-based ADC to emulate the operational 

performance of an electronic implementation.  

An adaption of the TM-based ADC design developed by Upton [56, 57] was chosen 

and a mathematical model developed. This model was developed to determine the 

effects non-ideal µ had on the ADC output accuracy as well as to aid the assessment 

of the µ compensation algorithm (µCA). 

• Develop a compensation algorithm for a non-ideal µ, to increase the accuracy of a 

TM-based ADC, without the requirement of off-line computational processing. 

The µCA was initially developed in MATLAB (a software platform, with a dedicated 

programming language, used for numerical computing and mathematical model 

development) [30] and applied to the data produced by the mathematical TM-based 

ADC model to analyse the effectiveness in terms of improving accuracy. In order to 

embed a µ compensation system (µCS), comprising the µCA, within the FPGA used in 

the electronic implementation of the TM-based ADC, the algorithm was implemented 

in VHDL (Very high-speed integrated circuits Hardware Description Language, which is 

a language that enables digital electronic systems to be described [17]). The operation 

of the embedded µCS was then verified via a functional simulation using ModelSim (a 

software programme for simulating Hardware Descriptive Language (HDL) [10] 

designs) [31]. 
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• Assess the viability of implementing a physical DAQ system which employs a stand-

alone TM-based ADC with embedded µ compensation.  

The mathematical model of the TM-based ADC with µCA was analysed to determine 

if a standalone TM-based ADC with embedded, real-time µ compensation was viable. 

A physical standalone TM-based ADC with embedded, real-time µ compensation was 

then produced and analysed.  

 

1.7 Originality of Research 

The research project discussed in this thesis has led to the following original contributions: 

• The development of a µ compensation algorithm (µCA) which can be embedded 

within a standalone TM-based ADC and perform real-time compensation. This 

embedded µCA improved the output accuracy of a TM-based ADC to such an extent 

that this data converter could be employed within a measurement system required 

to consistently detect small signal variations across a relatively large dynamic range. 

• Further enhancements to this development produced three techniques to 

compensate for additional, non-ideal behaviour in the electronic implementation of 

the TM circuits within the TM-based ADC and enabled the future production of µ 

compensation systems (µCS) which can be adapted to suit different configurations of 

TM-based ADCs. These three techniques:  

o enabled compensation of non-ideal µ within a TM-based ADC, when the µ of 

the TM circuits were not identical.  

o enhanced the µCA to account for non-matching slope µs within each TM 

stage. 
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o enabled compensation for µ within a TM-based ADC when a sub-ranging ADC 

was employed to acquire the output of a TM.  

 

1.8 Document Structure 

This document is structured as follows:  

• Chapter 2 inspects methods of evaluating ADC performance and the common 

architectures observed with higher resolution ADCs currently available on the market. 

Basic chaos theory relating to TMs is also discussed, and two literature reviews (on 

TM-based ADCs and initial conditions estimation of TMs respectively) are presented.  

• Chapter 3 provides an overview of the proposed TM-based ADC structures and µCS.  

• Chapter 4 discusses in more detail the key components, operation and 

implementation of the proposed TM-based ADC structures and µCS. 

• Chapter 5 presents the analysis of a TM-based ADC structure with the fundamental 

µCA. 

• Chapter 6 presents the analysis and results of the TM-based ADC structures with the 

enhanced µCAs. 

• Chapter 7 discusses the results from chapter 6.  

• Finally, chapter 8 concludes the work presented and proposes suggestions for further 

work. 
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2 Theory and Literature Review 

Some of the material in this chapter was previously published in the journal paper [2]. 

This chapter provides the key underpinning theory and presents literature reviews 

undertaken as part of this work. The purpose of this research was to assess the improvement 

in output accuracy resulting from a µ compensation algorithm (µCA) being embedded within 

the TM-based ADC. Therefore Section 2.1 covers the parameters which can be employed to 

establish the output accuracy of an ADC when slow moving and fast changing input signals 

are supplied respectively.  

Signal measurement systems which need the measurements to be digitised require 

sufficiently high-resolution ADCs in order to detect small signal variations within the analogue 

signal being measured. Section 2.2 covers the current architectures employed in high 

resolution COTS ADCs and then compares them to TM-based ADCs found in the literature in 

Section 2.4.3.  

Section 2.3 discusses the theory of chaos and defines the conditions under which a TM, and 

hence a TM-based ADC, can be classed as chaotic. This definition follows through to Section 

2.4 which explores the literature on TM-based ADCs and highlights other ADCs which fall 

under the category of TM-based ADCs. 

A review of methods estimating the initial input signals of TM-based ADCs with non-ideal µ is 

provided in Section 2.5. Finally, Section 2.6 summarises key findings and how the information 

presented in preceding sections determined the course of this research.  



55 
 

2.1 Assessing Performance of ADCs 

There are a wide variety of parameters which can be employed to assess and evaluate the 

performance of an ADC. These parameters fall into one of two categories: dynamic 

performance and static performance. Static performance concerns the behaviour of the ADC 

when the amplitude of the input signal is slowly changing, while dynamic performance is 

related to input signals with a higher rate of change [4]. 

The following sub-sections provides an overview of the parameters relevant to assessing the 

static and dynamic performance of ADCs. The third sub-section details additional parameters 

(observed in ADC reviews and textbooks concerning data conversion [43, 67-72]) which are 

relevant in assessing the performance and capabilities of ADCs for this work.  

 

2.1.1 Static Performance 

Gain error, offset error, integral non-linearity (INL) and differential non-linearity (DNL) are 

four parameters used to assess the static performance of an ADC [4]. Figure 2-1 present the 

transfer characteristic of a non-ideal 4-bit ADC and illustrates how some of these parameters 

are determined. 



56 
 

 

Figure 2-1: An illustration of a transfer characteristic plot of a non-ideal 4-bit ADC. Redrawn based on 
[4].  

 

DNL is the maximum deviation of the step width from the ideal value of 1 LSB (which is also 

the ideal step size), whilst the INL is the greatest divergence from either the line of best fit 

through the digital output versus the analogue input plot (best straight-line INL), or the line 

through the two end-points of this plot (end-point INL) [6]. The end-point INL gives the worst-

case scenario, as this method always provides the greater deviation from the line (Figure 2-1 

also illustrates how the line is produced for the end-point INL method) [6]. Equations (2-1) 

and (2-2) detail how the DNL and end-point INL are calculated respectively [6, 15, 73]. 

 

 𝐷𝑁𝐿(𝑘) =  (𝑉𝐷+1 − 𝑉𝐷)/𝑉𝐿𝑆𝐵𝑖𝑑𝑒𝑎𝑙 − 1 (2-1) 

 

 𝐼𝑁𝐿(𝑖) = (𝑉𝑎𝑐𝑡𝑢𝑎𝑙(𝐷) − 𝑉𝑖𝑑𝑒𝑎𝑙(𝐷))/𝑉𝐿𝑆𝐵𝑖𝑑𝑒𝑎𝑙  (2-2) 
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Where:  

• D is the digital output code;  

• VD is the analogue value which corresponds to D;  

• VLSBideal is the ideal step size;  

• k represents each potential digital output (2resolution in total); 

• i represents each change in the analogue input; and  

• Vactual and Videal (ideal refers to the end-point plot) represent the minimum actual and 

ideal voltage values which produce D [6, 15, 73]. 

The offset error of an ADC corresponds to, the minimum input required to generate a zero 

output code [15] or, where the transfer characteristic end-point plot of the ADC intercepts 

the axis representing the digital output [4]. The latter of these definitions is represented in 

Figure 2-1 and (2-3) and will be employed in this work [4].  

 

 𝑜𝑓𝑓𝑠𝑒𝑡 =  𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡(𝐴𝑛𝑎𝑙𝑜𝑔𝑢𝑒 𝐼𝑛𝑝𝑢𝑡 =  0) (2-3) 

 

With (2-3), DigitalOutput(Analogue Input) refers to the analogue input to digital output 

transfer function, which details the digital code produced by the ADC for a given analogue 

input.  

The gain error of an ADC is the difference between the full-scale error and the offset as 

represented in (2-4). The full-scale error is the difference between the maximum digital 

output of the actual and ideal ADC [28]. 
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𝐺𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟 =  𝐹𝑢𝑙𝑙𝑆𝑐𝑎𝑙𝑒𝑒𝑟𝑟𝑜𝑟 −  𝑜𝑓𝑓𝑠𝑒𝑡

= (𝑚𝑎𝑥(
 

𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑐𝑡𝑢𝑎𝑙) −𝑚𝑎𝑥(𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑑𝑒𝑎𝑙))

− 𝑜𝑓𝑓𝑠𝑒𝑡 

(2-4) 

 

DigitalOutputactual represents the digital codes produced by the ADC under assessment, whilst 

DigitalOutputideal refers to the digital codes which would be generated by a theoretically ideal 

ADC. 

• Table 2-1 below summarises all the static parameters discussed in this sub-section. 

Static Parameter Definition 

Differential non-
linearity (DNL) 

The maximum deviation of the step width from the ideal value of 1 LSB 
[6]. 

Full-scale error The difference between the maximum digital output of the actual and 
ideal ADC [28]. 

Gain error The difference between the full-scale error and the offset error [28]. 

Integral non-
linearity (INL) 

The greatest divergence from either the line of best fit through the 
digital output versus analogue input plot (best straight-line INL), or the 
line through the two end-points of this plot (end-point INL). The latter 
of these two INL measurements provides the worst-case scenario, as 
the method always provides the greater deviation from the line [6].   

Offset error Corresponds to the minimum input required to provide a zero-output 
code [15], or where the transfer characteristic end-point plot of the 
ADC intercepts the axis representing the digital output [4]. 

Table 2-1: Summary of static parameters. 
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2.1.2 Dynamic Performance 

The dynamic performance of the ADC can be assessed using the following parameters:  

• signal to noise ratio (SNR) [4];  

• spurious free dynamic range (SFDR) [14];  

• total harmonic distortion (THD) [14] and  

• signal to noise and distortion ratio (SINAD or SNDR) [4, 15].  

All of these parameters can be established by supplying the ADC with a clean, sinusoidal input 

signal and taking a Fast Fourier Transform (FFT) of the digital output, then analysing the 

resulting spectrum [4, 8, 14]. 

The SNR is the ratio of the input signal power and the average noise power (excluding the 

power within the signal harmonics) [4]. SINAD is the same as SNR except the power of input 

signal is compared to the magnitudes of the noise and harmonics (the latter is represented 

by the parameter THD) [4, 14, 15]. The SFDR, meanwhile, is the difference in magnitudes 

between the input signal (the fundamental peak) and the harmonic with the highest 

magnitude [14].  

When performing a FFT to determine the parameters stated above, the ADC needs to be 

supplied a sinusoidal input signal, which meets the criteria given in (2-5). The amplitude range 

of the sinusoidal input must match the valid input voltage range of the ADC [7].  

 𝑓𝑖𝑛
𝑓𝑠𝑎𝑚𝑝𝑙𝑒

=
𝑀

𝑁
 (2-5) 
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With (2-5), fin is the input frequency, fsample is the sampling frequency, M represents the 

number of signal cycles and N the number of data points. To minimise spectral leakage (when 

discontinuities at the ends of the sinusoidal signal, which an FFT is being performed on, causes 

the peak in the resulting spectrum to spread into adjacent frequency bins and affect the 

spectral distribution [8]), M should be an odd integer number, whilst N must be a power of 2 

(the higher the value, the more accurate the FFT) [7]. 

From the SINAD measurement, the effective number of bits (ENOB) can also be calculated 

using (2-6) [4]. ENOB represents the number of bits to which an ADC can accurately convert 

an analogue input into a digital word [7]. 

 

 
 

𝐸𝑁𝑂𝐵 =
𝑆𝐼𝑁𝐴𝐷 −  1.76

6.02
 (2-6) 

 

• Table 2-2 below summarises all the dynamic parameters discussed in this sub-section.  

Dynamic parameter Definition 

Effective number of bits (ENOB) This represents the number of bits that an ADC can 
accurately represent analogue input signals as digital 
words [4, 7]. 

Spurious free dynamic ratio (SFDR) The difference in magnitude between the signal (the 
fundamental peak) and the harmonic with the 
highest magnitude [14].   

Signal to noise and distortion ratio 
(SINAD or SNDR) 

The same as SNR except the signal power is 
compared to the magnitudes of the noise and 
harmonics [4, 15]. 

Signal to noise ratio (SNR) The ratio between the signal power and the average 
noise power (excluding the power within the signal 
harmonics) [4]. 

Total harmonic distortion (THD) The magnitude of the harmonics within a signal 
summed together [14]. 

Table 2-2: Summary of dynamic parameters. 
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2.1.3 Other Performance Parameters 

This research focuses on the ADC output accuracy. However, there are some additional 

parameters, of relevance to this work, which are also useful when selecting an ADC for a data 

acquisition application. Table 2-3 summaries these additional parameters, which are 

discussed in other publications concerning ADCs [43, 67-72]. 

 

Parameter Term Definition 

Bandwidth The range of input frequencies the ADC can accept [23]. 

Conversion 
rate/frequency 

Rate ADC can convert an analogue sample to the digital domain 
[25] 

Latency The time delay in the conversion and transmission of a signal 
sample to the digital domain [74]. 

Quantisation error Error between input and equivalent output signals in terms of LSBs 
[4]. 

Sampling 
frequency 

Number of samples per second [15]. 

Stated resolution 
or resolution 

The total number of quantisation bits of the ADC. Can also be 
thought as the total number of bits in the digital words an ADC 
produces [15]. 

Table 2-3: Summary of additional parameters which can be employed to assess ADC performance. 
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2.2 Overview of Main High Resolution ADC Architectures 

2.2.1 Research Procedure 

The purpose of the research discussed in this thesis was to assess whether the improvement 

in output accuracy of TM-based ADCs, after employing a µ compensation system (µCS), would 

make them a good candidate for high precision and high accuracy measurement systems. 

Such measurement systems need to detect small signal variations across the whole valid input 

signal range, which requires ADCs with sufficient resolution to acquire and convert the 

minimum variation needing to be detected. 

For this reason, searches were conducted in early July 2021 to establish the architectures 

being employed in higher resolution COTS ADCs and to enable comparisons with the TM-

based ADC architecture. Five distributors of electronic components were used in this 

investigation5. 

The highest and lowest ADC resolutions available were 32 and 1 bits respectively. With this 

investigation the upper half of the resolution range were considered (ADC resolution was  

16.5 bits < R ≤ 32 bits). Five architectures were observed across this range of resolutions, 

these being: sigma delta, dual-slope, multi-slope, pipelined and successive approximation 

register (SAR). The following four sub-sections explain how these architectures operate. 

 

 
5 The retailers were RS Components Ltd., Arrow Electronics Inc., Premier Farnell Ltd., Digi-key Electronics and 
Mouser Electronics Inc. [75 - 79]. 
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2.2.2 Sigma Delta ADCs 

The sigma delta (also known as oversampling) ADC uses the techniques oversampling (when 

a signal is being sampled at a rate larger than double the ADC bandwidth [8]), digital low pass 

filtering and decimation (the process of deleting samples [26]) to improve the resolution of 

its conversions [37]. The circuitry is shown in Figure 2-2. The operation of this ADC 

architecture involves feeding the sampled input signal into a difference amplifier (U1) and 

integrating the output signal using an integrator circuit (U2). The slope of the integrator 

output signal then determines whether the 1-bit ADC outputs a 1 or a 0. This result is then 

sent both to the digital filter and 1-bit digital to analogue converter (DAC), the latter 

determines whether the negative input of the difference amplifier (U1) is connected to a 

positive or negative reference voltage [80]. The digital filter removes most of the quantisation 

noise (this being shifted to the higher frequency spectrum by the integrator [80]), before 

transmitting the processed signal to the decimator which removes specific samples in order 

to reduce the output data rate [80]. The sigma delta ADC architecture can have more than 

one integrator in its circuitry (the number of integrators determines the order of the ADC) 

[43].  
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Figure 2-2: Sigma delta architecture. Redrawn from [43].  

 

2.2.3 Dual-slope and Multi-slope ADCs 

The dual-slope and multi-slope ADC architectures are subsets of the integrating ADC 

architecture class [27]. The simplest integrating ADC architecture is the single-slope ADC, 

whose architecture forms the basic operation of all integrating ADCs. Figure 2-3 presents the 

circuitry of a single slope ADC, which has an integrator, comparator and counter. The sampled 

input signal feeds into integrator circuit (U1), causing the capacitor within the circuit to 

charge. The comparator (U2) is employed to compare the integrator output with a known 

reference voltage and to change output state when the integrator output exceeds this 

reference. The counter tracks the time taken for the comparator output to change state: this 

time duration is proportional to the input signal and is used to determine digital 

representation of the sampled input signal [25, 43]. 
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Figure 2-3: Single-slope integrating type ADC. Redrawn from [43].  

 

With the dual slope ADC (Figure 2-4) the sampled input signal is feed into the integrator for a 

set period. The capacitor within the integrator then discharges (by switching the input voltage 

to U1 from Vin to Vref) causing the integrating circuit to de-integrate. The counter increments 

whilst the integrator de-integrates, and the final value produces the digital word output of 

the sampled analogue input signal [25, 43]. 

 

 

Figure 2-4: Dual-slope integrating type ADC. Redrawn from [43].  

 

Multi-slope ADCs add a further level of complexity to the integrating architecture. Such 

architectures use a single integrating and de-integrating cycle to determine a set number of 

MSBs for the digital output. The final voltage level given by the integrator circuit is then 
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amplified by a set amount and de-integrated again to produce the final bits of the digital 

output. This latter part can be repeated to further increase the resolution [27]. 

 

2.2.4 Pipelined ADCs 

The pipeline ADC architecture (see Figure 2-5) consists of several stages arranged in series 

(each stage processes a sample of the input signal for one clock cycle before sending the signal 

onto the next stage for further processing). Although this method does introduce significant 

latency, the throughput (and hence potential sampling frequency) is high [35]. 

The processing provided by each stage involves finding the sum of a set of reference voltages 

that equal the amplitude of the sampled signal. By sequentially subtracting each of the 

reference voltages from the sample until the remainder voltage (the residue) is close to zero, 

the correct combination of reference voltages required to represent the sample can be found. 

Each reference voltage represents a bit in the final digital word. To further improve the 

accuracy of the conversion the residue is amplified between stages by a factor of 2k (where k 

is the number of bits determined by the pipelined stage) [8, 35].  

Every time the sample passes through a processing stage the computed value for that bit goes 

to a bit aligning stage. When the sample has passed through all the pipelining stages, the bit 

aligning stage groups the relevant bits for the sample and outputs them as a single digital 

word [35]. 
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Figure 2-5: Pipeline architecture. Redrawn from [8].  

 

2.2.5 SAR ADCs 

The SAR ADC uses a type of binary search algorithm known as the successive approximation 

algorithm to perform the conversion [81]. Figure 2-6 shows the circuitry for this architecture. 

Each time a sample of the analogue input signal is taken, the ADC determines whether the 

output digital word should have a high or low MSB. This is achieved by comparing the sampled 

input signal with the DAC output signal (the amplitude of this latter signal is determined by 

the digital code supplied by the decision register) [43, 81]. 

The comparator output representing the MSB then determines the next digital code supplied 

to the DAC in order to produce a different output signal. This signal is again compared to the 

sampled input signal to determine the second MSB. This process is then repeated until the 

LSB has been established [43, 81]. 
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Figure 2-6: SAR architecture. Redrawn from [4, 43].  

 

2.2.6 Higher Resolution ADC Architectures Analysis 

Sigma delta ADCs offer high resolution and can be low cost due to the data conversion process 

being more reliant on digital, rather than analogue circuitry, thus precision components are 

not required. This has the added benefit of requiring no calibration or trimming [15, 27]. The 

architecture is also very stable, even at higher orders, due to stable lower order loops in multi-

stage noise shaping modulators (MASH) [82]. Oversampling however limits the sampling 

speed of this architecture, and a large circuit die area is required to fabricate the ADC if a 

high-order or multibit system is employed [43, 71]. Despite this, sampling frequencies of 

sigma delta ADCs have risen from hundreds of MHz to the GHz region due to technology 

scaling, supporting bandwidths greater than 100MHz [70]. At very high resolutions though, 

sampling speeds are still restricted: the fastest on the market in Summer 2021 being at 1 MHz 

[49].  

Dual-slope and multi-slope integrating ADCs offer low power consumption [8] but are unable 

to reach very high resolutions, unlike sigma delta ADCs [43]. Both these architectures 
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however have long conversion times (for dual slope it is 2(R+1) cycles) [43]. In common with 

sigma delta ADCs, dual-slope ADCs have good rejection of 50/60 Hz signals, as the conversion 

process rejects frequencies which are multiples of the integration rate. This type of ADC 

architecture is good for low level signal conversion but, unlike sigma delta ADCs, requires 

external components (resistors and capacitors) to convert voltage signal to current signal and 

set reference voltages [27]. Trimming and calibration is also required for integrating ADCs to 

compensate for errors resulting from the analogue circuitry [27]. Integrating ADCs also have 

very low bandwidths and are restricted to acquiring 100 samples per second [27].  

Pipeline architectures are the only ADC architecture capable of meeting the most demanding 

specifications for data conversion, and can achieve good resolution, power consumption and 

sampling speed simultaneously [43, 70, 71, 83]. When being compared to parallel ADC 

architectures which determine all bits of the digital output within one clock cycle, the 

pipelined architecture is noticeably slower, but still faster than other serial ADC architectures 

[43]. The main limitation with the pipelined architecture is the high power consumption 

associated with the op-amps required for the residue amplification with high resolution and 

high speed designs [83]. 

SAR architectures are renowned for power efficiency which is continuing to improve [43, 70]. 

However, there is a trade-off between speed, power efficiency and resolution [43, 70]. This 

architecture is suitable for low speed operations, but can also be employed as a sub-ranging 

ADC in other ADC architectures (for example, pipelined) to achieve higher sampling rate [15]. 

SAR ADCs have a higher bandwidth than integrating ADCs, but are not suited for low level 

signals and have poorer line rejection [27]. Like integrating ADCs, SAR ADCs also need 
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trimming and calibration ADCs to compensate for errors resulting from the analogue circuitry 

[81]. 

All the ADC architectures discussed in this section are summarised in Table 2-4 below and 

ranked in terms of resolution, sampling speed, conversion speed and fabrication area. The 

resolution and sampling speed were ranked based on the maximum performance achieved 

by higher resolution ADCs currently on the market [75-79]. Many commercial ADCs did not 

advertise information on conversion rate and fabrication area, thus for these two categories, 

the four ADC architectures were ranked based on published studies on different ADC 

architecture types [43, 71]
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ADC 
architecture 
(alphabetical 
order) 

Process of Determining Digital Codes Summarised Resolution  
(4 = highest  
1 = lowest) 

Sampling 
Speed 
(4 = fastest  
1 = slowest) 

Conversion 
Speed 
(4 = fastest  
1 = slowest)  
[43, 71] 

Fabrication 
Area 
(4 = largest  
1 = smallest) 
[43, 71] 

Integrating 
(Dual-slope and 
Multi-slope) 

Digital codes determined from the time taken for the 
integrated signal amplitude to cause the comparator output 
to toggle. 

2 1 1 36 

Sigma Delta Digital codes determined from the duration of pulses, 
produced by the analogue circuitry. 

4 3 3 2 

Pipelined The cascaded stages each determine a set number of bits for 
the digital codes generated. 

1 2 4 1 

SAR Digital codes determined by repeatedly comparing a DAC 
output signal (amplitude is set by a digital code) with the 
sampled input signal. Digital code is determined from the 
value which results in the DAC output having the closest 
amplitude to the sampled analogue input.. 

3 4 2 36 

Table 2-4: Summary of main high resolution ADC architectures [43, 71, 75-79]. 

 
6 Studies declared SAR and integrating ADCs as having low fabrication area but did not indicate which of the two architectures could achieve the smallest circuit area [43, 71]. 
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2.3 Chaos and the Discrete One-Dimensional Chaotic Tent Map 

A chaotic system is a system which shows chaotic behaviour. A system exhibiting chaotic 

behaviour is deterministic (produces the same output for a given input [22]) and follow simple 

rules, but the behaviour is non-linear and complex. The complexity of the system is due to 

internal dynamics rather than random external influences [19].  

Chaotic systems can be represented using mathematical models, which are known as flows 

when a continuous (can be defined for all of time during a certain period) dynamical system 

is being represented, or maps for discrete (can only be defined at set intervals during a certain 

period) dynamical systems [19, 24]. Maps require fewer computing resources than flows, as 

difference mathematical equations, which employ iteration, are utilised rather than 

differential equations [19].  

Maps can be multi-dimensional; however one-dimensional (1-D) maps are the simplest to 

work with and analyse as only a single parameter needs to be considered [16, 19]. The TM 

function is one of numerous discrete, 1-D mathematical models of a chaotic system [58] and 

can be summarised using the difference equations given in (1-2), which has been reproduced 

below [19]. 

 

  

𝑥𝑛+1 = {
𝜇𝑥𝑛

𝜇(1 − 𝑥𝑛)
  when    

𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 
(1-2) 

 

xn and xn+1 represent the input and output of the TM respectively (the original input, x0, is 

referred to as an initial condition), whilst n signifies the number of iterations. µ is the TM gain 
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and the value of xn where the TM transitions between the two difference equations is known 

as the partition point [34]. 

 A system experiencing chaotic behaviour needs to be: 

• deterministic; 

• bounded (the maximum difference between two points within the output of the 

system is less than infinity);  

• aperiodic (the system does not produce a periodically repeating output); and 

• sensitive to initial conditions (the input signal(s) to the system) [22].  

The rest of this section sets out to prove a TM can be a chaotic system under certain 

conditions. 

The TM can be explained using the difference equations in (1-2), which proves the map is 

deterministic as the same output will be produced for a given input. Confirming whether a 

chaotic map is bounded or not can be achieved by plotting a bifurcation diagram (which plots 

the final states of a chaotic map over a range of control parameters (e.g., µ for a TM)). A 

bifurcation diagram confirms that a chaotic map stays between two limits or goes towards 

±∞ as well as providing an insight on the state of the system with different control parameter 

values (e.g., stationary, periodic, or chaotic). Figure 2-7 shows the bifurcation diagram of a 

TM which confirms the TM remains bounded between 0 and 1 over a range of 1 < µ ≤ 2. The 

diagram also highlights the TM final state is at zero when µ < 1, while when µ ≥ 1 the plot 

creates a stroboscopic effect which highlights chaotic behaviour [22]. 
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Figure 2-7: Bifurcation diagram of a TM. Redrawn based on [16]. 

 

Observing evidence of aperiodic behaviour over a range of µ can be obtained by plotting the 

output of a TM during 100's of iterations [22].  Figure 2-8 presents a range of plots of iterated 

TM output signals for 0 ≤ µ ≤ 2, when the initial condition was 0.5 (this value was chosen due 

to being a non-zero number within the range 0 to 1). The plots highlight the TM output signal 

is aperiodic when 0 ≤ µ ≤ 2, as the values plotted for each gain do not repeat on a periodic 

basis. The exception is when µ = 1, where a constant signal (which is classed as a periodic 

signal with an undefinable period [84]) is produced.  
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Figure 2-8: Plots of TM output, with different values of µ, after 100s of iterations, which are employed 
to find evidence of aperiodic behaviour. Based on method presented in [22].   

 

Finally determining whether a chaotic map is sensitive to initial conditions can be achieved by 

calculating the Lyapunov exponent (λ). The Lyapunov exponent is a measure of sensitivity 

dependence a chaotic map might have on the initial conditions [19]. (2-7) presents the 

calculation for the Lyapunov exponent, which when the result is positive shows the map is 

sensitive to initial conditions [19].  

 

   
𝜆 =  𝑙𝑖𝑚

𝑛→∞

1

𝑛
∑ 𝑙𝑛|𝑓′(𝑥𝑖)|

𝑛−1

𝑖=0

 (2-7) 

 

Where n refers to the iteration number of the chaotic map being considered, f'(xi) is the 

derivative of the chaotic map for a given input (xi) and λ represents the Lyapunov exponent. 
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Figure 2-9 plots the Lyapunov exponent of a TM over a range of gains showing that the TM is 

sensitive to initial conditions when µ > 1 and supports the observations made in Figure 2-7 

[19]. 

Figures 2-7 to 2-9 and (1-2) highlight that the TM only exhibits chaotic behaviour over the TM 

gain range 1 < µ ≤ 2 as this is the range where the TM is deterministic, bounded, aperiodic 

and sensitive to initial conditions [22]. 

 

 

Figure 2-9: Plot of Lyapunov exponent of a TM. Redrawn based on [85]. 
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2.4 Tent Map Based ADCs 

2.4.1 Classification of TM-based ADCs 

The literature published on ADCs employing TMs is limited. Only TM-based ADCs were 

considered for this research because although ADCs which employ different types of 1-D 

chaotic maps (e.g., Bernoulli maps and Logistic maps) have been previously analysed, past 

research has determined that TM-based ADCs achieve better performance [16, 34]. A TM-

based ADC with a µ = 2 has been proven to achieve a more linear output response across the 

whole valid input signal range than a logistic map based ADC with the same amplification 

factor [16]. Chaotic ADCs which employ Bernoulli maps in place of TMs have worse output 

accuracy when the amplification gain and partition point voltages are not the ideal values of 

2 and the mid-point of the valid input voltage range respectively [34].  

Certain types of Gray-code algorithmic ADCs and folding ADCs employ folding and 

amplification circuits that can be classified as TMs. Therefore, these types of ADC 

architectures can also be classed as TM-based ADCs. Kennedy argued any algorithmic 

converter is a discrete-time dynamical system and those employing TMs will output Gray code 

[29]. However, not all Gray-code algorithmic ADCs employed the TM function to perform the 

conversion (some, for example, inverted the TM function and produced reverse Gray code 

[86, 87], as illustrated in Figure 2-10). The µCA developed for this work required the Gray code 

output from a non-inverting TM-based ADC. Only non-inverting TM-based ADCs were 

considered in this research and literature reviews, because the µCA developed operated by 

processing non-reverse Gray code generated by such ADCs, although it should be noted that 

the µCA could be adapted to cope with reverse Gray code. 
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(a) (b) 

Figure 2-10: (a) Analogue-to-digital conversion using the Gray-code algorithm. Based on [86]. (b) 
Analogue-to-digital conversion using the reverse Gray-code algorithm. Based on [86]. 

 

Most texts define folding ADCs as an architecture which employ non-amplifying folding 

circuits [4, 8, 15]. The exception to this definition is the one given by Kester, whose definition 

is identical to the Gray-code algorithmic ADC [88].  

Some literature on TMs state the µ should be exactly 2 [22, 89, 90], while others believe it 

should be within the range of 1 < µ ≤ 2 [3, 19]. For the literature review performed, the latter, 

more inclusive, of these two definitions was considered [3, 19], in the hope of widening the 

scope of acceptable literature.  

Most of the TM-based ADCs studied followed the same operation, which involved taking an 

input signal and employing comparators to establish the MSB, by comparing the amplitude 

with a fixed reference voltage representing the partition point. The input signal was also 

symmetrically folded, amplified and forwarded to the next TM stage so the subsequent MSB 

could be established. The ADCs required the µ to be exactly two and the partition points to 

be precisely halfway between the full-range of the input signals to prevent encoding errors 

[34]. 
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The ADCs employed the TMs in either a series or feedback configuration (illustrated in Figure 

2-11 and Figure 2-12). Some architectures used a series of TMs and comparators [56, 57], 

while another architecture involved a single comparator and TM function in a feedback circuit 

[13].  

 

 

Figure 2-11: Series TM configuration. Based on [56, 57]. 

 

 

Figure 2-12: Feedback TM configuration. Based on [13]. 
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2.4.2 TM-based ADCs  

The earliest example of a TM-based ADC found was proposed by Smith in 1956 who suggested 

both a series and feedback configuration. One TM circuit design given comprised op-amps, 

resistors, and diodes (one op-amp had no feedback gain and acted as a comparator). The 

feedback configuration employed two additional capacitors with the TM circuit to store the 

input and output voltages (then switched the latter to the TM input for the next iteration and 

released the other capacitor to store the new output). The TM circuits cascaded together to 

create the series configuration but required the input to remain constant as the TM stages 

had no respective sample and hold circuit. This lack of individual sample and hold circuits 

combined with the series configuration, restricted the sampling rate as the signal could not 

be pipelined, but was still faster in terms of sampling rate and conversion speed when 

compared to the feedback configuration [91].  

A range of TM-based ADCs were developed by a group of researchers in Thailand which 

involved TM folding of current signals to perform analogue to digital conversion [92-95].                                                                                     

The first design was implemented in CMOS technology and involved the analogue to digital 

conversion of a current input signal [92]. This design was analysed via simulation [92]. The 

next version of the ADC employed transconductance amplifiers to change voltage to current 

signals and used a voltage comparator to produce the digital output. This design was 

constructed as a 4-bit practical circuit and despite having a relatively high voltage supply of  

±10 V for some of the amplifiers, the valid input voltage range was limited to 0 - 1 V [93]. This 

voltage range was increased to 0 - 5 V in a later redesign (which also reduced components for 

each TM stage), although only a 4-bit practical implementation was demonstrated [94].  
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The circuits employing operational transconductance amplifiers needed careful design to 

minimise transfer errors in converting the input voltage to the output current signal. The next 

version of the TM-based ADC used a voltage to current converter, which employed an op-

amp and operational current conveyor (a device which transfers current from one impedance 

level to another [33]), rather than operational transconductance amplifiers, to perform the 

folding operation, as this converter was proven to have a theoretically lower transfer error. 

An 8-bit prototype was constructed using discreet components, which showed the error 

between the output and input signals was less than 5%. However interpreting the effective 

resolution of the ADC, and whether the device was capable of detecting a step size change in 

the input signal, from the results is impossible [95]. All of these variations were series 

configurations which required the input signal to remain constant during each conversion 

cycle [92-95].                                                                                      

Both Litovski et al. and Liu et al. employed the same feedback configuration design, which 

was constructed from switch-capacitor circuitry [13, 96]. Litovski et al. verified the TM-based 

ADC operation via simulation and analysed the effect non-ideal behaviour from imprecise 

gain, partition points and op-amp impedance had on accuracy [96]. Liu et al meanwhile 

employed this TM-based ADC design to produce multiple sub-ranging ADCs, which 

simultaneously acquired multiple voltage output signals from a tactile sensor, and assessed 

the performance by testing a fabricated design [13]. The simulated ADC of Litovski et al. 

performed 20 iterations (20-bits resolution) while Liu et al. only used 8 iterations (8-bits 

resolution) for every sub-ranging ADC. Both articles failed to confirm whether the TM-based 

ADC detected the minimum step changes (954 nV for the 20-bit ADC [96] and 3.91 mV for an 

individual 8-bit sub-ranging ADC [13]). This design also employed area saving switch-capacitor 

circuitry in order to be fabricated as an IC [13, 96, 97].  
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Upton and Berberkic both developed TM-based ADCs constructed using discrete components 

[16, 56, 57], making them cheaper to prototype and develop. Upton developed a series TM-

based ADC configuration designed to acquire the amplitude of sporadic pulses [56, 57], which 

required the ADC to have a sufficiently high conversion rate and fast operating internal 

comparators. For this reason the comparators were configured without hysteresis (a circuit 

trait where two triggering levels enable delayed switching [23]), making them susceptible to 

noise (the outputs switched between states even when the TM-based ADC was supplied a 

constant input) [56, 98].  

Berberkic explored two TM-based ADCs designs. One used a feedback configuration (Figure 

2-13), while the other employed a series configuration (Figure 2-14), but unlike the designs 

discussed above, the comparators were replaced with 10-bit ADCs. The series approach 

allowed smaller changes in the input signal to be detected (noise limits the sensitivity of the 

feedback system) but required more hardware to detect smaller changes. Meanwhile the 

feedback system offered more flexibility regarding the number of iterations that could be 

performed and was easier to control. However, the sampling speed was slower and errors 

were introduced by the sample and hold, and switching circuitry [16].    

Both designs by Berberkic offered higher sensitivity (each detected 50 µV changes over a  

0 - 10 V range [16]) than the other ADCs reviewed in this section and had potential of offering 

higher bandwidth. Folding increases signal frequency by a factor of 3.14 (known as frequency 

multiplication) [99]. Employing mid-resolution ADCs, instead of comparators, to acquire the 

output signals from each TM, meant fewer folding stages (iterations) were required, resulting 

in a lower frequency multiplication rate. As the op-amps employed by the TMs have a 
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bandwidth limit, a lower frequency multiplication rate allows the TM-based ADCs to handle 

higher frequency input signals [99] and achieve high-resolutions.  

 

 

Figure 2-13: Feedback configuration of the TM-based ADC by Berberkic. Reproduced from [16].   
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Figure 2-14: Series configuration of the TM-based ADC by Berberkic. Reproduced from [16]. 

 

• Table 2-5 below summarises all the TM-based ADCs discussed in this section. 

Literature (chronological 
order) 

Maximum 
resolution (bits) 

Implementation of 
proposed design 

Analysis of 
proposed design 

Smith (1956) [91] Not Applicable. Theoretical Not Applicable. 

Arayawat et al. (2004) [92] 7 Theoretical Simulation 

Litovski et al. (2006) [96] 20 Theoretical Simulation 

Chaikla, Arayawat and 
Riewruja (2006) [93] 

4 Discrete components 
 

Testing of 
Practical circuit 

Arayawat et al. (2008) [94] 4 Discrete components Testing of 
Practical circuit 

Petchmaneelumka and 
Julsereewong (2010) [95] 

8 Theoretical and 
Discrete components 

Simulation and 
Testing of 
Practical circuit 

Liu et al. (2013) [13] 8 Fabricated CMOS 
Switch-capacitor. 

Testing of 
Practical circuit 

Berberkic (2014) [16] 19 Discrete components Testing of 
Practical circuit 

Upton et al. (2020) [56]; 
Upton (2018) [57] 

8 Discrete components Testing of 
Practical circuit 

Table 2-5: Summary of the TM-based ADCs found in literature. 
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2.4.3 Comparison of TM-based ADCs and Other Higher Resolution ADC Architectures 

When compared to the integrating, dual-slope and multi-slope ADC architectures the  

TM-based ADC is able to achieve higher conversion and sampling rates [16, 56, 57, 75-79]. 

Also, certain variations of the TM-based ADC architecture can achieve higher resolutions than 

current COTS integrating dual-slope and multi-slope ADCs [16, 75-79]. 

Most pipelined ADCs establish multiple bits per stage, but the conversion rate of the 

individual stages restricts the sample rate of the ADC. The TM-based ADC design proposed by 

Upton [56, 57], which comprises a series configuration, and employs comparators to digitise 

the TM input and output signals, could be classed as a one-bit per stage, pipelined ADC, and 

may be capable of higher sampling speeds than a traditional pipelined ADC, as resolving one 

bit tends to be faster than resolving multiple bits. However, more one-bit stages (opposed to 

a few multi-bit stages) may increase the latency, and thus the overall conversion rate of the 

ADC. 

Both the TM-based ADC and SAR architecture require a fixed number of conversion cycles to 

convert an analogue sample to a R-bit digital word. However, the feedback TM-based ADC 

configuration is not limited by the DAC settling time or digital logic latency, unlike the SAR 

ADC [81]. Therefore, a TM-based ADC may potentially achieve fast conversion rates. Also, 

despite the increase in circuitry, the series configuration of the TM-based ADC could enable a 

faster sampling rate if each TM stage had a respective sample and hold circuit.  

Sigma delta ADCs are available on the market which have higher resolutions than the TM-

based ADCs observed in literature [46-49], but have lower sampling rates than that achieved 

by the lower resolution TM-based ADC designed by Upton [57]. By combining work by 

Berberkic and Upton, a TM-based ADC could be designed to employ a sigma delta ADC and 
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further enhance the performance of both architectures [16, 56, 57]. Higher resolution sigma 

delta ADCs tend to have lower sampling speeds than the lower resolution counterparts. By 

employing a TM-based ADC to determine a set number of the MSBs, a high-speed, mid-

resolution, sigma delta ADC could acquire the final TM output thus establishing the remaining 

bits. This could enable a faster, higher resolution ADC using a hybrid of the two ADC 

architectures. 

• Table 2-6 provides a summary of how the current performance of TM-based ADCs 

compare to, and could be advantageous over, the mainstream ADC architectures 

discussed in Section 2.2. 

Mainstream 
Architecture 
(alphabetical order) 

Potential Benefits of TM-based ADCs, based on Current 
Performance Achievements 

Integrating TM-based ADCs, compared to integrating ADCs, have achieved 
higher conversion rates, sampling rates and resolution. 

Pipelined Most series TM-based ADCs which employ comparators for the 
digitization process, may be capable of higher sampling speeds at 
higher resolutions than pipelined ADCs (resolving one bit tends to 
faster be than multiple bits). 

SAR Both TM-based and SAR architectures require a fixed number of 
conversion cycles. However, TM-based ADC are not limited by the 
DAC settling time or digital logic latency, so could achieve faster 
conversion rates.  
 
Series TM-based ADCS configurations could also achieve faster 
sampling rates than SAR architectures as the conversion of the 
preceding sample does not need to be complete before the next 
sample is acquired. 

Sigma Delta Sigma delta ADCs have higher resolutions than current TM-based 
ADCs, but lower sampling rates than the TM-based ADC by Upton 
[57].  
 
Combining work by Berberkic [16] and Upton [57] could produce a 
hybrid TM-based and sigma delta ADC and further enhance the 
performance of both architectures. 

Table 2-6: Potential advantages of TM-based ADCs over mainstream ADC architectures. 
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2.5 Estimating Initial Conditions of Tent Maps with Non-ideal Gain 

A significant portion of the literature that discusses initial condition estimation of TMs 

concerns determining the chaotic signals produced by TMs when superimposed with noise (a 

problem for chaotic communication systems) [100-102]. Although noise is an issue for TM-

based ADCs [103] these proposed techniques were aimed at different variations of the TM 

function than the one presented in (1-2) ) [100-102]. 

Some literature presented methods estimating the initial conditions of TM-based ADCs when 

the partition points of the TM circuits employed were displaced [34, 96, 104]. However, the 

focus of this research was for non-ideal µ compensation only. 

Past research has been undertaken to estimate the initial conditions of the TM function given 

in (1-2), but methods considering non-ideal µ are sparse and limited in practise. For example, 

one method proposed by Xi et al. [105], estimated the initial conditions using the sawtooth 

and Bernoulli map functions on the Gray code output. This approach is simple to implement 

as a digital system, but unsuitable for compensating non-ideal µ, as the method assumed an 

ideal TM function with a µ = 2 was being employed [105]. 

An accurate estimation method, which estimated the initial conditions of a symmetrical TM-

based ADC, with non-ideal µ, was proposed by Basu [41, 42]. This method calculated the 

effective difference between the voltage levels for ideal and non-ideal µ that each ADC output 

bit represented. However, this approach was complex and challenging to implement as a 

digital system, as the algorithm involves calculating compensation values by using 

multiplication and division for n iterations (n is R - 1) and required more computational 

overhead than the previous example, which only required Boolean logic [105]. Also, this 

method was only implemented in the mathematical software, MATLAB, therefore a batch of 
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digital data had to be acquired from the TM-based ADC, then run through the algorithm 

separately in order to estimate the initial input signal [41, 42].  

 

2.6 Summary 

This chapter discussed key parameters available when assessing the ADC output accuracy and 

detailed current COTS ADC architectures employed in higher resolution data conversion. The 

underpinning theory on chaos and TMs was also presented, followed by literature reviews 

into TM-based ADCs, and estimating the initial conditions of TM-based systems, respectively. 

The purpose of this research was to assess how a µ compensation algorithm (µCA) embedded 

within the TM-based ADC improved the output accuracy. For this reason, mainly static and 

dynamic parameters concerning the assessment of ADC output accuracy were determined 

when analysing the employed TM-based ADC design (see Chapters 5 and 6).  

Comparisons of research into COTS ADC architectures with resolutions greater than 16.5 bits 

and TM-based ADCs highlighted that the latter could achieve better performance in certain 

categories or enhance the performance of mainstream architectures. For example, an ideal 

TM-based ADC (one with a µ = 2) can achieve a more linear output response across the whole 

valid input signal range [16] when compared to a SAR ADC, which is unsuited for low level 

signal amplitudes [27]. TM-based ADCs have also achieved faster sampling and conversion 

speeds than integrating ADCs [27, 56, 57]. Merging the architectures of a TM-based ADC and 

a sigma delta ADC could also produce a faster, high resolution data converter. 

This work focussed on developing a TM-based ADC with an embedded µ compensation 

system (µCS), comprising a novel µCA, for the UMS application detailed in Section 1.5. This 
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application required the ADC to: detect 100 µV signal variations over a voltage range of  

0 - 1.8 V; sample at a minimum rate of 20 MHz; and be relatively cheap to prototype.  

The TM-based ADC designs proposed by Berberkic and Litovski et al. [16, 96], in theory, were 

capable of detecting a change of 100 µV, but only the designs by Berberkic were proven, 

through practical implementation, to have achieved this criterion [16]. However, the TM-

based ADC designs by Berberkic digitised the difference between consecutive samples, rather 

than provide a digital representation of the absolute value of the analogue sample [16]. Both 

of the TM-based ADC designs by Berberkic could be rectified by employing a front-end 

comparator to establish the MSB of the digital output [16]. 

Only Upton [56, 57] was found to have achieved a sampling rate greater than 20 MHz, but the 

proposed design only detected 11 mV signal variations over a 0 - 3 V range. By increasing the 

resolution of this design to at least 15 bits (this resolution was established using (1-8)), the 

signal variation size which could be detected will reduce to a theoretical value of 100 µV.  

Smith, Berberkic, Upton and a group of cross-institute researchers in Thailand, proposed TM-

based ADC designs constructed from discrete components, making them cheap to prototype 

and develop [16, 56, 57, 91, 93-95]. The remaining TM-based ADCs discussed in Section 2.4.2 

were designed to be constructed from area saving, switch-capacitor circuitry, and thus 

needed to be produced using the expensive process of fabrication [11].  

The underlying TM-based ADC design for this work is an adaptation of the design by Upton 

[56, 57]. This design was chosen due to: meeting the sampling rate requirement; being low 

cost to prototype; and having the potential to increase the resolution to meet the 

requirement of detecting 100 µV variations. 
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A later TM-based ADC design employed techniques used by Berberkic [16] to achieve 

sufficiently high resolution and maintain the sampling rate achieved by Upton [56, 57], whilst 

reducing the trade-off in conversion speed. The comparator on the final TM stage output was 

replaced by a 10-12 bit COTS ADC with a sampling rate employed by the TM-based ADC. This 

reduced the number of TM stages needed to achieve the required resolution, which in turn 

increased the conversion rate. This TM-based ADC design achieves higher resolution than the 

designs proposed by Upton [56, 57] and Liu et al. [13], while matching the highest sampling 

and conversion speeds (when compared to the other TM-based ADCs found in literature). The 

design is also less likely to be affected by frequency multiplication (caused by the TM circuits 

folding the signals) which improves the acceptable bandwidth range [99]. 

The operation of the fundamental µCA assessed during this work requires sufficiently lower 

computational resources, than the one proposed by Basu [41, 42], to enable embedment 

within the FPGA, coordinating the operation of the TM-based ADC. This enabled the 

compensation to be performed on the ADC digital output data prior transmission.  

Enhancements were made to the fundamental µCA in this work to enable compensation for 

non-matching TM stage µ within a series configuration, as well as when the TM stage was 

digitised using a multi-bit sub-ranging ADC. This makes the final µCA suited to a wider range 

of TM-based ADC configurations, including series configurations. This was because another 

limitation of the µCA developed by Basu (as well as the fundamental µCA in this work) was 

being only suited for a feedback TM-based ADC configuration that employed a comparator to 

perform the data conversion. This was due to the µCA designed by Basu, requiring a constant 

TM stage µ and for the output of each iteration to be digitised to one bit only.  
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The next chapter presents, and describes the operation of, the underlying TM-based ADC 

structure and the fundamental µCA (which forms the basis of the embedded µCS) for the 

research project. An overview of the adaptations made to both the TM-based ADC structure 

and µCA are also given.  
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3 Proposed Tent Map Based ADC Structures and Gain Compensation 

Algorithms 

Some of the material in this chapter was previously published in the journal paper [2]. 

This chapter presents the proposed TM-based ADC structures and the µ compensation 

algorithm (µCA) developed to form the basis of a µ compensation system (µCS) embedded 

within the ADC. The fundamental concept of the µCA was provided by Dr Peter Mather 

(research supervisor). Section 3.1 first presents and details the operation of the TM-based 

ADC designs employed in this work and Section 3.2 details the operation and the development 

of the µCA.   

The underlying, fundamental TM-based ADC circuitry was based on the design proposed by 

Upton [56, 57]. An adapted version of this TM-based ADC design employed techniques used 

by Berberkic [16] to achieve sufficiently high resolution and to maintain the sampling rate 

achieved by Upton [56, 57], whilst reducing the trade-off in conversion speed. For ease of 

reading, these two TM-based ADC structures will be distinguished as TM-ARCHα and TM-

ARCHβ respectively. 

The fundamental (core) µCA was developed to analysis the TM-based ADC Gray-code output 

and establish the value which needed to be added or subtracted from the equivalent binary 

code, in order to compensate for non-ideal µ within the ADC. Enhancements to the 

fundamental µCA were then produced to make the µCA suitable for different TM-based ADC 

configurations and to be able to compensate for additional, non-ideal behaviour in the 

electronic implementation of the TM circuits. The different variations of the µCAs will be 

numbered to aid readability. 
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Figure 3-1 comprises a block diagram, showing how the µCA is embedded within the TM-

based ADC, forming a µCS. This diagram also highlights how the two systems work together 

with the ADC Gray code (and binary equivalent) output being passed to the µCS. The µCS 

analyses the Gray code digital data and applies the relevant compensation to the equivalent 

binary code. The compensated binary code data is then transmitted back to the ADC control 

logic, which then outputs the compensated data. 

 

 

Figure 3-1: A more detailed block diagram of how the TM-based ADC and µ compensation algorithm 
were integrated.  
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3.1 Tent Map Based ADC Structures 

3.1.1 Underlying TM-based ADC Structure 

The fundamental µCA was developed to determine the amount of compensation required 

from the Gray code output of a TM-based ADC. This required the TM-based ADC to produce 

a Gray code output. Figure 3-2 presents the underlying TM-based ADC structure, employed 

to assess the fundamental µCA, which was based on the design proposed by Upton [56, 57].   

The ADC consists of an initial sample and hold circuit, which samples the input analogue 

voltage signal. This signal is then fed to a comparator to determine the MSB, and to a TM 

circuit whilst the next sample is acquired. The output from the first (and subsequent) TM 

circuits are fed to the next comparator and TM stage. This is repeated until the output signal 

of the nth TM stage is terminated by a final standalone comparator. 

 

 

Figure 3-2: Proposed underlying TM-based ADC structure (to be referred to as TM-ARCHα-n). Based on 
[56, 57]. 
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The comparator outputs are acquired by an FPGA for alignment, to represent the correct 

analogue sample. The symmetrical folding in the TM-based ADC results in the comparator 

output states producing Gray code, so the FPGA also converts the aligned digital data to 

binary code. 

To avoid confusion with the adapted TM-based ADC structure discussed in the following sub-

section, this TM-based ADC from this point on will be referred to as TM-ARCHα-n, where n 

refers to the number of TM stages. Section 4.1.1 in Chapter 4 further details the operation 

and circuit implementation of the key TM-ARCHα-n ADC stages.  

 

3.1.2 Adapted TM-based ADC Structure 

An adapted TM-based ADC structure was proposed to assess the viability of achieving 

sufficiently high resolution and of maintaining the sampling rate achieved by Upton [56, 57], 

whilst reducing the trade-off in conversion speed. This involved replacing the comparator on 

the seventh (final) TM stage output with a 10–12-bit COTS ADC with the same sampling rate 

as the TM-based ADC. This removed the need of an additional 10-12 TM stages and 11-13 

comparators to achieve the same resolution, which in turn reduced the conversion rate. This 

TM-based ADC design (to be referred to as TM-ARCHβ-n-Rsub-ranging, where n refers to the 

number of TM stages, whilst Rsub-ranging notates the resolution of the COTS ADC) was an 

adaptation of the design proposed by Upton [56, 57], and employed techniques used by 

Berberkic [16]. The structure is presented in Figure 3-3.  

The TM-ARCHβ-n-Rsub-ranging ADC was designed to employ seven comparators and TM stages, 

while a 10-12-bit COTS ADC was used to digitise the final TM output. The COTS ADC produced 
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a binary code representation of the final TM output, whilst the 7 MSBs of the  

TM-ARCHβ-n-Rsub-ranging ADC were represented in Gray code.  

 

 

Figure 3-3: Proposed adapted TM-based ADC structure (to be referred to as TM-ARCHβ-n-Rsub-ranging 
ADC). Based on [56, 57] and [16]. 
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3.2 The Tent Map Gain Compensation Algorithms (µCAs) 

3.2.1 Fundamental µCA 

Figure 3-4 presents a flow-diagram describing the operation of the fundamental µCA (to be 

referred to as µCA-1) being assessed and refined. The fundamental concept of µCA-1 was 

provided by Dr Peter Mather (research supervisor). This algorithm was developed to take the 

Gray code output of a TM-ARCHα-n ADC to establish the compensation value to be 

added/subtracted from the binary code equivalent of the ADC output. This µCA formed the 

basis of the µCS embedded within the same FPGA that was used to control the operation of 

the TM-ARCHα-n ADC. 

The µCA was designed to compensate for non-ideal µ within a chaotic TM-based ADC, which 

requires the µ of the TM functions to be > 1 and ≤ 2, as proven in Section 2.3. A system must 

simultaneously be deterministic, bounded, aperiodic and sensitive to initial conditions to be 

classed as chaotic. While the sensitivity to initial conditions characteristic of a chaotic  

TM-based ADC is responsible for the noticeable loss in output accuracy with higher resolution 

designs when the µ is a non-ideal value; having a TM-based ADC that produces chaotic 

behaviour also enables the loss in output accuracy to be compensated for. This is because the 

chaotic TM-based ADC will have a bounded and deterministic output, and these two 

characteristics enable the initial conditions to be estimated and the digital output to be 

compensated for. 

The µCA-1 has 4 key stages (as summarised in Figure 3-4). The first stage employs the Gray 

code output to determine whether the compensation values for each bit (the difference 

measure (referred to as DM)) should be added or subtracted. This sign for difference measure 
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(SDM) establishes the direction of the difference between the ideal output and that produced 

due to the non-ideal gain for each TM stages.  

 

 

Figure 3-4:  A flowchart giving an overview of µCA-1.  
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The MSB of the Gray code output is produced from the signal that has not been processed by 

the TM function circuit, and thus requires no compensation. The SDM for the second MSB will 

always be configured so the DM value will be added to the equivalent bit weighting, because 

if µ < 2, the output signal of the first TM stage will be lower than the ideal (as illustrated by x1 

in Figure 3-5). With subsequent bits, the DM value will only be added if there are an odd 

number of 1's from the second MSB to the bit that is being analysed. If there are an even 

number of 1's, the SDM is configured such that the DM value is subtracted from the 

equivalent bit weighting. 

 

 

Figure 3-5: Input and output signals of the first TM stage of TM-ARCHα-n ADC when µ = 2 and µ = 1.9.  

 

The second stage calculates the magnitude of the DM per bit (the difference between the 

ideal output and the output due to the non-ideal µ for each TM stage output). The ideal bit 

weighting of the comparator output is 
𝑔𝑛

2𝑛
, where n is the iteration and g is the polarity of the 
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TM output. The actual polarity of the last n bits of the digital word will be 
𝑔𝑛

𝜇𝑛
 (the MSB is 

determined before the analogue signal goes through the first TM stage and thus is unaffected 

by non-ideal µ). Therefore, the DM can be determined as shown in (3-1). Figure 3-6 presents 

the DM versus µ plots for the second to fifth MSBs of a TM-based ADC output, of a µ range 

1.9 to 2. 

 
𝐷𝑀 =  (

𝑔𝑛
𝜇𝑛
−
𝑔𝑛
2𝑛
 ) 

(3-1) 

 

 

Figure 3-6: DM versus µ plots for the second to fifth MSBs of a TM-based ADC output. 

 

Meanwhile the third stage computes the difference value (DV), which provides the overall 

magnitude and direction of the cumulative difference between the non-ideal µ of the TM 

based ADC output and the ideal. The magnitude of the DV (referred to as |DV|) is established 

as shown in (3-2), by multiplying the SDM with the DM for each bit (except the MSB) and 

summing the products together. The polarity of the DV value (represented as DVpolarity in (3-2)) 

is then determined by the MSB of the TM-based ADC Gray code output. If the MSB = 0, the 
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DV value needs adding to the binary TM-based ADC output code, else subtracting if the MSB 

= 1.  

 
𝐷𝑉 = 𝐷𝑉𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 × |𝐷𝑉| = 𝐷𝑉𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 × (∑𝑆𝐷𝑀𝑖 × 𝐷𝑀𝑖)

𝑛

𝑖=1

 (3-2) 

 

Finally, the DV value is applied to the binary code equivalent of the TM-based ADC output to 

compensate for non-ideal µ. Figure 3-5 highlights that x1 crosses the partition point (Vref) 

with a higher x0 value when µ = 1.9, than when µ = 2, whilst x0 < Vref. This will result in most 

of the x0 < Vref values being represented digitally by lower value digital codes when µ = 1.9, 

than if µ = 2. Meanwhile, when x0 > Vref x1 crosses the Vref partition point with a lower x0 

value when µ = 1.9, than when µ = 2. This means x1, when µ = 1.9 and x0 > Vref, will be higher 

than when µ=2, thus the majority of the x0 > Vref values will be represented digitally by higher 

value digital codes. 

On completion of a compensation cycle the µCA-1 passes the compensated binary code back 

to the control logic within the FPGA coordinating the operation of the TM-ARCHα-n ADC. The 

compensation process is then repeated for the next digital value. Figure 3-7 provides a more 

detailed overview of the operation of the µCA-1, and a MATLAB code listing of the µCA is 

provided in Appendix B.2.1. Section 4.2.1 of Chapter 4 discusses the operation of the key 

stages of the µCA-1, as well as the implementation. 
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Figure 3-7: Diagram providing overview of µCA-1 operation. 

 



103 
 

3.2.2 Enhancements to the Fundamental µCA 

An assumption was made for µCA-1 that the µ of each TM stage were identical and the µ of 

the two difference equations forming the TM were matching (see (1-2)). Although simple to 

implement through simulation software, in a practical implementation of a series TM-based 

ADC configuration (as presented in Section 3.1.1), achieving identical µ for each TM stage was 

impossible due to component tolerances (this is discussed in Section 4.1). This meant µCA-1 

was only suitable for a feedback TM-based ADC configuration, as presented in Figure 2-12 in 

Section 2.4, because the µ for the single TM stage remains constant for each iteration.  

Further enhancements were made to the µCA-1 adaptions to realise an embedded 

compensation system, for a practical TM-based ADC, for non-matching µ, within the  

TM-based ADC, and within each TM stage. This enhanced version of the µCA-1 will be referred 

to as µCA-2. 

Additional adaptions were also required in order to enable the µCA to cope with the  

TM-ARCHβ-n-Rsub-ranging ADC. The µCA-1 and µCA-2 were only suitable for TM-based ADC 

structures, like the TM-ARCHα-n ADC, which employ TM circuits and single bit producing 

comparators that generate the digital output data in Gray code format. Therefore, the 

algorithm required further adaptation to accommodate the binary code digital output 

produced by the multibit, sub-ranging COTS ADC in the TM-ARCHβ-n-Rsub-ranging ADC described 

in Section 3.1.2. The version of the µCA will be referred to as µCA-3. 

Section 4.2.2 in Chapter 4 discusses the enhancements made to the µCA-1 to accommodate 

these limitations to produce µCA-2 and µCA-3. How these enhanced µCAs were implemented 

is also discussed. 
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3.3 Summary  

This chapter presented the TM-based ADC structures and the µ compensation algorithm 

(µCA) developed to form the basis of a µ compensation system (µCS) embedded within the 

ADC. The underlying TM-based ADC structure (referred to as TM-ARCHα-n ADC, where n 

notates the number of TM stages) was based on that proposed by Upton [56, 57]. A further 

adaptation of the TM-based ADC design (referred to as the TM-ARCHβ-n-Rsub-ranging ADC, 

where Rsub-ranging was the resolution of the sub-ranging COTS ADC employed) employed 

techniques used by Berberkic [16]. The fundamental µCA was developed to employ the Gray 

code output from the TM-ARCHα-n ADC to establish the compensation to be applied to the 

equivalent binary output, and then was enhanced twice to cope with non-matching TM stage 

and slope µ, as well as the employment of a sub-ranging COTS ADC to convert a TM stage 

output. 

The TM-ARCHα-n ADC structure consisted of a sample and hold circuit for acquiring regular 

samples of the input analogue signal, which was proceeded by a chain of cascaded 

comparators and TM circuits, to generate each bit of the digital Gray code output. The TM-

ARCHβ-n-Rsub-ranging ADC was developed to achieve sufficiently high resolution, while 

maintaining the sampling rate of the TM-ARCHα-n ADC but reducing the conversion rate for 

the given resolution. The adaption involved converting the final TM stage output signal to the 

digital domain, using a multibit sub-ranging COTS ADC (with a resolution of Rsub-ranging), which 

allows the TM-based ADC to achieve higher resolutions using less TM and comparator stages, 

thus increasing the conversion speed. The digital outputs of both TM-based ADCs structures 

were acquired and aligned by an FPGA to generate the Gray code representations of the 

analogue samples. The FPGA then converted the Gray code digital data to binary code.  
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The fundamental µCA, µCA-1, consisted of four key stages and employed the Gray code 

output from the TM-ARCHα-n ADC to determine whether fixed values should be added or 

subtracted from each bit to compensate for non-ideal µ. µCA-2 was an enhanced version of 

µCA-1, which accommodated for non-identical TM stage µ and for µ of the two difference 

equations forming the TM not matching. Another enhanced version of the µCA, µCA-3, was 

developed to cope with the TM output being acquired by a sub-ranging COTS ADC, which 

digitised the signal in binary code.  

The next chapter will discuss the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-

ranging ADCs and provide additional details on how these two TM-based ADC structures 

operate. The implementation and more detailed discussions on the operation of the µCA-1, 

µCA-2 and µCA-3 will also be given 



106 
 

4 Tent Map Based ADC Structures and Gain Compensation Algorithms 

Implementation 

Some of the material in this chapter was previously published in the journal paper [2]. 

This chapter discusses the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-ranging 

ADCs (terms α and β employed to distinguish between the two TM-based ADC structures) and 

provides additional details on how these two TM-based ADC structures operate. The 

implementation and more detailed discussion on the operation of the µCA-1, µCA-2 and  

µCA-3 (numbered to distinguish the different µCA variations and aid readability) are also 

given. The fundamental concept of µCA-1 was provided by Dr Peter Mather (research 

supervisor).  

Section 4.1 details how the TM-ARCHα-n ADC (introduced in Chapter 3) was implemented in 

order to perform analysis on the ADC output, with, and without, the µCA developed within 

this work. Descriptions of the different TM-ARCHα-n ADC versions produced for this work are 

also given. Then, the implementation of the TM-ARCHβ-n-Rsub-ranging ADC structure, proposed 

to assess the viability of achieving sufficiently high resolution, while maintaining the sampling 

rate of the TM-ARCHα-n ADC, and reducing the conversion rate for the given resolution, by 

employing sub-ranging COTS ADCs to convert the TM stage outputs, are discussed.  

Section 4.2 covers the implementation of the fundamental µCA, µCA-1, along with the two 

enhanced variations µCA-2 and µCA-3. The µCA-2 compensated for non-identical TM stage µ, 

as well as for the µ of the two difference equations forming the TM not matching each other. 

The µCA-3 also accommodates for the final TM stage being digitised using a multibit sub-

ranging ADC rather than a single digital bit producing comparator.  
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4.1 Tent Map Based ADC Structures 

4.1.1 TM-ARCHα-n ADC 

Figure 4-1 presents a more detailed block diagram of the TM-ARCHα-n which comprises a 

sample and hold circuit, n TM circuit stages, n+1 comparators and an FPGA. The sample and 

hold circuit is capable of sampling at a rate of 25 MHz. The acquired samples pass through a 

comparator and TM circuit which determines the first bit of the digital output, as well as 

applying the TM function to the sampled signal. The output of the first TM stage then passes 

through further comparators and TM stages n-1 times.  

 

 

Figure 4-1: More detailed block diagram of the TM-ARCHα-n ADC. Based on [57].   

 

Initially a 16-bit mathematical model of the TM-ARCHα-n (TM-ARCHα-15) ADC was developed 

in MATLAB (developed script given in B.1.1).  The purpose of the model was to assess whether 
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the µCA-1 could compensate for non-ideal µ and that the µCA-2 could compensate for non-

identical TM stage µ, and for the µ of the two difference equations forming the TM not 

matching. If electronic circuit simulation software had been employed to develop the  

TM-ARCHα-15 model, the outcome would have taken into consideration non-ideal 

characteristics of the individual components (e.g., resistors, op-amps etc.). This would have 

produced a complex model that considered non-ideal behaviour not relating to the µ of the 

TM stages and would have made assessing the effectiveness of the µCAs challenging. 

Employing MATLAB, a theoretical model was developed, which could later be edited to reflect 

additional characteristics associated with the practical implementation, once the 

effectiveness of the µCA at compensating for non-ideal µ had been proven.  

An 8-bit electronic implementation of the TM-ARCHα-n ADC (TM-ARCHα-7) was also 

developed where a PCB was designed that comprised the analogue to digital conversion 

circuitry, which was constructed from discrete, COTS components, and connected to an FPGA 

development board. The FPGA development board was employed to supply the clock signals 

needed to drive the circuit, as well as to acquire, align and convert the digital outputs from 

the analogue to digital circuitry (the VHDL code to achieve this was developed by Richard 

Haigh [106]). Figure 4-2 and Figure 4-3 presents the schematic for the sample and hold circuit 

and the TM (folding) circuits. The full schematic and list of components for the TM-ARCHα-7 

ADC are in Appendix A.1, whilst and VHDL code is presented in Appendix B.5.1. 
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Figure 4-2: Schematic for the sample and hold circuit. Reproduced from [57]. 

 

 

Figure 4-3: TM circuit employed. Reproduced from [57]. 

 

The sample and hold circuit (Figure 4-2) consists of two cascaded inverting amplifiers which 

both offset the output signal by a set voltage (this being the partition point voltage, Vref, 

which is employed by the TM circuits). The second of these amplifiers also samples the two 

input signals to the op-amp.  

The TM circuit (Figure 4-3) functions by identifying whether the input is greater than the 

partition point voltage. When Vin < Vref, the sample signal is amplified using a non-inverting 
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op-amp. If Vin > Vref, Vref is included in the inverting amplification process. (4-1) summarises 

how the input and reference signals are amplified [57].  

 

 𝑉𝑜𝑢𝑡 = {
(1 +

𝑅2

𝑅1
)𝑉𝑖𝑛, 𝑉𝑖𝑛 ≤ 𝑉𝑟𝑒𝑓

(1 +
𝑅2

𝑅1
)𝑉𝑟𝑒𝑓 −

𝑅2

𝑅3
(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓), 𝑉𝑖𝑛 > 𝑉𝑟𝑒𝑓

 
(4-1) 

 

 

Where Vin equates to the "Analogue Input" in Figure 4-3, Vref is the "Reference Voltage" and 

Vout is the "Folded Output". In (4-1), (1 +
𝑅2

𝑅1
) =

𝑅2

𝑅3
, which makes the format of this equation 

identical to that of the TM function shown in (1-2) [57]. 

Two key modifications were made to the TM circuit design by Upton for this research project 

[56, 57]. The first involved placing external hysteresis around the comparators (the upper and 

lower limits of the hysteresis voltages chosen were Vref ± half the step size voltage). This 

modification was needed due to the switching noise induced into the analogue TM circuit 

signals, to and from the TM circuits, causing the comparator outputs to oscillate. 

The second modification added resistors in series with R1, R2 and R3 so the gain of each stage 

was changeable. R1, R2, R3 and R4 were produced using resistor arrays, yielding gains close 

to, and possibly over, the ideal of 2. The µCA was developed for non-ideal µ values less than 

2 (but greater than 1) only, as this resulted in a chaotic TM-based ADC. Therefore, resistors 

needed to be added to decrease the gain to prove that the algorithm could compensate for 

the inevitable non-ideal gain, associated with a practical implementation of the TM-based 

ADC. (4-2) presents the updated equation (adapted from (4-1) [57]).   
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 𝑉𝑜𝑢𝑡 = {
(1 +

𝑅2 + ∆𝑅2

𝑅1 + ∆𝑅1
)𝑉𝑖𝑛, 𝑉𝑖𝑛 ≤ 𝑉𝑟𝑒𝑓

(1 +
𝑅2 + ∆𝑅2

𝑅1 + ∆𝑅1
)𝑉𝑟𝑒𝑓 −

𝑅2 + ∆𝑅2

𝑅3 + ∆𝑅3
(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓), 𝑉𝑖𝑛 > 𝑉𝑟𝑒𝑓

 (4-2) 

 

Where ΔR1, ΔR2 and ΔR3 represent the resistors that were added in series with R1, R2 and 

R3 respectively. Figure 4-4 presents the updated schematic of the TM circuit. 

 

 

Figure 4-4: TM circuit employed, which has additional resistors to alter µ+ and µ-. Adapted from [57]. 

 

There was an assumption with the circuit implemented by Upton that the gains created by 

R1, R2 and R3 were identical (i.e., (1 +
𝑅2

𝑅1
) =

𝑅2

𝑅3
) [57]. Although simple to implement through 

simulation software, achieving identical gains in practical circuits is impossible due to 

component tolerances. Therefore, not only will the µ of each TM stage not be identical, but 

the µ values employed in the two difference equations of the TM function will not match 

either. These additional non-ideal characteristics will further affect the output accuracy of the 

TM-ARCHα-7 ADC.  

To notate the different gains (to be referred to as slope gains), in the TM equation, (1-2) was 

modified to reflect the electronic circuit TM implementation more closely. (4-3) presents the 

modified TM function (modified from (1-2) [19]).  
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 𝑥𝑛+1 = {
𝜇𝑛+𝑥𝑛

𝜇𝑛+𝑉𝑟𝑒𝑓 − 𝜇𝑛−(𝑥𝑛 − 𝑉𝑟𝑒𝑓)
  when 

𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 (4-3) 

 

Where µ+ and µ- produces the positive and negative slopes respectively, and n represents the 

TM stage. 

4.1.2 TM-ARCHβ-n-Rsub-ranging ADC   

A more detailed block diagram of the TM-ARCHβ-n-Rsub-ranging ADC is presented in Figure 4-5. 

This structure is identical to the one presented in Figure 4-1, except the final TM stage output 

passes through the COTS ADC to determine the last 10-12 bits of the digital representation of 

the sampled analogue input signal. The comparator outputs represent the first 7 bits of the 

digital word in Gray code, while the last 10-12 bits are represented in binary code. 

The TM-ARCHβ-n-Rsub-ranging ADC structure was developed as a 7 TM stage with a 12-bit sub-

ranging COTS ADC (a TM-ARCHβ-7-12 ADC) and analysed as a mathematical model in MATLAB 

(developed script shown in C.3). The practical PCB implementation of the TM-ARCHα-7 ADC 

structure discussed in Section 4.1.1 was also designed, (although not implemented) so the 

final TM stage could be connected to a breakout board containing a THS1030 10-bit ADC 

[107]. Appendix A.2 presents the schematic and list of components of the THS1030 10-bit ADC 

breakout board, although due to challenges faced when testing the practical implementation 

of the TM-ARCHα-7 ADC (discussed in Section 6.6), the TM-ARCHβ-n-Rsub-ranging was never 

tested as a practical implementation. As an electronic implementation of this TM-based ADC 

structure was not produced, the VHDL code was not amended to handle the modification. 
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Figure 4-5: TM-ARCHβ-n-Rsub-ranging ADC structure. Based on [57] and [16].  
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4.2 The Tent Map Gain Compensation Algorithms 

4.2.1 The µCA-1 

Figure 4-6 presents a more detailed overview of the µCA-1 presented in Section 3.2, the 

fundamental concept of which was provided by Dr Peter Mather (research supervisor). This 

algorithm required the partition point voltage to be halfway between the valid ADC input 

range, and for the µ to be determined, and be less than 2. There was also an assumption that 

the TM circuits had matching stage and slope gains.  

The first part of the algorithm determines the sign of difference measure (SDM), which in turn 

determines whether the precalculated compensation values (DM values) are added or 

subtracted to each bit of the TM-based ADC output, using the Gray code ADC output. The 

difference measure (DM) values are the equivalent deviation from the correct weighting for 

each bit. The SDM values are represented as digital logic, where a '1' represents addition and 

a '0' subtraction, whilst the DM values are fractional values (represented fixed point binary 

values when the µCA-1 was implemented as a digital µCS system). 
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Figure 4-6: A more detailed flowchart of the µCA-1.  

 

The MSB is established before the input signal goes through the first TM stage and so requires 

no compensation, but the polarity of this bit establishes whether the final difference value 

(DV) should be added or subtracted from the uncompensated binary code. The SDM 

representing the second MSB will always be positive (logic high) as µ will be less than 2, 

resulting in a DM value always being added to compensate for the equivalent weighting of 

this bit. The SDM for bit 3 is dependent on whether the current TM output was produced 
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using the same TM equation as the previous bit and is derived from the XOR operation on the 

Gray code output for bits 2 and 3. For the remaining bits the SDM is determined from XORing  

the previous SDM bit with the current Gray code bit. If the current Gray code bit and previous 

Gray code (or SDM) bit match, then the TM difference equation employed for the next TM 

stage will be the same as the current TM stage, and the DM value for that bit is subtracted. If 

the opposite is true, the following TM stage will use a different difference equation to the 

current TM stage, and the DM value will be added. The code listing in Figure 4-7 (which relates 

to stage 1 of the µCA presented in Figure 4-6) demonstrates how the SDM calculations were 

implemented in MATLAB.  

 

    %% Sign for Difference Measure (SDM)     
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g, res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 

Figure 4-7: Code extract of stage 1 of µCA-1, which determines the SDM values. 

 

The magnitude of each DM value is calculated in the second stage of the algorithm. Only bits 

set to 1 (excluding the MSB which does not require compensation) in the TM-based ADC Gray 

code output have DM values assigned to them. These DM values, which are the difference 

between the ideal and actual weighting of each bit, are calculated using (4-4). 
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𝐷𝑀 = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × (

1

𝜇𝑖−1
−

1

2𝑖−1
) (4-4) 

 

Where the two extremes of the valid input voltage range are denoted by Vmax and Vmin, the 

TM gain by µ, and the TM-stage output being considered by i (where 1 is the MSB). The code 

listing in Figure 4-8 (which relates to stage 2 of the µCA presented in Figure 4-6) demonstrates 

how the SDM calculations were implemented in MATLAB. 

 

for g = 1: 1: gain_size 
    %% Ideal DM values - look up table 
    VHDL_bits = resolution + 8; 
    for i = 1:1:(resolution - 1) 
        LUT_theory(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate 
difference value 
    end    
 

[...] 
 

    %% Difference Measure: selected for each respective gray code bit 
     
    for i = 1: 1: length(y) %Samples of input signal 
        DV_theory(1,i) = 0; %Ideal as it hasn't passed through a TM 
        for res = 2: 1: resolution   % gives remaining bits of DM 
            if (Dout(g,res, i) > 0) 
                DV_theory(res, i) = LUT_theory(res - 1); 
            else 
                DV_theory (res, i) = 0; 
            end 
        end 
    end 

Figure 4-8: Code extract of stage 2 of µCA-1, which determines the DM values. 

 

The third stage of the µCA-1 sums the DM values (taking into consideration the respective 

polarity represented by the SDM) to calculate the DV, which needs to be added (or 

subtracted) from the binary code equivalent of the TM output. Stage four takes the ADC 

output (converted to binary code) and adds/subtracts the DV to compensate for the non-ideal 

µ during the data conversion process, depending on the polarity of the MSB of the ADC Gray 

code output. Figure 4-9 and Figure 4-10 are code extracts relating to stages 3 and 4 the µCA 
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presented in Figure 4-6 respectively, illustrating how both theses stages were implemented 

in MATLAB. 

    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV_theory(res, i) = DV_theory(res, i); 
            else 
                SDV_theory(res, i) = -DV_theory(res, i); 
            end 
        end 
    end 
     
    % Determine DV 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum_theory(i) = sum(SDV_theory(:,i)); 
    end 

Figure 4-9: Code extract of stage 3 of µCA-1, which determines the DV values. 

 

    %% Implement correction 
    %uncompensated output 
    for i = 1: 1: length(y) % converting Gray-code representation of 
samples, to binary 
        gray_code_vector = Dout(g,:,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution                 %convert binary values 
to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep; 
        end 
        output_representation(g, i) = decimal_rep  ; %modify decimal 
value so it lies within the input voltage range 
    end 
    voltage_representation(g, :) = output_representation(g, :)*(Vmax - 
Vmin); 
    %compensated ADC output 
    for i = 1: 1: length(y) % compensate output 
        if (SDM(1,i) == 1) 
            corrected_output_theory(g,i) = output_representation(g,i) - 
SDV_sum_theory(i); 
        else 
            corrected_output_theory(g,i) = output_representation(g,i) + 
SDV_sum_theory(i); 
        end 
    end 

Figure 4-10: Code extract of stage 4 of µCA-1, which shows how uncompensated ADC output is 
modified using the DV values. 
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To analyse the effectiveness of this method of compensating for non-ideal µ, this µCA was 

modelled in MATLAB (code listing is presented in B.2.1), and mostly tested using the data 

produced from the TM-ARCHα-15 ADC MATLAB model (one test with this µCA was repeated 

with a TM-ARCHα-7 ADC MATLAB model). Once the effectiveness of the algorithm had been 

established the algorithm was implemented in VHDL code (implementation is given in B.5.2). 

The VHDL code was used to configure an FPGA and produce a digital µCS to compensate each 

data word acquired from the TM-based ADC within one clock cycle. The DM values were 

precalculated, converted to binary code and stored as an array within the VHDL code, 

requiring less FPGA resources than repeatedly calculating the DM values. This HDL design was 

then validated using simulation, by employing digital data produced by an HDL module 

emulating a TM-ARCHα-7 ADC (code listing given in B.5.4).   

 

4.2.2 The µCA-2 and µCA-3 

Enhancements were made to the µCA-1, to cope with non-matching stage µ and non-

matching µ+ and µ- (µ±) in each TM stage. This enhanced version of the µCA-1 will be referred 

to as µCA-2. A further enhancement was made to µCA-2, to be referred to as µCA-3, to 

accommodate the employment of a multibit, sub-ranging COTS ADC to acquire and digitise 

(in binary code format) a TM output. 

To compensate for varying TM stage gain, the way which the DM values were calculated was 

altered. (4-5) presents the adapted function developed during this work.  
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𝐷𝑀𝑚𝑜𝑑1 = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × ((∏

1

𝜇𝑖−1

𝑖

1

) −
1

2𝑖−1
)

= (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × (𝐺𝐹 −
1

2𝑖−1
)  

(4-5) 

 

Where i is the current “bit” of the data word and takes into consideration the previous µstage 

(represented by µi-1). The two extremes of the valid input voltage range for each TM stage are 

denoted by Vmax and Vmin. The new method employs the same equation to calculate the DM 

values as shown in (4-4), however 
1

μi-1 is now replaced by a gain factor (GF). This gain factor is 

shown in (4-6). 

 

                      
𝐺𝐹= ∏

1
𝜇𝑖−1

𝑖

1

 (4-6) 

 

A further adaption was made to the gain factor (GFmod) to compensate for non-matching µ±. 

(4-7) presents this modification.  

 

                     

𝐺𝐹𝑚𝑜𝑑(𝑖) =  

{
 
 
 
 

 
 
 
 

1

𝜇+
𝑖−1
 , 𝑔(0) = 0 𝐴𝑁𝐷 𝑖 = 1

1

𝜇−𝑖−1
 , 𝑔(0) = 1 𝐴𝑁𝐷 𝑖 = 1

𝐺𝐹𝑚𝑜𝑑(𝑖 − 1) ×
1

𝜇+
𝑖−1

, 𝑔(𝑖 − 1) = 0 𝐴𝑁𝐷 𝑖 > 1

𝐺𝐹𝑚𝑜𝑑(𝑖 − 1) ×
1

𝜇−𝑖−1
, 𝑔(𝑖 − 1) = 1 𝐴𝑁𝐷 𝑖 > 1

 (4-7) 

 

Where g(i-1) is the previous bit of the ADC Gray code output, µ+ is the rising slope gain and µ- 

the negative slope gain. This results in the gain factor being produced from the relevant slope 

gains employed when determining the preceding bits of the Gray code output. 
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The final adapted function to calculate the DM values is presented in (4-8). This modification 

assumes the negative slope of the TM is produced by a single gain factor, as shown in (4-9) 

(modified from (1-2) [19]). However the actual TM circuit implementation employs both slope 

gains (see (4-3)). 

 
𝐷𝑀𝑚𝑜𝑑2 = (𝑉𝑚𝑎𝑥 - 𝑉𝑚𝑖𝑛)*((𝐺𝐹𝑚𝑜𝑑(𝑖)) −

1

2𝑖−1
) (4-8) 

 

 
𝑥𝑛+1 = {

𝜇𝑛+𝑥𝑛
𝜇𝑛−𝑉𝑟𝑒𝑓 − 𝜇𝑛−(𝑥𝑛 − 𝑉𝑟𝑒𝑓)

   𝑤ℎ𝑒𝑛   
𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 (4-9) 

 

To accommodate the multibit sub-ranging COTS ADC at the output of the final TM stage of 

the TM-ARCHβ-n-Rsub-ranging ADC, the output of the COTS ADC needs converting to Gray code 

to match the 7 MSBs produced by the preceding comparator outputs. The compensation 

algorithm then treats the digital output produced by the COTS ADC as if the bits had continued 

to be produced by a series of comparators and TMs with a µstage of exactly 2.  

The µCA-2 and µCA-3 were implemented in MATLAB (respective code listings presented in 

C.1.1 and C.1.2) and analysed with the mathematical models of the TM-ARCHα-n and  

TM-ARCHβ-n-Rsub-ranging ADCs respectively. A VHDL implementation of µCA-2 was also created 

and combined with the VHDL code developed by Richard Haigh [106] to drive the physical 

TM-ARCHα-7 ADC (implementation given in C.5.2). An FPGA was then configured with this 

adapted design and tested with the PCB implementation of the TM-ARCHα-7 ADC. 
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4.3 Summary 

This chapter discussed the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-ranging 

ADCs and provided additional details on how these two TM-based ADC structures operate. 

The implementation and more detailed discussions on the operation of the µCA-1, µCA-2 and 

µCA-3 were also given.  

The TM-ARCHα-n ADC structure, where n refers to the number of TM stages within this data 

converter, was implemented both as a MATLAB model and as a physical electronic device. 

Two versions of this TM-based ADC structure were investigated during this work: a 16-bit  

TM-ARCHα-15 ADC was modelled within MATLAB only; and 8-bit TM-ARCHα-7 ADC consisting 

of 7 TM stages was modelled within MATLAB and as an HDL module, as well as being 

constructed as a practical circuit. The data conversion circuitry of the TM-ARCHα-7 ADC was 

constructed out of discrete components, and was connected to an FPGA development board, 

which generated clock signals to control the operation of the conversion circuitry and well as 

acquire and align the digital output codes from the ADC.  

To achieve a higher resolution with fewer TM and comparator stages in order to improve the 

conversion speed, a second TM-based ADC structure was explored. The TM-ARCHβ-n-Rsub-

ranging   ADC replaced the comparator on the final TM output with a sub-ranging, COTS ADC 

with a resolution of Rsub-ranging. A TM-ARCHβ-7-12 variation of this TM-based ADC structure 

was only developed as a MATLAB mathematical model during this work.  

The fundamental µ, µCA-1, was primarily implemented, and mainly assessed in MATLAB with 

a TM-ARCHα-15 ADC model (one test was repeated with a TM-ARCHα-7 ADC model). The 
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µCA-1 was then implemented in VHDL code and validated via simulation with an emulated 

TM-ARCHα-7 ADC.  

The µCA-2, an enhanced version of µCA-1 which compensates for non-matching stage µ and 

for non-matching µ± in each TM stage, was also assessed in MATLAB with a TM-ARCHα-15 

ADC model and occasionally a TM-ARCHα-7 ADC model. The µCA-2 was then implemented in 

VHDL code and validated via simulation with an emulated TM-ARCHα-7 ADC. This VHDL 

implementation of the µCA-2 was then used to configure an FPGA that was part of a physical 

TM-ARCHα-7 ADC, producing an embedded µCS which was then tested.  

With the µCA-3, an enhanced version of the µCA-2 that accommodates for the final TM stage 

being acquired, using a multibit sub-ranging COTS ADC, was implemented and analysed in 

MATLAB only using digital data produced by a TM-ARCHβ-7-12 ADC model. 

The next chapter analyses through MATLAB modelling, as well as through simulating HDL 

implementations, how the fundamental µCA, µCA-1, affects the performance of the  

TM-ARCHα-15 ADCs and TM-ARCHα-7 ADCs.  
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5 Simulated Performance Analysis of a Tent Map Based ADC with the 

Fundamental Compensation Algorithm  

Some of the material in this chapter was previously published in the journal paper [2]. 

This chapter analyses how the fundamental µCA, µCA-1, affects the performance of the  

TM-ARCHα-n ADC structure, through MATLAB modelling, as well as through simulating HDL 

implementations. Tests performed in MATLAB employed the 16-bit TM-ARCHα-15 ADC 

(which required 15 TM stages), as the resolution of this ADC, assuming a µ = 2, meet the 

specification for the UMS (discussed in Section 1.5), after taking into consideration the 

potential loss of up to one bit due to quantisation error [3]. Also, the higher TM-based ADC 

resolution better illustrated the effectiveness of the µCA. With the VHDL implementation of 

the µCA-1 (and some tests in MATLAB), the TM-ARCHα-7 ADC model was employed, as this 

TM-based ADC structure matched the one employed in the physical electronic 

implementation used when later testing and assessing the µCA-2 (discussed in Chapter 6). 

Sections 5.1 and 5.2 analyse the output accuracy of the MATLAB TM-ARCHα-15 ADC model, 

with different µ, without and with the µCA-1 being applied to the digital output data 

respectively. The output accuracy analysis consisted of three sets of tests, which were:  

1. Bit accuracy predictions: established the quantisation error and the bit accuracy of the 

TM-based ADC. 

2. Static performance predictions: determined the DNL, end-point INL, offset error and 

gain error of the TM-based ADC. 

3. Dynamic performance predictions: established the SNR, SINAD, SFDR and THD 

parameters of the TM-based ADC.  
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A sensitivity analysis, presented in Section 5.3 investigated the effects variations in the µ 

employed by the µCA-1, compared to the µ employed by the TM-based ADC, had on the 

compensated output. Section 5.4 compares the bit accuracy predictions when the µCA-1 and 

the µCA developed by Basu [41, 42] were applied to a TM-ARCHα-15 ADC model.  

The simulation results from the VHDL implementation of the µCA-1, developed for a  

TM-ARCHα-7 ADC, are shown in Section 5.5. Section 5.6 gives the final analysis with the µCA-

1, which compares methods of approximating the difference measures (DMs) for different µ 

values.  

The TM-based ADC MATLAB models were configured with a 25 MHz sampling frequency and 

a 0 - 3 V valid input voltage range to match the design this ADC was based on [56, 57]. All but 

the dynamic performance tests (discussed later in the chapter) supplied the ADCs with a  

0 - 3 V ramp input signal with a relatively low input frequency (when compared to the 

sampling rate). The ramp input signal frequency was set so 2(R + 2) samples (where R is the ADC 

resolution) were acquired during one ramp cycle, enabling an ideal, TM-based ADC (µ = 2) to 

sample every step change within the signal. In the dynamic performance tests, faster, 

sinusoidal input signals were provided. 

The MATLAB scripts and VHDL developed for the tests described in this chapter are presented 

in Appendix B (where the code presented in each sub-section of Appendix B corresponds to 

the respective sub-section within in this chapter). Appendix D.1 also presents additional 

results from the tests. 
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5.1 Uncompensated Tent Map Based ADC Output Accuracy Analysis 

This section presents the output accuracy analysis undertaken to assess the effects non-ideal 

µ has on the TM-ARCHα-15 ADC model, prior to being compensated by the µCA-1. With the 

bit accuracy predictions test, the number of missing codes were also established, in addition 

to calculating the quantisation error and the bit accuracy. 

 

5.1.1 Bit Accuracy Predictions 

Figure 5-1 presents the TM-ARCHα-15 model bit accuracy when the µ value for every TM stage 

was incremented in 0.005 steps from 1.7 to 2 inclusive. A lower limit of 1.7 was chosen for 

the range of µ values tested, as this was considered a large enough deviation from the ideal 

value of 2 to illustrate the impact non-ideal µ had on the bit accuracy of the TM-ARCHα-15 

ADC. Only µ values which produced a chaotic ADC were considered, hence why the upper µ 

limit was set to 2, as when µ > 2 the TM stage outputs become unbounded which makes 

recovering the initial conditions impossible. The results demonstrate that a small reduction in 

µ results in a significant, exponential loss in bit accuracy, where a µ of 1.995 (point A) results 

in a bit accuracy of 8.64 bits. 

 



128 
 

 

Figure 5-1: Graph illustrating the effects non-ideal µ have on bit accuracy.  

 

Figure 5-2 illustrates the effects non-ideal µ has on the TM-ARCHα-15 ADC output and the 

deviation from the ideal representation of the input signal. The set-up was the same as the 

first test, however, a smaller µ range of 1.9 ≤ µ ≤ 2, and larger increments of 0.02 steps, were 

employed, to better differentiate the effects of non-ideal µ. Table 5-1 summarises the 

maximum absolute quantisation error, along with the number of missing codes. 
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Figure 5-2: Output response and quantisation error of the TM-ARCHα-15 ADC due to different µ.  

 

µ 1.9 1.92 1.94 1.96 1.98 2 

Maximum Absolute 
Quantisation Error (LSBs) 

1542.75 1253.50 940.25 634.25 321.25 1.00 

Missing Codes (% of codes 
available)7  

39.6 34.0 23.8 16.9 7.9 0.0 

Table 5-1: Maximum quantisation error between the TM-ARCHα-15 ADC output and input signal. 

 

Figure 5-2 and Table 5-1 demonstrate a 0.02 reduction in µ resulted in an average increase of 

approximately 308 LSBs in the maximum absolute quantisation error. The number of missing 

codes also highlight a reasonably linear increase in missing codes as the µ value deviates from 

2. The results highlight an approximate increase of 5188 missing codes per 0.02 reduction in 

µ.  

 
7 There were 65536 (216) possible digital output codes. 
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The purpose of this research was to improve the output accuracy of the TM-ARCHα-15 ADC 

by compensating for non-ideal µ. Large deviations of µ from 2 (the ideal value) are not 

desirable, as this results in a high volume of missing codes which cannot be compensated for 

and equate to data loss. As such, subsequent analysis and test results focussed on µ values 

which were kept within the range of 1.9 ≤ µ ≤ 2 (point B highlights the lower µ value being 

considered in Figure 5-1), limiting the number of missing codes. Figure 5-3 presents a 

histogram of the binary digital output codes produced by the TM-ARCHα-15 ADC when the µ 

was 1.9 and 2. The plot highlights the gaps (which represent the missing codes) across the 

range of digital codes which were produced when the µ = 1.9. The codes which were produced 

by the TM-ARCHα-15 ADC, when the µ was 1.9, were observed more frequently when 

compared to the codes produced by the TM-ARCHα-15 ADC with a µ of 2. The missing codes 

cluster, and these clusters increase the further µ deviates from the ideal value of 2. These 

clusters of missing codes are also partly responsible for the distorted digital representation, 

of the ramp input signal supplied to the TM-ARCHα-15 ADC observed in Figure 5-2. 

 

 

Figure 5-3: Histogram of digital codes produced by the TM-ARCHα-15 ADC with a µ = 1.9 and µ = 2. 
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5.1.2 Static Performance Predictions 

To analyse the static performance of the TM-ARCHα-15 ADC with different µ, the DNL, INL, 

offset error and gain error were calculated using equations (2-1) to (2-4) respectively over a 

1.9 ≤ µ ≤ 2 range (increased in 0.005 increments). The INL was measured using the end-point 

method (see Section 2.1.1), to provide the worse-case figure, highlighting the maximum 

potential deviation the ADC output had from the ideal digital output versus analogue input 

transfer function. 

Figure 5-4 presents the maximum and minimum DNL and INL for each µ, along with the offset 

and ADC gain error. The plots highlight how a decrease in µ affects the INL and DNL of the 

TM-ARCHα-15 ADC. When µ > 1.925, the ADC is monotonic as the DNL is within the threshold 

of ± 1 LSB. A fall in µ results in a linear increase and decrease of the maximum and minimum 

INL respectively, at a rate of 440.5 LSBs per 0.01 drop in µ. No offset or gain error is produced 

even with different µ values, because the minimum and maximum digital outputs were 

produced when the respective minimum and maximum voltage inputs were supplied to the 

TM-ARCHα-15 ADC. 
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Figure 5-4: Static performance test results of the TM-ARCHα-15 ADC.  

 

5.1.3 Dynamic Performance Predictions 

To analyse the dynamic performance of the TM-ARCHα-15 ADC with different µ, the SNR, 

SINAD, SFDR and THD MATLAB functions were employed, which all performed an FFT to 

determine the dynamic performance parameter value [108]. This test was performed to 

determine how great the deviation in the SNR, SINAD, SFDR and THD values were over a range 

of input frequencies, and near to the extremes of the non-ideal µ range of interest. 

Initially, µ was set to 1.9 and the dynamic performance parameters were found when the 

sinusoidal input signal to the ADC was set to have a frequency close to the Nyquist frequency 

(12.5 MHz, this being half of the sampling frequency) as possible, whilst still meeting the 

criteria given in (2-5). Therefore, for this test N was set to 262144 (218), a power of 22 higher 

than the power of 2R
, whilst odd number 131071 was used for the value of M. 
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The output signal from the TM-based model was then processed by the THD, SNR, SFDR and 

SINAD MATLAB functions. With the THD function, only the first five harmonics were 

considered, as this is standard practise when evaluating ADC performance [7]. To assess how 

the dynamic performance varies over a range of input frequencies, the test was repeated 

using input frequencies which were approximately a factor of 10 lower than the previous. The 

frequencies and M values employed were: 1.25 MHz (M = 13109); 125 kHz (M = 1307); 12.5 

kHz (M = 131) and 1.24 kHz (M = 13). This test was then repeated with µ = 1.995. 

Figure 5-5 presents the results and shows that the parameter values were approximately the 

same over the range of input frequencies tested (for both µ values under test), except for the 

one that was effectively the Nyquist frequency. This was due to the aliasing of the harmonics, 

which had frequencies above the Nyquist frequency.  

The results also supported the findings shown in the previous two sub-sections, that reducing 

µ from the ideal value significantly impacts the TM-based ADC performance. The 25 dB 

reduction in SNR and SINAD, over the 1.24 kHz to 1.25 MHz input frequency range, showed 

the digital representation of the input sinusoidal wave produced by the TM-ARCHα-15 ADC 

becomes more distorted the further the µ value deviates from 2. This increase in distortion is 

highlighted by the THD plot. The SFDR plot also supports these results by highlighting the 

reduced difference in magnitude between the sinusoidal input signal, reproduced by the  

TM-ARCHα-15 ADC, and the first harmonic, the further the µ value deviates from 2. 
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Figure 5-5: SNR, SINAD, SFDR and THD for µ = 1.9 and µ = 1.995 over a range of input frequencies.  
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5.2 Tent Map Based ADC with the Fundamental Tent Map Gain Compensation 

Algorithm Output Accuracy Analysis 

This section presents the analysis undertaken to assess how the µCA-1 improves the output 

accuracy of a TM-ARCHα-15 ADC model, over a range of µ values. With the dynamic 

performance predictions test, the ENOB was also calculated from the established SINAD 

parameter values, to establish how the input frequency also affected the number of bits for 

which the ADC could accurately represent a sampled signal as a digital word. 

 

5.2.1 Bit Accuracy Predictions 

The µCA-1 was initially tested with the data produced from the TM-ARCHα-15 ADC. The test 

set-up was similar to the second one described in Section 5.1.1, apart from the µCA-1 was 

applied to the TM-ARCHα-15 ADC digital output data, and the compensated bit accuracy 

calculated and noted. 

Figure 5-6 presents the bit accuracy versus µ plot, which highlights an improvement in the bit 

accuracy after compensation over the 1.9 ≤ µ ≤ 1.99 range. The average increase in bit 

accuracy was 7.15 bits, with a maximum improvement of 9.45 bits. The compensated bit 

accuracy also falls the further µ deviates from the ideal, due to the increase in missing codes 

restricting the ability of the µCA-1 to improve the ADC output accuracy.  

The top plot in Figure 5-7 compares the ADC analogue input to the equivalent output voltage, 

before and after compensation, when µ = 1.9, while the bottom plot compares the 

uncompensated and compensated quantisation error. Figure 5-8 presents the quantisation 

error of the compensated TM-ARCHα-15 ADC output only. These plots highlight the non-
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linear nature of TMs, and the effectiveness of the µCA-1, as both plots show how the 

maximum absolute quantisation error has reduced from 1542.8 LSBs to 2.2 LSBs due to 

compensation. 

 

 

Figure 5-6: Bit accuracy of a TM-ARCHα-15 ADC before and after compensation using theoretical DM 
values. 
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Figure 5-7: Quantisation error of a TM-ARCHα-15 ADC, before and after compensation, when µ = 1.9.  

 

 

Figure 5-8: Quantisation error of a TM-ARCHα-15 ADC, after compensation, when µ = 1.9.  
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Figure 5-9 is a histogram detailing the frequency a selection of 150 of the 665536 possible 

digital outputs, produced by the TM-ARCHα-15 ADC, occurred when the µ was 1.9, before and 

after the µCA-1 was applied to the digital output data. The plot highlights the observed digital 

codes are more evenly distributed across the range of possible output codes after 

compensation, which supports the earlier findings presented in Figures 5-6 to 5-8 that the 

µCA-1 helps reduce distortion caused by the clusters of missing codes in the digital signal 

representation of the ramp input signal. The frequency of the observed codes after 

compensation has increased, due to the µ compensation process altering certain digital 

output codes and causing them to match other pre-existing digital combinations, which in 

turn increases the number of missing codes. Yet the maximum absolute quantisation errors 

of the respective digital codes produced by the compensated TM-ARCHα-15 ADC across the 

range of µ investigated are lower prior to compensation, confirming the µCA-1 does improve 

the ADC output accuracy.   

 

 

Figure 5-9: A histogram of a selection of 150 digital codes which could be produced by the TM-ARCHα-
15 ADC with a µ = 1.9, before and after the µCA-1 was applied to the output data. 
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To reduce the FPGA resource requirements when creating a VHDL implementation of the 

µCA-1 (see Section 5.5), the DM values were converted to binary code formant. (5-1) presents 

the method employed to achieve this [109]. 

 

  𝐷𝑀𝑏𝑖𝑛𝑎𝑟𝑦 = ⌊𝐷𝑀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 × 2
𝑟⌋ (5-1) 

 

Where:  

• r is the chosen resolution for the binary DM values;  

• DMtheoretical represents the theoretical, decimal calculation (which is always less than 

1) of a DM value; and  

• DMbinary gives the integer value produced which can then be presented as binary code. 

To find the optimal value of r that achieved the same improvement to the  

TM-ARCHα-15 ADC accuracy as the theoretical DM values, the first test was repeated with 

binary DM values. The r value was initially set to 17 bits and incremented until the binary DM 

values reached the same levels of bit accuracy (across the observed range of 1.9 ≤ µ ≤ 2) as 

the theoretical DM values. 

Table D-1 in Appendix D presents the results from this test, showing that to achieve the same 

improvement in the TM-ARCHα-15 ADC bit accuracy across the range 1.9 ≤ µ ≤ 2, r must be 

24 bits. However, the results also highlight that TM-based ADCs with higher µ values (e.g.,  

µ ≥ 1.96) can employ a lower r value (such as 18 bits), reducing the FPGA resource 

requirements further due to the lower resolution DM values being stored. For the remaining 

tests with the µCA-1 presented in Section 5.2, binary DM values with r values of 24 bits were 

employed. 
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5.2.2 Static Performance Predictions 

The static performance tests described in Section 5.1.2 were repeated on the compensated 

output of the TM-ARCHα-15 ADC model. Figure 5-10 presents the maximum and minimum 

DNL and INL for each µ, before and after compensation. The plots highlight how the µCA-1 

reduced the magnitude of the maximum and minimum INL of the TM-ARCHα-15 ADC across 

the µ range being considered (including a fall in INL of approximately 4620 LSBs when the  

µ = 1.9). This is because the reconstructed ADC output signal is compensated to represent the 

original input signal more closely.  

The offset and gain error remained at zero after compensation (thus not plotted), as the  

µCA-1 does not alter the minimum and maximum digital outputs which can be produced by 

the TM-ARCHα-15 ADC. The DNL was negatively impacted by the µCA-1, as the magnitude of 

both the minimum and maximum DNL increased across the considered µ range for the  

TM-ARCHα-15 ADC. The TM-based ADC structure was only monotonic when µ > 1.99 

(compared to the uncompensated ADC which was monotonic when µ > 1.925). This is a result 

of the µCA-1 altering certain digital output codes, causing them to match other pre-existing 

digital combinations.  
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Figure 5-10: Static performance of the uncompensated and compensated TM-ARCHα-15 ADC with 
binary DM values (r = 24 bits).   

 

5.2.3 Dynamic Performance Predictions 

A variation in the dynamic performance tests described in Section 5.1.3 were performed on 

the compensated output of the TM-ARCHα-15 ADC model. Section 5.1.3 highlighted the 

dynamic performance of the TM-ARCHα-15 ADC model was similar when the input frequency 

was equal to, or lower than, 1.25 MHz. Therefore, only the two highest frequencies (12.5 MHz 

and 1.25 MHz) were employed in these tests. The tests were performed across the whole  

1.9 ≤ µ ≤ 2 range (increased in 0.005 increments) and the ENOB was also calculated, using 

(2-6), after obtaining the SINAD measurement. 

Figures 5-11 to 5-15 present the results for the SNR, SINAD, SFDR, THD and ENOB respectively. 

The plots highlight the improvement with these parameters after the TM-ARCHα-15 output 

had been compensated using the µCA-1 over a 1.9 ≤ µ ≤ 1.995 range. The SNR, SINAD, SFDR 
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and ENOB (Figures 5-11, 5-12, 5-13 and 5-15 respectively) did worsen the more µ deviated 

from the ideal value of 2, but the deterioration was less than that before the µCA-1 was 

applied. There was also an improvement in the THD and SFDR across the range 1.9 ≤ µ ≤ 1.995, 

although the improvement in THD was restricted when the Nyquist frequency was supplied 

due to the aliasing of the harmonics further distorting the ADC output signal. 

 

 

Figure 5-11: SNR plot of a TM-ARCHα-15 ADC before and after compensation.  
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Figure 5-12: SINAD plot of a TM-ARCHα-15 ADC before and after compensation.  

 

 

Figure 5-13: SFDR plot of a TM-ARCHα-15 ADC before and after compensation.  
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Figure 5-14: THD plot of a TM-ARCHα-15 ADC before and after compensation.  
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Figure 5-15: ENOB plot of a TM-ARCHα-15 ADC before and after compensation.  

 

5.3 Sensitivity Analysis of the Fundamental Tent Map Gain Compensation Algorithm 

There will always be uncertainty when measuring the µ of a TM-based ADC. This will restrict 

the ability of the µCA-1 to compensate for non-ideal µ because, the DM values employed will 

be calculated from the measured µ value. To quantify the effects variations between the µ 

values employed by the µCA-1, and the actual µ of the TM-based ADC, had on the ability of 

the µCA-1 to compensate for non-ideal µ within the ADC, a sensitivity analysis was performed. 

The µ of the TM-ARCHα-15 ADC (µADC) was initially set at the lowest value of non-ideal µ of 

1.9 being investigated by this analysis, and the µCA-1 applied to the ADC output. The range 

of µ employed by the µCA-1 (µalgorithm) had a percentage deviation (%Δ) from µADC over a range 

of -2.5% ≤ µalgorithm %Δ from µADC ≤ 2.5%, in increments of 0.1 %Δ. This test was repeated with 
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a higher non-ideal µADC value of 1.99 to determine how TM-based ADCs, with higher µADC 

values, were affected when the µalgorithm was not identical. 

Figure 5-16 presents the results of the sensitivity analysis for µADC = 1.9 and 1.99 respectively. 

Both curves highlight a sharp roll-off in compensated bit accuracy when µalgorithm deviated 

from µADC by ± 0.1 % (there was a reduction from 13.42 to 9.91 bits when µADC = 1.9 and from 

14 to 9.91 bits when µADC = 1.99). The rate of reduced improvement to bit accuracy was 

reduced for the lower µADC, but the difference in bit accuracy between the two µADC values for 

the same µalgorithm deviation remained less than 0.06 bits. 

 

 

Figure 5-16: Sensitivity analysis results from a TM-ARCHα-15 ADC when µADC = 1.9 and µ = 1.99.  

 

A small deviation in µalgorithm from µADC results in a significant reduction in the improvement to 

the TM-ARCHα-15 ADC output accuracy. This rapid reduction is undesirable, as there is 

uncertainty when measuring the µADC of an electronic implementation of a TM-based ADC.  



147 
 

The electronic implementation of the TM-ARCHα-7 ADC, which the enhanced version of  

µCA-1 was being tested with (see Section 6.6 of the next chapter), had an 8-bit resolution. 

The sensitivity analysis was repeated for an TM-ARCHα-7 ADC, so the effects uncertainty in 

measuring the µADC have on the ability of the µCA-1, to compensate for non-ideal µ within a 

lower resolution TM-based ADC, could be determined. The test procedure was identical to 

the one performed on the TM-ARCHα-15 ADC. 

Figure 5-17 presents the results. The reduction in improved bit accuracy is more gradual for a 

lower resolution TM-based ADC. The maximum µalgorithm can deviate from µADC to maintain the 

highest bit accuracy is -0.5 % to +0.6 %, when µADC = 1.9, and -0.8 % to +0.9 %, when  

µADC = 1.99. Unlike the TM-ARCHα-15 ADC, a higher µADC resulted in a less acute reduction in 

bit accuracy for the TM-ARCHα-7 ADC. 

 

 

Figure 5-17: Sensitivity analysis results from a TM-ARCHα-7 ADC.   
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5.4 Comparison with the Tent Map Gain Compensation Algorithm by Basu 

The effectiveness of the µCA-1 from this research project was compared with that developed 

by Basu [41, 42] using the MATLAB code provided in [41]. This was to confirm that the lower 

number of computational resources, employed by the µCA-1, did not diminish the ability to 

improve the TM-based ADC output accuracy, when compared to the µCA by Basu [41, 42]. 

Figure 5-18 is a graph comparing the bit accuracy of the TM-ARCHα-15 ADC model over a  

1.9 ≤ µ ≤ 2 range compensation, with compensation using the µCA-1, and with compensation 

using the µCA developed by Basu [41]. The results show that the µCA-1 achieves identical 

performance, in regard to improving the bit accuracy of the ADC, when compared to the µCA 

developed by Basu [41, 42]. The µCA by Basu determined the compensation values using 

iterative calculations involving division, which is computationally resource intensive [62]. 

Meanwhile, the µCA-1 determines the compensation values by adding pre-calculated DM 

values, which requires less computational resources, and can be implemented as a single 

digital system (as proven in the following section) to compensate the output data of a  

TM-based ADC prior to being transmitted. 
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Figure 5-18: Comparing µCA performance on the TM-ARCHα-15 ADC model.  

 

5.5 VHDL Implementation of the Fundamental Tent Map Gain Compensation 

Algorithm 

A VHDL implementation of a µCS, comprising of the µCA-1, was developed for a TM-ARCHα-

7 ADC with a µADC = 1.9. This VHDL implementation, which could configure the same FPGA 

used to coordinate the operation of a TM-ARCHα-7 ADC, was assessed via simulation to prove 

a µCS comprising the µCA-1 could be embedded within a TM-based ADC and perform real-

time compensation.  

The µCA-1 was implemented such that the compensation was applied to the converted  

TM-ARCHα-7 ADC sample before the next input sample was converted to binary, delivering 

real-time compensation for non-ideal µ. The DM values, used by the µCA-1 for each bit, were 

precalculated using (4-4), converted to binary using (5-1), and hard coded as an array within 

the VHDL code. This was to reduce FPGA resource requirements, so the DM values were not 
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repeatedly calculated within the µCS. The r value was set to 10 bits, as tests show that this 

value achieves the same improvement in bit accuracy, for an TM-ARCHα-7 ADC, as using 

theoretical DM values (see Table D-2 in Appendix D).  

A practical TM-ARCHα-7 ADC signal emulator, developed in VHDL to test the µCA-1, mimicked 

the ADC sampling and outputting of the acquired data. The signal emulator generated an 

equivalent output to a practical TM-ARCHα-7 ADC, with µADC = 1.9, when supplied with a ramp 

input signal. 

A test bench VHDL program was also developed to write and save the uncompensated and 

compensated values from the implemented µCA-1 into two separate texts files during 

simulation (using the ModelSim FPGA software). Figure 5-19 and Figure 5-20 show how these 

VHDL components were connected for simulation. 

 

 

Figure 5-19: Testing the ADC output without applying the µCA-1.  
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Figure 5-20: Testing the ADC output with the µCA-1. 

 

Figure 5-21 presents a graph of the quantisation error of the simulated TM-ARCHα-7 ADC 

VHDL module, with, and without, the applied µCA-1. Figure 5-21 highlights the implemented 

µCA-1 reduced the maximum quantisation error from 6 bits to 1 bit, thus enhancing the bit 

accuracy of the model TM-based ADC from 4.19 bits to 6 bits. In addition, the µCA-1 was 

performed on each newly acquired sample of the input signal while the next sample was 

obtained, confirming that real-time compensation of non-ideal µ is possible. 

 

 

Figure 5-21: Quantisation Error of the TM-ARCHα-7 ADC VHDL model before and after compensation.  



152 
 

5.6 Approximating Difference Measure Values for the Fundamental Tent Map Gain 

Compensation Algorithm 

The focus of this research was to compensate for non-ideal µ, within a practical TM-based 

ADC, using an embedded compensation system. This work could be taken further by 

producing a self-calibrating TM-based ADC, which monitors the inevitable drifts in µADC 

overtime (drifting is due to the resistors which alter the µ values, over time, and with 

temperature [61]) by estimating the change from the ADC output and then applying 

compensation to the digital output. 

The µCA for a self-calibrating TM-based ADC needs the DM values to be calculated within the 

FPGA requiring complex division performing circuitry [110]. This is especially the case for 

higher resolution TM-based ADCs as the quantity (and resolution) of DM values to be 

calculated increases. Therefore, a comparison of two methods to approximate the DM values, 

which were more resource efficient, was performed. 

The first method, referred to as the Straight-line and Error Approximation (and abbreviated 

to SL&EA), involved taking a straight-line approximation of the ideal DM values, calculated 

using (4-4), versus µ curves (over a 1.9 ≤ µ ≤ 2.0 range) for each bit. The gradients of the 

straight-line approximations were calculated using the end points of the DM versus µ plots 

(as shown in Figure 5-22 for the LSB) as this approach was found to achieve closer 

approximations of the DM values than estimating the gradient using a line of best fit. The 

constant for the main straight-line approximation was determined using the DM values when 

µ = 2. 



153 
 

 

Figure 5-22: Establishing straight-line approximation of the LSB DM values. 

 

The difference between the approximated and ideal DM values were then determined to 

calculate the errors. Two straight-line approximations of the error versus µ curves were also 

taken and added to the first straight-line approximation to improve accuracy. The constant 

value chosen for both straight-line approximations of the error was the error value at the mid-

range µ (µ = 1.95). 

 

 

Figure 5-23: Establishing straight-line approximation of the LSB error values.  
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The second method, referred to as the scalar approximation method (and abbreviated to SA), 

involved taking the ideal DM values for a chosen µ (µo) and multiplying by a scalar value 

determined using (5-2).  

 

 Scalar = 1 − 
μC − μo
2 − μo

 (5-2) 

 

Where µc is the actual gain of the TM circuit and µo is the gain employed in the ideal DM 

determined from (4-4). The fundamental concept of (5-2) was provided by Dr Peter Mather 

(research supervisor).  

Both the SL&EA and SA methods were tested over a 1.9 ≤ µ ≤ 1.99 range in 0.01 increments. 

The SA method was tested using the µo value of 1.95, as this value was the mid-point of the 

µ range employed in the test. The test outlined in Section 5.2.1 was repeated using these two 

methods to approximate the DM values and Figure 5-24 presents the results. In this test, the 

DM values were not converted to binary as the focus was to analyse the effectiveness of the 

approximation methods. Overall, the SL&EA method attained the most accurate results, 

although the SA method (which requires fewer FPGA resources) achieved identical 

performance when µ ≥ 1.94.  
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Figure 5-24: Results from DM approximation tests. 

 

5.7 Summary 

This chapter analysed through MATLAB modelling, as well as through simulating HDL 

implementations, how the fundamental µCA, µCA-1, affected the performance of the  

TM-ARCHα-15 ADCs and TM-ARCHα-7 ADCs.  

The output accuracy analysis of the uncompensated TM-ARCHα-15 ADC highlighted an 

increase in the maximum absolute quantisation error of approximately 308 LSBs per 0.02 

deviation in µ from the ideal value of 2. There was also a linear increase of around 5188 

missing codes per 0.02 decrease in µ. A small deviation of -0.25 % from the ideal µ also 

resulted in a drop in bit accuracy (the minimum number of bits for which an ADC can 

accurately represent an analogue input as a digital word) from 15 bits to 8.64 bits. This 

consistently significant reduction in the TM-ARCHα-15 ADC output accuracy, as the µ deviates 

further from the ideal value of 2, was also observed with the static performance and dynamic 

performance tests.   
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A noticeable improvement in the output accuracy of the TM-ARCHα-15 ADC model was 

observed after the µCA-1 processed the digital output data. The average bit accuracy 

increased from 5.52 to 13.94 bits over a 1.9 ≤ µ ≤ 1.99 range, and the maximum INL error was 

reduced by approximately 4618 LSBs when the µ = 1.9. The dynamic performance parameters 

also highlighted an improvement in the ADC output accuracy. Only the static performance 

parameter DNL was found to have been negatively affected by the µCA-1. This was because 

the µCA-1 modified some digital output codes to other binary values, which increased the 

range of analogue voltages associated with certain digital codes. Even after compensation for 

non-ideal µ, the TM-ARCHα-15 ADC output accuracy deteriorated the further µ deviated from 

the ideal, due to the increased distortion of the equivalent uncompensated output signal and 

volume of missing codes. Therefore, with practical implementations of TM-based ADCs, the 

closer µ is to 2, the better output accuracy which can be achieved after compensation. 

The µCA-1 was also proven to be as effective as the µCA developed by Basu [41, 42] with no 

difference in the bit accuracy of the compensated TM-ARCHα-15 ADC output. The advantages 

of the µCA-1 were the reduction in the required computation resources and the ability of 

being implemented as a single digital system to compensate the output data of a TM-based 

ADC in real-time prior to being transmitted. This latter point was confirmed by simulation of 

a VHDL implementation of the µCA-1. 

This work could be taken further by producing a self-calibrating TM-based ADC, which 

monitors the inevitable drifts in µADC overtime (the drift being due to the resistors which 

altered the µ values, over time, and with temperature [61]) by estimating the change in µ 

from the ADC output and then applying compensation to the digital output. The µCA for a 

self-calibrating TM-based ADC requires the DM values to be calculated within the FPGA, 
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requiring complex division performing circuitry [110] which will increase resource 

requirements, especially with higher resolution designs. Therefore, a comparison of two 

methods to approximate the DM values for µCA-1, which were more resource efficient, was 

performed. The results showed the method providing the maximum improvement in the  

TM-ARCHα-15 ADC bit accuracy across the 1.9 ≤ µ ≤ 2 range, was the SL&EA method. 

However, the SA method, which requires fewer FPGA resources, achieved identical 

performance when the µ ≥ 1.94. Therefore, the SA method is better to implement if the non-

ideal µ of the TM-ARCHα-15 ADC is greater than 1.94. 

The next chapter analyses the enhanced µCAs, µCA-2 and µCA-3, through MATLAB modelling. 

The TM-ARCHα-15 ADC and TM-ARCHα-7 ADC models are employed with the µCA-2 analysis, 

while a TM-ARCHβ-7-12 ADC model is used to assess the µCA-3. A VHDL implementation of 

the µCA-2 is also assessed via simulation using a TM-ARCHα-7 ADC structure, then tested 

through practical experiments. 
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6 Performance Analysis of Tent Map Based ADCs with the Enhanced 

Compensation Algorithms 

This chapter analyses the enhanced µCAs (µCA-2 and µCA-3) through MATLAB modelling. A 

VHDL implementation of the µCA-2 is also assessed, firstly via simulation, and then tested 

through practical experiment.  

Section 6.1 details the bit accuracy analysis of the µCA-2 and µCA-3, developed to take into 

account non-matching slope gains (µ+ and µ-) for each TM stage (µ±stage), and the incorporation 

of a multibit, sub-ranging COTS ADC at the final TM stage output, respectively. Sensitivity 

analysis of the µCA-2 and µCA-3 compensated, TM-based ADC outputs are then presented in 

Section 6.2. 

Section 6.3 details the output accuracy analysis of the TM-ARCHβ-7-12 ADC MATLAB model, 

utilising the enhanced compensation algorithm µCA-3. Section 6.4 then details the noise 

analysis performed on the same MATLAB model.  

Finally, the simulation results from the µCA-2 VHDL implementation, developed for a  

TM-ARCHα-7 ADC, are presented in Section 6.5. Section 6.6 then provides the test results 

from the electronic implementation of TM-ARCHα-7 ADC with an embedded µ compensation 

system (µCS) that comprises the µCA-2. 

Three TM-based ADC structures were employed in analysing the enhanced µCAs. Initially, the 

16-bit TM-ARCHα-15 ADC (which required 15 TM stages) was used to assess the effectiveness 

µCA-2 (Section 6.1.1) in compensating for non-matching µ±stage, as the higher TM-based ADC 

resolution better highlighted the improvement in output accuracy. For the remaining 

simulation tests with µCA-2, the TM-ARCHα-7 ADC model was employed, as this structure 
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matched the physical electronic implementation. With assessing the µCA-3, which was 

developed to accommodate a multibit sub-ranging ADC digitising the final TM stage output, 

a model of the TM-ARCHβ-7-12 ADC was employed. 

Table 6-1 presents the test conditions of the TM-based ADC models employed in the MATLAB 

analysis. All the tests performed in MATLAB, except for a dynamic performance prediction 

test (Section 6.3.3), supplied the TM-based ADC model with a 0 - 3 V ramp input signal with 

the frequency set so 2(R + 2) samples were acquired for one ramp cycle. This relatively low ramp 

rate (when compared to the sampling frequency) would enable an ideal, TM-based ADC 

(µ±stage = 2) to sample every step change within the signal. 

 

Test Conditions of MATLAB Models Reason for Test Condition  

Sampling frequency = 25 MHz Inherited from the underlying TM-based ADC 
structure [56, 57] and matched those of the 
electronic TM-ARCHα-7 ADC implementation. Valid input voltage range = 0 - 3 V 

µ±stage values = random values over a 
1.9 ≤ µ ≤ 1.99 range chosen by the 
rand() function in MATLAB 

Range of µ chosen to be consistent with tests 
presented in Chapter 5. Random values chosen to 
prove the enhanced µCAs could compensate for 
non-matching µ±stage values. 

Resolution of Difference Measure 
(DM) values = non-integer decimal 
representation of the DM values was 
employed. 

The DM were not converted to binary code 
format as the focus was to determine how the 
µCA-2 and µCA-3 improved the digital output bit 
accuracy of the TM-based ADCs. 

Table 6-1: Summary of test conditions used in the MATLAB analyses. 

 

The simulated and physical TM-ARCHα-7 ADC, for testing the VHDL implementation of the 

µCA-2, had mostly identical test conditions. The key difference was the DM values being 

converted to a binary format. With the VHDL simulation and practical testing, binary DM 

values with an r value of 10 bits were chosen as previous tests showed this r value achieved 
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the same improvement in bit accuracy for an TM-ARCHα-7 ADC as using theoretical DM values 

(see Table D-2 in Appendix D). 

The MATLAB and VHDL code developed for the performance analysis is provided in Appendix 

C (where the code presented in each sub-section of Appendix C corresponds to the respective 

sub-section within in this chapter). Meanwhile, Appendix D.2 presents key data obtained 

during the practical implementation analysis presented in Section 6.6.  

 

6.1 Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain Compensation 

Algorithms 

This section presents the bit accuracy predictions determined when testing the µCA-2 and 

µCA-3. The tests assessed whether the enhanced µCAs compensated for non-matching stage 

µ (µstage) and non-matching µ±, as well as the employment of a multibit, sub-ranging COTS ADC 

at the TM-based ADC output. 

A more complex model of the TM-based ADCs, than was employed in Chapter 5, was 

implemented in MATLAB. This model took into consideration non-matching µ±stage, as well as 

the effects the power supply voltage may have on the TM circuits. The TM stages were 

implemented as shown in (4-9), to assess the enhanced µCA’s ability to compensate for non-

matching µ±stage. Section 6.2.1 presents the analysis on the µCA-2 using the TM-ARCHα-15 

ADC model, while Section 6.2.2 gives the results for the µCA-3 with the TM-ARCHβ-7-12 ADC 

model. 
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6.1.1 Analysis of the µCA-2: Varying TM-stage Gain and Varying TM-slope Gain 

For this test, the µCA-2 was applied to the TM-ARCHα-15 ADC output data, to compensate for 

non-ideal µ±stage, and the uncompensated and compensated bit accuracies were noted. The 

test was performed 100 times with different random µ± combinations for each TM stage.  

The µCA-2 was found to be effective at compensating for µ±stage within the TM-ARCHα-15 ADC 

model. With this test, the bit accuracy was consistently increased to 14 bits (which equated 

to an improvement from the uncompensated bit accuracy of 9 to 10 bits). Figure 6-1 presents 

the quantisation error versus input voltage plots for the final test, which illustrates the 

dramatic reduction in absolute quantisation error, which went from 1184.5 LSBs 

uncompensated to 1.7 LSBs after compensation. 

 

 

Figure 6-1: Comparison of quantisation error for TM-ARCHα-15 ADC model (with different slope gains) 
before and after compensation with the µCA-2.  
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6.1.2 Analysis of the µCA-3: Sub-ranging ADC Acquiring TM Stage Output  

The TM-ARCHβ-7-12 ADC was then modelled and tested with the µCA-3. The same methods 

discussed in Sections 6.1.1 were employed to configure the non-matching µ±stage. Also, each 

of these tests were repeated 10 times with different random combinations of µ±stage, as a 

higher number of combinations exceeded the resource capacity of MATLAB.  

Figure 6-2 presents the quantisation error versus input voltage plot of the TM-ARCHβ-7-12 

ADC, for the final set of tests performed, before and after the µCA-3 was applied to the output 

digital data. The maximum absolute quantisation error was again found to have significantly 

reduced from 1184.5 LSBs, uncompensated to 1.6 LSBs after compensation. The results 

demonstrated that the µCA-3 was capable of consistently increasing the TM-ARCHβ-7-12 ADC 

bit accuracy to 17 bits for all 10 tests, from an uncompensated bit accuracy range of 4 to 6 

bits.  

 

 

Figure 6-2: Quantisation error of the TM-ARCHβ-7-12 ADC model ((4-9) TM implementation with 
different µ±stage) before and after compensation.  
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6.2 Sensitivity Analysis of the Enhanced Tent Map Gain Compensation Algorithms 

Section 6.1 highlights the effectiveness of µCA-2 and µCA-3 at compensating for µ±stage. 

However, the negative slope circuitry of the electronic TM function implementation (as 

shown by (4-3)) uses both µ+ and µ-. This results in a Vref(µ+ - µ-) offset (where Vref is the 

partition point voltage) being introduced by the TM stage, then often amplified and 

reintroduced by successive TM stages. For the µCA-2 and µCA-3 to be effective with this TM 

implementation, there had to be a limit on the variation between the µ±stage.  

The following two sub-sections present the sensitivity analysis tests performed to determine 

the maximum difference that could occur between µ±stage, as well as how much the µ±stage 

employed by the µCA-2 and µCA-3 could deviate from µADC, for both the TM-ARCHα-7 and 

TM-ARCHβ-7-12 ADCs. For the TM-ARCHβ-7-12 ADC, the bit accuracy of the compensated 

output needed to be at least 15 bits, to meet the UMS application specification (see Section 

1.5). For the lower resolution TM-ARCHα-7 ADC, the purpose of the analysis was to establish 

the maximum difference between µ±stage, as well as how much the µ±stage employed by the 

µCA-2 could deviate from µADC before the maximum possible compensated bit accuracy 

started diminishing. 
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6.2.1 Deviation Between µ± Within the ADC 

This sensitivity analysis investigated what the maximum difference between µ±stage could be 

for the TM-ARCHβ-7-12 ADC to achieve a bit accuracy of 15 bits, after the µCA-3 had been 

applied to the digital output data. The maximum difference between µ±stage for the lower 

resolution TM-ARCHα-7 ADC, used for testing the μCA-2, before the maximum possible 

compensated bit accuracy started diminishing was also established. 

With testing the TM-ARCHβ-7-12 ADC, the µ- values deviated from the µ+ for each TM stage 

over a range of -0.2 x 10-3 ≤ Δµ+ ≤ + 0.2 x 10-3 (where Δµ+ defines the deviation from µ+) in 

increments of 10 x 10-6. For the TM-ARCHα-7 ADC, the set-up was identical, except the µ- 

values deviated from the µ+ for each stage over a range of -0.1 ≤ Δµ+ ≤ + 0.1, in increments of 

0.1 x 10-3, as lower resolution TM-based ADCs are less sensitive to µ deviations.  

Figure 6-3 and Figure 6-4 present the sensitivity analysis results for the TM-ARCHβ-7-12 ADC 

and TM-ARCHα-7 ADC respectively. The results highlight that the higher resolution  

TM-ARCHβ-7-12 ADC is more sensitive to deviation between µ±, despite an ideal ADC (rather 

than a series of additional TM stages) being employed to determine the last 12 bits of the 

digital output. This is because the COTS ADC is considered an ideal TM-based ADC by the  

µCA-3, thus the output of the 7th TM stage of the TM-based ADC is still effectively being 

amplified by multiples of 2. This results in the deviation from the ideal TM output becoming 

more pronounced with higher resolution TM-based ADCs. 
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Figure 6-3: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHβ-7-12 ADC.  

 

 

Figure 6-4: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHα-7 ADC.  

 

For the UMS application the TM-ARCHβ-7-12 ADC needs to have a minimum bit accuracy of 

15 bits. From the results presented in Figure 6-3, the maximum amount µ- can deviate from 
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µ+ is ± 50 x 10-6. For the TM-ARCHα-7 ADC to maintain the maximum bit accuracy of 6 bits 

after compensation, the maximum µ- can deviate from µ+ is -0.0133 ≤ Δµ+ ≤ +0.0283 (see 

Figure 6-4). 

 

6.2.2 Deviation in µ± Employed by µCA-2 and µCA-3 

Two sensitivity analysis tests to assess how accurately the µ±stage needed to be determined for 

the µCA-2 and µCA-3, in order for the µCS to still be effective, were also performed (similar 

to the sensitivity analysis discussed in Section 5.3). The first test was for the TM-ARCHβ-7-12 

ADC with the µCA-3, whilst the second test was for the TM-ARCHα-7 ADC with the µCA-2.  

For the TM-ARCHβ-7-12 ADC, the µ+ for the first 7 TM stages were again generated using the 

rand() function within the range 1.9 < µ+ < 1.99. The extent the µ- values could deviate from 

the µ+ values were also generated by the rand() function and the range of deviation was set 

to ± 50 x 10-6, based on the results presented from the previous sub-section. With the  

TM-ARCHα-7 ADC the set-up was identical except the range µ- could deviate from µ+ from 

was -0.0133 ≤ Δµ+ ≤ 0.0283. 

The µ± values employed by the µCA-3 (µ±algorithm) originally deviated from the actual µ± values 

of the TM-ARCHβ-7-12 ADC (µ±ADC) by -0.1 %. The bit accuracy of the compensated  

TM-ARCHβ-7-12 ADC output was then recorded. The deviation of µ±algorithm from µ±ADC was 

then incremented by 0.001 % until the final deviation was +0.1 %. With the TM-ARCHα-7 ADC, 

the test procedure was identical except the range of deviations was increased to ±2 % for the 

µCA-2. 
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Figure 6-5 and Figure 6-6 present the bit accuracy versus deviations from µ±ADC plots for the 

TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC respectively. With the TM-ARCHβ-7-12 ADC 

(Figure 6-5), the maximum amount the µ±algorithm values could deviate from the µ±ADC values is  

-0.001 % to +0.003 %, in order to improve the uncompensated ADC output bit accuracy to 15 

bits and meet the UMS specification. For the TM-ARCHα-7 ADC to achieve a bit accuracy of 6 

bits after compensation, the maximum deviation is -0.491 % to +1.167 %. The results also 

show that the higher resolution TM-ARCHβ-7-12 ADC is still more sensitive to deviations 

between µ±algorithm and µ±ADC, despite an ideal ADC determining the last 12 bits, compared to 

a series of cascaded comparators and TM stages.  

 

 

Figure 6-5: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHβ-7-12 ADC. 
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Figure 6-6: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHα-7 ADC. 

 

6.3 Simulated Output Accuracy Analysis of the Adapted Tent Map Based ADC with the 

Enhanced Tent Map Gain Compensation Algorithm 

The initial model of the TM-ARCHα-n ADC presented in Chapter 5 was refined to take into 

consideration the following non-ideal characteristics of the physical implementation of both 

the TM-ARCHα-n ADC and TM-ARCHβ-n-Rsub-ranging ADC structures:  

• Non-matching µstage;  

• Non-matching µ±; 

• The negative slope of each TM stage being created by both slope gains µ+ and µ- (as 

highlighted in (4-3));  

• A multibit sub-ranging COTS ADC being added to the final TM stage (TM-ARCHβ-n-Rsub-

ranging ADC only); and 
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• The external hysteresis added to the comparators, which was set to be ± half a step 

size.  

With the exception of the external hysteresis and the negative slope of each TM stage being 

created by both µ±, all the above characteristics were considered in the TM-based ADC models 

employed in Sections 6.1.2 to 6.2.2. This section presents the output accuracy analysis of the 

TM-ARCHβ-7-12 ADC model, which takes into consideration all the above non-ideal 

characteristics, and the µCA-3.  

The analysis investigates the improvement in bit accuracy, as well as the changes in static and 

dynamic performance, after applying the µCA-3 to the digital output data from the  

TM-ARCHβ-7-12 ADC model and assesses whether this TM-based ADC structure met the UMS 

specification. Three sets of analysis tests were performed on the TM-ARCHβ-7-12 ADC, which 

were:  

1. Bit accuracy predictions: confirmed bit accuracy is greater than, or equal to, 15 bits, 

after the µCA-3 is applied to the digital output data of the TM-ARCHβ-7-12 ADC.  

2. Static performance predictions: analysed the static performance of the TM-ARCHβ-7-

12 ADC before and after compensation, by determining the DNL, INL, offset error and 

gain error.  

3. Dynamic performance predictions: examined the dynamic performance of the  

TM-ARCHβ-7-12 ADC, before and after compensation, by determining the SNR, SINAD, 

SFDR, THD and ENOB.  

Based on the results obtain in the sensitivity analysis in Section 6.2.1, the maximum deviation 

between µ- from µ+ for each TM stage was set to ± 50 x 10-6. With the dynamic performance 
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tests, faster sinusoidal input signals of 12.5 MHz and 1.25 MHz were provided (this selection 

being consistent with the tests presented in Section 5.2.3).  

 

6.3.1 Bit Accuracy Predictions 

The analysis performed on the most refined TM-ARCHβ-7-12 ADC model with the µCA-3, was 

similar to that presented in Section 6.1.2. With this analysis, only one test was performed, as 

previous tests suggested that the final bit accuracy after compensation was consistent. 

Figure 6-7 presents the quantisation error in terms of LSBs before and after compensation, 

and Figure 6-8 presents the quantisation error after compensation only. The plot highlights 

the significant improvement in the TM-ARCHβ-7-12 ADC output accuracy in terms of 

representing the original input signal. The bit accuracy of the TM-ARCHβ-7-12 ADC increases 

from 5.81 bits to 15.68 bits (due to a reduction in the maximum absolute quantisation error 

from 4657 LSBs to 4.7 LSBs), showing the µCA-3 enabled this TM-based ADC design to meet 

the specification for the UMS application.    
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Figure 6-7: Quantisation error of the refined TM-ARCHβ-7-12 ADC model before and after 
compensation. 

 

 

Figure 6-8: Quantisation error of the refined TM-ARCHβ-7-12 ADC model after compensation.  
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6.3.2 Static Performance Prediction 

The same procedure detailed in Sections 5.2.2 was employed when establishing the DNL, INL, 

offset error and gain error of the TM-ARCHβ-7-12 ADC output digital data before and after 

compensation. The µCA-3 produced a significant reduction in magnitude with the maximum 

and minimum end-point INL error of approximately 13956 LSBs (the minimum INL went from 

-13971 LSBs to -14.25 LSBs, and the maximum INL fell from 13967.25 LSBs to 12 LSBs). This 

agrees with the results observed in the previous sub-section, as both bit accuracy and INL are 

a measure of how well the realised ADC output matches the ideal output. The offset error 

and gain error were both 0 LSBs before and after compensation, thus being unaffected by the 

non-ideal characteristics explored in this test. 

With the maximum and minimum DNL error, a slight increase was observed for the maximum 

DNL error after compensation from 0.25 LSBs to 1.25 LSBs (the minimum DNL was maintained 

at -0.75 LSBs). As with the results observed in Section 5.2.2, this was due to the µCA-3 altering 

certain digital output codes to other binary values. However, the rate which the DNL 

increased was less than that observed in Section 5.2.2, despite the TM-ARCHβ-7-12 ADC 

having the higher resolution of 19 bits compared to the 16-bit TM-ARCHα-15 ADC model 

employed in the earlier test. This is because the COTS ADC acts as an ideal, 11 stage TM-based 

ADC, so the µ of these equivalent TM stages is 2 (whilst the µ of the first 7 stages was < 2). 

The high number of TM stages with a µ = 2 resulted in the DM values calculated for this TM-

ARCHβ-7-12 ADC being smaller in value than those calculated for the TM-ARCHα-15 ADC in 

Section 6.1.1. Smaller DM values resulted in lower DV values, which in turn reduced the 

probability of the compensation values modifying those digital output codes to match other 

pre-existing digital combinations and resulted in a smaller increase in DNL. 
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6.3.3 Dynamic Performance Predictions 

For this test the same procedure as described in Sections 5.2.3 was employed to find the 

dynamic parameters of the uncompensated and compensated ADC output. Different values 

for M and N were used to create the input frequency (see (2-5) in Section 2.1.2) due to higher 

resolution of the TM-ARCHβ-7-12 ADC. N was set to 209712 (N=2(R+2), where R equals 19 bits), 

while M was configured to 104851 and 1048573 which produced input frequencies of  

1.25 MHz and 12.5 MHz respectively. 

Figure 6-9 presents the results, before and after compensation, for the SNR, SINAD, SFDR and 

THD. The results highlight an increase in magnitude for all four of these parameters after the 

µCA-3 had been applied. This shows that the µCA-3 improved the performance of the TM-

ARCHβ-7-12 ADC, as the ratio between the main output signal and noise distortion had 

increased, meaning the fundamental signal was more prominent than the noise and 

distortion, as the compensated signal more closely represents a sinusoidal signal. The 

improvement in THD was restricted when the Nyquist frequency was supplied due to the 

aliasing of the harmonics further distorting the ADC output signal. 

The improvement in ENOB was found to have increased from approximately 6.5 bits to 16 bits 

for both input frequencies. These results confirm that the µCA-3 enables the TM-ARCHβ-7-12 

ADC to meet the specification for the UMS over the required signal bandwidth, which requires 

the ADC to have a minimum resolution of 15 bits with input frequencies of up to 5 MHz.  
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Figure 6-9: SNR, SINAD, SFDR and THD before and after compensation.  

 

 

 

 

 



175 
 

6.4 Noise Analysis Simulation 

Internal noise within chaotic ADCs effects the performance more noticeably at higher 

resolutions [103]. Noise can be caused by: distortion in sampling circuits; output referred 

noise of each TM caused by internal noise of the TM circuit (e.g. thermal noise); long term 

drifts of circuit component parameters; and input noise [103]. Dominant errors are input 

noise and output referred noise, as techniques have been developed that reduce distortion 

within sampling circuits [111] as well as for estimating variation within the gains due to 

component long term drift, [112] which in turn enable µ compensation [2, 41, 42, 113] making 

these other two noise sources negligible [103].  

For this reason, a simple analysis on the additional effects noise might have on the  

TM-ARCHβ-7-12 ADC output accuracy was performed. Figure 6-10 presents a block diagram 

summarising the set-up employed for the noise analysis. Noise was injected onto the input 

signal to the TM-ARCHβ-7-12 ADC (by superimposing white gaussian noise on the signal of 

interest), as well as onto the output signals of each TM stage. No noise was injected within 

the COTS ADC model as this was being simulated as an ideal ADC. The same magnitude of 

noise, which ranged from 0 to 4 step sizes (a step size is the equivalent of 1 LSB [38]) and was 

incremented in 0.5 step sizes, was superimposed on each signal of interest within the  

TM-ARCHβ-7-12 ADC model. To simplify modelling, output referred noise of each TM stage 

was modelled to have the same magnitude as the input noise. 
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Figure 6-10: Block diagram of noise analysis test set-up. 

 

The results demonstrated that even the addition of half a step size of noise reduces the 

improvement in bit accuracy after compensation from 15.7 to 15.4 bits. However, the 

compensated bit accuracy still met the UMS specification (≥ 15 bits), until the noise level 

exceeded 2 step sizes. Also, the uncompensated bit accuracy was unaffected by the noise 

range being investigated (consistently being 5.81 bits to 2 d.p.), showing that non-ideal µ has 

the more pronounced effect on the ADC output accuracy than noise across this noise range. 
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6.5 VHDL Implementation of an Enhanced Tent Map Gain Compensation Algorithm 

A VHDL implementation of a µCS, comprising of the µCA-2, was implemented in VHDL code, 

as the plan was to initially test a TM-ARCHα-7 ADC, which has a comparator, instead of a sub-

ranging COTS ADC, on the final TM stage. This µCS, developed to configure the same FPGA 

being employed to coordinate the operation of a TM-ARCHα-7 ADC, was tested using the 

same method to that detailed in Section 5.5.  

A MATLAB script was used to select seven random µ+ values between 1.9 and 1.99 (one for 

each TM stage). The corresponding µ- values for each TM stage were also generated at 

random and were configured to fall within the range of -0.0133 ≤ Δµ+ ≤ +0.0283 (based on the 

maximum limits found from tests detailed in Section 6.2.1). The TM-ARCHα-7 ADC VHDL 

model (described in Section 5.5) was modified to emulate the predicted output, when 

comprising the generated µ±stage values and supplied a ramp input signal. The DM values, used 

by the µCA-2 for each bit were also calculated from the generated µ±stage values using (4-8), 

converted to binary, and hard coded as an array within the VHDL code.  

Figure 6-11 presents a graph of the simulated VHDL module quantisation error, with and 

without compensation. The results show the implemented µCA-2 enhanced bit accuracy of 

the VHDL TM-ARCHα-7 ADC model, which increased from 5.42 bits to 6 bits. In addition, the 

µCA-2 processed each newly acquired sample of the input signal, while the next sample was 

obtained, confirming that real-time compensation of non-ideal and non-matching µ±stage was 

still achievable with the µCA-2. 
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Figure 6-11: Quantisation error of the TM-ARCHα-7 ADC VHDL model before and after compensation.  

 

6.6 Practical Implementation of a Tent Map Based ADC with an Embedded Tent Map 

Gain Compensation System 

The µCS comprising the µCA-2 was tested with a physical, electronic implementation of a  

TM-ARCHα-7 ADC to confirm that real-time µ compensation was achievable. The VHDL 

implementation of the µCA-2 configured the same FPGA which was being used as part of an 

electronic implementation of the TM-ARCHα-7 ADC.  

Appendix A.1 presents the schematic and list of components for the physical implementation 

of the TM-ARCHα-7 ADC. Initially the resistors which produced ΔR1, ΔR2 and ΔR3 (see (4-2)) 

were set to 0 Ω, before being changed to bring the µ±stage below 2. The sensitivity analysis in 

Section 6.2.1 determined the µ±stage should fall within the ideal -0.0133 ≤ Δµ+ ≤ +0.0283 range, 
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however precisely determining these values was not possible, but all the µ±stage values were 

less than 2. 

The µ±stage were determined by supplying the TM-ARCHα-7 ADC with DC input voltages and 

measuring the input and output voltages from each TM, along with the Vref voltage (the 

partition point voltage). The input voltage to the ADC was set so the input voltage, to the TM 

stage under observation, started at 0.7 V, then increased by 0.025 V, until 0.8 V was reached. 

Using (6-1) (which was derived from (1-2) [19]) and the TM input and output voltages 

measured (xn and xn+1 respectively), µ+ (the positive slope gain) was calculated for each  

0.025 V increment.  

 

 𝜇+ =
𝑥𝑛+1
𝑥𝑛

 , 𝑥𝑛 < 𝑉𝑟𝑒𝑓 (6-1) 

 

The midrange of the five calculated µ+ values was determined for each TM stage. This 

measure of centre was found to achieve the greatest improvement in the TM-ARCHα-7 ADC 

output accuracy (when compared to the average and median µ+ values). 

The above test was repeated to determine the µ- (the negative slope gain) value for the TM 

stage under consideration. The DC signal to the TM stage was set to 2.2 V and incremented 

to 2.3 V, again by 0.025V steps. (6-2) (also derived from (1-2) [19]) shows how µ- was 

calculated using the measured Vref voltage, as well as the calculated midrange µ+ value for 

the same TM stage. The midrange value of the five µ- values calculated for each TM stage was 

then determined. 

 

 
𝜇− =

(𝑉𝑟𝑒𝑓 × 𝜇+) − 𝑥𝑛+1
𝑥𝑛 − 𝑉𝑟𝑒𝑓

 , 𝑥𝑛 > 𝑉𝑟𝑒𝑓 
(6-2) 
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Table D-3 in Appendix D presents the final µ±stage values determined; these were then used to 

calculate the DM values for the µCA-2 VHDL implementation. These µ±stage values were also 

placed within a MATLAB model of the TM-ARCHα-7 ADC, which was used to make predictions 

on the digital output the ADC produces. The comparator hysteresis threshold voltages were 

also modified to reflect how the hysteresis had been implemented within the practical  

TM-ARCHα-7 ADC.  

The TM-ARCHα-7 ADC was tested with the µCS. The FPGA controlling the analogue circuitry 

of the TM-ARCHα-7 ADC was originally programmed to generate the uncompensated output. 

A 0 V DC voltage signal was supplied to the ADC and the binary output captured before the 

FPGA was reprogrammed to generate the compensated output and the new binary output 

recorded. The DC input signal was then incremented by 0.1 V and the process described above 

repeated until the input signal reached 3 V. 

Figure 6-12 presents the difference between the uncompensated output, ideal ADC output 

and the compensated output using the midrange µ±stage values. The results show that the µCS 

reduces the difference between ADC and ideal output (the maximum deviation was reduced 

from ±7 LSBs to ±4 LSBs) and improves the bit accuracy of the electronic implementation of 

the TM-ARCHα-7 ADC from 4.19 bits to 5 bits.  
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Figure 6-12: Plot between the physical TM-ARCHα-7 ADC output and ideal output, before and after 
compensation.  

 

The µCA-2 improved the bit accuracy of the TM-ARCHα-7 ADC, although not to 6 bits, as 

predicted by MATLAB model. The reduced improvement in the ADC output accuracy is linked 

to the limited accuracy and precision when measuring the µ±stage values. The difference 

between the uncompensated electronic TM-ARCHα-7 ADC output and the predicted 

uncompensated TM-ARCHα-7 ADC output (produced from the MATLAB model) was -2 to +3 

bits, while for the compensated data the maximum difference was - 3 bits to + 4 bits. These 

results highlight that the µ±stage values calculated from the measured TM voltages were not 

sufficiently accurate for the MATLAB model to predict the uncompensated digital output 

codes, nor for calculating the DM values required for the µCA-2. The µ±stage values also seemed 

to vary depending on the amplitude of the TM input voltage, which may also have limited the 

ability of the embedded µCS to improve the TM-ARCHα-7 ADC output accuracy.  
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Limitations in getting the practical TM-ARCHα-7 ADC with µCA-2 to reach sufficiently high-

quality performance restricted further work regarding the development of an electronic  

TM-ARCHβ-n-Rsub-ranging ADC implementation and a VHDL implementation of the µCA-3. 

However, the results have demonstrated that real-time embedded µ compensation within a 

TM-based ADC is feasible. 

 

6.7 Summary 

This chapter analysed the enhanced µCAs, µCA-2 and µCA-3, through MATLAB modelling. The 

TM-ARCHα-15 ADC and TM-ARCHα-7 ADC models were employed with the µCA-2 analysis, 

while a TM-ARCHβ-7-12 ADC model was used to assess the µCA-3. A VHDL implementation of 

the µCA-2 was also assessed via simulation using a TM-ARCHα-7 ADC structure, then tested 

through practical experiments. 

Analysis of the µCA-2 and µCA-3 showed promising results in compensating for non-matching 

µ± for each TM stage (µ±stage), over a range of 1.9 ≤ µ±stage ≤1.99, within a TM-ARCHα-15 ADC. 

When µ+ produced the positive slope of the TMs and only µ- was employed to create the 

negative slope within the TM-ARCHα-15 ADC, the compensated bit accuracy rose to 14 bits 

from an uncompensated bit accuracy of 9 to 10 bits. Meanwhile, the µCA-3, which can 

accommodate a multibit sub-ranging ADC acquiring the final TM stage output signal, was 

found to improve the compensated bit accuracy of the TM-ARCHβ-7-12 ADC structure to 17 

bits, from an uncompensated bit accuracy of 4 to 6 bits. 

The negative slope circuitry of the TM function employed in the physical TM-ARCHα-7 ADC 

(as shown by (4-3)) employs both µ+ and µ-. For the µCA-2 and µCA-3 to be effective, a limit 

on the variation between the µ± for each TM stage (µ±stage) was required to minimise the 
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resulting offsets. The sensitivity analysis in Section 6.2.1 suggested the maximum µ- can 

deviate from µ+ per TM stage, for the TM-ARCHβ-7-12 ADC, should be ± 50 x 10-6, but lower 

resolution TM-based ADC designs can cope with a larger difference. The second sensitivity 

analysis presented in Section 6.2.2 highlighted that uncertainty in measuring the µADC values 

needed to be minimised for µCA-2 and µCA-3 to be effective. 

Simulation results show that the TM-ARCHβ-7-12 ADC can achieve the specification for the 

UMS through employing the µCA-3. The results highlighted an increase in bit accuracy from 

5.81 bits to 15.68 bit, whilst the dynamic performance tests proved the ENOB, when the input 

frequency was greater than 5 MHz (the maximum frequency of the signals being employed 

within the UMS application), was also greater than the minimum requirement of 15 bits. The 

static performance tests also demonstrated a dramatic reduction in the INL error of 13956 

LSBs. The increase in DNL error after compensation was lower than that observed for the 

compensated TM-ARCHα-15 ADC output in Chapter 5, due to the sub-ranging COTS ADC in 

the TM-ARCHβ-7-12 ADC acting as the equivalent of an ideal 12-bit TM-based ADC. This sub-

ranging ADC reduced the level of compensation required as the equivalent TM stages were 

modelled with an ideal µ of 2, which in turn reduced the magnitude of the calculated DMs 

and the probability of digital levels being increased or decreased due to the compensation.  

The noise analysis into the theoretical TM-ARCHβ-7-12 ADC model with the µCA-3 highlights 

that input signal noise and output referred noise to the TM-based ADCs reduces the 

improvement in bit accuracy. However, the simple noise analysis suggests noise less than two 

step sizes in amplitude enables the TM-ARCHβ-7-12 ADC to achieve a bit accuracy of 15 bits 

after compensation, as required by the UMS specification. 
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Finally, the simulated VHDL implementation of a TM-ARCHα-7 ADC with the µCA-2 improved 

the bit accuracy from 5.42 bits to 6 bits, whilst with the electronic implementation the bit 

accuracy was 4.19 bits uncompensated, and 5 bits compensated. With the electronic 

implementation, limitations in obtaining precise and accurate TM input and output voltage 

measurements restricted the ability in determining the µ±stage values and thus achieving better 

compensation. Nevertheless, the results proved that embedded, real-time µ compensation 

of a physical TM-based ADC digital output data was possible.  

The next chapter discusses the results from the simulated and practical TM-based ADC 

designs with the enhanced µCAs.  
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7 Discussion 

Theoretical analysis and practical experimentation have demonstrated the feasibility of a real-

time µCS for TM-based ADCs. A theoretical, mathematical model of a TM-ARCHβ-7-12 ADC 

with a µCS (comprising the µCA-3) has shown the bit accuracy can be increased to a minimum 

of 15 bits accuracy (achieving the requirement of detecting 100 µV signal variations), making 

this design viable to be employed within the DAQ system for the UMS application. Practical 

experimentation with a TM-ARCHα-7 ADC has confirmed that a µCS (comprising the µCA-2) 

can be embedded within the TM-based ADC and perform real-time compensation for non-

ideal µ on the digital output data. Three techniques were also created, whilst developing the 

compensation algorithm, for coping with: non-matching TM stage µ; non-matching µ±stage; and 

a multibit sub-ranging ADC converting a TM output signal to the digital domain rather than a 

single bit producing comparator. 

Simultaneously meeting high resolution, high sampling speed, high conversion speed, low 

power and low fabrication area is challenging, especially at the extremes of a particular 

category. Different TM-based ADC structures have been shown to have potential in reducing 

combinations of these trade-offs [13, 16, 56, 57], but a key limitation of such ADCs is the 

impact non-ideal µ within the TM circuitry has on the output accuracy. This research has 

developed a novel algorithm, which can be embedded within TM-based ADCs, to perform 

real-time µ compensation on the digital output data, to counteract this problem. 

As part of this work, the viability of a standalone TM-based ADC, with an embedded digital 

implementation of a µCA, for the employment within a DAQ system for a UMS application 

was assessed. This work also demonstrates the feasibility of employing TM-based ADCs within 

other measurement systems requiring small signal variations to be consistently detected 
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across a relatively large signal range. The UMS application required the TM-based ADC to have 

a bit accuracy of 15 bits after compensation. The mathematical model development of a  

TM-ARCHβ-7-12 ADC structure (consisting of a 7 TM stage ADC with a 12-bit COTS ADC to 

acquire the final TM output) emulated the operational performance of an electronic 

implementation and demonstrated that the improvement in bit accuracy, after the applied 

µCA-3, was sufficient to meet the UMS application specification. The VHDL implementation 

of the µCA-1 and µCA-2 also proved compensating for non-ideal µ, without the requirement 

of offline computational post-processing, was viable. Instead, simulation and electronic 

experimentation proved a µCS can be embedded within a TM-based ADC and perform real-

time compensation on the output digital data prior to transmission. These tests, along with a 

mathematical model, demonstrated the viability of a physical DAQ system which employs a 

stand-alone TM-based ADC with embedded µ compensation.  

Techniques were also developed and proven, through a combination of theoretical simulation 

and electronic implementation, to compensate for non-matching TM stage µ, as well as non-

matching µ±stage values. A µ compensation technique for when the TM output was digitised 

using a multibit ADC, rather than a single bit producing comparator, was also developed. 

These three techniques enable a variety of TM-based ADC structures to be compensated for 

non-ideal µ. The µCA by Basu, in addition to not being performed prior to the ADC data being 

transmitted, was only suitable for a feedback TM-based ADC configuration with a comparator 

acquiring the previous output (as shown in Figure 2-12), as this enabled the µ for each 

iteration (equivalent to each TM stage in a series configuration) to be constant [41, 42]. The 

µCA-2 and µCA-3, however, can be employed to compensate for non-ideal µ within series and 

feedback TM-based ADC configurations that employ both comparators and sub-ranging ADCs 

to digitise TM input and output signals. 
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The µCA and techniques developed during this research have demonstrated the viability of 

employing TMs for analogue to digital data conversion. Due to how the TM circuits were 

electronically implemented in the TM-based ADC design developed by Upton [56, 57] (shown 

in (4-3)) , the TM negative slope circuitry introduced an offset of Vref(µ+ - µ-), which was often 

amplified by successive TM stages. For the enhanced µCAs to be effective at compensating 

for non-matching µ±stage values, the difference between the µ±stage values had to fall within an 

acceptable tolerance (established via the sensitivity analysis in Section 6.2.1), which becomes 

more critical at higher resolutions. With higher resolution TM-based ADCs, there may also be 

a case for fabricating the design onto silicon, enabling the µ±stage to be better matched (when 

compared to a discrete component implementation), alleviating the limitation posed by the 

offset introduced. Another solution is investigating different circuit configurations of TM 

implementations whose operation match that shown in (4-9), as better compensation for 

non-matching µ±stage values with this circuit configuration can be achieved. Alternatively, a 

technique to compensate for this offset could be investigated. 

The sensitivity analyses in Section 6.2.2 highlighted the need to significantly reduce the 

difference between µ±ADC and µ±algorithm for higher resolution TM-based ADCs, for the 

enhanced µCAs to remain effective. This requires measuring the µ±stage values of the TM-based 

ADC accurately and precisely, which needs to be achieved with the electronic TM-ARCHα-7 

ADC, before the µCA-3 can be implemented in VHDL and trialled with the TM-ARCHβ-n-Rsub-

ranging ADC, tested in theoretical simulations. For a discrete component implementation of the 

TM-based ADC, using higher precision measurement equipment and the method to 

determine µ±stage values described in Section 6.6 might be acceptable. Methods of further 

reducing noise in the TM-based ADC would also improve measurement precision and thus the 

accuracy of the µ±stage measurements. Noise reducing methods could include reducing 
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switching noise by lowering the sampling speed (involves adjusting the sample and hold 

capacitors and resistors) or redesigning the PCB to enable further noise reduction. If the TM-

based ADC was fabricated as an IC, this method of establishing the µ±stage values maybe 

infeasible as the analogue signals to and from the TM circuits might not be accessible for 

measurement. Therefore, research into employing the output digital data, such as exploring 

the adaptation of the method suggested by Dutta [112], to determine the µ±stage values might 

be necessary for this application.  

As an aside, work in the field of TM-based ADCs and estimating the initial input signals and µ 

parameters though the digital output data [2, 41, 42, 112, 114] may have potential 

applications in the field of chaotic encryption and decryption. Multiple encryption and 

decryption systems have been developed which employ the chaotic TM [115] or a 

combination of the TM and other chaotic maps [116, 117]. An investigation into the 

employment of the µCAs from this work, to create a more efficient encryption and decryption 

process which requires minimal computation, could be undertaken. 

Overall, this work has advanced the viability of TMs being employed for analogue to digital 

data conversion. This in turn will enable an improvement in trade-offs between speed, power 

consumption and circuit area at higher resolutions, depending on the TM-based ADC 

structure chosen. Furthermore, this research has demonstrated the potential in employing 

TM-based ADCs within measurement systems which required small signal variations to be 

consistently detected across a relatively large signal range. 
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8 Conclusion and Further Work  

8.1 Conclusions 

Multiple advancements with compensating for loss in the output accuracy of tent map (TM) 

based analogue to digital converters (ADCs), caused by non-ideal TM gain (µ), have been 

demonstrated. This involved the development of a stand-alone TM-based ADC with an 

embedded µ compensation system (µCS) comprising a novel µ compensation algorithm (µCA). 

The µCA developed required much lower levels of computation resources, compared to a past 

solution proposed to compensate for non-ideal µ, enabling a compensation system to be 

embedded within a TM-based ADC. 

The TM-based ADC and µCS, which was developed for a specific type of measurement system 

application, also demonstrated the viability of employing this data converter within high 

precision and high accuracy measurement systems. Furthermore, the refinements made to 

the µCA during this project has enabled the production of µCS for different TM-based ADC 

structures, making the notion of employing TM-based ADCs in different applications more 

obtainable. 

The main conclusions are:  

1. The viability of employing a TM-based ADC, with an embedded µCS, within a data 

acquisition (DAQ) system, for an ultrasonic measurement system (UMS), was 

investigated using MATLAB simulation and practical testing. 

2. Theoretical analysis using MATLAB has demonstrated the output accuracy of a TM-

based ADC is affected when the µ of each TM stage was less than two.   
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3. A novel µCA was proposed, which compensated for non-ideal µ through using the Gray 

code output data produced by the TM-based ADC, to aid the calculations for which 

compensation values needed to be added/subtracted from the digital output data, to 

produce a more accurate digital representation of the original analogue signal which 

was sampled and converted. 

4. Three other techniques were developed to enhance and enable the novel algorithm 

to be adapted for employment with a variety of TM-based ADC structures. These 

techniques compensated for:  

• non-matching TM stage µ;  

• non-matching slope µ for each TM stage (µ±stage); and  

• non-ideal µ when the digital data produced from the TM stages was from a sub-

ranging ADC rather than comparators.  

5. A mathematical model was developed to assess the performance of a TM-based ADC 

(consisting of 7 comparator and TM stages and a 12-bit COTS ADC to digitise the final 

TM stage output) after the µCA processes the digital data. Results showed an increase 

in bit accuracy from 5.81 bits to 15.68 bits, which met the specification for the UMS 

DAQ system. Noise has a negative effect on the ADC output accuracy, but amplitudes 

below two ADC step sizes were tolerable.  

6. The VHDL implementation of the µCA and practical experiments proved embedded 

real-time µ compensation was possible and demonstrated the concept of developing 

a standalone TM-based ADC with embedded compensation.  

7. Challenges need to be overcome to realise physical TM-based ADC for the UMS 

application, but the results obtained have proven the viability and concept of 

employing a TM-based ADC, with an embedded µCS, to perform higher resolution data 
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conversion within a measurement system which requires small signal variations to be 

consistently detected across a relatively large signal range. 

8.2 Future Work  

The following is a list of suggestions of proposed further work: 

• Fabricate an electronic implementation of the TM-ARCHβ-n-Rsub-ranging ADC, with an 

embedded µCS comprising the µCA-3, onto silicon. The fabrication of this TM-based 

ADC with µCS design will result in better matched TM slope gains that are closer to 

the ideal value of 2. This will enable better ADC output accuracy after compensation 

and enable higher resolution TM-based ADC designs to be realised. 

• Investigate the possibility of enhancing the µCA further by developing an algorithm 

which can establish the TM stage and slope gains from the TM-based ADC output, 

enabling an auto calibrating µCS to be produced. This would enable a more effective 

µCS to be deployed with a TM-based ADC, because the comprising µCA would be more 

immune to TM stage and slope gains varying over time (due to the resistors which set 

the µ values drifting over time and with temperature).  

• Investigate the possibility of applying the µCAs developed to enhance TM-based 

encryption and decryption systems. Some encryption and decryption processes have 

employed TM functions within the process, and this work might enable a system to be 

produced with reduced computational requirements. 
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Appendix A  

A.1 Tent Map Based ADC PCB 

A.1.1 Schematics of the TM-ARCHα-7 ADC PCB 

Figure A-1 to Figure A-5 present the schematic for the PCB design of the TM-ARCHα-7 ADC. Figure A-1 presents the sample and hold circuitry, 

while Figure A-2 and Figure A-3 show the data conversion circuitry which employed TM functions. Figure A-4 gives the voltage reference 

generation circuitry along with the connectors and power supplies. Figure A-5 illustrates the µ±stage alteration resistors. 
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Figure A-1:  Sample and hold schematic. 
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Figure A-2: TM Stages 1 to 4. 
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Figure A-3: TM stages 5 to 7.  
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Figure A-4: Power, connectors, decoupling and filter circuitry. 
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Figure A-5: µ± alteration circuitry.  
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A.1.2 List of Components for the TM-ARCHα-7 ADC PCB 

Table A-1 presents the list of components employed in the TM-ARCHα-7 ADC PCB design, described in the previous section. 

 

Ref Name Component Value Package Description 

C1 - C29, C31, C33, C35 - C44, 
C47 - C55, C59 - C67, C70, 
C71, C88, C90, C92 - C100 

0603 SMT 
Capacitor 

100 nF SM0603 
Capacitor, Surface Mount Multi-Layer 
Ceramic 

C30, C32, C45, C58, C69, 
C101, C102 

0805 SMT 
Capacitor 

10 µF SM0805 
Capacitor, Surface Mount Multi-Layer 
Ceramic 

C34, C46, C56, C57, C72 - C87 
0603 SMT 
Capacitor 

5 pF SM0603 
Capacitor, Surface Mount Multi-Layer 
Ceramic 

C68 
0805 SMT 
Capacitor 

5 µF SM0805 
Capacitor, Surface Mount Multi-Layer 
Ceramic 

C89, C91 
0805 SMT 
Capacitor 

22 µF SM0805 
Capacitor, Surface Mount Multi-Layer 
Ceramic 

CT1 
Terminal Block 
(5mm-2pole) 

 DIL Terminal Block (5mm-2pole) 

CT2 
Terminal Block 
(5mm-3pole) 

 DIL Terminal Block (5mm-3pole) 

IC1 ADR510ARTZ-R2 DNF SOT - 23 - 3 1 V Voltage Reference 

IC2 - IC10 TS5A2066DCT  SM8 Dual channel SPST 10 Ω analogue switch 

IC11 AD8037  SOT-23-5 Op-amp 

IC12 - IC19 TS3011ICT  SC-70 Push-Pull Comparator 
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IC20 REF1930AIDDCT  SOT-23-5 
Dual Output Vref and Vref/2 Voltage 
Reference 

IC21, ADA4807 ADA4807  SOT-23 Op-amp 

IC22 - IC29 TS5A63157DBVR  SOT-23 15-Ohm SPDT Analogue Switch 

IC31 - IC38 OPA836IDBVT  SOT-23 Op-amp 

J1, J2 SS-101-TT-22  1x1 PCB socket strip 2.54 
mm 

1x1 PCB socket strip 

J3 - J18, J20 - J26, J29 - J56 Test Point    

J19 AW127-20_G-T  1 x 20 PCB socket 2.54 mm 1 x 20 PCB socket 2.54 mm 

J27 
SMA Connector 
Receptacle 

 Straight 50 Through Hole 
SMA Connector 

SMA PCB mount straight socket jack  

J28 
SMA Connector 
Receptacle 

 Straight 50 Edge SMA 
Connector 

SMA PCB edge mount straight jack  

L1 0805 SMT Inductor 10 µH SM0805 Inductor 

PS1 
LM7705MME_NOP
B 

 MSOP 
LM7705MME/NOPB Inverter, Supplies -
0.232 V 

R1, R2 0603 SMT Resistor 0 Ω SM0603 SMT Resistor 

R3 - R5, R7 - R22, R25, R29, 
R32, R35, R38, R41, R44, R46, 
R48 - R51, R63 - R65, R99, 
R103 - R105 

0603 SMT Resistor DNF SM0603 

SMT Resistor 

R6, R47 0603 SMT Resistor 250 Ω SM0603 SMT Resistor 

R23, R27, R30, R33, R36, R39, 
R42, R45 

0603 SMT Resistor 365 kΩ SM0603 
SMT Resistor 

R24, R26, R28, R31, R34, R37, 
R40, R43 

0603 SMT Resistor 
150 
MΩ 

SM0603 
SMT Resistor 

R52, R66 0603 SMT Resistor 1 Ω SM0603 SMT Resistor 
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R62, R67 - R83, R90, R92, R94 0402 SMT Resistor 0 Ω8 SM0402 SMT Resistor 

R84 - R86 0402 SMT Resistor DNF SM0402 SMT Resistor 

R53 - R61, R87 - R89, R91, 
R93, R95 - R98, R100 - R102 

0603 SMT Resistor 0 Ω8 SM0603 
SMT Resistor 

RN1 - RN14 
1206 SMT 4 
Resistor Array 

470 Ω 
SM1206 4 Array 

SMD 1206 Bus Array 4 Resistors 1 

VR1  SMT Trimpot DNF 3361P1103GLF SMD Single Turn Trimmer  

VR2 - VR25 SMT Trimmer DNF PVG3G500C01R00 Trimmer Resistors - SMD 

Table A-1: Bill of materials for PCB version of the TM-ARCHα-7 ADC.  

 
8 Initially set to 0 Ω, but later changed to bring µ±stage below 2. 
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A.2 COTS ADC Breakout Board 

A.2.1 Schematic of COTS ADC Breakout Board 

Figure A-6 presents the schematic of the COTS THS1030 10-bit ADC breakout board for the TM-ARCHβ-n-Rsub-ranging ADC structure. 
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Figure A-6: Schematic of the breakout board for the THS1030 10-bit ADC.   
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A.2.2 List of Components for the COTS ADC Breakout Board 

Table A-2 provides the list of components of the COTS THS1030 10-bit ADC breakout board 

presented in the previous section. 

 

Ref Name Component Value Package Description 

C1 - C4, C12 
0805 
Capacitor 

10 µF SM0805 
Capacitor, Surface Mount 
Multi-Layer Ceramic 

C5, C7 
0603 
Capacitor  

TBC SM0603 
Capacitor, Surface Mount 
Multi-Layer Ceramic 

C6, C8 - C11 
0603 
Capacitor  

100 nF SM0603 
Capacitor, Surface Mount 
Multi-Layer Ceramic 

CT1 
Terminal 
Block (5mm-
2pole) 

  Terminal Block (5mm-2pole) 

IC1 THS1030  TSSOP 10 bit ADC 

J1 
SSW-112-01-
T-D 

 12 x 2 way PCB 
connector 

12 x 2 way PCB connector 
socket 

J2 
SMA 
connector 

 
SMA PCB 
Mount Straight 
Socket 

SMA PCB mount straight 
socket jack  

R1, R2 0603 resistor TBC SM0603 
Thick Film Surface Mount 
Resistor 

TP1, TP2 Test Point    

Table A-2: Bill of Materials for breakout board.  
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Appendix B   

The code presented in this appendix relates to the simulation results presented Sections 5.1 

to 5.6. 

 

B.1 MATLAB Scripts for Uncompensated Tent Map Based ADC Output Accuracy Analysis  

B.1.1 Code for Bit Accuracy Predictions Analysis  

The following code listing presents the TM-ARCHα-15 ADC mathematical model developed in 

MATLAB. How the quantisation error and bit accuracy of the uncompensated digital output 

was calculated is also shown. 

 

%% Reset command and figure windows 
clc;                %clears the command window and the workspace 
clf; 
clear; 
  
%% Initialise key parameters for model 
resolution = 16;    % number of TM stages + 1 
Vmax = 3;           % valid input max. 
Vmin = 0;           % valid input min. 
Vref = 1.5;         % set partition point voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
  
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
Fs = 25000000;                          % sample rate = 25 MHz 
f_fundamental = Fs/2^(resolution+2);    % fundamental frequency 
T = (1/f_fundamental);                  % number of periods times 
fundamental frequency 
dt = 1/Fs; 
x = 0:dt:T; 
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = Vmax; 
 
%gain = [1.9 1.99 2]; 
gain = (1.9: 0.02: 2); 
gain_size = length(gain); 
  
%% Define arrays 
z = zeros(resolution, number_samples); % TM input and output signals 
Dout = zeros(gain_size, resolution, number_samples); % Gray Code output 
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bin_representation = zeros(gain_size, resolution, number_samples); % 
binary representation of Gray Code 
output_representation = zeros(gain_size, number_samples); % Stores 
digital outputs as decimal numbers 
  
%% Input goes through TM-based ADC % 
%% Input goes through TMs % 
for g = 1: 1: gain_size 
    for i = 1: 1: number_samples % Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds Gray code word 
of sample 
            if ((z(res, i) <= Vref) && (z(res, i) >= Vmin))  % if input 
to the folding stage is less than or equal to the reference voltage 
                z((res+1), i) = gain(g)*z(res, i); % first TM difference 
equation 
                Dout(g, res, i) = 0;               % comparator output = 
0 
            elseif ((z(res, i) > Vref) && (z(res, i) <= 
Vmax))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); % second TM difference equation 
                Dout(g, res,i) = 
1;                                           % comparator output = 0 
            elseif (z(res, i) > Vmax)   % if the input is greater than 
the valid input range 
                z((res +1), i) = Vmin;  % output = Vmax 
                Dout(g, res, i) = 1;    % comparator output = 1 
            else                         % if the input is less than the 
valid input range 
                z((res +1), i) = Vmin;  % output = Vmin 
                Dout(g, res, i) = 0;    % comparator output = 0 
            end 
        end 
        % establish final bit 
        if (z(resolution, i) <= (Vref)) 
            Dout(g, resolution, i) = 0; 
        else 
            Dout(g, resolution, i) = 1; 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
     
    %% Determine uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(g, :,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray codeword 
to binary 
        bin_representation(g,:,i) = binary ;      %save binary to an 
array (verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution           % convert binary values to 
the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep ; 
        end 
        output_representation(g, i) = decimal_rep  ; %modify decimal 
value so it lies within the input voltage range 
    end 
     
    %% Calculate difference between input and output (quantisation 
error) and bit accuracy 
    for i = 1: 1: length(y) 
        uncorrected_difference(g, i) = ((Vmax-
Vmin)*output_representation( g, i)- y(i))/Step_size; %uncompensated 
difference 
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    end 
    %calculate bit accuracy of compensated and uncompensated ADC 
    UD(g, 1) = max(abs(uncorrected_difference(g, :))); 
    effective_bit_accuracy_UD(g, 1) = resolution-log2(ceil(UD(g, 1)))-1; 

 

The MATLAB function below was developed to convert the Gray code, stored in the Dout 

array, into binary code. 

 

function b = gray2bin(g) 
% Gray code to binary function 
%   Taken from http://www.matrixlab-examples.com/gray-code.html 
b(1) = g(1); 
for i = 2 : length(g); 
    x = xor((b(i-1)), (g(i))); 
    b(i) =(x); 
end 

 

B.1.2 Code for Static Performance Predictions Analysis  

The code below was developed to analyse the static performance of the TM-ARCHα-15 ADC 

model presented in Appendix B.1.1. 

 

      %% Determine static performance 
    max_VD = max(output_representation(g, :)); % Determine max. digital 
output 
    min_VD = min(output_representation(g, :)); % Determine min. digital 
output 
    endpoint_grad = (max_VD - min_VD)/(y(number_samples) - Vmin); % 
Determine gradient of end-point transfer function 
    endpoint_const = output_representation(g, 1);    % Determine digital 
output axis intercept of end-point transfer function  
     
    % Ideal ADC 
    Digital_ideal = floor((endpoint_grad*y + 
endpoint_const)*pow2(resolution)); %Determine end-point transfer 
function  
     
    %DNL 
    Digital_output = 
floor(output_representation(g, :)*pow2(resolution)); %actual Transfer 
function 
    Digital_monitor = 1; 
    Analogue_monitor = y(1); 
    k = 1; 
    for i = 1: 1: number_samples   % start establishing DNL for each 
digital output code 
        if Digital_output(i) == Digital_output(Digital_monitor)      
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        else 
            DNL(g, k) = ((y(i) - Analogue_monitor)/Step_size) - 1; 
            Digital_monitor = i; 
            Analogue_monitor = y(i); 
            k = k + 1; 
        end 
    end 
     
    DNL_max(g) = max(DNL(g, :)); % max. DNL 
    DNL_min(g) = min(DNL(g, :)); % min. DNL 
    i = 1; 
     
    % INL 
    for D = 0 : 1: pow2(resolution)-1 % start establishing INL for each 
digital output code 
        Dpos_act = find(Digital_output == D, 1); 
        Dpos_ideal = find(Digital_ideal == D, 1); 
        if isempty(Dpos_act) 
            missing_codes(g, 1) = missing_codes(g, 1)+ 1; % calculate 
missing codes 
        else 
            INL(g, i) = (y(Dpos_act) - 
y(Dpos_ideal))*pow2(resolution);  % INL result 
            i = i+1; 
        end 
    end 
    INL_max(g) = max(INL(g, :)); % max. INL 
    INL_min(g) = min(INL(g, :)); % min. INL 
     
    % Offset 
    offset(g) = Digital_output(1); % determines offset when input 
voltage = 0 V 
     
    % Gain 
    full_scale_error(g) = max(Digital_output) - (pow2(resolution)-1); % 
max digital output - max ideal output 
    Gain_error(g) = full_scale_error(g) - offset(g); % calculates gain 
error 
end 
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B.1.3 Code for Dynamic Performance Predictions Analysis 

The code below was developed to analyse the dynamic performance of the TM-ARCHα-15 

ADC model presented in Appendix B.1.1. 

 

%% Sine Wave Input Signal 
F_samp = 25000000; % sample frequency = 25 MHz 
N = pow2(resolution+2); % set N 
M = 131071;             % set M 
frequency = F_samp*(M/N); % set input frequency 
dt = 1/F_samp; 
T = 1; 
x = (1:N)*dt; 
y = (Vmax-Vmin)*(sin(2*pi*frequency*x)+1)/2;  % creating input 
sinusoidal signal 
df = F_samp*(0:(N/2)-1)/N; 
 

[...] 
     
    %% Calculate Dynamic Performance 
    output_representation(g, :) = detrend(output_representation(g, :), 
'constant'); % remove DC offset  
    SINAD(g) = sinad(output_representation(g, :), F_samp); % SINAD value  
    SNR(g) = snr(output_representation(g, :), F_samp); % SNR value 
    SFDR(g) = sfdr(output_representation(g, :), F_samp); % SFDR value 
    THD(g) = thd(output_representation(g, :), F_samp,5,'aliased'); % THD 
value 
    ENOB(g) = (SINAD(g) - 1.76)/6.02; % ENOB value 
end 
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B.2 MATLAB Scripts for Tent Map Based ADC with the Fundamental Tent Map Gain 

Compensation Algorithm Output Accuracy Analysis 

B.2.1 Code for Bit Accuracy Predictions Analysis  

The following code presents the analysis of the µCA-1 which was developed to compensate 

the output data produced by the TM-ARCHα-15 ADC mathematical model shown in Appendix 

B.1.1. The code extract also highlights the calculations performed to determine the bit 

accuracy of the compensated output. 

 

[...] 
for g = 1: 1: gain_size 
    %% Ideal DM values - look up table 
    VHDL_bits = resolution + 8; 
    for i = 1:1:(resolution - 1) 
        LUT_theory(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate 
difference value 
        LUT_VHDL(i) = floor(pow2(VHDL_bits)*((1/mpower(gain(g), i))-
(1/pow2(i)))); %Calculate difference value 
    end    
    %% Input goes through TM-based ADC % 
    %% Input goes through TMs % 

    [...]  
    %% Sign for Difference Measure (SDM)     
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g, res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
    %% Difference Measure: selected for each respective gray code bit 
     
    for i = 1: 1: length(y) %Samples of input signal 
        DV_theory(1,i) = 0; %Ideal as it hasn't passed through a TM 
        DV_VHDL(1,i) = 0; %Ideal as it hasn't passed through a TM 
        for res = 2: 1: resolution   % gives remaining bits of DM 
            if (Dout(g,res, i) > 0) 
                DV_theory(res, i) = LUT_theory(res - 1); 
                DV_VHDL(res, i) = LUT_VHDL(res - 1); 
            else 
                DV_theory (res, i) = 0; 
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                DV_VHDL (res, i) = 0; 
            end 
        end 
    end 
    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV_theory(res, i) = DV_theory(res, i); 
                SDV_VHDL(res, i) = DV_VHDL(res, i); 
            else 
                SDV_theory(res, i) = -DV_theory(res, i); 
                SDV_VHDL(res, i) = -DV_VHDL(res, i); 
            end 
        end 
    end 
     
    % Determine DV 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum_theory(i) = sum(SDV_theory(:,i)); 
        SDV_sum_VHDL(i) = sum(SDV_VHDL(:,i))/pow2(VHDL_bits); 
    end 
     
    %% Implement correction 
    %uncompensated output 
    for i = 1: 1: length(y) % converting Gray-code representation of 
samples, to binary 
        gray_code_vector = Dout(g,:,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution                 %convert binary values 
to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep; 
        end 
        output_representation(g, i) = decimal_rep  ; %modify decimal 
value so it lies within the input voltage range 
    end 
    voltage_representation(g, :) = output_representation(g, :)*(Vmax - 
Vmin); 
    %compensated ADC output 
    for i = 1: 1: length(y) % compensate output 
        if (SDM(1,i) == 1) 
            corrected_output_theory(g,i) = output_representation(g,i) - 
SDV_sum_theory(i); 
            corrected_output_VHDL(g,i) = output_representation(g,i) - 
SDV_sum_VHDL(i); 
        else 
            corrected_output_theory(g,i) = output_representation(g,i) + 
SDV_sum_theory(i); 
            corrected_output_VHDL(g,i) = output_representation(g,i) + 
SDV_sum_VHDL(i); 
        end 
    end 
     
    %% Calculate difference between input and output (quantisation 
error) and bit accuracy 
     
    uncorrected_difference(g, :) = (voltage_representation(g, :)- 
y)/Step_size;   %uncompensated difference 
    corrected_difference_theory(g, :) = 
((corrected_output_theory(g, :)*(Vmax - Vmin)) - 
y)/Step_size;         %compensated difference 
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    corrected_difference_VHDL(g, :) = 
((corrected_output_VHDL(g, :)*(Vmax - Vmin))- y)/Step_size; %compensated 
difference 
     
    %calculate bit accuracy of compensated and uncompensated ADC 
    UD(g, 1) = max(abs(uncorrected_difference(g, :))); 
    CD_theory(g, 1) = max(abs(corrected_difference_theory(g, :))); 
    CD_VHDL(g, 1) = max(abs(corrected_difference_VHDL(g, :)));     
    effective_bit_accuracy_UD(g, 1) = resolution  - log2(ceil(UD(g, 1))) 
- 1;  %if UD = 1 bit accuracy should be resolution - 1 
    effective_bit_accuracy_CD_theory(g, 1) = resolution - 
log2(ceil(CD_theory(g, 1))) - 1; 
    effective_bit_accuracy_CD_VHDL(g, 1) = resolution - 
log2(ceil(CD_VHDL(g, 1))) - 1; 
end 

 

B.2.2 Code for Static Performance Predictions Analysis  

The code below was developed to analyse the static performance of the TM-ARCHα-15 ADC 

model shown in Appendix B.1.1 after the digital output data had been compensated using the 

µCA-1 presented in Appendix B.2.1. 

 

   %% Determine static performance 
    max_VD = max(corrected_output_VHDL(g, :)); % Determine max. digital 
output 
    min_VD = min(corrected_output_VHDL(g, :)); % Determine min. digital 
output 
    endpoint_grad = (max_VD - min_VD)/(y(number_samples) - Vmin); % 
Determine gradient of end-point transfer function 
    endpoint_const = corrected_output_VHDL(g, 1); % Determine digital 
output axis intercept of end-point transfer function  
     
    % Ideal ADC 
    Digital_ideal = floor((endpoint_grad*y + 
endpoint_const)*pow2(resolution));  %Determine end-point transfer 
function  
    
    %DNL 
    Digital_output = 
floor(corrected_output_VHDL(g, :).*pow2(resolution)); %actual Transfer 
function 
    Digital_monitor = 1; 
    Analogue_monitor = y(1); 
     
    k = 1; 
    for i = 1: 1: number_samples   % start establishing DNL for each 
digital output code 
        if Digital_output(i) == Digital_output(Digital_monitor)  
             
        else 
            DNL(g, k) = ((y(i) - Analogue_monitor)/Step_size) - 1; 
            Digital_monitor = i; 
            Analogue_monitor = y(i); 
            k = k + 1; 
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        end 
    end 
     
    DNL_max_comp(g) = max(DNL(g, :)); % max. DNL 
    DNL_min_comp(g) = min(DNL(g, :)); % min. DNL 
    i = 1; 
     
    % INL 
    for D = 0 : 1: pow2(resolution)-1 % start establishing INL for each 
digital output code 
        Dpos_act = find(Digital_output == D, 1); 
        Dpos_ideal = find(Digital_ideal == D, 1); 
        if isempty(Dpos_act) 
            missing_codes(g, 1) = missing_codes(g, 1)+ 1; % calculate 
missing codes 
        else 
            INL(g, i) = (y(Dpos_act) - 
y(Dpos_ideal))*pow2(resolution); % INL result 
            i = i+1; 
        end 
    end 
    INL_max_comp(g) = max(INL(g, :)); % max. INL 
    INL_min_comp(g) = min(INL(g, :)); % min. INL 
     
    % Offset 
    offset_comp(g) = Digital_output(1); % determines offset when input 
voltage = 0 V 
     
    % Gain 
    full_scale_error_comp(g) = max(Digital_output) - (pow2(resolution)-
1); % max digital output - max ideal output 
    Gain_error_comp(g) = full_scale_error_comp(g) - offset_comp(g); % 
calculates gain error 
     
end 

 

B.2.3 Code for Dynamic Performance Predictions Analysis 

The code below was adapted from the code extract presented in Appendix B.1.3 to determine 

the dynamic performance of the TM-ARCHα-15 ADC model after the digital output data had 

been compensated using the µCA-1 presented in Appendix B.2.1. 

 

%% Dynamic Performance 
corrected_output_VHDL(g, :) = detrend(corrected_output_VHDL(g, :), 
'constant'); % remove DC  
SINAD(g) = sinad(corrected_output_VHDL(g, :)*(Vmax - Vmin), 
F_samp);    % SINAD value  
SNR(g) = snr(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp);    % 
SNR value 
SFDR(g) = sfdr(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp);  % 
SFDR value 
THD(g) = thd(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp, 5, 
'aliased');  % THD value 
ENOB(g) = (SINAD(g) - 1.76)/6.02;   % ENOB value 
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B.3 MATLAB Script for of the Fundamental Tent Map Gain Compensation Algorithm 

The following MATLAB script was employed to perform a sensitivity analysis on a TM-ARCHα-

15 ADC and TM-ARCHα-7 ADC as discussed in Section 5.3. 

 

%% Characteristics for Tent-Map Based ADC 
resolution = 8;              %number of TM stages + 1 
gain = [1.9 1.99]; % TM gain 
Vmax = 3; % valid input max. 
Vmin = 0; % valid input min. 
Vref = 1.5;             %set partition point voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
  
%% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/pow2(resolution + 2); % fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamental frequency 
dt = 1/Fs; 
x = 0:dt:T; 
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = Vmax; 
gain_size = length(gain); 
%% deviation from gain 
deviation_percent = 5;   % set deviation interval in terms of percentage 
lower_percentage = -(deviation_percent/2);  
upper_percentage = (deviation_percent/2);  
percentage_inc = 0.1; 
deviations = [lower_percentage: percentage_inc : upper_percentage]; 
  
% establish percentage 
lower_limit = (100 + lower_percentage)/100; % set lower limit 
upper_limit = (100 + upper_percentage)/100; % set upper limit 
increment = percentage_inc/100; 
number_deviations = round(1+(upper_limit - lower_limit)/increment); 
 
%% Pre-allocate vectors 
% This was done to reduce simulation time 
Dout = zeros(gain_size, resolution, number_samples); 
corrected_difference = zeros(number_samples, number_deviations); 
SDM = zeros(resolution, number_samples); 
bin_representation = zeros(resolution, number_samples); 
corrected_output = zeros(number_samples, number_deviations); 
SDV = zeros(resolution, number_samples, number_deviations); 
SDV_sum = zeros(number_samples, number_deviations); 
SDV_dec = zeros(number_samples, number_deviations); 
DV = zeros(resolution, number_samples, number_deviations); 
LUT = zeros(resolution - 1, number_deviations); 
 
%% Start Sensitivity analysis 
for g = 1: 1: gain_size  % Chose µADC     
    Estimated_gain_range = 
[gain(g)*(lower_limit):(gain(g)*increment):gain(g)*(upper_limit)]; %rang
e of µ to be employed by the compensation algorithm 
    for i = 1: 1: number_samples %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
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            if ((z(res, i) <= Vref) && (z(res, i) >= Vmin))  % if input 
to the folding stage is less than or equal to the reference voltage 
                z((res+1), i) = gain(g)*z(res, i);  % first TM 
difference equation 
                Dout(g, res, i) = 0;             % comparator output = 0 
            elseif ((z(res, i) > Vref) && (z(res, i) <= Vmax)) % if 
input to the folding stage is more than the reference voltage 
                z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); 
                Dout(g, res,i) = 1; 
            elseif (z(res, i) > Vmax) 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 1; 
            else 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 0; 
            end 
        end 
         
        if (z(resolution, i) <= (Vref)) 
            Dout(g, resolution, i) = 0; 
        else 
            Dout(g, resolution, i) = 1; 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
         
    %% Ideal DM values - look up table 
    %Calculate all the DM values for each µ being employed by the 
compensation algorithm     
    for i = 1:1:(resolution - 1) 
        for j = 1:1:number_deviations 
            LUT(i,j) = (1/mpower(Estimated_gain_range(j), i))-
(1/pow2(i)); %Calculate difference value 
        end 
    end 
         
    %% Sign for Difference Measure (SDM)     
    for i = 1: 1: number_samples %Samples of input signal 
        SDM(1, i) = Dout(g,1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g,res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
 
    %% Difference Measure: selected for each respective gray code bit 
    %Select the DM values determined using each µ being employed by the 
compensation algorithm     
    for i = 1: 1: number_samples %Samples of input signal 
        for j = 1:1:number_deviations 
            DV(1,i,j) = 0; %Ideal as it hasn't passed through a TM 
            for res = 2: 1: resolution   % gives remaining bits of DM 
                if (Dout(g,res, i) > 0) 
                    DV(res, i,j) = LUT(res - 1,j); 
                else 
                    DV (res, i,j) = 0; 
                end 
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            end 
        end 
    end 
 
    %% Signed Difference Value 
    %Calculate the DV values determined using each µ being employed by 
the compensation algorithm     
    for i = 1: 1: number_samples %Samples of input signal 
        for j = 1:1:number_deviations 
            for res = 1: 1: resolution   % gives remaining bits of DV 
                if (SDM(res, i) > 0) 
                    SDV(res, i, j) = DV(res, i, j); 
                else 
                    SDV(res, i, j) = -DV(res, i, j); 
                end 
            end 
        end 
    end 
     
    % Determine DV 
    for i = 1: 1: number_samples %decimal of SDV 
        for j = 1:1:number_deviations 
            SDV_sum(i, j) = sum(SDV(:,i, j)); 
            SDV_dec(i, j) = (Vmax-Vmin)*SDV_sum(i, j); 
        end 
    end 
     
    %% Implement correction 
    %Implement the compensation employing the DV values determined using 
each µ being employed by the compensation algorithm    
     
    %uncompensated output 
    for i = 1: 1: number_samples % converting Gray code representation 
of samples, to binary 
        gray_code_vector = Dout(g,:,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution           %convert binary values to the 
equivalent voltage 
            decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ; 
        end 
        output_representation(i) = decimal_rep; %modify decimal value so 
it lies within the input voltage range 
    end 
     
    %compensated ADC output 
    for i = 1: 1: number_samples 
        for j = 1:1:number_deviations 
            if (SDM(1,i) == 1) 
                corrected_output(i,j) = output_representation(i) - 
SDV_dec(i,j); 
            else 
                corrected_output(i,j) = output_representation(i) + 
SDV_dec(i,j); 
            end 
        end 
    end 
     
    %% Calculate quantisation error and bit accuracy      
    uncorrected_difference = (output_representation-
y)/Step_size;  %uncompensated difference 
    for j = 1:1:number_deviations 
        corrected_difference(:,j) = (corrected_output(:,j)-
y(:))/Step_size;         %compensated difference 
    end 
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    %calculate bit accuracy of compensated and uncompensated ADC 
    UD(g) = max(abs(uncorrected_difference)); 
    for j = 1:1:number_deviations 
        CD(g,j) = max(abs(corrected_difference(:,j))); 
    end 
    effective_bit_accuracy_UD = resolution - (log2(ceil(UD)) +1);  %if 
UD = 1 bit accuracy should be resolution - 1 
     
    for j = 1:1:number_deviations 
        effective_bit_accuracy_CD(g,j) = resolution - 
(log2(ceil(CD(g,j))) +1); 
    end 
end 
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B.4 MATLAB Script for Comparison with the Tent Map Gain Compensation Algorithm by 

Basu 

The following script was developed to compare the µCA-1 assessed in Section 5.2 with the 

µCA developed by Basu [41, 42]. The code highlighted blue was obtained from [118]. 

 

clc;               %clears the command window and the workspace 
clf; 
clear; 
  
%% Characteristics for Tent Map 
resolution = 16;              %number of TM stages - 1 
gain = [1.9: 0.005: 2]; % TM gain 
Vmax = 3; % valid input max. 
Vmin = 0; % valid input min. 
Vref = 1.5;             %set partition point voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
%% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref 
  
F_samp = 25000000;      %sample rate = 25 MHz 
f_fundamental = F_samp/pow2(resolution + 2); % fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamental frequency 
dt = 1/F_samp; 
x = 0:dt:T; 
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+1)/2; 
gain_size = length(gain); 
number_samples = length(x);  
sample_number = (1: 1: number_samples); 
  
for g = 1: 1: gain_size 
     
    for i = 1: 1: number_samples %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            if ((z(res, i) <= Vref) && (z(res, i) >= Vmin))  % if input 
to the folding stage is less than or equal to the reference voltage 
                z((res+1), i) = gain(g)*z(res, i); 
                Dout(g, res, i) = 0; 
            elseif ((z(res, i) > Vref) && (z(res, i) <= Vmax))   % if 
input to the folding stage is more than the reference voltage 

 
                z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); 
                Dout(g, res,i) = 1; 
            elseif (z(res, i) > Vmax) 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 1; 
            else 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 0; 
            end 
        end 
         
        if (z(resolution, i) <= (Vref)) 
            Dout(g, resolution, i) = 0; 
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        else 
            Dout(g, resolution, i) = 1; 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
     
    %% Output before correction 
    %uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(g,:,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution                 %convert binary values 
to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep; 
        end 
        output_representation(g, i) = decimal_rep  ; %modify decimal 
value so it lies within the input voltage range 
    end 
     
    %% Basu et al algorithm - Code obtained from 
https://eprints.hud.ac.uk/id/eprint/34821/ 
    format long 
    iteration = resolution;               % setting number of iterations 
    Parameter_Mu = gain(g)/2;    % setting parameter for estimation 
    A = 0;                  % initialising lower bound 
    B = 0;                   % initialising upper bound 
    Delta = 0;               % scaled interval size initialised 
    l = 0;                   % size of the interval initialised 
    alpha = 0;               % odd even counter variable initialised 
    N = length(y); 
    Symbols_Gray = transpose(squeeze(Dout(g, :, :)));  % copying 
generated grey code for estimation 
    X0_Dash_Array = zeros(N,1); % estimated initial condition array 
initialised 
    Diff= zeros(N,1);   % error or difference between the actual and 
    % estimated initial condition 
    X0_Dash = 0;       % single initial condition estimate variable 
initialised 
    for j = 1:N      % for N initial conditions 
        for i = 1:iteration % for i iteration of each initial condition 
            alpha = alpha + Symbols_Gray(j,i); % count number of 1s 
odd/even 
            if i == 1                 % if the first symbol 
                if Symbols_Gray(j,1) == 1 % is 1 then the primary half 
interval 
                    A = 0.5;           % is mirrored with lower bound = 
0.5 
                    B = 0;              % and upper bound = 0 
                else 
                    A = 0;        % other wise keeping primary half 
                    B = 0.5;            % unmirrored 
                end 
            else 
                if rem(alpha,2) == 0 % if no. of '1's in the sequence is 
even 
                    A = A;            % lower bound unchanged 
                    B = A + Delta;    % upper bound shifted to lower 
bound +%scaled interval size 
                else                 % if no. of '1's in the sequence is 
odd 
                    A = B -Delta;    % lower bound is shifted to 
upperbound -% delta 
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                    B = B;            % upper bound is unchanged 
end 
                end 
            end 
            l = B - A;     % determine the length of newly formed 
interval 
            Delta = l/(2*Parameter_Mu); % size of the interval scaled % 
proportional to mu 
            % first symbol is not due to the result of TM iteration 
therefore orienting 
            % the final estimated point is necessary and therefore 
scaled accordingly 
            % and again the interval is unmirrored for the range 0.5-1 
(with first% symbol as 1) 
        end 
        if rem(alpha,2) == 0    % if no. of '1's in the sequence is even 
            if Symbols_Gray(j,1) == 1 % if the first symbol is 1 
                X0_Dash = 1 -(A/Parameter_Mu);  % unmirror the interval 
                %  and scale down by mu 
            else                      % if the first symbol is 0 
                X0_Dash = (A/Parameter_Mu); % leave the orientation 
unhanged 
                % scale down by mu 
            end 
        else 
            if Symbols_Gray(j,1) == 1 
                X0_Dash = 1 -(B/Parameter_Mu); 
            else 
                X0_Dash = (B/Parameter_Mu); 
            end 
        end         
        X0_Dash_Array(j,1) = X0_Dash;     % store the estimated result 
        A = 0;                            % reset all variables for the 
        B = 0;                              % for the next new 
estimation 
        Delta= 0; 
        l = 0; 
        alpha = 0; 
        X0_Dash = 0;         
    end 
     
    %% Algorithm from this research 
    %% Ideal DM values - look up table 
    VHDL_bits = resolution + 8; 
    for i = 1:1:(resolution - 1) 
        LUT(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate 
difference value 
    end 
     
    %% Sign for Difference Measure (SDM)     
    for i = 1: 1: number_samples %Samples of input signal 
        SDM(1, i) = Dout(g,1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g,res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
 
    %% Difference Measure: selected for each respective gray code bit 
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    %Select the DM values determined using each µ being employed by the 
compensation algorithm     
    for i = 1: 1: number_samples %Samples of input signal         
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        for res = 2: 1: resolution   % gives remaining bits of DM 
            if (Dout(g,res, i) > 0) 
                DV(res, i) = LUT(res - 1); 
            else 
                DV (res, i) = 0; 
            end 
        end         
    end 
 
    %% Signed Difference Value 
    %Calculate the DV values determined using each µ being employed by 
the compensation algorithm     
    for i = 1: 1: number_samples %Samples of input signal 
         
        for res = 1: 1: resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); 
            else 
                SDV(res, i) = -DV(res, i); 
            end 
        end         
    end 
     
    % Determine DV 
    for i = 1: 1: number_samples %decimal of SDV         
        SDV_sum(i) = sum(SDV(:,i)); 
        SDV_dec(i) = SDV_sum(i);         
    end 
     
    %% Implement correction 
    %Implement the compensation employing the DV values determined using 
each µ being employed by the compensation algorithm 
    %compensated ADC output 
    for i = 1: 1: number_samples 
         
        if (SDM(1,i) == 1) 
            corrected_output(g,i) = output_representation(g, i) - 
SDV_dec(i); 
        else 
            corrected_output(g,i) = output_representation(g, i) + 
SDV_dec(i); 
        end 
    end 
    %% Output after correction 
    X0_Dash_Array_T(g, :) = transpose(X0_Dash_Array); 
    uncorrected_difference(g, :) = (output_representation(g, :)*(Vmax - 
Vmin)- y)/Step_size;   %uncompensated difference 
    Basu_corrected_difference(g, :) = ((X0_Dash_Array_T(g, :)*(Vmax - 
Vmin)) - y)/Step_size; % compensated difference for Basu's Method 
    Research_corrected_difference(g, :) = ((corrected_output(g, :)*(Vmax 
- Vmin)) - y)/Step_size;% compensated difference for this research's 
method 
     
    % establishing bit accuracy before and after compensation 
    UD(g, 1) = max(abs(uncorrected_difference(g, :))); 
    Basu_CD(g, 1) = max(abs(Basu_corrected_difference(g, :))); 
    Research_CD(g, 1) = max(abs(Research_corrected_difference(g, :)));     
    effective_bit_accuracy_UD(g, 1) = resolution  - log2(ceil(UD(g, 1))) 
- 1;  %if UD = 1 bit accuracy should be resolution - 1 
    Basu_effective_bit_accuracy_CD(g, 1) = resolution - 
log2(ceil(Basu_CD(g, 1))) - 1; 
    Research_effective_bit_accuracy_CD(g, 1) = resolution - 
log2(ceil(Research_CD(g, 1))) - 1; 
end 
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B.5 Code for VHDL Implementation of the Fundamental Tent Map Gain Compensation 

Algorithm 

B.5.1 VHDL Code to Control the TM-ARCHα-7 ADC  

 The following code is an adaption of the VHDL code developed by Richard Haigh [56, 106] to 

acquire and process the TM-ARCHα-7 output. Additional lines of code added during this 

research to the original code listing have been highlighted blue. The original source code can 

be found in [106]. 

------------------------------------------------------------------ 
--Title: Folding ADC Operation Control (FA_clock.vhd) 
--Author: Richard Haigh 
--Date: 12/03/17  
--Availability: 
http://eprints.hud.ac.uk/id/eprint/34742/1/Haigh%20THESIS.pdf 
-- Date Edited: 20/10/2019 
------------------------------------------------------------------- 
 
-- declare libraries-- 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
 
-- define entity of FA_CLOCK module --  
ENTITY FA_CLOCK IS 
PORT (clkp1, clkp2, clkp3, clkp4 : out std_logic; --clks to drive ADC 
  clkn1, clkn2, clkn3, clkn4 : out std_logic; 
  PLL_IN : in std_logic;        --clk to PLL module 
  PLL_RST: in std_logic;    
  PLL_LOCK : OUT std_logic;  
  data_out : out std_logic_vector (7 downto 0);  -- parallel data 
output pins 
  CE0, CF0, CG0, CH0, CI0, CJ0, CK0, CL0 : in std_logic; --  
Comparator outputs     
      -- O  E    O    E    O    E    O    E Comparator Group: O = odd; 
E = even 
  GorB : in  std_logic;        
  just_3V3 : out std_logic; 
  just_0V : out std_logic);    
END ENTITY; 
 
-- Define Architecture of FA_CLOCK 
ARCHITECTURE behav OF FA_CLOCK IS 
 
component PLLTEST1 is -- declare component PLLTEST1 (produced 250 MHz 
clock) 
 PORT 
 (areset : IN STD_LOGIC  := '0'; 
  inclk0 : IN STD_LOGIC  := '0'; 
  c0  : OUT STD_LOGIC ; 
  locked : OUT STD_LOGIC); 
 END component PLLTEST1; 
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component gain_correction is -- declare compensation gain_correction (µ 
compensation algorithm) 
 generic (n: positive:= 8); 
 PORT (PLL_OUT : in std_logic;  -- PLL clock (feb 17: 250 MHz) 
   res : in std_logic;  -- resets all Difference registers 
   Input_Gray : in std_logic_vector (n-1 downto 0); -- TM-
based ADC Gray Code output 
   correct_en : in std_logic; -- enable compensation                  
   correct_fin : out std_logic; -- finish compensation 
   UncorrectedBINARY : in std_logic_vector (n-1 downto 
0); -- uncompensated Binary Code 
   CorrectedBINARY : out std_logic_vector (n-1 downto 0)); -
- compensated Binary Code    
END component gain_correction; 
  
-- Define signals for FA_CLOCK 
SIGNAL count : integer := 0; -- to track number of PLL clock cycles 
signal clk : std_logic := '0'; -- PLLTEST1 output (PLL clock) 
signal CA0 , CB0 , CC0, CD0 : std_logic:= '0'; -- 4 MSB bits of TM-based 
ADC output set to 0 
--This VHDL module was originally designed for a 12-bit TM-based ADC, 
but was adapted for a 8-bit version. 
-- For this reason, the 4 MSBs are set to 0. 
   
-- 5 arrays to store the TM-based ADC output and align the Gray code 
values 
signal A0 : std_logic_vector (1 downto 0)  := "00"; 
signal A1 : std_logic_vector (3 downto 0)  := "0000"; 
signal A2 : std_logic_vector (5 downto 0)  := "000000"; 
signal A3 : std_logic_vector (7 downto 0)  := "00000000"; 
SIGNAL A4 : STD_LOGIC_VECTOR (9 DOWNTO 0)  := "0000000000"; 
signal A5 : std_logic_vector (11 downto 0) := "000000000000"; 
 
-- 1 bit arrays to store and transfer the comparator outputs 
signal CA1 , CA2 , CB1 , CB2 , CC1 , CC2 , CD1 , CD2 , CE1 , CE2 , CF1 , 
CF2 , CG1, CG2, CH1, CH2 , CI1, CI2 , CJ1 , CJ2 , CK1, CK2 , CL1 , CL2 : 
std_logic := '0'; 
signal bin_out : Std_logic_vector(11 downto 0):= "000000000000"; -- 
array to store the uncompensated binary output 
signal gray_out: std_logic_vector(11 downto 0):= "000000000000"; -- 
array to store the Gray code output 
signal clkp, clkn : std_logic:='0';  -- two types of non-overlapping 
clocks 
  
-- additional signals for gain correction module 
signal buff_in : std_logic:='0'; -- ready to acquire compensated data 
from µ compensation module 
signal buff_out : std_logic:='0'; -- ready to output data to µ 
compensation module 
signal cor_res : std_logic:='0'; 
signal cor_bin_out : std_logic_vector (7 downto 0) := (others => '0'); 
    
BEGIN 
  
-- assign signals to PLLTEST1 
 PLL0: PLLTEST1  
 port map ( --PLL module creates 250 MHz 
               areset=> PLL_RST ,  
     inclk0 => PLL_IN , -- 50 MHz in 
     c0 => clk ,    -- 250 MHz out  
     locked => PLL_LOCK); -- portmap PLL 
      
-- assign signals to gain_correction   
 GC_Correct: gain_correction  
 port map (     --correct ADC output 
  PLL_OUT => clk,    -- 250 MHz clk 
  res => cor_res ,      
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  Input_Gray => A5(7 downto 0),   
  correct_en => buff_out,   
  correct_fin => buff_in,   
  UncorrectedBINARY => bin_out(7 downto 0),   
  CorrectedBINARY => cor_bin_out);   
 just_3V3 <= '1'; -- for jump GorB connector 
 just_0V <= '0';  
   
 -- 4 MSBs set as zero. 
 CA0 <= '0';  
 CB0 <= '0';   
 CC0 <= '0';   
 CD0 <= '0';  
   
 -- assign clock signals (clkp1 is the s/h clock) 
 clkp1 <= clkn; 
 clkp2 <= clkp; 
 clkp3 <= clkp; 
 clkp4 <= clkp;     
 clkn1 <= clkn; 
 clkn2 <= clkn; 
 clkn3 <= clkn; 
 clkn4 <= clkn; 
   
 ADC_OPERATION: PROCESS 
 
 BEGIN 
 WAIT UNTIL RISING_EDGE(clk);   --clk is the PLL output   
 -- Non over lapping clock generation statements 
 IF count < 4 THEN   
  clkp <= '0'; 
  clkn <= '1'; 
  count <= count + 1; 
   
 ELSIF count = 4 THEN    
  clkp <= '0'; 
  clkn <= '0'; 
  count <= count + 1; 
     
 ELSIF count > 4 AND count < 9 THEN    
  clkp <= '1';     
  clkn <= '0'; 
  count <= count + 1; 
   
 ELSIF count = 9 THEN    
  clkp <= '0'; 
  clkn <= '0';     
  count <= 0 ;     
 END IF;    
 --dave counts up 0 to 9 
 --data control 
     
 IF count = 9 THEN-------------------------------------------------
---------------------------------0  
 --sync odds 
  CA2 <= CA1; 
  CC2 <= CC1; 
  CE2 <= CE1; 
  CG2 <= CG1; 
  CI2 <= CI1; 
  CK2 <= CK1; 
          
 ELSIF count = 0 THEN----------------------------------------------
---------------------------------1   
 --shift array 
  A5(11 downto 2) <= A4 (9 downto 0); 
  A4(9 downto 2) <= A3 (7 downto 0); 
  A3(7 downto 2) <= A2 (5 downto 0); 
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  A2(5 downto 2) <= A1 (3 downto 0); 
  A1(3 downto 2) <= A0 (1 downto 0);  
             
 ELSIF count = 1 THEN----------------------------------------------
----------------------------------2  
 --load odds in array 
  A0(1) <= CA2; 
  A1(1) <= CC2; 
  A2(1) <= CE2; 
  A3(1) <= CG2; 
  A4(1) <= CI2; 
  A5(1) <= CK2;     
 
 ELSIF count = 2 THEN----------------------------------------------
-------------------------------------3 
  buff_out <= '0'; -- end correction 
 ELSIF count = 3 THEN----------------------------------------------
---------------------------------4   
 --sample_evens <= '1'; 
  CB1 <= CB0; 
  CD1 <= CD0; 
  CF1 <= CF0; 
  CH1 <= CH0; 
  CJ1 <= CJ0; 
  CL1 <= CL0;  
     
 ELSIF count = 4 THEN----------------------------------------------
---------------------------------5 
 -- sync evens 1 
  CB2 <= CB1; 
  CD2 <= CD1; 
  CF2 <= CF1; 
  CH2 <= CH1;  
  CJ2 <= CJ1; 
  CL2 <= CL1;  
      
 ELSIF count = 5 THEN----------------------------------------------
----------------------------------6      
 ELSIF count = 6 THEN----------------------------------------------
----------------------------------7  
 --load evens in array 
  A0(0) <= CB2; 
  A1(0) <= CD2; 
  A2(0) <= CF2; 
  A3(0) <= CH2;  
  A4(0) <= CJ2; 
  A5(0) <= CL2; 
    
 ELSIF count = 7 THEN----------------------------------------------
----------------------------------8    
 --convert Gray code to binary 
  bin_out (11) <= A5(11); 
  bin_out (10) <= A5(11) xor A5(10); 
  bin_out (9) <= (A5(11) xor A5(10)) xor A5(9); 
  bin_out (8) <= ((A5(11) xor A5(10)) xor A5(9)) xor A5(8); 
  bin_out (7) <= (((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7); 
  bin_out (6) <= ((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6); 
  bin_out (5) <= (((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5); 
  bin_out (4) <= ((((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4); 
  bin_out (3) <= (((((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3); 
  bin_out (2) <= ((((((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2); 
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  bin_out (1) <= (((((((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2)) 
xor A5(1); 
  bin_out (0) <= ((((((((((A5(11) xor A5(10)) xor A5(9)) xor 
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2)) 
xor A5(1)) xor A5(0); 
  buff_out <= '1'; --start compensation 
 ELSIF count = 8 THEN----------------------------------------------
------------------------------------9     
  --sample odds     
  CA1 <= CA0; 
  CC1 <= CC0; 
  CE1 <= CE0; 
  CG1 <= CG0; 
  CI1 <= CI0; 
  CK1 <= CK0;  
 End if; 
    
END PROCESS ADC_OPERATION; 
--data_out <= bin_out(7 downto 0); --output ADC output 
data_out <= cor_bin_out; --output corrected ADC output 
END behav;    

  

B.5.2 VHDL Implementation of the µCA-1 

The following code is the VHDL implementation of the µCA-1 from this research. 

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
 
ENTITY gain_correction is 
generic (n: positive:= 8); -- define resolution of TM-based ADC 
PORT (PLL_OUT: in std_logic;  -- PLL clock (feb 17: 250 MHz) 
  res: in std_logic;  -- resets all Difference registers 
  Input_Gray: in std_logic_vector(n-1 downto 0); --ADC output in Gray 
code 
  correct_en: in std_logic;  
  correct_fin: out std_logic;  
  UncorrectedBINARY: in std_logic_vector(n-1 downto 0); --ADC output 
in binary 
  CorrectedBINARY: out std_logic_vector(n-1 downto 0)); --Corrected 
ADC output      
END ENTITY;  
 
ARCHITECTURE behav OF gain_correction IS  
 
-- define signals to be employed within the module 
signal Graycode: std_logic_vector(n-1 downto 0):= (others => '0'); 
signal SDM_reg: std_logic_vector(n-1 downto 0):= (others => '0');   
signal UC_binary: std_logic_vector((n + 2)-1 downto 0):= (others => '0'); 
signal C_binary: std_logic_vector((n + 2)-1 downto 0):= (others => '0'); 
signal SDV_reg: std_logic_vector((n + 2)-1 downto 0):= (others => '0');  
signal correct: std_logic_vector(n-1 downto 0):= (others => '0');  
signal counter: integer := 0;  
signal C_fin: std_logic := '0'; 
signal do_correct: std_logic := '0'; 
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-- LUT for gain = 1.9; DM resolution = 10 bits 
type LUT is array (n-2 downto 0) of std_logic_vector((n + 2)-1 downto 0); 
--precalculated DM values 
signal diff_bit: LUT :=  --binary values multiplied by 2^(8+2) = 1024 
(need to shift back by 2) 
( "0000011010", 
 "0000011011", 
 "0000010101", 
 "0000001110", 
 "0000001001", 
 "0000000101", 
 "0000000011"); 
  
type Diff is array (n-1 downto 0) of std_logic_vector((n + 2)-1 downto 0); 
-- array to store relevant DM values 
signal assign_diff: Diff;  
 
type sum_Diff is array (n-2 downto 0) of std_logic_vector((n + 2)-1 downto 
0); -- array to aid the calculation of the DV value 
signal polarity_diff: sum_Diff;  
 
BEGIN 
 -- start compensation 
 Gain_compensate: PROCESS  
 BEGIN    
 WAIT UNTIL RISING_EDGE(PLL_OUT);   --PLL_IN the PLL clock 250MHz 
  
 -- obtain Gray code and binary code from the TM-based ADC 
 Graycode(n-1 downto 0) <= Input_Gray;   
 UC_binary((n + 2)-1 downto (n + 2)-n)  <= UncorrectedBINARY; -- 
binary code from ADC form the 8 MSBs of this array 
 UC_binary((n + 2)-(n+1) downto 0)  <= (others => '0');      -- 
remaining LSBs are set to zero. 
    
 --Should the correction process be applied?   
  IF correct_en = '1' AND counter < 3 THEN --yes 
   C_fin <= '0';        -- compensation is in process 
   counter <= counter + 1; -- increment counter 
   -- Find sign of difference measure (3 MSBs) 
   SDM_reg(n-1) <= Graycode(n-1);  
   SDM_reg(n-2) <= '1'; 
   SDM_reg(n-3) <= (Graycode(n-2) XOR Graycode(n-3));  
 
--   -- Find Difference measure--      
   assign_diff(n-1) <= (others => '0'); 
-- 
   --Do correction     
   polarity_diff(n-2) <= assign_diff(n-2); 
-- 
   if SDM_reg(n-1) = '1' then -- is MSB of Gray code = 1? 
    C_binary <= UC_binary - SDV_reg;   
    
       else  -- is MSB of Gray code = 0? 
--    
              C_binary <= UC_binary + SDV_reg;      
       end if; 
  ELSIF counter = 3 AND correct_en = '1' THEN -- no, 
compensation finished 
   C_fin <= '1';   
  ELSIF counter = 3 AND correct_en = '0' THEN --no  
   counter <= 0;      
  ELSE    
   null;    
  END IF;   
 END process; 
       
 -- Sign for Difference measure 
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 SDM: for i in n-4 downto 0 generate  
 begin 
  SDM_reg(i) <= (SDM_reg(i+1) XOR Graycode(i));   
 end generate SDM;  
    
 -- Assign difference measure  
 DV: for i in n-2 downto 0 generate  
 begin 
  with Graycode(i) select 
  assign_diff(i)  <= diff_bit(i) when '1', 
  (others => '0') when others;  
 end generate DV;    
    
      -- Do correction/ calculate difference value 
 SDV: for i in n-3 downto 0 generate  
 begin  
  with SDM_reg(i) select 
  polarity_diff(i) <= polarity_diff(i+1) + assign_diff(i) when 
'1', 
  polarity_diff(i+1) - assign_diff(i) when others;  
       SDV_reg <= polarity_diff(0); 
 end generate SDV;   
 
CorrectedBINARY <= C_binary((n + 2)-1 downto (n + 2)-n); -- Transmit 
corrected binary code 
correct_fin <= C_fin;  
END behav; 

 

B.5.3 MATLAB Script to Aid Creation of TM-ARCHα-7 ADC Signal Emulator 

The MATLAB script below was developed to establish a sequence of values to be added to the 

sum of the previous value. These values created the Gray code that a TM-ARCHα-7 ADC, with 

a µ = 1.9 and supplied a full-scale ramp input signal, would produce if the comparator outputs 

had been aligned. The sequence of values was then employed by the TM-ARCHα-7 ADC Signal 

Emulator (see Section B.5.4) and enabled this component to produce a similar output to a 

TM-based ADC before the comparator outputs are aligned by the control logic within the 

FPGA.  
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%% Characteristics for Tent Map 
gain = [1.9]; 
Vmax = 3.0; 
Vmin = 0; 
Vref = 1.5;                     %set reference voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
%% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
samples = (2^(resolution+1));      %number of samples 
dt = 1/samples; 
x = 0:dt:1; 
y = (Vmax-Vmin)*x; 
  
%% Gain look up table 
for i = 1:1:(resolution - 1) 
    LUT(i) = (1/mpower(gain, i))-(1/pow2(i)); 
end 
  
%% Input goes through TMs % 
for i = 1: 1: length(y) %Samples of input signal 
    z(1,i) = y(i); 
    for res = 1: 1: resolution % Folds and finds gray code word of 
sample 
        if (z(res, i) <= Vref) % if input to the folding stage is less 
than or equal to the reference voltage 
            z((res+1), i) = gain*z(res, i); 
            Dout(res, i) = 0; 
        elseif (z(res, i) > Vref)                   % if input to the 
folding stage is more than the reference voltage 
            z((res +1), i) = gain*(2*Vref - z((res), i)); 
            Dout(res, i) = 1; 
        end 
    end 
end 
%z array gives the inputs to each Tent map stage 
%Dout array provides the Gray code output 
  
%% Implement correction  
%uncorrected output 
for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
    gray_code_vector = Dout(:,i);           %get Gray code word 
    gray_rep = transpose(gray_code_vector); 
    gray_int(i) = bi2de(gray_rep, 'left-msb'); 
     
    %looking at binary equivalent 
    binary = gray2bin(gray_code_vector);    %convert Gray code word to 
binary 
    bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
    bin_rep = transpose(bin_representation(:,i)); 
    bin_int(i) = bi2de(bin_rep, 'left-msb'); 
end 
%% Determine Ramp add values (to be employed by the signal emulator) 
ramp_diff_shift = [gray_int(2 : length(gray_int) ), gray_int(1)]; % 
shift gray_int values right by on in the array. Bring gray_int(1) to the 
leftmost index in the array. 
ramp_add = ramp_diff_shift - gray_int; % determine the next value to be 
added to the output to create a ramp 
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B.5.4 VHDL code of the TM-ARCHα-7 ADC Signal Emulator 

The following code was developed to imitate the output of a TM-ARCHα-7 ADC, with a  

µ = 1.9, when supplied with a ramp input signal. 

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
 
ENTITY Signal_pipelined_generator is 
generic (n: integer:= 8); 
PORT (clk_p: in std_logic;  -- s/h clock       (25 MHz) 
  res: in std_logic;  -- resets all Difference registers 
  Output_signal_piped: out std_logic_vector(n-1 downto 0)); --
equivalent output of the TM-ADC    
END ENTITY;  
 
ARCHITECTURE behav OF Signal_pipelined_generator IS  
signal Gen_counter: integer := 0;  
signal in_value: integer := 0;         --value into the "TM-ADC" 
signal in_valueV: std_logic_vector(7 downto 0):= (others => '0'); --binary 
equivalent of in_value 
signal out_value: std_logic_vector(7 downto 0):= (others => '0'); --output 
signal S0: std_logic_vector(1 downto 0):= (others => '0'); 
signal S1: std_logic_vector(3 downto 0):= (others => '0'); 
signal S2: std_logic_vector(5 downto 0):= (others => '0'); 
signal S3: std_logic_vector(7 downto 0):= (others => '0'); 
 
type add2prev is array (0 to 2**(n+1)) of integer; 
signal diff: add2prev :=   --difference values for ramp 
( 
-- ramp signal emulation array--  
-- contents generated by MATLAB Script presented in B.5.3-- 
); 
begin  
 form_signal_odds: PROCESS 
 BEGIN    
 WAIT UNTIL RISING_EDGE(clk_p);   --PLL_IN the PLL clock 250MHz  
  
 in_value <= in_value + diff(Gen_counter);  --Add difference to 
previous input amplitude 
 in_valueV  <= std_logic_vector(to_unsigned(in_value, n)); --convert 
to binary 
 S3(7 downto 6) <= in_valueV(7 downto 6); -- 2 MSBs go to the 2 MSBs 
of array S3 
 S2(5 downto 4) <= in_valueV(5 downto 4); -- 3rd and 4th MSBs go to 
the 2 MSBs of array S2 
 S1(3 downto 2) <= in_valueV(3 downto 2); -- 3rd and 4th LSBs go to 
the 2 MSBs of array S1 
 S0(1 downto 0) <= in_valueV(1 downto 0); -- 2 LSBs go to the 2 MSBs 
of array S0 
   
 out_value <= S3;   --ADC output would be the same as S3 
 if Gen_counter < 2**(n+1) then     
  Gen_counter <= Gen_counter + 1; --increment counter 
  S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into 
S3[5:0] 
  S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into 
S2[3:0] 



240 
 

  S1(1 downto 0) <= S0(1 downto 0); --shift S0 values into 
S1[1:0] 
 else  
  Gen_counter <= 0;        --
reset counter 
  S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into 
S3[5:0] 
  S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into 
S2[3:0] 
  S1(1 downto 0) <= S0(1 downto 0); -- 2 LSBs go to the 2 MSBs 
of array S0 
 end if; 
  
end process; 
Output_signal_piped  <= out_value; 
 
END behav; 
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B.5.5 Combining Components for Test 

Figure B-1 is a schematic connecting the FA_clock and Signal_pipelined_generator components (see Appendix B.5.1 and Appendix B.5.4 

respectively) for testing. 

  

 

Figure B-1: Components combined using a schematic within Quartus. 
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B.5.6 Test Bench for Testing the µCA-1 VHDL Implementation 

The following code is the test bench developed to test the implemented µCA-1 via simulation. 

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
use STD.textio.all; 
use ieee.std_logic_textio.all; 
 
ENTITY ramp_to_sys_tb IS 
END ENTITY;  
 
ARCHITECTURE behav OF ramp_to_sys_tb IS   
 
signal clk_50MHz: std_logic := '0'; --50 MHz signal to PLL module 
signal R1: std_logic := '0';  -- reset 1 
signal R2: std_logic := '0';  -- reset 2 
signal G_B: std_logic := '0';   
signal DATA: std_logic_vector(7 downto 0) := (others => '0'); -- output 
data from  main component 
signal num: integer := 0;  -- data converted to integer 
file Results: text; -- converted data to be saved to a text file 
 
component repeat_of_orginial_algorithm_experiment is -- signal generator 
and FA_clock combined 
 PORT (GoB:  IN  STD_LOGIC; 
   RES_2:  IN  STD_LOGIC; 
   Clk:  IN  STD_LOGIC; 
   RES:  IN  STD_LOGIC; 
   D_out: OUT STD_LOGIC_VECTOR(7 downto 0));        
 end component  repeat_of_orginial_algorithm_experiment;  
 
Begin 
    
 main_component_INST : repeat_of_orginial_algorithm_experiment 
 port map  
 (GoB => G_B, 
  RES_2 => R2, 
  CLK => clk_50MHz, 
  RES => R1, 
  D_out => DATA); 
    
clking_50: Process  -- generate 50 MHz clock 
begin   
 number1: for i in 1 to 100000 loop 
 clk_50MHz <= '1'; 
 wait for 10 ns; 
 clk_50MHz <= '0'; 
 wait for 10 ns;  
 end loop number1;   
 end process clking_50;  
  
 save_results: Process -- save data into text files 
 variable O_line : line; 
 begin  
  
 --file_open(Results, "Before_correction.txt", write_mode);  --
before correction 
 file_open(Results, "After_correction.txt", write_mode); --after 
correction 
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 number2: for i in 1 to 100000 loop 
 num <= to_integer(unsigned(DATA)); --convert binary ADC output to 
integers 
 write(O_line, num, right, 8);      --write data to file 
      writeline(Results, O_line); 
  
 wait for 40 ns; 
 end loop number2;  
 file_close(Results); 
 end process save_results; 
  
end behav;    
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B.6 MATLAB Scripts for Approximating Difference Measure Values for the Fundamental 

Tent Map Gain Compensation Algorithm 

B.6.1 Code for Creating the SLE&A Equations 

The code below was used to develop the straight-line approximation of the DM versus µ plots 

for all bits (except the MSB). Straight line approximations of the error versus µ plots were also 

determined. The equations determined from these straight-line approximations were 

employed in the SLE&A method discussed in Section 5.6 and presented in Appendix B.6.2. 

 

%% Ideal DM values -  look up table  
resolution = 16;   % number of TM stages - 1 
gain = [1.9: 0.0001: 2];  % gain range 
gain_t = transpose(gain); 
for g = 1:1:length(gain) 
    for i = 1:1:(resolution)-1 
        LUT(g,i) = (1/mpower(gain(g), i))-(1/pow2(i));  
    end 
end   
  
G = length(gain);  % number of gains to be plotted 
%% Do straight-line approximation 
  
n = 1: 1: resolution - 1;   
Results = zeros(2, resolution - 1); 
for i = 1:1:resolution - 1 % calculate gradient 
    a = (LUT(G,i) - LUT(1,i))/(gain(G) - gain(1));  
    b = LUT(G,i) - a*gain(G); 
    Results(1, i) = a; 
    Results(2, i) = b; 
end 
  
for g = 1:1:length(gain) 
    for i = 1:1:(resolution - 1) 
        a = Results(1,i);  
        b = Results(2,i);  
        LUT_approx(g, i) = a*gain(g) + b;  
    end 
end 
  
%% straight line approxs for error approx 
DIFF = LUT - LUT_approx; % calculate error 
  
for i = 1:1:resolution - 1 
 
  %approximation for first half 
    y_grad = (DIFF((1+ length(gain))/2 ,i) - DIFF(1,i)); 
    x_grad = gain(1,(1+ length(gain))/2) - gain(1,1);     
    a = y_grad/x_grad;  
    b = DIFF((1+ length(gain))/2,i) - a*gain(1,(1+ length(gain))/2); % 
constant calculated when u = 1.95 



245 
 

    Errors1(1, i) = a; 
    Errors1(2, i) = b; 
  
   %approximation for second half  
    c = (DIFF(G,i) - DIFF((1+ length(gain))/2,i))/((gain(1,G) - 
gain(1,(1+ length(gain))/2)));  
    d = DIFF((1+ length(gain))/2,i) - c*gain(1,(1+ length(gain))/2); % 
constant calculated when u = 1.95 
    Errors2(1, i) = c; 
    Errors2(2, i) = d; 
 end  

 

B.6.2 Code for Simulating SLE&A Method 

The code below presents how the SLE&A method was implemented to approximate the DM 

values employed within the µCA-1. 

 

%% load data obtained from curve_fitting_for_gain.m 
resolution = 16;              %Number of TM stages 
%curvefittingforgain = 
load('Straight_line_approx_1.9_to_2_0.0001inc.mat'); 
curvefittingforgain = 
load('Straight_line_approx_min_point_1.9_to_2_0.0001inc.mat'); 
Indexs = load('error_grad_change.mat'); 
  
%% Characteristics for Tent Map 
gain = [1.9: 0.01:1.99];  %TM gain 
gain_max = 2;   % Min and max values used in straight-line approximation 
gain_min = 1.9; 
gain_mid = 1.95; %mid-point of gain values approximated 
Vmax = 3; 
Vmin = 0; 
Vref = 1.5;                     %set partition point voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
%% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
  
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/pow2(resolution + 2); %380 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T-dt; 
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2;  % 0 to 3 V at 
380 Hz ramp input signal 
number_samples = length(x); 
%% DM values -  look up table 
  
for g = 1:1:length(gain) 
    %ideal DM values 
    for i = 1:1:(resolution - 1) 
        LUT(i) = (1/mpower(gain(g), i))-(1/pow2(i)); 
    end 
     
    %approximated DM values 
    % straight line approx 
    for i = 1:1:(resolution - 1) 
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        a = curvefittingforgain.Results(1,i); 
        b = curvefittingforgain.Results(2,i); 
         
        if gain(g) <= gain_mid         
            c = curvefittingforgain.Errors1(1,i); 
            d = curvefittingforgain.Errors1(2,i);          
        else 
            c = curvefittingforgain.Errors2(1,i); 
            d = curvefittingforgain.Errors2(2,i);             
        end 
        Error_approx(i) = (c*gain(g) + d); 
        LUT_approx(i) = (a*gain(g) + b) + Error_approx(i); 
    end 
     
    for i = 1: 1: number_samples %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            if ((z(res, i) <= Vref) && (z(res, i) >= Vmin))  % if input 
to the folding stage is less than or equal to the reference voltage 
                z((res+1), i) = gain(g)*z(res, i); 
                Dout(g, res, i) = 0; 
            elseif ((z(res, i) > Vref) && (z(res, i) <= 
Vmax))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); 
                Dout(g, res,i) = 1; 
            elseif (z(res, i) > Vmax) 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 1; 
            else 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 0; 
            end 
        end 
         
        if (z(resolution, i) <= (Vref)) 
            Dout(g, resolution, i) = 0; 
        else 
            Dout(g, resolution, i) = 1; 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
     
     
    %% Sign for Difference Measure (SDM) 
     
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g, 2,i), Dout(g, 3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g, res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
    %% Difference Measure: selected for each respective gray code bit 
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
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        for res = 2: 1: resolution   % gives remaining bits of DV 
            if (Dout(g, res, i) > 0) 
                DV(res, i) = LUT(res - 1); %ideal 
                DV_approx(res, i) = LUT_approx(res - 1); %approx 
            else DV(res, i) = 0; 
                DV_approx(res, i) = 0;                 
            end 
        end 
    end 
    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); %ideal 
                SDV_approx(res, i) = DV_approx(res, i); %approx 
            else SDV(res, i) = -DV(res, i);  %ideal 
                SDV_approx(res, i) = -DV_approx(res, i); %approx 
            end 
        end 
    end 
     
    %DV values 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum(i) = sum(SDV(:,i)); 
        SDV_dec(i) = (Vmax-Vmin)*SDV_sum(i);  %DV ideal 
        SDV_sum_approx(i) = sum(SDV_approx(:,i)); 
        SDV_dec_approx(i) = (Vmax-Vmin)*SDV_sum_approx(i); %DV approx. 
    end 
        
     
    %% Implement compensated 
     
    %uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(g, :,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution 
            decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ; 
        end 
        output_representation(i) = decimal_rep  ; %modify decimal value 
so it lies within the input voltage range 
    end 
     
    %compensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        if (SDM(1,i) == 1) 
            corrected_output(i) = output_representation(i) - 
SDV_dec(i);       %ideal 
            corrected_output_approx(i) = output_representation(i) - 
SDV_dec_approx(i);  %approx 
        else 
            corrected_output(i) = output_representation(i) + 
SDV_dec(i);         %ideal 
            corrected_output_approx(i) = output_representation(i) + 
SDV_dec_approx(i); %approx 
        end 
    end 
     
    uncorrected_difference = (output_representation - y)/Step_size; 
    corrected_difference = (corrected_output - y)/Step_size; 
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    corrected_difference_approx = (corrected_output_approx - 
y)/Step_size; 
     
    %% display key information (Effective resolution) 
     
    UD = max(abs(uncorrected_difference)) 
    CD = max(abs(corrected_difference_approx)) 
    CD_ideal = max(abs(corrected_difference)) 
    effective_bit_accuracy_UD(g) = resolution - (log2(ceil(UD)) 
+1);  %if UD = 1 bit acc should be resolution - 1 
    effective_bit_accuracy_CD(g) = resolution - (log2(ceil(CD)) +1); 
    effective_bit_accuracy_CD_ideal(g) = resolution - 
(log2(ceil(CD_ideal)) +1); 
     
    Ideal_and_approx_difference = corrected_difference - 
corrected_difference_approx; 
end 

 

B.6.3 Code for Simulating SA Method 

The code below presents how the SA method was implemented to approximate the DM 

values employed within the µCA-1. 

%% Characteristics for Tent Map 
resolution = 16;              %number of TM stages - 1 
approx_gain = [1.9]; %u_o 
gain = [1.9: 0.01: 1.99];      %u_c 
Vmax = 3;            %valid input signal max. 
Vmin = 0;            %valid input signal min. 
Vref = 1.5;                     %set partition point voltage 
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size 
%% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
f_fundamental = 380; % 380 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
Fs = 25000000;      %sample rate = 25 MHz 
dt = 1/Fs; 
x = 0:dt:T-dt; 
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2;  % 0 to 3 V at 
380 Hz ramp input signal. 
number_samples = length(x); 
  
for g = 1: 1: length(gain) 
    %% DM values -  look up table 
    scalar(g) = (1-(gain(g) - approx_gain)/(2-approx_gain)); 
    %approx DM values 
    for i = 1:1:(resolution - 1) 
        LUT(i) = ((1/mpower(approx_gain, i))-(1/pow2(i))); 
    end 
    %ideal DM values 
    for i = 1:1:(resolution - 1) 
        LUT_ideal(i) = ((1/mpower(gain(g), i))-(1/pow2(i))); 
    end 
     
    LUT_approx = scalar(g)*LUT; 
    %% Input goes through TM-based ADC % 
    for i = 1: 1: number_samples %Samples of input signal 
        z(1,i) = y(i); 
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        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            if ((z(res, i) <= Vref) && (z(res, i) >= Vmin))  % if input 
to the folding stage is less than or equal to the reference voltage 
                z((res+1), i) = gain(g)*z(res, i); 
                Dout(g, res, i) = 0; 
            elseif ((z(res, i) > Vref) && (z(res, i) <= 
Vmax))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); 
                Dout(g, res,i) = 1; 
            elseif (z(res, i) > Vmax) 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 1; 
            else 
                z((res +1), i) = Vmin; 
                Dout(g, res, i) = 0; 
            end 
        end 
         
        if (z(resolution, i) <= (Vref)) 
            Dout(g, resolution, i) = 0; 
        else 
            Dout(g, resolution, i) = 1; 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
         
    %% Sign for Difference Measure (SDM)     
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(g, 2,i), Dout(g, 3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(g, res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
    %% Difference Measure: selected for each respective gray code bit 
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        for res = 2: 1: resolution   % gives remaining bits of DV 
            if (Dout(g, res, i) > 0) 
                DV(res, i) = LUT_ideal(res - 1); %ideal 
                DV_approx(res, i) = LUT_approx(res - 1); %approx 
            else DV(res, i) = 0; 
                DV_approx(res, i) = 0; 
                 
            end 
        end 
    end 
    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); %ideal 
                SDV_approx(res, i) = DV_approx(res, i); %approx 
            else SDV(res, i) = -DV(res, i);  %ideal 
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                SDV_approx(res, i) = -DV_approx(res, i); %approx 
            end 
        end 
    end 
     
    %DV values 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum(i) = sum(SDV(:,i)); 
        SDV_dec(i) = (Vmax-Vmin)*SDV_sum(i);  %DV ideal 
        SDV_sum_approx(i) = sum(SDV_approx(:,i)); 
        SDV_dec_approx(i) = (Vmax-Vmin)*SDV_sum_approx(i); %DV approx. 
    end 
     
    %% Implement compensated 
    %uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(g, :,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: resolution 
            decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ; 
        end 
        output_representation(i) = decimal_rep  ; %modify decimal value 
so it lies within the input voltage range 
    end 
     
    %compensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        if (SDM(1,i) == 1) 
            corrected_output(i) = output_representation(i) - 
SDV_dec(i);       %ideal 
            corrected_output_approx(i) = output_representation(i) - 
SDV_dec_approx(i);  %approx 
        else 
            corrected_output(i) = output_representation(i) + 
SDV_dec(i);         %ideal 
            corrected_output_approx(i) = output_representation(i) + 
SDV_dec_approx(i); %approx 
        end 
    end 
     
    uncorrected_difference = (output_representation - y)/Step_size; 
    corrected_difference = (corrected_output - y)/Step_size; 
    corrected_difference_approx = (corrected_output_approx - 
y)/Step_size; 
     
    %% display key information (Effective resolution) 
     
    UD = max(abs(uncorrected_difference)) 
    CD = max(abs(corrected_difference_approx)) 
    CD_ideal = max(abs(corrected_difference)) 
    effective_bit_accuracy_UD(g) = resolution - (log2(ceil(UD)) 
+1);  %if UD = 1 bit acc should be resolution - 1 
    effective_bit_accuracy_CD(g) = resolution - (log2(ceil(CD)) +1); 
    effective_bit_accuracy_CD_ideal(g) = resolution - 
(log2(ceil(CD_ideal)) +1); 
     
    Ideal_and_approx_difference = corrected_difference - 
corrected_difference_approx; 
end 
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Appendix C  

The code presented in this appendix relates to the simulation and practical results presented 

in Chapter 6. 

 

C.1 MATLAB Scripts for Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain 

Compensation Algorithms 

C.1.1 Code for the µCA-2 Analysis 

The code below shows how the µCA-2 was tested with a more complex TM-ARCHα-15 ADC 

mathematical model developed in MATLAB. 

 

%% Initialise key parameters for model 
resolution = 16;              %number of TM stages + 1 
Vcc = 5; % valid input max. 
Vee = -0.25; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
Step_size = (vin_range)/(2^resolution); %calculating step size 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution + 2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T; 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
 
%% Gain and Vref Parameters 
number_tests = 100; 
rng(0, 'twister');   % The code in this script section is based on 
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html 
a = 1.9; 
b = 1.99; 
  
gain_pos = (b-a).*rand(number_tests, resolution-1) + a; % different µ+ 
for each TM stage 
gain_neg =  (b-a).*rand(number_tests, resolution-1) + a; % different µ- 
for each TM stage 
%% Input goes through TM-based ADC % 



252 
 

for test = 1: 1: number_tests 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        z(1,1) = y(1); 
        %% first sample - assume higher than previous 
        if ((z(res, 1) <= VH_pos(res)) && (z(res, 1) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
            z((res+1), 1) = gain_pos(test,res)*z(res, 1); 
            Dout(res, 1) = 0; 
        elseif ((z(res, 1) > VH_pos(res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
            z((res +1), 1) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); 
            Dout(res,1) = 1; 
        elseif (z(res, 1) > Vcc) 
            z((res +1), 1) = Vee; 
            Dout(res, 1) = 1; 
        else 
            z((res +1), 1) = Vee; 
            Dout(res, 1) = 0; 
        end 
    end 
    %% positive ramp goes through TMs % 
    for i = 2: 1: number_samples %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            %% Higher Hysteresis voltages 
            if (z(res, i) > z(res, i - 1)) 
                if ((z(res, i) <= VH_pos(res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                    z((res+1), i) = gain_pos(test,res)*z(res, i); 
                    Dout(res, i) = 0; 
                elseif ((z(res, i) > VH_pos(res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); 
                    Dout(res,i) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(res, i) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(res, i) = 0; 
                end 
                %% Lower Hysteresis voltages 
            else 
                if ((z(res, i) <= VH_neg(res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                    z((res+1), i) = gain_pos(test,res)*z(res, i); 
                    Dout(res, i) = 0; 
                elseif ((z(res, i) > VH_neg(res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); 
                    Dout(res,i) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(res, i) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(res, i) = 0; 
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                end 
            end 
        end 
        %% last comparator 
        if ((z(resolution, i) > z(resolution, i - 1))||(z(resolution, 
1))) 
            if (z(resolution, i) <= VH_pos(resolution)) 
                Dout(resolution, i) = 0; 
            else 
                Dout(resolution, i) = 1; 
            end 
        else 
            if (z(resolution, i) <= VH_neg(resolution)) 
                Dout(resolution, i) = 0; 
            else 
                Dout(resolution, i) = 1; 
            end 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
 
    %% Sign for Difference Measure (SDM) 
    %   edited for non-matching gains 
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(2,i), Dout(3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
    %% Difference Measure: selected for each respective Gray code bit 
    %Select the DM values determined using each µ being employed by the 
compensation algorithm 
    %Calculate all the DM values for each µ being employed by the 
compensation algorithm 
     
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        gain_factor = 1; 
        for res = 2: 1: resolution   % gives remaining bits of DM 
            %% calculate deviations from preferred implementation 
            if  Dout(res-1, i) == 1 
                gain_factor = gain_factor * gain_neg(test,res-1); 
            else 
                gain_factor = gain_factor * gain_pos(test,res-1); 
            end 
            %% calculate and add difference measure values 
            if (Dout(res, i) == 1) 
                DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
            else 
                DV(res, i) = 0; 
            end 
        end 
    end 

    […] 
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C.1.2 Code for the µCA-3 Analysis 

The code below shows how the TM-ARCHβ-7-12 ADC was implemented as a mathematical 

model and tested with µCA-3. 

 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
COTS_ADC_res = 12; 
Total_resolution = resolution + COTS_ADC_res - 1; 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
TM_Step_size = (vin_range)/(2^resolution); %calculating step size 
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution + 2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T-dt; 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
  
%% Preallocate size of arrays 
number_tests = 10; 
Dout = zeros(number_tests, Total_resolution, number_samples); 
  
%% Gain and Vref Parameters 
rng(0, 
'twister');   %%https://uk.mathworks.com/help/matlab/math/floating-
point-numbers-within-specific-range.html 
a = 1.9; 
b = 1.99; 
% produced µ+ and µ- for TM stages 
gain_pos = (b-a).*rand(number_tests, resolution-1) + a; 
%gain_neg = gain_pos; 
gain_neg =  (b-a).*rand(number_tests, resolution-1) + a;  
VH_pos = (Vref)*(ones(1, resolution)); 
VH_neg = (Vref)*(ones(1, resolution));  
  
%% Input goes through TM-based ADC % 
for test = 1: 1: number_tests 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        z(1,1) = y(1); 
        %% first sample - assume higher than previous 
        if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
            z((res+1), 1) = gain_pos(test, res)*z(res, 1); 
            Dout(test,res, 1) = 0; 
        elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
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            z((res +1), 1) = (gain_neg(test, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); % TM implementation considered 
for second adaptation  
            %z((res +1), 1) = (gain_pos(test, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); %electronic implementation of 
TM 
            Dout(test,res,1) = 1; 
        elseif (z(res, 1) > Vcc) 
            z((res +1), 1) = Vee; 
            Dout(test,res, 1) = 1; 
        else 
            z((res +1), 1) = Vee; 
            Dout(test,res, 1) = 0; 
        end 
    end 
    %% positive ramp goes through TMs % 
    for i = 2: 1: length(y) %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            %% Higher Hysteresis voltages 
            if (z(res, i) > z(res, i - 1)) 
                if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
                    z((res+1), i) = gain_pos(test,res)*z(res, i); 
                    Dout(test,res, i) = 0; 
                elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % TM implementation considered 
for second adaptation  
                    % z((res +1), i) = (gain_pos(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of 
TM 
                    Dout(test,res,i) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(test,res, i) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(test,res, i) = 0; 
                end 
                %% Lower Hysteresis voltages 
            else 
                if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
                    z((res+1), i) = gain_pos(test,res)*z(res, i); 
                    Dout(test,res, i) = 0; 
                elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % TM implementation considered 
for second adaptation  
                    %z((res +1), i) = (gain_pos(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of 
TM 
                    Dout(test,res,i) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(test,res, i) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(test,res, i) = 0; 
                end 
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            end 
        end 
        z_final(test, i) = z(resolution, i); 
    end 
     
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output  
end 
%% clear unrequired variables 
clear a 
clear b 
clear c 
clear d 
clear test 
clear i 
clear dt 
clear f_fundamental 
clear Fs 
clear res 
clear Vcc 
clear Vee 
clear z 
  
COTS_ADC_input = zeros(number_samples, 1); 
LSBs_vect = zeros(COTS_ADC_res, number_samples); 
%% start Test 
for test = 1: 1: number_tests 
    for i = 1: 1: number_samples 
        %% nth TM stage output goes through the COTS ADC 
        COTS_ADC_input(i, 1) = z_final(test, i); %final TM output goes 
through a commerical ADC 
        %Use Bernoulli Map 
        for res = 1: 1: COTS_ADC_res 
            if COTS_ADC_input(i, res) <= Vref 
                COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res); 
                LSBs_vect(res,i) = 0; 
            else 
                COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) 
- 2*Vref; 
                LSBs_vect(res,i) = 1; 
            end 
        end 
        %convert to Gray Code 
        for j = 1: 1: COTS_ADC_res 
            if j ==1 
                Dout(test, (j+resolution) - 1, i) = LSBs_vect(j,i); 
            else 
                Dout(test, (j+resolution) - 1, i) = xor(LSBs_vect(j-
1,i) , LSBs_vect(j,i)); 
            end 
        end 
    end 
     
    %% Sign for Difference Measure (SDM) 
    %   edited for non-matching gains 
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(test,1,i); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(test,2,i), Dout(test,3, i)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: Total_resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(test,res, i)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 



257 
 

            end 
        end 
    end 
        
%% Difference Measure: selected for each respective gray code bit 
        %Select the DM values determined using each µ being employed by 
the compensation algorithm 
    %Calculate all the DM values for each µ being employed by the 
compensation algorithm 
     
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        gain_factor = 1; 
        for res = 2: 1: Total_resolution   % gives remaining bits of DM 
            %% calculate deviations from preferred implementation 
            if  Dout(test,res-1, i) == 1 
                if res <= resolution 
                    gain_factor = gain_factor * gain_neg(test,res-1); 
                else 
                    gain_factor = gain_factor*2; 
                end 
                               
            else 
                if res <= resolution 
                    gain_factor = gain_factor * gain_pos(test,res-1); 
                else 
                    gain_factor = gain_factor*2; 
                end                 
            end 
            %% calculate and add difference measure values 
            if (Dout(test,res, i) == 1) 
                DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
            else 
                DV(res, i) = 0; 
            end 
        end 
    end 
     
    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: Total_resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); 
            else SDV (res, i) = -DV(res, i); 
            end 
        end 
         
    end 
    %% Determine DV 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum(i) = sum(SDV(:,i)); 
         
    end 
     
    %% Determine uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(test,:,i);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: Total_resolution               %convert binary 
values to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep ; 
        end 
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        output_representation(i) = decimal_rep  ; %modify decimal value 
so it lies within the input voltage range 
    end 
     
    %% Implement Compensation 
    for i = 1: 1: length(y) 
        if (SDM(1,i) == 1) 
            corrected_output(i) = vin_range*((output_representation(i) - 
SDV_sum(i))); 
             
        else 
            corrected_output(i) = vin_range*((output_representation(i) + 
SDV_sum(i))); 
             
        end 
    end     
     
    voltage_representation = vin_range*output_representation; 
     
    %% Calculate difference between input and output and bit accuracy 
     
    for i = 1: 1: length(y) 
        uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference 
        corrected_difference( i) = (corrected_output(i)-
y(i))/ADC_Step_size;         %compensated difference 
         
    end 
    %calculate bit accuracy of compensated and uncompensated ADC 
    UD(test) = max(abs(uncorrected_difference(:))); 
    CD(test) = max(abs(corrected_difference(:))); 
     
    effective_bit_accuracy_UD(test) = Total_resolution - 
log2(ceil(UD(test))) - 1; 
    effective_bit_accuracy_CD(test) = Total_resolution - 
log2(ceil(CD(test))) - 1;     
end 
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C.2 MATLAB Scripts for Sensitivity Analysis of the Enhanced Tent Map Gain 

Compensation Algorithms 

C.2.1 MATLAB Script for Assessing the Sensitivity of µ+ Deviating from µ- 

The code below was developed to perform a sensitivity analysis on mathematical models of 

the TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC, as discussed in Section 6.2.1. 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
COTS_ADC_res = 12; 
%COTS_ADC_res = 1;  % acts as a comparator on the final stage 
Total_resolution = resolution + COTS_ADC_res - 1; 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
TM_Step_size = (vin_range)/(2^resolution); %calculating step size 
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size 
 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution+2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T-dt; 
%y = vin_range-(vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp 
input signal - 0 to 3 V 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = 3; 
 
%% Preallocate size of arrays 
Dout = zeros(number_samples, Total_resolution); 
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1); 
LSBs_vect = zeros(COTS_ADC_res, number_samples); 
uncorrected_difference = zeros(1, number_samples); 
corrected_difference = zeros(1, number_samples); 
output_representation = zeros(1, number_samples); 
corrected_output = zeros(1, number_samples); 
bin_representation = zeros(Total_resolution, number_samples); 
%% Gain and Vref Parameters   
rng(0, 
'twister');   %%https://uk.mathworks.com/help/matlab/math/floating-
point-numbers-within-specific-range.html 
gain_deviations = (-0.0002:0.00001:0.0002); %% non-percentage 
number_tests = length(gain_deviations); 
effective_bit_accuracy_UD = zeros(1, number_tests); 
effective_bit_accuracy_CD = zeros(1, number_tests); 
  
a = 1.9; 
b = 1.99;  
gain_pos = (b-a).*rand(1, resolution-1) + a; 
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gain_neg = ones(number_tests, resolution-1); 
for i = 1: 1: number_tests 
    gain_neg(i, :) = gain_pos + gain_deviations(i);  
end 
  
VH_pos = (Vref)*(ones(1, resolution)); 
VH_neg = (Vref)*(ones(1, resolution)); 
  
%% Input goes through TM-based ADC % 
for test = 1: 1: number_tests 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        z(1,1) = y(1); 
        %% first sample - assume higher than previous 
        if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
            z((res+1), 1) = gain_pos(1, res)*z(res, 1); 
            Dout(1, res) = 0; 
        elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
            z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); % electronic implementation of 
TM 
            Dout(1, res) = 1; 
        elseif (z(res, 1) > Vcc) 
            z((res +1), 1) = Vee; 
            Dout(1, res) = 1; 
        else 
            z((res +1), 1) = Vee; 
            Dout(1, res) = 0; 
        end 
    end 
 
    %% positive ramp goes through TMs % 
    for i = 2: 1: length(y) %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            %% Higher Hysteresis voltages 
            if (z(res, i) > z(res, i - 1)) 
                if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
                    z((res+1), i) = gain_pos(1,res)*z(res, i); 
                    Dout(i, res) = 0; 
                elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of 
TM 
                    Dout(i, res) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 0; 
                end 
                %% Lower Hysteresis voltages 
            else 
                if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
                    z((res+1), i) = gain_pos(1,res)*z(res, i); 
                    Dout(i, res) = 0; 
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                elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of 
TM 
                    Dout(i, res) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 0; 
                end 
            end 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
 
    for i = 1: 1: number_samples 
        %% nth TM stage output goes through the COTS ADC 
        COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes 
through a commerical ADC 
        %Use Bernoulli Map 
        for res = 1: 1: COTS_ADC_res 
            if COTS_ADC_input(i, res) <= Vref 
                COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res); 
                LSBs_vect(res,i) = 0; 
            else 
                COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) 
- 2*Vref; 
                LSBs_vect(res,i) = 1; 
            end 
        end 
        %convert to Gray Code 
        for j = 1: 1: COTS_ADC_res 
            if j ==1 
                Dout(i, j+resolution - 1) = LSBs_vect(j,i); 
            else 
                Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) , 
LSBs_vect(j,i)); 
            end 
        end 
    end 
     
    %% Sign for Difference Measure (SDM) 
    %   edited for non-matching gains 
    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(i, 1); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: Total_resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(i, res)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
   
    %% Difference Measure: selected for each respective gray code bit     
    %Select the DM values determined using each µ being employed by the 
compensation algorithm 
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    %Calculate all the DM values for each µ being employed by the 
compensation algorithm     
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        gain_factor = 1; 
        for res = 2: 1: Total_resolution   % gives remaining bits of DM 
            %% calculate deviations from preferred implementation 
            if  Dout(i, res - 1) == 1 
                if res <= resolution 
                    gain_factor = gain_factor * gain_neg(test, res-1); 
                else 
                    gain_factor = gain_factor*2; 
                end 
  
            else 
                if res <= resolution 
                    gain_factor = gain_factor * gain_pos(1, res-1); 
                else 
                    gain_factor = gain_factor*2; 
                end 
                 
            end 
            %% calculate and add difference measure values 
            if (Dout(i, res) == 1) 
                DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
            else 
                DV(res, i) = 0; 
            end 
        end 
    end 
     
    %% Signed Difference Value     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: Total_resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); 
            else SDV (res, i) = -DV(res, i); 
            end 
        end         
    end 
    %% Determine DV 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum(i) = sum(SDV(:,i));         
    end 
     
    %% Determine uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(i, :);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: Total_resolution               %convert binary 
values to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep; 
        end 
        output_representation(i) = decimal_rep; %modify decimal value so 
it lies within the input voltage range 
    end 
     
    %% Implement Compensation 
    for i = 1: 1: length(y) 
        if (SDM(1,i) == 1) 
            corrected_output(i) = vin_range*((output_representation(i) - 
SDV_sum(i)));        
        else 
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            corrected_output(i) = vin_range*((output_representation(i) + 
SDV_sum(i))); 
        end 
    end 
  
    voltage_representation = vin_range*output_representation;     
    %% Calculate difference between input and output and ENOB 
     
    for i = 1: 1: length(y) 
        uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference 
        corrected_difference( i) = (corrected_output(i)-
y(i))/ADC_Step_size;         %compensated difference 
         
    end 
    %calculate bit accuracy of compensated and uncompensated ADC 
    UD = max(abs(uncorrected_difference(:))); 
    CD = max(abs(corrected_difference(:))); 
     
    effective_bit_accuracy_UD(test) = Total_resolution - log2(ceil(UD)) 
- 1; 
    effective_bit_accuracy_CD(test) = Total_resolution - log2(ceil(CD)) 
- 1; 
     
end 

 

C.2.2 MATLAB Script for Assessing the Sensitivity Between µ±algorithm and µ±ADC 

The code below was developed to perform a sensitivity analysis on mathematical models of 

the TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC, as discussed in Section 6.2.2. 

 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
%COTS_ADC_res = 12; 
COTS_ADC_res = 1;           % acts as a comparator 
Total_resolution = resolution + COTS_ADC_res - 1; 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
TM_Step_size = (vin_range)/(2^resolution); %calculating step size 
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution+2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T-dt; 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = 3; 
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%% Preallocate size of arrays 
Dout = zeros(number_samples, Total_resolution); 
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1); 
LSBs_vect = zeros(COTS_ADC_res, number_samples); 
uncorrected_difference = zeros(1, number_samples); 
corrected_difference = zeros(1, number_samples); 
output_representation = zeros(1, number_samples); 
corrected_output = zeros(1, number_samples); 
bin_representation = zeros(Total_resolution, number_samples); 
%% Gain and Vref Parameters 
  
% random µ+ and µ- adapted from 
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html 
rng(0, 'twister');    
%gain_deviations = (-0.1:0.001:0.1); %% percentage 
gain_deviations = (-2:0.001:2); %% percentage 
number_tests = length(gain_deviations); 
effective_bit_accuracy_UD = zeros(1, number_tests); 
effective_bit_accuracy_CD = zeros(1, number_tests); 
  
a = 1.9; 
b = 1.99; 
%d_max = 50*(10^-6); 
%d_min = -50*(10^-6); 
d_max = 0.0283; 
d_min = -0.0133; 
gain_pos = (b-a).*rand(1, resolution-1) + a; 
gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min) + gain_pos; 
  
VH_pos = (Vref)*(ones(1, resolution)); 
VH_neg = (Vref)*(ones(1, resolution)); 
  
%% Input goes through TM-based ADC % 
for test = 1: 1: number_tests 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        z(1,1) = y(1); 
        %% first sample - assume higher than previous 
        if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
            z((res+1), 1) = gain_pos(1, res)*z(res, 1); 
            Dout(1, res) = 0; 
        elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
            z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref)); % electronic implementation of TM 
            Dout(1, res) = 1; 
        elseif (z(res, 1) > Vcc) 
            z((res +1), 1) = Vee; 
            Dout(1, res) = 1; 
        else 
            z((res +1), 1) = Vee; 
            Dout(1, res) = 0; 
        end 
    end 
    %% positive ramp goes through TMs % 
    for i = 2: 1: length(y) %Samples of input signal 
        z(1,i) = y(i); 
        for res = 1: 1: resolution - 1 % Folds and finds gray code word 
of sample 
            %% Higher Hysteresis voltages 
            if (z(res, i) > z(res, i - 1)) 
                if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
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                    z((res+1), i) = gain_pos(1,res)*z(res, i); 
                    Dout(i, res) = 0; 
                elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % electronic implementation of TM 
                    Dout(i, res) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 0; 
                end 
                %% Lower Hysteresis voltages 
            else 
                if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= 
Vee))  % if input to the folding stage is less than or equal to the 
reference voltage 
                    z((res+1), i) = gain_pos(1,res)*z(res, i); 
                    Dout(i, res) = 0; 
                elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                    z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % electronic implementation of TM 
                    Dout(i, res) = 1; 
                elseif (z(res, i) > Vcc) 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 1; 
                else 
                    z((res +1), i) = Vee; 
                    Dout(i, res) = 0; 
                end 
            end 
        end 
    end 
    %z array gives the inputs to each Tent map stage 
    %Dout array provides the Gray code output 
    for i = 1: 1: number_samples 
        %% nth TM stage output goes through the COTS ADC 
        COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes 
through a commerical ADC 
        %Use Bernoulli Map 
        for res = 1: 1: COTS_ADC_res 
            if COTS_ADC_input(i, res) <= Vref 
                COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res); 
                LSBs_vect(res,i) = 0; 
            else 
                COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) 
- 2*Vref; 
                LSBs_vect(res,i) = 1; 
            end 
        end 
        %convert to Gray Code 
        for j = 1: 1: COTS_ADC_res 
            if j ==1 
                Dout(i, j+resolution - 1) = LSBs_vect(j,i); 
            else 
                Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) , 
LSBs_vect(j,i)); 
            end 
        end 
    end 
     
    %% Sign for Difference Measure (SDM) 
    %   edited for non-matching gains 
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    for i = 1: 1: length(y) %Samples of input signal 
        SDM(1, i) = Dout(i, 1); %MSB of Gray code output 
        SDM(2, i) = 1;         %1 shows adding function 
        if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM 
            SDM(3,i) = 1; 
        else 
            SDM(3,i) = 0; 
        end 
        for res = 4: 1: Total_resolution   % gives remaining bits of SDM 
            if xor(SDM(res-1,i), Dout(i, res)) 
                SDM(res,i) = 1; 
            else 
                SDM(res,i) = 0; 
            end 
        end 
    end 
     
    %% Difference Measure: selected for each respective gray code bit     
    %Select the DM values determined using each µ being employed by the 
compensation algorithm 
    %Calculate all the DM values for each µ being employed by the 
compensation algorithm 
     
    for i = 1: 1: length(y) %Samples of input signal 
        DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
        gain_factor = 1; 
        for res = 2: 1: Total_resolution   % gives remaining bits of DM 
            %% calculate deviations from preferred implementation 
            if  Dout(i, res - 1) == 1 
                if res <= resolution 
                    gain_factor = gain_factor * (gain_neg(1, res-1)*(1+ 
gain_deviations(test)/100)) ; 
                else 
                    gain_factor = gain_factor*2; 
                end 
            else 
                if res <= resolution 
                    gain_factor = gain_factor * (gain_pos(1, res-1)*(1+ 
gain_deviations(test)/100)) ; 
                else 
                                gain_factor = gain_factor*2; 
                end 
                 
            end 
            %% calculate and add difference measure values 
            if (Dout(i, res) == 1) 
                DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
            else 
                DV(res, i) = 0; 
            end 
        end 
    end 
     
    %% Signed Difference Value 
     
    for i = 1: 1: length(y) %Samples of input signal 
        for res = 1: 1: Total_resolution   % gives remaining bits of DV 
            if (SDM(res, i) > 0) 
                SDV(res, i) = DV(res, i); 
            else SDV (res, i) = -DV(res, i); 
            end 
        end 
    end 
    %% Determine DV 
    for i = 1: 1: length(y) %decimal of SDV 
        SDV_sum(i) = sum(SDV(:,i)); 
         
    end 
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    %% Determine uncompensated output 
    for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
        gray_code_vector = Dout(i, :);           %get Gray code word 
        binary = gray2bin(gray_code_vector);    %convert Gray code word 
to binary 
        bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
        decimal_rep = 0; 
        for j = 1: 1: Total_resolution               %convert binary 
values to the equivalent voltage 
            decimal_rep = (binary(j)/(2^j))+ decimal_rep ; 
        end 
        output_representation(i) = decimal_rep  ; %modify decimal value 
so it lies within the input voltage range 
    end 
     
    %% Implement Compensation 
    for i = 1: 1: length(y) 
        if (SDM(1,i) == 1) 
            corrected_output(i) = vin_range*((output_representation(i) - 
SDV_sum(i))); 
             
        else 
            corrected_output(i) = vin_range*((output_representation(i) + 
SDV_sum(i))); 
             
        end 
    end 
     
    voltage_representation = vin_range*output_representation; 
     
    %% Calculate difference between input and output and bit accuracy     
    for i = 1: 1: length(y) 
        uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference 
        corrected_difference( i) = (corrected_output(i)-
y(i))/ADC_Step_size;         %compensated difference 
         
    end 
    %calculate bit accuracy of compensated and uncompensated ADC 
    UD = max(abs(uncorrected_difference(:))); 
    CD = max(abs(corrected_difference(:))); 
     
    effective_bit_accuracy_UD(test) = Total_resolution - log2(ceil(UD)) 
- 1; 
    effective_bit_accuracy_CD(test) = Total_resolution - log2(ceil(CD)) 
- 1; 
     
end 
cutoff = 15*ones(1, number_tests); 
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C.3 MATLAB Script for Analysing Final TM-ARCHβ-7-12 ADC Model and µCA-3 

The code below presents the final mathematical model developed of the TM-ARCHβ-7-12 

ADC and highlights how the bit accuracy was determined before and after the µCA-3 was 

applied. The code employed to assess the static and dynamic performance was the same as 

that shown in Appendix B.1.2, Appendix B.1.3, Appendix B.2.2 and Appendix B.2.3. 

 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
COTS_ADC_res = 12; 
Total_resolution = resolution + COTS_ADC_res - 1; 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
TM_Step_size = (vin_range)/(2^resolution); %calculating step size 
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size 
 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution+2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T; 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = 3; 
 
%% Preallocate size of arrays 
Dout = zeros(number_samples, Total_resolution); 
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1); 
LSBs_vect = zeros(COTS_ADC_res, number_samples); 
%% Gain and Vref Parameters 
% Comparator Hysteresis - threshold voltages 1/2 step size above and 
below 
% the partition point voltage 
VTH = Vref + ADC_Step_size/2; 
VTL = Vref - ADC_Step_size/2;  
VH_pos =  VTH*ones(1, resolution); 
VH_neg = VTL*ones(1, resolution);  
% adapted code from 
% https://uk.mathworks.com/help/matlab/math/floating-point-numbers-
within-specific-range.html 
% to select random µ+ and µ- values  
rng(0, 'twister');    
a = 1.9; 
b = 1.99; 
d_max = 50*(10^-6); 
d_min = -50*(10^-6); 
gain_pos = (b-a).*rand(1, resolution-1) + a; % µ+ for each TM stage 



269 
 

gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos; % µ- 
for each TM stage  
%% Input goes through TM-based ADC %  
for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
    z(1,1) = y(1); 
    %% first sample - assume higher than previous 
    if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee))  % if input 
to the folding stage is less than or equal to the reference voltage 
        z((res+1), 1) = gain_pos(1, res)*z(res, 1); 
        Dout(1, res) = 0; 
    elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
        z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref)); % Electronic TM implementation 
        Dout(1, res) = 1; 
    elseif (z(res, 1) > Vcc) 
        z((res +1), 1) = Vee; 
        Dout(1, res) = 1; 
    else 
        z((res +1), 1) = Vee; 
        Dout(1, res) = 0; 
    end 
end 
%% positive ramp goes through TMs % 
for i = 2: 1: length(y) %Samples of input signal 
    z(1,i) = y(i); 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        %% Higher Hysteresis voltages 
        if (z(res, i) > z(res, i - 1)) 
            if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(1,res)*z(res, i); 
                Dout(i, res) = 0; 
            elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % Electronic TM implementation 
                Dout(i, res) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(i, res) = 1; 
            else 
                z((res +1), i) = Vee; 
                Dout(i, res) = 0; 
            end 
            %% Lower Hysteresis voltages 
        else 
            if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(1,res)*z(res, i); 
                Dout(i, res) = 0; 
            elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % Electronic TM implementation 
                Dout(i, res) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(i, res) = 1; 
            else 
                z((res +1), i) = Vee; 
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                Dout(i, res) = 0; 
            end 
        end 
    end 
end 
%z array gives the inputs to each Tent map stage 
%Dout array provides the Gray code output 
for i = 1: 1: number_samples 
    %% nth TM stage output goes through the ideal COTS ADC 
    COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes 
through a commerical ADC 
    for res = 1: 1: COTS_ADC_res 
        if COTS_ADC_input(i, res) <= Vref 
            COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res); 
            LSBs_vect(res,i) = 0; 
        else 
            COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) - 
2*Vref; 
            LSBs_vect(res,i) = 1; 
        end 
    end 
    %convert to Gray Code 
    for j = 1: 1: COTS_ADC_res 
        if j ==1 
            Dout(i, j+resolution - 1) = LSBs_vect(j,i); 
        else 
            Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) , 
LSBs_vect(j,i)); 
        end 
    end 
end  
%% Sign for Difference Measure (SDM) 
%   edited for non-matching gains 
for i = 1: 1: length(y) %Samples of input signal 
    SDM(1, i) = Dout(i, 1); %MSB of Gray code output 
    SDM(2, i) = 1;         %1 shows adding function 
    if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM 
        SDM(3,i) = 1; 
    else 
        SDM(3,i) = 0; 
    end 
    for res = 4: 1: Total_resolution   % gives remaining bits of SDM 
        if xor(SDM(res-1,i), Dout(i, res)) 
            SDM(res,i) = 1; 
        else 
            SDM(res,i) = 0; 
        end 
    end 
end 
%% Difference Measure: selected for each respective gray code bit  
%Select the DM values determined using each µ being employed by the 
compensation algorithm 
%Calculate all the DM values for each µ being employed by the 
compensation algorithm 
for i = 1: 1: length(y) %Samples of input signal 
    DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
    gain_factor = 1; 
    for res = 2: 1: Total_resolution   % gives remaining bits of DM 
        %% calculate deviations from preferred implementation 
        if  Dout(i, res - 1) == 1 
            if res <= resolution 
                gain_factor = gain_factor * gain_neg(res-1); 
            else 
                gain_factor = gain_factor*2; % COTS ADC - modelled as 
ideal TM stages 
            end            
        else 
            if res <= resolution 
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                gain_factor = gain_factor * gain_pos(res-1); 
            else 
                gain_factor = gain_factor*2; % COTS ADC - modelled as 
ideal TM stages 
            end 
        end 
        %% calculate and add difference measure values 
        if (Dout(i, res) == 1) 
            DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
        else 
            DV(res, i) = 0; 
        end 
    end 
end 
%% Signed Difference Value  
for i = 1: 1: length(y) %Samples of input signal 
    for res = 1: 1: Total_resolution   % gives remaining bits of DV 
        if (SDM(res, i) > 0) 
            SDV(res, i) = DV(res, i); 
        else SDV (res, i) = -DV(res, i); 
        end 
    end     
end 
%% Determine DV 
for i = 1: 1: length(y) %decimal of SDV 
    SDV_sum(i) = sum(SDV(:,i)); 
end  
%% Determine uncompensated output 
for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
    gray_code_vector = Dout(i, :);           %get Gray code word 
    binary = gray2bin(gray_code_vector);    %convert Gray code word to 
binary 
    bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
    decimal_rep = 0; 
    for j = 1: 1: Total_resolution               %convert binary values 
to the equivalent voltage 
        decimal_rep = (binary(j)/(2^j))+ decimal_rep; 
    end 
    output_representation(i) = decimal_rep  ; %modify decimal value so 
it lies within the input voltage range 
end  
%% Implement Compensation 
for i = 1: 1: length(y) 
    if (SDM(1,i) == 1) 
        corrected_output(i) = vin_range*((output_representation(i) - 
SDV_sum(i)));         
    else 
        corrected_output(i) = vin_range*((output_representation(i) + 
SDV_sum(i)));         
    end 
end 
voltage_representation = vin_range*output_representation;  
%% Calculate quantisation error and bit accuracy  
for i = 1: 1: length(y) 
    uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference 
    corrected_difference( i) = (corrected_output(i)-
y(i))/ADC_Step_size;         %compensated difference 
     
end 
%calculate bit accuracy of compensated and uncompensated ADC 
UD = max(abs(uncorrected_difference(:))); 
CD = max(abs(corrected_difference(:)));  
effective_bit_accuracy_UD = Total_resolution - log2(ceil(UD)) - 1; 
effective_bit_accuracy_CD = Total_resolution - log2(ceil(CD)) - 1;  

[…] 
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C.4 MATLAB Script for Noise Analysis Simulation 

The following MATLAB script shows how the noise analysis discussed in Section 6.4 was 

performed. 

 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
COTS_ADC_res = 12; 
Total_resolution = resolution + COTS_ADC_res - 1; 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
Vmax = 3;  
Vmin = 0; 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
TM_Step_size = (vin_range)/(2^resolution); %calculating step size 
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = Total_resolution+2; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamantal frequency 
dt = 1/Fs; 
x = 0:dt:T; 
%y = vin_range-(vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp 
input signal - 0 to 3 V 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
number_samples = length(x); 
y(number_samples) = 3; 
  
%% added noise 
noise_pp  = 2*ADC_Step_size; % Set noise as a multiple of step size 
SNR_not_dB = (Vmax-Vmin)/noise_pp;   % signal to noise ratio  
snr = 20*log10(SNR_not_dB);          % calculate SNR to dB 
  
internal_noise = zeros(resolution, number_samples); 
internal_noise = awgn(internal_noise,snr); %superimpose white gaussian 
noise on the input signal 
  
%% Preallocate size of arrays 
Dout = zeros(number_samples, Total_resolution); 
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1); 
LSBs_vect = zeros(COTS_ADC_res, number_samples); 
%% Gain and Vref Parameters 
% Comparator Hysteresis - threshold voltages 1/2 step size above and 
below 
% The partition point voltage 
VTH = Vref + ADC_Step_size/2; 
VTL = Vref - ADC_Step_size/2; 
  
VH_pos =  VTH*ones(1, resolution); 
VH_neg = VTL*ones(1, resolution); 
  
% adapted code from 
% https://uk.mathworks.com/help/matlab/math/floating-point-numbers-
within-specific-range.html 
% to select random µ+ and µ- values 
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rng(0, 'twister');    
a = 1.9; 
b = 1.99; 
d_max = 50*(10^-6); 
d_min = -50*(10^-6); 
gain_pos = (b-a).*rand(1, resolution-1) + a; % µ+ for each TM stage 
gain_neg =  ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos; % 
µ- for each TM stage 
  
%% Input goes through TM-based ADC % 
  
for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
    z(1,1) = y(1) + internal_noise(res,1);      % superimpose noise onto 
input signal 
    %% first sample - assume higher than previous 
    if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee))  % if input 
to the folding stage is less than or equal to the reference voltage 
        z((res+1), 1) = gain_pos(1, res)*z(res, 1)+ 
internal_noise(res+1,1);  % superimpose noise onto TM output signal 
        Dout(1, res) = 0; 
    elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
        z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref))+ internal_noise(res+1,1); % 
superimpose noise onto TM output signal 
        Dout(1, res) = 1; 
    elseif (z(res, 1) > Vcc) 
        z((res +1), 1) = Vee; 
        Dout(1, res) = 1; 
    else 
        z((res +1), 1) = Vee; 
        Dout(1, res) = 0; 
    end 
end 
%% positive ramp goes through TMs % 
for i = 2: 1: length(y) %Samples of input signal 
    z(1,i) = y(i)+ internal_noise(1,i); % superimpose noise onto input 
signal 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        %% Higher Hysteresis voltages 
        if (z(res, i) > z(res, i - 1)) 
            if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(1,res)*z(res, i)+ 
internal_noise(res+1,i); % superimpose noise onto TM output signal 
                Dout(i, res) = 0; 
            elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref))+ internal_noise(res+1,i); % 
superimpose noise onto TM output signal 
                Dout(i, res) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(i, res) = 1; 
            else 
                z((res +1), i) = Vee; 
                Dout(i, res) = 0; 
            end 
            %% Lower Hysteresis voltages 
        else 
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            if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= Vee))  % 
if input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(1,res)*z(res, i)+ 
internal_noise(res+1,i); % superimpose noise onto TM output signal 
                Dout(i, res) = 0; 
            elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref))+ internal_noise(res+1,i); % 
superimpose noise onto TM output signal 
                Dout(i, res) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(i, res) = 1; 
            else 
                z((res +1), i) = Vee; 
                Dout(i, res) = 0; 
            end 
        end 
    end 
end 
%z array gives the inputs to each Tent map stage 
%Dout array provides the Gray code output 
for i = 1: 1: number_samples 
    %% nth TM stage output goes through the COTS ADC 
    % No noise superimposed within COTS ADC, as it is being modelled as 
an 
    % Ideal ADC 
    COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes 
through a commerical ADC 
    %Use Bernoulli Map 
    for res = 1: 1: COTS_ADC_res 
        if COTS_ADC_input(i, res) <= Vref 
            COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res); 
            LSBs_vect(res,i) = 0; 
        else 
            COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) - 
2*Vref; 
            LSBs_vect(res,i) = 1; 
        end 
    end 
    %convert to Gray Code 
    for j = 1: 1: COTS_ADC_res 
        if j ==1 
            Dout(i, j+resolution - 1) = LSBs_vect(j,i); 
        else 
            Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) , 
LSBs_vect(j,i)); 
        end 
    end 
end 
  
%% Sign for Difference Measure (SDM) 
%   Edited for non-matching gains 
for i = 1: 1: length(y) %Samples of input signal 
    SDM(1, i) = Dout(i, 1); %MSB of Gray code output 
    SDM(2, i) = 1;         %1 shows adding function 
    if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM 
        SDM(3,i) = 1; 
    else 
        SDM(3,i) = 0; 
    end 
    for res = 4: 1: Total_resolution   % gives remaining bits of SDM 
        if xor(SDM(res-1,i), Dout(i, res)) 
            SDM(res,i) = 1; 
        else 
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            SDM(res,i) = 0; 
        end 
    end 
end 
  
  
%% Difference Measure: selected for each respective gray code bit 
  
%Select the DM values determined using each µ being employed by the 
compensation algorithm 
%Calculate all the DM values for each µ being employed by the 
compensation algorithm 
  
for i = 1: 1: length(y) %Samples of input signal 
    DV(1,i) = 0; %Ideal as it hasn't passed through a TM 
    gain_factor = 1; 
    for res = 2: 1: Total_resolution   % gives remaining bits of DM 
        %% calculate deviations from preferred implementation 
        if  Dout(i, res - 1) == 1 
            if res <= resolution 
                gain_factor = gain_factor * gain_neg(res-1); 
            else 
                gain_factor = gain_factor*2; 
            end 
             
             
        else 
            if res <= resolution 
                gain_factor = gain_factor * gain_pos(res-1); 
            else 
                gain_factor = gain_factor*2; 
            end 
             
        end 
        %% calculate and add difference measure values 
        if (Dout(i, res) == 1) 
            DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1 ))); 
        else 
            DV(res, i) = 0; 
        end 
    end 
end 
  
%% Signed Difference Value 
  
for i = 1: 1: length(y) %Samples of input signal 
    for res = 1: 1: Total_resolution   % gives remaining bits of DV 
        if (SDM(res, i) > 0) 
            SDV(res, i) = DV(res, i); 
        else SDV (res, i) = -DV(res, i); 
        end 
    end 
     
end 
%% Determine DV 
for i = 1: 1: length(y) %decimal of SDV 
    SDV_sum(i) = sum(SDV(:,i)); 
     
end 
  
%% Determine uncompensated output 
for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
    gray_code_vector = Dout(i, :);           %get Gray code word 
    binary = gray2bin(gray_code_vector);    %convert Gray code word to 
binary 
    bin_representation(:,i) = binary ;      %save binary to an array 
(verification of results in MATLAB workspace) 
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    decimal_rep = 0; 
    for j = 1: 1: Total_resolution               %convert binary values 
to the equivalent voltage 
        decimal_rep = (binary(j)/(2^j))+ decimal_rep ; 
    end 
    output_representation(i) = decimal_rep  ; %modify decimal value so 
it lies within the input voltage range 
end 
  
%% Implement Compensation 
for i = 1: 1: length(y) 
    if (SDM(1,i) == 1) 
        corrected_output(i) = vin_range*((output_representation(i) - 
SDV_sum(i))); 
         
    else 
        corrected_output(i) = vin_range*((output_representation(i) + 
SDV_sum(i))); 
         
    end 
end 
voltage_representation = vin_range*output_representation; 
  
%% Calculate difference between input and output and bit accuracy 
for i = 1: 1: length(y) 
    uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference 
    corrected_difference( i) = (corrected_output(i)-
y(i))/ADC_Step_size;         %compensated difference 
     
end 
%calculate bit accuracy of compensated and uncompensated ADC 
UD = max(abs(uncorrected_difference(:))); 
CD = max(abs(corrected_difference(:))); 
  
effective_bit_accuracy_UD = Total_resolution - log2(ceil(UD)) - 1; 
effective_bit_accuracy_CD = Total_resolution - log2(ceil(CD)) - 1; 
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C.5 Code for VHDL Implementation of an Enhanced Tent Map Gain Compensation 

Algorithm 

The majority of the VHDL code employed for the tests discussed in Section 6.3 was identical 

to that employed in Section 5.5 and thus presented in Appendix B.5. Therefore, only code 

listings which were modified are presented in this section. 

 

C.5.1 MATLAB Script to Aid the Creation of an TM-ARCHα-7 ADC Signal Emulator  

The MATLAB script below was developed to choose a set of µ± values at random, then to 

establish a sequence of values to be added to the sum of the previous value, in order to create 

the Gray code that an TM-ARCHα-7 ADC might produce if supplied with a full-scale ramp input 

signal. The sequence of values was then employed by the TM-ARCHα-7 ADC Signal Emulator 

(see Appendix C.3.3) and enabled this component to produce a similar output to a TM-based 

ADC before the comparator outputs are aligned by the control logic within the FPGA. The DM 

values required by the VHDL implementation of the µCA-2 were also established using this 

MATLAB script. 
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%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
Vcc = 5; % valid input max. 
Vee = 0; % valid input min. 
vin_range = 3 - 0; 
Vref = 1.5;             %set partition point voltage 
Step_size = (vin_range)/(2^resolution); %calculating step size 
%% Generate input signal 
% input - sawtooth wave adapted from 
https://uk.mathworks.com/help/signal/ref/sawtooth.html 
pwr_val = resolution + 1; 
Fs = 25000000;      %sample rate = 25 MHz 
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency 
T = (1/f_fundamental); %number of periods times fundamental frequency 
dt = 1/Fs; 
x = 0:dt:T-dt; 
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input 
signal - 0 to 3 V 
%y = (vin_range)*(sin(2*pi*f_fundamental*x)+ 1)/2; %ramp input signal - 
0 to 3 V 
number_samples = length(x); 
  
%% Gain and Vref Parameters  
VHDL_res = resolution + 2; 
rng(0, 'twister');  %% 
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html 
a = 1.9; 
b = 1.99; 
d_max =0.0283; 
d_min = -0.0133; 
gain_pos = (b-a).*rand(1, resolution-1) + a; 
gain_neg =  ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos; 
inv_pos = 1./gain_pos; 
inv_neg = 1./gain_neg;  
for i = 1: 1: resolution -1 
    inv_two(i) = pow2(-i); 
end 
VH_pos = (Vref)*ones(1, resolution); 
VH_neg = (Vref)*ones(1, resolution); 
  
%% determine DM values  
% start calculating all the different gain factors 
% resolution - 1 DM values could be required to compensate each ADC 
output 
% there are a maximum of 2^(resolution -1) gain factors 
gain_combinations = ones(resolution - 1, pow2(resolution - 1)); 
  
% half the possible gain factors will have TM1 µ+, and the rest TM1 µ- 
gain_combinations(1,1:2^(resolution-2)) = inv_neg(1,1); 
gain_combinations(1,1+2^(resolution-2): 2^(resolution-1)) = 
inv_pos(1,1); 
  
% Determine all the different gain factors 
for res = 2: 1: resolution - 1 
    count = 1; 
    for combo =  1: 1: 2^(resolution-1) 
        if count <= 2^(resolution - (1 + res)) 
            gain_combinations(res, combo) = 
inv_neg(1,res)*gain_combinations(res - 1, combo); 
        else 
            gain_combinations(res, combo) = 
inv_pos(1,res)*gain_combinations(res - 1, combo); 
        end 
        if count == 2^(resolution - res) 
            count = 1; 
        else 
            count = count + 1; 
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        end 
    end 
end 
  
% calculate the different DM values 
for res = 1:1:resolution - 1     
    for combo = 1:1:  2^(resolution-1) 
        DM_array(res, combo) = gain_combinations(res, combo)-
inv_two(res); 
    end 
end 
  
% convert the DM values to binary format, and separate each DM with a 
comma  
for res = 1:1:resolution - 1     
    for combo = 1:1: 2^(resolution-1) 
        DM_array_bin(res, combo) = 
join(string(de2bi(floor(pow2(VHDL_res)*DM_array(res, combo)), VHDL_res, 
'left-msb')),""); 
    end 
    DM_array_VHDL(res, 1) = join(DM_array_bin(res, :), '", "'); 
end 
   
%% Input goes through TM-based ADC %% 
for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
    z(1,1) = y(1); 
    %% first sample - assume higher than previous 
    if ((z(res, 1) <= VH_pos(res)) && (z(res, 1) >= Vee))  % if input to 
the folding stage is less than or equal to the reference voltage 
        z((res+1), 1) = gain_pos(res)*z(res, 1); 
        Dout(res, 1) = 0; 
    elseif ((z(res, 1) > VH_pos(res)) && (z(res, 1) <= Vcc)) % if input 
to the folding stage is more than the reference voltage 
        z((res +1), 1) = (gain_pos(res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); 
        Dout(res,1) = 1; 
    elseif (z(res, 1) > Vcc) 
        z((res +1), 1) = Vee; 
        Dout(res, 1) = 1; 
    else 
        z((res +1), 1) = Vee; 
        Dout(res, 1) = 0; 
    end 
end 
%% positive ramp goes through TMs % 
for i = 2: 1: length(y) %Samples of input signal 
    z(1,i) = y(i); 
    for res = 1: 1: resolution - 1 % Folds and finds gray code word of 
sample 
        %% Higher Hysteresis voltages 
        if (z(res, i) > z(res, i - 1)) 
            if ((z(res, i) <= VH_pos(res)) && (z(res, i) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(res)*z(res, i); 
                Dout(res, i) = 0; 
            elseif ((z(res, i) > VH_pos(res)) && (z(res, i) <= 
Vcc))                     % if input to the folding stage is more than 
the reference voltage 
                z((res +1), i) = (gain_pos(res)*Vref)-
(gain_neg(res)*(z((res), i)-Vref)); 
                Dout(res,i) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(res, i) = 1; 
            else 
                z((res +1), i) = Vee; 
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                Dout(res, i) = 0; 
            end 
            %% Lower Hysteresis voltages 
        else 
            if ((z(res, i) <= VH_neg(res)) && (z(res, i) >= Vee))  % if 
input to the folding stage is less than or equal to the reference 
voltage 
                z((res+1), i) = gain_pos(res)*z(res, i); 
                Dout(res, i) = 0; 
            elseif ((z(res, i) > VH_neg(res)) && (z(res, i) <= Vcc)) % 
if input to the folding stage is more than the reference voltage 
                z((res +1), i) = (gain_pos(res)*Vref)-
(gain_neg(res)*(z((res), i)-Vref)); 
                Dout(res,i) = 1; 
            elseif (z(res, i) > Vcc) 
                z((res +1), i) = Vee; 
                Dout(res, i) = 1; 
            else 
                z((res +1), i) = Vee; 
                Dout(res, i) = 0; 
            end 
        end 
    end 
    %% last comparator 
    if ((z(resolution, i) > z(resolution, i - 1))||(z(resolution, 1))) 
        if (z(resolution, i) <= VH_pos(resolution)) 
            Dout(resolution, i) = 0; 
        else 
            Dout(resolution, i) = 1; 
        end 
    else 
        if (z(resolution, i) <= VH_neg(resolution)) 
            Dout(resolution, i) = 0; 
        else 
            Dout(resolution, i) = 1; 
        end 
    end 
end  
%z array gives the inputs to each Tent map stage 
%Dout array provides the Gray code output 
  
%% create ramp  
%uncorrected output 
for i = 1: 1: length(y) % converting Gray code representation of 
samples, to binary 
    gray_code_vector = Dout(:,i);           %get Gray code word 
    gray_rep = transpose(gray_code_vector); 
    gray_int(i) = bi2de(gray_rep, 'left-msb'); 
     
    %looking at binary equivalent 
    binary = gray2bin(gray_code_vector); %convert Gray code word to 
binary 
    bin_representation(:,i) = binary; % save binary to an array 
(verification of results in MATLAB workspace) 
    bin_rep = transpose(bin_representation(:,i)); 
    bin_int(i) = bi2de(bin_rep, 'left-msb'); 
end 
  
%% Determine Ramp add values (to be employed by the signal emulator) 
ramp_diff_shift = [gray_int(2 : length(gray_int) ), gray_int(1)]; % 
shift gray_int values right by on in the array. Bring gray_int(1) to the 
leftmost index in the array. 
ramp_add = ramp_diff_shift - gray_int; % determine the next value to be 
added to the output to create a ramp 
ramp_add_string = join(string(ramp_add), ","); % convert to string and 
separate the binary words with a comma. This speeds up the process of 
inserting the values into the VHDL code. 
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C.5.2 VHDL Implementation of the µCA-2  

The code listing below presents the VHDL implementation of the µCA-2.  

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
 
ENTITY gain_correction is 
generic (n: positive:= 8);  -- define resolution of TM-based ADC 
 PORT (PLL_OUT: in std_logic;  -- PLL clock (feb 17: 250 MHz) 
   res: in std_logic;  -- resets all Difference registers 
   Input_Gray: in std_logic_vector(n-1 downto 0); --ADC output 
in Gray code 
   correct_en: in std_logic;  
   correct_fin: out std_logic;  
   UncorrectedBINARY: in std_logic_vector(n-1 downto 0); --ADC 
output in binary 
   CorrectedBINARY: out std_logic_vector(n-1 downto 0)); --
Corrected ADC output     
END ENTITY;  
 
ARCHITECTURE behav OF gain_correction IS  
-- define signals to be employed within the module 
signal Graycode: std_logic_vector (n-1 downto 0):= (others => '0'); 
signal SDM_reg:  std_logic_vector (n-1 downto 0):= (others => '0');   
signal UC_binary:   std_logic_vector((n+2)-1 downto 0):= (others => 
'0'); 
signal C_binary:    std_logic_vector((n+2)-1 downto 0):= (others => 
'0'); 
signal SDV_reg:  std_logic_vector((n+2)-1 downto 0):= (others => '0');  
signal correct:  std_logic_vector(n-1 downto 0):= (others => '0');  
signal counter: integer := 0;  
signal C_fin:  std_logic := '0'; 
signal do_correct : std_logic := '0'; 
 
-- LUT for random µ+ and µ- values determined by MATLAB script 
type LUT is array (n-2 downto 0, 2**(n-1) -1 downto 0) of 
std_logic_vector((n+2)-1 downto 0); --precalculated different measure 
values for the adapted algorithm 
-- each row represents the possible DMs for a different TM output  
 
signal diff_bit : LUT :=   --binary values multiplied by 2^10 = 
1024 (need to shift back by 2) 
( 
-- DM values array--  
-- contents generated by MATLAB Script presented in C.5.1-- 
); 
 
type Diff is array (n-1 downto 0) of std_logic_vector((n+2)-1 downto 0); 
-- array to store relevant DM values 
signal assign_diff: Diff;  
 
type sum_Diff is array (n-2 downto 0) of std_logic_vector((n+2)-1 downto 
0); -- array to aid the calculation of the DV value 
signal polarity_diff: sum_Diff;  
 
BEGIN 
 Gain_compensate: PROCESS  
 BEGIN 
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 WAIT UNTIL RISING_EDGE(PLL_OUT);   --PLL_IN the PLL clock 250MHz 
 Graycode(n-1 downto 0) <= Input_Gray;   
 UC_binary((n+2)-1 downto (n+2)-n) <= UncorrectedBINARY(n-1 downto 
0); 
 UC_binary((n+2)-(n+1) downto 0) <= (others => '0'); 
    
 --Should the correction process be applied?  
 IF correct_en = '1' AND counter < 3 THEN --yes 
  C_fin <= '0';   
  counter <= counter + 1;  
  -- Find sign of difference measure  
  SDM_reg(n-1) <= Graycode(n-1);  
  SDM_reg(n-2) <= '1'; 
  SDM_reg(n-3) <= (Graycode(n-2) XOR Graycode(n-3));  
   
  -- Find Difference measure    
  assign_diff(n-1) <= (others => '0'); 
 
  --Do correction  
  polarity_diff(n-2) <= assign_diff(n-2); 
 
  if SDM_reg(n-1) = '1' then -- is MSB of Gray code = 1? 
   C_binary((n+2)-1 downto 0) <= UC_binary((n+2)-1 downto 
0) - SDV_reg((n+2)-1 downto 0);     
  else -- is MSB of Gray code = 0?  
   C_binary((n+2)-1 downto 0) <= UC_binary((n+2)-1 downto 
0) + SDV_reg((n+2)-1 downto 0);   
  end if; 
 
 ELSIF counter = 3 AND correct_en = '1' THEN --no 
  C_fin <= '1';     
 ELSIF counter = 3 AND correct_en = '0' THEN --no   
  counter <= 0;    
 ELSE 
  null;  
 END IF;   
END process; 
       
-- Sign for Difference measure 
SDM: for i in n-4 downto 0 generate  
begin 
 SDM_reg(i) <= (SDM_reg(i+1) XOR Graycode(i));  
end generate SDM;  
    
-- Assign difference measure  
DV: for i in n-2 downto 0 generate  
begin 
 with Graycode(i) select 
 assign_diff(i)  <= diff_bit(i, to_integer(unsigned(Graycode(n-1 
downto 1)))) when '1', -- use Gray code to establish which DM value is 
required 
 (others => '0') when others;     
end generate DV;    
    
-- Do correction/ calculate difference value 
SDV: for i in n-3 downto 0 generate  
begin  
 with SDM_reg(i) select 
 polarity_diff(i) <= polarity_diff(i+1) + assign_diff(i) when '1', 
 polarity_diff(i+1) - assign_diff(i) when others;  
 SDV_reg <= polarity_diff(0); 
end generate SDV;   
 
CorrectedBINARY((n-1) downto 0) <= C_binary((n+2)-1 downto (n+2)-n); 
correct_fin <= C_fin;  
END behav; 
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C.5.3 VHDL Code of the TM-ARCHα-7 ADC Signal Emulator  

The following code was developed to imitate the output of the TM-ARCHα-7 ADC modelled 

in the MATLAB script (see Appendix C.5.1), when supplied with a ramp input signal. 

 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use IEEE.numeric_std.all; 
 
ENTITY Signal_pipelined_generator is 
generic (n: integer:= 8); 
PORT (clk_p: in std_logic;  -- s/h clock       (25 MHz) 
  res: in std_logic;  -- resets all Difference registers 
  Output_signal_piped: out std_logic_vector(n-1 downto 0)); --
equivalent output of the TM-ADC     
END ENTITY;  
 
ARCHITECTURE behav OF Signal_pipelined_generator IS  
signal Gen_counter: integer := 0;  
signal in_value: integer := 0;         --value into the "TM-ADC" 
signal in_valueV: std_logic_vector(7 downto 0):= (others => '0'); --
binary equivalent of in_value 
signal out_value: std_logic_vector(7 downto 0):=(others => '0'); --
output 
signal S0: std_logic_vector(1 downto 0):= (others => '0'); 
signal S1: std_logic_vector(3 downto 0):= (others => '0'); 
signal S2: std_logic_vector(5 downto 0):= (others => '0'); 
signal S3: std_logic_vector(7 downto 0):= (others => '0'); 
 
type add2prev is array (0 to 2**(n+1) - 1) of integer; 
signal diff: add2prev :=   --difference values for ramp 
( 
-- ramp signal emulation array--  
-- contents generated by MATLAB Script presented in C.5.1-- 
); 
 
begin  
form_signal_odds: PROCESS 
 BEGIN 
 WAIT UNTIL RISING_EDGE(clk_p);   --PLL_IN the PLL clock 250MHz  
 in_value <= in_value + diff(Gen_counter);  --Add difference to 
previous input amplitude 
 in_valueV  <= std_logic_vector(to_unsigned(in_value, n)); --
convert to binary 
 S3(7 downto 6) <= in_valueV (7 downto 6); -- 2 MSBs go to the 2 
MSBs of array S3 
 S2(5 downto 4) <= in_valueV (5 downto 4); -- 3rd and 4th MSBs go 
to the 2 MSBs of array S2 
 S1(3 downto 2) <= in_valueV (3 downto 2); -- 3rd and 4th LSBs go 
to the 2 MSBs of array S1 
 S0(1 downto 0) <= in_valueV (1 downto 0); -- 2 LSBs go to the 2 
MSBs of array S0   
 out_value <= S3;  --ADC output would be the same as S3 
 if Gen_counter < 2**(n+1) - 1 then     
  Gen_counter <= Gen_counter + 1; --increment counter 
  S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into 
S3[5:0] 
  S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into 
S2[3:0] 
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  S1(1 downto 0) <= S0(1 downto 0); --shift S0 values into 
S1[1:0] 
 else  
  Gen_counter <= 0;      ----reset counter 
  S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into 
S3[5:0] 
  S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into 
S2[3:0] 
  S1(1 downto 0) <= S0(1 downto 0); -- 2 LSBs go to the 2 MSBs 
of array S0 
 end if;  
end process; 
  
Output_signal_piped  <= out_value; 
END behav; 
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C.6 Code for the Practical Implementation of a Tent Map Based ADC with an Embedded 

Tent Map Gain Compensation System 

The MATLAB code extract below was adapted to model the practical implementation of the 

TM-ARCHα-7 ADC with the µCA-2. The extract below shows how key parameters were 

configured, for example, the input signal, comparator hysteresis (threshold voltages are 

based on the measured Vref and resistor values implemented on the PCB in order to apply 

external hysteresis on the comparators) and µ± values. The rest of the MATLAB script was 

similar to code presented in Appendix C.5.1, so is not presented. 

The VHDL code and MATLAB script employed in the practical experiment was identical to the 

code presented in Appendix B.5.1, Appendix C.5.1 and Appendix C.5.2. The only difference 

were the µ± values (see Appendix D.2) used in the MATLAB script, which altered the DM values 

being generated to be employed by the VHDL.  

 

%% Initialise key parameters for model 
resolution = 8;              %number of TM stages + 1 
Vcc = 5; % valid input max. 
Vee = -0.232; % valid input min. 
Vref = 1.505;   %set partition point voltage based on measurement 
vin_range = 2*Vref - 0; 
VHDL_res = 10;  % resolution of DM values  
  
% resistors used to set threshold voltages for comparator hysteresis 
hys_R1 = 364000; 
hys_R2 = 150000000; 
VTH = (((hys_R1 + hys_R2)*Vref)-(hys_R1*0.09))/hys_R2; 
VTL = (((hys_R1 + hys_R2)*Vref)-(hys_R1*4.89))/hys_R2; 
Step_size = (2*Vref)/(2^resolution); %calculating step size 
VH_pos =  VTH*ones(1, resolution); 
VH_neg = VTL*ones(1, resolution); 
  
%% Generate input signal  
pwr_val = resolution + 1; 
y = (0:0.1:3);  % measured input signals 
number_samples = length(y); 
x = 1:1:number_samples; 
 
%% Gain and Vref Parameters  
% spreadsheet contains midrange µ+ and µ- calculated for each TM stage 
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readtable("C:\Users\pkhaz\Documents\Data\Work\Uni - 
PhD\Tests_year3\PCBv_3\31st July 2021\DMM gain 
test.xlsm",'Sheet','Sheet3', 'range', 'K2:Q7'); 
gains = table2array(ans); 
  
gain_pos = gains(5,:); % µ+ 
gain_neg = gains(6,:); % µ- 

[…] 
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Appendix D  

D.1 Effects the Resolution of the Difference Measure values has on Bit Accuracy for Different TM Gains 

Table D-1 and Table D-2 presents the results from the experiment described in Section 5.2.1, where different r values were tested to determine 

the minimum DM resolution required in order for the TM-based ADC to have the same bit accuracy after compensation over a range of µ, when 

compared to the theoretical DM values being employed. 
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 Bit accuracy (bits) 

µ value Prior 
Compensation 

Theoretical 
DM values 

DM values 
to  
17-bit 
resolution 

DM values to 
18-bit 
resolution 

DM values to 
20-bit 
resolution 

DM values to 
22-bit 
resolution 

DM values to 
23-bit 
resolution 

DM values to 
24-bit 
resolution 

1.9 4.41 13.42 13 13.42 13.42 13.42 13.42 13.42 

 1.91 4.55 14 13.42 13.42 13.42 13.42 13.42 14 

1.92 4.71 14 13.42 13.42 14 14 14 14 

1.93 4.89 14 13.42 13.42 14 14 14 14 

1.94 5.12 14 13.42 13.42 14 14 14 14 

1.95 5.38 14 13.42 13.42 14 14 14 14 

1.96 5.69 14 13.42 14 14 14 14 14 

1.97 6.10 14 13.42 14 14 14 14 14 

1.98 6.67 14 13.42 14 14 14 14 14 

1.99 7.65 14 13.42 14 14 14 14 14 

2 15 15 15 15 15 15 15 15 

Table D-1: Summary of bit accuracy before and after compensation for a TM-ARCHα-15 ADC. 
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 Bit accuracy (bits) 

µ value Prior 
Compensation 

Theoretical 
DM values 

DM values to 9-
bit resolution 

DM values to 10-bit 
resolution 

1.9 4.19 6 6 6 

 1.91 4.19 6 6 6 

1.92 4.42 6 6 6 

1.93 4.42 6 5.42 6 

1.94 4.68 6 6 6 

1.95 5 6 6 6 

1.96 5 6 6 6 

1.97 5.42 6 6 6 

1.98 6 6 6 6 

1.99 6 6 6 6 

2 7 7 7 7 

Table D-2: Summary of bit accuracy before and after compensation for a TM-ARCHα-7 ADC. 
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D.2 TM Slope Gains Calculated from Electronic Implementation of the TM-based ADC 

Table D-3 presents the calculated µ± values for each TM stage of the electronic 

implementation of the TM-ARCHα-7 ADC. 

 

 TM1 TM2 TM3 TM4 TM5 TM6 TM7 

µ+ midrange 1.9220 1.9900 1.9744 1.9383 1.9186 1.8881 1.8446 

µ- midrange 1.9309 1.9614 1.9756 1.9065 1.8179 1.8111 1.8483 

Table D-3: µ± values determined for each TM stage of the electronic implementation of the TM-ARCHα-
7 ADC. 
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