
University of Huddersfield Repository

Hazell, Philippa Kay

Enhanced Performance of Embedded Sensor Data Acquisition using Non-linear Chaos Based
Systems

Original Citation

Hazell, Philippa Kay (2021) Enhanced Performance of Embedded Sensor Data Acquisition using
Non-linear Chaos Based Systems. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35780/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

University of Huddersfield

Enhanced
Performance of
Embedded Sensor
Data Acquisition
using Non-linear
Chaos Based
Systems
A thesis submitted to the University of Huddersfield in partial fulfilment
of the requirements for the degree of Doctor of Philosophy

Philippa Kay Hazell BEng (Hons)

October 2021

2

Copyright Statement

i. The author of this thesis (including any appendices and/ or schedules to this thesis) owns

any copyright in it (the “Copyright”) and she has given The University of Huddersfield the right

to use such Copyright for any administrative, promotional, educational and/or teaching.

ii. Copies of this thesis, either in full or in extracts, may be made only in accordance with the

regulations of the University. Details of these regulations may be obtained from the Librarian.

This page must form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all other intellectual

property rights except for the Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and tables (“Reproductions”), which

may be described in this thesis, may not be owned by the author and may be owned by third

parties. Such Intellectual Property Rights and Reproductions cannot and must not be made

available for use without permission of the owner(s) of the relevant Intellectual Property

Rights and/or Reproductions.

3

Abstract

Recent research into tent map (TM) based analogue to digital converter (ADC) architectures,
has demonstrated that practical implementations are able to detect small analogue signal
variations over relatively large voltage ranges. However, the non-ideal nature of the
fundamental TM function slope gain (μ) affects the absolute accuracy and the digital output
precision. Although there has been a successful attempt at compensating for non-ideal μ, the
high levels of computational resources required makes realising embedded digital system
implementations, within a TM-based ADC, unfeasible. This in turn limits the prospect of real-
time operation and thus viable commercial TM-based ADC devices.

This work aimed to further develop TM-based ADC performance, to enable more precise and
accurate real-time operations, within a data acquisition (DAQ) system, for an ultrasonic
measurement system (UMS) application. To facilitate this, an embedded digital
implementation of a real-time processing µ compensation algorithm (µCA) was required to
adjust the incorrect digital output signal of a TM-based ADC implementation towards the ideal
digital output response for a given analogue input signal. To aid analysis of how non-ideal μ
affects the TM-based ADC output accuracy, a mathematical model of a TM-based ADC,
emulating an electronic implementation operational performance, was created. A novel µCA
was then developed, with further compensation for non-ideal behaviours within the
electronic circuit implementations of the TM function. Additionally, a VHDL implementation
(for configuring a field programmable gate array (FPGA)) enabled the embedment of a digital
system performing real-time μ compensation within a TM-based ADC. This digital system was
tested using functional simulation and an electronic 8-bit TM-based ADC implementation.

The mathematical model of a TM-based ADC structure, comprising 7 cascaded TM and
comparator stages implemented with a 12-bit commercial off the shelf (COTS) ADC digitising
the final TM stage output, demonstrated that the bit accuracy improved from 5.81 bits
uncompensated, to 15.68 bits after employing the µCA. This established that the proposed
TM-based ADC met the UMS DAQ system specification. With the practical implementation,
which was prototyped using discrete components, a bit accuracy improvement from 4.19 bits
to 5 bits was observed. Both the functional simulations and practical experiments employing
the VHDL/FPGA implementation of the µCA proved the concept of a standalone TM-based
ADC (comprising 7 cascaded TM and comparator stages with a comparator digitising the final
TM stage output) with embedded, real-time µ compensation was achievable.

4

Acknowledgements

I would like to thank my supervision team - Dr Peter Mather, Prof. Andrew Longstaff and Dr

Simon Fletcher for the advice and support they have given me throughout my research. My

thanks also extend to Dr David Upton, Dr Rajlaxmi Basu and Mr Richard Haigh for taking time

to discuss their past research with me and for providing general advice on how to approach

research during the early stages of this project. I am also appreciative towards the University

of Huddersfield for funding this project, which was provided as part of the EPSRC Advanced

Metrology Hub.

In addition, I would like to give special thanks to everyone in the SCE Research Admin and the

CPT Admin teams for all their help with answering my numerous questions over the past three

years; and to Dr David Halsall and Prof. Nigel Schofield for providing me with valuable advice

during the research process.

I would also like to thank those in the ECMPG group for all their encouragement and support,

especially Olaide Olabode, Nemwel Ariaga, Ali Iqbal, Ebube ezi, Nurudeen Alegeh, Kelechi

Okegbe, Vinu Pannackal, Difference Chuku and Wencheng Pan. I would also like to thank

Yiheng Hu for being a wonderful friend throughout my research.

Finally, I am very appreciative towards my mother Alison, my father Peter, my partner Toby

and my brothers John, James and Matthew for all their support throughout my studies.

For John Hazell (1997 - 2015)

5

List of Publications

Here is a list of papers published whose contents are associated with the research discussed

in this thesis:

[1] P. Hazell, P. Mather, A. Longstaff, and S. Fletcher, "A Non-linear Tent Map-Based ADC

Design for Sensitive Condition Monitoring Measurement Systems," presented at the

COMADEM 2019, Huddersfield, England, Sept. 3-5, 2019, 2020.

Contribution:

Developed and analysed the mathematical TM-based ADC model with different resolution

and tent map gain values. Further assessed the model against non-ideal parameters such as

input signal noise.

[2] P. Hazell, P. Mather, A. Longstaff, and S. Fletcher, "Digital System Performance

Enhancement of a Tent Map-Based ADC for Monitoring Photovoltaic Systems," Electronics,

vol. 9, no. 9, Sept. 2020, Art no. 1554, doi: https://doi.org/10.3390/electronics9091554.

Contribution:

Analysed the effectiveness of an algorithm to compensate for non-ideal tent map gain within

a TM-based ADC. Also implemented the algorithm in VHDL and assessed, via simulation, to

confirm non-ideal tent map gain compensation could be performed within one sample clock

cycle of the TM-based ADC.

6

Table of Contents

Copyright Statement .. 2

Abstract .. 3

Acknowledgements.. 4

List of Publications ... 5

List of Tables .. 14

List of Figures ... 15

Glossary of Terms... 21

Acronyms and Symbols .. 21

Terminology ... 26

1 Introduction .. 30

1.1 Background .. 31

1.2 Analogue to Digital Converters .. 32

1.3 Overview of Tent Map Based ADCs ... 34

1.4 Tent Map Based ADC Output Accuracy and Tent Map Gain ... 39

1.5 Ultrasonic Measurement System .. 48

1.6 Aim and Objectives .. 51

1.7 Originality of Research... 52

1.8 Document Structure .. 53

2 Theory and Literature Review .. 54

7

2.1 Assessing Performance of ADCs .. 55

2.1.1 Static Performance.. 55

2.1.2 Dynamic Performance .. 59

2.1.3 Other Performance Parameters ... 61

2.2 Overview of Main High Resolution ADC Architectures ... 62

2.2.1 Research Procedure .. 62

2.2.2 Sigma Delta ADCs .. 63

2.2.3 Dual-slope and Multi-slope ADCs ... 64

2.2.4 Pipelined ADCs .. 66

2.2.5 SAR ADCs ... 67

2.2.6 Higher Resolution ADC Architectures Analysis ... 68

2.3 Chaos and the Discrete One-Dimensional Chaotic Tent Map 72

2.4 Tent Map Based ADCs.. 77

2.4.1 Classification of TM-based ADCs... 77

2.4.2 TM-based ADCs ... 80

2.4.3 Comparison of TM-based ADCs and Other Higher Resolution ADC Architectures 85

2.5 Estimating Initial Conditions of Tent Maps with Non-ideal Gain 87

2.6 Summary .. 88

3 Proposed Tent Map Based ADC Structures and Gain Compensation Algorithms 92

3.1 Tent Map Based ADC Structures ... 94

8

3.1.1 Underlying TM-based ADC Structure .. 94

3.1.2 Adapted TM-based ADC Structure .. 95

3.2 The Tent Map Gain Compensation Algorithms (µCAs) .. 97

3.2.1 Fundamental µCA ... 97

3.2.2 Enhancements to the Fundamental µCA .. 103

3.3 Summary .. 104

4 Tent Map Based ADC Structures and Gain Compensation Algorithms

Implementation .. 106

4.1 Tent Map Based ADC Structures ... 107

4.1.1 TM-ARCHα-n ADC ... 107

4.1.2 TM-ARCHβ-n-Rsub-ranging ADC ... 112

4.2 The Tent Map Gain Compensation Algorithms ... 114

4.2.1 The µCA-1 .. 114

4.2.2 The µCA-2 and µCA-3 .. 120

4.3 Summary .. 123

5 Simulated Performance Analysis of a Tent Map Based ADC with the Fundamental

Compensation Algorithm ... 125

5.1 Uncompensated Tent Map Based ADC Output Accuracy Analysis 127

5.1.1 Bit Accuracy Predictions ... 127

5.1.2 Static Performance Predictions .. 131

5.1.3 Dynamic Performance Predictions ... 132

9

5.2 Tent Map Based ADC with the Fundamental Tent Map Gain Compensation Algorithm

Output Accuracy Analysis .. 135

5.2.1 Bit Accuracy Predictions ... 135

5.2.2 Static Performance Predictions .. 140

5.2.3 Dynamic Performance Predictions ... 141

5.3 Sensitivity Analysis of the Fundamental Tent Map Gain Compensation Algorithm ... 145

5.4 Comparison with the Tent Map Gain Compensation Algorithm by Basu 148

5.5 VHDL Implementation of the Fundamental Tent Map Gain Compensation

Algorithm ... 149

5.6 Approximating Difference Measure Values for the Fundamental Tent Map Gain

Compensation Algorithm ... 152

5.7 Summary .. 155

6 Performance Analysis of Tent Map Based ADCs with the Enhanced Compensation

Algorithms .. 158

6.1 Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain Compensation

Algorithms.. 160

6.1.1 Analysis of the µCA-2: Varying TM-stage Gain and Varying TM-slope Gain 161

6.1.2 Analysis of the µCA-3: Sub-ranging ADC Acquiring TM Stage Output 162

6.2 Sensitivity Analysis of the Enhanced Tent Map Gain Compensation Algorithms 163

6.2.1 Deviation Between µ± Within the ADC ... 164

6.2.2 Deviation in µ± Employed by µCA-2 and µCA-3 .. 166

10

6.3 Simulated Output Accuracy Analysis of the Adapted Tent Map Based ADC with the

Enhanced Tent Map Gain Compensation Algorithm ... 168

6.3.1 Bit Accuracy Predictions ... 170

6.3.2 Static Performance Prediction .. 172

6.3.3 Dynamic Performance Predictions ... 173

6.4 Noise Analysis Simulation .. 175

6.5 VHDL Implementation of an Enhanced Tent Map Gain Compensation Algorithm 177

6.6 Practical Implementation of a Tent Map Based ADC with an Embedded Tent Map Gain

Compensation System ... 178

6.7 Summary .. 182

7 Discussion ... 185

8 Conclusion and Further Work ... 189

8.1 Conclusions .. 189

8.2 Future Work ... 191

9 References .. 192

List of Appendices .. 201

Appendix A ... 202

A.1 Tent Map Based ADC PCB .. 202

A.1.1 Schematics of the TM-ARCHα-7 ADC PCB ... 202

A.1.2 List of Components for the TM-ARCHα-7 ADC PCB .. 208

A.2 COTS ADC Breakout Board ... 211

11

A.2.1 Schematic of COTS ADC Breakout Board .. 211

A.2.2 List of Components for the COTS ADC Breakout Board .. 213

Appendix B ... 214

B.1 MATLAB Scripts for Uncompensated Tent Map Based ADC Output Accuracy

Analysis .. 214

B.1.1 Code for Bit Accuracy Predictions Analysis ... 214

B.1.2 Code for Static Performance Predictions Analysis .. 216

B.1.3 Code for Dynamic Performance Predictions Analysis ... 218

B.2 MATLAB Scripts for Tent Map Based ADC with the Fundamental Tent Map Gain

Compensation Algorithm Output Accuracy Analysis... 219

B.2.1 Code for Bit Accuracy Predictions Analysis ... 219

B.2.2 Code for Static Performance Predictions Analysis .. 221

B.2.3 Code for Dynamic Performance Predictions Analysis ... 222

B.3 MATLAB Script for of the Fundamental Tent Map Gain Compensation Algorithm..... 223

B.4 MATLAB Script for Comparison with the Tent Map Gain Compensation Algorithm by

Basu.. 227

B.5 Code for VHDL Implementation of the Fundamental Tent Map Gain Compensation

Algorithm ... 231

B.5.1 VHDL Code to Control the TM-ARCHα-7 ADC ... 231

B.5.2 VHDL Implementation of the µCA-1 ... 235

B.5.3 MATLAB Script to Aid Creation of TM-ARCHα-7 ADC Signal Emulator 237

12

B.5.4 VHDL code of the TM-ARCHα-7 ADC Signal Emulator .. 239

B.5.5 Combining Components for Test .. 241

B.5.6 Test Bench for Testing the µCA-1 VHDL Implementation 242

B.6 MATLAB Scripts for Approximating Difference Measure Values for the Fundamental

Tent Map Gain Compensation Algorithm .. 244

B.6.1 Code for Creating the SLE&A Equations.. 244

B.6.2 Code for Simulating SLE&A Method ... 245

B.6.3 Code for Simulating SA Method .. 248

Appendix C ... 251

C.1 MATLAB Scripts for Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain

Compensation Algorithms ... 251

C.1.1 Code for the µCA-2 Analysis .. 251

C.1.2 Code for the µCA-3 Analysis .. 254

C.2 MATLAB Scripts for Sensitivity Analysis of the Enhanced Tent Map Gain Compensation

Algorithms.. 259

C.2.1 MATLAB Script for Assessing the Sensitivity of µ+ Deviating from µ- 259

C.2.2 MATLAB Script for Assessing the Sensitivity Between µ±algorithm and µ±ADC 263

C.3 MATLAB Script for Analysing Final TM-ARCHβ-7-12 ADC Model and µCA-3 268

C.4 MATLAB Script for Noise Analysis Simulation .. 272

C.5 Code for VHDL Implementation of an Enhanced Tent Map Gain Compensation

Algorithm ... 277

13

C.5.1 MATLAB Script to Aid the Creation of an TM-ARCHα-7 ADC Signal Emulator 277

C.5.2 VHDL Implementation of the µCA-2 ... 281

C.5.3 VHDL Code of the TM-ARCHα-7 ADC Signal Emulator .. 283

C.6 Code for the Practical Implementation of a Tent Map Based ADC with an Embedded

Tent Map Gain Compensation System .. 285

Appendix D ... 287

D.1 Effects the Resolution of the Difference Measure values has on Bit Accuracy for

Different TM Gains .. 287

D.2 TM Slope Gains Calculated from Electronic Implementation of the TM-based ADC .. 290

14

List of Tables

Table 1-1: Comparison of the TM-based ADCs observed in literature. Aided by [13, 16, 56, 57].

... 38

Table 1-2: Gray code output of a 4-bit TM-based ADC when µ = 2 and 1.9 42

Table 1-3 Reduction in the TM-based ADC accuracy due to µ. ... 44

Table 2-1: Summary of static parameters. .. 58

Table 2-2: Summary of dynamic parameters. ... 60

Table 2-3: Summary of additional parameters which can be employed to assess ADC

performance. .. 61

Table 2-4: Summary of main high resolution ADC architectures [43, 71, 75-79] 71

Table 2-5: Summary of the TM-based ADCs found in literature. .. 84

Table 2-6: Potential advantages of TM-based ADCs over mainstream ADC architectures 86

Table 5-1: Maximum quantisation error between the TM-ARCHα-15 ADC output and input

signal ... 129

Table 6-1: Summary of test conditions used in the MATLAB analyses. 159

Table A-1: Bill of materials for PCB version of the TM-ARCHα-7 ADC. 210

Table A-2: Bill of Materials for breakout board ... 213

Table D-1: Summary of bit accuracy before and after compensation for a TM-ARCHα-15 ADC.

... 288

Table D-2: Summary of bit accuracy before and after compensation for a TM-ARCHα-7 ADC

... 289

Table D-3: µ± values determined for each TM stage of the electronic implementation of the

TM-ARCHα-7 ADC ... 290

15

List of Figures

Figure 1-1: Comparing sampling speed, cost and resolution of ADCs available on the market

[44-55]. .. 34

Figure 1-2: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-

based ADC, when µ = 2. .. 40

Figure 1-3: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-

based ADC, when µ = 1.9. ... 40

Figure 1-4: Plot comparing output signals of the third TM stage when µ = 2 and µ = 1.9. 41

Figure 1-5: Graphs showing the effects non-ideal µ has on the accuracy of a 16-bit TM-based

ADC. ... 43

Figure 1-6: Block diagram of how the TM-based ADC and µCA were integrated 47

Figure 1-7: Block diagram of the UMS proposed by the ECMPG. Aided by [63]. 49

Figure 2-1: An illustration of a transfer characteristic plot of a non-ideal 4-bit ADC. Redrawn

based on [4]. ... 56

Figure 2-2: Sigma delta architecture. Redrawn from [43]. .. 64

Figure 2-3: Single-slope integrating type ADC. Redrawn from [43]. 65

Figure 2-4: Dual-slope integrating type ADC. Redrawn from [43]. .. 65

Figure 2-5: Pipeline architecture. Redrawn from [8]. .. 67

Figure 2-6: SAR architecture. Redrawn from [4, 43].. 68

Figure 2-7: Bifurcation diagram of a TM. Redrawn based on [16]. ... 74

Figure 2-8: Plots of TM output, with different values of µ, after 100s of iterations, which are

employed to find evidence of aperiodic behaviour. Based on method presented in

[22]. ... 75

16

Figure 2-9: Plot of Lyapunov exponent of a TM. Redrawn based on [85]. 76

Figure 2-10: (a) Analogue-to-digital conversion using the Gray-code algorithm. Based on [86].

(b) Analogue-to-digital conversion using the reverse Gray-code algorithm. Based

on [86]. .. 78

Figure 2-11: Series TM configuration. Based on [56, 57]. ... 79

Figure 2-12: Feedback TM configuration. Based on [13]. .. 79

Figure 2-13: Feedback configuration of the TM-based ADC by Berberkic. Reproduced from

[16]. ... 83

Figure 2-14: Series configuration of the TM-based ADC by Berberkic. Reproduced from [16].

 ... 84

Figure 3-1: A more detailed block diagram of how the TM-based ADC and µ compensation

algorithm were integrated. ... 93

Figure 3-2: Proposed underlying TM-based ADC structure (to be referred to as TM-ARCHα-n).

Based on [56, 57]. ... 94

Figure 3-3: Proposed adapted TM-based ADC structure (to be referred to as TM-ARCHβ-n-Rsub-

ranging ADC). Based on [56, 57] and [16]. .. 96

Figure 3-4: A flowchart giving an overview of µCA-1. .. 98

Figure 3-5: Input and output signals of the first TM stage of TM-ARCHα-n ADC when µ = 2 and

µ = 1.9. ... 99

Figure 3-6: DM versus µ plots for the second to fifth MSBs of a TM-based ADC output. 100

Figure 3-7: Diagram providing overview of µCA-1 operation. ... 102

Figure 4-1: More detailed block diagram of the TM-ARCHα-n ADC. Based on [57]. 107

Figure 4-2: Schematic for the sample and hold circuit. Reproduced from [57]. 109

Figure 4-3: TM circuit employed. Reproduced from [57]. ... 109

17

Figure 4-4: TM circuit employed, which has additional resistors to alter µ+ and µ-. Adapted

from [57]. .. 111

Figure 4-5: TM-ARCHβ-n-Rsub-ranging ADC structure. Based on [57] and [16]. 113

Figure 4-6: A more detailed flowchart of the µCA-1. .. 116

Figure 4-7: Code extract of stage 1 of µCA-1, which determines the SDM values. 117

Figure 4-8: Code extract of stage 2 of µCA-1, which determines the DM values. 118

Figure 4-9: Code extract of stage 3 of µCA-1, which determines the DV values. 119

Figure 4-10: Code extract of stage 4 of µCA-1, which shows how uncompensated ADC output

is modified using the DV values. ... 119

Figure 5-1: Graph illustrating the effects non-ideal µ have on bit accuracy. 128

Figure 5-2: Output response and quantisation error of the TM-ARCHα-15 ADC due to different

µ. ... 129

Figure 5-3: Histogram of digital codes produced by the TM-ARCHα-15 ADC with a µ = 1.9 and

µ = 2. .. 130

Figure 5-4: Static performance test results of the TM-ARCHα-15 ADC. 132

Figure 5-5: SNR, SINAD, SFDR and THD for µ = 1.9 and µ = 1.995 over a range of input

frequencies. ... 134

Figure 5-6: Bit accuracy of a TM-ARCHα-15 ADC before and after compensation using

theoretical DM values. .. 136

Figure 5-7: Quantisation error of a TM-ARCHα-15 ADC, before and after compensation, when

µ = 1.9. ... 137

Figure 5-8: Quantisation error of a TM-ARCHα-15 ADC, after compensation, when µ = 1.9.

 ... 137

18

Figure 5-9: A histogram of a selection of 150 digital codes which could be produced by the

TM-ARCHα-15 ADC with a µ = 1.9, before and after the µCA-1 was applied to the

output data. .. 138

Figure 5-10: Static performance of the uncompensated and compensated TM-ARCHα-15 ADC

with binary DM values (r = 24 bits). .. 141

Figure 5-11: SNR plot of a TM-ARCHα-15 ADC before and after compensation. 142

Figure 5-12: SINAD plot of a TM-ARCHα-15 ADC before and after compensation. 143

Figure 5-13: SFDR plot of a TM-ARCHα-15 ADC before and after compensation. 143

Figure 5-14: THD plot of a TM-ARCHα-15 ADC before and after compensation. 144

Figure 5-15: ENOB plot of a TM-ARCHα-15 ADC before and after compensation. 145

Figure 5-16: Sensitivity analysis results from a TM-ARCHα-15 ADC when µADC = 1.9 and µ =

1.99. ... 146

Figure 5-17: Sensitivity analysis results from a TM-ARCHα-7 ADC. 147

Figure 5-18: Comparing µCA performance on the TM-ARCHα-15 ADC model. 149

Figure 5-19: Testing the ADC output without applying the µCA-1. 150

Figure 5-20: Testing the ADC output with the µCA-1. ... 151

Figure 5-21: Quantisation Error of the TM-ARCHα-7 ADC VHDL model before and after

compensation. ... 151

Figure 5-22: Establishing straight-line approximation of the LSB DM values. 153

Figure 5-23: Establishing straight-line approximation of the LSB error values. 153

Figure 5-24: Results from DM approximation tests. ... 155

Figure 6-1: Comparison of quantisation error for TM-ARCHα-15 ADC model (with different

slope gains) before and after compensation with the µCA-2. 161

19

Figure 6-2: Quantisation error of the TM-ARCHβ-7-12 ADC model ((4-9) TM implementation

with different µ±stage) before and after compensation. 162

Figure 6-3: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHβ-7-12

ADC. ... 165

Figure 6-4: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHα-7 ADC.

 ... 165

Figure 6-5: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHβ-7-12 ADC.

 ... 167

Figure 6-6: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHα-7 ADC. 168

Figure 6-7: Quantisation error of the refined TM-ARCHβ-7-12 ADC model before and after

compensation.. 171

Figure 6-8: Quantisation error of the refined TM-ARCHβ-7-12 ADC model after compensation.

 ... 171

Figure 6-9: SNR, SINAD, SFDR and THD before and after compensation. 174

Figure 6-10: Block diagram of noise analysis test set-up. ... 176

Figure 6-11: Quantisation error of the TM-ARCHα-7 ADC VHDL model before and after

compensation. .. 178

Figure 6-12: Plot between the physical TM-ARCHα-7 ADC output and ideal output, before and

after compensation. ... 181

Figure A-1: Sample and hold schematic. ... 203

Figure A-2: TM Stages 1 to 4. ... 204

Figure A-3: TM stages 5 to 7. ... 205

Figure A-4: Power, connectors, decoupling and filter circuitry. .. 206

Figure A-5: µ± alteration circuitry. ... 207

20

Figure A-6: Schematic of the breakout board for the THS1030 10-bit ADC. 212

Figure B-1: Components combined using a schematic within Quartus. 241

21

Glossary of Terms

Acronyms and Symbols

%Δ Percentage deviation.

µ TM gain [3].

µ- Falling TM slope gain.

µ+ Rising TM slope gain.

µ± µ+ and µ-.

µ±ADC µ+ and µ- TM slope gains within a TM-based ADC.

µ±algorithm µ+ and µ- TM slope gains employed by the µ compensation
algorithm.

µ±stage µ+ and µ- TM slope gains for each TM stage.

µADC µ of a TM-based ADC.

µalgorithm µ employed by the algorithm.

µc Employed by the SA DM approximation method. The actual TM
gain of the TM circuit.

µCA µ compensation algorithm.

µCA-1 Fundamental µ compensation algorithm analysed in this
research.

µCA-2 Enhanced version of the µ compensation algorithm (µCA)
analysed in this research. Enhancements enable the µCA to
accommodate non-matching TM stage and slope gain.

µCA-3 Final enhanced version of the µ compensation algorithm (µCA)
analysed in this research. Enhancements enable the µCA to
accommodate non-matching TM stage and slope gain, as well
as the final TM stage output being digitised by a multibit sub-
ranging COTS ADC.

µCS µ compensation system

22

µo Employed by the SA DM approximation method. The µ
employed in the equation to determine the ideal DM values.

µstage TM-stage µ.

1-D One dimensional.

ADC Analogue to digital converter [4].

b Equivalent binary code representation of the TM-based ADC
digital output.

CBC Compensated binary code. Produced by the µCA-1, µCA-2 and
µCA-3.

COTS Commercial off the shelf.

D Digital output of an ADC.

DAC Digital to analogue converter [4].

DAQ Data acquisition, the process which samples and converts the
analogue signal (representing a physical phenomenon) into
digital words [5].

DM Difference measure. These are values employed by µCA-1,
µCA-2 and µCA-3 (for each bit of the TM-based ADC digital
output) to compensate for non-ideal µ.

DMbinary DM values in binary code format.

DMmod1 First modification in determining DM values for µCA-2 and
µCA-3.

DMmod2 Second modification in determining DM values for µCA-2 and
µCA-3.

DMtheoretical Theoretical DM values represented as non-integer, decimal
numbers.

DNL Differential non-linearity, which is the maximum deviation of
the step width from the ideal value of 1 LSB [6].

DV Difference value. This value (employed by µCA-1, µCA-2 and
µCA-3) provides the overall magnitude and direction of the
cumulative difference between the ideal TM-based ADC output
and the actual TM based ADC output due to non-ideal µ output.

DVpolarity Polarity of DV.

23

ECMPG Engineering Control and Machine Performance Research
Group. A research group based at the University of
Huddersfield.

ENOB Effective number of bits. This represents the number of bits
that an ADC can accurately represent analogue input signals as
digital words [4, 7].

FFT Fast Fourier transform [8].

fin Input frequency.

FPGA Field programmable gate array. This is a device consisting of a
two-dimensional array of logic cells which can be configured to
produce highly complex digital electronic circuits [9].

fsample Sampling frequency.

GCO Gray code output from the TM-based ADC which is employed
by the µCA-1, µCA-2 and µCA-3 to establish the DV to be
applied to the digital output due to non-ideal µ.

gn Polarity of the TM digital output on the nth iteration (or stage
if considering a series TM-based ADC configuration).

HDL Hardware descriptive language [10].

IC Integrated circuit [11].

INL Integral non-linearity. This is the greatest divergence from
either the line of best fit through the digital output versus
analogue input plot (best straight-line INL), or the line through
the two end-points of this plot (end-point INL). The latter of
these two INL measurements provides the worst-case scenario,
as the method always provides the greater deviation from the
line [6].

LSB Least significant bit [12]

M A value employed to represents the number of signal cycles, in
order to calculate the input frequency of a sinusoidal signal to
supply an ADC when performing dynamic testing. The value
should be an odd integer number in order to minimise spectral
leakage [7].

MSB Most significant bit [12].

24

N A value employed, to represents the number of data points
employed by the FFT, in order to calculate the input frequency
of a sinusoidal signal to supply an ADC when performing
dynamic testing [7].

n Iteration (or TM stage) number of a TM-based ADC. When n =
0, this represents the initial input value [13].

PCB Printed circuit board [11]

R ADC resolution.

r Resolution of the binary DM values.

SA Scalar approximation method. Method developed to
approximate the DM values employed by the µCA-1, in order to
reduce resource requirements if DM values required
calculating within the FPGA.

SAR ADC Successive approximation register ADC.

SDM Sign of difference measure. This provides the direction of the
difference, for each bit of the TM-based ADC, between the ideal
output and that due to the non-ideal µ for each TM stage.

SFDR Spurious free dynamic ratio, which is the difference in
magnitude between the signal (the fundamental peak) and the
harmonic with the highest magnitude [14].

SINAD or SNDR Signal to noise and distortion ratio, which is the same as SNR
except the signal power is compared to the magnitudes of the
noise and harmonics [4, 15].

SL&EA Straight-line and error approximation method. Method
developed to approximate the DM values employed by the
µCA-1, in order to reduce resource requirements if DM values
required calculating within the FPGA.

SNR Signal to noise ratio, which is the ratio between the signal
power and the average noise power (excluding the power
within the signal harmonics) [4].

THD

Total harmonic distortion, which is the magnitude of the
harmonics within a signal summed together [14].

TM Tent map, which is a chaotic non-linear, folding function [16].

25

TM-ARCHα-n The name given to a TM-based ADC structure. The design
consists of n TM stages and employs n+1 comparators.

TM-ARCHβ-n-Rsub-ranging The name given to a TM-based ADC structure. The design
consists of n TM stages, and employs n comparators, as well as
a sub-ranging ADC on the final TM stage output (the resolution
of this ADC is represented by Rsub-ranging).

UBC Uncompensated binary code. This is the binary code equivalent
of the GCO employed by the µCA-1, µCA-2 and µCA-3. The
determined DV is applied to this binary code to compensate for
non-ideal µ within the TM-based ADC.

UMS Ultrasonic measurement system.

VHDL Very high-speed integrated circuits Hardware Description
Language, which is a language that enables digital electronic
systems to be described [17].

Vref Partition point voltage.

x0 Input signal to a chaotic map or system, such as a TM-based
ADC [18].

xn Output signal from the nth iteration (or TM stage) of a TM-
based ADC.

Δμ+ Deviation from positive TM slope gain.

λ Lyapunov exponent, which is a measure of sensitivity
dependence a chaotic map might have on the initial conditions
[19].

26

Terminology

Accuracy The degree of proximity to the actual value [20].

Aliasing The effect of a higher frequency ADC input signal appearing as a lower
frequency signal due to under-sampling [21].

Aperiodic A system which does not produce a periodically repeating output [22].

ADC architecture An overview description of how a certain class of ADCs with similar
operation function [4].

Bandwidth The range of input frequencies an ADC can accept [23].

Bernoulli map A type of chaotic map [3].

Bifurcation diagram Final state plot of a chaotic map over a range of control parameters
(e.g., µ for a TM) [22].

Binary DM values DM values in binary code format.

Bit accuracy A measure of the minimum number of bits for which an ADC can
accurately represent an analogue input as a digital word. Determined
using the following equation.

𝑏𝑖𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑅 − 𝑙𝑜𝑔2⌈𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑚𝑎𝑥⌉ − 1

Where differencemax is the maximum absolute quantisation error when
the ADC is supplied a ramp signal whose amplitude extends across the
entire valid input range. R is the ADC resolution.

Bounded When the maximum difference between two points within the output of
the system is less than infinity [22].

Chaotic Describes a system which is deterministic and follows simple rules, but
the behaviour is non-linear and complex [19].

Chaotic behaviour A system which is deterministic and follows simple rules, but the
behaviour is non-linear and complex [19].

Chaotic flow A mathematical function representing a continuous chaotic system [19].

Chaotic map A mathematical function representing a discrete chaotic system [19].

Chaotic system A system which exhibits chaotic behaviour [19].

27

Comparator An electronic component which compares the amplitudes of two
analogue signals and outputs a digital signal whose level is dependent
on which input has the lower amplitude [23].

Comparator hysteresis A trait where two triggering levels enable the switching of the
comparator output to be delayed [23].

Continuous system Refers to a system which can be defined for all of time during a certain
period [24].

Conversion speed The time taken to convert a data sample from one format to another
[25].

Data conversion The process of converting data from one format to another [4].

Data converter A device which converts data from one format to another [4].

Decimation The process of deleting samples [26].

Deterministic Produces the same output for a given input [22].

Difference equations Mathematical method of describing the behaviour of a discrete,
recursive system [19].

Discrete system Refers to a system which can only be defined at set intervals during a
certain period [24].

Dual-slope ADC A type of integrating ADC architecture [27].

Dynamic performance The behaviour of the ADC being supplied considerably varying input
signals [4].

End-point INL See INL.

Feedback
configuration

Type of TM-based ADC configuration consisting of a single TM, whose
output signal is fed back and is supplied as the next input signal.

Folding Process of bending the signal over itself.

Full-scale error The difference between the maximum digital output of the actual and
ideal ADC [28].

Gain error The difference between the full-scale error and the offset error [28].

Gain factor The inverse product of the current and preceding µ±stage values
employed to establish a given digital output produced by the TM-based
ADC.

28

Gray code A way of representing digital data where adjacent values vary by only
one bit [9].

Gray-code algorithmic
ADCs

A type of ADC which employs folding and amplification circuits as part of
the data conversion process, and outputs the digital data in Gray code
format [29].

Integrating ADC A type of ADC that employs integrator circuits as part of the analogue to
digital conversion process [27].

Latency Time taken to complete the data conversion process [4].

MATLAB A software platform, with a dedicated programming language, used for
numerical computing and mathematical model development [30].

Missing codes Codes which an ADC does not produce, out of all possible digital
combinations, when the input analogue signal is swept across the valid
input range [28].

ModelSim A software programme for simulating HDL designs [31].

Monotonic An ADC is monotonic when the DNL is within the threshold of ± 1 LSB.

Multi-slope ADC A type of integrating ADC architecture [27].

Nyquist frequency Half of the sampling frequency of an ADC [32].

Offset error Corresponds to the minimum input required to provide a zero output
code [15], or where the transfer characteristic end-point plot of the ADC
intercepts the axis representing the digital output [4].

Operational current
conveyors

A device which transfers current from one impedance level to another
[33].

Oversampling When a signal is being sampled at a rate larger than double the ADC
bandwidth [8].

Partition point The minimum input signal amplitude which causes the TM to transition
from one difference equation to the other [34].

Pipelined ADC A type of ADC architecture [35].

Precision The degree of repeatability and reproducibility of a reading [20].

Quantisation error Also referred to as quantisation noise. The difference in LSBs between
the equivalent ADC output voltage versus the input voltage [4, 36].

29

Resolution The number of bits which are employed in the digital representation of
the analogue sample [8].

Sampling speed The rate at which a signal can be sampled [25].

Series configuration Type of TM-based ADC configuration consisting of multiple TM circuits,
which are connected in series.

Sigma delta ADC A type of ADC architecture [37].

Spectral leakage When discontinuities at the ends of the sinusoidal signal, which an FFT is
being performed on, causes the peak in the resulting spectrum to spread
into adjacent frequency bins and affect the spectral distribution [8].

Static performance The behaviour of the ADC when the amplitude of the input signal is
slowly changing.

Step size The minimum change in the analogue input signal which an ADC can
detect and is also the equivalent of the LSB in the digital output [38].

Sub-ranging ADC A general purpose ADC used within a data conversion process [15, 39].

Theoretical DM values Theoretical DM values represented as non-integer, decimal numbers.

Time-interleaved ADC A type of ADC architecture which switches between parallel sub-ranging
ADCs in order to increase the sampling speed [39].

Tolerances The range which the value or dimension of a component must lie [11].

Transconductance
amplifier

An amplifier which takes an input voltage signal and outputs a current
signal [23].

Ultrasonic Concerns frequencies which are in the acoustic bandwidth above the
audible limit [40].

30

1 Introduction

Highly precise and high accurate signal measurement systems are essential in order to

repeatably detect small signal variations across an input signal range with a high degree of

confidence. Furthermore, signal measurements are generally within the analogue domain, so

need converting to the digital domain to enable efficient storage, analysis or digital post

processing. This requires analogue to digital converters (ADCs) with sufficient resolution to

acquire and convert the minimum variation needing to be detected.

This work considers an alternative ADC architecture for employment within measurement

systems that need to detect small signal variations. This architecture employs folding

(bending a signal over itself) and amplification circuits, based on the tent map (TM) function,

as part of the analogue to digital conversion process. Previous research has proven that TM-

based ADCs are a viable option for measurement systems requiring small signal variations to

be detected across the entire valid range of signal amplitude. However, the inherent, non-

ideal amplification gain effects of a practical device reduce the accuracy of the digital output

codes produced from such an ADC. A solution, proposed to compensate for these errors,

requires unfeasibly high levels of computational resources to enable a compensation system

to be embedded within the device [41, 42].

This work details an enhanced solution to this problem, through the development of a TM-

based ADC, with an embedded compensation system which employs a novel compensation

algorithm. This algorithm requires fewer computation resources than previous approaches

and enables signal sample compensation during each TM-based ADC conversion cycle, thus

allowing real-time operation. By developing the ADC for a specific type of measurement

system application, this research also assesses the viability of employing this TM-based ADC,

31

with an embedded compensation system, within other high precision and high accuracy

measurement systems. Further enhancements incorporated into the compensation

algorithm will enable the development of non-ideal amplification gain compensation systems

for different TM-based ADCs configurations. This will further advance the potential

employment of such devices in a wide range of applications, where consistently detecting

small signal variations, across the whole valid signal range, is required.

1.1 Background

Many signal measurement systems needing to produce repeatable measurements with a low

degree of error require high precision (high degree of repeatability and reproducibility) and

high accuracy (high degree of proximity to the actual value) [20] signal measurement. This

requires the measurement systems to be capable of reliably detecting small variations within

the signal being measured.

If these signal measurements of an analogue signal also require storing, analysis or digital

post-processing, then the signal measurements need converting to the digital domain. When

the measured physical phenomenon needs displaying or transmitting as digital values,

measurement systems require data acquisition (DAQ). DAQ is the process which samples and

converts the analogue signal (representing a physical phenomenon) into digital words [5]. The

measured value tends to be represented by an analogue output signal from a sensor,

therefore the DAQ system employed by the measurement set-up requires an ADC [4] to

perform the conversion to the digital domain [5].

32

1.2 Analogue to Digital Converters

When assessing the performance of an ADC, there are four categories which are considered:

• resolution, which refers to the number of bits which are employed in the digital

representation of the analogue sample [8];

• speed, which concerns both the sampling speed (the rate at which a signal can be

sampled) [25] and the conversion speed (the time taken to convert a sample to the

digital domain) [25];

• power consumption; and

• the silicon die area required to fabricate the ADC if an integrated circuit (IC) [11] is

being produced [43].

Ideally the performance of an ADC should simultaneously achieve:

• high resolution to enable small signal variations to be represented in digital format;

• high sampling speed to allow high frequency input signals to be acquired and

converted;

• high conversion speeds, so digital data can be obtained and employed faster; low

power consumption in order to reduce energy requirements, as well as methods of

heat dissipation, which minimises costs; and

• low fabrication area, which will keep fabrication costs down [43].

Simultaneously meeting all these requirements is challenging, especially when approaching

the current extremes of any one requirement; being at such a point often has a negative effect

on other characteristics [43] and can increase cost.

33

For measurement systems to be able to detect smaller signal variations over a larger signal

range, the ADC employed needs to have a sufficient resolution to distinguish those variations.

The ADC should also have a linear response when detecting those variations across the whole

signal range. The minimum change in the analogue input signal which an ADC can detect, and

is also the equivalent of the least significant bit (LSB) in the digital output, is known as a step

size [38]. (1-1) details how the step size can be determined from the ADC resolution (R) and

the full-scale input signal range which an ADC can accept [15]. An increase in the valid input

signal range requires a higher resolution ADC in order to maintain the same step size.

𝐿𝑆𝐵 = 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 =

𝑓𝑢𝑙𝑙 𝑠𝑐𝑎𝑙𝑒 𝑖𝑛𝑝𝑢𝑡 𝑟𝑎𝑛𝑔𝑒

2𝑅
 (1-1)

Simultaneously achieving high resolutions and one of high speeds, low power, low cost or low

area of fabrication is challenging and results in trade-offs in the other categories. For example,

ADCs which simultaneously achieve high resolutions and high sampling speeds are more

expensive than those with lower sampling speeds, as illustrated in Figure 1-1 which compares

the normalised cost of ADCs of different resolution with the fastest and slowest sampling

speeds [44-55]. Also the majority of higher resolution ADCs currently on the market employ

architectures (a description of the circuit operation) [17] which hinder the conversion speed,

as the data conversion process establishes each bit (or a small group of bits) in order from the

most significant bit (MSB) to the LSB, rather than concurrently. This in turn impacts the ADC

latency (time taken to complete the data conversion process) [4], and often the sampling

speed if the architecture requires one sample to be fully converted to the digital domain prior

to the next sample being acquired.

34

Figure 1-1: Comparing sampling speed, cost and resolution of ADCs available on the market [44-55].

1.3 Overview of Tent Map Based ADCs

Alternative ADC architectures, other than those found in commercial off the shelf (COTS)

ADCs, which employ folding functions called tent maps (TM) within the data conversion (in

this scenario, the analogue signal samples are converted to the digital domain) [4] process

have been explored. The TMs within these type of ADC architectures fold (in effect bend the

signal over itself) and amplify the sampled analogue signal. The digital representation is then

determined by feeding the folded signals through comparators1 or sub-ranging ADCs2 [13, 16,

56, 57].

1 Comparators are electronic components which compares the amplitudes of two signals and outputs a digital
signal whose level is dependent on which input has a lower amplitude [23].
2 Sub-ranging ADCs are general purpose ADCs used within the analogue to digital data conversion process [39].

35

A TM is a discrete, one-dimensional (1-D) mathematical model representing one type of

chaotic system [58]. A chaotic system is deterministic and follows simple rules, but the

behaviour is non-linear and complex [19]. A TM is summarised by the difference equations

(a mathematical method of describing the behaviour of a discrete, recursive system) shown

in (1-2) [19].

𝑥𝑛+1 = {

𝜇𝑥𝑛
𝜇(1 − 𝑥𝑛)

 when
𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

(1-2)

xn and xn+1 represent the input and output of the TM respectively (the original input, x0, is

referred to as an initial condition), whilst n signifies the number of iterations. µ is the TM gain

and the TM will not exhibit chaotic behaviour if µ > 2 or ≤ 1 (as will be explained in more detail

in Section 2.3 [3]). The value of xn where the TM transitions between the two difference

equations is known as the partition point [34]. When the TM exhibits chaotic (1 < µ ≤ 2)

behaviour both xn and xn+1 are bounded between 0 and 1 [41, 42]. If µ < 1, the TM output goes

towards zero with each iteration, whilst when µ > 2 the TM output becomes unbounded and

goes towards -∞.

Analysis of research, conducted over the past 8 years [13, 16, 56, 57], suggests that TM-based

ADCs are well-suited for detecting small variations within signals with a wide range of input

signal amplitudes [16]. This trait, which is desired in signal measurement systems, is due to

the TMs effectively zooming into the analogue sample during the data conversion process

[16]. Research also suggests that different configurations of the TM-based ADC architecture

can be employed reduce different combinations of trade-off costs [13, 16, 56, 57], which

increases the potential of the architecture being employed to a wider range of applications.

36

Berberkic developed two types of TM-based ADCs which measured and converted the

difference in magnitude between two successive samples to the digital domain (rather than

representing each analogue sample as an absolute digital value). One of these ADCs had the

TMs arranged in a series configuration and employed an inexpensive COTS 10-bit sub-ranging

ADC to acquire the TM output signals and determine the digital output. The prototype of this

configuration was capable of detecting 5 µV changes in successive samples (although the

error was > 10% with variations < 50 µ V), over a relatively large voltage range of 0 – 10 V (the

equivalent of 20 bits resolution) [16], which highlighted the ability to achieve sufficient

resolutions to detect small signal variations. Configuring the TMs in series also enabled higher

sampling speeds, which were less restricted by the conversion speed, as the next analogue

sample was acquired after the preceding sample had been processed by the first TM stage,

and the TM output signal acquired by the corresponding sub-ranging ADC [16]. This TM-based

ADC was also inexpensive to prototype, when compared to ADCs fabricated onto silicon, as

the integral TMs blocks were constructed from discreet, COTS components [16].

The other TM-based ADC configuration proposed by Berberkic also achieved sufficient

resolution to detect small signal variations, although not to the same level as the series

configuration [16]. This configuration employed a single TM circuit that fed the output signal

back to the input and used a sub-ranging ADC to convert the folded signal to the digital

domain in order to determine the difference between successive samples. The prototype of

this configuration detected 50 µV changes in successive samples (although the error was

> 10% with variations < 200 µ V), over a range of 0 – 10 V, thus achieving a resolution of 17

bits [16]. The small reduction in resolution is reimbursed in terms of smaller circuit area (if

this TM-based ADC were to be fabricated onto silicon) and hence cost, because the feedback

configuration required less circuitry than the series configuration.

37

Upton developed a TM-based ADC, which employed comparators in place of sub-ranging

ADCs, producing a simpler, but lower resolution, design. Unlike Berberkic [16], the TM-based

ADC determined the absolute digital representation of each sample through the addition of

a single comparator at the input of the first TM stage. This design reduced power consumption

by implementing a trigger circuit which only enabled the clocking signals to the ADC when a

signal was present. The design also enabled the next sample to be acquired after the MSB of

the digital representation had been determined, enabling higher sampling speeds which were

less restricted by the conversion speed. This meant that several additional samples were

acquired (and conversion started) during the time taken to convert the first sample to the

digital domain. The ADC devised by Upton was also inexpensive to prototype, being

constructed out of discreet components [56, 57].

Finally, Liu et al. developed a TM-based ADC which employed a single TM circuit in a feedback

configuration [13]. Liu et al. employed a comparator to determine each bit of the digital

representation, before the signal went through the TM, in order to produce the digital

representation of the individual samples. The sampling rate was restricted by the conversion

speed, as the analogue sample had to be completely digitised before the next sample was

acquired. However, this variation of the TM-based ADC required less circuitry as only one TM

stage and comparator were required, reducing the silicon area required for fabrication. This

enabled multiple versions of this ADC variation to be employed on an IC to allow parallel

sampling of a tactile sensor outputs without becoming too costly in terms of the circuitry and

the fabrication area required [13].

38

In order to establish the benefits and trade-offs of the different TM-based ADC structures

observed in literature, a comparison through ranking was undertaken as part this research.

Table 1-1 compares the resolution, sampling speed, conversion speed and potential silicon

area the four TM-based ADCs discussed above would require, if fabricated in silicon. How

each ADC was ranked was based on the information provided in the literature, however some

sources did not declare the sampling speed, potential fabrication area, conversion speed and

power consumption information. With the former three points, the relative performance in

these two categories was estimated from the TM-based ADC circuitry. None of the literature

provided enough information to determine the power consumption of most of the TM-based

ADCs to provide a meaningful comparison, so this category was omitted in the comparison.

 Ranking TM-based ADCs based on Relative Performance

 Resolution
(1 = lowest
5 = highest)

Sampling
Speed
(1 = slowest
5 = fastest)

Conversion
Speed3
(1 = slowest
5 = fastest)

Fabrication
Area3

(1 = largest
5 = smallest)

Berberkic's Series
Configuration

5 2 2 1

Berberkic's Feedback
Configuration

4 1 1 4

Upton's Series
Configuration

1 5 5 3

Liu et al's feedback
configuration

1 34 3 5

TM-ARCHβ-7-12 ADC
presented in this
work

3 5 5 2

Table 1-1: Comparison of the TM-based ADCs observed in literature. Aided by [13, 16, 56, 57].

3 This information was not provided in the literature [13, 16, 56, 57] and was estimated from the TM-based ADC
structure.
4 This information was not provided in the literature [13] and was estimated from the TM-based ADC structure.

39

1.4 Tent Map Based ADC Output Accuracy and Tent Map Gain

All the TM-based ADCs found in literature, except for the examples developed by Berberkic

[16], convert an analogue sample to the digital domain using the same method [13, 56, 57].

The input signal (x0) is compared with the partition point voltage using a comparator to

determine the MSB. Then the amplitude of the output signals after each TM stage are also

compared to the partition point voltage to determine the remaining bits. (1-3) demonstrates

this process [13, 42, 56, 57].

𝐷(𝑛) = {

0, 𝑥𝑛 ≤ 0.5
1, 𝑥𝑛 > 0.5

 (1-3)

Where n represents the TM iteration for a feedback configuration (or TM stage output for a

series configuration) and D(n) represents the equivalent bit produced for xn (the TM iteration

output voltage, or the original input signal if n equals 0). The format of the digital data

produced by the TM-based ADC is in Gray code representation [9].

TM-based ADCs found in literature rely on amplifying the folded signals back to full-scale, thus

the µ must be exactly two. A µ less than 2 affects the output accuracy of the TM-based ADC,

and this can be demonstrated using a theoretical MATLAB model of a series configuration of

a TM-based ADC developed for this research (developed script given in B.1.1). Figure 1-2 and

Figure 1-3 presents the input signal (x0) and the output of three TM stages, when µ = 2 and

1.9 respectively, when x0 is set at different amplitudes.

These plots highlight how a difference in the value of µ results in the TM producing a different

output for a given x0 with each TM stage. This includes the amplitude of the maximum and

minimum points produced by the TM outputs, when supplied a ramp input signal. Where the

40

TM outputs cross the partition point voltage differs depending on the µ employed, as

highlighted in Figure 1-4 which is a plot of the third TM stage outputs when µ = 2 and µ = 1.9,

along with the partition point voltage.

Figure 1-2: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-based ADC,
when µ = 2.

Figure 1-3: Plot of the input and output signals of 3 TM stages within a theoretical 4-bit TM-based ADC,
when µ = 1.9.

41

Figure 1-4: Plot comparing output signals of the third TM stage when µ = 2 and µ = 1.9.

Table 1-2 summarises the equivalent Gray code output produced by the theoretical TM based

ADC (which has a resolution of 4 bits) for µ = 1.9 and 2, when 0 ≤ x0 ≤ 1 V (in increments of

0.1 V). The rows highlighted in red show when the digital representation differs for the two µ

values used, caused by the value of µ changing where the TM outputs cross the partition point

voltage. These points are also highlighted using double ended arrows on the plot presented

in Figure 1-4.

42

 Two values of µ demonstrating the impact on the output accuracy of a 4-bit
TM-based ADC

µ = 2 µ = 1.9

x0 (V) D(0) D(1) D(2) D(3) D(0) D(1) D(2) D(3)

0 0 0 0 0 0 0 0 0

0.1 0 0 0 1 0 0 0 1

0.2 0 0 1 1 0 0 1 0

0.3 0 1 1 0 0 1 1 0

0.4 0 1 0 1 0 1 0 1

0.5 0 1 0 0 0 1 0 0

0.6 1 1 0 1 1 1 0 1

0.7 1 1 1 0 1 1 1 0

0.8 1 0 1 0 1 0 1 1

0.9 1 0 0 1 1 0 0 1

1 1 0 0 0 1 0 0 0

Table 1-2: Gray code output of a 4-bit TM-based ADC when µ = 2 and 1.9.

Certain output codes given for set values of x0 are different when µ ≠ 2, thus a deviation from

the ideal µ significantly affects the accuracy of the TM-based ADCs [1]. Figure 1-5 presents a

plot highlighting how reducing the µ employed in a theoretical 16-bit TM-based ADC results

in the equivalent binary output of the ADC producing a less accurate representation of the

original input signal. This is due to the generation of incorrect digital output codes and missing

codes (an ADC with no missing codes presents all possible digital combinations when the input

analogue signal is swept across the valid input range [28]).

43

Figure 1-5: Graphs showing the effects non-ideal µ has on the accuracy of a 16-bit TM-based ADC.

The left-hand plot in Figure 1-5 presents the equivalent normalised voltage of a 16-bit TM-

based ADC output versus the input voltage with different µ values. The voltage equivalent of

the ADC output was determined from the sum of weightings of the binary code equivalent to

the original Gray code. (1-4) summarises the conversion process from Gray to binary code,

whilst (1-5) details how the sum of weightings is determined from the binary code [59, 60].

 𝑏(𝑛) = {
𝐷(0), 𝑛 = 0

𝐷(𝑛 − 1)⊕ 𝐷(𝑛), 𝑛 ≥ 1
 (1-4)

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 = ∑

𝑏(𝑛)

2𝑛

𝑁

𝑛=0

 (1-5)

Where:

• b(n) refers to the bit of the binary code representing xn,

44

• D(n) is the respective bit of the Gray code representation,

• n refers to the TM stage (or initial condition if n = 0) and

• N is the total number of TM stages in the TM-based ADC.

The µ values examined in Figure 1-5 were 2 (the ideal value), 1.99 and 1.9 (0.5 % and 5 % less

than the ideal value respectively). The TM-based ADC output when µ = 2 produced an

accurate reproduction of the original input signal, whilst the reconstructed output signal

when µ = 1.9 is a noticeably less accurate representation of the ramp input signal. The right-

hand plot in Figure 1-5 presents the quantisation error (also referred to as quantisation noise),

which is the difference, in LSBs, between the equivalent ADC output voltage and the input

voltage and is calculated using (1-6) [4, 36].

 𝑄𝑢𝑎𝑛𝑡𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =
𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑜𝑢𝑡𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 − 𝑖𝑛𝑝𝑢𝑡 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒
 (1-6)

The maximum positive and negative quantisation error values for each µ are summarised in

Table 1-3, along with the bit accuracy of the TM-based ADC output. The ADC bit accuracy is a

measure of the minimum number of bits for which an ADC can accurately represent an

analogue input as a digital word and defined in this research using (1-7), from the absolute

quantisation error.

TM Gain Quantisation error (LSBs) Bit accuracy (bits)

2 ±1 15.00

1.99 ±162 7.66

1.9 ±1543 4.41

Table 1-3 Reduction in the TM-based ADC accuracy due to µ.

45

 𝑏𝑖𝑡 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑅 − 𝑙𝑜𝑔2⌈𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑚𝑎𝑥⌉ − 1 (1-7)

In (1-7), differencemax is the maximum absolute difference (in LSBs) between the input signal

and the voltage representation of the digital output (i.e., the maximum absolute quantisation

error). An additional bit is subtracted from the ADC resolution (R) as log2|differencemax|

equates to zero if differencemax = 1 bit, but the bit accuracy will be one bit less than the stated

resolution of the ADC, due to quantisation error [4].

The results highlight how a small reduction of 0.5 % in µ (1.99) results in a deviation from the

ideal, equating to the loss of 8 bits in accuracy (although this loss in accuracy was less visibly

noticeable in the reconstructed output signal of the TM-based ADC). This loss of accuracy

increases the further µ deviates from the ideal value.

The µ of the electronic TM implementations employed within the TM-based ADCs seen in [13,

16, 56, 57] were set by resistors. Resistors have tolerances (the range which the value or

dimension of a component must lie [11]) which makes practically achieving precise and

accurate µ values more challenging than when silicon matched parts are used. Resistors with

tight tolerance bands can be employed to achieve good µ precision, but this generally leads

to an increase in cost. Also the stability of the µ value will remain affected by uncontrollable

factors such as resistance varying over time, due to the resistors aging, as well as fluctuations

in operating temperature [61]. An alternative solution to the use of precision components is

to evaluate the effects a non-ideal µ has on the performance of a TM-based ADC output. The

deviation from the ideal digital codes can then be compensated for, by processing the non-

ideal ADC output, to estimate the initial conditions (the input signal(s) to the system) [22],

thus enabling the correction of incorrect codes and improving the ADC accuracy.

46

TMs are non-linear and non-invertible (each output value could have been formed from two

input values rather than one) as illustrated in Figure 1-2 and Figure 1-3, which makes

estimating the initial conditions of these chaotic maps challenging. Basu successfully

estimated the initial conditions of TM-based ADCs [41, 42], and can be considered to be

compensating for non-ideal µ in the process. However the algorithm required significant

computational resources, as division was employed to estimate the initial condition (division

being computationally resource intensive) [62]. Moreover the algorithm developed was not

implemented as an electronic system, but was proven using off-line batch processing of data

acquired from a TM-based ADC [41, 42].

This thesis details a new algorithm requiring less computation resources, to estimate the

initial conditions (and thus compensate for non-ideal µ within a TM-based ADC), compared

to the one presented by Basu [41, 42]. The viability of implementing the algorithm, as an

embedded electronic system, that compensates the output of a TM-based ADC in real-time

(the ADC output for a given sample is compensated for, whilst the digital output for the

subsequent sample is being converted), was also investigated. The feasibility of applying this

real-time TM-based ADC, with embedded µ compensation system, to a specific real-world

application (an ultrasonic measurement system), was also considered.

Figure 1-6 presents a block diagram of the TM-based ADC and µ compensation algorithm

(µCA) implemented as an electronic solution. An adaption of the TM-based ADC design by

Upton [56, 57], (consisting of a printed circuit board (PCB) [11]) was connected to a field

programmable gate array (FPGA, which is a device comprising a two-dimensional array of

logic cells which can be configured to produce highly complex digital electronic circuits) [9].

The PCB comprised the analogue circuitry for performing the data conversion, while the FPGA

47

both coordinated this process via clock signals, as well as aligning and converting the Gray

code data from the PCB to binary code [56, 57]. In this research the µCA was embedded in

the FPGA in order to produce a standalone TM-based ADC and µ compensation system (µCS).

Figure 1-6: Block diagram of how the TM-based ADC and µCA were integrated.

A later adaption of the TM-based ADC developed was also based on the design proposed by

Upton [56, 57] and, employed techniques used by Berberkic [16]. This ADC was analysed by

simulation. Table 1-1 compares the design to other TM-based ADCs found in literature over

the past 8 years. This TM-based ADC achieves higher resolution than the designs proposed by

Upton [56, 57] and Liu et al. [13], as well as matching the high sampling and conversion speeds

(when compared to the other TM-based ADCs found in literature) achieved by Upton [56, 57].

An enhanced version of the µCA was also developed for the adapted TM-based ADC design.

48

1.5 Ultrasonic Measurement System

Researchers, within the Engineering Control and Machine Performance Research Group

(ECMPG), at the University of Huddersfield are developing a highly sensitive Ultrasonic

Measurement System (to be referred to as UMS) for detecting temperature variations in

metal undergoing precision manufacturing cutting processes. This typically needs a

dimensional error less than 5 µm [63]. The temperature of metal undergoing cutting varies

and causes expansion, which in turn introduces errors. Such temperature variations can

increase by 10 °C, which for a 200 mm part of tungsten (a high density metal renown for a

high melting point [64]) can result in a 9.2 µm expansion [65].

The UMS will enable precise, non-invasive, in-process monitoring of the metal temperature

and allow the process to compensate for errors introduced from metal expansion caused by

temperature variations. This will produce higher quality work pieces, as the compensation for

temperature variation will improve the accuracy of the cutting process. In addition, more

work pieces will meet the required specifications, resulting in a higher yield, less material

wastage and a fall in rework time [63].

The proposed UMS employs an ultrasonic, piezoelectric transceiver to transmit and receive

sinusoidal waves from the piece of metal under observation (Figure 1-7 outlines the set up)

[63]. The transmitted and received sinusoidal waves then go through a phase detection board

[66] which outputs a voltage signal (Φ1) representing the phase difference. A DAQ board

acquires this signal and transmits a digital representation to a computer, where the

temperature variations in the metal are established [40, 63].

49

Figure 1-7: Block diagram of the UMS proposed by the ECMPG. Aided by [63].

Ideally, the UMS should establish temperature variations to an accuracy of at least 0.1 °C to

enable the manufacturing process to compensate for metal expansion and achieve precision

machining [63]. Early research suggested a temperature variation of 0.1 °C equated to a 1 mV

change in the output voltage signal from the phase detection circuitry (over a 0 - 1.8 V range)

[66], but the preference is for the system to detect 100 µV variations. To detect these

variations in the output signal, of the phase detection circuitry, a DAQ board containing an

ADC with a minimum resolution of 15 bits will be required. (1-8), which was derived from (1-1)

[15], highlights how the minimum resolution was determined.

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 = ⌈𝑙𝑜𝑔2 (

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑟𝑎𝑛𝑔𝑒

𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛
)⌉ =

⌈𝑙𝑜𝑔2 (
1.8 − 0

100 × 10−6
)⌉ = 15 𝑏𝑖𝑡𝑠

(1-8)

Where voltage range refers to the input voltage signal range which the ADC can accept, whilst

voltage variation indicates the minimum change within the input signal that must be detected

50

and digitised. For this application, the voltage variation needed to be 100 µV and the voltage

range must equal that of the phase detection circuitry output.

The maximum frequency of the transmitted signals will be 5 MHz, thus the sampling

frequency of the ADC needed to exceed 10 MHz in order to meet the Nyquist criterion. The

Nyquist criterion states the maximum input frequency should be less than half the sampling

frequency in order to avoid aliasing, which is the effect of a higher frequency signal appearing

as a lower frequency signal due to under-sampling [21, 25].

The research project described in this thesis explores the viability of a stand-alone TM-based

ADC with embedded µ compensation (performed in real-time), within a DAQ system, which

meets the requirements for the above application. There was an additional requirement that

the ADC needed to be constructed from discrete components, in order to be low-cost to

develop when compared to an ADC fabricated in silicon.

51

1.6 Aim and Objectives

This project assesses the viability of a standalone TM-based ADC, with an embedded digital

implementation of a compensation algorithm for non-ideal µ, to be employed within a DAQ

system for an UMS application. The objectives are to:

• Develop a mathematical model of a TM-based ADC to emulate the operational

performance of an electronic implementation.

An adaption of the TM-based ADC design developed by Upton [56, 57] was chosen

and a mathematical model developed. This model was developed to determine the

effects non-ideal µ had on the ADC output accuracy as well as to aid the assessment

of the µ compensation algorithm (µCA).

• Develop a compensation algorithm for a non-ideal µ, to increase the accuracy of a

TM-based ADC, without the requirement of off-line computational processing.

The µCA was initially developed in MATLAB (a software platform, with a dedicated

programming language, used for numerical computing and mathematical model

development) [30] and applied to the data produced by the mathematical TM-based

ADC model to analyse the effectiveness in terms of improving accuracy. In order to

embed a µ compensation system (µCS), comprising the µCA, within the FPGA used in

the electronic implementation of the TM-based ADC, the algorithm was implemented

in VHDL (Very high-speed integrated circuits Hardware Description Language, which is

a language that enables digital electronic systems to be described [17]). The operation

of the embedded µCS was then verified via a functional simulation using ModelSim (a

software programme for simulating Hardware Descriptive Language (HDL) [10]

designs) [31].

52

• Assess the viability of implementing a physical DAQ system which employs a stand-

alone TM-based ADC with embedded µ compensation.

The mathematical model of the TM-based ADC with µCA was analysed to determine

if a standalone TM-based ADC with embedded, real-time µ compensation was viable.

A physical standalone TM-based ADC with embedded, real-time µ compensation was

then produced and analysed.

1.7 Originality of Research

The research project discussed in this thesis has led to the following original contributions:

• The development of a µ compensation algorithm (µCA) which can be embedded

within a standalone TM-based ADC and perform real-time compensation. This

embedded µCA improved the output accuracy of a TM-based ADC to such an extent

that this data converter could be employed within a measurement system required

to consistently detect small signal variations across a relatively large dynamic range.

• Further enhancements to this development produced three techniques to

compensate for additional, non-ideal behaviour in the electronic implementation of

the TM circuits within the TM-based ADC and enabled the future production of µ

compensation systems (µCS) which can be adapted to suit different configurations of

TM-based ADCs. These three techniques:

o enabled compensation of non-ideal µ within a TM-based ADC, when the µ of

the TM circuits were not identical.

o enhanced the µCA to account for non-matching slope µs within each TM

stage.

53

o enabled compensation for µ within a TM-based ADC when a sub-ranging ADC

was employed to acquire the output of a TM.

1.8 Document Structure

This document is structured as follows:

• Chapter 2 inspects methods of evaluating ADC performance and the common

architectures observed with higher resolution ADCs currently available on the market.

Basic chaos theory relating to TMs is also discussed, and two literature reviews (on

TM-based ADCs and initial conditions estimation of TMs respectively) are presented.

• Chapter 3 provides an overview of the proposed TM-based ADC structures and µCS.

• Chapter 4 discusses in more detail the key components, operation and

implementation of the proposed TM-based ADC structures and µCS.

• Chapter 5 presents the analysis of a TM-based ADC structure with the fundamental

µCA.

• Chapter 6 presents the analysis and results of the TM-based ADC structures with the

enhanced µCAs.

• Chapter 7 discusses the results from chapter 6.

• Finally, chapter 8 concludes the work presented and proposes suggestions for further

work.

54

2 Theory and Literature Review

Some of the material in this chapter was previously published in the journal paper [2].

This chapter provides the key underpinning theory and presents literature reviews

undertaken as part of this work. The purpose of this research was to assess the improvement

in output accuracy resulting from a µ compensation algorithm (µCA) being embedded within

the TM-based ADC. Therefore Section 2.1 covers the parameters which can be employed to

establish the output accuracy of an ADC when slow moving and fast changing input signals

are supplied respectively.

Signal measurement systems which need the measurements to be digitised require

sufficiently high-resolution ADCs in order to detect small signal variations within the analogue

signal being measured. Section 2.2 covers the current architectures employed in high

resolution COTS ADCs and then compares them to TM-based ADCs found in the literature in

Section 2.4.3.

Section 2.3 discusses the theory of chaos and defines the conditions under which a TM, and

hence a TM-based ADC, can be classed as chaotic. This definition follows through to Section

2.4 which explores the literature on TM-based ADCs and highlights other ADCs which fall

under the category of TM-based ADCs.

A review of methods estimating the initial input signals of TM-based ADCs with non-ideal µ is

provided in Section 2.5. Finally, Section 2.6 summarises key findings and how the information

presented in preceding sections determined the course of this research.

55

2.1 Assessing Performance of ADCs

There are a wide variety of parameters which can be employed to assess and evaluate the

performance of an ADC. These parameters fall into one of two categories: dynamic

performance and static performance. Static performance concerns the behaviour of the ADC

when the amplitude of the input signal is slowly changing, while dynamic performance is

related to input signals with a higher rate of change [4].

The following sub-sections provides an overview of the parameters relevant to assessing the

static and dynamic performance of ADCs. The third sub-section details additional parameters

(observed in ADC reviews and textbooks concerning data conversion [43, 67-72]) which are

relevant in assessing the performance and capabilities of ADCs for this work.

2.1.1 Static Performance

Gain error, offset error, integral non-linearity (INL) and differential non-linearity (DNL) are

four parameters used to assess the static performance of an ADC [4]. Figure 2-1 present the

transfer characteristic of a non-ideal 4-bit ADC and illustrates how some of these parameters

are determined.

56

Figure 2-1: An illustration of a transfer characteristic plot of a non-ideal 4-bit ADC. Redrawn based on
[4].

DNL is the maximum deviation of the step width from the ideal value of 1 LSB (which is also

the ideal step size), whilst the INL is the greatest divergence from either the line of best fit

through the digital output versus the analogue input plot (best straight-line INL), or the line

through the two end-points of this plot (end-point INL) [6]. The end-point INL gives the worst-

case scenario, as this method always provides the greater deviation from the line (Figure 2-1

also illustrates how the line is produced for the end-point INL method) [6]. Equations (2-1)

and (2-2) detail how the DNL and end-point INL are calculated respectively [6, 15, 73].

 𝐷𝑁𝐿(𝑘) = (𝑉𝐷+1 − 𝑉𝐷)/𝑉𝐿𝑆𝐵𝑖𝑑𝑒𝑎𝑙 − 1 (2-1)

 𝐼𝑁𝐿(𝑖) = (𝑉𝑎𝑐𝑡𝑢𝑎𝑙(𝐷) − 𝑉𝑖𝑑𝑒𝑎𝑙(𝐷))/𝑉𝐿𝑆𝐵𝑖𝑑𝑒𝑎𝑙 (2-2)

57

Where:

• D is the digital output code;

• VD is the analogue value which corresponds to D;

• VLSBideal is the ideal step size;

• k represents each potential digital output (2resolution in total);

• i represents each change in the analogue input; and

• Vactual and Videal (ideal refers to the end-point plot) represent the minimum actual and

ideal voltage values which produce D [6, 15, 73].

The offset error of an ADC corresponds to, the minimum input required to generate a zero

output code [15] or, where the transfer characteristic end-point plot of the ADC intercepts

the axis representing the digital output [4]. The latter of these definitions is represented in

Figure 2-1 and (2-3) and will be employed in this work [4].

 𝑜𝑓𝑓𝑠𝑒𝑡 = 𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡(𝐴𝑛𝑎𝑙𝑜𝑔𝑢𝑒 𝐼𝑛𝑝𝑢𝑡 = 0) (2-3)

With (2-3), DigitalOutput(Analogue Input) refers to the analogue input to digital output

transfer function, which details the digital code produced by the ADC for a given analogue

input.

The gain error of an ADC is the difference between the full-scale error and the offset as

represented in (2-4). The full-scale error is the difference between the maximum digital

output of the actual and ideal ADC [28].

58

𝐺𝑎𝑖𝑛𝐸𝑟𝑟𝑜𝑟 = 𝐹𝑢𝑙𝑙𝑆𝑐𝑎𝑙𝑒𝑒𝑟𝑟𝑜𝑟 − 𝑜𝑓𝑓𝑠𝑒𝑡

= (𝑚𝑎𝑥(

𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑎𝑐𝑡𝑢𝑎𝑙) −𝑚𝑎𝑥(𝐷𝑖𝑔𝑖𝑡𝑎𝑙𝑂𝑢𝑡𝑝𝑢𝑡𝑖𝑑𝑒𝑎𝑙))

− 𝑜𝑓𝑓𝑠𝑒𝑡

(2-4)

DigitalOutputactual represents the digital codes produced by the ADC under assessment, whilst

DigitalOutputideal refers to the digital codes which would be generated by a theoretically ideal

ADC.

• Table 2-1 below summarises all the static parameters discussed in this sub-section.

Static Parameter Definition

Differential non-
linearity (DNL)

The maximum deviation of the step width from the ideal value of 1 LSB
[6].

Full-scale error The difference between the maximum digital output of the actual and
ideal ADC [28].

Gain error The difference between the full-scale error and the offset error [28].

Integral non-
linearity (INL)

The greatest divergence from either the line of best fit through the
digital output versus analogue input plot (best straight-line INL), or the
line through the two end-points of this plot (end-point INL). The latter
of these two INL measurements provides the worst-case scenario, as
the method always provides the greater deviation from the line [6].

Offset error Corresponds to the minimum input required to provide a zero-output
code [15], or where the transfer characteristic end-point plot of the
ADC intercepts the axis representing the digital output [4].

Table 2-1: Summary of static parameters.

59

2.1.2 Dynamic Performance

The dynamic performance of the ADC can be assessed using the following parameters:

• signal to noise ratio (SNR) [4];

• spurious free dynamic range (SFDR) [14];

• total harmonic distortion (THD) [14] and

• signal to noise and distortion ratio (SINAD or SNDR) [4, 15].

All of these parameters can be established by supplying the ADC with a clean, sinusoidal input

signal and taking a Fast Fourier Transform (FFT) of the digital output, then analysing the

resulting spectrum [4, 8, 14].

The SNR is the ratio of the input signal power and the average noise power (excluding the

power within the signal harmonics) [4]. SINAD is the same as SNR except the power of input

signal is compared to the magnitudes of the noise and harmonics (the latter is represented

by the parameter THD) [4, 14, 15]. The SFDR, meanwhile, is the difference in magnitudes

between the input signal (the fundamental peak) and the harmonic with the highest

magnitude [14].

When performing a FFT to determine the parameters stated above, the ADC needs to be

supplied a sinusoidal input signal, which meets the criteria given in (2-5). The amplitude range

of the sinusoidal input must match the valid input voltage range of the ADC [7].

 𝑓𝑖𝑛
𝑓𝑠𝑎𝑚𝑝𝑙𝑒

=
𝑀

𝑁
 (2-5)

60

With (2-5), fin is the input frequency, fsample is the sampling frequency, M represents the

number of signal cycles and N the number of data points. To minimise spectral leakage (when

discontinuities at the ends of the sinusoidal signal, which an FFT is being performed on, causes

the peak in the resulting spectrum to spread into adjacent frequency bins and affect the

spectral distribution [8]), M should be an odd integer number, whilst N must be a power of 2

(the higher the value, the more accurate the FFT) [7].

From the SINAD measurement, the effective number of bits (ENOB) can also be calculated

using (2-6) [4]. ENOB represents the number of bits to which an ADC can accurately convert

an analogue input into a digital word [7].

𝐸𝑁𝑂𝐵 =
𝑆𝐼𝑁𝐴𝐷 − 1.76

6.02
 (2-6)

• Table 2-2 below summarises all the dynamic parameters discussed in this sub-section.

Dynamic parameter Definition

Effective number of bits (ENOB) This represents the number of bits that an ADC can
accurately represent analogue input signals as digital
words [4, 7].

Spurious free dynamic ratio (SFDR) The difference in magnitude between the signal (the
fundamental peak) and the harmonic with the
highest magnitude [14].

Signal to noise and distortion ratio
(SINAD or SNDR)

The same as SNR except the signal power is
compared to the magnitudes of the noise and
harmonics [4, 15].

Signal to noise ratio (SNR) The ratio between the signal power and the average
noise power (excluding the power within the signal
harmonics) [4].

Total harmonic distortion (THD) The magnitude of the harmonics within a signal
summed together [14].

Table 2-2: Summary of dynamic parameters.

61

2.1.3 Other Performance Parameters

This research focuses on the ADC output accuracy. However, there are some additional

parameters, of relevance to this work, which are also useful when selecting an ADC for a data

acquisition application. Table 2-3 summaries these additional parameters, which are

discussed in other publications concerning ADCs [43, 67-72].

Parameter Term Definition

Bandwidth The range of input frequencies the ADC can accept [23].

Conversion
rate/frequency

Rate ADC can convert an analogue sample to the digital domain
[25]

Latency The time delay in the conversion and transmission of a signal
sample to the digital domain [74].

Quantisation error Error between input and equivalent output signals in terms of LSBs
[4].

Sampling
frequency

Number of samples per second [15].

Stated resolution
or resolution

The total number of quantisation bits of the ADC. Can also be
thought as the total number of bits in the digital words an ADC
produces [15].

Table 2-3: Summary of additional parameters which can be employed to assess ADC performance.

62

2.2 Overview of Main High Resolution ADC Architectures

2.2.1 Research Procedure

The purpose of the research discussed in this thesis was to assess whether the improvement

in output accuracy of TM-based ADCs, after employing a µ compensation system (µCS), would

make them a good candidate for high precision and high accuracy measurement systems.

Such measurement systems need to detect small signal variations across the whole valid input

signal range, which requires ADCs with sufficient resolution to acquire and convert the

minimum variation needing to be detected.

For this reason, searches were conducted in early July 2021 to establish the architectures

being employed in higher resolution COTS ADCs and to enable comparisons with the TM-

based ADC architecture. Five distributors of electronic components were used in this

investigation5.

The highest and lowest ADC resolutions available were 32 and 1 bits respectively. With this

investigation the upper half of the resolution range were considered (ADC resolution was

16.5 bits < R ≤ 32 bits). Five architectures were observed across this range of resolutions,

these being: sigma delta, dual-slope, multi-slope, pipelined and successive approximation

register (SAR). The following four sub-sections explain how these architectures operate.

5 The retailers were RS Components Ltd., Arrow Electronics Inc., Premier Farnell Ltd., Digi-key Electronics and
Mouser Electronics Inc. [75 - 79].

63

2.2.2 Sigma Delta ADCs

The sigma delta (also known as oversampling) ADC uses the techniques oversampling (when

a signal is being sampled at a rate larger than double the ADC bandwidth [8]), digital low pass

filtering and decimation (the process of deleting samples [26]) to improve the resolution of

its conversions [37]. The circuitry is shown in Figure 2-2. The operation of this ADC

architecture involves feeding the sampled input signal into a difference amplifier (U1) and

integrating the output signal using an integrator circuit (U2). The slope of the integrator

output signal then determines whether the 1-bit ADC outputs a 1 or a 0. This result is then

sent both to the digital filter and 1-bit digital to analogue converter (DAC), the latter

determines whether the negative input of the difference amplifier (U1) is connected to a

positive or negative reference voltage [80]. The digital filter removes most of the quantisation

noise (this being shifted to the higher frequency spectrum by the integrator [80]), before

transmitting the processed signal to the decimator which removes specific samples in order

to reduce the output data rate [80]. The sigma delta ADC architecture can have more than

one integrator in its circuitry (the number of integrators determines the order of the ADC)

[43].

64

Figure 2-2: Sigma delta architecture. Redrawn from [43].

2.2.3 Dual-slope and Multi-slope ADCs

The dual-slope and multi-slope ADC architectures are subsets of the integrating ADC

architecture class [27]. The simplest integrating ADC architecture is the single-slope ADC,

whose architecture forms the basic operation of all integrating ADCs. Figure 2-3 presents the

circuitry of a single slope ADC, which has an integrator, comparator and counter. The sampled

input signal feeds into integrator circuit (U1), causing the capacitor within the circuit to

charge. The comparator (U2) is employed to compare the integrator output with a known

reference voltage and to change output state when the integrator output exceeds this

reference. The counter tracks the time taken for the comparator output to change state: this

time duration is proportional to the input signal and is used to determine digital

representation of the sampled input signal [25, 43].

65

Figure 2-3: Single-slope integrating type ADC. Redrawn from [43].

With the dual slope ADC (Figure 2-4) the sampled input signal is feed into the integrator for a

set period. The capacitor within the integrator then discharges (by switching the input voltage

to U1 from Vin to Vref) causing the integrating circuit to de-integrate. The counter increments

whilst the integrator de-integrates, and the final value produces the digital word output of

the sampled analogue input signal [25, 43].

Figure 2-4: Dual-slope integrating type ADC. Redrawn from [43].

Multi-slope ADCs add a further level of complexity to the integrating architecture. Such

architectures use a single integrating and de-integrating cycle to determine a set number of

MSBs for the digital output. The final voltage level given by the integrator circuit is then

66

amplified by a set amount and de-integrated again to produce the final bits of the digital

output. This latter part can be repeated to further increase the resolution [27].

2.2.4 Pipelined ADCs

The pipeline ADC architecture (see Figure 2-5) consists of several stages arranged in series

(each stage processes a sample of the input signal for one clock cycle before sending the signal

onto the next stage for further processing). Although this method does introduce significant

latency, the throughput (and hence potential sampling frequency) is high [35].

The processing provided by each stage involves finding the sum of a set of reference voltages

that equal the amplitude of the sampled signal. By sequentially subtracting each of the

reference voltages from the sample until the remainder voltage (the residue) is close to zero,

the correct combination of reference voltages required to represent the sample can be found.

Each reference voltage represents a bit in the final digital word. To further improve the

accuracy of the conversion the residue is amplified between stages by a factor of 2k (where k

is the number of bits determined by the pipelined stage) [8, 35].

Every time the sample passes through a processing stage the computed value for that bit goes

to a bit aligning stage. When the sample has passed through all the pipelining stages, the bit

aligning stage groups the relevant bits for the sample and outputs them as a single digital

word [35].

67

Figure 2-5: Pipeline architecture. Redrawn from [8].

2.2.5 SAR ADCs

The SAR ADC uses a type of binary search algorithm known as the successive approximation

algorithm to perform the conversion [81]. Figure 2-6 shows the circuitry for this architecture.

Each time a sample of the analogue input signal is taken, the ADC determines whether the

output digital word should have a high or low MSB. This is achieved by comparing the sampled

input signal with the DAC output signal (the amplitude of this latter signal is determined by

the digital code supplied by the decision register) [43, 81].

The comparator output representing the MSB then determines the next digital code supplied

to the DAC in order to produce a different output signal. This signal is again compared to the

sampled input signal to determine the second MSB. This process is then repeated until the

LSB has been established [43, 81].

68

Figure 2-6: SAR architecture. Redrawn from [4, 43].

2.2.6 Higher Resolution ADC Architectures Analysis

Sigma delta ADCs offer high resolution and can be low cost due to the data conversion process

being more reliant on digital, rather than analogue circuitry, thus precision components are

not required. This has the added benefit of requiring no calibration or trimming [15, 27]. The

architecture is also very stable, even at higher orders, due to stable lower order loops in multi-

stage noise shaping modulators (MASH) [82]. Oversampling however limits the sampling

speed of this architecture, and a large circuit die area is required to fabricate the ADC if a

high-order or multibit system is employed [43, 71]. Despite this, sampling frequencies of

sigma delta ADCs have risen from hundreds of MHz to the GHz region due to technology

scaling, supporting bandwidths greater than 100MHz [70]. At very high resolutions though,

sampling speeds are still restricted: the fastest on the market in Summer 2021 being at 1 MHz

[49].

Dual-slope and multi-slope integrating ADCs offer low power consumption [8] but are unable

to reach very high resolutions, unlike sigma delta ADCs [43]. Both these architectures

69

however have long conversion times (for dual slope it is 2(R+1) cycles) [43]. In common with

sigma delta ADCs, dual-slope ADCs have good rejection of 50/60 Hz signals, as the conversion

process rejects frequencies which are multiples of the integration rate. This type of ADC

architecture is good for low level signal conversion but, unlike sigma delta ADCs, requires

external components (resistors and capacitors) to convert voltage signal to current signal and

set reference voltages [27]. Trimming and calibration is also required for integrating ADCs to

compensate for errors resulting from the analogue circuitry [27]. Integrating ADCs also have

very low bandwidths and are restricted to acquiring 100 samples per second [27].

Pipeline architectures are the only ADC architecture capable of meeting the most demanding

specifications for data conversion, and can achieve good resolution, power consumption and

sampling speed simultaneously [43, 70, 71, 83]. When being compared to parallel ADC

architectures which determine all bits of the digital output within one clock cycle, the

pipelined architecture is noticeably slower, but still faster than other serial ADC architectures

[43]. The main limitation with the pipelined architecture is the high power consumption

associated with the op-amps required for the residue amplification with high resolution and

high speed designs [83].

SAR architectures are renowned for power efficiency which is continuing to improve [43, 70].

However, there is a trade-off between speed, power efficiency and resolution [43, 70]. This

architecture is suitable for low speed operations, but can also be employed as a sub-ranging

ADC in other ADC architectures (for example, pipelined) to achieve higher sampling rate [15].

SAR ADCs have a higher bandwidth than integrating ADCs, but are not suited for low level

signals and have poorer line rejection [27]. Like integrating ADCs, SAR ADCs also need

70

trimming and calibration ADCs to compensate for errors resulting from the analogue circuitry

[81].

All the ADC architectures discussed in this section are summarised in Table 2-4 below and

ranked in terms of resolution, sampling speed, conversion speed and fabrication area. The

resolution and sampling speed were ranked based on the maximum performance achieved

by higher resolution ADCs currently on the market [75-79]. Many commercial ADCs did not

advertise information on conversion rate and fabrication area, thus for these two categories,

the four ADC architectures were ranked based on published studies on different ADC

architecture types [43, 71]

71

ADC
architecture
(alphabetical
order)

Process of Determining Digital Codes Summarised Resolution
(4 = highest
1 = lowest)

Sampling
Speed
(4 = fastest
1 = slowest)

Conversion
Speed
(4 = fastest
1 = slowest)
[43, 71]

Fabrication
Area
(4 = largest
1 = smallest)
[43, 71]

Integrating
(Dual-slope and
Multi-slope)

Digital codes determined from the time taken for the
integrated signal amplitude to cause the comparator output
to toggle.

2 1 1 36

Sigma Delta Digital codes determined from the duration of pulses,
produced by the analogue circuitry.

4 3 3 2

Pipelined The cascaded stages each determine a set number of bits for
the digital codes generated.

1 2 4 1

SAR Digital codes determined by repeatedly comparing a DAC
output signal (amplitude is set by a digital code) with the
sampled input signal. Digital code is determined from the
value which results in the DAC output having the closest
amplitude to the sampled analogue input..

3 4 2 36

Table 2-4: Summary of main high resolution ADC architectures [43, 71, 75-79].

6 Studies declared SAR and integrating ADCs as having low fabrication area but did not indicate which of the two architectures could achieve the smallest circuit area [43, 71].

72

2.3 Chaos and the Discrete One-Dimensional Chaotic Tent Map

A chaotic system is a system which shows chaotic behaviour. A system exhibiting chaotic

behaviour is deterministic (produces the same output for a given input [22]) and follow simple

rules, but the behaviour is non-linear and complex. The complexity of the system is due to

internal dynamics rather than random external influences [19].

Chaotic systems can be represented using mathematical models, which are known as flows

when a continuous (can be defined for all of time during a certain period) dynamical system

is being represented, or maps for discrete (can only be defined at set intervals during a certain

period) dynamical systems [19, 24]. Maps require fewer computing resources than flows, as

difference mathematical equations, which employ iteration, are utilised rather than

differential equations [19].

Maps can be multi-dimensional; however one-dimensional (1-D) maps are the simplest to

work with and analyse as only a single parameter needs to be considered [16, 19]. The TM

function is one of numerous discrete, 1-D mathematical models of a chaotic system [58] and

can be summarised using the difference equations given in (1-2), which has been reproduced

below [19].

𝑥𝑛+1 = {
𝜇𝑥𝑛

𝜇(1 − 𝑥𝑛)
 when

𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

(1-2)

xn and xn+1 represent the input and output of the TM respectively (the original input, x0, is

referred to as an initial condition), whilst n signifies the number of iterations. µ is the TM gain

73

and the value of xn where the TM transitions between the two difference equations is known

as the partition point [34].

 A system experiencing chaotic behaviour needs to be:

• deterministic;

• bounded (the maximum difference between two points within the output of the

system is less than infinity);

• aperiodic (the system does not produce a periodically repeating output); and

• sensitive to initial conditions (the input signal(s) to the system) [22].

The rest of this section sets out to prove a TM can be a chaotic system under certain

conditions.

The TM can be explained using the difference equations in (1-2), which proves the map is

deterministic as the same output will be produced for a given input. Confirming whether a

chaotic map is bounded or not can be achieved by plotting a bifurcation diagram (which plots

the final states of a chaotic map over a range of control parameters (e.g., µ for a TM)). A

bifurcation diagram confirms that a chaotic map stays between two limits or goes towards

±∞ as well as providing an insight on the state of the system with different control parameter

values (e.g., stationary, periodic, or chaotic). Figure 2-7 shows the bifurcation diagram of a

TM which confirms the TM remains bounded between 0 and 1 over a range of 1 < µ ≤ 2. The

diagram also highlights the TM final state is at zero when µ < 1, while when µ ≥ 1 the plot

creates a stroboscopic effect which highlights chaotic behaviour [22].

74

Figure 2-7: Bifurcation diagram of a TM. Redrawn based on [16].

Observing evidence of aperiodic behaviour over a range of µ can be obtained by plotting the

output of a TM during 100's of iterations [22]. Figure 2-8 presents a range of plots of iterated

TM output signals for 0 ≤ µ ≤ 2, when the initial condition was 0.5 (this value was chosen due

to being a non-zero number within the range 0 to 1). The plots highlight the TM output signal

is aperiodic when 0 ≤ µ ≤ 2, as the values plotted for each gain do not repeat on a periodic

basis. The exception is when µ = 1, where a constant signal (which is classed as a periodic

signal with an undefinable period [84]) is produced.

75

Figure 2-8: Plots of TM output, with different values of µ, after 100s of iterations, which are employed
to find evidence of aperiodic behaviour. Based on method presented in [22].

Finally determining whether a chaotic map is sensitive to initial conditions can be achieved by

calculating the Lyapunov exponent (λ). The Lyapunov exponent is a measure of sensitivity

dependence a chaotic map might have on the initial conditions [19]. (2-7) presents the

calculation for the Lyapunov exponent, which when the result is positive shows the map is

sensitive to initial conditions [19].

𝜆 = 𝑙𝑖𝑚

𝑛→∞

1

𝑛
∑ 𝑙𝑛|𝑓′(𝑥𝑖)|

𝑛−1

𝑖=0

 (2-7)

Where n refers to the iteration number of the chaotic map being considered, f'(xi) is the

derivative of the chaotic map for a given input (xi) and λ represents the Lyapunov exponent.

76

Figure 2-9 plots the Lyapunov exponent of a TM over a range of gains showing that the TM is

sensitive to initial conditions when µ > 1 and supports the observations made in Figure 2-7

[19].

Figures 2-7 to 2-9 and (1-2) highlight that the TM only exhibits chaotic behaviour over the TM

gain range 1 < µ ≤ 2 as this is the range where the TM is deterministic, bounded, aperiodic

and sensitive to initial conditions [22].

Figure 2-9: Plot of Lyapunov exponent of a TM. Redrawn based on [85].

77

2.4 Tent Map Based ADCs

2.4.1 Classification of TM-based ADCs

The literature published on ADCs employing TMs is limited. Only TM-based ADCs were

considered for this research because although ADCs which employ different types of 1-D

chaotic maps (e.g., Bernoulli maps and Logistic maps) have been previously analysed, past

research has determined that TM-based ADCs achieve better performance [16, 34]. A TM-

based ADC with a µ = 2 has been proven to achieve a more linear output response across the

whole valid input signal range than a logistic map based ADC with the same amplification

factor [16]. Chaotic ADCs which employ Bernoulli maps in place of TMs have worse output

accuracy when the amplification gain and partition point voltages are not the ideal values of

2 and the mid-point of the valid input voltage range respectively [34].

Certain types of Gray-code algorithmic ADCs and folding ADCs employ folding and

amplification circuits that can be classified as TMs. Therefore, these types of ADC

architectures can also be classed as TM-based ADCs. Kennedy argued any algorithmic

converter is a discrete-time dynamical system and those employing TMs will output Gray code

[29]. However, not all Gray-code algorithmic ADCs employed the TM function to perform the

conversion (some, for example, inverted the TM function and produced reverse Gray code

[86, 87], as illustrated in Figure 2-10). The µCA developed for this work required the Gray code

output from a non-inverting TM-based ADC. Only non-inverting TM-based ADCs were

considered in this research and literature reviews, because the µCA developed operated by

processing non-reverse Gray code generated by such ADCs, although it should be noted that

the µCA could be adapted to cope with reverse Gray code.

78

(a) (b)

Figure 2-10: (a) Analogue-to-digital conversion using the Gray-code algorithm. Based on [86]. (b)
Analogue-to-digital conversion using the reverse Gray-code algorithm. Based on [86].

Most texts define folding ADCs as an architecture which employ non-amplifying folding

circuits [4, 8, 15]. The exception to this definition is the one given by Kester, whose definition

is identical to the Gray-code algorithmic ADC [88].

Some literature on TMs state the µ should be exactly 2 [22, 89, 90], while others believe it

should be within the range of 1 < µ ≤ 2 [3, 19]. For the literature review performed, the latter,

more inclusive, of these two definitions was considered [3, 19], in the hope of widening the

scope of acceptable literature.

Most of the TM-based ADCs studied followed the same operation, which involved taking an

input signal and employing comparators to establish the MSB, by comparing the amplitude

with a fixed reference voltage representing the partition point. The input signal was also

symmetrically folded, amplified and forwarded to the next TM stage so the subsequent MSB

could be established. The ADCs required the µ to be exactly two and the partition points to

be precisely halfway between the full-range of the input signals to prevent encoding errors

[34].

79

The ADCs employed the TMs in either a series or feedback configuration (illustrated in Figure

2-11 and Figure 2-12). Some architectures used a series of TMs and comparators [56, 57],

while another architecture involved a single comparator and TM function in a feedback circuit

[13].

Figure 2-11: Series TM configuration. Based on [56, 57].

Figure 2-12: Feedback TM configuration. Based on [13].

80

2.4.2 TM-based ADCs

The earliest example of a TM-based ADC found was proposed by Smith in 1956 who suggested

both a series and feedback configuration. One TM circuit design given comprised op-amps,

resistors, and diodes (one op-amp had no feedback gain and acted as a comparator). The

feedback configuration employed two additional capacitors with the TM circuit to store the

input and output voltages (then switched the latter to the TM input for the next iteration and

released the other capacitor to store the new output). The TM circuits cascaded together to

create the series configuration but required the input to remain constant as the TM stages

had no respective sample and hold circuit. This lack of individual sample and hold circuits

combined with the series configuration, restricted the sampling rate as the signal could not

be pipelined, but was still faster in terms of sampling rate and conversion speed when

compared to the feedback configuration [91].

A range of TM-based ADCs were developed by a group of researchers in Thailand which

involved TM folding of current signals to perform analogue to digital conversion [92-95].

The first design was implemented in CMOS technology and involved the analogue to digital

conversion of a current input signal [92]. This design was analysed via simulation [92]. The

next version of the ADC employed transconductance amplifiers to change voltage to current

signals and used a voltage comparator to produce the digital output. This design was

constructed as a 4-bit practical circuit and despite having a relatively high voltage supply of

±10 V for some of the amplifiers, the valid input voltage range was limited to 0 - 1 V [93]. This

voltage range was increased to 0 - 5 V in a later redesign (which also reduced components for

each TM stage), although only a 4-bit practical implementation was demonstrated [94].

81

The circuits employing operational transconductance amplifiers needed careful design to

minimise transfer errors in converting the input voltage to the output current signal. The next

version of the TM-based ADC used a voltage to current converter, which employed an op-

amp and operational current conveyor (a device which transfers current from one impedance

level to another [33]), rather than operational transconductance amplifiers, to perform the

folding operation, as this converter was proven to have a theoretically lower transfer error.

An 8-bit prototype was constructed using discreet components, which showed the error

between the output and input signals was less than 5%. However interpreting the effective

resolution of the ADC, and whether the device was capable of detecting a step size change in

the input signal, from the results is impossible [95]. All of these variations were series

configurations which required the input signal to remain constant during each conversion

cycle [92-95].

Both Litovski et al. and Liu et al. employed the same feedback configuration design, which

was constructed from switch-capacitor circuitry [13, 96]. Litovski et al. verified the TM-based

ADC operation via simulation and analysed the effect non-ideal behaviour from imprecise

gain, partition points and op-amp impedance had on accuracy [96]. Liu et al meanwhile

employed this TM-based ADC design to produce multiple sub-ranging ADCs, which

simultaneously acquired multiple voltage output signals from a tactile sensor, and assessed

the performance by testing a fabricated design [13]. The simulated ADC of Litovski et al.

performed 20 iterations (20-bits resolution) while Liu et al. only used 8 iterations (8-bits

resolution) for every sub-ranging ADC. Both articles failed to confirm whether the TM-based

ADC detected the minimum step changes (954 nV for the 20-bit ADC [96] and 3.91 mV for an

individual 8-bit sub-ranging ADC [13]). This design also employed area saving switch-capacitor

circuitry in order to be fabricated as an IC [13, 96, 97].

82

Upton and Berberkic both developed TM-based ADCs constructed using discrete components

[16, 56, 57], making them cheaper to prototype and develop. Upton developed a series TM-

based ADC configuration designed to acquire the amplitude of sporadic pulses [56, 57], which

required the ADC to have a sufficiently high conversion rate and fast operating internal

comparators. For this reason the comparators were configured without hysteresis (a circuit

trait where two triggering levels enable delayed switching [23]), making them susceptible to

noise (the outputs switched between states even when the TM-based ADC was supplied a

constant input) [56, 98].

Berberkic explored two TM-based ADCs designs. One used a feedback configuration (Figure

2-13), while the other employed a series configuration (Figure 2-14), but unlike the designs

discussed above, the comparators were replaced with 10-bit ADCs. The series approach

allowed smaller changes in the input signal to be detected (noise limits the sensitivity of the

feedback system) but required more hardware to detect smaller changes. Meanwhile the

feedback system offered more flexibility regarding the number of iterations that could be

performed and was easier to control. However, the sampling speed was slower and errors

were introduced by the sample and hold, and switching circuitry [16].

Both designs by Berberkic offered higher sensitivity (each detected 50 µV changes over a

0 - 10 V range [16]) than the other ADCs reviewed in this section and had potential of offering

higher bandwidth. Folding increases signal frequency by a factor of 3.14 (known as frequency

multiplication) [99]. Employing mid-resolution ADCs, instead of comparators, to acquire the

output signals from each TM, meant fewer folding stages (iterations) were required, resulting

in a lower frequency multiplication rate. As the op-amps employed by the TMs have a

83

bandwidth limit, a lower frequency multiplication rate allows the TM-based ADCs to handle

higher frequency input signals [99] and achieve high-resolutions.

Figure 2-13: Feedback configuration of the TM-based ADC by Berberkic. Reproduced from [16].

84

Figure 2-14: Series configuration of the TM-based ADC by Berberkic. Reproduced from [16].

• Table 2-5 below summarises all the TM-based ADCs discussed in this section.

Literature (chronological
order)

Maximum
resolution (bits)

Implementation of
proposed design

Analysis of
proposed design

Smith (1956) [91] Not Applicable. Theoretical Not Applicable.

Arayawat et al. (2004) [92] 7 Theoretical Simulation

Litovski et al. (2006) [96] 20 Theoretical Simulation

Chaikla, Arayawat and
Riewruja (2006) [93]

4 Discrete components

Testing of
Practical circuit

Arayawat et al. (2008) [94] 4 Discrete components Testing of
Practical circuit

Petchmaneelumka and
Julsereewong (2010) [95]

8 Theoretical and
Discrete components

Simulation and
Testing of
Practical circuit

Liu et al. (2013) [13] 8 Fabricated CMOS
Switch-capacitor.

Testing of
Practical circuit

Berberkic (2014) [16] 19 Discrete components Testing of
Practical circuit

Upton et al. (2020) [56];
Upton (2018) [57]

8 Discrete components Testing of
Practical circuit

Table 2-5: Summary of the TM-based ADCs found in literature.

85

2.4.3 Comparison of TM-based ADCs and Other Higher Resolution ADC Architectures

When compared to the integrating, dual-slope and multi-slope ADC architectures the

TM-based ADC is able to achieve higher conversion and sampling rates [16, 56, 57, 75-79].

Also, certain variations of the TM-based ADC architecture can achieve higher resolutions than

current COTS integrating dual-slope and multi-slope ADCs [16, 75-79].

Most pipelined ADCs establish multiple bits per stage, but the conversion rate of the

individual stages restricts the sample rate of the ADC. The TM-based ADC design proposed by

Upton [56, 57], which comprises a series configuration, and employs comparators to digitise

the TM input and output signals, could be classed as a one-bit per stage, pipelined ADC, and

may be capable of higher sampling speeds than a traditional pipelined ADC, as resolving one

bit tends to be faster than resolving multiple bits. However, more one-bit stages (opposed to

a few multi-bit stages) may increase the latency, and thus the overall conversion rate of the

ADC.

Both the TM-based ADC and SAR architecture require a fixed number of conversion cycles to

convert an analogue sample to a R-bit digital word. However, the feedback TM-based ADC

configuration is not limited by the DAC settling time or digital logic latency, unlike the SAR

ADC [81]. Therefore, a TM-based ADC may potentially achieve fast conversion rates. Also,

despite the increase in circuitry, the series configuration of the TM-based ADC could enable a

faster sampling rate if each TM stage had a respective sample and hold circuit.

Sigma delta ADCs are available on the market which have higher resolutions than the TM-

based ADCs observed in literature [46-49], but have lower sampling rates than that achieved

by the lower resolution TM-based ADC designed by Upton [57]. By combining work by

Berberkic and Upton, a TM-based ADC could be designed to employ a sigma delta ADC and

86

further enhance the performance of both architectures [16, 56, 57]. Higher resolution sigma

delta ADCs tend to have lower sampling speeds than the lower resolution counterparts. By

employing a TM-based ADC to determine a set number of the MSBs, a high-speed, mid-

resolution, sigma delta ADC could acquire the final TM output thus establishing the remaining

bits. This could enable a faster, higher resolution ADC using a hybrid of the two ADC

architectures.

• Table 2-6 provides a summary of how the current performance of TM-based ADCs

compare to, and could be advantageous over, the mainstream ADC architectures

discussed in Section 2.2.

Mainstream
Architecture
(alphabetical order)

Potential Benefits of TM-based ADCs, based on Current
Performance Achievements

Integrating TM-based ADCs, compared to integrating ADCs, have achieved
higher conversion rates, sampling rates and resolution.

Pipelined Most series TM-based ADCs which employ comparators for the
digitization process, may be capable of higher sampling speeds at
higher resolutions than pipelined ADCs (resolving one bit tends to
faster be than multiple bits).

SAR Both TM-based and SAR architectures require a fixed number of
conversion cycles. However, TM-based ADC are not limited by the
DAC settling time or digital logic latency, so could achieve faster
conversion rates.

Series TM-based ADCS configurations could also achieve faster
sampling rates than SAR architectures as the conversion of the
preceding sample does not need to be complete before the next
sample is acquired.

Sigma Delta Sigma delta ADCs have higher resolutions than current TM-based
ADCs, but lower sampling rates than the TM-based ADC by Upton
[57].

Combining work by Berberkic [16] and Upton [57] could produce a
hybrid TM-based and sigma delta ADC and further enhance the
performance of both architectures.

Table 2-6: Potential advantages of TM-based ADCs over mainstream ADC architectures.

87

2.5 Estimating Initial Conditions of Tent Maps with Non-ideal Gain

A significant portion of the literature that discusses initial condition estimation of TMs

concerns determining the chaotic signals produced by TMs when superimposed with noise (a

problem for chaotic communication systems) [100-102]. Although noise is an issue for TM-

based ADCs [103] these proposed techniques were aimed at different variations of the TM

function than the one presented in (1-2)) [100-102].

Some literature presented methods estimating the initial conditions of TM-based ADCs when

the partition points of the TM circuits employed were displaced [34, 96, 104]. However, the

focus of this research was for non-ideal µ compensation only.

Past research has been undertaken to estimate the initial conditions of the TM function given

in (1-2), but methods considering non-ideal µ are sparse and limited in practise. For example,

one method proposed by Xi et al. [105], estimated the initial conditions using the sawtooth

and Bernoulli map functions on the Gray code output. This approach is simple to implement

as a digital system, but unsuitable for compensating non-ideal µ, as the method assumed an

ideal TM function with a µ = 2 was being employed [105].

An accurate estimation method, which estimated the initial conditions of a symmetrical TM-

based ADC, with non-ideal µ, was proposed by Basu [41, 42]. This method calculated the

effective difference between the voltage levels for ideal and non-ideal µ that each ADC output

bit represented. However, this approach was complex and challenging to implement as a

digital system, as the algorithm involves calculating compensation values by using

multiplication and division for n iterations (n is R - 1) and required more computational

overhead than the previous example, which only required Boolean logic [105]. Also, this

method was only implemented in the mathematical software, MATLAB, therefore a batch of

88

digital data had to be acquired from the TM-based ADC, then run through the algorithm

separately in order to estimate the initial input signal [41, 42].

2.6 Summary

This chapter discussed key parameters available when assessing the ADC output accuracy and

detailed current COTS ADC architectures employed in higher resolution data conversion. The

underpinning theory on chaos and TMs was also presented, followed by literature reviews

into TM-based ADCs, and estimating the initial conditions of TM-based systems, respectively.

The purpose of this research was to assess how a µ compensation algorithm (µCA) embedded

within the TM-based ADC improved the output accuracy. For this reason, mainly static and

dynamic parameters concerning the assessment of ADC output accuracy were determined

when analysing the employed TM-based ADC design (see Chapters 5 and 6).

Comparisons of research into COTS ADC architectures with resolutions greater than 16.5 bits

and TM-based ADCs highlighted that the latter could achieve better performance in certain

categories or enhance the performance of mainstream architectures. For example, an ideal

TM-based ADC (one with a µ = 2) can achieve a more linear output response across the whole

valid input signal range [16] when compared to a SAR ADC, which is unsuited for low level

signal amplitudes [27]. TM-based ADCs have also achieved faster sampling and conversion

speeds than integrating ADCs [27, 56, 57]. Merging the architectures of a TM-based ADC and

a sigma delta ADC could also produce a faster, high resolution data converter.

This work focussed on developing a TM-based ADC with an embedded µ compensation

system (µCS), comprising a novel µCA, for the UMS application detailed in Section 1.5. This

89

application required the ADC to: detect 100 µV signal variations over a voltage range of

0 - 1.8 V; sample at a minimum rate of 20 MHz; and be relatively cheap to prototype.

The TM-based ADC designs proposed by Berberkic and Litovski et al. [16, 96], in theory, were

capable of detecting a change of 100 µV, but only the designs by Berberkic were proven,

through practical implementation, to have achieved this criterion [16]. However, the TM-

based ADC designs by Berberkic digitised the difference between consecutive samples, rather

than provide a digital representation of the absolute value of the analogue sample [16]. Both

of the TM-based ADC designs by Berberkic could be rectified by employing a front-end

comparator to establish the MSB of the digital output [16].

Only Upton [56, 57] was found to have achieved a sampling rate greater than 20 MHz, but the

proposed design only detected 11 mV signal variations over a 0 - 3 V range. By increasing the

resolution of this design to at least 15 bits (this resolution was established using (1-8)), the

signal variation size which could be detected will reduce to a theoretical value of 100 µV.

Smith, Berberkic, Upton and a group of cross-institute researchers in Thailand, proposed TM-

based ADC designs constructed from discrete components, making them cheap to prototype

and develop [16, 56, 57, 91, 93-95]. The remaining TM-based ADCs discussed in Section 2.4.2

were designed to be constructed from area saving, switch-capacitor circuitry, and thus

needed to be produced using the expensive process of fabrication [11].

The underlying TM-based ADC design for this work is an adaptation of the design by Upton

[56, 57]. This design was chosen due to: meeting the sampling rate requirement; being low

cost to prototype; and having the potential to increase the resolution to meet the

requirement of detecting 100 µV variations.

90

A later TM-based ADC design employed techniques used by Berberkic [16] to achieve

sufficiently high resolution and maintain the sampling rate achieved by Upton [56, 57], whilst

reducing the trade-off in conversion speed. The comparator on the final TM stage output was

replaced by a 10-12 bit COTS ADC with a sampling rate employed by the TM-based ADC. This

reduced the number of TM stages needed to achieve the required resolution, which in turn

increased the conversion rate. This TM-based ADC design achieves higher resolution than the

designs proposed by Upton [56, 57] and Liu et al. [13], while matching the highest sampling

and conversion speeds (when compared to the other TM-based ADCs found in literature). The

design is also less likely to be affected by frequency multiplication (caused by the TM circuits

folding the signals) which improves the acceptable bandwidth range [99].

The operation of the fundamental µCA assessed during this work requires sufficiently lower

computational resources, than the one proposed by Basu [41, 42], to enable embedment

within the FPGA, coordinating the operation of the TM-based ADC. This enabled the

compensation to be performed on the ADC digital output data prior transmission.

Enhancements were made to the fundamental µCA in this work to enable compensation for

non-matching TM stage µ within a series configuration, as well as when the TM stage was

digitised using a multi-bit sub-ranging ADC. This makes the final µCA suited to a wider range

of TM-based ADC configurations, including series configurations. This was because another

limitation of the µCA developed by Basu (as well as the fundamental µCA in this work) was

being only suited for a feedback TM-based ADC configuration that employed a comparator to

perform the data conversion. This was due to the µCA designed by Basu, requiring a constant

TM stage µ and for the output of each iteration to be digitised to one bit only.

91

The next chapter presents, and describes the operation of, the underlying TM-based ADC

structure and the fundamental µCA (which forms the basis of the embedded µCS) for the

research project. An overview of the adaptations made to both the TM-based ADC structure

and µCA are also given.

92

3 Proposed Tent Map Based ADC Structures and Gain Compensation

Algorithms

Some of the material in this chapter was previously published in the journal paper [2].

This chapter presents the proposed TM-based ADC structures and the µ compensation

algorithm (µCA) developed to form the basis of a µ compensation system (µCS) embedded

within the ADC. The fundamental concept of the µCA was provided by Dr Peter Mather

(research supervisor). Section 3.1 first presents and details the operation of the TM-based

ADC designs employed in this work and Section 3.2 details the operation and the development

of the µCA.

The underlying, fundamental TM-based ADC circuitry was based on the design proposed by

Upton [56, 57]. An adapted version of this TM-based ADC design employed techniques used

by Berberkic [16] to achieve sufficiently high resolution and to maintain the sampling rate

achieved by Upton [56, 57], whilst reducing the trade-off in conversion speed. For ease of

reading, these two TM-based ADC structures will be distinguished as TM-ARCHα and TM-

ARCHβ respectively.

The fundamental (core) µCA was developed to analysis the TM-based ADC Gray-code output

and establish the value which needed to be added or subtracted from the equivalent binary

code, in order to compensate for non-ideal µ within the ADC. Enhancements to the

fundamental µCA were then produced to make the µCA suitable for different TM-based ADC

configurations and to be able to compensate for additional, non-ideal behaviour in the

electronic implementation of the TM circuits. The different variations of the µCAs will be

numbered to aid readability.

93

Figure 3-1 comprises a block diagram, showing how the µCA is embedded within the TM-

based ADC, forming a µCS. This diagram also highlights how the two systems work together

with the ADC Gray code (and binary equivalent) output being passed to the µCS. The µCS

analyses the Gray code digital data and applies the relevant compensation to the equivalent

binary code. The compensated binary code data is then transmitted back to the ADC control

logic, which then outputs the compensated data.

Figure 3-1: A more detailed block diagram of how the TM-based ADC and µ compensation algorithm
were integrated.

94

3.1 Tent Map Based ADC Structures

3.1.1 Underlying TM-based ADC Structure

The fundamental µCA was developed to determine the amount of compensation required

from the Gray code output of a TM-based ADC. This required the TM-based ADC to produce

a Gray code output. Figure 3-2 presents the underlying TM-based ADC structure, employed

to assess the fundamental µCA, which was based on the design proposed by Upton [56, 57].

The ADC consists of an initial sample and hold circuit, which samples the input analogue

voltage signal. This signal is then fed to a comparator to determine the MSB, and to a TM

circuit whilst the next sample is acquired. The output from the first (and subsequent) TM

circuits are fed to the next comparator and TM stage. This is repeated until the output signal

of the nth TM stage is terminated by a final standalone comparator.

Figure 3-2: Proposed underlying TM-based ADC structure (to be referred to as TM-ARCHα-n). Based on
[56, 57].

95

The comparator outputs are acquired by an FPGA for alignment, to represent the correct

analogue sample. The symmetrical folding in the TM-based ADC results in the comparator

output states producing Gray code, so the FPGA also converts the aligned digital data to

binary code.

To avoid confusion with the adapted TM-based ADC structure discussed in the following sub-

section, this TM-based ADC from this point on will be referred to as TM-ARCHα-n, where n

refers to the number of TM stages. Section 4.1.1 in Chapter 4 further details the operation

and circuit implementation of the key TM-ARCHα-n ADC stages.

3.1.2 Adapted TM-based ADC Structure

An adapted TM-based ADC structure was proposed to assess the viability of achieving

sufficiently high resolution and of maintaining the sampling rate achieved by Upton [56, 57],

whilst reducing the trade-off in conversion speed. This involved replacing the comparator on

the seventh (final) TM stage output with a 10–12-bit COTS ADC with the same sampling rate

as the TM-based ADC. This removed the need of an additional 10-12 TM stages and 11-13

comparators to achieve the same resolution, which in turn reduced the conversion rate. This

TM-based ADC design (to be referred to as TM-ARCHβ-n-Rsub-ranging, where n refers to the

number of TM stages, whilst Rsub-ranging notates the resolution of the COTS ADC) was an

adaptation of the design proposed by Upton [56, 57], and employed techniques used by

Berberkic [16]. The structure is presented in Figure 3-3.

The TM-ARCHβ-n-Rsub-ranging ADC was designed to employ seven comparators and TM stages,

while a 10-12-bit COTS ADC was used to digitise the final TM output. The COTS ADC produced

96

a binary code representation of the final TM output, whilst the 7 MSBs of the

TM-ARCHβ-n-Rsub-ranging ADC were represented in Gray code.

Figure 3-3: Proposed adapted TM-based ADC structure (to be referred to as TM-ARCHβ-n-Rsub-ranging
ADC). Based on [56, 57] and [16].

97

3.2 The Tent Map Gain Compensation Algorithms (µCAs)

3.2.1 Fundamental µCA

Figure 3-4 presents a flow-diagram describing the operation of the fundamental µCA (to be

referred to as µCA-1) being assessed and refined. The fundamental concept of µCA-1 was

provided by Dr Peter Mather (research supervisor). This algorithm was developed to take the

Gray code output of a TM-ARCHα-n ADC to establish the compensation value to be

added/subtracted from the binary code equivalent of the ADC output. This µCA formed the

basis of the µCS embedded within the same FPGA that was used to control the operation of

the TM-ARCHα-n ADC.

The µCA was designed to compensate for non-ideal µ within a chaotic TM-based ADC, which

requires the µ of the TM functions to be > 1 and ≤ 2, as proven in Section 2.3. A system must

simultaneously be deterministic, bounded, aperiodic and sensitive to initial conditions to be

classed as chaotic. While the sensitivity to initial conditions characteristic of a chaotic

TM-based ADC is responsible for the noticeable loss in output accuracy with higher resolution

designs when the µ is a non-ideal value; having a TM-based ADC that produces chaotic

behaviour also enables the loss in output accuracy to be compensated for. This is because the

chaotic TM-based ADC will have a bounded and deterministic output, and these two

characteristics enable the initial conditions to be estimated and the digital output to be

compensated for.

The µCA-1 has 4 key stages (as summarised in Figure 3-4). The first stage employs the Gray

code output to determine whether the compensation values for each bit (the difference

measure (referred to as DM)) should be added or subtracted. This sign for difference measure

98

(SDM) establishes the direction of the difference between the ideal output and that produced

due to the non-ideal gain for each TM stages.

Figure 3-4: A flowchart giving an overview of µCA-1.

99

The MSB of the Gray code output is produced from the signal that has not been processed by

the TM function circuit, and thus requires no compensation. The SDM for the second MSB will

always be configured so the DM value will be added to the equivalent bit weighting, because

if µ < 2, the output signal of the first TM stage will be lower than the ideal (as illustrated by x1

in Figure 3-5). With subsequent bits, the DM value will only be added if there are an odd

number of 1's from the second MSB to the bit that is being analysed. If there are an even

number of 1's, the SDM is configured such that the DM value is subtracted from the

equivalent bit weighting.

Figure 3-5: Input and output signals of the first TM stage of TM-ARCHα-n ADC when µ = 2 and µ = 1.9.

The second stage calculates the magnitude of the DM per bit (the difference between the

ideal output and the output due to the non-ideal µ for each TM stage output). The ideal bit

weighting of the comparator output is
𝑔𝑛

2𝑛
, where n is the iteration and g is the polarity of the

100

TM output. The actual polarity of the last n bits of the digital word will be
𝑔𝑛

𝜇𝑛
 (the MSB is

determined before the analogue signal goes through the first TM stage and thus is unaffected

by non-ideal µ). Therefore, the DM can be determined as shown in (3-1). Figure 3-6 presents

the DM versus µ plots for the second to fifth MSBs of a TM-based ADC output, of a µ range

1.9 to 2.

𝐷𝑀 = (

𝑔𝑛
𝜇𝑛
−
𝑔𝑛
2𝑛
)

(3-1)

Figure 3-6: DM versus µ plots for the second to fifth MSBs of a TM-based ADC output.

Meanwhile the third stage computes the difference value (DV), which provides the overall

magnitude and direction of the cumulative difference between the non-ideal µ of the TM

based ADC output and the ideal. The magnitude of the DV (referred to as |DV|) is established

as shown in (3-2), by multiplying the SDM with the DM for each bit (except the MSB) and

summing the products together. The polarity of the DV value (represented as DVpolarity in (3-2))

is then determined by the MSB of the TM-based ADC Gray code output. If the MSB = 0, the

101

DV value needs adding to the binary TM-based ADC output code, else subtracting if the MSB

= 1.

𝐷𝑉 = 𝐷𝑉𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 × |𝐷𝑉| = 𝐷𝑉𝑝𝑜𝑙𝑎𝑟𝑖𝑡𝑦 × (∑𝑆𝐷𝑀𝑖 × 𝐷𝑀𝑖)

𝑛

𝑖=1

 (3-2)

Finally, the DV value is applied to the binary code equivalent of the TM-based ADC output to

compensate for non-ideal µ. Figure 3-5 highlights that x1 crosses the partition point (Vref)

with a higher x0 value when µ = 1.9, than when µ = 2, whilst x0 < Vref. This will result in most

of the x0 < Vref values being represented digitally by lower value digital codes when µ = 1.9,

than if µ = 2. Meanwhile, when x0 > Vref x1 crosses the Vref partition point with a lower x0

value when µ = 1.9, than when µ = 2. This means x1, when µ = 1.9 and x0 > Vref, will be higher

than when µ=2, thus the majority of the x0 > Vref values will be represented digitally by higher

value digital codes.

On completion of a compensation cycle the µCA-1 passes the compensated binary code back

to the control logic within the FPGA coordinating the operation of the TM-ARCHα-n ADC. The

compensation process is then repeated for the next digital value. Figure 3-7 provides a more

detailed overview of the operation of the µCA-1, and a MATLAB code listing of the µCA is

provided in Appendix B.2.1. Section 4.2.1 of Chapter 4 discusses the operation of the key

stages of the µCA-1, as well as the implementation.

102

Figure 3-7: Diagram providing overview of µCA-1 operation.

103

3.2.2 Enhancements to the Fundamental µCA

An assumption was made for µCA-1 that the µ of each TM stage were identical and the µ of

the two difference equations forming the TM were matching (see (1-2)). Although simple to

implement through simulation software, in a practical implementation of a series TM-based

ADC configuration (as presented in Section 3.1.1), achieving identical µ for each TM stage was

impossible due to component tolerances (this is discussed in Section 4.1). This meant µCA-1

was only suitable for a feedback TM-based ADC configuration, as presented in Figure 2-12 in

Section 2.4, because the µ for the single TM stage remains constant for each iteration.

Further enhancements were made to the µCA-1 adaptions to realise an embedded

compensation system, for a practical TM-based ADC, for non-matching µ, within the

TM-based ADC, and within each TM stage. This enhanced version of the µCA-1 will be referred

to as µCA-2.

Additional adaptions were also required in order to enable the µCA to cope with the

TM-ARCHβ-n-Rsub-ranging ADC. The µCA-1 and µCA-2 were only suitable for TM-based ADC

structures, like the TM-ARCHα-n ADC, which employ TM circuits and single bit producing

comparators that generate the digital output data in Gray code format. Therefore, the

algorithm required further adaptation to accommodate the binary code digital output

produced by the multibit, sub-ranging COTS ADC in the TM-ARCHβ-n-Rsub-ranging ADC described

in Section 3.1.2. The version of the µCA will be referred to as µCA-3.

Section 4.2.2 in Chapter 4 discusses the enhancements made to the µCA-1 to accommodate

these limitations to produce µCA-2 and µCA-3. How these enhanced µCAs were implemented

is also discussed.

104

3.3 Summary

This chapter presented the TM-based ADC structures and the µ compensation algorithm

(µCA) developed to form the basis of a µ compensation system (µCS) embedded within the

ADC. The underlying TM-based ADC structure (referred to as TM-ARCHα-n ADC, where n

notates the number of TM stages) was based on that proposed by Upton [56, 57]. A further

adaptation of the TM-based ADC design (referred to as the TM-ARCHβ-n-Rsub-ranging ADC,

where Rsub-ranging was the resolution of the sub-ranging COTS ADC employed) employed

techniques used by Berberkic [16]. The fundamental µCA was developed to employ the Gray

code output from the TM-ARCHα-n ADC to establish the compensation to be applied to the

equivalent binary output, and then was enhanced twice to cope with non-matching TM stage

and slope µ, as well as the employment of a sub-ranging COTS ADC to convert a TM stage

output.

The TM-ARCHα-n ADC structure consisted of a sample and hold circuit for acquiring regular

samples of the input analogue signal, which was proceeded by a chain of cascaded

comparators and TM circuits, to generate each bit of the digital Gray code output. The TM-

ARCHβ-n-Rsub-ranging ADC was developed to achieve sufficiently high resolution, while

maintaining the sampling rate of the TM-ARCHα-n ADC but reducing the conversion rate for

the given resolution. The adaption involved converting the final TM stage output signal to the

digital domain, using a multibit sub-ranging COTS ADC (with a resolution of Rsub-ranging), which

allows the TM-based ADC to achieve higher resolutions using less TM and comparator stages,

thus increasing the conversion speed. The digital outputs of both TM-based ADCs structures

were acquired and aligned by an FPGA to generate the Gray code representations of the

analogue samples. The FPGA then converted the Gray code digital data to binary code.

105

The fundamental µCA, µCA-1, consisted of four key stages and employed the Gray code

output from the TM-ARCHα-n ADC to determine whether fixed values should be added or

subtracted from each bit to compensate for non-ideal µ. µCA-2 was an enhanced version of

µCA-1, which accommodated for non-identical TM stage µ and for µ of the two difference

equations forming the TM not matching. Another enhanced version of the µCA, µCA-3, was

developed to cope with the TM output being acquired by a sub-ranging COTS ADC, which

digitised the signal in binary code.

The next chapter will discuss the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-

ranging ADCs and provide additional details on how these two TM-based ADC structures

operate. The implementation and more detailed discussions on the operation of the µCA-1,

µCA-2 and µCA-3 will also be given

106

4 Tent Map Based ADC Structures and Gain Compensation Algorithms

Implementation

Some of the material in this chapter was previously published in the journal paper [2].

This chapter discusses the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-ranging

ADCs (terms α and β employed to distinguish between the two TM-based ADC structures) and

provides additional details on how these two TM-based ADC structures operate. The

implementation and more detailed discussion on the operation of the µCA-1, µCA-2 and

µCA-3 (numbered to distinguish the different µCA variations and aid readability) are also

given. The fundamental concept of µCA-1 was provided by Dr Peter Mather (research

supervisor).

Section 4.1 details how the TM-ARCHα-n ADC (introduced in Chapter 3) was implemented in

order to perform analysis on the ADC output, with, and without, the µCA developed within

this work. Descriptions of the different TM-ARCHα-n ADC versions produced for this work are

also given. Then, the implementation of the TM-ARCHβ-n-Rsub-ranging ADC structure, proposed

to assess the viability of achieving sufficiently high resolution, while maintaining the sampling

rate of the TM-ARCHα-n ADC, and reducing the conversion rate for the given resolution, by

employing sub-ranging COTS ADCs to convert the TM stage outputs, are discussed.

Section 4.2 covers the implementation of the fundamental µCA, µCA-1, along with the two

enhanced variations µCA-2 and µCA-3. The µCA-2 compensated for non-identical TM stage µ,

as well as for the µ of the two difference equations forming the TM not matching each other.

The µCA-3 also accommodates for the final TM stage being digitised using a multibit sub-

ranging ADC rather than a single digital bit producing comparator.

107

4.1 Tent Map Based ADC Structures

4.1.1 TM-ARCHα-n ADC

Figure 4-1 presents a more detailed block diagram of the TM-ARCHα-n which comprises a

sample and hold circuit, n TM circuit stages, n+1 comparators and an FPGA. The sample and

hold circuit is capable of sampling at a rate of 25 MHz. The acquired samples pass through a

comparator and TM circuit which determines the first bit of the digital output, as well as

applying the TM function to the sampled signal. The output of the first TM stage then passes

through further comparators and TM stages n-1 times.

Figure 4-1: More detailed block diagram of the TM-ARCHα-n ADC. Based on [57].

Initially a 16-bit mathematical model of the TM-ARCHα-n (TM-ARCHα-15) ADC was developed

in MATLAB (developed script given in B.1.1). The purpose of the model was to assess whether

108

the µCA-1 could compensate for non-ideal µ and that the µCA-2 could compensate for non-

identical TM stage µ, and for the µ of the two difference equations forming the TM not

matching. If electronic circuit simulation software had been employed to develop the

TM-ARCHα-15 model, the outcome would have taken into consideration non-ideal

characteristics of the individual components (e.g., resistors, op-amps etc.). This would have

produced a complex model that considered non-ideal behaviour not relating to the µ of the

TM stages and would have made assessing the effectiveness of the µCAs challenging.

Employing MATLAB, a theoretical model was developed, which could later be edited to reflect

additional characteristics associated with the practical implementation, once the

effectiveness of the µCA at compensating for non-ideal µ had been proven.

An 8-bit electronic implementation of the TM-ARCHα-n ADC (TM-ARCHα-7) was also

developed where a PCB was designed that comprised the analogue to digital conversion

circuitry, which was constructed from discrete, COTS components, and connected to an FPGA

development board. The FPGA development board was employed to supply the clock signals

needed to drive the circuit, as well as to acquire, align and convert the digital outputs from

the analogue to digital circuitry (the VHDL code to achieve this was developed by Richard

Haigh [106]). Figure 4-2 and Figure 4-3 presents the schematic for the sample and hold circuit

and the TM (folding) circuits. The full schematic and list of components for the TM-ARCHα-7

ADC are in Appendix A.1, whilst and VHDL code is presented in Appendix B.5.1.

109

Figure 4-2: Schematic for the sample and hold circuit. Reproduced from [57].

Figure 4-3: TM circuit employed. Reproduced from [57].

The sample and hold circuit (Figure 4-2) consists of two cascaded inverting amplifiers which

both offset the output signal by a set voltage (this being the partition point voltage, Vref,

which is employed by the TM circuits). The second of these amplifiers also samples the two

input signals to the op-amp.

The TM circuit (Figure 4-3) functions by identifying whether the input is greater than the

partition point voltage. When Vin < Vref, the sample signal is amplified using a non-inverting

110

op-amp. If Vin > Vref, Vref is included in the inverting amplification process. (4-1) summarises

how the input and reference signals are amplified [57].

 𝑉𝑜𝑢𝑡 = {
(1 +

𝑅2

𝑅1
)𝑉𝑖𝑛, 𝑉𝑖𝑛 ≤ 𝑉𝑟𝑒𝑓

(1 +
𝑅2

𝑅1
)𝑉𝑟𝑒𝑓 −

𝑅2

𝑅3
(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓), 𝑉𝑖𝑛 > 𝑉𝑟𝑒𝑓

(4-1)

Where Vin equates to the "Analogue Input" in Figure 4-3, Vref is the "Reference Voltage" and

Vout is the "Folded Output". In (4-1), (1 +
𝑅2

𝑅1
) =

𝑅2

𝑅3
, which makes the format of this equation

identical to that of the TM function shown in (1-2) [57].

Two key modifications were made to the TM circuit design by Upton for this research project

[56, 57]. The first involved placing external hysteresis around the comparators (the upper and

lower limits of the hysteresis voltages chosen were Vref ± half the step size voltage). This

modification was needed due to the switching noise induced into the analogue TM circuit

signals, to and from the TM circuits, causing the comparator outputs to oscillate.

The second modification added resistors in series with R1, R2 and R3 so the gain of each stage

was changeable. R1, R2, R3 and R4 were produced using resistor arrays, yielding gains close

to, and possibly over, the ideal of 2. The µCA was developed for non-ideal µ values less than

2 (but greater than 1) only, as this resulted in a chaotic TM-based ADC. Therefore, resistors

needed to be added to decrease the gain to prove that the algorithm could compensate for

the inevitable non-ideal gain, associated with a practical implementation of the TM-based

ADC. (4-2) presents the updated equation (adapted from (4-1) [57]).

111

 𝑉𝑜𝑢𝑡 = {
(1 +

𝑅2 + ∆𝑅2

𝑅1 + ∆𝑅1
)𝑉𝑖𝑛, 𝑉𝑖𝑛 ≤ 𝑉𝑟𝑒𝑓

(1 +
𝑅2 + ∆𝑅2

𝑅1 + ∆𝑅1
)𝑉𝑟𝑒𝑓 −

𝑅2 + ∆𝑅2

𝑅3 + ∆𝑅3
(𝑉𝑖𝑛 − 𝑉𝑟𝑒𝑓), 𝑉𝑖𝑛 > 𝑉𝑟𝑒𝑓

 (4-2)

Where ΔR1, ΔR2 and ΔR3 represent the resistors that were added in series with R1, R2 and

R3 respectively. Figure 4-4 presents the updated schematic of the TM circuit.

Figure 4-4: TM circuit employed, which has additional resistors to alter µ+ and µ-. Adapted from [57].

There was an assumption with the circuit implemented by Upton that the gains created by

R1, R2 and R3 were identical (i.e., (1 +
𝑅2

𝑅1
) =

𝑅2

𝑅3
) [57]. Although simple to implement through

simulation software, achieving identical gains in practical circuits is impossible due to

component tolerances. Therefore, not only will the µ of each TM stage not be identical, but

the µ values employed in the two difference equations of the TM function will not match

either. These additional non-ideal characteristics will further affect the output accuracy of the

TM-ARCHα-7 ADC.

To notate the different gains (to be referred to as slope gains), in the TM equation, (1-2) was

modified to reflect the electronic circuit TM implementation more closely. (4-3) presents the

modified TM function (modified from (1-2) [19]).

112

 𝑥𝑛+1 = {
𝜇𝑛+𝑥𝑛

𝜇𝑛+𝑉𝑟𝑒𝑓 − 𝜇𝑛−(𝑥𝑛 − 𝑉𝑟𝑒𝑓)
 when

𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 (4-3)

Where µ+ and µ- produces the positive and negative slopes respectively, and n represents the

TM stage.

4.1.2 TM-ARCHβ-n-Rsub-ranging ADC

A more detailed block diagram of the TM-ARCHβ-n-Rsub-ranging ADC is presented in Figure 4-5.

This structure is identical to the one presented in Figure 4-1, except the final TM stage output

passes through the COTS ADC to determine the last 10-12 bits of the digital representation of

the sampled analogue input signal. The comparator outputs represent the first 7 bits of the

digital word in Gray code, while the last 10-12 bits are represented in binary code.

The TM-ARCHβ-n-Rsub-ranging ADC structure was developed as a 7 TM stage with a 12-bit sub-

ranging COTS ADC (a TM-ARCHβ-7-12 ADC) and analysed as a mathematical model in MATLAB

(developed script shown in C.3). The practical PCB implementation of the TM-ARCHα-7 ADC

structure discussed in Section 4.1.1 was also designed, (although not implemented) so the

final TM stage could be connected to a breakout board containing a THS1030 10-bit ADC

[107]. Appendix A.2 presents the schematic and list of components of the THS1030 10-bit ADC

breakout board, although due to challenges faced when testing the practical implementation

of the TM-ARCHα-7 ADC (discussed in Section 6.6), the TM-ARCHβ-n-Rsub-ranging was never

tested as a practical implementation. As an electronic implementation of this TM-based ADC

structure was not produced, the VHDL code was not amended to handle the modification.

113

Figure 4-5: TM-ARCHβ-n-Rsub-ranging ADC structure. Based on [57] and [16].

114

4.2 The Tent Map Gain Compensation Algorithms

4.2.1 The µCA-1

Figure 4-6 presents a more detailed overview of the µCA-1 presented in Section 3.2, the

fundamental concept of which was provided by Dr Peter Mather (research supervisor). This

algorithm required the partition point voltage to be halfway between the valid ADC input

range, and for the µ to be determined, and be less than 2. There was also an assumption that

the TM circuits had matching stage and slope gains.

The first part of the algorithm determines the sign of difference measure (SDM), which in turn

determines whether the precalculated compensation values (DM values) are added or

subtracted to each bit of the TM-based ADC output, using the Gray code ADC output. The

difference measure (DM) values are the equivalent deviation from the correct weighting for

each bit. The SDM values are represented as digital logic, where a '1' represents addition and

a '0' subtraction, whilst the DM values are fractional values (represented fixed point binary

values when the µCA-1 was implemented as a digital µCS system).

115

116

Figure 4-6: A more detailed flowchart of the µCA-1.

The MSB is established before the input signal goes through the first TM stage and so requires

no compensation, but the polarity of this bit establishes whether the final difference value

(DV) should be added or subtracted from the uncompensated binary code. The SDM

representing the second MSB will always be positive (logic high) as µ will be less than 2,

resulting in a DM value always being added to compensate for the equivalent weighting of

this bit. The SDM for bit 3 is dependent on whether the current TM output was produced

117

using the same TM equation as the previous bit and is derived from the XOR operation on the

Gray code output for bits 2 and 3. For the remaining bits the SDM is determined from XORing

the previous SDM bit with the current Gray code bit. If the current Gray code bit and previous

Gray code (or SDM) bit match, then the TM difference equation employed for the next TM

stage will be the same as the current TM stage, and the DM value for that bit is subtracted. If

the opposite is true, the following TM stage will use a different difference equation to the

current TM stage, and the DM value will be added. The code listing in Figure 4-7 (which relates

to stage 1 of the µCA presented in Figure 4-6) demonstrates how the SDM calculations were

implemented in MATLAB.

 %% Sign for Difference Measure (SDM)
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g, res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end

Figure 4-7: Code extract of stage 1 of µCA-1, which determines the SDM values.

The magnitude of each DM value is calculated in the second stage of the algorithm. Only bits

set to 1 (excluding the MSB which does not require compensation) in the TM-based ADC Gray

code output have DM values assigned to them. These DM values, which are the difference

between the ideal and actual weighting of each bit, are calculated using (4-4).

118

𝐷𝑀 = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × (

1

𝜇𝑖−1
−

1

2𝑖−1
) (4-4)

Where the two extremes of the valid input voltage range are denoted by Vmax and Vmin, the

TM gain by µ, and the TM-stage output being considered by i (where 1 is the MSB). The code

listing in Figure 4-8 (which relates to stage 2 of the µCA presented in Figure 4-6) demonstrates

how the SDM calculations were implemented in MATLAB.

for g = 1: 1: gain_size
 %% Ideal DM values - look up table
 VHDL_bits = resolution + 8;
 for i = 1:1:(resolution - 1)
 LUT_theory(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate
difference value
 end

[...]

 %% Difference Measure: selected for each respective gray code bit

 for i = 1: 1: length(y) %Samples of input signal
 DV_theory(1,i) = 0; %Ideal as it hasn't passed through a TM
 for res = 2: 1: resolution % gives remaining bits of DM
 if (Dout(g,res, i) > 0)
 DV_theory(res, i) = LUT_theory(res - 1);
 else
 DV_theory (res, i) = 0;
 end
 end
 end

Figure 4-8: Code extract of stage 2 of µCA-1, which determines the DM values.

The third stage of the µCA-1 sums the DM values (taking into consideration the respective

polarity represented by the SDM) to calculate the DV, which needs to be added (or

subtracted) from the binary code equivalent of the TM output. Stage four takes the ADC

output (converted to binary code) and adds/subtracts the DV to compensate for the non-ideal

µ during the data conversion process, depending on the polarity of the MSB of the ADC Gray

code output. Figure 4-9 and Figure 4-10 are code extracts relating to stages 3 and 4 the µCA

119

presented in Figure 4-6 respectively, illustrating how both theses stages were implemented

in MATLAB.

 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV_theory(res, i) = DV_theory(res, i);
 else
 SDV_theory(res, i) = -DV_theory(res, i);
 end
 end
 end

 % Determine DV
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum_theory(i) = sum(SDV_theory(:,i));
 end

Figure 4-9: Code extract of stage 3 of µCA-1, which determines the DV values.

 %% Implement correction
 %uncompensated output
 for i = 1: 1: length(y) % converting Gray-code representation of
samples, to binary
 gray_code_vector = Dout(g,:,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution %convert binary values
to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep;
 end
 output_representation(g, i) = decimal_rep ; %modify decimal
value so it lies within the input voltage range
 end
 voltage_representation(g, :) = output_representation(g, :)*(Vmax -
Vmin);
 %compensated ADC output
 for i = 1: 1: length(y) % compensate output
 if (SDM(1,i) == 1)
 corrected_output_theory(g,i) = output_representation(g,i) -
SDV_sum_theory(i);
 else
 corrected_output_theory(g,i) = output_representation(g,i) +
SDV_sum_theory(i);
 end
 end

Figure 4-10: Code extract of stage 4 of µCA-1, which shows how uncompensated ADC output is
modified using the DV values.

120

To analyse the effectiveness of this method of compensating for non-ideal µ, this µCA was

modelled in MATLAB (code listing is presented in B.2.1), and mostly tested using the data

produced from the TM-ARCHα-15 ADC MATLAB model (one test with this µCA was repeated

with a TM-ARCHα-7 ADC MATLAB model). Once the effectiveness of the algorithm had been

established the algorithm was implemented in VHDL code (implementation is given in B.5.2).

The VHDL code was used to configure an FPGA and produce a digital µCS to compensate each

data word acquired from the TM-based ADC within one clock cycle. The DM values were

precalculated, converted to binary code and stored as an array within the VHDL code,

requiring less FPGA resources than repeatedly calculating the DM values. This HDL design was

then validated using simulation, by employing digital data produced by an HDL module

emulating a TM-ARCHα-7 ADC (code listing given in B.5.4).

4.2.2 The µCA-2 and µCA-3

Enhancements were made to the µCA-1, to cope with non-matching stage µ and non-

matching µ+ and µ- (µ±) in each TM stage. This enhanced version of the µCA-1 will be referred

to as µCA-2. A further enhancement was made to µCA-2, to be referred to as µCA-3, to

accommodate the employment of a multibit, sub-ranging COTS ADC to acquire and digitise

(in binary code format) a TM output.

To compensate for varying TM stage gain, the way which the DM values were calculated was

altered. (4-5) presents the adapted function developed during this work.

121

𝐷𝑀𝑚𝑜𝑑1 = (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × ((∏

1

𝜇𝑖−1

𝑖

1

) −
1

2𝑖−1
)

= (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) × (𝐺𝐹 −
1

2𝑖−1
)

(4-5)

Where i is the current “bit” of the data word and takes into consideration the previous µstage

(represented by µi-1). The two extremes of the valid input voltage range for each TM stage are

denoted by Vmax and Vmin. The new method employs the same equation to calculate the DM

values as shown in (4-4), however
1

μi-1 is now replaced by a gain factor (GF). This gain factor is

shown in (4-6).

𝐺𝐹= ∏

1
𝜇𝑖−1

𝑖

1

 (4-6)

A further adaption was made to the gain factor (GFmod) to compensate for non-matching µ±.

(4-7) presents this modification.

𝐺𝐹𝑚𝑜𝑑(𝑖) =

{

1

𝜇+
𝑖−1
 , 𝑔(0) = 0 𝐴𝑁𝐷 𝑖 = 1

1

𝜇−𝑖−1
 , 𝑔(0) = 1 𝐴𝑁𝐷 𝑖 = 1

𝐺𝐹𝑚𝑜𝑑(𝑖 − 1) ×
1

𝜇+
𝑖−1

, 𝑔(𝑖 − 1) = 0 𝐴𝑁𝐷 𝑖 > 1

𝐺𝐹𝑚𝑜𝑑(𝑖 − 1) ×
1

𝜇−𝑖−1
, 𝑔(𝑖 − 1) = 1 𝐴𝑁𝐷 𝑖 > 1

 (4-7)

Where g(i-1) is the previous bit of the ADC Gray code output, µ+ is the rising slope gain and µ-

the negative slope gain. This results in the gain factor being produced from the relevant slope

gains employed when determining the preceding bits of the Gray code output.

122

The final adapted function to calculate the DM values is presented in (4-8). This modification

assumes the negative slope of the TM is produced by a single gain factor, as shown in (4-9)

(modified from (1-2) [19]). However the actual TM circuit implementation employs both slope

gains (see (4-3)).

𝐷𝑀𝑚𝑜𝑑2 = (𝑉𝑚𝑎𝑥 - 𝑉𝑚𝑖𝑛)*((𝐺𝐹𝑚𝑜𝑑(𝑖)) −

1

2𝑖−1
) (4-8)

𝑥𝑛+1 = {

𝜇𝑛+𝑥𝑛
𝜇𝑛−𝑉𝑟𝑒𝑓 − 𝜇𝑛−(𝑥𝑛 − 𝑉𝑟𝑒𝑓)

 𝑤ℎ𝑒𝑛
𝑥𝑛 ≤ 0.5
𝑥𝑛 > 0.5

 (4-9)

To accommodate the multibit sub-ranging COTS ADC at the output of the final TM stage of

the TM-ARCHβ-n-Rsub-ranging ADC, the output of the COTS ADC needs converting to Gray code

to match the 7 MSBs produced by the preceding comparator outputs. The compensation

algorithm then treats the digital output produced by the COTS ADC as if the bits had continued

to be produced by a series of comparators and TMs with a µstage of exactly 2.

The µCA-2 and µCA-3 were implemented in MATLAB (respective code listings presented in

C.1.1 and C.1.2) and analysed with the mathematical models of the TM-ARCHα-n and

TM-ARCHβ-n-Rsub-ranging ADCs respectively. A VHDL implementation of µCA-2 was also created

and combined with the VHDL code developed by Richard Haigh [106] to drive the physical

TM-ARCHα-7 ADC (implementation given in C.5.2). An FPGA was then configured with this

adapted design and tested with the PCB implementation of the TM-ARCHα-7 ADC.

123

4.3 Summary

This chapter discussed the implementation of the TM-ARCHα-n and TM-ARCHβ-n-Rsub-ranging

ADCs and provided additional details on how these two TM-based ADC structures operate.

The implementation and more detailed discussions on the operation of the µCA-1, µCA-2 and

µCA-3 were also given.

The TM-ARCHα-n ADC structure, where n refers to the number of TM stages within this data

converter, was implemented both as a MATLAB model and as a physical electronic device.

Two versions of this TM-based ADC structure were investigated during this work: a 16-bit

TM-ARCHα-15 ADC was modelled within MATLAB only; and 8-bit TM-ARCHα-7 ADC consisting

of 7 TM stages was modelled within MATLAB and as an HDL module, as well as being

constructed as a practical circuit. The data conversion circuitry of the TM-ARCHα-7 ADC was

constructed out of discrete components, and was connected to an FPGA development board,

which generated clock signals to control the operation of the conversion circuitry and well as

acquire and align the digital output codes from the ADC.

To achieve a higher resolution with fewer TM and comparator stages in order to improve the

conversion speed, a second TM-based ADC structure was explored. The TM-ARCHβ-n-Rsub-

ranging ADC replaced the comparator on the final TM output with a sub-ranging, COTS ADC

with a resolution of Rsub-ranging. A TM-ARCHβ-7-12 variation of this TM-based ADC structure

was only developed as a MATLAB mathematical model during this work.

The fundamental µ, µCA-1, was primarily implemented, and mainly assessed in MATLAB with

a TM-ARCHα-15 ADC model (one test was repeated with a TM-ARCHα-7 ADC model). The

124

µCA-1 was then implemented in VHDL code and validated via simulation with an emulated

TM-ARCHα-7 ADC.

The µCA-2, an enhanced version of µCA-1 which compensates for non-matching stage µ and

for non-matching µ± in each TM stage, was also assessed in MATLAB with a TM-ARCHα-15

ADC model and occasionally a TM-ARCHα-7 ADC model. The µCA-2 was then implemented in

VHDL code and validated via simulation with an emulated TM-ARCHα-7 ADC. This VHDL

implementation of the µCA-2 was then used to configure an FPGA that was part of a physical

TM-ARCHα-7 ADC, producing an embedded µCS which was then tested.

With the µCA-3, an enhanced version of the µCA-2 that accommodates for the final TM stage

being acquired, using a multibit sub-ranging COTS ADC, was implemented and analysed in

MATLAB only using digital data produced by a TM-ARCHβ-7-12 ADC model.

The next chapter analyses through MATLAB modelling, as well as through simulating HDL

implementations, how the fundamental µCA, µCA-1, affects the performance of the

TM-ARCHα-15 ADCs and TM-ARCHα-7 ADCs.

125

5 Simulated Performance Analysis of a Tent Map Based ADC with the

Fundamental Compensation Algorithm

Some of the material in this chapter was previously published in the journal paper [2].

This chapter analyses how the fundamental µCA, µCA-1, affects the performance of the

TM-ARCHα-n ADC structure, through MATLAB modelling, as well as through simulating HDL

implementations. Tests performed in MATLAB employed the 16-bit TM-ARCHα-15 ADC

(which required 15 TM stages), as the resolution of this ADC, assuming a µ = 2, meet the

specification for the UMS (discussed in Section 1.5), after taking into consideration the

potential loss of up to one bit due to quantisation error [3]. Also, the higher TM-based ADC

resolution better illustrated the effectiveness of the µCA. With the VHDL implementation of

the µCA-1 (and some tests in MATLAB), the TM-ARCHα-7 ADC model was employed, as this

TM-based ADC structure matched the one employed in the physical electronic

implementation used when later testing and assessing the µCA-2 (discussed in Chapter 6).

Sections 5.1 and 5.2 analyse the output accuracy of the MATLAB TM-ARCHα-15 ADC model,

with different µ, without and with the µCA-1 being applied to the digital output data

respectively. The output accuracy analysis consisted of three sets of tests, which were:

1. Bit accuracy predictions: established the quantisation error and the bit accuracy of the

TM-based ADC.

2. Static performance predictions: determined the DNL, end-point INL, offset error and

gain error of the TM-based ADC.

3. Dynamic performance predictions: established the SNR, SINAD, SFDR and THD

parameters of the TM-based ADC.

126

A sensitivity analysis, presented in Section 5.3 investigated the effects variations in the µ

employed by the µCA-1, compared to the µ employed by the TM-based ADC, had on the

compensated output. Section 5.4 compares the bit accuracy predictions when the µCA-1 and

the µCA developed by Basu [41, 42] were applied to a TM-ARCHα-15 ADC model.

The simulation results from the VHDL implementation of the µCA-1, developed for a

TM-ARCHα-7 ADC, are shown in Section 5.5. Section 5.6 gives the final analysis with the µCA-

1, which compares methods of approximating the difference measures (DMs) for different µ

values.

The TM-based ADC MATLAB models were configured with a 25 MHz sampling frequency and

a 0 - 3 V valid input voltage range to match the design this ADC was based on [56, 57]. All but

the dynamic performance tests (discussed later in the chapter) supplied the ADCs with a

0 - 3 V ramp input signal with a relatively low input frequency (when compared to the

sampling rate). The ramp input signal frequency was set so 2(R + 2) samples (where R is the ADC

resolution) were acquired during one ramp cycle, enabling an ideal, TM-based ADC (µ = 2) to

sample every step change within the signal. In the dynamic performance tests, faster,

sinusoidal input signals were provided.

The MATLAB scripts and VHDL developed for the tests described in this chapter are presented

in Appendix B (where the code presented in each sub-section of Appendix B corresponds to

the respective sub-section within in this chapter). Appendix D.1 also presents additional

results from the tests.

127

5.1 Uncompensated Tent Map Based ADC Output Accuracy Analysis

This section presents the output accuracy analysis undertaken to assess the effects non-ideal

µ has on the TM-ARCHα-15 ADC model, prior to being compensated by the µCA-1. With the

bit accuracy predictions test, the number of missing codes were also established, in addition

to calculating the quantisation error and the bit accuracy.

5.1.1 Bit Accuracy Predictions

Figure 5-1 presents the TM-ARCHα-15 model bit accuracy when the µ value for every TM stage

was incremented in 0.005 steps from 1.7 to 2 inclusive. A lower limit of 1.7 was chosen for

the range of µ values tested, as this was considered a large enough deviation from the ideal

value of 2 to illustrate the impact non-ideal µ had on the bit accuracy of the TM-ARCHα-15

ADC. Only µ values which produced a chaotic ADC were considered, hence why the upper µ

limit was set to 2, as when µ > 2 the TM stage outputs become unbounded which makes

recovering the initial conditions impossible. The results demonstrate that a small reduction in

µ results in a significant, exponential loss in bit accuracy, where a µ of 1.995 (point A) results

in a bit accuracy of 8.64 bits.

128

Figure 5-1: Graph illustrating the effects non-ideal µ have on bit accuracy.

Figure 5-2 illustrates the effects non-ideal µ has on the TM-ARCHα-15 ADC output and the

deviation from the ideal representation of the input signal. The set-up was the same as the

first test, however, a smaller µ range of 1.9 ≤ µ ≤ 2, and larger increments of 0.02 steps, were

employed, to better differentiate the effects of non-ideal µ. Table 5-1 summarises the

maximum absolute quantisation error, along with the number of missing codes.

129

Figure 5-2: Output response and quantisation error of the TM-ARCHα-15 ADC due to different µ.

µ 1.9 1.92 1.94 1.96 1.98 2

Maximum Absolute
Quantisation Error (LSBs)

1542.75 1253.50 940.25 634.25 321.25 1.00

Missing Codes (% of codes
available)7

39.6 34.0 23.8 16.9 7.9 0.0

Table 5-1: Maximum quantisation error between the TM-ARCHα-15 ADC output and input signal.

Figure 5-2 and Table 5-1 demonstrate a 0.02 reduction in µ resulted in an average increase of

approximately 308 LSBs in the maximum absolute quantisation error. The number of missing

codes also highlight a reasonably linear increase in missing codes as the µ value deviates from

2. The results highlight an approximate increase of 5188 missing codes per 0.02 reduction in

µ.

7 There were 65536 (216) possible digital output codes.

130

The purpose of this research was to improve the output accuracy of the TM-ARCHα-15 ADC

by compensating for non-ideal µ. Large deviations of µ from 2 (the ideal value) are not

desirable, as this results in a high volume of missing codes which cannot be compensated for

and equate to data loss. As such, subsequent analysis and test results focussed on µ values

which were kept within the range of 1.9 ≤ µ ≤ 2 (point B highlights the lower µ value being

considered in Figure 5-1), limiting the number of missing codes. Figure 5-3 presents a

histogram of the binary digital output codes produced by the TM-ARCHα-15 ADC when the µ

was 1.9 and 2. The plot highlights the gaps (which represent the missing codes) across the

range of digital codes which were produced when the µ = 1.9. The codes which were produced

by the TM-ARCHα-15 ADC, when the µ was 1.9, were observed more frequently when

compared to the codes produced by the TM-ARCHα-15 ADC with a µ of 2. The missing codes

cluster, and these clusters increase the further µ deviates from the ideal value of 2. These

clusters of missing codes are also partly responsible for the distorted digital representation,

of the ramp input signal supplied to the TM-ARCHα-15 ADC observed in Figure 5-2.

Figure 5-3: Histogram of digital codes produced by the TM-ARCHα-15 ADC with a µ = 1.9 and µ = 2.

131

5.1.2 Static Performance Predictions

To analyse the static performance of the TM-ARCHα-15 ADC with different µ, the DNL, INL,

offset error and gain error were calculated using equations (2-1) to (2-4) respectively over a

1.9 ≤ µ ≤ 2 range (increased in 0.005 increments). The INL was measured using the end-point

method (see Section 2.1.1), to provide the worse-case figure, highlighting the maximum

potential deviation the ADC output had from the ideal digital output versus analogue input

transfer function.

Figure 5-4 presents the maximum and minimum DNL and INL for each µ, along with the offset

and ADC gain error. The plots highlight how a decrease in µ affects the INL and DNL of the

TM-ARCHα-15 ADC. When µ > 1.925, the ADC is monotonic as the DNL is within the threshold

of ± 1 LSB. A fall in µ results in a linear increase and decrease of the maximum and minimum

INL respectively, at a rate of 440.5 LSBs per 0.01 drop in µ. No offset or gain error is produced

even with different µ values, because the minimum and maximum digital outputs were

produced when the respective minimum and maximum voltage inputs were supplied to the

TM-ARCHα-15 ADC.

132

Figure 5-4: Static performance test results of the TM-ARCHα-15 ADC.

5.1.3 Dynamic Performance Predictions

To analyse the dynamic performance of the TM-ARCHα-15 ADC with different µ, the SNR,

SINAD, SFDR and THD MATLAB functions were employed, which all performed an FFT to

determine the dynamic performance parameter value [108]. This test was performed to

determine how great the deviation in the SNR, SINAD, SFDR and THD values were over a range

of input frequencies, and near to the extremes of the non-ideal µ range of interest.

Initially, µ was set to 1.9 and the dynamic performance parameters were found when the

sinusoidal input signal to the ADC was set to have a frequency close to the Nyquist frequency

(12.5 MHz, this being half of the sampling frequency) as possible, whilst still meeting the

criteria given in (2-5). Therefore, for this test N was set to 262144 (218), a power of 22 higher

than the power of 2R
, whilst odd number 131071 was used for the value of M.

133

The output signal from the TM-based model was then processed by the THD, SNR, SFDR and

SINAD MATLAB functions. With the THD function, only the first five harmonics were

considered, as this is standard practise when evaluating ADC performance [7]. To assess how

the dynamic performance varies over a range of input frequencies, the test was repeated

using input frequencies which were approximately a factor of 10 lower than the previous. The

frequencies and M values employed were: 1.25 MHz (M = 13109); 125 kHz (M = 1307); 12.5

kHz (M = 131) and 1.24 kHz (M = 13). This test was then repeated with µ = 1.995.

Figure 5-5 presents the results and shows that the parameter values were approximately the

same over the range of input frequencies tested (for both µ values under test), except for the

one that was effectively the Nyquist frequency. This was due to the aliasing of the harmonics,

which had frequencies above the Nyquist frequency.

The results also supported the findings shown in the previous two sub-sections, that reducing

µ from the ideal value significantly impacts the TM-based ADC performance. The 25 dB

reduction in SNR and SINAD, over the 1.24 kHz to 1.25 MHz input frequency range, showed

the digital representation of the input sinusoidal wave produced by the TM-ARCHα-15 ADC

becomes more distorted the further the µ value deviates from 2. This increase in distortion is

highlighted by the THD plot. The SFDR plot also supports these results by highlighting the

reduced difference in magnitude between the sinusoidal input signal, reproduced by the

TM-ARCHα-15 ADC, and the first harmonic, the further the µ value deviates from 2.

134

Figure 5-5: SNR, SINAD, SFDR and THD for µ = 1.9 and µ = 1.995 over a range of input frequencies.

135

5.2 Tent Map Based ADC with the Fundamental Tent Map Gain Compensation

Algorithm Output Accuracy Analysis

This section presents the analysis undertaken to assess how the µCA-1 improves the output

accuracy of a TM-ARCHα-15 ADC model, over a range of µ values. With the dynamic

performance predictions test, the ENOB was also calculated from the established SINAD

parameter values, to establish how the input frequency also affected the number of bits for

which the ADC could accurately represent a sampled signal as a digital word.

5.2.1 Bit Accuracy Predictions

The µCA-1 was initially tested with the data produced from the TM-ARCHα-15 ADC. The test

set-up was similar to the second one described in Section 5.1.1, apart from the µCA-1 was

applied to the TM-ARCHα-15 ADC digital output data, and the compensated bit accuracy

calculated and noted.

Figure 5-6 presents the bit accuracy versus µ plot, which highlights an improvement in the bit

accuracy after compensation over the 1.9 ≤ µ ≤ 1.99 range. The average increase in bit

accuracy was 7.15 bits, with a maximum improvement of 9.45 bits. The compensated bit

accuracy also falls the further µ deviates from the ideal, due to the increase in missing codes

restricting the ability of the µCA-1 to improve the ADC output accuracy.

The top plot in Figure 5-7 compares the ADC analogue input to the equivalent output voltage,

before and after compensation, when µ = 1.9, while the bottom plot compares the

uncompensated and compensated quantisation error. Figure 5-8 presents the quantisation

error of the compensated TM-ARCHα-15 ADC output only. These plots highlight the non-

136

linear nature of TMs, and the effectiveness of the µCA-1, as both plots show how the

maximum absolute quantisation error has reduced from 1542.8 LSBs to 2.2 LSBs due to

compensation.

Figure 5-6: Bit accuracy of a TM-ARCHα-15 ADC before and after compensation using theoretical DM
values.

137

Figure 5-7: Quantisation error of a TM-ARCHα-15 ADC, before and after compensation, when µ = 1.9.

Figure 5-8: Quantisation error of a TM-ARCHα-15 ADC, after compensation, when µ = 1.9.

138

Figure 5-9 is a histogram detailing the frequency a selection of 150 of the 665536 possible

digital outputs, produced by the TM-ARCHα-15 ADC, occurred when the µ was 1.9, before and

after the µCA-1 was applied to the digital output data. The plot highlights the observed digital

codes are more evenly distributed across the range of possible output codes after

compensation, which supports the earlier findings presented in Figures 5-6 to 5-8 that the

µCA-1 helps reduce distortion caused by the clusters of missing codes in the digital signal

representation of the ramp input signal. The frequency of the observed codes after

compensation has increased, due to the µ compensation process altering certain digital

output codes and causing them to match other pre-existing digital combinations, which in

turn increases the number of missing codes. Yet the maximum absolute quantisation errors

of the respective digital codes produced by the compensated TM-ARCHα-15 ADC across the

range of µ investigated are lower prior to compensation, confirming the µCA-1 does improve

the ADC output accuracy.

Figure 5-9: A histogram of a selection of 150 digital codes which could be produced by the TM-ARCHα-
15 ADC with a µ = 1.9, before and after the µCA-1 was applied to the output data.

139

To reduce the FPGA resource requirements when creating a VHDL implementation of the

µCA-1 (see Section 5.5), the DM values were converted to binary code formant. (5-1) presents

the method employed to achieve this [109].

 𝐷𝑀𝑏𝑖𝑛𝑎𝑟𝑦 = ⌊𝐷𝑀𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 × 2
𝑟⌋ (5-1)

Where:

• r is the chosen resolution for the binary DM values;

• DMtheoretical represents the theoretical, decimal calculation (which is always less than

1) of a DM value; and

• DMbinary gives the integer value produced which can then be presented as binary code.

To find the optimal value of r that achieved the same improvement to the

TM-ARCHα-15 ADC accuracy as the theoretical DM values, the first test was repeated with

binary DM values. The r value was initially set to 17 bits and incremented until the binary DM

values reached the same levels of bit accuracy (across the observed range of 1.9 ≤ µ ≤ 2) as

the theoretical DM values.

Table D-1 in Appendix D presents the results from this test, showing that to achieve the same

improvement in the TM-ARCHα-15 ADC bit accuracy across the range 1.9 ≤ µ ≤ 2, r must be

24 bits. However, the results also highlight that TM-based ADCs with higher µ values (e.g.,

µ ≥ 1.96) can employ a lower r value (such as 18 bits), reducing the FPGA resource

requirements further due to the lower resolution DM values being stored. For the remaining

tests with the µCA-1 presented in Section 5.2, binary DM values with r values of 24 bits were

employed.

140

5.2.2 Static Performance Predictions

The static performance tests described in Section 5.1.2 were repeated on the compensated

output of the TM-ARCHα-15 ADC model. Figure 5-10 presents the maximum and minimum

DNL and INL for each µ, before and after compensation. The plots highlight how the µCA-1

reduced the magnitude of the maximum and minimum INL of the TM-ARCHα-15 ADC across

the µ range being considered (including a fall in INL of approximately 4620 LSBs when the

µ = 1.9). This is because the reconstructed ADC output signal is compensated to represent the

original input signal more closely.

The offset and gain error remained at zero after compensation (thus not plotted), as the

µCA-1 does not alter the minimum and maximum digital outputs which can be produced by

the TM-ARCHα-15 ADC. The DNL was negatively impacted by the µCA-1, as the magnitude of

both the minimum and maximum DNL increased across the considered µ range for the

TM-ARCHα-15 ADC. The TM-based ADC structure was only monotonic when µ > 1.99

(compared to the uncompensated ADC which was monotonic when µ > 1.925). This is a result

of the µCA-1 altering certain digital output codes, causing them to match other pre-existing

digital combinations.

141

Figure 5-10: Static performance of the uncompensated and compensated TM-ARCHα-15 ADC with
binary DM values (r = 24 bits).

5.2.3 Dynamic Performance Predictions

A variation in the dynamic performance tests described in Section 5.1.3 were performed on

the compensated output of the TM-ARCHα-15 ADC model. Section 5.1.3 highlighted the

dynamic performance of the TM-ARCHα-15 ADC model was similar when the input frequency

was equal to, or lower than, 1.25 MHz. Therefore, only the two highest frequencies (12.5 MHz

and 1.25 MHz) were employed in these tests. The tests were performed across the whole

1.9 ≤ µ ≤ 2 range (increased in 0.005 increments) and the ENOB was also calculated, using

(2-6), after obtaining the SINAD measurement.

Figures 5-11 to 5-15 present the results for the SNR, SINAD, SFDR, THD and ENOB respectively.

The plots highlight the improvement with these parameters after the TM-ARCHα-15 output

had been compensated using the µCA-1 over a 1.9 ≤ µ ≤ 1.995 range. The SNR, SINAD, SFDR

142

and ENOB (Figures 5-11, 5-12, 5-13 and 5-15 respectively) did worsen the more µ deviated

from the ideal value of 2, but the deterioration was less than that before the µCA-1 was

applied. There was also an improvement in the THD and SFDR across the range 1.9 ≤ µ ≤ 1.995,

although the improvement in THD was restricted when the Nyquist frequency was supplied

due to the aliasing of the harmonics further distorting the ADC output signal.

Figure 5-11: SNR plot of a TM-ARCHα-15 ADC before and after compensation.

143

Figure 5-12: SINAD plot of a TM-ARCHα-15 ADC before and after compensation.

Figure 5-13: SFDR plot of a TM-ARCHα-15 ADC before and after compensation.

144

Figure 5-14: THD plot of a TM-ARCHα-15 ADC before and after compensation.

145

Figure 5-15: ENOB plot of a TM-ARCHα-15 ADC before and after compensation.

5.3 Sensitivity Analysis of the Fundamental Tent Map Gain Compensation Algorithm

There will always be uncertainty when measuring the µ of a TM-based ADC. This will restrict

the ability of the µCA-1 to compensate for non-ideal µ because, the DM values employed will

be calculated from the measured µ value. To quantify the effects variations between the µ

values employed by the µCA-1, and the actual µ of the TM-based ADC, had on the ability of

the µCA-1 to compensate for non-ideal µ within the ADC, a sensitivity analysis was performed.

The µ of the TM-ARCHα-15 ADC (µADC) was initially set at the lowest value of non-ideal µ of

1.9 being investigated by this analysis, and the µCA-1 applied to the ADC output. The range

of µ employed by the µCA-1 (µalgorithm) had a percentage deviation (%Δ) from µADC over a range

of -2.5% ≤ µalgorithm %Δ from µADC ≤ 2.5%, in increments of 0.1 %Δ. This test was repeated with

146

a higher non-ideal µADC value of 1.99 to determine how TM-based ADCs, with higher µADC

values, were affected when the µalgorithm was not identical.

Figure 5-16 presents the results of the sensitivity analysis for µADC = 1.9 and 1.99 respectively.

Both curves highlight a sharp roll-off in compensated bit accuracy when µalgorithm deviated

from µADC by ± 0.1 % (there was a reduction from 13.42 to 9.91 bits when µADC = 1.9 and from

14 to 9.91 bits when µADC = 1.99). The rate of reduced improvement to bit accuracy was

reduced for the lower µADC, but the difference in bit accuracy between the two µADC values for

the same µalgorithm deviation remained less than 0.06 bits.

Figure 5-16: Sensitivity analysis results from a TM-ARCHα-15 ADC when µADC = 1.9 and µ = 1.99.

A small deviation in µalgorithm from µADC results in a significant reduction in the improvement to

the TM-ARCHα-15 ADC output accuracy. This rapid reduction is undesirable, as there is

uncertainty when measuring the µADC of an electronic implementation of a TM-based ADC.

147

The electronic implementation of the TM-ARCHα-7 ADC, which the enhanced version of

µCA-1 was being tested with (see Section 6.6 of the next chapter), had an 8-bit resolution.

The sensitivity analysis was repeated for an TM-ARCHα-7 ADC, so the effects uncertainty in

measuring the µADC have on the ability of the µCA-1, to compensate for non-ideal µ within a

lower resolution TM-based ADC, could be determined. The test procedure was identical to

the one performed on the TM-ARCHα-15 ADC.

Figure 5-17 presents the results. The reduction in improved bit accuracy is more gradual for a

lower resolution TM-based ADC. The maximum µalgorithm can deviate from µADC to maintain the

highest bit accuracy is -0.5 % to +0.6 %, when µADC = 1.9, and -0.8 % to +0.9 %, when

µADC = 1.99. Unlike the TM-ARCHα-15 ADC, a higher µADC resulted in a less acute reduction in

bit accuracy for the TM-ARCHα-7 ADC.

Figure 5-17: Sensitivity analysis results from a TM-ARCHα-7 ADC.

148

5.4 Comparison with the Tent Map Gain Compensation Algorithm by Basu

The effectiveness of the µCA-1 from this research project was compared with that developed

by Basu [41, 42] using the MATLAB code provided in [41]. This was to confirm that the lower

number of computational resources, employed by the µCA-1, did not diminish the ability to

improve the TM-based ADC output accuracy, when compared to the µCA by Basu [41, 42].

Figure 5-18 is a graph comparing the bit accuracy of the TM-ARCHα-15 ADC model over a

1.9 ≤ µ ≤ 2 range compensation, with compensation using the µCA-1, and with compensation

using the µCA developed by Basu [41]. The results show that the µCA-1 achieves identical

performance, in regard to improving the bit accuracy of the ADC, when compared to the µCA

developed by Basu [41, 42]. The µCA by Basu determined the compensation values using

iterative calculations involving division, which is computationally resource intensive [62].

Meanwhile, the µCA-1 determines the compensation values by adding pre-calculated DM

values, which requires less computational resources, and can be implemented as a single

digital system (as proven in the following section) to compensate the output data of a

TM-based ADC prior to being transmitted.

149

Figure 5-18: Comparing µCA performance on the TM-ARCHα-15 ADC model.

5.5 VHDL Implementation of the Fundamental Tent Map Gain Compensation

Algorithm

A VHDL implementation of a µCS, comprising of the µCA-1, was developed for a TM-ARCHα-

7 ADC with a µADC = 1.9. This VHDL implementation, which could configure the same FPGA

used to coordinate the operation of a TM-ARCHα-7 ADC, was assessed via simulation to prove

a µCS comprising the µCA-1 could be embedded within a TM-based ADC and perform real-

time compensation.

The µCA-1 was implemented such that the compensation was applied to the converted

TM-ARCHα-7 ADC sample before the next input sample was converted to binary, delivering

real-time compensation for non-ideal µ. The DM values, used by the µCA-1 for each bit, were

precalculated using (4-4), converted to binary using (5-1), and hard coded as an array within

the VHDL code. This was to reduce FPGA resource requirements, so the DM values were not

150

repeatedly calculated within the µCS. The r value was set to 10 bits, as tests show that this

value achieves the same improvement in bit accuracy, for an TM-ARCHα-7 ADC, as using

theoretical DM values (see Table D-2 in Appendix D).

A practical TM-ARCHα-7 ADC signal emulator, developed in VHDL to test the µCA-1, mimicked

the ADC sampling and outputting of the acquired data. The signal emulator generated an

equivalent output to a practical TM-ARCHα-7 ADC, with µADC = 1.9, when supplied with a ramp

input signal.

A test bench VHDL program was also developed to write and save the uncompensated and

compensated values from the implemented µCA-1 into two separate texts files during

simulation (using the ModelSim FPGA software). Figure 5-19 and Figure 5-20 show how these

VHDL components were connected for simulation.

Figure 5-19: Testing the ADC output without applying the µCA-1.

151

Figure 5-20: Testing the ADC output with the µCA-1.

Figure 5-21 presents a graph of the quantisation error of the simulated TM-ARCHα-7 ADC

VHDL module, with, and without, the applied µCA-1. Figure 5-21 highlights the implemented

µCA-1 reduced the maximum quantisation error from 6 bits to 1 bit, thus enhancing the bit

accuracy of the model TM-based ADC from 4.19 bits to 6 bits. In addition, the µCA-1 was

performed on each newly acquired sample of the input signal while the next sample was

obtained, confirming that real-time compensation of non-ideal µ is possible.

Figure 5-21: Quantisation Error of the TM-ARCHα-7 ADC VHDL model before and after compensation.

152

5.6 Approximating Difference Measure Values for the Fundamental Tent Map Gain

Compensation Algorithm

The focus of this research was to compensate for non-ideal µ, within a practical TM-based

ADC, using an embedded compensation system. This work could be taken further by

producing a self-calibrating TM-based ADC, which monitors the inevitable drifts in µADC

overtime (drifting is due to the resistors which alter the µ values, over time, and with

temperature [61]) by estimating the change from the ADC output and then applying

compensation to the digital output.

The µCA for a self-calibrating TM-based ADC needs the DM values to be calculated within the

FPGA requiring complex division performing circuitry [110]. This is especially the case for

higher resolution TM-based ADCs as the quantity (and resolution) of DM values to be

calculated increases. Therefore, a comparison of two methods to approximate the DM values,

which were more resource efficient, was performed.

The first method, referred to as the Straight-line and Error Approximation (and abbreviated

to SL&EA), involved taking a straight-line approximation of the ideal DM values, calculated

using (4-4), versus µ curves (over a 1.9 ≤ µ ≤ 2.0 range) for each bit. The gradients of the

straight-line approximations were calculated using the end points of the DM versus µ plots

(as shown in Figure 5-22 for the LSB) as this approach was found to achieve closer

approximations of the DM values than estimating the gradient using a line of best fit. The

constant for the main straight-line approximation was determined using the DM values when

µ = 2.

153

Figure 5-22: Establishing straight-line approximation of the LSB DM values.

The difference between the approximated and ideal DM values were then determined to

calculate the errors. Two straight-line approximations of the error versus µ curves were also

taken and added to the first straight-line approximation to improve accuracy. The constant

value chosen for both straight-line approximations of the error was the error value at the mid-

range µ (µ = 1.95).

Figure 5-23: Establishing straight-line approximation of the LSB error values.

154

The second method, referred to as the scalar approximation method (and abbreviated to SA),

involved taking the ideal DM values for a chosen µ (µo) and multiplying by a scalar value

determined using (5-2).

 Scalar = 1 −
μC − μo
2 − μo

 (5-2)

Where µc is the actual gain of the TM circuit and µo is the gain employed in the ideal DM

determined from (4-4). The fundamental concept of (5-2) was provided by Dr Peter Mather

(research supervisor).

Both the SL&EA and SA methods were tested over a 1.9 ≤ µ ≤ 1.99 range in 0.01 increments.

The SA method was tested using the µo value of 1.95, as this value was the mid-point of the

µ range employed in the test. The test outlined in Section 5.2.1 was repeated using these two

methods to approximate the DM values and Figure 5-24 presents the results. In this test, the

DM values were not converted to binary as the focus was to analyse the effectiveness of the

approximation methods. Overall, the SL&EA method attained the most accurate results,

although the SA method (which requires fewer FPGA resources) achieved identical

performance when µ ≥ 1.94.

155

Figure 5-24: Results from DM approximation tests.

5.7 Summary

This chapter analysed through MATLAB modelling, as well as through simulating HDL

implementations, how the fundamental µCA, µCA-1, affected the performance of the

TM-ARCHα-15 ADCs and TM-ARCHα-7 ADCs.

The output accuracy analysis of the uncompensated TM-ARCHα-15 ADC highlighted an

increase in the maximum absolute quantisation error of approximately 308 LSBs per 0.02

deviation in µ from the ideal value of 2. There was also a linear increase of around 5188

missing codes per 0.02 decrease in µ. A small deviation of -0.25 % from the ideal µ also

resulted in a drop in bit accuracy (the minimum number of bits for which an ADC can

accurately represent an analogue input as a digital word) from 15 bits to 8.64 bits. This

consistently significant reduction in the TM-ARCHα-15 ADC output accuracy, as the µ deviates

further from the ideal value of 2, was also observed with the static performance and dynamic

performance tests.

156

A noticeable improvement in the output accuracy of the TM-ARCHα-15 ADC model was

observed after the µCA-1 processed the digital output data. The average bit accuracy

increased from 5.52 to 13.94 bits over a 1.9 ≤ µ ≤ 1.99 range, and the maximum INL error was

reduced by approximately 4618 LSBs when the µ = 1.9. The dynamic performance parameters

also highlighted an improvement in the ADC output accuracy. Only the static performance

parameter DNL was found to have been negatively affected by the µCA-1. This was because

the µCA-1 modified some digital output codes to other binary values, which increased the

range of analogue voltages associated with certain digital codes. Even after compensation for

non-ideal µ, the TM-ARCHα-15 ADC output accuracy deteriorated the further µ deviated from

the ideal, due to the increased distortion of the equivalent uncompensated output signal and

volume of missing codes. Therefore, with practical implementations of TM-based ADCs, the

closer µ is to 2, the better output accuracy which can be achieved after compensation.

The µCA-1 was also proven to be as effective as the µCA developed by Basu [41, 42] with no

difference in the bit accuracy of the compensated TM-ARCHα-15 ADC output. The advantages

of the µCA-1 were the reduction in the required computation resources and the ability of

being implemented as a single digital system to compensate the output data of a TM-based

ADC in real-time prior to being transmitted. This latter point was confirmed by simulation of

a VHDL implementation of the µCA-1.

This work could be taken further by producing a self-calibrating TM-based ADC, which

monitors the inevitable drifts in µADC overtime (the drift being due to the resistors which

altered the µ values, over time, and with temperature [61]) by estimating the change in µ

from the ADC output and then applying compensation to the digital output. The µCA for a

self-calibrating TM-based ADC requires the DM values to be calculated within the FPGA,

157

requiring complex division performing circuitry [110] which will increase resource

requirements, especially with higher resolution designs. Therefore, a comparison of two

methods to approximate the DM values for µCA-1, which were more resource efficient, was

performed. The results showed the method providing the maximum improvement in the

TM-ARCHα-15 ADC bit accuracy across the 1.9 ≤ µ ≤ 2 range, was the SL&EA method.

However, the SA method, which requires fewer FPGA resources, achieved identical

performance when the µ ≥ 1.94. Therefore, the SA method is better to implement if the non-

ideal µ of the TM-ARCHα-15 ADC is greater than 1.94.

The next chapter analyses the enhanced µCAs, µCA-2 and µCA-3, through MATLAB modelling.

The TM-ARCHα-15 ADC and TM-ARCHα-7 ADC models are employed with the µCA-2 analysis,

while a TM-ARCHβ-7-12 ADC model is used to assess the µCA-3. A VHDL implementation of

the µCA-2 is also assessed via simulation using a TM-ARCHα-7 ADC structure, then tested

through practical experiments.

158

6 Performance Analysis of Tent Map Based ADCs with the Enhanced

Compensation Algorithms

This chapter analyses the enhanced µCAs (µCA-2 and µCA-3) through MATLAB modelling. A

VHDL implementation of the µCA-2 is also assessed, firstly via simulation, and then tested

through practical experiment.

Section 6.1 details the bit accuracy analysis of the µCA-2 and µCA-3, developed to take into

account non-matching slope gains (µ+ and µ-) for each TM stage (µ±stage), and the incorporation

of a multibit, sub-ranging COTS ADC at the final TM stage output, respectively. Sensitivity

analysis of the µCA-2 and µCA-3 compensated, TM-based ADC outputs are then presented in

Section 6.2.

Section 6.3 details the output accuracy analysis of the TM-ARCHβ-7-12 ADC MATLAB model,

utilising the enhanced compensation algorithm µCA-3. Section 6.4 then details the noise

analysis performed on the same MATLAB model.

Finally, the simulation results from the µCA-2 VHDL implementation, developed for a

TM-ARCHα-7 ADC, are presented in Section 6.5. Section 6.6 then provides the test results

from the electronic implementation of TM-ARCHα-7 ADC with an embedded µ compensation

system (µCS) that comprises the µCA-2.

Three TM-based ADC structures were employed in analysing the enhanced µCAs. Initially, the

16-bit TM-ARCHα-15 ADC (which required 15 TM stages) was used to assess the effectiveness

µCA-2 (Section 6.1.1) in compensating for non-matching µ±stage, as the higher TM-based ADC

resolution better highlighted the improvement in output accuracy. For the remaining

simulation tests with µCA-2, the TM-ARCHα-7 ADC model was employed, as this structure

159

matched the physical electronic implementation. With assessing the µCA-3, which was

developed to accommodate a multibit sub-ranging ADC digitising the final TM stage output,

a model of the TM-ARCHβ-7-12 ADC was employed.

Table 6-1 presents the test conditions of the TM-based ADC models employed in the MATLAB

analysis. All the tests performed in MATLAB, except for a dynamic performance prediction

test (Section 6.3.3), supplied the TM-based ADC model with a 0 - 3 V ramp input signal with

the frequency set so 2(R + 2) samples were acquired for one ramp cycle. This relatively low ramp

rate (when compared to the sampling frequency) would enable an ideal, TM-based ADC

(µ±stage = 2) to sample every step change within the signal.

Test Conditions of MATLAB Models Reason for Test Condition

Sampling frequency = 25 MHz Inherited from the underlying TM-based ADC
structure [56, 57] and matched those of the
electronic TM-ARCHα-7 ADC implementation. Valid input voltage range = 0 - 3 V

µ±stage values = random values over a
1.9 ≤ µ ≤ 1.99 range chosen by the
rand() function in MATLAB

Range of µ chosen to be consistent with tests
presented in Chapter 5. Random values chosen to
prove the enhanced µCAs could compensate for
non-matching µ±stage values.

Resolution of Difference Measure
(DM) values = non-integer decimal
representation of the DM values was
employed.

The DM were not converted to binary code
format as the focus was to determine how the
µCA-2 and µCA-3 improved the digital output bit
accuracy of the TM-based ADCs.

Table 6-1: Summary of test conditions used in the MATLAB analyses.

The simulated and physical TM-ARCHα-7 ADC, for testing the VHDL implementation of the

µCA-2, had mostly identical test conditions. The key difference was the DM values being

converted to a binary format. With the VHDL simulation and practical testing, binary DM

values with an r value of 10 bits were chosen as previous tests showed this r value achieved

160

the same improvement in bit accuracy for an TM-ARCHα-7 ADC as using theoretical DM values

(see Table D-2 in Appendix D).

The MATLAB and VHDL code developed for the performance analysis is provided in Appendix

C (where the code presented in each sub-section of Appendix C corresponds to the respective

sub-section within in this chapter). Meanwhile, Appendix D.2 presents key data obtained

during the practical implementation analysis presented in Section 6.6.

6.1 Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain Compensation

Algorithms

This section presents the bit accuracy predictions determined when testing the µCA-2 and

µCA-3. The tests assessed whether the enhanced µCAs compensated for non-matching stage

µ (µstage) and non-matching µ±, as well as the employment of a multibit, sub-ranging COTS ADC

at the TM-based ADC output.

A more complex model of the TM-based ADCs, than was employed in Chapter 5, was

implemented in MATLAB. This model took into consideration non-matching µ±stage, as well as

the effects the power supply voltage may have on the TM circuits. The TM stages were

implemented as shown in (4-9), to assess the enhanced µCA’s ability to compensate for non-

matching µ±stage. Section 6.2.1 presents the analysis on the µCA-2 using the TM-ARCHα-15

ADC model, while Section 6.2.2 gives the results for the µCA-3 with the TM-ARCHβ-7-12 ADC

model.

161

6.1.1 Analysis of the µCA-2: Varying TM-stage Gain and Varying TM-slope Gain

For this test, the µCA-2 was applied to the TM-ARCHα-15 ADC output data, to compensate for

non-ideal µ±stage, and the uncompensated and compensated bit accuracies were noted. The

test was performed 100 times with different random µ± combinations for each TM stage.

The µCA-2 was found to be effective at compensating for µ±stage within the TM-ARCHα-15 ADC

model. With this test, the bit accuracy was consistently increased to 14 bits (which equated

to an improvement from the uncompensated bit accuracy of 9 to 10 bits). Figure 6-1 presents

the quantisation error versus input voltage plots for the final test, which illustrates the

dramatic reduction in absolute quantisation error, which went from 1184.5 LSBs

uncompensated to 1.7 LSBs after compensation.

Figure 6-1: Comparison of quantisation error for TM-ARCHα-15 ADC model (with different slope gains)
before and after compensation with the µCA-2.

162

6.1.2 Analysis of the µCA-3: Sub-ranging ADC Acquiring TM Stage Output

The TM-ARCHβ-7-12 ADC was then modelled and tested with the µCA-3. The same methods

discussed in Sections 6.1.1 were employed to configure the non-matching µ±stage. Also, each

of these tests were repeated 10 times with different random combinations of µ±stage, as a

higher number of combinations exceeded the resource capacity of MATLAB.

Figure 6-2 presents the quantisation error versus input voltage plot of the TM-ARCHβ-7-12

ADC, for the final set of tests performed, before and after the µCA-3 was applied to the output

digital data. The maximum absolute quantisation error was again found to have significantly

reduced from 1184.5 LSBs, uncompensated to 1.6 LSBs after compensation. The results

demonstrated that the µCA-3 was capable of consistently increasing the TM-ARCHβ-7-12 ADC

bit accuracy to 17 bits for all 10 tests, from an uncompensated bit accuracy range of 4 to 6

bits.

Figure 6-2: Quantisation error of the TM-ARCHβ-7-12 ADC model ((4-9) TM implementation with
different µ±stage) before and after compensation.

163

6.2 Sensitivity Analysis of the Enhanced Tent Map Gain Compensation Algorithms

Section 6.1 highlights the effectiveness of µCA-2 and µCA-3 at compensating for µ±stage.

However, the negative slope circuitry of the electronic TM function implementation (as

shown by (4-3)) uses both µ+ and µ-. This results in a Vref(µ+ - µ-) offset (where Vref is the

partition point voltage) being introduced by the TM stage, then often amplified and

reintroduced by successive TM stages. For the µCA-2 and µCA-3 to be effective with this TM

implementation, there had to be a limit on the variation between the µ±stage.

The following two sub-sections present the sensitivity analysis tests performed to determine

the maximum difference that could occur between µ±stage, as well as how much the µ±stage

employed by the µCA-2 and µCA-3 could deviate from µADC, for both the TM-ARCHα-7 and

TM-ARCHβ-7-12 ADCs. For the TM-ARCHβ-7-12 ADC, the bit accuracy of the compensated

output needed to be at least 15 bits, to meet the UMS application specification (see Section

1.5). For the lower resolution TM-ARCHα-7 ADC, the purpose of the analysis was to establish

the maximum difference between µ±stage, as well as how much the µ±stage employed by the

µCA-2 could deviate from µADC before the maximum possible compensated bit accuracy

started diminishing.

164

6.2.1 Deviation Between µ± Within the ADC

This sensitivity analysis investigated what the maximum difference between µ±stage could be

for the TM-ARCHβ-7-12 ADC to achieve a bit accuracy of 15 bits, after the µCA-3 had been

applied to the digital output data. The maximum difference between µ±stage for the lower

resolution TM-ARCHα-7 ADC, used for testing the μCA-2, before the maximum possible

compensated bit accuracy started diminishing was also established.

With testing the TM-ARCHβ-7-12 ADC, the µ- values deviated from the µ+ for each TM stage

over a range of -0.2 x 10-3 ≤ Δµ+ ≤ + 0.2 x 10-3 (where Δµ+ defines the deviation from µ+) in

increments of 10 x 10-6. For the TM-ARCHα-7 ADC, the set-up was identical, except the µ-

values deviated from the µ+ for each stage over a range of -0.1 ≤ Δµ+ ≤ + 0.1, in increments of

0.1 x 10-3, as lower resolution TM-based ADCs are less sensitive to µ deviations.

Figure 6-3 and Figure 6-4 present the sensitivity analysis results for the TM-ARCHβ-7-12 ADC

and TM-ARCHα-7 ADC respectively. The results highlight that the higher resolution

TM-ARCHβ-7-12 ADC is more sensitive to deviation between µ±, despite an ideal ADC (rather

than a series of additional TM stages) being employed to determine the last 12 bits of the

digital output. This is because the COTS ADC is considered an ideal TM-based ADC by the

µCA-3, thus the output of the 7th TM stage of the TM-based ADC is still effectively being

amplified by multiples of 2. This results in the deviation from the ideal TM output becoming

more pronounced with higher resolution TM-based ADCs.

165

Figure 6-3: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHβ-7-12 ADC.

Figure 6-4: Sensitivity analysis of TM stage slope gain deviation within the TM-ARCHα-7 ADC.

For the UMS application the TM-ARCHβ-7-12 ADC needs to have a minimum bit accuracy of

15 bits. From the results presented in Figure 6-3, the maximum amount µ- can deviate from

166

µ+ is ± 50 x 10-6. For the TM-ARCHα-7 ADC to maintain the maximum bit accuracy of 6 bits

after compensation, the maximum µ- can deviate from µ+ is -0.0133 ≤ Δµ+ ≤ +0.0283 (see

Figure 6-4).

6.2.2 Deviation in µ± Employed by µCA-2 and µCA-3

Two sensitivity analysis tests to assess how accurately the µ±stage needed to be determined for

the µCA-2 and µCA-3, in order for the µCS to still be effective, were also performed (similar

to the sensitivity analysis discussed in Section 5.3). The first test was for the TM-ARCHβ-7-12

ADC with the µCA-3, whilst the second test was for the TM-ARCHα-7 ADC with the µCA-2.

For the TM-ARCHβ-7-12 ADC, the µ+ for the first 7 TM stages were again generated using the

rand() function within the range 1.9 < µ+ < 1.99. The extent the µ- values could deviate from

the µ+ values were also generated by the rand() function and the range of deviation was set

to ± 50 x 10-6, based on the results presented from the previous sub-section. With the

TM-ARCHα-7 ADC the set-up was identical except the range µ- could deviate from µ+ from

was -0.0133 ≤ Δµ+ ≤ 0.0283.

The µ± values employed by the µCA-3 (µ±algorithm) originally deviated from the actual µ± values

of the TM-ARCHβ-7-12 ADC (µ±ADC) by -0.1 %. The bit accuracy of the compensated

TM-ARCHβ-7-12 ADC output was then recorded. The deviation of µ±algorithm from µ±ADC was

then incremented by 0.001 % until the final deviation was +0.1 %. With the TM-ARCHα-7 ADC,

the test procedure was identical except the range of deviations was increased to ±2 % for the

µCA-2.

167

Figure 6-5 and Figure 6-6 present the bit accuracy versus deviations from µ±ADC plots for the

TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC respectively. With the TM-ARCHβ-7-12 ADC

(Figure 6-5), the maximum amount the µ±algorithm values could deviate from the µ±ADC values is

-0.001 % to +0.003 %, in order to improve the uncompensated ADC output bit accuracy to 15

bits and meet the UMS specification. For the TM-ARCHα-7 ADC to achieve a bit accuracy of 6

bits after compensation, the maximum deviation is -0.491 % to +1.167 %. The results also

show that the higher resolution TM-ARCHβ-7-12 ADC is still more sensitive to deviations

between µ±algorithm and µ±ADC, despite an ideal ADC determining the last 12 bits, compared to

a series of cascaded comparators and TM stages.

Figure 6-5: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHβ-7-12 ADC.

168

Figure 6-6: Sensitivity analysis of µ±algorithm deviating from µ±ADC for the TM-ARCHα-7 ADC.

6.3 Simulated Output Accuracy Analysis of the Adapted Tent Map Based ADC with the

Enhanced Tent Map Gain Compensation Algorithm

The initial model of the TM-ARCHα-n ADC presented in Chapter 5 was refined to take into

consideration the following non-ideal characteristics of the physical implementation of both

the TM-ARCHα-n ADC and TM-ARCHβ-n-Rsub-ranging ADC structures:

• Non-matching µstage;

• Non-matching µ±;

• The negative slope of each TM stage being created by both slope gains µ+ and µ- (as

highlighted in (4-3));

• A multibit sub-ranging COTS ADC being added to the final TM stage (TM-ARCHβ-n-Rsub-

ranging ADC only); and

169

• The external hysteresis added to the comparators, which was set to be ± half a step

size.

With the exception of the external hysteresis and the negative slope of each TM stage being

created by both µ±, all the above characteristics were considered in the TM-based ADC models

employed in Sections 6.1.2 to 6.2.2. This section presents the output accuracy analysis of the

TM-ARCHβ-7-12 ADC model, which takes into consideration all the above non-ideal

characteristics, and the µCA-3.

The analysis investigates the improvement in bit accuracy, as well as the changes in static and

dynamic performance, after applying the µCA-3 to the digital output data from the

TM-ARCHβ-7-12 ADC model and assesses whether this TM-based ADC structure met the UMS

specification. Three sets of analysis tests were performed on the TM-ARCHβ-7-12 ADC, which

were:

1. Bit accuracy predictions: confirmed bit accuracy is greater than, or equal to, 15 bits,

after the µCA-3 is applied to the digital output data of the TM-ARCHβ-7-12 ADC.

2. Static performance predictions: analysed the static performance of the TM-ARCHβ-7-

12 ADC before and after compensation, by determining the DNL, INL, offset error and

gain error.

3. Dynamic performance predictions: examined the dynamic performance of the

TM-ARCHβ-7-12 ADC, before and after compensation, by determining the SNR, SINAD,

SFDR, THD and ENOB.

Based on the results obtain in the sensitivity analysis in Section 6.2.1, the maximum deviation

between µ- from µ+ for each TM stage was set to ± 50 x 10-6. With the dynamic performance

170

tests, faster sinusoidal input signals of 12.5 MHz and 1.25 MHz were provided (this selection

being consistent with the tests presented in Section 5.2.3).

6.3.1 Bit Accuracy Predictions

The analysis performed on the most refined TM-ARCHβ-7-12 ADC model with the µCA-3, was

similar to that presented in Section 6.1.2. With this analysis, only one test was performed, as

previous tests suggested that the final bit accuracy after compensation was consistent.

Figure 6-7 presents the quantisation error in terms of LSBs before and after compensation,

and Figure 6-8 presents the quantisation error after compensation only. The plot highlights

the significant improvement in the TM-ARCHβ-7-12 ADC output accuracy in terms of

representing the original input signal. The bit accuracy of the TM-ARCHβ-7-12 ADC increases

from 5.81 bits to 15.68 bits (due to a reduction in the maximum absolute quantisation error

from 4657 LSBs to 4.7 LSBs), showing the µCA-3 enabled this TM-based ADC design to meet

the specification for the UMS application.

171

Figure 6-7: Quantisation error of the refined TM-ARCHβ-7-12 ADC model before and after
compensation.

Figure 6-8: Quantisation error of the refined TM-ARCHβ-7-12 ADC model after compensation.

172

6.3.2 Static Performance Prediction

The same procedure detailed in Sections 5.2.2 was employed when establishing the DNL, INL,

offset error and gain error of the TM-ARCHβ-7-12 ADC output digital data before and after

compensation. The µCA-3 produced a significant reduction in magnitude with the maximum

and minimum end-point INL error of approximately 13956 LSBs (the minimum INL went from

-13971 LSBs to -14.25 LSBs, and the maximum INL fell from 13967.25 LSBs to 12 LSBs). This

agrees with the results observed in the previous sub-section, as both bit accuracy and INL are

a measure of how well the realised ADC output matches the ideal output. The offset error

and gain error were both 0 LSBs before and after compensation, thus being unaffected by the

non-ideal characteristics explored in this test.

With the maximum and minimum DNL error, a slight increase was observed for the maximum

DNL error after compensation from 0.25 LSBs to 1.25 LSBs (the minimum DNL was maintained

at -0.75 LSBs). As with the results observed in Section 5.2.2, this was due to the µCA-3 altering

certain digital output codes to other binary values. However, the rate which the DNL

increased was less than that observed in Section 5.2.2, despite the TM-ARCHβ-7-12 ADC

having the higher resolution of 19 bits compared to the 16-bit TM-ARCHα-15 ADC model

employed in the earlier test. This is because the COTS ADC acts as an ideal, 11 stage TM-based

ADC, so the µ of these equivalent TM stages is 2 (whilst the µ of the first 7 stages was < 2).

The high number of TM stages with a µ = 2 resulted in the DM values calculated for this TM-

ARCHβ-7-12 ADC being smaller in value than those calculated for the TM-ARCHα-15 ADC in

Section 6.1.1. Smaller DM values resulted in lower DV values, which in turn reduced the

probability of the compensation values modifying those digital output codes to match other

pre-existing digital combinations and resulted in a smaller increase in DNL.

173

6.3.3 Dynamic Performance Predictions

For this test the same procedure as described in Sections 5.2.3 was employed to find the

dynamic parameters of the uncompensated and compensated ADC output. Different values

for M and N were used to create the input frequency (see (2-5) in Section 2.1.2) due to higher

resolution of the TM-ARCHβ-7-12 ADC. N was set to 209712 (N=2(R+2), where R equals 19 bits),

while M was configured to 104851 and 1048573 which produced input frequencies of

1.25 MHz and 12.5 MHz respectively.

Figure 6-9 presents the results, before and after compensation, for the SNR, SINAD, SFDR and

THD. The results highlight an increase in magnitude for all four of these parameters after the

µCA-3 had been applied. This shows that the µCA-3 improved the performance of the TM-

ARCHβ-7-12 ADC, as the ratio between the main output signal and noise distortion had

increased, meaning the fundamental signal was more prominent than the noise and

distortion, as the compensated signal more closely represents a sinusoidal signal. The

improvement in THD was restricted when the Nyquist frequency was supplied due to the

aliasing of the harmonics further distorting the ADC output signal.

The improvement in ENOB was found to have increased from approximately 6.5 bits to 16 bits

for both input frequencies. These results confirm that the µCA-3 enables the TM-ARCHβ-7-12

ADC to meet the specification for the UMS over the required signal bandwidth, which requires

the ADC to have a minimum resolution of 15 bits with input frequencies of up to 5 MHz.

174

Figure 6-9: SNR, SINAD, SFDR and THD before and after compensation.

175

6.4 Noise Analysis Simulation

Internal noise within chaotic ADCs effects the performance more noticeably at higher

resolutions [103]. Noise can be caused by: distortion in sampling circuits; output referred

noise of each TM caused by internal noise of the TM circuit (e.g. thermal noise); long term

drifts of circuit component parameters; and input noise [103]. Dominant errors are input

noise and output referred noise, as techniques have been developed that reduce distortion

within sampling circuits [111] as well as for estimating variation within the gains due to

component long term drift, [112] which in turn enable µ compensation [2, 41, 42, 113] making

these other two noise sources negligible [103].

For this reason, a simple analysis on the additional effects noise might have on the

TM-ARCHβ-7-12 ADC output accuracy was performed. Figure 6-10 presents a block diagram

summarising the set-up employed for the noise analysis. Noise was injected onto the input

signal to the TM-ARCHβ-7-12 ADC (by superimposing white gaussian noise on the signal of

interest), as well as onto the output signals of each TM stage. No noise was injected within

the COTS ADC model as this was being simulated as an ideal ADC. The same magnitude of

noise, which ranged from 0 to 4 step sizes (a step size is the equivalent of 1 LSB [38]) and was

incremented in 0.5 step sizes, was superimposed on each signal of interest within the

TM-ARCHβ-7-12 ADC model. To simplify modelling, output referred noise of each TM stage

was modelled to have the same magnitude as the input noise.

176

Figure 6-10: Block diagram of noise analysis test set-up.

The results demonstrated that even the addition of half a step size of noise reduces the

improvement in bit accuracy after compensation from 15.7 to 15.4 bits. However, the

compensated bit accuracy still met the UMS specification (≥ 15 bits), until the noise level

exceeded 2 step sizes. Also, the uncompensated bit accuracy was unaffected by the noise

range being investigated (consistently being 5.81 bits to 2 d.p.), showing that non-ideal µ has

the more pronounced effect on the ADC output accuracy than noise across this noise range.

177

6.5 VHDL Implementation of an Enhanced Tent Map Gain Compensation Algorithm

A VHDL implementation of a µCS, comprising of the µCA-2, was implemented in VHDL code,

as the plan was to initially test a TM-ARCHα-7 ADC, which has a comparator, instead of a sub-

ranging COTS ADC, on the final TM stage. This µCS, developed to configure the same FPGA

being employed to coordinate the operation of a TM-ARCHα-7 ADC, was tested using the

same method to that detailed in Section 5.5.

A MATLAB script was used to select seven random µ+ values between 1.9 and 1.99 (one for

each TM stage). The corresponding µ- values for each TM stage were also generated at

random and were configured to fall within the range of -0.0133 ≤ Δµ+ ≤ +0.0283 (based on the

maximum limits found from tests detailed in Section 6.2.1). The TM-ARCHα-7 ADC VHDL

model (described in Section 5.5) was modified to emulate the predicted output, when

comprising the generated µ±stage values and supplied a ramp input signal. The DM values, used

by the µCA-2 for each bit were also calculated from the generated µ±stage values using (4-8),

converted to binary, and hard coded as an array within the VHDL code.

Figure 6-11 presents a graph of the simulated VHDL module quantisation error, with and

without compensation. The results show the implemented µCA-2 enhanced bit accuracy of

the VHDL TM-ARCHα-7 ADC model, which increased from 5.42 bits to 6 bits. In addition, the

µCA-2 processed each newly acquired sample of the input signal, while the next sample was

obtained, confirming that real-time compensation of non-ideal and non-matching µ±stage was

still achievable with the µCA-2.

178

Figure 6-11: Quantisation error of the TM-ARCHα-7 ADC VHDL model before and after compensation.

6.6 Practical Implementation of a Tent Map Based ADC with an Embedded Tent Map

Gain Compensation System

The µCS comprising the µCA-2 was tested with a physical, electronic implementation of a

TM-ARCHα-7 ADC to confirm that real-time µ compensation was achievable. The VHDL

implementation of the µCA-2 configured the same FPGA which was being used as part of an

electronic implementation of the TM-ARCHα-7 ADC.

Appendix A.1 presents the schematic and list of components for the physical implementation

of the TM-ARCHα-7 ADC. Initially the resistors which produced ΔR1, ΔR2 and ΔR3 (see (4-2))

were set to 0 Ω, before being changed to bring the µ±stage below 2. The sensitivity analysis in

Section 6.2.1 determined the µ±stage should fall within the ideal -0.0133 ≤ Δµ+ ≤ +0.0283 range,

179

however precisely determining these values was not possible, but all the µ±stage values were

less than 2.

The µ±stage were determined by supplying the TM-ARCHα-7 ADC with DC input voltages and

measuring the input and output voltages from each TM, along with the Vref voltage (the

partition point voltage). The input voltage to the ADC was set so the input voltage, to the TM

stage under observation, started at 0.7 V, then increased by 0.025 V, until 0.8 V was reached.

Using (6-1) (which was derived from (1-2) [19]) and the TM input and output voltages

measured (xn and xn+1 respectively), µ+ (the positive slope gain) was calculated for each

0.025 V increment.

 𝜇+ =
𝑥𝑛+1
𝑥𝑛

 , 𝑥𝑛 < 𝑉𝑟𝑒𝑓 (6-1)

The midrange of the five calculated µ+ values was determined for each TM stage. This

measure of centre was found to achieve the greatest improvement in the TM-ARCHα-7 ADC

output accuracy (when compared to the average and median µ+ values).

The above test was repeated to determine the µ- (the negative slope gain) value for the TM

stage under consideration. The DC signal to the TM stage was set to 2.2 V and incremented

to 2.3 V, again by 0.025V steps. (6-2) (also derived from (1-2) [19]) shows how µ- was

calculated using the measured Vref voltage, as well as the calculated midrange µ+ value for

the same TM stage. The midrange value of the five µ- values calculated for each TM stage was

then determined.

𝜇− =

(𝑉𝑟𝑒𝑓 × 𝜇+) − 𝑥𝑛+1
𝑥𝑛 − 𝑉𝑟𝑒𝑓

 , 𝑥𝑛 > 𝑉𝑟𝑒𝑓
(6-2)

180

Table D-3 in Appendix D presents the final µ±stage values determined; these were then used to

calculate the DM values for the µCA-2 VHDL implementation. These µ±stage values were also

placed within a MATLAB model of the TM-ARCHα-7 ADC, which was used to make predictions

on the digital output the ADC produces. The comparator hysteresis threshold voltages were

also modified to reflect how the hysteresis had been implemented within the practical

TM-ARCHα-7 ADC.

The TM-ARCHα-7 ADC was tested with the µCS. The FPGA controlling the analogue circuitry

of the TM-ARCHα-7 ADC was originally programmed to generate the uncompensated output.

A 0 V DC voltage signal was supplied to the ADC and the binary output captured before the

FPGA was reprogrammed to generate the compensated output and the new binary output

recorded. The DC input signal was then incremented by 0.1 V and the process described above

repeated until the input signal reached 3 V.

Figure 6-12 presents the difference between the uncompensated output, ideal ADC output

and the compensated output using the midrange µ±stage values. The results show that the µCS

reduces the difference between ADC and ideal output (the maximum deviation was reduced

from ±7 LSBs to ±4 LSBs) and improves the bit accuracy of the electronic implementation of

the TM-ARCHα-7 ADC from 4.19 bits to 5 bits.

181

Figure 6-12: Plot between the physical TM-ARCHα-7 ADC output and ideal output, before and after
compensation.

The µCA-2 improved the bit accuracy of the TM-ARCHα-7 ADC, although not to 6 bits, as

predicted by MATLAB model. The reduced improvement in the ADC output accuracy is linked

to the limited accuracy and precision when measuring the µ±stage values. The difference

between the uncompensated electronic TM-ARCHα-7 ADC output and the predicted

uncompensated TM-ARCHα-7 ADC output (produced from the MATLAB model) was -2 to +3

bits, while for the compensated data the maximum difference was - 3 bits to + 4 bits. These

results highlight that the µ±stage values calculated from the measured TM voltages were not

sufficiently accurate for the MATLAB model to predict the uncompensated digital output

codes, nor for calculating the DM values required for the µCA-2. The µ±stage values also seemed

to vary depending on the amplitude of the TM input voltage, which may also have limited the

ability of the embedded µCS to improve the TM-ARCHα-7 ADC output accuracy.

182

Limitations in getting the practical TM-ARCHα-7 ADC with µCA-2 to reach sufficiently high-

quality performance restricted further work regarding the development of an electronic

TM-ARCHβ-n-Rsub-ranging ADC implementation and a VHDL implementation of the µCA-3.

However, the results have demonstrated that real-time embedded µ compensation within a

TM-based ADC is feasible.

6.7 Summary

This chapter analysed the enhanced µCAs, µCA-2 and µCA-3, through MATLAB modelling. The

TM-ARCHα-15 ADC and TM-ARCHα-7 ADC models were employed with the µCA-2 analysis,

while a TM-ARCHβ-7-12 ADC model was used to assess the µCA-3. A VHDL implementation of

the µCA-2 was also assessed via simulation using a TM-ARCHα-7 ADC structure, then tested

through practical experiments.

Analysis of the µCA-2 and µCA-3 showed promising results in compensating for non-matching

µ± for each TM stage (µ±stage), over a range of 1.9 ≤ µ±stage ≤1.99, within a TM-ARCHα-15 ADC.

When µ+ produced the positive slope of the TMs and only µ- was employed to create the

negative slope within the TM-ARCHα-15 ADC, the compensated bit accuracy rose to 14 bits

from an uncompensated bit accuracy of 9 to 10 bits. Meanwhile, the µCA-3, which can

accommodate a multibit sub-ranging ADC acquiring the final TM stage output signal, was

found to improve the compensated bit accuracy of the TM-ARCHβ-7-12 ADC structure to 17

bits, from an uncompensated bit accuracy of 4 to 6 bits.

The negative slope circuitry of the TM function employed in the physical TM-ARCHα-7 ADC

(as shown by (4-3)) employs both µ+ and µ-. For the µCA-2 and µCA-3 to be effective, a limit

on the variation between the µ± for each TM stage (µ±stage) was required to minimise the

183

resulting offsets. The sensitivity analysis in Section 6.2.1 suggested the maximum µ- can

deviate from µ+ per TM stage, for the TM-ARCHβ-7-12 ADC, should be ± 50 x 10-6, but lower

resolution TM-based ADC designs can cope with a larger difference. The second sensitivity

analysis presented in Section 6.2.2 highlighted that uncertainty in measuring the µADC values

needed to be minimised for µCA-2 and µCA-3 to be effective.

Simulation results show that the TM-ARCHβ-7-12 ADC can achieve the specification for the

UMS through employing the µCA-3. The results highlighted an increase in bit accuracy from

5.81 bits to 15.68 bit, whilst the dynamic performance tests proved the ENOB, when the input

frequency was greater than 5 MHz (the maximum frequency of the signals being employed

within the UMS application), was also greater than the minimum requirement of 15 bits. The

static performance tests also demonstrated a dramatic reduction in the INL error of 13956

LSBs. The increase in DNL error after compensation was lower than that observed for the

compensated TM-ARCHα-15 ADC output in Chapter 5, due to the sub-ranging COTS ADC in

the TM-ARCHβ-7-12 ADC acting as the equivalent of an ideal 12-bit TM-based ADC. This sub-

ranging ADC reduced the level of compensation required as the equivalent TM stages were

modelled with an ideal µ of 2, which in turn reduced the magnitude of the calculated DMs

and the probability of digital levels being increased or decreased due to the compensation.

The noise analysis into the theoretical TM-ARCHβ-7-12 ADC model with the µCA-3 highlights

that input signal noise and output referred noise to the TM-based ADCs reduces the

improvement in bit accuracy. However, the simple noise analysis suggests noise less than two

step sizes in amplitude enables the TM-ARCHβ-7-12 ADC to achieve a bit accuracy of 15 bits

after compensation, as required by the UMS specification.

184

Finally, the simulated VHDL implementation of a TM-ARCHα-7 ADC with the µCA-2 improved

the bit accuracy from 5.42 bits to 6 bits, whilst with the electronic implementation the bit

accuracy was 4.19 bits uncompensated, and 5 bits compensated. With the electronic

implementation, limitations in obtaining precise and accurate TM input and output voltage

measurements restricted the ability in determining the µ±stage values and thus achieving better

compensation. Nevertheless, the results proved that embedded, real-time µ compensation

of a physical TM-based ADC digital output data was possible.

The next chapter discusses the results from the simulated and practical TM-based ADC

designs with the enhanced µCAs.

185

7 Discussion

Theoretical analysis and practical experimentation have demonstrated the feasibility of a real-

time µCS for TM-based ADCs. A theoretical, mathematical model of a TM-ARCHβ-7-12 ADC

with a µCS (comprising the µCA-3) has shown the bit accuracy can be increased to a minimum

of 15 bits accuracy (achieving the requirement of detecting 100 µV signal variations), making

this design viable to be employed within the DAQ system for the UMS application. Practical

experimentation with a TM-ARCHα-7 ADC has confirmed that a µCS (comprising the µCA-2)

can be embedded within the TM-based ADC and perform real-time compensation for non-

ideal µ on the digital output data. Three techniques were also created, whilst developing the

compensation algorithm, for coping with: non-matching TM stage µ; non-matching µ±stage; and

a multibit sub-ranging ADC converting a TM output signal to the digital domain rather than a

single bit producing comparator.

Simultaneously meeting high resolution, high sampling speed, high conversion speed, low

power and low fabrication area is challenging, especially at the extremes of a particular

category. Different TM-based ADC structures have been shown to have potential in reducing

combinations of these trade-offs [13, 16, 56, 57], but a key limitation of such ADCs is the

impact non-ideal µ within the TM circuitry has on the output accuracy. This research has

developed a novel algorithm, which can be embedded within TM-based ADCs, to perform

real-time µ compensation on the digital output data, to counteract this problem.

As part of this work, the viability of a standalone TM-based ADC, with an embedded digital

implementation of a µCA, for the employment within a DAQ system for a UMS application

was assessed. This work also demonstrates the feasibility of employing TM-based ADCs within

other measurement systems requiring small signal variations to be consistently detected

186

across a relatively large signal range. The UMS application required the TM-based ADC to have

a bit accuracy of 15 bits after compensation. The mathematical model development of a

TM-ARCHβ-7-12 ADC structure (consisting of a 7 TM stage ADC with a 12-bit COTS ADC to

acquire the final TM output) emulated the operational performance of an electronic

implementation and demonstrated that the improvement in bit accuracy, after the applied

µCA-3, was sufficient to meet the UMS application specification. The VHDL implementation

of the µCA-1 and µCA-2 also proved compensating for non-ideal µ, without the requirement

of offline computational post-processing, was viable. Instead, simulation and electronic

experimentation proved a µCS can be embedded within a TM-based ADC and perform real-

time compensation on the output digital data prior to transmission. These tests, along with a

mathematical model, demonstrated the viability of a physical DAQ system which employs a

stand-alone TM-based ADC with embedded µ compensation.

Techniques were also developed and proven, through a combination of theoretical simulation

and electronic implementation, to compensate for non-matching TM stage µ, as well as non-

matching µ±stage values. A µ compensation technique for when the TM output was digitised

using a multibit ADC, rather than a single bit producing comparator, was also developed.

These three techniques enable a variety of TM-based ADC structures to be compensated for

non-ideal µ. The µCA by Basu, in addition to not being performed prior to the ADC data being

transmitted, was only suitable for a feedback TM-based ADC configuration with a comparator

acquiring the previous output (as shown in Figure 2-12), as this enabled the µ for each

iteration (equivalent to each TM stage in a series configuration) to be constant [41, 42]. The

µCA-2 and µCA-3, however, can be employed to compensate for non-ideal µ within series and

feedback TM-based ADC configurations that employ both comparators and sub-ranging ADCs

to digitise TM input and output signals.

187

The µCA and techniques developed during this research have demonstrated the viability of

employing TMs for analogue to digital data conversion. Due to how the TM circuits were

electronically implemented in the TM-based ADC design developed by Upton [56, 57] (shown

in (4-3)) , the TM negative slope circuitry introduced an offset of Vref(µ+ - µ-), which was often

amplified by successive TM stages. For the enhanced µCAs to be effective at compensating

for non-matching µ±stage values, the difference between the µ±stage values had to fall within an

acceptable tolerance (established via the sensitivity analysis in Section 6.2.1), which becomes

more critical at higher resolutions. With higher resolution TM-based ADCs, there may also be

a case for fabricating the design onto silicon, enabling the µ±stage to be better matched (when

compared to a discrete component implementation), alleviating the limitation posed by the

offset introduced. Another solution is investigating different circuit configurations of TM

implementations whose operation match that shown in (4-9), as better compensation for

non-matching µ±stage values with this circuit configuration can be achieved. Alternatively, a

technique to compensate for this offset could be investigated.

The sensitivity analyses in Section 6.2.2 highlighted the need to significantly reduce the

difference between µ±ADC and µ±algorithm for higher resolution TM-based ADCs, for the

enhanced µCAs to remain effective. This requires measuring the µ±stage values of the TM-based

ADC accurately and precisely, which needs to be achieved with the electronic TM-ARCHα-7

ADC, before the µCA-3 can be implemented in VHDL and trialled with the TM-ARCHβ-n-Rsub-

ranging ADC, tested in theoretical simulations. For a discrete component implementation of the

TM-based ADC, using higher precision measurement equipment and the method to

determine µ±stage values described in Section 6.6 might be acceptable. Methods of further

reducing noise in the TM-based ADC would also improve measurement precision and thus the

accuracy of the µ±stage measurements. Noise reducing methods could include reducing

188

switching noise by lowering the sampling speed (involves adjusting the sample and hold

capacitors and resistors) or redesigning the PCB to enable further noise reduction. If the TM-

based ADC was fabricated as an IC, this method of establishing the µ±stage values maybe

infeasible as the analogue signals to and from the TM circuits might not be accessible for

measurement. Therefore, research into employing the output digital data, such as exploring

the adaptation of the method suggested by Dutta [112], to determine the µ±stage values might

be necessary for this application.

As an aside, work in the field of TM-based ADCs and estimating the initial input signals and µ

parameters though the digital output data [2, 41, 42, 112, 114] may have potential

applications in the field of chaotic encryption and decryption. Multiple encryption and

decryption systems have been developed which employ the chaotic TM [115] or a

combination of the TM and other chaotic maps [116, 117]. An investigation into the

employment of the µCAs from this work, to create a more efficient encryption and decryption

process which requires minimal computation, could be undertaken.

Overall, this work has advanced the viability of TMs being employed for analogue to digital

data conversion. This in turn will enable an improvement in trade-offs between speed, power

consumption and circuit area at higher resolutions, depending on the TM-based ADC

structure chosen. Furthermore, this research has demonstrated the potential in employing

TM-based ADCs within measurement systems which required small signal variations to be

consistently detected across a relatively large signal range.

189

8 Conclusion and Further Work

8.1 Conclusions

Multiple advancements with compensating for loss in the output accuracy of tent map (TM)

based analogue to digital converters (ADCs), caused by non-ideal TM gain (µ), have been

demonstrated. This involved the development of a stand-alone TM-based ADC with an

embedded µ compensation system (µCS) comprising a novel µ compensation algorithm (µCA).

The µCA developed required much lower levels of computation resources, compared to a past

solution proposed to compensate for non-ideal µ, enabling a compensation system to be

embedded within a TM-based ADC.

The TM-based ADC and µCS, which was developed for a specific type of measurement system

application, also demonstrated the viability of employing this data converter within high

precision and high accuracy measurement systems. Furthermore, the refinements made to

the µCA during this project has enabled the production of µCS for different TM-based ADC

structures, making the notion of employing TM-based ADCs in different applications more

obtainable.

The main conclusions are:

1. The viability of employing a TM-based ADC, with an embedded µCS, within a data

acquisition (DAQ) system, for an ultrasonic measurement system (UMS), was

investigated using MATLAB simulation and practical testing.

2. Theoretical analysis using MATLAB has demonstrated the output accuracy of a TM-

based ADC is affected when the µ of each TM stage was less than two.

190

3. A novel µCA was proposed, which compensated for non-ideal µ through using the Gray

code output data produced by the TM-based ADC, to aid the calculations for which

compensation values needed to be added/subtracted from the digital output data, to

produce a more accurate digital representation of the original analogue signal which

was sampled and converted.

4. Three other techniques were developed to enhance and enable the novel algorithm

to be adapted for employment with a variety of TM-based ADC structures. These

techniques compensated for:

• non-matching TM stage µ;

• non-matching slope µ for each TM stage (µ±stage); and

• non-ideal µ when the digital data produced from the TM stages was from a sub-

ranging ADC rather than comparators.

5. A mathematical model was developed to assess the performance of a TM-based ADC

(consisting of 7 comparator and TM stages and a 12-bit COTS ADC to digitise the final

TM stage output) after the µCA processes the digital data. Results showed an increase

in bit accuracy from 5.81 bits to 15.68 bits, which met the specification for the UMS

DAQ system. Noise has a negative effect on the ADC output accuracy, but amplitudes

below two ADC step sizes were tolerable.

6. The VHDL implementation of the µCA and practical experiments proved embedded

real-time µ compensation was possible and demonstrated the concept of developing

a standalone TM-based ADC with embedded compensation.

7. Challenges need to be overcome to realise physical TM-based ADC for the UMS

application, but the results obtained have proven the viability and concept of

employing a TM-based ADC, with an embedded µCS, to perform higher resolution data

191

conversion within a measurement system which requires small signal variations to be

consistently detected across a relatively large signal range.

8.2 Future Work

The following is a list of suggestions of proposed further work:

• Fabricate an electronic implementation of the TM-ARCHβ-n-Rsub-ranging ADC, with an

embedded µCS comprising the µCA-3, onto silicon. The fabrication of this TM-based

ADC with µCS design will result in better matched TM slope gains that are closer to

the ideal value of 2. This will enable better ADC output accuracy after compensation

and enable higher resolution TM-based ADC designs to be realised.

• Investigate the possibility of enhancing the µCA further by developing an algorithm

which can establish the TM stage and slope gains from the TM-based ADC output,

enabling an auto calibrating µCS to be produced. This would enable a more effective

µCS to be deployed with a TM-based ADC, because the comprising µCA would be more

immune to TM stage and slope gains varying over time (due to the resistors which set

the µ values drifting over time and with temperature).

• Investigate the possibility of applying the µCAs developed to enhance TM-based

encryption and decryption systems. Some encryption and decryption processes have

employed TM functions within the process, and this work might enable a system to be

produced with reduced computational requirements.

192

9 References

[1] P. Hazell, P. Mather, A. Longstaff, and S. Fletcher, "A Non-linear Tent Map-Based ADC
Design for Sensitive Condition Monitoring Measurement Systems," presented at the
COMADEM 2019, Huddersfield, England, Sept. 3-5, 2019, 2020.

[2] P. Hazell, P. Mather, A. Longstaff, and S. Fletcher, "Digital System Performance
Enhancement of a Tent Map-Based ADC for Monitoring Photovoltaic Systems,"
Electronics, vol. 9, no. 9, Sept. 2020, Art no. 1554, doi:
https://doi.org/10.3390/electronics9091554.

[3] A. B. Borisov and V. V. Zverev, M. Efroimsky, L. Gamberg, D. Gitman, A. Lazarian, and
B. Smirnov, Eds. Nonlinear Dynamics: Non-Integrable Systems and Chaotic Dynamics
(De Gruyter Studies in Mathematical Physics no. 36). Berlin, Germany: De Gruyter Inc.,
2016.

[4] B. Razavi, Principles of data conversion system design. Pisataway, NJ, USA: IEEE Press,
1995.

[5] J. Park and S. Mackay, Practical Data Acquisition for Instrumentation and Control
Systems. Oxford, UK: Elsevier Sci. & Technol., 2003.

[6] Maxim Integrated, "Tutorials 283 INL/DNL Measurements for High-Speed Analog-to-
Digital Converters (ADCs)," Maxim Integrated, San Jose, CA, USA, Nov. 2001.
Accessed: Jan. 5, 2021. [Online]. Available:
https://www.maximintegrated.com/en/design/technical-
documents/tutorials/2/283.html

[7] C. Pearson, "High-Speed, Analog-to-Digital Converter Basics," Texas Instruments,
Dallas, TX, USA, Jan. 2011. Accessed: May. 24, 2021. [Online]. Available:
https://e2e.ti.com/cfs-file/__key/communityserver-discussions-components-
files/73/High_2D00_Speed_2C00_-Analog_2D00_to_2D00_Digital-Converter-
Basics.pdf

[8] P. G. A. Jespers, Integrated Converters - D to A and A to D Architectures, Analysis and
Simulation. NJ, USA: Oxford Univ. Press, 2001.

[9] N. Storey, Electronics: a systems approach, 5th ed. Harlow, UK: Pearson, 2013.
[10] M. M. R. Mano, Digital Design: With an Introduction to the Verilog Hdl, Vhdl, and

Systemverilog, 6th ed. NY, USA: Pearson Educ., 2018.
[11] S. Sangwine, Electronic components and technology, 2nd ed. (Tutorial Guides in

Electronic Engineering, no. 13). London: Chapman & Hall, 2007.
[12] W. Bolton, Programmable Logic Controllers, 4th ed. Jordan Hill, London, UK: Elsevier

Sci. & Technol., 2006.
[13] J. Liu, X. Zhang, Z. Li, and X. Li, "A tent map based A/D conversion circuit for robot

tactile sensor," J. Sensors, vol. 2013, Aug. 2013, doi: 10.1155/2013/624981.
[14] R. del Rio and J. M. de la Rosa, CMOS Sigma-Delta Converters: Practical Design Guide.

Somerset, UK: John Wiley & Sons, Inc., 2013.
[15] A. M. A. Ali, High speed data converters. London, UK: The IET, 2016.
[16] S. Berberkic, "Measurement of small signal variations using one-dimensional chaotic

maps," Ph.D. dissertation, Dept. Eng. and Technol., Univ. Huddersfield, Huddersfield,
England, 2014. [Online]. Available: http://eprints.hud.ac.uk/id/eprint/23737/

[17] P. J. Ashenden, The student's guide to VHDL, 2nd ed. Burlington, MA, USA: Morgan
Kaufmann, 2008.

193

[18] T. Kapitaniak, Chaos for Engineers: Theory, Applications, and Control, 2nd ed. Berlin,
Germany: Springer, 2000.

[19] G. L. Baker and J. P. Gollub, Chaotic Dynamics: an introduction, 2nd ed. Cambridge,
UK: Cambridge Univ. Press, 1996.

[20] A. S. Morris, Principles of measurement and instrumentation, 2nd ed. Hemel
Hempstead, UK: Prentice Hall, 1993.

[21] M. Parker, Digital Signal Processing 101: Everything You Need to Know to Get Started.
Saint Louis, MO, USA: Elsevier Science & Technology, 2010.

[22] R. Gilmore and M. Lefranc, The topology of chaos: Alice in Stretch and Squeezeland,
2nd ed. Weinheim, Germany: Wiley-VCH, 2011.

[23] T. L. Floyd, Electronic devices: conventional current version, 8th ed. Upper Saddle River,
NJ, USA: Pearson Prentice Hall, 2008.

[24] T. S. El-Ali, Discrete systems and digital signal processing with MATLAB, 2nd ed. Boca
Raton, FL, USA: CRC Press, 2012.

[25] R. v. d. Plassche, Integrated analog-to-digital and digital-to-analog converters (The
Kluwer International Series in Engineering and Computer Science: Analog Circuits and
Signal Processing). Dordrecht, The Netherlands: Kluwer Academic Publishers, 1994.

[26] B. Baker, "How delta-sigma ADCs work, Part 2," Analog Appl. J., vol. 2011, no. 4Q, p.
5, 2011.

[27] Maxim Integrated, "Tutorials 1041 Understanding Integrating ADCs," Maxim
Integrated, San Jose, CA, USA, May. 2, 2002. Accessed: Jul. 31, 2021. [Online].
Available: https://www.maximintegrated.com/en/design/technical-
documents/tutorials/1/1041.html

[28] Maxim Integrated. "Tutorials 748 The ABCs of Analog to Digital Converters: How ADC
Errors Affect System Performance." Maxim Integrated.
https://www.maximintegrated.com/en/design/technical-
documents/tutorials/7/748.html (accessed May. 31, 2021).

[29] M. P. Kennedy, "A Nonlinear Dynamics Interpretation of Algorithmic A/D Conversion,"
Int. J. Bifurcation and Chaos, vol. 5, no. 3, pp. 891 - 893, Jun. 1994.

[30] The MathWorks Inc. "MATLAB." The MathWorks, Inc.
https://uk.mathworks.com/products/matlab.html (accessed Jul. 28, 2021).

[31] Intel. "ModelSim*-Intel® FPGA Edition Software " Intel.
https://www.intel.co.uk/content/www/uk/en/software/programmable/quartus-
prime/model-sim.html (accessed Jul. 28 2021, 2021).

[32] C.-T. Chen, Signals and systems, 3rd ed. NJ, USA: Oxford University Press (in English),
2004.

[33] K. C. Smith and A. Sedra, "The current conveyor—A new circuit building block," Proc.
IEEE, vol. 56, no. 8, pp. 1368-1369, Aug. 1968, doi: 10.1109/PROC.1968.6591.

[34] T. Kapitaniak, K. Zyczkowski, U. Feudel, and C. Grebogi, "Analog to digital conversion
in physical measurements," Chaos, Solitons and Fractals, vol. 11, no. 8, pp. 1247-1251,
2000, doi: 10.1016/S0960-0779(99)00003-X.

[35] M. E. Waltari and K. A. I. Halonen, Circuit Techniques for Low-Voltage and High-Speed
A/D Converters (The Springer International Series in Engineering and Computer
Science). NJ, USA: Kluwer Academic Publishers, 2002.

[36] W. Kester, "MT-001 TUTORIAL Taking the Mystery out of the Infamous Formula, "SNR
= 6.02N + 1.76dB," and Why You Should Care," Analog Devices, 2009. Accessed: Feb.

194

25, 2021. [Online]. Available: https://www.analog.com/media/en/training-
seminars/tutorials/MT-001.pdf

[37] Atmel Corporation, "AVR121: Enhancing ADC resolution by oversampling," Microchip,
[Online], Sept. 2005. Accessed: Oct. 2, 2018. [Online]. Available:
https://www.microchip.com/content/dam/mchp/documents/OTH/ApplicationNotes
/ApplicationNotes/doc8003.pdf

[38] T. Ndjountche, CMOS Analog Integrated Circuits : High-Speed and Power-Efficient
Design. Boca Raton, FL, USA: Taylor & Francis Group, 2011.

[39] S. Louwsma, E. Tuijl, and B. Nauta, Time-interleaved analog-to-digital converters
(Analog Circuits and Signal Processing). Springer, 2010.

[40] S. Kocis and Z. Figura, Ultrasonic measurements and technologies (Sensor physics and
technology, no. 4). London, UK: Chapman & Hall, 1996.

[41] R. Basu, "Estimation of Input Variable as Initial Condition of a Chaos Based Analogue
to Digital Converter," Ph.D. dissertation, Dept. Eng. and Technol., Univ. Huddersfield,
Huddersfield, England, 2018. [Online]. Available:
http://eprints.hud.ac.uk/id/eprint/34821/

[42] R. Basu, D. Dutta, S. Banerjee, V. Holmes, and P. Mather, "An Algorithmic Approach
for Signal Measurement Using Symbolic Dynamics of Tent Map," IEEE Trans. Circuits
and Syst. I: Regular Papers, vol. 65, no. 7, pp. 2221-2231, Jul. 2018, doi:
10.1109/TCSI.2017.2773202.

[43] S. Bashir, S. Ali, S. Ahmed, and V. Kakkar, "Analog-to-digital converters: A comparative
study and performance analysis," in 2016 Int. Conf. Comput., Commun. and Automat.
(ICCCA), Greater Noida, India Apr. 29-30 2016: IEEE, pp. 999-1001, doi:
10.1109/CCAA.2016.7813861.

[44] Texas Instruments, "ADC368x 18-bit 0.5 to 65-MSPS Low Noise Ultra-low Power Dual
Channel ADC," Texas Instruments, Dec. 2020. Accessed: Jul. 22, 2021. [Online].
Available:
https://www.ti.com/lit/ds/symlink/adc3683.pdf?ts=1649495070972&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FADC3683

[45] Analog Devices, "20-Bit, 1.8 MSPS/1 MSPS/500 kSPS, Easy Drive, Differential SAR ADCs
Data Sheet AD4020/AD4021/AD4022 " Analog Devices, Norwood, MA, USA, Feb.
2021. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ad4020-
4021-4022.pdf

[46] Texas Instruments, "ADS1212 ADS1213 22-Bit ANALOG-TO-DIGITAL CONVERTER,"
Texas Instruments, Dallas, TX, USA, Feb. 2004. Accessed: Jul. 22, 2021. [Online].
Available:
https://www.ti.com/lit/ds/symlink/ads1213.pdf?ts=1649495246037&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FADS1213

[47] Texas Instruments, "ADS1675 4MSPS, 24-Bit Analog-to-Digital Converter," Texas
Instruments, Dallas, TX, USA, Aug. 2010. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.ti.com/lit/ds/symlink/ads1675.pdf?ts=1649495305602&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FADS1675

[48] Texas Instruments, "ADS1282 High-Resolution Analog-To-Digital Converter," Texas
Instruments, Dallas, TX, USA, Mar. 2015. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.ti.com/lit/ds/symlink/ads1282.pdf?ts=1649424981595&ref_url=https%
253A%252F%252Fwww.ti.com%252Fproduct%252FADS1282

195

[49] Analog Devices, "LTC2500-32 32-Bit Oversampling ADC with Configurable Digital
Filter," Analog Devices, USA, Jan. 2018. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/250032fb.pdf

[50] Microchip Technology Inc., "MCP3422/3/4 18-Bit, Multi-Channel ΔΣ Analog-to-Digital
Converter with I2C™ Interface and On-Board Reference," Microchip Technology Inc.,
USA, Mar. 2009. Accessed: Jul. 22, 2021. [Online]. Available:
https://ww1.microchip.com/downloads/en/devicedoc/22088c.pdf

[51] Linear Technology, "LTC2430/LTC2431 20-Bit No Latency ∆ΣTM ADCs with Differential
Input and Differential Reference," Linear Technology, Milpitas, CA, USA, 2002.
Accessed: Jul. 22, 2021. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/24301f.pdf

[52] Microchip Technology Inc., "MCP3550/1/3 Low-Power, Single-Channel 22-Bit Delta-
Sigma ADCs," Microchip Technology Inc., USA, Jul. 2014. Accessed: Jul. 22, 2021.
[Online]. Available:
https://ww1.microchip.com/downloads/en/DeviceDoc/20001950F.pdf

[53] Linear Technology, "LTC2413 24-Bit No Latency ∆Σ™ ADC, with Simultaneous
50Hz/60Hz Rejection," Linear Technology, Milpitas, CA, USA Aug. 2000. Accessed: Jul.
22, 2021. [Online]. Available: https://www.analog.com/media/en/technical-
documentation/data-sheets/2413fa.pdf

[54] Texas Instruments, "ADS1287 Low-Power, 1000-SPS, Wide-Bandwidth, Analog-to-
Digital Converter With Programmable Gain Amplifier," Texas Instruments, Dallas, TX,
USA, Aug. 2019. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.ti.com/lit/ds/symlink/ads1287.pdf

[55] Analog Devices Inc., "32-Bit, 10 kSPS, Sigma-Delta ADC with 100 μs Settling and True
Rail-to-Rail Buffers Data Sheet AD7177-2 " Analog Devices Inc., Norwood, MA, USA,
Mar. 2016. Accessed: Jul. 22, 2021. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/AD7177-
2.pdf

[56] D. W. Upton et al., "Gated Pipelined Folding ADC based Low Power Sensor for Large-
Scale Radiometric Partial Discharge Monitoring," IEEE Sensors J., vol. 20, no. 14, pp.
7826 - 7836, Mar. 2020, doi: 10.1109/JSEN.2020.2982576.

[57] D. W. Upton, "Low Power Signal Processing Techniques for Radiometric Partial
Discharge Detection in Wireless Sensor Network," Ph.D. dissertation, Dept. Eng. and
Technol., Univ. Huddersfield, Huddersfield, UK, 2018. [Online]. Available:
https://eprints.hud.ac.uk/id/eprint/34726/

[58] G. Chen and Y. Huang, Chaotic Maps: Dynamics, Fractals, and Rapid Fluctuations
(Synthesis Lectures on Mathematics and Statistics, no. 4). Morgan & Claypool
Publishers, 2011.

[59] B. Holdsworth, and C. Woods, Digital Logic Design, 4 ed. Oxford, UK: Elsevier Science
& Technology, 2002

[60] B. Ram, Computer Fundamentals : Architecture & Organisation, New Delhi, India: New
Age International Ltd, 2007.

[61] W. Kester, Data Conversion Handbook, 1 ed. Burlington, MA, USA: Newnes, 2005, pp.
709-894.

196

[62] S. O'brien, Turbo Pascal 6: The Complete Reference. Berkeley, CA, USA: Osbourne
McGraw-Hill, 1991.

[63] O. F. Olabode, S. Fletcher, A. P. Longstaff, and N. S. Mian, "Precision Core Temperature
Measurement of Metals Using an Ultrasonic Phase-Shift Method," J. Manuf. and
Mater. Process., vol. 3, no. 3, pp. 80-91, Sept. 2019, doi: 10.3390/jmmp3030080.

[64] H. E. Kelley, "Tungsten," in SME Mineral Processing & Extractive Metallurgy Handbook,
R. C. K. Dunne, S. Komar; Young, Courtney A. Ed. Englewood, CO, USA: Soc. for Mining,
Metall., and Exploration (SME), 2019, ch. 125, pp. 2147-132.

[65] F. Cverna, ASM Ready Reference - Thermal Properties of Metals (ASM Materials Data).
Materials Park, OH, USA: ASM Int., 2002.

[66] Analog Devices, "AD8302 (Rev. B) LF–2.7 GHz RF/IF Gain and Phase Detector," Analog
Devices, Norwood, MA, USA, Oct. 2018. Accessed: Jun. 12, 2019. [Online]. Available:
https://www.analog.com/media/en/technical-documentation/data-
sheets/ad8302.pdf

[67] R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE J. Sel. Areas in
Commun., vol. 17, no. 4, pp. 539-550, Apr. 1999, doi: 10.1109/49.761034.

[68] R. H. Walden, "Performance trends for analog to digital converters," IEEE Commun.
Mag., vol. 37, no. 2, pp. 96-101, Feb. 1999, doi: 10.1109/35.747256.

[69] B. Murmann. ADC Performance Survey 1997-2021 (ISSCC & VLSI Symposium). [Online].
Available: https://web.stanford.edu/~murmann/adcsurvey.html

[70] B. Murmann, "The Race for the Extra Decibel: A Brief Review of Current ADC
Performance Trajectories," IEEE Solid-State Circuits Mag., vol. 7, no. 3, pp. 58-66, Sept.
2015, doi: 10.1109/MSSC.2015.2442393.

[71] N. N. Çikan and M. Aksoy, "Analog to Digital Converters Performance Evaluation Using
Figure of Merits in Industrial Applications," presented at the 2016 Eur. Model. Symp.
(EMS), Pisa, Italy, Nov. 28-30, 2016.

[72] T. Drenski and J. C. Rasmussen, "ADC & DAC - Technology Trends and Steps to
Overcome Current Limitations," in 2018 Opt. Fiber Commun. Conf. and Expo. (OFC),
San Diego, CA, USA, Mar. 11-15, 2018: IEEE.

[73] Microchip Technology Inc. "ADC Integral Non-Linearity (INL)." Microchip Technology.
https://microchipdeveloper.com/adc:adc-inl (accessed May. 25, 2021).

[74] D. Tuite, "Relate ADC Topologies and Performance to Applications," Electron. design,
vol. 60, no. 12, pp. 38-41, Sept. 2012.

[75] RS Components Ltd. "Analogue to Digital Converters." RS Components. https://uk.rs-
online.com/web/c/semiconductors/data-converters/analogue-to-digital-converters/
(accessed Jul. 6, 2021).

[76] Arrow Electronics Inc. "Data Acquisition Analog to Digital Converters - ADCs " Arrow
Electronics.
https://www.arrow.com/en/products/search?prodline=Analog%20to%20Digital%20
Converters%20-%20ADCs&selectedType=plNames (accessed Jul. 6, 2021).

[77] Premier Farnell Limited. "Analog-to-Digital Converters - ADC." Premier Farnell.
https://uk.farnell.com/w/c/semiconductors-ics/data-signal-conversion/analog-to-
digital-converters-adc?st=adcs (accessed Jul. 6, 2021).

[78] Digi-Key Electronics. "Data Acquisition - Analog to Digital Converters (ADC)." Digi-Key
Electronics. https://www.digikey.co.uk/products/en/integrated-circuits-ics/data-
acquisition-analog-to-digital-converters-adc/700?FV=-

197

8%7C700&quantity=0&ColumnSort=-348&page=1&pageSize=25 (accessed Jul. 6,
2021).

[79] Mouser Electronics Inc. "Analog to Digital Converters - ADC." Mouser Electronics.
https://www.mouser.co.uk/Semiconductors/Data-Converter-ICs/Analog-to-Digital-
Converters-ADC/_/N-4c43g (accessed Jul. 6, 2021).

[80] Maxim Integrated. "Tutorial 1870 Demystifying Delta-Sigma ADCs," Maxim Integr.,
Jan. 2003. Accessed: Feb. 13, 2020. [Online]. Available:
https://pdfserv.maximintegrated.com/en/an/Sigma-Delta_ADCs.pdf

[81] Maxim Integrated, "Tutorial 1080 Understanding SAR ADCs: Their Architecture and
Comparison with Other ADCs," Maxim Integr., [Online], Oct. 2001. Accessed: Jul. 28,
2021. [Online]. Available: https://pdfserv.maximintegrated.com/en/an/AN1080.pdf

[82] M. Clifford, "Fundamental Principles Behind the Sigma-Delta ADC Topology: Part 1,"
Analog Devices Inc., Norwood, MA, USA, 2016. Accessed: Jul. 28, 2021. [Online].
Available: https://www.analog.com/media/en/technical-documentation/tech-
articles/Fundamental-Principles-Behind-the-Sigma-Delta-ADC-Topology-Part-1.pdf

[83] M. Furuta and T. Itakura, "Trends in the design of high-speed, low-power analog-to-
digital converters," in 2015 IEEE Int. Symp. Radio-Freq. Integration Technol. (RFIT),
Sendai, Japan Aug. 26-28 2015: IEEE, pp. 169-171, doi: 10.1109/RFIT.2015.7377923.

[84] L. F. Chaparro, Signals and systems using MATLAB, 2nd ed. Kidlington, Oxford, UK:
Academic Press, 2011.

[85] X. Zhang and Y. Cao, "A Novel Chaotic Map and an Improved Chaos-Based Image
Encryption Scheme," The Scientific World J., vol. 2014, Jul. 2014, Art no. 713541, doi:
10.1155/2014/713541.

[86] P. O. Pouliquen, K. A. Boahen, and A. G. Andreou, "A Gray-code MOS current-mode
analog-to-digital converter design," in 1991 IEEE Int. Symp. Circuits and Syst.,
Singapore Jun. 11-14, 1991: IEEE, pp. 1924-1927, doi: 10.1109/ISCAS.1991.176785.

[87] B. M. Wilamowski, M. E. Sinangil, and G. Dundar, "A Gray-Code Current Mode ADC
Structure," in 2006 IEEE Mediterranean Electrotechnical Conf. (MELECON 2006),
Benalmadena, Malaga, May 16-19, 2006: IEEE, pp. 35-38, doi:
10.1109/MELCON.2006.1653029.

[88] W. Kester, "MT-025 Tutorial Architectures VI: Folding ADCs," Analog Devices, [Online],
Oct. 2008. [Online]. Available: https://www.analog.com/media/en/training-
seminars/tutorials/mt-025.pdf

[89] A. Medio and M. Lines, Nonlinear Dynamics: A Primer. NJ, USA: Cambridge Univ. Press,
2001.

[90] J. Vries, Topological Dynamical Systems: An Introduction to the Dynamics of
Continuous Mappings (De Gruyter Studies in Mathematics, no. 59). Berlin, Germany:
De Gruyter, 2014.

[91] B. D. Smith, "An unusual electronic analog-digital conversion method," IRE Trans.
Instrum., Article vol. PGI-5, pp. 155-160, Jun. 1956, doi: 10.1109/IRE-I.1956.5007017.

[92] S. Arayawat, A. Chaikla, V. Riewruja, P. Julsereewong, and T. Trisuwannawat, "A low-
voltage algorithmic ADC based on Gray coding," in Proc. 7th Int. Conf. Signal Process.
2004 (ICSP'04), Beijing, China Aug. 31 - Sept. 4, 2004, vol. 1: IEEE, pp. 500-503.

[93] A. Chaikla, S. Arayawat, and V. Riewruja, "OTA-based Gray-code Algorithmic ADC," in
2006 SICE-ICASE Int. Joint Conf., Busan, South Korea, Oct. 18-21, 2006: IEEE, pp. 5787-
5791, doi: 10.1109/SICE.2006.314677.

198

[94] S. Arayawat, U. Thubtong, P. Julsereewong, V. Riewruja, and A. Julsereewong, "A
voltage-mode Gray-code algorithmic ADC," in 2008 Soc. Instrum. and Control Eng. Jpn.
(SICE) Annu. Conf., Chofu, Japan Aug. 20-22, 2008: IEEE, pp. 605-608, doi:
10.1109/SICE.2008.4654728.

[95] W. Petchmaneelumka and A. Julsereewong, "A Gray-code algorithmic analog-to-
digital converter based on operational conveyors," in Int. conf. Control, Automat. and
Syst. (ICCAS) 2010, Gyeonggi-do, South Korea Oct. 27-30, 2010: IEEE, pp. 1617-1621,
doi: 10.1109/ICCAS.2010.5669636.

[96] V. Litovski, M. Andrejevic, and M. Nikolic, "Chaos Based Analog-to-digital Conversion
of Small Signals," in 2006 8th Seminar Neural Netw. Appl. in Elect. Eng., Belgrade,
Serbia Sept. 25-27 2006: IEEE, pp. 173-176, doi: 10.1109/NEUREL.2006.341205.

[97] R. C. Jaeger and T. N. Blalock, Microelectronic Circuit Design, 5th ed. NY, USA: McGraw-
Hill Educ. (in English), 2016.

[98] R. Moghimi, "Curing Comparator Instability with Hysteresis," Analog Dialogue, vol. 34,
no. 7, Nov. 2000. [Online]. Available: https://www.analog.com/media/en/analog-
dialogue/volume-34/number-1/articles/curing-comparator-instability-with-
hysteresis.pdf.

[99] A. G. W. Venes and R. J. van-de-Plassche, "An 80-MHz, 80-mW, 8-b CMOS folding A/D
converter with distributed track-and-hold preprocessing," IEEE J. Solid-State Circuits,
vol. 31, no. 12, pp. 1846-1853, Dec. 1996, doi: 10.1109/4.545804.

[100] A. Dinu and A. Vlad, "The compound tent map and the connection between gray codes
and the initial condition recovery," U.P.B. Sci. Bull., Series A, vol. 76, no. 1, pp. 17-28,
2014.

[101] D. Luengo and I. Santamaría, "Asymptotically optimal estimators for chaotic digital
 communications," in Chaotic Signals in Digital Communications, M. Eisencraft, R.

Attux, R. Suyama, Baton Rouge, US: Taylor & Francis Group, 2014, ch. 11, pp. 297-324.
[102] L. Liu, J. Hu, Z. He, C. Han, and C. Lu, "Chaotic signal reconstruction with application to

noise radar system," in ISPACS 2010, Dec. 2010, doi: 10.1109/ISPACS.2010.5704782.
[103] Y. Ren, H. Lin, Z. Ma, and X. Shan, "Performance analysis in general cyclic ADCs," Int. J.

Bifurcation and Chaos in Appl. Sci. and Eng., vol. 13, no. 8, pp. 2369 - 2376, Aug. 2003,
doi: 10.1142/S0218127403007862.

[104] E. M. Bollt, T. Stanford, Y. C. Lai, and K. Zyczkowski, "What symbolic dynamics do we
get with a misplaced partition? : On the validity of threshold crossings analysis of
chaotic time-series," Physica D: Nonlinear Phenomena, Article vol. 154, no. 3-4, pp.
259-286, Jun. 2001, doi: 10.1016/S0167-2789(01)00242-1.

[105] C. Xi, G. Yong, and Y. Yuan, "A novel method for the initial condition estimation of a
tent map," Chin. Phys. Lett., vol. 26, no. 7, pp. 1-3, Apr. 2009, Art no. 078202, doi:
10.1088/0256-307X/26/7/078202.

[106] Folding ADC Operation Control (FA_clock.vhd). (2018). University of Huddersfield.
Accessed: Feb. 20, 2019. [Online]. Available:
http://eprints.hud.ac.uk/id/eprint/34742/1/Haigh%20THESIS.pdf

[107] Texas Instruments, "THS1030 3-V to 5.5-V 10-Bit, 30 MSPS CMOS Analog-to-Digital
Converter datasheet (Rev. E)," Texas Instrum. , Dallas, TX, USA, 2003.

[108] The MathWorks Inc. "snr." The MathWorks, Inc.
https://uk.mathworks.com/help/signal/ref/snr.html (accessed May. 22, 2021).

[109] J. Bird, Engineering Mathematics. 8th ed. London, UK: Routledge, 2017.

199

[110] P. P. Chu, FPGA Prototyping by VHDL Examples : Xilinx Spartan-3 Version. Hoboken,
NJ, USA: John Wiley & Sons, Inc., 2008.

[111] M. Gustavsson, J. J. Wikner, and N. Nianxiong Tan, CMOS Data Converters for
Communications (The Kluwer International Series in Engineering and Computer
Science). NY, USA: Kluwer Academic Publishers, 2000.

[112] D. Dutta, "Estimation of Chaos Function for the Implementation of High-Resolution
Measurement System," Ph.D. dissertation, Dept. Eng. and Technol., Univ.
Huddersfield, Huddersfield, England, 2018. [Online]. Available:
http://eprints.hud.ac.uk/id/eprint/34856/

[113] B. Ginetti, P. G. A. Jespers, and A. Vandemeulebroecke, "A CMOS 13-b cyclic RSD A/D
converter," IEEE J. Solid-State Circuits, vol. 27, no. 7, pp. 957-964, Jul. 1992, doi:
10.1109/JSSC.1992.854935.

[114] D. Dutta, R. Basu, S. Banerjee, V. Holmes, and P. Mather, "Parameter estimation for
1D PWL chaotic maps using noisy dynamics," Nonlinear Dyn., vol. 94, no. 4, pp. 2979 -
2993, Dec. 2018, doi: 10.1007/s11071-018-4538-x.

[115] C. G. M. Vishwas and R. S. Kunte, "An Image Cryptosystem based on Tent Map," in
2020 3rd Int. Conf. Smart Syst. and Inventive Technol. (ICSSIT), Tirunelveli, India, Aug.
20-22, 2020: IEEE, pp. 1069-1073, doi: 10.1109/ICSSIT48917.2020.9214291.

[116] M. Gupta, K. K. Gupta, M. R. Khosravi, P. K. Shukla, S. Kautish, and A. Shankar, "An
Intelligent Session Key-Based Hybrid Lightweight Image Encryption Algorithm Using
Logistic-Tent Map and Crossover Operator for Internet of Multimedia Things,"
Wireless Pers. Commun., Aug. 2021, doi: 10.1007/s11277-021-08742-3.

[117] B. S. Shashikiran, K. Shaila, and K. R. Venugopal, "Logistic and Tent Map Encrypted
Image Steganography in Transformation Domain using DWT-LSB Technique," in 2021
Int. Conf. Intell. Technol. (CONIT), Karnataka, India, Jun. 25-27, 2021: IEEE, pp. 1-6, doi:
10.1109/CONIT51480.2021.9498497.

[118] Estimating initial condition through interval arithmetic. (2018). University of
Huddersfield. Accessed: Jun. 27, 2020. [Online]. Available:
https://eprints.hud.ac.uk/id/eprint/34821/

200

Appendices

201

List of Appendices

Appendix A: Schematics of the practical TM-based ADC PCBs developed for the project and

the respective list of components.

Appendix B: MATLAB code developed to assess the TM-based ADC structure, the

TM-ARCHα-n ADC, and the fundamental TM gain compensation algorithm,

µCA-1. Code relating to the VHDL µCA-1 implementation is also included.

Appendix C: MATLAB code developed to assess both TM-based ADC structures (the

TM-ARCHα-n ADC and TM-ARCHβ-n-Rsub-ranging ADC) with the enhanced TM

gain compensation algorithms, µCA-2 and µCA-3. Code relating to the VHDL

µCA-2 implementation is also included.

Appendix D: Tables of results relating to tests performed during this research.

202

Appendix A

A.1 Tent Map Based ADC PCB

A.1.1 Schematics of the TM-ARCHα-7 ADC PCB

Figure A-1 to Figure A-5 present the schematic for the PCB design of the TM-ARCHα-7 ADC. Figure A-1 presents the sample and hold circuitry,

while Figure A-2 and Figure A-3 show the data conversion circuitry which employed TM functions. Figure A-4 gives the voltage reference

generation circuitry along with the connectors and power supplies. Figure A-5 illustrates the µ±stage alteration resistors.

203

Figure A-1: Sample and hold schematic.

204

Figure A-2: TM Stages 1 to 4.

205

Figure A-3: TM stages 5 to 7.

206

Figure A-4: Power, connectors, decoupling and filter circuitry.

207

Figure A-5: µ± alteration circuitry.

E D C B A

Drn Drn Drn Drn

Chk Chk Chk Chk

Drawn Check

Proj ect

Title

Proj ection

Do Not Scale

Client

Filename Drawing No. Sheet

of

VR4

DNF

R90

SM0402

0 ohms

R89

SM0603

0 ohms

VR3

DNF

R68

SM0402

0 ohms

R88

SM0603

0 ohms

VR2

DNF

R67

SM0402

0 ohms

R87

SM0603

0 ohms

VR7

DNF

R71

SM0402

0 ohms

R55

SM0603

0 ohms

VR6

DNF

R70

SM0402

0 ohms

R54

SM0603

0 ohms

VR5

DNF

R69

SM0402

0 ohms

R53

SM0603

0 ohms

VR10

DNF

R74

SM0402

0 ohms

R102

SM0603

0 ohms

VR9

DNF

R73

SM0402

0 ohms

R101

SM0603

0 ohms

VR8

DNF

R72

SM0402

0 ohms

R100

SM0603

0 ohms

VR13

DNF

R77

SM0402

0 ohms

R58

SM0603

0 ohms

VR12

DNF

R76

SM0402

0 ohms

R57

SM0603

0 ohms

VR11

DNF

R75

SM0402

0 ohms

R56

SM0603

0 ohms

VR16

DNF

R94

SM0402

0 ohms

R95

SM0603

0 ohms

VR15

DNF

R92

SM0402

0 ohms

R93

SM0603

0 ohms

VR14

DNF

R78

SM0402

0 ohms

R91

SM0603

0 ohms

VR19

DNF

R81

SM0402

0 ohms

R61

SM0603

0 ohms

VR18

DNF

R80

SM0402

0 ohms

R60

SM0603

0 ohms

VR17

DNF

R79

SM0402

0 ohms

R59

SM0603

0 ohms

VR22

DNF

R83

SM0402

0 ohms

R98

SM0603

0 ohms

VR21

DNF

R82

SM0402

0 ohms

R97

SM0603

0 ohms

VR20

DNF

R62

SM0402

0 ohms

R96

SM0603

0 ohms

VR25

DNF

R85

SM0402

DNF

R65

SM0603

DNF

VR24

DNF

R86

SM0402

DNF

R64

SM0603

DNF

VR23

DNF

R84

SM0402

DNF

R63

SM0603

DNF

1 CCW

2WIPER3 CW

Gain_comp1_1

FB_link

1 CCW

2WIPER3 CW

Gain_comp1_2

FB_link

1 CCW

2WIPER3 CW

Gain_comp1_3

FB_link

1 CCW

2WIPER3 CW

Gain_comp2_1

FB_linl

1 CCW

2WIPER3 CW

Gain_comp2_2

FB_linl

1 CCW

2WIPER3 CW

Gain_comp2_3

FB_linl

1 CCW

2WIPER3 CW

Gain_comp3_1

FB_linm

1 CCW

2WIPER3 CW

Gain_comp3_2

FB_linm

1 CCW

2WIPER3 CW

Gain_comp3_3

FB_linm

1 CCW

2WIPER3 CW

Gain_comp4_1

FB_linn

1 CCW

2WIPER3 CW

Gain_comp4_2

FB_linn

1 CCW

2WIPER3 CW

Gain_comp4_3

FB_linn

1 CCW

2WIPER3 CW

Gain_comp5_1

FB_lino

1 CCW

2WIPER3 CW

Gain_comp5_2

FB_lino

1 CCW

2WIPER3 CW

Gain_comp5_3

FB_lino

1 CCW

2WIPER3 CW

Gain_comp6_1

FB_linp

1 CCW

2WIPER3 CW

Gain_comp6_2

FB_linp

1 CCW

2WIPER3 CW

Gain_comp6_3

FB_linp

1 CCW

2WIPER3 CW

Gain_comp7_1

FB_linq

1 CCW

2WIPER3 CW

Gain_comp7_2

FB_linq

1 CCW

2WIPER3 CW

Gain_comp7_3

FB_linq

1 CCW

2WIPER3 CW

Gain_comp8_1

FB_linr

1 CCW

2WIPER3 CW

Gain_comp8_2

FB_linr

1 CCW

2WIPER3 CW

Gain_comp8_3

FB_linr

208

A.1.2 List of Components for the TM-ARCHα-7 ADC PCB

Table A-1 presents the list of components employed in the TM-ARCHα-7 ADC PCB design, described in the previous section.

Ref Name Component Value Package Description

C1 - C29, C31, C33, C35 - C44,
C47 - C55, C59 - C67, C70,
C71, C88, C90, C92 - C100

0603 SMT
Capacitor

100 nF SM0603
Capacitor, Surface Mount Multi-Layer
Ceramic

C30, C32, C45, C58, C69,
C101, C102

0805 SMT
Capacitor

10 µF SM0805
Capacitor, Surface Mount Multi-Layer
Ceramic

C34, C46, C56, C57, C72 - C87
0603 SMT
Capacitor

5 pF SM0603
Capacitor, Surface Mount Multi-Layer
Ceramic

C68
0805 SMT
Capacitor

5 µF SM0805
Capacitor, Surface Mount Multi-Layer
Ceramic

C89, C91
0805 SMT
Capacitor

22 µF SM0805
Capacitor, Surface Mount Multi-Layer
Ceramic

CT1
Terminal Block
(5mm-2pole)

 DIL Terminal Block (5mm-2pole)

CT2
Terminal Block
(5mm-3pole)

 DIL Terminal Block (5mm-3pole)

IC1 ADR510ARTZ-R2 DNF SOT - 23 - 3 1 V Voltage Reference

IC2 - IC10 TS5A2066DCT SM8 Dual channel SPST 10 Ω analogue switch

IC11 AD8037 SOT-23-5 Op-amp

IC12 - IC19 TS3011ICT SC-70 Push-Pull Comparator

209

IC20 REF1930AIDDCT SOT-23-5
Dual Output Vref and Vref/2 Voltage
Reference

IC21, ADA4807 ADA4807 SOT-23 Op-amp

IC22 - IC29 TS5A63157DBVR SOT-23 15-Ohm SPDT Analogue Switch

IC31 - IC38 OPA836IDBVT SOT-23 Op-amp

J1, J2 SS-101-TT-22 1x1 PCB socket strip 2.54
mm

1x1 PCB socket strip

J3 - J18, J20 - J26, J29 - J56 Test Point

J19 AW127-20_G-T 1 x 20 PCB socket 2.54 mm 1 x 20 PCB socket 2.54 mm

J27
SMA Connector
Receptacle

 Straight 50 Through Hole
SMA Connector

SMA PCB mount straight socket jack

J28
SMA Connector
Receptacle

 Straight 50 Edge SMA
Connector

SMA PCB edge mount straight jack

L1 0805 SMT Inductor 10 µH SM0805 Inductor

PS1
LM7705MME_NOP
B

 MSOP
LM7705MME/NOPB Inverter, Supplies -
0.232 V

R1, R2 0603 SMT Resistor 0 Ω SM0603 SMT Resistor

R3 - R5, R7 - R22, R25, R29,
R32, R35, R38, R41, R44, R46,
R48 - R51, R63 - R65, R99,
R103 - R105

0603 SMT Resistor DNF SM0603

SMT Resistor

R6, R47 0603 SMT Resistor 250 Ω SM0603 SMT Resistor

R23, R27, R30, R33, R36, R39,
R42, R45

0603 SMT Resistor 365 kΩ SM0603
SMT Resistor

R24, R26, R28, R31, R34, R37,
R40, R43

0603 SMT Resistor
150
MΩ

SM0603
SMT Resistor

R52, R66 0603 SMT Resistor 1 Ω SM0603 SMT Resistor

210

R62, R67 - R83, R90, R92, R94 0402 SMT Resistor 0 Ω8 SM0402 SMT Resistor

R84 - R86 0402 SMT Resistor DNF SM0402 SMT Resistor

R53 - R61, R87 - R89, R91,
R93, R95 - R98, R100 - R102

0603 SMT Resistor 0 Ω8 SM0603
SMT Resistor

RN1 - RN14
1206 SMT 4
Resistor Array

470 Ω
SM1206 4 Array

SMD 1206 Bus Array 4 Resistors 1

VR1 SMT Trimpot DNF 3361P1103GLF SMD Single Turn Trimmer

VR2 - VR25 SMT Trimmer DNF PVG3G500C01R00 Trimmer Resistors - SMD

Table A-1: Bill of materials for PCB version of the TM-ARCHα-7 ADC.

8 Initially set to 0 Ω, but later changed to bring µ±stage below 2.

211

A.2 COTS ADC Breakout Board

A.2.1 Schematic of COTS ADC Breakout Board

Figure A-6 presents the schematic of the COTS THS1030 10-bit ADC breakout board for the TM-ARCHβ-n-Rsub-ranging ADC structure.

212

Figure A-6: Schematic of the breakout board for the THS1030 10-bit ADC.

213

A.2.2 List of Components for the COTS ADC Breakout Board

Table A-2 provides the list of components of the COTS THS1030 10-bit ADC breakout board

presented in the previous section.

Ref Name Component Value Package Description

C1 - C4, C12
0805
Capacitor

10 µF SM0805
Capacitor, Surface Mount
Multi-Layer Ceramic

C5, C7
0603
Capacitor

TBC SM0603
Capacitor, Surface Mount
Multi-Layer Ceramic

C6, C8 - C11
0603
Capacitor

100 nF SM0603
Capacitor, Surface Mount
Multi-Layer Ceramic

CT1
Terminal
Block (5mm-
2pole)

 Terminal Block (5mm-2pole)

IC1 THS1030 TSSOP 10 bit ADC

J1
SSW-112-01-
T-D

 12 x 2 way PCB
connector

12 x 2 way PCB connector
socket

J2
SMA
connector

SMA PCB
Mount Straight
Socket

SMA PCB mount straight
socket jack

R1, R2 0603 resistor TBC SM0603
Thick Film Surface Mount
Resistor

TP1, TP2 Test Point

Table A-2: Bill of Materials for breakout board.

214

Appendix B

The code presented in this appendix relates to the simulation results presented Sections 5.1

to 5.6.

B.1 MATLAB Scripts for Uncompensated Tent Map Based ADC Output Accuracy Analysis

B.1.1 Code for Bit Accuracy Predictions Analysis

The following code listing presents the TM-ARCHα-15 ADC mathematical model developed in

MATLAB. How the quantisation error and bit accuracy of the uncompensated digital output

was calculated is also shown.

%% Reset command and figure windows
clc; %clears the command window and the workspace
clf;
clear;

%% Initialise key parameters for model
resolution = 16; % number of TM stages + 1
Vmax = 3; % valid input max.
Vmin = 0; % valid input min.
Vref = 1.5; % set partition point voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size

%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
Fs = 25000000; % sample rate = 25 MHz
f_fundamental = Fs/2^(resolution+2); % fundamental frequency
T = (1/f_fundamental); % number of periods times
fundamental frequency
dt = 1/Fs;
x = 0:dt:T;
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = Vmax;

%gain = [1.9 1.99 2];
gain = (1.9: 0.02: 2);
gain_size = length(gain);

%% Define arrays
z = zeros(resolution, number_samples); % TM input and output signals
Dout = zeros(gain_size, resolution, number_samples); % Gray Code output

215

bin_representation = zeros(gain_size, resolution, number_samples); %
binary representation of Gray Code
output_representation = zeros(gain_size, number_samples); % Stores
digital outputs as decimal numbers

%% Input goes through TM-based ADC %
%% Input goes through TMs %
for g = 1: 1: gain_size
 for i = 1: 1: number_samples % Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds Gray code word
of sample
 if ((z(res, i) <= Vref) && (z(res, i) >= Vmin)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), i) = gain(g)*z(res, i); % first TM difference
equation
 Dout(g, res, i) = 0; % comparator output =
0
 elseif ((z(res, i) > Vref) && (z(res, i) <=
Vmax)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref)); % second TM difference equation
 Dout(g, res,i) =
1; % comparator output = 0
 elseif (z(res, i) > Vmax) % if the input is greater than
the valid input range
 z((res +1), i) = Vmin; % output = Vmax
 Dout(g, res, i) = 1; % comparator output = 1
 else % if the input is less than the
valid input range
 z((res +1), i) = Vmin; % output = Vmin
 Dout(g, res, i) = 0; % comparator output = 0
 end
 end
 % establish final bit
 if (z(resolution, i) <= (Vref))
 Dout(g, resolution, i) = 0;
 else
 Dout(g, resolution, i) = 1;
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Determine uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(g, :,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray codeword
to binary
 bin_representation(g,:,i) = binary ; %save binary to an
array (verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution % convert binary values to
the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(g, i) = decimal_rep ; %modify decimal
value so it lies within the input voltage range
 end

 %% Calculate difference between input and output (quantisation
error) and bit accuracy
 for i = 1: 1: length(y)
 uncorrected_difference(g, i) = ((Vmax-
Vmin)*output_representation(g, i)- y(i))/Step_size; %uncompensated
difference

216

 end
 %calculate bit accuracy of compensated and uncompensated ADC
 UD(g, 1) = max(abs(uncorrected_difference(g, :)));
 effective_bit_accuracy_UD(g, 1) = resolution-log2(ceil(UD(g, 1)))-1;

The MATLAB function below was developed to convert the Gray code, stored in the Dout

array, into binary code.

function b = gray2bin(g)
% Gray code to binary function
% Taken from http://www.matrixlab-examples.com/gray-code.html
b(1) = g(1);
for i = 2 : length(g);
 x = xor((b(i-1)), (g(i)));
 b(i) =(x);
end

B.1.2 Code for Static Performance Predictions Analysis

The code below was developed to analyse the static performance of the TM-ARCHα-15 ADC

model presented in Appendix B.1.1.

 %% Determine static performance
 max_VD = max(output_representation(g, :)); % Determine max. digital
output
 min_VD = min(output_representation(g, :)); % Determine min. digital
output
 endpoint_grad = (max_VD - min_VD)/(y(number_samples) - Vmin); %
Determine gradient of end-point transfer function
 endpoint_const = output_representation(g, 1); % Determine digital
output axis intercept of end-point transfer function

 % Ideal ADC
 Digital_ideal = floor((endpoint_grad*y +
endpoint_const)*pow2(resolution)); %Determine end-point transfer
function

 %DNL
 Digital_output =
floor(output_representation(g, :)*pow2(resolution)); %actual Transfer
function
 Digital_monitor = 1;
 Analogue_monitor = y(1);
 k = 1;
 for i = 1: 1: number_samples % start establishing DNL for each
digital output code
 if Digital_output(i) == Digital_output(Digital_monitor)

217

 else
 DNL(g, k) = ((y(i) - Analogue_monitor)/Step_size) - 1;
 Digital_monitor = i;
 Analogue_monitor = y(i);
 k = k + 1;
 end
 end

 DNL_max(g) = max(DNL(g, :)); % max. DNL
 DNL_min(g) = min(DNL(g, :)); % min. DNL
 i = 1;

 % INL
 for D = 0 : 1: pow2(resolution)-1 % start establishing INL for each
digital output code
 Dpos_act = find(Digital_output == D, 1);
 Dpos_ideal = find(Digital_ideal == D, 1);
 if isempty(Dpos_act)
 missing_codes(g, 1) = missing_codes(g, 1)+ 1; % calculate
missing codes
 else
 INL(g, i) = (y(Dpos_act) -
y(Dpos_ideal))*pow2(resolution); % INL result
 i = i+1;
 end
 end
 INL_max(g) = max(INL(g, :)); % max. INL
 INL_min(g) = min(INL(g, :)); % min. INL

 % Offset
 offset(g) = Digital_output(1); % determines offset when input
voltage = 0 V

 % Gain
 full_scale_error(g) = max(Digital_output) - (pow2(resolution)-1); %
max digital output - max ideal output
 Gain_error(g) = full_scale_error(g) - offset(g); % calculates gain
error
end

218

B.1.3 Code for Dynamic Performance Predictions Analysis

The code below was developed to analyse the dynamic performance of the TM-ARCHα-15

ADC model presented in Appendix B.1.1.

%% Sine Wave Input Signal
F_samp = 25000000; % sample frequency = 25 MHz
N = pow2(resolution+2); % set N
M = 131071; % set M
frequency = F_samp*(M/N); % set input frequency
dt = 1/F_samp;
T = 1;
x = (1:N)*dt;
y = (Vmax-Vmin)*(sin(2*pi*frequency*x)+1)/2; % creating input
sinusoidal signal
df = F_samp*(0:(N/2)-1)/N;

[...]

 %% Calculate Dynamic Performance
 output_representation(g, :) = detrend(output_representation(g, :),
'constant'); % remove DC offset
 SINAD(g) = sinad(output_representation(g, :), F_samp); % SINAD value
 SNR(g) = snr(output_representation(g, :), F_samp); % SNR value
 SFDR(g) = sfdr(output_representation(g, :), F_samp); % SFDR value
 THD(g) = thd(output_representation(g, :), F_samp,5,'aliased'); % THD
value
 ENOB(g) = (SINAD(g) - 1.76)/6.02; % ENOB value
end

219

B.2 MATLAB Scripts for Tent Map Based ADC with the Fundamental Tent Map Gain

Compensation Algorithm Output Accuracy Analysis

B.2.1 Code for Bit Accuracy Predictions Analysis

The following code presents the analysis of the µCA-1 which was developed to compensate

the output data produced by the TM-ARCHα-15 ADC mathematical model shown in Appendix

B.1.1. The code extract also highlights the calculations performed to determine the bit

accuracy of the compensated output.

[...]
for g = 1: 1: gain_size
 %% Ideal DM values - look up table
 VHDL_bits = resolution + 8;
 for i = 1:1:(resolution - 1)
 LUT_theory(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate
difference value
 LUT_VHDL(i) = floor(pow2(VHDL_bits)*((1/mpower(gain(g), i))-
(1/pow2(i)))); %Calculate difference value
 end
 %% Input goes through TM-based ADC %
 %% Input goes through TMs %

 [...]
 %% Sign for Difference Measure (SDM)
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g, res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end
 %% Difference Measure: selected for each respective gray code bit

 for i = 1: 1: length(y) %Samples of input signal
 DV_theory(1,i) = 0; %Ideal as it hasn't passed through a TM
 DV_VHDL(1,i) = 0; %Ideal as it hasn't passed through a TM
 for res = 2: 1: resolution % gives remaining bits of DM
 if (Dout(g,res, i) > 0)
 DV_theory(res, i) = LUT_theory(res - 1);
 DV_VHDL(res, i) = LUT_VHDL(res - 1);
 else
 DV_theory (res, i) = 0;

220

 DV_VHDL (res, i) = 0;
 end
 end
 end
 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV_theory(res, i) = DV_theory(res, i);
 SDV_VHDL(res, i) = DV_VHDL(res, i);
 else
 SDV_theory(res, i) = -DV_theory(res, i);
 SDV_VHDL(res, i) = -DV_VHDL(res, i);
 end
 end
 end

 % Determine DV
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum_theory(i) = sum(SDV_theory(:,i));
 SDV_sum_VHDL(i) = sum(SDV_VHDL(:,i))/pow2(VHDL_bits);
 end

 %% Implement correction
 %uncompensated output
 for i = 1: 1: length(y) % converting Gray-code representation of
samples, to binary
 gray_code_vector = Dout(g,:,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution %convert binary values
to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep;
 end
 output_representation(g, i) = decimal_rep ; %modify decimal
value so it lies within the input voltage range
 end
 voltage_representation(g, :) = output_representation(g, :)*(Vmax -
Vmin);
 %compensated ADC output
 for i = 1: 1: length(y) % compensate output
 if (SDM(1,i) == 1)
 corrected_output_theory(g,i) = output_representation(g,i) -
SDV_sum_theory(i);
 corrected_output_VHDL(g,i) = output_representation(g,i) -
SDV_sum_VHDL(i);
 else
 corrected_output_theory(g,i) = output_representation(g,i) +
SDV_sum_theory(i);
 corrected_output_VHDL(g,i) = output_representation(g,i) +
SDV_sum_VHDL(i);
 end
 end

 %% Calculate difference between input and output (quantisation
error) and bit accuracy

 uncorrected_difference(g, :) = (voltage_representation(g, :)-
y)/Step_size; %uncompensated difference
 corrected_difference_theory(g, :) =
((corrected_output_theory(g, :)*(Vmax - Vmin)) -
y)/Step_size; %compensated difference

221

 corrected_difference_VHDL(g, :) =
((corrected_output_VHDL(g, :)*(Vmax - Vmin))- y)/Step_size; %compensated
difference

 %calculate bit accuracy of compensated and uncompensated ADC
 UD(g, 1) = max(abs(uncorrected_difference(g, :)));
 CD_theory(g, 1) = max(abs(corrected_difference_theory(g, :)));
 CD_VHDL(g, 1) = max(abs(corrected_difference_VHDL(g, :)));
 effective_bit_accuracy_UD(g, 1) = resolution - log2(ceil(UD(g, 1)))
- 1; %if UD = 1 bit accuracy should be resolution - 1
 effective_bit_accuracy_CD_theory(g, 1) = resolution -
log2(ceil(CD_theory(g, 1))) - 1;
 effective_bit_accuracy_CD_VHDL(g, 1) = resolution -
log2(ceil(CD_VHDL(g, 1))) - 1;
end

B.2.2 Code for Static Performance Predictions Analysis

The code below was developed to analyse the static performance of the TM-ARCHα-15 ADC

model shown in Appendix B.1.1 after the digital output data had been compensated using the

µCA-1 presented in Appendix B.2.1.

 %% Determine static performance
 max_VD = max(corrected_output_VHDL(g, :)); % Determine max. digital
output
 min_VD = min(corrected_output_VHDL(g, :)); % Determine min. digital
output
 endpoint_grad = (max_VD - min_VD)/(y(number_samples) - Vmin); %
Determine gradient of end-point transfer function
 endpoint_const = corrected_output_VHDL(g, 1); % Determine digital
output axis intercept of end-point transfer function

 % Ideal ADC
 Digital_ideal = floor((endpoint_grad*y +
endpoint_const)*pow2(resolution)); %Determine end-point transfer
function

 %DNL
 Digital_output =
floor(corrected_output_VHDL(g, :).*pow2(resolution)); %actual Transfer
function
 Digital_monitor = 1;
 Analogue_monitor = y(1);

 k = 1;
 for i = 1: 1: number_samples % start establishing DNL for each
digital output code
 if Digital_output(i) == Digital_output(Digital_monitor)

 else
 DNL(g, k) = ((y(i) - Analogue_monitor)/Step_size) - 1;
 Digital_monitor = i;
 Analogue_monitor = y(i);
 k = k + 1;

222

 end
 end

 DNL_max_comp(g) = max(DNL(g, :)); % max. DNL
 DNL_min_comp(g) = min(DNL(g, :)); % min. DNL
 i = 1;

 % INL
 for D = 0 : 1: pow2(resolution)-1 % start establishing INL for each
digital output code
 Dpos_act = find(Digital_output == D, 1);
 Dpos_ideal = find(Digital_ideal == D, 1);
 if isempty(Dpos_act)
 missing_codes(g, 1) = missing_codes(g, 1)+ 1; % calculate
missing codes
 else
 INL(g, i) = (y(Dpos_act) -
y(Dpos_ideal))*pow2(resolution); % INL result
 i = i+1;
 end
 end
 INL_max_comp(g) = max(INL(g, :)); % max. INL
 INL_min_comp(g) = min(INL(g, :)); % min. INL

 % Offset
 offset_comp(g) = Digital_output(1); % determines offset when input
voltage = 0 V

 % Gain
 full_scale_error_comp(g) = max(Digital_output) - (pow2(resolution)-
1); % max digital output - max ideal output
 Gain_error_comp(g) = full_scale_error_comp(g) - offset_comp(g); %
calculates gain error

end

B.2.3 Code for Dynamic Performance Predictions Analysis

The code below was adapted from the code extract presented in Appendix B.1.3 to determine

the dynamic performance of the TM-ARCHα-15 ADC model after the digital output data had

been compensated using the µCA-1 presented in Appendix B.2.1.

%% Dynamic Performance
corrected_output_VHDL(g, :) = detrend(corrected_output_VHDL(g, :),
'constant'); % remove DC
SINAD(g) = sinad(corrected_output_VHDL(g, :)*(Vmax - Vmin),
F_samp); % SINAD value
SNR(g) = snr(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp); %
SNR value
SFDR(g) = sfdr(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp); %
SFDR value
THD(g) = thd(corrected_output_VHDL(g, :)*(Vmax - Vmin), F_samp, 5,
'aliased'); % THD value
ENOB(g) = (SINAD(g) - 1.76)/6.02; % ENOB value

223

B.3 MATLAB Script for of the Fundamental Tent Map Gain Compensation Algorithm

The following MATLAB script was employed to perform a sensitivity analysis on a TM-ARCHα-

15 ADC and TM-ARCHα-7 ADC as discussed in Section 5.3.

%% Characteristics for Tent-Map Based ADC
resolution = 8; %number of TM stages + 1
gain = [1.9 1.99]; % TM gain
Vmax = 3; % valid input max.
Vmin = 0; % valid input min.
Vref = 1.5; %set partition point voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size

%% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/pow2(resolution + 2); % fundamental frequency
T = (1/f_fundamental); %number of periods times fundamental frequency
dt = 1/Fs;
x = 0:dt:T;
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = Vmax;
gain_size = length(gain);
%% deviation from gain
deviation_percent = 5; % set deviation interval in terms of percentage
lower_percentage = -(deviation_percent/2);
upper_percentage = (deviation_percent/2);
percentage_inc = 0.1;
deviations = [lower_percentage: percentage_inc : upper_percentage];

% establish percentage
lower_limit = (100 + lower_percentage)/100; % set lower limit
upper_limit = (100 + upper_percentage)/100; % set upper limit
increment = percentage_inc/100;
number_deviations = round(1+(upper_limit - lower_limit)/increment);

%% Pre-allocate vectors
% This was done to reduce simulation time
Dout = zeros(gain_size, resolution, number_samples);
corrected_difference = zeros(number_samples, number_deviations);
SDM = zeros(resolution, number_samples);
bin_representation = zeros(resolution, number_samples);
corrected_output = zeros(number_samples, number_deviations);
SDV = zeros(resolution, number_samples, number_deviations);
SDV_sum = zeros(number_samples, number_deviations);
SDV_dec = zeros(number_samples, number_deviations);
DV = zeros(resolution, number_samples, number_deviations);
LUT = zeros(resolution - 1, number_deviations);

%% Start Sensitivity analysis
for g = 1: 1: gain_size % Chose µADC
 Estimated_gain_range =
[gain(g)*(lower_limit):(gain(g)*increment):gain(g)*(upper_limit)]; %rang
e of µ to be employed by the compensation algorithm
 for i = 1: 1: number_samples %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample

224

 if ((z(res, i) <= Vref) && (z(res, i) >= Vmin)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), i) = gain(g)*z(res, i); % first TM
difference equation
 Dout(g, res, i) = 0; % comparator output = 0
 elseif ((z(res, i) > Vref) && (z(res, i) <= Vmax)) % if
input to the folding stage is more than the reference voltage
 z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref));
 Dout(g, res,i) = 1;
 elseif (z(res, i) > Vmax)
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 1;
 else
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 0;
 end
 end

 if (z(resolution, i) <= (Vref))
 Dout(g, resolution, i) = 0;
 else
 Dout(g, resolution, i) = 1;
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Ideal DM values - look up table
 %Calculate all the DM values for each µ being employed by the
compensation algorithm
 for i = 1:1:(resolution - 1)
 for j = 1:1:number_deviations
 LUT(i,j) = (1/mpower(Estimated_gain_range(j), i))-
(1/pow2(i)); %Calculate difference value
 end
 end

 %% Sign for Difference Measure (SDM)
 for i = 1: 1: number_samples %Samples of input signal
 SDM(1, i) = Dout(g,1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g,res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end

 %% Difference Measure: selected for each respective gray code bit
 %Select the DM values determined using each µ being employed by the
compensation algorithm
 for i = 1: 1: number_samples %Samples of input signal
 for j = 1:1:number_deviations
 DV(1,i,j) = 0; %Ideal as it hasn't passed through a TM
 for res = 2: 1: resolution % gives remaining bits of DM
 if (Dout(g,res, i) > 0)
 DV(res, i,j) = LUT(res - 1,j);
 else
 DV (res, i,j) = 0;
 end

225

 end
 end
 end

 %% Signed Difference Value
 %Calculate the DV values determined using each µ being employed by
the compensation algorithm
 for i = 1: 1: number_samples %Samples of input signal
 for j = 1:1:number_deviations
 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i, j) = DV(res, i, j);
 else
 SDV(res, i, j) = -DV(res, i, j);
 end
 end
 end
 end

 % Determine DV
 for i = 1: 1: number_samples %decimal of SDV
 for j = 1:1:number_deviations
 SDV_sum(i, j) = sum(SDV(:,i, j));
 SDV_dec(i, j) = (Vmax-Vmin)*SDV_sum(i, j);
 end
 end

 %% Implement correction
 %Implement the compensation employing the DV values determined using
each µ being employed by the compensation algorithm

 %uncompensated output
 for i = 1: 1: number_samples % converting Gray code representation
of samples, to binary
 gray_code_vector = Dout(g,:,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution %convert binary values to the
equivalent voltage
 decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(i) = decimal_rep; %modify decimal value so
it lies within the input voltage range
 end

 %compensated ADC output
 for i = 1: 1: number_samples
 for j = 1:1:number_deviations
 if (SDM(1,i) == 1)
 corrected_output(i,j) = output_representation(i) -
SDV_dec(i,j);
 else
 corrected_output(i,j) = output_representation(i) +
SDV_dec(i,j);
 end
 end
 end

 %% Calculate quantisation error and bit accuracy
 uncorrected_difference = (output_representation-
y)/Step_size; %uncompensated difference
 for j = 1:1:number_deviations
 corrected_difference(:,j) = (corrected_output(:,j)-
y(:))/Step_size; %compensated difference
 end

226

 %calculate bit accuracy of compensated and uncompensated ADC
 UD(g) = max(abs(uncorrected_difference));
 for j = 1:1:number_deviations
 CD(g,j) = max(abs(corrected_difference(:,j)));
 end
 effective_bit_accuracy_UD = resolution - (log2(ceil(UD)) +1); %if
UD = 1 bit accuracy should be resolution - 1

 for j = 1:1:number_deviations
 effective_bit_accuracy_CD(g,j) = resolution -
(log2(ceil(CD(g,j))) +1);
 end
end

227

B.4 MATLAB Script for Comparison with the Tent Map Gain Compensation Algorithm by

Basu

The following script was developed to compare the µCA-1 assessed in Section 5.2 with the

µCA developed by Basu [41, 42]. The code highlighted blue was obtained from [118].

clc; %clears the command window and the workspace
clf;
clear;

%% Characteristics for Tent Map
resolution = 16; %number of TM stages - 1
gain = [1.9: 0.005: 2]; % TM gain
Vmax = 3; % valid input max.
Vmin = 0; % valid input min.
Vref = 1.5; %set partition point voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size
%% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref

F_samp = 25000000; %sample rate = 25 MHz
f_fundamental = F_samp/pow2(resolution + 2); % fundamental frequency
T = (1/f_fundamental); %number of periods times fundamental frequency
dt = 1/F_samp;
x = 0:dt:T;
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+1)/2;
gain_size = length(gain);
number_samples = length(x);
sample_number = (1: 1: number_samples);

for g = 1: 1: gain_size

 for i = 1: 1: number_samples %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 if ((z(res, i) <= Vref) && (z(res, i) >= Vmin)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), i) = gain(g)*z(res, i);
 Dout(g, res, i) = 0;
 elseif ((z(res, i) > Vref) && (z(res, i) <= Vmax)) % if
input to the folding stage is more than the reference voltage

 z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref));
 Dout(g, res,i) = 1;
 elseif (z(res, i) > Vmax)
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 1;
 else
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 0;
 end
 end

 if (z(resolution, i) <= (Vref))
 Dout(g, resolution, i) = 0;

228

 else
 Dout(g, resolution, i) = 1;
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Output before correction
 %uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(g,:,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution %convert binary values
to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep;
 end
 output_representation(g, i) = decimal_rep ; %modify decimal
value so it lies within the input voltage range
 end

 %% Basu et al algorithm - Code obtained from
https://eprints.hud.ac.uk/id/eprint/34821/
 format long
 iteration = resolution; % setting number of iterations
 Parameter_Mu = gain(g)/2; % setting parameter for estimation
 A = 0; % initialising lower bound
 B = 0; % initialising upper bound
 Delta = 0; % scaled interval size initialised
 l = 0; % size of the interval initialised
 alpha = 0; % odd even counter variable initialised
 N = length(y);
 Symbols_Gray = transpose(squeeze(Dout(g, :, :))); % copying
generated grey code for estimation
 X0_Dash_Array = zeros(N,1); % estimated initial condition array
initialised
 Diff= zeros(N,1); % error or difference between the actual and
 % estimated initial condition
 X0_Dash = 0; % single initial condition estimate variable
initialised
 for j = 1:N % for N initial conditions
 for i = 1:iteration % for i iteration of each initial condition
 alpha = alpha + Symbols_Gray(j,i); % count number of 1s
odd/even
 if i == 1 % if the first symbol
 if Symbols_Gray(j,1) == 1 % is 1 then the primary half
interval
 A = 0.5; % is mirrored with lower bound =
0.5
 B = 0; % and upper bound = 0
 else
 A = 0; % other wise keeping primary half
 B = 0.5; % unmirrored
 end
 else
 if rem(alpha,2) == 0 % if no. of '1's in the sequence is
even
 A = A; % lower bound unchanged
 B = A + Delta; % upper bound shifted to lower
bound +%scaled interval size
 else % if no. of '1's in the sequence is
odd
 A = B -Delta; % lower bound is shifted to
upperbound -% delta

229

 B = B; % upper bound is unchanged
end
 end
 end
 l = B - A; % determine the length of newly formed
interval
 Delta = l/(2*Parameter_Mu); % size of the interval scaled %
proportional to mu
 % first symbol is not due to the result of TM iteration
therefore orienting
 % the final estimated point is necessary and therefore
scaled accordingly
 % and again the interval is unmirrored for the range 0.5-1
(with first% symbol as 1)
 end
 if rem(alpha,2) == 0 % if no. of '1's in the sequence is even
 if Symbols_Gray(j,1) == 1 % if the first symbol is 1
 X0_Dash = 1 -(A/Parameter_Mu); % unmirror the interval
 % and scale down by mu
 else % if the first symbol is 0
 X0_Dash = (A/Parameter_Mu); % leave the orientation
unhanged
 % scale down by mu
 end
 else
 if Symbols_Gray(j,1) == 1
 X0_Dash = 1 -(B/Parameter_Mu);
 else
 X0_Dash = (B/Parameter_Mu);
 end
 end
 X0_Dash_Array(j,1) = X0_Dash; % store the estimated result
 A = 0; % reset all variables for the
 B = 0; % for the next new
estimation
 Delta= 0;
 l = 0;
 alpha = 0;
 X0_Dash = 0;
 end

 %% Algorithm from this research
 %% Ideal DM values - look up table
 VHDL_bits = resolution + 8;
 for i = 1:1:(resolution - 1)
 LUT(i) = (1/mpower(gain(g), i))-(1/pow2(i)); %Calculate
difference value
 end

 %% Sign for Difference Measure (SDM)
 for i = 1: 1: number_samples %Samples of input signal
 SDM(1, i) = Dout(g,1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g,2,i), Dout(g,3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g,res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end

 %% Difference Measure: selected for each respective gray code bit

230

 %Select the DM values determined using each µ being employed by the
compensation algorithm
 for i = 1: 1: number_samples %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 for res = 2: 1: resolution % gives remaining bits of DM
 if (Dout(g,res, i) > 0)
 DV(res, i) = LUT(res - 1);
 else
 DV (res, i) = 0;
 end
 end
 end

 %% Signed Difference Value
 %Calculate the DV values determined using each µ being employed by
the compensation algorithm
 for i = 1: 1: number_samples %Samples of input signal

 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else
 SDV(res, i) = -DV(res, i);
 end
 end
 end

 % Determine DV
 for i = 1: 1: number_samples %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));
 SDV_dec(i) = SDV_sum(i);
 end

 %% Implement correction
 %Implement the compensation employing the DV values determined using
each µ being employed by the compensation algorithm
 %compensated ADC output
 for i = 1: 1: number_samples

 if (SDM(1,i) == 1)
 corrected_output(g,i) = output_representation(g, i) -
SDV_dec(i);
 else
 corrected_output(g,i) = output_representation(g, i) +
SDV_dec(i);
 end
 end
 %% Output after correction
 X0_Dash_Array_T(g, :) = transpose(X0_Dash_Array);
 uncorrected_difference(g, :) = (output_representation(g, :)*(Vmax -
Vmin)- y)/Step_size; %uncompensated difference
 Basu_corrected_difference(g, :) = ((X0_Dash_Array_T(g, :)*(Vmax -
Vmin)) - y)/Step_size; % compensated difference for Basu's Method
 Research_corrected_difference(g, :) = ((corrected_output(g, :)*(Vmax
- Vmin)) - y)/Step_size;% compensated difference for this research's
method

 % establishing bit accuracy before and after compensation
 UD(g, 1) = max(abs(uncorrected_difference(g, :)));
 Basu_CD(g, 1) = max(abs(Basu_corrected_difference(g, :)));
 Research_CD(g, 1) = max(abs(Research_corrected_difference(g, :)));
 effective_bit_accuracy_UD(g, 1) = resolution - log2(ceil(UD(g, 1)))
- 1; %if UD = 1 bit accuracy should be resolution - 1
 Basu_effective_bit_accuracy_CD(g, 1) = resolution -
log2(ceil(Basu_CD(g, 1))) - 1;
 Research_effective_bit_accuracy_CD(g, 1) = resolution -
log2(ceil(Research_CD(g, 1))) - 1;
end

231

B.5 Code for VHDL Implementation of the Fundamental Tent Map Gain Compensation

Algorithm

B.5.1 VHDL Code to Control the TM-ARCHα-7 ADC

 The following code is an adaption of the VHDL code developed by Richard Haigh [56, 106] to

acquire and process the TM-ARCHα-7 output. Additional lines of code added during this

research to the original code listing have been highlighted blue. The original source code can

be found in [106].

--
--Title: Folding ADC Operation Control (FA_clock.vhd)
--Author: Richard Haigh
--Date: 12/03/17
--Availability:
http://eprints.hud.ac.uk/id/eprint/34742/1/Haigh%20THESIS.pdf
-- Date Edited: 20/10/2019

-- declare libraries--
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;

-- define entity of FA_CLOCK module --
ENTITY FA_CLOCK IS
PORT (clkp1, clkp2, clkp3, clkp4 : out std_logic; --clks to drive ADC
 clkn1, clkn2, clkn3, clkn4 : out std_logic;
 PLL_IN : in std_logic; --clk to PLL module
 PLL_RST: in std_logic;
 PLL_LOCK : OUT std_logic;
 data_out : out std_logic_vector (7 downto 0); -- parallel data
output pins
 CE0, CF0, CG0, CH0, CI0, CJ0, CK0, CL0 : in std_logic; --
Comparator outputs
 -- O E O E O E O E Comparator Group: O = odd;
E = even
 GorB : in std_logic;
 just_3V3 : out std_logic;
 just_0V : out std_logic);
END ENTITY;

-- Define Architecture of FA_CLOCK
ARCHITECTURE behav OF FA_CLOCK IS

component PLLTEST1 is -- declare component PLLTEST1 (produced 250 MHz
clock)
 PORT
 (areset : IN STD_LOGIC := '0';
 inclk0 : IN STD_LOGIC := '0';
 c0 : OUT STD_LOGIC ;
 locked : OUT STD_LOGIC);
 END component PLLTEST1;

232

component gain_correction is -- declare compensation gain_correction (µ
compensation algorithm)
 generic (n: positive:= 8);
 PORT (PLL_OUT : in std_logic; -- PLL clock (feb 17: 250 MHz)
 res : in std_logic; -- resets all Difference registers
 Input_Gray : in std_logic_vector (n-1 downto 0); -- TM-
based ADC Gray Code output
 correct_en : in std_logic; -- enable compensation
 correct_fin : out std_logic; -- finish compensation
 UncorrectedBINARY : in std_logic_vector (n-1 downto
0); -- uncompensated Binary Code
 CorrectedBINARY : out std_logic_vector (n-1 downto 0)); -
- compensated Binary Code
END component gain_correction;

-- Define signals for FA_CLOCK
SIGNAL count : integer := 0; -- to track number of PLL clock cycles
signal clk : std_logic := '0'; -- PLLTEST1 output (PLL clock)
signal CA0 , CB0 , CC0, CD0 : std_logic:= '0'; -- 4 MSB bits of TM-based
ADC output set to 0
--This VHDL module was originally designed for a 12-bit TM-based ADC,
but was adapted for a 8-bit version.
-- For this reason, the 4 MSBs are set to 0.

-- 5 arrays to store the TM-based ADC output and align the Gray code
values
signal A0 : std_logic_vector (1 downto 0) := "00";
signal A1 : std_logic_vector (3 downto 0) := "0000";
signal A2 : std_logic_vector (5 downto 0) := "000000";
signal A3 : std_logic_vector (7 downto 0) := "00000000";
SIGNAL A4 : STD_LOGIC_VECTOR (9 DOWNTO 0) := "0000000000";
signal A5 : std_logic_vector (11 downto 0) := "000000000000";

-- 1 bit arrays to store and transfer the comparator outputs
signal CA1 , CA2 , CB1 , CB2 , CC1 , CC2 , CD1 , CD2 , CE1 , CE2 , CF1 ,
CF2 , CG1, CG2, CH1, CH2 , CI1, CI2 , CJ1 , CJ2 , CK1, CK2 , CL1 , CL2 :
std_logic := '0';
signal bin_out : Std_logic_vector(11 downto 0):= "000000000000"; --
array to store the uncompensated binary output
signal gray_out: std_logic_vector(11 downto 0):= "000000000000"; --
array to store the Gray code output
signal clkp, clkn : std_logic:='0'; -- two types of non-overlapping
clocks

-- additional signals for gain correction module
signal buff_in : std_logic:='0'; -- ready to acquire compensated data
from µ compensation module
signal buff_out : std_logic:='0'; -- ready to output data to µ
compensation module
signal cor_res : std_logic:='0';
signal cor_bin_out : std_logic_vector (7 downto 0) := (others => '0');

BEGIN

-- assign signals to PLLTEST1
 PLL0: PLLTEST1
 port map (--PLL module creates 250 MHz
 areset=> PLL_RST ,
 inclk0 => PLL_IN , -- 50 MHz in
 c0 => clk , -- 250 MHz out
 locked => PLL_LOCK); -- portmap PLL

-- assign signals to gain_correction
 GC_Correct: gain_correction
 port map (--correct ADC output
 PLL_OUT => clk, -- 250 MHz clk
 res => cor_res ,

233

 Input_Gray => A5(7 downto 0),
 correct_en => buff_out,
 correct_fin => buff_in,
 UncorrectedBINARY => bin_out(7 downto 0),
 CorrectedBINARY => cor_bin_out);
 just_3V3 <= '1'; -- for jump GorB connector
 just_0V <= '0';

 -- 4 MSBs set as zero.
 CA0 <= '0';
 CB0 <= '0';
 CC0 <= '0';
 CD0 <= '0';

 -- assign clock signals (clkp1 is the s/h clock)
 clkp1 <= clkn;
 clkp2 <= clkp;
 clkp3 <= clkp;
 clkp4 <= clkp;
 clkn1 <= clkn;
 clkn2 <= clkn;
 clkn3 <= clkn;
 clkn4 <= clkn;

 ADC_OPERATION: PROCESS

 BEGIN
 WAIT UNTIL RISING_EDGE(clk); --clk is the PLL output
 -- Non over lapping clock generation statements
 IF count < 4 THEN
 clkp <= '0';
 clkn <= '1';
 count <= count + 1;

 ELSIF count = 4 THEN
 clkp <= '0';
 clkn <= '0';
 count <= count + 1;

 ELSIF count > 4 AND count < 9 THEN
 clkp <= '1';
 clkn <= '0';
 count <= count + 1;

 ELSIF count = 9 THEN
 clkp <= '0';
 clkn <= '0';
 count <= 0 ;
 END IF;
 --dave counts up 0 to 9
 --data control

 IF count = 9 THEN---
---------------------------------0
 --sync odds
 CA2 <= CA1;
 CC2 <= CC1;
 CE2 <= CE1;
 CG2 <= CG1;
 CI2 <= CI1;
 CK2 <= CK1;

 ELSIF count = 0 THEN--
---------------------------------1
 --shift array
 A5(11 downto 2) <= A4 (9 downto 0);
 A4(9 downto 2) <= A3 (7 downto 0);
 A3(7 downto 2) <= A2 (5 downto 0);

234

 A2(5 downto 2) <= A1 (3 downto 0);
 A1(3 downto 2) <= A0 (1 downto 0);

 ELSIF count = 1 THEN--
----------------------------------2
 --load odds in array
 A0(1) <= CA2;
 A1(1) <= CC2;
 A2(1) <= CE2;
 A3(1) <= CG2;
 A4(1) <= CI2;
 A5(1) <= CK2;

 ELSIF count = 2 THEN--
-------------------------------------3
 buff_out <= '0'; -- end correction
 ELSIF count = 3 THEN--
---------------------------------4
 --sample_evens <= '1';
 CB1 <= CB0;
 CD1 <= CD0;
 CF1 <= CF0;
 CH1 <= CH0;
 CJ1 <= CJ0;
 CL1 <= CL0;

 ELSIF count = 4 THEN--
---------------------------------5
 -- sync evens 1
 CB2 <= CB1;
 CD2 <= CD1;
 CF2 <= CF1;
 CH2 <= CH1;
 CJ2 <= CJ1;
 CL2 <= CL1;

 ELSIF count = 5 THEN--
----------------------------------6
 ELSIF count = 6 THEN--
----------------------------------7
 --load evens in array
 A0(0) <= CB2;
 A1(0) <= CD2;
 A2(0) <= CF2;
 A3(0) <= CH2;
 A4(0) <= CJ2;
 A5(0) <= CL2;

 ELSIF count = 7 THEN--
----------------------------------8
 --convert Gray code to binary
 bin_out (11) <= A5(11);
 bin_out (10) <= A5(11) xor A5(10);
 bin_out (9) <= (A5(11) xor A5(10)) xor A5(9);
 bin_out (8) <= ((A5(11) xor A5(10)) xor A5(9)) xor A5(8);
 bin_out (7) <= (((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7);
 bin_out (6) <= ((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6);
 bin_out (5) <= (((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5);
 bin_out (4) <= ((((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4);
 bin_out (3) <= (((((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3);
 bin_out (2) <= ((((((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2);

235

 bin_out (1) <= (((((((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2))
xor A5(1);
 bin_out (0) <= ((((((((((A5(11) xor A5(10)) xor A5(9)) xor
A5(8))xor A5(7)) xor A5(6)) xor A5(5))xor A5(4)) xor A5(3)) xor A5(2))
xor A5(1)) xor A5(0);
 buff_out <= '1'; --start compensation
 ELSIF count = 8 THEN--
------------------------------------9
 --sample odds
 CA1 <= CA0;
 CC1 <= CC0;
 CE1 <= CE0;
 CG1 <= CG0;
 CI1 <= CI0;
 CK1 <= CK0;
 End if;

END PROCESS ADC_OPERATION;
--data_out <= bin_out(7 downto 0); --output ADC output
data_out <= cor_bin_out; --output corrected ADC output
END behav;

B.5.2 VHDL Implementation of the µCA-1

The following code is the VHDL implementation of the µCA-1 from this research.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;

ENTITY gain_correction is
generic (n: positive:= 8); -- define resolution of TM-based ADC
PORT (PLL_OUT: in std_logic; -- PLL clock (feb 17: 250 MHz)
 res: in std_logic; -- resets all Difference registers
 Input_Gray: in std_logic_vector(n-1 downto 0); --ADC output in Gray
code
 correct_en: in std_logic;
 correct_fin: out std_logic;
 UncorrectedBINARY: in std_logic_vector(n-1 downto 0); --ADC output
in binary
 CorrectedBINARY: out std_logic_vector(n-1 downto 0)); --Corrected
ADC output
END ENTITY;

ARCHITECTURE behav OF gain_correction IS

-- define signals to be employed within the module
signal Graycode: std_logic_vector(n-1 downto 0):= (others => '0');
signal SDM_reg: std_logic_vector(n-1 downto 0):= (others => '0');
signal UC_binary: std_logic_vector((n + 2)-1 downto 0):= (others => '0');
signal C_binary: std_logic_vector((n + 2)-1 downto 0):= (others => '0');
signal SDV_reg: std_logic_vector((n + 2)-1 downto 0):= (others => '0');
signal correct: std_logic_vector(n-1 downto 0):= (others => '0');
signal counter: integer := 0;
signal C_fin: std_logic := '0';
signal do_correct: std_logic := '0';

236

-- LUT for gain = 1.9; DM resolution = 10 bits
type LUT is array (n-2 downto 0) of std_logic_vector((n + 2)-1 downto 0);
--precalculated DM values
signal diff_bit: LUT := --binary values multiplied by 2^(8+2) = 1024
(need to shift back by 2)
("0000011010",
 "0000011011",
 "0000010101",
 "0000001110",
 "0000001001",
 "0000000101",
 "0000000011");

type Diff is array (n-1 downto 0) of std_logic_vector((n + 2)-1 downto 0);
-- array to store relevant DM values
signal assign_diff: Diff;

type sum_Diff is array (n-2 downto 0) of std_logic_vector((n + 2)-1 downto
0); -- array to aid the calculation of the DV value
signal polarity_diff: sum_Diff;

BEGIN
 -- start compensation
 Gain_compensate: PROCESS
 BEGIN
 WAIT UNTIL RISING_EDGE(PLL_OUT); --PLL_IN the PLL clock 250MHz

 -- obtain Gray code and binary code from the TM-based ADC
 Graycode(n-1 downto 0) <= Input_Gray;
 UC_binary((n + 2)-1 downto (n + 2)-n) <= UncorrectedBINARY; --
binary code from ADC form the 8 MSBs of this array
 UC_binary((n + 2)-(n+1) downto 0) <= (others => '0'); --
remaining LSBs are set to zero.

 --Should the correction process be applied?
 IF correct_en = '1' AND counter < 3 THEN --yes
 C_fin <= '0'; -- compensation is in process
 counter <= counter + 1; -- increment counter
 -- Find sign of difference measure (3 MSBs)
 SDM_reg(n-1) <= Graycode(n-1);
 SDM_reg(n-2) <= '1';
 SDM_reg(n-3) <= (Graycode(n-2) XOR Graycode(n-3));

-- -- Find Difference measure--
 assign_diff(n-1) <= (others => '0');
--
 --Do correction
 polarity_diff(n-2) <= assign_diff(n-2);
--
 if SDM_reg(n-1) = '1' then -- is MSB of Gray code = 1?
 C_binary <= UC_binary - SDV_reg;

 else -- is MSB of Gray code = 0?
--
 C_binary <= UC_binary + SDV_reg;
 end if;
 ELSIF counter = 3 AND correct_en = '1' THEN -- no,
compensation finished
 C_fin <= '1';
 ELSIF counter = 3 AND correct_en = '0' THEN --no
 counter <= 0;
 ELSE
 null;
 END IF;
 END process;

 -- Sign for Difference measure

237

 SDM: for i in n-4 downto 0 generate
 begin
 SDM_reg(i) <= (SDM_reg(i+1) XOR Graycode(i));
 end generate SDM;

 -- Assign difference measure
 DV: for i in n-2 downto 0 generate
 begin
 with Graycode(i) select
 assign_diff(i) <= diff_bit(i) when '1',
 (others => '0') when others;
 end generate DV;

 -- Do correction/ calculate difference value
 SDV: for i in n-3 downto 0 generate
 begin
 with SDM_reg(i) select
 polarity_diff(i) <= polarity_diff(i+1) + assign_diff(i) when
'1',
 polarity_diff(i+1) - assign_diff(i) when others;
 SDV_reg <= polarity_diff(0);
 end generate SDV;

CorrectedBINARY <= C_binary((n + 2)-1 downto (n + 2)-n); -- Transmit
corrected binary code
correct_fin <= C_fin;
END behav;

B.5.3 MATLAB Script to Aid Creation of TM-ARCHα-7 ADC Signal Emulator

The MATLAB script below was developed to establish a sequence of values to be added to the

sum of the previous value. These values created the Gray code that a TM-ARCHα-7 ADC, with

a µ = 1.9 and supplied a full-scale ramp input signal, would produce if the comparator outputs

had been aligned. The sequence of values was then employed by the TM-ARCHα-7 ADC Signal

Emulator (see Section B.5.4) and enabled this component to produce a similar output to a

TM-based ADC before the comparator outputs are aligned by the control logic within the

FPGA.

238

%% Characteristics for Tent Map
gain = [1.9];
Vmax = 3.0;
Vmin = 0;
Vref = 1.5; %set reference voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size
%% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
samples = (2^(resolution+1)); %number of samples
dt = 1/samples;
x = 0:dt:1;
y = (Vmax-Vmin)*x;

%% Gain look up table
for i = 1:1:(resolution - 1)
 LUT(i) = (1/mpower(gain, i))-(1/pow2(i));
end

%% Input goes through TMs %
for i = 1: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution % Folds and finds gray code word of
sample
 if (z(res, i) <= Vref) % if input to the folding stage is less
than or equal to the reference voltage
 z((res+1), i) = gain*z(res, i);
 Dout(res, i) = 0;
 elseif (z(res, i) > Vref) % if input to the
folding stage is more than the reference voltage
 z((res +1), i) = gain*(2*Vref - z((res), i));
 Dout(res, i) = 1;
 end
 end
end
%z array gives the inputs to each Tent map stage
%Dout array provides the Gray code output

%% Implement correction
%uncorrected output
for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(:,i); %get Gray code word
 gray_rep = transpose(gray_code_vector);
 gray_int(i) = bi2de(gray_rep, 'left-msb');

 %looking at binary equivalent
 binary = gray2bin(gray_code_vector); %convert Gray code word to
binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 bin_rep = transpose(bin_representation(:,i));
 bin_int(i) = bi2de(bin_rep, 'left-msb');
end
%% Determine Ramp add values (to be employed by the signal emulator)
ramp_diff_shift = [gray_int(2 : length(gray_int)), gray_int(1)]; %
shift gray_int values right by on in the array. Bring gray_int(1) to the
leftmost index in the array.
ramp_add = ramp_diff_shift - gray_int; % determine the next value to be
added to the output to create a ramp

239

B.5.4 VHDL code of the TM-ARCHα-7 ADC Signal Emulator

The following code was developed to imitate the output of a TM-ARCHα-7 ADC, with a

µ = 1.9, when supplied with a ramp input signal.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;

ENTITY Signal_pipelined_generator is
generic (n: integer:= 8);
PORT (clk_p: in std_logic; -- s/h clock (25 MHz)
 res: in std_logic; -- resets all Difference registers
 Output_signal_piped: out std_logic_vector(n-1 downto 0)); --
equivalent output of the TM-ADC
END ENTITY;

ARCHITECTURE behav OF Signal_pipelined_generator IS
signal Gen_counter: integer := 0;
signal in_value: integer := 0; --value into the "TM-ADC"
signal in_valueV: std_logic_vector(7 downto 0):= (others => '0'); --binary
equivalent of in_value
signal out_value: std_logic_vector(7 downto 0):= (others => '0'); --output
signal S0: std_logic_vector(1 downto 0):= (others => '0');
signal S1: std_logic_vector(3 downto 0):= (others => '0');
signal S2: std_logic_vector(5 downto 0):= (others => '0');
signal S3: std_logic_vector(7 downto 0):= (others => '0');

type add2prev is array (0 to 2**(n+1)) of integer;
signal diff: add2prev := --difference values for ramp
(
-- ramp signal emulation array--
-- contents generated by MATLAB Script presented in B.5.3--
);
begin
 form_signal_odds: PROCESS
 BEGIN
 WAIT UNTIL RISING_EDGE(clk_p); --PLL_IN the PLL clock 250MHz

 in_value <= in_value + diff(Gen_counter); --Add difference to
previous input amplitude
 in_valueV <= std_logic_vector(to_unsigned(in_value, n)); --convert
to binary
 S3(7 downto 6) <= in_valueV(7 downto 6); -- 2 MSBs go to the 2 MSBs
of array S3
 S2(5 downto 4) <= in_valueV(5 downto 4); -- 3rd and 4th MSBs go to
the 2 MSBs of array S2
 S1(3 downto 2) <= in_valueV(3 downto 2); -- 3rd and 4th LSBs go to
the 2 MSBs of array S1
 S0(1 downto 0) <= in_valueV(1 downto 0); -- 2 LSBs go to the 2 MSBs
of array S0

 out_value <= S3; --ADC output would be the same as S3
 if Gen_counter < 2**(n+1) then
 Gen_counter <= Gen_counter + 1; --increment counter
 S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into
S3[5:0]
 S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into
S2[3:0]

240

 S1(1 downto 0) <= S0(1 downto 0); --shift S0 values into
S1[1:0]
 else
 Gen_counter <= 0; --
reset counter
 S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into
S3[5:0]
 S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into
S2[3:0]
 S1(1 downto 0) <= S0(1 downto 0); -- 2 LSBs go to the 2 MSBs
of array S0
 end if;

end process;
Output_signal_piped <= out_value;

END behav;

241

B.5.5 Combining Components for Test

Figure B-1 is a schematic connecting the FA_clock and Signal_pipelined_generator components (see Appendix B.5.1 and Appendix B.5.4

respectively) for testing.

Figure B-1: Components combined using a schematic within Quartus.

242

B.5.6 Test Bench for Testing the µCA-1 VHDL Implementation

The following code is the test bench developed to test the implemented µCA-1 via simulation.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;
use STD.textio.all;
use ieee.std_logic_textio.all;

ENTITY ramp_to_sys_tb IS
END ENTITY;

ARCHITECTURE behav OF ramp_to_sys_tb IS

signal clk_50MHz: std_logic := '0'; --50 MHz signal to PLL module
signal R1: std_logic := '0'; -- reset 1
signal R2: std_logic := '0'; -- reset 2
signal G_B: std_logic := '0';
signal DATA: std_logic_vector(7 downto 0) := (others => '0'); -- output
data from main component
signal num: integer := 0; -- data converted to integer
file Results: text; -- converted data to be saved to a text file

component repeat_of_orginial_algorithm_experiment is -- signal generator
and FA_clock combined
 PORT (GoB: IN STD_LOGIC;
 RES_2: IN STD_LOGIC;
 Clk: IN STD_LOGIC;
 RES: IN STD_LOGIC;
 D_out: OUT STD_LOGIC_VECTOR(7 downto 0));
 end component repeat_of_orginial_algorithm_experiment;

Begin

 main_component_INST : repeat_of_orginial_algorithm_experiment
 port map
 (GoB => G_B,
 RES_2 => R2,
 CLK => clk_50MHz,
 RES => R1,
 D_out => DATA);

clking_50: Process -- generate 50 MHz clock
begin
 number1: for i in 1 to 100000 loop
 clk_50MHz <= '1';
 wait for 10 ns;
 clk_50MHz <= '0';
 wait for 10 ns;
 end loop number1;
 end process clking_50;

 save_results: Process -- save data into text files
 variable O_line : line;
 begin

 --file_open(Results, "Before_correction.txt", write_mode); --
before correction
 file_open(Results, "After_correction.txt", write_mode); --after
correction

243

 number2: for i in 1 to 100000 loop
 num <= to_integer(unsigned(DATA)); --convert binary ADC output to
integers
 write(O_line, num, right, 8); --write data to file
 writeline(Results, O_line);

 wait for 40 ns;
 end loop number2;
 file_close(Results);
 end process save_results;

end behav;

244

B.6 MATLAB Scripts for Approximating Difference Measure Values for the Fundamental

Tent Map Gain Compensation Algorithm

B.6.1 Code for Creating the SLE&A Equations

The code below was used to develop the straight-line approximation of the DM versus µ plots

for all bits (except the MSB). Straight line approximations of the error versus µ plots were also

determined. The equations determined from these straight-line approximations were

employed in the SLE&A method discussed in Section 5.6 and presented in Appendix B.6.2.

%% Ideal DM values - look up table
resolution = 16; % number of TM stages - 1
gain = [1.9: 0.0001: 2]; % gain range
gain_t = transpose(gain);
for g = 1:1:length(gain)
 for i = 1:1:(resolution)-1
 LUT(g,i) = (1/mpower(gain(g), i))-(1/pow2(i));
 end
end

G = length(gain); % number of gains to be plotted
%% Do straight-line approximation

n = 1: 1: resolution - 1;
Results = zeros(2, resolution - 1);
for i = 1:1:resolution - 1 % calculate gradient
 a = (LUT(G,i) - LUT(1,i))/(gain(G) - gain(1));
 b = LUT(G,i) - a*gain(G);
 Results(1, i) = a;
 Results(2, i) = b;
end

for g = 1:1:length(gain)
 for i = 1:1:(resolution - 1)
 a = Results(1,i);
 b = Results(2,i);
 LUT_approx(g, i) = a*gain(g) + b;
 end
end

%% straight line approxs for error approx
DIFF = LUT - LUT_approx; % calculate error

for i = 1:1:resolution - 1

 %approximation for first half
 y_grad = (DIFF((1+ length(gain))/2 ,i) - DIFF(1,i));
 x_grad = gain(1,(1+ length(gain))/2) - gain(1,1);
 a = y_grad/x_grad;
 b = DIFF((1+ length(gain))/2,i) - a*gain(1,(1+ length(gain))/2); %
constant calculated when u = 1.95

245

 Errors1(1, i) = a;
 Errors1(2, i) = b;

 %approximation for second half
 c = (DIFF(G,i) - DIFF((1+ length(gain))/2,i))/((gain(1,G) -
gain(1,(1+ length(gain))/2)));
 d = DIFF((1+ length(gain))/2,i) - c*gain(1,(1+ length(gain))/2); %
constant calculated when u = 1.95
 Errors2(1, i) = c;
 Errors2(2, i) = d;
 end

B.6.2 Code for Simulating SLE&A Method

The code below presents how the SLE&A method was implemented to approximate the DM

values employed within the µCA-1.

%% load data obtained from curve_fitting_for_gain.m
resolution = 16; %Number of TM stages
%curvefittingforgain =
load('Straight_line_approx_1.9_to_2_0.0001inc.mat');
curvefittingforgain =
load('Straight_line_approx_min_point_1.9_to_2_0.0001inc.mat');
Indexs = load('error_grad_change.mat');

%% Characteristics for Tent Map
gain = [1.9: 0.01:1.99]; %TM gain
gain_max = 2; % Min and max values used in straight-line approximation
gain_min = 1.9;
gain_mid = 1.95; %mid-point of gain values approximated
Vmax = 3;
Vmin = 0;
Vref = 1.5; %set partition point voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size
%% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html

Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/pow2(resolution + 2); %380 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T-dt;
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; % 0 to 3 V at
380 Hz ramp input signal
number_samples = length(x);
%% DM values - look up table

for g = 1:1:length(gain)
 %ideal DM values
 for i = 1:1:(resolution - 1)
 LUT(i) = (1/mpower(gain(g), i))-(1/pow2(i));
 end

 %approximated DM values
 % straight line approx
 for i = 1:1:(resolution - 1)

246

 a = curvefittingforgain.Results(1,i);
 b = curvefittingforgain.Results(2,i);

 if gain(g) <= gain_mid
 c = curvefittingforgain.Errors1(1,i);
 d = curvefittingforgain.Errors1(2,i);
 else
 c = curvefittingforgain.Errors2(1,i);
 d = curvefittingforgain.Errors2(2,i);
 end
 Error_approx(i) = (c*gain(g) + d);
 LUT_approx(i) = (a*gain(g) + b) + Error_approx(i);
 end

 for i = 1: 1: number_samples %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 if ((z(res, i) <= Vref) && (z(res, i) >= Vmin)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), i) = gain(g)*z(res, i);
 Dout(g, res, i) = 0;
 elseif ((z(res, i) > Vref) && (z(res, i) <=
Vmax)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref));
 Dout(g, res,i) = 1;
 elseif (z(res, i) > Vmax)
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 1;
 else
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 0;
 end
 end

 if (z(resolution, i) <= (Vref))
 Dout(g, resolution, i) = 0;
 else
 Dout(g, resolution, i) = 1;
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Sign for Difference Measure (SDM)

 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g, 2,i), Dout(g, 3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g, res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end
 %% Difference Measure: selected for each respective gray code bit
 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM

247

 for res = 2: 1: resolution % gives remaining bits of DV
 if (Dout(g, res, i) > 0)
 DV(res, i) = LUT(res - 1); %ideal
 DV_approx(res, i) = LUT_approx(res - 1); %approx
 else DV(res, i) = 0;
 DV_approx(res, i) = 0;
 end
 end
 end
 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i); %ideal
 SDV_approx(res, i) = DV_approx(res, i); %approx
 else SDV(res, i) = -DV(res, i); %ideal
 SDV_approx(res, i) = -DV_approx(res, i); %approx
 end
 end
 end

 %DV values
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));
 SDV_dec(i) = (Vmax-Vmin)*SDV_sum(i); %DV ideal
 SDV_sum_approx(i) = sum(SDV_approx(:,i));
 SDV_dec_approx(i) = (Vmax-Vmin)*SDV_sum_approx(i); %DV approx.
 end

 %% Implement compensated

 %uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(g, :,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution
 decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(i) = decimal_rep ; %modify decimal value
so it lies within the input voltage range
 end

 %compensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 if (SDM(1,i) == 1)
 corrected_output(i) = output_representation(i) -
SDV_dec(i); %ideal
 corrected_output_approx(i) = output_representation(i) -
SDV_dec_approx(i); %approx
 else
 corrected_output(i) = output_representation(i) +
SDV_dec(i); %ideal
 corrected_output_approx(i) = output_representation(i) +
SDV_dec_approx(i); %approx
 end
 end

 uncorrected_difference = (output_representation - y)/Step_size;
 corrected_difference = (corrected_output - y)/Step_size;

248

 corrected_difference_approx = (corrected_output_approx -
y)/Step_size;

 %% display key information (Effective resolution)

 UD = max(abs(uncorrected_difference))
 CD = max(abs(corrected_difference_approx))
 CD_ideal = max(abs(corrected_difference))
 effective_bit_accuracy_UD(g) = resolution - (log2(ceil(UD))
+1); %if UD = 1 bit acc should be resolution - 1
 effective_bit_accuracy_CD(g) = resolution - (log2(ceil(CD)) +1);
 effective_bit_accuracy_CD_ideal(g) = resolution -
(log2(ceil(CD_ideal)) +1);

 Ideal_and_approx_difference = corrected_difference -
corrected_difference_approx;
end

B.6.3 Code for Simulating SA Method

The code below presents how the SA method was implemented to approximate the DM

values employed within the µCA-1.

%% Characteristics for Tent Map
resolution = 16; %number of TM stages - 1
approx_gain = [1.9]; %u_o
gain = [1.9: 0.01: 1.99]; %u_c
Vmax = 3; %valid input signal max.
Vmin = 0; %valid input signal min.
Vref = 1.5; %set partition point voltage
Step_size = (Vmax-Vmin)/(2^resolution); %calculating step size
%% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
f_fundamental = 380; % 380 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
Fs = 25000000; %sample rate = 25 MHz
dt = 1/Fs;
x = 0:dt:T-dt;
y = (Vmax-Vmin)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; % 0 to 3 V at
380 Hz ramp input signal.
number_samples = length(x);

for g = 1: 1: length(gain)
 %% DM values - look up table
 scalar(g) = (1-(gain(g) - approx_gain)/(2-approx_gain));
 %approx DM values
 for i = 1:1:(resolution - 1)
 LUT(i) = ((1/mpower(approx_gain, i))-(1/pow2(i)));
 end
 %ideal DM values
 for i = 1:1:(resolution - 1)
 LUT_ideal(i) = ((1/mpower(gain(g), i))-(1/pow2(i)));
 end

 LUT_approx = scalar(g)*LUT;
 %% Input goes through TM-based ADC %
 for i = 1: 1: number_samples %Samples of input signal
 z(1,i) = y(i);

249

 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 if ((z(res, i) <= Vref) && (z(res, i) >= Vmin)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), i) = gain(g)*z(res, i);
 Dout(g, res, i) = 0;
 elseif ((z(res, i) > Vref) && (z(res, i) <=
Vmax)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain(g)*Vref)-(gain(g)*(z((res), i)-
Vref));
 Dout(g, res,i) = 1;
 elseif (z(res, i) > Vmax)
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 1;
 else
 z((res +1), i) = Vmin;
 Dout(g, res, i) = 0;
 end
 end

 if (z(resolution, i) <= (Vref))
 Dout(g, resolution, i) = 0;
 else
 Dout(g, resolution, i) = 1;
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Sign for Difference Measure (SDM)
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(g, 1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(g, 2,i), Dout(g, 3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(g, res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end
 %% Difference Measure: selected for each respective gray code bit
 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 for res = 2: 1: resolution % gives remaining bits of DV
 if (Dout(g, res, i) > 0)
 DV(res, i) = LUT_ideal(res - 1); %ideal
 DV_approx(res, i) = LUT_approx(res - 1); %approx
 else DV(res, i) = 0;
 DV_approx(res, i) = 0;

 end
 end
 end
 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i); %ideal
 SDV_approx(res, i) = DV_approx(res, i); %approx
 else SDV(res, i) = -DV(res, i); %ideal

250

 SDV_approx(res, i) = -DV_approx(res, i); %approx
 end
 end
 end

 %DV values
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));
 SDV_dec(i) = (Vmax-Vmin)*SDV_sum(i); %DV ideal
 SDV_sum_approx(i) = sum(SDV_approx(:,i));
 SDV_dec_approx(i) = (Vmax-Vmin)*SDV_sum_approx(i); %DV approx.
 end

 %% Implement compensated
 %uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(g, :,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: resolution
 decimal_rep = (Vmax-Vmin)*(binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(i) = decimal_rep ; %modify decimal value
so it lies within the input voltage range
 end

 %compensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 if (SDM(1,i) == 1)
 corrected_output(i) = output_representation(i) -
SDV_dec(i); %ideal
 corrected_output_approx(i) = output_representation(i) -
SDV_dec_approx(i); %approx
 else
 corrected_output(i) = output_representation(i) +
SDV_dec(i); %ideal
 corrected_output_approx(i) = output_representation(i) +
SDV_dec_approx(i); %approx
 end
 end

 uncorrected_difference = (output_representation - y)/Step_size;
 corrected_difference = (corrected_output - y)/Step_size;
 corrected_difference_approx = (corrected_output_approx -
y)/Step_size;

 %% display key information (Effective resolution)

 UD = max(abs(uncorrected_difference))
 CD = max(abs(corrected_difference_approx))
 CD_ideal = max(abs(corrected_difference))
 effective_bit_accuracy_UD(g) = resolution - (log2(ceil(UD))
+1); %if UD = 1 bit acc should be resolution - 1
 effective_bit_accuracy_CD(g) = resolution - (log2(ceil(CD)) +1);
 effective_bit_accuracy_CD_ideal(g) = resolution -
(log2(ceil(CD_ideal)) +1);

 Ideal_and_approx_difference = corrected_difference -
corrected_difference_approx;
end

251

Appendix C

The code presented in this appendix relates to the simulation and practical results presented

in Chapter 6.

C.1 MATLAB Scripts for Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain

Compensation Algorithms

C.1.1 Code for the µCA-2 Analysis

The code below shows how the µCA-2 was tested with a more complex TM-ARCHα-15 ADC

mathematical model developed in MATLAB.

%% Initialise key parameters for model
resolution = 16; %number of TM stages + 1
Vcc = 5; % valid input max.
Vee = -0.25; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
Step_size = (vin_range)/(2^resolution); %calculating step size
%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution + 2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T;
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);

%% Gain and Vref Parameters
number_tests = 100;
rng(0, 'twister'); % The code in this script section is based on
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html
a = 1.9;
b = 1.99;

gain_pos = (b-a).*rand(number_tests, resolution-1) + a; % different µ+
for each TM stage
gain_neg = (b-a).*rand(number_tests, resolution-1) + a; % different µ-
for each TM stage
%% Input goes through TM-based ADC %

252

for test = 1: 1: number_tests
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(res)) && (z(res, 1) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), 1) = gain_pos(test,res)*z(res, 1);
 Dout(res, 1) = 0;
 elseif ((z(res, 1) > VH_pos(res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), 1) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref));
 Dout(res,1) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(res, 1) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(res, 1) = 0;
 end
 end
 %% positive ramp goes through TMs %
 for i = 2: 1: number_samples %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(test,res)*z(res, i);
 Dout(res, i) = 0;
 elseif ((z(res, i) > VH_pos(res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref));
 Dout(res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(res, i) = 1;
 else
 z((res +1), i) = Vee;
 Dout(res, i) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(test,res)*z(res, i);
 Dout(res, i) = 0;
 elseif ((z(res, i) > VH_neg(res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref));
 Dout(res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(res, i) = 1;
 else
 z((res +1), i) = Vee;
 Dout(res, i) = 0;

253

 end
 end
 end
 %% last comparator
 if ((z(resolution, i) > z(resolution, i - 1))||(z(resolution,
1)))
 if (z(resolution, i) <= VH_pos(resolution))
 Dout(resolution, i) = 0;
 else
 Dout(resolution, i) = 1;
 end
 else
 if (z(resolution, i) <= VH_neg(resolution))
 Dout(resolution, i) = 0;
 else
 Dout(resolution, i) = 1;
 end
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 %% Sign for Difference Measure (SDM)
 % edited for non-matching gains
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(2,i), Dout(3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end
 %% Difference Measure: selected for each respective Gray code bit
 %Select the DM values determined using each µ being employed by the
compensation algorithm
 %Calculate all the DM values for each µ being employed by the
compensation algorithm

 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(res-1, i) == 1
 gain_factor = gain_factor * gain_neg(test,res-1);
 else
 gain_factor = gain_factor * gain_pos(test,res-1);
 end
 %% calculate and add difference measure values
 if (Dout(res, i) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
 end

 […]

254

C.1.2 Code for the µCA-3 Analysis

The code below shows how the TM-ARCHβ-7-12 ADC was implemented as a mathematical

model and tested with µCA-3.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
COTS_ADC_res = 12;
Total_resolution = resolution + COTS_ADC_res - 1;
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
TM_Step_size = (vin_range)/(2^resolution); %calculating step size
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size
%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution + 2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T-dt;
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);

%% Preallocate size of arrays
number_tests = 10;
Dout = zeros(number_tests, Total_resolution, number_samples);

%% Gain and Vref Parameters
rng(0,
'twister'); %%https://uk.mathworks.com/help/matlab/math/floating-
point-numbers-within-specific-range.html
a = 1.9;
b = 1.99;
% produced µ+ and µ- for TM stages
gain_pos = (b-a).*rand(number_tests, resolution-1) + a;
%gain_neg = gain_pos;
gain_neg = (b-a).*rand(number_tests, resolution-1) + a;
VH_pos = (Vref)*(ones(1, resolution));
VH_neg = (Vref)*(ones(1, resolution));

%% Input goes through TM-based ADC %
for test = 1: 1: number_tests
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), 1) = gain_pos(test, res)*z(res, 1);
 Dout(test,res, 1) = 0;
 elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage

255

 z((res +1), 1) = (gain_neg(test, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); % TM implementation considered
for second adaptation
 %z((res +1), 1) = (gain_pos(test, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); %electronic implementation of
TM
 Dout(test,res,1) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(test,res, 1) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(test,res, 1) = 0;
 end
 end
 %% positive ramp goes through TMs %
 for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage
 z((res+1), i) = gain_pos(test,res)*z(res, i);
 Dout(test,res, i) = 0;
 elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % TM implementation considered
for second adaptation
 % z((res +1), i) = (gain_pos(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of
TM
 Dout(test,res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(test,res, i) = 1;
 else
 z((res +1), i) = Vee;
 Dout(test,res, i) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage
 z((res+1), i) = gain_pos(test,res)*z(res, i);
 Dout(test,res, i) = 0;
 elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_neg(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % TM implementation considered
for second adaptation
 %z((res +1), i) = (gain_pos(test,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of
TM
 Dout(test,res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(test,res, i) = 1;
 else
 z((res +1), i) = Vee;
 Dout(test,res, i) = 0;
 end

256

 end
 end
 z_final(test, i) = z(resolution, i);
 end

 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output
end
%% clear unrequired variables
clear a
clear b
clear c
clear d
clear test
clear i
clear dt
clear f_fundamental
clear Fs
clear res
clear Vcc
clear Vee
clear z

COTS_ADC_input = zeros(number_samples, 1);
LSBs_vect = zeros(COTS_ADC_res, number_samples);
%% start Test
for test = 1: 1: number_tests
 for i = 1: 1: number_samples
 %% nth TM stage output goes through the COTS ADC
 COTS_ADC_input(i, 1) = z_final(test, i); %final TM output goes
through a commerical ADC
 %Use Bernoulli Map
 for res = 1: 1: COTS_ADC_res
 if COTS_ADC_input(i, res) <= Vref
 COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res);
 LSBs_vect(res,i) = 0;
 else
 COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res))
- 2*Vref;
 LSBs_vect(res,i) = 1;
 end
 end
 %convert to Gray Code
 for j = 1: 1: COTS_ADC_res
 if j ==1
 Dout(test, (j+resolution) - 1, i) = LSBs_vect(j,i);
 else
 Dout(test, (j+resolution) - 1, i) = xor(LSBs_vect(j-
1,i) , LSBs_vect(j,i));
 end
 end
 end

 %% Sign for Difference Measure (SDM)
 % edited for non-matching gains
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(test,1,i); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(test,2,i), Dout(test,3, i)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: Total_resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(test,res, i))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;

257

 end
 end
 end

%% Difference Measure: selected for each respective gray code bit
 %Select the DM values determined using each µ being employed by
the compensation algorithm
 %Calculate all the DM values for each µ being employed by the
compensation algorithm

 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: Total_resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(test,res-1, i) == 1
 if res <= resolution
 gain_factor = gain_factor * gain_neg(test,res-1);
 else
 gain_factor = gain_factor*2;
 end

 else
 if res <= resolution
 gain_factor = gain_factor * gain_pos(test,res-1);
 else
 gain_factor = gain_factor*2;
 end
 end
 %% calculate and add difference measure values
 if (Dout(test,res, i) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
 end

 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: Total_resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else SDV (res, i) = -DV(res, i);
 end
 end

 end
 %% Determine DV
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));

 end

 %% Determine uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(test,:,i); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: Total_resolution %convert binary
values to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep ;
 end

258

 output_representation(i) = decimal_rep ; %modify decimal value
so it lies within the input voltage range
 end

 %% Implement Compensation
 for i = 1: 1: length(y)
 if (SDM(1,i) == 1)
 corrected_output(i) = vin_range*((output_representation(i) -
SDV_sum(i)));

 else
 corrected_output(i) = vin_range*((output_representation(i) +
SDV_sum(i)));

 end
 end

 voltage_representation = vin_range*output_representation;

 %% Calculate difference between input and output and bit accuracy

 for i = 1: 1: length(y)
 uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference
 corrected_difference(i) = (corrected_output(i)-
y(i))/ADC_Step_size; %compensated difference

 end
 %calculate bit accuracy of compensated and uncompensated ADC
 UD(test) = max(abs(uncorrected_difference(:)));
 CD(test) = max(abs(corrected_difference(:)));

 effective_bit_accuracy_UD(test) = Total_resolution -
log2(ceil(UD(test))) - 1;
 effective_bit_accuracy_CD(test) = Total_resolution -
log2(ceil(CD(test))) - 1;
end

259

C.2 MATLAB Scripts for Sensitivity Analysis of the Enhanced Tent Map Gain

Compensation Algorithms

C.2.1 MATLAB Script for Assessing the Sensitivity of µ+ Deviating from µ-

The code below was developed to perform a sensitivity analysis on mathematical models of

the TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC, as discussed in Section 6.2.1.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
COTS_ADC_res = 12;
%COTS_ADC_res = 1; % acts as a comparator on the final stage
Total_resolution = resolution + COTS_ADC_res - 1;
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
TM_Step_size = (vin_range)/(2^resolution); %calculating step size
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size

%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution+2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T-dt;
%y = vin_range-(vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp
input signal - 0 to 3 V
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = 3;

%% Preallocate size of arrays
Dout = zeros(number_samples, Total_resolution);
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1);
LSBs_vect = zeros(COTS_ADC_res, number_samples);
uncorrected_difference = zeros(1, number_samples);
corrected_difference = zeros(1, number_samples);
output_representation = zeros(1, number_samples);
corrected_output = zeros(1, number_samples);
bin_representation = zeros(Total_resolution, number_samples);
%% Gain and Vref Parameters
rng(0,
'twister'); %%https://uk.mathworks.com/help/matlab/math/floating-
point-numbers-within-specific-range.html
gain_deviations = (-0.0002:0.00001:0.0002); %% non-percentage
number_tests = length(gain_deviations);
effective_bit_accuracy_UD = zeros(1, number_tests);
effective_bit_accuracy_CD = zeros(1, number_tests);

a = 1.9;
b = 1.99;
gain_pos = (b-a).*rand(1, resolution-1) + a;

260

gain_neg = ones(number_tests, resolution-1);
for i = 1: 1: number_tests
 gain_neg(i, :) = gain_pos + gain_deviations(i);
end

VH_pos = (Vref)*(ones(1, resolution));
VH_neg = (Vref)*(ones(1, resolution));

%% Input goes through TM-based ADC %
for test = 1: 1: number_tests
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), 1) = gain_pos(1, res)*z(res, 1);
 Dout(1, res) = 0;
 elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref)); % electronic implementation of
TM
 Dout(1, res) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(1, res) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(1, res) = 0;
 end
 end

 %% positive ramp goes through TMs %
 for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of
TM
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;

261

 elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(test,res)*(z((res), i)-Vref)); % electronic implementation of
TM
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 end
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output

 for i = 1: 1: number_samples
 %% nth TM stage output goes through the COTS ADC
 COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes
through a commerical ADC
 %Use Bernoulli Map
 for res = 1: 1: COTS_ADC_res
 if COTS_ADC_input(i, res) <= Vref
 COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res);
 LSBs_vect(res,i) = 0;
 else
 COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res))
- 2*Vref;
 LSBs_vect(res,i) = 1;
 end
 end
 %convert to Gray Code
 for j = 1: 1: COTS_ADC_res
 if j ==1
 Dout(i, j+resolution - 1) = LSBs_vect(j,i);
 else
 Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) ,
LSBs_vect(j,i));
 end
 end
 end

 %% Sign for Difference Measure (SDM)
 % edited for non-matching gains
 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(i, 1); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: Total_resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(i, res))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end

 %% Difference Measure: selected for each respective gray code bit
 %Select the DM values determined using each µ being employed by the
compensation algorithm

262

 %Calculate all the DM values for each µ being employed by the
compensation algorithm
 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: Total_resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(i, res - 1) == 1
 if res <= resolution
 gain_factor = gain_factor * gain_neg(test, res-1);
 else
 gain_factor = gain_factor*2;
 end

 else
 if res <= resolution
 gain_factor = gain_factor * gain_pos(1, res-1);
 else
 gain_factor = gain_factor*2;
 end

 end
 %% calculate and add difference measure values
 if (Dout(i, res) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
 end

 %% Signed Difference Value
 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: Total_resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else SDV (res, i) = -DV(res, i);
 end
 end
 end
 %% Determine DV
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));
 end

 %% Determine uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(i, :); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: Total_resolution %convert binary
values to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep;
 end
 output_representation(i) = decimal_rep; %modify decimal value so
it lies within the input voltage range
 end

 %% Implement Compensation
 for i = 1: 1: length(y)
 if (SDM(1,i) == 1)
 corrected_output(i) = vin_range*((output_representation(i) -
SDV_sum(i)));
 else

263

 corrected_output(i) = vin_range*((output_representation(i) +
SDV_sum(i)));
 end
 end

 voltage_representation = vin_range*output_representation;
 %% Calculate difference between input and output and ENOB

 for i = 1: 1: length(y)
 uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference
 corrected_difference(i) = (corrected_output(i)-
y(i))/ADC_Step_size; %compensated difference

 end
 %calculate bit accuracy of compensated and uncompensated ADC
 UD = max(abs(uncorrected_difference(:)));
 CD = max(abs(corrected_difference(:)));

 effective_bit_accuracy_UD(test) = Total_resolution - log2(ceil(UD))
- 1;
 effective_bit_accuracy_CD(test) = Total_resolution - log2(ceil(CD))
- 1;

end

C.2.2 MATLAB Script for Assessing the Sensitivity Between µ±algorithm and µ±ADC

The code below was developed to perform a sensitivity analysis on mathematical models of

the TM-ARCHβ-7-12 ADC and TM-ARCHα-7 ADC, as discussed in Section 6.2.2.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
%COTS_ADC_res = 12;
COTS_ADC_res = 1; % acts as a comparator
Total_resolution = resolution + COTS_ADC_res - 1;
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
TM_Step_size = (vin_range)/(2^resolution); %calculating step size
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size
%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution+2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T-dt;
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = 3;

264

%% Preallocate size of arrays
Dout = zeros(number_samples, Total_resolution);
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1);
LSBs_vect = zeros(COTS_ADC_res, number_samples);
uncorrected_difference = zeros(1, number_samples);
corrected_difference = zeros(1, number_samples);
output_representation = zeros(1, number_samples);
corrected_output = zeros(1, number_samples);
bin_representation = zeros(Total_resolution, number_samples);
%% Gain and Vref Parameters

% random µ+ and µ- adapted from
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html
rng(0, 'twister');
%gain_deviations = (-0.1:0.001:0.1); %% percentage
gain_deviations = (-2:0.001:2); %% percentage
number_tests = length(gain_deviations);
effective_bit_accuracy_UD = zeros(1, number_tests);
effective_bit_accuracy_CD = zeros(1, number_tests);

a = 1.9;
b = 1.99;
%d_max = 50*(10^-6);
%d_min = -50*(10^-6);
d_max = 0.0283;
d_min = -0.0133;
gain_pos = (b-a).*rand(1, resolution-1) + a;
gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min) + gain_pos;

VH_pos = (Vref)*(ones(1, resolution));
VH_neg = (Vref)*(ones(1, resolution));

%% Input goes through TM-based ADC %
for test = 1: 1: number_tests
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), 1) = gain_pos(1, res)*z(res, 1);
 Dout(1, res) = 0;
 elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref)); % electronic implementation of TM
 Dout(1, res) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(1, res) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(1, res) = 0;
 end
 end
 %% positive ramp goes through TMs %
 for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word
of sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage

265

 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % electronic implementation of TM
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >=
Vee)) % if input to the folding stage is less than or equal to the
reference voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % electronic implementation of TM
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 end
 end
 end
 %z array gives the inputs to each Tent map stage
 %Dout array provides the Gray code output
 for i = 1: 1: number_samples
 %% nth TM stage output goes through the COTS ADC
 COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes
through a commerical ADC
 %Use Bernoulli Map
 for res = 1: 1: COTS_ADC_res
 if COTS_ADC_input(i, res) <= Vref
 COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res);
 LSBs_vect(res,i) = 0;
 else
 COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res))
- 2*Vref;
 LSBs_vect(res,i) = 1;
 end
 end
 %convert to Gray Code
 for j = 1: 1: COTS_ADC_res
 if j ==1
 Dout(i, j+resolution - 1) = LSBs_vect(j,i);
 else
 Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) ,
LSBs_vect(j,i));
 end
 end
 end

 %% Sign for Difference Measure (SDM)
 % edited for non-matching gains

266

 for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(i, 1); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: Total_resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(i, res))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
 end

 %% Difference Measure: selected for each respective gray code bit
 %Select the DM values determined using each µ being employed by the
compensation algorithm
 %Calculate all the DM values for each µ being employed by the
compensation algorithm

 for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: Total_resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(i, res - 1) == 1
 if res <= resolution
 gain_factor = gain_factor * (gain_neg(1, res-1)*(1+
gain_deviations(test)/100)) ;
 else
 gain_factor = gain_factor*2;
 end
 else
 if res <= resolution
 gain_factor = gain_factor * (gain_pos(1, res-1)*(1+
gain_deviations(test)/100)) ;
 else
 gain_factor = gain_factor*2;
 end

 end
 %% calculate and add difference measure values
 if (Dout(i, res) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
 end

 %% Signed Difference Value

 for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: Total_resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else SDV (res, i) = -DV(res, i);
 end
 end
 end
 %% Determine DV
 for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));

 end

267

 %% Determine uncompensated output
 for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(i, :); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word
to binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: Total_resolution %convert binary
values to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(i) = decimal_rep ; %modify decimal value
so it lies within the input voltage range
 end

 %% Implement Compensation
 for i = 1: 1: length(y)
 if (SDM(1,i) == 1)
 corrected_output(i) = vin_range*((output_representation(i) -
SDV_sum(i)));

 else
 corrected_output(i) = vin_range*((output_representation(i) +
SDV_sum(i)));

 end
 end

 voltage_representation = vin_range*output_representation;

 %% Calculate difference between input and output and bit accuracy
 for i = 1: 1: length(y)
 uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference
 corrected_difference(i) = (corrected_output(i)-
y(i))/ADC_Step_size; %compensated difference

 end
 %calculate bit accuracy of compensated and uncompensated ADC
 UD = max(abs(uncorrected_difference(:)));
 CD = max(abs(corrected_difference(:)));

 effective_bit_accuracy_UD(test) = Total_resolution - log2(ceil(UD))
- 1;
 effective_bit_accuracy_CD(test) = Total_resolution - log2(ceil(CD))
- 1;

end
cutoff = 15*ones(1, number_tests);

268

C.3 MATLAB Script for Analysing Final TM-ARCHβ-7-12 ADC Model and µCA-3

The code below presents the final mathematical model developed of the TM-ARCHβ-7-12

ADC and highlights how the bit accuracy was determined before and after the µCA-3 was

applied. The code employed to assess the static and dynamic performance was the same as

that shown in Appendix B.1.2, Appendix B.1.3, Appendix B.2.2 and Appendix B.2.3.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
COTS_ADC_res = 12;
Total_resolution = resolution + COTS_ADC_res - 1;
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
TM_Step_size = (vin_range)/(2^resolution); %calculating step size
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size

%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution+2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T;
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = 3;

%% Preallocate size of arrays
Dout = zeros(number_samples, Total_resolution);
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1);
LSBs_vect = zeros(COTS_ADC_res, number_samples);
%% Gain and Vref Parameters
% Comparator Hysteresis - threshold voltages 1/2 step size above and
below
% the partition point voltage
VTH = Vref + ADC_Step_size/2;
VTL = Vref - ADC_Step_size/2;
VH_pos = VTH*ones(1, resolution);
VH_neg = VTL*ones(1, resolution);
% adapted code from
% https://uk.mathworks.com/help/matlab/math/floating-point-numbers-
within-specific-range.html
% to select random µ+ and µ- values
rng(0, 'twister');
a = 1.9;
b = 1.99;
d_max = 50*(10^-6);
d_min = -50*(10^-6);
gain_pos = (b-a).*rand(1, resolution-1) + a; % µ+ for each TM stage

269

gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos; % µ-
for each TM stage
%% Input goes through TM-based ADC %
for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), 1) = gain_pos(1, res)*z(res, 1);
 Dout(1, res) = 0;
 elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref)); % Electronic TM implementation
 Dout(1, res) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(1, res) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(1, res) = 0;
 end
end
%% positive ramp goes through TMs %
for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % Electronic TM implementation
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i);
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref)); % Electronic TM implementation
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;

270

 Dout(i, res) = 0;
 end
 end
 end
end
%z array gives the inputs to each Tent map stage
%Dout array provides the Gray code output
for i = 1: 1: number_samples
 %% nth TM stage output goes through the ideal COTS ADC
 COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes
through a commerical ADC
 for res = 1: 1: COTS_ADC_res
 if COTS_ADC_input(i, res) <= Vref
 COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res);
 LSBs_vect(res,i) = 0;
 else
 COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) -
2*Vref;
 LSBs_vect(res,i) = 1;
 end
 end
 %convert to Gray Code
 for j = 1: 1: COTS_ADC_res
 if j ==1
 Dout(i, j+resolution - 1) = LSBs_vect(j,i);
 else
 Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) ,
LSBs_vect(j,i));
 end
 end
end
%% Sign for Difference Measure (SDM)
% edited for non-matching gains
for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(i, 1); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: Total_resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(i, res))
 SDM(res,i) = 1;
 else
 SDM(res,i) = 0;
 end
 end
end
%% Difference Measure: selected for each respective gray code bit
%Select the DM values determined using each µ being employed by the
compensation algorithm
%Calculate all the DM values for each µ being employed by the
compensation algorithm
for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: Total_resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(i, res - 1) == 1
 if res <= resolution
 gain_factor = gain_factor * gain_neg(res-1);
 else
 gain_factor = gain_factor*2; % COTS ADC - modelled as
ideal TM stages
 end
 else
 if res <= resolution

271

 gain_factor = gain_factor * gain_pos(res-1);
 else
 gain_factor = gain_factor*2; % COTS ADC - modelled as
ideal TM stages
 end
 end
 %% calculate and add difference measure values
 if (Dout(i, res) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
end
%% Signed Difference Value
for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: Total_resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else SDV (res, i) = -DV(res, i);
 end
 end
end
%% Determine DV
for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));
end
%% Determine uncompensated output
for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(i, :); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word to
binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)
 decimal_rep = 0;
 for j = 1: 1: Total_resolution %convert binary values
to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep;
 end
 output_representation(i) = decimal_rep ; %modify decimal value so
it lies within the input voltage range
end
%% Implement Compensation
for i = 1: 1: length(y)
 if (SDM(1,i) == 1)
 corrected_output(i) = vin_range*((output_representation(i) -
SDV_sum(i)));
 else
 corrected_output(i) = vin_range*((output_representation(i) +
SDV_sum(i)));
 end
end
voltage_representation = vin_range*output_representation;
%% Calculate quantisation error and bit accuracy
for i = 1: 1: length(y)
 uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference
 corrected_difference(i) = (corrected_output(i)-
y(i))/ADC_Step_size; %compensated difference

end
%calculate bit accuracy of compensated and uncompensated ADC
UD = max(abs(uncorrected_difference(:)));
CD = max(abs(corrected_difference(:)));
effective_bit_accuracy_UD = Total_resolution - log2(ceil(UD)) - 1;
effective_bit_accuracy_CD = Total_resolution - log2(ceil(CD)) - 1;

[…]

272

C.4 MATLAB Script for Noise Analysis Simulation

The following MATLAB script shows how the noise analysis discussed in Section 6.4 was

performed.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
COTS_ADC_res = 12;
Total_resolution = resolution + COTS_ADC_res - 1;
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
Vmax = 3;
Vmin = 0;
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
TM_Step_size = (vin_range)/(2^resolution); %calculating step size
ADC_Step_size = (vin_range)/(2^Total_resolution); %calculating step size
%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = Total_resolution+2;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamantal frequency
dt = 1/Fs;
x = 0:dt:T;
%y = vin_range-(vin_range)*(sawtooth(2*pi*f_fundamental*x) + 1)/2; %ramp
input signal - 0 to 3 V
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
number_samples = length(x);
y(number_samples) = 3;

%% added noise
noise_pp = 2*ADC_Step_size; % Set noise as a multiple of step size
SNR_not_dB = (Vmax-Vmin)/noise_pp; % signal to noise ratio
snr = 20*log10(SNR_not_dB); % calculate SNR to dB

internal_noise = zeros(resolution, number_samples);
internal_noise = awgn(internal_noise,snr); %superimpose white gaussian
noise on the input signal

%% Preallocate size of arrays
Dout = zeros(number_samples, Total_resolution);
COTS_ADC_input = zeros(number_samples, COTS_ADC_res + 1);
LSBs_vect = zeros(COTS_ADC_res, number_samples);
%% Gain and Vref Parameters
% Comparator Hysteresis - threshold voltages 1/2 step size above and
below
% The partition point voltage
VTH = Vref + ADC_Step_size/2;
VTL = Vref - ADC_Step_size/2;

VH_pos = VTH*ones(1, resolution);
VH_neg = VTL*ones(1, resolution);

% adapted code from
% https://uk.mathworks.com/help/matlab/math/floating-point-numbers-
within-specific-range.html
% to select random µ+ and µ- values

273

rng(0, 'twister');
a = 1.9;
b = 1.99;
d_max = 50*(10^-6);
d_min = -50*(10^-6);
gain_pos = (b-a).*rand(1, resolution-1) + a; % µ+ for each TM stage
gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos; %
µ- for each TM stage

%% Input goes through TM-based ADC %

for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1) + internal_noise(res,1); % superimpose noise onto
input signal
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(1, res)) && (z(res, 1) >= Vee)) % if input
to the folding stage is less than or equal to the reference voltage
 z((res+1), 1) = gain_pos(1, res)*z(res, 1)+
internal_noise(res+1,1); % superimpose noise onto TM output signal
 Dout(1, res) = 0;
 elseif ((z(res, 1) > VH_pos(1, res)) && (z(res, 1) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), 1) = (gain_pos(1, res)*Vref)-
(gain_neg(1,res)*(z((res), 1)-Vref))+ internal_noise(res+1,1); %
superimpose noise onto TM output signal
 Dout(1, res) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(1, res) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(1, res) = 0;
 end
end
%% positive ramp goes through TMs %
for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i)+ internal_noise(1,i); % superimpose noise onto input
signal
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(1, res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i)+
internal_noise(res+1,i); % superimpose noise onto TM output signal
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_pos(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref))+ internal_noise(res+1,i); %
superimpose noise onto TM output signal
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 %% Lower Hysteresis voltages
 else

274

 if ((z(res, i) <= VH_neg(1, res)) && (z(res, i) >= Vee)) %
if input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(1,res)*z(res, i)+
internal_noise(res+1,i); % superimpose noise onto TM output signal
 Dout(i, res) = 0;
 elseif ((z(res, i) > VH_neg(1, res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(1,res)*Vref)-
(gain_neg(1,res)*(z((res), i)-Vref))+ internal_noise(res+1,i); %
superimpose noise onto TM output signal
 Dout(i, res) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(i, res) = 1;
 else
 z((res +1), i) = Vee;
 Dout(i, res) = 0;
 end
 end
 end
end
%z array gives the inputs to each Tent map stage
%Dout array provides the Gray code output
for i = 1: 1: number_samples
 %% nth TM stage output goes through the COTS ADC
 % No noise superimposed within COTS ADC, as it is being modelled as
an
 % Ideal ADC
 COTS_ADC_input(i, 1) = z(resolution, i); %final TM output goes
through a commerical ADC
 %Use Bernoulli Map
 for res = 1: 1: COTS_ADC_res
 if COTS_ADC_input(i, res) <= Vref
 COTS_ADC_input(i, res + 1) = 2*COTS_ADC_input(i, res);
 LSBs_vect(res,i) = 0;
 else
 COTS_ADC_input(i, res + 1) = (2*COTS_ADC_input(i, res)) -
2*Vref;
 LSBs_vect(res,i) = 1;
 end
 end
 %convert to Gray Code
 for j = 1: 1: COTS_ADC_res
 if j ==1
 Dout(i, j+resolution - 1) = LSBs_vect(j,i);
 else
 Dout(i, j+resolution - 1) = xor(LSBs_vect(j-1,i) ,
LSBs_vect(j,i));
 end
 end
end

%% Sign for Difference Measure (SDM)
% Edited for non-matching gains
for i = 1: 1: length(y) %Samples of input signal
 SDM(1, i) = Dout(i, 1); %MSB of Gray code output
 SDM(2, i) = 1; %1 shows adding function
 if xor(Dout(i, 2), Dout(i, 3)) % find 3rd bit of SDM
 SDM(3,i) = 1;
 else
 SDM(3,i) = 0;
 end
 for res = 4: 1: Total_resolution % gives remaining bits of SDM
 if xor(SDM(res-1,i), Dout(i, res))
 SDM(res,i) = 1;
 else

275

 SDM(res,i) = 0;
 end
 end
end

%% Difference Measure: selected for each respective gray code bit

%Select the DM values determined using each µ being employed by the
compensation algorithm
%Calculate all the DM values for each µ being employed by the
compensation algorithm

for i = 1: 1: length(y) %Samples of input signal
 DV(1,i) = 0; %Ideal as it hasn't passed through a TM
 gain_factor = 1;
 for res = 2: 1: Total_resolution % gives remaining bits of DM
 %% calculate deviations from preferred implementation
 if Dout(i, res - 1) == 1
 if res <= resolution
 gain_factor = gain_factor * gain_neg(res-1);
 else
 gain_factor = gain_factor*2;
 end

 else
 if res <= resolution
 gain_factor = gain_factor * gain_pos(res-1);
 else
 gain_factor = gain_factor*2;
 end

 end
 %% calculate and add difference measure values
 if (Dout(i, res) == 1)
 DV(res, i) = ((1/gain_factor)-(1/pow2(res - 1)));
 else
 DV(res, i) = 0;
 end
 end
end

%% Signed Difference Value

for i = 1: 1: length(y) %Samples of input signal
 for res = 1: 1: Total_resolution % gives remaining bits of DV
 if (SDM(res, i) > 0)
 SDV(res, i) = DV(res, i);
 else SDV (res, i) = -DV(res, i);
 end
 end

end
%% Determine DV
for i = 1: 1: length(y) %decimal of SDV
 SDV_sum(i) = sum(SDV(:,i));

end

%% Determine uncompensated output
for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(i, :); %get Gray code word
 binary = gray2bin(gray_code_vector); %convert Gray code word to
binary
 bin_representation(:,i) = binary ; %save binary to an array
(verification of results in MATLAB workspace)

276

 decimal_rep = 0;
 for j = 1: 1: Total_resolution %convert binary values
to the equivalent voltage
 decimal_rep = (binary(j)/(2^j))+ decimal_rep ;
 end
 output_representation(i) = decimal_rep ; %modify decimal value so
it lies within the input voltage range
end

%% Implement Compensation
for i = 1: 1: length(y)
 if (SDM(1,i) == 1)
 corrected_output(i) = vin_range*((output_representation(i) -
SDV_sum(i)));

 else
 corrected_output(i) = vin_range*((output_representation(i) +
SDV_sum(i)));

 end
end
voltage_representation = vin_range*output_representation;

%% Calculate difference between input and output and bit accuracy
for i = 1: 1: length(y)
 uncorrected_difference(i) = (voltage_representation(i)-
y(i))/ADC_Step_size; %uncompensated difference
 corrected_difference(i) = (corrected_output(i)-
y(i))/ADC_Step_size; %compensated difference

end
%calculate bit accuracy of compensated and uncompensated ADC
UD = max(abs(uncorrected_difference(:)));
CD = max(abs(corrected_difference(:)));

effective_bit_accuracy_UD = Total_resolution - log2(ceil(UD)) - 1;
effective_bit_accuracy_CD = Total_resolution - log2(ceil(CD)) - 1;

277

C.5 Code for VHDL Implementation of an Enhanced Tent Map Gain Compensation

Algorithm

The majority of the VHDL code employed for the tests discussed in Section 6.3 was identical

to that employed in Section 5.5 and thus presented in Appendix B.5. Therefore, only code

listings which were modified are presented in this section.

C.5.1 MATLAB Script to Aid the Creation of an TM-ARCHα-7 ADC Signal Emulator

The MATLAB script below was developed to choose a set of µ± values at random, then to

establish a sequence of values to be added to the sum of the previous value, in order to create

the Gray code that an TM-ARCHα-7 ADC might produce if supplied with a full-scale ramp input

signal. The sequence of values was then employed by the TM-ARCHα-7 ADC Signal Emulator

(see Appendix C.3.3) and enabled this component to produce a similar output to a TM-based

ADC before the comparator outputs are aligned by the control logic within the FPGA. The DM

values required by the VHDL implementation of the µCA-2 were also established using this

MATLAB script.

278

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
Vcc = 5; % valid input max.
Vee = 0; % valid input min.
vin_range = 3 - 0;
Vref = 1.5; %set partition point voltage
Step_size = (vin_range)/(2^resolution); %calculating step size
%% Generate input signal
% input - sawtooth wave adapted from
https://uk.mathworks.com/help/signal/ref/sawtooth.html
pwr_val = resolution + 1;
Fs = 25000000; %sample rate = 25 MHz
f_fundamental = Fs/2^(pwr_val); % 95000 Hz fundamental frequency
T = (1/f_fundamental); %number of periods times fundamental frequency
dt = 1/Fs;
x = 0:dt:T-dt;
y = (vin_range)*(sawtooth(2*pi*f_fundamental*x)+ 1)/2; %ramp input
signal - 0 to 3 V
%y = (vin_range)*(sin(2*pi*f_fundamental*x)+ 1)/2; %ramp input signal -
0 to 3 V
number_samples = length(x);

%% Gain and Vref Parameters
VHDL_res = resolution + 2;
rng(0, 'twister'); %%
https://uk.mathworks.com/help/matlab/math/floating-point-numbers-within-
specific-range.html
a = 1.9;
b = 1.99;
d_max =0.0283;
d_min = -0.0133;
gain_pos = (b-a).*rand(1, resolution-1) + a;
gain_neg = ((d_max-d_min).*rand(1, resolution-1) + d_min)+gain_pos;
inv_pos = 1./gain_pos;
inv_neg = 1./gain_neg;
for i = 1: 1: resolution -1
 inv_two(i) = pow2(-i);
end
VH_pos = (Vref)*ones(1, resolution);
VH_neg = (Vref)*ones(1, resolution);

%% determine DM values
% start calculating all the different gain factors
% resolution - 1 DM values could be required to compensate each ADC
output
% there are a maximum of 2^(resolution -1) gain factors
gain_combinations = ones(resolution - 1, pow2(resolution - 1));

% half the possible gain factors will have TM1 µ+, and the rest TM1 µ-
gain_combinations(1,1:2^(resolution-2)) = inv_neg(1,1);
gain_combinations(1,1+2^(resolution-2): 2^(resolution-1)) =
inv_pos(1,1);

% Determine all the different gain factors
for res = 2: 1: resolution - 1
 count = 1;
 for combo = 1: 1: 2^(resolution-1)
 if count <= 2^(resolution - (1 + res))
 gain_combinations(res, combo) =
inv_neg(1,res)*gain_combinations(res - 1, combo);
 else
 gain_combinations(res, combo) =
inv_pos(1,res)*gain_combinations(res - 1, combo);
 end
 if count == 2^(resolution - res)
 count = 1;
 else
 count = count + 1;

279

 end
 end
end

% calculate the different DM values
for res = 1:1:resolution - 1
 for combo = 1:1: 2^(resolution-1)
 DM_array(res, combo) = gain_combinations(res, combo)-
inv_two(res);
 end
end

% convert the DM values to binary format, and separate each DM with a
comma
for res = 1:1:resolution - 1
 for combo = 1:1: 2^(resolution-1)
 DM_array_bin(res, combo) =
join(string(de2bi(floor(pow2(VHDL_res)*DM_array(res, combo)), VHDL_res,
'left-msb')),"");
 end
 DM_array_VHDL(res, 1) = join(DM_array_bin(res, :), '", "');
end

%% Input goes through TM-based ADC %%
for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 z(1,1) = y(1);
 %% first sample - assume higher than previous
 if ((z(res, 1) <= VH_pos(res)) && (z(res, 1) >= Vee)) % if input to
the folding stage is less than or equal to the reference voltage
 z((res+1), 1) = gain_pos(res)*z(res, 1);
 Dout(res, 1) = 0;
 elseif ((z(res, 1) > VH_pos(res)) && (z(res, 1) <= Vcc)) % if input
to the folding stage is more than the reference voltage
 z((res +1), 1) = (gain_pos(res)*Vref)-
(gain_neg(test,res)*(z((res), 1)-Vref));
 Dout(res,1) = 1;
 elseif (z(res, 1) > Vcc)
 z((res +1), 1) = Vee;
 Dout(res, 1) = 1;
 else
 z((res +1), 1) = Vee;
 Dout(res, 1) = 0;
 end
end
%% positive ramp goes through TMs %
for i = 2: 1: length(y) %Samples of input signal
 z(1,i) = y(i);
 for res = 1: 1: resolution - 1 % Folds and finds gray code word of
sample
 %% Higher Hysteresis voltages
 if (z(res, i) > z(res, i - 1))
 if ((z(res, i) <= VH_pos(res)) && (z(res, i) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(res)*z(res, i);
 Dout(res, i) = 0;
 elseif ((z(res, i) > VH_pos(res)) && (z(res, i) <=
Vcc)) % if input to the folding stage is more than
the reference voltage
 z((res +1), i) = (gain_pos(res)*Vref)-
(gain_neg(res)*(z((res), i)-Vref));
 Dout(res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(res, i) = 1;
 else
 z((res +1), i) = Vee;

280

 Dout(res, i) = 0;
 end
 %% Lower Hysteresis voltages
 else
 if ((z(res, i) <= VH_neg(res)) && (z(res, i) >= Vee)) % if
input to the folding stage is less than or equal to the reference
voltage
 z((res+1), i) = gain_pos(res)*z(res, i);
 Dout(res, i) = 0;
 elseif ((z(res, i) > VH_neg(res)) && (z(res, i) <= Vcc)) %
if input to the folding stage is more than the reference voltage
 z((res +1), i) = (gain_pos(res)*Vref)-
(gain_neg(res)*(z((res), i)-Vref));
 Dout(res,i) = 1;
 elseif (z(res, i) > Vcc)
 z((res +1), i) = Vee;
 Dout(res, i) = 1;
 else
 z((res +1), i) = Vee;
 Dout(res, i) = 0;
 end
 end
 end
 %% last comparator
 if ((z(resolution, i) > z(resolution, i - 1))||(z(resolution, 1)))
 if (z(resolution, i) <= VH_pos(resolution))
 Dout(resolution, i) = 0;
 else
 Dout(resolution, i) = 1;
 end
 else
 if (z(resolution, i) <= VH_neg(resolution))
 Dout(resolution, i) = 0;
 else
 Dout(resolution, i) = 1;
 end
 end
end
%z array gives the inputs to each Tent map stage
%Dout array provides the Gray code output

%% create ramp
%uncorrected output
for i = 1: 1: length(y) % converting Gray code representation of
samples, to binary
 gray_code_vector = Dout(:,i); %get Gray code word
 gray_rep = transpose(gray_code_vector);
 gray_int(i) = bi2de(gray_rep, 'left-msb');

 %looking at binary equivalent
 binary = gray2bin(gray_code_vector); %convert Gray code word to
binary
 bin_representation(:,i) = binary; % save binary to an array
(verification of results in MATLAB workspace)
 bin_rep = transpose(bin_representation(:,i));
 bin_int(i) = bi2de(bin_rep, 'left-msb');
end

%% Determine Ramp add values (to be employed by the signal emulator)
ramp_diff_shift = [gray_int(2 : length(gray_int)), gray_int(1)]; %
shift gray_int values right by on in the array. Bring gray_int(1) to the
leftmost index in the array.
ramp_add = ramp_diff_shift - gray_int; % determine the next value to be
added to the output to create a ramp
ramp_add_string = join(string(ramp_add), ","); % convert to string and
separate the binary words with a comma. This speeds up the process of
inserting the values into the VHDL code.

281

C.5.2 VHDL Implementation of the µCA-2

The code listing below presents the VHDL implementation of the µCA-2.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;

ENTITY gain_correction is
generic (n: positive:= 8); -- define resolution of TM-based ADC
 PORT (PLL_OUT: in std_logic; -- PLL clock (feb 17: 250 MHz)
 res: in std_logic; -- resets all Difference registers
 Input_Gray: in std_logic_vector(n-1 downto 0); --ADC output
in Gray code
 correct_en: in std_logic;
 correct_fin: out std_logic;
 UncorrectedBINARY: in std_logic_vector(n-1 downto 0); --ADC
output in binary
 CorrectedBINARY: out std_logic_vector(n-1 downto 0)); --
Corrected ADC output
END ENTITY;

ARCHITECTURE behav OF gain_correction IS
-- define signals to be employed within the module
signal Graycode: std_logic_vector (n-1 downto 0):= (others => '0');
signal SDM_reg: std_logic_vector (n-1 downto 0):= (others => '0');
signal UC_binary: std_logic_vector((n+2)-1 downto 0):= (others =>
'0');
signal C_binary: std_logic_vector((n+2)-1 downto 0):= (others =>
'0');
signal SDV_reg: std_logic_vector((n+2)-1 downto 0):= (others => '0');
signal correct: std_logic_vector(n-1 downto 0):= (others => '0');
signal counter: integer := 0;
signal C_fin: std_logic := '0';
signal do_correct : std_logic := '0';

-- LUT for random µ+ and µ- values determined by MATLAB script
type LUT is array (n-2 downto 0, 2**(n-1) -1 downto 0) of
std_logic_vector((n+2)-1 downto 0); --precalculated different measure
values for the adapted algorithm
-- each row represents the possible DMs for a different TM output

signal diff_bit : LUT := --binary values multiplied by 2^10 =
1024 (need to shift back by 2)
(
-- DM values array--
-- contents generated by MATLAB Script presented in C.5.1--
);

type Diff is array (n-1 downto 0) of std_logic_vector((n+2)-1 downto 0);
-- array to store relevant DM values
signal assign_diff: Diff;

type sum_Diff is array (n-2 downto 0) of std_logic_vector((n+2)-1 downto
0); -- array to aid the calculation of the DV value
signal polarity_diff: sum_Diff;

BEGIN
 Gain_compensate: PROCESS
 BEGIN

282

 WAIT UNTIL RISING_EDGE(PLL_OUT); --PLL_IN the PLL clock 250MHz
 Graycode(n-1 downto 0) <= Input_Gray;
 UC_binary((n+2)-1 downto (n+2)-n) <= UncorrectedBINARY(n-1 downto
0);
 UC_binary((n+2)-(n+1) downto 0) <= (others => '0');

 --Should the correction process be applied?
 IF correct_en = '1' AND counter < 3 THEN --yes
 C_fin <= '0';
 counter <= counter + 1;
 -- Find sign of difference measure
 SDM_reg(n-1) <= Graycode(n-1);
 SDM_reg(n-2) <= '1';
 SDM_reg(n-3) <= (Graycode(n-2) XOR Graycode(n-3));

 -- Find Difference measure
 assign_diff(n-1) <= (others => '0');

 --Do correction
 polarity_diff(n-2) <= assign_diff(n-2);

 if SDM_reg(n-1) = '1' then -- is MSB of Gray code = 1?
 C_binary((n+2)-1 downto 0) <= UC_binary((n+2)-1 downto
0) - SDV_reg((n+2)-1 downto 0);
 else -- is MSB of Gray code = 0?
 C_binary((n+2)-1 downto 0) <= UC_binary((n+2)-1 downto
0) + SDV_reg((n+2)-1 downto 0);
 end if;

 ELSIF counter = 3 AND correct_en = '1' THEN --no
 C_fin <= '1';
 ELSIF counter = 3 AND correct_en = '0' THEN --no
 counter <= 0;
 ELSE
 null;
 END IF;
END process;

-- Sign for Difference measure
SDM: for i in n-4 downto 0 generate
begin
 SDM_reg(i) <= (SDM_reg(i+1) XOR Graycode(i));
end generate SDM;

-- Assign difference measure
DV: for i in n-2 downto 0 generate
begin
 with Graycode(i) select
 assign_diff(i) <= diff_bit(i, to_integer(unsigned(Graycode(n-1
downto 1)))) when '1', -- use Gray code to establish which DM value is
required
 (others => '0') when others;
end generate DV;

-- Do correction/ calculate difference value
SDV: for i in n-3 downto 0 generate
begin
 with SDM_reg(i) select
 polarity_diff(i) <= polarity_diff(i+1) + assign_diff(i) when '1',
 polarity_diff(i+1) - assign_diff(i) when others;
 SDV_reg <= polarity_diff(0);
end generate SDV;

CorrectedBINARY((n-1) downto 0) <= C_binary((n+2)-1 downto (n+2)-n);
correct_fin <= C_fin;
END behav;

283

C.5.3 VHDL Code of the TM-ARCHα-7 ADC Signal Emulator

The following code was developed to imitate the output of the TM-ARCHα-7 ADC modelled

in the MATLAB script (see Appendix C.5.1), when supplied with a ramp input signal.

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use IEEE.numeric_std.all;

ENTITY Signal_pipelined_generator is
generic (n: integer:= 8);
PORT (clk_p: in std_logic; -- s/h clock (25 MHz)
 res: in std_logic; -- resets all Difference registers
 Output_signal_piped: out std_logic_vector(n-1 downto 0)); --
equivalent output of the TM-ADC
END ENTITY;

ARCHITECTURE behav OF Signal_pipelined_generator IS
signal Gen_counter: integer := 0;
signal in_value: integer := 0; --value into the "TM-ADC"
signal in_valueV: std_logic_vector(7 downto 0):= (others => '0'); --
binary equivalent of in_value
signal out_value: std_logic_vector(7 downto 0):=(others => '0'); --
output
signal S0: std_logic_vector(1 downto 0):= (others => '0');
signal S1: std_logic_vector(3 downto 0):= (others => '0');
signal S2: std_logic_vector(5 downto 0):= (others => '0');
signal S3: std_logic_vector(7 downto 0):= (others => '0');

type add2prev is array (0 to 2**(n+1) - 1) of integer;
signal diff: add2prev := --difference values for ramp
(
-- ramp signal emulation array--
-- contents generated by MATLAB Script presented in C.5.1--
);

begin
form_signal_odds: PROCESS
 BEGIN
 WAIT UNTIL RISING_EDGE(clk_p); --PLL_IN the PLL clock 250MHz
 in_value <= in_value + diff(Gen_counter); --Add difference to
previous input amplitude
 in_valueV <= std_logic_vector(to_unsigned(in_value, n)); --
convert to binary
 S3(7 downto 6) <= in_valueV (7 downto 6); -- 2 MSBs go to the 2
MSBs of array S3
 S2(5 downto 4) <= in_valueV (5 downto 4); -- 3rd and 4th MSBs go
to the 2 MSBs of array S2
 S1(3 downto 2) <= in_valueV (3 downto 2); -- 3rd and 4th LSBs go
to the 2 MSBs of array S1
 S0(1 downto 0) <= in_valueV (1 downto 0); -- 2 LSBs go to the 2
MSBs of array S0
 out_value <= S3; --ADC output would be the same as S3
 if Gen_counter < 2**(n+1) - 1 then
 Gen_counter <= Gen_counter + 1; --increment counter
 S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into
S3[5:0]
 S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into
S2[3:0]

284

 S1(1 downto 0) <= S0(1 downto 0); --shift S0 values into
S1[1:0]
 else
 Gen_counter <= 0; ----reset counter
 S3(5 downto 0) <= S2(5 downto 0); --shift S2 values into
S3[5:0]
 S2(3 downto 0) <= S1(3 downto 0); --shift S1 values into
S2[3:0]
 S1(1 downto 0) <= S0(1 downto 0); -- 2 LSBs go to the 2 MSBs
of array S0
 end if;
end process;

Output_signal_piped <= out_value;
END behav;

285

C.6 Code for the Practical Implementation of a Tent Map Based ADC with an Embedded

Tent Map Gain Compensation System

The MATLAB code extract below was adapted to model the practical implementation of the

TM-ARCHα-7 ADC with the µCA-2. The extract below shows how key parameters were

configured, for example, the input signal, comparator hysteresis (threshold voltages are

based on the measured Vref and resistor values implemented on the PCB in order to apply

external hysteresis on the comparators) and µ± values. The rest of the MATLAB script was

similar to code presented in Appendix C.5.1, so is not presented.

The VHDL code and MATLAB script employed in the practical experiment was identical to the

code presented in Appendix B.5.1, Appendix C.5.1 and Appendix C.5.2. The only difference

were the µ± values (see Appendix D.2) used in the MATLAB script, which altered the DM values

being generated to be employed by the VHDL.

%% Initialise key parameters for model
resolution = 8; %number of TM stages + 1
Vcc = 5; % valid input max.
Vee = -0.232; % valid input min.
Vref = 1.505; %set partition point voltage based on measurement
vin_range = 2*Vref - 0;
VHDL_res = 10; % resolution of DM values

% resistors used to set threshold voltages for comparator hysteresis
hys_R1 = 364000;
hys_R2 = 150000000;
VTH = (((hys_R1 + hys_R2)*Vref)-(hys_R1*0.09))/hys_R2;
VTL = (((hys_R1 + hys_R2)*Vref)-(hys_R1*4.89))/hys_R2;
Step_size = (2*Vref)/(2^resolution); %calculating step size
VH_pos = VTH*ones(1, resolution);
VH_neg = VTL*ones(1, resolution);

%% Generate input signal
pwr_val = resolution + 1;
y = (0:0.1:3); % measured input signals
number_samples = length(y);
x = 1:1:number_samples;

%% Gain and Vref Parameters
% spreadsheet contains midrange µ+ and µ- calculated for each TM stage

286

readtable("C:\Users\pkhaz\Documents\Data\Work\Uni -
PhD\Tests_year3\PCBv_3\31st July 2021\DMM gain
test.xlsm",'Sheet','Sheet3', 'range', 'K2:Q7');
gains = table2array(ans);

gain_pos = gains(5,:); % µ+
gain_neg = gains(6,:); % µ-

[…]

287

Appendix D

D.1 Effects the Resolution of the Difference Measure values has on Bit Accuracy for Different TM Gains

Table D-1 and Table D-2 presents the results from the experiment described in Section 5.2.1, where different r values were tested to determine

the minimum DM resolution required in order for the TM-based ADC to have the same bit accuracy after compensation over a range of µ, when

compared to the theoretical DM values being employed.

288

 Bit accuracy (bits)

µ value Prior
Compensation

Theoretical
DM values

DM values
to
17-bit
resolution

DM values to
18-bit
resolution

DM values to
20-bit
resolution

DM values to
22-bit
resolution

DM values to
23-bit
resolution

DM values to
24-bit
resolution

1.9 4.41 13.42 13 13.42 13.42 13.42 13.42 13.42

 1.91 4.55 14 13.42 13.42 13.42 13.42 13.42 14

1.92 4.71 14 13.42 13.42 14 14 14 14

1.93 4.89 14 13.42 13.42 14 14 14 14

1.94 5.12 14 13.42 13.42 14 14 14 14

1.95 5.38 14 13.42 13.42 14 14 14 14

1.96 5.69 14 13.42 14 14 14 14 14

1.97 6.10 14 13.42 14 14 14 14 14

1.98 6.67 14 13.42 14 14 14 14 14

1.99 7.65 14 13.42 14 14 14 14 14

2 15 15 15 15 15 15 15 15

Table D-1: Summary of bit accuracy before and after compensation for a TM-ARCHα-15 ADC.

289

 Bit accuracy (bits)

µ value Prior
Compensation

Theoretical
DM values

DM values to 9-
bit resolution

DM values to 10-bit
resolution

1.9 4.19 6 6 6

 1.91 4.19 6 6 6

1.92 4.42 6 6 6

1.93 4.42 6 5.42 6

1.94 4.68 6 6 6

1.95 5 6 6 6

1.96 5 6 6 6

1.97 5.42 6 6 6

1.98 6 6 6 6

1.99 6 6 6 6

2 7 7 7 7

Table D-2: Summary of bit accuracy before and after compensation for a TM-ARCHα-7 ADC.

290

D.2 TM Slope Gains Calculated from Electronic Implementation of the TM-based ADC

Table D-3 presents the calculated µ± values for each TM stage of the electronic

implementation of the TM-ARCHα-7 ADC.

 TM1 TM2 TM3 TM4 TM5 TM6 TM7

µ+ midrange 1.9220 1.9900 1.9744 1.9383 1.9186 1.8881 1.8446

µ- midrange 1.9309 1.9614 1.9756 1.9065 1.8179 1.8111 1.8483

Table D-3: µ± values determined for each TM stage of the electronic implementation of the TM-ARCHα-
7 ADC.

	Copyright Statement
	Abstract
	Acknowledgements
	List of Publications
	List of Tables
	List of Figures
	Glossary of Terms
	Acronyms and Symbols
	Terminology

	1 Introduction
	1.1 Background
	1.2 Analogue to Digital Converters
	1.3 Overview of Tent Map Based ADCs
	1.4 Tent Map Based ADC Output Accuracy and Tent Map Gain
	1.5 Ultrasonic Measurement System
	1.6 Aim and Objectives
	1.7 Originality of Research
	1.8 Document Structure

	2 Theory and Literature Review
	2.1 Assessing Performance of ADCs
	2.1.1 Static Performance
	2.1.2 Dynamic Performance
	2.1.3 Other Performance Parameters

	2.2 Overview of Main High Resolution ADC Architectures
	2.2.1 Research Procedure
	2.2.2 Sigma Delta ADCs
	2.2.3 Dual-slope and Multi-slope ADCs
	2.2.4 Pipelined ADCs
	2.2.5 SAR ADCs
	2.2.6 Higher Resolution ADC Architectures Analysis

	2.3 Chaos and the Discrete One-Dimensional Chaotic Tent Map
	2.4 Tent Map Based ADCs
	2.4.1 Classification of TM-based ADCs
	2.4.2 TM-based ADCs
	2.4.3 Comparison of TM-based ADCs and Other Higher Resolution ADC Architectures

	2.5 Estimating Initial Conditions of Tent Maps with Non-ideal Gain
	2.6 Summary

	3 Proposed Tent Map Based ADC Structures and Gain Compensation Algorithms
	3.1 Tent Map Based ADC Structures
	3.1.1 Underlying TM-based ADC Structure
	3.1.2 Adapted TM-based ADC Structure

	3.2 The Tent Map Gain Compensation Algorithms (µCAs)
	3.2.1 Fundamental µCA
	3.2.2 Enhancements to the Fundamental µCA

	3.3 Summary

	4 Tent Map Based ADC Structures and Gain Compensation Algorithms Implementation
	4.1 Tent Map Based ADC Structures
	4.1.1 TM-ARCHα-n ADC
	4.1.2 TM-ARCHβ-n-Rsub-ranging ADC

	4.2 The Tent Map Gain Compensation Algorithms
	4.2.1 The µCA-1
	4.2.2 The µCA-2 and µCA-3

	4.3 Summary

	5 Simulated Performance Analysis of a Tent Map Based ADC with the Fundamental Compensation Algorithm
	5.1 Uncompensated Tent Map Based ADC Output Accuracy Analysis
	5.1.1 Bit Accuracy Predictions
	5.1.2 Static Performance Predictions
	5.1.3 Dynamic Performance Predictions

	5.2 Tent Map Based ADC with the Fundamental Tent Map Gain Compensation Algorithm Output Accuracy Analysis
	5.2.1 Bit Accuracy Predictions
	5.2.2 Static Performance Predictions
	5.2.3 Dynamic Performance Predictions

	5.3 Sensitivity Analysis of the Fundamental Tent Map Gain Compensation Algorithm
	5.4 Comparison with the Tent Map Gain Compensation Algorithm by Basu
	5.5 VHDL Implementation of the Fundamental Tent Map Gain Compensation Algorithm
	5.6 Approximating Difference Measure Values for the Fundamental Tent Map Gain Compensation Algorithm
	5.7 Summary

	6 Performance Analysis of Tent Map Based ADCs with the Enhanced Compensation Algorithms
	6.1 Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain Compensation Algorithms
	6.1.1 Analysis of the µCA-2: Varying TM-stage Gain and Varying TM-slope Gain
	6.1.2 Analysis of the µCA-3: Sub-ranging ADC Acquiring TM Stage Output

	6.2 Sensitivity Analysis of the Enhanced Tent Map Gain Compensation Algorithms
	6.2.1 Deviation Between µ± Within the ADC
	6.2.2 Deviation in µ± Employed by µCA-2 and µCA-3

	6.3 Simulated Output Accuracy Analysis of the Adapted Tent Map Based ADC with the Enhanced Tent Map Gain Compensation Algorithm
	6.3.1 Bit Accuracy Predictions
	6.3.2 Static Performance Prediction
	6.3.3 Dynamic Performance Predictions

	6.4 Noise Analysis Simulation
	6.5 VHDL Implementation of an Enhanced Tent Map Gain Compensation Algorithm
	6.6 Practical Implementation of a Tent Map Based ADC with an Embedded Tent Map Gain Compensation System
	6.7 Summary

	7 Discussion
	8 Conclusion and Further Work
	8.1 Conclusions
	8.2 Future Work

	9 References
	List of Appendices
	Appendix A
	A.1 Tent Map Based ADC PCB
	A.1.1 Schematics of the TM-ARCHα-7 ADC PCB
	A.1.2 List of Components for the TM-ARCHα-7 ADC PCB

	A.2 COTS ADC Breakout Board
	A.2.1 Schematic of COTS ADC Breakout Board
	A.2.2 List of Components for the COTS ADC Breakout Board

	Appendix B
	B.1 MATLAB Scripts for Uncompensated Tent Map Based ADC Output Accuracy Analysis
	B.1.1 Code for Bit Accuracy Predictions Analysis
	B.1.2 Code for Static Performance Predictions Analysis
	B.1.3 Code for Dynamic Performance Predictions Analysis

	B.2 MATLAB Scripts for Tent Map Based ADC with the Fundamental Tent Map Gain Compensation Algorithm Output Accuracy Analysis
	B.2.1 Code for Bit Accuracy Predictions Analysis
	B.2.2 Code for Static Performance Predictions Analysis
	B.2.3 Code for Dynamic Performance Predictions Analysis

	B.3 MATLAB Script for of the Fundamental Tent Map Gain Compensation Algorithm
	B.4 MATLAB Script for Comparison with the Tent Map Gain Compensation Algorithm by Basu
	B.5 Code for VHDL Implementation of the Fundamental Tent Map Gain Compensation Algorithm
	B.5.1 VHDL Code to Control the TM-ARCHα-7 ADC
	B.5.2 VHDL Implementation of the µCA-1
	B.5.3 MATLAB Script to Aid Creation of TM-ARCHα-7 ADC Signal Emulator
	B.5.4 VHDL code of the TM-ARCHα-7 ADC Signal Emulator
	B.5.5 Combining Components for Test
	B.5.6 Test Bench for Testing the µCA-1 VHDL Implementation

	B.6 MATLAB Scripts for Approximating Difference Measure Values for the Fundamental Tent Map Gain Compensation Algorithm
	B.6.1 Code for Creating the SLE&A Equations
	B.6.2 Code for Simulating SLE&A Method
	B.6.3 Code for Simulating SA Method

	Appendix C
	C.1 MATLAB Scripts for Initial Bit Accuracy Predictions of the Enhanced Tent Map Gain Compensation Algorithms
	C.1.1 Code for the µCA-2 Analysis
	C.1.2 Code for the µCA-3 Analysis

	C.2 MATLAB Scripts for Sensitivity Analysis of the Enhanced Tent Map Gain Compensation Algorithms
	C.2.1 MATLAB Script for Assessing the Sensitivity of µ+ Deviating from µ-
	C.2.2 MATLAB Script for Assessing the Sensitivity Between µ±algorithm and µ±ADC

	C.3 MATLAB Script for Analysing Final TM-ARCHβ-7-12 ADC Model and µCA-3
	C.4 MATLAB Script for Noise Analysis Simulation
	C.5 Code for VHDL Implementation of an Enhanced Tent Map Gain Compensation Algorithm
	C.5.1 MATLAB Script to Aid the Creation of an TM-ARCHα-7 ADC Signal Emulator
	C.5.2 VHDL Implementation of the µCA-2
	C.5.3 VHDL Code of the TM-ARCHα-7 ADC Signal Emulator

	C.6 Code for the Practical Implementation of a Tent Map Based ADC with an Embedded Tent Map Gain Compensation System

	Appendix D
	D.1 Effects the Resolution of the Difference Measure values has on Bit Accuracy for Different TM Gains
	D.2 TM Slope Gains Calculated from Electronic Implementation of the TM-based ADC

