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Abstract 

Surface reconstruction, or reverse engineering of a surface, is the practice of combining data 
collection and analysis techniques for retrieving measurement data from an object with the 
aim of generating a digital representation of the object, where the original is either missing 
or incomplete. Recovering the digital representation of a scanned physical shape will, in 
most cases, be in the form of a three-dimensional (3D) point cloud. However, the process of 
capturing the data will inevitably lead to a point cloud contaminated by the uncertainty of 
measurement and imperfections in the measured object. To reverse engineer an object, 
especially a used one, consideration must be made for any manufacturing defects 
(tolerances or imperfections) and in-service damage. Given the significant challenges in 
designing a surface reconstruction algorithm, this project aims to develop a framework for 
reverse engineering/ performing surface reconstruction for damaged objects and develop a 
method for identifying and localising damage on the surface of a model with an accuracy of 
a few tens of micrometres. This accuracy level is significant due to the resolution of the generated 

data. 

 

The workflow for reverse engineering considered in this thesis is capturing point cloud data 
(PCD) using a laser scanner mounted on an Articulated Arm Coordinate Measuring Machine 
(AACMM). Preprocessing of the raw points is performed to mitigate noise, sparse data, and 
contamination from the measuring system and identify properties that influence the data file 
structure, such as interoperability. Before performing detection, it is necessary to identify 
geometric features from the PCD, since an artefact's “nominal” design geometries are 
unknown. Hence, a linear fitting method is applied to the input point cloud data, and the 
system is optimised to obtain a good level of robustness of fitting the line of best fit for 
estimating “nominals”. A combination of edge detection, profile monitoring, model 
sectioning, and machine learning are used to identify potential damage locations on a model’s 
surface.  

The processes are ideally designed to be reproducible, so with reduced human influence. 
Slices produced from model sectioning of the PCD are unwrapped to create planar (X-Y) data 
at the micrometre-level, suitable for using machine learning (ML). The ML is trained and 
tested to classify the spatial-sequences of the data as either “good” or” damaged”. When 
applied to a potentially damaged surface, the sequence classification can then identify the 
location of damage along the height axis of a model. Future work would generalise this into 
three dimensions. 

The performance of the proposed system is evaluated through mathematical simulation of 
noisy point cloud data on objects with simulated defects and by physical validation using 
measurement data. The results indicate that the method can detect and localise areas of 
damage. This is a stepping-stone to automated repair of damaged surfaces by adaptively 
reproducing a copy of the original part, considering deviation of the “as manufactured” from 
the design intent. The thesis contribution to knowledge is a novel method of damage 
detection and localisation at the micrometre level as a step towards implementing a surface 
reconstruction framework, which has also been developed in this study. 
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Nomenclature 

2D  Two-Dimensional 

3D  Three-Dimensional 

AACMM Articulated Arm Coordinate Measuring Machine 

AFR  Automatic feature recognition 

AI  Artificial Intelligence 

CAD  Computer-Aided Design 

CAE  Computer-Aided Engineering 

CAM  Computer-Aided Manufacturing 

CAPP  Computer-Aided Process Planning 

CCD  Charge-Coupled Device 

CMM  Computer Measuring Machine 

CNN  Convolutional Neural Network 

CSG  Constructive Solid Geometry 

CT  Computerized Tomography  

CWT  Continuous Wavelet Transform 

FPGA  Field-Programmable Gate Array 

FPP  Fringe Projection Profilometry 

GUI  Graphical User Interface  

ISO  International Organization for Standardization 

LoG  Laplacian of Gaussian  

LPP   Linear Programming Problem  

LSI  Linear Scattered Interpolation 

LSTM  Long-Short Term Memory 

MAT  Medial Axis Transform 

ML  Machine Learning 

MRI  Magnetic Resonance Imaging 

NC  Numerical Control 

NDT  Non-Destructive Testing 

NEU  Northeastern University, China 
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NMS  Non-Maximum Suppression  

NN  Neural Network 

OEM  Original Equipment Manufacturer 

OOFF  Object-Oriented Feature Finder  

PCD  Point Cloud Data 

Q-Q  Quantile-Quantile  

RANSAC Random Sample Consensus 

RE  Reverse Engineering 

RNN  Recurrent Neural NetworkSLS  Structured-light Scanning 

SPAT  Single-Point Articulation Test 

SPC  Statistical Process Control 

SR  Surface Reconstruction  

STL  Stereolithography  

SWR  Steel Wire Rope  

UKAS  United Kingdom Accreditation Service 

Definition of Terms 

Surface Damage In this thesis, the use of “surface damage” encompasses both surface 

defects and surface imperfections. This term is preferred throughout, 

since defects are normally considered as quality control issues during 

manufacturing, whereas in this work they relate both to manufacturing 

and in-service defects and imperfections. 

Surface Defect A defect is defined as not meeting the requirement for designed usage 

or reasonable expectation (ISO 8402:1995). For this thesis, surface 

defects are considered as out-of-tolerance deviation in the surface 

form of actual geometric features from the nominal surface form of 

those features.  

Surface Imperfection An imperfection is defined as an irregularity that appears on the real 

surface which might be unintentionally or can be accidentally caused 

during manufacture, storage, or usage (ISO 8785:1999). It does not 

necessarily specify if a surface is fit-for-function. As applied in this 
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thesis, imperfections need to be considered in terms of increased 

complexity in reverse engineering of measurement data to nominal, 

but do not require quantification in terms of roughness and waviness.  

Reference Surface This is a geometrical surface on which the dimensions of a surface 

imperfection are assessed. They pass through the highest point of the 

real surface with exception of the imperfections. 
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Chapter 1 Introduction 

1.1 General Overview  

The concept of surface reconstruction (SR) is part of a process known as reverse engineering 

(RE). “Reverse engineering” of an object has existed in practice for centuries. Whenever 

someone saw an item they wanted but could not obtain the original designs, they would try 

to work out how to make it themselves. Sometimes RE is undertaken for industrial espionage, 

but in many cases, it is because an item has become obsolete and can no longer be procured. 

At a very basic level, the term RE could be applied to “borrowing” the design concept. The 

more recognised forms of RE are taking measurements of an object. Traditionally, this has 

been individual, manual, discrete measurements of key features. 

The concept of Reverse Engineering (RE) is a systematic approach that uses the technique of 

examining an existing engineering product or artefact with unknown dimensions to extract 

detailed design information and specification such that it can be accurately reproduced. In 

contrast to the traditional engineering process, this technique helps learn or understand how 

products are made and how they function by digitising the shape information of a real object 

using the technology of three-dimensional (3D) scanning. This technique also helps in 

duplicating or remodelling a product for enhanced performance. The application of RE has 

historically been on hardware components, but relatively recent attention has also been given 

to RE in forensic aiding crime scene and accident scene investigation. This engineering 

application cuts across several fields like manufacturing, animation, military and medical, to 

mention a few.   

The concept of RE is happening all around us every day. Companies are always trying to access 

information about a competitor’s product to understand the functionality and the rationale 

behind their design to enhance their product to surpass a competitor’s product. In medical 

applications, drugs can be reverse engineered to obtain elements used in developing such a 

drug to either improve or investigate why and how it functions the way it does. There is more 

to RE than just copying another person’s works, and perhaps it is unethical in some countries 

with this motive. RE is employed when interfacing between two or more systems, and the 

main requirement for this is a product’s interoperability. This is one reason why 

communication can be established between a mathematical application and CAD software, 
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why a platform like Microsoft office can communicate with other applications, and why data 

captured from any experimental platform can be analysed, visualised, and altered on a 

different application completely independent of the capturing system.  

RE is applied to situations of obsolescence where a product has become obsolete with no 

available design drawing and is no longer manufactured by the Original Equipment 

Manufacturer (OEM). The only way to incorporate it into modern technology is to reverse 

engineer it. Another application of RE which can be quite challenging is medical image-based 

modelling for constructing 3D virtual models of the human body anatomical structures 

constructed from anatomical data scans such as computerized tomography (CT) and Magnetic 

resonance imaging (MRI) [1], and laser scanning [2]. One of the most recent RE applications 

is in forensics, aiding in crime and accident scene investigation [3, 4]. The recent technological 

advancement on how data for RE is captured has aided in more application areas. It has made 

RE popular and a viable technique in developing a 3D virtual model of an existing physical 

product using 3D CAD, CAM, and CAE applications and is known as digitising.  

The conventional engineering process follows the path shown in Figure 1.1. Considering the 

product’s functionality, the idea is conceptualised and visualised using design tools. These 

design tools produce CAD models as a representation of the concept, and it is at this stage 

that the functionality of a product can be assessed and modified. Once the design process is 

satisfactory, the product is manufactured, and validation is performed to correlate the initial 

idea. In most cases, the validation is aided by the process of RE, where the digitisation of the 

manufactured part is validated against the CAD model of the design stage. 

 

Figure 1.1: The conventional engineering concept which is a forward process, and the manufactured part 

should validate the idea 

The reverse engineering theory is, in essence, quite different, as shown in Figure 1.2. A 

manufactured part is interrogated through a chosen measurement tool to obtain the relevant 
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dimensions and geometry. However, without a design drawing, it is the judgement of the 

person undertaking the RE to decide which are the “key” features. From this data, a design 

can be created to produce a similar product. Ideally, they require sufficient indicators and 

engineering knowledge to be able to generate a design with the correct functional 

requirements. However, without access to the original “design intent”, there is no guarantee 

that the correct attributes have been captured, or that conversion from an as-manufactured 

product, through data capture and analysis will not have introduced errors in the new design.  

 

Figure 1.2: The reverse engineering theory where the idea obtained should be verified against the 

manufactured part 

 

Although RE has been in existence for a long time, surface reconstruction from a point cloud 

of measurement points has attracted growing interest over the last two decades due to 

advances and the greater availability of scanning devices. These devices can generate 

hundreds of thousands of point samples reflected from a geometric object’s surface. With the 

massive amount of data that is currently obtainable, surface reconstruction has gained more 

research attention, investigating the mechanism and challenges in using scattered sampled 

points for performing surface reconstruction. Also, concentrating on the compensation 

existing for optical systems between data accuracy, processing speed and scan depth. SR is 

used in applications such as computer visualisation of physical parts, development of medical 

imaging, reverse engineering for product remodelling, computational science, object 

detection, and virtual, augmented, and mixed reality.  

Surface reconstruction is used where the original design data of a machined part or physical 

object is missing, does not exist or has become inaccessible by either the initial designer or 

no backup was made. This concept involves a retrieval process of capturing measurement 

data or geometric information of an existing object using a process of data acquisition that 
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are generally classified as contact (tactile) and non-contact (optical) techniques [5, 6]. Point 

cloud data is obtained through these acquisition techniques as a 3D representation of the 

object before a computer-aided design (CAD) model is developed. Computer analysis, 

geometric feature extraction, measurement information, and part functionality are deduced 

from the acquired data. The method of retrieving an object’s physical image is vital as several 

variables can influence the data integrity, including measurement error, lost data, and any 

flaws with the soft computing scanning tool for data capturing [7, 8]. In some manufacturing 

processes, the reconstruction of a physical model to produce a prototype is often faster than 

creating a new one. Reconstruction reduces time and cost by shortening the design cycle with 

improved accuracy [9] and provides an enhanced view of the system’s capabilities [10, 11]. 

Once a CAD model has been generated, it can be processed using computer-aided 

manufacturing (CAM) module to produce numerical controlled (NC) codes that can be run on 

CNC manufacturing machines [12].  

Detecting the amount of damage on a part for which a CAD drawing exists is relatively 

straightforward since the cloud point data can be aligned to the nominal drawing, and 

deviations can be measured. However, in RE, there is no nominal drawing, so the problem is 

much harder. In this situation, it is good practice to estimate the nominal points or boundary 

of the object using the captured data. Gao et al. [13] used a method known as cross-section 

curve on a model (straight blade) and extending the curve to a nominal height along the Z-

axis aided in bending or stretching the curve. For a curved model, they used cross-section 

curves at different heights. The same authors used a similar approach in [14] but used the 

surface model's parametric and geometric continuity. Wilson et al. [15] used a semi-

automated geometric reconstruction and a laser direct deposition process on defective voids 

in turbine airfoils. Using a Boolean discrepancy between the original faulty and final 

reconstructed models, they created a geometric parameterisation representation of the 

restored volume. A multi-probe measurement system was developed by Zexiao et al. [16] 

using a CMM, a structured-light sensor, a trigger probe and a rotary table. For this system, 

the profile of the part was scanned from different views using the structured-light sensor, and 

for measuring the edge and vital features, the trigger probe was used. They were able to 

obtain the coordinate points of a complicated part. A similar method was that of Li et al. [6, 

17, 18], where a multi-sensor system was created. They described an effective approach of 
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compensating data from a laser scanner with a tactile probe for accurate RE, and the 

integration of a contact-optical coordinate measuring system was proposed. A five-step 

method for performing automatic RE was developed by [19]; they include mesh simplification, 

quadrilateral mesh generation, curve net construction, connectivity data preparation and 

several surface fittings bearing tangential continuity across boundaries.  

The significant challenge for most proposed methods is producing a watertight surface when 

captured points are polygonised. The scanning method can produce missing or incomplete 

data, and the surface points of the cavities or concave regions can be easily missed. The 

projector and sensors can neither project nor see the light when the concave area is less than 

the angle created by the triangulation of the captured points. Invisible sections of the scanned 

part tend to appear as holes, and hole-filling is necessary for filling these holes and creating 

the correct surface continuity required for accurate reconstruction. Much research on RE 

concentrated on various aspects relating to the process of extracting information from a 

known object. They include scanning methods (looking at the advantages and frailty of 

scanning systems), image processing and computer vision, multi-probing methods, 

integrating the process with rapid prototyping, scan path planning and development of 

machining path, surface fitting and data point preprocessing [5]. 

1.2 Aims, Objectives, Scope  

  Aims 

This study aims to develop a reverse engineering framework for reconstructing a damaged 

surface such that a copy of the original part can be produced. 

This study also aims to develop an algorithm to automatically process measurement data 

scanned from a potentially damaged object such that surface damage can be detected and 

localised. 

 Objectives 

• To develop a framework that uses the concept of reverse engineering in performing a 

reconstruction of a damaged surface. 

• To identify alternative methods in achieving the stages presented in the reverse 

engineering framework. 

• To develop an algorithm suitable for preprocessing unorganised measurement data.  
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• To develop an algorithm that produces micrometre-level data for representing the 

properties of a model’s surface. 

• To develop a machine learning algorithm that can learn from the micrometre-level 

data and identify locations of damage on a model. 

 

1.3 Motivation 

The 3D modelling of measurement data encounters uncertainties such as the integrity of the 

data in terms of capturing parameters, data transfer, measurement systems, and associated 

errors. These uncertainties are important factors for consideration when modelling an object 

to obtain its digital representation for analysis and understanding its functionality inferred 

from its geometric features. With these challenges, there is the need to develop an “all-in-

one” system capable of measuring a potentially damaged object by detecting damaged areas, 

automatically reconstructing a model, and transfer to a format usable by a manufacturing 

machine. This can be achieved by developing a structured framework with a critical 

investigation of its procedures in performing experiments and preprocessing measurement 

data. Inferring design rationale of objects to understand functionality, design intent and 

representation of features to reduce the time taken to reconstruct a potentially damaged 

surface. The reconstructed model should be a correct representation of the measured object. 

This project aims to develop a structured process for achieving the overall ambition of 

developing an “all-in-one” system for reconstructing damaged surfaces, concentrating on 

damage detection. The investigation of detecting and localising damage is an important 

element of the SR/RE framework because identifying the damage location and its properties 

can aid in distinguishing potential damage and an intended design. 

1.4 Contributions 

Contributions were made with respect to damage detection and localisation at the microns 

level as a step to implementing the proposed surface reconstruction process. This process 

was based on a developed reverse engineering framework for performing reverse 

engineering/surface reconstruction on a damaged engineering component by identifying the 

necessary steps from data capturing, identifying alternative methods in each step, detecting 
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damaged locations, and verification of reconstructed models, concentrating on detecting 

damaged locations.  

A model visualisation method of inspecting the profile of a model using rotation matrix was 

developed. Profiling the boundary of a model was analysed using a new approach different 

from the trivial method of using fitting techniques. This was achieved using a rotational matrix 

to produce a boundary examination of a model’s surface as it circumvolves about an axis. 

 

Finally, a method of sectioning a model to produce slices of micrometre resolution to extract 

dimensional information was developed. Unwrapping the raw data of each slice and 

automatically classifying them into specified classes. The unwrapped raw data produce 

numeric sequence data at the microns level after automatically classifying them into specified 

classes, and the data is used for training an LSTM neural network. The LSTM data can be used 

to perform prediction by detecting and localising damage on the Z-axis of a model.  

 

1.5 Thesis Structure  

This section presents an overview of the thesis structure as follows: 

Chapter 2: Literature review, the concept of reverse engineering and surface reconstruction  

Chapter 2 presents the theoretical background and an in-depth review of literature on reverse 

engineering algorithms and its application in the current work. It further presents a review of 

existing literature on surface reconstruction and some commercial applications of the SR 

algorithms presented.  Building from the literature on surface reconstruction, the literature 

review was narrowed down to a critical appraisal of damage detection algorithms using 

machine learning (ML). This chapter also discussed the processes involved in dealing with 

measurement data and associated uncertainties during data acquisition concentrating on 

capturing methods and instruments. In this current work, the Articulated Arm CMM was used 

as the main data capturing instrument while dimension verification and analysis such as 

circularity, diameter, height, and width properties of a cylindrical, spherical and cuboid 

surfaces were performed using a CMM as indicated in Appendix A Circularity Test for Both 

the Arm Calibration Sphere and a Cylindrical Part used in Chapter 5 section 5.2. 
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Furthermore, this chapter also discussed the analysis of surface types, structures, 

characteristics, and application to SR. An overview to computational geometry, defect 

detection and handling noisy data. Using these ideas as a basis and lowering the amount of 

human engagement, machine learning techniques were utilised to locate and measure the 

damage that had been observed. This study utilised neural network systems such as the 

convolutional neural network (CNN) and the sequence-to-sequence system of long-short 

term memory (LSTM). 

Chapter 3: The methodology for performing reconstruction using reverse engineering 

Chapter 3 presents a detailed description of the methodology for this project and the 

proposed reverse engineering/surface reconstruction framework used to achieve the project 

aims and objectives. This includes data capturing, preprocessing, dimensioning, feature 

identification, damage detection and dimensioning, performing reconstruction, and 

validation of the newly developed model. The methodology was developed in a ‘mind 

mapping’ application with a breakdown and description of the various tasks involved in 

achieving the aims of this project. Most of the work was focused on identifying features within 

a model and detecting possible damage that might exist on the surfaces of the identified 

features. However, the data capturing and preprocessing were based on existing methods. 

The preprocessing of some of the data was challenging, leading to the development of new 

preprocessing methods for the extraction of valid information from the data. This  was mainly 

experienced during the CAD and mathematical software communication. The feature 

identification process investigated various ways for identifying features in both three 

dimensional and two-dimensional applications. A new damage detection method was 

developed, exploring its capability in identifying damage in terms of accuracy, repeatability 

and reduced human influence. 

Chapter 4: Edge detection algorithms for image processing and system optimisation 

Chapter 4 discusses the concept of edge detection for detecting potential damage on the 

surface of a model. Several edge detection algorithms were investigated. Following 

experiments performed using various edge detection algorithms from the literature [20], the 

Canny edge algorithm was found to be a more suitable detection algorithm for use in the 

current work because of its low sensitivity to noise and produces single response point, which 
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was verified by performing experiments with various algorithms. An essential step in Canny 

edge detection algorithm processing is the thresholding for determining what edge points are 

real edges and non-edges. A method known as hysteresis thresholding was investigated in 

dealing with such noise in an image. System optimisation in the form of simplex optimisation 

was also investigated to understand how data distribution behaves in the presence of noise. 

This simplex optimisation process was used as an analysis step in extracting vital information 

used as input for the machine learning application in the detection of damage. 

Chapter 5: Automatic feature recognition 

This chapter provides a review of the concept used for recognising geometric features known 

as Automatic Feature Recognition (AFR). It classifies several approaches for AFR into logic 

rules and those related to artificial neural networks with brief descriptions. Further 

investigation into the process of AFR taking into account both techniques, one with the 

concept of interpolation and the other with sample consensus considering the distribution of 

points within a specified region of interest.  

Chapter 6: Feature profile extraction for damage detection 

Chapter 6 investigated the concept of profile monitoring using a rotational matrix for 

extracting the boundary contours of a part. Although the rotational matrix is not a new 

concept, its application for damage detection has not been investigated The detection 

process was by visualisation, which involved a reasonable level of human interaction with 

prior knowledge of the model, resulting in using machine learning algorithms to reduce 

human mitigation. The machine learning approach brought about processing methods such 

as wavelet transform and model sectioning (slicing) to investigate points in the global 

reference coordinate system within the data compared to images—furthermore, validation 

of the proposed methods using measurement data from AACMM. 

Chapter 7: Validation of the proposed method using measurement data 

This chapter describes the validation of the proposed method by applying the steps in chapter 

six using measurement data with a description of validation steps and discussion of results. 

There was little control of some parameters with measurement data, such as slice resolution, 
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but parameters like the height and radius could not be altered, and it is expected that the 

extracted information should compare well to a standard CMM measurement. 

Chapter 8: Conclusions and future work 

Finally, this chapter will present a summary of all the concepts discussed in this thesis, a 

general conclusion of the work and the proposed methods as a contribution to knowledge. It 

also stated the current limitations of the work and suggested further research areas to 

improve the method.  
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Chapter 2 Literature Review 

2.1   Surface Reconstruction 

There has been an accelerated rate of industrial interest in modern technologies dealing with 

how 3D point clouds are captured, processed, and represented, leading to the advancement 

of 3D visualisation and analysis. This has led to numerous research work on several ways of 

reconstructing a surface from 3D points. However, the reconstruction process is accompanied 

by challenges capable of affecting the desired result. In reconstruction using point cloud data, 

there are other concepts related to reconstructing actual elements from the point cloud of 

static objects and scenes obtained using 3D scanners. These include urban reconstruction 

[21], reconstruction of statutory objects, which could be structural or sculptural and 

interpolatory reconstruction. However, as explained in Chapter 1, this thesis is concerned 

with the surface reconstruction of machined parts from scanned data. The choice of machined 

parts is dependent on the gap of micrometre-level RE from literature where concentration is 

on surface texture and structure, with particular interest in the B-spline nature of a model. 

The developed RE framework is more industrial inclined, focusing on engineering components 

than application on statues, structural, and urban reconstruction due to its high tolerance 

application. 

For reconstruction approaches where point cloud is used as measurement data, their 

properties are essential factors in comprehending the nature and behaviour of reconstruction 

methods. These properties range from the sampling density of points, the noise and outliers 

that have the ability of affecting the integrity of data, and misalignment and missing data can 

make reconstruction challenging to execute. The basic forms of input point cloud are the 

surface normal which is further categorised into oriented and unoriented normal, scanner 

information and RGB imagery. Surface normal are uniquely defined at every point and it 

indicates the perpendicular direction of each point to the tangent space. Oriented surface 

normal is consistently pointing inwardly or outwardly of the surface, while unoriented normal 

possess no direction [22]. Hence, obtaining correct connectivity among captured points is a 

big step in overcoming the difficulty faced by the reconstruction process as laser scanners 

produce unorganised data set. 
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For the representation of surfaces, surfaces can be classified into two categories of explicit 

and implicit surfaces. The exact positioning of a surface is represented by explicit surfaces. 

Explicit surfaces can handle huge data set and produces reconstructed surface that are 

piecewise linear as well as noisy and unorganised data, but obvious deformations and change 

in geometric shapes are difficult to deal with. Examples of explicit surfaces are parametric 

surfaces under which B-spline and NURBS are classified, and triangulated surfaces under 

which Voronoi diagram and Delaunay triangulation are classified. Implicit surfaces are also 

known as volumetric representation of a model. This is mostly in 2.5D and a slight variation 

to the traditional approach of working with 3D volumetric shape where several primitives are 

fitted together in representing the shape of a complex 3D model. Examples of implicit surfaces 

include least squares, Poisson surface reconstruction, partial differential equation (PDE) and 

level set method.  

Surface reconstruction process requires soft computing methods to deal with optimisation 

problems and improve the modelling of reconstruction systems. These soft computing 

methods include neural network (NN), simulated annealing, particle swarm optimisation 

(PSO), and differential evolution [23]. There has been an increased application of NN in 

modelling reconstruction algorithms because it is able to represent the network structure of 

the data points and at the same time deal with unorganised density data. Neural network also 

produces better results due to it iterative training steps. 

From literature [23-25], surface reconstruction algorithms can be classified into triangular 

mesh and parametric surface algorithms, which are further divided into other sub-surface 

algorithms. For B-Spline and NURBS triangular mesh algorithms, smooth enough surfaces can 

be produced to meet machining requirements [26]; however, most algorithms take a long 

time even if they produce dense data with less tolerance [11, 27]. Parameterisation (surface 

approximation) of the measured points is implemented first before applying several fitting 

strategies, thereby producing surfaces based totally on minimisation conditions [24]. The 

triangular mesh algorithms can transform measured points into a mesh surface but not 

without problems influenced by noise when performing reverse engineering. These surfaces 

are broadly used due to their widespread industrial standards for representing surfaces [19]. 

This is slightly different for the parametric surface, representing reconstructed models more 

efficiently and precisely [24].  
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2.2  Surface Reconstruction Algorithms 

Most reconstruction algorithms generate a piecewise linear approximation of the curves and 

surfaces being sampled. Talking about approximation, we mean that the output directly 

represents the geometry and topology of the shape. The approximation of the sample point 

is only possible when the points are dense enough to represent the features of the object 

being sampled. Many algorithms for reconstruction use the data structures known as Voronoi 

diagrams and their dual known as Delaunay triangulations. A Voronoi diagram is a versatile 

geometric structure produced when a surface 𝑆 is partitioned into regions, while Delaunay 

triangulation of a set of points 𝑃 is the planar subdivision whose polygon surfaces are triangles 

and vertices are points contained in 𝑃 [28]. 

Amenta and Bern [29] examined the reconstruction problem of producing triangular mesh 

whose vertices equal the number of points representing a surface. They used a combinatorial 

algorithm of both the Delaunay triangulation and Voronoi diagram. The Voronoi vertices were 

used in extracting triangles in the Delaunay triangulation using only a subset of the vertices. 

This produced a piecewise linear surface pointwise that converges to a smooth two-

dimensional manifold after applying postprocessing steps of filtration by normal and 

trimming. If the sample is dense enough, this combinatorial approach can be used on non-

uniform sampled points. Amenta et al. [30] improved on the algorithm of [29] by proving it is 

homeomorphic to a model’s surface if a set of triangles 𝑇 spanning all sample points satisfies 

three conditions of smoothness, compact, and sufficiently dense.  

Eck and Hoppe [31] developed a method for reconstructing a tensor B-spline surface from a 

series of scanned 3D data points. They aimed to reconstruct an arbitrary topological surface 

from an unorganised set of points. The surface was defined as a network of B-spline patches 

before tackling the problem of reconstructing both the network of patches and the 

parameterisation of points found in those patches. When unorganised points were used as 

input data, an original surface approximation of dense triangular mesh was constructed 

before applying a re-parametrizing procedure to achieve a simple triangular base complex 

and quadrilateral domain complex. They used harmonic maps in reducing the effect of 

distortion in the corresponding reparameterisation, hence, optimising the system. Surface 

spline was designed in such a way that the device would maintain tangential surface 

continuity between patches by translating them into a format suitable to B-spline surfaces. 
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This new format is a network of quadrilateral regions that can be accomplished by creating a 

constrained surface continuity over the boundary. Ying and Hong [32] developed a model 

known as a triangular B-spline to address this problem. The developed model created a single 

triangular B-spline with variation continuity applicable on smooth regions and positional 

continuity on sharp features. An algorithm that can automatically incorporate these points 

into the network of triangular B-spline was proposed. This proposed algorithm eliminated the 

need for trimming and patching so that parametric domains having arbitrary topology can be 

handled quickly. Although this method is an improvement of the method by Eck and Hoppe 

[31], it is not supported by most modelling systems as the structure and topology of the 

simplified mesh may influence the surface reconstruction [19].  

The process of achieving a smooth continuity between detached surfaces can be difficult for 

some systems. Ma & Zhao [33] proposed a technique using Catmull-Clark surfaces in place of 

a B-spline to simultaneously fit several surfaces from a point cloud that are smoothly linked 

and have arbitrary topology. The Catmull-Clark techniques used a linear least-square fitting 

approach to achieve a network of smoothly linked bi-cubic B-spline surfaces. Catmull-Clark 

surfaces with curvature continuity for surfaces with exceptional corner indicates a tangential 

continuity was achieved as it is difficult to achieve curvature continuity using this technique.  

A two-approach system for remodelling triangular mesh into quadrilateral mesh was 

presented by Tsai, et al. [19] by firstly splitting each triangle into three quadrangles by linking 

its centre to the mid-point of its three edges, and secondly by merging two triangles into a 

quadrangle. In dealing with B-spline surface reconstruction from a large dataset having 

triangular meshes, a five-step integrated procedure was developed, and this includes: mesh 

simplification, quadrilateral mesh generation, curve net construction, connectivity data 

preparation, and constrained surface fitting. The implementation of this procedure was 

accompanied by challenges where the curve net generation and fitting of several surfaces 

having constrained boundary continuity resulted in situations of the meshes being inversed, 

overlayed, and distortion of boundaries. During the mesh simplification process, the model's 

boundary must be maintained to keep its original structure, as the possibility of achieving 

boundary continuity between patches will be affected. This led to developing a condition 

checklist to monitor the procedure to avoid losing the model’s boundary. Lau, et al. [34] 

proposed an algorithm for automatically generating adaptive quadrilateral mesh. The 
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combination of two triangles at a time will turn a triangular mesh into quadrilaterals using a 

carefully regulated operation. Two approaches for generating quadrilateral meshes was 

stated by Lau, et al. [34], the direct and the indirect schemes. The most traditional method is 

the direct scheme that uses mapping techniques to create physical domain components by 

mapping normal or quadrilateral meshes almost consistent to the physical domain in a 

parametric coordinate plane. Quadrilateral elements are created in the indirect scheme by 

merging and splitting the elements in a triangular mesh into quadrilateral meshes. The 

adaptive method of generating quadrilateral mesh is an indirect scheme with a structural 

merging technique. This technique can be divided into three stages: preprocessing a 

triangular mesh, merging triangles, and enhancing mesh quality. By splitting each triangle into 

three quadrangles using a sub-divisional technique, Kobbelt [35] and Borouchaki and Frey [36] 

were able to convert triangular meshes into quadrangles.  

Hoppe, et al. [37] proposed an algorithm for surface reconstruction whose only input is 

unorganised points. They used the method of estimating tangent planes and tracing contours. 

This is similar to the concept presented by Boissonnat [38]. To obtain the estimation of the 

tangent plane, the principal component analysis and computing of an oriented tangent plane 

for every data point is used. An algorithm from dense samples was presented by Cheng, et al. 

[39], which was formed in a variant of the standard octree. They built a prototype using the 

algorithm to obtain locally compatible subsamples without any specialised structure of data. 

Dumitriu, et al. [40] used these subsamples in developing an algorithm needing fewer 

geometries but requires the distance between the sampled points. The extraction method for 

these samples was fast and efficient, and Cocone was used to raise its efficiency to about 68%. 

Amenta, et al. [30] used Cocone to simplify the Crust algorithm proposed by Amenta & Bern 

[18] by eliminating one Delaunay pass and a conventional trimming stage. Similar steps as the 

Crust case were employed where specific triangles were chosen using Cocone at each stage 

before extracting a manifold. Dey, Funke and Ramos [41] have demonstrated, using an 

approximate nearest neighbour searching data structure, that the Cocone algorithm can be 

altered for operation in 𝑂(𝑛𝑙𝑜𝑔𝑛) time. The Crust algorithm, according to Amenta, et al. [30], 

is used for the reconstruction of surfaces that have both geometric and topological 

guarantees when Voronoi is used as input data. The Crust, an extended form of the Delaunay-
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based system, replaces the Delaunay triangulation of points using a weighted Voronoi 

diagram known as the power diagram.  

From usage, it has been observed that the Crust and Cocone algorithms create holes on the 

reconstructed surface due to a noisy dataset, non-smoothness, or inappropriate sampling, 

providing an incomplete representation of the surface. In offering a solution to this, Dey & 

Goswami [42] developed a simple algorithm to fill up all holes to create a watertight surface. 

In using this algorithm, no additional data points are required but used the first data and 

generated a three-dimensional surface that interpolates the input sampling points. The 

decimation algorithm presented by Schroeder, et al. [43] is similar to that of [42] with the goal 

of minimising the total number of triangles needed to remodel and secure the topology and 

geometry of an object using triangle meshes. It creates a hole in the mesh when a vertex 

satisfies the requisite decimation criteria and is removed. The filling of the holes forms a local 

triangulation in the mesh, and the elimination of the vertexes is an ongoing process until 

certain termination conditions are met.  

A power crust was presented by Amenta, et al. [44] that approximates the Medial Axis 

Transform (MAT) of objects and then used an inverse transform from the MAT to produce 

surface representation. This algorithm gives a theoretical guarantee not relying on the quality 

of the input sample. This is similar to the algorithm by Boissonnat [38], where the method 

was presented to represent three-dimensional shapes with a set of points on their frontier 

using Delaunay triangulation. Gibes & Oudot [45] implemented an algorithm in which witness 

complexes supplement the Delaunay triangulation. The witnesses used inter-sample 

distances and can apply to any metric space. This algorithm demonstrated its good 

relationship with Delaunay triangulation in 2D and its sparse relationship in 3D. Despite 

witness complex being a weaker version of Delaunay triangulation, it has played a significant 

role in the context of topological data analysis described by De Silva and Carlsson [46]. It could 

replace it as the triangulation completely infers that a point cloud should always represent a 

single class of shapes. A simplification algorithm was suggested by  Cohen, et al. [47] that 

would offset a mesh along its surface normal. This simplification can proceed to a mesh 

intersection. Garland & Heckbert [48] and Hoppe [49] used borders as the basis for 

simplification and suggested different rules for simplifying meshes.  
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For their industrial standards [19], most algorithms were developed based on tensor B-spline 

and NURBS surfaces. These algorithms had a primary objective of transforming triangulated 

points into a quadrilateral mesh with defined boundaries. The stability of most patches was 

retained by analysing the continuity of boundary conditions as patches are merged. 

Preprocessing [50], curve net construction, surface filling [51], post-blending and trimming 

are some of the processes involved in performing surface reconstruction [19]. They require 

interactive and iterative procedures for implementation, and they were a manual approach. 

This manual procedure can be avoided using macros by learning to avert the repetitive 

procedures. Macros record the reconstruction processes that can then be used on a different 

model, and identical procedures are performed on the new model. The use of macros will be 

an abducted method for this thesis when working with CAD software, and some algorithms 

proposed by literature are implementable in Geomagic Studio 12 CAD software. Very few 

approaches used raw measurement data for evaluation, but this thesis used both 

measurement and simulated data for evaluation of the processes used in this thesis. 

Simulated data are flexible to work with where parameters can be altered to investigate the 

performance of an algorithm. Once the algorithm performed satisfactorily, measurement 

data were used for cross-validation. Surface Imperfection and Defects on Machined 

Components 

Surface imperfections are damage on the reference surface of a geometric surface, and it is 

important not to mistake surface imperfections for surface parameters such as surface 

roughness and waviness. According to ISO 8785:1999 [52], it is not recommended to state 

surface imperfections as a surface defects, and the definition of the term can be found in ISO 

8402:1995 [53]. The reference surface, according to [52], “passes through the highest peak of 

the real surface excluding the imperfections, and is equidistant from the mean surface 

determined by the least-squares method”. Owing to imperfection on the actual surface, the 

specified surface is not inherently unacceptable, meaning that the surface can be fit for 

purpose and not easily discarded for such imperfections. Imperfection assessment and 

acceptability will rely on the surface application or function and will be defined accordingly, 

for example, length, depth, height, width, and number per unit area. 

According to ISO 8402:1995, defects are defined as a nonfulfillment of purpose, usage 

requirement or acceptable quality, and the aspect of safety. Imperfections could be 
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unintentional due to uncertainties in manufacturing, but they could meet usage requirements 

and not necessarily be discarded. For objects such as machinery, propeller, aircraft, turbine 

blades and car parts, consist of components having freeform and machined surfaces that 

encounter several forms of forces. Due to continuous usage and product life cycle analysis, it 

is observed that these surfaces can get damaged or deformed from the original geometry. In 

situations where this falls below the acceptable tolerance level for a specific purpose, there 

is a risk to the system’s operation in terms of optimum performance and hence, the need for 

detection and reconstruction.  

For freeform surfaces such as a turbine blade, damage can be categorised as a damage that 

changes the whole dimension of the part and minor damage located on the surface that does 

not affect the functionality and are within tolerance. Machined surfaces take specific 

geometric shapes, and this could be intertwined, but their features are identifiable. 

 Specific Types of Surface Imperfections 

There are four categories of surface imperfections as presented by ISO 8785:1999 in Table 

2.1. These include recession, raising, combined, and area appearance. The recession surface 

imperfections can be described as an inwardly directed surface imperfection from the 

reference surface, and this is the sort of imperfections found on most manufactured surfaces. 

Raising surface imperfections  are outwardly directed protrusion of the surface involved. The 

class of surface imperfection for this project is a recession type. The other classification is the 

combined surface imperfection which is a combination of partially inwardly and partially 

outwardly. The last classification is the area appearance that occur closest to the surface layer 

and usually do not have sharp contours with no practicable measurable depth or height. 

Figure 2.1 illustrates some of the different types of surface imperfection and a pictorial 

representation can be found in ISO 8785:1999.  
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Table 2.1: List of specific surface imperfections with their direction of appearance relative to the reference surface 

 

Surface Imperfections 

Recession - inwardly 

directed surface 

imperfection 

Raising – outwardly 

directed surface 

imperfection 

Combined – partially 

inwardly and partially 

outwardly directed 

surface imperfection 

Area appearance – 

scattered 

imperfections in the 

outermost surface 

layer 

Groove Wart Crater Skidding 

Scratch Blister Lap Erosion 

Crack Buckle (convex) Scoring Corrosion 

Pore Scale Chip rest Pitting 

Blowhole Inclusion  Crazing 

Buckle (concave) Burr  Spot patch 

Dent Flash  Discoloration 

Wane Deposits  Streak 

Shrink crevice   Cleavage flaking 

Shrinkage hole    
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Figure 2.1: Different types of surface imperfection. Reproduced from [52] 

 

 Defect Identification 

Defects are experienced in various sectors that deal with surfaces, and over time, there have 

been several applications for identifying defects. These surface imperfections affect 

appearance as well as reducing the properties of a material, such as corrosion and abrasive 

resistance and fatigue strength. Some imperfections can be identified by visual inspection of 

the part [54, 55], and for relatively fine and undetectable imperfections, optical methods are 

employed [56]. The captured data is processed using image processing techniques [54], 

pattern recognition [56], and artificial intelligence (AI) [57]. A typical example of the 

challenges of identifying defects is the Northeastern University (NEU), China [58] surface 

imperfection database of six typical surface imperfections of hot-rolled steel classified as 

intra-class and inter-class, as shown in Figure 2.2. In this application, two challenges 

encountered are the intra-class (same kind) defects producing significant discrepancies in 

appearance when the inter-class (different classes) defects produce identical aspects. The 

effect of light and the rate of material change is also another factor [59]. An improved steel 

surface inspection was developed by Song and Yan [59] using an adjacent evaluation window 
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to improve noise interference using the NEU database. They used annotations in specifying 

the class and location of defects in each image, and this is illustrated in Figure 2.3.  

 

 

Figure 2.2: The Northeastern University (NEU) China, surface imperfection database, six kinds of typical surface 
imperfections of the hot-rolled steel strip. Reproduced from [58, 59] 



40 
 

 

Figure 2.3: Defect annotation and location on the NEU surface imperfection database. Reproduced from [58] 

 

A vision system technology inspection method was developed by Galan et al., [60] to detect 

defects on the surface of a metal component using a casting process. They first collected the 

binary representation of the bright and dark surface regions to produce a set of images. 

Related components of these images are processed in identifying shadows from defects. This 

is similar to the work by Rosati, et al. [61], where a curved mirror transfers light rays onto a 

surface that is reflected and captured by a charge-coupled device (CCD) camera. The detected 

defects appear as shadows having different geometries and dimensions after surface 

treatment due to the high reflectivity of the surface. A multi-angle illumination system for 

surface defect detection was proposed by Liu et al., [62] using several lighting sources and 

cameras for capturing several images. Satorres et al., [63] developed a machine vision image 

fusion technique by fusing images acquired from different lighting conditions. The same 

authors used a supervised machine learning classifier to classify images into defective and 

non-defective, determining true-positive and false-positive classification. The use of multiple 

lighting sources and cameras for capturing and the process of fusing images can be time-

consuming. A one-shot detection method using one camera and a planar lighting source was 
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developed by Lin et al., [64]. Using texture orientation histogram, statistical information was 

developed for defect judgment compared to template matching of images. Although this 

approach improves the multiple light source approach by eliminating the bad direction of 

reflected light, it cannot be applied to edge collision damage. 

A visual inspection system using image processing techniques was developed by Chen et al., 

[54]. Edge detection was used to segment potential defects from its background to obtain 

feature parameters used to develop a classification algorithm. They used a morphological 

approach similar to the work by Alaknanda et al., [65], incorporating an edge detection 

algorithm for analysing X-ray images. A segmentation of X-ray images for defect detection 

was proposed by Tang et al., [66] using a bound histogram. The fuzzy exponential entropy 

between the feature and its background is computed, and this information was used in 

creating an ideal threshold for segmentation. However, using a bound histogram to separate 

features from its background in X-ray images requires prior knowledge of the image. Also, X-

ray images are challenging to work with due to noise, sometimes degraded by intermittent 

illumination, and can retain low contrast.  

A systematic approach was developed by Huang et al., [67] for detecting and monitoring 

defects using measurement data of a three-dimensional curved surface acquired by optical 

means. This approach includes region division of curved surfaces after outliers are removed 

and boundaries are recognised. The region division was organised by dividing them into sub-

regions with millions of measured points, comparable to a plane using wavelet packets for its 

decomposition, as shown in Figure 2.4. The wavelet packet entropy and normal vector were 

used to determine if the sub-regions are out-of-limit of their specifications and assess features 

of each sub-regions features. Three quality parameters were used in the monitoring of these 

parameters by calculating their values based on the clusters of out-of-limit sub-regions. The 

proposed approach was validated using a comparison of the profile monitoring using a 

Quantile-Quantile (Q-Q) plot for assessing the assumption of normality. When measurement 

data is acquired as distribution points, a highly linear Q-Q plot is obtained with in-control 

point cloud data, and out-of-control point cloud data will generate a Q-Q plot that deviates 

from linearity, and this is illustrated in Figure 2.5.  
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Figure 2.4: Evaluation of the defect detection by dividing the surface region into sub-regions and applying the 
wavelet entropy and normal vector. Reproduced from [67] 

 

 

Figure 2.5: An illustration of an in-control Q-Q plot. Reproduced from [67] 

 

2.3 Measurement Data Acquisition  

An important part of surface reconstruction is the 3D data acquisition, as there is a direct link 

between how the data is acquired and the reconstruction algorithm [6, 8]. The acquisition 
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method determines the techniques and methods of surface reconstruction suitable for the 

generated data type and algorithm to reproduce the digital representation of the part [6]. 

This process involves preprocessing digitized points, curve net construction, surface fitting, 

post-blending, and trimming [19]. The capturing of high-resolution 3D range data of real 

objects is a lot easier, thanks to the recent advances in 3D scanner technology. 3D scanners 

have evolved over time with improvement in the number of points per second generated, 

response to different surface types, and precision to micrometre level [10]. Also, advanced 

programming dealing with measurement uncertainties from the environment and personnel, 

with reduced surface reflectivity effects, produces more accurate results [68].  

Advances in the 3D representation of objects such as CAD/CAM applications and point cloud 

modelling have advanced ways of capturing 3D data for surface reconstruction applications. 

In applications like geometric modelling/processing, computer graphics/vision and medical 

imaging, capturing sampled points is an integral part of the process. The digital representation 

of real objects or artefacts is translated from the captured sampled points into models where 

visualization, analysis and manipulation of the data are performed to represent the original 

part. Information relating to the dimensional measurement of its geometric primitives are 

extracted for the redesigning or reverse engineering of artefacts [7, 8].  

A challenging factor with surface reconstruction is the recovery of the digital representation 

of a part, usually a point cloud embedded with imperfections that can potentially affect the 

output result [8]. When the digital representation of an object is performed, attention is 

required during the recovery process as uncertainties can affect the integrity of the data. 

These include measurement errors due to the environment, missing data resulting from 

occlusion, faults with the scanning device, issues associated with the soft computing for data 

capturing, human error and preprocessing of the scanned data. These uncertainties can 

significantly influence the quality of the information obtainable from scanned data but are 

introduced with known parameters when generating data through computer simulation. 

The acquired point cloud data can be either structured or unstructured. For the unstructured 

point set, only information relating to the coordinates of the points is obtainable, while the 

structured points give information relating to the coordinates of the points and their 

geometrical and topological information [69]. The unstructured data is also randomly 
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distributed compared to the organised distribution of structured data. In surface 

reconstruction, properties of the scanned surface are considered as well as generated points 

because this can influence the desired outcome and possible choice of a suitable algorithm.  

The process of reconstructing a surface consists of several stages; the acquisition stage, 

registration, preprocessing, and the representation stage [70]. For data acquisition, surface 

points are generated using range scans from multiple angles then reconstruction is performed 

by applying a suitable algorithm. The reconstructed surface is converted into a polygon mesh 

called triangulation. Triangulation is when the points are interlinked to create a triangle where 

angles/vertices are shared. This triangulation creates a 3D model of the real part being 

visualised [69, 70]. The preprocessing stage is a process where noisy data and outliers are 

filtered out, input data is simplified, and data is segmented into regions (region growing) to 

represent the part. Other classifications for representing surfaces was suggested by 

Khatamain [69] using certain criteria such as surfaces containing actual elements of the data 

points, or estimation of their properties, or has sharp edges and corners. These criteria helped 

in classifying reconstructed surfaces into approximated versus interpolated and isotropic 

versus anisotropic surfaces. The interpolated surfaces are used in a situation of non-

uniformity or sparse distribution of points which is a common uncertainty that affects 

scanning processes.  

An illustration of the acquisition techniques is shown in Figure 2.6, indicating the various 

methods classified under the two main techniques of tactile and non-contact. The most varied 

method is the optical method with a wide range of applications. Both methods can be used 

as a composite system where an optical device can be attached to a CMM or robotic arm. 3D 

data acquisition devices include tactile Coordinate Measuring Machines (CMMs) and 

machines fitted with laser scanners [2]. Laser scanners can be blue [71], white [72], or red 

light scanner or light detection and ranging (LiDAR) [73].  
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Figure 2.6: Data capturing techniques breaking down the several methods for both contact and non-contact 
techniques 

White light scanners use white light to generate precise surface measurements. Its principle 

of operation is by projecting line shadows emanating through a 2D lens, and these lines are 

projected onto 3D surfaces. Then analysing the deviations in the 2D lines of the 3D objects 

using cameras. The blue light scanner is an improvement of the white light scanner in terms 

of how precise points are captured with improved accuracy, higher quality results, and 

demonstrates greater repeatability [71]. This is based on the narrower wavelength of blue 

light scanners, thereby allowing for enhanced filtering of interference from ambient light as 

compared to white light employing all visible spectrums at different wavelengths [74].  

The tactile method operates on a different acquisition approach from non-contact, as contact 

with the surface is required when acquiring points. CMMs function by predefining a 

programme tool path in representing the part's features, and complex or freeform surfaces 

can be challenging.  They produce low-density high accuracy data [11, 27]. The non-contact 

method captures points using laser lines at a predetermined distance by triangulating surface 
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points to represent the scanned model [9]. This distance affects the quality of the captured 

data with respect to the reflectivity of the surface and depth of capture. 

 3D Scanning 

3D scanning involves using either touch-probes or 3D optical scanners. 3D optical scanners 

function identical to a camera having a conical visual field that captures data in its view. The 

scanner collects surface information and produces a 3D representation of the captured 

surface. The captured points indicate the distance of the surface from the scanner and the 

position of the points in the coordinate system. Dense data is often related to the non-contact 

approach to 3D scanning, while the contact approach can produce sparse or dense data after 

a very long time of rastering. The nature of the data depends on the step-over of the touch 

probe and other parameters during rastering, but the data is sparse compared to the millions 

of points from an optical system. Therefore, the optical system is a suitable approach for 

developing measurement data for this project.  

2.3.1.1 Contact Scanning 

Contact 3D scanning is a tactile method of using probes in contacting a surface either by touch 

probing or scan-probing. The probe could be attached to a CMM or AACMM, which provides 

the scanning mechanism, and this process is mostly used for tight tolerance measurements. 

The contact scanning process is mostly carried out on CMMs because they can be very precise 

compared to AACMM. Environmental factors can also affect the contact scanning process as 

they are very sensitive to environmental changes such as vibration, temperature, and part 

displacement. Although shopfloor CMMs exist, CMMs are installed in a measurement room 

to obtain better results, as shown in Figure 2.7. 
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Figure 2.7: Zeiss Coordinate Measuring Machine (CMM)Passive Non-contact Scanning 

 

2.3.1.2 Passive Non-contacting scanning 

Passive scanners function by detecting ambient radiation as they do not emit radiation. They 

detect visible light in radiations such as infrared, and they require no specialist equipment 

except for cameras and are inexpensive as they provide low accuracy measurements. 

2.3.1.3 Active Non-contacting Scanning  

Active scanners emit radiation in the form of light and detect this light as they pass through 

objects. The emitted light is reflected by the surface of the object, and the scanner captures 

information by recording the distance of the scanner from the surface, thereby producing 

points that are a representation of the surface. 
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2.3.1.3.1 Structured-Light Scanning (SLS) 

Structured-light scanning (SLS) is the process of obtaining measurement information of an 

object for dimensional inspection and RE application. They are used in developing 3D 

representation, just like the laser scanning method. The recent advancements and innovative 

applications for capturing data have also contributed to an improved involvement of 

structured-light scanning for use in several industries. The system projects various lighting 

patterns or configurations (series of lines parallel to each other) and captures the distorted 

light patterns as it falls on the surface of the object using either sensors or cameras. Like laser 

scanning, this system uses trigonometric triangulation in projecting light patterns (that 

appears as a barcode) on a surface, and the camera(s), which is offset from the projector, 

studies the light pattern. Triangulation is used in calculating the distance to precise points on 

the object, and digital reconstruction of the object is done using three-dimensional 

coordinates.  

The typical setup for performing SLS is shown in Figure 2.8, and this can be stationary or 

handheld. Two cameras are positioned at an angle obtuse to each other for an improved 

range of capturing, although they can be positioned at different fringe angles to the projector, 

as shown in Figure 2.9. When the setup is stationary, the object to be scanned is rotated either 

by literally turning the object or using a more recent turntable application. There has been a 

recent improvement on this setup where the projector and the camera(s) are incorporated 

into one device like the Artec scanners shown in Figure 2.10. In this case, the SLS operation is 

performed as a laser scanning operation with the object stationary, and the scanner can be 

handheld. This system can come in either blue light or white light and are susceptible to 

challenges faced by optical systems such as surface characteristics.  
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(a)              (b)      

 Figure 2.8: Typical setup of SLS (a) with one camera offset from the projector (b) two cameras positioned at an 
angle offset to the projector 

 

 

Figure 2.9: Patterns of different fringe angles between the projector and the camera. Reproduced from [34] 
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Figure 2.10: Artec spider and Eva scanning devices 

 

2.3.1.3.2 Time-of-Flight 

This type of 3D laser scanner uses a time-of-flight laser rangefinder to measure the distance 

of an object's surface by assessing the full circle of travel of a light pulse. When a light pulse 

emanates from the laser, the travelled time is computed before its reflected light is captured. 

The full circle of travel is when the light hits the surface and returns to the scanner, and the 

accuracy of the time-of-flight 3D scanner is reliant on how precise the travel time is measured. 

The working principle of the rangefinder is by identifying the distance of a single point in its 

range of view. A point at a time and different points are detected by adjusting the path of 

view of the rangefinder and measuring over 100,000 points per second. By turning the 

rangefinder or using a rotating mirror system, the direction of view of the laser rangefinder 

can be adjusted. This approach is often used because mirrors can be accurately rotated at a 

faster rate, and they are much lighter [75].   

2.3.1.3.3 Triangulation 

Triangulation 3D scanners project a laser on the target object, and the laser dot (flickering 

over the surface as it is not stable) is located using a camera. However, this is unstable 

depending on the distance of the laser to the surface, as shown in Figure 2.11. The laser dot, 

laser emitter and camera create a triangle to form a triangulation whose scale and shape is 

defined by, firstly, the distance 𝑎 between the camera and laser emitter. Secondly, is the 
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definition of the laser emitter angle 𝐶𝑖𝑗 and thirdly, defining the camera angle 𝐵𝑖𝑗 using the 

laser dot position as in Figure 2.12.  In some instances, the acquisition phase is enhanced by 

a laser line compared to a laser dot swept over the object's surface. 

 

Figure 2.11: The basic structure of triangulation 3D scanning. Reproduced from [76] 

 

Figure 2.12: Dynamic triangulation of the triangulation 3D scanning process showing the different angles of the 
instruments. Reproduced from [75] 
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2.3.1.3.4 Modulated Light 

3D scanning with a modulated light project a continuous shifting light onto the surface of an 

object creating a sinusoidal pattern. This pattern is reflected as it hits the surface, and a 

camera detects the pattern and computes the distance of travel of the light. The modulated 

light is utilised by the scanner in concentrating on the laser, avoiding other sources of light.  

 Articulated Arm Coordinate Measuring Machine (AACMM) 

The Articulated Arm coordinate measurement machine (AACMM) is made up of 

multiple Articulated Arms with rotary encoders that are used to read the rotational angles or 

angular orientation of the Articulated Arms and calculate the coordinates of an object in 

three-  dimensional space [11]. When the Arm is fully stretched, it can reach ranges of 0.5 m 

– 5 m depending on the model. 

2.3.2.1 How AACMM Works 

An important part of the AACMM is the device attached to the third joint away from the base 

of the Arm. This could either be a touch probe for performing tactile measurement or a laser 

scanner for performing optical scanning to capture dimensional information of a part. They 

are described in section 2.3.1. These devices have their specifications, properties, operation, 

performance evaluation and accuracy analysis. They cannot be used as a stand-alone device; 

hence, they must be attached to a CMM whose mechanism contributes to the performance 

and accuracy analysis of the probe and scanner. Therefore, most researchers have 

concentrated on the performance calibration [77, 78], error compensation [79] and accuracy 

improvement [80] of the AACMM. Measurement models were built with varying parameters 

and errors. A measurement accuracy evaluation was performed by Zheng et al. [81] analysing 

the 6 circular grating eccentricity error of the Arm. Mutilba et al. [77] investigated the 

performance calibration of the AACMM using the ASME B89.4.22 [78] standard in analysing 

the effective diameter test, single-point articulation test (SPAT) and volumetric test of the 

AACMM. They used the reference ball, trihedral seat, and Ballbar in performing uncertainty 

evaluation of the AACMM. During scanning, the system is little influenced by temperature but 

is important that experiment is performed in a temperature-controlled environment as this 

can affect the expansion coefficient of the artefact. Exposure affects the point cloud density, 

while missing data is significantly caused by depth of scan and an attempt to capture more 

points will result in overlaying data points. 
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As the lengths of each segment of the Arm are known, a scale is automatically created. A point 

can be located by using a known scale to measure angles. To determine the 3D position of the 

probe tip, angular positions and lengths of Arm segments are used. Different configurations 

of Articulated Arm CMMs can be classified according to their rotational axes at the joint 

assemblies. A 6-axis configuration is the most common, but there are other configurations. 

The diagram in Figure 2.13 below shows a 7-axis configuration that can be categorized as '2-

2-3' because there are two rotation axes at the first joint, followed by two at the second, and 

followed by three at the third joint. Contact probes, non-contact probes, and multi-sensor 

probes may be available, depending on the configuration of the Arm. 

When using a 3-D laser scanner, laser light is used for exploring objects. It employs a camera   

to look for the location of the laser line silhouette after projecting a laser line on an object. 

Points captured are points that fall in the camera’s frame of vision on the laser line profile. 

These points appear at different positions depending on the distance of the laser as it strikes 

an object’s surface. Because the points’ location on the laser profile, the camera, and the laser 

emitter creates a triangle, this approach is termed triangulation [82]. 

 

Figure 2.13: 7-axis configuration of an AACMM. Reproduced from National Physical Laboratory (NPL) e-learning  

 



54 
 

Articulated Arm CMMs were developed to perform a measurement in a convenient location, 

rather than having to bring the object to a measurement room. The portable Arm can be 

moved anywhere from within the machining floor to performing measurements off-site. Most 

commercial AACMMs have either 6 or 7 joints to provide 6 degrees of freedom movement. 

Its physical setup is like the human Arm consisting of the wrist, forearm, elbow, and shoulder.  

2.3.2.2 Sources of Error 

Articulated Arm CMMs can be accurate to within less than 100 µm, but only if there is a stable 

mechanical relationship between the Arm and the part, and if good practice  is considered as 

discussed in the good practice section of 2.3.2.3. Of all the sources of error, the operator is 

the most common. Mechanical stress and angle measurement issues can have an impact on 

measurement quality. Inaccuracy is associated with extreme reach - when an Articulated Arm 

is fully extended or tightly curled [83]. 

Poor setup in the use of an AACMM will result in capturing of inaccurate data. A stable 

machining floor is an important factor, as are temperature, vibration, surface finish, ambient 

lighting and movement of the object [84]. A poor result can be obtained when artefact and 

scanner are vibrating at different frequencies or amplitude, and it is the best practice that 

both are positioned on the same platform, as shown in Figure 2.14. A stable base counters 

external vibration experienced during measurement. According to international standards, 

the ambient and artefact temperature should be close to 20°C [84]. Measurement using a 

laser line scanner requires that the object is kept at the same coordinate system as the 

scanner; when this is not the case, some capturing software can align separate scans, but this 

might introduce additional uncertainties. The Articulated Arm CMM used for this thesis has 

absolute encoders that require no referencing before measurement as it maintains positional 

information, but a calibration cycle is required when using touch probing. A typical setup of 

the experiment is shown in Figure 2.15. 
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Figure 2.14: Articulated Arm CMM (AACMM) with an attached laser scanner and a magnetic base for 
minimising vibration 

Joint 

Base 

Laser 
scanner/touch 
probe 

User hold position 
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Figure 2.15: Typical setup of the Arm for simulating the same vibration in both AACMM and artefact 

 

2.3.2.3 Good Practice for Performing Measurement with AACMM 

When the joint is close to 90°, the encoders are most accurate as they have the greatest angle 

to distance moved ratio. To achieve this, the "elbow" of the AACMM is moved to 90° from the 

base to the vertical axis, as shown in Figure 2.16, thus leaving it parallel and right above the 

measuring surface to achieve maximum scanning accuracy. Therefore, for this 236 mm 

component, it should be centred at 624 mm from the base of the AACMM.  

AACMM 

Artefact Capturing software 
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Figure 2.16: Picture illustrating best practice for aligning the artefact with the laser scanner. Modified from NPL 
[84]   

 

The perfect position for placing the object to be inspected is a line projection directly 

downwards from the Arm's elbow to the measuring surface [84]. This position should allow 

the maximum range of Arm motion in connection with the inspected device. The elbow 

should also be kept close to 90° to maximise the resolution in the encoders, hence, it is 

important to adhere to a good practice procedure as stated below to minimise measurement 

uncertainties.  

 3D Laser Line Scanning and Accuracy of Data Captured 

Laser line scanning is one of the active optical methods for capturing point cloud data. They 

can capture points from multiple features from a single scan having fine details of complex 

geometries. It can obtain information from surfaces unattainable by tactile methods. It 

functions like a structured light scanning (SLS), but it is more flexible in its structure and has 

high measurement speed. They rely on trigonometric triangulation to precisely capture an 

object and produces its 3D representation as millions of points, known as digitisation. They 

project a laser line on the surface of an object, and sensor cameras capture the reflection of 

points by perpetually recording the change in distance of the laser line to the surface. Since 

the distance of the sensor from the laser source is known, points measurement can be 

achieved by calculating the laser light reflection angle.  
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Laser line scanners function by scanning a surface at a predetermined distance, called the 

depth of scan, that determine the number of points generated by the width of the laser line. 

Laser line scanners produce data with high density but an accuracy lower than the contact 

method [11, 27, 85]. An indication of how they perform compared to a conventional CMM is 

shown in Figure 2.17. Laser line scanning is most desirable in measurements of complex 

freeform shapes and for large scale data capturing, although small components can be 

measured. In some situations, bringing a large component to a CMM might not be feasible, 

and optical systems have the improved flexibility of working in different environments but 

not without uncertainties. Laser scanning uses two sets of information to create point cloud 

data, one from the laser and the other from the sensor cameras. The collection of data is 

connected to an internal three-dimensional system at a predetermined distance, and as the 

scanner is swept over the surface, the scanner's position is tracked by encoders on each joint 

of the Articulated Arm CMM [86, 87]. 

 

 

Figure 2.17: Optical CMMs in comparison with conventional CMMs measuring range and accuracy. Reproduced 
from [85] 
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 Data with Noise 

When working with point cloud data, noise is almost inevitable as it can be generated from 

various sources. This could be the temperature, vibration, surface finish, ambient lighting, 

artefact movement and inexperience of the personnel. Figure 2.18 shows a point cloud data 

with noise created from the surface on which it was positioned. This is not the only noise 

experienced as noise can be developed from outlier points due to reflectivity of the surface 

and ambient light and missing points due to personnel and occlusion. Figure 2.18 illustrates 

the noise in the data due to surface reflectivity and illumination, while Figure 2.28 in the 

summary section shows a situation of sparse or missing data.  
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Figure 2.18: Showing how models are accompanied by noise 

 

There are situations of overlapping data, and the preprocessing of such data is quite difficult 

as there is the risk of losing important surface information. In preprocessing, disconnected 

outlier points can easily be removed by setting a threshold or tolerance level using the 

distance of the outliers to the model. For connected outliers (connected to the model), it is 

an uphill task for cleaning such data as it requires a pain taking process of identifying at what 

locations these outliers are connected. 
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Furthermore, for overlapping data, the points’ generation might be discontinuous where a 

set of points in a particular direction might be at a different plane to another set of points in 

an opposite direction. Since they do not meet, extra care should be taken when erasing 

supposed unwanted points as this might generate a horrid mesh with no surface continuity. 

When this happens, holes are created in the model and can be filled by hole-filling techniques, 

but the prediction of the surrounding curvature might be wrong. A preferred approach is by 

building bridges of proximity to the boundary, and a suitable hole filling technique can be 

applied depending on the surrounding curvature.  Another contributor of noise to scanned 

data is capturing of the platform on which the part is positioned. To overcome this, a clipping 

plane can be created before performing scanning, and this deals with unwanted points being 

generated from the surface. Manufacturers of 3D laser scanners are continually improving 

the scanning experience of laser scanners. The number of points per second increases, which 

means more susceptibility to surface reflection and light, and newly developed scanners can 

generate over a million points per second with a more negligible effect of reflection. For a 

more reflective surface, capturing accurate data is quite challenging, coupled with the effect 

of light rays hitting such surfaces. To perform scanning on very reflective surfaces, it is good 

practice to treat such surfaces using a method known as etching or powder treatment.  

 

2.4 The Concept of Edge Detection 

As computer vision, machine vision and imaging are getting more innovative, certain parameters 

are used to define the edges of a part called boundaries, and over time, this has presented 

questions of fundamental importance for image processing. Therefore, edge detection has 

become a vital step in preprocessing for image processing applications [88]. The edges of an 

object define its boundaries in an image relative to the background or other objects within the 

image, occasionally having sharp discontinuity, as shown in Figure 2.19. But this is not always the 

case for all edge detection applications. Some applications can produce blurred edges making it 

difficult to differentiate between boundaries. Edge detection can classify boundaries depending 

on its homogeneous localisation within an image using such information as image intensity and 

texture. Therefore, edge detection is the process of detecting sharp discontinuities in pixel 

intensity within an image, defining the boundaries of objects and features in that image [89]. It 

is the process of finding an area in an image having a sharp change in intensity or colour where a 
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high value in frequency indicates a sharp edge and a low value indicates a shallow edge, as 

indicated in Figure 2.20. From the figure, the red line in the middle image indicates the edge 

created by the discrepancies in the frequency values of the image pixels. These frequency values 

also determine sharp or faint contrasts.  

 

Figure 2.19: An illustration of the concept of edge detection existing between sharp variations in the intensity of 
an image. Reproduced from [90] 

 

Figure 2.20: An illustration of edge detection in the pixel variation of an image 

 

Priyam, et al., [91] described edge detection as a collection of mathematical methods to classify 

points in a digital image by identifying a discontinuity or contrast in the image brightness. This 

description is contrary to that of Papari and Petkov [92], who described edges because of human 

experience to mathematical definition. The primary aim is to detect the intensity variation in 

digital images as described by Qiuping et al., [93]. With this description, it can be said that edges 

exist between an object and the background, between two or more identical or distinct objects, 

between different regions on a surface, and is the most distinctive feature of an image. The 

suggested scheme of operation in performing edge detection includes smoothing, enhancement, 

detection, and localisation. Edge detection application can also be seen in section 5.2.2. 



63 
 

Smoothing is concerned with noise reduction without damaging the true edges, while 

enhancement utilises a filter in improving edges in an image. The third operation (detection) 

helps determine what edge pixels are identified as noise to be discarded and what edges should 

be retained. The precise location of an edge is determined by localisation using edge thinning 

and linking [94]. This localisation can be affected by blurring a grayscale image, although blurring 

aid in the removal of noise. Several edge detection algorithms, also known as operators, include 

Robert operator, Prewitt operator [91], Laplace of Gaussian (LoG), Sobel operator [95] and Canny 

operator [91, 96]. Each algorithm applies to a certain edge type using different criteria such as 

edge’s orientation, structure, and sensitivity to noise response.  

Because of its robustness and low sensitivity to noise, the Canny edge detection algorithm has 

been proven to produce better edge detection output than other algorithms by producing single 

point responses (returns one point for each true edge). During filtering, weak edges can be lost 

due to Canny’s sensitivity [97] which has contributed to several enhancements on the Canny edge 

detection operator, such as field-programmable gate array (FPGA) implementation [88] for a 

cost-effective, robust Canny algorithm and gravitational field intensity was introduced to replace 

image gradient [97]. An improvement of Canny using local kernel smoothing was presented by 

Kuang et al., [94], which adapts the local neighbourhood to the local smoothness of the measured 

surface using the observed data. This improvement was due to the failure of the Canny algorithm 

in 2D Gaussian in removing noise and retaining the edges when a high level of noise is 

experienced. The local kernel smoothing correctly reduces noise in continuity regions and 

simultaneously preserves discontinuity [94]. Another improvement to the Canny algorithm is the 

Type-2 Fuzzy sets that automatically select the Canny algorithm threshold value, although the 

fuzziness influences the output performance of the threshold value.  

The noise issue has been a challenging factor in image processing, and most algorithms for 

detecting edges are built on estimating the intensity gradient vector. This intensity gradient 

vector is sensitive to noise, and with the aim of censoring the noise, spatial averaging methods 

and differentiation methods such as Laplacian of Gaussian and detection of zero-crossing can be 

integrated together [98]. Although, there are different approaches to edge detection, such as the 

gradient techniques and the statistical methods, with less attention being focused on statistical 

methods. In statistical methods, the distribution of intensity values within the surrounding 

regions of a selected pixel is inspected to assess its classification as an edge. Despite its 
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unpopularity, statistical methods have been used by few authors such as Bovik et al., [99] and 

Yakimovsky [100].  

 Edge Detection Algorithms 

The traditional edge detection algorithms are performed by detection of a maximal value for the 

first derivatives or zero crossings of the second derivative [97]. The first derivatives are classified 

as the Robert operator, Prewitt operator and Sobel operator, while the second derivative 

includes the Laplace of Gaussian operator and the Canny operator [97]. Roushdy [98] has 

mentioned that Boie-Cox, Shen-Castan, and Canny operators perform better than the LoG, which 

performs better than the first derivatives. These edge detection operators use a convolution 

mask in approximating the first or second derivative of an image. The edge detection process is 

usually divided into three stages. Firstly, the noise is reduced for better performance using a low-

pass filter as the accompanying noise to the image is usually a high-frequency signal. With this 

method, there is a high possibility of removing edges as they give a high-frequency signal, but 

manipulating specific parameters provides a compensation between the reduced noise and 

conservation of edge information. Secondly, the edges are detected using a high-pass filter such 

as differential operator, and finally, the edges are localised in detecting genuine edges as 

compared to noise which gives similar signals using a technique known as thresholding [101]. The 

information of edges within an image is obtainable using convolution kernels, a 3x3 such as the 

Prewitt and Sobel, or a 2x2 kernel such as the Robert operator. The intensity gradient, together 

with a specified convolution kernel, is used in calculating the intensity discontinuities in 

identifying edges where a high local gradient is an indication of this discontinuity. Image 

production is usually accompanied by noise, and noise has been a challenging factor in the 

performance of edge detection algorithms and image processing techniques because of a 

reasonable level of noise sensitivity in most algorithms. The edges in an image produce high 

frequencies that aid detection, and the accompanying noise also produce either similar or higher 

frequencies, making them detectable by the edge detection algorithms as edges. The presence 

of noise degrades the quality of an image, making it difficult for the smooth operation of edge 

detection algorithms and other forms of image processing. In dealing with noise, thresholding 

methods such as mathematical morphology and hysteresis have been proposed for dealing with 

Gaussian noise. However, some noises such as Poisson noise, impulse noise, random noise, spike 

noise, speckle noise, might not be identified using these thresholding methods, leading to more 
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research in identifying and eliminating noise in an image. Such methods include filtering 

techniques such as adaptive, fir, median, linear and nonlinear filtering [102]. Some noise sources 

include the vicinity of the image, capturing device (inaccuracy in a camera, misaligned lenses, 

weak focal length, sensor noise and scattering), and ambient light, as well as incident lighting. 

Gaussian noise, which has a density approximation function equal to the normal distribution, is 

also recognised as the Gaussian distribution. A modified adaptive bilateral filter was proposed 

for the elimination of such noise [102]. The mean-squared error of various noises associated with 

image processing is shown in Appendix B Mean Square Error (MSE) of the Various Noises 

Associated with Image Processing with R, G, and B Values. 

 Gradient-Based Operators 

The gradient-based operators (algorithms) are conceptually derived from the usage of both first 

and second-order derivatives of an image's gray level. The first derivative class of edge detectors 

works by detecting the maximum and minimum gradients in the first derivative of an image to 

match local image segments with certain edge patterns [89]. The magnitude of the gradient is 

used in processing first-order derivatives using convolution masks where the direction of the 

edge at a point is perpendicular to that of the pixel gradient. For the second-order derivative, 

two impulses on both sides of the edge are identified. The location of the edge can be accurately 

computed to the sub-pixel level by drawing a line between both impulses, and the point of 

intersection of the line with the zero axes is considered the centre of the edge. For sub-pixel 

accuracy, it is meant that zero-crossing can be at fractional pixel distance [98]. Assuming an image 

is expressed as a two-dimensional function 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are spatial coordinates and  𝑓 

is amplitude, (𝑥, 𝑦) defines the light intensity at that point and this is given as 

∇𝑓(𝑥, 𝑦) = 𝑔𝑟𝑎𝑑(𝑓) = [
𝑔𝑥
𝑔𝑦] = [

𝜕𝑓
𝜕𝑥

⁄

𝜕𝑓
𝜕𝑦⁄

]    (2.1)  

    

From the above equation, the vector gives the direction of a significant rate of change of 𝑓 at 

location (𝑥, 𝑦) whose value is given below as 
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𝑚𝑎𝑔(∇𝑓(𝑥, 𝑦)) = √𝑔𝑥2 + 𝑔𝑦2    (2.2) 

The orientation angle of the edge with relation to the pixel grid gives rise to the 

spatial gradient, which is given by 

𝜃(𝑥, 𝑦) = arctan (
𝑔𝑥

𝑔𝑦
)     (2.3) 

The above equations are used in computing the gradient of the whole pixel that exists within an 

image which is processed using small region pattern convolution. This convolution is the 

fundamental factor used by first-order derivatives in determining the direction of the convolution 

mask.  

Table 2.2: 3x3 region of an image 

Z1 Z2 Z3 

Z4 Z5 Z6 

Z7 Z8 Z9 

 

 

2.4.2.1 Prewitt Operator 

The calculation of edges by the Prewitt operator is by computing the discrepancy that exists 

between corresponding pixels intensities found in an image. It is classified as the derivative 

operator based on its gradient analysis, and it operates like the Sobel operator with a different 

kernel having a better performance. This operator performs detection in both vertical and 

horizontal directions and can be seen in the configuration of its kernels using a 3x3 mask in 

determining derivative values in both directions. An illustration of both vertical and horizontal 

directions is shown in Figure 2.21. To extract the true edges, the gradient of both direction is 

computed, illustrated as the normalised mask of Figure 2.21. 
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(a)                                                                                (b) 

 

(c) 
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(d) 

 

(e) 

Figure 2.21: Illustration of the mask convolution of Prewitt Edge detection (a) original image (b) grayscale 
image (c) horizontal mask direction (d) vertical mask direction (e) Normalised mask 
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Table 2.3: The Prewitt operator mask 

 

     

 

  

 

𝑔𝑥 =  (𝑧3 + 𝑧6 + 𝑧9) − (𝑧1 + 𝑧4 + 𝑧7)   (2.4) 

    

𝑔𝑦 =  (𝑧7 + 𝑧8 + 𝑧9) − (𝑧1 + 𝑧2 + 𝑧3)   (2.5) 

The horizontal derivative approximation as equation 2.4 and vertical derivative approximation as 

equation 2.5 and the matrix structure is shown in Table 2.3. 

 

2.4.2.2 Robert Operator 

This operator uses a discrete approach in calculating the gradient of an image, and it is the 

most used tool for edge detection in computer vision and image processing. The gradient is 

calculated by summating the rectangles of clear contrast between transversely adjacent 

pixels, then the 2D point in a spatial gradient is computed. This operator is known as the 

directional mask based on gradient analysis, and this operator has got simplicity of operation 

for its small kernel size, less compatibility and sensitivity to noise. A 2x2 mask intertwined 

with the entire image using vertical and horizontal Robert masks produces edges in 𝑥 and 𝑦 

directions. 

Table 2.4: 2x2 region of an image 

Z1 Z2 

Z3 Z4 

 

 

-1 -1 -1 

0 0 0 

1 1 1 

-1 0 1 

-1 0 1 

-1 0 1 
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Table 2.5: Robert masks 

 

 

                          

𝑔𝑥 =  (𝑧4 − 𝑧1)    (2.6) 

𝑔𝑦 =  (𝑧3 − 𝑧2)    (2.7) 

The horizontal derivative approximation as equation 2.6 and vertical derivative approximation as 

equation 2.7 and the matrix structure is shown in Table 2.4 and Table 2.5. 

2.4.2.3 Sobel Operator 

The Sobel operator exhibits characters like that of the Prewitt, and based on gradient analysis, 

it is known as the derivative mask but differs in terms of weight provided to the pixel value 

(‘2’ and ‘-2’ in place of ‘1’ and ‘-1’). The weight is at the edge region resulting in increased 

intensity and smoothing of the edges. The kernels of Sobel are designed to respond as much 

as possible to edges running in both directions connected to the separate pixel grid (vertical 

and horizontal) that produces different measurements of the gradient component in both 

orientations (𝑔𝑥 𝑎𝑛𝑑 𝑔𝑦). An illustration of both vertical and horizontal directions is shown 

in Figure 2.22. To extract the true edges, the gradient of both direction is computed, 

illustrated as the normalised mask shown in (e) of Figure 2.22. 

 

 

(a)                                                                           (b) 

0 -1 

1 0 

-1 0 

0 1 
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(c) 

 

(d) 
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(e) 

Figure 2.22: Illustration of the mask convolution of Sobel edge detection (a) original image (b) grayscale image 
(c) horizontal mask direction (d) vertical mask direction (e) Normalised mask 

 

Table 2.6: Sobel masks 

 

             

 

 

𝑔𝑥 =  (𝑧3 + 2𝑧6 + 𝑧9) − (𝑧1 + 2𝑧4 + 𝑧7)   (2.8) 

𝑔𝑦 =  (𝑧7 + 2𝑧8 + 𝑧9) − (𝑧1 + 2𝑧2 + 𝑧3)   (2.9) 

The horizontal derivative approximation as equation 2.8 and vertical derivative approximation as 

equation 2.9 and the matrix structure is shown in Table 2.6. An example of the Sobel operator is 

shown in Figure 2.23. 

-1 -2 -1 

0 0 0 

1 2 1 

-1 0 1 

-2 0 2 

-1 0 1 
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Figure 2.23: Sobel edge detection operator 

 

 Laplace of Gaussian (LoG)  

The Laplacian of Gaussian (LoG) can be defined as a 2D isotropic measure of the second-order 

spatial derivative of an image that exhibits similar characteristics to a convolution filter. The 

derivatives for edge detection can be classified as first-order and second-order derivatives. 

The first-order derivatives are challenged with the task of computing functions to both 

extreme values of maximum and minimum, and second-order derivatives like the Laplace 

operator becomes desirable when checking the presence of zero-crossing points [103]. 

Laplacian functions in areas where regions with rapid intensity change are raised. The 

application of the Laplace operator produces poor quality imaging as the noise points are 

amplified, but this can be countered by applying a filter known as the Gaussian blur for a 

smoothing approximation that eliminates exposure to noise before applying the Laplacian 

filter. This process highlights edges of single gray level images as input and outputting binary 

gray level images.  

The Laplacian 𝐿(𝑥, 𝑦) of an image having pixel intensity values 𝐼(𝑥, 𝑦) is given by 

𝐿(𝑥, 𝑦) =
𝜕2𝐼

𝜕𝑥2
+

𝜕2𝐼

𝜕𝑦2
 where 𝐼 = 𝑓(𝑥, 𝑦)  (2.10) 
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The Gaussian function is given as 

𝐺(𝑥, 𝑦) = −𝑒
−

𝑥2+𝑦2

2𝜎2      (2.11)  

     

Therefore, the Laplacian of Gaussian can be stated 

𝐿𝑜𝐺 = ∇2𝐺(𝑥, 𝑦) =
𝜕2

𝜕𝑥2
𝑓(𝑥, 𝑦) +

𝜕2

𝜕𝑦2
𝑓(𝑥, 𝑦)  (2.12) 

∴ 𝐿𝑜𝐺 =  ∇2𝐺(𝑥, 𝑦) = − [
(𝑥2+𝑦2)−𝜎2

𝜎4
] 𝑒

−
𝑥2+𝑦2

2𝜎2   (2.13) 

            

 

Figure 2.24: Laplacian of Gaussian edge detection operator 

 

Figure 2.24 presents the detection of edges using the Laplacian of Gaussian algorithm. The edges 

are pretty visible, but the system detects other properties like the texture of the surface on which 

the object is placed and the texture of the object’s surface. This gives a similar result when using 

the Sobel algorithm, as shown in Figure 2.23.  
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 Canny Edge Detection Operator 

The most robust and reliable operator for edge detection in grayscale image processing is the 

Canny edge detection algorithm. It requires three criteria for operation, firstly is the low error 

rate, which is an essential factor in achieving better system performance, as edges that 

appear in an image should be clear enough with no false response. Secondly is the localisation 

of edge points, which should be appropriately positioned to minimise the distance between 

the detector and centre of the true edge—finally, a single edge response. The final criterion 

was a necessary inclusion as the first two are not completely firm in output response, and the 

final criterion was included in the likelihood of multiple responses to an edge [96, 104]. This 

algorithm is a preferred operator as it presents two main goals of detection and localisation 

performance of a system. Existing between these goals is an uncertainty concept for systems 

dealing with noisy step edges, but generally, there is a direct relationship between both goals. 

An implication of this relationship results in the production of an impulse reaction having a 

specific exclusive shape in an optimal step detector. The relationship between detection and 

localisation can be modified when the spatial width of the detector is altered. A challenging 

factor in performing edge detection is the complication of distinguishing edge points and 

noise points in image processing which is suffered by other methods. The Canny’s ability to 

locate edge points is quite satisfactory, and it has low sensitivity to noise because it uses a 

Gaussian smoothing filter in eliminating noise by smoothing an image [105]. This sensitivity 

allows for correct detection of edges as the system produces multiple responses from a single 

edge, and this is such a situation as to the application of the final criterion of operation [96]. 

Also, the effectiveness of Canny’s performance is dependent on the mask size which is a direct 

consequence of the standard deviation σ of the Gaussian filter. A larger value of σ indicates 

an improvement of the algorithm’s resilience to noise but subverts its ability to locate true 

edges. In contradiction, a smaller value of σ indicates better detection ability but decreases 

the algorithm’s resilience to noise. One way to reduce this dependency is by adjusting the 

standard deviation parameter based on the noise characteristics of the image. 

Regarding the sensitivity of Canny, Xiao and Hui [106] proposed an improved algorithm from 

a predisposal approach applied to corrupted images from the Gaussian noise environment.  

Their method combined the coefficient of the identified edge points and the distance 

judgement of the gray value and produced a comparison by embedding a predisposal step in 
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the Canny processing. Kuang, et al. [94] used a local linear kernel smoothing approach to 

adapt local neighbourhoods to the local smoothness of the measured surface as an 

improvement to the Canny edge detection algorithm in images corrupted by Gaussian noise. 

However, the algorithm performs poorly in situations with a very high noise ratio of almost 

half the maximum ratio. Other improvements on the Canny algorithm can be found in [88, 

94, 97, 107]. The original Canny process uses a frame-level method for complex, time-

consuming detection with consideration of hardware cost. An improvement of the Canny 

process was implemented by [88] using an FPGA in reducing computation cost and latency of 

the Canny process to improve the time interval between simulation and system response. 

Pixels were operated in parallel using a parallel implementation model to reduce latency 

[108]. The Canny operator can be implemented in the following steps [106]: 

• The noise is eradicated using the Gaussian filter. 

• The gradient in 4 different directions is computed, after which the detected point 

with its neighbour points in each direction is compared. A non-maximum in the gray 

value of a point is considered a non-edge point because it suppresses any pixel below 

the maximum threshold, and this step is called Non-Maximum Suppression (NMS). 

• Confirmation of an edge point is obtained by comparing the gray value of the 

detected point and the thresholds, obtainable from accumulative statics values. It is 

expected that for an actual edge point, the gray value should be more than the higher 

threshold level, and non-edge points should produce values less than the lower 

threshold level. The points in-between both thresholds are characterised by 

comparison to the neighbouring points, i.e., a neighbour point is considered an edge 

if found in any of the four directions. 

The last two steps are the reasons for the recommendation of the Canny operator in edge 

detection due to its non-maximum suppression and double threshold in selecting the edge 

points [104]. The double thresholding approach uses two thresholds, tmax and tmin, for 

classifying the gradient into three groups. 

• Gradients > tmax definitely an edge point 

• Gradients < tmin definitely a non-edge point 
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• Otherwise, a deduced conclusion is dependent on the direction of the point and 

existing edge paths. 

This double thresholding is used to determine what response is an acceptable edge and what 

edges are not, as establishing a threshold level when faced with a wide range can be 

challenging. Assuming a range of 0 to 255, determining what value is an acceptable edge will 

be challenging, and it is a good practice to create a range with 0 as no edge and 255 as the 

highest edge response obtaining. The three performance criteria for implementing Canny are 

• Good detection with less probability of missing actual edge points and less probability 

of spuriously identifying non-edge points. This criterion directly responds to 

maximising signal-to-noise ratio as both probability factors decrease the ratio output 

functions.  

• Good localisation where the identified edge points should be of close positioning to 

the centre of the true edge. 

• A single response to each edge 

2.4.4.1.1 Detection and Localisation Criteria 

An important step in the Canny process is dealing with the signal-to-noise ratio and 

localisation. Assuming the impulse response of a filter to be 𝑓(𝑥), having an edge 𝐺(𝑥), and 

with the assumption that the edge is centred at 𝑥 = 0, then the result from the filter to the 

edge at its centre 𝐻𝐺  is computing using a convolution integral 

𝐻𝐺 = ∫ 𝐺(−𝑥)𝑓(𝑥)𝑑𝑥
+𝑊

−𝑊
    (2.14) 

Where the finite impulse response of the filter is restricted by the limits −𝑊, +𝑊. To obtain 

the root-mean-squared response corresponding to the centre will be given as 

𝐻𝑛 = 𝑛0 [∫ 𝑓2(𝑥)𝑑𝑥
+𝑊

−𝑊
]

1/2

    (2.15) 

Where the mean-squared noise amplitude is represented as 𝑛0
2 and this over a per unit length 

range. The first criterion of the Canny algorithm (signal-to-noise ratio) is expressed as the 

quotient of the impulse response and the root-mean-squared response 

𝑆𝑁𝑅 =
|∫ 𝐺(−𝑥)𝑓(𝑥)𝑑𝑥

+𝑊
−𝑊 |

𝑛0√∫ 𝑓2(𝑥)𝑑𝑥
+𝑊

−𝑊

    (2.16) 
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In dealing with the localisation criteria, the goal was to develop a system that increases with 

improvement in localisation and Canny proposed using a complementary system to the root-

mean-squared distance of the identified edge from the centre of the true edge. Since the edge 

response from the operator 𝑓(𝑥) is classified as an edge at the local maxima, the first 

derivative is assumed to be zero. As edges are centred at 𝑥 = 0, a local maximum for the 

response at this centre point should be provided in the absence of noise. Assuming the 

response of the filter to noise is given as 𝐻𝑛(𝑥), with its response to the edge as 𝐻𝐺(𝑥), and 

a local maximum at point 𝑥 = 𝑥0 

𝐻𝑛
′ (𝑥0) + 𝐻𝐺

′ (𝑥0) = 0   (2.17) 

Where 𝐻𝐺
′ (𝑥0) is known as the Taylor expansion about the centre point, and it is given as 

𝐻𝐺
′ (𝑥0) = 𝐻𝐺

′ (0) + 𝐻𝐺
′ (0)𝑥0 + 𝑂(𝑥0

2)   (2.18) 

With the hypothesis that 𝐻𝐺
′ (0) = 0, meaning that filter response has a local maximum in the 

absence of noise at the centre point, ignoring the expansion’s first term.  

𝐻𝐺
" (0)𝑥0 ≈ −𝐻𝑛

′ (𝑥0)    (2.19) 

𝐻𝑛
′ (𝑥0) in Equation (2.41) is the Gaussian random quantity with a variance having a mean-

squared value of 𝐻𝑛
′ (𝑥0) which can be expressed as 

𝐸[𝐻𝑛
′ (𝑥0)2] = 𝑛0

2 ∫ 𝑓′2(𝑥)𝑑𝑥
+𝑊

−𝑊
   (2.20) 

 

𝐸[𝑥0
2] ≈

𝑛0
2 ∫ 𝑓′2(𝑥)𝑑𝑥

+𝑊
−𝑊

[∫ 𝐺′(−𝑥)𝑓′(𝑥)𝑑𝑥
+𝑊

−𝑊 ]
2 = 𝛿𝑥0

2   (2.21) 

Where the output 𝛿𝑥0
2 approximates the standard deviation of 𝑥0. Then the localisation can 

be expressed as the reciprocal of 𝛿𝑥0
2 and is given as 

𝐿𝑜𝑐𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 =
|∫ 𝐺′(−𝑥)𝑓′(𝑥)𝑑𝑥

+𝑊
−𝑊

|

𝑛0√∫ 𝑓′2(𝑥)𝑑𝑥
+𝑊

−𝑊

   (2.22) 

2.4.4.1.2 Thresholding 

Thresholding or thresholding by hysteresis is a typical approach to obtaining the edge map of 

an object in an image as a post-processing method. Hysteresis thresholding uses a two-level 
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threshold, higher and lower thresholds 𝑡2 > 𝑡1. Pixels that lie in a region higher than the 

highest threshold 𝑡2 the level is marked as an edge, and pixels lying between 𝑡2 and 𝑡1 are 

also marked as an edge and are connected to the edge, but pixels outside any of these regions 

(below 𝑡1) are rejected. This method alleviates edge discontinuity issues by defining strong 

edges and retaining the corresponding frail edges and ensuring a degree of noise suppression. 

In threshold processing, an appropriate thinning technique such as the morphological 

algorithm can be used in obtaining an edge with a one-pixel width.  Although thresholding 

can be pretty straightforward, the challenging factor is determining the appropriate value, 

mostly in performing simple thresholding compared to hysteresis thresholding (two-level 

threshold) [109]. In simple thresholding, it is difficult to determine what value is acceptable 

and what value is not. This difficulty with simple thresholding has led to the development of 

several methods for determining the threshold value, such as the unimodal thresholding 

method [110] that assumes a comparison between a more assertive population to a 

secondary population with the assertive population creating the main peak situated at the 

lower end of the histogram. 

Thresholding is simply defined as having a function 𝑇(𝑥, 𝑦) and assigning values 𝑉1 and 𝑉2 as 

shown in equation 2.23, where these values depend on the value of the threshold 𝑡 

corresponding to the points (𝑥, 𝑦) of the input image 𝑓(𝑥, 𝑦) 

𝑇(𝑥, 𝑦) =  {
𝑉1    𝑓𝑜𝑟 𝑓(𝑥, 𝑦) > 𝑡

𝑉2    𝑓𝑜𝑟 𝑓(𝑥, 𝑦) > 𝑡
   (2.23) 

The values 𝑉1 and 𝑉2 are referred to as the maximum or minimum of the image function and 

corresponds to 1 and 0. While the outcomes are positive, the hysteresis process considerably 

slows the overall algorithm. 

 

2.5 Concept of Automatic Feature Recognition 

It is a known fact that computer-aided design (CAD), computer-aided engineering (CAE), 

computer-aided manufacturing (CAM), and computer-aided process planning (CAPP) 

applications are feature-based. Features have become an essential factor when dealing with 

the design, modelling and reverse engineering of products, hence the need for concepts such 

as feature definition and automatic feature recognition. There have been several debates 
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about what constitutes a feature and how best to describe its characteristics. A definition by 

Martin [111] describes a feature “as a semantic group containing modelling atom which is 

characterised by a set of parameters that depicts an object which cannot be disintegrated, 

used in analysis relative to one or more activities linked to the design and use of the products 

and manufacturing processes.” Four requirements that a feature should have include (1) a 

feature has to be a physical constituent of a part, (2) should be mappable to a generic shape, 

(3) should have engineering significance, and (4) must have predictable properties [112]. With 

the investigation of various feature types, the form feature is the most common as they 

contain both shape and parameter information of a feature. Examples of these include holes, 

pockets, slots, and bosses. [113]. Various representations used to describe design features 

can simply be unfit for representing specific manufacturing processes. This may be tailored to 

the development of a component, resulting in differences in the manufacturing and design 

characteristics of the feature. This function correlates to a set of workflows needed for the 

creation of the component. This unresolved trade-off to the definition of a feature is due to 

the failure of concluding on a universal and globally acceptable definition, as well as a 

consensus on accompanying nomenclature by the research and academic community. Hence, 

a more formal definition of a feature is identified as a physical part of a product that can be 

mapped to a standardised shape and has functional engineering significance [114]. 

Application system such as CAPP provides functions that convert geometrical information of 

a part in a precise manner, defined by a CAD system into manufacturing information, and 

secondly, the representation of a practical process plans. These process plans include 

identifying the appropriate manufacturing process, selecting product tolerances, working 

piece size, setting-up planning, operation sequence and optimisation, cutting tools, cutting 

parameters and tool path generation through the development of CNC code. This process 

involves the integration of CAPP and CAD using three strategies based on the concept of 

manufacturing features, and they include 

1. Design by feature (DBF) 

2. Automatic feature recognition (AFR) 

3. Interactive form feature definition 

The design by feature infers that a manufacturing library exists with features adapted to the 

manufacturing process requirements and not the part function. Only features from this library 
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are used to form a product model. Automatic feature recognition is concerned with finding 

information of part representation characterising the specific types of production features. 

The strategies involved in this process aims at creating algorithms that recognises any possible 

manufacturing feature with less human interaction. And finally, interactive feature definition 

involves the user's interaction in selecting a set of manufacturing features, defining its 

recognition parameters and then performing the AFR in a CAD model or structure according 

to instructions [115]. Recent research has shown that this process can also be executed in 

mathematical software, which will increase the concentration of this project.  

Automatic feature recognition (AFR) is a fundamental technique used in manufacturing for 

linking design and manufacturing, and features form the basis for this technique. AFR 

technique uses a geometric-model-to-application-specific method in identifying and 

designing models having various features employing several recognition principles. The 

development circle of a product involves CAD systems for designing, CAE systems for analysis, 

and CAM systems for machine-controlled manufacturing. Poor communication between 

systems results in loss of feature information when data is transferred between systems, 

hence, the need for effective integration of all processes required for the manufacturing of a 

conceptualised product. AFR has been proposed to bridge the integration gap existing 

between all computer-aided systems to reduce the time required and spent on data 

manipulation hugely. Two approaches are stated in Table 2.7 below, with their pattern 

recognition using logic rules and neural networks; these approaches are described in section 

2.5. 

Table 2.7: The classification of Automatic Feature Recognition approaches [116] 

Form feature extraction  Pattern recognition 

Geometric feature 

extraction  

Form feature identification  

1. External approach 
2. Internal approach 
 

 

1. Hybrid Approach 
2. State Transition 

Diagrams and 
Automata 

3. Logic Rules and 
Expert Systems 

4. Graph-Based 
Approach 

Logic rules 
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5. Syntactic Pattern 
Recognition 

6. Hint-Based Approach 
7. Cell-Based 

Volumetric 
Decomposition 
Approach 

8. Convex Hull 
Volumetric 
Decomposition 
Approach 

 

1. Graph-based 
approach 

2. Face coding 
3. Contour –syntactic 

approach 
4. Volume 

decomposition 

 

 

 

 

 

 

 

 

 

 

 

 

 

Artificial neural networks 

 

The internal approach to feature extraction uses the application protocol interface (API) of 

the CAD software in gaining access to the topological and geometrical information of the part. 

The external approach is a situation of data communication between developing CAD 

software where the part was designed and an analysis or manufacturing platform. This data 

export is mostly done via a universally acceptable format. The challenge with the external 

approach is the risk of data loss or a derivative of the original data. From Table 1, the various 

feature recognition approaches have been segmented into logic rules and artificial neural 

networks (ANN) applications. The logic rules were formed from the geometric reasoning 

approach in recognising technological features. The ANN methods are favourable to the logic 

method as the logic approaches are limited by their inability to learn, limited range of 

recognition, and low speed hindering its practical application [115]. Each form feature 

identification method was described in section 2.8. 

The logic based-rule approach for feature recognition uses a fundamental principle of pairing 

the identified structures in a component representation with known patterns in the 

knowledge base using a concept known as if-then rules. The importance of this rule is ensuring 

the unique form feature definition: this means that only one unique form definition must exist 
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(no two forms with unique definition) or a single form having more than one definition in the 

knowledge base. A proper assembly will guarantee an accurate and detailed feature 

identification [116]. This method is disadvantaged by its insufficient knowledge acquisition 

structure, and in situations where extracted form features cannot be matched with any 

pattern in the knowledge base, the system struggles.  

 

2.6 Machine Learning for Damage Detection 

Machine learning (ML) is an artificial intelligence (AI) application aimed at learning from data 

and improve their accuracy perpetually. Machine learning is a technique in data analytics that 

teaches machines to do naturally what human beings do: which is to learn from experience. 

Machine learning algorithms use computing methods for learning data with little or no 

dependence on a predefined equation as a model directly from data. Machine learning 

algorithms are trained to find patterns and features in large amounts of data to make 

decisions and forecasts based on new data. As the number of sample information in the 

learning increases, algorithms improve their performance adaptively, making more accurate 

decisions and predictions [117]. Two techniques for AI application are employed: the 

supervised learning functions by training a model with prior knowledge of both input and 

output data such that future outputs can be predicted, while the unsupervised learning 

analyses the input data to understand hidden patterns or structures. The machine learning 

structure is shown in Figure 2.25. 
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Figure 2.25: Machine learning techniques include both unsupervised and supervised learning. 

 

 Supervised Learning 

The construction of models for performing accurate predictions using supervised learning is 

based on providing information in the event of uncertainty. A supervised learning algorithm 

collects known input information and known data (output) responses and trains a model to 

create accurate forecasts to respond to new data. Classification and regression techniques 

are the known methods used by supervised learning in building predictive models. This type 

of learning uses datasets of input data together with its labelled data as a duo in training 

models [118]. Most supervised learning systems use a method known as transfer learning. 

Transfer learning uses already pre-trained networks in performing machine learning tasks, 

taking away the need to build a network from scratch. This learning method was employed 

for this project, and it will be further discussed in subsequent section 6.2.4. 

2.6.1.1 Classification Technique 

The classification technique predicts discrete responses by classifying input data. Medical 

imaging, speech recognition, image processing, and computer vision are some examples of 

applications. Computer vision is typically used for object detection and image segmentation. 

Support vector machine (SVM), boosted and bagged decision trees, k-nearest neighbour, 

Nave Bayes, discriminant analysis, logistic regression, and neural networks are examples of 

typical techniques for this application [117]. Neural network applications such as convolution 

neural networks and recurrent neural networks were used for this project due to the numeric 
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sequence nature of the data after performing sectioning (slicing) of the model and developed 

a sequence of slices.  

2.6.1.1.1 Convolution Neural Network  

The convolution neural network (CNN) was proposed as a classification algorithm for grouping 

areas of damage. This is a machine learning approach to damage detection using results from 

the 2D images of a model. This involves algorithms such as semantic segmentation or neural 

network algorithms like AlexNet, GoogleNet, and SegNet. The 2D profile data was used as 

training data with 80% as training set and the remaining data as the test set. When choosing 

an algorithm, accuracy and speed are the concepts to consider and, in some cases, the size of 

the network in the ImageNet database. 

2.6.1.2 Regression Technique 

The regression technique predicts continuous responses in situations of grouping (clustering) 

a set of elements with respect to their relationships, such as a change in temperature, load 

forecasting and continuous response pattern in a system. Typical applications include linear 

and nonlinear models, regularization, stepwise regression, boosted and bagged decision 

trees, neural networks, and adaptive neuro-fuzzy learning [117]. 

 Unsupervised Learning 

Unsupervised learning algorithms are used for generating new input data or for performing 

an evaluation of the hidden structures of a data set without been given classified responses. 

This method finds hidden patterns or structures peculiar to the data by extracting inferences 

from input data sets without labelled output [118].  

2.6.2.1 Clustering 

This is the most used unsupervised technique. It is used to find hidden patterns or groupings 

for the exploratory data analysis in data. Cluster analyses include analyses of the gene 

sequence, market research and identification of objects. Standard algorithms for performing 

clustering include k-means and k-medoids, hierarchical clustering, Gaussian mixture models, 

hidden Markov models, self-organizing maps, fuzzy c-means clustering, and subtractive 

clustering [117]. This method of unsupervised learning is illustrated in Figure 2.26. 
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Figure 2.26: Clustering finds hidden patterns in data. Reproduced from [105] 

 

 Transfer Learning 

The process of retraining a previously trained network to identify a new collection of data is 

known as transfer learning. Transfer learning is a machine learning technique using a deep 

learning approach in which a model created for one task is used as the basis for a model on a 

different task. Considering the immense computation and time resources needed to create 

neural network models, it is a common practice when working with deep learning to use pre-

trained models, as in Figure 2.27. These pre-trained models can be used as a start off stage 

when performing computer vision and natural language processing tasks. It is much faster 

and easier than training from scratch, and it can be used to improve system performance. The 

following parameters: pre-trained network layers, training data, and algorithm options are 

required for performing transfer learning [119, 120]. 

 

Figure 2.27: Structure of a pre-trained network for transfer learning. Reproduced from [109] 
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 Review of Existing Works 

Several non-destructive testing (NDT) methods have been developed based on machine 

learning and, in most cases, convolutional neural networks (CNN). Using lots of labelled 

images with negative samples (with defects) in CNN can be challenging without a 

corresponding positive sample for comparison. A supervised machine learning approach was 

proposed by Guldur and Hajjar [121] using underlying surface geometry and point cloud data 

as input data for a classification algorithm, a cascading fuzzy logic with image processing 

[122], convolutional neural network [123]. Zhao et al. [124] developed a novel framework for 

detecting defects by training positive samples. The basic identification method is to set up a 

reconstruction network capable of repairing existing defects in the sample and equate the 

input sample with the repaired sample to assess the specific region of defects.  

A deep learning theory for detecting damage on a steel wire rope (SWR) was proposed by 

Huang et L., [56]. In this method, discriminant features were automatically extracted from 

optical images of SWR, and the layers in CNN were used to extract and classify features. 

Soukup and Huber-Mörk [125] used a database containing photometric stereo images of 

metal surface defects in training a CNN. These images were obtained by projecting different 

coloured-lighting sources on the metal surface and capturing cavities in a photometric dark-

field setup. The images were classified using a model-based classification approach and 

extracting reflection properties to contrast non-defective images. Shihavuddin et al., [57] 

developed a deep learning-based automated damage system from high-resolution images of 

a wind turbine blade captured using a drone. The drone images were used to train a neural 

network algorithm to identify areas with potential future damage. 

Although there have been machine learning applications for surface imperfections/damage 

detection, most of these applications are for training 2D images and using classifier algorithms 

in classifying extracted information into specified classes. From reviewed literature, 

performing damage detection and localisation on point cloud data using machine learning 

and unwrapping raw data method of this project is under-investigated. To limit the level of 

human influence, processes such as feature identification and extraction, profile monitoring, 

model sectioning, and machine learning was employed for damage detection. Damage 

detection on images and 3D visualisation using applications such as AI, segmentation 

algorithms, X-ray imaging, image processing such as object detection. The focus of the project 
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is to produce micrometre-level data from the point cloud using a model sectioning approach. 

The slices generated from model sectioning is used in training a recurrent neural network 

algorithm to identify slices with potential damage whose characteristics are different from 

the predictable good slices. This approach is an important step in implementing a proposed 

RE/SR framework that uses the damage detection information to identify regions of a model 

that require reconstruction 

 

2.7 Review on Profile Evaluation and Extraction 

Surface metrology has undergone a technological change in the last decade resulting in 

advanced manufacturing such as micro-manufacturing, nanotechnology, and improved 

surface quality. The need to make manufacturing more effective, economical, and less 

vulnerable to the effects of the environment on production and optimise efficiency prompted 

this technological change. According to Jiang and Whitehouse [126], size plays an essential 

role with respect to function, but this is evolving as planar technology and miniaturisation 

advances. This ensures that decimated data can be used for the same purposes as dense data, 

but care must be taken to preserve the object's key features. Hence, one reason why profile 

monitoring is as important as an areal analysis of a surface. 

In their studies, Gardner et al. [130] and William et al. [131] have used the smoothing spline 

as a parametric model for profiling monitoring. Nonparametric types were also 

investigated by William et al. [127] when estimating profiles. According to Eric, et al. [128], 

spline estimation belongs to a broad class of nonparametric estimators with fewer constraints 

than parametric methods and exhibit undesirable properties, but they can be a viable 

alternative to the parametric model. Spline smoothing estimators will not provide a good 

model of a profile with specifically unsmooth features such as jumps or points of non-

differentiability [128].  

Several techniques are available for measuring optical 3D profiles, including stereo vision, 

fringe projection profilometry (FPP) and holography. The FPP is mainly used for its precision 

and ease of application as compared to other techniques. It can be implemented in two 

approaches, the first is the reconstruction of a dynamic profile from a single fringe 

arrangement, and the second is the use of techniques for high-speed phase shifting. Specific 
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applications such as inspection of machined parts, 3D reconstruction, and extraction of 

contour lines from an image are possible with the information obtained from profiling point 

cloud data [129]. 

For this project, a continuous wavelet transform was used in extracting information for 

training a machine learning algorithm. A wavelet function was utilised because it translates 

the response signal of the location of each point into a continuous transform along the time 

axis to produce a correlation that can be visualised through a wavelet coefficient. Another 

type of wavelet transform is the discrete wavelet transform suitable for multiresolution 

analysis by representing discrete input signal as an approximation in a consecutive manner. 

This is achieved by combining wavelet components with a smoothed signal component, 

hence, the reason for using a continuous transform to represent the data for training a 

machine learning algorithm.    

  

2.8 Summary 

This chapter reviewed the concept of surface reconstruction and the various algorithms that 

have been developed over time. The concept of data acquisition was also discussed as an 

integral part of the process of reconstructing a potentially damaged surface. It was also stated 

that noise is an inevitable factor when working with measurement data, and what factors are 

responsible for generating noise. How to mitigate this noise was discussed in subsequent 

chapters as part of the data acquisition process, a brief discussion on how measurement data 

are captured using a laser scanner and their accuracy in comparison to traditional CMM. 

Lastly, a brief discussion on the concept of computational geometry and the international 

standards relating to surface damage. 

The gaps in the existing research are: 

1. So many manufacturers of laser scanners are improving the scanning experience of 

using the laser line scanning method with a new scanner generating over 2 million 

points per second but are still being faced with challenges such as noise developed 

from reflectivity and ambient light. Although the accuracy of some portable CMM is 

within 40 microns, like in the case of the one used for this project, there are lots of 

other factors that contribute to uncertainties when performing surface scanning.  
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2. In addressing the issue of reflectivity, some products can be coated, which provides 

an extra layer on the surface. This should be considered when extracting 

measurement information such as nominal values as the coated surface may serve 

purposes other than dealing with reflectivity. The effect of coating a highly reflective 

surface is shown in Figure 2.28. The surface reflectivity can affect how defects are 

identified during scanning, resulting in surface treatment methods such as etching and 

powder treatment. Treatment with powder improved the visibility of the surface to 

the laser scanner as the powder grain settled on the edges of the damage. Another 

method for treating highly reflective surfaces is the dye penetration method, where 

the part is immersed in a special solution for 5-10 minutes, after which the solution is 

washed off. This solution settles on cracks and damage on the surfaces for easy 

identification. Other methods for treating surfaces include the fluorescent and 

magnetic test powder method. 

 

Figure 2.28: An illustration of thin coating a high reflective surface to acquire surface points (a) 
reflective surface without coating (b) with coating 

 

3.  The rationale behind the use of machine learning is because this technique offers a 

more objectified manner to accurately identify damage regions.. This will be further 

discussed in chapter 6, where several slices of a model using model sectioning method 

were developed and using slices of a good region to predict the damaged region. 

These slices provide micrometre-level information in a sequence-to-sequence format 

which formed the basis for investigating the slices as sequence data and not in 

(a) 

(b) 
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isolation of each slice, hence, the reason why a recurrent neural network like LSTM 

was employed. The use of this ML method means that a prior knowledge of a previous 

slice is required for learning to interpret the next slice. The classification from the 

LSTM neural network was subsequently applied to the model to extract slices with 

potential damage. 

The concentration of this project is on damage detection and several methods and 

approaches have been proposed and implemented. Nevertheless, there has been ML 

application for damage detection and detection of surface imperfections, but most of these 

methods are on 2D imaging coupled with classifier algorithms. ML applications using point 

cloud as measurement data and generating micrometre-level information of a model is 

sparse, thence, the viability of the application for this project in detecting and localising 

damage.     
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Chapter 3 Methodological Approach to the Proposed Reverse 

Engineering/Surface Reconstruction Framework 

This chapter presents the methodology and the different concepts used for this project. These 

concepts range from how the data was captured, preprocessed, and algorithms investigated, 

proposed, and implemented to achieve the project’s aim of developing a RE/SR framework 

and identifying damage.  

3.1 Methodology and Scope 

The first approach was to identify techniques required for achieving surface reconstruction 

with more concentration on identifying areas of damage. The identification of regions of 

damage was implemented using a profile monitoring technique in performing a visual 

inspection. This technique used the rotational matrix concept to create a rotary movement 

of a model about an axis as its boundary profile is projected in 2D and analysed. The boundary 

profile was monitored, and potential damage was identified but knowing the location of this 

damage is required. Model sectioning was used to produce slices of a model to develop 

micrometre-level information in a sequence-to-sequence format. This format formed the 

basis for investigating the slices as sequence data and not in isolation of each slice, hence, the 

reason why a recurrent neural network like LSTM was employed. Investigation as a sequence 

data requires a prior knowledge of a previous slice for learning to interpret the next slice. 

These slices were used in training an LSTM neural network to perform the classification of the 

slices into specified classes, which will be discussed in section 6.2. The classification from the 

LSTM neural network was subsequently applied to the model to extract slices with potential 

damage. 

The first advantage of using this approach is to explore features of a model at the micrometre 

level, whereas prior damage detection methods have primarily centred on images. Secondly, 

using point cloud as measurement data implies that potential damage can be investigated 

using the point distribution around the damaged region. This approach can aid the 

investigation of what is a damage and what is an intended design, although design intent was 

not covered in this work. The choice of using AACMM over conventional CMMs was for 

measurement speed, the number of points captured per second, and flexibility of use in 

capturing hard-to-reach areas. 
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From the proposed RE/SR framework, this thesis covered the damage acquisition process to 

identify areas of damage but did not investigate the proposed approaches after identifying 

damage as displayed in chapter 3. The proposed method of training a neural network was 

performed only on a cylindrical model and will require more analysis when applied to a 

different geometry. This thesis did not cover the aspect of surface reconstruction using 

Delaunay triangulation of a meshed surface. 

Edge detection was investigated at the early stage to ascertain the suitable detection 

operator for the application of feature detection and extraction. The edge detection 

experiment found that the Canny operator performs better than most edge detection 

algorithms due to its sensitivity to noise and identification of false edges. Edge detection was 

applied to identify and extract features performed as a comparison of two methods: RANSAC 

using random consensus and the LSI method using linear interpolation. The values from both 

methods were compared to the standard United Kingdom Accreditation Service (UKAS) 

certification value of the calibration sphere and execution time. This method will be discussed 

extensively in chapters four and five. 

Once features were identified, the proposed algorithm of using a rotational matrix for profile 

monitoring was used to monitor the feature's boundary profile. This application was more of 

a visual inspection requiring prior knowledge of part and providing less substantial evaluation. 

This level of evaluation led to further investigation using slicing for sectioning a model. 

Obtaining these slices provided a more in-depth analysis of the model to the micrometre 

level. Having several slices as a representation of the model and limiting human influence led 

to the use of machine learning. A proposed algorithm was developed for automatic 

classification of the slices into two classes, “good” and “damaged”, indicating where the 

damage starts and ends on the model, and this classification data was used in training the 

machine learning algorithm. Long-short term memory (LSTM) was employed due to the 

nature of the data being time-series data after unwrapping the raw data and as they were 

stacked in sequence. Machine learning is trained using both the extracted data and the 

classified classes specifying the required parameters such as layers and options. Accuracy of 

training and visualisation of the classification using confusion matrix was used to validate the 

automatic classification by the proposed algorithm. The investigation at the microns level 

distinguishes our work from existing literature that performed damage detection and 
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localisation using machine learning on images. This method will be investigated further in 

chapters six and seven with validation using measurement data.  

The proposed framework for performing RE/SR of a potentially damaged object is presented 

in Figure 3.1. This framework covered the concepts of data acquisition, preprocessing 

acquired data, identifying features, detecting damage, intelligent dimensioning, and through 

to verification of the reconstructed artefact. The concept with the red borderline indicates 

the concentration of this project in detecting damage on a model.  

 

Figure 3.1: Reverse Engineering/Surface Reconstruction Framework 

 

3.2 Acquisition of Point Cloud Data 

The main instruments for performing RE are either a CMM, AACMM with a laser line scanner 

attached to it, or using photogrammetry. With a CMM, a 3D wireframe structure is generated 

when performing a tactile measurement, while for an AACMM, dense sample points were 

generated as a representation of the product. For this project, the process of generating 

dense sample points was used as it is faster compared to CMM data, produces dense data 
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set, is less costly when performing inspection of a large part, is more flexible than a fixed CMM 

and requires no pre-programmed routine as scans can be performed as at when required. For 

the detection of the damaged region, it was important to employ the Arm's functionality to 

capture internal and complex features, giving a textural representation for better 

understanding and visualisation. Accuracy cannot be left out. Although the CMM method is 

most desirable in a tight tolerance application, the accuracy of the Articulated Arm used is 

within a volumetric accuracy of 0.040 mm and can easily be transferred within the workshop. 

 

Figure 3.2: Methods of data acquisition, also discussing occlusions and full coverage of the scanner 

 

When dealing with measurement data, an important concept is the concept of data 

acquisition, as this determines the techniques and methods suitable for data representation 

and algorithms to produce desired results for its representation(s) [7]. In combination with 

the characteristics of the scanned object, the data properties essentially distinguish the 

different levels of reconstruction approaches used in present times. This distinctive range of 

methods comprises (1) methods that assume a well-sampled point cloud that is generalized 

to arbitrary shapes and generates a watertight surface mesh, (2) methods that make weak 

assumptions on the quality of the point cloud, (3) methods that operate on specific classes of 

freeform shapes, and (4) methods which generate a non-mesh based shape representation 

[22]. The data acquisition technique determines the reconstruction approach suitable for the 

data obtained and the algorithm to produce the desired outcome. This process involves 

preprocessing digitized points, curve net construction, surface fitting, post-blending, and 

trimming [19].  

The popularly used devices for data acquisition are the Coordinate Measuring Machines 

(CMMs) and CMMs with attached laser scanners. The CMM is classified as a tactile (contact) 
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system, while laser scanners are an optical (non-contact) system, as shown in Figure 3.2. The 

optical system can be divided into active and passive optical systems, and laser scanners are 

active optical systems. An example of a passive optical system for data capturing is 

photogrammetry, where one or series of cameras are positioned strategically to capture data. 

The digitisation process becomes time-consuming when using the CMM to obtain an initial 

set of points on complex or freeform surfaces. To use CMM in recovering the features of the 

workpiece, a predefined programme tool path must be specified in advance. Compared to 

the optical sensing system, this may pose a distinct disadvantage on the part of the tactile 

system.  

The optical sensing technique uses a laser line at a predetermined distance called the depth 

of scan that determines the number of points generated by the width of the laser line. Surface 

points from multiple features are acquired on a single scanning path, making the laser line 

scanning very sensitive to unrelated problems to the tactile system, such as the influence of 

surface colour, shininess, transparency and in some cases, the texture of the surface. These 

differences have led to the development of a multi-sensor system configuration described by 

Durrant-Whyte [130] and Li et al. [17]. This multi-sensor system proves that both systems 

(tactile and optical) can compensate each other; elements having a high tolerance should be 

tested using high-precision probing techniques, whereas optical means are employed for 

elements with a lower tolerance application. High tolerance elements should be measured 

using high-precision probing techniques, while elements with lower tolerance can be 

measured using optical means.  

Implementing the CAD model is strenuous when working with objects of complex shapes such 

as the human organ and freeform shapes having a difficult surface continuity between 

features as this will require much effort and expertise. This difficulty has led to the 

development of intelligent feature recognition and segmentation algorithms for collecting 

surface information [17]. For an automated process, most of these procedures must be taken 

to produce a surface free from deformation as complex continuity conditions exist between 

adjacent regions of points [19]. The input data to a surface reconstruction algorithm has X, Y, 

and Z coordinates defining its location in three-dimensional (3D) space. Another characteristic 

of the points is their vectors. The data obtainable from using a fixed CMM can be likened to 

an AACMM with point distribution and density difference. There are situations where an 
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optical device can be attached to a CMM but without the flexibility experienced with an 

AACMM.  

For damage detection application, the acquired data is a large set of points representing the 

object surface (or point cloud in x, y and z coordinates) and an indication of the location of 

the points in three dimensional (3D) space [7]. When Point cloud is produced using laser 

scanners, noise and outliers sometimes accompany them. Therefore, it is necessary to filter 

off unwanted properties from the data. Another way of producing point cloud data is by 

mathematical simulation, and they are clean from noise except for the situation where noise 

is simulated into the data. Several factors contribute to the noise contamination of the point 

cloud data, and these factors can affect the integrity of the data. Factors include 

measurement errors in terms of the limitations of the sensors in dealing with environmental 

induced noise like the Microsoft Kinect and time of flight cameras, LMS-200 sick laser 

mounted on a sweeping unit [131], built-in noise of the scanning device, mounted structure 

on which the Articulated Arm sits, surface topology of the object, external lighting [132] and 

missing data due to human error. The scan was performed using a handheld scanner attached 

to a 7-axis Articulated Arm CMM mounted on a firm tabletop on which the object was placed. 

This operation, to an extent, tackles the uncertainty of mismatched data in the event that the 

object or Arm is moved from the initial registered position. The area between the base of the 

scanned object and the table was missing some data that was preprocessed/filtered, and 

reconstructed. For scanning small items, it should be elevated using a stable platform 

positioned on the same table as the Arm. 

 Non-Contact Method 

The non-contact method is also known as an optical method of data acquisition, relying on 

the properties of light to achieve measurement, and they generate a large amount of data as 

points representing the captured surface. This method involves the use of optics for data 

capturing, and it includes a laser line scanners, which can be categorised into Vision systems, 

CT scanning, Structured Lights, Photogrammetry and Radar systems. This method produces 

hundreds of thousands of points that could be either structured (organised) or unstructured 

(randomly distributed) [133]. 
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 Contact Method 

This is also known as a tactile method of data acquisition. This is usually on a CMM with a 

stylus directly contacting the surface of the object being measured. This method generates 

data with less density and high accuracy. They are applicable to systems with a tight tolerance 

level. They generate points to represent an object which are not a point cloud but points that 

could be equally spaced depending on the application.  

 Occlusion 

This refers to the obstruction of the range of view of the laser line of the scanner. In computer 

vision, it involves object tracking by identifying object movement in an environment [134]. 

When performing scanning operations, certain regions of an object - due to object complexity 

- cannot be seen by the laser line, thereby resulting in missing points. It is crucial to make sure 

such missing data does not affect the point representation of the artefact. 

 Full Coverage 

This contrasts with occlusion and is made possible by the automatic stitching of several scans 

by the laser scanner where the entire surface of an object can be captured for its digital 

representation. Points were continuously being captured as the scanner scans over the 

surface of an object, reaching into compact regions of freeform models. 

For this project, the proposed approach is to reverse engineer models using optical systems 

and perform verification using the tactile method. The optical system provides good spatial 

coverage and is faster, but after generating a model from it, a tactile measurement that could 

be more accurate or lower uncertainty can be used to verify the model using an independent 

measurement system. However, the slow nature of the tactile system might not be significant 

if RE a small object. 
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3.3 Preprocessing 

 

 

Figure 3.3: Preprocessing stage of the RE/SR framework 

 

Measurement uncertainties are essential elements of consideration when sample points are 

captured as a digital representation of an object as they are projected as noise. A better 

representation is achieved by preprocessing the measured data to produce a dataset 

sometimes not entirely clean but contains fewer uncertainties. This can be achieved using the 

techniques specified in Figure 3.3. Dealing with a large dataset is another identifiable factor 

when acquiring data through optical means, as an enormous number of points are generated 

as the laser line scans over a surface. The AACMM with an attached scanner used for this 

project generates 720 000 points per second at a point spacing of 0.011 mm and volumetric 

accuracy of 0.040 mm. This large data can be downsampled with the risk of losing important 

model data, so extra care is required when reducing sampled points. This can be done using 

different de-noising methods, and for this project, the downsampling/decimation method 

proposed by [42, 43] was used. During scanning, the laser line captures the reference plane 



100 
 

on which objects are placed, and this can be useful in some applications, but they generally 

contribute to noisy data and enormous point generation. A better practice is to initiate a 

clipping plane, preventing the eventuality of such estimated reference planes. 

 De-Noise 

Noisy data are inevitable, and before commencing reconstruction, it is important to de-noise 

a dataset. As part of the motivation for this project, data integrity is a significant challenge in 

working with data gathered via a non-contact method. This dataset contains noise, outliers 

and disconnected points that must be dealt with in most applications as they directly affect 

the outcome of processes and applied algorithms. There are situations where outliers and 

noisy data are allowed within the dataset to test the robustness and behaviour of algorithms. 

Although de-noising is a good practice when working with dense data sets, extra care is 

required not to lose important information and the data is reduced to an amount that is still 

a digital representation of the captured object. 

3.3.1.1 Decimation/Downsampling of Data Points 

High-density 3D scanned models often include noisy data and outliers, making it hard to 

perform detection and extraction of features. This can be due to scanning devices producing 

thousands of points per second. Although having thousands of points can be desirable by the 

user as most regions on a surface can be captured, scanners also pick up unwanted points. 

This means that preprocessing of measurement data has become an integral part of working 

with such data. Filtering and downsampling point cloud data are essential steps in 

preprocessing 3D data to derive meaningful information. In decimating point cloud data, the 

spatial resolution of the points is reduced not to lose important feature information but to 

reduce the data to a workable size and still a representation of the feature [135]. Standard 

filtering methods such as median and mean filtering have been mostly used for filtering and 

downsampling of noisy data. [131]. The voxel grid and bilateral filtering are other widely 

employed methods. The bilateral filtering reduces noise with consideration of corners and 

edges using Gaussian functions but performs poorly with outliers [136]. In [131], a 

downsampling technique based on Growing Neural Gas (GNG) was suggested, and this system 

retains the 3D model topology and simultaneously calculates the GNG network over the raw 

points and can deal with outliers of input space. As a preprocessing step, downsampling of 

the sampled points was applied to the system by decreasing the sampling rate, thereby 
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removing noise and irregularities in the data. For example, the sampling rate of input data 𝐾 

is reduced from the first number of the defined sampled number in each column. This 

approach is a sample-based processing procedure in which the number of samples in each 

column of the 𝐾 matrix is viewed as a separate channel. 

 Hole Filling Technique  

There could be sparse underlying point data during the scanning process, and holes are 

created in the triangular mesh of a model when missing data occurs. Hole-filling is a method 

of filling gaps in a polygon model by detecting holes and constructing a polygon mesh in an 

organised form over the detected hole. The hole filling process shown in Figure 3.4 is 

applicable to regions of smooth flat surfaces and very challenging with complex regions of 

high curvature. The difficulty of high curvature surfaces has resulted in the development of 

techniques that apply to various levels of surface curvature. Depending on how highly curved 

or flat a surface is, an appropriate technique can be used to better represent and avoid 

deformities that could be generated when holes are wrongly filled. The wrong filling of holes 

can change the original geometry of the model, and in the case of remodelling, an unwanted 

shape with no design intent and a specific dimension will be developed. There are three 

techniques for filling holes, and the use of each technique depends on the curvature of the 

surrounding mesh in creating a watertight mesh with the newly created mesh having a C1 

continuity [137, 138]. 

 

Figure 3.4: Projection of polygon holes showing simple and complex hole. Reproduced from [125] 
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Curvature: this technique indicates that the newly generated mesh for filling the hole must 

align with the curvature of the surrounding mesh when creating poly-faces, as shown in Figure 

3.5.  

 

Figure 3.5: Hole-filling using the curvature technique 

Tangent: this indicated that the new mesh must align with the curvature of the surrounding 

mesh but with more tampering. 

Flat: this technique produces poly-faces which are usually as flat as the surrounding mesh, as 

shown in Figure 3.6. 

 

Figure 3.6: An indication of how the flat hole-filling technique is performed 
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Several algorithms for filling holes in a polygon model have been developed, and as 

mentioned earlier, they are easily applicable to smooth surfaces but not robust for high 

curvature surfaces. The aim is to file holes by creating new triangles that blend perfectly with 

the existing mesh of the model. A piecewise pattern for automatically filling complex 

polygonal holes was developed by Jun [139], where a complex hole, as shown in Figure 3.5, is 

filled by dividing it into simple holes, and each hole is filled with a planar triangulation method 

until the entire hole is filled. The issue with this method is the use of planar triangulation, 

which might not be the right fit for a highly curved surface, and such application would require 

a system capable of performing prediction of the intended shape using the boundaries of the 

surrounding mesh. The approach used for this project is similar to the work by Jun [139] but 

by creating bridges, thereby reducing the size of the complex hole. And for surfaces of high 

curvature, one of the three techniques (curvature) earlier mentioned was used to predict the 

nature of the intended surface using surrounding mesh and of certainty that the bridge blends 

perfectly. The small holes were also filled depending on the surface curve to create a 

watertight mesh with the surrounding meshes, as shown in Figure 3.6. 

 Outliers and Disconnected Points 

Outliers in a model are produced due to factors such as surface reflectivity, ambient lighting. 

They are points produced that are not part of the true surface of a model, and they are 

randomly distributed with a density smaller than that of the sampling density of the model. 

Figure 3.7(d) below shows that outliers can also be produced in a structured manner as a high-

density clustering of points. This behaviour is due to scanning devices having a multi-view 

stereo system generating points based on view-dependent assumptions, thereby resulting in 

false consistency. Outliers and disconnected points should not be mistaken for noise, as 

shown in Figure 3.7(c) either in a categorical way via detection or in a definite manner via 

robust approaches [139]. 
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Figure 3.7: Different forms of point distribution in a sampled data. Reproduced from [22]  

 

 Clipping Plane for Scanning Operation 

To deal with unwanted data in the form of noise and disconnected points, a clipping plane is 

used to prevent the capturing of the surface on which the part is positioned. This surface is 

unnecessary in most cases, and a clipping plane hides the points behind the plane from the 

laser scanner. This process helps in reducing the number of points generated and, at the same 

time, the memory space required and aids faster processing. 

 Measurement Data Communication  

The preprocessing of point cloud data is usually performed within CAD software. IN the case 

of preprocessing using a mathematical application, the initial difficulty is the file format 

communication. This has been an ongoing challenge in the CAD/CAM community and 

contributed to creating a universally accepted format such as the STEP and STL formats. Once 

data is exchanged between a CAD and mathematical application, it is observed that some 

non-coordinate system properties hinder this communication. Data communication between 

specific CAD software applications has become an ongoing problem for CAD/CAM 

applications for manufacturing design, reverse engineering a product and for research 

purposes. It is complicated to use this data in a separate programmer than the producing 

programme if a similar software framework creates the point cloud data. This is also valid for 

most CAD systems where communication is complicated between generating software and 

processing software due to the compatibility of the file format. Most CAD software providers 

create their own format, which in some cases cannot interact with a different software 
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platform except it is exported as a generally accepted file format. Because of this, a popular 

model is known as the STEP, commonly appropriate for many CAD applications, was 

developed. The Stereolithography (STL) format is another widely accepted file format, and 

this format also communicates with non-CAD programmes such as mathematical simulation 

software such as C, C++, MATLAB, and Python. Most users of CAD models or point cloud data 

occasional performs interaction of CAD to mathematical tools but mainly within the CAD/CAM 

community. 

For this project, we investigated the difficulty of exporting the CAD models to a format 

acceptable by mathematical tools for preprocessing, edge detection, surface imperfection 

detection. When built and exported as STL, CAD models are relevant in comparison with 

binaries for exporting data as an ASCII file because mathematical software has the potential 

of detecting its vertices. In addition to this, the tolerance for the ASCII file should be increased, 

providing additional point distribution in a mathematical application for model visualisation. 

A low degree of tolerance makes it very difficult to process as the points were sparsely 

distributed. During the experimental stage, scanning was performed, and when the raw data 

was exported – having XYZ coordinates – the data showed that the scanning process 

generated certain unwanted lines. Each time the scanner was clicked, sets of 

organised/unorganised points were generated depending on the specification, and at the end 

of the experiment, several sets of scans were obtained reflecting each clicking of the scanner, 

but these scans were put together to give a bigger picture of the scanned object. This implies 

that for each scan, new sets of points were generated, and the individual scans are separated 

by a line which is neither a vector nor a coordinate point and thereby, mathematical 

applications cannot read such data except preprocessing is performed in detecting and 

eliminating such properties of the data. Although this does not affect CAD applications in any 

way, the non-vectors or non-coordinate points are unidentifiable by mathematical 

applications making such data communication unfeasible.  

With this challenge, preprocessing of the data is required, and an algorithm for detecting the 

non-numerical characters was developed. This algorithm functions by first detecting these 

characters by searching each line of the data and reproduces the data by eliminating the non-

numeric character during the reproduction. The reproduced data is then saved as a format 

readable by mathematical applications. 
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3.4 3D Feature Identification 

 

Figure 3.8: Processes of feature identification and extraction 

 

The identification of features is an important aspect when performing surface reconstruction 

of a model, as complete knowledge of the geometries associated with the model is required. 

This application as described in Figure 3.8, can be essential for enhancing the integration 

efficiency that exists in the CAD community and can reduce the time and cost of machine-

controlled manufacturing processes. This integration is crucial in establishing proper 

communication between design (CAD) and manufacture (CAM) for downstream applications 

like computer-aided process planning (CAPP). Although much of the CAD method is generally 

understood to be a compositional process of generating geometric shapes from primitives, 

the CAM processes are regarded as decomposition, which identifies and extracts surfaces and 

features on models. 

 3D Best-Fit of Features 

The process of performing the best fit of a set of points is an intriguing part of feature 

identification and extraction. Another name for the best fit is optimal data alignment, and it 

can be described as the process of exploring the best possible ways for transforming 

measurement data together with their coordinate system into a polygon model using the best 

transformation matrix. A good application of best fit in product manufacturing and 

remodelling requires CAD manipulation where point cloud data is rendered and rotated so it 

is symmetric with the CAD model. This is usually used for checking product conformity to 
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specification by comparing the point cloud of the manufactured part to its CAD model, 

checking for deviations and manufacturing accuracy. This process is known as best-fit 

alignment in the Geomagic CAD software used for this project. This process manoeuvres an 

object in sharing physical space with another object, as shown in Figure 3.9.  

 

 

Figure 3.9: 3D fitting to a set of point cloud 

The fixed object (reference object) could be the CAD model, and the floating object (test 

object) – which is the point cloud – is rotated to be correctly aligned to the fixed object. Best-

fit alignment can also be performed between two CADs or two-point cloud models and 

operates in two sections: 



108 
 

• Initial gross alignment where both objects are roughly aligned using a fewer number 

of points of comparison 

• Fine adjustment alignment where alignment is optimised using a much greater 

number of points of comparison 

The number of points of comparison is used in identifying a similar region within a model, and 

it is important that this is not misplaced as it might result in misalignment of the objects. So 

once a particular region is selected on the fixed object, it is vital to select an approximate 

region on the floating object for the best result. 

Fitting or aligning points perform Best-fit to a mathematically perfect feature by assessing the 

selected region, finding the best possible feature inside the region, and aligning all points to 

a model. A challenge to this function is the selection of points. If the selected region does not 

correlate with the desired feature, fitting of the points will be attempted, but the result will 

be undesirable, and this is experienced in situations of manual selection where outlier points 

or points relating to a separate model might be selected. To further explain this, assuming a 

distribution of points represents a sphere, and an attempt to fit a cylinder to such points will 

be undesirable. More recently, automatic feature fitting functions has been developed with 

good accuracy for aligning points. A practical application of an automatic best-fit for this 

project was applied to a set of data points with point distribution related to different shapes 

all in one model. The difficulty faced with such an application is identifying points correlating 

to the desired feature as the model is composed of several other features. For best practice, 

the desired feature is specified, and the approximate location of the feature is also specified 

(referred to as Region of Interest (ROI)). This eliminates the manual process of selecting a 

region and the possibility of selecting points that might not correlate with the desired. 

The results obtainable from performing best-fit includes the model maximum length, average 

error, and RMS error. The maximum length indicates the greatest distance moved by any 

point during alignment, and the average error is the average deviation of all points of 

comparison – the smaller the value, the more precise the alignment. The root-mean-square 

error shows the error of all points of comparison, and the smaller the RMS error, the more 

precise the alignment. 
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 2D Analysis 

For feature identification, 2D analysis can create a profile view of the model compared to the 

areal view. Although an areal view is more desirable, viewing a model in 2D can be very helpful 

in understanding the boundary structure and dimensions and possibly detect any variation in 

the outer boundary. This is more like a simplification technique for models by creating section 

planes using nonlinear analyses in situations where geometry and model features are 

symmetric. A 2D analysis was performed on some of the models used for this project. A profile 

plot of a cylindrical shape is a 2.5D projection of the model, and when the model is rotated 

about the XY-axis with the Z-axis is fixed, a 2D profile is produced due to the sweeping function 

of the rotational matrix. This application presents a 2D analysis of the model used to identify 

possible damage on the model's boundary. A similar application is creating several slices of 

the model about the Z-axis with a predefined spacing (can also be done in X and Y axes). These 

slices set up a 2D analysis of the model from which image processing information can be 

extracted. Other applications of 2D analysis are in the extraction of surface texture 

parameters like waviness and roughness in obtaining information such as flatness deviation, 

profile height, roughness depth, roughness profile depth, arithmetical mean deviation, 

waviness height and RMS value of the surface roughness. 

 From Visual Image 

From visual image introduces the concept of physical inspections of the part. When analysing 

the surface of an object, a CAD model is usually developed except for other forms of surface 

analysis, such as surface texture with respect to surface parameters like waviness and 

roughness. Performing analysis on the CAD model sometimes requires prior knowledge of the 

object, which can be done by visual inspection. Visual inspection also equips the personnel 

with the good understanding required when incorrect results are obtained. 

 Data Segmentation 

Segmentation is performed mainly on dense triangular meshes generated from scanned data. 

Triangular meshes are usually optimised, having non-uniform vertex distribution where big 

triangles represent flat or almost flat regions, while many small triangles clustered together 

represent highly curved regions. These are unwanted surfaces as they appear as spikes and 

are due to incorrect filling of holes.  
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Segmentation can be described as the process of creating subdivisions of a model into a set 

of regions that do not superimpose on each other and, when combined, produce the entire 

model. These sets of regions correlate to objects and their important parts. The input to this 

system is usually a preprocessed image with an output that depicts the regions found within 

the model. Once the segmentation is done, the regions can be represented, analysed, 

described, and classified using feature extraction and visual pattern recognition methods. 

Segmentation algorithms are mostly developed based on discontinuity and similarity of 

features or a combination of both systems. Although these algorithms are implemented with 

a common goal, they differ in image type (such as binary, gray, colour), mathematical 

structure (such as morphology, statistics, graph theory), features (intensity, colour, texture, 

motion), and appropriate technique (top-down, bottom-up, graph-based) [140]. 

Segmentation algorithms have been organised according to [140] as follows: 

• Intensity-based methods are dependent on how pixels are positioned, and a good 

example is thresholding. These methods are also known as non-contextual methods. 

• Region-based methods rely on the condition between a pixel and its neighbours in 

terms of adjacency and connectivity. They are also known as contextual methods. 

Examples include region growing and split and merge. 

• Other methods are based on texture, edges, and motion.   

The intensity-based methods are the most straightforward methodology for performing 

segmentation, and they require the pixel statistics of an image in the form of a histogram. 

They use these statistics in determining what pixels should be grouped like objects and what 

pixels be labelled as background, and the most used method in this category is the 

thresholding method (image, global, optimal, and local). Thresholding is widely used in image 

processing for its intuitive properties, simplicity, and ease of implementation. It gives better 

control of how the application performs segmentation. The region-based method does not 

consider pixels as part of an object, and it considers the relatedness amongst pixels in 

determining which are of the same region (belong to an object) or pixels that are not. 

3.4.4.1 Region Growing 

Region growing is a segmentation process of grouping models of similar geometry properties 

into a specific group. It is part of the region-based method of segmentation. The aim is to 
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segment features into meaningful regions and, by meaningful region, is described as a region 

with specific geometric properties common to all models. These properties could be surface 

curvature and normal, geometric entities, features, and a similar structure in terms of 

features (vertexes and edges). For image processing, this method uses a bottom-up approach 

starting from a pixel and grows a region that encompasses the image provided the newly 

developed region satisfies a homogeneity criterion. The key factors for performing region 

growing include the choice of similarity criteria, the selection of seed points and the definition 

of a stopping rule as stated by [140].  

 RANSAC Estimation and Linear Scattered Interpolation 

Random sample consensus (RANSAC) and linear scattered interpolation (LSI) were two 

methods of feature detection and extraction investigated in this project. There are many 

features detection and extraction methods from research on automatic feature recognition, 

but the reasons for choosing these two systems will be discussed further in chapter 5. The 

RANSAC method performs the extraction of shapes by creating marginal sets from the point 

cloud and constructs primitive shapes from these sets. RANSAC aims at defining captured 

points based on two input data classifications, the outliers and inliers. They function by 

specifying the region of interest that contains inlier points representing a specific primitive. 

The LSI method uses an interpolation function in determining the properties of an irregularly 

spaced data point in terms of differentiability, continuity, and smoothness. The LSI is one of 

the three interpolants, and the linear interpolant was preferred for its speed and ease of 

application on primitive shapes. Both methods were compared in terms of their efficiency in 

prediction accuracy and speed.  
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3.5 Identification of Areas of Damage  

 

Figure 3.10: The concepts and proposed methods for detecting damage 

 

An essential part of reconstructing a potentially damaged surface is the identification of 

damage present on the surface, and this process is illustrated in Figure 3.10. It presents 

alternative methods to achieve the identification and classification of slices from model 

sectioning. The identification is quite a complex analysis regarding determining what actual 

damage is and what is not, and what type of damage are we dealing with?  What appears to 

be a damage or surface imperfection according to ISO 8785 might be part of the design intent 

or actual damage, and how can we evaluate this? These questions become highly compelling 

when performing a 2D analysis of the whole model; although 2D provides vital information, 

it might be challenging to ascertain what damage is and its intended design. A simple but not 

the most efficient way to dealing with this challenge is by visual inspection of the part or 

having prior knowledge of what the part looks like. As visual inspection is not efficient but 

important, it has become necessary to develop an accurate and efficient method for detecting 

potential damage automatically. Also, the classification of these damages in relation to causes 

and could be due to machining error, scratch, dent, or deformation due to several reasons. 

Although it is not left to us to determine what inflicted the damage, an understanding of what 

type of damage we are dealing with is an important part of this process.  

 To identify areas of damage, this project employed a 2D analysis approach compared to 3D 

visualisation because, with 2D, the boundary structure of the surface can be obtained by 

creating a profile view of the whole model. Using this profile, a new application using a 
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rotational matrix was developed. Although the rotational matrix is not a new concept, it has 

not been used on profiles for detecting damage. Another approach was creating several slices 

of a model with a predefined distance to produce 2D plots from which damage can be seen 

but by visual inspection. Moreover, how do we ascertain that it is actual damage or a design 

intent feature? This will be discussed further in chapter 6 when feature profiles are extracted. 

 "Form Error" Analysis 

Form error is an analysis of point cloud data when performing feature fitting. In feature fitting, 

a geometric feature is fitted to a point cloud using the average number of inlier points 

representing the specific geometry. These points are generally selected, and the appropriate 

geometry is fitted to the selected points but not without the outliers. The fitting function uses 

as many points as possible that fall within the model's dimension, but outliers can be seen to 

influence the form error of the function, although the form error value does not affect the 

fitting function. 

 2D Profiling 

Profile monitoring is used in describing the boundary structure of a machined part with the 

identification of parametric models [141]. The machined part boundary can be described by 

parametric models, which can be differentiated by predictable behaviours of the model 

having natural variability. These predictable behaviours are known as the manufacturing 

signature, which provides a profile image of the machined part, and the manufacturing 

signature is the standard pattern that differentiates all process-made features. They are used 

to plan appropriate profile monitoring procedures. A parametric model known as the 

smoothing spline for profiling monitoring was used in work by Gardner et al. [142] and William 

et al. [127]. Non-parametric forms of estimating profiles were also used by the latter [127].  

Eric, et al. [128] argues that the use of spline belongs to a wide range of non-parametric 

estimators with fewer constraints than parametric methods with undesirable properties but 

can provide a feasible alternative to parametric models. A spline smoothing estimator does 

not provide a good model for a profile with specifically unsmooth characteristics, such as 

jumps or points of non-differentiability [128]. The information obtained from point cloud 

profiling is used in performing other applications such as analysis on the machined parts to 

3D reconstruction and extracting the contour lines in an image. 
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 2D Edge Detection 

This is an important part of image processing as the edges in an image represent the outline 

of objects or features within the image. They are primarily used in boundary detection and 

feature recognition. Given a grayscale or textured image, the edge detection algorithms 

convert them into a binary form that produces gradient images and, in some cases, edge 

maps, which gives information of the original image content. 

 Point Distribution  

This has to do with how points obtained from a scanning process are positioned or spaced. 

This positioning or distribution depends on the surface type, how light is incident on the 

surface, and how the scanner's camera captures points. For example, a machined part with a 

surface finish with the spindle movement seen will produce a different point distribution than 

a finely finished surface, cast, or 3D printed surface. Sometimes, points are captured as a 

cluster, while others are sparsely spaced, and some overlap with others. Occlusion of the 

range of view of the laser line can also result in a different form of point distribution and the 

effect of light on the surface. The reflectivity of the surface is also a factor that directly affects 

how points are distributed. When a surface is scanned, the cloud points are distributed such 

that the points correspond to the surface, which is known as point distribution given a shape. 

 Long-Short Term Memory 

Long-Sort Term Memory (LSTM) is a Recurrent Neural Network (RNN) with connections to the 

previous state, enabling it to retain previous information to perform classification. Sequence 

data are examined in context and coupled with the knowledge of the previous data; the 

network can make an improved association when making decisions.  

 

3.6 Dimensioning of Identified Features 

 

Figure 3.11: Proposed techniques for feature dimensioning 
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The identified features are actual objects with dimensions, and when their 3D information is 

obtained, it is expected that the 3D models have similar values to the real objects. When 

feature recognition is performed, the extracted feature is measured to compare its 

dimensional values to that of the real object. The closest dimension of the 3D model to that 

of the real object indicates how accurate the algorithm performs extraction and the accuracy 

of the scanning process. The proposed technique for performing dimensioning is shown in 

Figure 3.11. 

 Location 

As a geometric application, the location of features within a dataset is an important piece of 

information, mostly when performing feature extraction. For RANSAC and LSI algorithms, 

where a dataset contains several other features, to recognise and extract specific features, 

the location must be detected, termed the region of interest (ROI). This location information 

helps the algorithm constrain the search, making it fastest as the algorithm tries to identify 

points that correspond to the desired shape. Not having this information will produce an 

undesirable result where the system might take a long time because it searches for 

corresponding points or fits features to the whole model. 

 Orientation 

This has to do with how the axes change with respect to each other. A slight change in the 

angle of an axis will give a different result as to what is required. For example, if a cylindrical 

model is plotted in 3D with all three axes at 90 degrees to each other when carrying out 2D 

analysis such as slicing, it is expected to obtain a perfect circle when sliced in the Z-axis. 

Assuming the model is reoriented slightly from 90 degrees – either more or less than 90 

degrees, the outcome of the slice will be an oval shape compared to a circle. This analysis is 

important for the integrity of the data generated from the slices for possible use in machine 

learning. Having to produce several 2D slices with non-uniform centralisation will be 

detrimental to the quality of the result obtained, defeating one of the objectives of this 

project. 
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3.7 Intelligent Dimensioning 

 

Figure 3.12: Proposed methods for investigating extracted measurement information 

 

Intelligent dimensioning was proposed to investigate the concept of design rationale that 

explores the explicit reasons behind design decisions. Also investigating unit of measurement 

for extracted dimensions – are dimensions exact? And if approximated – are dimensions 

rounded up to the nearest whole number value while examining what unit of measurement 

with respect to either metric or imperial units. This approach should explore the relationship 

with adjacent features in freeform or complex shapes as shown in Figure 3.12. For example, 

the transition of geometric properties where a sphere sits on a cylinder or a cylinder on a 

cone. Extra care is required to maintain a good level of point density, avoiding the removal of 

key features during data processing. 

 

3.8 Generate Design Drawing 

 

Figure 3.13: Generating design drawing for performing reconstruction 

 

Figure 3.13 illustrates the proposed approach of generating a design drawing of a model. This 

approach could employ both contact and non-contact methods as described in the data 

acquisition of section 3.2.1. Design drawing can be generated by meshing point cloud data in 
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Geomagic and exporting it to Solidworks to produce a design drawing, as shown in Figure 

3.14. 

 

Figure 3.14: Solidworks design and dimensioning of a model 

 

3.9 Measure And Verify Reconstructed Artefact 

 

Figure 3.15: Verification of reconstructed surface 

The RE/SR framework includes verifying the idea at the end of the process against the 

manufactured part using some of the methods suggested in Figure 3.15. The verification 

certifies that the initial idea behind the design correlates with the real part in terms of 

dimensions, functions, and appearance and highlights maximum deviations to ensure an 

accurate digital representation of the real part. An exception to these factors is when a part 

is modified, remodelled, and improved, as RE can improve the functionality of a part.         
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3.10 Summary      

This methodology chapter described the methods in the proposed SR/RE framework for 

achieving the aims and objectives of this project. The framework was developed using a mind-

mapping application indicating areas of concentration, methods that have been 

implemented, and alternative approaches to the proposed methods. Also, methods of further 

works to achieving the final goal of performing reconstruction and verification such that the 

reconstructed model is a direct representation of the real part. 
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Chapter 4 Edge Detection and System Optimisation for Image 

Processing 

This chapter investigated the application of edge detection algorithms for the identification 

of edges within the frame of an image. A description of the edge detection concept was 

presented in the literature section, but this section will concentrate on using the Canny edge 

detection operator.  

As shown in Figure 4.1 below, is a situation where the ROMER Absolute Arm CMM was used 

to scan over an object (Honda engine cover) to collect point cloud data from its surface in X, 

Y, and Z coordinates using an ultra-wide laser strip of up to 150 mm and an integrated RS4 

laser to capture 752,000 points per second. Being a part with a combination of both freeform 

and geometrical shapes, the concentration for this application on the geometrical shapes, and 

this has a diameter of 236 mm for the outer cylinder. PC-DMIS was used to automatically 

capture the sampled points of the object, which is then projected as a 3D model as the laser 

line runs over the surface. As the laser line scans over the surface, the system has an 

automatic stitching function that captures points continuously as it is aware of the object’s 

position in the coordinate frame.  

 

Figure 4.1: Sectional view of a damaged object with a cylinder positioned on a cone showing the intensity of 
damage creating a blend between both features 

 

Using GEOMAGIC STUDIO 12 for reconstruction, the 3D model was translated into a CAD module. 

When imported into GEOMAGIC, the point cloud data was captured as XYZ-file, cleaning up was 

Ø 236 mm 
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performed on the surface before translating into a wrap file (polygon mesh). Here the CAD 

module is translated into its Delaunay triangulation. The software helps to restore boundaries 

and fill holes with a little geometric forecast, but the process requires huge human influence. 

When digitising has been performed and reconstruction of the Voronoi, the circled region was 

very challenging for reconstruction using the Voronoi of the surface points. This commenced the 

investigation of edge detection and automatic feature recognition in an attempt to create a 

boundary between both geometries (cylinder and cone). The initial damage to the object can still 

be seen after reconstruction, as shown in Figure 4.2 below. The damage on the side was 

successfully reconstructed, while edge detection and feature recognition are needed on the top. 

This also depends on the degree/intensity of the damage. 

 

Figure 4.2: CAD module of the scanned object 
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4.1 Canny Edge Detection Operator 

 

Figure 4.3: The Canny edge detection operator process 

 

The Canny process of edge detection, as shown in Figure 4.3, begins by first thinning of the 

edges within an input image to the size of a pixel (one pixel wide) because it is more 

concerned with the location of the edge and not how thick the edges are. It then uses a 

hysteresis thresholding method known as two-level thresholding. Considering Sobel's 

orientation, an assessment is done to determine if the edge is a local maximum for every 

pixel (meaning it is more significant than its neighbours). For example, examining a single 

pixel 𝑥 in the image shown in Figure 4.4 below, the Sobel X and Y operator is performed on 

it to produce 𝑔𝑥 and 𝑔𝑦, and the magnitude of the edge is computed together with the 

magnitude of its neighbours to determine if 𝑥 is bigger or smaller. Canny takes the 

information from the orientation of the edge based on the output of the Sobel operator 

arctan (𝑔𝑥 𝑔𝑦⁄ ) to determine if 𝑥 is more prominent than its neighbours. This is applied to 

the whole image, which produces thin edges, and the obtained information is vital to the 

peak of the centre of the required response. The mask convolution used was the Sobel 

vertical derivative as its output is the input to Canny and this can be found in Table 2.6. 

 

 

Figure 4.4: Showing how the local maximum of a pixel relates to its neighbour in both X and Y directions. 
Reproduced from [90] 
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The second stage is to create an image with dominant edges ignoring other factors around 

it, which could be an edge not up to the local maximum as they produce weak responses and 

appear as noise. A two-level hysteresis threshold is used to determine what edges are 

important and what edges are not. For example, in a threshold range of 0 to 255, with 0 as 

no edge and 255 as the strongest possible edge, the task is to determine what value is 

considered good from this range. A low value could produce edges with the weak response 

having lots of noise, and a high value could produce very sharp discontinuities discarding 

other important edges connected to the good edge but fall below the threshold.  

Any edge above the top threshold is defined as a good edge, and any edge below the bottom 

threshold is automatically discarded, and any edge between both thresholds and is linked with 

the edge above the top threshold is acceptable, as illustrated in Figure 4.5. This preserves the 

core edges required for image processing applications. The output from the Sobel is taken as 

input to the Canny operator, thereby making it better or produces valuable information for image 

analysis. Like most operators, the input image is converted to grayscale to identify boundaries 

due to clear variation in the pixel of the edges when in grayscale.  

 

Figure 4.5: Hysteresis thresholding showing both acceptable and non-acceptable edges. Redesigned from [90] 

 



123 
 

The Canny algorithm is focused on an optimal edge detector provided some parameters are 

met. These parameters include classification of most edges by decreasing the error rate, 

maximising the localisation of an edge by labelling edges in proximity to an actual edge, and 

edges are labelled a single time if a single edge is present for a minimal response. The optimal 

detector that meets these parameters can be approximated using the Gaussian function as 

stated below  

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒
−(𝑥2+𝑦2)

2𝜎2     (4.1) 

𝜕𝐺(𝑥,𝑦)

𝜕𝑥
∝ 𝑥𝑒

−(𝑥2+𝑦2)

2𝜎2      
𝜕𝐺(𝑥,𝑦)

𝜕𝑦
∝ 𝑦𝑒

−(𝑥2+𝑦2)

2𝜎2    (4.2) 

The image is smoothed by convolving with a Gaussian filter, and the gradient is obtained by 

passing the result of the image smoothing through a convolution operation to produce a 

Gaussian derivative in both directions. The convolution operation is expressed as  

𝐼′(𝑥, 𝑦) = 𝑔(𝑘, 𝑙) ⊗ 𝐼(𝑥, 𝑦) = ∑ ∑ 𝑔(𝑘, 𝑙)𝐼(𝑥 − 𝑘, 𝑦 − 𝑙)

𝑁

𝑙=−𝑁

𝑁

𝑘=−𝑁

 

           (4.3) 

Given that 𝑔(𝑘, 𝑙) is the convolution kernel, the original input image is 𝐼(𝑥, 𝑦) with its filtered 

form as 𝐼′(𝑥, 𝑦). The size of the convolution kernel is expressed as 2𝑁 + 1. Both Gaussian 

mask and their derivatives can be separated, meaning the 2D convolution can be simplified 

[94]. 

Generally, the assessment of Canny algorithm performance densely relies on the adjustable 

parameters 𝜎 and threshold limits, where 𝜎 represents the standard deviation for the 

Gaussian filter and controls its size. A greater value of 𝜎 is directly proportional to a greater 

value in the size of the Gaussian filter, and this means that more blurring of the image is 

required for noisy images, and more prominent edges can be found. Inversely, a smaller value 

of 𝜎 means a smaller Gaussian filter, thereby restraining blurring and keeping very fine edges. 

These parameters can be adjusted to adapt to various environmental effects having distinct 

noise levels. It is supposed that the bigger the Gaussian noise, the less precise the edge's 

positioning is [94]. The thresholding application is shown in Figure 4.6. 
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Figure 4.6: The Canny process of edge detection using hysteresis thresholding from the input from Sobel 

 

4.2 Python Opencv for Edge Detection 

The reconstruction process of the CAD model presented in section 4.1 was quite challenging 

as the damage at the top of the model was intense, and it was difficult for the system in 

predicting the geometry. A cylinder sits on a cone-like geometry from the model, and with 

the huge damage, there is a blend between both features. Several edge detection algorithms 

were implemented in python OpenCV with a live feed camera in detecting the edge around 
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the damaged section. The edges within the view of the camera were detected as the 

visualisation progressed. The presence of a light source creating different light intensities can 

either make the system lose some edges or make some edges more visible resulting in the 

detection of non-edges. The non-edge detection is an excellent example of the second 

criterion of Canny to good localisation of edge points resulting in a reduced distance between 

the detector and centre of a true edge. The sensitivity of Canny is shown below in Figure 4.7 

through to Figure 4.9 as actual edges are detected by returning a single point response. 

 

 

Figure 4.7: Canny Edge detection operator from a live feed camera 
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Figure 4.8: Canny edge detection with the effect of an external light source from a live feed camera 

  

 

 

Figure 4.9: Canny edge detection with sensitivity to noise from a live feed camera 
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Figure 4.10: A captured image of the damaged object 

 

 

Figure 4.11: Canny edge detection algorithm of a captured image of the damaged object 

 

The image in Figure 4.10 is the captured image of the damaged part, and this image was used 

in MATLAB for performing edge detection using the Prewitt edge detection algorithm. 

Although some edges were not clearly detected, as shown in Figure 4.11, the detected edges 

appear as an array of points distributed along that edge part created by the difference in 

intensity level in the image. The missing points are the undetected edges resulting from a very 
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low-intensity variation that cannot be detected with low sensitivity algorithms. In this case, 

the lost edges are because of the shadow created by the effect of a light source. Using the 

image of Figure 4.10, further investigation was performed using other edge detection 

algorithms, as shown in Figure 4.12. Edge detection by first-order derivatives such as Robert, 

Sobel, and Prewitt produced very similar output responses with less sensitivity, thereby losing 

some edges. The sensitivity of the Canny algorithm can be seen in Figure 4.12(e), where the 

system detected all possible edges alongside the surface on which the object was positioned, 

as shown in Figure 4.12(e-g). Some elements on the surface of the object were also detected 

as noise, and this is due to the surface texture, as very unsmooth surfaces could create an 

intensity easily identifiable by Canny as an edge which explains its sensitivity to noise. The 

noise was taken out when the object was placed on a supposed smooth surface, and the 

edges could be clearly defined, as shown in Figure 4.13. 

 

(a)             (b) 

 

(c)        (d) 
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(e) 

 

(f) 

 

(g) 

Figure 4.12: (a) show shows the captured image of the damaged part (b) edge detection using the Prewitt 
algorithm (c) edge detection using the Robert algorithm (d) edge detection using the Sobel algorithm (e) edge 

detection using the Canny algorithm (f) comparison 
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(a) 

 

(b) 

Figure 4.13: Edge detection on a smooth and non-reflective surface 
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4.3 System Optimisation 

The optimisation of systems demonstrates that process-controlled operating systems can be 

enhanced. An optimisation is improving the productivity or output performance of a process, 

product, system, or procedure. This process could make a system more robust, stable, better 

performance response and accuracy, and reduce running time and cost [143]. Optimisation 

can be based on theory, algorithm, or application. Based on this classification, there is a 

relationship between theory and algorithm, and likewise, a relationship between algorithm 

and application. Optimisation determines the optimum and minimum of a deterministic 

mathematical function, sometimes having independent variable restrictions that could 

influence optimisation algorithms' performance. These variables could be several decision 

variables, constraints, and features of both the objective function and the constraint. The 

objective function is described as a function of the design variable.  

Several problems can arise during system operations, and most of the issues can be modelled 

as optimisation problems. These problems are solvable by creating a plot of the objective 

function to find the least constrained or unconstrained variable function. Optimisation 

problems are classified as constrained and unconstrained optimisation problems. The Linear 

Programming Problem (LPP) is considered an optimisation problem if its objective function 

and constraints are linear functions of the design variable. These problems are found in 

industrial sectors with a constant desire to improve the performance of existing or proposed 

processes. To create a solution for optimisation problems, certain factors such as numerical 

performance, robustness and ease of computer implementation are analysed to obtain an 

efficient algorithm. These are necessary when developing software for optimisation 

algorithms with efficiency and reliability. 

 Simplex Optimisation 

4.3.1.1 The use of FMINSEARCH for System Optimisation 

An optimisation is described as a mathematical method of determining the minimum value 

of a function obtainable by minimising the objective function and variable describing the 

function. These variables are known as design variables. FMINSEARCH is a MATLAB function 

for solving unconstrained optimisation problems. By unconstrained, we are referring to 

systems that do not require derivative information in performing optimisation. To investigate 

the behaviour of this optimisation function, a system having a predefined set of points was 
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generated by using the parametric function for a circle, and a circle of best fit was fitted 

through these points using a MATLAB function CIRCFIT. Optimisation can be classified as both 

a univariant and multivariant system when similar factors permit the accessibility of the 

difference in interaction occurring between variables. To accomplish this, the initial guess 

(factor) of one or both variables can be altered. This change in the initial guess helps the 

system, with no derivative information but an initial estimate, in identifying the minimum 

scalar function having 𝑛 variables. From Figure 4.14, the system was applied to a set of points 

evenly spaced with no noise in finding the best fit of a circle to the points. The goal was to 

plot a circle of best fit through these points having a specified centre and minimising the effect 

of outlier points. It was beneficial in achieving this goal as this concept was applied when 

fitting features such as cylinder, cube, and sphere to a set of point cloud data. In testing 

system robustness, the same process was applied to a set of points with simulated 

measurement noise, as shown in Figure 4.15, and the system was able to fit a circle to the 

noisy data. Additional analysis was performed to further assess the system’s robustness by 

simulating missing data, and measurement dent was computed. 

 

 

(a) 
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(b) 

Figure 4.14: plots showing (a) optimisation plot function of the system without noise and (b) the circfit function 
showing how the circle fits the generated points. 

 

 

(a) 
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(b) 

Figure 4.15: Plots showing (a) optimisation plot function of the system and (b) the circfit function showing how 
the circle best fits the generated points with measurement noise. The centre of the circle is perfectly aligned to 

the centre of the sampled points. 

 

From Figure 4.15(a) and Figure 4.16(a), the optimisation plot function indicates how the 

measurement density produces an element of stress on the algorithm, and this is reflected in 

(b) as missing data in the measurement data. Despite the missing data, the system optimises 

the simulated points. A simulated dent was added to the data to test the system's robustness 

further, as shown in Figure 4.17. The simulated dent was aligned to the edge of the missing 

section, and by mathematical calculations, the angle was measured using the radius of both 

circles and the measured distance from where their centre and radius intercepts. The system's 

noise to radius ratio was calculated where the amount of noise visibility is proportional to the 

radius. When a little noise is applied to a system with a large radius, it produces a system that 

appears like a perfect circle, but the noise level can be seen when zoomed in. All possible 

outcomes for different scenarios can be found in Table F.0.1, Appendix F MATLAB Code for 

Simplex Optimisation Adapted from MATLAB. The table showed the system's robustness with 

the presence of noise, dent and missing information and identified the feature. 
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Bringing in the concept of the damage on the Honda cover, the cylindrical shape has a bulging 

section, and that can pose as noise when trying to fit features to the points to obtain a perfect 

geometry. Since the surface area of the bulge to the whole model is very minimal and from 

the previous discussion of the radius to damage ratio, optimisation of the system was not 

affected by this amount of damage. The optimisation was also used when a sphere was fitted 

to a set of point clouds in Geomagic CAD application. Based on this analysis on the 

optimisation process, an observation was made when the diameter of the sphere fitted to 

points generated from the calibration sphere of the Arm was compared to the calibration 

certificate by UKAS; this was within 0.0315 mm. This value indicates how well the system can 

fit a feature to a point cloud data having outliers and form error value can be affected. The 

outliers do not affect the fitting operation as the system optimises the maximum number of 

inlier points in the data. 

 

                

 

(a) 
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(b) 

Figure 4.16: Plots showing (a) optimisation plot function of the system and (b) the circfit function showing how 
the circle best fits the generated points with missing data. The centre of the circle is perfectly aligned to the 

centre of the sampled points 

 

(a) 
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(b) 

Figure 4.17:  Plots showing (a) optimisation plot function of the system and (b) the circfit function showing how 
the circle best fits the generated points with measurement noise. The centre of the circle is perfectly aligned to 

the centre of the sampled points 

 

4.4 Phase Stretch Transformation (PST) 

Phase Stretch Transformation is a method of transforming digital images by simulating 

electromagnetic wave propagation through a diffractive medium with a dispersive 

(frequency-dependent) dielectric function such as refractive index. The phase of the 

transform has properties that make it easy to detect image edges and sharp transitions. It 

uses an all-pass phase filter coupled with a definite frequency that relies on dispersion to 

imitate diffraction. Like edge detection, it is used for object detection and classification by 

relying on the symmetry of the dispersion profile and can be explained using dispersive 

eigenfunctions or stretch modes.  

This method first smooths the original image using a localisation kernel and then passes 

through a phase operation called Phase Stretch Transformation (PST). In the frequency 

domain, PST uses the 2D-phase function for the image. The phase count used on the image is 

dependent on frequency, i.e., a more significant number of phases is used on an image with a 

higher frequency. As image edges have higher-frequency characteristics, the PST emphasises 

the image edge details by adding higher frequency characteristics in more phases. 
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Thresholding the PST output phase image will aid in extracting image edges, which using 

morphological operations can process the image further [144]. An application of PST on PCD 

is shown in Figure 4.18, showing how some definite edges on the original image are not 

detected. However, it was able to detect edges that appear to have a higher resolution, as 

shown with the two straight horizontal lines in the figure. Nevertheless, edge detection 

algorithms appear to perform poorly with PCD. 

 

Figure 4.18: Edge detection using phase stretch transformation 

 

4.5 Summary 

This chapter investigated the concept and different types of edge detection operators, 

proving that the Canny algorithm is best due to how it handles noise and its response to 

produce definite edges. This application will be used in Chapter 5 in order to decompose 

complicated parts into areas of identifiable primitive geometries. Also, the simplex 

optimisation algorithm will be employed in chapter six when creating slices of a model in 

performing the best fit of the points.  
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Chapter 5 Automatic Feature Recognition (AFR) 

5.1 Brief Description of Two AFR Methods 

Machined surfaces contain various connected, expressive regions known as features that 

have a specific structure or topology significant to manufacturing and design. The technology 

of feature recognition has become a widely used application for CAM. This has resulted in 

developing two major approaches: feature recognition using CAD models and design using 

geometric features [145]. The development of the CAD modelling technique for geometric 

modelling has allowed the design and representation of complex features for different 

industrial applications, such as aircraft components, mould and die components, reverse 

engineering, animation, production/design, gaming, and research applications. Primitive 

surfaces are composed of more than one distinct work part from a machining point of view, 

using a few processes. Once machining occurs, the different machining components must be 

known; else, a sufficient surface area will be challenging to create. Also, for intended 

concavities which may appear as damage due to the light they scatter in relation to the 

reference surface, it is important to establish a distinction between an intended design and a 

damage. This can be performed by inspection using a method known as rotational matrix 

presented in section 6.3 of this thesis, where the geometric continuity of a model can be 

assessed as its boundary profile is rotated about an axis. For an intended concavity, the light 

scattering is expected to produce ordered points when the laser beam hits the surface as 

compared to the scattered points of a localised damage. Other methods of assessing surface 

imperfections as described in ISO 14997:2017 include dimensional and visibility methods.  

It is assumed that the use of feature extraction on machined surfaces with machining patches 

and cloud-point data allows for analysis, understanding of how surfaces function and the 

purpose behind their designs. However, some classic algorithms [146-148] have constraints 

on the features’ type and surface topology. When surface points are captured (point 

distribution), a slight variation in the continuity of patches on machined and 

moulded surfaces may occur. Recognition speed was not the focus of previous works [149, 

150], but algorithms with computational time specific to the model have been developed, 

which may play an essential part in some applications such as reverse engineering, 

automation, and robotics handling. In this project, two algorithms were compared for their 

stability and accuracy in extracting features, namely the Random Sample Consensus (RANSAC) 
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and the Linear Scattered Interpolation (LSI) algorithm. The RANSAC was designed to identify 

primitives, and in keeping with our recent experience, LSI is a modern primitive detection 

technology, and the identification speed is compared to RANSAC. Measurement data is used 

as experimental data for evaluating these algorithms. 

A point cloud fitting function pcfitcylinder has been found to best fit a cylinder to point cloud 

data with a maximum permissible distance from the inlier points to the cylinder. A region of 

interest (ROI) is specified to restrict the search to enable the system to run faster, and the 

system uses the inlier points in the ROI to best fit a cylinder to the cloud points of a model. 

The function uses a robust M-estimator Sample Consensus regression system (MSAC) [151]. 

This system uses other adjustable parameters such as orientation constraints as a 1-by-3 

reference orientation input vector, absolute angular distance, linear indices relating to both 

inlier and outlier points and mean error of the distance of the inlier points to the model. The 

data were obtained by using an RS4 scanner attached to the Articulated Arm. Before 

importing into MATLAB, cloud points were captured and preprocessed using recommended 

experimental setup. This is shown in Figure 5.1 below. 

 

 

Figure 5.1: Measurement data of different geometric primitives 
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The ROI is defined using a point cloud specific function known as pcshow as an initial 

projection of the point cloud representation in the cartesian plane. Hence, a human 

contribution is needed to estimate the area within which the inliers of the desired feature can 

be found from the entire point cloud. A large ROI will increase the time it takes to run the 

programme and can be reduced by automating the process of specifying the ROI. The 

pcfitcylinder provides measurement information about the model after the fitting/extraction 

operation. Information relating to the position and direction of points in X, Y, Z coordinates, 

radius and the centre point of a model can be extracted using this function. 

Further validation is necessary to check with all these parameters how best the system fit the 

model accurately, and this can be performed on the actual artefact with a CMM. Another 

concept to consider is when an artefact comprises of different geometrical shapes like the 

one in Figure 5.2 below. In such a situation, the fitting function and ROI can identify and 

accurately fit a desired geometry to the specification. This model has two different sections 

of cylindrical geometry; one links the base while the other holds the sphere. A random fitting 

of a cylinder to this model will most likely happen on the cylinder with the larger area mass, 

as shown in Figure 5.3, and the Z-axis must be specified in the ROI for feature fitting on the 

smaller cylinder as they both have the same centre point as shown in Figure 5.4. This is 

because the function requires point cloud normal, and when not specified, it fills it with six 

points as a representation of the local cylinder. It finds this local cylinder by computing the 

maximum distance from an inlier point to the cylinder, and in most cases, it is expected to 

perform this computation on models containing more points over a large area. 
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Figure 5.2: Point cloud of the Articulated Arm calibrator having different primitives in the whole artefact 

  

 

Figure 5.3:Showing how the function fits a cylinder to the point cloud 
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Figure 5.4:  Showing how the function fits a cylinder to the primitive holding the sphere 

 

Dimensional measurement with a micrometre, CMM and laser scanning was achieved on the 

Arm calibration sphere. MATLAB and Geomagic analysis was carried out after dimensional 

values were generated from fitting a model to points. The sphere has a UKAS calibration 

certificate with a diameter of 25,39995 mm in 2017 and was used for other methods as the 

reference value. All three methods had 0.315 mm as the highest discrepancy with cylinder 1 

(with the sphere attached) and 2 (fixed at the base). The highest discrepancy was achieved in 

cylinder 2, with a 0.2655 mm difference between Geomagic and MATLAB. These 

discrepancies are caused by factors of uncertainties, such as a human error in using a 

micrometre and the quality of the cloud point data from the Articulated Arm and the factors 

that influence measurement using the Arm. Figure 5.5 shows the colour map of how the 

function fits a feature to a point cloud within tolerance. Further analyses show that the 

feature is 0.315 mm up to the sphere, but the error in its form is 0.2144 mm. Figure 5.5 shows 

the colour map of how the function fits a feature to a point cloud within tolerance. Further 

analysis shows that the feature is 0.315 mm up to the sphere, but the form error is within 

0.2144 mm. This form error was a result of noise – some points fell outside the ROI. However, 

the accuracy of the fitting function has less been affected because the inliers in the point 

cloud have been optimised.  
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Figure 5.5: Colour map showing tolerance level of the fitting feature to the point cloud 

 

 Random Sample Consensus 

Random Sample Consensus (RANSAC) algorithm is used to randomly draw marginal sets from 

the point cloud and construct the corresponding primitive forms. Fischler and Bolles [152] 

introduced it for the first time in 1981. This approach simulates parameters associated with a 

noise-contaminating data model in fields like image and signal processing. The RANSAC 

algorithm is primarily concerned with identifying the points identified by two categories of 

input data: outliers and inliers. The RANSAC algorithm requires two stages, known as the 

hypothesis and the test phase. 

The hypothesis phase uses its strategy for minimal data sampling points. This means that the 

parameters of the models are determined by comparing them with the entire collection of 

data with the minimum sampling data points obtained from the sampled random data. The 

minimum sample collection is determined in the second process. Points closest to the model 

are preferred, while points farther away are refused. The Minimum Sample Set (MSS) is 

a configuration from all points listed in the Consensus Set (CS). The algorithm is continually 

applied until it comes under a certain threshold for all points in the CS. The best CS points are 

chosen to represent the final configuration based on the approximate number of iterations. 

The points selected are known as inliers. One advantage of the RANSAC algorithm is that it is 

possible to suit models saturated with noise and its methods allow the user to monitor the 

extraction mechanism of the algorithm more effectively. 
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The MLESAC or MSAC algorithm and PROSAC algorithm, are some of the improvements 

required to increase the computational speed of the RANSAC algorithm. The initially 

developed MLESAC or MSAC algorithm [141] can use M-estimates to estimate the expected 

inliers based on the CS data. It is calculated that the likelihood of CS occurring is the better 

solution. For this investigation, the MSAC algorithm (a version of the RANSAC algorithm) was 

used to derive cylindrical shapes using its parametric function from an AACMM dataset. The 

Guided-MLESAC algorithm was an enhancement of the MLESAC algorithm suggested by 

Tordoff and Murray [153]. Compared with iterative random samples, this algorithm resolves 

MLESAC's limitations by estimating the likelihood using guided input information. This 

approach is identical to the process in this paper where extraction/assembling of a 

component is carried out on a model with multiple shapes, and not specifying the desired 

shape produces undesired results as the system tends to apply the parametric function of the 

selected shape to the whole model producing undesirable results.  

 Linear Scattered Interpolation  

The linear scattered interpolation (LSI) approach can be used in different fields, including 

machine vision, digital graphics, and face recognition. Given a set of irregularly distributed 

data 

𝑃𝑖 = (𝑥𝑖, 𝑦𝑖),     𝑖 = 1, … … . 𝑚    (5.1) 

The spacing of irregular data points 𝑃𝑖 over real and scalar values given by 𝐹𝑖 matches 𝐹𝑖 =

𝐹𝑖(𝑥𝑖, 𝑦𝑖) for an integral function in which 𝐹(𝑥, 𝑦) provides an interpolation function as  

𝐹𝑖(𝑥𝑖 , 𝑦𝑖) = 𝐹𝑖     (5.2) 

All points are considered not to be collinear and distinct from each other. It is stipulated in 

this text that the dispersed points known as Pi are in a plane, and 𝐹𝑖 is a bivariate function. 

The interpolation function 𝐹𝑖 allows multiple properties such as differentiability, consistency 

or perhaps smoothness to be obtained. The interpolating function can be represented in 

forms such as proceedings, implicit, and explicit. These forms generate a significant influence 

on the interpolating function, producing problems such as encoding, rendering, probing, and 

assessing the interpolating content known as the interpolant. No method is optimal since 

there are special characteristics for each type of interpolating method. The interpolating 

function, for example, may be rational, piece-wise bivariate or piece-wise bivariate 



146 
 

polynomial. Numerous algorithms for the scattered data interpolation have been developed. 

Many systems include linear triangular and tetrahedral interpolation, linear multi-

valued triangular interpolation, Clough-Tocher Systems (Cubic Triangular Interpolation), 

triangle-based blending, Shepard algorithms known as inverse distance weighted methods, 

radial-basis functions, and natural neighbour interpolation methods. Furthermore, the most 

straightforward approaches are linear triangular and tetrahedral interpolation and can be 

used conveniently along with the scattered interpolation data. These are the techniques used 

on the measurement data for this research as they comprise primitive shapes such as cylinder, 

sphere and cuboid, easily extractable without complex edges or holes [154]. 

 

5.2 Experimental Results, Evaluation and Comparison 

The Articulated Arm Coordinate Measuring Machine (AACMM) unit is commonly used to 

physically measure an object in many industrial fields to represent its geometrical 

characteristics. By accurately documenting the X, Y, Z coordinates, points are generated and 

analysed by different methods for extracting features [155]. AACMM uses 3D scanning 

techniques to create points, typically known as a point cloud. In preventing loss of essential 

data on corners or sharp edges, a digital representation of the material must be retained 

during the reconstruction of the surfaces. Feature recognition methods must therefore be 

adequately used to extract primitives with specified geometries from machined parts. 

Cylinder 1, cylinders 2, sphere, and cuboid are the simple shapes derived from Figure 5.6. 

 

 

 



147 
 

 

Figure 5.6: Original set up of the modelled part 

 

 Implementation of Random Sample Consensus  

In evaluating the working principle and viability of the RANSAC, a collection of 3D data points 

from the AACMM device was used to assess the extraction process's precision on a primitive 

feature. Figure 5.7 displays the density and projection in the X, Y and Z coordinates of the 

original point cloud data. Using mathematical software such as MATLAB for analysis, the point 

density is measured by the index level for each model with the maximum index of 250 in RGB 

interpolating colour-space. This colour-space represents the linear mapping of the points. The 

maximum point-to-cylinder distance (maxDistance) is set at 100 mm or 0.1 m, the sampling 

points are calculated. The parameter orientation constraint or reference vector is set as a 1-

by-3 vector. The region of interest (ROI) in which cylinder-1, cylinder-2, sphere, and cuboid 

are placed in the original model must be defined to allow the RANSAC algorithm to work more 

quickly and consider all the potential inliers, restricting how the algorithm finds the inlier 

points. This is achieved by performing a projection of the 2D contours of the whole model to 

indicate the exact position of each shape, as shown in Figure 5.7. Failure to define an ROI 

means that the RANSAC algorithm operates on an empty vector and attempts to extract or fit 
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a feature to the whole model as outliers and inliers cannot be separated, and the purpose of 

its implementation is therefore defeated. And this is one of the limitations of the practicability 

of RANSAC. 

The ROI of every shape is a direct input parameter for the search-restrictive index variable. 

These are the linear indices representing the inlier points in the specified ROI and the cloud 

input points, which are polygonised at this level. The model contains the radius, centre of the 

sphere and point cloud position. The sphere's location, as shown in Figure 5.3, which is 

positioned at the same position as cylinder 1, was determined by 2D Contour. It gives an exact 

position for each model on the X and Y-axis. The Z-axis orientation is obtained when the image 

is projected in 3D and represented either in the ZX or ZY axes. The RANSAC algorithm is used 

for the detection and extraction of primitives by the removal of outlier points and the 

consistent enlargement of the set of points using a feasible number of inlier points. 

 

 

Figure 5.7: Original point cloud data of the model projected in a CAD software 

 

 Implementation of Linear Scattered Interpolation 

The LSI is one of the three different interpolants for the extraction of features whose 

applications are dependent on the type of primitive shapes. These interpolants include 

nearest, linear, and natural interpolant, but the linear interpolant was used for this research 

because they are suitable for models with simple geometric primitive shapes and are also one 

of the fastest methods. Other interpolants may be employed for more complex and freeform 
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shapes. The LSI automatically detects each shape by extracting its index boundary variable 

from the original point cloud shown in Figure 5.7 and using edge detection, the 2D contour of 

the entire model can be seen in Figure 5.8(a), while (b) and (c) shows the contour of cylinder 

1 and 2 as derived respectively from the whole model in (a), and (d) is the extracted contour 

of the cuboid. It is done using the number of scattered sampling points to determine the 

sampled point position, and the outliers are not affected by its performance. 

 

(a)                                                                           (b) 

 

  (c)        (d) 

Figure 5.8: Edge detection of (a) whole model (b) cyliner1 and (c) cylinder2 (d) cuboid 
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5.3 Comparison of RANSAC and LSI Algorithms 

In Table 5.1, column (a) illustrates the result of feature extraction using point cloud from a 

model. To perform the extraction, the fitting function by the RANSAC method, as shown in 

Table 5.1, Column (b), requires a substantial percentage of the points that reflect a geometry 

of the shape within the ROI defined. For the algorithm to predict its geometry and perform 

feature fitting, the points extracted in column (a) relative to the representation of each shape 

must be sufficient. The investigation into the robustness of the RANSAC process was 

performed by modifying the maximum distance of points to the sphere, thereby reducing the 

number of sampled points to evaluate the system's performance fitting with a minimal 

number of points. The system could accommodate a minimal number of points (but the 

geometry must be maintained) by fitting a sphere to the points, although the point 

distributions were not considered, and the measurement uncertainty could have 

consequences. The feature extraction using the LSI approach can be seen in Table 5.1, column 

(c). This approach specifies the point position measured, and after detection, the derived 

features in the model are constructed automatically from their respective contours. After the 

sample position has been determined, the LSI algorithm extracts the boundary of the feature 

through edge detection and projects the 3D image of the detected feature automatically 

employing derived contour shape matrices. RANSAC and LSI was applied to cylinder-1, 

cylinder-2, and the sphere. RANSAC was also able to detect the cuboid. The LSI method was 

unable to extract the cuboid from the point cloud due to the discarding of the duplicate points 

when the scattered Interpolant function was used. In using RANSAC, the parameter that 

differs is the ROI for all features as they have different locations and dimensions, except for 

cylinder-1 and the sphere having the same the location because the sphere sits above 

cylinder-1. The LSI typically uses the edge detection information which also means they have 

different locations and geometry. 
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Table 5.1: Feature extraction/fitting projection of both methods using Matlab 

Feature Extraction RANSAC Scattered 

Interpolation 

(1a) 

 
 

(1b) 

 

(1c) 

 

(2a) 

 

(2b) 

 

(2c) 

 

(3a) 

 

(3b) 

 

(3c) 

 

(4a) 

 

(4b) 

 

(4c) 

 

 

No feature for 

cuboid using LSI 
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Compared to the UKAS certification, the result of sphere extraction is a 0.02 mm error for 

RANSAC and 0.09 mm for LSI, which shows the accuracy of both systems with a well-known 

measurement standard to validate the system's performance with predictive accuracy. The 

execution time for the sphere is very minimal compared to other models due to the number 

of points. Both methods used measurement data having uncertainties related to the AACMM 

and laser scanner. This is illustrated in Table 5.1. The UKAS do not have verified cylindrical 

and cuboid dimensions as the objects were collected as test materials from the machining 

workshop. The findings were compared to results obtained using the Geomagic 

studio 2014.3.0.1781 64 bits CAD application, using a particular detection approach called 

best-fit, in which the outliers are overlooked, and the detected inliers are averaged. It is 

likened to RANSAC since the inlier points detected are determined by selecting the detection 

region, and the algorithm performs the best fit of points in that region, ignoring any "form 

error" of the model as shown in Table 5.1. Although both methods compare closely to a 

conventional CMM, this is also dependent on the accuracy of the scanning device coupled 

with user experience and level of mitigated uncertainties. The accuracy assessment is an 

essential element in reverse engineering applications. Due to its surface area, but within 0.12 

mm, the LSI caused a somewhat larger error to the larger cylinders in Table 5.2. Drawing from 

the comparison of both methods with respect to accuracy, execution time, and how they are 

affected by outliers, a performance table illustrating their relation to curve fitting and surface 

reconstruction is presented in Table 5.3. This tables illustrates that RANSAC is a good 

application for tight tolerance application for both curve fitting and surface reconstruction. 

Also, despite using outlier as part of its classification algorithm, it not affected by it once the 

ROI is specified.  

Table 5.2: Radius comparison of the features obtained using different systems of measurement 

Features RANSAC LSI CAD software UKAS/CMM 

Verified   

Sphere 12.71 mm 12.60 mm 12.70 mm 12.69 mm 

Cylinder 1 14.79 mm 14.73 mm 14.79 mm 14.76 mm 

Cylinder 2 50.96 mm 51.01 mm 50.88 mm 50.89 mm 
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Table 5.3: Performance table showing how both methods of feature detection are assessed in relation to curve fitting and 
surface reconstruction 

 
Curve fitting Surface reconstruction 

 
Accuracy Execution 

time 

Outliers Accuracy Execution 

time 

Outliers 

RANSAC  ×   × 

LSI ×   ×  

 

Recognition may be vital in some applications, but a comparison of recognition speeds could 

refer to automation and robotic handling, in which recognition is as important as the time 

between each operation. Due to its fitting function and the number of points required to 

detect and extract a feature by the algorithm, it was observed that RANSAC takes longer 

periods compared to LSI. If the cylinder has more points, it takes much longer than the sphere 

with fewer points, as shown in Figure 5.9. The speed needed for extraction using RANSAC is a 

direct consequence of the distribution of the point density of the feature and the 

computational process. The LSI method operates at a faster speed of 10 seconds across all 15 

epochs for the sphere, as shown in Figure 5.10, as this approach automatically recognises 

features using a 2D contour profile through edge detection and projections of its 3D image. 

However, there was an observation that the LSI was slightly less accurate from Table 5.2, with 

the sphere producing an error of 0.09 mm to the UKAS value.  
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Figure 5.9: Computational time for executing RANSAC 

 

Figure 5.10: Computational time for executing LSI 
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5.4 Summary 

This chapter investigated the concept of Automatic feature recognition (AFR) and a brief 

description of the various feature recognition methods of a rule-based pattern as stated in 

the literature chapter. The process of fitting a feature or primitive shape to a set of cloud 

points was analysed with a particular interest in an interpolation method and a sample 

consensus method. Both methods were compared to ascertain how best they compare to a 

high tolerance measurement system such as the CMM, also evaluating their accuracy, 

execution time and performance with outliers.  
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Chapter 6 Feature Profile Extraction and Extraction of Micrometre-

Level Point Cloud Data for Damage Detection 

Profile analysis is the process of defining parametric models to describe the boundary 

structure of a machined component [141]. The machined part's boundary can be described 

by parametric models characterised by predictable and natural variability behaviour. A 

concept known as manufacturing signature refers to this predictable behaviour, which 

provides a profile view of the machined component. It is the uniform pattern that identifies 

all the features machined within a process. They are used to create the requisite for profile 

analysis procedures.  

As part of an object's surface analysis, developing a digital representation of the part is very 

important to obtain its dimensional properties and 3D model. Techniques based on Statistical 

Process Control (SPC) are used for profile analysis of machined models producing well-

established and understood borderline contours of the part. Profile analysis can be limited in 

terms of visualisation as compared to areal analysis for surface texture because areal analysis 

provides a 3D visualisation of the surface properties concentrating on the root mean square 

parameter as in ISO 25178-2 [156]. But this does not fit the purpose for micrometre level 

application. However, the primary surface, waviness, and roughness of a surface can be 

analysed in the profile system [126], it is quick and offers a simple approach to analysing the 

surface properties of a model. This process involves interpreting a system’s characteristics by 

linking a response variable measured along with the appropriate values of one or more 

explanatory system variables [157]. 

 

6.1 Description of Measurement Data Capturing 

The experiment was carried out in a controlled environment with a steady ambient 

temperature, and the AACMM was mounted on a stable platform to counteract any vibration 

that might influence the integrity of the measured data. Extra care was taken to ensure the 

part was clean from dirt and positioned in a fixed position to counter vibrations from the 

machining environment. The AACMM used is a 7-axis Absolute Arm and attached to the 

Articulated Arm is an RS5 laser scanner (specifications are stated in Table C.0.1 under 
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Appendix C Reverse Engineering Tools), and scanning was performed at a steady pace within 

good capturing distance monitored by the RDS system with respect to ISO 10360-7 [158].  

The Arm’s accuracy is measured according to a variable 𝐿 which indicates the length of the 

Arm at which the measurement was performed. A higher value of 𝐿 indicates that the Arm is 

measuring at a larger measurement distance, and the accuracy increases when the value of 

𝐿 decreases. At the maximum length of the Arm, the volumetric accuracy is 0.038 mm, 

roundness uncertainty is 0.025 mm and uncertainty of measurement at 0.025 mm at a 

temperature of 20° C ± 1° C. For best practice, the joints should be positioned near 90° as the 

encoders are most accurate, having the largest angle to distance moved ratio.  Positioning the 

Arm's elbow at 90° to the base vertical axis produces a parallel projection from the base to 

the surface being measured, and a downwards projection from the elbow produces the 

preferred positioning of the artefact. This is discussed in section 2.4.2 as this gives the 

maximum range of movement of the arm's elbow relative to the artefact. Points are 

automatically registered on the capturing software as the laser line runs over the surface of 

the part. 

A significant challenge to how the scanner captures points is the reflectivity of the surface 

and surface material. The laser scanner generates 725,000 points/seconds at a minimum 

point spacing of 0.011 mm. When the laser line runs over the surface of the part, certain 

factors influence how surface points are generated, and this includes the laser scanner in the 

case of overlaying points where the averaging and blending process happens, the surface 

texture and colour, the milling pattern and surface finishing. These factors determine the line 

spacing between points and points generating patterns depending on the geometry of the 

part at a particular region, i.e., at regions having curves and freeform more points are 

generated compared to a flat surface. Points generated from a machined part will produce a 

different pattern from parts moulded/cast and 3D printed.  

In 3D representation of a part, one major challenge has always been file transfer formats 

which aid in communication between software. This factor is to be considered as data can be 

generated using specific software and analysed in a different software application; hence, it 

is vital that there is a good level of interoperability (interfacing) between applications. The 

point cloud data was obtained using a CAD capturing software as shown in Figure 6.1. 

Preprocessing was performed to deal with noisy and unwanted data points before exporting 
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them as a text file. This file format means that the data can be imported into mathematical 

software for further analysis. The text file was imported into MATLAB and can be visualised 

using the computer vision toolbox. 

 

 

 

 

 

 

 

 

 

 

 

6.2 Model Sectioning for Damage Detection 

From the analysis in section 6.1, the visualisation of the part has been performed by rotating 

vectors, and the damage can be seen on the profile by a relative change in the B-spline. 

Further analysis investigating the location of the damage at the microns level is required, and 

this will be discussed in this section. First, we will discuss the use of simulation data generated 

in MATLAB with simulated damage for evaluating the performance of the proposed sectioning 

method. This gives the flexibility of adjusting parameters and comparison after extracting 

information. This will be followed by validation of the method using measurement data 

captured from a part with either machining damage or purpose created damage for this 

project. 

 Simulated data 

Point cloud models were developed mathematically in MATLAB R2020a to replicate the 

cylinder model used for this project. One has a random distribution of points as shown in 

Figure 6.1: Digitisation of parts for damage detection analysis using profile monitoring 
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Figure 6.2, and the data is identical to data obtainable from capturing point cloud using 

AACMM. The other data, as shown in Figure 6.3, is an ordered point cloud generated by 

specifying parameters such as the number of points as 10,000 points with a radius of 5 mm, 

a height of 10 mm, line spacing of 0.1 mm, and location of damage at 3.4 mm on the Y-axis 

and between 4.6 mm and 5.6 mm on the Z-axis. Also, another damage at 4.8 mm on the Y-

axis and between 9 mm and 9.78 mm on the Z-axis. For the random distribution data, 

parameters such as height at 10 mm, the radius at 5 mm, resolution of 0.1 mm, point spacing 

of 0.011 mm, damage start angle at 0-degree, damage start end angle at 90 degrees, damage 

level at 0.5 mm, and damage z-height at 1.5 mm. This data replicates the point distribution 

similar to measurement data and provides the flexibility of adjusting these parameters both 

for generating several models and generating more data for training a deep learning 

algorithm. Details of this can be found in Appendix H LSTM Training of First Sets of Data 

Producing False Classification Due to Preprocessing Methods of Generating and Classifying 

the Slices. The intensity and location of damage can be simulated to meet the purpose, 

improve the performance of the algorithm, and emulate real damage on a part’s surface. The 

model’s slicing images for both simulated data are combined and classified into two classes 

for training a convolution neural network (CNN).  
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Figure 6.2: Simulation data _ random distribution point cloud 

 

 

Figure 6.3: Simulation data _ ordered point cloud 



161 
 

 

 Slicing Experiment and Classification 

Data preprocessing when working with simulated dataset is not necessarily required as the 

data is produced with specified parameters with no data contamination as encountered with 

measured data, except for simulated damage or noise. Several slices are created on the model 

in the Z-axis direction by using the maximum and minimum points to produce an equal-sized 

2D projection. Visualising the slicing data in both X or Y directions will produce little or no 

information showing any possible damage using the contour of the part. This is because the 

points distribution appears to be even when projecting in X or Y directions. One way to find 

out is to intensify the damage as more points are created on areas with bumps or dents on 

the surface. Although this is not the case with this model (when projected in the Z-axis), the 

points distribution is less on damaged areas and cannot be distinguished from the whole 

surface when projected in the X or Y-axis. When working with a cylinder, a 2D projection will 

produce a circle when viewed from the ZX-direction, as shown in Figure 6.4 and Figure 6.5. 

These slices contain points, and a circle fitting algorithm is applied to determine how well 

these points fit to a perfect circle, as discussed in section 4.3.1.1. Furthermore, a bounding 

box is applied to find the smallest measure of an area that fits all the points in a slice to speed 

up the computational process. This is indicated as the red square boxes in Figure 6.4 and 

Figure 6.5. These boxes continually change position with the random distribution data due to 

the continuous alignment of the points by the algorithm, but it appears steady with the 

ordered data because of its form. A classification algorithm is developed to classify the slices 

into two classes of “good” and “damaged” by specifying the region of damage and classify 

slices outside of this region as “good”. This is implemented before unwrapping each slice to 

produce an ordered numeric sequence data. This numeric sequence data supports the aim of 

dealing with the data at the microns level as compared to images. With this data, the nominal 

radius of the model was obtained. This can easily be achieved with simulated data as the 

parameters are already known but can be challenging with measurement data with no 

reference information; rather, the nominals are estimated. In Figure 6.5, the top row is a 

representation of the damaged slices of the ordered dataset. It is not bigger in diameter as it 

appears compared to the good slices in the bottom row, but it is a function of the bounding 
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box finding the smallest area and using the circfit discussed in section 0 to fit a circle of best 

fit through the points. 

 

 

Figure 6.4:  First row: damaged slice at different locations; second row: good slices for the random distribution 
data 
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Figure 6.5: First row: damaged slice at the same location but different Z-axis height; second row: good slices for 
the ordered data 

 

The unwrapping of the slices provided a different dimension to how the data can be analysed, 

and the displacement of each point at microns level can be obtained. Figure 6.6(a) shows a 

plot of a good slice with the position of each individual point, and Figure 6.6(b) shows when 

the plot is scaled to accommodate the maximum number of points. The randomly distributed 

point data replicates the scanning data but with known tolerance as the amplitude of some 

points is a few microns off the known radius of 5 mm, as shown in Figure 6.6. This is not always 

the case with scanned data. The plots were investigated to understand how the individual 

slice relates to potential damage. With the data being a vector, the data appears to have the 

exact damage distributed over the whole slice when plotted as a row vector, as shown in 

Figure 6.8, but the variation between good and damaged can be clearly seen when plotted as 

a column vector. On a damaged slice, the damage has a specific position relative to the whole 

slice, but when visualised, the damage appears to be distributed over the slice. This required 

further investigation, and it was observed that during data generation, the algorithm was 

wrongly sorting the points as in Figure 6.7 by distributing the damage throughout the length 

of the slice. Training the LSTM with such data, it was observed that the LSTM was learning all 

data as being good as in Figure 6.9 hence producing false-positive classification, and this will 

be discussed further in section 6.2.4. This can be compared to situations where intended 

features may be recognised as damage. In such situations, parameters that define the 

intended design can be used in specifying a threshold level and the light scattering of points 

will produce well defined boundaries that produces C2 continuity to the reference surface. It 

is expected that the radius value for each point be closely matched. Further preprocessing of 



164 
 

the data will produce a normalised dataset where feature variations can be explicitly 

visualised. For regions of the surface with intended features, much variation in radius value is 

not expected to occur and this can help the LSTM prediction coupled with specification of the 

network’s hyperparameters. Also, specifying the samples size of each slice as described in 

section 6.2.5. 

 

(a)                                                                                         (b) 

Figure 6.6: (a) A good slice plotted as a column vector (b) A good slice plotted as a column vector and scaled 

 

(a)                                                                                        (b)  

Figure 6.7: (a) A damaged slice plotted as a column vector (b) A damaged slice plotted as a column vector and 
scaled 
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Figure 6.8: Both good and damaged slice as a row vector 

 

 Nominal Radius Estimation 

When reverse engineering blind with no reference information of the artefact involved, it is 

required that the nominals be estimated. Nominal estimation could be on the surfaces, the 

points, or geometric dimensions. In this case, we estimated the radius using the linear least-

squares fitting method on the unwrapped slices, and this should produce an average value 

and the line of best fit at the intercept on the Y-axis. The values obtained compared well with 

measurement information from a CMM and analysis on the original scanned data in MATLAB. 

 Long-Short Term Memory  

The nature of the slicing data is a sequence of several slices where one slice is stacked above 

another slice until the whole model is completely sliced. This provides a data set in sequence 

form having two classes in the case of this project, and accurate classification can be 

performed using information from a previous slice; hence the application of recurrent neural 

network architecture is required.  

Once slices are classified into two classes of “good” and “damage”, time-series data is 

generated alongside its categorical cell array, and this data is used for training the LSTM. The 

input data was partitioned into training and test datasets for cross-validation using 70% for 

training and holding out the rest for testing.  The neural network was trained with eight layers 

because of an extra LSTM layer to make the network deeper with an output mode set to 

sequence and accompanied by a dropout layer to prevent overfitting. The first layer is the 

sequence input layer with the number of features set as the size of the training dataset, a 
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double LSTM layer, a fully connected layer with an input of two classes – good and damaged, 

a SoftMax layer, and classification layer.  

Using the data from the ordered point cloud produced training progress with a steady 

response due to the specified values and non-numerical (NaN) characteristics in the data. This 

required some normalisation of the data to extract responses from the training process, 

hence the classification result. An initially trained LSTM was learning all input data as good 

notwithstanding the input classification, and there appeared to be an issue with the simulated 

data generated by the automatic classification. With further investigation into the data, it was 

found that when plotting the bad slices, the damage spreads over the whole number of slices 

of 1078 x1440. Doing a plot function of one slice as a row vector appears to be a wrong 

visualisation approach, but when plotted as a column vector, identifiable data to what is 

expected can be visualised.  

Another issue observed with the data plotted as a column vector and visualising all data in 

entirety coupled with an investigation of the data content, the damage was identified on all 

supposed slices, which appears to be wrong as the damaged region is relatively small 

compared to the whole model. The wrong categorisation of the points and other factors such 

as data preprocessing might have contributed to the LSTM learning the data wrongly, and this 

is shown in Figure 6.8. More indications of this are further shown in Appendix H LSTM Training 

of First Sets of Data Producing False Classification Due to Preprocessing Methods of 

Generating and Classifying the Slices. However, this training produced accuracies of over 70 

% in some training sessions, as in Figure 6.9, there appeared to have a large amount of false 

positive and false negative classification as in Figure 6.8 and Figure 6.10. These false 

classifications are also a result of the LSTM learning all input data as good or 

misunderstanding the data structure contained in each classification or due to the fewer 

training data set or network architecture. Another situation of misclassification is shown in 

Figure 6.11, indicating a false positive/negative prediction of both classes. 
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Figure 6.9: Confusion chart indicating the classification result of the LSTM 
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Figure 6.10: Training progress of the LSTM 
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Figure 6.11: LSTM training indicating false positive/negative classification 

 

 Generating Training Data for LSTM using Wavelet Transform 

The data analysed in section 6.2.4 produced unsatisfactory results when trained with LSTM, 

and this was due to the data preprocessing and the algorithm’s extraction of the points. This 

led to the use of wavelet transform in extracting meaningful features for analysing the time-

series data obtainable after slicing. A continuous wavelet transform was used in extracting 

information for training a machine learning algorithm. The raw data is a set of unordered PCD 

captured by light scattering as a laser light hit the surface of a model. The approach is to 

create slices of specified resolution and unwrap each slice to obtain points contained within 

each slice. This process presented a data in the form of a time-series data which resulted in 

the use of wavelet in performing time localisation of points contained in each slice. The 

wavelet function translates the response signal of the location of each point into a continuous 

transform along the time axis to produce a correlation that can be visualised through the 

wavelet coefficient. This produces a dataset of the number of points in each slice coupled 

with their radius data. This data is further preprocessed by performing interpolation to 
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produce a normalised dataset where the sequence length of each slice is made equal. A 

dataset with equal sequence length is not enough information for training an LSTM. The axis 

size of each slice in the dataset can be different, hence, the resolution of each slice is 

regularised by specifying the sample size. For this thesis, the sample size is set to 1° per sample 

to identify the slightest variation in the points of each slice. This approach can also aid in the 

data preparation for intended features that may appear as damage by inspection.  

A simulated damaged cylinder was developed by specifying parameters such as model’s 

dimensions, damage location, the intensity of damage and scanner noise to replicate 

measurement data. Slices are produced by computing the entropy surface geometry variation 

using a continuous wavelet transform (CWT) to produce coefficients representing each slice. 

The analytic Morse wavelet together with the symmetry parameter is used to obtain the CWT. 

The minimum and maximum scales are automatically determined using the energy coefficient 

spread of the wavelet in frequency and time, as shown in the wavelet coefficient of Figure 

6.12. If the input data is real-valued, the wavelet transform is expressed as a 2-D matrix with 

each row corresponding to one scale. The column size of the wavelet transform equals the 

length of the input data. Figure 6.12 through to Figure 6.15 illustrates the slice extraction 

process using CWT to produce angles of each point, the radius of each slice, and project the 

response of the energy coefficient of each slice. The total number of slices is obtained by 

dividing the height of the model by the specified slice resolution and not the mean or 

aggregating a series of slices.   
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Figure 6.12: Generating slices using CWT showing early stage of the process and wavelet coefficient showing 
number of slices 2.5 mm from the base 
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Figure 6.13: Generating slices using CWT showing early detection of the region of damage and wavelet 
coefficient showing number of slices 5 mm from the base 

 



173 
 

 

Figure 6.14: Generating slices using CWT representing the region of damage in the Morse CWT form and 
wavelet coefficient showing number of slices 7.5 mm from the base 
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Figure 6.15: Generating slices using CWT showing final stage of the process 

 

The output radius of each slice from this process varied and was further preprocessed using 

an interpolation algorithm, and the data is normalised to improve its properties in preparation 

for training. This is shown in Figure 6.16, where the top plot is the radius data before 

performing normalisation having unequal values for all slices, while the second plot is the 

regularised and interpolated data. Due to the unequal nature of the sampled numbers, the 

edges of the region of damage could not be clearly established. From the top plot, each 

column represents the data points captured from each slice as the location of the points are 

random. Each slice has a random number of points due to the randomly distributed nature of 

the point cloud. Regarding data preparation for LSTM, it is preferred that the data format for 

each slice be equal, i.e., the length be equal in the sequence. However, making the sequence 

length equal is not enough for a prepared data, but the resolution is regularised using an 

interpolation algorithm. This regularised data was used for training the LSTM.  



175 
 

The simulation of damage on the model can be randomised as well as specified by the user. 

For the experiment of Figure 6.16, the damage start angle was specified at 50˚, with a damage 

height of 5 mm representing the centre of the damage on the height axis. The computation 

of the algorithm used the damage start angle coupled with the slice resolution in evaluating 

the width of the damage seen as the blue patch. The randomised nature of the algorithm is 

illustrated in Figure 6.17 through to Figure 6.20, where the damage location changes with 

different damage start angle, height, and scanner noise.   

 

 

Figure 6.16: Before and after plot of the normalisation of the radius data 
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Figure 6.17: Generating slices using CWT using random parameters 
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Figure 6.18: Regularised radius of random slice generation 

 

Figure 6.19: Generating slices using CWT using random parameters with change in damage location 

Interpolated data post-normalisation 
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Figure 6.20: Regularised radius data randomly generated with change in damage location 

 

For the scanner noise, the self-learning algorithm does not work if the noise hits the threshold 

of 0.05 mm detecting points distribution of symmetry value of 4. It is only suitable for 

instruments with noise levels lower than the threshold. If the damage is at a similar level to 

the scanner noise or superficial, the self-learning algorithm will not be able to find the 

damage. This was observed to be a cut-off threshold for situations where the algorithm would 

work and where it has no chance of detecting damage. 

When the noise is increased, the damaged location can be clearly seen using the wavelet 

transform. This algorithm has a limitation of responding to the noise level. This depends on 

the magnitude of the damage being detected as the noise level will make no difference if the 

damage is massive, but it can become challenging with small-sized damage. This is illustrated 

in Figure 6.21 and Figure 6.22, where the coefficient denotes a point distribution of symmetry 

value range of 4, implying that no distinctive damage was detected, but there is damage 

present in Figure 6.22 just right above the 100 mm mark on the X-axis. Figure 6.23 illustrates 

the training process of the LSTM using the improved preprocessing method of wavelet 

Interpolated data post-normalisation 
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transform with a training accuracy of 99% with less overfitting. And Figure 6.24 shows the 

confusion chart of the classification result after training. 

 

 

Figure 6.21: Generating slices using CWT showing system response to noise level considering magnitude of damage 
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Figure 6.22: Regularised radius data of small damage 

 

 

Figure 6.23: Training progress of the LSTM using wavelet transform data 
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Figure 6.24: Confusion chart indicating the classification result of the LSTM using wavelet transform data 

 

 Application of LSTM Approach to Damage Detection 

The core of the proposed approach after training the neural network is to test that the result 

from the network performs well when applied to a model. This was done by testing the 

network’s classification result on a model to identify and extract the damaged slices with their 

location on the Z-axis of the model. The process starts from importing the data through to 

extracting information and is as follows 

• Import a model that is void of noise and outliers after preprocessing but retains the 

induced damage 

• Perform sectioning of the model to produce slices with a specified resolution, unwrap 

slices and automatically classify them into specific classes of ‘good’ or ‘damaged.’ 

• Perform further preprocessing to improve the data structure in preparation for the 

LSTM 

• The LSTM is trained with the slicing data to perform its classification of the model with 

continuous monitoring of its result and accuracy 

• The LSTM classification data from the trained network is applied to the model to 

classify every slice, starting from the bottom of the model with that of the 
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classification data. The range of the damage is identified with actual values on the 

height (Z-axis) of the model. In developing NC codes for the milling operation for 

reconstruction, these values can be used in the CAM process of developing tool path, 

although this is out of scope for this project 

Once the trained network and classification result is imported, the model coupled with how 

each slice is created on the model is visualised. Parameters such as height, starting point, axis 

limit, and assigned variables are specified. A loop is created to iterate the slice resolution on 

the model as shown in the flowchart of Figure 6.25, and once the circumference of a current 

slice is different from the previous, it correlates it with the network result to determine what 

category is the current slice. This process is continuous until the circularity of a current slice 

changes relative to the previous and is correlated with the network result to ascertain the 

class of the slice. With this approach, the range of where the damage starts and ends can be 

extracted with actual measurement information, as shown in Figure 6.26 and Figure 6.27. 

From the flowchart, the process starts by importing a noise free model, extraction of slices, 

normalisation of data, LSTM training, and application of data from LSTM network on the PCD 

model, outputting values that indicate the sizes of both simulated and predicted regions of 

good and damage. The rectangles to the left of the diamond and hexagonal shape provide 

more explanation to both steps.  
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Figure 6.25: Flowchart indicating the process of applying LSTM training data to PCD model for damage 
identification 
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Figure 6.26: Application of LSTM result on ordered data 

 

Figure 6.27: Application of LSTM result on randomly distributed simulation data 
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The region of damage after application of the LSTM result on the ordered data is illustrated 

in Figure 6.28 and Figure 6.29, respectively. It indicated that the damage started at 4.50 mm 

to 5.50 mm for the first region from the bottom, and the second region ranged from 9 mm to 

9.70 mm. The green line at the top indicates there are good slices with the remaining 0.30 

mm to the top. This method also performed well with randomly distributed points that 

replicate actual measurement data. In the random distribution data, the damage slices range 

from 4.20 mm to 6.80 mm on the Z-axis. 

 

Figure 6.28: Visualisation of the damaged region on the ordered data set 
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Figure 6.29: Visualisation of the damaged region on the random distribution data set 

 

Further assessment of the developed damage detection algorithm is to test the behaviour 

and accuracy of the system when applied to models of different parameters. The slice 

resolution for this application is 0.05 mm. The resolution can be made coarser to improve 

calculation time but with less precise location information. However, resolutions below 0.05 

mm will produce slices with fewer points and can eventually lose the structure of the model 

after slicing. It is therefore recommended that, for a fully automated system, the algorithm in 

this thesis could be used to hone in on the areas of interest and instruct the measurement 

system to take additional points for that region. 

After performing network testing, the procedure described in the first paragraph of this 

section was implemented to extract the slice location where the damage region starts and 

where it ends. Although the end of the damage region was not indicated in the table, it can 

be calculated by subtracting the slice resolution from the location where the good region 

starts. For example, in Error! Reference source not found., there are five regions of potential 
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damage indicated by the pair of red lines, these pairs specify slices where the damage starts 

and ends, and the next slice is a good slice from the classification.  

 

Figure 6.30: Comparing the classification of slices from both the simulated data and the LSTM prediction 

 

Presented in Table. 6.1 through to Table 6.3 is the error of the LSTM prediction from the 

classified slices. Table 6.1 illustrate the prediction error of six different networks when applied 

to the model on which they have been trained. The locations of damage were randomly 

generated, trained, and the prediction was tested on the same models. The simulation 

column was specified as the standard (known value) of which the prediction was compared. 

For networks with no values at the start indicates that the damage started at the bottom of 

the model. The “classification accuracy” column shown is the network’s accuracy after 

applying the prediction result. This is calculated by equating the network’s classification to 

the training data and performing a right array division of its sum by the number of elements 

in the training data. The values in the simulated and predicted columns are the locations that 
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indicate where the damage regions starts and where the good region starts. The residual error 

was calculated by computing the difference between the prediction and known values. These 

networks are 8-layered networks with variations in their dropout probability and training 

options such as maximum epochs and learning rate. 

For Error! Reference source not found., five different networks were tested on cloud point 

data independent of the training data to test its accuracy of performing prediction when 

presented with an external data set. The first three networks were tested on models having 

similar parameters as to trained models, while network 4 was tested with a model bigger in 

size than the network’s trained model. The reverse is the case with network 5 being tested 

on a model smaller than the network’s trained model. This was to evaluate the networks 

behaviour and ability to perform prediction when presented with different data types, and 

their accuracy after classification is shown in the last column. Network 4 appears to have not 

detected damage in the first two regions from the bottom of the model during prediction; 

however, it has an accuracy of 98% during training. This missed detection of damaged regions 

is due to the size of the training data for that network. However, this situation also affected 

testing network 5 on a smaller model. Table 6.3 illustrates the testing of a single network on 

several data types having various parameters. The network is an 8-layered network with a 

double LSTM layer to make the network deeper, and each LSTM layer is accompanied by a 

dropout layer of dropout probability of 0.2 to prevent overfitting. The prediction accuracy of 

the network was observed to remain constant despite the different models being tested. This 

accuracy is equivalent to the initial training accuracy of the network. 
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Table 6.1: Error calculation of the machine learning prediction of the location of damage using the same trained 
models for testing on the same networks 

Experiments Simulated Predicted Residual 

Error 

Classification 

Accuracy 
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LSTM1 Damaged 

start 

7.05 mm 7.15 mm +0.1 mm 
82% 

Good 

start 

9.50 mm 9.10 mm -0.4 mm 

LSTM2 Damaged 

start 

1.05 mm 1.20 mm +0.15 mm 
73% 

Good 

start 

3.50 mm 3.50 mm - 

LSTM3 
Damaged 

start 

 

1.49 mm 1.64 mm +0.15 mm 
91% 

15.15 mm 15.30 mm +0.15 mm 

Good 

start 

1.50 mm 1.65 mm +0.15 mm 

17.50 mm 17.40 mm -0.1 mm 

LSTM4 
Damaged 

start 

 

- - - 
91% 

15.05 mm 15.15 mm +0.1 mm 

Good 

start 

1.5 mm - -1.5 mm 

16.50 mm 16.35 mm -0.15 mm 

LSTM5 Damaged 

start 

 

0.10 mm - -0.1 mm 
94% 

24.05 mm 24.10 mm +0.05 mm 

Good 

start 

2.50 mm 2.35 mm -0.15 mm 

26.50 mm 26.40 mm -0.1 mm 

LSTM6 Damaged 

start 

4.05 mm 4.10 mm +0.05 mm 
 

 

29.05 mm 29.15 mm +0.1 mm 

39.05 mm 39.05 mm - 

53.05 mm 53.10 mm +0.05 mm 
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71.05 mm 71.10 mm +0.05 mm 
95% 

Good 

start 

6.50 mm 6.20 mm -0.3 mm 

30.05 mm 29.75 mm -0.3 mm 

41.50 mm 41.30 mm -0.2 mm 

55.50 mm 55.45 mm -0.05 mm 

73.50 mm 73.25 mm -0.25 mm 
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Table 6.2: Error calculation of the machine learning prediction of the location of damage using different models 
for testing different networks 

Experiments Simulated Predicted Residual 

Error 

Classification 

Accuracy 

LSTM1 Damage 

start 

4.05 mm 4.50 mm +0.45 mm 94% 

17.05 mm 17.60 mm +0.55 mm 

Good 

start 

6.45 mm 5.85 mm -0.6 mm 

19.50 mm 18.80 mm -0.7 mm 

LSTM2 Damage 
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- - - 94% 
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22.05 mm 22.25 mm +0.2 mm 

36.05 mm 36.15 mm +0.1 mm 

47.05 mm 47.20 mm +0.15 mm 

68.05 mm 68.15 mm +0.1 mm 

Good 

starts 

1.5 mm 0.10 mm -1.4 mm 

24.50 mm 24.10 mm -0.4 mm 

38.50 mm 38.25 mm -0.25 mm 

49.50 mm 49.10 mm -0.4 mm 

70.50 mm 70.40 mm -0.1 mm 

LSTM3 Damage 
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5.05 mm 5.59 mm +0.5 mm 94% 
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28.05 mm 28.70 mm +0.65 mm 

Good 

start 

7.50 mm 7.10 mm -0.4 mm 

- - - 

LSTM4 Damage 

start 

4.05 mm - -4.05 mm 98% 
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d
ic

at
e 

n
o

 d
am

ag
e 

d
et

ec
te

d
.  

29.05 mm - -29.05 mm 

39.05 mm 39.30 mm +0.25 mm 

53.05 mm 53.30 mm +0.25 mm 

71.05 mm 71.20 mm +0.15 mm 

Good 

starts 

6.50 mm - -6.50 mm 

30.05 mm - -30.05 mm 

41.50 mm 41.15 mm -0.35 mm 

55.50 mm 55.10 mm -0.4 mm 
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73.50 mm 73.20 mm -0.3 mm 

LSTM5 Damage 

start 

- 11.25 mm +11.25 mm 96% 

20.05 mm 20.20 mm +0.15 mm 

36.05 mm 36.15 mm +0.1 mm 

Good 

start 

15.05 mm 11.85 mm -3.2 mm 

22.50 mm 21.30 mm -1.2 mm 

38.50 mm 38.10 mm -0.4 mm 
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Table 6.3: Error calculation of the machine learning prediction of the location of damage using different models for testing a 
single network 

Experiments Simulated Predicted Residual 

Error 

Classification 

Accuracy 

LSTM 

Testing 

1 

Damage 

start 

6.05 mm 6.15 mm +0.1 mm 96% 

Good 

start 

8.50 mm 8.35 mm -0.15 mm 

LSTM 

Testing 

2 

Damage 

start 

4.05 mm 4.15 mm +0.1 mm 96% 

29.05 mm 29.10 mm +0.05 mm 

39.05 mm 39.15 mm +0.1 mm 

53.05 mm 53.35 mm +0.3 mm 

71.05 mm 71.25 mm +0.2 mm 

Good 

start 

6.50 mm 6.30 mm -0.2 mm 

30.05 mm 30.20 mm +0.15 mm 

41.50 mm 41.40 mm -0.1 mm 

55.50 mm 55.05 mm -0.45 mm 

73.50 mm 73.20 mm -0.3 mm 

LSTM 

Testing 

3 

Damage 

start 

- - - 96% 

Th
e 

fi
rs

t 
d

am
ag

e 
st

ar
te

d
 a

t 
th

e 
b

o
tt

o
m

 

22.05 mm 22.20 mm +0.15 mm 

36.05 mm 36.15 mm +0.1 mm 

47.05 mm 47.25 mm +0.2 mm 

68.05 mm 68.20 mm +0.15 mm 

Good 

start 

1.50 mm 0.70 mm -0.8 mm 

24.50 mm 23.70 mm -0.8 mm 

38.50 mm 38.35 mm -0.15 mm 

49.50 mm 49.10 mm -0.4 mm 

70.50 70.05 mm -0.45 mm 

LSTM 

Testing 

4 

Damage 

start 

4.05 mm 4.25 mm +0.2 mm 96% 

17.05 mm 17.15 mm +0.1 mm 

6.45 mm 6.05 mm -0.4 mm 



194 
 

Good 

start 

19.50 mm 19.10 mm -0.4 mm 

LSTM 

Testing 

5 

Damage 

start 

2.05 mm 2.15 mm +0.1 mm 96% 

21.05 mm 21.15 mm +0.1 mm 

34.05 mm 34.10 mm +0.05 mm 

53.05 mm 53.25 mm +0.2 mm 

60.10 mm 60.15 mm +0.05 mm 

Good 

start 

4.50 mm 2.90 mm -1.6 mm 

23.50 mm 23.40 mm -0.1 mm 

36.50 mm 34.95 mm -1.55 mm 

55.50 mm 55.05 mm -0.45 mm 

62.50 mm 62.25 mm -0.25 mm 

 

 

Isolating a few networks to investigate the size of damage, both simulated and predicted 

damage region sizes were calculated to investigate the level of deviation of the prediction, 

and this is illustrated in Table 6.4. The blue bar represents the simulated region size, while the 

amber bar represents the size of the predicted damage region. For the first network, the size 

of the prediction on the damage region shrank by 0.5 mm to the simulated region on both 

margins. It detected a damage slice 0.1 mm after the simulated region and detected a good 

slice 0.4 mm before the simulated. For network 3 damage region 1, the total deviation of the 

prediction against the simulated was 0.1 mm. The prediction detected damage before the 

simulated as shown on the left margin and shrank by 0.05 mm on the right margin.  

These deviations occur at the transition between good and damaged regions due to the 

nature of the points, the slice resolution, and the accuracy obtainable from training the neural 

network. At the transition point, the structure of the slice can be difficult to differentiate as 

the location of the points are beginning to change. This is not the case at the centre of the 

damage as the structure is distinctive. An approach to further investigate this region is to 

reduce the resolution at the transition point, but this is not without its challenge. Reducing 
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the slice resolution will reduce the number of points in a slice, and this might not be enough 

to represent the structure of the model when training the LSTM.  

 

 

 

 

 

 

 

 

 

Table 6.4: Deviation of the neural network prediction with the blue bar representing the simulated range and the 
amber bar represents the predicted range 

Experiments Simulated 

Region Size 

Predicted 

Region 

Size 

Residual 

Error 

Margin Visualisation 

Net1 Damage 2.4 mm 1.9 mm -0.5 mm  

Si
m

u
la

te
d

 r
an

ge
  

P
re

d
ic

te
d

 r
an

ge
  

Good 5.5 mm 5.9 mm +0.4 mm    

Net3 Damage 2.4 mm 2.15 mm -0.25 mm  

Good 6.5 mm 6.65 mm +0.15 mm  

Net6 Damage 4.05 mm 4.10 mm +0.05 mm  

29.05 mm 29.15 mm +0.05 mm  

39.05 mm 39.05 mm -  

 

53.05 mm 53.10 mm +0.05 mm  

71.05 mm 71.10 mm +0.05 mm  

Good 6.50 mm 6.20 mm -0.3 mm  
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30.05 mm 29.75 mm -0.3 mm  

41.50 mm 41.30 mm -0.2 mm  

55.50 mm 55.45 mm -0.05 mm  

73.50 mm 73.25 mm -0.25 mm  

 

 

 

 

 

 

 

Experiments Simulate

d 

Region 

Size 

Predicte

d Region 

Size 

Residua

l 

Error 

Margin 

Visualisation 

Net

1 

Damage 2.4 mm 1.9 mm -0.5 mm 
 

Si
m

u
la

te
d

 r
an

ge
  

P
re

d
ic

te
d

 r
an

ge
  

Good 5.5 mm 5.9 mm +0.4 

mm 
 

Net

2 

Damage 2.4 mm 2.15 mm -0.25 

mm 
 

Good 6.5 mm 6.65 mm +0.15 

mm 
 

Net

3 

Damag

e 

Regio

n 1 

2.35 mm 2.30 mm -0.1 mm 
 

Regio

n 2 

2.4 mm 2.25 mm -0.15 
 

Good Regio

n 1 

21.5 mm 23.7 mm -2.2 mm 
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Regio

n 2 

3.5 mm 3.6 mm +0.1 

mm 
 

 

To perform cross-validation of the performance of some LSTM networks, external data 

independent from the trained model were used in testing an already trained network to 

access its accuracy of classification when fed with a different model from which it was trained. 

Table 6.5 below shows the classification accuracy of eight (8) trained networks tested with a 

different model with the plot of all eight networks shown in Figure 6.31. Most networks 

performed well to a minimum of 79% except for network 7 with low accuracy due to training 

parameters producing a misclassification of the data set, hence its accuracy.  

Table 6.5: Accuracy of cross-validation of eight LSTM networks using different models 

 Data1 Data2 Data3 Data4 Data5 Data6 Data7 Data8 

Net1 99% 84% 96% 93% 90% 79% 83% 92% 

Net2 84% 98% 90% 89% 93% 85% 97% 94% 

Net3 99% 97% 98% 97% 94% 84% 98% 94% 

Net4 98% 98% 98% 98% 97% 86% 98% 95% 

Net5 97% 98% 97% 96% 98% 84% 97% 95% 

Net6 99% 98% 98% 90% 94% 95% 97% 98% 

Net7 65% 72% 60% 62% 75% 68% 70% 73% 

Net8 99% 84% 98% 95% 93% 83% 92% 95%  
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Figure 6.31: Cross-validation of LSTM Network 
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6.3 Profile Analysis 

The sectioning was one way of extracting data for training the LSTM neural network. This 

method produced slices of specified dimensions along the height axis of the model. A new 

approach was developed for extracting the profile of the model for training the LSTM.  

Figure 6.32 depicts the approach that has been developed. Preprocessing aids in the 

reduction of the scanned point set as well as the elimination of noisy data and redundant 

points. This procedure may generate a collection of data that may still be dense and contain 

redundant points. The dense data is further reduced to achieve system efficiency by using 

sampling modules to remove redundant points and obtain an improved data collection. A 

data reduction technique as discussed in section 3.3.1.1 was used to reduce the number of 

points while maintaining enough points to represent the model for accomplishing this 

approach. The scan is then profiled by centralization along the X and Y axes. The scan direction 

of view is altered, and the model's profile is projected from the centre point. The rotation of 

axes or a model relative to fixed axes are two conventions that can be accomplished in a 

rotational matrix, but the axes are rotated relative to the model for this project. 

 

Figure 6.32: A proposed approach for performing profile analysis 

 

 

Data 
Manipulation

• Data acquisition(non-contact method)

• Preprocessing (de-noising)

• Downsampling

Profile Sweep
•Rotational matrix

•Profiling

•Visual inspection 
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Figure 6.33: (a) top projection of the model, (b) side projection of the model 

 

The projection of the point cloud from Figure 6.33 was plotted from 90 mm to the top, leaving 

out the base to make the application run faster with the necessary data required for analysis. 

The concentration for this work is on the region with the damage. This approach is particularly 

important to save time and use less computing power as other regions might not be relevant 

to achieving the desired result, resulting in the processing of a massive amount of data not 

needed. Figure 6.33 depicts the damaged part of the model. Further preprocessing was 

performed by decimating the points in the model, thereby eliminating outliers and noise, 

resulting in a much simpler model with extra care to preserve the topology of the model’s 

surface. As shown in Figure 6.34, a rotational matrix about the Z-axis was applied to the model 

by centralising the X and Y axes using coordinate transformation and rotating 𝜃 about the z-

axis. This is a transformation matrix used to rotate an axis about a given point, and the centre 

of a cartesian coordinate frame is used as the rotation point. The rotational 

matrix functionality is applied to vectors which lead to rotating vectors while coordinates axes 

are fixed. This concept of having a rotating vector at a fixed coordinate is known as active 

transformation. 

Given a vector of position 𝑥𝑜 , 𝑦𝑜 at an angle 𝜃 and radius r, using Pythagoras theorem, 

     cos 𝜃 =  
𝑥𝑜

𝑟
  , 𝑠𝑖𝑛𝜃 =  

𝑦𝑜

𝑟
 

𝑥𝑜 = 𝑟𝑐𝑜𝑠𝜃, 𝑦𝑜 = 𝑟𝑠𝑖𝑛𝜃    (6.1) 

If the vector is rotated counter clockwise (𝜃 is positive) at an angle 𝜃′ to give a new position 

of 𝑥1, 𝑦1, the angle of the vector at this position is (𝜃 +  𝜃′) 
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𝑥1 = 𝑟𝑐𝑜𝑠(𝜃 +  𝜃′) , 𝑦1 = 𝑟𝑠𝑖𝑛(𝜃 +  𝜃′)    (6.2) 

Using trigonometric identities 

𝑥1 =  𝑟𝑐𝑜𝑠(𝜃 +  𝜃′)      (6.3) 

=  𝑟(𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃′ −  𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃′)  

= 𝑟𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜃′ −  𝑟𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜃′  

𝑥1 =  𝑥𝑜𝑐𝑜𝑠𝜃′ −  𝑦𝑜𝑠𝑖𝑛𝜃′ , 𝑦1 =  𝑟𝑠𝑖𝑛(𝜃 +  𝜃′)  (6.4) 

=  𝑟(𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃′ +  𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃′)  

= 𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃′ +  𝑟𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃′)   

𝑦1 =  𝑦𝑜𝑐𝑜𝑠𝜃′ −  𝑥𝑜𝑠𝑖𝑛𝜃′     (6.5) 

𝑥1 =  𝑥𝑜𝑐𝑜𝑠𝜃′ − 𝑦𝑜𝑠𝑖𝑛𝜃′ 

𝑦1 =  𝑦𝑜𝑐𝑜𝑠𝜃′ −  𝑥𝑜𝑠𝑖𝑛𝜃′ 

[
𝑥1

𝑦1
] =  [

𝑐𝑜𝑠𝜃′ −𝑠𝑖𝑛𝜃′

𝑠𝑖𝑛𝜃′ 𝑐𝑜𝑠𝜃′ ] [
𝑥𝑜

𝑦𝑜
]   

 (6.6) 

    

The real 2x2 special orthogonal matrix shows how the x-y plane rotates by 𝜃 measured in the 
positive X-axis in a counter clockwise rotation.  

𝑅(𝜃) = [
𝑐𝑜𝑠𝜃′ −𝑠𝑖𝑛𝜃′

𝑠𝑖𝑛𝜃′ 𝑐𝑜𝑠𝜃′ ]    (6.7) 

In three-dimensional space, the matrix is represented by a real 3x3 orthogonal matrix, and 

the rotation of the model is about one of the 3-axes of a coordinate system. For this model, 

the rotational matrix is rotated about the Z-axis in Equation (6.10) 

𝑅𝑥(𝜃) =  [
1 0 0
0 𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃
0 𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃

]   (6.8) 

𝑅𝑦(𝜃) =  [
𝑐𝑜𝑠𝜃 0 𝑠𝑖𝑛𝜃

0 1 0
−𝑠𝑖𝑛𝜃 0 𝑐𝑜𝑠𝜃

]   (6.9) 
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 𝑅𝑧(𝜃) =  [
𝑐𝑜𝑠𝜃 −𝑠𝑖𝑛𝜃 0
𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃 0

0 0 1
]   (6.10) 

A 2D profile line of the model is drawn to illustrate how the matrix sweeps through it, 

revealing its boundary. The matrix sweeps in a counter clockwise direction as 𝜃 is positive, 

and a negative 𝜃 will sweep the matrix in the opposite direction. The profiling of the model in 

Figure 6.33 is shown below in Figure 6.34. The profile in Figure 6.34 (a) and (c) indicates a 

good region of the model, while (b) and (d) at the top displays some deviations in the profile, 

indicating a damaged region. Again, there could be questions about the profile (c), but due to 

prior knowledge and visual inspection of the part, this profile is assessed as good, and the 

deviations at the top are the text engraved onto the part. This conclusion provides less 

valuable evaluation when applied to parts with complex geometries, hence the need for 

further investigation into more ways to draw concise and reasonable conclusions.  
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(a)                                                                                 (b) 

 

   (c)                                                                    (d) 

 

 

   (e)      (f) 

Figure 6.34: Profile of the model at different sections 
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Further analysis into profiling is shown in Figure 6.35. In situations where there is no prior 

knowledge or visual inspection of the part, the analysis can be deployed in deducing valuable 

information and conclusions, such as the region on the model where the damage from the 

profile display is located. This method pinpoints the profile at every point on the data and is 

plotted as a 2D profile in a subplot shown in Figure 6.35, and this verifies the work by Kai and 

Kemao [129] and other researchers described in section 2.7.  

Most profile evaluations are based on fringe projection using phase changing interferometry 

and Fourier transform profilometry [159, 160]. These methods only create fringe profiles on 

the surface of a part that is unsuitable for the goal of this project in detecting and localising 

damage; hence, further analysis is required. Therefore, this proposed method is another 

approach for getting the data rather than sectioning; this has been shown with these graphs 

below that more information that can be used for training the LSTM can be generated. 
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Figure 6.35: Plots showing the matrix sweep of the model and a subplot displaying its profile as the matrix 
moves over the surface of the model 

 

6.4 Summary 

If the noise is increased, the wavelet algorithm can find responses from the data indicated by 

the peak in amplitude of the wavelet coefficient. It has a limitation of responding to the 

scanner noise but incorporating LSTM and the filter will produce identifiable responses. But 

most importantly, the system response depends on the magnitude of the damage being 

detected. With a massive damage the amount of noise will make no difference, but a very 

small damage becomes problematic for the algorithm when it is below the threshold of the 

slice resolution. An example is the reduced number of points per slice below the slice 

resolution making it quite challenging for the neural network.  

To reiterate, RNN was employed due to the sequence-to-sequence nature of the data, and 

this was not without its challenges. One major challenge encountered was the problem of 

overfitting during training. RNN generally deals with timesteps and when these timesteps is 
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very long, it becomes saturated, and overfitting happens. To overcome this, LSTM can use the 

previous relevant information of a network together with input data in making improved 

predictions. Having input data with not enough distinction between classes can be challenging 

for RNN. A misclassification of the data was experienced when the network was seeing 

everything as one class due to the damaged feature being distributed over the whole slice 

when plotted as a row vector. The random nature of an input data into RNN can be quite 

challenging. For the case of this project, the initial slice data contained random number of 

points per slice and preprocessing was required to improve the data format for each slice 

equalling the sequence length. However, the equal sequence length is not enough for 

optimised performance of the network, hence, it is necessary to regularise the resolution of 

each slice by interpolating the dataset. Intended features can be recognized as damage when 

training an RNN and which can be challenging. A generalised challenge of an RNN is the 

vanishing gradient problem where a network becomes untrainable when the loss function in 

relation to the weights becomes very small. 

One of the high points of an RNN is that it produces reliable prediction with the right format 

of input data.  
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Chapter 7 Validation of the Proposed Method using Measurement 

Data 

7.1 Measurement data 

To validate the algorithms proposed and implemented on the simulation data in sections 6.2 

and 6.3, a simple cylindrical model in Figure 7.1 was scanned to obtain point cloud data. In 

performing this measurement, all necessary procedures were implemented as described in 

section 6.1. A stable base to minimise vibrations, correct positioning of the part relative to 

the Arm, the ambient light and temperature, are factors considered when performing this 

measurement. Hence, this experiment was performed in a controlled environment. A 

cylindrical model was used as compared to the quasi-cylindrical model of section 6.1 due to 

its simplicity. Having decided to work with a simple geometry of known geometric properties 

and profile, then work up the ladder to models with very complex geometries, which will be 

discussed as future work recommendations.  

 

Figure 7.1: Original part to be scanned 

Ø 25.02 mm 

35 mm 
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The part was held with a 3 Jaw chuck as shown in Figure 7.2 to make certain that the part is 

stable, as the movement of the part during scanning will produce inaccurate continuous 

stitching of the surface points. The 3 Jaw chuck is mostly used for holding parts when turning 

and milling; however, it can be utilised for measurement, as in this case, making sure the part 

is steady. The 3 Jaw chuck also helped with elevating the part to enable capturing of more 

points at the bottom region as the size of the part is relatively small. Point cloud data was 

captured using a Hexagon RS5 scanner attached to a 7-axis Hexagon Romer Arm 85 AACMM. 

Capturing was performed using 3D Systems Geomagic Studio 14 and New Kinematics Spatial 

Analyzer capturing software which are commercially available applications. The digitisation 

of a model with a diameter of 25.02 mm and a height of 35 mm excluding the threaded section 

is shown in Figure 7.3 with two induced damage. One damage is on the side with a width of 

4.05 mm and a depth of 0.80 mm. The other damage is located at the bottom, with a depth 

of 5.06 mm from the measured surface of the part. After capturing, the 3D model was 

inspected making sure that important features of the part were captured. The point cloud 

data was exported as raw data retaining its original co-ordinate points, and this data was 

imported into MATLAB for preprocessing in preparation for model sectioning and LSTM 

neural network training. 
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Figure 7.2: Measurement setup of the Arm, capturing software and scanned part 

 

Figure 7.3: Digitisation of the model in Geomagic Studio 14 

 

AACMM 

3 Jaw Chuck 

Scanned Part 

Capturing Software 
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7.2 Model Sectioning using Wavelet Transform 

Measurement point cloud data was inputted into the algorithm, and preprocessing was 

performed to eliminate outliers, and the model was centralised. The point cloud was 

downsampled to remove overlaying points to make the computational process faster. Model 

sectioning was done using wavelet transform to produce slices of the model, as discussed in 

section 6.2. A limitation of the slice extraction process when working with measurement data 

is that adjustments of the computational process are required to accommodate the nature of 

the data. This is because the point distribution after processing could be an unsuitable input 

for the mathematical operation of the algorithm, for example, interpolation of the data set 

while retaining the model’s structure. Measurement data can sometimes produce points that 

are not unique, i.e., duplicated and overlaying points from the scanning process can affect the 

computation. The goal is to get the measurement data as organised as possible, like simulated 

data. To achieve this, the data is downsampled and the point cloud interpolated, making sure 

not to create duplicate points.  

 

Figure 7.4: Generating slices using CWT showing early detection of the region of damage 

Wavelet Coefficient  
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Figure 7.5: Generating slices using CWT showing final stage of the process on measurement data 

 

The slice generation process shown in Figure 7.4 is using wavelet transform showing early 

detection of the region of damage, and Figure 7.5 shows the final stage of the process. On the 

unwrapped slice plot, damage appears to be less than 2 mm in size, and the wavelet 

coefficient shows the number of slices where damage is identified. However, the damage of 

this size can be challenging to identify using the radius data for training the LSTM neural 

network. This data is shown in the top plot of Figure 7.6 but can be faintly seen after 

normalisation of the data as the two highest amplitudes of the coefficient plot of Figure 7.5 

indicates the damage region on the bottom plot of Figure 7.6. This can be seen above the slice 

number of 100 for the first damage and between 330 to 400 for the second damage on the 

Wavelet Coefficient  
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X-axis. There is also another damage being detected between slice number 300 to 350 on the 

X-axis and below sample number 50 on the Y-axis. 

 

Figure 7.6: Before and after plot of the normalisation of the radius data of measurement data 

 

Figure 7.7 and Figure 7.8 shows the slicing of the part described in section 7.1 having obvious 

damage at two locations. The coefficient plot of Figure 7.7 indicates the slices with damage, 

and this correlates with the radius data plot of Figure 7.8 after normalisation. This data is then 

used for training the LSTM neural network to perform prediction. The procedure is expected 

to be identical to the application of simulated data except for necessary adjustments to 

accommodate the nature of the measurement data.  
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Figure 7.7: Generating slices using CWT showing final stage of the process on measurement data with intense damage 

 

Figure 7.8: Before and after plot of the normalisation of the radius data of measurement data with intense damage 

Wavelet Coefficient  



214 
 

7.3 Summary  

This chapter presented the validation of the algorithm proposed in Chapter 6 using raw 

measurement data captured with an AACMM in an experimental setup described in section 

2.3.2.3. The procedure validated the analysis discussed in chapter 6 using an obvious damage 

from the reference surface to overcome one limitation of the algorithm posed by scanner 

noise. During this experiment, it was observed that the algorithm responds different to raw 

measurement data as compared to simulation data on which it was developed, requiring 

some adjustments. These adjustments include parameter specification and the non-unique 

nature of measurement data containing duplicate and overlaying points, hence, requiring 

downsampling and interpolation. One limitation of the algorithm is performing computation 

of huge dataset.   
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Chapter 8 Conclusions and Further Work 

8.1 Summary 

This thesis investigated the concept of detecting and localising damage on a surface as a step 

to performing surface reconstruction of a potentially damaged surface with no access to 

design information. Despite working with no reference design geometries, this project used 

the concept of reverse engineering for this reason, through a proposed framework in 

generating measurement information of an artefact, in this case, primitive shapes. This 

involves a digital representation of the artefact's surface, preprocessing, identification of 

geometries, identifying regions of damage and reconstruction using the estimated nominal 

values to infer the part's dimensions. The nominal values cannot be obtained when reverse 

engineering blind and with no access to the original design documentation, so an estimated 

nominal value of the radius was achieved using a linear fitting method. With the estimated 

nominal values and extracted measurement information, potential defects on the part's 

surface were analysed and classified.  

The digitisation representation used in this thesis is in the form of point cloud data (PCD). 

Measurement data were obtained using a laser scanner attached to an Articulated Arm CMM. 

Most analyses performed in this thesis were based on PCD except for edge detection 

performed on images, as this performed poorly on PCD (see section 4.4). One of the project's 

objectives was to develop a system that can deal with problems of missing or sparse data and 

non-numerical characters caused during capturing. This was a necessary part of the work but 

was not intended to provide novelty for the thesis. Nevertheless, it did highlight some issues 

that other researchers may also face such as system interoperability between the data from 

a CAD application, like Geomagic studio 12, into a mathematical software such as MATLAB. 

There was an error in the raw data that was identifiable when using MATLAB due to non-

numerical characters but appropriate for the CAD software. This was due to a parse error in 

the code that produces the raw points. An algorithm was developed to identify and eliminate 

non-numeric characters from the raw data and producing a data set readable by MATLAB (see 

section 3.2.5) 

In the early stage of the research, the Delaunay triangulation of a damaged artefact was 

reconstructed in Geomagic studio 12 by connecting points to form triangulations. This 
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operation can be very onerous, depending on the geometry of the region. The model in 

question (Honda engine cover) is a combination of several geometric features coupled with 

freeform shapes. Together with the intensity of the damage, this freeform nature made it 

very difficult to perform Delaunay triangulation. Depending on the intensity of the damage, 

reconstruction of intense damage was quite challenging as there were no distinctive 

boundaries around the damage, making it difficult to identify the geometries about such 

regions. Edge detection was brought in for tracing the edges and relating them to the 

geometries of the artefact, in this case, a combination of a cone and cylinder. The cylinder 

was sitting right on the cone, and the region with high intense damage created a blending of 

both geometries. Different algorithms were implemented in both Python and MATLAB to 

establish a boundary and produce a defining edge. They both proved that the Canny edge 

detection algorithm is the most recommended as it converts images into grayscale and uses 

a Gaussian filter in smoothing of the edges to produce a single point response. The algorithm, 

when implemented in MATLAB also proved that the Canny algorithm has a better 

performance in detecting edges compared to other algorithms due to the computational 

process of using hysteresis thresholding in determining true edges in an image. When edge 

detection was implemented in python, algorithms such as Sobel and Laplace had the texture 

of the surface in the result, making it difficult to identify true edges. 

Where a model contains several geometric shapes, it can be challenging if the analysis is 

required only on one model, therefore in chapter 5, two methods of feature extraction and 

detection known as the random sample consensus (RANSAC) and linear scattered 

interpolation (LSI) are discussed. RANSAC uses sample consensus randomly in drawing 

marginal sets of points from the point cloud, but this process requires specifying the region 

of interest (ROI). The ROI constraints the search algorithm to avoid over-fitting. LSI is one of 

the three interpolation methods, and they have the most straightforward application 

approach when working with scattered data and can be applied to simple geometries. The 

RANSAC method used the Canny edge detection algorithm for extracting information for 

specifying the ROI. The LSI method was executed in a shorter time compared to RANSAC; 

however, the result from the RANSAC method compared well to a conventional CMM result 

to within 0.02 mm discrepancy, and the accuracy of both methods is dependent on the 

accuracy evaluation of the AACMM. The execution time can be influenced by the number of 
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points in a model as the sphere with fewer points and smaller in size was faster. An advantage 

of RANSAC is the possibility of extraction of models saturated with noise, and the extraction 

mechanism can be monitored.  

When slices were created using the proposed micrometre-level PCD extraction, the slices 

were classified into two classes of “good” or “damaged”. Slices outside of the specified 

damaged region were classified as good, and slices in the damaged region were classified as 

damaged. After classification, further investigation into the properties of the data was 

performed, and it was observed that the damage on the classified damaged slices tends to be 

distributed over the whole data. This resulted in the LSTM learning and classifying all slices as 

good, producing a false classification. This was caused by the wrong classification of the points 

by the algorithm and the preprocessing methods. Based on this assessment, it was found that 

the classification results were unsuitable for training an LSTM neural network.  

This resulted in the use of wavelet transform to produced radius data for training the LSTM, 

but the data was randomised due to the randomly distributed nature of the point cloud. They 

produced data that was not regularised, making it challenging for detecting small-sized 

damage. The radius data is interpolated and normalised to produce a regularised data set for 

training the LSTM where the damaged region can be clearly seen in most cases. This process 

had a limitation of directly being affected by the scanner noise for simulated data. Based on 

this analysis, it was observed that the self-learning algorithm is only suitable for instruments 

with noise levels lower than the threshold of the slice resolution. Its computational process 

does not function well with dense measurement data due to duplicated and overlaying points 

from the scanning process. To overcome this challenge, the data set is decimated and 

interpolated to produce points with no duplicates. 

A direct verification using the machine learning classification data on the model indicates that 

the algorithm can approximately identify the region of the damage on the Z-axis of a model it 

has been trained on, but with misclassification of three or more slices. This misclassification 

occurs at the transition region between both classes, and there is the possibility that the 

change in slice structure is challenging for the network. Furthermore, when using the morse 

wavelet, the energy coefficient of each slice produces information that was analysed to 

extract damage location. Manufacturing organisations can use this method to verify models 

before batch manufacturing or analyse for defects or RE after manufacturing for the quality 
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control processes. Information required for generating NC codes for machining can also be 

extracted as the relative values of the location of the damage can be obtained. 

An investigative algorithm for inspecting the profiles of a model was proposed to generate 

more data for training the LSTM. This algorithm used a rotational matrix to provide a visual 

interpretation of the boundary structure of a model. The extracted information was used to 

inspect a model to determine what is a damage or an intended design, but such information 

can be quite inconclusive when damage is not obvious. This method was used in performing 

a visual inspection of a part, and as the part is rotated about the Z-axis, deviations were 

observed in the boundary profile of the part. However, to ascertain if these deviations are 

intended design or damage, prior knowledge or physical inspection of the part is required, 

and this led to the use of machine learning in learning the properties of the profile of a model 

in making classification decisions.  

8.2 Conclusions 

The following conclusions can be drawn from the work undertaken in this thesis. 

 Edge Detection 

From the analysis performed in section 4.1, it was observed that most methods of edge 

detection, excluding the Canny algorithm, have the tendency of losing edges because they 

return more than a single point response when performing edge detection and edges are not 

localised. With the Canny algorithm, it was observed that it produced definite edges with 

single point response when images are converted to grayscale and that way, it also detected 

weak edges. Based on this evaluation, the Canny edge detection algorithm performs better 

with grayscale images of models with distinctive boundaries.  

Conclusion 1: Edge detection is suitable for isolating primitive geometries from more complex 

geometric scenes. From the type of data analysed, the Canny algorithm is recommended for 

this application. However, care must be taken on objects where the boundaries are ill-defined 

or where thresholding means that the grayscale values are not sufficiently distinct. 

  Feature Extraction 

Based on the evaluation of section 5.3, the execution time for the linear scattered 

interpolation (LSI) was observed to be faster to within 10 seconds for a feature with fewer 

points (sphere) and to within 100 seconds for the largest model compared to Random Sample 
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Consensus (RANSAC). From the investigation of the computational process for each method, 

it was observed that RANSAC required more computation which might have contributed to 

the slower process experienced. However, the LSI produced a larger error of 0.09 mm 

compared to RANSAC 0.02 mm for the smaller part and 0.12 mm for LSI compared to 0.07 mm 

for RANSAC for the larger part. For larger parts, where more data points will be required, the 

improvement in computation time can be expected to be higher. Similarly, it is likely that the 

accuracy will also reduce. However, for the applications presented in this thesis, the accuracy 

of extracting PCD is of importance and RANSAC would be recommended as there is more 

control of the parameters for performing computation.  

Conclusion 2: For parts where the accuracy of feature extraction is most important, RANSAC 

should be used. For parts where the tolerance is more relaxed, but computation time is 

critical, LSI provides the better result.  

 Classified Slice Data for Training of Machine Learning 

The approach of generating slices using wavelet transform has been shown to be a better 

approach than developing slices using the slice resolution over the model’s height, with more 

preprocessing of the data making it more suitable for training the LSTM. This approach 

regularised the data making it possible for distinct identification of damage region even for 

models with small-sized damage. The prediction results compared well to the simulated 

region of damage as shown in Table 6.4 of section 6.2.6 with an error of up to 2.2 mm except 

for networks where detection did not occur. Since the achievable resolution with the data 

used was 0.05 mm, this represents an error of five “slices.” With more dense data it is likely 

that further improvements could be found. 

Conclusion 3: Training an LSTM neural network using micrometre-level information of a 

model can produce predictions that have been shown to accurately detect and localise 

damage on a model to within the specified slice resolution.  

Conclusion 4: Accurate data preprocessing after slice generation is a prerequisite to ensure 

the neural network is being trained on appropriate data to perform accurate prediction. 

However, misclassification of slices may occur, so the resolution of slicing, which is limited by 

the point cloud density, is a critical factor.  
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Conclusion 5: The computational process showed the direct effect of the data size when 

generating training data. Therefore, it is recommended to use a data reduction technique to 

reduce the absolute number of points in the matrix. However, this conflicts with Conclusion 

4, which asks for improved point cloud density to retain important features of the model. The 

effect of the computational process depends on the processing ability of the computer, and 

it is expected to improve on computers with more processing power. Alternatively, an 

iterative approach could be developed where a low number of points is used at the macro 

level to identify possible damage-boundaries, which can then be refined using denser data 

points in those regions only. Some adjustments are required for different types of parametric 

functions to accommodate different geometries which can be a limiting factor, however, this 

proves the principle that RNN can be applied in this case, but a lot of research is required for 

it to be extensible.  

 Profile Analysis 

The method of sectioning used for populating the machine learning algorithm in this thesis 

has limitations in dimensionality and is only appropriate for primitive geometries. To solve 

this, a more advanced method of extracting meaningful 2D information was developed. The 

profile analysis identified regions of nominally stable profile, and the damaged region 

appeared as deviations from the nominal profile. However, intentional features, such as 

engraved text on the model also appears as deviations, which could be misclassified as a 

damaged profile. Human intervention, through physical visual inspection of the part, is 

therefore required to distinguish between intentional and non-intentional features on the 

surface. Such manual intervention makes the evaluation process less objective when applied 

to parts with complex geometries, as discussed in section 6.3. The result of this work shows 

clear deviation from the profile where defects and intentional features are highlighted on the 

series of plots (see Figure 6.34). 

Conclusion 6: The method of locating damage on a part’s model developed in this thesis relies 

on conversion from 3D to 2D data streams. The profile generation method created in this 

thesis has been shown to provide a possible additional solution to the sectioning method 

already validated. 
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8.3 Contribution to Knowledge 

This thesis made contributions on the aspect of damage detection and localisation at the 

microns level. This was a step in implementing the proposed surface reconstruction 

processing using the proposed reverse engineering framework, and these contributions are 

summarised as follows. 

Reverse Engineering Framework for Performing Surface Reconstruction. A framework was 

developed for performing surface reconstruction (SR) using the concept of reverse 

engineering (RE). This framework identified approaches for implementing the several 

methods proposed and identifying alternative approaches. These methods include capturing 

data, preprocessing, identification and localisation of damage, dimensioning of identified 

features, intelligent dimensioning to evaluate design intent, generating design drawing, 

performing reconstruction, and verification of reconstructed artefact. This satisfies the first 

and second objectives of this thesis.  

Contribution 1: Most damage detection is performed on an image or an image data of a 

physical part, but this thesis has shown that point cloud data using the method of reverse 

engineering can be used to train a NN for detecting damage.  

Profile Evaluation. Following from the process of feature detection, a profile examination 

algorithm was developed to find the boundary structure of the model. During the monitoring 

of the profile, it was observed that the damaged section of a model could be identified but by 

visual inspection and having prior knowledge of the structure of the model either by physical 

examination or by digitisation. This is not the case for a machine tool, hence, the necessity for 

developing a system requiring less human influence. The process was further developed to 

indicate on the model the exact location of the profile as the matrix sweeps over the surface. 

Hence, without prior knowledge of a model, the dimensionality plot can be analysed and 

interpreted for detecting discrepancies in the model’s profile. This application can be used by 

metrology establishments when performing inspections and in manufacturing industries as 

part of the design validation process of a model. This model analysis method can be used by 

the quality control department of companies, inspection organisations, and research 

organisations that employ reverse engineering as part of their operations.  
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Contribution 2: An application of rotation matrix for inspecting the boundary profile of an 

artefact was developed and this presented a new dimension to performing visual inspection 

without prior knowledge of an artefact except for intended features.  

Micrometre-level PCD Extraction. Further to improving the system to reduce human 

influence in an objectified manner to accurately identify damage regions, a slicing algorithm 

was developed, producing section slices of the model in the Z-axis direction, used to localise 

the damaged region. An algorithm that automatically classifies the slices into “good” or 

“damaged” was developed. The slices were unwrapped to produce numeric sequence data – 

time-series data that can be visualised as a graph. These data are used as training and test 

data for the LSTM. The LSTM result was analysed in terms of the accuracy of the training and 

classification, and using a confusion matrix chart, a comparison between the automatic 

classification and the LSTM was deduced. A linear fitting method was used to estimate the 

nominal values. This is like the circfit function used to fit a circle to a simulated set of points 

using the initial guess as to the determining factor when performing optimisation of the 

system. The proposed method was able to perform detection using point cloud as 

measurement data but required more analysis considering the integrity of the data and how 

well the extracted information compares with the measured information. Research institutes, 

organisations performing RE can use this algorithm as well as CNC machinists in a 

manufacturing setup to identify regions on a model with potential damage, satisfying the 

fourth and fifth objectives of this thesis.  

Contribution 3: Micrometre-level information can be extracted from the PCD of an artefact 

and with accurate preprocessing, this data can be used in detecting damage on a model a 

recurrent neural network prediction.  

8.4 Recommendation for Further Work 

Several researchers have developed different ways of detecting damage on the surface of a 

model, and a few pieces of research have been done on the aspect of boundary profile and 

using B-spline curves. This research used a rotational matrix on the model's profile, but the 

identification process is by visual inspection. More work is required when this process is used 

for damage detection as a reconstruction process to assess that the identified variation to the 

normal B-spline of the model is damaged and not a design intent. This will aid the reverse 



223 
 

engineering process without visual inspection or having prior knowledge. Due to the 

timescale of the project and limitations, further work is required in the areas stated below. 

• This thesis proposes and validates a method that can assist with automatic part repair 

and reconstruction. Significant further work is required to take this forward to a point 

where the location and shape of damage is automatically detected, and the requisite 

remedial action is automatically generated. This includes both determining how much 

additive material is required in a specific location and generating a tool path during 

subtractive operations to perform the reconstruction. The proposed methods 

performed well on simple geometry, as in this case a cylinder, but its performance on 

complex geometries such as freeform and models with combined geometries (such as 

cylinder on a cone) is inconclusive because it has not been tested on such models. 

However, application on other model types will require adjustments or improvement 

to the computational process to accommodate different geometries. 

• The proposed framework was predominantly on models with material removal as 

damage such as blowhole, crack, and scratch. For performing reconstruction, additive 

manufacturing is required to build the surface up, before machining back to 

“nominal”. In the case of convex surface imperfections such as warts, blister, buckle, 

deposit, and crater, according to ISO 8785:1999, a subtractive milling operation is 

required. Validation of the techniques on such features was not completed during this 

thesis. Since surfaces could also have a combination of both concave and convex 

damage, further work is needed to understand whether this information can assist 

with defining the nominal dimensions. The overall framework of detecting damage 

cannot indicate the type of damage described in ISO 8785:1999 on surface 

imperfections. However, certain definite imperfections can be seen on the point cloud 

model, imperfections such as scratches can be challenging because it contains points 

produced by light scattering on the surface in a random manner due to the irregularity 

of the surface. To achieve machine learning classification of such surface 

imperfections, more training is required on several surface imperfection models 

having different point distributions. 

• At this stage of the research, the estimation of nominal values cannot be performed 

on coated surfaces since the coating adds an extra layer to the nominal surface of the 
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model. More research is required to determine what extra values, in micrometres, are 

added to the surface depending upon the material used for coating.  

• As part of the sequence data generation, there was misclassification of some slices 

during the machine learning process, and this predominantly occurred at the 

transition of good regions to damaged regions. However, this misclassification did not 

affect the detection process as accuracy of 99% was achieved during training. It had 

to do with the difficulty faced by the neural network in the understanding of the slices 

as they change in geometry and structure of points when transiting between regions, 

requiring further investigation. However, most machine learning applications are on 

images; the unwrapped numeric sequence data of each slice can be converted into a 

spectrogram and can be used for training a convolutional neural network. With the 

right manipulation of parameters of the spectrogram, this function could distinguish 

variations in the signal and produce an image with a colourmap to help interpret such 

variations. This could possibly add supplementary information to the process 

developed in this thesis. 

• Probably the most challenging extension of this work would be to translate it to 

freeform surfaces. Such shapes are difficult to describe even from the forward 

engineering approach; reverse engineering would require several more steps beyond 

this thesis. One of the most difficult aspects would be overcoming the uncertain, ill-

defined “boundary” between one freeform surface and another, especially since such 

surfaces can appear to transition between each other seamlessly. This complex nature 

leads to questions of what is damage and what is an intended freeform feature? It is 

intended that the framework in this thesis could be extended to models with complex 

geometries only through more advanced use of machine learning of specific types of 

damage. While scratches and dents may be able to be classified, manufacturing 

defects such as poor release from a mould are likely to be more challenging to learn.  

• A graphic user interface (GUI) can be developed to perform LSTM training using an 

already developed neural network structure. The interface can be designed to accept 

models with complex geometries, provide robustness in using the network's 

hyperparameters, and allow for numerous training operations and analysis. Each 

training process should produce a network that can be stored in a folder and employed 

when needed. Over time, the accuracy of stored networks can be visualised to monitor 
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how different networks performed, and respective parameters can be investigated. A 

brief illustration of GUI is in K. 

• One important aspect for consideration in the future is the fusion of spatial features 

from the CNN and the detailed features from LSTM to deduce more meaningful 

information as regards the detection of damage on the surface of a model. During 

spatial scanning, strips of scene are used in producing slit spectra and the output 

image are evaluated per line. The two spectral imaging application of multispectral 

and hyperspectral does produce spectra bands of different sizes where multispectral 

is shorter, whereas hyperspectral looks at the collection of a complete spectrum at 

every pixel in an image. This system does produce wavelengths that are continuously 

varying, hence, there is the possibility of extracting response signal using wavelet 

transform as presented in this thesis to generate data suitable for training an LSTM. 

Also, in finding the location of damage in an image or on a surface, a spatial imaging 

data from CNN could be fused with a detailed feature from an LSTM to identify 

deviations that could possibly indicate the presence of damage or an intended feature 

with further investigation such as inspection. 
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Appendix A Circularity Test for Both the Arm Calibration Sphere and 

a Cylindrical Part used in Chapter 5 section 5.2 

 

Figure A.0.1: Parametric information for cylinder 1 
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Figure A.0.2: Parametric information of the cylinder 2 
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Figure A.0.3: First roundness test for cylinder 1 
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Figure A.0.4: Second roundness test for cylinder 1 
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Figure A.0.5: Measurement using Co-ordinate Measuring Machine 
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Appendix B Mean Square Error (MSE) of the Various Noises 

Associated with Image Processing with R, G, and B Values   

Table B.0.1: Mean Square Error (MSE) of the various noises associated with image processing with R, G, and B 
values [102] 

 

 

Table B.0.2: Colour peak-signal-to-noise ratio (CPSNR) showing R, G, and B values calculations for different 
filter performance (db) [102] 
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Appendix C Reverse Engineering Tools 

 

 

Figure C.0.1: Tools for performing reverse engineering 

 

Figure C.0.2: Laser Scanner 



243 
 

Table C.0.1: Specification of the RS4 laser scanner 

 

 

  

 RS4 

Accuracy 0.028 mm (2σ) 

Point Acquisition Rate 752 000 points/s 

Points per Line Max. 7520 

Line Rate Max. 100 Hz  

Line Width (mid) 115 mm 

Standoff 165 ± 50 mm 

Minimum Point Spacing 0.011 mm 

System Scanning Certification Yes 

Laser Class 2M 

Operating Temperature 5-40°C 

Weight 8.4 kg 
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Appendix D Steps for Performing Feature Fitting and Extraction in 

MATLAB 

Feature Recognition 

This is a MATLAB function to show how a feature can be fitted to point cloud data. Point cloud 

data could be measured or simulated data. The function can fit a cylinder or a sphere to a set 

of points by manipulating specific parameters – the most important is specifying the region 

of interest (roi) to constraint the search and the amount of time required to run the function. 

Fitting a Cylinder to Point Cloud Data 

STEP 1: Firstly, we will need to have both the data and the function in the same path, as shown 

below in Figure D.1. 

 

Figure D.1 
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STEP 2: Load the m-file called testpcfitcylinder.m, run the section shown below to plot the 

point cloud of the raw data. This can be done by highlighting the section, Right-click, then click 

Evaluate section (F9) to run the section. 

 

Figure D.2 

 

Figure D.3 
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STEP 3: We could set the roi, but for this plot, we have got one model, so we can set the x, y, 

and z coordinates from –inf to inf as shown below. This fits a cylinder to the whole model. 

 

Figure D.4 

STEP 4: Click on RUN under the EDITOR tab to run the programme. You can see how the 

function fits a cylinder to the model. You can zoom in to have a closer view of the plot. 

 

Figure D.5 
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Figure D.6 

 

STEP 5: Now, let us look at a model having different geometric shapes. On the left-hand side 

of MATLAB, where you have got the Current Folder as shown in the Figure below, copy the 

file name plane_cylinder-sphere1.txt and replace the PCcylinder.txt with plane_cylinder-

sphere1.txt in the programme, do not forget to have it within the apostrophes as shown in 

Figure 7.  

 

Figure D.7  

STEP 6: Highlight the section as shown in Figure 8 to plot the point cloud of the raw data, 

Right-click, then click Evaluate section (F9) to run the section. 
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Figure D.8 

STEP 7: To fit a cylinder, sphere or plane to the plot shown in Figure 9, we will need to specify 

the region of interest (roi) to constraint the search. 

 

Figure D.9 
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STEP 8: To fit a cylinder to the biggest cylinder in the point cloud, we specify the x, y and z 

coordinates as follows: 

X – axis = -150, 0; Y – axis = 550, 700; Z – axis = 50, inf 

The function tried to fit a cylinder to the point cloud within our specified region of interest. 

 

Figure D.10 

STEP 9: Click on RUN under the EDITOR tab to run the programme. You can see how the 

function fits a cylinder to the model. You can zoom in to have a closer view of the plot.  
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Figure D.11 

 

Figure D.12 
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STEP 10: To fit a cylinder into the smaller cylinder point cloud, we will need to specify the 

region of interest. To do this, we look at Figure D.9 and determine the x, y, and z coordinates. 

From Figure D.9, the coordinates can be specified as follows: 

X – axis = -300, -200; Y- axis = 500, 600; Z – axis = 75, 200; from Figure 13 below. Figure 14 

shows the roi specification. 

 

Figure D.13 

 

Figure D.14 

STEP 11: Click on RUN under the EDITOR tab to run the programme. You can see how the 

function fits a cylinder to the model. You can zoom in to have a closer view of the plot. 
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Figure D.15 

 

Fitting a Sphere to Point Cloud Data 

STEP 1: From the left-hand panel in MATLAB, as shown in Figure D.1, load the m-file called 

testpcfitsphere.m, the raw data is the same as the one in the previous function. Comment the 

code line 21-23 as shown below by highlighting and pressing Ctrl+R on the keyboard; you will 

notice it turns green with the % sign. Do not forget; the roi has already been specified for you 

from the plot in Figures D. 9 and D.13. 
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Figure D.16 

STEP 2: Click on RUN under the EDITOR tab to run the programme. You can see how the 

function fits a sphere to the model. You can zoom in to have a closer view of the plot. 

 

Figure D.17 
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Figure D.18 

STEP 3: The function can also extract a sphere from the point cloud. In the programme, 

uncomment the code line 21-23 which we commented on initially, do this by highlighting the 

code and on the keyboard Ctrl+T to uncomment, then comment code line 25 – 28 by 

highlighting the lines and Ctrl+R. 

 

Figure D.19 
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STEP 4: Click on RUN under the EDITOR tab to run the programme. You can see how the 

function fits a sphere to the model. You can zoom in to have a closer view of the plot. 

 

Figure D.20 

 

Figure D.21: Fitting a cylinder to the point cloud 
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Figure D.22: Extraction of the sphere 

 

Figure D.23: Figures showing the fitting of the sphere to the point cloud 
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Figure D.24: Colour map of the sphere 

 

Figure D.25: Colour map of cylinder 1 
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Figure D.26: Colour map of cylinder 2 
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Table D.0.1: Comparison of the Arm Calibration sphere 

Methods for Measurement 

Shapes  Micrometre MATLAB Geomagic UKAS 

Certificate 

Sphere Ø 25.398 mm Ø25.4012 mm Ø25.4031 mm Ø25.39995 mm 

Cylinder 1 Ø8.033 mm Ø8.0388 mm Ø8.01153 mm  

Cylinder 2 Ø29.525 mm Ø29.326 mm Ø29.5915 mm  

 

MATLAB Code for Feature Fitting Adapted from Mathworks [161] 

 

% importing measurement data 

RawData = importdata('plane_cylinder_sphere1.txt'); 

 

%plotting the point cloud 

pcshow(p) 

title('Calibrator sphere') 

xlabel('X(m)') 

ylabel('Y(m)') 

zlabel('Z(m)') 

  

maxDistance = 0.005; 

referenceVector = [0,0,1]; 

maxAngularDistance = 5; 

% RawData = rot_mat(RawData,'y',90); 

% RawData = rot_mat(RawData,'x',90); 

PolygonData = pointCloud(p); 

figure 

pcshow(PolygonData) 

        

% specifying the region of interest to constrain the search – 

based upon example from Mathworks [161] 

roi = [-250,-200;520,600;50,inf]; 

sampleIndices = findPointsInROI(PolygonData,roi); 

% [model,inlierIndices] = 

pcfitcylinder(PolygonData,maxDistance); 

% pc = select(PolygonData,inlierIndices);    

%  

   model = 

pcfitcylinder(PolygonData,maxDistance,referenceVector,... 

       'SampleIndices',sampleIndices); 

    hold on 

    plot(model) 
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% importing measurement data for the algorithm 

RawData = importdata('plane_cylinder_sphere1.txt'); 

Figure; 

pcshow(RawData) 

title('Original Point Cloud') 

maxDistance = 0.01; 

% referenceVector = [0,0,1]; 

% maxAngularDistance = 5; 

% RawData = rot_mat(RawData,'x',90); 

PolygonData = pointCloud(RawData); 

roi = [-300,-200;500,600;200,inf]; 

sampleIndices = findPointsInROI(PolygonData,roi);  

model=pcfitsphere(PolygonData,maxDistance,referenceVector,... 

       'SampleIndices',sampleIndices); 

    hold on 

    plot(model)  

    

pcfitcylinder and pcfitplane adapted from Mathworks [161] 

% importing measurement data for the algorithm 

RawData = importdata('plane_cylinder_sphere1.txt'); 

 % plotting the point cloud of the measurement data 

figure 

pcshow(RawData) 

title('Original Point Cloud') 

% setting initial parameters based upon example from Mathworks 

[161] 

maxDistance = 0.02; 

referenceVector = [0,0,1]; 

maxAngularDistance = 5; 

% RawData = rot_mat(RawData,'x',90); 

PolygonData = pointCloud(RawData); 

  

 [model1,inlierIndices] = pcfitplane(PolygonData,... 

    maxDistance,referenceVector,maxAngularDistance); 

plane1 = select(PolygonData,inlierIndices);    

remainPtCloud = select(PolygonData,outlierIndices); 

% specifying region of interest to constraint the search 

roi = [-inf,inf;-inf,inf;-inf,inf]; 

sampleIndices = findPointsInROI(remainPtCloud,roi); 

  

[model2,inlierIndices,outlierIndices] = 

pcfitplane(remainPtCloud,... 

            maxDistance,'SampleIndices',sampleIndices); 

plane2 = select(PolygonData,inlierIndices); 

remainPtCloud = select(PolygonData,outlierIndices); 

 % plotting the first plane  

figure; pcshow(plane1);figure; pcshow(plane2);  
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Appendix E MATLAB Code for Boundary Profiling using Point Cloud 

Data Adapted from MATLAB 

MATLAB Code for profile monitoring 

% Damage Detection 

% Importing measurement data and decimating the original point 

cloud to 

% Remove noise and outliers using downsample 

Rawdata = importdata('mymodel.txt'); 

a2 = downsample(Rawdata, 10); 

a2 = a2(a2(:,3)>50,:); 

figure;whitebg([0.2 0.2 0.2]); 

sp1 = subplot(211); 

%Centralizing 

a2(:,1) = a2(:,1)-mean(a2(:,1)); 

a2(:,2) = a2(:,2)-mean(a2(:,2)); 

pcshow(a2);hold on; 

  

%Rotation Matrix about Z-Axis 

theta = 0.1; 

M = [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 

1]; 

theta1 = 0.1; 

M1 = [cosd(theta1) -sind(theta1) 0; sind(theta1) cosd(theta1) 

0; 0 0 1]; 

% figure, defining the profile line as it moves over the model 

profileline = a2(a2(:,1)>0 & floor(a2(:,2)) == 0, :); 

h1 = 

plot3(profileline(:,1),profileline(:,2),profileline(:,3),'.','

Color','r'); 

hold off; 

xlabel('x');ylabel('y');zlabel('z');grid on; 

sp2 = subplot(212); 

h2 = plot(profileline(:,1),profileline(:,2),'Color','y'); 

xlabel('x');ylabel('y');zlabel('z');grid on; 

for i = 0 : 0.1 : 720 

    %Rotation 

    a2 = a2*M; 

    %Define the line point set and expressing it with the 

rotational 

    % matrix about z-axis 

    profileline = a2(a2(:,1)>=0 & abs(a2(:,2)) < 1e-2, :); 

    theta1 = -i; 

    M1 = [cosd(theta1) -sind(theta1) 0; sind(theta1) 

cosd(theta1) 0; 0 0 1]; 

    profileline = profileline*M1; 

    profileline = sortrows(profileline,1); 

    tempradius = 

sqrt((profileline(:,1)).^2+(profileline(:,2)).^2); 
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set(h1,'xData',profileline(:,1),'yData',profileline(:,2),'zDat

a',profileline(:,3)); 

    set(h2,'xData',tempradius,'yData',profileline(:,3)); 

    xlim(sp1,[-120 120]); 

    ylim(sp1,[-120 120]); 

    zlim(sp1,[-10 120]); 

    xlim(sp2,[00 120]); 

    ylim(sp2,[0 150]); 

    drawnow; 

    pause(0.5); 

end  
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Appendix F MATLAB Code for Simplex Optimisation Adapted from 

MATLAB 

MATLAB code for optimisation of circfit 

function p = optimisation6 

 

% Initial adjustable set points for the nominal radius of the 

system, radius of the dent and noise level  

% (tolerance for the Articulate Arm is 50microns) 

NoiseLevel=0.065; 

NomRadius=1; 

DentRadius=0.65; 

DentNoiseLevel=NoiseLevel; 

  

% The NomialVariables define the x, y, and radius 

NominalVariables=[2.4,2,NomRadius]; 

  

% Parametric function for defining a circle  

% And generating random points through which a circle is being 

fitted to these points. 

   

x1 = NominalVariables(3)*(sind(12:0.1:348))'+ 

NoiseLevel*rand(3361,1)+NominalVariables(1);  

x2 = NominalVariables(3)*(cosd(12:0.1:348))'+ 

NoiseLevel*rand(3361,1)+NominalVariables(2); 

  

% Adding a measurement dent with a smaller radius 

if DentRadius>0 

x11 = 

DentRadius*(sind(90:270))'+DentNoiseLevel*rand(181,1)+NominalV

ariables(1);  

x21 = 

DentRadius*(cosd(90:270))'+DentNoiseLevel*rand(181,1)+NominalV

ariables(2)+NominalVariables(3); 

% combining both sets of data 

x1 = [x1; x11]; 

x2 = [x2; x21]; 

end  

  

pg_initial = [1.09 1.21 1.24]; % Initial guess for implementing 

fminsearch 

ps = [x1 x2]; 

options = optimset('PlotFcns',@optimplotfval); 

x = fminsearch(@(pg) myfun(pg,ps), pg_initial, options); 

figure; 

% Add set of points generated to the circle  

whitebg([0.2 0.2 0.2]); % background colour 

plot(x1,x2,'.','Color','r');hold on;  
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% Plot of the circle  

t = 0:360;   

xe = x(3)*sind(t)+x(1); 

ye = x(3)*cosd(t)+x(2); 

plot(xe,ye);hold on; 

plot(x(1),x(2),'o');hold off; 

title('circfit of sampled points') 

axis equal; 

  

% trying to compare system interaction and difference in 

response with changes 

% in the initial guess of the system 

pg_initial = [0.9 0.21 1.24];  % Initial guess for implementing 

fminsearch 

y = fminsearch(@(pg) myfun(pg,ps),pg_initial, options); 

figure; 

% add set of points generated to the circle  

whitebg([0.2 0.2 0.2]); 

plot(x1,x2,'.','Color','r');hold on; 

% Plot of the circle 

t = 0:360; 

xe = x(3)*sind(t)+y(1); 

ye = x(3)*cosd(t)+y(2); 

plot(xe,ye);hold on; 

plot(y(1),y(2),'o');hold off; 

xlabel('X') 

ylabel('Y') 

axis equal; 

  

P = [NominalVariables ; x ;y] 

  

Residual = [NominalVariables ; x-NominalVariables ;y-

NominalVariables] 

  

Difference = y-x 

  

function F1 = myfun(pg,ps) 

    F1 = 0; 

    for i = 1 : size(ps,1) 

        E = pg(3)^2-((ps(i,1)-pg(1))^2+(ps(i,2)-pg(2))^2); 

        F1 = abs(E) + F1; 

    end 

end 

testtilefigs([2 3],5) 

end 

 

 



265 
 

Table F.0.1: Table showing the residual computation of the optimisation system 

Coordinates 

Primitive circle X coordinates Y coordinates Radius 

Perfect Circle 0 0 0 

Circle with noise 0.0345 0.0328 -0.0008 

Circle with missing data 0.0332 0.0338 -0.0001 

Circle with measured dent 0.0318 0.0309 -0.0009 

Mean 0.024875 0.024375 -0.00045 

 

The system is robust because the interaction between the first and second functions remains 

the same with alteration of the initial guess as to the factor. No matter how high or low the 

step length of the initial guess, the system is optimised to a current function value within 

33.6924 mm to 36.3253 mm. Increasing the initial guess values increases the number of 

iterations. However, the effect of the step length is minimal and the number of iterations 

changes with each run, which means this is a dynamic system. At a very high initial guess 

value, the function value decreases while the iteration increases, but the number of iterations 

differs with each run. At a lower value of initial guess, function value increases while iteration 

changes with each run, but the current function value of the optimisation function remains 

constant. The function value increase with a further decrease in the initial guess. At a much 

lower value for the initial guess (1.9/1.21), the function value increases drastically while the 

changes in the iteration are small in section 4.3.1. 
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Appendix G MATLAB Code for profile monitoring using rotational 

matrix 

% Damage Detection 

a = importdata('mymodel.txt'); 

a1 = downsample (a, 10); 

a2 = a1(a1(:,3)>50,:); 

figure; 

pcshow(a2) 

  

%Centralizing 

a2(:,1) = a2(:,1)-mean(a2(:,1)); 

a2(:,3) = a2(:,3)-mean(a2(:,3)); 

  

%Central Point 

x0 = 0; 

y0 = 0; 

  

%Rotation Matrix with Z-Axis 

theta = 0.1; 

M = [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 

0 1]; 

  

%Line of each degree based upon example from Mathworks [162] 

x = zeros(1,1); 

y = zeros(1,1); 

z = zeros(1,1); 

   

tempdata = a2(a2(:,1)>0 & fix(a2(:,2)) == 0, :); 

h = plot(tempdata(:,1),tempdata(:,3),'.'); 

title('Boundary Profile');  

  

for i = 0: 0.1: 360     

    %Define the line point set 

    tempdata = a2(a2(:,1)>0 & floor(a2(:,3)) == 0, :); 

    %Rotation 

    a2 = a2*M; 

    set(h, 'xData',tempdata(:,1),'yData',tempdata(:,3)); 

    xlim([0 90]) 

    ylim([90 120]) 

    drawnow; 

    F(i) = getframe(gcf); 

end 

%Function is VideoWriter is based on example from Mathworks 

[90] 

video = VideoWriter('Boundary_Profile1.avi','Uncompressed 

AVI'); 

open(video) 

writeVideo(video,F); 

close(video) 
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MATLAB code for generating simulation data _ ordered points 

function [data] = pointcloudcylinder(varargin) 
% defining parameters 
N =1000; 
R = 5; 
theta =2*pi/N; 
 
counter = 0; 
x1 = zeros(1,1); 
y1 = zeros(1,1); 
z1 = zeros(1,1); 
 
for i = 0 : 0.1 : 10 
   for j = 0:theta:2*pi  
       counter = 1 + counter; 
    x1(counter,1) = R*cos(j); 
    y1(counter,1) = R*sin(j); 
    z1(counter,1) = i; 
   end 
end 
for R = 0.1 : 0.1 : 5 
   for j = 0:theta:2*pi  
       counter = 1 + counter; 
    x1(counter,1) = R*cos(j); 
    y1(counter,1) = R*sin(j); 
    z1(counter,1) = 0; 
   end 
end 
for R = 0.1 : 0.1 : 5 
   for j = 0:theta:2*pi  
       counter = 1 + counter; 
    x1(counter,1) = R*cos(j); 
    y1(counter,1) = R*sin(j); 
    z1(counter,1) = 10; 
   end 
end 
plot3(x1,y1,z1, '.'); 
PCRaw = [x1,y1,z1]; 
PCNoisy = PCRaw; 
 
% To create a damage on the model 
%PCNoisy(PCNoisy(:,2)>3 & PCNoisy(:,3)>4 & PCNoisy(:,3)<6, 2) = 3; 
PCNoisy(PCNoisy(:,2)>3.4 & PCNoisy(:,3)>4.6 & PCNoisy(:,3)<5.6, 2) = 
3.4; 
PCNoisy(PCNoisy(:,2)>4.8 & PCNoisy(:,3)>9 & PCNoisy(:,3)<9.78, 
3)=4.8; 
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 data = PCNoisy; 
pcshow(PCNoisy) 
axis equal; 
grid on; 
title('Ordered Point Cloud Data') 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Z(mm)'); 
end 
 

MATLAB code for generating simulation data _ randomly distributed points 

% Example: Varargin parameters 
%   data = damaged_cylinder_pc([3,5],0.1,0.00002,1,[0,90, 1.5],0.5); 
%   pcshow(data);view(0,90) 
 
function varargout = damaged_cylinder_pc(varargin) 
    % Para1: dimension <height, radius> 
    % Para2: chaos level 
    % Para3: point density float value (0 - 1) 
    % Para4: bool - random sampling or even 
    % Para5: damaged_location [theta1, theta2] (specified in 0 - 360 
degs) 
    obj_dimension = varargin[7]; 
    obj_chaos_level = varargin[163]; 
    obj_density = varargin[154]; 
    obj_dloc = varargin[158]; 
    obj_dlevel = varargin[163]; 
     
    if varargin[163] 
        disp('Random distribution'); 
        % Bottom and Top 
        pc_size = floor(1/obj_density); 
         
        % Side Wall Unwrapped PC 
        % pc_side[radians, z_height] 
        pc_side_rz = [rand(pc_size,1)*2*pi*obj_dimension(2),... 
            rand(pc_size, 1)*obj_dimension(1)]; 
        pc_degs = (pc_side_rz(:,1)/(2*pi*obj_dimension(2)))*360; 
         
        [r,~] = size(pc_side_rz);   
        d1 = reset_value(obj_dloc(1), obj_dloc(2)); 
        d2 = obj_dimension(2)/5; 
        d3 = reset_value(obj_dloc(3)-d2, obj_dloc(3)+d2); 
        pc_side1 = zeros(r,3); 
        for i = 1 : r 
            if pc_degs(i,1)>=obj_dloc(1) && 
pc_degs(i,1)<=obj_dloc(2)... 
                    && pc_side_rz(i,2)>=obj_dloc(3)-d2... 
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                    && pc_side_rz(i,2)<=obj_dloc(3)+d2 
                n1=(obj_dimension(2)+obj_dlevel*... 
                    (cosd(pc_degs(i,1)*d1(1)+d1(2))+... 
                    rand*cosd(pc_side_rz(i,2)*d3(1)+d3(2))))... 
                    *cosd(pc_degs(i,1)); 
                n2=(obj_dimension(2)+obj_dlevel*... 
                    (cosd(pc_degs(i,1)*d1(1)+d1(2))+... 
                    rand*cosd(pc_side_rz(i,2)*d3(1)+d3(2))))... 
                    *sind(pc_degs(i,1)); 
                 
                or1=obj_dimension(2)*cosd(pc_degs(i,1)); 
                or2=obj_dimension(2)*sind(pc_degs(i,1)); 
                if sqrt((n1)^2+(n2)^2) >= sqrt(or1^2+or2^2) 
                    pc_side1(i,1) = or1; 
                    pc_side1(i,2) = or2; 
                else 
                    pc_side1(i,1) = n1; 
                    pc_side1(i,2) = n2; 
                end 
            else 
                pc_side1(i,1)=obj_dimension(2)*cosd(pc_degs(i,1)); 
                pc_side1(i,2)=obj_dimension(2)*sind(pc_degs(i,1)); 
            end 
            pc_side1(i,3)=pc_side_rz(i,2); 
        end 
        varargout[158] 
 = pc_side1; 
    else 
        disp('Even distribution'); 
    end 
end 
 
function varargout = cylinder_inspection(varargin) 
    pc_data = varargin[158]; 
    radius = zeros(1,1); 
    for i = 1 : length(pc_data) 
        radius(i,1) = sqrt((pc_data(i,1))^2+(pc_data(i,2))^2); 
    end 
    temp_1 = max(radius); 
    d_range_x = 5; 
    d_range_y = 50; 
    subplot(221); 
    h1 = plot3(pc_data(:,1),pc_data(:,2),pc_data(:,3),'.');hold on; 
    h1_1 = plot([0,0],[0,0],'r'); 
    h2 = plot3(1,1,1,'o','Color','g');hold off; 
    view(0,90); 
    axis equal 
    title('Original Point Cloud'); 
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    subplot(222); 
    h3 = plot(1,1); 
    xlim([0 3]); 
    ylim([3 6]); 
    title('Projection Line of Selected Points'); 
     
    subplot(223); 
    h4 = mesh([0,0],[0,0],zeros(2,2)); 
    view(0,90); 
    xlim([0 250]); 
    title('CWT Analysis of Projection Line'); 
     
    subplot(224); 
    h5 = animatedline; hold on 
    h6 = plot(0,0,'*','Color','r');hold off; 
    title('Wavelet Coefficient'); 
     
    sum_v = zeros(1,1); 
    Five_Days = zeros(10,1); 
     
    % Two cycles 
    for i = 0 : 360 
        temp_data = pc_data(pc_data(:,1)>temp_1-temp_1/d_range_x... 
            & pc_data(:,2)>-temp_1/d_range_y... 
            & pc_data(:,2)<temp_1/d_range_y,:); 
        pc_data = transform_pc(pc_data, 1, [0,0,1]); 
        temp_data = sortrows(temp_data,3); 
         
        % Calculate wavelet power spectrum based on example from 
Mathworks 
        [wt,f,c] = cwt(temp_data(:,1),'morse',length(temp_data)); 
         
        % Compute coefficient surface geometry variation with 
wavelet spectrum 
        a1 = sum(abs(wt(1:20,:)), 'All'); 
         
        % Use finance Ten-Days average line for calculating the 
features 
        Five_Days(1:end-1,1) = Five_Days(2:end,1); 
        Five_Days(end,1) = a1; 
        sum_v(i+1,1) = sum(abs(Five_Days))/10; 
         
        % Animation updates 
        
set(h1,'xdata',pc_data(:,1),'ydata',pc_data(:,2),'zdata',pc_data(:,3
)); 
        
set(h2,'xdata',temp_data(:,1),'ydata',temp_data(:,2),'zdata',temp_da
ta(:,3)); 
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        set(h3,'xdata',(temp_data(:,3)),'ydata',temp_data(:,1)); 
        set(h4,'xdata',f,'ydata',c,'zdata',(abs(wt))'); 
        %set(h4,'xdata',f,'ydata',t,'zdata',(p)'); 
        if i > 10 
            addpoints(h5,i, sum_v(i+1,1)); 
        end 
        drawnow(); 
    end 
%     sum_v(:,2)=(0:360)'; 
    disp(length(sum_v)) 
    [pks, locs] = findpeaks(sum_v(:,1),'MinPeakDistance', 359); 
    set(h6, 'xdata', locs, 'ydata', pks); 
    set(h1_1, 'xdata', [0, temp_1*cosd(locs(1)-5)],... 
        'ydata', [0, temp_1*sind(locs(1)-5)]); 
    drawnow(); 
    varargout[158] = temp_data; 
    varargout[163] = sum_v; 
end 
 
% code for calling both the damaged_cylinder_pc function and the 
cylinder_inspection function 
% figure ([255 255 255]); 
% Cylinder: 
% Height: 3 
% Radius: 5 
% Resolution: 1e-5 
% Damage start angle: 0 
% Damage end angle: 90 
% Damage z-height: 1.5 
% Damage level: 0.5 
a = damaged_cylinder_pc([5,5],0.1,0.00001,1,[70, 90, 1.5], 0.2); 
pcshow(a); 
 
% Subplot four status images 
% Image 1: Original Point cloud and Selected Points 
% Image 2: The projected line of selected points 
% Image 3: The wavelet 
[b,c]=cylinder_inspection(a); 
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Appendix H LSTM Training of First Sets of Data Producing False 

Classification Due to Preprocessing Methods of Generating and 

Classifying the Slices  
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Training LSTM with lstm_data3/lstm_classes3  

accuracy = 58% Epoch = 50 

 

 

Training LSTM with lstm_data3/lstm_classes3  
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accuracy = 40% Epoch = 100 

 

 

Training LSTM with lstm_data3/lstm_classes3  

accuracy = 38% Epoch = 150 
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Training LSTM with lstm_data3/lstm_classes3  

Accuracy = 63% Epoch = 40 
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Training LSTM with lstm_data3/lstm_classes3  

Accuracy = 63% Epoch = 50 
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Training LSTM with lstm_data/lstm_classes  

Accuracy = 68% Epoch = 250 
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Training LSTM with lstm_data/lstm_classes  

Accuracy = 71% Epoch = 150 
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Training LSTM with lstm_data/lstm_classes  

accuracy = 77% Epoch = 50 



280 
 

 

 

Training LSTM with lstm_data/lstm_classes  

accuracy = 74% Epoch = 20 
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Training LSTM with lstm_simulated_data6/lstm_simulated_classes6  

accuracy = 74% Epoch = 150 
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Training LSTM with lstm_simulated_data6/lstm_simulated_classes6  

accuracy = 77% Epoch = 50 
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Training LSTM with lstm_simulayed_data6/lstm_simulated_classes6  

accuracy = 71% Epoch = 50 (but subtracted the radius from each point in 

lstm_simulated_data6 and squared them – normalisation) 
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Training LSTM with lstm_simulayed_data6/lstm_simulated_classes6  

accuracy = 72% Epoch = 50 (but subtracted the radius from each point in 

lstm_simulayed_data6 and cubed) 
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Training LSTM with lstm_simulayed_data6/lstm_simulated_classes6  

Accuracy = 72% Epoch = 50 (but subtracted the radius from each point in 

lstm_simulayed_data6)  

LSTM Training of Data Preprocessed Using Wavelet Transform 

% Experiment Parameter Setup 
cylinder_radius = 10; 
cylinder_height = 15; 
PointDistributeChaos = 0.1; 
PointDistributeResolution = 1e-5; 
dmg_start = 50; % this is the start angle  
dmg_height = 5; % height of the centre of the damage 
% dmg_start = randi([20,180],testNO,1); % this is the start angle 
% dmg_height = randi([0,cylinder_height],testNO,1); % height of the centre 

of the damage 
scanner_noise = rand(testNO,1)*0.1; % Gaussian noise for the scanner, range 

is from 0:0.01(to change the range, change 0.1)  
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Wavelet Coefficient  
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Wavelet Coefficient  
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The top is the radius data before performing normalisation and dealing with the unequal 

values of the slices, while the second plot is the normalised and interpolated data. 

% Experiment Parameter Setup 
cylinder_radius = 10; 
cylinder_height = 15; 
PointDistributeChaos = 0.1; 
PointDistributeResolution = 1e-5; 
dmg_start = 75; % this is the start angle  
dmg_height = 11; % height of the centre of the damage 
% dmg_start = randi([20,180],testNO,1); % this is the start angle 
% dmg_height = randi([0,cylinder_height],testNO,1); % height of the centre 

of the damage 
scanner_noise = rand(testNO,1)*0.1; % Gaussian noise for the scanner, range 

is from 0:0.01(to change the range, change 0.1)  
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Wavelet Coefficient  
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% Experiment Parameter Setup 
cylinder_radius = 10; 
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cylinder_height = 15; 
PointDistributeChaos = 0.1; 
PointDistributeResolution = 1e-5; 
dmg_start = 20; % this is the start angle  
dmg_height = 6; % height of the centre of the damage 
scanner_noise = rand(testNO,1)*0.1; % Gaussian noise for the scanner, range 

is from 0:0.01(to change the range, change 0.1) 

 
  

Wavelet Coefficient  
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The final coefficeient plot produces the same response for all methods, but the morse ran 
faster than amor and bump at some point on the same set of data. All methods became 
comparable to within 5 seconds on the later runs, as shown below. All runs were performed 
on a randomly generated damage with varying damage sizes and locations.
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Wavelet Coefficient  
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Effect of outlier points in the data 

 

Wavelet Coefficient  
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Wavelet Coefficient  

Wavelet Coefficient  

Wavelet Coefficient  
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Appendix I CNN Training with the Slices Converted to Images Using 

a Power Spectrum Algorithm   

MaxEpochs 10 
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MaxEpoch 5 

 

 

 

accuracy =    0.9910 
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MaxEpochs 20 
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Appendix J Graphical User Interface for Performing LSTM Training 
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Monitoring accuracy of 10 trained networks 

 


