
University of Huddersfield Repository

Ghareb, Mazen

MEASUREMENT METRICS FOR HYBRID ASPECT ORIENTED/OBJECT-ORIENTED
SOFTWARE SYSTEMS

Original Citation

Ghareb, Mazen (2021) MEASUREMENT METRICS FOR HYBRID ASPECT
ORIENTED/OBJECT-ORIENTED SOFTWARE SYSTEMS. Doctoral thesis, University of
Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35665/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

MEASUREMENT METRICS FOR HYBRID ASPECT

ORIENTED/OBJECT-ORIENTED SOFTWARE

SYSTEMS

This dissertation is submitted for the degree of Doctor of Philosophy in Computer Science

December 2021

By

Mazen Ismaeel Ghareb

Supervised by Dr. Gary Allen

School of Computing and Engineering

University of Huddersfield, England, UK

I

ABSTRACT

This dissertation proposes a new framework for the measurement of software product

quality for hybrid systems. Hybrid system measurement is developed using a combination of Object

Oriented Programming (OOP) and Aspect Oriented Programming (AOP) techniques. To make the

required range of measurements for such hybrid systems, new metrics for AOP quality

measurement will be proposed. These metrics will be collected from a range of open source

projects using specific tools, and will be evaluated to prove their value. These metrics will then

form part of a new software quality framework, used to evaluate the overall quality of the selected

projects. This new framework is based upon the existing and widely adopted ISO 9126 quality

model.

The outcomes of this thesis will contribute to hybrid systems’ quality measurement. The theoretical

contribution of existing software quality frameworks will be evaluated, and existing OO and AO

metrics will be discussed. The new metrics will then be identified, and an expanded quality

framework will be presented. I will then conduct intensive statistical analyses to evaluate the

proposals.

The methodology of this thesis will be an experimental method to identify and evaluate AO metrics,

combined with a statistical analysis to prove their efficacy.

The major contribution of the work will be to help developers and designers to improve their hybrid

application systems in several ways, including quality, maintainability, efficiency, and complexity.

II

ACKNOWLEDGMENTS

I am too timid in all humility and gratitude to acknowledge my depth to all those who have

helped me to put these ideas. Special thanks to my supervisor, Gary Allen, and his co-leader, David

Wilson, and Diane Kitchen. They gave me an incredible opportunity to do this wonderful project

called “MEASUREMENT METRICS FOR HYBRID ASPECT ORIENTED/OBJECT-ORIENTED

SOFTWARE SYSTEMS”. Which also helped me to do a lot of research and I came to know so

many new things. I appreciate that very much.

Any attempt at a certain level can only be made with the support and guidance of my parents

(MOM and DAD) and my sisters (Dr. Hiba, Lana and Shahla), and my beloved brother Dyar for

their continued support. I’d like to thank my wife (Rezhaw) and my two daughters (Mila, Zeen)

who support me and encourage me to continue to finish this project. Despite the tough times of this

global pandemic. Thank you all.

III

TABLE OF CONTENTS

ABSTRACT .. I

ACKNOWLEDGMENTS .. II

LIST OF FIGURES .. VIII

LIST OF TABLES .. IX

LIST OF ABBREVIATIONS ... XI

CHAPTER 1 ... 1

1.1 INTRODUCTION ... 1

1.2 AIMS AND OBJECTIVES ... 2

1.3 THE SCOPE OF THE STUDY .. 3

1.4 RESEARCH GOALS .. 3

1.5 METHODOLOGY .. 4

1.5.1 Requirements and analysis .. 4

1.5.2 Design and Implementation stage .. 4

1.5.3 Evaluation ... 5

1.5.4 Experimental Study: .. 5

1.6 Original Contribution: ... 5

1.7 Published Works: ... 5

CHAPTER 2: LITERATURE REVIEW ... 7

2.1 INTRODUCTION ... 7

2.2 BACKGROUND AND MOTIVATION ... 8

IV

2.2.1 History of Aspect Oriented Programming ... 8

2.2.1 Aspect-Oriented Programming principles ... 10

2.3 SOFTWARE METRICS CHARACTERISTICS .. 11

2.4 SOFTWARE MEASUREMENT MODELS .. 15

2.4.1 Product Metrics ... 15

2.4.1.1 Static vs. Dynamic Metrics ... 16

2.4.1.2 Complexity Metrics ... 17

2.4.3 Process Metrics ... 18

2.5 OBJECT ORIENTED VS. ASPECT ORIENTED METRICS .. 18

2.6 SOFTWARE QUALITY MEASUREMENTS ... 21

2.7 SOFTWARE QUALITY MODELS... 23

2.7.1 McCall Quality models .. 23

2.7.2 BOEHM MODEL .. 24

2.7.3 (9126) SOFTWARE QUALITY MODEL ... 25

2.7.4 DORMER’S MODEL... 27

2.7.5 OTHER SOFTWARE QUALITY MODELS ... 28

2.7.6 ASPECT-ORIENTED SOFTWARE QUALITY MODEL .. 28

2.7 ASPECT ORIENTED PROGRAMMING QUALITY METRICS:... 30

2.8 SUMMARY ... 34

CHAPTER 3 RESEARCH METHODOLOGY .. 35

3.1 INTRODUCTION ... 35

3.2 RESEARCH METHODOLOGY .. 36

3.3 RESEARCH DESIGN: .. 37

3.3.1 Research Design Steps details: .. 38

3.3.2 Formulate the Hypothesis of the Research: ... 40

3.3.2.1 Select Research Instruments: .. 40

V

3.3.3 Sampling Data and Data Normalization: .. 41

3.3.4Analyses Data: ... 41

3.4. Conducted Research experiments: ... 42

3.4.1 Experiment 1 - Bash Script algorithm .. 42

3.4.1.2 Experiment 2 -Ajatoo Application Tool .. 44

3.4.1.3 Experiment 3 -AOP Metrics Application Tool .. 45

3.4.1.4 Experiment 4-CMTJava Application Tool .. 45

3.4.1.5 Experiment 5 - JDepend Application Tool .. 45

3.4.1.6 Experiment 6- JMetric Application Tool ... 46

3.4.1.7 Experiment 7 -Rapid miner Application Tool ... 46

3.4.1.8 Experiment 8 -GATE Application Tool ... 46

3.5.1 GTalkWAP project... 49

3.5.2 AJHotdraw project .. 49

3.5.3 HealthWatcher Project .. 50

3.5.4 AjHSQLDB Project ... 50

3.5.5 Contract4J5 Project .. 50

3.6 AO/OO metrics ... 50

3.6.1 Crosscutting Degree of an Aspect (CDA) .. 51

3.6.2 Coupling on Advice Execution (CAE) .. 51

3.6.3 Concern Diffusion over Components (CDC) ... 52

3.6.4 Lack of Concern based Cohesion (LCC) ... 52

3.6.5 Aspect Complexity Metrics (AC) .. 53

3.7 PROPOSING AOP QUALITY METRICS .. 57

3.9 CONCLUSION .. 60

CHAPTER 4 DATA EXTRACTION .. 61

4.1 INTRODUCTION ... 61

VI

4.2 CODE-MR DATA EXTRACTION TOOLS FOR HYBRID AO/OO METRICS: .. 61

4.2 OPEN SOURCE PROJECT AO/OO HYBRID SYSTEM ... 62

4.3.1 GTALKWAP PROJECT AOP QUALITY METRICS EXTRACTION ... 62

4.3.2 AOP QUALITY METRICS EXTRACTION USING JAVA WRITTEN PROGRAM: .. 68

4.3.3 DISCUSSION ... 71

4.4.11 AJHOTDRAW PROJECT ... 72

4.4.2. AOP QUALITY METRICS EXTRACTION USING JAVA WRITTEN PROGRAM: ... 76

4.4.3 DISCUSSION ... 79

4.5.1 HEALTH WATCHER PROJECT: .. 80

4.5.2 AOP QUALITY METRICS EXTRACTION USING JAVA WRITTEN PROGRAM: .. 85

4.5.3 DISCUSSION ... 88

4.6.1 AJHSQLDB PROJECT .. 89

4.6.2 AOP QUALITY METRICS EXTRACTION USING JAVA WRITTEN PROGRAM: .. 96

4.6.3 DISCUSSION ... 99

4.7.1 CONTRACT4J5 PROJECT ... 100

4.7.2 AOP QUALITY METRICS EXTRACTION USING JAVA WRITTEN PROGRAM: .. 105

4.7.3 DISCUSSION ... 108

4.8 CONCLUSION .. 109

CHAPTER 5 SOFTWARE QUALITY MODEL ... 110

5.1 INTRODUCTION ... 110

5.2 JUSTIFICATION AND SIGNIFICANCE ... 111

5.3 A FRAMEWORK FOR ASPECT ORIENTED SOFTWARE QUALITY MODEL ... 111

5.4 AOSQUAMO ASPECT ORIENTED QUALITY MODEL .. 112

5.5 PROPOSING ASPECT ORIENTED PRODUCT QUALITY METRICS: ... 117

5.6 NEW PRODUCT QUALITY FRAMEWORK FOR HYBRID APPLICATION SYSTEM ... 118

5.7 NEW QUALITY METRICS FOR HYBRID APPLICATION SYSTEM ... 119

VII

5.8 CONCLUSION .. 121

CHAPTER 6 PRODUCT QUALITY METRICS FOR HYBRID APPLICATION SYSTEM AO/OO ... 122

6.1 INTRODUCTION: .. 122

6.2 EVALUATION USING STRUCTURE EQUATION MODELING: ... 124

6.2.1 STRUCTURE EQUATION MODELING COMMON TERMS: .. 125

6.3 IBM SPSS AMOS EVALUATION TOOL ... 126

6.3.1 Amos Software properties .. 126

6.4 HYBRID APPLICATION SYSTEM PRODUCT QUALITY MODELS IN AMOS MODEL: .. 127

6.5 HYBRID APPLICATION QUALITY MODEL AOP/OOP DESIGN: ... 130

6.6 DATA EXTRACTION: .. 130

6.7 QUANTITATIVE EVALUATION: .. 131

6.7.1 Statistical Mean ... 131

6.7.2 Standard Deviation .. 133

6.7.3 Factor Analysis: .. 134

6.7.4 Significance P value .. 136

6.7.5 Correlation Coefficient .. 140

6.7.6 Average Variance Extracted and Construct Reliability ... 141

6.7.7 Cronbach’s alpha and Kaiser-Meyer-Olkin (KMO) Test: ... 145

6.8 HYBRID APPLICATION SYSTEM QUALITY MODEL DISCUSSION: ... 147

6.8.1 Hypothesis Model (Software Product Quality-Hybrid Application System): ... 150

6.9 CONCLUSION .. 151

CHAPTER 7 CONCLUSIONS AND FUTURE WORK .. 153

7.1 INTRODUCTION: .. 153

7.2 ACHIEVED GOALS AND OBJECTIVES: .. 154

7.3 CONTRIBUTION: .. 155

7.4 STUDY LIMITATION: ... 157

VIII

7.5 FUTURE WORK: .. 158

7.6 FINAL REMARKS: .. 158

REFERENCES ... 159

List of Figures

Figure 2.1 a named Pointcut 11

Figure 2.2 Example of intertype method and field declarations in an aspect module 11

Figure 2.3 Classification of Software Metrics [62] 13

Figure 2.4 Software Quality Metrics 22

Figure 2.5 Features of Software Quality Metrics 23

Figure 2.6 McCall software quality model 24

Figure 2.7 Boehm quality model 25

Figure 2.8 Software Quality Model Properties for 9126 27

Figure 2.9 Aspect-Oriented Software Quality Model 29

Figure 2.10 Product quality 9126 Model 31

Figure 3.1 Research design steps used to carry thesis research 38

Figure 3.2 Evaluation Strategy Approach 40

Figure 3.3 Bash script code structure 42

Figure 3.4 Algorithm procedure for extracting AO/OO metric 43

Figure 3.5 Using Ajatoo tool 45

Figure 3.6 Rapid miner tool 46

Figure 3.7 Gate text engineering tool 47

Figure 3.8 Product Hybrid AO/OO Application 77

Figure 4.1 General Information about Metrics for Google Talk project 81

Figure 4.2 coupling and Cohesion values regarding packages Gtalk Project 81

Figure 4.3 Metrics, values regarding Modularity Gtalk Project 82

Figure 4.4 classes Metrics Details Gtalk Project 83

Figure 4.5 AjHotdraw project metrics 90

Figure 4.6 General Quality Metrics Distribution AjHotdraw project 91

Figure 4.7 Quality Metrics by Packages AjHotdraw project 91

Figure 4.8 Complexity metrics in sub chart AjHotdraw project 92

Figure 4.9 all metrics of Health watcher project 98

Figure4.10 metrics values by project packages 99

Figure 4.11 packages metrics distribution in the Health watcher Project 100

Figure 4.12 Module distributions for metrics for Health watcher project 100

Figure 4.13 Metrics Values in Tree Map Chart name of the packages in complexity metrics values in AjHSQLDB Project 109

Figure 4.14 all package details with the metrics values AjHSQLDB Project 110

Figure 4.15 AjHSQLDB Project Quality metrics distribution by modules 111

Figure 4.16 Metrics value by packages AjHSQLDB Project 112

Figure 4.17 General Quality Attribute for AjHSQLDB Project 113

Figure 4.18 Metric distribution packages Contract4J5 project 119

Figure 4.19 Six Average values Metrics for Contract4J5 Project 120

Figure 4.20 Classes relationships in the Contracy4J5 project 121

IX

Figure 4.21 distributions of Quality Attributes for Contract4J5 project 122

Figure 5.1 a. Quality Characteristics of the ISO/IEC 9126, 2004. b. Aspect-Oriented Software Quality Model 137

Figure 5.2 Software Product sub-characteristics 139

Figure 5.3 Sub-characteristics for proposed software quality framework for Hybrid AO/OO Systems 141

Figure 6.1 AMOS Diagram for Hybrid System Quality Framework Model 150

Figure 6.2 Hypothesis Model (Software Product Quality-Hybrid Application System) 172

List of Tables

Table 2.1 Software Static Metrics 17

Table 2.2 Quality Properties for 9126 ISO Models, 2004. Vs. New Aspect-Oriented Software Quality Model 31

Table 2.3 AOP and OOP metrics relationships in different model and framework 34

Table 3.1 Extracting number of java class and Aspect files 44

Table 3.2 external quality attributes for static and dynamic metrics of AOP 49

Table 3.3 Proposed AOP Quality metrics 58

Table 3.4 proposed AOP metrics VS components of Software Quality model 58

Table 3.5 proposing sub-Attributes for AO/OO quality framework components 59

Table 4.1 OOP Metrics and some AOP Metrics categorization GTalkWAP project 84

Table 4.2 OOP Metrics and some AOP Metrics using Code-MR plug-in for GTalkWAP project 85

Table 4.3 Bash Script & java program AOP metrics Extraction for GtalkWAP project 88

Table 4.4 OOP/AOP metrics values for Gtalk project 90

Table 4.5 The metrics extracted values from AjHotdraw project 93

Table 4.6 OOP Metrics and some AOP Metrics categorization AjHotdraw project 93

Table 4.7 Code-MR & java program AOP metrics Extraction for AjHotdraw project 96

Table 4.8 OOP/AOP metrics values for AjHotdraw project 97

Table 4.9 OOP Metrics and some AOP Metrics categorization HealthWatcher project 101

Table 4.10 OOP Metrics and some AOP Metrics using Code-MR plug-in for Health Watcher project 102

Table 4.11 Bash Script & java program AOP metrics Extraction for Health Watcher project 106

Table 4.13 OOP/AOP metrics values for Health Watcher project 107

Table 4.13 OOP Metrics and some AOP Metrics categorization AjHSQLDB project 113

Table 4.14 OOP Metrics and some AOP Metrics using Code-MR plug-in for AjHSQLDB project 114

Table 4.15 Bash Script & java program AOP metrics Extraction for AjHSQLDB project 117

Table 4.16 OOP/AOP metrics values for AjHSQLDB project 118

Table 4.17 OOP Metrics and some AOP Metrics categorization Contract4J5 project 123

Table 4.18 OOP Metrics and some AOP Metrics using Code-MR plug-in for Contract4J5 project 124

Table 4.20 Bash Script & java program AOP metrics Extraction for Contract4J5 project 127

Table 4.21 OOP/AOP metrics values for Contract4J project 128

Table 5.1 Proposing AOP software Quality Model 139

Table 6.1 AMOS symbols model representation 14

Table 6.2 latent variable representation in Hybrid Quality Model in AMOS 149

Table 6.3 Hybrid Applications Model Representation in IBM AMOS 151

Table 6.4 Mean Values for five open source projects for five components of AOP/OOP Hybrid Application Quality Model 153

Table 6.5 Standard Devotion Values for five open source projects for five components 155

Table 6.6 Factor Loading values for all projects 157

Table 6.7 Significant P value for 5 projects 159

Table 6.8 Correlation coefficient for 23 items for 5 projects 162

X

Table 6.9 Average Variance Extracted and Construct Reliability 164

Table 6.10 Five open source projects Cronbach’s alpha and Kaiser-Meyer-Olkin (KMO) Test values 167

Table 6.11 Hypothesis1 H1 statistical evaluation 169

Table 6.12 Hypothesis1 H2 statistical evaluation 169

Table 6.13 Hypothesis1 H3 statistical evaluation 170

Table 6.14 Hypothesis 4 (Code Weaving) statistical evaluation 170

Table 6.15 Hypothesis 5 H5 statistical evaluation 171

XI

LIST OF ABBREVIATIONS

AOP Aspect Oriented Programming

OOP Object Oriented Programming

AO Aspect Oriented

OO Object Oriented

SEM Structure Equation Modelling

ISO International Organization for Standardization

IEC International Electro technical Commission

AOSD Aspect-Oriented Software Development

ASOC Advanced Separation of Concerns

SOC Separation of Concerns

AP Adaptive Programming

CF Composition Filters

SOP Subject-Oriented Programming

MDSoC Multidimensional Separation of Concerns

XII

LOC Line Of Code

CMM Capability Maturity Model for Software

SPICE Software Process Improvement and Capability determination

CMMI Capability Maturity Model Integration

SDLC Software Development Life Cycle

CBO Coupling Between Object

BAC Base Aspect Coupling

C&K Chidamber and Kemmerer

MSE Modelling of the Structure Equation

AO/OO Aspect Oriented – Object Oriented

SEM Structural Equation Modelling

WOM Weighted Module Operations

LOC Lines of Code

DIT Depth of Inheritance Tree

Code-MR is an architectural software quality and static code analysis tool

LCO Lack of Consistency in Operations

NOC Number of Children

CIM Coupling on Intercepted Modules

FEAT Feature Exploration and Analysis Tool

CDA Crosscutting Degree of an Aspect

WMF Weighted of Method Factor

XIII

CDA Coupling on Advice Execution

CDC Concern Diffusion over Components

LCC Lack of Concern based Cohesion

AC Aspect Complexity Metrics

1

CHAPTER 1

1.1 Introduction

This chapter emphasises the goal and objectives of this study. It discusses the importance of

the aspect-based approach to software development. This thesis will focus on finding new metrics

for Object Oriented/Aspect-Oriented (OO/AO) hybrid application systems. The new measurements

will provide a new software quality template for the OO/AO hybrid application system. The Quality

Model is a new measuring model for hybrid OO/AO software systems. This thesis aims to offer a

new quality framework for hybrid OO/AO systems. It also explains all stages of taking these

additional measures into account in the proposed new quality model. This research will contribute

to software quality and proposing a new product quality framework for hybrid AO/OO applications.

Aspect Oriented Measurements of programming quality and product quality of the hybrid

application system were reviewed. The framework will allow programmers and software developers

to use this model to measure software quality for AOP hybrid systems (AOP, OOP). The primary

aim of this research is to identify several quality metrics for AO/OO application product quality.

There are many ways to improve the AOP quality parameters of the software. The ISO 9126 quality

measuring framework has been adapted to extract potential parameters from hybrid application

systems. The ISO 9126 standard of this research allows proposing a new framework for measuring

the quality of AOP products for hybrid application systems. Static measurements shall be examined

for the hybrid application system.

An AO product quality measurement framework will be proposed. The framework will present the

effects of the new AO/OO measurements on hybrid software applications. It can also be applied to

2

any hybrid application project, whichever programming language or paradigm has used to develop

it. This research has several aims, and these have been subdivided into objectives. One of the

essential stages of new framework development is evaluating it. The same evaluation procedure

adapted to the ISO 9126 quality model [1] can assess the proposed metrics. It has been proposed to

add sub-characteristics to external quality measurements in ISO 9126. Several open source static

measurement tools have been used to gather and evaluate existing metrics and it have been

contributed to extracting new AO/OO metrics [2].

Crosscutting concerns are one of the main issues of Aspect Oriented Programming (AOP) which

contribute to resolve it. It is essential to determine its impact on software quality. It employs new

abstraction and compositional techniques for implementation methods. The fundamental problems

identified the crosscutting concerns are the overall constraints of system properties,

synchronisation, logging and error management. Crosscutting is divided into two types, static and

dynamic. AOP improves software development in many fields, such as crosscutting implementation

issues. There are many studies have conducted quantitative evaluations of AOP measures for

software quality and software quality models, however these studies have not measured all AOP

measurements because of several reasons, such as different in architecture, source code weight and

development methodologies. .

1.2 Aims and Objectives

The aims and objective of the thesis is to propose several new Aspect Oriented (AO) quality

metrics. To identify a new software product quality model for hybrid application systems using case

studies and an extensive literature review method. Adding more it helps to identities and evaluate of

AOP measurements in a hybrid system in many industrial applications, identify the research gaps

related to aspect-based measures for hybrid application products. The objective is to add five major

components to the proposed product quality model, such as extensibility, complexity, and service

loading behaviours, code weaving, and reusability for ISO/IEC 9126 software quality model.

Structure Equation Modelling has been used to evaluate the proposed metrics. Seven statistical

measurements have been planned to verify the acceptance and reliability of quality model. Finally,

the proposed framework will improve hybrid application systems regarding the reliability,

functionality, efficiency, portability, and maintenance of the hybrid application system..

3

1.3 The Scope of the Study

Quality hybrid software applications have been adopted across a broad spectrum of

development areas. Many hybrid application projects are necessary for evaluating and measuring

aspect-oriented measurements. A number of measurement frameworks have been proposed to

determine quality parameters for aspect-oriented applications in the hybrid application system or

purely aspect-oriented applications. These AOP parameters were proposed in theory or logically,

but neither the tool nor the framework collected them and proposed them as a unique quality

framework. A standard version of the ISO/IEC 9126 software quality model has been selected to

deliver AO measurements for hybrid application systems...

The objective of this study is to propose an evaluation framework for a hybrid application system

involving the measurement of AO/OO metrics with a unique quality measurement framework.

Therefore, it is critical to determine standard quality parameters between OOP and AOP through

the development of taxonomy. This new framework will integrate a subset of each category into the

baseline framework selection and then implementation. Finally, it must be evaluated, test the result,

and make sure that can be generalised for development and expansion in software development

industries.

1.4 Research Goals

The proposed framework needs to be evaluated and tested in several projects to show the

hypothesis in the Goals and Objectives section. The major research goals are improving

measurement of software quality and help researchers and practitioner measure different project and

application developed by AO/OO technology. Employ ISO/IEC 9126 standard method and

techniques in the software quality framework. It was necessary to propose new characteristics in the

ISO/IEC 9126 measurements to identify the measurable elements. Improve the modularity of

hybrid application systems by identifying the impact of AO code weaving applications. Enhance

software product quality maintenance and software quality development by identifying AOP

parameters in hybrid application software. Identifying the complexity of the system in the early

stages of its development and controlled it by implementing the separation of concerns. Expand

ISO/IEC 9126 framework for identification and evaluation of product quality metrics of hybrid

application software. Decide how these techniques within this framework will be applied to identify

aspect-based measures for software quality.

4

Propose a new classification for the proposed framework to determine AO metrics and explain the

feasibility of the product quality hybrid application. Categorise a product quality measurement for

the proposed quality framework for hybrid application systems. Determine the effect of common

OO software quality metrics with the AO within the proposed framework...

1.5 Methodology

A detailed literature review and case study methods test the hypothesis derived from the

design framework in parallel to a controlled experiment. This method is selected to protect the

foundation of this research and to assess the framework of the proposed quality model, however,

the study experiment could not prove all the claims made in this study, in particular all the AOP

measures in the hybrid application system. Thus, empirical evidence cannot be achieved by itself

without establishing it based on the theoretical method. Quality hybrid software applications many

have been adopted in many fields of development. Many hybrid application projects are needed for

the assessment and measurement of aspect-oriented measurements. A number of measuring

frameworks have been proposed to determine quality parameters for aspect-oriented applications in

the hybrid application system or purely aspect-oriented applications. These AOP parameters were

proposed theoretically or logically, but neither the tool nor the framework collected them and

proposed them as a unique quality framework. A standard version of the ISO/IEC 9126 software

quality model has been chosen to provide AO measurements for hybrid application systems..

1.5.1 Requirements and analysis

This stage will focus on a qualitative analysis of the literature review and analysis of

software quality modelling tools for the evaluation of the AO project. The research concentrates on

the development of a new framework based on the AOP evolution of hybrid application systems.

These steps will be evaluated, and new measurements will be proposed and applied in the context to

be used to produce AO product quality measurements.

1.5.2 Design and Implementation stage

The design phase involves proposing new future and quality measures for developing the

framework. By adding more, it will allow new techniques to implement a script or use the existing

tool to evaluate and propose AOP product quality measurements in hybrid systems.

5

1.5.3 Evaluation

The evaluation stage involves the evaluation of the outcomes of the new metrics. Results

from AO/OO measurements will be compared to traditional measurements for the hybrid

application system. For example, an output generated by the new framework will be compared to a

previous data analysis.

1.5.4 Experimental Study:

The experimental study used five free code projects developed using a hybrid AO/OO

development approach. These projects were reviewed and assessed. The new results from the AO

metrics will feed into the proposed framework for measuring hybrid application software. Finally,

the results of these experiments will be compared with other literature review results if there is

similarity of metrics to prove the proposed metrics.

1.6 Original Contribution:

There are many tools to evaluate AOP quality metrics with the various languages and

programming frameworks available. Some of these frameworks overlap, but do not pull out all

AO/OO quality measures. These methods have been implemented in many different ways, such as

analyzing open-source code projects, highlighting code, or implementing scripting for metric

extraction. The AOP quality parameters for software products will identify further analysis of

hybrid source code projects. Several technologies were used to retrieve new AOP quality settings.

The proposed metrics will not measure all performance metrics. There are many difficulties in

calculating dynamic measures at execution, for example, linkage and cohesion measures; therefore,

it concentrates on static measurement of the source code. Some of the dynamic measurement can be

extracted because its characteristics will be affected by statistical measurements. A proposed

framework is currently included in ISO/IEC 9126. The new framework has been extended by the

addition of product quality sub-characteristics and a number of AO/OO measurements within the

framework. In addition, the study analyses five hybrid case studies. Furthermore, the product

quality hypothesis of the AO/OO hybrid application system, which will constitute a final

contribution, was examined and demonstrated..

1.7 Published Works:

Journal Publication:

Ghareb, M. and Allen, G., 2015. Improving the Design and Implementation of Software Systems

uses Aspect Oriented Programming.

6

Allen, G. and Ghareb, M., 2015. Identifying Similar Pattern of Potential Aspect Oriented

Functionalities in Software Development Life Cycle. Journal of Theoretical and Applied

Information Technology, 80(3), pp.491-499.

Ghareb, M. and Allen, G., 2019. An empirical evaluation of metrics on aspect-oriented

programs. UHD Journal of Science and Technology, 3(2), pp.74-86.

Conference Publication:

Ghareb, M.I. and Allen, G., 2018, April. State of the art metrics for Aspect-oriented programming.

In AIP Conference Proceedings (Vol. 1952, No. 1, p. 020107). AIP Publishing.

Ghareb, M.I. and Allen, G., 2021. Quality Metrics measurement for Hybrid Systems (Aspect

Oriented Programming–Object Oriented Programming). Technique: Romanian Journal of Applied

sciences and Technology, 3(3), pp.82-99.

7

CHAPTER 2: LITERATURE REVIEW
2.1 Introduction

This section summarises the software measurements. The chapter also deals with the

parameters of dimension-based programming. It concentrates on the exploration of the documentary

analysis of static and dynamic aspect-oriented measurements. The chapter focuses on the

measurement settings of the software. It provides product measures, process measures, complexity

measures and quality measures. The chapter also focuses on the history of object-oriented metrics

in Champeaux [73], Common parameters such as complexity, modularity and size, depth of

inheritance, coupling and cohesiveness. This can be used in Hybrid Application System

measurements and this chapter explains the similarity and the difference between OOP and AOP

metrics. There are similarities in programming techniques. Therefore, Aspect Oriented

Programming metrics has been derived from several Object Oriented Programming metrics. There

are two types of metrics in software measurement: Dynamic and Static metric. Static metric is

measured software source code quality, such as cohesion measurement, which measures the

relationships between classes and data in a module. Meanwhile, few studies have been conducted to

identify dynamic metrics for AOP software [94] and Hybrid AO/OO systems, such as size,

coupling, cohesion, separation of concerns, and depth of inheritance. AOP dynamic coupling

metrics have been examined and evaluated at runtime execution. These studies have used Coupling

between Object CBO metrics for evaluation [92] [93] [94] [95], these researches have not identified

the AOP coupling effect on the software systems. According to [96], Coupling has measured by

calculating different classes and identified the relation between objects at execution time. Object

Oriented Programming metrics have increasingly recognised in measuring software quality, for

instance, the error monitoring of the final system delivery [95]. Therefore, it is essential to identify

AOP quality metrics hybrid AO/OO systems development.

8

2.2 BACKGROUND AND MOTIVATION

2.2.1 History of Aspect Oriented Programming

Aspect-oriented programming is a new paradigm that strongly influences software design,

implementation, and quality improvement. AOP improves encapsulation by using Aspects, as each

transversal problem is currently executed as a crosscutting module in a system. AOP extends

another programming language, such as Java, or C++ for performing its basic techniques and

mechanisms. For instance, Java developers use Java as the base language, which is important for

the AOP system [4] [5]. In 1997, Gregor Kiczales formally revealed aspect-oriented programming

[6].Several reviews, such as Walton, Allen, Ghareb, and others ([7] [8] [9] [10] [11]) have been

conducted to find that it is possible to apply the metric measurements characterised for OOP on

software developed with AOP. Not much work has been done to identify additional measures for

aspect-based programming. According to Gulia and others [11], their research focuses on size

measures, such as the number of classes in the project, their functions and the details of the source

code. The Arisholm study [12] examined the costs of timeliness and the effectiveness framework.

Ceccato and Tonella [13] used response time for their measurement, including estimation of

cyclomatic complexity, coupling of elements, weight, and class relationships. Mitchell and Power

[14] worked on collection measures in their evaluation of Aspects Oriented software applications.

The focus has been on simplicity, viability, reuse and testability of quality components. The

collection metrics measured the technical calls, the connection between the objects, the depth of the

hereditary tree, the child numbers, the lack of cohesion of the methods and the reaction to a class.

Kali and Kojarski [15] have utilised ten collection metrics to analyse Object-Oriented systems.

Capsules’ and Hilsdale [16] have reused view study that used collection metrics identify coupling in

Aspect Oriented systems. Several other technologies and methods have been used to propose

Aspect Oriented metrics. Research Li and Zhou [17] proposed software measures based on complex

aspects through visualisation methods. The first stage defines the features and metrics of AOP

programming to measure the general principle of quality. The research used visualisation methods

to analyse the quality of a variety of size of software systems [17]. They have emphasised that

qualitative analysis needs to be adapted in an AO format and apply in all related methodologies.

Meanwhile, Rashid, Awis and Ana [18] came up with an AOP measurement tool to measure all the

source code that is written in the AspectJ language. The tool is supported by a static text analyser

developed in the TXL source translation tool. The tool comprises three modules;

• The first module was assigned all the source codes (Aspects, Interfaces and Classes)

• The second module developed into the reverse engineering code.

9

• The third module recognised the method calls among the source code objects.

• The last module is the most complex module. It gathered the weaving process of all

Pointcuts and Join Points in the appearance code. The ultimate results showed aspects’

effects on the system measurement of the quantity of aspect data transaction.

The AOP measurement tool offers a quantitative approach to improve the product development

process and effectively. AOSD or ASOC is most focused on modularisation enhancements. The

Separation of Concerns was brought forward by Dijkstra [23] and Parnas [24]. They have worked

on how to separate crosscutting concerns from the traditional development process. Adding more

there are many development techniques of modularisation developments such as Adaptive

Programming [25], Composition Filters [26], Subject-Oriented Programming [27],

Multidimensional Separation of Concerns [28] and Aspect Oriented Programming [29]. Khan and

Nadeem [22] argue that as the number of modules increases, so does the hybrid application system.

AOSD refers to the combination of separate ASOC methodologies. AOSD is genuinely new;

therefore, it is necessary to propose a software quality framework for measuring AOSD and AOP

developments methods. Various software development methodologies help developers organise,

and control their development. AOP is one of those software methodologies introduced in 1996.

Adding more, there are several approaches, identifying aspects of modelling improvement such as,

viewpoints approach [19]; use case scenario-based approaches [20], theme approach [21], though

these previous approaches still cannot identify all potential aspects. Crosscutting concerns

techniques in AOP have been developed modularity for design patterns and programming

techniques [24]. The design models of the development method are made method up of two

categories. First part focuses on the search for aspects, classes, methods and other operations related

to their components and the solution. Second part of the design concerns the structure and

behaviour among the components. For example, the adapter pattern can implement both classes

with the same interface to share the same operations or components; using AO techniques could be

resolved using the same interface. The observed pattern works as defined by many dependent

objects. One change happens to the observed variable; it will automatically notify another

dependant variable, while when using AO techniques make the class familiar for the dependant and

all notifications and make it notify for another part of the pattern [25]. The implementation phase of

the design pattern involves many problems concerning inheritance, overlapping with the model and

encapsulation. AO techniques have resolved all these drawbacks by using crosscutting techniques

[26]. The addition of AO techniques increases the modularity of design model programming

techniques, ensuring weaving between system components and making it more organised. Little

researches have been done to illustrate the effects of AO metrics on software quality. According to

10

Jacobson and Ivar [18], an AOP development method that supports the software development to

capture the domain related processes in the system, which claimed that can be better than OOP to fit

real domain problems; the advantage is reducing debugging time. AOP also promotes a new

behaviour of the code exchange of advice showed joints of the application while maintaining and

support the independence of the framework from a major update in the design. There are accessible

programming tools that support AOP, such as Aspect C++, JBoss AOP, Aspect#, Jasco, Spring

AOP & AspectJ [29], [30], [31]. AOP has collaborated in three ways: code style, annotation, and

XML [32] [33] [34] [35]. The main concern is that AOP techniques can improve object-oriented

programming abilities by isolating concerns, adaptability, efficiency and maintenance [36] [37] [38]

[39] [40]

2.2.1 Aspect-Oriented Programming principles

The primary aim of this study is to come up with a specific method or set of rules and

regulations to discover all the quality metrics for AO/OO for hybrid application systems. Object-

oriented programming techniques have issues in code tangling and code scattering. Implementing

the AO focused on these issues and implemented cross-cutting concerns within a framework [3].

AspectJ supports all keywords and programming skills in Java. AOP components are offer greater

modular capability [17]. AspectJ comprises key categories like JoinPoint, inter-type statement,

Pointcut, Guidance and Aspect. There is also an issue with Aspect [16] [17], which is the way of

modelling it in software projects. Advice is a piece of code invoked to fulfil a specific requirement.

A Pointcut determines the invocation of the Advice. A Pointcut is a collection or group of Joins

points. The JoinPoint are a special point in the programme's implementation [29]. These

components may be described below:

JoinPoint: A JoinPoint is a specific, recognisable point in a program’s control flow, such as calling

a method, executing a constructor. A method/constructor call is the most frequently used by

JoinPoint. In addition, a field represents a specific property in a system and has two JoinPoint to

call writing and playback. Pointcut: A Pointcut is a set of Joinpoint. A Pointcut may carry a name or

an anonymous name. In almost all applications, a Pointcut is defined as shown in Figure 1 below:

11

Figure 2.1 a named Pointcut

Figure 2.1 above showed Pointcut with the name NetMedia (), A Pointcut is used in many

categories, like field get, field set, and method call and method execution [7].

Advice: It is action taken by aspect joint-point. The Advice also refers to a body of code. Advice

like method has a declaration and body. Advice has to support the implementation of the

crosscutting action. The exception techniques can be used in Advice and by using throws keyword,

adding to this you can use this keyword, which refers to the appearance instance [7].

Intertype Declarations: The Intertype statement in AOP provides classes and interfaces with new

functionality. The Intertype declaration is available in three formats: builder, method and field.

Intertype members are only associated with their existing types and hierarchies and reported in

aspect modules [7]. Figure 2.2 below shows that the colour is defined as a private member and that

the colour type is included in the class of vessel of the appearance.

Figure 2.2 Example of intertype method and field declarations in an aspect module

According to Berkane [23], it is difficult to measure the quality of AO at the development stage.

There is no quality measurement for all AOP metrics as a quality model framework. There are

many types of research on test measurements in the design phase or in the development phase of a

hybrid application system. Few standardised AO metrics were derived. The survey will continue to

identify any quality measures. AOP has received the major control over modularity and source code

organisation. AOP improves project quality through improved maintainability, portability and user-

friendliness [27] [28]. For instance, in a software development model, the model-driven method

improves the model structure, source code, and runtime [29]. The development of model-based

software will improve the development structure, source code and runtime objects [29]; hence,

AOP produces applications that have more reliability and flexibility in the development process.

2.3 Software Metrics Characteristics

Software measurement is essential for software engineering. Software measures play an

important role in developing high-quality prediction systems for large software application projects

12

[52]. The measures are used to understand project maintenance and method for improvement of

software development [53] [54] [55]. In addition, software metrics are key resources for measuring

and institutionalising software process development in software-intensive settings, as shown in

Figure 2.3. Software metrics are defined in several ways, as described below.

• Definition 1: Software measurements are used to measure the software production process.

It provides the features involved in the product or quantitative values of the process. [58].

• Definition 2: Software measurements include specific quantitative explanations of

attributes; these attributes are derived from the software product, the software creation

process, and relevant resources [59].

• Definition 3: Software measurement offers a continuous measurement of the software

production process and its associated products. It identifies, collects and analyses observable

process data, thus facilitating the understanding, assessment, monitoring and improvement

of the software product process [61].

• Definition 4: According to the “Quality Metrics method Software Standard” of IEEE,

software metrics are a function of input as software, data, and output is a value that can

assess how the attribute has affected the software [62].

13

Figure 2.3 Classification of Software Metrics [62]

Programming metrics are important properties of the software systems that manage the developed

product [10].

The fundamental characteristics of the metric are:

• Measurements need to be simple and definable.

• Easily accessible: Measures should be readily available.

• Valid: The measurement must be computed based on what is being measured.

• Robust: Measurement should not be performed for unrelated changes simultaneously on a

program or part of the software.

• Success in the software development process requires assessment, estimation, and

demonstration. Programming parameters provide a quantitative principle in the product

Software
Metrics

Product
Metrics

Static
Metrics

Size Metrics Design
Metrics

Control
Folow

Metrics
Information

Metrics
Weighted

Metrics
Data

Structure
Metrics

Software
Science
Metrics

Testability

Dynamic
Mertrics

Prcess
Metrics

14

development process. The measures can improve the efficiency and quality of planning.

Metric estimation models set out the most commonly used programming measures. It helps

build templates with a high level of capacity in the execution time. Several products

measures have been assessed and approved. They are in a state of constraint. The search for

regularly agreed programming measures continues [6] [7]. Three categories of are used in

the software development process.

• Product metrics: Documents and programs generated through software development. They

measure the complexity of the source code, the size of the design and the number of pages

of documents supplied.

• Process metrics: is a collection of software development processes, such as design,

deployment, testing, maintenance,. An example of process metrics is an approach used for

the average level or experience of programming personnel.

• Resources: support resources such as programmers, commodity and process expenditures

[60] .Process parameters include the product development process.

• The Additional groupings of software measurements, aim measurements and subjective

measurements are available. Objective measures shall constantly provide the same values

for at least two qualified observers in a measure, while subjective measures are those which

even qualified observers can quantify the changed qualities for a measure, since their

subjective judgement is associated with the search for the measured value. For product

measurements, the estimated Line Of Code article size is an objective measure. The case of

subjective measures is the classification of programming as “individual” or “paired” as

required in the cost estimate model [93]. The third approach to the organisation of

programming measures is the primary measures and the calculated measures. The primary

measures can be monitored legitimately, such as the LOC, the number of defects in unit

tests, or the aggregate development time for the task. Not calculated measurements cannot

be observed directly, but are calculated from other measurements [8]. Programmatic

parameters are used in developmental engineering approaches. It is critical to take further

action if some elements of software are incorrect in the specifications given before or during

maintenance of the product support. Some of the standard parameters are discussed and

considered for a relatively long time; however, few are taken into consideration for

experimental work. Software engineers should be able to rely on tools that update these

measures to assist them in quality assessment and assertion missions in order to measure the

quality of programming. Today, many metric programming instruments are accessible;

however, it would be critical for each measurement mechanism to perform the

recommended set of measures and how they were approved. Adding more, dynamic and

15

static metrics are two types of software assessment. Static metric is measure the quality of

the software source code, such as cohesiveness, which measures the strength of the

relationships between the data and the module classes. While dynamic metrics measure the

relationships between different software components at execution time.

2.4 Software Measurement Models

 Software measurements are a cornerstone of initiatives, including CMM, ISO/IEC 15504

SPICE and CMMI. The ISO/IEC 90003:2004 standards [56] focused on the importance of

measurement in quality assurance and management. Given all the efforts and improvement over the

last decade in research and international standardisation, software measurement is still defining,

standardising, and determining definitions, principles, and methods. As mentioned above, there

were many ISO models for software measurement, but there is no clear framework for measuring

AO/OO hybrid applications.

2.4.1 Product Metrics

 Software product measures are measures of software products like source code and

document design. Software design influences and affects the process parameters. Product metrics

are part of software measurements which measure software products within different paradigms. It

has been measured throughout all stages of software development, from requirements to software

application [57]. The product metrics are divided into two categories: static measures and dynamic

measures. Static measurements are taken from system representation, like design, documentation,

and program code. Dynamic measurements are gathered from the execution of the program. There

are various measures of software products, such as:

• Fan In/Out: Fan I/O denotes the number of functions that call for other functions. Fan-out

means the number of functions called by the fan in. A high fan-in value means that it is

tightly coupled with another part of the design and has a significant effect on the related

components. A high Fan-out value shows that the components need more coordination

within the calling function to reduce complexity [57].

• Length of code: measures the size of the program. The enormous size of the code results in

more complex software.

16

• Variable length: Measurement of variable length. The longer the variables, the better the

program can be understood.

• Cyclomatic Complexity: A measure of program complexity control. Monitor complexity

related to program understanding.

• Fog Indicator: It’s a measurement of the length of words and sentences in software

documents. The higher value of the fog index shows difficulties with document

comprehension.

• Conditional nesting of control statement: This is a measure of the breadth of the conditional

control statement. High values of nesting control statement it leads to difficulty

understanding of the code and increased complexity.

2.4.1.1 Static vs. Dynamic Metrics

Static measurements can be performed during the first stages of the SDLC. These

parameters consider the structural characteristics of the software system and help to understand

complexity of the system. However, dynamic measurements help assess the reliability and

efficiency of the software. Static measurements of complexity may show how much effort is needed

to develop and maintain the source code. The first static measurement is the code line [48]

(LOC/KLOC) which is used to measure a programmer’s productivity. The most common measure

of complexity employed since 1990 is the cyclomatic complexity measured by McCabe

[49]. McCabe used flowcharts and several mathematical formulae to calculate software complexity.

This technique was used for risk analysis of code development, maintenance, and test planning.

Static measurements are derived from a non executable source code analysis. Dynamic

measurements are associated with the quality attributes of the software. It is possible to dynamic

metrics at run time. They tell you which calls occur, how many instructions are executed, and

which parts are executed. Dynamic metrics include complexity metrics and metrics useful for

reliability modelling and directly related to software reliability. Table 2.1 provides some examples

of software static measurements for object-oriented programming and some common static

measurements for AOP and OOP.

.

17

Table 2.1 Software Static Metrics

2.4.1.2 Complexity Metrics

Software complexity measures are a calculation of the costs associated with developing,

maintaining, and using software. Complexity is the most important factor in the origin of defects.

The reliability problem is mainly related to the complexity of the software. When complexity

exceeds some levels, software gaps or vulnerabilities are increasing. The maintainability of the

software is also inextricably linked to complexity. Software complexity analysis is the fundamental

aspect of software assessment, which is the major method of software quality assurance.

Ghareb and Allen [68] summarise the six reasons behind the software.

1) System interpretation difficulty.

2) Difficult to repair bugs and maintain software.

3) Difficulty defining software for other users.

4) Difficulty in updating the software according to the guidelines.

5) Writing program workload based on specification.

6) Availability of tools required for program delivery.

Static Software Metric Description

Attribute Hidden Factor

(AHF)

This measure is used to measure invisible attributes within classes. It measure total classes whose quality is invisible.

Attribute inheritance factor

(AIF)

The attribute inheritance factor is calculating the total number of inheritance attributes in all classes of the system.

Average Depth of Paths

(AVPATHS)

Average depth of paths is calculated by counting total numbers of paths and size for all methods, dividing by the

number of calling methods in the system. .

Average lines per method

(AMLOC)

Average lines per method: it calculates by measuring the average size of the methods.

Depth of Inheritance tree

(PDIT)

Depth of Inheritance tree: is calculating the deepest or maximum of all inheritance trees within the project

Lines of code (LOC) Lines of Code: is calculating number of lines, white space and comments.

Method Hiding Factor

(MHF)

Method Hiding Factor is calculated by summing the visibility of each method the project. Invisibility of a method

means the proportion of total classes whose method is invisible.

Method inheritance factor

(MIF)

The method inheritance factor provides information about the impact of inheritance within your file or program. It is

calculating by finding total number of relationship between inherited methods and the total number of methods.

(Number of Classes in

Program) NCLASS

Counts the number of classes in a program.

SEI Maintainability Index

(SEIMI)

 These measures make it possible to determine the level of maintainability of the software project.

Source lines of Code

(SLOC)

 Counting lines are used to estimate the amount of maintenance required and can be used to normalize software

source code.

18

Complexity measures will assist people in expecting and manage projects. The more complex the

modules, the more effort they would have to put into testing and maintenance [68]. For complicated

modules, we will see how to break them down and therefore their level of complexity, making the

module easier to test and maintain. Complexity measures can aid in determining programming

workload and development costs. It may support the assessment of the maintenance effort required.

In addition, Complexity Measures can help with the same functions to select the most appropriate

program. Complexity measures may also identify defects or mistakes.

2.4.3 Process Metrics

 Computer process indicators are indicators of the process by which code is created. Steps in

the software development process are steps. Examples of process measures include the average

level or experience of programming staff used as a specific development method. There are many

sorts of process measures. For example, COMM measures the number of engagements undertaken

on a file. ADEV corresponds to the number of developers who changed the script. DDEV is the

accumulated number of separate developers who contributed to the file until this update. ADD and

DEL are the rows added and deleted from the file that are normalised (by the total number of rows

added and deleted). OWN calculates the number of lines that the most significant writer of a file has

written. Minor tests are the number of authors in the files who wrote less than 5% of the code [4].

EXP tests the file developer’s highest experience using the percentage of lines he wrote in the

project. EXP checks the geometric average of all developer interactions. All these measures are

based on previous investigations [63] [64] [66] [67]. The SCTR measures the dispersion of changes

in a file; scattered changes can be more difficult to monitor and therefore more likely to cause

defects. SCTR is the standard deviation of geographic centre shift location. This metrics are used to

assess the efficiency and performance of different processes.

2.5 Object Oriented vs. Aspect Oriented Metrics

There are various models for assessing the quality of object-oriented programming that are

explained by [33] [34] [35] [36] [37]. Few projects measuring the quality attributes of the AO

system have been carried out. The above studies have been proposed and assessed for many quality

characteristics, such as complexity, coupling, reusability, modifiability, maintainability, cohesion.

Burrow [44] provides an accepted and referenced method for object-oriented metrics. Some of the

AO measures employed the same measures as the OOP. The Study has showed of relationships and

19

weaving process between classes, Aspects and methods, advice which can help determine other

metrics of AO [45].

AOP separation of concern requirement is used to address scope requirements and constraints in

software developments and it consider as an effective way to identify system requirements. Many

approaches are used to design and implement the separation of concerns in AOPs, such as

viewpoint. Tsang [42] proposed separation of the specification in AOP measures, such as

compositional rule, aspectual requirements and non-special requirements in the design measures of

the module. The compositional rule is used as informal procedures to identify how an individual

requirement control or limits the performance of non-disciplinary requirements. The separation of

the specification of aspectual requirements makes it possible to set up the separation of concerns in

the first stages and may affect components in process later. Tsang used the Viewpoint approach and

the extensible XML mark-up language to develop a tool to uncover the engineering aspectual

requirements [42]. There are many similarities between the object orientation and the aspect

orientation, in terms of class, methods, aspects, and advice. It must develop and propose a new AO

measure based on OOP measures [46]. Quantitative evaluation was completed for quality,

modularity attributes for AOP and OOP. The characteristics can be listed below:

Line of code and scattering. The evaluation was completed for each module and concern.

Quantitative parameters such as size, dimension and crosscutting concerns. OOP metrics measure is

used to evaluate the OOP source code development techniques in the source code. AOP

measurements would have a negative effect on performing all systems [43]. For example, the depth

of the inheritance will measure the longest path from the root of the Aspect hierarchy to a particular

module in the system. The increase of identified the Aspects the more the transaction could be

inherited in the system. As a result, it is more complex to understand and analyse the software [47].

Complexity and size: is measured by calculating total complexity of all functions and methods in

the module. Classes are assumed to be created as fewer codes to enhance their complexity

measures. Size metrics can be measured by size of methods and number of attributes for each class

[48].

Cohesion: It has measured through class-level measures and calculated according to a different

approach, it can be measured by finding relationships between functions and methods. There are

three class-level measures, such as loss of class cohesion, lack of method cohesion, information-

based cohesion and tight class cohesion [49].

• Re-usability: Re-usability measures are determined by the reuse ratio and the specified ratio.

They are calculated by measuring the relationship between sub-classes and all other classes

20

and by measuring the super classes separately. The classes have therefore been re-used

several times; general reuse measures are favoured [50].

• Polymorphism is measured by polymorphism factor and the number of methods exceeded

by the class. This measures at different levels. For instance, if you need to be calculate

polymorphism in a single class polymorphisms, it measures the methods calls in the class

and the polymorphic factor measures excellence across the system [51].

• Encapsulation is used to attributes masking factors and method masking factors and shows

how the attribute and method are well hidden inside the package. This measurement

consider as system level measurements.

• Coupling: it measure by a calculating number of the coupling factor which measured at the

frame level. The other factors are on the class level. The response of message transmission

to the class. Coupling between objects means the coupling between class instances and data

summary [41].

 Several papers examine dynamic performance coupling metrics; they depend on CBO metrics [1]

[2] [3] [4]. According to [5], who measured the coupling between different classes at execution

dynamically, the metrics of the object coupling have been found only at execution time. The

measurements proved to be indicators of vital quality properties of the final product of the system

[4]. For CBO measurements, observational investigations were established for linkage

measurements [4]; the results showed they were similar in several features. There are many

examples of research projects on AOP metrics that have been conducted ([38] [39] [40] [41] [42]).

This research concentrated on the application of characteristic measures for OOP. There is no

framework for determining all (AOP) actions. Mickelsson [40] worked on size measures, counting

the number of classes, functions. Coady and G. Kiczales [41] proposed a framework for identifying

execution values and the position of hidden concerns. Zhang and Jacobsen [39] used Cyclomatic

Complexity, Class Weight, Coupling Amongst Aspects, and measured the time for their assessment.

Tsang [42] used Chidamber and Kemerer C&K’s suite of measures to evaluate AO systems. They

measured the components of quality, such as comprehensibility, Feasibility, Re-usability and

testability. Zakaria and Hosny [43] explained the impact of the C&K sequence on aspect-oriented

programming, and found many common indicators between OO and AO measures. Burrow [44]

examined ten common metrics parameters between AOP and OOP. These measures were

characterised in the Burrow and Garcia [45] series of measures and established object-oriented

measures proposed by C&K’s measures. Burrows and Garcia [45] proposed a new metric which

assesses the coupling between the base source code and the Aspect code, called BAC. Burrows and

Garcia [45] used C&K parameters for their experience and concentrated on identifying coupling in

21

systems developed by AOP. Dhambri [46] suggested a graphic visualisation technique to show the

Aspect-Oriented metric of the software. The first stage defines the features and measurement of

AOP programming. They used third-party applications to retrieve AO measurements based on OOP

measurements [46]. The study identified metric definitions and suggested methodologies of value

for aspect-oriented quality measures. Ceccato and Tonella [47] have developed an AOP

measurement tool that measures software applications written in the AspectJ language. The final

stage of the analysis focuses on creating a report showing the system’s proportion affected by

aspects and the amount of the modules they crosscut.

 C&K [76] defined some metrics as listed below:

1. WMC: Weighted methods per class

2. DIT: Depth of Inheritance Tree

3. NOC: Number of Children

4. CBO: Coupling between object classes

5. RFC: Response for a Class

6. LCOM: Lack of cohesion in methods

These metrics can be used as common measurements for hybrid AO/OO applications. It has been

evaluated and tested in chapter 5.

2.6 Software Quality Measurements

The Software development becomes more efficient, and the quality of software delivery

becomes elevated to meet customer requirements after the year 2000 [9]. The measurement of

software plays an important part in two drivers of software engineering efficiency and

effectiveness. Software Quality Metrics deals with measurement attributes related to the process of

development and the quality of software. Software quality measurements comprise these

parameters: reliability, integrity, usability, maintainability, customer satisfaction, etc. [9], as it

appears in Figure 2.4 below.

.

22

Figure 2.4 Software Quality Metrics

Quality metrics are a subset of software metrics that focus on product, method, and project quality

aspects. They are closer to the method and measurement of products than to project measures. The

efficiency of the software tests the way the software meets its needs. The specifications for

applications are functional or non-functional [69] [70] [71]. Software quality measures comprise

three major groups of measures: software product quality, process quality, and project quality.

Figure 2.5 shows some features of Product Metrics, Process Metrics, and Project Metrics.

Figure 2.5 Features of Software Quality Metrics

These measurements are gathered across the project. It measures the process according to the

specific attribute to develop metrics for those processes. Process outputs affect metrics based on

this process, for example, completed on schedule, follow through with each activity, apply error

management prior to product release and poor communication with the final user. Project metrics: It

23

covers the cost, the duration of the project, the number of developers, the number of teams, and so

on.

2.7 Software Quality models

2.7.1 McCall Quality models

The McCall [130] model was incorporated with varying factors. Software factors affect the

software. The model was classified under two categories:

• Quality factors: This quality factor is directly accessible and is regarded as a high-level

quality factor. These are external attributes that both manager and users are concerned

about.

Quality Criteria: Assigned quality that is subjectively and objectively accessible. These

attributes are internal attributes considered as a second level of quality attributes. The

software requirements are classified into 11 factors, as shown in figure 2.6. These 11 factors

are divided into three major commodity factors: Product Operating Factors: it concerns to

the functioning of the product, such as accuracy, reliability, effectiveness, integrity and ease

of use. Product Review Factors: it concerns with product review, such as testability,

maintainability and flexibility. Product transition factors: it concerns with the transition of

products such as reusability, transferability, and interoperability.

Figure 2.6 McCall software quality model

24

2.7.2 Boehm Model

Boehm [131] has a similar model to McCall. It represented its quality model as a

hierarchical tree and decomposing quality features into several components, as it shows in Figure

2.7. The Boehm model concerns the broader attributes of the features that affect the quality of the

whole software. The difference from McCall is evaluated the performance of the hardware features

[132]. The Boehm model comprises three levels of quality attributes at primary, medium, and

higher levels.

The Higher level comprises:

• As Is Utility: This is a software extender.

• Portability: Software upgrades based on new environments.

• Maintainability: Error detection and correction when performing maintenance.

• The following tier contains seven quality attributes:

• Modifiability: Software modification issue during maintenance phase.

• Intelligibility: User requirement to recognize logical concept and applicability.

• Testability: Requires verification of software functionality.

• Usability: It’s about using, learning and understanding the software function.

• Effectiveness: understand the amount of code and hardware resources necessary to perform

software functions.

• Reliability: it works on software according to the requirements.

• Portability: obligation to change the software according to new environments.

The last level in the Bohem model is to classify attributes into other primitive attributes such as

“independence, accuracy, completeness, consistency, efficiency, accessibility, communication, self-

reporting, legibility, structuring, brevity, ability to increase”. The benefit of this model is a low

maintenance cost and satisfying the needs of users.

25

Figure 2.7 Boehm quality model

At the end of the 1970s, McCall et al. [130] and at the end of 1980s, Boehm [131] proposed

a framework for quality, which can help project managers to monitor risk and assess quality of the

software. At that period, OOP technology was sufficiently developed. ISO/IEC 9126 [142] quality

standards model has been proposed in the early 1990s, with a focus on maintainability. The heritage

property of object-oriented technologies has emphasised reuse [143] has added reusability to the six

features of ISO/IEC 9126. IEEE has released the Software Engineering Body of Knowledge [133],

which was the first attempt for collecting, classifying and standardising the terms models, methods

and techniques.

2.7.3 (9126) Software Quality Model

This model us deals with three principal components of software quality [1], such as,

(i) Process quality

(ii) Product quality

(iii) Product quality

26

It comprises six major quality features with a hierarchical model. These quality characteristics are

broken down into 21 secondary characteristics which support to the internal quality. ISO/IEC 9126

1 focuses on defining quality characteristics and sub-characteristics of the final products. ISO/IEC

9126 2 have been worked on six external quality features to extract these external metrics. These

features were defined by the ISO/IEC 9126 1 standard. ISO/IEC 9126 2 is set out for external

measures and ISO/IEC 9126 3 sets out internal measures. ISO/IEC 9126 4 define quality through

measurements for measuring quality features or sub-features. Internal metrics measure the software

itself, and external metrics measure the computer-based system behaviour that informs the software

for attribute updates. The quality metric measures the effects of using the software within a

particular usage context. These are set out in Figure 2.8.The ISO/IEC 9126 2:2003 standard used

with the ISO/IEC 9126 1 standard. ISO/IEC 9126 4 provide: An explanation of the application of

software quality measures. A core set of measures for each feature. Example of measurement

application throughout the software life cycle, however, the ISO/IEC 9126 quality model is fairly

complicated but does not cover some important quality features, contributing to the quality of the

AOP.

27

Figure 2.8 Software Quality Model Properties for 9126

2.7.4 Dormer’s Model

Filman, Elrad and Clarke [7] have defined a quality model which presents a simple process

to build quality properties into the software. The model links the characteristics of actual products

with those that are less concrete. The template has supported finding shortcoming and specifies

properties of the software quality. This model addresses product quality by defining all related sub-

features merged into higher-level features. The model supports integration of quality, development

of automated codes for quality flaw detection in software definition of language specific coding

standards, Reusable is a quality characteristic of its model, and the systematic classification of

quality limitation.

28

2.7.5 Other Software Quality Models

Ghareb and Allen [10] have categorised software quality as the quality of software

processes and products. Several characteristics of the software product development process are

technology, personnel, organisation, tools, equipment, document clarity, integrity, design

traceability, program responsibility, test integrity and organisation. In this model, guidelines were

provided on the procedure for obtaining the desired product Gulia, Khari, and Patel [11] suggested

that software quality measures may include:

• User based: The quality of the software evaluated by the uses and refers to satisfaction of

the users’ expectations.

• Product delivery: is referred to evaluation of the product delivery, system efficiency and

program maintainability.

• Manufacturing based: the development process, insisting on quality control and

management.

• Organisational control: it evaluated by project costs, risk management, production time and

control of resources.

• Arisholm, Briand, and A. Foyen [12] defined a quality model in component based software

development (CBSD) and derived their model from ISO/IEC 9126. CBSD model has been

used for tracking and flexibility, reuse and complexity. It comprises six characteristics to

assess the total quality of a component. Analytical Hierarchy Process (AHP) approaches

have been used for measurements, and for the weight values of the quality characteristics

and sub-characteristics. Chang et al. [13] provided guidelines for assessing software quality

by integrating fuzzy theory and AHP. Their implementation is bringing new concept in the

ISO/IEC 9126 quality model. Rather than gathering sample data, they applied a fuzzy theory

to get relative weights of metrics values for all components.

2.7.6 Aspect-Oriented Software Quality Model

Allen and Ghareb [126] analysed an extension of ISO/IEC 9126 quality model. In this

quality model, five sub components added to the framework, for instance, modularity has been

added as sub components under maintainability.

• Code reducibility has been added as sub components under efficiency.

• Complexity has been added as sub components under usability.

• Reusability has been added as sub components under functionality.

29

• The new model is given in Figure 2.9. In this table, the components and sub component

were also labelled as C2 in the following sections. The proposed model shows additional

sub-features in the new framework of the existing ISO/IEC 9126 software quality model

[151].

Figure 2.9 Aspect-Oriented Software Quality Model

30

2.7 Aspect Oriented Programming Quality Metrics:

Aspect-oriented programming quality metrics are the properties of the software that affect

the primary functionality of the software. The major objectives are to improve the reuse of the

module and the design of the software. Several studies have focused on software quality,

measurements, and measuring AO [10]. Gulia and Khari [11] proposed five suites of measures

based on a software model based on the aspects. The model comprises dependent charts

representing various dependent relationships at a different level. Coupling parameter represents

dependence among classes and aspects. The aspect cohesion measure tells you how closely the

character modules (method and guidance) are logically coherent [11].Rashid and Awais [18]

suggested extending the ISO/IEC 9126 software quality model. In the opinion of the researchers,

the quality model would improve modularity. The improvement includes adding maintainability,

code reduction, user complexity, and reuse sub-functions. The suggested model is presented in

Table 2.1. In this table, all details of the highlighted properties are the new attributes offered.

Definition and assessment are essential for initial and primary characteristics and sub-characteristics

(ISO/IEC 9126) in AO technology. The model is referred to as the Aspect Oriented Software

(AOSQUAMO) Quality Model;, however, this model does not include all AOP measurements

related to AOP software quality and the evaluation method and case studies were not enough to

prove it.

Software Quality Model ISO 9126 Software Quality Model (AOSQUAMO)

Main Characteristics Sub-Characteristics Main Characteristics Sub-Characteristics to be added

Functionality

Suitability

Functionality Re-usability

Accuracy

Interoperability

Compliance

Security

Reliability

Maturity

Reliability Fault tolerance

Recoverability

Usability

Understandability

Usability Complexity Learnability

Operability

Efficiency
Time Behaviour

Efficiency Code reusability
Resource Behaviour

Maintainability

Analyzability

Maintainability Modularity
Changeability

Stability

Testability

31

Table 2.1 Quality Properties for 9126 ISO Models, 2004. Vs. New Aspect-Oriented Software Quality Model

Based on [14] [15] [16] [17] stated that, coupling is a dynamic metric for AOP, and this depends on

other static metrics. Low couplings and High cohesive are a good standard software design,

according to Kiczales [16]. Rashid [18] supports the idea of coupling metrics, which used for

measuring AOP and OOP. The above study shows that AOP metrics can use same as OOP metrics

because there are many similarities between the two technologies. They have suggested new

measurement techniques for AOP; however, there is no single AOP measurement to measure AOP

and OOP in hybrid application software. An ISO/9126 quality model as standard quality framework

has been used [50]. ISO/IEC 9126 includes many categories; each category has several features and

functionalities. As shown in Figure 2.10 below:

Figure 2.10 Product quality 9126 Model

Aspect Oriented quality metrics can be used along the same lines as software quality metrics. These

categories have been implemented in ISO 9126. For instance, for functional features adding

Portability

Adaptability

Portability
Intsallability

Replaceability

Conformance

32

scalability, in reliability features adding complexity, the service load behaviour was added for

efficiency features. In addition, maintainability, code weaving, portability and re-users have been

added. A quality measurement framework is not available for AO/OO systems. Software

complexity encompasses multiple software properties that affect all internal interactions. The

measures of those characteristics determine the complexity of the code. Software coupling

corresponds to the level of interdependency between software modules. Reusing serves is to reduce

the size of the software project code. Maintainability is the modification of the programming

element after delivery. Cohesion is the level of relations between the components of the modules.

There are various programming measures for these attributes. The programming measures were

calculated using quantitative methods. Some measures for evaluating the quality of hybrid AO/OO

system development have been proposed. This will help build a new software quality framework.

Table 2.2 has been explain all the technologies and techniques that have been proposed by different

authors. It has shown there are relationships between AOP and OOP metrics and they affect each

other sometimes have negative effects and in other have improvements in the software metrics. The

proposed hybrid quality metrics model can measure both of AOP and OOP metrics and find the

relationship between them. This finding is to help developers, designers and project managers to

choose appropriate techniques during development process.

Metrics Measurements

Object

Oriented

Aspect

Oriented

Common

Metrics Remarks

Line of code [6][7][43][47] + - Yes

Line of Code has positive effect on OOP

source code to evaluate it. AOP has negative

effect on the performance of the all system.

Complexity and size [48][49][67][68] ++ - Yes

The Complexity and size it depends on size

of the project, generally this AOP it more

affect if the complexity is high they effect

negatively on software performance, however

for small project it not effect on the size and

code complexity.

Process Metrics[63][64][65][66][67] - + Yes

This metrics it affect performance and

efficiency the AOP metrics is more efficient

than OOP.

Cohesion [49] - + Yes

AOP metric is higher than OOP metrics here

because OOP have different levels class and

method cohesion.

Coupling [41] + + Yes

In both technologies AOP and OOP coupling

metrics values is vary. In both have

disadvantages and advantages so it depends

on coupling between class and object and

data movements.

Re-usability [50] + - Yes

AOP metrics value is higher than OOP

metrics in majority of application AOP

metrics improve the reusability.

33

Polymorphism [51] + - Yes

In OOP it measure across classes while in

AOP it measure across classes the execution

of the methods or joint point. The metrics

values of AOP are much higher than OOP.

Encapsulation [51] - + Yes
OOP metrics is much higher value than AOP

metrics on the system level.

 Weighted methods per class / aspect

[1][2][3][4][5][38][39][40]

+ + Yes AOP metrics is depending on OOP metrics.

Depth of Inheritance Tree

[1][2][3][4][5][38][39][40]

+ - Yes
OOP metrics values are higher than AOP

metrics values.

 Number of Children

[1][2][3][4][5][38][39][40]

+ - Yes
OOP metrics values are higher than AOP

metrics values.

Coupling between object

classes[1][2][3][4][5][38][39][40]
- + Yes AOP metrics is depending on OOP metrics.

Response for a

Class[1][2][3][4][5][38][39][40]
+ - Yes

OOP metrics values are higher than AOP

metrics values.

Lack of Cohesion in

methods[1][2][3][4][5][38][39][40]
- + Yes AOP metrics is depending on OOP metrics.

ISO 9126 Quality Metrics-Functionality

[14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

ISIO9126 Quality Metrics-Reliability

[14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

ISO 9126 Quality Metrics-Usability

[14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

ISO 9126 Quality Metrics-Efficiency

[14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

ISO 9126 Quality Metrics-

Maintainability [14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

ISO 9126 Quality Metrics-Portability

[14][15][16][17][18]
- +- Yes

Quality metrics have been measured both

AOP and OOP metrics but it not support all

together as one values this is the

disadvantages

Proposed Hybrid Software Quality

model
++ ++ Yes

The proposed Hybrid Software quality

metrics models have advantages over all

other model it measure all metrics of AOP

and OOP and have been shown the

relationships effected over the metrics.

34

Table 2.2 AOP and OOP metrics relationships in different model and framework

2.8 Summary

This chapter clarifies the software metric properties. It also provided a systematic literature

review analysis of the most recent contribution to the measurement method. The AO and OO

metrics discussed and defined the similarities and differences between them. Several methods for

the determination of AOP measurement methods have clarified the benefits of collecting AOP

measurements. The most important element in software engineering and software development is

software measurement. The software metrics were addressed in all major categories, such as

products, processes, complexity and quality metrics. In software measurements and software

development, the importance of AOP measurements has been outlined above. It is essential that a

single framework is provided to measure AOP and OOP quality metrics in hybrid application

software.

35

CHAPTER 3

RESEARCH METHODOLOGY

3.1 Introduction

 This chapter will cover the research methodological techniques used in this research. Two

research methods were used to conduct the research. A detailed review of the documentation to

identify gaps in the existing approach to identifying AOP actions. A second method comprises a

case study to propose a quality framework for hybrid AO/OO software. The primary aim was to

establish static measures for the proposed quality framework in order to measure the development

of hybrid AO/OO systems. Five case studies were then analysed and evaluated and compared to the

proposed metrics for the AO hybrid application system's quality framework. In the research method

chapter, it has been explained many studies and software tool that have been used to extract

statistical measures of software quality. The research plans for this research were explained and

highlighted five key steps in completing this study. The research design explains the steps to plan

the hypothesis of extracting software quality metrics for the hybrid application system. Several

cases studies have been used to excrete data for the proposed software quality settings of the

AO/OO application. Gaps in the research were identified based on an extensive literature review.

The literature review showed that many AO measurements can be identified in hybrid application

systems. Common OOP and AOP measures were found with similar effects on the software

measures. Static and dynamic metrics were chosen for analysis and evaluation. The effect of the AO

quality of a hybrid application system was studied. The proposed AOP quality parameters for the

hybrid application system have been showed. AOP extracted metrics from these projects have

36

examined and compared to literature review results. Several assumptions for the AOP quality

measures were developed. Software quality frameworks have been proposed for the AO/OO hybrid

application system based on the outcome of the case study approach and literature review analysis.

The proposed framework was the subject of a review and evaluation in Chapters 5 and 6.

 3.2 Research Methodology

As a research tool, a literature review is one of the major approaches to conducting research

[28] [29]. A literature review can be narrowly defined as the systematic manner in which previous

work is collected and produced. Proper analysis as a research tool provides a solid basis for the

development of scientific and theoretical growth [30]. A literature review can tackle research

questions without the force of a single study by combining observations and insights from several

empirical findings. It may also help to provide insight into how research is carried out is

interdisciplinary and diverse. A literature review is an excellent way to summarise research findings

to explain the evidence at the metadata level. It helps to identify areas where further research is

required to build theoretical frameworks and conceptual models. However, accepted approaches to

explaining and presenting documentation are often underdeveloped and not consistently adopted

[28]. Mitchell, Ortu, and Orrú techniques give authors a significant chance to build their

investigation on the erroneous assumptions. Sometimes, when the analytical method is correct, the

problems contribute significantly [31]. Different study methods are available. There are systematic,

semi-systematic and integrative approaches, which depend on each type of approach to be adapted

and the consistency of the very efficient implementation. A semi systematic review approach is one

of the excellent strategies for research approaches, such as mapping approaches or theoretical topics

and identifying knowledge gaps in the literature. In such cases, a research question requires a

research approach to data collection. An integrative analysis approach may be helpful when the

focus of the review. It is unnecessary to cover all papers ever published on the subject, unnecessary

ect but to combine perspectives to construct new theoretical models. Several questions relate to

responses to research questions of software quality metrics have been selected. For example, the

questions may have to do with determining the examination method for the specific search query. It

can decide what the eligibility criteria are and set limits for the analysis. It can help select the data

to be extracted from the document, or in assessing what form of contribution should be made.

.

A case study approach is a research method appropriate for software engineering research because

it studies modern phenomena in their ordinary context. However, what makes up a case study is

37

defined differently among researchers, hence the quality of the studies produced. This study, based

on the method of empirical research in software engineering, also emphasises experimental

research. The first methodological manual [32] [33] [34] has been published. However, the studies

presented range from very ambitious ordered field studies and well done with various taxonomies

are used to categorise the work [35]. Zhang and Jacobsen proposed case studies and field research

(39). The case study approach is well suited to software engineering research of any kind, as the

subjects of the study are current phenomena that are difficult to study in isolation. However, the

case studies were criticised for being less precious, impossible to general criticised and biased

researchers. This criticism can be overcome by the application of robust and systematic analytical

practice, by re-examining the fact that information is not only of statistical importance [40]. This

study used a semi-systematic review approach, which was used to identify knowledge gaps

regarding the AO/OO quality model measures [41]. Adding more, the case study approach was used

to assess a software quality framework for the AO/OO quality model based upon the ISO 9126

software quality model.

3.3 Research Design:

The research design is one of the success factors for this research. The research design of

this study explains the two methods of research method to achieve goals and objectives, as shown

in Figure 73.1. In this research, theoretical software quality frameworks for the AO/OO hybrid

application system were first developed before carrying out empirical evaluations. Research design

has five major steps. In the first step, the software measures are studied from the literatures found

on the published papers and books. In the second step, the Aspect Oriented parameters and quality

parameters for the hybrid AO/OO application system are studied from the literature of published

articles and books. In the third step, AOP quality measurement software for the AO/OO hybrid

application system is proposed and then extracted from several open source code projects developed

by AO/OO technologies. In the fourth step, a software quality model framework for hybrid AO/OO

application systems based on the existing ISO/IEC 9126 model was implemented. This framework

includes a theoretical architecture, a member selection mechanism based on AOP proposed quality

measures, and a member validation mechanism. In the last step, the quality of the AO/OO

application frameworks is evaluated.

38

.

Figure 3.1 Research design steps used to carry thesis research

 3.3.1 Research Design Steps details:

This section provides a brief description of all research design steps.

1. Step 1: Research of software measurements to understand AOP software measurements for

hybrid application systems. A literature review research method was adopted to identify the

current gap between the assessment of additional measures and the assessment of AO/OO

applications. Many published papers and books were researched for software measurements

and AO/OO measurements. The results of the research at this stage were discussed further.

2. Step 2: This step extends the pervious step. Many research articles and books have been

researched to find the extent of AOP measurements and AOP quality measurements. The

primary aim of this phase is to understand the feasibility, mechanism and scope of the new

AOP measures to measure AO/OO application.

3. Step 3: Propose AOP Quality Measures This step was undertaken based on the collection of

research on AOP quality measures and to find a gap in its development method. Several

cases studies have been used to determine the feasibility and scalability of the proposed

AOP quality measures and developed the existing AOP quality measures. Chapter 4 details

the techniques used to extract the data.

39

4. Step 4: Software Quality Template Framework for AO/OO Hybrid Application Systems.

The measures proposed in Stage 3 will feed into a new software quality model for hybrid

AO/OO application systems. Furthermore, the hypotheses of this study with the response of

the detailed literature review. The hypotheses analyse the results of the case studies that

provided baseline elements of the proposed quality framework. This model has been

proposed according to pervious quality model ISO/IEC 9126. MSE [235] was used to design

the framework model and later will be assess it.

5. Step 5: Software Quality Model Framework for the Assessment of AO/OO Hybrid

Application Systems. There are several frameworks to measure software quality. However,

no quality measurement framework exists for the application developed by AO/OO. One of

the most common ways to ensure that the framework is valid is to evaluate it and prove the

proposed hypothesis and criteria for this proposed framework model. The qualitative and

quantitative assessment method has been adapted AMOS and the [235] has been adapted in

the assessment process. 3.3.4 Evaluation Methods

According to Cronholm, S. and Goldkuhl [253] there are several evaluation strategies that can be

considered in systems evaluation strategy methods, for example “criteria based“, “goal-based” and

“no-goal”. Criteria based assessment is an evaluation strategy process performed against several

criteria that the system adheres to in order to be successful. Goal based assessment applies to a set

of pre-defined goals in the system development. No-goal assessment is performed on system

development without pre-defined objectives. Adding more, Chen, S., Osman and others [254] have

been applied to three different implementation strategy methodologies “IT system used” and “IT

system itself”. The IT system used strategic methods concern the involvement of users and

evaluators to work on the system and collect data. The IT system itself relates more to the evaluator

than to the collection of data and the conduct of the assessment. This thesis was used as a mixing

method for the evaluation strategy method “goal-oriented” and “IT system”. Evaluation process is

the important part of the research and to ensure that the outcomes result gets correctly and the study

is done properly, an evaluation strategy has been developed for this research. Figure 3.2 explains

the Evaluation Strategy Approach.

40

Figure 3.2 Evaluation Strategy Approach

3.3.2 Formulate the Hypothesis of the Research:

Five hypotheses of this study have been proposed based on the detailed literature review

research approach, which is described in section 3.6. Five assumptions have been made regarding

the new AO/OO product quality framework. These assumptions have been made based on measures

were extracted from five open source projects which have been described in Section 4.2. Chapter 5

will explain these hypotheses with their evaluation. Hypotheses made are:

H1: Extensibility has improved the functionality.

H2: Complexity influences reliabilities.

H3: Service Loading Behaviour has improved the efficiency.

H4: Code weaving makes maintainability more reliable.

H5: Re usability improves the portability.

3.3.2.1 Select Research Instruments:

The case study from this study was used to gather and retrieve measurement data. Measurement

tools include Code-MR, java program, algorithm that has been developed. The analysis and

41

evaluation of the data was done using the SPSS statistical software [238]. The first step is to extract

the data, then map and normalise it, and then input it into an SPSS spreadsheet. The extraction data

and all attributes will be organised to address the defined assumptions, and the evaluated; all details

will be explained in Chapter5.

 Research Measurements: According to Structural Equation Modelling, the extracted data will

categories into directly (observable) and indirectly variables (latent). The (observable) variable can

be found directly from the extracted data of the project and shows the effect of the metric values of

the open source project. Standardisation techniques were used to standardise the extracted value

from zero to ten. The mathematical standardisation equation was used in this process; full details

will be explained in Chapter 5.

 Data Extraction from Projects: Common metrics for AOP and OOP have been extracted. The

common OOP and AOP measures were retrieved using the Code-MR tool and a java program. The

data have been organised to meet research questions and the hypothesis; all the details will be

explained in Chapter5 of the evaluation.

3.3.3 Sampling Data and Data Normalization:

In this stage, measurement results have been varied. Therefore, the extracted data has been

normalised based on the size of the source code and the functionality that has been used in each

project. Different development methods of AOP and OOP techniques have been used in the AO/OO

project according to specifications for each project. MSE was used to model sample data for each

project. The outcomes of these extracted data will fed into the product quality model, all the details

will be explained in chapter5.

.

3.3.4Analyses Data:

Five differentiated projects were analysed with the help of seven statistical measures. These

statistical measures ensure the data extracted is valid and reliable. These statistical measurements

have been tested using SPSS tool functions.

Findings: The ultimate result of the proposed framework has been approved statistically. Full

details will be explained in chapter 5.

42

3.4. Conducted Research experiments:

This section explains case study experiences that partially extract AO/OO measures. All the

following experiments show some disadvantages of extraction of these measures.

3.4.1 Experiment 1 - Bash Script algorithm

This experiment has been conducting by creating a bash script algorithm to extract AO/OO

metrics. The procedure of working the algorithm comprises these steps (Source code parser,

application metadata extraction, module analyser, metrics calculator and saving the result into

database) as shown in Figure 3.3 below:

Figure 3.3 Bash script code structure

The sample code of the algorithm of finding AO/OO as it shows in Figure 3.4. The example uses

several Linux command for find word pattern in the source code of hybrid application AOP/OOP

techniques.

43

Figure 3.4 Algorithm procedure for extracting AO/OO metric

Another example used is the identification of many class files with the extension .java and Aspect

file with the extension aj. It used the simple command file WC -L. The purposes of this test

extracted all metrics using the bash script with piping and other Linux command features. There

were many impediments to using a bash script. For example, the project structure, files cannot read.

Linux scripts do not support analysis for all aspects and java file components. The components

calling the source code do not calculate correctly and sometimes cannot count the other usage of the

code in the various files of the project. Table 3.1 below shows the line of code of the selected open

44

source projects. The components calling the source code not calculating correctly and, sometimes,

cannot count the other use of the code in different files of the project.

Table 3.1 Extracting number of java class and Aspect files

3.4.1.2 Experiment 2 -Ajatoo Application Tool

The Ajatoo tool was assessed to collect aspect measurements against design pattern metric

measurements [14] [18]. It applied to three different design models implemented in OOP and

AspectJ (adapter, observer, and decorator). Variety of measurements has been supported by this

software, such as (attribute numbers, size, operation numbers, and weight operator per component,

code lines, and tree depth. This tool has the drawback of not supported new versions of java JDK

and not measure quantity of AO/OO metrics. Figure 3.5 explains it in details.

No. Project Name Java Files Aspect file

1 Google Talk 25462 195

2 AjHotdraw 41594 2579

3

Health Watcher 8113 1827

4

AjHSQLDB 1153133

3829

5

Contract4J5 16052

1571

45

Figure 3.5 Using Ajatoo tool

3.4.1.3 Experiment 3 -AOP Metrics Application Tool

AOP Metrics are developed with the help of AspectJ. It has been tested several metrics such

as WOM, LOC, DIT, LCO, NOC, CIM [14]. It also executes dependencies of units like abstraction

and number of types [19]. The tool disadvantage is designed for AspectJ and Java with earlier

versions and has not been revised for eight years. It will not measure aspect independently and not

measure quality metrics for software [32].

3.4.1.4 Experiment 4-CMTJava Application Tool

CMTJava application tool is used for extracting complexity metrics and supports

implementation of corporate standards for code complexity, testing and measuring quality metrics

[33]. CMTJava measures several complexity metrics but has also a drawback that has a limited in

measuring all complexity metrics.

3.4.1.5 Experiment 5 - JDepend Application Tool

The JDepend [34] application tool involved breaking down the design of the framework into

many components, such as scalability, reusability and practicality. JDepend it deals with measuring

the number of packages and controls it. The software design is used to generate the metrics from

multiple interfaces and classes, such as abstraction, couplings, instability, primary sequence

46

distance, and packet dependency cycles. The tool did not support all AOP source codes and did not

recognise AO metric and software quality metrics.

3.4.1.6 Experiment 6- JMetric Application Tool

 JMetric is a tool to extract OO metrics. JMetric gets metrics from documentation of the

source code [35]. The Tools will generate several measurements such as, number of line, number of

readings and Cyclomatic complexity. Metrics are supported by a plug-in measure release of 1.3.5,

under free licence of open-source module in the Eclipse IDE [36]. It determines 17 unique metrics

and gives a packet dependency analyser. The draw backs of this tool are not support software

quality measurements for AO technology.

3.4.1.7 Experiment 7 -Rapid miner Application Tool

Miner Rapid piloted a new design template for the application. The difficulty of using this

tool is manual rule configuration and only accepts CSV pretext input files. However, it has been

used to test on some hypotheses but cannot apply to all AOP measurements [37]. As is shown in

Figure 3.6 below:

Figure 3.6 Rapid miner tool

3.4.1.8 Experiment 8 -GATE Application Tool

 The GATE application tool is strong mining engineering software. GATE has an overall

architecture for text engineering [38] that has been tested to find AOP source code models. AOP

measures have been found in the statistical analysis. The disadvantages do not provide statistical

information on each source code. Figure 3.7 shows the details of it:

47

Figure 3.7 Gate text engineering tool

The above practical experimentation tools were used for extracting new AOP measurements. They

were used to extracting some of the AOP measurements. There are no special tools for retrieving all

AOP and OOP measurements. It is important to find tools to relate OOP to AOP measurements in

order to measure the hybrid application system. All the summary of 8 experiments have been

summarised in table 4. The table has been to explain the advantages and disadvantages of all these

experiments. The conclusion that there are not unique tools that can support all AO/OO metrics

measurements for hybrid application system. So in section 3.5, it has been used a solution for these

obstacles.

Experiments for extracting AOP metrics Tools or application have been used Results

 Advantages Disadvantages

Experiment 1 Bash Script Linux

It is perfect for

calculating static

metrics AO/OO.

It cannot calculate

dynamic metrics and

reading content

different file format

48

of AOP.

Experiment 2 Ajatoo Application Tool [14][15]

It measures AO/OO

metrics for design

pattern development

and generates 6

metrics. It open

source application.

Limited number of

metrics and limited

on JDK 1.5 version

and aspect old

version only. It

needed up to two

years for upgrading.

Experiment 3

AOP Metrics Application Tool [32]

The tool has

measured

dependencies of

units like abstraction

and number of

types, and measure

several AOP metrics

only,

It only measure

AOP metrics and

has limited number

of measurements. Is

not support

measurement of

AO/OO both and it

is not an open

source application.

Experiment 4 CMTJava Application Tool [33]

is used for

extracting

complexity metrics

and supports

implementation of

corporate standards

for code complexity,

testing and

measuring quality

metrics

It is not support all

quality metrics and

all complexity

metrics

measurements.

Experiment 5 JDepend Application Tool

it deals with

measuring number

of packages and

controls it. The

software design is

used to generate the

metrics from

multiple interfaces

and classes such as,

abstraction,

couplings,

instability, primary

sequence distance,

and packet

dependency cycles

The tool did not

support all AOP

source code and did

not recognize AO

metric and software

quality metrics

Experiment 6 JMetric Application Tool [35].

JMetric gets metrics

from documentation

of the source code.

The Tools will

generate several

measurements such

as, number of line,

number of readings

and Cyclomatic

complexity.

The draw backs of

this tool is not

support software

quality

measurements for

AO technology, and

does not support

AO/OO metrics

measurements.

49

Experiment 7

Rapid miner Application Tool [37]

It generates metrics

from design

template for the

applications and can

customise the

metrics extraction

rules.

The difficulty of

using this tool is

manual rule

configuration and

only accepts CSV pr

text input files,

adding more cannot

apply to all AOP

measurements.

Experiment 8 GATE Application Tool [38]

is strong mining

engineering

software. GATE has

an overall

architecture for text

engineering that has

been tested to find

AOP source code

models. AOP

measures have been

found in the

statistical analysis.

do not provide

statistical

information on each

source code.

Table 3.2 Summary table for conducted research experiments3.5 Open source project developed with AO/OO source code

Five open source projects were selected for their development using AO/OO source code. The

projects have been selected based on an extensive literature review [75] [101] [115] [148] [150].

These projects have been used in the case studies to extract quality parameters from the proposed

AOP. These open source code project considered as hybrid AO/OO applications. The following

free source code projects have been described as:

3.5.1 GTalkWAP project

GTalkWAP is a web-based application is used to access the Google chat service using WAP

enable access. GTalkWAP is programmed by java and AspectJ [34]. The appearance effect is slight

as far as the project has minor features and part of its implementing using crosscutting concern. The

effect of an aspect is small regarding that the project has small functionalities and some of it is

implanted using crosscutting concerns.

3.5.2 AJHotdraw project

This is an open source project developed with Aspect Oriented refactoring of the 2D graphic

system in JHotDraw. Test AJHotDraw is a research sub-project designed to ensure behavioural

maintenance between the two solutions [35]. It used java 2D graphics with object-oriented features;

however, the quality of the system is varied because of the few refractory aspects of the capabilities.

50

The crosscutting issues were used in their functions. Based on the size of the project, it was selected

for thesis experiments.

3.5.3 HealthWatcher Project

The HealthWatcher system is a feedback system designed to improve the quality of health

care institutions by allowing the public to draft their health complaints. For example, complaints

against restaurants and food stores, health care agencies, can intervene quickly in claims and take

the action. The programs have a web-based user interface for logging complaints and carrying out

several other related operations. A layered architecture and associated design tendencies [36] [37]

[38] to achieve modularity and scalability. The framework was used as part of the Java and AspectJ

implementation. This layered architecture enables the separation of data management, industry,

communication (distribution) and presentation (user interface) concerns. This arrangement leads to

a less complex code, such as when the business code intertwines with the distribution code but does

not completely prevent it. For example, it is crucial to easily disentangle the transaction start and

end code by using this architecture and an object-oriented language. However, in situations where it

can be unravelled, a high price must be charged for this: the interfaces must be written to take care

of the transaction functionality. This project has been chosen because aspect handles code

distribution, competition, persistence, synchronisation and transaction.

3.5.4 AjHSQLDB Project

AJHSQLDB is the outcome of an Aspect Oriented case study on refactoring with HSQLDB

which is java open source system implementing a relational database system. JHSQLDB used

FEAT to search for the corresponding transversal code [39]. This is a large system because it

involves logging, managing exceptions, grouping, tracing and allowing and authenticating. The

systems were chosen because we believe they might answer many of our research questions.

3.5.5 Contract4J5 Project

Contract4J is free software, covered under the Eclipse-v1.0 public license. This tool used

JDK of Java 5. A Contract4J5 have been developed using Java programming and Aspect Oriented

Programming. Adding more, Enterprise Java and Ruby on Rails, is sponsoring Contract4J5 [39]

[40]. The exception handles were used for the transversal concern in the entire project.

3.6 AO/OO metrics

 The following sections explain these measures and how they were retrieved.

51

3.6.1 Crosscutting Degree of an Aspect (CDA)

CDA measure all modules possibly influenced by an aspect. It shows the global impact of

one aspect on the other modules. Higher CDA values are preferred [7]. The WOM is another

method for measuring CDA. The CDA/WOM measure may show the effect (in terms of affected

modules) of an aspect. High values of CDA/WOM show that the pieces of Advice affect several

modules. Aspect is explicitly or implicitly changes all modules through the intertype statement or

pointcut [8]. The CDA can be considered a valid theoretical measure for both dynamic and static

crosscutting [9]. The crosscutting degree of a dimension metric is used as an indicator of separation

of concerns [14]. The following uses can be considered:

• High CDA values are desirable [8], as the CDA metric shows the number of modules of an Aspect

and the usefulness of the Aspect. The number of explicitly named modules in the Pointcut of an

Aspect must be kept low [8]. When the value of the CDA is equal to one, it required to measure

inheritance or association mechanisms to separate the concerns encapsulated by the Aspect.

3.6.2 Coupling on Advice Execution (CAE)

CAE is the number of aspects containing Advice triggered by the execution of operations in

a module. CAE has the second definition by [10], which counts the number of inwards arrows from

Aspects to a specific module [10]. This metric is used to measure the Advice’s operation; hence, a

change in the Advice might affect the process [7]. A larger value of this measurement for a module

means that the software module is paired with more aspects [10]. For example, if have a high CAE

coupling value with low maintainability, this mean specific advice types in AOP languages reduce

the quality metrics [12]. This metric depends on the Advice operations and any change in Pointcut’s

behaviour that might intercept it. The CAE metrics calculate the weight of the number of aspects

affecting a module [7]. The information about this metrics is collected on source code, not at

execution time. Adding more, CAE metric can measure Jointpoint and show the effect on the

source code. CAE measures the coupling between the Aspect and the base code, but is not sensitive

to the coupling rate. This measure should address many Joinpoint coupling mechanisms to measure

the coupling caused by performing advice [11] [13]. According to Ceccato and Tonella [13] they

claim the, CAE has several effects on source code. For instance, aspects or classes with low LOCC

values and high CAE values may be used for measuring aspect interactions. The CAE/WOM metric

can see how aspects affect the global behaviour of a module. The value of CAE/WOM (is directly

proportional to the influence of the component aspects. The values of the CAE measure may be

used as an indicator of the interaction of aspects. Therefore, they conclude that small amounts of

CAE are more acceptable because the higher the CAE value, the more the class is related to the

52

aspects that affect it [7]. If a module has a null CAE, this means aspect has not deducted the

module.

3.6.3 Concern Diffusion over Components (CDC)

The CDC records the number of classes and aspects that are primarily intended to help implement

the concern [14]. Ng, Kaeli, Kojarski and others argue the CDC has the number of components that

contribute to implementing the concerns and other elements that have access to them [15], whereas

Kiczales, Hilsdale, Hugunin and others state that the primary purpose of the CDC is to measure

classes and aspects [16]. The CDC evaluated the relationship between defects and crosscutting

problems. It was found that the more a concern is spread out, the more likely there will be errors in

its implementation. CDC is used to measure appearance scatter ratio in software, and these metrics

are independent from the program size [17]. This metric quantifies feature scattering, considering

the granularity level of components. It counts the number of classes and interfaces that support the

implementation of functionality. CDC calculates the ratio of classes which deliver the

implementation of a function to the total number of classes. The relative CDC represents the

percentage of classes which are used to implement the feature [18]. The CDC has the number of

components whose only purpose is to help with implementing a concern. In addition, it tracks the

number of attribute statements, formal parameters, return types launches and local variables call

their methods [9]. It can be represented as follows.

 CDC= number of components that help implement a concern + number of elements that access the

components that help implement the concern. This measurement can measure the extent to which a

single system concern is consistent with the software design elements. If a concern directly matches

the items, fewer components will be changed during the execution time.

3.6.4 Lack of Concern based Cohesion (LCC)

 Concerns are defined as any property and part of the software, which can be considered a

conceptual unit and treated in a modular way [23]. Concerns can range from high-level notations

like security and quality of service to low-level issues such as caching and buffering. It can be

functional as the rule or operational features or not functional, such as function organization and

transaction management [23] [24] [25]. Cohesion is an internal quality attribute that is essential to

software. A software module is consistent if it represents an abstraction of only one concept or

characteristic of the problem domain. The less responsibility a module has, the more coherent it will

become [24]. The measurement of cohesion is useful for assessing various aspects of software

design, including the prediction of the trend to module change [22]. The LCC for a component c

53

includes the number of concerns assigned to it. It also counts the number of distinct concerns to

which the interface is assigned, plus the number of different concerns to which the interface

operations are assigned [20].

The LCC accounts for the number of concerns addressed by the evaluated component. The LCC is

based on a similar measure defined within architectural levels [21]. The LCC measures the amount

of cohesion for a component based on the number of concerns it addresses. A component may be a

class, interface, or any other component representing a module as the implementation unit. The

results are thus got for each component. In this way, it records the number of concerns mapped to

each element [26]. The LCC measurement applies to each part, for example, in a class. The Aspect

LCC identifies whether a component is likely to be cohesive or undetermined by measuring the

number of concerns it implements. If a class contributes to implementing several concerns, it lacks

cohesion. This metric looks at what matters in implementing the components and the number of

responsibilities (concerns). The reasoning behind LCC is that an element that encompasses many

concerns is subject to regular change. The disadvantage of the concerns resides in the requested

changes during the implementation of the concern. In addition, we would expect to find a

correlation between effective linkage and LCC. If a class has many concerns, it may depend on

other classes because it is more involved in the overall concerns of the system [27] [28].

3.6.5 Aspect Complexity Metrics (AC)

Complexity measures for OO applications are well developed, including control of system

structure, difficulty of data type and complexity of data access card [34]. AO complexity metrics

can be applied for advice on aspects, number of parameters for methods in classes in OO metrics.

However, Aspects also include other constructions that need to be taken into consideration, such as

Pointcut, Joinpoints and Advice. Aspect-oriented complexity measures use the same object-oriented

measurement techniques to measure AO components. The following sections describe certain

features of the appearance complexity attribute:

Pointcut describes a condition that triggers the specific section of code to run. The AV-graph

techniques were proposed by Ceccato and Tonella that may represent point cut by the AV - graph.

The AV - graph represents Pointcut per node and represents the signature as entry node. The

metrics measurements have calculated, including summing up the signature of Pointcut definitions

54

and signature complexity (call, execution, etc.). Second Techniques measure the complexity of

pointcut by a regular expression. These regular phrases are given by [30]. The regular expression

was represented by a string of literal symbols (e.g., as food), a keyword (such as int) and a standard

character expression (such as *). The measures of the complexity of a signature refer to all

functions (in the form** (*)) or specifically one (void foot (int) throws IOException) requires the

same order. However, more complex signatures, like the void f*oo (int, *) throws *, are hard to

analysis understand. The keywords before and around describe when the Pointcut part of the body

of the Board is executed. Otherwise, the advisory structure is quite similar to that of a Java system.

Inter-type instructions enable declaration of aspect priorities, custom build errors, alerts, etc. Inter-

type statements allow the declaration of aspect priorities, custom compilation errors, or alerts,

among others.

Advice is composed of two parts: the feature part and the Pointcut part. The Advice header consists

of several parts. The name of the Advice can follow the list of standard settings, keywords before,

after, or around, and return. The body of Advice does not appear is different from that of a java

method. The functionality of Advice is the same as java methods. The Aspect body is contains a

part of the Pointcut definition. The complexity of the Aspect body can be measure by combination

of complexity of Pointcut.

 The complexity of Aspect elements and classes has many similarities; both include member data

and functions. The complexity of a class is the sum of the complexity of the methodologies and the

characteristics of the data. Aspect complexity is classified into two categories. The difficulty of

Advice is considered the Pointcut when calculating the dimension. These structures have a direct

impact on the programmer’s view of the code. There is several programming statements such as

parent error reporting, alert and others are not considered when calculating complexity. In AspectJ,

auxiliary constructor not directly impact complexity. The complexity values are summarised by the

complexities of the details and aspects of the members’ functions.

Cyclomatic complexity [29] depends only on the number of independent routes through the

programme that can be represented by this equation (V (G) = p + 1). The inadequacy of the metric

becomes clear if we understand that the Cyclomatic class ignores the nesting level of the predicate

nodes. Enhancements in the form of a management structure coefficient are proposed by [30], [31]

and [32]. The scope of a predicate node is a group of instructions whose performance depends on

the choice created in the predicate node. The degree of nesting of the program is defined because of

the variety of predicate nodes whose scope includes instruction. Therefore, the complexity of a PV

program is divided into three components:

55

System Structure Regulation: Most systems have the same control statements, no matter which

model is used. The control structure is represented by a graphic in which the nodes are orders, and

the pointed edges represent the control possibilities. Nodes that have an output edge greater than

one are referred to as predicate nodes.

Nesting level training nodes are used for weighting. Data type challenge: It reflects the complexity

of the data used in the classes. In the control chart, the data nodes are represented as various types

of nodes.

The complexity of data access represented by the relationship between the control structure and the

data is represented by borders between the data nodes and the statements used. Regarding the

complexity of metrics for AOP can be explained as following, the complexity of Pointcut is the

summation of the complexity of the names and of Pointcut itself. Adding more, whether calling

Pointcut multiple times is counted. The call comprises calling the function, and the execution

comprises performing a program. Void ||int f (*)) means all called functions which have either

avoided or a type of int feedback and get a setting of any kind. The concepts of OOP, AOP defines

the following basic concepts, such as, Aspects include Pointcut, advice, and statements of inter-type

existence. The depends is referee complexity of an AOP program is dependent on the OOP

components and AOP-specific structures. Therefore, the ambiguity could be divided between the

AO-specific parts of the Pointcut definitions, and the object-oriented structure classes and methods

style that have used. Therefore, this study argues that AOP quality measurement should be

implemented, which measures more paradigms simultaneously and supports the measurements of

AO/OO software applications.

The following metrics have been compared and analysis as it have been shown in table 3.2 [104]

[105] [107]. These sub-characteristics will influence these external quality attributes, such as

complexity, modularity, reliability and maintainability under the software quality model of the

hierarchy [104] [105] [107].

1. Coupling Advice Execution (CAE): CAE contains many aspects containing advice,

triggered by the execution of operations in a module. (Complexity)

2. Crosscutting degree of an aspect. (CDA) (Modularity)

3. Lines of Class Code (LOCC) (Complexity)

4. CBO (Object Linkage): Records the number of dependencies of a class or aspect. The tools

check all types used within the entire class (field declaration, method return types, variable

declaration, and so on). (Modularity)

56

5. WMC (Weight, Method Class or Advice). It counts the number of industry statements in a

class. (Complexity)

6. Depth of Inheritance Tree (DIT) (Complexity)

7. LCOM (Lack of Cohesion of Methods): Calculates metrics for the class and Advice of

aspect (Modularity)

8. Quantity of returns: The number of return statements. (Complexity)

9. Quantity of loops: The number of loops (i.e., for, while, do-while enhanced for).

10. Number of comparisons: The number of comparisons (i.e. ==). (Complexity)

11. Quantity of try/catches: The number of try/catches (Complexity)

12. Number of expressions in parentheses: The number of expressions in the parenthesis.

(Complexity)

13. Letter chains: The number of letter chains (for example, “John Doe”).

14. Replicate channels count as many times as they appear. (Complexity)

15. Number count: Number of numbers (int, long, double, floating).

16. Several mathematical operations: The number of mathematical operations (time, split,

remains, more, less, left shift, right quarter). (Complexity)

17. Number of variables: Number of variables entered. (Complexity)

18. Max nested blocks: The largest amount of nested blocks together. (Complexity)

19. Using each variable: it concern with how many times is each variable used for each method.

20. Use of all fields: it deals with how many have been used in each method. (Complexity)

 No. Complexity Modularity Reliability Maintainability

1 Coupling on Advice Execution (CAE) * _ _ _

2 Cross-cutting degree of an aspect. (CDE) _ * - _

3 Lines of Class Code (LOCC) * * *

4 CBO (Coupling between objects) _ * _ _

5 WMC (Weight Method Class or Advice) * * *

6 Depth of Inheritance Tree (DIT) * _ * *

7 Coupling on Advice Execution (CAE) _ * _ _

8 LCOM (Lack of Cohesion of Methods) _ * _ _

9 Quantity of returns * _ * *

10 Quantity of loops * _ * *

11 Quantity of comparisons * _ * *

12 Quantity of try/catches * _ * *

13 Quantity of parenthesized expressions * _ * *

14 String literals * _ * *

15 Quantity of Number * _ * *

16 Quantity of Math Operations * _ * *

17 Quantity of Variables * _ * *

18 Max nested blocks * _ * *

19 Usage of each variable * _ * *

57

20 Usage of each field * _ * *

Table 3.2 external quality attributes for static and dynamic metrics of AOP

3.7 Proposing AOP Quality Metrics

Based on the details of the literature review in Chapter 2, Section 2.7, AOP quality

measurements were proposed based on several research

studies[7][8][9][10][11][12][13][15][16][17][19][20][22][23][24][25][27][28][29][30]. Five open

source projects that were developed with AO/OO programming techniques were selected to extract

these metrics as described in section 3.5. The AOP metrics that have been selected are: Crosscutting

Degree of an Aspect (CDA), Coupling on Advice Execution (CAE), Concern Diffusion over

Components (CDC), Lack of Concern-based Cohesion (LCC), and Aspect Complexity Metrics

(AC). The AO metrics will affect several components of the software quality framework and the

proposed software quality framework for the AO/OO. Rashid and Awais [18] have been added an

extension of the ISO/IEC 9126 quality framework by Jung, Kim and Chung [50]. Table 3.3 below

shows the relationships between the proposal’s AOP metrics and some components of the software

quality model framework. CDA and CDC measures are effects on modularity or complexity

depending on the design and architecture of the software. As a result, we selected 5 deferential

projects to ensure that the extracted value is accurate and reliable.

Proposing Sub-Components Proposing Sub-Attribute

Extensibility

Crosscutting Degree of an Aspect (CDA)

Joinpoints Extension (JPE)

Concern Diffusion over Components (CDC)

Number of Models

Complexity Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

RFC Response for a Class (RFC)

Responses for Aspect (RFA)

Number of Aspects (NOA)

Service loading behaviour Line Of Code (LOC)

Number of Methods (NOM)

Number Of Fields(NOF)

Weighted Joint points Counts (WJC)

Line Of Code Aspect (LOCA)

Code Weaving Number of Children (NOC)

Coupling Between Object Classes (CBO)

Access to Foreign Data (ATFD)

Coupling On Advice Execution (CAE)

Re-usability Lack of Cohesion Of Methods (LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack of Tight Class Cohesion (LTCC)

58

Lack of Concern Based Cohesion (LCBC)

Lack of Cohesion in Joinpoints (LCJ)

Table 3.3 Proposed AOP Quality metrics

The proposed AOP metrics with components of software quality model have been categorized as it

shows in Table 3.5.

Table 3.5 proposed AOP metrics VS components of Software Quality model

Under the previous section 3.6, the proposed AOP quality parameters will feed the new product

quality parameters for hybrid AO/OO systems. AOP quality measurements in the data extraction

experience showed the relationships and effect on the product quality framework of hybrid AO/OO

systems. The proposed framework is based on the output of the ISO/IEC 9126 quality model with

additional metrics for measuring AO/OO quality metrics [18]. Several studies have been proposing

software quality metrics, but none of them working on hybrid AO/OO systems [8] [9] [10] [11] [12]

[13] [18] [50].All the steps of proposing the new framework will explain in chapter 5.

 Table 3.6 below outlines the key components that may be added to the Quality Framework. The

proposing product quality framework has been designed using Structure Equation Modelling. The

design contains all components have multiple attribute relationships that have been developed, as

shown in Figure 14 below.

Quality framework Main Components Proposing Sub-Components

Product Quality-Hybrid Application System

Functionality Extensibility

Reliability Complexity

Efficiency Service loading behaviour

Maintainability Code Weaving

Portability Re-usability

Table 3.6 proposing sub-Attributes for AO/OO quality framework components

Proposed AOP Quality metrics Components of Software quality model

Crosscutting Degree of an Aspect (CDA) Modularity or Complexity

Coupling on Advice Execution (CAE) Coupling

Concern Diffusion over Components (CDC) Modularity or Complexity

Lack of Concern-based Cohesion (LCC) Cohesion

Aspect Complexity Metrics (AC) Complexity

59

Figure 3.8 Product Hybrid AO/OO Application framework model

60

3.9 Conclusion

This chapter provides details on the evaluation method and process used to achieve the goal

and purpose of this thesis. A comprehensive literature review and case study method were adapted

for this study. The study found that eight experiments employ eight differentiation tools. The

reasons for the failure of these experiments were mostly assessment tools do not support all AO

techniques. Five open source projects have been selected and developed with a combination of

AO/OO technology. Theoretical frameworks are proposed through an extensive empirical

evaluation. This chapter has explained steps of research design, which include five steps. The

evaluation process comprises seven steps aimed at ensuring the reliability and coherence of the data

extracted. The framework was also designed and assessed using the structural equation model and

the SPSS AMOS statistical evaluation of the proposed framework.

61

CHAPTER 4

DATA EXTRACTION

4.1 Introduction

The purpose of this chapter is to explain how data has been extracted from five selected

projects. AOP quality metrics will be extracted based on detailed literature review and case study

experiences. The chosen projects use all AO/OO development techniques. Projects vary in size, and

development techniques to prove theoretical hypotheses. Data extraction techniques were carried

out in two phases, the first being the extraction of common AO/OO metrics. A second step consists

in categorizing each common parameter for the proposed quality parameters for the AO/OO

framework. Lastly, all extracted data were organized and normalized according to a standardized

mathematical equation..

4.2 Code-MR data extraction tools for Hybrid AO/OO metrics:

The Code-MR Software Quality Tool is used to collect general quality metrics, as shown in

the graphic details below and in the table below. Code-MR is a tool used to measure software

quality for projects developed in Java or C++. These tools measure static metrics that help

companies produce better software. There are many plug-INS available on IDE platforms, like

Eclipse and IntelliJ IDEA. The initial analysis of this study contains extracting the OOP parameters.

The AOP metrics will be got by another program developed in Java to show the AOP metrics and

the effects of hybrid app projects. Code-MR supports Chidamber and Kemerer metric retrieval.

Other aspect-oriented programming metrics are got using the Java program and a bash script;

however, the Code-MR pulls out the current AOP and OOP metrics.

62

4.2 Open Source Project AO/OO Hybrid System

Five open source projects were selected for their development using AO/OO source code. The

projects have been selected based on an extensive literature review [75] [101] [115] [148][150]

[151]. As it is explains in section 3.5. The projects are:

1. GtalkWAP

2. AJHotdraw

3. HealthWatcher

4. AjHSQLDB

5. Contract4J

Code-MR has been used to read all projects, files and folders. It has been generates several types of

metrics. The study has been focused on quality metrics for common metrics of AO/OO

technologies. These results have been combined with extracted AOP quality metrics and unified in

quality metrics for these hybrid application systems. Adding more it normalised and categories each

project in one table as it shows in the following sections. The threshold values in this plug in are

unified customisable it have been unified all threshold values between 0 and 1 values and later

unified in on table. This means 1 is the maximum value and 0 is the minimum.

4.3.1 GTalkWAP project AOP Quality Metrics extraction

Code-MR Plug-in was used as an open-source tool to retrieve OOP metrics. AOP metric it

was getting using the shell script and a special program developed by the java language. Code-MR

has partially got AOP metrics, for example, complexity, size, coupling, and cohesion. Code-MR

plug-in has been graphical views of all the details of the OOP metrics, as shown in Figures 4.1 to

4.4. The green colour means that this metric has low values; light green means low-medium, orange

colour, high values and red colour. Figure 4.1 shows the complexity, coupling, lack of cohesiveness

and size values. Size is 47% low-medium, and the complexity is 18% is low-medium, and the rest

are low. The other two measures have smaller values, and the tool has the right quality measures.

The downsides are not to read the aspect file extension, but to recognise the folder and templates

affected by the Java files.

63

Figure 4.1 General Information about Metrics for Google Talk project

Figure 4.2 shows all metric values using a bar graph and shows the relationships between all

packages. It shows the packet size represented by the size of the circle, and the colours represent the

lack of cohesion and coupling, as shown in the node representation graphs.

Figure 4 coupling and Cohesion values regarding packages Gtalk Project

The Code-MR plug-in shows how the modules relate to each other. The measurements have

different colours, from the bottom to the top (dark green, pale green, yellow, orange and red), as

shown in Figure 4.3. Colours get warmer while complexity of an entity increases. Because red

colour is associated with danger in most cultures, red colour shows high values for all metrics.

While the shape shows that the more corner of shape means more values of the metrics and the size

of the shape shows the bigger effect of specific metrics.

64

Figure 5 Metrics, values regarding Modularity Gtalk Project

Figure 4.4 shows all the details of metric values for each Java class in the project regarding showing

module metrics. The results show that the project values have normal values in the project because

it shows a normal distribution of each model in the packages and classes. The effects display all

classes except the aspect. aj files. The tool will read all the project files and packages and then

generates varies types of metrics with different techniques.

65

Figure 6 classes Metrics Details Gtalk Project

66

This project has twenty-four java files and four aspect files which have extension .java and .aj

respectively. Section 3 mentioned how extracting the metrics for this project using a bash script.

This project considers being a small project because it contains a twenty-four class file and four

aspect files. Line of code metrics shows the share of aspect is 0.07% from the entire Line of Code

as it shows in table 4.1. The portion of the source code of Aspect is small. However, it’s a major

impact of CDC and CDA on modularity metrics and other metrics, as explained in table 4.2.

The extracted metrics has been categorized on subcategories as it appears in the table 4.1 below:

Main components of metrics Sub- components of metrics

Complexity

Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

Response For a Class (RFC)

Specialization Index (SI)

Coupling

Number of Children (NOC)

Coupling Between Object Classes (CBC)

Access to Foreign Data (ATFD)

Cohesion

Lack of Cohesion of Methods(LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack Of Tight Class Cohesion (LTCC)

Size

Line Of Code (LOC)

Number of Fields (NOF)

Number of Static Methods (NOSM)

Number of Methods (NOM)

Number of Static Fields (NOSF)

Number of Overridden Methods (NORM)

Table 4.1 OOP Metrics and some AOP Metrics categorization GTalkWAP project

𝑬𝑬𝑬𝑬𝟒𝟒.𝟏𝟏… … … … … . . 𝑵𝑵𝑵𝑵𝑵𝑵(𝒙𝒙) =
(𝒙𝒙 −𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙))

𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙) −𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙)

The Normalization Equation 1 has normalized the values between 0 and 1. The equation explains

below:

67

Table 4.2 OOP Metrics and some AOP Metrics using Code-MR plug-in for GTalkWAP project

Main Components of Metrics Sub- Components of metrics Total values Normalized values Nor(x)

Complexity

WMC 11.318

0.259
DIT 0.271

RFC 0.697

SI 48.146

Coupling

NOC 0.181

0.0 CBC 0.090

ATFD 0

Cohesion

LCOM 0.225

0.01 LCAM 0.157

LTCC 0.315

Size

LOC 42.875

0.12

NOF 1.136

NOSM 0.090

NOM 3.409
NOSF 0.636

NORM 0

68

4.3.2 AOP quality metrics extraction using java written program:

• Crosscutting Degree of an Aspect (CDA) metrics: In Gtalk project it consists of has two

aspects; each of them contains eight Pointcuts, which affects 40 methods in 4 modules.

The equation of calculating the CDA metrics as following:

EQ4.2..... CDA = Total of Effected Methods / Total of the Pointcuts

= 40/8 = 5

The value of CDA metrics is five, which indicates the high values of CDA. Another

indication for finding the effect of CDA metrics on modules according to this equation

(CDA/WMC =5/6.5), which is equal to 0.76 and indicates the Advice effect of several

modules.

• Coupling on Advice Execution (CAE) Metrics:

In the project Gtalk, it has a 0 JoinPoint defines in Aspects. CAE metrics is shows coupling

effect on the modules when the Aspects are executing. The second indication is showing the

effect on method execution by using this formula (CAE/WOM).

EQ4.3.... CAE/WOM =0/6.5, which is equal to 0, which means there are high calling

methods. Still, there is no joint point and Advice defined in the Aspect to demonstrate the

effect of coupling on the modules.

• Concern Diffusion over Components (CDC) metrics:

The CDC metrics has been calculated using the following formula:

CDC = number of components that assist in implementing a concern + number of

components that access the components. The value of CDC of this project is six, which

means is have high values of CDC among the current project. Another indication of

measuring CDC metrics effects using this following formula

EQ4.4....... CDC Effect = CDC values /Total number of Classes and Aspect

Therefore, there are 24 java classes and four aspect files; if we take an average affect overall

the project, this will be

CDC Effect = CDC values /Total number of Classes and Aspect

=6/28

=0.214

The value of 0.214 is considered as average values regarding the size of the project.

• Lack of Concern-based Cohesion (LCC) metrics:

69

There are two nun functional concerns of Lack of Concern-based Cohesion (LCC) in this

project; therefore, the value of LCC is equal to 2. These projects have high LCC values; this

sign means that the project has a cohesive solution in concerns implementation.

• The Aspect complexity (AC) metrics

The Aspect complexity (AC) of is counting number of Pointcuts, method calls, signature

definition, wildcard and (||) operator. This project contains 8 Pointcuts 4 of them having the

complexity of 3 because we have count one for Pointcut and one for the wildcard one for

calling the function (3*4). The other four Pointcuts are more complex. AC metrics will be

more complex because it contains wildcard in their signature and || operator, which counted

as four for each calling specific function (4*4). The total complexities of this project are

equal to 26 after normalising it. AC metrics value is equal to 0.351 which shows complex

projects regarding the size of the entire project. It is important to normalise the extracted

metrics data; it has been normalised the values between 0 and 1. The normalisation formula

can be found below:

𝐸𝐸𝐸𝐸4.5 … . .𝑵𝑵𝑵𝑵𝑵𝑵(𝒙𝒙) = (𝒙𝒙−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙))
𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙)−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙)

Table 4.3 explains all the extracted metrics between 0 and 1. The maximum values are size,

which is equal to 1. AOP measures for complexity are 0.351, showing a complex project

compared to the size of the AOP. The project has low values of coupling; this means the

magnificent structure of this project. The low cohesion of this project showed that it favours

high readability and maintainability. Modularity values are 0.1, showing that there is a deep

connection between the system modules. Modularity metrics values show the number of

modules independent of any other module in the system.

.

70

Table 4.3 Bash Script & java program AOP metrics Extraction for GtalkWAP project

 Size Complexity Coupling Cohesion Modularity

N
o.

Pr
oj

ec
t N

am
e

N
um

be
r o

f C
la

ss
 fi

le
s

N
um

be
r o

f A
sp

ec
ts

 fi
le

s

Li
ne

 o
f c

od
e

as
pe

ct

N
um

be
r P

oi
nt

cu
ts

N
o.

 O
f A

sp
ec

ts

W
M

C:
 W

ei
gh

te
d

m
et

ho
ds

 p
er

 c
la

ss

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

R
FC

: R
es

po
ns

e
fo

r a
 C

la
ss

C
yc

lo
m

at
ic

 C
om

pl
ex

ity
 o

f A
sp

ec
t C

CA

C
B

O
: C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
 c

la
ss

es

N
O

C
: N

um
be

r o
f C

hi
ld

re
n

C
ou

pl
in

g
on

 A
dv

ic
e

Ex
ec

ut
io

n
(C

A
E)

LC
O

M
: L

ac
k

of
 c

oh
es

io
n

in
 m

et
ho

ds

La
ck

 o
f

C
on

ce
rn

-b
as

ed
 C

oh
es

io
n

(L
C

C
)

C
on

ce
rn

 D
iff

us
io

n
ov

er
 C

om
po

ne
nt

s (
C

D
C

)

C
ro

ss
cu

tti
ng

 D
eg

re
e

of
 a

n
A

sp
ec

t (
CD

A
)

1 GGTalk 224 44 69.928

88 22 6.5 1.7 3.9 26 0.09 0.18 00 0.22 02 66 55

Total Values for each factor 107.928

38.1

0.27

2.22

 11

Nor(x) 1 0.351 0.0 0.02 0.10

71

4.3.3 Discussion

The metrics values of (AO/OO) have extracted using two techniques: Code-MR tools and

developed java program. Tables 10 and 11 have been combined in table 4.4. Table 4.4 below

shows the average values for all AO/OO metrics out of the combined values of the average

performance.

Table 4.4 OOP/AOP metrics values for Gtalk project

In Table 4.4, the average AO/OO metrics values have been clarified. Both tables present similar

results for all parameters. The metric scale is equal to 0.56, or 50%. These findings suggest Gtalk

project is a complex project. Total values for complexity measurements are 30%. These results

showed that the OOP source code has medium complexity, which will reduce maintenance and

testing costs. The coupling values are tiny, and the coupling for AO/OO metrics is higher. These

results show that low coupling implies an additional separation of unbound source code. As the

cohesion value was high, so part of the source code at a certain time in the source code is

connected. The modularity values are 0.10, and explain a good connection between the related

modules. Modularity metric values show how many modules in the system are independent from

another module

 Size Complexity Coupling Cohesion Modularity

Average Values 0.56 0.30 0.0 0.015 0.10

72

4.4.11 AJHotdraw project

 The metrics extraction of OOP for AJHotdraw project has been explained in Figure 4.5 to

4.8. Green colour of the metrics means that this measure has low values; light green colour of the

metrics means low-medium, orange colour of the metrics means high values and red colour of the

metrics means very high.

In AjHotdraw project, it displays a standard distribution of most packages and classes. Figure 4.5

shows the overview of the class that has high cohesion. The circles represent class size and

relationships among the classes.

.

Figure 4.5 AjHotdraw project metrics

Figure 20 shows the general quality metric distribution represented by pie charts. Figure 4.6 shows

the ration of complexities metrics equal to% 20.9, which shows medium-high. The Cohesion

metrics equal to % 19, which show high values, and the value of 12.6% of the size metrics shows

that it is a high values.

.

73

Figure 4.6 General Quality Metrics Distribution AjHotdraw project

Figure 4.7 shows Cohesion value is large in this project and it needs to be improved in some of its

packages to reduce the high values.

Figure 4.7 Quality Metrics by Packages AjHotdraw project

74

The AjHotdraw project has a large complexity value, with 360 external entities as it shows in

Figure 4.8.

Figure 4.8 Complexity metrics in sub chart AjHotdraw project

In this project, AjHotdraw has 291 java files and 31 aspects files with extension. Java and. aj. The

percentage of the line of code is small. However, it has a significant impact from CDA and CDC on

modularity measures, as it appears in Table 4.5. The metrics were classified in the measurements

taken from the subcategories, as shown in Table 4.6.

Main Components of Metrics Sub- Components of metrics Total values Normalized values Nor(x)

Complexity

WMC 22.274

0.33
DIT 1.532

RFC 11.913

SI 0.172

Coupling

NOC 0.419

0 CBC 0.852

ATFD 0.017

Cohesion

LCOM 0.229

0 LCAM 0.345

LTCC 0.358

75

Table 4.2 The metrics extracted values from AjHotdraw project

Table 4.6 OOP Metrics and some AOP Metrics categorization AjHotdraw project

All the values of the metrics have been normalized as it shows in Table 4.7.

Size

LOC 97.245

1

NOF 1.142

NOSM 0.216

NOM 6.497

NOSF 0.593

NORM 0.324

Main components of metrics Sub- components of metrics

Complexity

Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

Response For a Class (RFC)

Specialization Index (SI)

Coupling

Number of Children (NOC)

Coupling Between Object Classes (CBC)

Access to Foreign Data (ATFD)

Cohesion

Lack of Cohesion of Methods(LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack Of Tight Class Cohesion (LTCC)

Size

Line Of Code (LOC)

Number of Fields (NOF)

Number of Static Methods (NOSM)

Number of Methods (NOM)

Number of Static Fields (NOSF)

Number of Overridden Methods (NORM)

76

4.4.2. AOP quality metrics extraction using java written program:

• Crosscutting Degree of an Aspect (CDA) metrics:

In an AjHotdraw project, number of Aspects is 53, number of Pointcuts 37 that have called

180 methods, so formula of calculating

EQ4.6 CDA metrics is CDA = Total of Effected Methods / Total of the Pointcuts

=180/37

=4.86 Another indication of finding the effect of CDA metrics on modules by using this

formula (CDA/WMC) CDA/WMC =4.86/22.7, CDA/WMC =4.86/22.7, This is equal to

0.21 and indicates the Advice effect of several modules. AjHotdraw shows high values of

the CDA, which indicate many modules affected by aspects of Pointcut and intertype

declaration.

• Coupling on Advice Execution (CAE) metrics: in the AjHotdraw project the number of

Advice is equal to 12. CAE is calculating number of Advice that executes JoinPoint and the

type of execution of the method by using the keyword before, after, or around in the Advice.

These results show that there are nine joint points. Another indication of finding CAE

metrics effect on method by using the formula EQ 4.7........ CAE= (CAE/WOM)

CAE/WOM =12/22.7, which is equal to 0.52, which means high calling methods which

effect calling 9 Joinpoints in 12 Advice defined in aspect. These results have explained the

effect of coupling on the base code for project modules.

• Concern Diffusion over Components (CDC) metric: In the project AjHotdraw, we can

calculate the CDC metrics by the following formula

EQ 4.8CDC = number of components that help implement a concern + number of

components that access the components.

The CDC's value is 150, which means it has high CDC values among the project; there are

291 java classes and 31 aspect files. If we take an average affect overall the project

(AO/OO), this can be showed the average values of CDC metrics for the AO/OO

programming techniques:

EQ 4.9CDC Effect = CDC values /Total number of Classes and Aspect

=150/322

=0.46

• Lack of Concern-based Cohesion (LCC) metrics:

LCC Metrics is calculated by counting all Concerns. The total number of the LCC metrics
for all the packages:

77

LCC metrics value is equal to five for the Commands package. These concerns are three
non-functional and two concerns with an interface responsible for adding and removing GUI
commands.

LCC metrics value equal to five for Figure package which are functional Concerns to read
and write on Figure attributes and adding other functionalities.

LCC value of the Aspect in AjHotDraw project is equal to ten.LCC metrics value for this
project is high values, which is means the project has cohesive aspect concerns
implementation

• Aspect Complexity of (AC) Metrics: The Aspect complexity (AC) of is counting number

of Pointcuts, method calls, signature definition, wildcard and || operator. The project

AjHotdraw has 37 Pointcuts.

The values of AC metrics of this project as following:

An AC metrics value of package figures is equal to 46.

AC metrics values of package Undo is equal 10.

An AC metrics value of package commands is equal to 235.

AC complexity measurements involved calculating Pointcuts and intertype declaration and

Advice. As it mansions in the section above, the Advice can be measured the same as

methods and contains control statements and iteration, making it complicated. The Pointcut

is more involved in all other packages because they have a very complex signature with

wild cards, ||, &&, methods calls. The total values of AC are 282, which mean this project

has high AC metrics values. Table 4.8 below shows all the details of AOP metrics for

project AjHotdraw. The normalisation range values are from 0 to 1. AOP metrics for

complexity AC is equal to 0.634, which shows the high value, which is considered as a

complex project. The project has low values of coupling 0.006; this means the magnificent

structure of this project. The average cohesion values of this project showed the project has

less supporting high readability and maintainability. The modularity values are 0.298, which

shows the system has a good connection between modules in the system. Modularity metrics

show how many modules have independent of another module in the system.

.

78

Table 4.7 Code-MR & java program AOP metrics Extraction for AjHotdraw project

 Size Complexity Coupling Cohesion Modularity

N
o.

Pr
oj

ec
t N

am
e

N
um

be
r o

f C
la

ss
 fi

le
s

N
um

be
r o

f A
sp

ec
ts

 fi
le

s

Li
ne

 o
f c

od
e

as
pe

ct

N
um

be
r P

oi
nt

cu
ts

N
o.

 O
f A

sp
ec

ts

W
M

C:
 W

ei
gh

te
d

m
et

ho
ds

 p
er

 c
la

ss

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

R
FC

: R
es

po
ns

e
fo

r a
 C

la
ss

C
yc

lo
m

at
ic

 C
om

pl
ex

ity
 o

f A
sp

ec
t C

CA
 (A

dv
ic

e,
 P

oi
nt

cu
ts

, J
oi

nP
oi

nt
)

C
B

O
: C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
 c

la
ss

es

N
O

C
: N

um
be

r o
f C

hi
ld

re
n

C
ou

pl
in

g
on

 A
dv

ic
e

Ex
ec

ut
io

n
(C

A
E)

LC
O

M
: L

ac
k

of
 c

oh
es

io
n

in
 m

et
ho

ds

La
ck

 o
f

C
on

ce
rn

-b
as

ed
 C

oh
es

io
n

(L
C

C
)

C
on

ce
rn

 D
iff

us
io

n
ov

er
 C

om
po

ne
nt

s (
C

D
C

)

C
ro

ss
cu

tti
ng

 D
eg

re
e

of
 a

n
A

sp
ec

t (
CD

A
)

2 AjHotdraw 291 31 83.193 37 53 22.27 1.53 11.93 282 0.85 0.4 12 0.23 10 150 4.86

Total

Values

495.193

317.73

13.25

10.23 154.86

Nor (x) 1 0.634 0.006 0 0.298

79

4.4.3 Discussion

 The metrics values of (AO/OO) have extracted using two techniques Code-MR tools and

developed java program. Tables 4.6 and 4.7 have contained the details results for AO and OO

separately. The combination of these tests showed roughly the same outcome. Table 4.8 displays

the combination values.

Table 4.8 OOP/AOP metrics values for AjHotdraw project

In Table 4.9, is showing average values for AO/OO metrics for all metrics parameters. Tables (4.7,

4.8) have similar results. The metrics size is equivalent to 1, which represents the maximum values

of the findings. These results suggest AjHotdraw is a complex project in terms of the size of the

source code. The total values of complexity measures are 0.48, which is high regarding other

metrics. High complexity leads to more cost in maintenance and testing. The coupling values are

very low, which 0.02 for AO/ OO metrics. These findings suggest that low coupling involves

additional separation of independent source code. High cohesion values mean that parts of the

source code at any point in the code are not connected. However, the cohesion was lower than the

coupling in this project, which was not recommended. The modularity values are 0.29, this shows

that a deep link between the modules of the project and the source code. Modularity metrics values

are equal to 0.29 shows the number of modules in the system with one module independent of

another. The AjHotdraw has average modularity metrics. Overall, the total values of the AO/OO

metrics parameters values are acceptable except the size of the project is high. The results show the

AjHotdraw project is positively affecting quality.

 Size Complexity Coupling Cohesion Modularity

Average Values 1 0.48 0.002 0.0 0.29

80

4.5.1 Health Watcher Project:

The Code-MR has been to extract part of AOP metrics, for example, complexity, size,

coupling, and cohesion. Figure 4.9 below present’s measures taken from a Healthwatcher

hybrid application project developed by AOP and OOP. Colour green means that this metric has

low values; Light green means low-middle, the colour orange means high values, and the colour red

means very high. The value of Complexity metrics is 8.9% is orange, which is shows low value.

Coupling metrics value is very low, almost zero, which involves additional separation of

independent source code. The cohesion value is 4.3%. This means that it is difficult to discover

what code related to the module and cannot jump between modules and keep track of the source

code of the project. The value size of the project is equal to 63%, which is considered as a high

value.

Figure 7 all metrics of Health watcher project

Figure 4.10 shows the average values for all metrics; pie metrics chart is shows each package with

specific metric values. The picture below is shows the numbers of entities for each part of source

81

code. The distribution of the source code is normally distributed and almost all metrics have an

accepted value.

Figure4.10 metrics values by project packages

The relationships between module and packages have been explained in Figure 4.11. Colour green

is shows that strong relationships between classes of the packages in the project

82

Figure 4.11 packages metrics distribution in the Health watcher Project

The module distributions of the project have been extracted as it shows in figure 4.12. There are

several modules having good relationships and the values of the metrics are acceptable for

HealthWatcher project.

Figure 8 Module distributions for metrics for Health watcher project

This project has 90 java files and 41 aspects file with extension .java and .aj consequently. This

project considers a medium project size regarding aspect file and java files; it contains a 90 class

file and 41 aspect files. For instance, Line of code metrics shows the percentage of aspect is 0.622%

83

from the complete Line of Code, as shown in table 18 below. The portion of the Line of Code of

Aspect has almost % 80 percentage of the entire Line of Code. However, it has a significant impact

on modularity metrics and other metrics, as explained in table 4.10. All the metrics values have

been normalised using specific equation and the range will be from 0 to 1. The normalisation

equation explains below:

𝑬𝑬𝑬𝑬 𝟒𝟒.𝟏𝟏𝟏𝟏… . .𝑵𝑵𝑵𝑵𝑵𝑵(𝒙𝒙) = (𝒙𝒙−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙))
𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙)−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙)

The metrics has been categorized the extracted metrics on subcategories as it appears in the table

4.9 below:

Table 4.9 OOP Metrics and some AOP Metrics categorization HealthWatcher project

Main components of metrics Sub- components of metrics

Complexity

Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

Response For a Class (RFC)

Specialization Index (SI)

Coupling

Number of Children (NOC)

Coupling Between Object Classes (CBC)

Access to Foreign Data (ATFD)

Cohesion

Lack of Cohesion of Methods(LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack Of Tight Class Cohesion (LTCC)

Size

Line Of Code (LOC)

Number of Fields (NOF)

Number of Static Methods (NOSM)

Number of Methods (NOM)

Number of Static Fields (NOSF)

Number of Overridden Methods (NORM)

Main Components of Metrics Sub- Components of metrics Total values

Normalized values

Nor(x)

Complexity
WMC 9.058

0.187
DIT 1.022

84

Table 4.10 OOP Metrics and some AOP Metrics using Code-MR plug-in for Health Watcher project

RFC 4.540

SI 0.0008

Coupling

NOC 0.057

0 CBC 0.333

ATFD 0.0459

Cohesion

LCOM 0.224

0.002 LCAM 0.205

LTCC 0.206

Size

LOC 70.529

1

NOF 1.218

NOSM 0.712

NOM 2.839

NOSF 0.632

NORM 0.0114

85

4.5.2 AOP quality metrics extraction using java written program:

• Crosscutting Degree of an Aspect (CDA) metrics:

The equations of CDA metrics as following

EQ 4.11....... CDA = Total of Effected Methods / Total of the Pointcuts

The outcomes results show that the number of aspects is 56, number of Pointcuts 109 that

have called 375 methods, so the CDA is

CDA = Total of Effected Methods / Total of the Pointcuts

=375/109

= 3.44

Adding more CDA has an effect on methods execution is indicate by calculating this

formula (CDA/WOM).

CDA/WOM =3.44/9.05,

This is equal to 0.38 and indicates the Advice effect of several modules.

HealthWatch project shows the average values of the CDA, which indicate many modules

affected by Pointcut and intertype declaration.

• Coupling on Advice Execution (CAE) metrics: The CAE metrics can be calculating using

the following formula

EQ 4.12............. CAE= a number of components that help implement a concern + number of

components that access the components.

The value of the CAE is equal to 200, which means it has outstanding high values of CDC

among the project, because there are 90 java classes and 41 aspect files. If we take an

average to affect overall the project, the outcomes of the result will be as followings:

EQ 4.13............ CAE = CDC values /Total number of Classes and Aspect

=200/131

=1.52

• Concern Diffusion over Components (CDC) metrics:

The CDC Metrics are calculated by counting the number of concerns. For instance, it can be

calculated: The Concurrency-Control package has four functional concerns. The Data-

Management package has 12 functional concerns of reading, writing, and synchronisation

techniques. The Distribution package has two concerns for data transaction management

methods. The Exception handler package contains one concern of exception handling

functionality.

86

• Lack of Concern-based Cohesion (LCC) metrics:

LCC Metrics is calculated by counting all Concerns. The total number of the LCC metrics

for all the packages are explained below:

The Concurrency-Control package has four non-functional concerns of synchronisation

implementation. The Package Data-Management has 12 functional concerns for data

processing of implementing reading, writing, and synchronisation techniques. The package

distribution contains two concerns of data transaction management methods. The package

Exception-Handler provides one concern with exception handling functionality. The total

number of LCC metrics is 19, which shows this project has high values of LCC

• Aspect complexity of (AC) metrics: The Aspect complexity (AC) of is counting number of

Pointcuts, method calls, signature definition, wildcard and || operator. The calculation will

be as followings:

The project HealthWatcher has 109 Pointcuts.

The package Code-Enforcement has multiple Pointcuts, which has 5 AC metrics values, the

number represents the signature of Pointcut, wild cards, &&, and various functions calls.

The package Concurrency-Control has 40 AC metrics values; these values include aspect

and Pointcuts control statements, signature, function calls, and “||,” “&&” operator. The

package Data-Management has 125 AC Metrics values.

The package Distribution has 60 CCA metrics values.

The package Exception-Handling has 150 CCA Metrics values.

The package Update-State has 20 CCA metrics values.

So the total values of CCA metrics are 400. The values of Aspect Complexity Metrics are

high regarding the number of Pointcuts and Aspect for this project.

Table 4.11 are showing all details of AOP metrics for project HealthWatcher. The metrics values

have been normalised and the range of values from 0 to 1. The maximum value is size, which is

equal to 1. AOP metrics value for complexity is equal to 1, which shows the high value; therefore,

the project is considered a complex project. The project has low values of coupling 0; this means

the magnificent structure of this project. The small cohesion values of this project showed the

project has less supporting high readability and maintainability. The modularity values are 0.476,

which shows the system has an excellent connection between modules in the system and there are

some modules have independent of another module in the system.

87

Table 4.11 Bash Script & java program AOP metrics Extraction for Health Watcher project

 Size Complexity Coupling Cohesion Modularity
N

o.

Pr
oj

ec
t N

am
e

N
um

be
r o

f C
la

ss
 fi

le
s

N
um

be
r o

f A
sp

ec
ts

 fi
le

s

Li
ne

 o
f c

od
e

as
pe

ct

N
um

be
r P

oi
nt

cu
ts

N
o.

 O
f A

sp
ec

ts

W
M

C:
 W

ei
gh

te
d

m
et

ho
ds

 p
er

 c
la

ss

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

R
FC

: R
es

po
ns

e
fo

r a
 C

la
ss

C
yc

lo
m

at
ic

 C
om

pl
ex

ity
 o

f A
sp

ec
t C

CA
 (A

dv
ic

e,
 P

oi
nt

cu
ts

, J
oi

nP
oi

nt
)

C
B

O
: C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
 c

la
ss

es

N
O

C
: N

um
be

r o
f C

hi
ld

re
n

C
ou

pl
in

g
on

 A
dv

ic
e

Ex
ec

ut
io

n
(C

A
E)

LC
O

M
: L

ac
k

of
 c

oh
es

io
n

in
 m

et
ho

ds

La
ck

 o
f

C
on

ce
rn

-b
as

ed
 C

oh
es

io
n

(L
C

C
)

C
on

ce
rn

 D
iff

us
io

n
ov

er
 C

om
po

ne
nt

s (
C

D
C

)

C
ro

ss
cu

tti
ng

 D
eg

re
e

of
 a

n
A

sp
ec

t (
CD

A
)

 3 Health

Watcher

90 41 44.560 109 56 9.05 1.02 4.54 400 0.333 0.05 11 0.22 19 200 3.44

Total

Values for

each factor

340.56

414.61

11.383

19.22 203.44

Nor (x) 0.816
Size

0 0.019 0.476

88

4.5.3 Discussion

 The metrics values of (AO/OO) have extracted using two techniques Code-MR tools and

developed java program. As a result, Tables 18 and 19 provide some results. The combined tests

gave approximately the same result. Table 20 below shows the combined average efficiency values.

 Size Complexity Coupling Cohesion Modularity

Average Values 0.93 0.59 0.0 0.01 0.4

Table 4.13 OOP/AOP metrics values for Health Watcher project

In Table 4.13, the average values for OO/AO metrics have been clarified with all parameters in both

tables (4.11, 4.12) which have similar results. The metric size is equivalent to 0.93, which

represents a high value. The overall values of the complexity parameters are 0.59. These results

showed the source code for OO and AO presents an average complexity in this project. With less

complexity, maintenance and testing costs are reduced. Coupling values are very low, and the

cohesion of AO/OO measures is higher. Cohesion value was high, so part of the source code at a

certain time in the source code is connected. The modularity values are 0.40, suggesting a strong

link between the source codes. Modular metric values show how many modules in the system are

independent of another module

.

89

4.6.1 AjHSQLDB Project

The Code-MR has been to extract part of AOP metrics, for example, complexity, size,

coupling, and cohesion. Code-MR plug-in graphically displays all OOP metric details, as shown in

Figures 4.13 to 4.16. The green colour represents the small values of the metric. Light green

represents low to medium values, orange colour means high values, and red colour means very high

values. The AjHSQLDB project has many issues regarding quality attributes. They are Tree Map

representation for difference quality attributes in the system, such as Complexity, line of code and

size. Filters apply to each measure; for instance, the filter applies to the complexity of Figure 4.13.

Complexity values are high, so most packages have high values of complexity metrics and

represented by red colour.

.

90

Figure 9 Metrics Values in Tree Map Chart name of the packages in complexity metrics values in AjHSQLDB Project

91

The relationships between project components packages and classes have been a display in

figure 4.14. There are some packages are complex that have shown in red colour. AjHSQLDB

project shows unique quality attributes with difference geometric shapes. Complexity of some of

the AjHSQLDB project packages is high, as represented by the red colour. The coupling forms are

shown as squares or triangles. The coupling patterns show that each class with high coupling has

more corners that show more points of interaction with the other classes

.

Figure 4.14 all package details with the metrics values AjHSQLDB Project

 The interaction between modules has been display in Figures 4.15. High interaction between

modules indicates intensive calling methods, classes and aspects, as it display by high number of

lines between modules.

92

Figure 4.15 AjHSQLDB Project Quality metrics distribution by modules

The quality attributes for the AjHSQLDB project can be found in Figure 4.16. Packages are shown

in bubble shapes. There are capabilities of showing different analysis. The analysis can be

conducted at three levels: project, package, and class. Figure 4.16 shows lack of cohesion is high in

the util package, and it is less in separate packages with red circle colour. All other measurements

have been collected and analysis for other metrics.

.

93

Figure 4.16 Metrics value by packages AjHSQLDB Project

In the AjHSQLDB project, the quality attributes show that 36 classes have problem classes with

numerous lines and more complexity. Figure 4.17 shows numerous problems of complexity, lack of

cohesion, and the size with the red colour means that it has high values.

94

Figure 4.17 General Quality Attribute for AjHSQLDB Project

The metrics components have been categorized into subcategories as it appears in the table 4.13

below:

Table 4.13 OOP Metrics and some AOP Metrics categorization AjHSQLDB project

Main components of metrics Sub- components of metrics

Complexity

Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

Response For a Class (RFC)

Specialization Index (SI)

Coupling

Number of Children (NOC)

Coupling Between Object Classes (CBC)

Access to Foreign Data (ATFD)

Cohesion

Lack of Cohesion of Methods(LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack Of Tight Class Cohesion (LTCC)

Size

Line Of Code (LOC)

Number of Fields (NOF)

Number of Static Methods (NOSM)

Number of Methods (NOM)

Number of Static Fields (NOSF)

Number of Overridden Methods (NORM)

95

This project AjHSQLDB has 275 java files, and 25 aspects files with extension .aj. Line of Code

measurements indicate that the percentage of aspect is 0.5% from the complete code line, as shown

in Table 4.14. However, it has a significant impact from CDA and CDC on modularity measures

and other measures, as discussed in Table 4.15.

The Normalization Equation has normalized the values between 0 and 1. The equation explains

below:

𝑬𝑬𝑬𝑬 𝟒𝟒.𝟏𝟏𝟒𝟒 𝑵𝑵𝑵𝑵𝑵𝑵(𝒙𝒙) = (𝒙𝒙−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙))
𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙)−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙)

Table 4.14 OOP Metrics and some AOP Metrics using Code-MR plug-in for AjHSQLDB project

Main Components of Metrics Sub- Components of metrics Total values

Normalized

values Nor(x)

Complexity

WMC 72.32

0.441
DIT 1.419

RFC 35.063

SI 40.149

Coupling

NOC 0.360

0.003 CBC 1.826

ATFD 0.161

Cohesion

LCOM 0.468

0 LCAM 0.461

LTCC 0.377

Size

LOC 306.192

1

NOF 4.237

NOSM 7.216

NOM 10.466

NOSF 7.216

NORM 0.555085

96

4.6.2 AOP Quality Metrics Extraction Using Java Written Program:

• Crosscutting Degree of an Aspect (CDA) metrics:

The equations of CDA metrics as following

EQ 4.15........ CDA = Total of Effected Methods / Total of the Pointcuts

In an AjHSQLDB project, the total number of aspects is 50, the total number of Pointcuts

68 that have called 205 methods.

CDA = Total of Effected Methods / Total of Pointcuts

=205/68

=3.01

Another indication is calculating by using the following formula (CDA/WOM)

CDA/WOM =3.01/72.32,

= 0.041.

This indicates the Advice effect on several modules. AjHSQLDB project shows the average

values of the CDA, which indicate many modules affected by Aspects of Pointcut and

intertype declaration.

• Coupling on Advice Execution (CAE) metrics: The CAE metrics can be calculating using

the following formula

EQ 4.16CAE= a number of components that help implement a concern + number of

components that access the components.

The number of Advice is equal to 105; therefore, the CAE metrics are equal to 105. The

second sign is showing the effect on method execution by using this formula (CAE/WOM).

CAE/WMC =105/72.32, which is like 1.45 and shows several modules’ Advice effect. The

AjHSQLDB project shows high CAE values, which means many modules are affected by

Advice’s execution

.

• Concern Diffusion over Components (CDC) metrics: The CDC metrics has been

calculated using the following formula:

CDC = number of components that assist in implementing a concern + number of

components that access the components.

The value of CDC of this project is 13, which means is have low amounts of CDC among

the project; there are 275 java classes and 25 aspect files if we take an average effect overall

the project it can be found by the following formula:

EQ 4.17....... CDC Effect = CDC values /Total number of Classes and Aspect

97

=13/300

=0.04

• Lack of Concern-based Cohesion (LCC) metrics:

The LCC metrics values of project AjHSQLDB are five. LCC counts several types of

concerns, such as non-functionalities and functional features of method implementation.

This project has law values of LCC metrics, so the AjHSQLDB is not a cohesive project.

• Aspect complexity (AC) metrics:

Aspect complexity (AC) of is counting number of Pointcuts, method calls, signature

definition, wildcard and || operator. Calculation will be as followings. The project has 68

Pointcuts. The project has 160 AC Metrics values, including summing up of complex

Pointcuts with function calls, before and after keyword with || and && operators. Adding

more, it counts the number of Aspects, intertype declaration and control statement, loop

statement, and methods calls. Table 4.16 below is showing all details of AOP metrics for

project Health Watcher. Normalisation values range from 0 to 1. The maximum values are

Size, which is equal to 1. AOP metrics for complexity are equal to 0.455, showing the

medium value, which is considered not a complex project. The project has low values of

coupling 0.179; this means the good structure of this project. The small cohesion values of

this project showed the project had not supported high readability and maintainability. The

modularity values are 0.018, which shows the system has a less impact on the connection

between other modules in the system. It shows how many modules have independent of

another module in the system.

98

Table 4.15 Bash Script & java program AOP metrics Extraction for AjHSQLDB project

 Size Complexity Coupling Cohesion Modularity

N
o.

Pr
oj

ec
t N

am
e

N
um

be
r o

f C
la

ss
 fi

le
s

N
um

be
r o

f A
sp

ec
ts

 fi
le

s

Li
ne

 o
f c

od
e

as
pe

ct

N
um

be
r P

oi
nt

cu
ts

N
o.

 O
f A

sp
ec

ts

W
M

C:
 W

ei
gh

te
d

m
et

ho
ds

 p
er

 c
la

ss

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

R
FC

: R
es

po
ns

e
fo

r a
 C

la
ss

C
yc

lo
m

at
ic

 C
om

pl
ex

ity
 o

f A
sp

ec
t C

CA
 (A

dv
ic

e,
 P

oi
nt

cu
ts

, J
oi

nP
oi

nt
)

C
B

O
: C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
 c

la
ss

es

N
O

C
: N

um
be

r o
f C

hi
ld

re
n

C
ou

pl
in

g
on

 A
dv

ic
e

Ex
ec

ut
io

n
(C

A
E)

LC
O

M
: L

ac
k

of
 c

oh
es

io
n

in
 m

et
ho

ds

La
ck

 o
f

C
on

ce
rn

-b
as

ed
 C

oh
es

io
n

(L
C

C
)

C
on

ce
rn

 D
iff

us
io

n
ov

er
 C

om
po

ne
nt

s (
C

D
C

)

C
ro

ss
cu

tti
ng

 D
eg

re
e

of
 a

n
A

sp
ec

t (
CD

A
)

4 AjHSQLDB 275 25 153.16 68 50 72.32 1.41 35.06 160 1.82 0.36 105 0.46 5 13 3.01

Total Values for each factor 571.16

268.79

107.18

5.46 16.01

Nor(x)

1 0.455 0.179 0 0.018

99

4.6.3 Discussion

 The metrics values of (AO/OO) have extracted using two techniques: Code-MR tools and

developed java program. As a result, Tables 4.15 and 4.16 provide some results. The combined tests

gave approximately the same result. Table 4.17 below is displays the combination values of average

performance.

 Size Complexity Coupling Cohesion Modularity

Average Values 1 0.45 0.1 0.0 0.018

Table 4.16 OOP/AOP metrics values for AjHSQLDB project

The average values of AO/OO between various parameters have been clarified in table 4.17. All

metrics values in table 4.15 and 4.16 have similar results. The metric size value is equal to 1, which

represents the maximum values for the metrics. These findings show the AjHSQLDB is a complex

project. Total values for complexity parameters equal 0.45. These results showed that the OOP and

AOP source code have medium complexity values. For instance, less complexity, maintenance and

testing costs are reduced. The coupling values are 0.1, and the coupling of the OOP/AOP measures

is higher than the cohesion measures. These results suggest that high coupling which means less

separation of unrelated source code. Small values of cohesion values mean that a portion of the

source code at a point in the code base is not connected. Modularity is 0.018, values of modularity

measures show that fewer system modules are independent of another module.

.

100

4.7.1 Contract4J5 Project

Code-MR has been to extract part of AOP metrics, for example, complexity, size, coupling,

and cohesion. The Code-MR plug-in was graphical, shows that the functionality of all OOP

measurement details, as shown in figures 4.18 to 4.21. The green colour represents the small values

of the metric. Light green represents low to medium values, orange represents high values, and red

shows that the code for accessing on-demand data cannot be reached. In the Contract4J5 project,

some packages have a big size in several classes as it appears in Figure 4.18.

Figure 4.18 Metric distribution packages Contract4J5 project

The Contract4J5 project has a medium-high value for size 29% of the total source code, complexity

29%, lack of cohesion 2% and WMC is 29%. It has small coupling values, which means well

structured and has good design, as shown in Figure 4.19.

101

.

Figure 4.19 Six Average values Metrics for Contract4J5 Project

The interaction between the classes in the project has been representing as it shows in Figure 4.20.

Circular shape and size represent the package size, and the colour represents metric values. Arrows

show classes, communications and the colour of the arrows represents the metric values. The

metrics values show that there is an average interaction between classes in the project, which

represent a normal quality attributes between the project components.

102

Figure 4.20 Classes relationships in the Contracy4J5 project

The Metric tool is so powerful it has much other functionality. It shows many metrics reports as the

web interface. The General information about distribution quality attributes is represented in Figure

4.21 with the excellent virtualisation technique.

103

Figure 4.21 distributions of Quality Attributes for Contract4J5 project

This project has 143 java files and 14 aspects files with extension Java and aj consequently. It is a

mid-sized project. The part of the appearance code line has nearly 63% of the total code line.

However, the CDC and CDA have a significant impact on modularity parameters and other

parameters, as it shows in Table 4.17, 4.18. The portion of the Line of Code of Aspect has almost

%63 percentage of the total Line of Code. However, CDC and CDA have a significant impact on

modularity metrics and other metrics, as explained in table 4.17, 4.18.

104

The metrics has been categorized the extracted metrics on subcategories as it appears in the table

4.17 below:

Table 4.17 OOP Metrics and some AOP Metrics categorization Contract4J5 project

All the metrics values need to be normalizing to unifying the outcomes results using the following

equation:

𝑬𝑬𝑬𝑬 𝟒𝟒.𝟏𝟏𝟏𝟏… .𝑵𝑵𝑵𝑵𝑵𝑵(𝒙𝒙) = (𝒙𝒙−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙))
𝐦𝐦𝐦𝐦𝐦𝐦(𝒙𝒙)−𝐦𝐦𝐦𝐦𝐦𝐦 (𝒙𝒙)

Main components of metrics Sub- components of metrics

Complexity

Weighted Method Count (WMC)

Depth of Inheritance Tree (DIT)

Response For a Class (RFC)

Specialization Index (SI)

Coupling

Number of Children (NOC)

Coupling Between Object Classes (CBC)

Access to Foreign Data (ATFD)

Cohesion

Lack of Cohesion of Methods(LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack Of Tight Class Cohesion (LTCC)

Size

Line Of Code (LOC)

Number of Fields (NOF)

Number of Static Methods (NOSM)

Number of Methods (NOM)

Number of Static Fields (NOSF)

Number of Overridden Methods (NORM)

105

Table 4.18 OOP Metrics and some AOP Metrics using Code-MR plug-in for Contract4J5 project

4.7.2 AOP quality metrics extraction using java written program:

• Crosscutting Degree of an Aspect (CDA) metrics:

The equations of CDA metrics as following

CDA = Total of Effected Methods / Total of the Pointcuts

In Contract4J5 project, number of aspects are 34, number of Pointcuts are 26 that have

called 105 methods, so the CDA is

EQ 4.19.............. CDA = Total of Effected Methods / Total of Pointcuts

=105 / 26

=4.03

Another indication of finding the effect of CDA on method is by using the following

formula (CDA/WOM)

CDA/WOM =4.03/11.45, which is equal to 0.35 and indicates the Advice effect on several

modules.Contract4J5 shows high values of the CDA, which means many modules are

affected by Aspects of Pointcuts and intertype declaration.

• Coupling on Advice Execution (CAE) metrics: In the Contract4J5 project, CAE Metrics

measure by counting the number of Advice. The total Advice is 10; therefore, the CAE

value is 10. Another indication is by using the following formula CDA/WMC.

EQ 4.20........... CDA/WMC =10/11.45

Main Components of Metrics Sub- Components of metrics Total values

Normalized

values Nor(x)

Complexity

WMC 11.441

0.328
DIT 0.986

RFC 6.613

SI 0

Coupling

NOC 0.32

0 CBC 0.2

ATFD 0.013

Cohesion

LCOM 0.121

0.006 LCAM 0.249

LTCC 0.175

Size

LOC 52.137

1

NOF 0.8

NOSM 0.4

NOM 3.986667

NOSF 0.293

NORM 0

106

= 0.87

This result indicates the Advice execution effect on several methods in the project.

Contract4J5 shows the average values of the CAE, which means many modules, are affected

by Advice excursions.

• Concern Diffusion over Components (CDC) metrics: The project Contract4J5, we can

calculate by using the following formula

EQ 4.21........... CDC = number of components that assist in implementing a concern +

number of components that access the components. The value of the CDC of this project is

128, which means it has high CDC values among the project; there are 143 java classes and

14 aspect files. If we take an average effect overall the project, this will be CDC Effect =

CDC values /Total number of Classes and Aspect =128/157 =0.81

• Lack of Concern-based Cohesion (LCC) metrics:

LCC metrics’ value is calculated by counting number of concerns. The project Contract4J5

contains ten concerns implementing methods from the abstract classes, six concerns that are

implementing methods, extending abstract classes, and implementing Pointcuts. This project

is cohesive and has high values of the LCC metrics project regarding the number of aspect

project sizes.

• Aspect complexity (AC) metrics:

There are two types of Aspect Complexity metrics, Low-level and High level. Low-level

Metric has measured the signature and calling methods. High-level AC values are measured:

Pointcuts, Aspect, intertype declaration, function calls, before, after the keyword, and || and

&& operators. The results AC are 140, which show that the Aspect of this project has high

values of Aspect complexity. Table 4.19 below provides details on the AOP measures for

the Contract4J5 project. Normalisation values range is between 0 and 1. Size, quality

parameter is has maximum number which is equal to 1. Mean values AO parameters for

complexity are 0.47, showing the mean value, which is considered a non-complex

project. The project has low coupling values 0, which means the right structure for this

project. The low cohesion values of this project have shown that it lacks high readability and

maintainability. Modularity values are 0.38, showing that the system has a less impact on

the connection between other system modules. It shows the number of modules that are

independent of another module of the system.

107

Table 4.20 Bash Script & java program AOP metrics Extraction for Contract4J5 project

 Size Complexity Coupling Cohesion Modularity

No.
Pr

oj
ec

t N
am

e

N
um

be
r o

f C
la

ss
 fi

le
s

N
um

be
r o

f A
sp

ec
ts

 fi
le

s

Li
ne

 o
f c

od
e

as
pe

ct

N
um

be
r P

oi
nt

cu
ts

N
o.

 O
f A

sp
ec

ts

W
M

C:
 W

ei
gh

te
d

m
et

ho
ds

 p
er

 c
la

ss

D
IT

: D
ep

th
 o

f I
nh

er
ita

nc
e

Tr
ee

R
FC

: R
es

po
ns

e
fo

r a
 C

la
ss

C
yc

lo
m

at
ic

 C
om

pl
ex

ity
 o

f A
sp

ec
t C

CA
 (A

dv
ic

e,

Po
in

tc
ut

s,
Jo

in
Po

in
t)

C
B

O
: C

ou
pl

in
g

be
tw

ee
n

ob
je

ct
 c

la
ss

es

N
O

C
: N

um
be

r o
f C

hi
ld

re
n

C
ou

pl
in

g
on

 A
dv

ic
e

Ex
ec

ut
io

n
(C

A
E)

LC
O

M
: L

ac
k

of
 c

oh
es

io
n

in
 m

et
ho

ds

La
ck

 o
f

C
on

ce
rn

- b
as

ed
 C

oh
es

io
n

(L
C

C
)

C
on

ce
rn

 D
iff

us
io

n
ov

er
 C

om
po

ne
nt

s (
C

D
C

)

C
ro

ss
cu

tti
ng

 D
eg

re
e

of
 a

n
A

sp
ec

t (
CD

A
)

5 Cont

ract4

J5

1

4

3

14 112.214 26 34 11.45 0.98 6.61 140 0.2 0.32 10 0.12 16 128 4.03

Total Values for each factor 329.214

159.04

10.52

16.12 132.03

Nor(x) 1 0.47 0 0 0.38

108

4.7.3 Discussion

The metrics values of (AO/OO) have extracted using two techniques: Code-MR tools and

developed java program. Therefore, Tables 4.18 and 4.19 present some findings. The combined

tests gave approximately the same result. Table 4.20 below have been showed the average values of

AO/OO metrics.

Table 4.31 OOP/AOP metrics values for Contract4J project

Table 4.19 are showing the average AO/OO metrics values between the various parameters were

clarified. In all measurements, both tables have similar outcomes. The metric size value is equal to

1, which is the maximum value of the size measures. These findings show Contract4J5 is not a

complex project. The total complex parameter values are 0.39. These findings showed that the OOP

and AOP source code are less complex in this project. With less complexity, maintenance and

testing costs are reduced. The coupling values are very low, almost zero, and the cohesion of the

AO/OO measurements is greater. These findings suggest that low coupling involves additional

separation of independent source code. Higher cohesion values mean that a portion of the source

code at a moment in the code base is connected. Modularity values are 0.38, regardless of the low

modularity between the modules of the system. Modular metric values show how many modules in

the system are independent of another.

 Size Complexity Coupling Cohesion Modularity

Average Values 1 0.39 0.0 0.003 0.38

109

4.8 Conclusion

This has been explaining the method of extracting AO/OO metrics and the reflection on

AO/OO quality metrics. Five case studies from AO/OO technologies have been used to get the

proposed measures. Relations between object-oriented and aspect-oriented measurements have been

discussed. Chapter explains the common measures between OOP and AOP in the hybrid application

development techniques. The software quality framework for OOP has been described using several

examples. The weakness and strength of the OOP measures is described.

The chapter showed that AOP quality measures feed into the proposed new framework of hybrid

AO/OO application systems. Project size will vary depending on different development techniques,

project requirements, and user needs. Metrics outcomes have been difference, normalisation

techniques have been used to unify the results. Code-MR and written java tools have been used as a

combined extraction measurement method for this project. The ultimate results showed that the AO

and OO measures are related. In conclusion, the results showed that AOP quality measures will

affect the size, complexity, modularity, coupling and cohesion in hybrid application projects.

Effects of quality measures are positive for coupling cohesion and modularity and negative for size

and complexity. Data extraction from theses five projects has been categorised in software quality

metrics of hybrid application systems. The proposed model has been designed in chapter 5, section

5.6. The evaluation chapter 6 will explain these findings.

110

CHAPTER 5

SOFTWARE QUALITY MODEL

5.1 Introduction

This chapter describes how to integrate the AO quality metrics into the AO/OO hybrid

quality framework. It concentrates on the research on static metrics and a few dynamic metrics to

measure the development of hybrid AO/OO systems. The chapter also discusses basic OOP

measurements [78] in hybrid AO/OO development measures and discusses the typical relationship

between OOP and AOP measurements. Quality is an essential property of software systems and

normally refers to the degree to which a software system meets the expectation that its

specifications will be met. Quality values are defined by attributes such as modifiability, durability,

interoperability, portability, health, predictability, extensibility. IEEE STD 1061 (Standard for

Software Quality Metrics method) describes quality. The IEEE STD distinguishes between quality

and quality attributes (such as performance, ease of use, and maintenance). Software quality is the

extent to which the software has a desirable combination of attributes [26]. A software quality

template describes a set of properties related to software quality and its relationships. The

relationship can be quantitative or qualitative. Software quality model documentation and is often

combined with software quality assessment metrics [27]. In order to assess the qualities of an

application, it has needed at least a quality model, which will evaluate all the application’s features.

There are several quality management models have been developed to test general and specific

categories of software products. These models were proposed for determining the general or limited

scope of software products. Software measurement is an activity that takes place at all stages in the

software development process. Many intermediate or end software products are produced and

111

evaluated using the parameters of the software products in this process. One of them is the source

code of the program, which is part of the final software system and is evaluated for quality. Metrics

for Aspect Oriented applications have been showed the advantages and disadvantages of cross

concerns concepts. New Product quality model for hybrid application software has been proposed

5.2 Justification and Significance

Determining the quality of hybrid AO/OO applications based on the corresponding source

code attributes is a critical quality assurance and control function. It is essential to have a standard

technique of evaluation methods that can aid the measurement evaluation procedure. Several tools

extracted static measurements for AOP and OOP systems separately without considering the

relationships between those measurements. The preliminary analysis and review of the state of the

art in the context of software quality does not reveal a wider recognition of the standard quality

framework for the hybrid AO/OO application [141]. Techniques and methods for extracting product

metrics from the AO/OO hybrid application system are limited and inappropriate. Sometimes the

different tools provide conflicting results with the same metric formula and help only some relevant

metric choices. This is because the estimate of the measure may be viewed differently with different

methodological techniques [142], Therefore it is essential to develop a framework for extracting

AO/OO product metrics based on ISO 9126 quality framework [152][153][154][156][157][158].

5.3 A framework for Aspect Oriented Software Quality Model

There are many architectural models available for developing a software system. Modules

and objects oriented OO approaches are the most commonly used for developing a software system.

However, cannot consider all requirements of current and complex software systems [127].

According to Alexander [128], he stated the advantages reduce the amount of written code and

greater cohesion reduces the complexity of the system. Internal characteristics can measure quality

of the AO system such cohesion, coupling and complexity [129]. The metric is a qualitative

indicator of any attribute of the software system and the model specifies the relation between these

metric. Aspect Oriented approach is a new paradigm and has a different abstract and is not

autonomous [130]. The Aspect modules are built in with AO modules or with OO classes.

Therefore, most of the software quality components/sub-components of ISO/IEC 9126 can be

measured with AO/OO quality framework with additions/modifications. Because of the new type of

abstraction in AO technology, some new software quality features/sub-features should be added,

describing the new features of AO technology. So we have to come up with an ISO/IEC 9126

112

quality model. Modularity, code reduction, complexity and re-usability were added as new sub-

quality features. The sub-components have a direct effect on the components such as efficiency,

maintainability, functionality, usability respectively.

5.4 AOSQUAMO Aspect Oriented Quality Model

The Aspect Oriented Software Quality Model (AOSQUAMO) is a derivative from ISO/IEC

9126 quality model. Complexity, modularity, reusability and code reduction have been proposed as

new quality sub-components under major components such as usability, maintenance of

performance and functionality,[143] [144]. A quality assessment of the AO system applied to the

existing model using the Analytical Hierarchy Technique (AHP) [145]. The AHP has been widely

adopted in cross criteria decision making and has been successfully applied to many practical

decision-making problems [143]. The fundamental properties of quality attributes of the

AOSQUAMO are listed below [143] [144]:

a) Modularity: AOP deals specifically with differentiation of concerns in the design of

applications. It supports modular programming, in particular by integrating issues that

overlap the modular nature of conventional programming methods. For example, login

policy implementation it shows how the code is distributed across a collection of classes and

methods to enforce the policy. The code applying the login policy is extracted from all the

AO method classes and is implemented in a module called Aspect. Aspect therefore locates

the code which affects multiple classes and methods in a unified location [132]. The

modularity of overlap concerns would be beneficial where improvements or adjustments are

necessary in the code related to overlap concerns. With these changes, the impact would be

reduced. That means modularity boxes support system maintenance, therefore it has been

proposed the integrate modularity as a sub-component below the maintainability

characteristic.

b) Complexity: The complexity of Aspect Oriented software systems is divided into the

complexity of the code, which can be described as static metrics, and the complexity of the

interaction, which can be described as dynamic metrics.Code complexity is related to

complexity attributes, the complexity of the operations (methods, Advice, Intertype

declaration and the complexity of the embedded classes/aspects. The interactions between

the class and the aspect have been done because of implicit/explicit invocations of

operations, the appearance of exceptions, comparisons of attributes, etc. Kumar et al. [143]

113

have identified some complexity measures for AO systems. The complexity function could

also help estimate the effort required to build and maintain the software system.

c) Reuse: There are three levels of reuse: functional, code property, and reuse of the weaving

process. Functional re-usability of the Object Oriented approach is like the Aspect Oriented

approach. The reuse of codes in the OO approach is because of their heritage rights. The

code related to Cross Cutting concerns are modularised into one Aspect of the AO approach,

which was scattered into primary concerns classes. This code will later be integrated with

the classes which have to support this policy through a process known as weaving. Weaving

has injected the aspect code into the syntactic structure of a primary concern in well-defined

places (Join points) and called reusability of element. Although in this study, the proposed

AO quality model proposes to add re-usability under the characteristic function.

d) .

e) Code Reducibility: Code reducibility means the use of AO techniques to reduce the written

OO code, for example, spread across several classes which are implemented in AO

technology in a module. This causes the amount of written code is decreased. All codes that

would otherwise be distributed in a primary collection are now localised, reducing

duplication, Reducing the amount of code would without a doubt increase system

performance in terms of time and memory. Some suggest that adding code reducibility

under characteristic of efficiency [144].

f) Most of the quality models offered have the fundamental characteristics of quality,

functionality, reliability, usability, efficiency, maintainability, and transferability. When

selecting the sub-characteristics of these characteristics, researchers have different opinions

on the sub-characteristics that feed the key characteristics of the quality model components.

The details of the common subset are.

g) Feature: The fundamental purpose of any product is a feature. It is a set of attributes that

focus on a set of functions and the properties defined. When used under specific conditions,

classes and aspects shall provide functions and services according to the requirements. The

current class features can be easily changed/improved by inheritance, and the Aspect-

oriented approach can easily change the crosscutting features. This will reduce costs and

speed up product development.

h) Suitability: Relevance explains the degree to which the item mixes into classes. Aspect

involves class integration; developers should know increasing the complexity if adding

Aspect to the program.

114

i) Accuracy: It tests whether the program provides reliable results with the correct accuracy

after implementing Aspects when used in various conditions.

j) Interoperability: The capacity of various systems and organizations to work collaboratively.

The interoperability of the AO and OO structures amounts to a combination of class aspects.

k) Compliance: These subcomponents explain whether an AO system meets an international

standard or certification.

l) Security: The security aim requires the protection of information and data from fraud,

misuse, or prevention of unauthorised access to the network. Security resources may be

considered a cross cutting issue because security policy must be applied when it is

appropriate. This security concern related code could be implemented in one area, which

helps to enhance the security of the source code.

m) Reliability: The reliability characteristic determines its ability to support the provision of its

services over a specified period under defined conditions. If it is not run on time, its

probability AO system will cause a failure in a period.

n) Maturity: These sub components explain the amount of work performed with current

development tool technology. Compared to OO technology, AO technology requires more

to attain high maturity.

o) Failure Tolerance: Describes whether the AO system can maintain a specified level of

performance in the event of failure.

This is an important feature to understand within the context of the AO system. The failure of the

AO system can take place in. The defect is an emergent property resulting from some interaction of

the Aspect with the primary preoccupation of four different stages:

The defect lies in a part of the major preoccupation, which does not affect the woven component.

The fault lies in the aspect-specific code, which is isolated from the woven background.

Recoverability: This shows the capability of the AO software to restore its output level and recover

the specifically affected data when a malfunction occurs.

1. Usability: it means how easy to use of a class or feature, for instance, an AO program may

be used and run during operation under various conditions. The developer can only use

aspect when the look and classroom knowledge is combined.

2. Understand ability: This feature explains the software’s ability to allow users to consider the

adequacy of the software and its use for particular tasks and conditions of use. In the AO

sense, the ability of developers to solve the underlying primary concerns, apply the

appearance code and integrate the appearance code with the primary concerns.

115

3. Learning ability: This sub component describes the ability of the AOP program that can help

users understand and use applications.

4. Operability: This sub component defines the AO software’s ability to allow users to operate

and manage it.

5. Efficiency: it concerns with how the system resources have used to provide the required

functionality are related to this component. For instance, disk space usage, network,

processor time, etc.

6. Maintainability: This feature describes how to change the class or aspect of the system or

any functionality. AO technology has an advantage over OO technology for a system with

transversal issues in the maintenance of transversal issues. Modularity of cross-cutting

concerns was introduced as a subtype of modularity. It is characteristic of maintainability,

which states that the maintenance of such a system would require fewer efforts than OO.

.

Other futures have been described as:

I. Analysis: This sub-feature defines the capability of the AO software to be evaluated for

defects or causes of defects in the AO software. It can detect changes in primary concern,

aspect or process visualisation, i.e., integration of aspects with primary concerns.

II. Editability: This sub-feature describes AO software’s ability to implement a specified

modification. Grover et al. [137] [138] provided guidance for the measurement of variability

in AO software systems.

III. Stability: This sub-feature refers to the ability of the AO program to mitigate the unintended

effects of software changes.

IV. Testability: these sub-components concerns about ability of the application to validate

changed software.

V. Portability: This function refers to how the program can manage changes in its surroundings

or specifications. The extent to which this feature exists in a particular system may

contribute to Object Oriented design and implementation practices. Aspect Oriented

architecture and application in terms of portability are the same as Object Oriented, as the

world would be the same for appearance and object.

VI. Adaptability: This is the functionality of the AO software which may apply to various

specified platforms. Despite the platform’s independence, the expanded AO functionality

from Java provides greater adaptability.

VII. Installer: The AO software can be installed easily on different platforms.

116

VIII. Replaceability: This is the capacity of AO application that can run on difference

environments.

IX. Complexity: it concerns with WOM (Weighted Operations in Module), the number of

operations within a module influences internal complexity. DIT (Depth of Inheritance Tree):

is measure the longest path between a particular module and the root of the Aspect/Class

hierarchy. The higher an Aspect/Class is in the hierarchy, the greater the number of

operations it inherits and making it more complex to understand and change measured.

X. The difference between the quality specifications of ISO/IEC 9126 and the Aspect Oriented

Software Quality Model (AOSQUAMO) has been explained in Figure 5.1. Four salient

features have been proposed, and these have many sub-characteristics and measurements

that contribute to these key features.

 Figure 5.1 a. Quality Characteristics of the ISO/IEC 9126, 2004. b. Aspect-Oriented Software Quality Model

117

COTS are a quality model that has added new components to its quality model as stakeholders

responsible for developing, maintaining, and integrating. This model emphasises measuring the

quality of the system based on the components. [139]. in this model, the sub-components have

divided into duration and life-cycle categories depending on their nature. They also added capacity

as a subtype to the feature, showing if the older version of the component is compatible with its

current version.

5.5 Proposing Aspect Oriented Product Quality Metrics:

Proposing new product quality models should cover all the functionality of the AO software

system; it needs to examine the new functionality and limitations of the new technology. AO

programming languages are also added into a native programming language. Several available

technologies, such as Aspect C, extend C. Aspect C++ extends C++, AspectJ extends Java, CaesarJ

extends Java, and Aspect XML extends XML,. Since AO technology cannot exist on its own, it will

have all the technology features from which it is derived. Given that AO technology cannot exist on

its own, it will have all the technological characteristics from which it arises. For example, AspectJ

contains all the functionalities of Java and other functionalities added to AspectJ. If the AO

technology is derived from the OO technology, then it will have all the characteristics of the OO

technology and additional functionality added to the aspectual code. Different quality

components/sub-components should be added, which may cover new features of cross cutting

concerns of Aspects and their integration with primary concerns the classes. There is also a need to

redefine existing features/sub-features within the context of AOP technology. As it is described in

table 5.1.

Quality Type Characteristics Sub-Characteristics

Software Product Quality

Functionality

Suitability

Accurateness

Interoperability

Compliance

Security

Extensibility

Reliability

Maturity

Fault tolerance

Recoverability

Complexity

Usability

Understand ability

Learnability

Operability

Efficiency
Time behaviour

Resource behaviour

118

.

Table 5.1 Proposing AOP software Quality Model

5.6 New Product Quality Framework for Hybrid application system

Various components of the ISO 9126 quality framework have been proposed. It shows in

Figure 5.2, below the blue rectangle, the new sub-characteristics proposed for measuring the quality

of the hybrid application system, for instance (extensibility, complexity, service loading behaviour,

code weaving, and Re-usability). These software product quality sub-characteristics have sub-

characteristics that show with proposed new quality metrics.

Figure 5.2 Software Product sub-characteristics

Software Product
Quality-Hybrid

Application System

Functionality Extensibility

Reliability Complexity

Efficiency Service loading
behaviour

Maintainability Code Weaving

Portability Re-usability

Service loading behaviour

Maintainability

Analyzability

Changeability

Stability

Testability

Adaptability

Code Weaving

Portability

Installability

Conformance

Replaceability

Co-existence

Re-usability

119

5.7 New Quality Metrics for Hybrid application system

New quality metrics for the Hybrid Application System attributes, These main components

and sub-components of the proposed quality measure model for hybrid application systems [145]. It

is proposed to build on the AOP data quality measures in Chapter 3 of the extraction, Section 3.7,

as shown in Figure 5.3 below:

• Extensibility: can be measured by the following metrics:

• Crosscutting Degree of an Aspect (CDA)

• Joinpoints Extension (JPE)

• Concern Diffusion over Components (CDC)

• Number of Models

• Complexity can be measured by the following metrics:

• Weighted Method Count (WMC)

• Depth of Inheritance Tree (DIT)

• RFC Response for a Class (RFC)

• Responses for Aspect (RFA)

• Number of Aspects (NOA)

• Service Loading Behaviour (SLB) can be measured by the following metrics:

• Line Of Code (LOC)

• Number of Methods (NOM)

• Number Of Fields(NOF)

• Weighted Joint points Counts (WJC)

• Line Of Code Aspect (LOCA)

• Code Weaving (CW) can be measured by the following metrics:

• Number of Children (NOC),

• Coupling Between Object Classes (CBO)

• Access to Foreign Data (ATFD)

• Coupling On Advice Execution (CAE)

• Re-usability can be measured by the following metrics:

• Lack of Cohesion Of Methods (LCOM)

• Lack of Cohesion Among Methods (LCAM)

• Lack of Tight Class Cohesion (LTCC)

• Lack of Concern Based Cohesion (LCBC)

• Lack of Cohesion in Joinpoints (LCJ)

120

Figure 10 Sub-characteristics for proposed software quality framework for Hybrid AO/OO Systems

Software Product Quality-
Hybrid Application System

Functionality Extensibility

Crosscutting Degree of an Aspect (CDA)

Number of Models

Concern Diffusion over Components (CDC)

Join Points Extension (JPE)

Reliability Complexity

Weighted Method Countt (WMC)

Responces for Aspect (RFA)

Response For a Class (RFC)

Depth of Inheritance Tree (DIT)

Number Of Aspects (NOA)

Efficiency Service loading
behaviour

(NOF) Number of Fields

Weighted JoinPoints Counts (WJC)

LOC Line Of Code Aspect (LOCA)

Line Of Code Class (LOCC)

Number of Methods(NOM)

Maintainability Code Weaving

Number of Children (NOC)

Coupling Between Object Classes (CBO)

Access to Foreign Data (ATFD)

Coupling On Advice Execution (CAE)

Portability Re-usability

Lack of Cohesion Of Methods (LCOM)

Lack of Cohesion Among Methods (LCAM)

Lack of Tight Class Cohesion (LTCC)

Lack of Concern Based Cohesion (LCBC)

Lack of Cohesion in JointPoints (LCJ)

121

5.8 Conclusion

This chapter explained the various software quality models. It describes the history of

various types of software quality models, such as McCall, Boehm, ISO/IEC 9126, and another

model which relates to software quality measurements. It also highlighted the importance of

offering a new framework software quality model for measuring AO/OO software. This chapter

also describes several works that were done to measure the quality of the AOP software. Proposed

framework is based on ISO/IEC 9126 with some sub-specifications for the software quality model.

Sub-characteristics represent the proposed actions discussed in Chapter 3. These parameters and its

sub-characteristics of the quality model will be evaluated in Chapter 6. The proposed aspect-based

product quality framework will focus on the AOP part and the new AOP measures. These new

measurements were focused on static measurement, and few dynamic measurement of product

quality, as dynamic measurement requires a team of developers, product managers and users. This

study comprises five different projects developed using the AO/OO code. The primary aim was to

show the impact of AOP metrics on the quality of software products using the proposed framework

.

122

CHAPTER 6

PRODUCT QUALITY METRICS FOR HYBRID

APPLICATION SYSTEM AO/OO

6.1 Introduction:

This chapter summarises the assessment process. The metrics of AO and OOP have been

defined and standardised for the proposal of new hybrid application metrics. The combination of

both AOP and OOP metrics has been reflected in Hybrid Application Quality Model. This data was

generated using plug-in Code-MR tools to extract common statistical measures from AOP and OOP

and writing a Java program to extract AOP measures only. The evaluation of the combination of

these metrics was conducted using the IBM AMOS tool [145][147][148]. AMOS has a powerful

program that can accept SPSS or Microsoft Excel data files as input. AMOS can perform many

statistical equations to produce different results in terms of their relationship between the quality

model variables. Quantitative data collection has been conducted, as explained in Chapter3 which

are need to evaluate them. This chapter has used statistical analysis to validate the extracted data

and prove the proposed hypothesis. The model was designed using structural equation modelling, as

discussed in Chapter 5. Five hypotheses were considered, each hypothesis contains many measures

which influence this hypothesis as it is described below.

.

I. Hypothesis 1 (Extensibility) the measures of H1 had an impact on Extensibility (CDA, JPE,

CDC and NOM). Extensibility will affect the functionality of the Quality model.

123

II. Hypothesis 2 (Complexity) H2: This will have an impact on the reliability of the proposed

hybrid quality model. The Complexity in the model have measured by five metrics

(Weighted Method Count (WMC), Depth of Inheritance Tree (DIT), RFC Response For a

Class (RFC), Responses for Aspect (RFA), Number Of Aspects (NOA)) Complexity has

been a negative impact on reliability. As complexity increased, system reliability was

reduced.

III. Hypothesis 3 (Service Loading Behaviours) Service Loading Behaviours has been measured

by these metrics (Line of Code (LOC), Number of Methods (NOM), NOF (Number of

Fields), Weighted Joint points Counts (WJC), Line of Code Aspect (LOCA)).

IV. Hypothesis 4 (Code Weaving) H4 Code Weaving has been measured by these metrics

(Number of Children (NOC), Coupling between Object Classes (CBO), Access to Foreign

Data (ATFD), and Coupling on Advice Execution (CAE)).

V. Hypothesis 5 (Re-usability) H5 Re-usability has been measured by these metrics Lack of

Cohesion Of Methods (LCOM), Lack of Cohesion among Methods (LCAM), Lack of Tight

Class Cohesion (LTCC), Lack of Concern Based Cohesion (LCBC), Lack of Cohesion in

Joint Points (LCJ). The whole evaluation process makes it clear that the aspect-oriented

software quality model is acceptable or not.

124

6.2 Evaluation using Structure Equation Modeling:

Structural Equation Modelling (SEM) is a multivariate procedure is used many analytical

methods to analysis structure relationships. The evaluations have been conducted using different

techniques to provide quantitative results of a hypothetical model estimated by the analyst. Several

related latent variables can be tested in SEM using statistical techniques. The purpose of the SEM is

to determine the extent to which the sample data support the postulated model. If the sample data

supports the hypothetical model, then more complex hypothetical models may be theorised. If the

sample data does not confirm the hypothetical model, either the first model can be changed and

tested, or other hypothetical models need to be created. Therefore, SEM tests hypothetical models

using analytical technology for theoretical tests and understanding of complex relationships

between variables. SEM can test various kinds of hypothetical models [160]. SEM has capabilities

of design and defines many variables in the evaluated model. There are two important kinds of

variables: latent’s and observed variables. Latent variables (constructs or factors) cannot

legitimately be detected or estimated [161]. Latent’s are observed or estimated indirectly. They are

collected from many observed variables that have been measured through tests, examinations, etc.

An independent variable is a variable that isn’t affected by some other variable in the model and not

assign to it [162]. Whether observed or latent, variables can also be characterised as independent or

dependent variables.

125

6.2.1 Structure Equation modeling common terms:

SEM extends the overall linear model which enables a specialist to simultaneously test a group of

regression equations. The reason for SEM is to analyse a lot of connections between at least one

exogenous variable (independent variable) and at least one endogenous factor (dependent variable).

SEM programming can test typical models, but it can evaluate complex connections and models,

such as the review of confirmation factors and the review of time series [160] [161]. Several terms

should be familiar when operating the SEM:

• Observed and latent variables: The observed variables are immediately observable, for

instance, number of methods line of code, and number of methods. The latent variable does

not measure directly, such as software quality and software efficiency; therefore, the

researcher uses the observed variable to measure latent variables. These measurements will

be collected from coded answers and scientific experiments, and then calculate the score of

these variables to show the value of the observations for the latent variables.

• Endogenous and exogenous latent variables: As a result, endogenous and exogenous latent

variables are synonymous with dependant and independent variables. Two kinds of factor

analysis exist, Factor analysis and confirmation factor.

• Factor analysis: The exploratory factor deals with unknown relations between the observed

variable and the latent variable. While the confirmation factor is used when the relationship

is clear between the observers to the latent variable [162].

126

6.3 IBM SPSS AMOS Evaluation Tool

The AMOS is an auxiliary state demonstration (SEM) visual program. The AMOS is

measurable programming, which represents the study of moment structures [163]. AMOS is using

SPSS module and is particularly used to model structural equations, examine pathways and study

corroborating factors. It is used to review covariance or causal display programming. In AMOS, we

can draw graphic templates using basic drawing peripherals. Chart calculations can be created

quickly and statistically represent the results in several types of graphics [164]. AMOS GUI is very

simple to use. It can design a specific model and determine the attributes and then import the

extracted data. The numerical methods run in AMOS are among the best and most robust

accessible. Researchers have used AMOS in SEM to evaluate quantitative data in many fields of

research.

6.3.1 Amos Software properties

The IBM AMOS software has the capabilities of various kinds of design diagrams. The

theses diagram is a visual representation of particular variables of various types of hypothetical

models. Attributes can be represented with geometric shapes, for instance, A rectangle corresponds

to the observed variable. An Oval can represent a latent variable. The single-point arrow is the

effect of a variable on another variable. The double-headed arrow is the correlation between two

variables, and the circle is the potential errors in the variable dataset. Table 6.1 below is presents

these representations of the symbols [164].

127

Table 6.1 AMOS symbols model representation

6.4 Hybrid application system Product Quality Models in AMOS model:

AMOS has been used to design hybrid quality measurement model. This model has been

statistically analysed and assess using extracted data from five open-source projects. The data set

for each project was gathered using a java program and Code-MR plug-in. There are several metrics

have been examined in the model, such as (extensibility, complexity, service load behaviours, code

weaving and reusability) which have been represented as latent variable eclipse forms, as shown in

6.1. The sub-characteristics of each measurement were represented by a square or rectangular

(latent) measurement variable that can be measured directly. Each sub-characteristic is abbreviated

Name Symbol Explanation

Measured Variable

Variables that measured directly can be represented by rectangle

Latent Variable

Variable (latent) that cannot be measured directly and require several

measured variables to estimate it can be represented by An Oval

Error variable

Error can be represented with circle shape

Causal effect (Direct effect)

The direct effect between variables can be represent by single arrow path

Covariance (none-directional

path)

Covariance relationship between variables can be represented by curved two

arrows.

128

to represent these sub-characteristics, as described in Table 6.2 below, the procedure of evaluating

and designing the quality model.

Table 6.2 latent variable representation in Hybrid Quality Model in AMOS

Variable name Description Variable Type

Complexity
Hybrid Software Quality AO OO

Latent Variable

Extensibility Hybrid Software Quality AO OO Latent Variable

Service loading behavior Hybrid Software Quality AO OO Latent Variable

Code Weaving Hybrid Software Quality AO OO Latent Variable

Reusability Hybrid Software Quality AO OO Latent Variable

Ex1 ,Ex2, Ex3,Ex4 Extensibility Measured Variable

Comp1, Comp 2, Comp 3 , Comp 4, Comp 5 Complexity Measured Variable

SLB1,SLB2, SLB3, SLB4,SLB5 Service loading behaviour Measured Variable

RU1, RU2, RU3, RU4, RU5 Re usability Measured Variable

CW1, CW2, CW3, CW4 Code Weaving Measured Variable

129

Figure 11 AMOS Diagram for Hybrid System Quality Framework Model

130

6.5 Hybrid Application Quality Model AOP/OOP design:

 The design of a hybrid application quality model in IBM AMOS shall identify the latent

variables and observed variables listed in Table 32. As it appears each components have been

categorized into specific metrics with specifics abbreviation. This technique allows simplicity and

easy management of the design model.

Proposing Hybrid Quality Model AO/OOP

Components

Metrics Extractions sub-characteristics of the Hybrid Quality

Model AO/OOP

IBM AMOS

Representation

Measured Variable Latent Variable
Latent Variable

Abbreviation

Extensibility

Crosscutting Degree of an Aspect Ex1

Joinpoints Extension Ex2

Concern Diffusion over Components Ex3

Number of Models Ex4

Complexity

Weighted Method Count COMP1

Depth of Inheritance Tree COMP2

RFC Response For a Class COMP3

Responses for Aspect COMP4

Number Of Aspects COMP5

Service Loading Behaviour

Weighted Joinpoints Counts SLB1

LOC Line Of Code class SLB2

Number of Methods SLB3

Number of Fields SLB4

LOC Line Of Code Aspect SLB5

Code Weaving

Number of Children CW1

Coupling Between Object Classes CW2

Access to Foreign Data CW3

Coupling on Advice Execution CW4

Reusability

Lack of Cohesion of Methods RU1

Lack of Cohesion Among Methods RU2

Lack Of Tight Class Cohesion RU3

Lack of Concern based Cohesion RU4

Lack of cohesion in Joint Points RU5

Table 6.3 Hybrid Applications Model Representation in IBM AMOS

6.6 Data extraction:

Software applications share a common, manageable set of functionalities. This function will

meet the user’s needs in a particular program. A feature represents distinct aspects visible to the

131

EQ 6.1

user or quality, or characteristics of the system [159]. There are two types of characteristic viability,

supported by some applications and commonalities available across all products. A model features

contain both the commonalities and the variability caused by software-industry needs. In addition,

the software documentation may be used in the re-engineering process. However, there is some lack

of updating of these documents, as they did not update the documents when the product was

updated and changed. Some products also do not provide documentation on software or

specification templates. Additional costs related to the provision of these documents were

identified. This research used various methods to extract the AOP/OOP quality measures separately

and then combine them into the AOP/OOP hybrid application quality model. There are two types of

measurements that have been taken from the AOP and OOP programming. IBM AMOS is a

statistical tool used to assess the reliability of data collection. IBM AMOS accepts the SPSS file

type and computes the results. The five projects have been tested using one model regarding the

difference in size, design, and implementation method.

6.7 Quantitative Evaluation:

6.7.1 Statistical Mean

The statistical average is a particular mathematical average that is extremely helpful in

software engineering and computing. Essentially, the statistical mean is a cycle of arithmetic means

in that it includes all numbers in a dataset and divided by total number of the dataset. The arithmetic

or statistical means have generally been used throughout the modern period and in computer

programming time. Generally, if we have values X1, X2, Xn, the mean given by following equation

[165]:

x n
i

i
if m= ∑ /

132

The projects' data have been normalizing from 0 to 10, and then calculate all statistical operations

using IBM AMOS. The table 6.4 below shows the mean values for each category in the projects.

Hybrid Quality Model AO/OOP

Components Projects Name Mean Values

Extensibility GtalkWAP 6.83

Complexity GtalkWAP 5.324

Service loading behaviour GtalkWAP 6.208

Code Weaving GtalkWAP 5.005

Re-usability GtalkWAP 4.13

Extensibility AjHotdraw 6.63

Complexity AjHotdraw 6.69

Service loading behaviour AjHotdraw 6.28

Code Weaving AjHotdraw 5.72

Re-usability AjHotdraw 6.22

Extensibility Health Watcher 5.28

Complexity Health Watcher 5.95

Service loading behaviour Health Watcher 6.60

Code Weaving Health Watcher 6.14

Re-usability Health Watcher 5.70

Extensibility AjHSQLDB 6.13

Complexity AjHSQLDB 6.67

Service loading behaviour AjHSQLDB 7.57

Code Weaving AjHSQLDB 6.58

Re-usability AjHSQLDB 4.95

Extensibility Contract4J5 7.066667

Complexity Contract4J5 5.686667

Service loading behaviour Contract4J5 5.773333

Code Weaving Contract4J5 7.241667

Re-usability Contract4J5 7.293333

Table 6.4 Mean Values for five open source projects for five components of AOP/OOP Hybrid Application Quality Model

The mean is a model of the information that has been collected. Its value is generally normal.

Despite this the average is not routinely one of the real qualities in informational index. However,

one of its important properties is that it limits mistakes in forecasting any incentive in the collected

data. A significant property of the mean is that it includes each value of extracted data which

determine the feature of specific metrics. Similarly, the average is the principal proportion of focal

propensity in which the sum of the deviations of each value from the average is systematically zero.

The results have showed that the AO/OO hybrid application quality model for five projects

133

typically has accepted values for value distribution. The maximum value is 7.29 and the minimum

value is 4.95, these results indicate that data collection have acceptable means values.

6.7.2 Standard Deviation

The standard deviation is a proportion of the measurement of the variation or spread of a set

of values. A small standard deviation shows that the qualities will be close to the average (also

called normal estimation of the whole). In contrast, a high expectation gap shows the qualities are

distributed over a wider range. Standard deviation is abbreviated by SD and is most spoken to in

mathematical text and conditions by the lowercase Greek letter sigma σ, for the population standard

deviation, or the Latin letters, for the sample standard deviation. The standard deviation is used to

quantify trust for evidence. For example, the margin of error in survey information is dictated by

calculating the normal standard deviation in the results if a similar survey was conducted on

different occasions. This induction of a standard deviation is often referred to as an “estimate

standard error” or “standard error” with an average. It is represented as the standard deviation of the

multitude of recorded understandings of this population. If an infinite number of tests were

performed and an average of each sample was processed, all these values were extracted using IBM

AMOS. Based on [165], the standard deviation value is less than or equal to 1 that which becomes

an acceptable value. As shown in Table 6.5, the SD for hybrid quality model components is

accepted for AjHotdraw, HealthWatcher, and some components are accepted for GtalkWAP,

AjHSQLDB Contract4J5 projects. It was partially accepted concerning their standard deviation

value over one or less than one. Therefore, the standard deviation or standard error values for the

extracted hybrid quality model for the AO/OOP model measurements are accepted for data

extraction for the proposed specific measures.

.

134

Table 6.5 Standard Devotion Values for five open source projects for five components

6.7.3 Factor Analysis:

Factorial analysis is a mathematical technique that provides information on the reliability,

quality, and validity of data. The overall aim of factor analysis is to understand what expands the

values or the value of the items. These values are used to evaluate or show the hypothesis or part of

a particular model to be tested. It also breaks down covariate among the elements into significant

components. Higher correlations for each element are resulting in higher internal reliability of

values between elements. Factorial analysis may not be measured with a single element. It takes

Hybrid Quality Model AO/OOP Components Projects Name Standard Deviation

Extensibility GtalkWAP 1.0302

Complexity GtalkWAP 0.7524

Service loading behaviour GtalkWAP 1.2972

Code Weaving GtalkWAP 1.419

Re-usability GtalkWAP 1.6654

Extensibility AjHotdraw 0.711

Complexity AjHotdraw 1.047

Service loading behaviour AjHotdraw 1.195

Code Weaving AjHotdraw 1.05

Re-usability AjHotdraw 1.149

Extensibility Health Watcher 0.904

Complexity Health Watcher 0.863

Service loading behaviour Health Watcher 0.917

Code Weaving Health Watcher 1.06

Re-usability Health Watcher 0.962

Extensibility AjHSQLDB 0.564

Complexity AjHSQLDB 0.539

Service loading behaviour AjHSQLDB 0.721

Code Weaving AjHSQLDB 0.633

Re-usability AjHSQLDB 0.586

Extensibility Contract4J5 0.522338

Complexity Contract4J5 0.522115

Service loading behaviour Contract4J5 0.698437

Code Weaving Contract4J5 0.506319

Re-usability Contract4J5 0.582743

135

three or more things. A higher correlation between the elements together with the factor needs to be

measured.

.

Two kinds of factorial analysis exist.

• Exploratory Factor Analysis (EFA)

• Confirmatory Factor Analysis (CFA)

The major difference between EFA and CFA is that EFA focuses on the number of elements found,

not the relationships between the elements. This research proposes a hybrid model of application

quality and emphasises CFA to test and evaluate the values of each component of the model. CFA

is looking at the extent to which the hypothetical factorial structure is consistent with the model.

The change of the model shows a mathematical comparison of the correlations, i.e., the covariance

between the elements concerning the correlations expected by the model under test.

Mathematically, some models involve certain relationships. For example, if the model shows that

two factors are not correlated, the model is not appropriate because an element will be highly

correlated with another factor. If the model has high values of correlated factor, the uncorrelated

elements will lead to a wrong fit to the model. However, many load factors can be specified by the

user for the model, and any item that can be loaded on multiple factors is desirable [166] [167].

Researchers have been worked on many fit indicators such as Chi-Square; χ2 lower values mean

better fit. RMSEA’s lower value (< 0.06) value showed the best results. SRMR, lower values show

excellent results for factors fit (<0.08). Comparative fit index and Tucker Lewis index, higher

values show better fit (>0.95) [166] [167]. The acceptable values of factor loading are>0.5 [217].

The five project load factors, most of them are over 0.5. This value shows that the extracted metric

values are adjusted to the proposed quality model and reliable. Table 6.6 presents the details of the

factor analysis and values for selected projects.

136

Metrics Characteristics Projects Factor Loading values

Complexity GTalkWap 0.8

Extensibility GTalkWap 0.5

Service loading behaviour GTalkWap 0.5

Code Weaving GTalkWap 1.2

Re_usability GTalkWap 0.7

Complexity AjHotdraw 1.1

Extensibility AjHotdraw 0.9

Service loading behaviour AjHotdraw 1

Code Weaving AjHotdraw 0.9

Re_usability AjHotdraw 1

Complexity Healthwatcher 0.2

Extensibility Healthwatcher 0.9

Service loading behaviour Healthwatcher 1.1

Code Weaving Healthwatcher 1

Re_usability Healthwatcher 1

Complexity Ajhsqldb 1

Extensibility Ajhsqldb 1

Service loading behaviour Ajhsqldb 0

Code Weaving Ajhsqldb 0

Re_usability Ajhsqldb 1

Complexity Contract4J5 1

Extensibility Contract4J5 1

Service loading behaviour Contract4J5 0.5

Code Weaving Contract4J5 0.9

Re_usability Contract4J5 1

Table 6.6 Factor Loading values for all projects

6.7.4 Significance P value

The p-value is the probability of getting results from any case as outrageous as the observed

side effects of a statistical hypothesis test, assuming that the invalid hypothesis is correct. The p-

value is used as an option versus termination, giving the least centrality to which the invalid

hypothesis would be rejected. A more diffident p-value implies that there is more grounded proof of

the elective theory. The invalid hypothesis expresses no link between the two factors considered

(one variable has no influence on the other). It expresses the results are because of the possibility

and are not enormous in terms of the support of the idea under consideration. So the invalid

assumption is that what you’re trying to prove has not happened. The level of statistical significance

is regularly reported as a p-value between 0 and 1. The most modest estimate of p, the most

founded evidence that you should reject the invalid assumption. A value of less than 0.05 (usually

0.05) is statistically significant. It shows firm evidence against the invalid theory, because there is

137

not exactly a five percentage (5%) probability the invalid is just (and the results are irregular).

Second, we reject the invalid hypothesis and recognise the optional hypothesis. A p-value greater

than 0.05 (> 0.05) is not statistically significant and shows robust evidence of the null hypothesis.

They show acceptance of the null hypothesis and rejection of an alternate hypothesis. Table 6.7

demonstrate all the p-values for selected project [168].

138

Table 6.7 Significant P value for 5 projects

The significant P-value was computed and extracted in the five open source projects, as shown in Table 36. In the GtalTalk project, the Extensibility

metrics have the value of 0.001 of the p-value. This means that there are strong relationships between sub-characteristic measurements and extensibility

characteristics in the GtalTalk hybrid application model. All other p-values also show strong relationships between the sub-characteristic measurements

and the quality model components. P-values have been showed by three asterisks ***, which is stands for over 0.05, which is statistically significant. In

project AjHotdraw, Healthwatcher, and Contract4J5, all the software quality components and sub characteristics have significant p values, which show

a statistically significant value to the effect relations of these components in the hybrid application model. The Ajhsqldb project has statistically non-

significant p-values in the complexity of three

Projects Ex1 Ex2 Ex3 Ex4

Comp

1

Comp

2

Comp

3

Comp

4

Comp

5

SLB

1

SLB

2

SLB

3

SLB

4

SLB

5 RU1 RU2 RU3 RU4 RU5

CW

1

CW

2

CW

3

CW

4

Quality

Metrics
Extensibility Complexity Service loading behaviour Reusability Code Weaving

GTalkWap
0.00

1

0.00

1

0.00

1

0.00

1
0.3 0.3 *** *** *** *** 0.001 *** *** 0.001

0.00

1
*** *** *** *** *** *** ***

0.00

1

AjHotdraw
0.00

1
*** *** 0.7 *** 0.7 *** 0.4 *** *** *** *** *** 0.001

000.

1
0.8 0.3 ***

0.00

1
0.1 0.3 ***

0.00

1

Healthwatche

r

0.00

1
*** *** *** 0.001 *** *** *** *** 0.001 *** 0.001 *** 0.001

0.00

1
*** *** 0.4

0.00

1
*** *** 0.2

0.00

1

Ajhsqldb
0.00

1
*** *** *** 0.001 0.001 0.001 0.001 0.001 0.001 *** *** *** 0.001

0.00

1

0.00

1

0.00

1

0.00

1

0.00

1

0.00

1

0.00

1

0.00

1

0.00

1

Contract4J5
0.00

1
*** *** *** 0.001 0.3 *** *** *** 0.2 0.1 0.1 0.6 0.001

0.00

1

0.00

1

0.00

1
*** 0.1 *** ***

0.00

1

139

Components re-use and code weaving. On average, all projects were tested against p-values. They

have been showed the relationships and effects between the sub-characteristic measures and the

components of the product quality model for hybrid application systems.

140

6.7.5 Correlation Coefficient

Correlation is a measurable strategy used to explore a potential direct opportunity between

two continuous factors. It is essential to verify and interpret at the same time. Correlation is a

technique to study a potential bidirectional direct relationship between two constant factors. The

relationships were estimated by measuring the correlation coefficient, which shows the strength of

the suspected direct relationship between the factors mentioned. Correlation is a method to evaluate

a potential two-way linear association between two continuous variables. The correlation is

measured by a statistic called a correlation coefficient, representing the strength of the assumed

linear association between the variables involved. This is a dimension-free quantity which takes a

value in the range from -1 to +1. A correlation coefficient of zero shows that there is no linear

relation between two continuous variables, and a correlation coefficient of -1 or +1 shows a perfect

linear relation. The strength of the relation can be from -1 to +1. The higher the correlation, the

closer it gets to 1. If the coefficient is a positive number, the variables are directly related (meaning

that the value of a variable increases, the other tends go up). A coefficient is a negative number, the

variables are inversely related (i.e., as the value of one variable goes up, the value of the other goes

down). Any other relationship between two continuous variables that is not linear is not statistically

correlated. To underline this point, a mathematical relationship is not necessarily a correlation

[168]. Pearson’s item second correlation coefficient is meant as ρ for a populace boundary and as

for an example measurement. It is used when both factors are normally communicated. This

coefficient is influenced by extraordinary qualities, which may overstate or pipe the strength of

relationship, and is consequently improper when either of the two factors is not regularly circulated

[169]. For a correlation between the x and y factors, the recipe for calculating the Pearson tie-in

coefficient example is given by

:

EQ 6.2.............. r = (n (∑xy)- (∑x)(∑y))/(√ [n ∑x2-(∑x)2][n ∑y2– (∑y)2)

141

Table 6.8 Correlation coefficient for 23 items for 5 projects

As shown in Table 6.8, the correlation coefficient of 23 sub-features is significantly correlated with

perfectly linear relations. These strong relationships indicate important relationships between these

elements of the hybrid software quality model. All five projects showed an acceptable value for the

correlation factor, which is statistically significant.

6.7.6 Average Variance Extracted and Construct Reliability

Average Variance Extracted AVE is a proportion of the measure of change that is taken by a

development as a function of variance because of an estimation error. A measurement is used to

estimate convergent validity. Similar to the clarified difference in the EFA’s exploratory factor

analysis, the AVE is the average variance of the pointer factors that a construction seeks to clarify.

The AVE for each construction can be got by the number of squares of fully normalised factor

loads isolated from that total and adding up the error deviations for the indicators. For the

standardised arrangement, all cursor and latent factors are scaled to have a unit variance. The AVE

is >= 0.5, which considers an accepted value for data validity between the corresponding variable in

template [171] [172]. The extracted mean variance may be computed using the specific formula

.

EQ 6.3..........𝑨𝑨𝑨𝑨𝑬𝑬 = ∑ 𝛿𝛿𝑖𝑖
2---𝑘𝑘

𝑖𝑖=1
∑ 𝛿𝛿𝑖𝑖

2---𝑘𝑘
𝑖𝑖=1 +∑ 𝑉𝑉𝑉𝑉𝑉𝑉 𝑒𝑒𝑖𝑖---𝑘𝑘

𝑖𝑖=1

Where δ is number of items, δi the factor loading of items i and (Var ei) the variance of error item i.

Projects name Minimum value of Correlation Maximum value of correlations No. of Item

GTalkWap -0.873 0.893 23

AjHotdraw -.391 .532 23

Healthwatcher -.588 .445 23

Ajhsqldb -.548 .581 23

Contract4J5 -.668 .535 23

142

Composite reliability (building reliability) The CR is a measure of the inner coherence of the

elements of the scale, much like the Cronbach alpha [170]. This may very well be considered the

equivalent of the aggregate sum of the actual variance of the scores compared with the total

variance of the scores on the scale [171]. Again, it is an "indicator of the variation divided between

the observed factors used as a pointer of a latent construction" [171].

The reliability thresholds for composites are questionable (an acceptable value can range from 0.60

to more), and various authors offer various threshold recommendations. Many of them are based on

how many things you have on your scale. Small amounts of scale things will generally lead to lower

levels of reliability, while larger amounts of scale things will generally have more significant levels

[172]. The formula of CR as the following:

Formula

𝑬𝑬𝑬𝑬 𝟔𝟔.𝟒𝟒… … 𝑪𝑪𝑪𝑪 = (∑ 𝛿𝛿𝑖𝑖
𝑝𝑝
𝑖𝑖=1)𝟐𝟐

(∑ 𝛿𝛿𝑖𝑖
2)𝑝𝑝

𝑖𝑖=1
2
+∑ V(δi)𝑝𝑝

𝑖𝑖

i = standardized loading indicator,

V (δi) = variance of the error for the indicator,

p = number of indicators

143

Table 6.9 Average Variance Extracted and Construct Reliability

Projects

Ex

1

Ex

2

Ex

3

Ex

4

Comp

1

Comp

2

Comp

3

Comp

4

Comp

5

SLB

1

SLB

2

SLB

3

SLB

4

SLB

5

RU

1

RU

2

RU

3

RU

4

RU

5

CW

1

CW

2

CW

3

CW

4

Quality Metrics Extensibility Complexity Service loading behaviour Reusability Code Weaving

AVE (GTalkWap) 0.317 0.46 0.746 0.525 0.655

CR (GTalkWap) 0.731 0.729 0.559 0.703 0.579

AVE(AjHotdraw) 0.470 0.356 0.330 0.392 0.4125

CR(AjHotdraw) 0.679 0.763 0.770 0.752 0.701

AVE(Healthwatcher

)
0.570 2.74 0.444 0.280 0.310

CR(Healthwatcher) 0.632 1.129 0.735 0.782 0.734

AVE(Ajhsqldb) 0.600 0.250 0.480 0.250 0.367

CR(Ajhsqldb) 0.750 0.722 1.000 0.559 0.716

AVE(Contract4J5) 0.777 0.666 0.410 0.390 0.389

CR(Contract4J5) 0.470 0.629 0.746 0.753 0.710

 144

Table 6.9 explained the Average Variance Extracted AVE values. The AVE threshold is

>=0.5, which is an accepted value. The minimum number is 0.250 and the maximum number

is 0.777. Out of 5 components of the hybrid application model, three components have

acceptable AVE values. This shows the validity of the data between the corresponding

variables in the model that proposed 23 sub-characteristics with the five general components

is acceptable. Construct Reliability RC build was extracted and showed in Table 38. The CR

values show the internal coherence of the scale items for all components of the hybrid

application model. The minimal value of CR 0.470 and the maximum value was 1.129. These

CR results show the reliability of the composite rating of the component in the proposed that

has a value of 0.6 or above is acceptable. CR showed that the average values of the five

components for proposed hybrid application quality model are reliable and qualifying.

145

6.7.7 Cronbach’s alpha and Kaiser-Meyer-Olkin (KMO) Test:

Cronbach's alpha is a proportion of internal coherence: how closely related elements are in

groups. It is considered a measurement of the reliability of the scale. A "high" value for alpha does

not suggest that it is one-dimensional. If, despite the internal consistency, you want to prove that the

scale is one-dimensional and can be performed additional studies. The exploration factor study is a

dimensional verification technique. Technically, Cronbach's alpha is definitely not an objective test

it is a coefficient of reliability (or coherence).

The Formula of Cronbach’s alpha as the following:

𝐸𝐸𝐸𝐸 6.5 … . .𝛼𝛼 =
𝑁𝑁𝑐𝑐

𝑣𝑣 + (𝑁𝑁 − 1)𝑐𝑐

A Kaiser-Meyer-Olkin (KMO) test is used in research to determine the appropriateness of

inspecting the information to be used for factor analysis. In this a measure that shows how much

fluctuation in your factors can be caused by fundamental factors. High qualities (near 1.0) by and

large demonstrate that a factor examination might be valuable with your information. If the KMO

value is below 0.50, the impact of factor analysis will likely not be useful [173][174][175].

The Formula of as following

EQ 6.6 … … MOj =
∑ -i≠j rij

2

∑ i ≠ j rij2 + ∑ i ≠ j u

Where:

 MOj is the test outcome.

 • rij 2 is the correlation matrix.

• uij is the partial covariance matrix.

146

Table6.10 Five open source projects Cronbach’s alpha and Kaiser-Meyer-Olkin (KMO) Test values

Table 6.10 explains Cronbach's alpha and Kaiser-Meyer-Olkin (KMO) values for five open

source projects show the reliability and validity of these values. Cranach’s alpha (CA)

minimum value is -0.015, and the maximum value is 0.708. The CA values indicate that there

is no meaningful consistency between the sub-characteristics and the major components of

the proposed product quality model for hybrid application framework. The average values are

below the limit value. Kaiser-Meyer-Olkin (KMO) minimum value is 0.390 and maximum

values are 0.702. The average values of KMO are more than 0.5 which considers as

acceptable values. These values suggest that all model data are suitable and reliable for all

components of the proposed model. Moreover the results have showed how significant KMO

values in measuring, sampling adequacy for each model variable.

Pr
oj

ec
ts

E
X

1

E
x2

E
x3

E
x4

C
om

p1

C
om

p2

C
om

p3

C
om

p4

C
om

p5

SL
B1

SL
B2

SL
B3

SL
B4

SL
B5

R
U

1

R
U

2

R
U

3

R
U

4

R
U

5

C
W

1

C
W

2

C
W

3

C
W

4

Quality

Metrics
Extensibility Complexity

Service loading

behaviour
Reusability Code Weaving

CA

(GTalkWa

p)

0.708 -0.588 0.346 -0.071 -0.48

KMO(GT

alkWap)

0.702 0.517 0.418 0.474 0.508

CA(AjHot

draw)

0.414 0.241 0.387 0.008 0.174

KMO(AjH

otdraw)

0.496 0.486 0.516 0.510 0.420

CA(Health

watcher)

0.414 -0.546 0.074 0.204 -0.149

KMO(Hea

lthwatcher

)

0.533 0.448 0.438 0.390 0.545

CA(Ajhsql

db)

0.655 -0.173 0.602 -0.674 -0.155

KMO(Ajh

sqldb)

0.681 0.530 0.590 0.418 0.605

CA(Contr

act4J5)

0.708 -0.499 0.363 -0.453 -0.015

KMO(Con

tract4J5)

0.533 0.448 0.438 0.390 0.545

147

6.8 Hybrid Application System Quality Model Discussion:

This section discusses the hypothesis of statistical evaluations that have been

evaluated, the hybrid application model in section 6.4. There are five model assumptions that

require proof. These hypotheses have been derived from the five main components of the

model (Extensibility, Complexity, and Service loading behaviours, Code Weaving, and Re-

usability).

Hypothesis 1 (Extensibility) H1: These will have an impact on the model's functionality. As

discussed in Section 5.4, the three parameters affected scalability (CDA, JPE, CDC and

NOM). Extensibility will affect the functionality of the quality model and extend the

crosscutting degree, commonality, concern across the source project, and the number of

models in highly reliable techniques. According to section 5.7, the extensibility hypotheses

have been accepted. As shown in Table 6.11, H1 has been accepted in most statistical

evaluations for Cronbach alpha and construction reliability almost achieved the threshold

results. To conclude, H1 was approved and agreed.

Table 6.11 Hypothesis1 H1 statistical evaluation

Hypothesis 2 (Complexity) H2: These components will affect the reliability of the proposed

hybrid quality model, as discussed in Section 5.4. The Complexity in the model has been

Hypothesis1 (H1) Extensibility(EX)(Ex1,Ex2,Ex3,Ex4)

Statistical Evaluation
Statistical

Mean

Standard

Deviation

Significant

P value

Correlation

Coefficient

Average

Variance

Extraction

Cronbach

Alpha

Kaiser

Meyer

Olkin

Construct

Reliability

Threshold Values <=1 >=0.05 -1 to +1 >=0.5 >=0.6 >=0.5 >=0.7

Obtained values

Average 5 projects
6.387 0.746 0.065

Min 0.597

and Max -

0.613

0.546 0.579 0.589 0.652

Results Accepted Accepted Accepted Accepted Accepted
Not

Accepted
Accepted

Not

accepted

148

measured by five metrics (Weighted Method Count (WMC), Depth of Inheritance Tree

(DIT), RFC Response for a Class (RFC), Responses for Aspect (RFA), Number of Aspects

(NOA)). The complexity negatively affected reliability. When complexity is increased, the

reliability of the system decreases. As shown in Table 6.12, H2 was accepted based on the

statistical evaluation five of 7 factors were accepted. These results indicate that most projects

were more complex and made the system less reliable.

Table 6.12 Hypothesis1 H2 statistical evaluation

Hypothesis 3 (Service Loading Behaviour) H3: These Components will affect the

efficiency of the components in the quality model of hybrid application systems. Service

Loading Behaviour has been measured by these metrics (Line of Code (LOC), Number of

Methods (NOM), NOF (Number of Fields), Weighted Joint points Counts (WJC), Line of

Code Aspect (LOCA)) as it shows in table 6.13.

Table 6.13 Hypothesis1 H3 statistical evaluation

Hypothesis2

(H2) Complexity(Comp)(Comp1,Comp3,Comp3,Comp4, Comp5)

Statistical

Evaluation

Statistical

Mean

Standard

Deviation

Significant

P value

Correlation

Coefficient

Average

Variance

Extraction

Cronbach

Alpha

Kaiser Meyer

Olkin

Construct

Reliability

Threshold

Values
 5 <=1 >=0.05 -1 to +1 >=0.5 >=0.6 >=0.5 >=0.7

Obtained values

Average 5

projects

6.064 0.744 0.240

Min 0.597

and Max -

0.613

0.894 -0.313 0.4858

 0.794

Results Accepted Accepted Accepted Accepted Accepted
Not

Accepted
Not Accepted Accepted

Hypothesis3

(H3) Service Loading Behaviour (SLB)(SLB1,SLB2,SLB3,SLB4, SLB5)

Statistical

Evaluation

Statistical

Mean

Standard

Deviation

Significant

P value

Correlation

Coefficient

Average

Variance

Extraction

ronbach

Alpha

Kaiser Meyer

Olkin

Construct

Reliability

Threshold

Values
 5 <=1 >=0.05 -1 to +1 >=0.5 >=0.6 >=0.5 >=0.7

Obtained values

Average 5

projects

6.486 0.965 0.302

Min 0.597

and Max -

0.613

0.482 0.354 0.48

0.762

Results Accepted Accepted Accepted Accepted Accepted
Not

Accepted
 Accepted Accepted

149

As shown in Table 42 above, all statistical measurement results indicate the acceptance of

this hypothesis H3. The H3 indicates that service loading behaviour will positively affect the

efficiency of our proposed hybrid quality model. As the SLB increases, the system becomes

more efficient.

Hypothesis 4 (Code Weaving) H4: these components will affect Maintainability in the

quality model of hybrid application systems. Code Weaving has been measured by these

metrics (Number of Children (NOC), Coupling between Object Classes (CBO), and Access

to Foreign Data (ATFD), coupling on Advice Execution (CAE)). Table 6.14 has been shown

the acceptance of H4 is used for Code Weaving evaluation. The higher value of CW will

result from the higher Maintainability of the system. The Maintainability of the system is

helping a successful repair in a given time

Hypothesis4(H4) Code Weaving(CW1,CW2,CW3,CW4)

Statistical

Evaluation

Statistical

Mean

Standard

Deviation

Significant

P value

Correlation

Coefficient

Average

Variance

Extraction

Cronbach

Alpha

Kaiser

Meyer

Olkin

Construct

Reliability

Threshold Values 5 <=1 >=0.05 -1 to +1 >=0.5 >=0.6 >=0.5 >=0.7

Obtained values

Average 5 projects
6.137333

0.933 0.120

Min 0.597

and Max -

0.613

0.426 -0.125 0.524 0.688

Results Accepted Accepted Accepted Accepted
Not

Accepted

Not

Accepted
Accepted Accepted

Table 6.14 Hypothesis 4 (Code Weaving) statistical evaluation

Hypothesis 5 (Re-usability) H5: These components will influence the portability of the

hybrid application system quality model. Reusability has been measured by these metrics

Lack of Cohesion of Methods (LCOM), Lack of Cohesion among Methods (LCAM), Lack of

Tight Class Cohesion (LTCC), Lack of Concern Based Cohesion (LCBC), and Lack of

Cohesion in Joinpoints (LCJ). Table 44 explained the effect of Reusability on the Portability

of quality mode. The higher value of reusability leads to an increased value of portability.

Software Engineering Portability enables the application system to be moved from one

environment to another at a lower cost. Adding more Portability is a high level of

programming language with reusability. However, both of them measured the same software

in different environments. The Table 6.15 is shown the re-usability partially accepted, which

shows average values of Portability of the application systems.

150

Table 6.15 Hypothesis 5 H5 statistical evaluation

6.8.1 Hypothesis Model (Software Product Quality-Hybrid Application System):

Section 6.5 was discussed in detail and all hypotheses were accepted using 7 statistical

measures. Software Product Quality - Hybrid Application System Model has been tested and

approved according to five assumptions (H1, H2, H3, H4, and H5). All of these hypotheses

have been derived from four or five sub-characteristics (metrics) which represent

measurements of quality. These sub-characteristics had no acceptable value, but 5 out of 7

average results will be accepted. The hypotheses model may be presented in Figure 6.2 [178]

[179].

Hypothesis 5

(H5) Re-usability (RU1,RU2,RU3,RU4,RU5)

Statistical

Evaluation

Statistical

Mean

Standard

Deviation

Significant

P value

Correlation

Coefficient

Average

Variance

Extraction

Cronbach

Alpha

Kaiser

Meyer Olkin

Construct

Reliability

 Threshold

Values
 5 <=1 >=0.05 -1 to +1 >=0.5 >=0.6 >=0.5 >=0.7

Obtained

values

Average 5

projects

5.658 1.030167

0.3

Min 0.597

and Max -

0.613

0.367 0.197 0.436 0.709

 Results Accepted Accepted Accepted Accepted
Not

Accepted

Not

Accepted
NotAccepted Accepted

151

Figure 6.2 Hypothesis Model (Software Product Quality-Hybrid Application System)

6.9 Conclusion

This chapter concentrated on the evaluation of the proposed Software Product Quality

- Hybrid application system model. Statistical assessment and validation methodologies were

used to analyse data collected from five open projects. The statistical evaluation comprises

(mean, standard deviation, factor analysis - P-value, correlation coefficient, mean variance

extracted, construction reliability, Cronbach Alpha and Kaiser Mayer Olkin). Statistical

evaluations have a threshold values for accepting and rejecting the extracted values for all

measures (sub-components), which affect the major components of the model. The main

proposed components (Extensibility, Complexity, Service Loading Behaviours, Code

Weaving, and (Re-usability). These major components have been tested in a form of 5

hypotheses (H1, H2, H3, H4 and H5). All hypotheses have been approved. The statistical

results for H1 (Extensibility) show that the higher value of extensibility increases the

functionality of the proposed software product quality - Hybrid Application System.

Extensibility of AOP has included crosscutting degree, joint point, and concern across hybrid

application system. H2 (Complexity) has been accepted in the model. H2 affected by (Line

Of Code (LOC), Number of Methods (NOM), NOF(Number of Fields), Weighted Joint

points Counts (WJC), Line Of Code Aspect (LOCA)), however, H2 has been accepted, but

more complexity of the system lead to poor reliability of the hybrid application systems. H3

(Service Loading Behaviours) entered Software Product Quality - Hybrid application System

proposed model, as the statistical result shows. H3 was assigned to (Line of Code (LOC),

Number of Methods (NOM), NOF (Number of Fields), Weighted Joint Points Counts (WJC),

Software
Product

Quality-Hybrid
Application

System

H1(Extensibility)

H2 (Complexity)

H3 (Service
Loading

Behaviour)

H4 (Code
Weaving)

(Re-usability)H5

152

Line of Code Aspect (LOCA)). The rise in the value of H3 indicated that the hybrid system

will be more efficient. H4 (Code Weaving) in Product Quality – Hybrid Application System

software was reviewed and evaluated. H4 affected by (Number of Children (NOC), Coupling

between Object Classes (CBO), Access to Foreign Data (ATFD), coupling on Advice

Execution (CAE)). H4 will enhance the maintainability of the proposed Software Product

Quality - Hybrid application system. H5 (Re-usability) is the hypothesis that has been

examined and statistically evaluated. A H5 result shows that it has been accepted. H5 affected

by Lack of Cohesion Of Methods (LCOM), Lack of Cohesion Among Methods (LCAM),

Lack of Tight Class Cohesion (LTCC), Lack of Concern Based Cohesion (LCBC), Lack of

Cohesion in Joint Points (LCJ). H5 will affect the portability of the proposed model and help

the hybrid application system to be more agile in different environments. In conclusion, all

five assumptions were accepted, and the model was evaluated and accepted. The model

shows that the proposed metrics and major components are accepted. The combination of

AO/OO measurements was conducted and measured and then designed using IBM AMOS

software. Results were collected and quantified statistically. The similarity of the

measurement results shows that extraction of the measurements is correct and showed

common measurements between these technologies that affect the different measurements.

AOP measurements have a similar impact on the development process of OOP measurement

software according to the got results [180][181].

153

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 Introduction:

This chapter concludes the work carried out in this research. This research clarifies

the methods of analysis of the hypothesis and the strategies that have been used to prove

these hypotheses. The contribution to the knowledge has been explained, which is proposing

new product software quality for a hybrid application system. Adding more, the study shows

the relationships between AO and OO metrics with similarities of several metrics. The

limitations and inadequacies of this study are that several case studies, size of the project and

development methodologies, which need more analysis to get more results and get more

accurate results. The chapter ends with a clarification of the future direction of this study.

Section 7.3 describes the major contribution, design, and implementation of this research.

Section 7.4 deals with the limitation of the study because of the duration and complexity of

implementing this project. Section 7.5 discusses the future work that will need to be done in

the future. Finally, section 7.6 concludes the importance of this research in the software

development measurement method.

154

7.2 Achieved Goals and Objectives:

The main aim of this search was:

Propose a new Aspect Oriented quality measurement and a new software product

quality model for hybrid application systems. In section 3.5, have been explained several

tools are being tested for extraction AOP metrics. However, not all the purpose and

objectives of this study have been achieved. It clarifies what is lacking in the development of

AOP metrics and quality metrics of AOP products. Several tools have been used for

extracting metrics from hybrid application, including Ajatoo, AOP Metrics, CMTJava,

JDepend, JMetric, Rapid miner and GATE tools. The disadvantages of these tools that have

issues in compatibility between AO/OO and most of them not recognise AO technology in

the project source code. The results identified a research gap and the absence of evaluation

measures for hybrid application software AO/OO. Proposing and approving a novel Aspect

Oriented quality model for measuring hybrid application product. Object Oriented

Programming and Aspect Oriented Programming have different quality metrics, but there are

no existing metrics that measure a hybrid application system (AOP-OOP). Chapter 5, Section

5.3 it has been discussed five types of quality models. ISO/IEC 9126 quality measurement

model has been adapted to propose a new product quality model.

 A comprehensive literature review and finding of the research gap between AO and OO

metrics for the hybrid application have been conducted which have been explained in

Chapters 2 and 3. Five open source projects have been assessed and categorised to match the

criteria of aim and aim of this thesis. However, intentionally it has selected these projects that

have a difference in use AOP and OOP, in order to have accurate and reliable results.

The ISO/IEC 9126 software quality model has been analysed and examined qualitatively and

quantitatively. It was proposed to add five key components to the model (Scalability,

Complexity, Service Loading Behaviours, Code Weaving, and Reusability). Structural

Equation Modelling was used to design this model and all key elements of the proposed

model. These are represented as an observable variable in the proposed model. The principal

components of the product Quality Model are (Functionality, Reliability, Effectiveness,

Maintainability, Portability) respectively. These components have 23 sub-components. These

have been extracted using the Code-MR plug-in to gather the values of these sub-

components. The results were analysed and standardised to reflect each value in Chapter 4.

155

All these components have been approved and accepted in detailed literature reviews and

statically using structure equation modelling using the AMOS tool.

The AMOS tool is used SPSS statistical function for validating data. 23 measurements were

got using the Code-MR plug-in. This is an acceptable contributes to the quality model of the

hybrid application product. These have been examined statistically. AMOS represents the

proposed model using Graphical User Interface features. Comprehensive assessment has been

conducted in Chapter 6 by using seven statistical measures to prove the reliability and

acceptability of the extracted data. The collected data have been entered the IBM AMOS tool.

IBM AMOS has SPSS statistics measurement capabilities. Five hypotheses have been

proposed and proven (H1, H2, H3, H4 and H5). Static measurements have been carried out

and all hypotheses are accepted. However, Complexity metrics have been accepted, but it has

reduced the reliability of the hybrid application system.

7.3 Contribution:

There are a variety of quality models for measuring hybrid application available in the

industry. However, neither of these models has been received as a standard strategy for the

moment. As described in this thesis’s motivations in Chapter 1 and Chapter 4, there is still

space for novel approaches that could provide a product quality approach and

comprehensively hybrid application developed using AOP and OOP.

Below are several contributions from this research:

The research analysed all existing Aspect Oriented approaches and the purpose Hybrid

AO/OO quality framework (some of the well-known approaches were explained and

criticised in Chapter 3). It was observed that there are still limitations to the existing software

quality model of hybrid application system approaches (AO, OOP). The limitation was the

existing quality model could not estimate the effect of AO/OO metrics on software quality,

while proposed metrics have been identified the relationship between quality metrics for

hybrid AO/OO software applications.

156

Proposing a software quality software model for measuring hybrid AO/OO software

application based on gap in details literature review and ISO 9126 quality model.

Another contribution is proposing a model for evaluating software quality model for hybrid

application systems. It has been used tool to design and evaluate the model, which is

Standardised Equations Modelling. As a result, research has focused on developing a unified

approach for Product Quality Framework of Hybrid Application System.

The study has addressed quality measurement problems in hybrid application systems (AOP,

OOP). which not give accurate measurement when used AO/OO technologies in their

development process, while the proposing model measure all metrics values for both AO/OO

precisely .

Finding the relationships between OO and AO by reflecting traditional OO metrics on AO

metrics and unified it. The quality model contains components representing the relations

between the principal components of the product and their sub-components, for instance,

aspectual concern, such as aspect, Advice, and Pointcuts, JoinPoint, and weaving association

combination with traditional OOP quality measurements metrics. Ratings described a new

proposed quality model based on several quality frameworks, which were described in

Chapter 4. New product quality metrics focused on the hybrid application system aspect were

proposed in Section 5.9.

Propose product quality metrics for a hybrid application system. It must extract the values

from the metrics. The Code-MR tool was used to extract the measurements with an extra

written algorithm to extract the AOP and OOP measurements. All extracted data inserted into

the SPSS file were then used as input data in the structural equation modelling. These

measures were assessed and tested in a logical and statistical manner. The proposed

parameters were accepted regarding threshold values for assessment methods. Sections 2.7

and 4.3 have explained these metrics.

Proposing new design for all components of product quality model using Structural Equation

Modelling SEM and SPSS statistical tool is used to measure outcomes. Seven statistics were

used to verify the reliability and acceptance of the quality model. Five hypotheses have been

examined with the reflection of the model of quality. These assumptions were endorsed and

accepted regarding the reliability of static values.

157

A comprehensive literature review was carried out. Several open-source code tools have been

used to extract aspect-oriented and object-oriented measurements. Static and dynamic

measurements were gathered. This study focused on static measurements because those

measurements are based on the source code which can measure statically. The dynamic

measures required the execution of the applications, which require more resources and more

time for evaluation. Extraction of static measurements was used to determine which

measurements affect the product quality model for the hybrid application system. However,

dynamic metrics also extracted base on statistical measurements.

Several types of graphic representation of the static and dynamic measures were revealed.

Code-MR is displays measurement results in graph output and table representation. It can

easily filter and separate the result from the metrics and can also be retrieved as text, then

feed into the proposed product quality framework model.

7.4 Study Limitation:

The implementation and assessment process for this study included several

limitations:

At the beginning of the extraction of the Aspect measures, many tools were used. These tools

have been developed to work with specific versions of AOP, and it was difficult to construct

all of them, unifying the programming language of all projects to identify new AOP metrics.

The five open source projects have been developed using AOP and OOP programming

techniques. The project’s size varied. This affected the retrieval of the measurements and the

results achieved. In some projects, AOP is more used than OOP and in others was opposite

and the development method was varied.

The crosscutting concerns have been measured dynamically at the runtime. The difficulty of

measuring all crosscutting concerns, Advice, Pointcut is calculating statically, not at runtime.

Configure multiple tools to extract AOP metric and OOP metric. These tools run on several

versions of Java Development Kids. Different versions lead to different outcomes. It takes a

158

lot of time to normalise and conclude these outcomes. Combinations of standardised and

unified AO and OOP measures have been collected.

No compositional framework exists to measure the quality of appearance and object as a

quality measurement model.

7.5 Future Work:

Product quality frameworks for hybrid application system are a developing approach.

There is still a gap for the improvement and extension. As in Section 7.3, a lot of work needs

to be done on the software quality framework for hybrid application software due to time

constraints and implementation complexity. Many additional components may be added to

the quality framework template. Extension tools can be developed to measure the hybrid

application system and have shown the effect of appearance and object measurements on

every application. Aspect Oriented metrics require more research; many common Aspect and

purpose measures need to be identified. Data extraction tools for identified new metrics can

be implemented to help software industries significantly recognize the effect of AO and OO

metrics on software quality. Extensibility enhances the product's functionality. Complexity

has an adverse impact on the reliability of application systems. Service Loading behaviour

improves product efficiency, Code Weaving affects maintainability, and reusability has a

positive impact on the portability of hybrid application systems. Finally, it is recommended

that this quality model may be developed and used as an extension of ISO/9126.

7.6 Final Remarks:

The proposed Product Quality Model for hybrid application is not the final work.

There are many metrics and features that need to be added to the framework. A clear

shortcoming is that hybrid application systems need a quality measurement framework that is

compatible with other technical requirements. The weaving process and crosscutting

concerns, and all other AO techniques, can be analysed using the proposed product quality

model framework. This research is not the final work of identifying AO/OO hybrid

application systems; all limitations and barriers will be overcome in future research. Finally,

it can be concluded a significant amount of information about AOP and AOP modelling and

design in practice. I will carry on with the same energy for the future and go further in this

work.

159

References

[1] ISO/IEC 9126 1, 2001, ISO/IEC 9126 2, 2003, ISO/IEC 9126 3, 2003 and ISO/IEC 9126 4, 2004,

“Information Technology – Product Quality Part1: Quality Model, Part 2: External Metrics, Part3:

Internal Metrics, Part4: Quality in use Metrics”, International Standard ISO/IEC 9126, International

Standard Organization.

[2] Aniche, M. (2015, May 1). https://github.com/mauricioaniche/ck. Retrieved April 1, 2019, from

https://github.com/mauricioaniche: https://github.com/mauricioaniche/ck

[3] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Griswold, “Getting started with

AspectJ,” Communications of the ACM, vol. 44, no. 10, pp. 59–65, 2001.

[4] S. Iqbal, “Aspects and Objects: A Unified Software Design Framework,” 2013.

[5] Ghareb, M.I. and Allen, G., 2018, April. State of the art metrics for Aspect oriented programming.

In AIP Conference Proceedings (Vol. 1952, No. 1, p. 020107). AIP Publishing.

[6] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G., 2001, June. An

overview of AspectJ. In European Conference on Object-Oriented Programming (pp. 327-354). Springer,

Berlin, Heidelberg.

[7] Filman, R., Elrad, T., Clarke, S. and Akşit, M., 2004. Aspect-oriented software development.

Addison-Wesley Professional.

[8] W. Cazzola, A. Marchetto, and F. B. Kessler, “AOP-HiddenMetrics: Separation, Extensibility, and

Adaptability in SW Measurement.,” Journal of Object Technology, vol. 7, no. 2, pp. 53–68, 2008.

[9] Walton, P. and Maiden, N. eds., 2019. Integrated software reuse: management and techniques.

Routledge.

[10] Ghareb, M.I. and Allen, G., 2018, April. State of the art metrics for Aspect oriented programming.

In AIP Conference Proceedings (Vol. 1952, No. 1, p. 020107). AIP Publishing.

[11] Gulia, P., Khari, M. and Patel, S., 2019. Metrics Analysis in Object Oriented and Aspect Oriented

Programming. Recent Patents on Engineering, 13(2), pp.117-122.

[12] E. Arisholm, L. C. Briand, and A. Foyen, “Dynamic coupling measurement for object-oriented

software,” IEEE Transactions on software engineering, vol. 30, no. 8, pp. 491–506, 2004.

[13] M. Ceccato and P. Tonella, “Measuring the effects of software aspectization,” in 1st Workshop on

Aspect Reverse Engineering, 2004, vol. 12.

[14] A. Mitchell and J. F. Power, “Using object-level runtime metrics to study coupling between objects,”

in Proceedings of the 2005 ACM symposium on Applied computing, 2005, pp. 1456–1462.

[15] D. Ng, D. R. Kaeli, S. Kojarski, and D. H. Lorenz, “Program comprehension using aspects,” in ICSE

2004 Workshop WoDiSEE’2004, 2004.

https://github.com/mauricioaniche/ck

160

[16] H. Li, M. Zhou, G. Xu, and L. Si, “Aspect-oriented Programming for MVC Framework,” in

Biomedical Engineering and Computer Science (ICBECS), 2010 International Conference on, 2010, pp.

1–4.

[17] Rashid, Awais, Ana Moreira, and Jo\=ao Araújo. “Modularisation and Composition of Aspectual

Requirements.” In Proceedings of the 2nd International Conference on Aspect-Oriented Software

Development, 11–20, 2003.

[18] Jacobson, Ivar. “Use Cases and Aspects-Working Seamlessly Together.” Journal of Object

Technology 2, no. 4 (2003): 7–28.

[19] Baniassad, Elisa, and Siobhan Clarke. “Theme: An Approach for Aspect-Oriented Analysis and

Design.” In Proceedings of the 26th International Conference on Software Engineering, 158–67, 2004.

[20] M. Berkane, M. Boufaida, and L. Seinturier, “Reasoning about design patterns with an Aspect-

Oriented approach,” in Information Technology and e-Services (ICITeS), 2012 International Conference

on, 2012, pp. 1–7.

[21] S. A. Khan and A. Nadeem, “UML extensions for modelling of aspect-oriented software: a survey,”

in Proceedings of the 2010 National Software Engineering Conference, 2010, p. 5.

[22] M. L. Bernardi and G. A. Di Lucca, “Improving Design Patterns Modularity Using Aspect

Orientation,” STEP 2005, p. 209, 2005.

[23] Hannemann, J., Kiczales, G.,’Overcoming the Prevalent Decomposition of Legacy Code’,

Workshop on Advanced Separation of Concerns at the International Conference on Software Engineering

(ICSE), 2001.

[24] Hachani, O., Bardou D., ’On Aspect-Oriented Technology and Object-Oriented Design Patterns’,

Proc. of European Conference on Object-Oriented Programming (ECOOP), 2003.

[25] Hannemann, J., Kiczales, G., ’Design Patterns Implementation in Java and AspectJ’, Proc. of Object

Oriented Programming Systems Languages and Applications (OOPSLA), 2002.

[26] Bernardi, M.L., Cimitile, M., Distance, D., ‘Web applications design recovery and evolution with

RE-UWA’, Journal of Software: Evolution and Process, vol. 25, no. 8, pp. 789-814, 2013.

[27] E. W. Dijkstra, A Discipline of Programming. Englewood Cliffs, NJ: Prentice Hall, 1976.

[28] A. Mitchell and J. F. Power, “Using object-level run-time metrics to study coupling between

objects,” in Proceedings of the 2005 ACM symposium on Applied computing, 2005, pp. 1456–1462.

[29] Ortu, M., Orrú, M. and Destefanis, G., 2019, February. On Comparing Software Quality Metrics of

Traditional vs Blockchain-Oriented Software: An Empirical Study. In 2019 IEEE International Workshop

on Blockchain Oriented Software Engineering (IWBOSE) (pp. 32-37). IEEE.

161

[30] Tsunoda, T., Washizaki, H., Fukazawa, Y., Inoue, S., Hanai, Y. and Kanazawa, M., 2019. Metrics to

Predict Future Modifications and Defects Based on Software Requirements Specifications. IEIE

Transactions on Smart Processing & Computing, 8(3), pp.210-218.

[31] Coulin, T., Detante, M., Mouchère, W. and Petrillo, F., 2019. Software Architecture Metrics: a

literature review. arXiv preprint arXiv:1901.09050.

[32] E. Rønningen and T. Steinmoen, “Increasing readability with Aspect-Oriented Programming,”

Department of Computer and Information Science (IDI), 2003.

[33] C. Zhang and H.-A. Jacobsen, “Quantifying aspects in middleware platforms,” in Proceedings of the

2nd international conference on Aspect-oriented software development, 2003, pp. 130–139.

[34] M. Mickelsson, “Aspect-Oriented Programming compared to Object-Oriented Programming when

implementing a distributed, web based application,” Department of Information Technology, Uppsala

University, 2002.

[35] Y. Coady and G. Kiczales, “Back to the future: a retroactive study of aspect evolution in operating

system code,” in Proceedings of the 2nd international conference on Aspect-oriented software

development, 2003, pp. 50–59.

[36] S. L. Tsang, S. Clarke, and E. Baniassad, “Object metrics for aspect systems: Limiting empirical

inference based on modularity,” Submitted to ECOOP, 2004.

[37] A. A. Zakaria and H. Hosny, “Metrics for aspect-oriented software design,” in Proc. Third

International Workshop on Aspect-Oriented Modeling, AOSD, 2003, vol. 3.

[38] R. Burrows, F. C. Ferrari, A. Garcia, and F. Ta"\iani, “An empirical evaluation of coupling metrics

on aspect-oriented programs,” in Proceedings of the 2010 ICSE Workshop on Emerging Trends in

Software Metrics, 2010, pp. 53–58.

[39] R. Burrows, A. Garcia, and F. Ta"\iani, “Coupling metrics for aspect-oriented programming: A

systematic review of maintainability studies,” in International Conference on Evaluation of Novel

Approaches to Software Engineering, 2008, pp. 277–290.

[40] K. Dhambri, J.-F. Gélinas, S. Hassaine, and G. Langelier, “Visualization-based Analysis of Quality

for Aspect-Oriented Systems.”

[41] Nistala, P., Nori, K.V. and Reddy, R., 2019, May. Software quality models: a systematic mapping

study. In Proceedings of the International Conference on Software and System Processes (pp. 125-134).

IEEE Press.

[42] Fenton, N. and Bieman, J., 2014. Software metrics: a rigorous and practical approach. CRC press.

[43] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, New Jersey,

1976.

162

[44] David L. Parnas. On the Criteria To Be Used in Decomposing Systems into Mod- ules. Comm.

ACM, 15(12):1053–1058, December 1972.

[45] Karl J. Lieberherr. Adaptive Object-Oriented Software: the Demeter Method with Propagation

Patterns. PWS Publishing Company, Boston, 1996.

[46] Mehmet Ak ̧ sit, Lodewijk Bergmans, and Sinan Vural. An Object-Oriented Language-Database

Integration Model: The Composition-Filters Approach. In Proc. of the 6th European Conference on

Object-Oriented Programming (ECOOP’92), Utrecht, The Netherlands, June/July 1992.

[47] William H. Harrison and Harold L. Ossher. Subject-Oriented Programming - A Critique of Pure

Objects. In Proc. of the 8th Conference on Object-Oriented Pro- gramming Systems, Languages, and

Applications (OOPSLA’93), Washington, DC, USA, September 1993.

[48] Peri L. Tarr, Harold L. Ossher, William H. Harrison, and Stanley M. Sutton, Jr. N Degrees of

Separation: Multi-Dimensional Separation of Concerns. In Proc. of the 21st Int. Conference on Software

Engineering (ICSE’99), Los Angeles, California, May 1999.

[49] Kiczales, G., et al. An overview of AspectJ. In Proceedings of the 15th European Conference on

Object-Oriented Programming (ECOOP). Springer, 2001.

[50] A. Mendhekar, G. Kiczales, and J. Lamping, “RG: A case-study for aspect-oriented programming,”

1997.

[51] S. Apel and D. Batory, “How AspectJ is Used: An Analysis of Eleven AspectJ Programs”, Technical

report MIP-0801, Universität Passau, Passau, Germany, 2008.

[52] M. Kersten, “AOP@Work: AOP tools comparision, Part1,” IBM,

http://www.ibm.com/developerworks/java/library/j-aopwork1/. [Accessed: Apr. 10, 2015].

[22] A. Oaks and H. Wong, Java Threads, 3rd ed., O’Reilly, 2004.

[53] K. Sirbi and P. J. Kulkarni, “AOP and its impact on software quality,” Elixir Computer Science and

Engineering, pp. 12606–12610, 2013.

[54] Bhatti, H.R., 2011. Automatic measurement of source code complexity.

[55] Wilhelm, M. and Diehl, S., 2005. Dependency viewer-a tool for visualizing package design quality

metrics. In Visualizing Software for Understanding and Analysis, 2005. VISSOFT 2005. 3rd IEEE

International Workshop on(pp. 1-2). IEEE.

[56] Yadav, V. and Singh, R., 2013, February. Predicting design quality of object-oriented software using

UML diagrams. In Advance Computing Conference (IACC), 2013 IEEE 3rd International (pp. 1462-

1467). IEEE.

[57] Lincke, R., Lundberg, J., and Löwe, W., 2008, July. Comparing software metrics tools.

In Proceedings of the 2008 international symposium on Software testing and analysis (pp. 131-142). ACM.

163

[58] Kalan, R.S. and Ünalir, M.O., 2016, October. Leveraging big data technology for small and medium-

sized enterprises (SMEs). In Computer and Knowledge Engineering (ICCKE), 2016 6th International

Conference on (pp. 1-6). IEEE.

[59] Cunningham, H., 2002. GATE, a general architecture for text engineering. Computers and the

Humanities, 36(2), pp.223-254.

[60] Ghareb, Mazen and Allen, Gary (2015) Improving the Design and Implementation of Software

Systems uses Aspect Oriented Programming. In: Second Scientific Conference University of Human

Development, 1st-2nd April/2015, University of Human Development, Sulaymaniyah, Kurdistan Region

of Iraq

[61] R. Burrows, A. Garcia, and F. Ta"\iani, “Coupling metrics for aspect-oriented programming: A

systematic review of maintainability studies,” in International Conference on Evaluation of Novel

Approaches to Software Engineering, 2008, pp. 277–290.

[62] Eaddy, M., Aho, A., and Murphy, G.C., 2007, May. Identifying, assigning, and quantifying

crosscutting concerns. In Proceedings of the First International Workshop on Assessment of Contemporary

Modularization Techniques (p. 2). IEEE Computer Society.

[63] Chidamber, S.R., and Kemerer, C.F., 1994. A metrics suite for object-oriented design. IEEE

Transactions on software engineering, 20(6), pp.476-493.

[64] Ghareb, M. and Allen, G., 2015. Improving the Design and Implementation of Software Systems

uses Aspect Oriented Programming.

[65] A. Kaur, S. Singh, K. Kahlon, and P. S. Sandhu, “Empirical Analysis of CK \& MOOD Metric Suit,”

International Journal of Innovation, Management and Technology, vol. 1, no. 5, p. 447, 2010.

[66] Chidamber, S.R., and Kemerer, C.F., 1991. Towards a metrics suite for object-oriented design (Vol.

26, No. 11, pp. 197-211). ACM.

[67] Subramanyam, R. and Krishnan, M.S., 2003. Empirical analysis of CK metrics for object-oriented

design complexity: Implications for software defects. IEEE Transactions on software engineering, 29(4),

pp.297-310.

[68] Zhao, J., 2004, September. Measuring coupling in aspect-oriented systems. In 10th International

Software Metrics Symposium (Metrics 04).

[69] Rothenberger, M.A., Dooley, K.J., Kulkarni, U.R. and Nada, N., 2003. Strategies for software reuse:

A principal component analysis of reuse practices. IEEE Transactions on Software Engineering, 29(9),

pp.825-837.

[70] Mens, T. and Tourwé, T., 2004. A survey of software refactoring. IEEE Transactions on software

engineering, 30(2), pp.126-139.

164

[71] S. MacDonell,M. Shepperd, P. Sallis, Metrics for database systems an empirical study, in: Proc. 4th

Int’l Software Metrics Symposium (Metrics 97), IEEE Computer Society Press, Albuquerque, May

1997,pages 99–107.

[72] L. Briand, S. Morasca, V. Basili, An operational process for goaldriven definition of measures, IEEE

Transactions on Software Engineering 28 (12) (2002) 1106–1125.

[73] D. de Champeaux, Object-Oriented Development Process and Metrics, Prentice-Hall, Upper Saddle

River, 1997.

[74] S. Pfleeger, Guest editor’s introduction: assessing measurement, IEEE Software 14 (2) (1997) 25–26.

[75] ISO/IEC, International Standard ISO/IEC 90003, Software and Systems Engineering—Guidelines

for the Application of ISO/IEC 9001:2000 to Computer Software, International Standards Organization,

Geneva, Switzerland, 2004.

[76] Li, W., 1999. Software product metrics. IEEE Potentials, 18(5), pp.24-27.

[77] Honglei, T., Wei, S. and Yanan, Z., 2009, December. The research on software metrics and software

complexity metrics. In 2009 International Forum on Computer Science-Technology and Applications (Vol.

1, pp. 131-136). IEEE.

[78] Fenton, N. and Bieman, J., 2014. Software metrics: a rigorous and practical approach. CRC press.

[79] Côté, Vianney, Pierre Bourque, Serge Oligny, and N. Rivard. "Software metrics: an overview of

recent results." Journal of Systems and Software 8, no. 2 (1988): 121-131.

[80] Li, H.F. and Cheung, W.K., 1987. An empirical study of software metrics. IEEE Transactions on

Software Engineering, (6), pp.697-708.

[81] Ince, D., 1990. Software metrics: introduction. Information and Software Technology, 32(4), pp.297-

303.

[82] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and comprehensive investigation of

methods to build and evaluate fault prediction models. JSS, 83(1):2–17, 2010.

[83] C. Bird, N. Nagappan, B. Murphy, H. Gall, and P. T. Devanbu. Don’t touch my code!: examining

the effects of ownership on software quality. In T. Gyim´othy and A. Zeller, editors, SIGSOFT FSE, pages

4–14. ACM, 2011.

[84] A. E. Hassan. Predicting faults using the complexity of code changes. In ICSE, pages 78–88. IEEE,

2009.

[85] A. Mockus and D. M. Weiss. Predicting risk of software changes. Bell Labs Technical Journal,

5(2):169–180, 2000.

[86] D. Posnett, V. Filkov, and P. Devanbu. Ecological inference in empirical software engineering. In

ASE’2011,pages 362–371. IEEE, 2011.

165

[87] Harrison, W., Magel, K., Kluczny, R. and DeKock, A., 1982. Applying software complexity metrics

to program maintenance. Computer, (9), pp.65-79.

[88] Boehm, B.W., Brown, J.R. and Lipow, M., 1976, October. Quantitative evaluation of software

quality. In Proceedings of the 2nd international conference on Software engineering (pp. 592-605). IEEE

Computer Society Press.

[89] Kan, S.H., 2002. Metrics and models in software quality engineering. Addison-Wesley Longman

Publishing Co., Inc..

[90] Neelamegam, C. and Punithavalli, M., 2009. A survey-object oriented quality metrics. Global

Journal of Computer Science and Technology, 9(4), pp.183-186.

[91] Shaheen, A., Qamar, U., Nazir, A., Bibi, R., Ansar, M. and Zafar, I., 2019, May. OOCQM: Object

Oriented Code Quality Meter. In International Conference on Computational Science/Intelligence &

Applied Informatics (pp. 149-163). Springer, Cham.

[92] Ceccato, M. and Tonella, P., 2004, November. Measuring the effects of software aspectization.

In 1st Workshop on Aspect Reverse Engineering (Vol. 12).

[93] Shen, H. and Zhao, J., 2007. An evaluation of coupling metrics for aspect-oriented software. Center

for Soft. Eng., SJTU, Shanghai-

[94] China, Tech. Rep. SJTU-CSE-TR-07-04.Bartsch, M. and Harrison, R., 2006, March. An evaluation

of coupling measures for AspectJ. In LATE Workshop AOSD.

[95] Babu, C. and Vijayalakshmi, R., 2008. Metrics-based design selection tool for Aspect oriented

software development. ACM SIGSOFT Software Engineering Notes, 33(5), p.4.

[96] Bartsch, M. and Harrison, R., 2006, March. An evaluation of coupling measures for AspectJ.

In LATE Workshop AOSD.

[97] Sirbi, K.S. and Kulkarni, P.J., 2010. Coupling Metrics for Aspect Oriented

Programming. International Journal of Advanced Research in Computer Science, 1(3).

[98] Burrows, R., Ferrari, F.C., Garcia, A. and Taïani, F., 2010, May. An empirical evaluation of coupling

metrics on aspect-oriented programs. In Proceedings of the 2010 ICSE Workshop on Emerging Trends in

Software Metrics (pp. 53-58).

[99] Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C. and von Staa, A., 2006.

Modularizing design patterns with aspects: a quantitative study. In Transactions on Aspect-Oriented

Software Development I (pp. 36-74). Springer, Berlin, Heidelberg.

[100] Piveta, E.K., Moreira, A., Pimenta, M.S., Araújo, J., Guerreiro, P. and Price, R.T., 2012. An

empirical study of aspect-oriented metrics. Science of Computer Programming, 78(1), pp.117-144.

[101] Boticki, I., Katic, M. and Martin, S., 2012. Exploring the educational benefits of introducing aspect-

oriented programming into a programming course. IEEE transactions on education, 56(2), pp.217-226.

166

[102] Mguni, K. and Ayalew, Y., 2013. An assessment of maintainability of an aspect-oriented

system. ISRN Software Engineering, 2013.

[103] Gaia, F.N., Ferreira, G.C.S., Figueiredo, E. and de Almeida Maia, M., 2014. A quantitative and

qualitative assessment of aspectual feature modules for evolving software product lines. Science of

Computer Programming, 96, pp.230-253.

[104] Sant’Anna, C., Figueiredo, E., Garcia, A. and Lucena, C.J., 2007, September. On the modularity of

software architectures: A concern-driven measurement framework. In European Conference on Software

Architecture (pp. 207-224). Springer, Berlin, Heidelberg.

[105] Teebiga, R. and Velan, S.S., 2016, May. Comparison of applying design patterns for functional and

non-functional design elements in Java and AspectJ programs. In 2016 International Conference on

Advanced Communication Control and Computing Technologies (ICACCCT) (pp. 751-757). IEEE.

[106] Nuñez-Varela, A.S., Pérez-Gonzalez, H.G., Martínez-Perez, F.E. and Soubervielle-Montalvo, C.,

2017. Source code metrics: A systematic mapping study. Journal of Systems and Software, 128, pp.164-

197.

[107] Kaur, P.J., Kaushal, S., Sangaiah, A.K. and Piccialli, F., 2018. A framework for assessing reusability

using package cohesion measure in Aspect oriented systems. International Journal of Parallel

Programming, 46(3), pp.543-564.

[108] Da Silva, B.C., Sant'Anna, C. and Chavez, C., 2011, May. Concern-based Cohesion as change

proneness indicator: an initial empirical study. In Proceedings of the 2nd International Workshop on

Emerging Trends in Software Metrics (pp. 52-58).

[109] Sheshasaayee, A. and Jose, R., 2015. A Descriptive Study about Aspect Oriented Coupling and

Cohesion Measures. International Journal of Innovative Science, Engineering & Technology, 2(8).

[110] Kumar, A., Kumar, R. and Grover, P., 2008. A critical review of cohesion measures and

measurement frameworks in aspect-oriented systems. In Proc. 2nd National Conference on Computing for

National Development (INDIACom-2008) (pp. 415-420).

[111] Sant’Anna, C., Figueiredo, E., Garcia, A. and Lucena, C.J., 2007, September. On the modularity of

software architectures: A concern-driven measurement framework. In European Conference on Software

Architecture (pp. 207-224). Springer, Berlin, Heidelberg.

[112] Sant’Anna, C., Garcia, A. and Lucena, C. 2008. Evaluating the Efficacy of Concern-Driven Metrics:

A Comparative Study. In Proc. of the 2nd Workshop on Contemporary Modularization Techniques

(ACOM’08), Nashville, USA.

[113] Robillard, M.P. and Murphy, G.C., 2007. Representing concerns in source code. ACM Transactions

on Software Engineering and Methodology (TOSEM), 16(1), pp.3-es.

167

[114] McCabe, T.J., 1976. A complexity measure. IEEE Transactions on software Engineering, (4),

pp.308-320.

[115] Harrison, W.A. and Magel, K.I., 1981. A complexity measure based on nesting level. ACM Sigplan

Notices, 16(3), pp.63-74.

[116] Howatt, J.W. and Baker, A.L., 1989. Rigorous definition and analysis of program complexity

measures: an example using nesting. Journal of Systems and Software, 10(2), pp.139-150.

[117] Piwowarski, P., 1982. A nesting level complexity measure. ACM Sigplan Notices, 17(9), pp.44-50.

[118] Lincke, R., Lundberg, J. and Löwe, W., 2008, July. Comparing software metrics tools. In

Proceedings of the 2008 international symposium on Software testing and analysis (pp. 131-142). ACM.

[119] Fenton, Norman, and James Bieman. Software metrics: a rigorous and practical approach. CRC

Press, 2014.

[120] Yeresime, Suresh, Jayadeep Pati, and Santanu Ku Rath. "Review of software quality metrics for

object-oriented methodology." In Proceedings of International Conference on Internet Computing and

Information Communications, pp. 267-278. Springer India, 2014.

[121] Braude, Eric J., and Michael E. Bernstein. Software engineering: modern approaches. Waveland

Press, 2016.

[122] Lee, Ming-Chang. "Software Quality Factors and Software Quality Metrics to Enhance Software

Quality Assurance." British Journal of Applied Science & Technology 4, no. 21 (2014): 3069-3095.

[123] E. Rønningen and T. Steinmoen, “Increasing readability with Aspect-Oriented Programming,”

Department of Computer and Information Science (IDI), 2003.

[124] S. L. Tsang, S. Clarke, and E. Baniassad, “Object metrics for aspect systems: Limiting empirical

inference based on modularity,” Submitted to ECOOP, 2004.

[125] R. Burrows, A. Garcia, and F. Ta"\iani, “Coupling metrics for aspect-oriented programming: A

systematic review of maintainability studies,” in International Conference on Evaluation of Novel

Approaches to Software Engineering, 2008, pp. 277–290.

[126] Ghareb, M. and Allen, G., 2019. An empirical evaluation of metrics on aspect-oriented

programs. UHD Journal of Science and Technology, 3(2), pp.74-86.

[127] K. Lieberher, D. Orleans, and J. Ovlinger, “Aspect Oriented Programming with Adaptive Methods,”

Com munications of the ACM, Vol.44, No.10, pp.39 41, Octo ber 2001.

[128] Alexander, R.T., “The Real Costs of Aspect Oriented Programming”, IEEE Software, Vol.20,

Issue.6, pp. 91–93, 2003.

[129] Avadhesh Kumar, Rajesh Kumar, and P.S. Grover, “To wards a Unified Framework for Complexity

Measurement in Aspect Oriented Systems” , 2008 International Confe rence on Computer Science &

Software Engineering (CSSE 2008), Wuhan, China, Dec 12 14, 2008, pp.98 103, IEEE Computer Society.

168

[130] McCall, J. A., Richards, P. K., and Walters, G. F., “Factors in Software Quality”, Griffiths Air Force

Base, N.Y. Rome Air Development Center Air Force Systems Command, 1977.

[131] Boehm, B. W., Brown, J. R., and Lipow, M. L., “Quantit ative Evaluation of Software Quality”,

Proceedings of the 2nd International Conference on Software Engineer ing, San Francisco, California,

United States, 1976, pp. 592 605, IEEE Computer Society Press.

[132] Dromey, R. G., “A Model for Software Product Qual ity”, IEEE Transactions on Software

Engineering, Vol. 21, No.2, pp.146 162, Feb.1995.

[133] IEEE, Guide to the Software Engineering Body of Knowledge, 2001, www.swebok.org.

[134] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G., “An Overview

of AspectJ”, In Proc. of the 15th European Conference on Object Oriented Programming, Lecture Notes in

Computer Science, Vol. 2072. Springer Verlag, London, pp. 327 353, June 18 22, 2001.

[135] Deutsch, M. S., and Wills, R. R., “Software Quality Engineering; A Total Technical and

Management Ap-proach”, Prentic-Hall, Inc. 1998.

[136] Word, W. A., and Venkataraman, B., “Some Observa-tions on Software Quality”, in Proc. of the

37th Annual Southeast regional conference, April 1999.

[137] Arun Sharma, Rajesh Kumar, and P. S. Grover, “Esti-mation of Quality for Software Components:

an Empiri-cal Approach”, ACM SIGSOFT Software Engineering Notes, Vol. 33, Issue.6, pp.1-10, 2008.

[138] Chang, C., Wu, C., and Lin, H., “Integrating Fuzzy Theory and Hierarchy Concepts to Evaluate

Software Quality”, Software Quality Control, Vol. 16, Issue.2, pp.263-276, Jun. 2008.

[139] Adnan Rawashdeh, Bassem Matalkah, “A New Soft-ware Quality Model for Evaluating COTS

Components”, Journal of Computer Science, Vol. 2 Issue. 4, pp.373-381, 2006.

[140] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS Components”, in the Proceedings of the 6th

In-ternational ECOOP Workshop on Quantitative Ap-proaches in Object-Oriented Software Engineering

(QAOOSE), Spain, 2002.

[141] Adnan Rawashdeh, Bassem Matalkah, “A New Soft-ware Quality Model for Evaluating COTS

Components”, Journal of Computer Science, Vol. 2 Issue. 4, pp.373-381, 2006.

[142] M. Bertoa, A. Vallecillo, “Quality Attributes for COTS Components”, in the Proceedings of the 6th

In-ternational ECOOP Workshop on Quantitative Ap-proaches in Object-Oriented Software Engineering

(QAOOSE), Spain, 2002.

[143] Kumar, A., Grover, P.S. and Kumar, R., 2009. A quantitative evaluation of aspect-oriented software

quality model (AOSQUAMO). ACM SIGSOFT Software Engineering Notes, 34(5), pp.1-9.

[144] P.S. Grover, Rajesh Kumar, and Avadhesh Kumar, “Measuring Changeability for Generic Aspect-

Oriented Systems”, ACM SIGSOFT Software Engineering Notes, Volume 33, Issue 6, pp-1-5, November

2008.

169

[145] Ghareb, M.I. and Allen, G., 2021. Quality Metrics measurement for Hybrid Systems (Aspect

Oriented Programming–Object Oriented Programming). Technium: Romanian Journal of Applied sciences

and Technology, 3(3), pp.82-99

[146] Basili, V.R., Selby, R.W. and Hutchens, D.H., 1986. Experimentation in software engineering. IEEE

Transactions on software engineering, (7), pp.733-743.

[147] Wohlin C, Höst M, Ohlsson MC, Regnell B, Runeson P, Wesslén A (2000) Experimentation in

software engineering—an introduction. Kluwer

[148] Tichy WF (1998) Should computer scientists experiment more? Computer 31(5):32–40

doi:10.1109/2.675631

[149] Seaman C (1999) Qualitative methods in empirical studies of software engineering. IEEE Trans

Softw Eng 25(4):557–572 see also Chapter 2 in Shull et al.

[150] Lethbridge, T.C., Sim, S.E. and Singer, J., 2005. Studying software engineers: Data collection

techniques for software field studies. Empirical software engineering, 10(3), pp.311-341.

[151] Easterbrook, S., Singer, J., Storey, M.A. and Damian, D., 2008. Selecting empirical methods for

software engineering research. In Guide to advanced empirical software engineering (pp. 285-311).

Springer, London.

[152] Zelkowitz, M.V. and Wallace, D.R., 1998. Experimental models for validating technology.

Computer, 31(5), pp.23-31.

[153] Flyvbjerg, B., 2007. Five misunderstandings about case-study research In Qualitative Research

Practice, concise paperback edition.

[154] Host, M. and Runeson, P., 2007, September. Checklists for software engineering case study research.

In First International Symposium on Empirical Software Engineering and Measurement (ESEM 2007) (pp.

479-481). IEEE.

[155] Kumar, A., Kumar, R. and Grover, P.S., 2008, December. Towards a unified framework for

complexity measurement in aspect-oriented systems. In Proceedings of the 2008 International Conference

on Computer Science and Software Engineering-Volume 02 (pp. 98-103).

[156] Shaheen, A., Qamar, U., Nazir, A., Bibi, R., Ansar, M. and Zafar, I., 2019, May. OOCQM: Object

Oriented Code Quality Meter. In International Conference on Computational Science/Intelligence &

Applied Informatics (pp. 149-163). Springer, Cham.

[157] Burrows, R., Ferrari, F.C., Garcia, A. and Taïani, F., 2010, May. An empirical evaluation of coupling

metrics on aspect-oriented programs. In Proceedings of the 2010 ICSE Workshop on Emerging Trends in

Software Metrics (pp. 53-58). ACM.

170

[158] Canfora, G. and Cerulo, L., 2005, September. How crosscutting concerns evolve in JHotDraw.

In 13th IEEE International Workshop on Software Technology and Engineering Practice (STEP'05) (pp.

65-73). IEEE.

[159] Kumar, P. and Singh, S.K., 2016, April. A systematic assessment of aspect-oriented software

development (AOSD) using JHotDraw application. In 2016 International Conference on Computing,

Communication and Automation (ICCCA) (pp. 779-784). IEEE.

[160] Gana, K. and Broc, G., 2019. Structural equation modeling with lavaan. John Wiley & Sons.

[161] Jnr, B.A., 2019. Validating the usability attributes of AHP-software risk prioritization model using

partial least square-structural equation modeling. Journal of Science and Technology Policy Management.

[162] Rosseel, Y., 2020. Small sample solutions for structural equation modeling. SMALL SAMPLE SIZE

SOLUTIONS, p.226.

[163] Collier, J.E., 2020. Applied Structural Equation Modeling using AMOS: Basic to Advanced

Techniques. Routledge.

[164] Javed, M., 2014. Towards the maturity model for feature oriented domain analysis. Computational

Ecology and Software, 4(3), p.170.

[165] D. G. Altman and J. M. Bland, “Standard deviations and standard errors,” Bmj, vol. 331, no. 7521, p.

903, 2005.

[166] Crede, M. and Harms, P., 2019. Questionable research practices when using confirmatory factor

analysis. Journal of Managerial Psychology.

[167] Arumi, E.R., Sukmasetya, P. and Setiawan, A., 2020. Model Evaluasi Usability Menggunakan

Confirmatory Factor Analysis pada KRS Online. Jurnal Teknologi Informasi dan Ilmu Komputer, 8(1).

[168] Mohajeri, K., Mesgari, M. and Lee, A.S., 2020. When Statistical Significance Is Not Enough:

Investigating Relevance, Practical Significance, and Statistical Significance. MIS Quarterly, 44(2).

[169] Evans, S., Johnson, A.L., Anderson, J.M., Checketts, J.X., Scott, J., Middlemist, K., Fishbeck, K. and

Vassar, M., 2020. The Potential Effect of Lowering the Threshold of Statistical Significance from P< 0.05

to P< 0.005 in Orthopaedic Sports Medicine. Arthroscopy: The Journal of Arthroscopic & Related

Surgery.

[170] Ahlgren, P., Jarneving, B. and Rousseau, R., 2003. Requirements for a cocitation similarity measure,

with special reference to Pearson's correlation coefficient. Journal of the American Society for Information

Science and Technology, 54(6), pp.550-560.

[171] Sedgwick, P., 2012. Pearson’s correlation coefficient. Bmj, 345, p.e4483.

[172] Valentini, Felipe, and Bruno Figueiredo Damasio. "Average Variance Extracted and Composite

Reliability: Reliability Coefficients/Variancia Media Extraida e Confiabilidade Composta: Indicadores de

Precisao." Psicologia: Teoria e Pesquisa 32, no. 2 (2016).

171

[173] Hair Jr, J.F., Howard, M.C. and Nitzl, C., 2020. Assessing measurement model quality in PLS-SEM

using confirmatory composite analysis. Journal of Business Research, 109, pp.101-110.

[174] Lee, S.L., Lin, S.Y., Ko, H.K. and Liu, Y.Y., 2020. Construct validity and reliability of the Chinese

version Personal Adjustment and Role Skills Scale III for adolescents with chronic disease. Journal of

Pediatric Nursing.

[175] Lai, M.H., 2020. Composite reliability of multilevel data: It’s about observed scores and construct

meanings. Psychological Methods.

[176] Fornell, C. and Larcker, D.F., 1981. Evaluating structural equation models with unobservable

variables and measurement error. Journal of marketing research, 18(1), pp.39-50.

[177] Netemeyer, R.G., Bearden, W.O. and Sharma, S., 2003. Scaling procedures: Issues and applications.

Sage Publications.

[178] Cronholm, S. and Goldkuhl, G., 2003. Strategies for information systems evaluation-six generic

types. Electronic Journal of Information Systems Evaluation, 6(2), pp.65-74.

[179] Chen, S., Osman, N.M., Nunes, J.M.B. and Peng, G.C., 2011. Information systems evaluation

methodologies. In Proceedings of the IADIS International Workshop on Information Systems Research

Trends, Approaches and Methodologies. Sheffield.

[180] Harrison, W.A. and Magel, K.I., 1981. A complexity measure based on nesting level. ACM Sigplan

Notices, 16(3), pp.63-74.

[181] Howatt, J.W. and Baker, A.L., 1989. Rigorous definition and analysis of program complexity

measures: an example using nesting. Journal of Systems and Software, 10(2), pp.139-150.

	Abstract
	Acknowledgments
	List of Figures
	List of Tables

	List of Abbreviations
	Chapter 1
	1.1 Introduction
	1.2 Aims and Objectives
	1.3 The Scope of the Study
	1.4 Research Goals
	1.5 Methodology
	1.5.1 Requirements and analysis
	1.5.2 Design and Implementation stage
	1.5.3 Evaluation
	1.5.4 Experimental Study:
	1.6 Original Contribution:
	1.7 Published Works:

	Chapter 2: Literature Review
	2.1 Introduction
	2.2 BACKGROUND AND MOTIVATION
	2.2.1 History of Aspect Oriented Programming
	2.2.1 Aspect-Oriented Programming principles

	2.3 Software Metrics Characteristics
	2.4 Software Measurement Models
	2.4.1 Product Metrics
	2.4.1.1 Static vs. Dynamic Metrics
	2.4.1.2 Complexity Metrics
	2.4.3 Process Metrics

	2.5 Object Oriented vs. Aspect Oriented Metrics
	2.6 Software Quality Measurements
	2.7 Software Quality models
	2.7.1 McCall Quality models

	2.7.2 Boehm Model
	2.7.3 (9126) Software Quality Model
	2.7.4 Dormer’s Model
	2.7.5 Other Software Quality Models
	2.7.6 Aspect-Oriented Software Quality Model
	2.7 Aspect Oriented Programming Quality Metrics:
	2.8 Summary

	Chapter 3 Research Methodology
	3.1 Introduction
	3.2 Research Methodology
	3.3 Research Design:
	3.3.1 Research Design Steps details:
	3.3.2 Formulate the Hypothesis of the Research:
	3.3.2.1 Select Research Instruments:
	3.3.3 Sampling Data and Data Normalization:
	3.3.4Analyses Data:
	3.4. Conducted Research experiments:
	3.4.1 Experiment 1 - Bash Script algorithm
	3.4.1.2 Experiment 2 -Ajatoo Application Tool
	3.4.1.3 Experiment 3 -AOP Metrics Application Tool
	3.4.1.4 Experiment 4-CMTJava Application Tool
	3.4.1.5 Experiment 5 - JDepend Application Tool
	3.4.1.6 Experiment 6- JMetric Application Tool
	3.4.1.7 Experiment 7 -Rapid miner Application Tool
	3.4.1.8 Experiment 8 -GATE Application Tool
	3.5.1 GTalkWAP project
	3.5.2 AJHotdraw project
	3.5.3 HealthWatcher Project
	3.5.4 AjHSQLDB Project
	3.5.5 Contract4J5 Project
	3.6 AO/OO metrics
	3.6.1 Crosscutting Degree of an Aspect (CDA)
	3.6.2 Coupling on Advice Execution (CAE)
	3.6.3 Concern Diffusion over Components (CDC)
	3.6.4 Lack of Concern based Cohesion (LCC)
	3.6.5 Aspect Complexity Metrics (AC)

	3.7 Proposing AOP Quality Metrics
	3.9 Conclusion

	Chapter 4 Data Extraction
	4.1 Introduction
	4.2 Code-MR data extraction tools for Hybrid AO/OO metrics:
	4.2 Open Source Project AO/OO Hybrid System
	4.3.1 GTalkWAP project AOP Quality Metrics extraction
	4.3.2 AOP quality metrics extraction using java written program:
	4.3.3 Discussion
	4.4.11 AJHotdraw project
	4.4.2. AOP quality metrics extraction using java written program:
	4.4.3 Discussion
	4.5.1 Health Watcher Project:
	4.5.2 AOP quality metrics extraction using java written program:
	4.5.3 Discussion
	4.6.1 AjHSQLDB Project
	4.6.2 AOP Quality Metrics Extraction Using Java Written Program:
	4.6.3 Discussion
	4.7.1 Contract4J5 Project
	4.7.2 AOP quality metrics extraction using java written program:
	4.7.3 Discussion
	4.8 Conclusion

	Chapter 5 Software Quality model
	5.1 Introduction
	5.2 Justification and Significance
	5.3 A framework for Aspect Oriented Software Quality Model
	5.4 AOSQUAMO Aspect Oriented Quality Model
	5.5 Proposing Aspect Oriented Product Quality Metrics:
	5.6 New Product Quality Framework for Hybrid application system
	5.7 New Quality Metrics for Hybrid application system
	5.8 Conclusion

	Chapter 6 Product Quality Metrics for hybrid application system AO/OO
	6.1 Introduction:
	6.2 Evaluation using Structure Equation Modeling:
	6.2.1 Structure Equation modeling common terms:
	6.3 IBM SPSS AMOS Evaluation Tool
	6.3.1 Amos Software properties

	6.4 Hybrid application system Product Quality Models in AMOS model:
	6.5 Hybrid Application Quality Model AOP/OOP design:
	6.6 Data extraction:
	6.7 Quantitative Evaluation:
	6.7.1 Statistical Mean
	6.7.2 Standard Deviation
	6.7.3 Factor Analysis:
	6.7.4 Significance P value
	6.7.5 Correlation Coefficient
	6.7.6 Average Variance Extracted and Construct Reliability
	6.7.7 Cronbach’s alpha and Kaiser-Meyer-Olkin (KMO) Test:

	6.8 Hybrid Application System Quality Model Discussion:
	6.8.1 Hypothesis Model (Software Product Quality-Hybrid Application System):

	6.9 Conclusion

	Chapter 7 Conclusions and Future Work
	7.1 Introduction:
	7.2 Achieved Goals and Objectives:
	7.3 Contribution:
	7.4 Study Limitation:
	7.5 Future Work:
	7.6 Final Remarks:
	References

