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Abstract

The Railway Industry in Great Britain is on the brink of a seed change in

the methods used to carry out safety and risk management. Advances in

technology over the past few decades have enabled the collection of varied

and detailed information regarding the state of track, vehicles, stations,

facilities, and personnel at an ever-increasing scale. As more and more

industry processes embrace data driven techniques, the growing volume

of data being recorded poses a significant challenge in terms of processing

and knowledge extraction.

In these chapters, a case study is made of the Close Call system used

by railway organisations in Great Britain. Personnel working on the

railway network can make reports to this system by phone, email, and

in-app, if they see something they consider to have the potential to cause

harm or damage. The near ubiquity of mobile devices allows all staff

to make free-text reports at any time which has great potential for the

completeness of reporting but comes with some drawbacks. The free-

text nature of the reports means that basic processing is inadequate for

tasks such as categorisation, knowledge extraction, and reporter feedback,

requiring ongoing research into appropriate natural language processing

techniques. A variety of techniques have shown promise, but the vast

and growing quantity of close call reports being made has meant that

computing capacity has limited the number of reports that can be processed,

and work so far has often been applied only to a small subset of reports.

The aim of this thesis is to demonstrate that it is possible to process or

otherwise transform the close call text to allow existing and future analysis

techniques pertaining to this text (and data sources like it) to be applied

on a larger scale or smaller timeframe. A novel text indexing technique is

presented and evaluated, and when compared to other text indexing and

pattern matching methods, it is shown that a significant speed increase is

possible over the methods previously used.



Versions of the matching technique described in this work have been

presented at the European Safety and Reliability Conference in 2017 and

2019.
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Chapter 1

Introduction

Railway safety management has evolved over the years to manage a large number

of different risks, and management systems have grown to require a large number of

methods, procedures and risk models. In order to keep pace it has been necessary

to develop elaborate management structures which are becoming more and more

unmanageable. Many models are outdated, and due to the fact that they were often

developed in isolation from other risk models there is very little consistency. Different

data sources, metrics, timing and scope all compound to result in a labyrinthine mesh

of specialised rather than standard definitions, differing suppliers, and even differing

experts. For these reasons the case can be made for a more streamlined and dynamic

approach to these processes (Swuste et al., 2020), and a key aspect of realising these

changes is the efficient use of technology and diverse data sources.

1.1 Why use Computers for Railway Safety?

It is for these reasons, coupled with ever growing avalanche of data collection being

carried out on the railways, that the industry is undergoing an IT transformation.

Gulijk et al. (2018) outline a number of trends and principles which signpost that the

conditions are right for a revolutionary change in the way that data influences the

way in which safety management is done:

• Datafication of the railways

Railways around the world have seen a dramatic effort put into IT infrastructures

to deliver a myriad of efficient data driven services. some examples include

driver-less trains, remote condition monitoring and digital ticketing. These

efforts have been bolstered by the IT industry and a healthy academic interest.
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• Serious accidents are not tolerated on the railways

Serious accidents cause immense damage, both in terms of the human cost, and

to the industry as a whole. The perception of railway safety amongst the public

is shaped my coverage of train accidents. Train accidents are generally not at

all tolerated.

• Railway engineering is of high integrity

Railway safety is governed by rigorous standards, and a concerted drive for

improvement. However, this is not without its costs. Not only does maintaining

this level of integrity have high financial costs associated with it, it also leads to

an ever growing complexity in safety management as the distance to absolute

safety gets ever smaller.

• Increased use of data driven risk controls in other industries

Data driven methods have been making their way into the risk controls of

industries worldwide, in a diverse set of applications. For example, asset reliability,

mental stress of drivers, and even digital techniques for human reliability

In response to these needs, the digital transformation of safety management is

underway. A major tenet in this drive is Big Data Risk Analysis , the aim of which is

to develop an enterprise safety management system which provides support for safety

and risk management decisions through the following means:

• Extraction of information from a variety of mixed data sources.

• Fast processing to allow inference or relevant safety management information.

• The use of a variety of software and applications to provide sensible interpretation.

• By enabling the connection of the right people at the right time using online

interfaces.

1.1.1 The Need for Text Processing

Text reports are an important part of safety and risk management systems across

a wide range of sectors. Free form text allows more information to be captured

than more structured methods of reporting. Allowing narrative accounts and natural

language descriptions allows the capture of new or unanticipated events and trends,
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whereas a structured system can only accept information which was known during

the design process. Table 1.1 shows some examples of reports submitted to the Close

Call system used by railways in Great Britain (the GB railways). A close call is a

hazardous situation where the event sequence could have lead to in accident were it

not for some intervention (S. Jones, Kirchsteiger, & Bjerke, 1999).

Table 1.1: Examples of Close Call text (Names of people and organisations have been
removed)

the tool store on site has been left in an unacceptable condition when staff
opened doors tools fell out
subcontract employees refilling generator in tunnels
driver was walking on site with no hi vis orang trousers on
eye protection not worn due to weather conditions

In order to extract information from these reports for safety and risk management

purposes, one of the processes currently used is to manually analyse reports to

determine what type of hazard the report pertains to from a list of categories. This

information is recorded and can then be used to compare the rates of hazard types

and identify and locate trends.

Take the first report. From this report we can identify who was involved: ”staff”,

the subject: ”tool store” and the hazard: ”unacceptable condition” and ”tools fell

out”. This report would be categorised as ”Site welfare, site housekeeping” which is

a label applied to hazards arising from sites being left untidy or items and equipment

being out of place.

The second report is a little more ambiguous in terms of the hazard identified

and there are a few labels which might apply. The enclosed space of the tunnels

might make ”Confined spaces” an appropriate label, or the potential for a build up

of fuel vapour could be a ”Fire safety” issue. The hazard could be that the fuel was

not properly handled, making it a candidate for ”Control of chemicals/Hazardous

substances”

The last two reports are both examples missing or improper personal protective

equipment. The equipment in question being ”hi vis orang trousers” and ”eye protection.

These reports would accordingly be labelled ”Personal protective equipment (PPE)”

Processes such as this demonstrate the value in collecting and processing free text

reports for safety and risk management. However the volume of reports submitted

to the close call system and others like it has reached very high levels, and this

volume is increasing year on year. For this reason significant research effort has been

placed into developing automatic processes for processing classifying and otherwise

extracting information from these text sources.
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1.1.2 Prior Work

Hughes, Shipp, Figueres-Esteban, and van Gulijk (2018) developed a method of semi-

automated classification of text records from the Close Call system. A close call

is a hazardous situation where the event sequence could have lead to in accident

were it not for some intervention (S. Jones et al., 1999). The Close Call database

contains reports of these kinds of events made by Network Rail employees and specific

subcontractors. It contains free form text, which allows expression which would

not be possible in a system with structured entry, E.g, selection from a predefined

list of hazards. However, this unstructured nature poses a problem for retrieval of

information.

Approximately 300000 entries are made per year to the Close Call system, and

currently, human intervention is required in order to extract useful information from

them, and the volume of entries is set to continue increasing. Hughes et al. (2018)

propose an application of Natural Language Processing (NLP) techniques in order to

speed up the rate of safety learning from this data.

Hughes and Gulijk (2019) further demonstrated increased close call classification

accuracy using an ’interactive learning’ process. In this process, a machine learning

algorithm is trained using the input of a trained analyst. This method enabled an

increase in classification accuracy from the 0-60% of the previous NLP method to up

to 98%.

These examples are illustrative of work being carried out in many different sectors.

Many methods have been demonstrated be effective in processing, indexing, categorising

and otherwise automating the task of learning from text sources. However, the

relatively low information density of narrative or free form text in relation to categorical,

numerical or other structured data means that text operations are often a bottleneck

in these methods. This, coupled with the continuous growth of these reporting

systems means there is a mandate for optimisation of this part of the process.

1.1.3 Why Does it have to be fast?

There are a number of potential benefits to improving the performance of text matching

processes.

When designing safety or time critical applications, a response is often required

within a fixed time frame; faster processing means more information. One major

outcome of fast processing is that it allows more to be done in real time. Real time

responses allow for interactive processes, and the faster that processing can take place,

the more information can be made available to these interactive processes.
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Given the expanding size of many incident reporting systems, text processing

speed is set to become an increasingly limiting factor for the capacity of the industry

to gain full understanding of the content of reports being made.

Another key motivation behind improving the processing speed for text reporting

systems is the need for elicitation. As Johnson (2002) explains, text reports can

be ambiguous, cursory or otherwise missing information. When the reports pertain

to something safety critical, it is often necessary to elicit further information from

reporters. Even in a reporting system with a moderate intake volume, unless sufficient

staff are available to analyse and respond to reports, there can be a significant

time gap between the reports being made and reporters being contacted for further

information. As this time gap gets larger it is increasingly likely that key people will

forget significant details.

As well as faster processing as a means of keeping pace with growing data volumes,

real time responses are necessary for any kind of interactive process utilising such

volumes of text. One example already discussed is the interactive learning method

proposed by Hughes et al. (2018). For an additional example, consider the concept

of interactive reporting. By enabling some interactivity when making reports, the

opportunity arises for further enrichment of those reports through suggestions, corrections

or additions.

Not only does this potentially improve the quality of incoming reports, it would

also allow a large part of the natural language processing burden to be moved out

toward the edges of these systems, to the thousands of humans using it to enter

reports, reducing the demand for processing after report intake.

1.2 Thesis Statement

Text analysis processes are vital for extracting safety lessons from industry reporting

systems. Automatic processes have been shown to be effective in augmenting human

analysis but the volume of data in these systems has become so large that it is not

possible to process reports in a reasonable time frame. There is a large tool-set

available for automated text analysis and processing but what all methods have in

common is the need to search, modify or otherwise operate on large and growing

volumes of text data. Optimising the way that operations on this text are processed

will allow more of this text to be used to inform safety decisions, with a knock on

effect to wider railway safety.

To defend this statement, research has been guided by the following questions:

• How can safety N-gram queries be optimised to deal with large intakes

of safety incident reports?
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• In what ways can unstructured text be matched against known safety

risks?

• How are N-gram query methods used for text queries, and what are

efficient ways to improve the performance?

• How can the performance of N-gram queries be optimised in safety

applications, and what is needed to demonstrate that the desired

optimisation is achieved?

• What are the boundaries for this framework and in what ways is it

inductive?

1.3 Optimisation Framework

Figure 1.1: Optimisation of matching procedures is a balancing act between, time,
space, and completeness

While increased text processing speed is a major factor in improving utilisation of

text safety reports it is not the only property which needs to be considered. Russell

and Norvig (2002) propose a number of quantities which can be used for comparison of

problem solving algorithms, some of which can be applied here: ”Time complexity”,

”Space complexity, and ”Completeness”

15



Time complexity refers to how quickly the task is completed, for example, how

long does it take to generate term frequencies for a corpus of incident reports.

Space complexity is the amount of space, either in memory or on disk, that is

required in order to complete a task

Finally, completeness refers to the state of results that are returned by the process.

Specifically, did all of the tasks get completed. For example, were all instances of a

query returned, or were some missed. This also applies to precision. Say for example

the location of a term within a corpus is required, does the method tell us exactly

where the result is, down to the character, or does it merely indicate which document

it was found in.

Taken together, these quantities allow the text optimisation task to be framed as

a balance between those three factors, with the specific requirements at any given

time dictating which quantities are prioritised. For instance, it might be possible to

increase speed by accepting a sacrifice in accuracy or precision. Alternatively, speed

could be maintained while achieving high completeness at the cost of increased space

complexity.

These are the measures by which the optimisation text queries will be evaluated.

In the following chapter, a review of relevant literature has been carried out, guided

by these questions. Several specific examples of automatic information extraction

from narrative and free form text sources are presented as well as examples of text

reporting systems, from the railway industry and elsewhere. Text matching methods

are investigated and compared. In Chapter 3, a novel text matching method for

processing of safety related text operations is described and a procedure is established

for the comparison of this method and other widely used methods. In Chapter 4

The results of the comparison procedures are presented. Chapter 5 discusses how

these methods serve the statement and questions offered here. In the final Chapters,

conclusions are offered and some consideration is given to future developments and

improvements to the text matching process. Much of the prior work discussed here

regarding learning from narrative text sources use various NLP, classification and

processing methods. The focus of this document is the optimisation of the underlying

structure of the text which these methods operate on. As such while outlines are

given, the detailed mechanics behind these methods (aside from details regarding the

ways in which they process and access text) are considered outside the scope of this

document. Where required, the book ”Speech and Language Processing” (Jurafsky &

Martin, 2020) provides detailed explanations of the inner workings of the algorithms

typically used for these purposes.
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Chapter 2

Literature Review

For some time now, Unstructured text sources have become widely accepted as a

valuable source of information across a wide range of domains and applications. In

particular, the value of narrative incident reports have been found to contain useful

safety information that is not captured by other means (Bird and Germain (1987),

S. Jones et al. (1999), Dillon and Tinsley (2008), Bliss, Rice et al. 2014). In the

following section, a number of applications which attempt to learn from such narrative

text sources are reviewed.

2.1 Text Use for Safety Learning

2.1.1 Road

Text analysis methods have been applied to different sources relating to road safety

and operations. Pereira, Rodrigues, and Ben-Akiva (2013) present a method of

predicting the duration of a road incident using topic modelling on 2 years’ worth

of free text road accident reports. Features such as day of the week, time of day,

and some numerical data were extracted by searching for a list of known terms.

This reduces reports down to a smaller dictionary of relevant terms, e.g. locations,

distances, and times. Abbreviations are likewise replaced using a known list. Negation

is managed by concatenating negating words with the terms they negate, for example

‘no injuries’ becomes ‘noinjuries’. Stop words, or words which are deemed to have

no semantic relevance are likewise searched for and removed using a list of known

examples. Words are reduced to stems. Stems are root of a word from which all

forms of that word are derived. For example, the word injuries, injured and injuring

all share the stem ‘injur’, thus ‘serious injuries’ when stemmed becomes ‘serious injur’.

Stemming, negation, abbreviation replacement and locating of known features all

require some variation of a search and replace process involving reading through text

until a match is located. From each of these processed reports, a bag of words vector
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is created from the now reduced vocabulary containing an index of each word and its

frequency.

A bag of words vector is a representation of text which ignores the order of words

and instead records the frequency of each word. (Jurafsky & Martin, 2020, Chapter

4.1). As illustrated in fig 2.1, the first column of the bag of words vector contains the

words, and the second column contains frequencies.

Figure 2.1: Bag of words representation of a railway close call report

The reports in their bag of words representation are then used to perform latent

dirichlet allocation (LDA). LDA is a method for inducing sets of related words from

text using unsupervised learning (Jurafsky & Martin, 2020, Chapter 6.1). The groups

produced by LDA are then manually assigned a topic based on the words they contain.

A prediction model is built to identify these terms in new reports in order to assign

topics to them. The prediction is done using a suite of regression and neural network

methods. It was found that the median error of predictions was decreased by 35%

when compared to methods which did not use text analysis.

Similar techniques have been applied in order to identify road traffic events in

social media posts. D’Andrea, Ducange, Lazzerini, and Marcelloni (2015) describe a

text classification process which works on text submitted to ‘Twitter’ in real time.

The benefit of using a data source such as twitter is that eyewitnesses can make reports
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which are distributed in real time as an event unfolds. However, the difficulties in

extracting useful information from unstructured text are reiterated, particularly in

this case where the content is informal and subject to length restrictions. Abbreviations,

misspellings, grammatical errors and brevity are some of the qualities of this text

which make event detection difficult. To mitigate these issues it is necessary to

apply NLP processes to standardise and clean up text. Pre-processing tasks include,

removal of extraneous data using regular expressions, and transformation to lower

case. Tokenisation splits the resulting strings in to words, and punctuation and

symbols are removed. Stop word tokens are removed at this stage using a publicly

available list. Words are reduced to stems. Supervised learning methods are used

to determine relevant tokens which are weighted and used for classification. These

methods were shown to effective at distinguishing tweets which were related to traffic

events from those which were not, as well as determining the existence of any external

causal factors relating to particular event.

2.1.2 Medical

There has been increased interest in the past decade or so in using the narrative

patient reports contained within electronic patient records as a diagnostic aid. Chase,

Mitrani, Lu, and Fulgieri (2017) present a method for early recognition of Multiple

Sclerosis prior to a formal diagnosis. In this study a list of 1000 MS related terms were

used to query patient records from a sample of patients, with a sub group known to

have MS. This list is made up of words and Unified Medical Language System (UMLS)

terms. UMLS terms are a controlled vocabulary which describe biomedical concepts

and can be words or phrases (N-grams) (Lindberg, Humphreys, & McCray, 1993).

N-grams are a contiguous sequence of ’n’ items which are explained in more detail

in chapter 2.5.1.2. Patient records were queried for these terms and a näıve bayes

classification process was used to determine whether a record was MS related or not.

Naive Bayes, as described by (Jurafsky & Martin, 2020, Chapter 4.1) is a probabilistic

classifier. Naive Bayes makes the assumption that features, in this case tokens from

the text, do not interact (hence, naive). Classifiers are trained using the bag of words

representation shown in fig 2.1 and for each new document, the most likely class is

chosen based on the product of the prior probability of the class and the likelehood

of the document. These probabilities are calculated using the frequency of terms for

documents in each class and in the document to be classified.

This process resulted in a high accuracy in identifying patients known to have MS

when using records from these patients which were made after diagnosis. However,

the process was also able to identify 40% of positive MS cases from patient notes
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made up to two years prior to diagnosis, indicating that methods like this could be

very useful as a diagnostic aid.

Bejan, Xia, Vanderwende, Wurfel, and Yetisgen-Yildiz (2012) describe a similar

process for identifying Pneumonia from patient records. Again, a list of terms is

used to identify relevant reports. In this case, relevant terms are determined through

a weighting process. Using a subset of reports, a ‘training set’, all possible word

unigrams, word bigrams and UMLS concepts are extracted. Statistical hypothesis

testing was used the weight how informative each of these terms is in identifying

pneumonia. The result of this is that terms appearing most often in reports known to

relate to pneumonia will be given the highest weight. A ‘feature vector’ is built from

the intersection of the ranked terms and the terms that appear in a given record.

This feature vector resembles a bag of words vector in that it consists of a list of

words and frequencies, but its length is reduced as it only contains the terms from

a document that also exist in the ranked term list. The key finding is that reducing

the feature space in this way, I.E. only retaining the most relevant terms, resulted in

significantly improved accuracy over using the full text.

A method for detecting injuries follwing inpatient falls based on medical records

was developed by Toyabe (2012). A variety of different text sources are used, and

text sources are processed to extract morphemes (similar to stemming) and tag parts

of speech. A rule based process is used to determine whether text refers to a fall

incident based on the appearance of a list of fall related terms. As well as the terms

themselves, the grammatical relation to other parts of the text are also checked, as

often, words earlier in a sentence will change the meaning of those later on. As with

Chase et al. (2017) and Bejan et al. (2012) the list of fall related terms is determined

by generating a ranking from a training set of labelled reports.

Another application for text in patient reports is phenotyping. Shivade et al.

(2014) review a number of methods for identifying groups of patients who all share a

phenotype related to serious diseases, for example, cancer, diabetes or heart failure. In

this case, methods for using both structured patient data and unstructured narrative

text is used to group patients. Text is pre-processed using NLP techniques and

domain specific knowledge is used to curate a list of keywords relating to each cohort.

These lists are used to identify relevant records. It is noted that by taking a more

holistic approach to varied data utilisation, rather than rigid rule based approaches

using structured data only, is of benefit to phenotype classification.

2.1.3 Aviation

A primary motivation for using text data in the aviation industry (and many others)

is improved safety. Tanguy, Tulechki, Urieli, Hermann, and Raynal (2016) reiterate
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some of the difficulties which are usually encountered when utilising free form and

unstructured text sources. The use of plain language results in many different ways

of saying the same thing. In many industries, narrative reports will contain a high

amount of domain specific language or acronyms. Several approaches are outlined

below.

Classification of text reports using machine learning is a common approach and

is straightforward to implement but is described as poorly suited for constant change

and emerging threats. Machine learning can only make useful predictions when new

data are similar in content to the training data. Any new trends would therefore

not be represented, meaning that these models need to be retrained on a regular

basis to account for these trends, and their utility for detecting new threats is low.

Advanced NLP techniques are used to extract useful information from text. Tanguy

et al. (2016) outline some of the processes common to text utilisation approaches

in the aviation industry. Hand written rules are used to replace known variations

of the same concepts with a standard form. Words, stems, character bi-grams, tri-

grams, and quad-grams, and stem bigrams and trigrams are derived from the text.

Vector representations are built from reports representing the relative frequency of the

derived terms. A classification process using a group of binary classifiers (one for each

group of interest) is described. Each classifier gives a true or false value for each text

example indicating whether a record belongs to the associated group. By comparing

the classification accuracy when using different types of terms, it was found that the

best classifications were made when processing reports in to stems, and bi-grams of

stems. Tanguy et al. (2016) also explain an alternative approach using an interactive

learning process. In this approach, machine learning tools are used to make efficient

use of a domain experts time. In supervised learning, labelled data are required to

allow for patterns to be detected and be ascribed to the correct classes. Labelling

of data is often a time consuming and expensive task. In the interactive learning

process, rather than labelling a full training set, an outline of the desired aspect of

an incident by querying for relevant terms, then selecting or rejecting the returned

examples. This set is then used as a training set for a supervised learning pass.

Using error margin or probabilistic confidence scores, the expert is then shown the

borderline cases returned by the supervised learning process for labelling. This process

is iterated, this improving accuracy with each pass. This significantly reduces the

labour required for obtaining training samples as far fewer examples require manual

labelling.

Peladeau and Stovall (2005) produced a report explaining the functionality provided

by the “WordStat” suite of text mining tools for statistical content analysis of airline

safety reports. This tool provides many of the functions commonly used for information
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extraction from text. The tool is used to process flight crew irregularity reports

(FCIR) and traffic collision avoidance system reports and extract statistical information

from the text. An FCIR is created every time a pilot experiences an “incident or

abnormal operation event”. A TCAS report is made by flight crew. for every collision

avoidance event. Various pre-processing steps are applied the the text in the reports.

Amongst others, categorical information is identified and tagged, spelling variations

and mistakes are fixed. Stems and Lemma are identified and a list of stop words is

created by manually augmenting a standard list to ensure that domain specific terms

and abbreviations are not included. These stop words are then removed from the text.

A ‘categorisation dictionary’ is created which contains words, abbreviations, and word

N-grams. Text is then queried against this dictionary to collect relative frequencies

of terms in context to create a taxonomy which can be used for classification. Some

ambiguity resolution is possible by considering words and terms which are co-located

with any given term. Co-location can also be used to cluster terms by meaning

regarding terms as similar if the list of terms they commonly appear alongside have

a high similarity.

2.1.4 Rail

Hughes, Figueres-Esteban, and Gulijk (2016) Describe an automated text mining

approach for text records in the close call system. This system is used by GB railways

to report hazardous situations with the potential to lead to an accident were it not

spotted. An information extraction process is described with the goal being to find

reports which have relevance to a number of known risk types with the aim ultimately

being to answer high level questions such as ”Do trespasses take place at certain times

of the day or do they take place with equal frequency throughout a 24-hour period?”.

The text processing steps used are described. Text is first cleaned by searching for

instances of specific unwanted text and either removes it or replaces it with the

correct information. Before tokenising the text into words, a list of phrases and

acronyms known to have specific meanings are located in the text and replaced with

single tags so that once tokenisation takes place units of text with known specific

meanings are contained in a single token. For example ”British transport police”

becomes ”BRITISH-TRANSPORT-POLICE-”. Known synonyms are also located

and replaced with a single tag, so that same tag also replaces ”BTP”, BTpolice”,

”B.T.P.”, etc. As is common with free form unstructured text, the close call text

contains numerous spelling errors. These were corrected using existing spell check

software.
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2.2 Incident Reporting

Incident reporting systems are used across a wide range of diverse domains for use in

safety and risk management.

2.2.1 Aviation Safety Reporting System

The Aviation Safety Reporting system is one of the oldest incident reporting systems

dealing with text data and has been in operation since 1976 NASA (2020). Early

reports were written using an imposed writing style which incorporated a specific

structure and consisted of standardised terminology and acronyms. In the years

since this style has relaxed and reports currently consist of an unstructured narrative

description of events alongside structured descriptors created during report intake

containing features such as location, time, weather, and the people and equipment

involved. The reports are submitted to a categorisation process performed by experts

which add further structured information (Tanguy et al., 2016). These structured

descriptors, derived from the text are strictly organised into a two level taxonomy

describing a number of related entities. For example the Aircraft entity would contain

information relating to the aircraft in question, for example, the model, operator,

flight plan, etc. The Person entity denotes the people involved, and so on. Encoding

of this information is performed by analysts on reports which they identify as requiring

further analysis (NASA, 2020).

ASRS is used by the Federal Aviation Authority in the US, but similar reports

are collected across the wider aviation sector. One of the barriers to more widespread

sharing of incident data amongst industry stakeholders is a lack of standardisation

of data collection and processing pipelines. The European Co-ordination Centre

for Accident and Incident Reporting (ECCAIRS) is a co-ordinated effort amongst

transport and safety investigation authorities across Europe to standardise reporting

processes. Initially focusing on information relating to Aviation, the system has since

expanded to include other transport authorities such as maritime and rail. Like

ASRS, a taxonomy is used to classify and encode important information to enable

further analysis (Tanguy et al., 2016)

2.2.2 MedWatch

MedWatch is a national voluntary reporting system provided by the US Food and

Drug Administration. The system allows healthcare staff to make reports regarding

adverse effects involving medical devices (Johnson, 2002).
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2.2.3 Incident reporting for GB Rail

There are a number of methods and procedures for the reporting of safety related

incidents in the railway industry. Some of these, such as TRUST, have been in

use for several decades and have remained largely unchanged, while others, such as

SMIS see regular improvements and updates as available technology improves and

new methods arise for processing and analysis, particularly for text data.

SMIS, the Safety Management Intelligence system, is both a set of safety management

utilities, and a database for the recording of safety related events occurring on the

railway Network in Great Britain (Brewer, 2017). It is managed by the Railway Safety

and Standards Board (RSSB) on behalf of the railway network.

The database exits to record any event or incident which pertains to the safety of

the railway network. This would include any fatalities or injuries to staff, passengers,

or members of the public; as well as faults or damage to railway equipment, signals

passed at danger (SPADs) or derailments (Brewer, 2017).

This system replaced another system, also named SMIS (The Safety Management

Information System), with the aim of putting new developments in reporting technology

into use.

TRUST, which stands for Train Running Under system TOPS (TOPS itself stands

for Total Operations Processing System), is a computer system which records train

operational data (Network Rail, 2016). The system tracks the following information

about trains on the network (East Coast, 2011):

• Train Activation – Generated when before a train is due to run, and contains

information pertaining to that particular train, e.g. Vehicle type, Train ID and

Schedule.

• Train Movement – Generated whenever a train Arrives at, Departs From, or

passes a location.

• Train Cancellation – Generated when a journey is not, or will not be, completed.

• Train Reinstatement – Generated when previously cancelled trains return into

service.

• Change of Origin – Generated when a train will not start from the origin on its

schedule.

• Change of Identity – Generated when a freight train when its class changes after

being activated. E.g. when its wagons are removed.
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The TRUST system can be used by operators for several tasks. One example of

a query type possible using TRUST is a TRJA enquiry, which provides a list of all

trains currently expected at a given location, as well as the current train running

(delays). Another example is a TRJE enquiry, or train delay enquiry. This will

show the current running delay recorded by the system between two given locations,

giving some indication of train performance, providing that the delay information is

up to date. The enquiry can also return all delays in the given location which are

attributable to a particular train. The system contains a mix of numerical and text

data and is populated both by automatic systems and by manual input. For example,

following a delay, the late running would trigger some information to be entered

automatically from the TOPS system, only to be overwritten manually later, when

more accurate information is available. This design means that the data retrieved

from it may not always be representative of a real life situation, as data is collected

using two contrasting and potentially contradictory methods.

TRUST is typically used for delay attribution, that is, what were the causes of a

particular delay incident. For each incident, as well as the structured fields already

described, also included is a free text report describing the incident and any relevant

details and involved parties (Board, 2016).

The close call system is a reporting system designed to allow the GB rail industry

to record and manage “Close Calls”, which are defined by S. Jones et al. (1999)

as “a hazardous situation where the event sequence could lead to an accident if it

had not been interrupted by a planned intervention or by random event”. Similar

data collected in other industries such as aviation, healthcare and nuclear power, has

proven valuable in the past, and Close Calls are becoming an increasingly accepted

source of safety lessons (Bird & Germain, 1987) (Gnoni, Andriulo, Maggio, & Nardone,

2013) (Dillon & Tinsley, 2008).

The data contained in the close call system is described in detail by Hughes et al.

2014. To date, it consists of around one million free form text reports pertaining to

scenarios on the railway network in Great Britain, scenarios which could potentially

lead to an accident, but did not. The data is a mixture of structured data and

unstructured free-form text.

The Confidential Incident Reporting and Analysis system (CIRAS) is a safety

reporting and response system which operates independently of the railway network

(Baker, 2018). Workers from any member organisation can anonymously report

health, safety, security, and environmental concerns or incidents (Baker, 2018). Member

organisations are involved in a variety of industries, including rail, across the UK.
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The guarantee of anonymity is intended to allow reporting concerns without fear

of facing personal consequences for making the report, going some way to removing

a barrier to the collection of safety information.

As well as recording incident reports, the service also investigates these reports,

with the aim of resolving any concerns or consequences highlighted within. Any

safety lessons learned from these reports and from subsequent investigations are

made available to member organisations, for use in their own safety management

procedures.

As with SMIS and Close Call, the CIRAS database contains vast amounts of safety

related reports which currently require a large about of manpower to make sense of.

The Railway Accident and Investigation Branch (RAIB) is and independent body

set up by the UK government to investigate railway accidents. While not an incident

database itself, the reports it produces often contain valuable safety lessons and

recommendations, which inform the railway industry how to operate safely. Reports

are produced after railway accidents and incidents and any findings, evidence, or

recommendations can be shared with the railway industry.

S. Jones et al. (1999) and Dillon and Tinsley (2008) make the case that there are

safety lessons to be learned from analysis of ’near-miss’ incidents of the type recorded

in the Close Call system. However, systems such as SMIS, Close Call, TRUST and

CIRAS still require large amounts of manpower to enable useful action as a result of

the collected information, and response time is in the scale of months.

2.3 Data

Extraction of actionable information from large stores of unstructured or uncategorised

(or unreliably categorised) text data is not necessarily straightforward. The following

two examples of text data, and the methods used to mine them for information, offer

some insight into the issues with working with this kind of data.

2.3.1 Event Logs

One potential source of data for extraction of information are event or error logs.

These are typically generated by an automatic process and thus the structure and

types of information contained are predictable (Fig. 2.2).

The volume of data generated as logs is such that a number of utilities have been

developed specifically for managing and analysing event and error logs. Microsoft

Event Viewer, a part of the Windows operating system, collects logs from various
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Figure 2.2: An example of an event log from the Yum package manager, showing
structured fields

applications and services running on a system and categorise the events contained

based on level (Error, Warning, Information), source, number of occurrences, and

time. Some utilities, such as Log4j, take the role of both generating, and managing

logs (Apache, 2018).

With log files of this volume it can be difficult to locate and asses logs which have

particular significance. Fig. 2 is an example of potential security issues on a public

facing server, which may have gone unnoticed in very large log files, or amongst a

large volume of log sources.

Work into the analysis of event logs has some history. As event logs always report

the same event in an identical fashion, it is possible to build analytical processes which

exploit this structure, however techniques built this way would not be applicable in

the same way to unstructured text where the form of an event report cannot usually

be predicted. Lee, Iyer, and Tang (1991) describe a method whereby the reliability

of a system can be evaluated from raw event logs by using time domain filtering,

probability distributions, and other statistical techniques to determine the frequency

and relevance of certain events.

A system able to extract information from logs automatically, with no prior

knowledge of the structure of the logs would be particularly useful, given the differing

formats of logs from various sources, and the potential large volume of sources.

However, being still reliant on these underlying structures limits those systems utility

for unstructured text. Xu, Huang, Fox, Patterson, and Jordan (2009) present one

such system, capable of the production of more informative messages from a large

number of aggregated logs. This system uses machine learning techniques to detect

anomalies and suggest a cause or generate a decision tree.
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Figure 2.3: An example of aggregated logs in Windows Event Viewer

These studies illustrate that extracting ’buried’ information from text based event

logs is a non-trivial task. The techniques shown here are of interest in the extraction

of information from structured logs, particularly when they occur in large volumes.

Additionally, the use of string matching to find relevant adjacent data could be

applicable to other kinds of text records.

2.3.2 ”Near Miss” Reports and Interpretation Methods

A large form of unstructured safety text data comes in the form of near-miss reports

made to the Network Rail Close Call system. Gnoni et al. (2013) define close calls

as “a hazardous situation where the event sequence could lead to an accident if it

had not been interrupted by a planned intervention or by random event”. These

reports in particular are collected from staff working on the railway network in Great

Britain, in order to document events, scenarios or anomalies that fit the Close Call

description.

Many industries, such as Aviation, and Nuclear Power, are turning to close calls to

give insight into ways in which safety procedures can be improved. However, the way

these Close Calls are reported for the railway network in Britain, I.E. A mixture of

structured and unstructured text and images, presents a challenge for analysis. While

some headway is being made in this regard, the techniques used require extensive

computation time. Hughes, Figures, and Gulijk (2014) describe a natural language
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processing (NLP) approach, the aim of which is to extract meaning, and therefore and

potential safety lessons, from the unstructured, free-form text portion of the reports.

This freeform text would otherwise be to voluminous to be read and understood by

human readers who could make use of lessons contained within, so an automated

process is desirable. These techniques, however, require time to compute. If the

process could be completed closer to real time, this would enable close to real time

feedback, perhaps as the report itself is being made, enabling an interactive reporting

process.

The data is a mixture of structured data and unstructured free-form text. An

example report is shown in Fig. 2.1.

Table 2.1: Structure of a Close Call report
Field Field Name Data Type Example
1 Reported Date Date and Time 10/02/2015 05:42
2 Describe the

Close Call Event
Unstructured Text reported by A global operative

Lap 903 - loc 40 (SWB
084U005) cable damage seen
as cable emerge from the
trough route
SSL/BCM to rectify asap

3 What To Do About It Unstructured Text photos taken, reported the
SSL SHEQ

8 Risk Ranking Predefined List LOW

2.4 Time Cost

While ample discussion can be found regarding the techniques used to extract information

form unstructured test sources, processing time is often not considered. Numerous

studies, such as those reviewed here, demonstrate the value in mining unstructured

text sources for safety related purposes, but it can be noted that these studies often

involve small sample sizes relative to the total available data and as such, processing

time is often not a main concern. For example, the pneumonia identification method

produced by Bejan et al. (2012) and the MS identification method covered by Chase

et al. (2017), use samples of 326 and 2999 patients respectively from a database

covering millions. Likewise, the close call classification method developed by Hughes

et al. (2018) uses a sample of reports from a database of hundreds of thousands.

It has been apparent for some time that the sheer volume of text available for

analysis presents a challenge for timely feedback, particularly in the safety domain,

where the cost of missed information can be high. Johnson (2002) noted in 2002 that
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the numerous reporting systems used across domains such as aviation, medical, and

rail had become “victims of their own success” and that the size of these systems

was becoming unmanageable. For example, in 2002 the ASRS received around 2600

reports per month and contained around half a million reports in total. Similarly,

MedWatch contained over 700000 reports. This volume has continued to increase in

the years since. For example, when the ASRS was first started, report intake was

around 400 per month, it is now averaging 435 reports per working day. In 2019,

the ASRS was receiving close to 9000 reports per month, and in that year alone

the report intake was 107,879 (NASA, 2020). MedWatch has gone from containing

700000 reports in total in 2002, to having an intake of over one million per year by

2017 (28). This pattern is mirrored across industries. The close call system used by

GB railways had a report intake of around 200000 per year as of 2018 (hughes et al,

2018).

Part of the reason for this is increased participation, but an additional factor has

been the consolidation of a number of local reporting processes into larger central

structures. These local systems have the potential benefit of allowing contributors to

directly observe the impact of their reporting, and systems can be managed by people

who are able to directly observe the environment to which the reports pertain to.

However, a major drawback to this approach is that lessons learned in one reporting

group are not necessarily propagated to others which might encounter the same issues.

There is also the danger that the limited scope of a local reporting system might

encounter what appear to be isolated incidents when in fact they may be part of a

larger pattern which more centralised reporting would make apparent.

Johnson (2002) identifies two main tasks that users of large-scale incident reporting

systems wish to achieve. The first is to produce statistics relating to how failures

are affected by management actions. The second is to identify trends that need

addressing. Some possible solutions to the expanding volume of text based reports,

and what is described as the “almost contradictory” requirements for the two tasks.

One approach is to use using a reporting paradigm which is inherently structured. A

number of industries use relational databases for incident reporting. This is ideal for

extracting statistical information as incidents are strongly typed. A major downside

of this approach is that these systems are often built in an ad-hoc manner from

commercial database products and there is often little regard for standardisation

across domains or even within the same organisation, this can result in several different

ways of describing the same thing, which can be very difficult to co-ordinate (Lainoff,

1999).

Another drawback of this approach is the complexity of queries. To query relational

databases, all but the most basic of queries can run multiple lines of, for example, SQL
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and the possibility for error is high. Johnson states that even professional software

engineers can fail to retrieve correctly indexed records when complex query languages

such as this are required. Another approach is to use the various information retrieval

processes that have been developed to retrieve relevant information from massive

sources that have arisen from the near ubiquitous use of the internet. As can be seen

from some of the studies outlined in earlier sections, the use of full text indexing,

pre-processing and categorisation processes are now seeing widespread adoption in

applications using free-text sources. There are numerous benefits to this approach.

Depending on the methods used, building indexes from the text can improve query

response time dramatically, sometimes to speeds rivalling the relational databases.

Indexing full text instead of requiring structured input allows for more freedom of

reporting while a structured database can only contain the fields which it has been

designed for, leaving little flexibility for unanticipated events.

From full text indexes which provide exact text matching, retrieval methods can

be built to provide relevant information in response to queries. A successful retrieval

system would need to return reports based on the concepts in the query, not just the

exact words. Say for example a user wanted to retrieve reports regarding “vegetation

obscuring a signal”, a report containing “Tree has grown in front of W172” would be a

relevant candidate, as even though it shares no words with the query, the concepts are

the same. There are a number of ways to do this. One, as used in the accident duration

predictor developed by Pereira et al. (2013) and for classifying reports as described

by Tanguy et al. (2016), is topic modelling. Topic modelling uses a vector space

representation of reports and terms are weighted based on their relative frequency

within a document. These weights can the be used either to train classifiers using

some machine learning approach, or to directly build a relevance score in relation

to a given query. Concepts can also be identified based on co-located terms with

some success. This approach is one of the tools explored by Peladeau and Stovall

(2005) for text mining of aviation safety data. The assumption here is that two

words, terms, stems, etc that appear alongside the same other terms often enough

then they might refer to the same concept. As an example, the word “vegetation”

might often appear alongside the terms like “Leaf, green, growth, vision, obscured”,

by searching for other words which also often appear alongside these ones perhaps

the word “Tree” appears often enough that “Tree” and “vegetation” can be assumed

to refer to the same concept. Other studies, such as the aforementioned MS detection

method (Chase et al., 2017), phenotype classification (Shivade et al., 2014), incident

duration prediction (Pereira et al., 2013), and many others, use machine learning

techniques to classify reports into categories based on their content.
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What is common amongst all information retrieval approaches is the need for

an indexed representation of the text to enable any of the processes that follow, be

they approximate or concept matching, or machine learning processes based on term

frequencies and weighting schemes.

2.5 Text Processing

From the various applications of text mining techniques discussed earlier, a number

of text processing and NLP tasks can be identified which have been put to use for

safety learning across a wide range of sectors. These techniques are summarised in

table 2.2.

In this section these techniques, and the ways in which they interact with the

source text, are discussed in more detail.

2.5.1 NLP

Natural language processing is a key component in enabling computer assisted understanding

of free text reports. All of the studies, developments, and reviews discussed so far

have used at least some NLP concepts.

Natural Language Processing as a field of computer science refers to process of

modelling text and speech in a way that allows computers to infer meaning and

concepts, with he aim of allowing such systems to interact with natural human

communication in a way more meaningful than simple analysis Miner et al. (2012).

Early NLP techniques relied on human produced lists of rules, based on grammatical

standards and linguistic expertise. According to (Miner et al., 2012, Chapter 1),

this has worked well when the text in question sticks to these rules and remains

predictable, but unstructured or informal texts often present more of a challenge.

The development of machine learning in the past few decades has allowed research

into machine generated models based on vast corpora of real world text.

This shift toward machine learning and artificial intelligence has resulted in differing

techniques. The methods and and related concepts differ depending on the approach

used and, according to (Miner et al., 2012, Chapter 1), machine assisted NLP has

lead to the development of powerful text parsers, which spilt text into tokens; and

stemming algorithms, which reduce words to their base or roots, and move towards

being less domain specific.
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Table 2.2: Summary of text processing and NLP methods used by a selection of
studies using safety text

Publication Author(s) Methods

Early recognition of multiple
sclerosis using natural language
processing of the electronic
health record

Chase et al. (2017) Tokenisation, Statistical
analysis of words and word N-
grams, term search, supervised
learning

A review of approaches to
identifying patient phenotype
cohorts using electronic health
records

Shivade et al. (2014) Tokenisation, Statistical
Analysis of words and word
N-Grams, supervised learning

Detecting inpatient falls
by using natural language
processing of electronic medical
records

Toyabe (2012) Tokenisation, Tagging, Term
Search, Supervised Learning

Pneumonia identification using
statistical feature selection

Bejan et al. (2012) Tokenisation, Statistical
Analysis of words and word
N-Grams, Term Search

Natural Language Processing
for aviation safety reports:
from classification to interactive
analysis

Tanguy et al. (2016) Tokenisation, Statistical
Analysis of words, N-Grams,
stems, and stem N-Grams
Stemming, Normalising,
Supervised Learning,
Interactive Learning, Topic
Modelling

Application of Statistical
Content Analysis Text Mining
to Airline Safety Reports

Peladeau and Stovall (2005) Tokenisation, Statistical
Analysis of words and word
N-Grams, Normalising, Tagging

Text analysis in incident
duration prediction

Pereira et al. (2013) Tokenisation, Statistical
Analysis of words and word
N-Grams, Tagging, Topic
Modelling, Supervised Learning

Real-Time Detection of Traffic
from Twitter Stream Analysis

D’Andrea et al. (2015) Tokenisation, Stemming,
Statistical Analysis of words
and word N-Grams, Supervised
Learning

Crime Pattern Analysis through
Text Mining

Ananyan (2004) Tokenisation, Normalisation,
Statistical Analysis of words
and word N-Grams

From free-text to structured
safety management:
Introduction of a semi-
automated classification
method of railway hazard
reports to elements on a
bow-tie diagram

Hughes et al. (2018) Tokenisation, Normalisation,
Statistical Analysis of words
and word N-Grams
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2.5.1.1 Tokenisation

NLP techniques typically begin with a number of preprocessing steps. Text must first

be delineated into characters, words, and sentences; in order to move from a stream

of bits, into something resembling natural text (or speech in the case of audio) with

robustly defined linguistic units.

In the case of text it is first necessary to determine the character encoding. In text

files this is often included in the file header, but in cases where this is not available

or inaccurate, an identification process may be necessary Miner et al. (2012).

It is also usually important to determine the language used in the text, not only

to ensure that the proper character encodings have been used, but to ensure that

the text is properly delineated into linguistic units. In English, for example, words

are delimited by spaces, and sentences are delimited by the full stop or period. The

importance of this step becomes clear when considering that other languages do not

use this structure, or even the same kinds of linguistic units (Feldman & Sanger,

2006).

Text is typically split into tokens representing words, multi word terms (N-grams),

fixed length character N-grams, or word roots either through stemming or lemmatisation.

2.5.1.2 N-grams

An N-gram is a sequence of items from text or speech of length ’n’. N-grams are

commonly used in NLP and probabalistic linguistic analysis due to the fact that they

include contextual information exceeding that of simple fixed length or fixed word

tokens, and are relatively simple to implement. Fig. 2.4 demonstrates how n-grams

are formed from an input sentence when ’n’ denotes the number of words.

This is a sentence

This is is a a sentence

This is a is a sentence

n =1

n = 2

n = 3

Tokens

Unigrams

Bigrams

Trigrams

Figure 2.4: Formation of n-grams

Storing n-grams rather than single word tokens has a number of advantages for

retrieval and categorisation purposes. By including sequences of words in tokens

rather than individual words alone allows only searching tokens representing only

those n-grams matching the length of the query term (Newall & Van Gulijk, 2019).
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In addition, tokenising n-grams allows the capture of some words which are

missed my the tokeniser without implementing complex detection rules. For example,

acronyms. If the only tokens captured are single words, and the tokeniser simply splits

tokens based on delimiters (such as space and full stop) then acronyms, e.g. T.O.P.S.

will not be captured as a single token. This can be mitigated by adding routines

in the tokeniser to detect these circumstances, but if n-grams are also captured as

tokens, this is unnecessary.

As evident from numerous applications of text analysis, such as the early detection

method for MS Chase et al. (2017), and the term extraction processes described by

Tanguy et al. (2016), N-Grams, both of characters and of words, have been found

to be a useful tool for computer aided learning from text sources. Several studies

have been made into their effectiveness as an information retrieval tool. Mayfield

and McNamee (1998) explore the relative value of N-Grams compared to words for

information retrieval accuracy. Documents were indexed by terms weighted using

TF/IDF and Okapi (a metric derived from TF/IDF which ascribes larger weight to

longer documents). Queries were made using both words and N-Grams, and the

accuracy of the retrieved results was measured. In this case, the text has been pre-

processed to drop it into all lower case, and common words such as ‘of’ and ‘with’ are

replaced with single characters. This means that character N-grams have increased

scope in terms of the amount of words they can span. An example given is that

the phrase “statue of liberty” might produce the 5-gram: “e φ l” (spaces are also

characters), spanning 3 words, as the word ‘of’ has been replaced by ‘φ’. In this

particular retrieval task, it was found that 5-Grams were around as effective as words

for retrieving relevant documents.

Similarly Miao, Keselj, and Milios (2005) demonstrated that a vector space model

using the most common character N-Grams in a document (instead of all the words in

it), was more effective than words and terms for document clustering once a suitable

distance measure was derived.

Baeza-Yates (2000) demonstrate that N-grams can be efficiently hashed using a

rolling hash by exploiting the fact that N-grams overlap, meaning that part of any

N-gram was already partially hashed when the previous N-gram was hashed. A key

observation from this work is that, while the potential N-gram space for any given

corpus can be very large, most of these possible N-grams are very unlikely to appear

in real text, so index size can be reduced significantly by only indexing observed

N-grams.
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2.5.1.3 Tagging and Normalisation

Tagging is a process whereby some tokens are found in the text, and replaced with

different ones. Tagging text first involves searching the text, to find all instances of

the words to be tagged, and then replacing with the new token as appropriate. There

are a number of reasons for doing this. One is to remove tokens which are superfluous

for the task at hand, for example, categorical data which has already been extracted

into a structure, such as dates and locations. An example of tagging used in this way

can be found in the process used by Hughes et al. (2016) to remove words related

to locations by searching though text for tokens matching list of location names and

replacing all of them with a single token. Likewise, many reports in the close call

database contain artefacts as a result if the intake process, such as parts of html script

which do not make up part of the report. Where the structure of these artifacts is

known they can be removed in a similar fashion. A similar process can be used to

replace all instances non standard spellings and mistakes with a single correct one,

either by using a list of known mistakes and variants or by using a metric such as edit

distance to determine what the most likely intended word was for any cases which fail

a dictionary check. Some applications also replace common words such as ’the’, ’of’,

and ’and’ with a single character in order to expand the meaning contained in fixed

length N-grams, as seen in Mayfield and McNamee (1998). In other cases, these words

are simply removed instead as they are commonly assumed not to add meaningful

information to a report. Another reason for tagging text is to perform part of speech

tagging. Part of speech tagging adds semantic information to text by labelling words

as verbs, nouns, noun-phrases etc. This is done based on word definition and the

grammatical context (Toyabe, 2012). The presence of multiple words or terms that

mean the same thing can introduce additional complexity to text analysis processes.

Tagging is used to replace synonyms (or other tokens deemed to mean the same thing,

be they words, acronyms, stems, phrases or some other token) with a single token

which reflects the same meaning. This reduces some of the dimensionality when

performing tasks such as classification, frequency analysis, and topic modelling.

2.5.1.4 Stemming and Lemmatisation

Stemming and lemmatisation are techniques for reducing the vocabulary of text into

root forms of words. Both approaches perform what is ostensibly the same task, but

differ in approach. Stemming truncates words to remove common suffixes in order to

approximate root words. Lemmatisation on the other hand uses replacement rules to

swap various word endings with a single representative. For example, a lemmatiser

might replace all instances of the suffixes ’sses’ and ’ss’ with ’ss’ Thus ”grasses” and
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”grass” would both become simply ”grass”. Sometimes, a lematisation rule might

instead call for the removal of a suffix, for example, the plural -s. Replacing parts

of text like this can be carried out in much the same way as tagging. Reducing the

vocabulary in this way can make classification simpler,

2.5.1.5 Statistical Analysis

Statistical analysis of text involves calculating the frequency of terms in text documents.

Most of the examples discussed do this at some stage or other during analysis.

Depending on how the text is indexed this task can be optimised significantly. By

constructing an inverted index or vector representation of a document, the frequencies

of any of the words it contains can be easily obtained through a lookup without the

need to iterate over the text itself. These frequency values, once obtained, can be

used in a number of ways. The token selection process used by Hughes et al. (2018)

demonstrates that term frequencies can be used to aid in the selection of representative

terms. In this case, the existence of the selected terms in a report are used to ascribe

multiple labels denoting the threat pathways that a given report pertains to. In

other cases, term frequencies measured from groups of labelled data are used to build

classification rules

2.5.1.6 Supervised Machine Learning

While human defined rules and models have proven very useful in classifying and

retrieving strongly typed, well structured data, challenges arise when working with

free form, unstructured text, or text with a high level of domain specificity. Advances

in machine learning has allowed research into the automatic generation of these

models, derived from the texts themselves (Feldman & Sanger, 2006).

Supervised machine learning models aim to classify texts based by identify patterns

in features present in labelled data. These features may be manually defined based

on a list of terms known to correlate with the required classes, as is the case with the

MS detection method produced by Chase et al. (2017) or they may be derived using

statistical analysis. In the statistical approach, the terms with the highest frequency

in each category within the labelled data are selected as features. This approach is

used by, for example, Shivade et al. (2014) and Bejan et al. (2012).

Many studies use some form of supervised machine learning to classify text reports.

This can be very useful for identifying known events or threats from incoming reports.

But the fact that supervised models are trained on known, labelled data means that

their capability to adapt to and identify new kinds of threats is low (Johnson, 2002)
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A number of challenges still remain before NLP algorithms are able to extract

meaning to the level of a human reader, but when dealing with large volumes of text,

NLP techniques are often used to to allow analysis in a reasonable time-frame.

A major drawback of supervised machine learning methods for mining of text

sources related to safety is that, once trained, the models produced are static. supervised

models are trained to recognise fealtures in relation to knwn lables While this may be

effective in identifying known factors in unstructured sources, identification of new

and emerging threats and trends is not possible for this kind of machine classifier

(Johnson, 2002).

2.6 Speeding it Up

There are a number of methods available a for performing search and matching

operations on text data, a task which is essential for any NLP process. A few such

are covered here.

2.6.1 Exact String Matching Algorithms

The most straightforward string matching method, at least in concept, is the näıve

or “brute force” implementation. This involves checking characters in a sub-string

against every character in a corpus in sequence. This is rarely the best option for

performance except when working with short strings there are a number.

There are, instead, a few methods which use smarter methods to improve performance.

D. Knuth, Morris, and Pratt (1977) developed an algorithm for exact string matching

which aims to reduce the number of required comparison by using the information

learned during one comparison pass to skip later comparisons. The key to this method

is in the computation of a ’failure function’. When using the Knuth-Morris-Prath

(KMP) algorithm, the target sub-string is preprocessed to locate repeated suffixes.

The purpose of this is that, if it is known where suffixes of a string are located within

itself then for any failed match, it is only necessary to resume searching at the latest

matched suffix, rather than returning to the start of the sub-string. Using such a

method, it is possible to search for a sum-string in a volume of text whilst needing

to examine characters in the text at most, a single time.

Similarly, the method described by Boyer and Moore (1977) improves matching

performance by reducing the comparisons required, but the manner in which it does

so is somewhat different. The target sub-string is again preprocessed, but in this

case the preprocessing is to establish ’bad suffixes’ and ’good suffixes’. Having this

information available during matching allows skipping chunks of text which could

not possibly contain the sub-string, in a manner not dissimilar to the KMP method.
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In addition, the Boyer-Moore algorithm starts by checking the last character of the

sub-string against the character in the corpus which is offset by the length of the sub-

string. This allows skipping chunks of the corpus when this last character doesn’t

match, as it would be impossible for the rest of the sub-string to have appeared before

this last character.

2.6.1.1 Fingerprinting

Karp and Rabin (1987) present a method of exact string matching that uses short

strings, or ’fingerprints’ to represent larger strings of text. This constitutes an

efficiency over näıve string matching in that the number of required comparisons

is reduced when compared to comparisons of the full-length strings. This method

uses a ’rolling hash’ to allow fast computation of the fingerprints. For any new query

pattern ’m’ of length ’mc’ a hash fingerprint is computed, and likewise for the text

to be matched against ’n’, a hash is generated for the first ’nc’ characters. The text

is then iterated over one character at a time, and the rolling hash method allows

very fast updates to the fingerprint value by only considering the new character

at the end of the current window, and dropping the character at the start. The

comparisons continue in this fashion until either the end of the text is reached, or a

match is found. In the case that a match is found, the algorithm then falls back to

character by character comparison in order to confirm that the match is not a false

positive. This step is necessary as the hash function is not sufficient to generate a

unique fingerprint for every possible sequence of characters, doing so would require

significantly more processing time and would result in fingerprints no shorter than

the strings themselves. However, because this method reduces to use of character

by character comparison to circumstances where a potential match is located, rather

than being necessary for the entire text, there is still potential for improved efficiency.

As with all methods requiring some additional processing aside from character

comparison, the overheads involved with hash comparison methods mean that, for

short strings, the efficiencies gained by avoiding large amounts of character comparison

do not apply. The reason for this is that it is often possible to locate a sub-string in

a relatively short text using näıve methods faster than it is possible to perform the

initial preprocessing of hashes.

2.6.2 Search Methods

Given a system where tokens in text can be represented by numerical values, some

consideration can be given to the methods used to locate those values.
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2.6.2.1 Linear Search

Linear, or sequential searching can be described thus: “Begin at the beginning, and

go on till you find the right key; then stop.” (D. E. Knuth, 1997, Vol 3, Chapter 6.1).

This is perhaps the most conceptually simple of the searching methods. Consider an

array of data “n”, and a target value “m”; First, the target value is compared to

the first value in “n”. If they do not match, then the next value is checked likewise.

This continues until either a match is found, or the end of the data is reached. If at

any point in the sequence the values are equal then the target value has been found

and the process can either stop here, or in the case that multiple instances must be

checked for, the process is repeated starting at the next value. Fig. 2.5 illustrates a

number of search scenarios, and demonstrates how the linear search method would

perform. When counting occurrences of a target value, then it is always necessary

to check every index. Therefore, for an array of length ’n’, the number of required

comparisons is ’n’. If all that were required were to check for the existence of a value

in an array then it is possible to stop looking after finding the required value, so the

performance in that scenario is dependent on where the value appears. If the value

does not appear, then again, the number of required comparisons is ’n’.
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Figure 2.5: Three examples of sequential searching in use, First counting all instances
of a target value, Second and Third, Checking for the existence of a value.

The näıve method of string matching functions in this fashion, with the slight

modification that, instead of a single value, the target is a sequence of values, or

characters. The initial target value is the first character of the target string. The

process is carried out in much the same way as before until a match is located. In any

instance where a match is found, the target value is then updated to the next value

in the target string, which is then compared against the next value in the data array,
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and so on. This continues until either: the comparison fails, in which case the target

value reverts back to the first value of the target string, and matching resumes at

the point after the initial character match; or the end of the target string is reached,

indicating a successful match.

2.6.2.2 Binary Search

Binary search allows locating items in sorted data in significantly few operations than

is possible with a linear search, particularly for very large data sets. Rather than start

at the beginning, the middle index of the array is calculated and a comparison takes

place. If there is not a match at this midpoint then, if the value is higher, then a

new midpoint in the upper half is calculated. Likewise, if it is lower, a new mid

point if calculated for the lower half. This process is repeated until either a match is

found, or a midpoint can no longer be calculated, indicating that the sub-string is not

found in the text (D. E. Knuth, 1997, Vol 3, Chapter 6.2.1). Incidentally, if no match

is present, the position given by the binary search is the location where that value

should be inserted should it be necessary Fig. 2.6 demonstrates the behaviour of a

binary search when performing the same tasks introduced in Fig. 2.5. Now, rather

than requiring up to ’n’ comparisons to locate a value in an array or length ’n’, now

it is possible to complete all search tasks in, at most, log(n).
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Figure 2.6: Three examples of binary searching in use, First counting all instances of
a target value, Second and Third, Checking for the existence of a value

As the data must be sorted to allow the use of binary search algorithms, there is

a penalty to insertion speed. Inserting elements requires first performing an binary

search to locate the insertion location, then likely requiring moving all the elements

after the insertion point to make room.
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2.6.2.3 Binary Search Trees

Binary trees are a data storage structure where each item in the tree has up to two

children. This structure can be traversed in the same fashion as a binary search, but

without the need to calculate midpoints.

Binary search trees mitigate the insertion penalty inherent in sorted data as

the index can be maintained separately to the data, i.e. upon insertion of a new

element, only pointers need to be updated. This avoids costly memory reallocations.

(D. E. Knuth, 1997, Vol 3)

2.6.2.4 Further Efficiencies from Binary Searches

Depending on the data structures in play, it can be possible to use binary search

type techniques in a more efficient way. Two such methods for doing so are fractional

cascading and exponential search. Both methods improve search efficiency; fractional

cascading by reducing the required number of searches required when multiple related

lists are used, and exponential search by reducing the range over which the binary

search needs to be applied.

Fractional Cascading Fractional Cascading is a method for reducing the number

of binary searches required to retrieve a key from multiple related sorted lists. Chazelle

and Guibas (1986a) describe a ’fractional cascading structure’, a data organisation

technique which allows locating corresponding keys in multiple related lists while only

requiring a single binary search for an initial match. Once the initial match has been

made, the structure contains the necessary information to bridge to the appropriate

position in another related list without the need for additional searches. The method

is related to an earlier technique, hive-graphs.

A hive-graph(Chazelle, 1986) is a data structuring technique whereby fractional

samples of related structures are stored alongside neighbouring ones so that one binary

search can return related keys from multiple lists. This however requires a space trade

off as a result of storing the fractional samples.

In fractional cascading a refinement is made to the data structure which mitigates

the penalty to space complexity.

Fractional cascading has been applied to a number of range finding problems

and geometric search problems (Chazelle & Guibas, 1986b), and while not directly

applicable to matching text keys in a document (typically a key lookup of this kind

is a single search in one list) it may have some merit for locating the same key in

multiple documents (E.g. a reporting system full of incident reports) provided the

contents could be ordered in such a way that did not preclude it.
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Exponential Search Exponential search (Baeza-Yates, Salinger, Mannila, & Orponen,

2010) improves upon regular binary searches by first determining a range within

a sorted list where the target resides (or, in the case it does not exist, where it

would reside) before then performing a binary search within that range. Instead of

finding the midpoint of an entire list and performing a binary search over the entire

range, a smaller range is first found by jumping through a list k in increments of

2j where j is an exponent which increases by 1 for each jump. When the condition

k[2(j−1)] < TargetV alue < k[2j] is met, a binary search is performed on the resulting

range. Not only does this reduce the range upon which the binary search operates,

it also enables the use of binary search on unbounded lists, where it is not possible

to determine a midpoint.

2.6.3 Summary

It is clear that unstructured free-text reports can be used to great effect for safety

learning. It is also clear that the volume of these reports across a range of industries

and domains is very large, and continuing to increase with each year. Most safety

related information extraction methods covered in the literature focus on a relatively

small sample of available data. Applying these methods at scale requires significant

computing resources in order to get results in a timely manner. While efforts have

been made to mitigate this through, for example, parallel processing, this issue will

only become more pronounced as text databases continue to grow.

By studying various processes that are used for safety text learning across a

variety of domains it can be seen that many approaches share a lot of the same

basic techniques (as shown in table 2.2). Furthermore, a large proportion of these

techniques at some stage must produce a full text index, or perform queries, both of

words and multi word phrases (N-Grams) on raw or preprocessed texts. If the way

that raw, unstructured texts are pre-processed, indexed, and queried were optomised

for speed, the reduction in time complexity could have a positive knock on effect on

the multitude of NLP, classification, machine learning, and other processes commonly

applied to this problem.

In order to develop and test an efficient text indexing and querying system for

safety texts, text from the Close Call system will be used. This text is available in

very large quantities (around a million records), and serves as a good example of

unstructured text in a domain which has been demonstrated to have value to safety

learning. To this end, a system which indexes words and multi word n-grams using

integer fingerprints, or ’hashes’ has been designed, and binary search techniques have

been employed to allow unprecedented matching performance.
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Chapter 3

Methodology

Through study of the numerous analysis techniques used in the processing of text

reports a number of requirements can be established. Many tasks, such as document

vectors, feature extraction and classification require accurate measurement of the

frequency of tokens within text documents. Others, such as tagging and certain

semantic or grammatical processes require specific locations of tokens within a text.

So, while improving the processing and response time of text operations, it is important

to also maintain the locations and frequencies of tokens, as they appear in the original

text form if the faster method is to be useful in enabling those same techniques to be

used.

Referring again to the optimisation triangle (Fig 3.1), it can be identified that the

most important factors in optimisation of text operations for safety text sources are

speed, and completeness.

In this chapter, a method for fast string indexing and querying which attempts to

maximise these two qualities is described.

3.1 Variables for Optimisation

Testing has been designed so that, when measuring time, the only variable is the

matching method. Each method receives the same terms for comparison, and these

are always compared against a corpus derived from the same text data.

As indicated by the preliminary tests, match times are not necessarily consistent

for every search string, so it is not sufficient to compare the speed of a single search. To

measure matching speed, it is instead necessary to perform a number of measurements

with differing input strings in order to create a complete picture of the performance

of the method.

In order to assess the success of this ‘hashed n-gram’ method, a handful of

experiments were devised to compare the speed of this method against not only the
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Figure 3.1: Optimisation of matching procedures is a balancing act between, time,
space, and completeness

näıve brute force method; but also the Boyer-Moore method, which is often used as

a benchmark in literature pertaining to string matching; and the string::find function

from the C++ standard library.

3.1.1 Constraints

It is also of great importance to ensure that the new method performs the same

function as the existing ones. To this end, the following constraints are set;

• For each measurement, every method must be given the same input. E.g,

When comparing matching performance of different string matching methods,

the same substrings must be located.

• Each method must operate on identical source data. All experiments will be

performed on identical close call reports.

• Each method must return identical results.

• To account for variance due to factors outside of the software such as operating

system scheduling and background tasks, Each time measurement procedure

was repeated 5 times, and an average was taken of each set of results.
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To meet these criteria, matching functions were written which differ only by the

matching method. The tests themselves are written around these functions.

When discussing text pattern matching it is useful to refer to a ‘Needle in a

Haystack’ metaphor. In this case the ‘Haystack’ refers to the text in which we wish

to locate one or many ‘Needles’, which, likewise, refers to the substring which is to

be located.

3.1.1.1 Haystack

For all tests, the source text consists of 500000 close call reports, approximately

123MB of text.

For each token in the close call data, the hash of this text is stored, alongside its

line number, position, and length.

3.1.1.2 Needles

Needles, or the sub-strings which are to be matched, are treated in exactly the same

way as the haystack text, to ensure that comparison of ‘like-for-like’ takes place.

3.1.2 Measuring Performance

To measure and compare the raw performance of the differing matching methods, a

number of tests are to be carried out. Russell and Norvig (2002) propose a number

of criteria for comparing the performance of ‘Problem-Solving’ algorithms:

• Completeness: Does the algorithm produce the expected results (if present)?

• Optimality: Has the optimal solution been found?

• Time complexity: How much time does the algorithm take to complete?

• Space complexity: How much memory is required to complete the search?

These criteria are in reference to searching the solution space for problem solving

tasks, and as such one criterion, optimality, does not directly apply to pattern

matching performance as no medel fitting is involved. However, the remaining 3

criteria: completeness, time complexity, and space complexity; can all be used to

draw comparisons between the methods. The following tests have been designed to

assess these criteria.
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3.1.2.1 Completeness - Collision Prominence

When searching a corpus for any text matching a given query, the results provided by

any searching algorithm can be considered ‘complete’ when all instances of the given

query are returned, and where location is required, the location is precise.

The method used here to generate integers for each word or n-gram (namely, the

std::hash function from the C++ standard library) is not a ‘Perfect Hash’ function,

and any sufficiently large dictionary will result in the existence of identical hashes

for non-identical sub-strings. In order to evaluate the impact this has on matching

accuracy and completeness of results in the example close call text, a full accounting

of all terms and corresponding hashes was carried out.

The 64bit data types used to represent the text tokens extracted from close call,

can resolve to 263 − 1 integers. For comparison, recent estimates of the number of

words used in the English language stand around 250000, including many words which

have fallen out of use (although in specific domains (for example, railway safety), this

can be much higher due to domain specific jargon). In practice however, given a

hash function that distributes hashes in a uniformly random fashion, collisions will

be encountered much sooner than the limit of the 64bit integer. The reason for this

can be explained by way of the birthday paradox, or, the phenomenon whereby, given

a group of individuals with birthdays uniformly distributed throughout the year, the

likelihood of two individuals in a group sharing a birthday is higher than might be

expected (Abramson & Moser, 1970). To reach a 50% probability that at least one

pair of those individuals share the same birthday, the group need only contain 23

individuals. This, despite the fact that there are 366 possible birthdays. As any

text matching solution can potentially be required to account for millions of distinct

tokens, one pair of matching hashes out of a million is unacceptable. In reality,

as hashes are determined mathematically by the content of the data they refer to,

hashing functions, like birthdays, cannot achieve a uniformly random distribution of

hash values. The issue of collisions, therefore, becomes even more pressing.

One mitigating factor is that n-grams are indexed separately depending on word

count. As n-grams are processed and searched separately based on the size of ‘n’, it is

only necessary to check for collisions against tokens of the same word count. Take for

example a term with two words, or bi-gram; and a term with three words, or tri-gram;

both terms could safely be allotted the same hash without risking a collision during

matching, as any query with two words would only be matched against hashes derived

from bi-grams, and likewise, any query with three words would only be matched

against hashes derived from tri-grams.

The probability that a collision will occur can be approximated using the following

method, as described by Preshing (2011). Assuming a uniform distribution, the
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approximate probability that at least two items will compute into the same hash is

given by:

1−e−k(k−1)
2N

Where k is the number of items requiring hashes, and N is the total possible

number of unique hashes, in this case, 263− 1. For reference, there are 744667 unique

uni-grams in the 500000 records used for collection of results

It is important to note that in the instance that hash collision is detected, it would

be necessary to implement additional checks on resulting matchings to account for

false positives (False negatives are not possible, as all instances of a unique word

always receive the same hash). This method is employed by most implementations

of the Rabin-Karp finger printing method, whereby upon locating a matching hash,

the match is then rechecked using a näıve matching method. This is required as

the Rabin-Karp method derives much of its performance from an efficient rolling

hash algorithm, which, while fast, does not guarantee a uniform distribution of hash

values. As this additional check is only carried out on the subset of the haystack that

matches the needle, this added complexity is considered acceptable, and indeed, in

the case of Rabin-Karp, necessary to maintain exact matching.

The outcome of this test is an accounting for every token in the text, including

n-grams, and a count of the number of collisions.

3.1.2.2 Time Complexity

To obtain a measure of the per-match performance of each method, matching queries

were made on the close call data using a range of string matching methods (Näıve,

Boyer-Moore, string::find (from the C++ standard library), and the ‘hashed n-gram’

method).The elapsed wall time was recorded while each method was tasked with

counting the first 100 unique tokens contained in the close call data, for each size of

n-gram up to n=9 (a total of 900 tokens).

To show how the method performs as the size of the data increases, the match

performance test was repeated with different numbers of reports. Starting with 1

report, and doubling up to 131072 reports. The same 9000 queries are made as

before, for each set of reports.

In addition, time measurements were taken for the time taken to count 100 unique

tokens in the same 500000 reports used previously. However for this test, separate

measurements were taken for each size of n. In other words: a measurement for the

time taken to count 100 unique uni-grams, a measurement for the time taken to count

100 bi-grams, tri-grams, and so on.
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3.1.2.3 Space Complexity

The space each method requires to return matches from a given corpus is to be

compared by measuring memory useage as corpus size is increased. This serves two

purposes. Firstly, a measure of how the memory usage differs depending on the

different transformations of the corpus. Secondly, an indication of how memory useage

grows to accommodate larger corpora.

3.2 Integer Matching

As a starting point, following the work described by Karp and Rabin (Karp & Rabin,

1987) on ‘fingerprinting’, integer based matching was investigated as an alternative

to brute force matching. Some testing was necessary to determine whether integer

pattern matching could offer any performance advantage when matching strings in

text reports.

For this initial test, arbitrary strings of 9 character ‘words’ were generated, and

a method for measuring the elapsed wall time for the operation was constructed. A

single comparison of two 9 character strings occurs so quickly that the actual time is

below the precision of any tested method of measurement. To circumvent this, the

operation was performed 231 − 1 times (The limit of a 32 bit integer in Java), then

the recorded time for all these operations divided by 231 − 1 to produce an average.

even performing the comparison this many times, the elapsed time was still small

enough that transient changes in CPU load generated by processes other than that

being measured would potentially alter the result. To further compensate for any

anomalous measurements, this entire process was repeated 10 times for each test,

each time a few minutes apart, and an average taken.

The nature of brute force pattern matching dictates that different matches will

not always be completed in the same amount of time, As each character must be

compared until a non matching character is found. A sub-string which differs from

the search pattern at the first character will be rejected in fewer operations than one

which does not differ until the final character. In the case of a match, every character

must be checked. In order that these situations are included, and to avoid drawing

any false conclusions from timings taken from these matches, measurements were

also made for strings that were equal up to the last character (For example: Tare and

Tarp), as well as measurements for strings where only the first character differs (For

example: Hollow and Follow).

The same comparison test was carried out with integers instead of strings. Using

the same conditions, 9 digits, once when equal, once when differing by the last digit,
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and once when differing by the first. For string comparison the Java string equals()

method was used, for integer comparison the equality operator(==) was used.

Figure 3.2: Averaged timings for String and integer comparisons

The results of these tests are shown in Figure 3.2. The results appear to show that

using this measurement method, integer matching is faster than string matching, as

suggested by the literature. However as can be observed in Table 3.1, the timing data

before being averaged fluctuates for what should be identical tests. A more thorough

benchmarking method was required. Boyer (2008) explains that running time in Java

is unpredictable due mainly to a period of ‘warm up’ where the JVM loads classes

as they are required, and the just in time (JIT) compiler optimises performance by

compiling patterns which prove common at runtime. To accurately and consistently

measure running times, a benchmark that tracks these events and accounts for them

in results is required. One such suitable benchmark is described by Boyer, and is used

for all further measurements. The benchmark executes the program multiple times

until a stable state is identified, before calculating an average running time.

3.2.1 Applying These Methods to Real Data

Since it had been demonstrated that integer matching was likely more efficient, data

from the Close Call system was obtained in order to perform a case study.
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Table 3.1: A subset of results from batches of comparison tests
Equal Not Equal (First Char/Digit) Not Equal (Last Char/Digit)

String 7136000 10754000 12148000
7285000 8519000 14306000
8581000 8388000 12558000

Hash 5327000 6667000 6378000
6022000 4467000 6180000
5833000 4450000 7178000

In order that each unique word in the Close Call text has a unique integer value,

the Java Hashcode function was used. At this point, collisions were not considered,

due to the size of the sample used. As hashing is a ‘lossy’ process, the original string

cannot be retrieved directly. However, by maintaining the structure (i.e. line number

and position in line) of the original text, it is possible to do a lookup on the original

text once a match is found using the indices of the match in the hashed data.

Consider the following paragraph:

Mary had a little lamb

Little Bo Peep

Bah bah black sheep

Now consider that this text is stored in a table, so each word can be addressed by

a pair of co-ordinates:

Table 3.2: A Text Example
0 1 2 3 4 5

0 Mary Had A Little Lamb
1 Little Bo Peep Lost Her Sheep
2 Bah Bah Black Sheep

Now that the dimensions of the paragraph are known, that is, line lengths and

line numbers, hashes can be generated and stored in a table with exactly matching

dimensions:

Table 3.3: An illustration of the same text after generating hashes
0 1 2 3 4 5

0 232 784 621 960 720
1 960 452 915 582 902 572
2 249 249 401 572
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Once these hash values are generated, they can be searched quickly by generating

a hash value for the search term (there may be many at once, but for this example and

for simplicities sake only one is shown). Say that all occurrences of the word “sheep”

were to be located. A hash value is generated and the table is iterated through until

a match is found, at which point its location is saved. In this example this yields the

result 1,5 and 2,3. As the dimensions of both types of data match, we do not have to

use a lookup table to determine the meaning of any hash, as once a hash is located,

the original text (if required) can be derived by simply reading the same co-ordinates

in the text data. The alternative would be to maintain a list of all unique words

alongside the corresponding hash value, which would need to be searched through for

every single hash whenever a conversion back to text was required. There are text

analysis tasks, such as frequency analysis, for which conversion back to text would

not be required.

To test the hashing method on text-based reports, three case studies were devised

to represent operations that would be typical for this type of data source, namely

pattern search, find and replace (tagging), and generating n-grams, n can be any

number but in this case n is equal to 3, so the software generates trigrams. The Java

hash-code function is used to calculate integers for each unique word, an example of

the result of this process can be seen in Table 3.4, note that the two occurrences of

the word “the” share the same hash in the output. not shown in this table is that

the line number and position in each line has been preserved in the hashed data.

For each study, three versions were tested, each performing the same task, but

differing in implementation. The first performs the operation using the string comparison

method included in the Java standard library. The second generates hashes from the

text data, keeps it in memory and uses this for indexing. The third loads a pre-

generated file with the hash index. This final case is representative of a situation

where multiple queries may be made of the data. In such a situation the hashes

need only be generated once, and can be queried multiple times without the initial

overhead of conversion. Pre-generating a file for this purpose from a set of 150000

close call records takes an average of 2.97 seconds. Figure. 3.3 illustrates these

different approaches for the location listing case.

3.3 Using n-grams to Reduce Search Operations

N-grams are a sequence of n items taken from a given (in this case) sequence of

text, which retain the order as found in the source. An n of 1 splits the sequence

into unigrams - containing one item, n of 2 produces bigrams - containing two items,

and so on. the n-grams do not typically follow on from end to end, but rather as
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Figure 3.3: Program Flow for each ‘place name search’ method

a window of size n items, which moves item by item. n-grams were included as a

testing example for the hashing method as they are one of the processes currently in

use by others working on the close call data. However, the properties of n-grams may

provide a method of improving pattern matching efficiency further (Newall & Van

Gulijk, 2019).

The worst case for a brute force matching technique, which occurs when no

matches are found, requires checking every character of the search string with every

character of the text being searched. The number of required operations to complete

this search is therefore the total number of characters in the source text multiplied

by the total number of characters in the search string. In other words, the maximum

required operations is Ct ∗Cs, where Ct is the number of characters in the the source

text, and Cs is the number of characters in the source text. In practice a match may

be found earlier than this in some cases.

By generating hashes for each unique word, and also each word in the search

string, the required operations is reduced somewhat. As whole words are reduced to

a single integer, this worst case is reduced to the total number of words in the source
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Table 3.4: Output of the hashing operation, emphasis shows that both occurrences
of the word “the” have matching hashes

Original Text
22/03/2014 12:27,the driver of 1J19 1407 Birmingham
International, to Aberystwyth reported that the crossing gates at
Abermule had been left open.

Hashed Text

49089694 46799422 114801 -1323526104 3543 1563201
1511274 -706256204 2064805518 3707 2075440762 -427039533
3558823 114801 2123306914 98127112 3123 1330114223
103057 3019820 3317767 3417674

text multiplied words in the search string. This does not account for the time needed

to generate the hashes, but this can be done very quickly, relative to the time taken

to find matches. Thus, the maximum required operations required for hashed text is

reduced to Wt ∗Ws, where Wt is the number of words in the source text, and Ws is

the number of words in the search string.

The implication of this is that, using a näıve matching approach, the number of

operations will increase as the number of words in the search string increases. N-

grams can be generated from the source text where n is equal to the length of the

search string, i.e. n = ws. These n-grams can then in turn be hashed so that each

unique n-gram is represented by an integer. The following formula gives the total

number of n-grams, produced from a text, t containing Wt words:

n− gramst = Wt − (n− 1)

For example a search string, Ws containing 5 words, compared against a source

text of 1000 words from which n-grams of size 5 are produced and hashed (WS),

would require at maximum Wt− (n− 1), or 996 operations. Similarly, a search string

of 10 words, compared again against a Wt of 1000, would require 991 operations at

maximum.

Compare this to the previous, hash-per-word method; the same two comparisons

on prepared text would require up to 5000 and 10000 operations respectively.

A pattern emerges whereby the length of the search term no longer has a multiplicative

effect on the required operations for a comparison. Rather, the number of operations

for comparisons against the prepared text is in fact reduced by n-1. The text need

only be prepared for each size of n once, time taken to generate and hash n-grams of

the text is amortised, and becomes less significant as more searches are made. Time

complexity is reduced at the cost of of increased space complexity.

In order to investigate the effect this has on search times, a further test has been

devised which combines both of the techniques discussed here; Hashing and n-gram
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generation. First, the length of the search in words is measured and this becomes

‘n’. If none has been prepared preciously, n-grams of size Ws are created for the text,

and then hashes created for these n-grams. A single hash is then also created for the

search term. The search string hash and the hashed n-grams from the text are then

compared for a match. This process is illustrated in the flowchart in figure 3.4

Figure 3.4: Program flow for the n-gram experiment
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3.4 Bringing Everything Together

Following the aforementioned experiments, the methods used for each were combined

in to a new piece of software. This was written in C++. This language was chosen

firstly to remove some of the variability in run time brought about by the Java JIT

compiler, and secondly, to reduce runtime, allowing more rapid turnaround from

experiments.

3.4.1 Preprocessing

A preprocessing step that formats the text and generates the hashed data is necessary

before any matching can take place. Text is loaded, either from a file or other stream.

It is then formatted, line by line, to bring all the text into lower case (This is optional,

and means that matches are not case sensitive), and to strip away any delimiting

characters, e.g. punctuation, and replace them with spaces, so that only full words

remain. Each line of the formatted text is then kept in memory. These formatting

and tokenisation steps are illustrated with an example in fig 3.5

Figure 3.5: A illustration of the
preprocessing steps carried out on the
source text

Figure 3.6: Formation of N-grams
Using Existing Indices.

This formatted text is then iterated over, word by word, and an integer value is

generated for each using the std::hash method from the C++ standard library. This

hash method generates an integer mathematically from the content of a given string.

Along side the hash for each word, the line number, and position in that line that the

word appears are stored to form a tuple of 4 integers in the following form:

<hash, line number, start index, end index>

By storing text locations alongside the hash, we can build hashes of n-grams more

simply than would otherwise be the case. Usually to build an n-gram where n is the

number of words, it would be necessary to iterate over each character, to determine
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when enough words have been read. This involves checking each character against

a list of delimiters to find word boundaries. Instead, once these tuples have been

created for the individual words as a result of the tokenisation step, it is possible to

build arbitrary length n-grams using the existing indices without the need to iterate

over the character data again, In other words, by reading the start index of the first

word, and the end index of the word ‘n-1’ words ahead, the resulting character range

can be used to directly reference the text corresponding to that N-Gram, and build

a string for hashing. An Illustration of this process can be seen in Fig. 3.6

The size of n-grams generated will differ depending on the requirements. For the

Close Call data used in these experiments most queries would not be over 5 words

long. The n-gram length can be defined by the user when text is opened, to constrain

the amount of required preprocessing. Alternatively, if a search is made which is

longer than the maximum size that has currently been pre-generated, those n-grams

can then be generated for the search. This pre-processing step is illustrated in Fig.

3.9.

3.4.2 Matching

An additional benefit of storing an index alongside each hash is that the order in

which these hashes are stored in memory need not be constant. By sorting these

tuples into ascending order, using the hash as the key, it is no longer necessary to

iterate over the list of tuples in a linear fashion. Instead, a binary search pattern can

be used. This operates as follows;

• A hash is generated for the substring to be located.

• this hash is compared to the item residing at the midpoint of the hashes

processed from the text to be searched.

• If the hash for the search term is greater than the hash at the current midpoint,

repeat the process for the upper half of the preprocessed data. Likewise, if it is

lower, repeat for the lower half.

• Continue comparisons in this manner until either a match is found, or no further

subdivision can take place.

‘Midpoints’ are calculated by adding the current upper and lower bounds together,

dividing by two, then rounding down to the next whole integer. In each iteration

of the binary search, upper and lower bounds are moved in such a way that, should

there be no match, they will eventually pass each other - providing an exit condition.
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Figure 3.7: Generating inverted indexes for hashed N-Grams

This process takes at most Log2(n) repeats, where n is the number items which

must be compared to. In other words, in the worst case, doubling the size of the text

to be searched, increases the maximum required number of comparisons by only 1.

For comparison, when using a näıve matching method, in the worst case, doubling

the size of the text also doubles the number of required comparisons.

Finding matches in text which has been processed in this way is, in the worst case,

carried out in O(m + log n). This compares favourably to the näıve method, which

in the worst case performs in O(mn).

Fig 3.7 shows the path from tokenised text documents to indexed n-gram hashes.

An example of the matching process is illustrated in fig 3.8. A single hash is

generated regardless of the number of words in a query, and the appropriate n-gram

table is searched depending on the query word count. In this table, a binary search is

carried out to locate the the query and return the count and/or its location depending

on the users requirements.

To keep parity in the results of each method, matches are rejected if they occur

within another word, As the requirements of pattern matching for Close Call are such

that a search for e.g. “rain”, should not match within the word “train”. This rejection

is not required for the hashed n-gram method, as only whole words (or whole word

sequences in the case of n-grams) are captured.

The structure of this software is shown in fig 3.9.
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Figure 3.8: An example of the matching process for a query
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Figure 3.9: Program flow for final hashed n-gram software
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Chapter 4

Results

4.1 Completeness - Collisions

Table 4.1: The total number of tokens for each size of ‘n’ after processing 500000
close call records, alongside approximate probability of a collision in sets of this size

n Total Unique Tokens Approximate Probability Total actual
of collision collisions

1 744667 3.0061× 10−08 0
2 3389335 6.22743× 10−07 0
3 8475642 3.89426× 10−06 0
4 12343491 8.25951× 10−06 0
5 14184880 1.09076× 10−05 0
6 14935413 1.20924× 10−05 0
7 15170115 1.24754× 10−05 0
8 15129520 1.24087× 10−05 0
9 14617801 1.15836× 10−05 0
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Figure 4.1: The total number of unique tokens for each ‘n’ after processing 500000
close call records

Figure 4.2: The approximate probability of a collision in the hashed tokens. Call-
outs show where on the curve a selection of the token count values from Table 4.1 lie.
Horizontal axis is logarithmically scaled
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4.2 Timings

Figure 4.3: Time taken to count occurrences of 900 unique terms in 500000 close call
records
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Figure 4.4: Time taken to count occurrences of 100 unique n-grams as n increases.
Vertical axis is logarithmically scaled

Figure 4.5: Time taken to count occurrences of 100 unique words in corpora of
increasing size. Both axes are logarithmically scaled
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4.3 Space Utilisation

Figure 4.6: Space used by each method as the corpus increases in size. Horizontal
axis is logarithmically scaled
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Chapter 5

Discussion

These results clearly demonstrate that the hashed n-gram method is significantly

faster at locating strings of text in a large corpus. Text analysis techniques are used

in multiple fields to support the use of massive amounts of text data to inform safety

and risk management. Many of these techniques operate on top of string matching

processes to make use of the text. In order to evaluate how well these findings satisfy

the stated aims of this work, these results must be considered in the context of the

research questions that were posed.

5.1 How can safety N-gram queries be optimised

to deal with large intakes of safety incident

reports?

The simplistic answer to this question is: by responding to queries more quickly.

However, evaluation of the various ways in which text is used in applications related

to safety and risk, shows that this is not the only factor. To enable text analysis,

completeness must be maintained for any text operation. In practice this means that

locations of terms must be as precise as the other methods, and frequency information,

In other words, aside from being fast enough to keep pace with the increasing volumes

of text, the answer to: ‘how may tokens are there and where are they’ must remain

consistent with expected values. The measurements shown in chapter 4 illustrate the

effectiveness of the hashed N-gram method in achieving this.

In order to put these results into context, it is helpful to refer back to the summary

of text processes used in various studies in chapter 2, reproduced here in table 5.1.

A task performed in all cases is tokenisation. In the process of building indexes

for this method, tokens for words and arbitrary length word sequences or N-grams

are produced, so tokens of this dimension are available as an inherent nature of the
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Table 5.1: Summary of text processing and NLP methods used by a selection of
studies using safety text

Publication Author(s) Methods

Early recognition of multiple
sclerosis using natural language
processing of the electronic
health record

Chase et al. (2017) Tokenisation, Statistical
analysis of words and word N-
grams, term search, supervised
learning

A review of approaches to
identifying patient phenotype
cohorts using electronic health
records

Shivade et al. (2014) Tokenisation, Statistical
Analysis of words and word
N-Grams, supervised learning

Detecting inpatient falls
by using natural language
processing of electronic medical
records

Toyabe (2012) Tokenisation, Tagging, Term
Search, Supervised Learning

Pneumonia identification using
statistical feature selection

Bejan et al. (2012) Tokenisation, Statistical
Analysis of words and word
N-Grams, Term Search

Natural Language Processing
for aviation safety reports:
from classification to interactive
analysis

Tanguy et al. (2016) Tokenisation, Statistical
Analysis of words, N-Grams,
stems, and stem N-Grams
Stemming, Normalising,
Supervised Learning,
Interactive Learning, Topic
Modelling

Application of Statistical
Content Analysis Text Mining
to Airline Safety Reports

Peladeau and Stovall (2005) Tokenisation, Statistical
Analysis of words and word
N-Grams, Normalising, Tagging

Text analysis in incident
duration prediction

Pereira et al. (2013) Tokenisation, Statistical
Analysis of words and word
N-Grams, Tagging, Topic
Modelling, Supervised Learning

Real-Time Detection of Traffic
from Twitter Stream Analysis

D’Andrea et al. (2015) Tokenisation, Stemming,
Statistical Analysis of words
and word N-Grams, Supervised
Learning

Crime Pattern Analysis through
Text Mining

Ananyan (2004) Tokenisation, Normalisation,
Statistical Analysis of words
and word N-Grams

From free-text to structured
safety management:
Introduction of a semi-
automated classification
method of railway hazard
reports to elements on a
bow-tie diagram

Hughes et al. (2018) Tokenisation, Normalisation,
Statistical Analysis of words
and word N-Grams
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indexing method. N-grams are produced in an efficient manner, once the locations of

word tokens is known, N-grams of any higher length are produced without the need

to iterate over the character data again.

Any task which utilises term counts and frequencies such as Statistical analysis,

feature extraction, term weighting, classification, and various machine learning methods

will find that these quantities can be determined much more quickly than when using

other string matching methods, as demonstrated in fig 4.1. Topic modelling using

LDA for example, takes as its input vectors representing the words in a document

alongside their frequencies (Jurafsky & Martin, 2020, Chapter 4).

Likewise, the speed of term searches is also improved significantly, again in fig 4.1

it can be seen that when indexing using hashed n-grams, the time taken to locate a

list of 900 terms in a corpus of 500000 documents is reduced by a factor of almost 50.

This performance is consistent for queries of any length, as shown in fig 4.4. The

number of operations needed to find a word is the same as what is needed to find a

5 word term, rather than increasing with the length of the query as is the case for

plain string matching.

A benefit of using fixed length hashes is that tokens can be replaed without

the need for memory reallocation, which is computationally expensive when data

structures are large. When text data is inserted or replaced, as is the case when

tagging parts of the text, if the inserted data differs in size from the data it replaced,

all data following that insertion must be moved in memory to accommodate the

change. As all hashes are the same size, regardless of the tokens they represent, these

can be swapped without requiring any costly reallocation.

A main tenet of this work is to assist text analysis of safety incident reports as

the size of these databases continues to increase. The measurements shown in 4.5

are important in this regard. As the total number of records increases, the response

time of matching processes increases in a linear fashion. The rate of increase in the

hashed N-gram method is far below that of the other string matching methods. As

the volume of reports increases, the difference in response time becomes increasingly

pronounced.

There is, however a penalty suffered by this method which is not present in the

others tested. Because a sorted list of hash values must be maintained in order for a

binary search to be possible, insertion of new text into a corpus incurs a preprocessing

overhead. Insertion can be implemented either by appending the new hashes to the

list, then re-sorting, or, performing a binary search for the new hashes, which will

give an insertion point (if the hashes don’t already exist), allowing the hashes to be

inserted in the correct place. Both methods incur overheads: sorting the array is

approximately O(n log n) in complexity; while inserting the values into the correct
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place in the presorted data which is O(m + log n) and potentially a further O(n)

(Amortised) for the chunk of data residing after the insertion point. This is only a

hindrance in cases where the corpus is updated more frequently than it is queried,

as in other cases the additional preprocessing time is dwarfed by the additional

time another matching method would have consumed. For the intended use case,

enabling advanced text analysis techniques on close call reports, the performance

benefit stands.

• In what ways can unstructured text be matched against known safety

risks?

Several different ways of doing this are demonstrated across the various studies

covered in chapter 2. In the naive Bayes approach, and other supervised learning

processes, reports are manually labelled with the safety risks they contain, be they

slip, trip and fall events (Hughes et al., 2016) (Toyabe, 2012), or traffic related (Pereira

et al., 2013) (D’Andrea et al., 2015). These labelled reports are then used to create

a list of terms and their associated frequencies in relation to the labels on any given

report. This information is then used to identify known risks in new documents

depending on which of those terms is contained within. Another common approach is

to produce a term list using domain specific knowledge to associate terms with risks,

and classify reports appropriately based on the presence of these terms.

• How can the performance of N-gram queries be optimised in safety

applications, and what is needed to demonstrate that the desired

optimisation is achieved?

The approach used here was to improve the speed of N-gram queries while maintaining

completeness of results. This was achieved by creating an index of the text where

tokens, both words and N-grams were replaced with fixed length numerical representations,

‘Hashes’, stored alongside values indicating their location in the text, ‘Hashes’. By

transforming the data into numerical information

The end result of this is a representation of the text which can be used in the

same way as the raw text at the word and N-gram level, but stored in such a way

that operations upon it are completed much more quickly than the same operations

on plain text.

The speed of this method has already been discussed, but to achieve this while

maintaining the same levels of accuracy and precision (‘Completeness’) as would be

found when performing the same operations on raw text, the possibility of hash

collisions must be considered. Hashes were used that were sufficiently large enough
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to represent every unique token of words and N-grams while keeping the collision

probability low enough that it can be reasonably expected that no collisions will take

place. In table 3.1.2.1 it can be seen that the probability of a hash collision at the

scales used here is 0 even when representing tens of millions of unique tokens. In

4.1 it can be seen that the number of unique tokens in fact starts to decrease when

tokens are sufficiently long enough, indicating that there may be an upper bound

to the number of hashes required for most applications of this kind. The cause for

the increase in this case can be explained by the fact that as a string of words gets

longer, the likelihood that that same string will be repeated elsewhere is reduced, so

more and more of the tokens are unique as the word count of the tokens increases.

In the same way that a very large number or words can be constructed from a 26

character alphabet, a much larger quantity of unique n-grams can be constructed

from a smaller number of words. It can also be noted, however, that past a certain

point, this increase reaches a plateau (seen around n=8), and begins to fall once more.

This happens because many reports are not long enough to contain any n-grams of

this length, so the number of unique terms begins to fall.

Fig 4.2 shows that all unique terms in the close call text can comfortably be hashed

while maintaining a very low collision probability.

• What are the boundaries for this framework and in what ways is it

inductive?

Figure 5.1 illustrates the framework used throughout to explain the various qualities

which must be balanced when optimising N-gram queries. This is effective in this case

as it summarises the the constraints that apply to tasks like this and the ways in which

they relate.

As discussed already, completeness is maintained in order to match the behaviour

required by the numerous text analysis processes used for safety texts. With that

constraint, the implementation was built to maximise speed as much as possible, by

combining efficient searching techniques, optimised for tokens token sizes often used

for text analysis on text of this type, namely words and N-grams.

The penalty for this, accordingly, is increased consumption consumption of memory.

There are a number of reasons for this. Firstly, in order to avoid collisions while

allowing for very large corpora of text, it is necessary to use 64bit integers as hash

values. Each of these integers is 8 bytes in size, therefore, using the numbers from

Table 4.1 as an example, the unique hashes alone account for approximately 792

Megabytes, compared to the original source text, which is 123 Megabytes in size. On

top of this, because a hash is stored for every occurrence of the token it pertains to,
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Figure 5.1: Optimisation of matching procedures is a balancing act between, time,
space, and completeness

alongside three further integers referring to its location in the text, this amount is

duplicated somewhat to around 4 Gigabytes during run-time.

Fig. 4.6 illustrates how the memory usage increases for each doubling of the

corpus size. Naive, Boyer-Moore, and C++ STD methods all require virtually the

same amount of space, which is to be expected as all of these methods work on the

same raw text. The Hashed n-gram method uses considerably more memory to store

the processed text. Table. 5.2 shows first a sample of the raw results (in kB) from

this test; and second, the same results expressed as a proportion of the result from

a corpus half its size. This shows that in almost all cases a doubling of the record

count in the corpus size corresponds to less than a doubling in memory usage, so the

space complexity is at least proportional to the corpus size.

However, memory usage was not a primary concern in the development of this

method, rather, the speed of matching was the priority. In this regard, as demonstrated

by the results, the method is successful at performing text matches faster than other

frequently used algorithms, whilst also providing some structural benefits (E.g. term

frequencies, n-grams) for text analysis proper.

Were the requirements different however, there are ways to tune this implementation

to prioritise other factors. Space complexity could be reduced by reducing the hash

size. Using a 32 bit hash instead of a 64 bit one halves the required space, and this
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Table 5.2: Top: A sample of measurements of memory usage (in kB) for doubling
sizes of corpora. Bottom: The same results expressed as a proportion of the memory
useage for a corpus half the size, i.e. the factor by which memory consumption
increased when the size of text data was doubled

8192 16384 32768 65536 131072 262144
Näıve 3344 5728 11636 22840 43264 80860
Boyer-Moore 3344 5728 11652 22800 43232 80868
C++ STD 3344 5726 11634 22780 43000 80900
Hashed n-grams 77016 151204 327264 660628 1238368 1550852

8192 16384 32768 65536 131072 262144
Näıve 1.745303 1.712919 2.031425 1.962874 1.894221 1.86899
Boyer-Moore 1.748954 1.712919 2.034218 1.956746 1.89614 1.870559
C++ STD 1.748954 1.712321 2.031785 1.958054 1.887621 1.881395
Hashed n-grams 1.827275 1.96328 2.164387 2.018639 1.874532 1.252335

can cost either a reduction in completeness, or a reduction in speed. To maintain

speed, completeness is reduced as hash collusions introduce incorrect. To maintain

completeness, speed is reduced as extra checks must be carried out on th returned

results to exclude those which are returned spuriously.

This framework could feasibly be applied to other problems where these same

constraints are present. The triangle formed by the interaction of Time complexity,

Space complexity, and completeness encloses an area within which all implementations

lie. For any given implementation, an area within the triangle can be drawn to provide

a qualitative representation of which factors that implementation optimises for. For

example the hashed N-gram method outlined here resides mostly along the right

vertex, maximising completeness while optimising for speed as much as possible -

both at the cost of increased memory usage.
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Chapter 6

Conclusions

The method described here constitutes a significant contribution to text processing,

particularly in the domain of analysis of unstructured texts. By enabling very fast

counting and location of large numbers of terms against large corpora of text sources,

this method can expand the scope of text analysis techniques which are demonstrably

useful for learning from safety related incident reports, but which, due to the continuously

increasing volume of these reports, are often limited in the scale at which they can

be applied.

While there are improvements to be made, implementation of exponential search

to improve binary search performance for example, the principle has been demonstrated

to be effective.

The the methods which have been developed here show that there is scope for a

larger throughput of safety text sources into text analysis processes by way of more

efficient use of computing resources

The solution offered by the hashed n-gram method uses a number of well established

techniques in a novel combination in order to achieve matching speeds which are

several orders of magnitude faster than the other alternative methods in common

use. Additionally, the matching time scales sub linearly with the size of the text

data, so the larger the text is, the greater the performance benefit over alternative

methods. This satisfies the initial research goal of improving the performance of

queries on these types of unstructured data sources. Rather than allowing hundreds

of matches per second, this new method allows millions. This opens up possibilities

for the application of analysis techniques which it has previously been impossible or

too time consuming to apply to data sources of this size.

The framework used to qualify this optimisation indicates that the hashed N-

gram method is optimised for completeness and time complexity at the cost increased

memory usage.
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One of the key components of current big data risk analysis research is the use

of natural language processing to aid in the extraction of information from free form

text records. Many natural language processes use word frequencies to aid in the

weighting of certain terms in a document, or as a means to categorise segments of

text. With a fast method of text indexing such as this one, it is possible to compute

these frequencies much more quickly, to the point where results can be collected

in real-time from corpora which are simply too large to facilitate this using other

methods.

This opens further opportunities for any system which uses text analytics for real

time feedback or interaction. By enabling access to larger volumes of text in a smaller

time frame, risk management processes would be able to make use of a much wider

range of information, and the possibility of more accurate insights.

As the IT transformation of the GB railways moves forward, as it does in countless

other domains, the volume of available data will only continue to increase, all of it

with the potential to contain valuable information pertaining to safety, reliability,

operations and more. In the face of this ever expanding sea of data, methods such as

these can only continue to be of increasing utility and importance.
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Chapter 7

Future Developments

7.1 Efficiency

There are a number of potential efficiencies worth investigating when implementing

a technique such as this. One example would be the selection of hashing algorithm.

In the implementation used for collection of the results presented in earlier chapters,

the hash function from the C++ standard library was used, as it is well tested and

robust, and sufficed in order to demonstrate the principle. However, like the ‘rolling

hash’ used in the Karp and Rabin (1987) method, there may be merit in investigating

other hashing algorithms more specialised to a task such as this.

Additionally, further search optimisations such as fractional cascading and exponential

search have to potential to not only squeeze out more performance but may even

be able to reduce the space complexity in the processed corpus. Methods like this

certainly warrent further investigation within the domain of text reporting.

7.2 Tree Structure for Hash Matches

One of the main causes of the relatively large memory footprint of this hashed n-gram

method, is the fact that every word in the text, as well as every n-gram up to, in this

case, 9, must have a hash and a location stored in order for lookups to work. This

results in a very large number of tokens, when in reality the actual count of ‘unique’

tokens is much smaller.

An alternative is to use a binary tree structure, which only has nodes for unique

tokens. Each node can then refer to a list of locations, thus negating the need to

store hashes more than once.

Not only does this result in a reduced memory footprint, but the hashes can still

be searched using a binary search method, as it is implicit in the structure of the tree.
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The method described in the earlier chapters, uses a flat list of tuples which

contain the hash, and position information¿ these are sorted, and in order to count

how many times a particular token appears, first a binary search is carried out until

a single instance is found, then the process reverts to a linear one in order to count

the number of times that hash appears.

In contrast, in a tree structure the same binary search for the hash in question

is carried out, but once found, the associated value is simply a pointer to a vector

containing all locations of the term refereed to by the hash. Counting can now be

performed by simply taking the size of this resulting vector.

Another benefit of storing the preprocessed data in this form is that the penalty

for data insertion is now much less of a factor. Whereas in the flat structure, most

insertions require some amount of memory reallocation, this is no longer necessary,

as adding new nodes to the tree is just a case of updating pointers, and new locations

can now be added to the end of the associated vectors, allowing the reallocation for

this data to be amortized.

7.2.1 Fast Calculation of TF-IDF Weights

TF-IDF weighting is a method of determining the ‘specificity’ of any given term as

it relates to the document which contains it (K. S. Jones, 1972). This method has

found use in a number of natural language processing tasks, for example extracting

key words from a document, or removing terms which contribute least to the meaning

of the text. In order to compute these weights, it is necessary to tokenise the text,

and for each unique term, determine the count of each term, both within a document,

and within a greater corpus.

By preproccing text data using a tree based, hashed n-gram method, these counts

are now part of the data structure itself, and can be obtained at runtime with a single

binary search.

76



References

Abramson, M., & Moser, W. O. J. (1970). More birthday surprises. The American
Mathematical Monthly , 77 (8), 856–858.

Ananyan, S. (2004, 01). Crime pattern analysis through text mining. In (p. 236).
Apache. (2018). Apache log4j 2. Retrieved from https://logging.apache.org/

log4j/2.0/index.html

Baeza-Yates, R. (2000, 01). Block addressing indices for approximate text retrieval.
Journal of the American Society for Information Science and Technology , 51 ,
69-82. doi: 10.1002/(SICI)1097-4571(2000)51:1〈69::AID-ASI10〉3.0.CO;2-C

Baeza-Yates, R., Salinger, e. T., Alejandro”, Mannila, H., & Orponen, P. (2010). Fast
intersection algorithms for sorted sequences. In Algorithms and applications:
Essays dedicated to esko ukkonen on the occasion of his 60th birthday (pp. 45–
61). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved from https://

doi.org/10.1007/978-3-642-12476-1 3 doi: 10.1007/978-3-642-12476-1 3
Baker, C. (2018). Confidential reporting (ciras). Retrieved from

https://www.rssb.co.uk/risk-analysis-and-safety-reporting/

reporting-systems/ciras

Bejan, C. A., Xia, F., Vanderwende, L., Wurfel, M. M., & Yetisgen-Yildiz, M. (2012).
Pneumonia identification using statistical feature selection. J Am Med Inform
Assoc, 19 (5), 817–823.

Bird, F. E., & Germain, G. L. (1987). Damage control: A new horizon in accident
prevention and cost improvement. The Institute Publishing.

Board, D. A. (2016). Trust access, security and enquiries.
Boyer, R. S., & Moore, J. S. (1977, October). A fast string searching algorithm.

Commun. ACM , 20 (10), 762–772. Retrieved from http://doi.acm.org/10

.1145/359842.359859 doi: 10.1145/359842.359859
Brewer, J. (2017). What is smis? Retrieved from https://www.rssb.co.uk/Pages/

risk-analysis-and-safety-reporting/What-is-smis.aspx

Chase, H. S., Mitrani, L. R., Lu, G. G., & Fulgieri, D. J. (2017, 02). Early recognition
of multiple sclerosis using natural language processing of the electronic health
record. BMC Med Inform Decis Mak , 17 (1), 24.

Chazelle, B. (1986). Filtering search: A new approach to query-answering. SIAM
Journal on Computing , 15 (3), 703-724. Retrieved from https://doi.org/

10.1137/0215051 doi: 10.1137/0215051
Chazelle, B., & Guibas, L. (1986a, 01). Fractional cascading: I. a data structuring

technique. Algorithmica, 1 , 133-162. doi: 10.1007/BF01840440

77



Chazelle, B., & Guibas, L. (1986b, 01). Fractional cascading: Ii. applications.
Algorithmica, 1 , 133-162. doi: 10.1007/BF01840441

D’Andrea, E., Ducange, P., Lazzerini, B., & Marcelloni, F. (2015). Real-time
detection of traffic from twitter stream analysis. IEEE Transactions on
Intelligent Transportation Systems , 16 (4), 2269-2283. doi: 10.1109/TITS.2015
.2404431

Dillon, R. L., & Tinsley, C. H. (2008). How near-misses influence decision making
under risk: A missed opportunity for learning. Management Science, 54 (8),
1425-1440. doi: 10.1287/mnsc.1080.0869

East Coast. (2011). Trust user guide.
Feldman, R., & Sanger, J. (2006). Text mining handbook: Advanced approaches in

analyzing unstructured data. New York, NY, USA: Cambridge University Press.
Gnoni, M., Andriulo, S., Maggio, G., & Nardone, P. (2013). ”lean occupational”

safety: An application for a near-miss management system design. Safety
Science, 53 , 96 - 10. doi: 10.1016/j.ssci.2012.09.012

Gulijk, C. V., Hughes, P., Figueres-Esteban, M., El-Rashidy, R., & Bearfield,
G. (2018). The case for it transformation and big data for safety risk
management on the gb railways. Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability , 232 (2), 151-163. doi:
10.1177/1748006X17728210

Hughes, P., Figueres-Esteban, M., & Gulijk, C. V. (2016). Learning from text-
based close call data. Safety and Reliability , 36 (3), 184-198. doi: 10.1080/
09617353.2016.1252083

Hughes, P., Figures, M., & Gulijk, C. V. (2014). Learning from close call events –
preliminary report.

Hughes, P., & Gulijk, C. (2019, 01). An interactive machine-learning method to
obtain safety information from free text. In (p. 46-53). doi: 10.3850/978-981
-11-2724-3 0055-cd

Hughes, P., Shipp, D., Figueres-Esteban, M., & van Gulijk, C. (2018, 03). From
free-text to structured safety management: Introduction of a semi-automated
classification method of railway hazard reports to elements on a bow-tie
diagram. Safety Science, 110 . doi: 10.1016/j.ssci.2018.03.011

Johnson, C. (2002). Software tools to support incident reporting in safety-
critical systems. Safety Science, 40 (9), 765-780. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0925753501000856 doi:
https://doi.org/10.1016/S0925-7535(01)00085-6

Jones, K. S. (1972). A statistical interpretation of term specificity and its application
in retrieval. Journal of Documentation, 28 , 11–21.

Jones, S., Kirchsteiger, C., & Bjerke, W. (1999). The importance of near miss
reporting to further improve safety performance. Journal of Loss Prevention
in the Process Industries , 12 (1), 59 - 67. doi: https://doi.org/10.1016/S0950
-4230(98)00038-2

Jurafsky, D., & Martin, J. H. (2020). Speech and language processing: an introduction
to natural language processing, computational linguistics, and speech recognition.
Pearson.

78



Karp, R. M., & Rabin, M. O. (1987, March). Efficient randomized pattern-matching
algorithms. IBM Journal of Research and Development , 31 (2), 249-260. doi:
10.1147/rd.312.0249

Knuth, D., Morris, J., Jr., & Pratt, V. (1977). Fast pattern matching in strings.
SIAM Journal on Computing , 6 (2), 323-350. doi: 10.1137/0206024

Knuth, D. E. (1997). The art of computer programming volume 3: Sorting and
searching (2nd ed., Vol. 3). Addison-Wesley.

Lainoff, S. (1999). Finding human error evidence in ordinary airline event data.
In Seventh international systems safety conference seattle, wa. international
systems safety society, unionville, va, usa.

Lee, I., Iyer, R., & Tang, D. (1991, 6 1). Error/failure analysis using event logs from
fault tolerant systems. In 91 fault-tolerant comput. symp. (pp. 10–17). Publ by
IEEE.

Lindberg, D. A., Humphreys, B. L., & McCray, A. T. (1993). The unified medical
language system. Methods of information in medicine, 32 (4), 281.

Mayfield, J., & McNamee, P. (1998). Indexing using both n-grams and words. In
E. M. Voorhees & D. K. Harman (Eds.), Proceedings of the seventh text retrieval
conference, TREC 1998, gaithersburg, maryland, usa, november 9-11, 1998
(Vol. 500-242, pp. 361–365). National Institute of Standards and Technology
(NIST).

Miao, Y., Keselj, V., & Milios, E. (2005, 01). Document clustering using character
n-grams: A comparative evaluation with term-based and word-based clustering.
In (p. 357-358). doi: 10.1145/1099554.1099665

Miner, G., Elder, J., Hill, T., Nisbet, R., Delen, D., & Fast, A. (2012). Practical
text mining and statistical analysis for non-structured text data applications (1st
ed.). Orlando, FL, USA: Academic Press, Inc.

NASA. (2020, Nov). Asrs program breifing. Author.
Network Rail. (2016, 11). Network rail catalogue of railway code

systems. Retrieved from https://cdn.networkrail.co.uk/wp-content/

uploads/2016/11/Catalogue-of-Railway-Code-Systems.pdf

Newall, M., & Van Gulijk, C. (2019, September 26). Real-time queries on large
volumes of safety text. In M. Beer & E. Zio (Eds.), Proceedings of 29th european
safety and reliability conference (1st ed., Vol. 1, pp. 1800–1803). Research
Publishing Services. (29th European Safety and Reliability Conference, ESREL
2019 ; Conference date: 22-09-2019 Through 26-09-2019)

Peladeau, N., & Stovall, C. (2005).
Pereira, F. C., Rodrigues, F., & Ben-Akiva, M. (2013). Text analysis in incident

duration prediction. Transportation Research Part C: Emerging Technologies ,
37 , 177-192. Retrieved from https://www.sciencedirect.com/science/

article/pii/S0968090X13002088 doi: https://doi.org/10.1016/j.trc.2013.10
.002

Preshing, J. (2011, may). Hash collision probabilities. Retrieved from https://

preshing.com/20110504/hash-collision-probabilities/

Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern approach.
Shivade, C., Raghavan, P., Fosler-Lussier, E., Embi, P. J., Elhadad, N., Johnson,

79



S. B., & Lai, A. M. (2014). A review of approaches to identifying patient
phenotype cohorts using electronic health records. J Am Med Inform Assoc,
21 (2), 221–230.

Swuste, P., Gulijk, C., Groeneweg, J., Guldenmund, F., Zwaard, W., & Lemkowitz,
S. (2020, 01). Occupational safety and safety management between 1988 and
2010. Safety Science, 121 , 303-318. doi: 10.1016/j.ssci.2019.08.032

Tanguy, L., Tulechki, N., Urieli, A., Hermann, E., & Raynal, C. (2016). Natural
language processing for aviation safety reports: From classification to interactive
analysis. Computers in Industry , 78 , 80-95. Retrieved from https://www

.sciencedirect.com/science/article/pii/S0166361515300464 (Natural
Language Processing and Text Analytics in Industry) doi: https://doi.org/
10.1016/j.compind.2015.09.005

Toyabe, S. (2012, Dec). Detecting inpatient falls by using natural language processing
of electronic medical records. BMC Health Serv Res , 12 , 448.

Xu, W., Huang, L., Fox, A., Patterson, D., & Jordan, M. I. (2009). Detecting large-
scale system problems by mining console logs. In Proceedings of the acm sigops
22nd symposium on operating systems principles (pp. 117–132). New York, NY,
USA: ACM. Retrieved from http://doi.acm.org/10.1145/1629575.1629587

doi: 10.1145/1629575.1629587

80


