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Abstract

The uncertainty found in many industrialization systems poses a significant challenge; partic-
ularly in modelling production planning and optimizing manufacturing flow. In aggregate
production planning, a key requirement is an ability to accurately predict demand from a
range of influencing factors, such as consumption for example. Accurately building such
causal models can be problematic if significant uncertainties are present, such as when
the data are fuzzy, uncertain, fluctuate and are non-linear. AI models, such as Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), can cope with this better than most but even these
well-established approaches fail if the data is scarce, poorly scaled and noisy.

ANFIS is a combination of two approaches; Sugeno-type Fuzzy Inference System (FIS)
and Artificial Neural Networks (ANN). Two sets of parameters are required to define the
model: premise parameters and consequent parameters. Together, they ensure that the correct
number and shape of membership functions are used and combined to produce reliable
outputs. However, optimally determining values for these parameters can only happen if
there are enough data samples representing the problem space to ensure that the method can
converge. Mitigation strategies are suggested in the literature, such as fixing the premise
parameters to avoid over-fitting, but, for many practitioners, this is not an adequate solution,
as their expertise lies in the application domain, not in the AI domain.

The work presented here is motivated by a real-world challenge in modelling and pre-
dicting demand for the gasoline industry in Iraq, an application where both the quality and
quantity of the training data can significantly affect prediction accuracy. To overcome data
scarcity, we propose novel data expansion algorithms that are able to augment the original
data with new samples drawn from the same distribution. By using a combination of carefully
chosen and suitably modified radial basis function models, we show how robust methods can
overcome problems of over-smoothing at boundary values and turning points. We further
show how transformed least-squares (TLS) approximation of the data can be constructed to
asymptotically bound the effect of outliers to enable accurate data expansion to take place.
Though the problem of scaling/normalization is well understood in some AI applications,
we assess the impact on model accuracy for two specific scaling techniques. By comparing
and contrasting a range of data scaling and data expansion methods, we can evaluate their
effectiveness in reducing prediction error.



xii

Throughout this work, the various methods are explained and expanded upon using the
case study drawn from the oil and gas industry in Iraq which focuses on the accurate prediction
of yearly gasoline consumption. This case study, and others are used to demonstrate,
empirically, the effectiveness of the approaches presented when compared to current state of
the art. Finally, we present a tool developed in Matlab to allow practitioners to experiment
with all methods and options presented in this work.
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1.1 Introduction

Planning can be considered as one of the most important factors in developing enterprises.
Production planning and optimising the manufacturing flow represents an essential compo-
nent in the planning process. It can balance the available resources and capacities from one
side, with the demand or consumption from the other side; to give an idea to the management
as to what quantity of materials and other resources are to be procured and when. Opera-
tional Research (OR) techniques can be considered as one of the effective tools in solving
production planning problems [51, 138].

Rivett [110], classified seven basic structures of OR models. He showed that, in most
cases, solving a real-life problem can not be achieved by using these seven standard OR
approaches singly. Taha [128], stated that there is no one comprehensive approach that can
solve all mathematical models. He said, "The complexity and type of any mathematical
model dictates the nature of the solution method". Therefore, modelling real-world problems
represents a considerable challenge. The modellers have to deal with a process that may
contain various measurements. The main challenge is that when the problem is affected by
human behaviours. In this case, the explicit (standard) mathematical models may fail to
solve the real-life problems. In other words, if the standard OR mathematical models are
apt to solve the resulting model, then the available algorithms can be used. Otherwise, if
the mathematical relationships of the resulting model are too complex, then the modellers
may have to use the simulation and inference approaches to solve the problem. In fact, the
majority of real-life problems usually contain varying degrees of approximation [129]. In
most cases, modelling a real-life problem needs to combine various approaches, rather than
use one specific technique alone. This means obtaining a good optimized model will be more
likely to use a combination of OR algorithms as well as other approaches. In this case, it can
be called as combined optimization techniques.

As a matter of fact, most real-world problems usually contain several types of decision
variables. Some variables can be measured, and others need to be estimated. However,
building optimized planning models requires accurate input data. Therefore, the model
builder has to take into account how to find the best method of predicting and estimating
these input variables if needed. For instance, aggregate planning is one of the production
planning methods that can be solved using the OR’s mathematical models, such as linear
programming, to provide decision-makers with an overall plan. It has been applied mainly
to the production field, called Aggregate Production Planning (APP). The APP shows
how the capacity (production, and inventory), resources (workforce, subcontracting, and
facilities), and policies (hiring/firing, back-orders, and overtime) can match the required
demand/consumption at the lowest cost [93]. Figure (1.1) shows how the capacities, resources,
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policies and forecasting demand/consumption should be processed into operational research
mathematical tools to provide the APP. It can be noticed that one of the input variables, i.e.
demand/consumption, has to be estimated. The prediction of demand/consumption can be
considered as one of the most important affecting factors in different fields of industrial and
production planning. However, this can only be possible if the accuracy of the predicting
model is reliable. Which means, the efficacy of a production planning model depends on the
accuracy of the prediction model [88].

Fig. 1.1 Aggregate production planning operational activities.

Finding a suitable forecasting method that gives an accurate consumption prediction
represents an important factor in planning. Conventionally, there are several reliable statistical
forecasting approaches that are available. Generally, they are classified into qualitative and
quantitative techniques [13]. Qualitative forecasting methods are used when relying on expert
judgement and opinion to develop forecasts. It can be considered as an appropriate approach
when the historical data, for the forecasted variables are rare or not applicable. Quantitative
methods can be applied when the historical data is available, quantified, and reflective of
the future [11]. The main concern, at this stage, is represented by the rise in complexity
of the prediction model. For example, if the data contains fuzziness, uncertainty, and is
fluctuating in its nature; furthermore, there is the possibility of scarcity and significant noise
in the data. Other issues arise concerning the factors that affect consumption. Some factors
can be specified using fuzzy or vague concepts. All these can affect the model and make it
difficult for the traditional forecasting approaches to provide the desired accuracy.

Artificial Intelligence (AI) techniques, such as Adaptive Neuro-Fuzzy Inference System
(ANFIS), can be used as an effective prediction technique, which can provide significant
improvement when compared to the traditional forecasting methods. ANFIS can be specified
as one of the best prediction approaches that use a combination of neural networks and the
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fuzzy inference system algorithms. There are two main advantages to using ANFIS. Firstly,
the ability to deal with fuzziness and uncertainty. The second is the capability of this system
for performing parallel computations as well as its ability to simulate a nonlinear system that
is hard to characterize using traditional forecasting models [166].

The motivation for the current research has come from a problem posed by the Iraqi
Oil Industry. Here, they have a need to accurately predict oil consumption as part of an
aggregate production planning (APP) process. However, they are faced with a number of
challenges. The data that they use to guide their understanding of demand is uncertain. For
example, they are aware that consumption is affected by the number of cars on the road.
They are also aware that as the weather changes throughout the year, so does demand for
gasoline. Consumption, in this context, is a complex value dependent not only on those
factors affecting demand, but also on the capacity of gasoline that can be physically produced.
Further exploration of this problem shows that there is limited data available on which to
develop accurate models for prediction. additionally, as data is often recorded manually,
there are questions raised regarding the accuracy of the data and it is not uncommon to see
outliers present in the data set that can easily impact on the accuracy of the prediction models.
Finding a robust solution to this problem has focused the research that will follow and has
motivated the various approaches and techniques developed. However, further case studies
have also been used to attest to the wider applicability of the proposed solutions.

In this work, we are proposing a range of models that can help to overcome the problems
of forecasting within fuzzy environments, as well as dealing with the effects of scarce and
noisy data. This research will follow the form of non-standardized optimized models, formed
from a combination of ANFIS that works in parallel with the OR’s mathematical models in
order to solve the APP problem. The thesis structure includes 9 chapters, classified into four
parts. Figure (1.2) demonstrate a summary diagram of this structure.
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Fig. 1.2 Thesis structure.
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1.2 Research Questions

This work will contribute both theoretically and empirically to an enhanced understanding of
the solution methods that can be combined to optimize ANFIS as a prediction model. The
following questions have been raised as a result of notable gaps in the literature relating to
this problem:

1. What is the impact of data scarcity and outliers on the Adaptive Neuro-Fuzzy Inference
System (ANFIS) optimization?

2. To what extent does the model complexity versus data sample size pose a significant,
practical problem?

3. How can reliable data augmentation methods, such as Radial Basis Functions (Linear,
Cubic, and modified Multiquadric), be constructed and used as robust continuous
reliable data expansion models.

4. How can the modified Multiquadric RBF be tuned to provide robust and accurate data
expansion?

5. How can Transformed Least Squares (TLS) be used to mitigate the effect of outliers
when optimizing the model?

1.3 Research Statement

This work focuses on proposing robust mathematical models as a solution method for opti-
mizing the ANFIS parameters when the data are scarce, significantly noisy, and poorly scaled.
To demonstrate our novel approach, we look at the problem of consumption prediction as it
represents one of the most important input variables of building the APP. Often, consumption
is significantly affected by human behaviours. As such, we are often required to accept
that there is a need to deal with fuzziness and uncertainty when working with this type of
environment. When we are modelling data sets that contain fuzziness and uncertainty in its
nature, then it is appropriate to construct prediction models using fuzzy inference systems
(FIS). In addition, many real-world problems have limited data to work with and yet require
models with high prediction accuracy. Nonetheless, the scarcity and noise of the data raise
concerns when attempting to construct models of this type.

As has been mentioned in the previous section, ANFIS can be defined as a an expert
system that uses a combination of artificial neural networks (ANN) and FIS. The solution
method is based on a Takagi–Sugeno fuzzy inference system. The ANN component is
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a supervised multi-layer feed-forward adaptive network. Whereas the main body of the
fuzzy inference system (FIS) consists of four main components, i.e., fuzzification, fuzzy
knowledge base, inference engine, and the defuzzification process. The fuzzy knowledge
base, in turn, contains the types and numbers of Membership Functions (MFs) that can be
utilized within the solving process. Each MF includes a specified number of function-specific
parameters. The initial values of these parameters determine the initial shape of The MFs.
These parameters are to be optimised using a hybrid learning algorithm in order to optimize
ANFIS [61].

The main body of ANFIS networks consists of five layers. Thus, the numerical informa-
tion represented by the historical data (input-output data pairs) is to be processed through
these layers to fine-tune the network parameters. A hybrid learning algorithm, based on super-
vised learning from example data, must be applied to determine the parameters. The solution
algorithm consists of two passes, i.e. forward and backward passes. In the forward-pass,
the solution algorithm processes the so-called premise parameters. These are the Member-
ship Functions (MFs) built-in parameters which are located at layer one. Whereas, in the
backwards-pass, the network updates the linear parameters, named consequent parameters at
layer four.

There are many applications where ANFIS (Sugeno-type fuzzy models) provides better
models of an underlying problem than artificial neural networks alone. Nonetheless, there are
instances when obtaining a reliable model for either approach can be difficult. However, this
can only happen if there are enough data samples representing the problem space to ensure
that the method can converge. When the data samples are greater than the number of total
parameters (premise and consequent); then, there is enough coverage of the problem space
to optimize the parameters. In contrast, if the data samples are less than the total number
of parameters the data may not capture the problem well and, as a result, over-fitting can
occur. Although ANFIS is theoretically known to be a universal approximator [61], training
them accurately on small data sets is a significant problem in practice. When data is scarce,
the literature recommends that the premise parameters should be kept fixed and set prior to
training [163]. This will reduce the likelihood of over-fitting. Thus, only the consequent
parameters should be optimised by the learning algorithm. However, forcing the premise
parameters to stay fixed will limit the ability to optimize well when dealing with the fuzzy
nature of the problem.

A search of both recent and historical studies has not revealed any work presenting
an integrated solution to deal with this problem. One way to overcome this problem is to
expand the rare data into a larger, but representative, data set. Therefore, we are introducing
our proposed expansion models that can re-sample (augment) the original data with a
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larger number of data samples. Moreover, the proposed model can mitigate the effect of
outliers, where they exist, and produce a shape-preserving fitting curve that can keep the
underlying trend of the original data. We will show that this can be achieved by proposing
two mathematical models. The Radial Basis Functions (RBFs), such as Linear, Cubic, and
modified Multiquadric, are to be used as the basis functions for both models.

In the first proposed model, we intend to apply a direct radial basis function (DRBF) as
an interpolation model using the three types of (Linear, Cubic, and modified Multiquadric).
This model will be used as an expansion model when the raw data sets has no noise. We
will show that by replacing the discrete data with a carefully chosen and carefully optimised
continuous model, we can re-sample from it at a finer granularity and use this to optimise
prediction accuracy for an ANFIS model. As we construct our continuous prediction models,
we will highlight some dangers of over smoothing that we have encountered and justify why
shape-preserving models might be preferred in some cases. We will show how a modified
Multiquadric radial basis function (RBF) approach yields a family of shape-preserving
models that afford an amount of smoothness not found in other shape-preserving models
such as the linear RBFs.

In the second proposed model, we are addressing the problem of modelling data con-
taining noise classified as outliers. In order to overcome this problem, we intend to use
the modified Least Squares approach, so-called Transformed Least Squares (TLS) as an
approximation model. Again, RBFs (Linear, Cubic, and modified Multiquadric) will be
utilized as the basis approximation functions under the form of TLS. We choose a TLS
approach because traditional models, such as standard least squares, tend to cope poorly
due to the influence of these points on the resultant model. We are particularly interested
in finding ways to mitigate the effect of outliers on the model parameters as part of the
data expansion process, rather than through the application of any additional pre-processing
operations on the raw data. We will show that it is possible to asymptotically bound the con-
tribution of any outliers to the error function being minimised and so produce good models
for data expansion. Furthermore, we will show that it is possible to do this by employing a
straightforward iteratively re-weighted least-squares approach.

Furthermore, we intend to develop an application tool that makes dealing with all of our
proposed models straightforward and more manageable. This application will allow the user
to transact with a friendly user interface. This application will give users the ability to choose
from various options for each proposed model. Moreover, it will allow the user to select
different types and numbers of MFs. This means we are developing an expert system using
a tool that can simulate all possible fuzzy knowledge base combinations (MFs types and
numbers). An Adaptive Neuro-Fuzzy Inference Expert System (ANFIES) can be employed
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as a fuzzy expert tool which mimics expert knowledge, and human behaviour in order to
provide an accurate prediction model. Often, domain experts have a better understanding of
the data that describes the problem than they do of the mathematical models. From a practical
point of view, it can be both difficult and time-consuming to try many pre-fixed strategies in
pursuit of a good model. Therefore, creating a tool that can take the lead to examine all the
available fuzzy knowledge bases and extract the best model is proposed. This best model
(best fuzzy knowledge base), in its turn, must provide the optimum solution of the ANFIS.
Depending on that, we have proposed our third model. This model will provide a tool to
optimize ANFIES as a fuzzy expert system that can simulate the expert’s knowledge. This
proposed expert system application can provide the researchers with enough flexibility to
compare and contrast between ANFIS models and select the best one. We will demonstrate
the effectiveness of this approach through data taken from the oil/fuel industry; where data is
scarce.

1.4 Research Objectives

Major objectives of this research are to:

1. Develop an optimization model to solve complex prediction causal problems that con-
tain fuzziness, uncertainty, fluctuatiion, and non-linearity in their nature; particularly
when it is accompany with the problems of scarcity in data as well as outliers.

2. Investigate the effectiveness of using combined mathematical tools and techniques
such as expansion (interpolation and approximation), normalization, and scaling the
data in optimizing the prediction accuracy of ANFIS.

3. Explore the reliability of using the radial basis functions (Linear, Cubic, and modified
Multiquadric) as basis functions of interpolation and approximation models.

4. Explore the robustness of the transformed least squares (TLS) approach as an outlier
mitigation model.

5. Develop a fuzzy expert system application tool that can mimic the expert’s knowledge,
and provide an appropriate environment for processing the data and solving ANFIS
models; as well as an expert system that can be used with a novel application area,
such as health care services, education etc.
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In this chapter, we present relevant literature related to our work. We have three main
aims. One aim is to provide examples of research that demonstrate the move from traditional
statistical methods to machine learning (ML) methods in prediction and forecasting. Many
of these papers compare and contrast ML with traditional techniques for a range of problems.
The next aim is to present research comparing ANFIS systems with other ML approaches,
which also highlights the diverse areas of applications where ANFIS approaches are consid-
ered best. Finally we present the state-of-the-art for dealing with the sparse data and outlier
mitigation problems.

2.1 Forecasting Techniques and ANFIS

Economically, forecasting represents an important tool that allows enterprises to predict into
the future in order to plan their demand, consumption, sales, and production etc. Therefore,
finding reliable and efficient forecasting techniques are in high demand. The literature shows
that many forecasting approaches have been developed. Conventionally, statistical techniques
have been the most commonly used methods. In general, forecasting techniques are classified
into two groups; qualitative methods and quantitative methods. Qualitative methods of
forecasting rely on human expertise and judgement, whereas quantitative methods rely on
the use of historical data [49, 81]. Broadly speaking, quantitative methods are based on two
types of technique - i.e., time-series and causal models. Time-series (e.g., moving average,
exponential smoothing, and Box-Jenkins) are considered powerful tools in forecasting
and are used widely in a range of different applications [26, 89]. Causal models (e.g.,
regression and econometric models) have been used for solving complex prediction problems
using the methodology of cause and effect and influencing factors [80]. However, dealing
with complex models that may contain non-linearity in its nature represents a significant
challenge. There is evidence to show that the classical forecasting methods may not provide
the best-desired performance when predicting with these type of models. Therefore, finding
alternative solutions has become a high demand. Reviewing the literature shows that artificial
intelligence has been adopted as an effective forecasting technique for many models. In this
section, we intend to introduce and discuss the use of ANN and ANFIS as prediction models
as an alternative to the traditional forecasting methods.

2.1.1 Artificial Intelligence in Forecasting

There are abundant studies in the literature claiming that Artificial Intelligence techniques,
such as artificial neural networks (ANN), can be more effective than conventional forecasting
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methods for a large number of diverse application areas. Recently, Pao [103] adopted
an ANN and multiple linear regression models for analyzing the determinants of capital
structures of the conventional and high-tech manufacturing in Taiwan. He indicated that
ANNs produced the lowest forecasting error (i.e. Root Mean Square Error - RMSE) and a
better fit than the multiple linear regression model; mainly when dealing with non-linear
models. Mitrea et al. [87] investigated the performance of traditional forecasting techniques
for the inventory management problem. They compared the Moving Average (MA), and
Autoregressive Integrated Moving Average (ARIMA) with two ANN approaches represented
by a Feed-forward NN and Non-linear Autoregressive Network containing exogenous inputs
(NARX). The results showed that the ANN prediction was more accurate than both the (MA)
and (ARIMA) approaches. Noori et al. [100] compared an ANN model to multivariate linear
regression models as a forecasting method for the river stream-flow problem. They found
that the ANN model offers a better prediction performance than the MLR model.

In the following year, Gosasang et al. [49] employed the Multi-layer Perceptron (MLP)
neural network technique and Linear Regression as a prediction model for the containerization
problem. They concluded that the MLP technique produced more accurate forecasting results
than using linear regression. Yip et al. [154] presented a comparison of two forecasting
techniques, the General Regression Neural Network (GRNN) and the traditional Box-Jenkins
time series models, to predict the cost of equipment’s maintenance in the construction field.
The results showed that the use of (GRNN) made significant improvements in forecasting
results compared with traditional Box-Jenkins time series models. In 2017, Laptev et al. [72]
utilized an end-to-end neural network to forecast the Uber trips completion time and its
effectiveness on reducing the waiting time of the riders. The researchers demonstrated that
ANN forecasting models could produce better results than some classical methods if the
number, length, and correlation of the time-series under consideration is high.

In 2019, further studies compared the multiple linear regression (MLR) to the ANN as
prediction approaches. Abdipour et al. [1] evaluated the performance of five ANN models
along with the MLR model as a seed production predictor. They found that the MLP neural
network provided the best results out of the five ANNs tested and outperformed the multiple
linear regression model. This study concluded that multiple linear regression failed in
explaining the non-linearity of the problem. In contrast, the MLP can overcome this problem
and provide a better prediction model. In another study, Kadam [64] used the MLR and
ANN as forecasting models of the groundwater quality and its suitability for drinking. The
results showed that the accuracy of prediction of the ANN model was higher than the MLR
model. Later, Matyjaszek et al. [84] investigated the performance of three conventional
forecasting models, i.e., time series, ARIMA, and ROBUST models (robust regression and
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robust multivariate analysis) versus two ANN models, i.e., multi-layer feed-forward network
(MLFN) and GRNN. The study was conducted on the prediction of the price in financial
markets. The researchers indicated that applying these models on the full time-series showed
that the GRNN outperformed the traditional forecasting models. In contrast, using transgenic
time series showed that ARIMA offers satisfactory forecasting performance when compared
to the other models.

2.1.2 ANFIS as a Forecasting Model

There is a class of problems, for which data can be uncertain. Amongst all the artificial
intelligence techniques, a hybrid system such as neuro-fuzzy has the potential to give better
performance in forecasting compared to standard ANNs and other conventional methods.
A neuro-fuzzy system is a combination of an ANN and a fuzzy inference system (FIS);
therefore, it has the advantages of both methods [33]. Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) can be considered as one of the most superior intelligence and effective
prediction techniques, which is capable of dealing with fuzziness, complexity, uncertainty,
non-linearity and ambiguity - particularly when high precision and reliability in prediction is
required [92]. In this section, a large and growing body of literature has been investigated to
give a comprehensive knowledge of ANFIS models and the range of problems on which they
have been applied.

2.1.2.1 The Performance of ANFIS in Forecasting

Compared to the ANN and other traditional forecasting methods, ANFIS has been shown
to offer better prediction performance in most cases. Efendigil et al. [40] developed a
comparison of prediction mechanisms for analyzing the effectiveness of using ANN and
ANFIS approaches in dealing with real-world fuzzy demand forecasting problems, as part of
a multi-level supply chain process. The results showed that ANFIS provided better estimation
and outperformed the ANN in forecasting accuracy. Azadeh and colleagues [15] compared
the use of conventional time series approaches and artificial intelligent approaches, such as
ANN and ANFIS, in solving the short-term natural gas demand problem. The overall results
showed that ANFIS provided significant improvements and more accurate outcomes over
ANN and standard time-series prediction. Later, Lohani et al. [75] investigated the ability of
auto-regression (AR) ANNs and ANFIS in providing better prediction of the hydrological
time series modelling for the river flow problem. The results showed that the ANFIS model
performed more accurately than both AR and ANN approaches in predicting the extreme river
inflow. Mahdavi and Khademi [77] forecasted oil consumption in Canada. The researchers
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undertook a comparative analysis of ANFIS against AR models. The results showed that
ANFIS provides significantly better estimation accuracy when compared with AR.

In 2016, Khademi et al. [68] used three different data-driven models; ANNs, ANFIS, and
multiple linear regression in order to forecast the compressive strength of recycled aggregate
concrete. The researchers found that ANFIS was more efficient than the ANN and that both
outperform the multiple linear regression approach. Yaïci and Entchev [148], compared
the prediction performance of ANFIS and ANNs in the solar thermal energy system. The
outcomes indicated that ANFIS had provided the highest accuracy and better reliability than
ANNs. However, in term of the efficiency of the processing speed and implementation, the
ANNs showed more flexibility than ANFIS.

In 2018, Mashaly et al. [83] concluded that ANFIS gave better forecasts than multiple
linear regression in predicting solar productivity. In another study in 2018, Aengchuan
et al. [3] investigated the prediction performance of both ANFIS and ANNs for uncertain
supply and demand as part of an inventory system. The results showed that ANFIS provided
a better fit and achieved the best performance when compared to the ANN model. Later,
Okwu and Adetunji [101] adopted the ANN and ANFIS models in solving the trans-shipment
problem. The research aimed to model and optimize the distribution costs in a multi-level
trans-shipment system. The results showed that the use of ANN and ANFIS reduced the
optimal total cost of distribution by 36% and 34%, respectively, when compared to the
classical model.

In 2020, Wong et al. [146], estimated the efficiency of biochar adsorption for the Cu
(II) ions removal within the water. They compared and evaluated the performance of the
ANN, ANFIS and MLR as prediction models. They employed eleven various algorithms
to train the ANN models, and eight different MFs as knowledge base for ANFIS models.
The outcomes showed that both the ANN and ANFIS outperformed the MLR significantly.
However, the researchers concluded that ANFIS was found to provide the best performance.
Following that, Nanda et al. [95], adopted the ANN and ANFIS to estimate the fundamental
vibration frequencies that can be used to determine the fractures of the crosswise fixed shaft
(construction problem). The outcomes showed that the ANFIS model outperformed ANN
with an evident rate of average error value by 1.33%.

Despite prior evidence, some studies have claimed that ANNs provides better estimation
than ANFIS, albeit findings are somewhat contradictory. As a matter of fact, each problem
has its structure, such as properties, characteristics, and hypotheses. Therefore, finding
the right solution methods that are suitable for solving fuzzy problems, and applying them
appropriately, plays an important role when comparing these methods to each other. The
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literature showed that comparing the ANFIS models with ANN was incommensurate in
particular problems due to some determinants.

A study by Amid and Mesri [10] measured the prediction performance of the linear
regression, radial basis function neural networks (RBFNN), MLP, and ANFIS for broiler
production problem. The results showed that the RBFNN had provided the best prediction
performance, followed by ANFIS, linear regression, then MLP. Technically, the body struc-
ture of ANFIS network determinant to have only one output variable that can be processed in
a single ANFIS model. However, in this study, Amid and Mesri proposed their ANFIS model
to include three input variables and two output variables. From our viewpoint, the use of
ANFSI as an estimation method for this type of problem was not felicitous. A Co-active
Neuro-fuzzy (CANFIS) can be a better choice as a solution method for this type of problem
[61]. Consequently, comparing the results of ANFIS with ANN may not be right for this
particular problem.

In another study, Parvizi et al. [104], modelled a natural gas prediction problem using
ANN and ANFIS. Comparing the results showed that the ANN model was marginally better
than ANFIS. However, the researchers have limited the knowledge base of the ANFIS model
to use six Gaussian MFs for their proposed input variables. In our view, we would suggest
solving ANFIS using more types of MFs which may lead to better results. Using various types
of MFs will produce a wider ANFIS’s knowledge base, which can provide more flexibility
for the fuzzification process when dealing with fuzzy data. Therefore, the performance of
ANFIS model might be improved by using more MF types. Consequently, the comparison of
the two models’ results will be changed.

From our perspective, comparing ANFIS performance with other prediction methods
needs to be built on using valid hypotheses and correct assumptions, as well as different
types and numbers of MFs in order to obtain the best solution.

2.1.2.2 ANFIS in Different Applications

Neuro-fuzzy systems have been used widely in many applications and various fields such
as technical diagnostics and measurement [137], business [107], educational fields, medical
systems, economic systems, traffic control, forecasting and prediction [57], electrical and
electronics systems [16] [113], manufacturing and system modelling, and so forth [65][66].
More recent studies have confirmed that ANFIS has been vastly used in different applications.
For instance, Table 2.1 shows the use of ANFIS in various areas during the last decade.

Forecasting demand and consumption plays a vital role in an aggregate production
planning process [93]. In the last decade, ANFIS has been successfully adopted as a
prediction technique in this area. There are many studies professing the use of ANFIS and
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Table 2.1 Several instances of ANFIS applications

Year Authors Domain Methodology

2010 Boyacioglu and Avci [27] Stock market return prediction ANFIS

Talei et al. [133] Rainfall–runoff prediction modeling ANFIS

Firat and Güngör [45] Sediment level prediction ANFIS, ANN, MLR

2011 Alizadeh et al. [7] Stock portfolio return prediction ANFIS

2012 SaberIraji et al. [112] Students academic performance prediction ANFIS, LVQ

Al-Hmouz et al. [6] Mobile learning adaptation ANFIS

Najah et al. [94] Water quality prediction ANFIS, Wavelet de-noising

2013 Mahdavi and Khademi [77] Oil production forecasting ANFIS, AR, Data mining

Hosseinpour et al. [55] Road accident prediction ANFIS

Svalina et al. [127] Stock Exchange prediction ANFIS

Talei et al. [132] Rainfall–runoff prediction modeling ANFIS, DENFIS

2014 Khoshnevisan et al. [69] Agricultural, potato yield prediction ANFIS, ANN

Chen and Do [34] Students academic performance prediction HANFIS, GA

Emamgholizadeh et al. [42] Groundwater level prediction ANFIS, ANN

2015 Wang and Ning [141] Bank cash flow optimization ANFIS, PSO

Vasileva-Stojanovska et al. [136] Educational quality of experience prediction ANFIS

Dragomir et al. [41] Renewable energy performance ANFIS, ANN

Wen et al. [144] Groundwater level prediction WANFIS

2016 Hsu [56] E-Commerce cash flow ANFIS

Yaïci and Entchev [148] Solar thermal energy prediction ANFIS, ANN

Su and Cheng [124] Stock forecasting ANFIS

Mahmud and Meesad [78] Stock market price prediction RENFSM, ANFIS

Mekanik et al. [85] Seasonal rainfall forecasting ANFIS, ANN

Atsalakis et al. [14] Stock market forecasting ANFIS

2017 Ðokic and Jović [167] GDP health and growth analysis ANFIS

Yaseen et al. [152] Stream flow forecasting ANFIS

Rezakazemi et al. [109] Hydrogen separation evaluation ANFIS, GA, PSO

Amid and Mesri [10] Broiler production predictive models ANFIS, MLP, RBF

2018 Mashaly et al. [83] Solar energy prediction ANFIS

Yaseen et al. [153] Rainfall forecasting ANFIS

Stojcic et al. [123] Queuing systems time optimization ANFIS

Jones et al. [63] Population growth ANFIS

Aengchuan et al. [3] Inventory control ANFIS, FIS, ANN

2019 Bonakdari et al. [25] Soil temperature WANFIS, MLP, PSO

Benmouiza and Cheknane [22] Solar radiation forecasting ANFIS

Ahmadlou et al. [5] Flood susceptibility modelling ANFIS

Zhou et al. [165] Flood forecasting ANFIS, GA

Parvizi et al. [104] Natural gas reforming modelling ANFIS, ANN

2020 Sirabahenda et al. [119] River’s sediment concentrations and loads ANFIS

Ahanger et al. [4] Education quality assessment ANFIS

Wong et al. [146] Water quality ANN, ANFIS, MLR

Nanda et al. [95] Construction ANN, ANFIS
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demonstrating its performance as a demand and consumption forecasting technique. In
2010, Azadeh et al. [15] employed ANFIS to predict a short-term natural gas demand. The
researchers indicated that ANFIS provided better results than the ANN and the traditional
time series approach. They stated that ANFIS was the right choice as an intelligent model
for solving demand and consumption prediction problems. Mainly, when dealing with
causal modelling that contains multiple inputs, non-linearity, uncertainty, complexity, and
ambiguity in its nature. Later, Nadimi et al. [92] presented ANFIS as a prediction model
for long-term electricity consumption. The proposed ANFIS model was combined with
classical auto-regression (AR) in order to produce sufficient input data. The performance
of the proposed ANFIS-AR model was compared to an ANN model. ANFIS outperformed
the ANN and provided accurate results that were very close to the actual consumption
values. They concluded that ANFIS algorithm is one of the superior approaches that have the
capability to deal with fuzzy and complex consumption problems.

Mordjaoui and Boudjema [90], used ANFIS to estimate short-term electricity load
demand as part of power system planning procedures. The outcomes showed that the ANFIS
model provided high prediction accuracy when compared to other models such as ANNs. The
researchers concluded that the ANFIS model has the ability to handle the rapid fluctuations
in power demand, unlike ANN models. Azadeh et al. [17] proposed a combined long-term
natural gas consumption prediction model based on ANFIS and computer simulation model
(CS). The proposed model has been compared to ANN-MLP models as well as traditional
regression models. The outcomes showed that ANFIS-CS model outperformed the other
models and provided an applicable model with better performance. The researchers claimed
that their proposed model presented a unique and flexible ANFIS model in solving gas
consumption problems, which can be applied to estimate gas demand in the future.

In 2016, Yang et al. [150] adopted a combined prediction model which consisted of three
methods, i.e., ANFIS, Back Propagation(BP) neural networks, and ARIMA model to forecast
short-term electricity demand. The proposed model was working on using the ANFIS and
BP model to deal with the non-linearity of the data. Whereas, the ARIMA model dealt with
the linearity and seasonality. The results showed that using the proposed combined model
had a high prediction accuracy. The work presented by Panapakidis & Dagoumas [102] also
addresses the problem of natural gas demand. Here, they present an approach combining
ANFIS with genetic algorithms, wavelet transforms and feed-forward neural networks. The
results indicated that the proposed model was distinguished by a high level of flexibility
and comprehensive operation. An important conclusion made by the authors is the need for
robust data pre-processing to lower forecasting error.
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One year later, Kaveh et al. [67] employed ANFIS and ANN models to predict the
consumption of the drying energy for four crops as part of an agricultural problem. The
structure of the proposed model consisted of four input variables (i.e., air temperature, air
velocity, drying time, and produced type), and one output variable. The results of both
models showed that the ANFIS model had outperformed ANN and provided high capability
in evaluating all output. In 2020, Adedeji et al. [2] adopted ANFIS models to predict the
energy consumption of a multi-campus institution. They proposed two models in order to
forecast the consumption of four different campuses. First, ANFIS was used as a standalone
model. The second proposed model employed particle swarm optimisation (PSO) alongside
ANFIS to produce a combined hybrid prediction model. The performance of the two models
was compared. Based on the overall results, the researchers concluded that the hybrid
ANFIS-PSO model outperformed the straightforward ANFIS model.

2.1.2.3 Pre-Processing Data for ANFIS Problems

As defined in the previous sections, an ANFIS structure is based on two main methods, i.e.,
the fuzzy inference system (FIS) and artificial neural network (ANN). It takes the advantages
of both approaches; the FIS describes the uncertain phenomena, and the ANN provides a
self-learning ability. This means ANFIS uses a set of data samples in order to build the fuzzy
knowledge base and process the input-output mappings to fine-tune the MFs at the fuzzy
knowledge base. A significant concern is that the quantity and scale of the real data may not
be sufficient to train a reliable model. In many cases, the collected input data can be either
scarce or contain significantly different scales. Therefore, it is essential to find a robust data
processing model that can help to improve the prediction performance and reduce the error
measures.

Pre-/post-processing data is a well-known technique and has been widely used to improve
ANFIS performance. Nadimi et al. [92] compared ANFIS with ANN models as predic-
tion techniques for long-term power consumption. The structure of the proposed models
consisted of two input variables (i.e., population and Gross Domestic Product (GDP)) and
one output variable (i.e., electricity Consumption). The annual net consumption data of
seven industrialized countries have been drawn from the world bank development indicators.
Twenty-eight sets of data samples were available covering the period from 1980 to 2007.
Due to the difference of data scales, the proposed ANFIS model has been equipped with
pre-processing and post-processing techniques to remove any possible noise in the data. All
the input and output data samples have been scaled and normalized before being fed it into
ANFIS models. The researchers concluded that the use of pre and post data processing had
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provided higher precision to the performance of the proposed ANFIS model. However, they
did not provide any further details of the methods that had been used for data processing.

Azadeh & colleagues [15] presented ANFIS as a more superior method than ANN in
short-term prediction of the natural gas demand. The proposed ANFIS model structure
contained four inputs and one output. The authors adopted the daily natural gas consumption
for nearly six months period in order to demonstrate the applicability and comparability of
both models. They applied the Z-score technique to normalize the data over the range of
[0,1]. The scaling process was used to ensure that all data entries were equal in its weight.
The researchers claimed that significant improvements had been achieved when they used
scaling and pre-processing to remove noise in the data set prior to training ANFIS to model
demand prediction.

Najah et al. [94] proposed a composite forecasting model containing ANFIS and wavelet
de-noising technique (WDT-ANFIS) to predict water quality parameters. The combination of
these two methods was used to develop a model that can deal with the noise of data signals
caused by systematic and random errors. The main goal was to enhance the prediction
performance and accuracy of the water quality. A total of sixty data samples were gathered
from the mainstream of Johor River for the period of 1998–2007. However, these data
samples showed numerous inconsistencies in the data recorded by the relevant department.
Therefore, the researchers adopted the wavelet de-noising as a pre-processing tool in order to
enhance the data quality prior to being fed it into ANFIS. The results showed that the WDT
had contributed effectively in improving the prediction accuracy, and the proposed composite
WDT-ANFIS model outperformed the straightforward ANFIS model.

Mahdavi and Khademi [77] adopted a data mining technique as a pre-processing tool
to enhance the prediction performance of oil production using an ANFIS model. They
employed a data cleaning technique to enhance and integrate the data samples before feeding
it to ANFIS. The authors stated that the pre-processing operation consisted of two phases.
First, for integration, they take out any invalid values from the training data. Second, convert
the data into static by equalising the mean and variance of the data in time duration. Although
the results indicated that the proposed pre-processing model had played a part in improving
ANFIS performance, this study did not provide any evident details of the methodology that
had been used to process the data.

In their work, Azadeh et al. [17] proposed a combined prediction algorithm based on
ANFIS and Computer Simulation (CS) to forecast long-term gas consumption. The structure
of the model included four variables, i.e., three inputs and one output. The provided data sets
were on monthly basis samples covering the period from 2000 to 2008. This work offered a
new methodology of using the pre-post data processing. The pre-processing operation was
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represented by applying the CS model into the historical data. First, the provided data for
each year are to be examined in order to identify the best distribution function that fits it.
Second, the CS model is to be applied to generate random variables for each year using the
best probability distribution extracted from the first step. The outcomes of the CS model are
to be fed into ANFIS model in order to estimate the long-term gas consumption. Moreover,
the proposed ANFIS-CS model was compared to 12 various ANN-MLP models and 10
different types of regression models in order to evaluate the performance of the proposed
model. The ANFIS-CS outperformed all the other models and offered better prediction
accuracy.

Su and Cheng [124] used a hybrid stock prediction model based on the method of
integrated non-linear feature selection (INFS) and ANFIS time series model. They proposed
a solution algorithm which contains three main phases, i.e., data pre-processing, ANFIS
modelling, and forecasting and evaluation. The first phase (pre-processing) contains two
steps, firstly it works on converting the original data into technical indicators, and secondly,
selecting the important indicators using the INFS method. This should produce pre-processed
data that can be fed into ANFIS. The proposed model offered a specific type of pre-processing
operation that can be used when the input variables need to be in the form of technical
indicators. The results showed that the proposed model had provided better total profitability
and accuracy than the use of explicit data.

More recently, [99] approached the problem of fine-tuning the parameters governing
the shape of the ANFIS membership functions. The authors compared optimised and
non-optimised ANFIS applications to the problem of the estimation of freight train energy
consumption. They used a variant of the Bee Colony Optimization (BCO) algorithm, a meta-
heuristic approach, for the adjustment of fuzzy logic membership functions. They concluded
that the precision of the developed fuzzy reasoning model was significantly increased after
tuning membership functions by the BCO.

2.1.2.4 ANFIS Models: The Data Scarcity Problem

Data scarcity represents a significant challenge nowadays. In the previous sections, several
studies introduced different methodologies of pre-processing of ANFIS’s entry data, such
as scaling. However, a limited number of studies addressed a pre-processing solution for
dealing with a small data problem. Recent evidence suggests that ANFIS can be considered
as one of the preferred prediction methods in dealing with problems when the entry data
are scarce. However, this is true only to some limited extent. If we refer to the Nyquist
Theorem [37], which states that the more complex the underlying distribution is, more data
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is needed to be able to reproduce it accurately. In other words, as the problem complexity
increases, more data are needed to define it and capture that level of complexity.

Li et al. [73] indicated that, for building a precise and useful knowledge of any artificial
learning system, a sufficient number of data samples are needed before proceeding the training
process. Therefore, they proposed a comparison model to show how limited information
and small data are negatively affecting the performance and accuracy of prediction. They
compared the performance of traditional neural networks such as Pythia (a crisp learning
approach) with the ANFIS (a fuzzy learning technique) in solving the early scheduling of the
dynamic flexible manufacturing system problem. The main goal was to prove that expanding
the fuzzification domain range, by adding more data, can provide a wider fuzzification area
for better prediction accuracy. In other words, enlarging the training data sets will improve
the fuzzification process by extending the MF’s mapping area into a broader range. A set of
100 data samples were used to compare the prediction performance of both methods. The
researchers examined the performance of both methods using eleven data sets of different
sizes, clipped out of the original data. The smallest data set size consisted of only five samples,
whereas the largest represented the entire original data set of 100 samples. The results showed
that by adding more data, the performance is improved in both methods. However, the fuzzy
learning model (ANFIS) had significantly outperformed the crisp learning method (Pythia).
ANFIS testing accuracy increased from 79% (using the set of five data samples) to 93%
(using 100 data samples), whereas using Pythia provided prediction performance of 51%
(using a set of five data samples) to 78% (using 100 data samples). It is not difficult to notice
that solving the ANFIS using five data samples is even better than the Pythia using 100 data
sets. The authors concluded that by using fuzzy models, such as ANFIS, in modelling small
data sets, learning can improve the prediction accuracy.

In a later work , Li and his colleagues [74], developed another combined model using a
data trend estimation approach, mega-fuzzification, and ANFIS to overcome the rare data
problem in the early scheduling of the dynamic flexible manufacturing systems. This study
represents an improved version of the first model mentioned above. The results showed that
the prediction accuracy had increased from 69.3% (using a set of five data samples) to 94.7%
(using 100 data samples) using the proposed combined ANFIS model.

Sen et al. [116] examined the performance of ANFIS models and a genetic programming
(GP) technique in the sampling problem, mainly when the data are rare and continuous. The
k-fold cross-validation and fuzzy c-means clustering techniques were employed as a solution
algorithm for these methods (i.e., ANFIS and GP). The results indicate that the fuzzy c-means
is more reliable than the k-fold cross-validation for both methods, and that the ANFIS model
had outperformed the GP when modelling small data. Dewan et al. [39] developed an ANFIS
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model to predict the ultimate tensile strength of welded aluminium alloy joints. The structure
of the proposed model contained three inputs and one output variable. The data, consisting
of 73 samples, were obtained experimentally. The study showed that ANFIS was one of the
best methods when dealing with small data problems. They found that when predictions
were required using small experimental data sets, their approach yielded better results by
using leave one out cross-validation with ANFIS and ANN. The results indicated that the
ANFIS model offered more reliable performance and better prediction accuracy than ANN.

In another study, Barak and Sadegh [18] proposed a hybrid ARIMA-ANFIS ensemble
model to predict the annual energy consumption, mainly when the data were insufficient.
They presented three solution scenarios based on an ARIMA-ANFIS hybrid model as a
time series forecasting technique. Initially, the ARIMA model had been used to forecast
the linear part of the original data, prior processing the three scenarios. In the first scenario,
ARIMA forecasts the linear data, whereas the ANFIS model is used to predict the non-linear
(residuals) data. In the second scenario, the forecasting of linear data (ARIMA outputs)
is used as one of the ANFIS inputs in addition to the non-linear inputs. The last scenario
is similar to the second one. However, the researchers employed the AdaBoost (Adaptive
Boosting) as an ensemble method to enhance the data as a proposed solution method to deal
with the rarity of the data. The overall results indicated that the third scenario provided better
prediction than the other models, as the MSE enhanced from 0.058 to 0.026 compared to the
second scenario.

In 2019, Fachini et al. [43] adopted ANFIS as a voltage prediction model to determine the
critical bus voltage for the IEEE 14-bus system when the data is of a limited amount. They
indicated that ANFIS provides a better estimation for small data problems. The researchers
showed that using ANN techniques to find predictions with limited amounts of data gave
poor and inaccurate results. The authors further showed that this could be overcome by using
ANFIS.

Despite prior evidence, ANFIS can be used to solve problems with small data, if and
only if, there are sufficient data that can provide reliable learning knowledge to optimize
all ANFIS parameters (i.e. premise and consequent). In other words, performing ANFIS’s
hybrid learning algorithm requires the entry data sets to be greater than the number of total
parameters. Otherwise, the modellers are advised to either fix the MFs parameters (premise),
which means no further optimization for the fuzzification process will be made [61] [163];
or to obtain a reliable pre-processing data model that can expand the data samples up to a
sufficient number in which to satisfy this condition.

Delving in-depth into the literature, few related kinds of research was found in which to
deal with this problem. In 2009, Efendigil et al. [40], used the fuzzy and neural approaches
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to predict consumer demands within a multi-level supply chain, particularly when it is under
uncertainty. They employed ANNs and ANFIS as a bipartite methodology to propose their
forecasting models. A comparison of the two proposed models indicated that ANFIS had
provided better performance than ANN. The ANFIS structure of the proposed demand
forecasting system has been built with four input variables (i.e., unit sale price, product
quality, customer satisfaction level, and effect of promotion holidays), and one output (i.e.
demand quantity). Various input knowledge bases have been employed to investigate the
impact of using different types and numbers of MFs on the prediction accuracy. This structure
has been applied to three retailers. Real-world data have been obtained using a questionnaire
issued to retailing experts and pre-determined factors extracted from the literature. The
questionnaire provided only twenty-four data samples. The collected data was in the form
of a monthly basis covering a two-year period. Looking at the number of total parameters
(premise and consequent) accompanying each ANFIS model, the researchers indicated that
the number of data samples was insufficient. Therefore, they intended to expand the data into
96 monthly periods by generating more samples using Monte Carlo simulation. However,
the researchers did not provide any evidence to show the reliability and/or robustness of
the data generating model. Nor did they comment on the extent to which it can explain the
characteristics of the original 24 samples. Moreover, they did not supply enough information
about the original and expanded data for all input variables. Therefore, it is difficult to form
an opinion of the performance of the proposed expansion model.

To the best of our knowledge, using data expansion as a pre-processing technique to
overcome the data scarcity problem (specifically for ANFIS modelling) is only applied across
a limited range. We did an extensive search in the literature to cover this area. However, due
to the limitation that existed in the previous technique, we did not find more studies dealing
with this particular problem. With this motivation, our proposed model can be considered as
a novel work as it represents the first research using robust mathematical models to expand
the data for ANFIS modelling.

2.2 Sparse Data and Outliers

2.2.1 Sparse Data

Sparse data provides a challenge in many applications. There is evidence were some models
can deal with this problem and provide an enhanced range of data to overcome the data
sparsity problem. Here we will bring into account the most recent data sparsity modelling
research.
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Antholzer et al. [12], developed an image reconstruction model formed from a deep learn-
ing convolutional neural network (CNN) algorithm to be used in photo-acoustic tomography
(PAT) from sparse data. They employed a linear reconstruction algorithm to deal with the
data sparsity problem prior to the implementation of the CNN on the training data using
adjusted weights (the actual image reconstruction). The results showed that the proposed
model provides better quality image reconstruction compared to conventional approaches for
PAT from sparse data.

Beigi et al. [21], looked into the problem of sparse data for modelling personality in
social networks, which is caused by the small percentage of negatively-signed links compared
to positive links. They investigated the possibility of mitigating the data sparsity problem by
obtaining personal information. The authors proposed a signed link prediction (SLP) model
that allows experimental exploration of user personality through social media data. They
relied on the optimism and pessimism information obtained from the user’s personality in
order to establish more positive and negative links. Their research aimed to investigate the
possibility of obtaining personal information, and to determine if this information could help
in overcoming the data sparsity problem in this area. The results showed that the performance
of the SLP and all other prediction methods improved after increasing the size of the training
sample.

Chen et al. [32], proposed a novel method named Hierarchical Bayesian Data Augmenta-
tion (HBDA) to deal with data sparsity in fatigue S-N curves. The proposed method is to be
integrated with hierarchical Bayesian modelling (HBM) and Bayesian data augmentation
(BDA) to create a larger fatigue life data sample from the raw sparse samples. Four solution
strategies were processed to perform the proposed model. These strategies were validated
and compared using data drawn from the open literature. The results showed that the HBDA
(proposed method) significantly outperformed the conventional methods when compared
with the HBM/BDA alone, particularly with a small data sample. The authors have evaluated
the proposed model by applying it to a real-life problem where only limited data are available
for testing. Other, recent publications relating to the problem of modelling with small data
sets can be found in Table (2.2).

The lack of data, which is interchangeably described as scarce data or sparse data,
represents one of the big challenges to accurate data-driven model building. As a solution
method for this problem, data expansion via sample interpolation and approximation is
reasonably well understood and covered extensively in the literature. Wagner et al. [139],
compare and evaluate a range of regression-based interpolation methods for modelling daily
rainfall in data-scarce regions. This is particularly relevant to our work. In our work, we
compare and contrast a range of approaches to try to determine the most suitable model for
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Table 2.2 Sparse data most recent literature

Year Authors Domain Methodology

2017 Takwoingi et al. [131] Meta-analysis - sparse data Hierarchical summary receiver

operating characteristic (HSROC)

2017 Yu and Baek [155] Sparse data in wireless Sparse Random Sampling (SRS)

sensor networks

2018 Chen et al. [31] Sparse data in computed Adaptive deep learning - image

tomography (CT) reconstruction

2018 Hao et al. [53] Low-sample size data in Pathway-Associated Sparse Deep

genomic medicine Neural Network (PASNet)

2019 Sinha et al. [118] Sparse data - time series The Koopman operator

2020 Feng et al. [44] Sparse data in recommender Fusion collaborative filtering method

systems

accurately reproducing the trend from scarce data. In their paper, the authors take a similar
approach. They recognise that where there are regions over which data density is a problem,
different interpolation schemes can yield different results. Their aim is to try to determine
the best approach. In his research, Coppejans [36] uses piece-wise cubic splines as a tool
to support a method for estimating statistical expectation. Our choice of using cubic radial
basis functions to model the data shares interesting overlaps with the theory of cubic spline
interpolation.

MacAllister et al. [76] investigated the feasibility of employing meta-models, Kriging
and Gaussian RBFs, as multivariate data approximation techniques to generate synthetic data
that can overcome problems due to the scarcity of training data for Bayesian networks. Their
proposed model was applied to predict customer behaviour for three companies (Amazon,
Apple, and Google) as well as identifying market trends. Particle Swarm Optimization (PSO)
was utilized to fine-tune the network parameters for four network structures using three small
data sets. The proposed models were used to increase the small data into three different
generated data sets of sizes: ten thousand, one-hundred thousand, and a million data points.
The results showed that using the proposed model provides increased accuracy over small
sample sets in training the Bayesian networks.

Inspired by this exciting development, we have been motivated to search for a suitable
mathematical solution to solve the problem of data scarcity that we faced. Despite all the
previously proposed models for dealing with the data sparsity problem, we could not find a
suitable one that we can be applied directly to our case study due to the fuzziness, uncertainty
and fluctuation in the original data.
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It is underlined that in all the published methods, limited studies discussed the use of
RBF interpolation to deal with the small data problem. In later chapters, where we introduce
the data interpolation and near-interpolation approach, we will refer the reader to relevant
research where more information on the forms being constructed can be found.

2.2.2 Outliers (anomaly) Mitigation

Outlier mitigation has been presented in many research areas and applications in the literature.
It has been discussed and developed using different solution methodologies and approaches.
Here, we bring into account some of the most recent research in this field.

Pozo-Prez et al. [105], presented a regression framework as an effective alternative to the
Receiver Autonomous Integrity Monitoring (RAIM) in GNSS signals. The proposed frame-
work is used for mitigating the unexpected large errors which do not meet the assumption
of Gaussian noise. The outcomes indicated that the proposed model provides a significant
improvement compared to other conventional approaches. Kim et al. [70], introduced a
solution algorithm that enhances the location accuracy of indoor pedestrian dead reckoning.
They compensated for the location error using the magnetic field map-matching technique.
The researchers employed the roughness weighting factors to mitigate the outliers using
multiple magnetic sensors as a hardware tool. The results showed that the proposed model
improved the performance in all indoor situations. Nikitin and Davidchack [98], introduced
the intermittently non-linear filters as an effective tool for real-time mitigation of outliers
and noise in electromagnetic interference (EMI). The authors provided an overview of the
tools and methodology that can be used for outlier enhancement. The results showed the
improvement in the signal that can be earned after applying the proposed model. Yang et
al. [149], showed how the Graduated Non-Convexity (GNC) approach can be used in combi-
nation with the non-minimal solvers to provide a robust solution for the outliers rejection.
The authors claimed that the proposed model is significantly faster than specialized solvers
and it has outperformed the classical approaches and provides more accurate results than
specialized local solvers.

Talking within the time series framework, the literature presented many approaches
that can be used to detect outliers in different applications. For instance, in 2016, Wang et
al. [142], proposed an online self-learning method that can discover the outliers. This model
can automatically recognise outlier time series in addition to its exact position without any
prior knowledge about the data. Two years later, Wang et al. [143], looked at the problem
of outlier detection for multivariate time series and its challenges such as variable subsets,
different dimensions, and scale of the subset data. The authors introduced the multivariate
outliers algorithm as a solution method for the outlier detection problem. Later on, Munir et
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al. [91], proposed a deep learning-based outlier detection model for the cyclic and seasonality
outliers that may occur usually in data streaming under the time series framework. The results
showed that the proposed model has outperformed the state of the art of outliers detection
approaches. Along this direction, Amarbayasgalan et al. [9], proposed a deep learning-based
unsupervised outlier detection model which can be applied to batch and real-time outliers.
The outcomes indicated that the proposed model outperformed the state-of-the-art in outlier
detection approaches in most cases. Geiger et al. [48], also proposed an unsupervised
machine learning model for time-series outlier detection based on Generative Adversarial
Networks. The results showed that the proposed model was effective and outperformed the
baseline methods in most cases.

In summary, the literature review has shown that when it comes to dealing with scarce/sparse
data and outliers, the techniques presented are often bespoke to the application being studied.
This is natural, and expected, but does make transferring knowledge and understanding to
other applications difficult. It is clear too, that there is a balance to be found between effec-
tiveness of the approach and the simplicity of its implementation. A complex and difficult to
implement method is unlikely to be adopted in practice, regardless of how effective it might
be. A lesson that we have clearly learnt from the literature study is that effective, robust,
implementable methods are needed that generalise well to a wide range of applications.
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3.1 Introduction to Fuzzy Logic

Fuzzy logic (FL) can be defined as a precise logic of ambiguity and approximate reasoning. It
can be considered as an endeavour of formalization/mechanization of human capabilities. As
humans, we tend to learn knowledge from experiencing the world in which we live. We have
a limit in our abilities to understand the world and to find reasoning. However, we use our
capabilities to make reasonable decisions within an environment of ambiguity, uncertainty,
lack of/conflicting information, as well as inaccuracy of measurements [162]. In other words,
we use our capabilities of reasoning to make order within the heap of information (i.e.,
formulating human knowledge in a systematic method). The other factor which can limit our
desire for exactness is the natural language that we use for sharing/describing knowledge,
ideas, information, and so forth. We perceive the essential meanings of words which gives
the ability to communicate precisely to an acceptable level. However, in general, we often
cannot accurately agree among ourselves on a commonsense meaning for one single word
or term. This leads us to the fact that language is often ambiguous [120]. Essentially, our
comprehension of the real world requires us to interpret and combine many concepts (facts)
that do not have clearly defined boundaries. For instance, "small", "short", "very large",
"old", . . . etc. These concepts can be considered as subjective terms that are true to some
extent but can also be false to another extent. Consequently, a human brain can interpret the
meaning of them, whereas computers might not (because it is using fixed rules and logic);
therefore, these concepts can be regarded as being fuzzy.

It is widely understood that computers must strive to represent and reason with fuzzy
knowledge about the real world in ways that are similar to the human brain. Lotfi Zadeh [160],
took the challenge over the crisp set theory by introducing the concept of the fuzzy set as
a mathematical tool for dealing with the fuzzy logic and uncertainties (such as vagueness,
imprecision) problems. Before 1965, probability theory was used as a useful tool for dealing
with uncertainties. The probability theory mechanism works based on two-valued logic,
which represents the concepts of classical or crisp set theory [106]. Whilst, Prof. Zadeh
argued that there are some uncertainties, which cannot be tackled using the probability theory
because it can only handle one out of the different types of possible uncertainties. Moreover,
the classical (crisp) sets describe events that either happens or not; it measures the possibility
for a given event and the expectation to occur (or not) by using probability theory. Conversely,
the fuzzy logic theory affords a mechanism to interpret any ambiguity that may be built in the
linguistic body, such as few, many, short, tall, . . . and so forth. It gives an inference structure
that simulates human logical abilities. The Figure (3.1) represents the fuzzy logic system
(FLS) that is processing the inputs (vague, imprecise) to provide decisions.
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Fig. 3.1 A fuzzy logic system that takes vague statements and imprecise data such as short,
medium, tall and provides decisions.

In real-world problems, complexity can be measured by the degree of uncertainty. As
uncertainty rises, so does the complexity of the problem; which explains the reason why real
problems are often very complex. There is an intimate relationship between complexity and
fuzziness. As the complexity of a system surpasses a certain threshold, without a doubt, it
should become fuzzy [120].

In this chapter, all the figures, diagrams, and examples have been created by the author,
except where indicated with the word "reproduced".

3.2 Classical Sets (Crisp Sets)

The classical set is defined as the set of crisp events with definite boundaries, which means
there is a certainty of the events that either do or do not occur. In other words, an individual
entity is either to be a member (or not) of the set [30]. From another view, it means the
membership of crisp (classical) sets is without ambiguity. Assume the set X is a particular
Universal Set under consideration, which is composed of all possible individual elements
x (also known as members) which are related to some specific context. For example, if we
consider the integers 1 to 100, then all the integer numbers in the interval [1−100] will be
represented by our universal set X . Let us try to find the set A which represents the numbers
that can be wholly divided by five in the universe X . To obtain this set, we check each integer
number in the universal set in order to find out whether it belongs to A or not. Consequently,
there is a specified and well-defined boundary separating the elements in the set A from the
elements lying outside it.

A = {x1,x2, . . . ,xn}. (3.1)

Or, it can be represented by its element property as:

A = {x|P(x)}, (3.2)
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which means set A contains all values x that have the property P in the universe X .
The set A can be represented by the Characteristic Function (CF) as follows:

CF = yA(x) =

1, if x is a member of A,

0, if x is not a member of A.
(3.3)

Where, yA(x) has any of the two values 1 (true) or 0 (false).
This Characteristic Function yA(x) represents the membership mapping in set A for the
element x in the universe X as shown in Figure (3.2)

Fig. 3.2 Membership mapping for Crisp Set A

3.3 Fuzzy Sets

The fuzzy set can be defined as an adequate theory in dealing with the concept of ambiguity. It
makes it possible to use quantitative methods to deal with the fuzziness. The fuzzy sets based
on the concept of membership graded relatively in defining the sets [120]. In comparison to
the classical set, a fuzzy set provides a method for modelling the uncertainty related with the
vagueness, imprecision, and lack of information. The real-world problems are often complex
and uncertain, as its complexity increases, the fuzzy logic becomes the best way to solve
it [161]. Zadeh [160] generalized the assumption of a crisp set from (definitely in / out) to
the interval of real values that can be called membership degrees (MD), using the concept
of the membership function (MF) which expresses to what degree an entity can be judged
to be part of a set. In other words, a fuzzy set is a set without a crisp boundary, which means
the elements in the fuzzy set can have differing degrees of membership within the set. This
means that the element can be a member of the fuzzy set according to its membership value.
That is, the transition from "member of a set" to "not member of a set" is progressive and
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characterized by a membership function that maps every individual element within the fuzzy
set.

Definition: 3.1 Membership Function (MF)
The membership function is considered as the unique method to characterize and represent
the fuzziness of the fuzzy set [117]. It associates each element in the universe with its
membership value (degree of membership) in a particular fuzzy set. The mapping interval of
the fuzzy set is to be real-numbered values within [0, 1]. Suppose that we have the fuzzy
set A in the universe X , and µA(x) represents the degrees of membership of x related to each
element in A within the universe X within the interval [0, 1] [117]. Thus, the fuzzy set A can
be represented by its membership function which consists of two terms, first is the element x,
and second is its degree of membership (membership value) µA(x). It can be denoted by:

A(x) = {(x,µA(x)) | x ∈ X} (3.4)

The previous expression (3.4) can be viewed as a simple form for representing the
membership function of the fuzzy set. There is no steady rule for specifying the form of a
membership function; usually, it depends on the problem type and nature. The membership
function will be discussed in more details in the next sections.

Example 3.1
Assume that a fuzzy set A contains five elements A = {x1,x2,x3,x4,x5} characterized by
µA(x) that maps every individual element x in the universe X to the values (0.3, 1.0, 0.6, 0.5
and 0.2) respectively. this fuzzy set can be represented as follows:

A(x) = {(x1,0.3), (x2,1.0), (x3,0.6), (x4,0.5), (x5,0.2)},

figure (3.3) shows the mapping for the above fuzzy set A.

3.3.1 Types of Fuzzy Sets

According to the nature of the universe, the fuzzy set can be either discrete or continuous. It
can be denoted as follows:

• Discrete Fuzzy Set: Consider the universal set X that contains discrete objects, any
fuzzy set within this universe will be a discrete fuzzy set. It can be formulated as:

A(x) =
n

∑
i=1

µA(xi)/xi, x ∈ X , (3.5)
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Fig. 3.3 Fuzzy set.

where n is the number of elements that belongs to the fuzzy set A.

• Continuous Fuzzy Set: Consider the universal set X that contains continuous objects,
then the mathematical form of any fuzzy sets within this universe can be formulated
as:

A(x) =
∫

X
µA(x)/x (3.6)

The symbols ∑ and
∫

in the previous equations 3.5 and 3.6 does not indicate the mathe-
matical operations of the summation or integration. However, they are utilized to point out
the pairs of (element, membership value) that illustrate the discrete and continuous fuzzy
sets [61].

3.3.2 Operations of Fuzzy Sets

Assume the universe X contains two fuzzy sets A and B. The following operations and
relations can be defined:

1. Union of fuzzy sets: The union of two fuzzy sets is composed of all the elements in
the universe that can appear in either set A(x) or set B(x) or in both, simultaneously
(refer to Fig. 3.4a). Its membership function can be expressed by µA∪B(x) as follows:

µA∪B(x) = µA(x) ∨ µB(x), (3.7)

where ∨ refers to the maximum operator i.e.:

µA∪B(x) = max{µA(x), µB(x)}.
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Example 3.2
Suppose we have the following fuzzy sets:

A(x) = {(x1,0.1), (x2,0.2), (x3,0.3), (x4,0.4), (x5,0.5)}
B(x) = {(x1,0.5), (x2,0.6), (x3,0.7), (x4,0.8), (x5,0.9)}

Then:

µA∪B(x) = max{µA(x), µB(x)}
= {(x1,0.5), (x2,0.6), (x3,0.7), (x4,0.8), (x5,0.9)}.

2. Intersection of fuzzy sets: The intersection of two fuzzy sets represents all the
elements in the universe that belongs to both sets A(x) and B(x) simultaneously (refer
to Fig. 3.4b). It can be denoted by µA∩B(x) as follows:

µA∩B(x) = µA(x) ∧ µB(x) (3.8)

where ∧ refer to the minimum operator, i.e.:

µA∩B(x) = min{µA(x), µB(x)}.

Referring to the previous example (2), the intersection of the two fuzzy sets A(x) and
B(x) can be given as:

µA∩B(x) = min{µA(x), µB(x)}
= {(x1,0.1), (x2,0.2), (x3,0.3), (x4,0.4), (x5,0.5)}.

3. Complement of fuzzy sets: The complement of fuzzy sets signifies the collection of
all elements in the universe that do not belong to the fuzzy set A(x) (refer to Fig. 3.4c).
It can be expressed by A(x) as follows:

A(x) = 1−A(x), for all x ∈ X , (3.9)
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Referring to the previous example (2), the complement of the fuzzy sets A(x) can be
given as:

A(x) = {(x1,0.9), (x2,0.8), (x3,0.7), (x4,0.6), (x5,0.5)}.

(a) Union of two fuzzy sets. (b) Intersection of two fuzzy sets.

(c) Complement of a fuzzy set.

Fig. 3.4 Fuzzy set operations.

4. Subset of fuzzy sets: The fuzzy set A(x) is a subset of B(x), if the membership value
µA(x) of each element in A(x) is less than µB(x) of the corresponding x in B(x). It can
be signified as follows:

A(x)⊂ B(x), i f µA(x) < µB(x), (3.10)

Referring to the previous example 2: A(x) ⊂ B(x), because µA(x) < µB(x) for all
x ∈ X .

5. Equality of fuzzy sets: Two fuzzy sets A(x) and B(x) are to be equal, if and only if
all µA(x) are equal to all its corresponding µB(x). It can be signified as follows:

A(x) = B(x), i f µA(x) = µB(x), (3.11)
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Referring to the previous example 2: A(x) ̸=B(x), because µA(x) ̸= µB(x) for different
x ∈ X .

6. Algebraic product of fuzzy sets: The algebraic product of two fuzzy sets A(x) and
B(x) results from the product of the membership value µA(x) of each element in A(x)
by the µB(x) of the corresponding x in B(x).It can be denoted by A(x).B(x) as follows:

A(x).B(x) = {(x, µA(x).µB(x)), x ∈ X}, (3.12)

Referring to the previous example 2, the algebraic product can be given as:

A(x).B(x) = {(x1,0.05), (x2,0.12), (x3,0.21), (x4,0.32), (x5,0.45)}.

7. Multiplication of a fuzzy set by a crisp number: Assume that we have a crisp
number a, the multiplication of a fuzzy set A(x) by this crisp number will provide a
new fuzzy set resulting from multiplying a by the membership value µA(x) of each
element in A(x). It can be expressed by a.A(x) as follows:

a.A(x) = {(x, a×µA(x)), x ∈ X} (3.13)

Let us consider our previous example (2), if we multiply the first fuzzy set A(x) by
a = 0.3, the result will be as follows:

a.A(x) = {(x1,0.03), (x2,0.06), (x3,0.09), (x4,0.12), (x5,0.15)}.

8. Power of fuzzy set: Raising the fuzzy set A(x) up to the p-th power, i.e. Ap(x) will
provide a new fuzzy set resulting from raising the membership value µA(x) of each
element in A(x) up to the p-th power, i.e. µA(x)}p. Power of fuzzy set can be expressed
by Ap(x) as follows:

Ap(x) = {(x, {µA(x)}p), x ∈ X} (3.14)

Referring to the previous example (2), if we raise the first fuzzy set A(x) to the second
power (i.e. p = 2) the result will be as follows:

A2(x) = {(x1,0.01), (x2,0.04), (x3,0.09), (x4,0.16), (x5,0.25)}.
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9. Arithmetic summation of fuzzy sets: The arithmetic summation of two fuzzy sets
A(x) and B(x) can be defined as follows:

A(x)+B(x) = {(x, µA+B(x)), x ∈ X}, (3.15)

where µA+B(x) = µA(x)+µB(x)−µA(x).µB(x).
Let us consider our previous example (2),if we add the two fuzzy sets A(x) and B(x)
using arithmetic summation, the result will be as follows:

A(x)+B(x) = {(x1,0.55), (x2,0.68), (x3,0.79), (x4,0.88), (x5,0.95)}.

10. Bounded summation of fuzzy sets: The bounded summation of two fuzzy sets A(x)
and B(x) can be defined as follows:

A(x)⊕B(x) = {(x, µA⊕B(x)), x ∈ X}, (3.16)

where µA⊕B(x) = min{1, µA(x)+µB(x)}.
Referring to the previous example (2), if we add the two fuzzy sets A(x) and B(x) using
bounded summation, the result will be as follows:

A(x)⊕B(x) = {(x1,0.6), (x2,0.8), (x3,1.0), (x4,1.0), (x5,1.0)}.

11. Arithmetic difference of fuzzy sets: The arithmetic difference of two fuzzy sets A(x)
and B(x) can be defined as follows:

A(x)−B(x) = {(x, µA−B(x)), x ∈ X}, (3.17)

where µA−B(x) = µA∩B(x).
Referring to the previous example (2), if we subtract the two fuzzy sets A(x) and B(x)
using arithmetic difference, the result will be as follows:

Now, B(x) = {(x1,0.5), (x2,0.4), (x3,0.3), (x4,0.2), (x5,0.1)}
Therefore, A(x)−B(x) = {(x1,0.1), (x2,0.2), (x3,0.3), (x4,0.2), (x5,0.1)}

12. Bounded difference of fuzzy sets: The bounded difference of two fuzzy sets A(x)
and B(x) can be defined as follows:

A(x)⊖B(x) = {(x, µA⊖B(x)), x ∈ X}, (3.18)
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where µA⊖B(x) = max{0, µA(x)+µB(x)−1}.
Referring to the previous example (2), if we subtract the two fuzzy sets A(x) and B(x)
using bounded difference, the result will be as follows:

A(x)⊖B(x) = {(x1,0), (x2,0), (x3,0), (x4,0.2), (x5,0.4)}.

13. Cartesian product of fuzzy sets: Consider the two universal sets X and Y , which
include a pair of fuzzy sets, i.e. A(x) and B(y). The Cartesian product of these two
fuzzy sets can be expressed as follows:

µA×B(x,y) = min(µA(x),µB(y)). (3.19)

Example 3.3
Suppose we have the following two fuzzy sets defined in the X and Y :

A(x) = {(x1,0.2), (x2,0.4), (x3,0.5), (x4,0.7), (x5,0.3)},

B(y) = {(y1,0.3), (y2,0.5), (y3,0.4)}.

Now, if we multiply the two fuzzy sets A(x) and B(y) using Cartesian product, the
result will be as follows:
min(µA(x1),µB(y1)) = 0.2,min(µA(x1),µB(y2)) = 0.2,min(µA(x1),µB(y3)) = 0.2,
min(µA(x2),µB(y1)) = 0.3,min(µA(x2),µB(y2)) = 0.4,min(µA(x2),µB(y3)) = 0.4,
min(µA(x3),µB(y1)) = 0.3,min(µA(x3),µB(y2)) = 0.5,min(µA(x3),µB(y3)) = 0.4,
min(µA(x4),µB(y1)) = 0.3,min(µA(x4),µB(y2)) = 0.5,min(µA(x4),µB(y3)) = 0.4,
min(µA(x5),µB(y1)) = 0.3,min(µA(x5),µB(y2)) = 0.3,min(µA(x5),µB(y3)) = 0.3.
Thus, A(x)×B(y) will result the following matrix:

A×B =



0.2 0.2 0.2

0.3 0.4 0.4

0.3 0.5 0.4

0.3 0.5 0.4

0.3 0.3 0.3


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3.3.3 Classification of Fuzzy Sets

Suppose we have an element x belonging to the fuzzy set A with a membership value µA(x)
within the universe X . According to the membership function representation, we can illustrate
four classifications for the fuzzy set as follows:

• Normal fuzzy set: The fuzzy set can be classified as normal if the universe contains
at least one element with a membership value equal to one. In other words, the highest
value (peak) of the membership function = 1.0, i.e., Peak(x) = µA(x) = 1.0, (refer to
Fig. 3.5a).

• Subnormal fuzzy set: The subnormal fuzzy set can be considered when the high-
est value of the membership function is less than 1.0, i.e., Peak(x) < 1.0, (refer to
Fig. 3.5b).

• Convex fuzzy set: The fuzzy set can be classified as convex if the membership
function contains membership values that progressively (increase and/or decrease) in
simultaneity with the increasing of the elements value, (refer to Fig. 3.5a and 3.5b).

• Non-Convex fuzzy set: The non-convex fuzzy set can be considered when the mem-
bership function has membership values fluctuating (up and/or down) in simultaneity
with the increasing of the elements value, (refer to Fig. 3.5c).

3.4 Membership Functions (MF)

As mentioned earlier in the membership function definition, the fuzzy set can be characterized
by the MFs. Assume that we have the fuzzy set A within the universe X . The MF describes the
relationship between each element x in A with its degree of membership µA(x). It quantifies
the grade of membership of this particular element within the interval [0,1]. The MFs can be
defined and expressed mathematically as well as graphically. There are different ways of
formulating and parameterizing the MFs. The shape of MFs is also adopted as an essential
criterion in representing the fuzzy sets. In this section, we intend to discuss various topics
related to MFs.

3.4.1 Membership Function Structure

The structure of the membership function of a fuzzy set can be defined by the following
regions (refer Fig. 3.6)
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(a) Normal convex fuzzy set. (b) Sub-normal convex fuzzy set.

(c) Non-convex fuzzy set.

Fig. 3.5 Classification of fuzzy sets.

• Core
The core of MF for a fuzzy set A consists of all the elements x ∈ X where the MF value
is equal to 1 (i.e., µA(x) = 1.0). Thus:

Core(A(x)) = {x|µA(x) = 1.0 ,x ∈ X}, (3.20)

A fuzzy set A can be classified as normal if we can find at least one element x ∈ X
with MF value equal to one (µA(x) = 1.0). In other words, the core of the MF should
have at least one value.

• Crossover
The Crossover point of the MF for the fuzzy set A consists of all elements x ∈ X where
the MF value is equal to 0.5 (i.e., µA(x) = 0.5). Thus:

Crossover(A(x)) = {x|µA(x) = 0.5,x ∈ X}. (3.21)

• Boundary
The Boundary region of the MF for the fuzzy set A consists of all elements x ∈ X
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Fig. 3.6 Structure of membership function.

where the MF value is between 0 and 1 (i.e., 0 < µA(x)< 1). Thus:

Boundary(A(x)) = {x|0 < µA(x)< 1,x ∈ X}. (3.22)

• Support
The Support region of the MF for the fuzzy set A consists of all elements x ∈ X where
the MF value is greater than 0 (i.e., 0 < µA(x)< 1). Thus:

Support(A(x)) = {x|µA(x)> 0,x ∈ X}. (3.23)

3.4.2 Membership Function Formulation and Parameterization

The membership function can be represented both graphically and mathematically (which is
considered as the most precise way). According to the number and type of the inputs variables
and parameters, the MFs are classified into two categories, i.e. one or two dimensions [61].
The impacts of modifying parameters value for the one dimension’s MFs and its effectiveness
in fine-tuning the fuzzy inference system will be discussed in this section. As follows, we
are introducing the most commonly used MFs which are classified into four types.
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3.4.2.1 Piece-wise Linear Functions

These functions can be considered as the simplest MF. It can be represented by using straight
lines. There are two MFs that can be classified under this type. First, is the triangular
membership function, which is a collection of three points that forms a triangle (Fig. 3.7a).
Whilst the second named as the trapezoidal membership function, that consists of four points
resulting in a truncated triangle with a flat top (Fig. 3.7b).

0 20 40 60 80 100

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
e
m

b
e
rs

h
ip

 G
ra

d
e
s

(a) Triangle-Shaped MF.
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(b) Trapezoid-Shaped MF.

Fig. 3.7 Piece-wise linear functions.

• Triangle Membership Function
The triangle membership function can be specified by a triangle curve representing a
function of the x depending on three scalar parameters {a,b,c} which represent the
three edges of the triangle. The general formula of this MF can be denoted as followed:

Triangle MF, f (x;a,b,c) =


0, x ≤ a.
x−a
b−a , a ≤ x ≤ b.
c−x
c−b , b ≤ x ≤ c.

0, x ≥ c.

(3.24)

Or, by using max-min, we can write the definition in the compact form:

Triangle MF, f (x;a,b,c) = max
(

min
(

x−a
b−a

,
c− x
c−b

)
,0
)
. (3.25)

where a < b < c. These parameters represent the three vertices for the x coordinates
of the Triangle MF. The parameters (a,c) represent the left and right "feet"; the
parameter b represent the peak of the triangle. Figure (3.7a) shows a triangle MF
defined by (x;20,50,80); that is a = 20 and c = 80, which represent the x coordinates
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that allocated on the first and third corners of the triangle, while b = 50 represent the
highest value of the x coordinates (the peak of triangle).

We can obtain the desired triangle MF by changing the parameter set {a,b,c} into dif-
ferent values. Figure (3.8) illustrate the effects of changing the parameters sequentially.
As shown in figures (3.8a, 3.8c), if we change the parameter a and c within the interval
[−10,+10] to modify the left or right foot values (x coordinates); the slope of the left
or right side of the triangle will be changed. Moreover, if we change the value of the
parameter b with the same range, the top corner (peak of triangle) and the slope of
both left and right sides of the triangle will be changed simultaneously (Fig. 3.8b).
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(a) Changing parameter a.
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(b) Changing parameter b.
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(c) Changing parameter c.

Fig. 3.8 Effects of changing Triangular MF parameters.

• Trapezoidal Membership Function
The trapezoidal curve is similar (to some degree) to a triangle with a flat top (Fig. 3.7b).
This means, it will have two vertices on the top instead of one, which resulting in a
trapezoidal curve consisting of four points. This curve, representing the trapezoidal
membership function, has four scalar parameters {a,b,c,d} which represent the four
edges of the trapezoidal shape. The general formula of this MF can be denoted as
followed:
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Trapezoidal MF, f (x;a,b,c,d) =



0, x ≤ a.
x−a
b−a , a ≤ x ≤ b.

1, b ≤ x ≤ c.
d−x
d−c , c ≤ x ≤ d.

0, x ≥ d.

(3.26)

Again, by using max-min, we can write the definition in the compact form:

Trapezoidal MF, f (x;a,b,c,d) = max
(

min
(

x−a
b−a

,1,
d − x
d − c

)
,0
)
. (3.27)

where a < b < c < d. These parameters represent the four vertices for the x coordinates
of the trapezoidal MF. The parameters (a,d) represent the left and right "feet", whilst
the parameters (b,c) represent the left and right "top" of the trapezoidal MF shape.
Figure (3.7b) shows a trapezoidal MF defined by (x;20,40,60,80) ; that is a = 20 and
d = 80, which represent the x coordinates allocated on the first and fourth vertices of
the trapezoidal shape, while b = 40 and c = 60 represent the values of the x coordinates
allocated on the second and third vertices of the shape. Figure (3.9) shows the effects
of changing each of the parameters on the slope of both sides of the trapezoidal MF
shape.

3.4.2.2 The Gaussian Distribution Functions

There are three membership functions that can be considered as Gaussian distribution
functions. The first MF, called simple Gaussian MF, consists of two parameters {σ ,c}
that represent the Gaussian curve. The second MF is the two-sided Gaussian MF which
represents a composite of two different Gaussian curves. It is determined by four parameters
{σ1,c1,σ2,c2}. Each pair of these parameters represents a simple Gaussian curve on one
side. The third MF is the generalized bell. This MF has three parameters {a,b,c}. Figure
(3.10) illustrates the plotting of the three functions. These MFs can be considered to be
the most popular functions used in processing fuzzy sets. It is characterized by two major
features. First, the smoothness and simplicity of its notation. Second, the nonzero values of
the membership function at all points.

• Simple Gaussian Curve Function
Two parameters specify the Gaussian MF. These parameters are σ and c, where, c
determines the centroid of the curve, and σ represents the width. The plot shown
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(a) Changing parameter a.
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(b) Changing parameter b.
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(c) Changing parameter c.
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(d) Changing parameter d.

Fig. 3.9 Effects of changing Trapezoidal MF parameters.

in figure (3.10a) illustrates the Gaussian MF with parameters σ = 2 and c = 5. The
general mathematical formulation for this MF can be denoted as:

Simple Gaussian MF, f (x;σ ,c) = e−
1
2 (

x−c
σ

)
2
. (3.28)

Figure (3.11) illustrates the effects of changing the Gaussian MF parameters. The first
part (Fig. 3.11a) shows how the width of the Gaussian curve is varying from the centre
by increasing and decreasing the value of the first parameter σ within the interval of
[1,3] of the original value of σ = 2. The figure (3.11b) shows the moving of the centre
point of the Gaussian curve that is resulting from changing the parameter c = 5 within
the interval of [3,7].

• Two-Sided Gaussian Curves
The two-sided Gaussian MF is specified by combining two simple Gaussian MF
parameters; that is {σ1,c1,σ2,c2}. The first pair σ1 and c1 represent the shape of
the left curve of the MF, while, the second pair σ2 and c2 determined the right curve
of the MF shape. Consequently, the two-side Gaussian MF will have two different
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(a) Simple Gaussian MF.
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(b) Two-sided Gaussian MF.
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(c) Generalized Bell MF.

Fig. 3.10 Gaussian distribution functions.

curves from the left and right sides of the centroid of the MF shape (Fig. 3.10b).
Mathematically, this MF can be denoted by:

Two-Sided Gaussian MF, fi(x;σi,ci) = e
−(x−ci)

2

2σi2 . (3.29)

Where i= 1,2, represents the left or right MF according to its parameters that represents
the two sides of the function.

• The Generalized Bell Function
A generalized bell MF is determined by three parameters {a,b,c}. The parameter
a represents the width of the MF around the centre point. Whereas the parameter b
represents the slope of the sides around the fixed crossover point of the MF. The value
of this parameter is usually positive, as a negative value will result in flipping the shape
of the MF upside-down. The parameter c determines the centroid value of the MF. The
plot shown in figure (3.10c) illustrates the generalized bell MF with parameters a = 2,
b = 3 and c = 5. The general formula of this MF can be denoted as follows:
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(a) Changing parameter σ .
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(b) Changing parameter c.

Fig. 3.11 Effects of changing simple Gaussian MF parameters.

The Generalized Bell MF, f (x;a,b,c) =
1

1+
∣∣x−c

a

∣∣2b . (3.30)

The generalized bell function can be considered as a direct generalization of the Cauchy
distribution in the probability distribution, sometimes so-called as the Cauchy MF.
Figure (3.12) shows the effects of changing each parameter in a generalized bell MF
of (x;2,3,5). The first part (Fig. 3.12a) shows the effectiveness of changing the value
of parameter a = 2 within the interval of [1,3] on the width of the MF curve from the
centroid. Secondly, figure (3.12b) illustrates the varying of the side’s slope caused by
increasing and decreasing the values of the second parameter b within the interval of
[1.5,6]. The third figure (3.12c), shows the moving of the centroid of the MF curve
resulting from changing the parameter c = 5 within the interval of [3,7]. The figure
(3.12d) demonstrates the effect of changing two parameters a and b at the same time.

3.4.2.3 The Sigmoid Curve Functions

The sigmoid curve functions contain three types of membership functions; the sigmoidal MF,
difference sigmoidal MF and product sigmoidal MF. The difference between the first one and
the other two is that the sigmoidal MF is either open to the left or right; whilst the difference
and product sigmoidal MF are closed and asymmetric, which results from combining two
sigmoidal MF. Figure (3.13) shows the plot of these three types.

• Sigmoidal Membership Function
This membership function is determined by two parameters {a,c}. The parameter a
represents the slope of the curve, while the parameter c represents the x coordinate
value of the crossover point. The shape of this MF is to be open to the left and the right
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(a) Changing parameter a.
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(b) Changing parameter b.
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(c) Changing parameter c.
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(d) Changing parameter a&b.

Fig. 3.12 Effects of changing Generalized Bell MF parameters.

(Fig. 3.13a). This function can be represented by:

Sigmoidal MF, f (x;a,c) =
1

1+ e−a(x−c)
. (3.31)

• Difference Sigmoidal function
This membership function represents two different asymmetric sigmoidal curves. That
means, it will depend on two pairs of parameters {a1,c1,a2,c2}, each pair a1, c1 or a2

,c2 will represent one sigmoidal function for one of the two sides (fig 3.13b). This MF
can be denoted by:

Difference Sigmoidal MF, fi(x;ai,ci) =
1

1+ e−ai(x−ci)
. (3.32)

Where i = 1,2, draws the left or right of the MF. The difference of the two functions
can be denoted as:

f (x;a1,c1,a2,c2) = f1(x;a1,c1)− f2(x;a2,c2). (3.33)
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(a) Sigmoidal MF.
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(b) Difference Sigmoidal MF.
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(c) Product Sigmoidal MF.

Fig. 3.13 Sigmoid curve functions.

Figure (3.14) illustrates the effects of changing the difference sigmoidal MF parameters
of a1 = 4, c1 = 6, a2 = 4 and c2 = 3. Figures (3.14a, 3.14c) shows the effect of changing
the parameters a1 and a2 within the interval of [2,6], while, figures (3.14b, 3.14d)
demonstrates the effect of changing the parameters c1 within the interval [4,8] and c2

within the interval of [2,5].

• Product Sigmoidal function
Similar to the difference sigmoidal function, the product sigmoidal MF represents the
product of two asymmetric sigmoidal curves (fig. 3.13c). It has the same parameters
that were listed in the order of {a1,c1,a2,c2}. This means, the function will have the
same mathematical formulation as the previous one. However, the relation between
the two functions will be as followed:

f (x;a1,c1,a2,c2) = f1(x;a1,c1)× f2(x;a2,c2). (3.34)
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(a) Changing parameter a1.
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(b) Changing parameter c1.
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(c) Changing parameter a2.
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(d) Changing parameter c2.

Fig. 3.14 Effects of changing Difference Sigmoidal MF parameters.

3.4.2.4 Quadratic and Cubic Polynomial Curves Functions

There are three membership functions included under the Quadratic and Cubic Polynomial
group of functions. The asymmetrical polynomial curve function, the mirror-image function,
and the zero extremes function (refer to fig. 3.15).

• Asymmetrical polynomial membership function
The asymmetrical polynomial curve function can be specified by two parameters {a,b}.
The shape of this MF curve is open to the left. According to the shape of this function,
it also called Z-shape MF (fig. 3.15a). The mathematical formulation for this function
can be denoted as follows:

f (x;a,b) =


1, x ≤ a.

1−2
( x−a

b−a

)2
, a ≤ x ≤ a+b

2 .

2
( x−a

b−a

)2
, a+b

2 ≤ x ≤ b.

0, x ≥ b.

(3.35)
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(a) Asymmetrical Polynomial MF.
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(b) Mirror-Image MF.
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(c) Zero Extremes MF.

Fig. 3.15 Quadratic and Cubic Polynomial curves functions.

• Mirror-Image membership function
The mirror-image function depends on two parameters {a,b}. In contrast to the
asymmetrical polynomial curve function, the curve of this function is open to the
right, which gives an S-shape and accordingly it so-called S-membership function (fig.
3.15b). The mathematical formulation for this function can be denoted as follows:

f (x;a,b) =


0, x ≤ a.

2
( x−a

b−a

)2
, a ≤ x ≤ a+b

2 .

1−2
( x−a

b−a

)2
, a+b

2 ≤ x ≤ b.

1, x ≥ b.

(3.36)

• Zero Extremes membership function
The zero extremes MF is specified by four parameters {a,b,c,d} as shown in (fig.
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3.15c). The mathematical formulation for this function can be denoted as follows:

f (x;a,b,c,d) =



0, x ≤ a.

2
( x−a

b−a

)2
, a ≤ x ≤ a+b

2 .

1−2
( x−a

b−a

)2
, a+b

2 ≤ x ≤ b.

1, b ≤ x ≤ c

1−2
( x−c

d−c

)2
, c ≤ x ≤ c+d

2 .

2
( x−c

d−c

)2
, c+d

2 ≤ x ≤ d.

0, x ≥ d.

(3.37)

3.5 Linguistic Variables

According to Zadeh [161], dealing with system analysis problems using the traditional
methods has become inadequate, particularly in dealing with humanistic systems. The reason
behind this is because the humanistic systems are highly affected by human judgement,
thinking, and emotions. Zadeh [156] pointed out the need for finding an alternative method
to achieve the modelling of human thinking. However, using natural language in describing
ideas and sharing knowledge will resulting in vagueness. We often use words and sentences
to express and give a meaningful explanation for particular processes. Thus, any universe
can be represented linguistically, For example, if we take X = "age", "speed" or "tallness"
as a universe under consideration. These words or sentences are predominantly called fuzzy
variables or Linguistic Variables [157] [158] [159]. The words age, speed, and tallness are
linguistic variables if they contain Linguistic Labels (or in other words, linguistic terms or
linguistic values) instead of numerical values. For instance, the linguistic variable age can be
separated into the linguistic labels ("young", "middle aged" or "old").

Example 3.4
Assume that X = "tallness" represents the universe (i.e., linguistic variable) under con-
sideration. We can identify some points as a milestone for the tallness (i.e., x1 = 160cm,
x2 = 170cm, x3 = 180cm, x4 = 190cm, x5 = 200cm) in height. Then we can define two fuzzy
sets A1 and A2 within X , to have linguistic labels "tall" and "very tall" respectively. Let A1 be
associated with the grade of membership µA1(x) of (0, 0.6, 1.0, 0.5, 0) and A2 with µA2(x) of
(0, 0, 0.1, 0.3, 0.9) respectively. The MF of the fuzzy sets for the two linguistic labels "tall"
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and "very tall" can be written as:

A1(x) = µtall(x) = {(x1,0), (x2,0.6), (x3,1.0), (x4,0.55), (x5,0)}
A2(x) = µverytall(x) = {(x1,0), (x2,0), (x3,0.1), (x4,0.3), (x5,0.9)}

Figure (3.16) shows the graphical representation of the two fuzzy sets "tall" and "very tall"
within the universe "tallness". For instance, it can be clearly noted that the element x4 is a
member of the fuzzy set "tall" with grade of membership 0.55 and to the fuzzy set "very tall"
with grade of membership 0.3.

Fig. 3.16 Plotting of linguistic labels (fuzzy sets) of the linguistic variable (universe) "Tall-
ness".

3.5.1 Linguistic Variables and its Related Terminology

We commonly separate the universe into several fuzzy sets associated with membership
functions in order to cover the universe X (i.e., the whole set) in a comprehensive manner.
As has been mentioned earlier, each universe of discourse (linguistic variable) consists of
some fuzzy sets (linguistic label). In this section, we will define three levels of linguistic
terminology corresponding with the hierarchies of the fuzzy sets as follows:

• Linguistic variable: The linguistic variable represents the terminology of the universe
of discourse or in other words, Whole set (the collection of all elements in the universe).
Such as, X = "age", "speed", "size", . . . , etc.

• Linguistic label: It is also called the primary terms or linguistic values. It can be
derived from the linguistic variable to represent the terminology of the fuzzy sets (i.e.,
the collection of particular elements and its membership grades in the universe). For
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example, consider the linguistic variable "speed" which can be derived into some
linguistic label such as A(x) = "slow", "medium" and "fast".

• Linguistic hedges: the linguistic hedges can be derived from the primary terms (i.e.,
the linguistic labels). It represents the terminology of the modified fuzzy sets (the
collection of particular elements and its membership grades within the fuzzy set). For
example, consider the linguistic hedges ("very slow", "more or less slow", "quite
slow", "extremely slow", . . . ,etc) which can be derived from the linguistic label
"slow".

Figure (3.17) shows the linguistic variable "speed" and its linguistic labels & hedges.

Fig. 3.17 Linguistic variable "Speed" and its linguistic labels and hedges.

Generally, the characterization of a linguistic variable can be denoted by the quinary
(x,T (x),X ,G,M) where x represent the variable name (e.g., Speed); T (x) is a fuzzy set (term
set) of x that represent the linguistic labels (e.g., slow, medium, fast, . . . , and so forth); X is
the universe; G is the syntactic rule that creates the labels in T (x), and M is the semantic rule
of every linguistic label [117, 61, 86].

Example 3.5
Assume that we have the speed as a linguistic variable, then we can define its linguistic labels
(terms) T (speed) as follows:

T (speed) = {slow, not slow, very slow, not very slow, more or less slow, . . . ,

medium speed (i.e., not slow & not fast), not medium speed, . . . ,

f ast, not f ast, very f ast, more or less f ast, not very f ast, . . . ,

not very slow and not very f ast, . . .}

(3.38)
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Commonly we use "speed is fast" to assign the linguistic label "fast" to the linguistic variable
"speed". On the contrary, if we use the numerical variable to interpret the speed, we say
"speed = 120km" to assign a digital value to the numerical variable. Whereas, we used the
syntactic rule to generate the linguistic label "fast" for the linguistic variable T (speed). On
the other side, the semantic rule gives the membership function of each linguistic label. If
we use the typical membership function (e.g., Gaussian) to represent the linguistic variable
T (speed). Each linguistic label is to be characterized by a fuzzy set in the universe speed (i.e.,
X = [0,200]). All linguistic labels (terms) and its hedges can be plotted using the Gaussian
membership function with different modified parameters (σ ,c), as shown in figure (3.17).

Fig. 3.18 Typical Gaussian MF of linguistic Variable "Speed" and its linguistic labels &
hedges.

Referring to the previous example (5), it can be noted that the linguistic variable
T (speed) composed of some linguistic labels (primary terms) such as ("slow", "medium
speed", and "fast") modified by the linguistic hedges (e.g., "very", "more or less", "quite",
"extremely", . . . , etc.) in addition to the negation (Not), then linked by connectives such as
(and, or, either, neither, . . . , etc.).

3.5.2 Concentration and Dilation of Linguistic Labels

As mentioned earlier, the linguistic hedges can be derived by modifying the linguistic label.
Referring to the previous example (5), assume that the linguistic label (A = slow) is a fuzzy
set with a membership function µslow(x). Then, we can derive linguistic hedges by modifying
A into Ak as follows:

AK = (slow)k =
∫

X
[µslow(x)]

2/x. (3.39)
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Accordingly, we can define the concentration as the operation that can modify the
linguistic label by squaring its membership values , it can be denoted by:

CON(slow) = (slow)2 = [µslow(x)]2 =⇒ very slow, (3.40)

and the dilation as:

DIL(slow) = (slow)0.5 = [µslow(x)]0.5 =⇒ more or less slow, (3.41)

Where, CON(slow) and DIL(slow) represent the linguistic hedges "very" and "more or
less" respectively (refer to figure 3.18).

Also, the negation (Not) and the connectives AND and OR of two linguistic labels
(medium) and ( f ast) can be denoted as:

NOT(medium) =−(medium) =
∫

X
[1−µmedium(x)]/x,

medium AND f ast = medium∩ f ast =
∫

X
[µmedium(x)∧µ f ast(x)]/x,

medium OR f ast = medium∪ f ast =
∫

X
[µmedium(x)∨µ f ast(x)]/x.

(3.42)

The linguistic terms "medium AND fast" and "medium OR fast" are shown in figures
(3.19a & 3.19b). The highlighted area representing the intersection and union of the two
membership functions respectively.

(a) Medium AND fast. (b) Medium OR fast.

Fig. 3.19 Connectives AND & OR of two linguistic labels.

By using all the previous terms of CON(x) and DIL(x), the hedges (very and more or
less), the negation (NOT), and the connectives (AND, OR), all can be driven in the preceding
equation (3.42). Accordingly, we can create a composite linguistic label, for example, "slow
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but not very slow" and "not very fast and not very slow" . . . , etc; these composites can be
represented mathematically.

Example 3.6
Referring to example 5, presume that we have the linguistic labels "slow" and "fast", if we
use the Gaussian membership function to define these two terms each linguistic label is to
be characterized by a Gaussian membership function with different parameters (σ ,c) in the
universe "Speed", i.e., X = [0,200] i.e. :

µslow = gauss(x;30,0) = e−
1
2 (

x−0
30 )

2
,

µ f ast = gauss(x;30,200) = e−
1
2 (

x−200
30 )

2
,

(3.43)

where x represents the the speed of a given car. Consequently, we can create the member-
ship functions of the following composite linguistic labels:

• Very (fast) = CON (fast) = [µ f ast(x)]2

=
∫

X

[
e−

1
2 (

x−200
30 )

2
]2/

x.

• More or less (fast) = DIL (fast) = [µ f ast(x)]0.5

=
∫

X

√
e−

1
2 (

x−200
30 )

2
/

x.

• Not slow and not fast = −slow ∩− f ast

=
∫

X

[
1− e−

1
2 (

x−0
30 )

2
]
∧
[

1− e−
1
2 (

x−200
30 )

2
]/

x.

• Slow but not very slow = slow ∩−slow2

=
∫

X

[
e−

1
2 (

x−0
30 )

2
]
∧
[

1−
(

e−
1
2 (

x−0
30 )

2
)2]/

x.

• Extremely fast = very very very fast

CON(CON(CON( f ast) = (( f ast2)2)2 =
∫

X

[
e−

1
2 (

x−200
30 )

2
]8/

x.
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3.6 Fuzzy Relations

Following the earlier description of the fuzzy sets operations, in this section, we are consider-
ing the mathematical representation of the linguistic statements using the concept of fuzzy
relations [97]. Assume that we have two universes under consideration, labelled X and Y .
Then we can define a binary fuzzy relation R from the fuzzy set A in X to the fuzzy set B in
Y using the Cartesian product of A×B in the universal space X ×Y as follows:

R = A×B = {( (x,y), µR(x,y))|(x,y) ∈ X ×Y}, (3.44)

where µR(x,y) = µA×B(x,y) is a two-dimensional fuzzy set, which can also be called a
fuzzy relation matrix.

Recalling the fuzzy operations (Cartesian product and Algebraic product) of two fuzzy
sets that has been introduced in section (3.3.2), the binary fuzzy relation can be provided by
using the following:

• Cartesian product:
According to equation (3.19), we have the ability to compose a binary fuzzy relation
for the preceding equation (3.44) using the Cartesian product, which can be denoted as
follows:

R = A×B = ∑µR(x,y)|(x,y) = ∑min(µA(x),µB(y)), (3.45)

• Algebraic product:
According to equation (3.12), we can compose a binary fuzzy relation for the preceding
equation (3.44) using the Algebraic product, which can be denoted as follows:

R = A×B = ∑µR(x,y)|(x,y) = ∑min(µA(x).µB(y)), (3.46)

where the symbol (∑) does not refer to the numerical summation, but instead refers to all
possible combinations of all elements in both fuzzy sets.

Example 3.7
Suppose we have the following two fuzzy sets defined in the universes X and Y :

A(x) = {(x1,1.0), (x2,0.7), (x3,0.5), (x4,0.4), (x5,0.2)},

B(y) = {(y1,0.3), (y2,1.0), (y3,0.4)}.
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Now, the binary fuzzy relation R can be obtained by multiplying the two fuzzy sets A(x) and
B(y) using the Cartesian product. The result will be as follows:

R = A×B =



{1, .3} {1,1} {1, .4}

{.7, .3} {.7,1} {.7, .4}

{.5, .3} {.5,1} {.5, .4}

{.4, .3} {.4,1} {.4, .4}

{.2, .3} {.2,1} {.2, .4}


=



0.3 1 0.4

0.3 0.7 0.4

0.3 0.5 0.4

0.3 0.4 0.4

0.2 0.2 0.2


.

The result of using the Algebraic product to obtain the binary fuzzy relation R will be:

R = A×B =



{1, .3} {1,1} {1, .4}

{.7, .3} {.7,1} {.7, .4}

{.5, .3} {.5,1} {.5, .4}

{.4, .3} {.4,1} {.4, .4}

{.2, .3} {.2,1} {.2, .4}


=



0.3 1 0.4

0.21 0.7 0.28

0.15 0.5 0.2

0.12 0.4 0.16

0.06 0.2 0.08


.

So far, we know that the binary fuzzy relations are resulting from combining two fuzzy
sets by using either Cartesian product or Algebraic product fuzzy operations. However,
we can find the composition of two relations by using the same previous fuzzy operations
(Fig. 3.20).

Fig. 3.20 Composition of two fuzzy relations.
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Accordingly, we will establish the best known composition operations as follows:

3.6.1 Max-Min Composition

Assume that there are two fuzzy relations R1 and R2 defined on the space of the universes
X ×Y and Y ×Z, respectively. Consequently, the max-min composition of these two fuzzy
relations can be defined as:

Cmax−min =R1 ◦R2

={(x,z), max [min(µR1(x,y),µR2(y,z))] | x ∈ X ,y ∈ Y,z ∈ Z},
(3.47)

which is equivalent to,

µR1◦R2(x,z) = max[min(µR1(x,y),µR2(y,z))], (3.48)

and by using matrix form,

[cik] = [r1i j ] ◦ [r2 jk ] , (3.49)

where,
cik = max[min(r1i j ,r2 jk)] . (3.50)

3.6.2 Max-Product Composition

Considering the same notations we used in max-min composition, then:

max-product = µR1◦R2(x,z) = max[min(µR1(x,y).µR2(y,z))], (3.51)

and by using matrix form,

[cik] = [r1i j ] ◦ [r2 jk ] , (3.52)

where,
cik = max[min(r1i j .r2 jk)] . (3.53)

Example 3.8
Presume that we have the following relation matrices which represents two fuzzy relations
R1 and R2. Such as,



66 Fuzzy Logic & Fuzzy Set Theory

R1 = [r1i j ] =

0.2 0.6 0.2

0.1 0.8 0.6

 ,

R2 = [r2 jk ] =


0.3 0.5

0.2 0.7

0.6 0.9

 .

Now we want to find the composition R1 ◦R2 between of the two fuzzy relation. Firstly, by
using max-min composition as follows:

c11 = max[min(r111,r211),min(r112,r221),min(r113,r231), ]

= max[min(0.2,0.3),min(0.6,0.2),min(0.2,0.6), ]

= 0.2

c12 = max[min(r111,r212),min(r112,r222),min(r113,r232), ]

= max[min(0.2,0.5),min(0.6,0.7),min(0.2,0.9), ]

= 0.6

c21 = max[min(r121,r211),min(r122,r221),min(r123,r231), ]

= max[min(0.1,0.3),min(0.8,0.2),min(0.6,0.6), ]

= 0.6

c22 = max[min(r121,r212),min(r122,r222),min(r123,r232), ]

= max[min(0.1,0.5),min(0.8,0.7),min(0.6,0.9), ]

= 0.7

Cmax−min =

0.2 0.6

0.6 0.7

 .

Secondly, by using the max-product composition and following the same procedures we will
have the following relation matrix:



3.7. Fuzzy If-Then Rules 67

Cmax−product =

0.12 0.18

0.36 0.56

 .

3.7 Fuzzy If-Then Rules

Fuzzy if-then rules can be defined as the conditional statement of fuzzy logic; also called the
fuzzy rule. It takes the following form:

If < f uzzy proposition > Then < f uzzy proposition >

such as,
if x is A then y is B, or A → B (3.54)

where A and B represents the linguistic labels (i.e. fuzzy sets) on the universes X and Y ,
respectively. Predominantly, the term (x is A) refers to antecedent or premise, whereas (y
is B) refers to consequence or conclusion. There are some common examples of the fuzzy
rules such as:

• If Speed is fast Then Pressure is low.

• If Service is good Then Tip is average.

• If Road is wet Then Safety distance must be long.

Generally, there are three forms represents the linguistic variables [117]:

i. Assignment form: A common example of this type is, x is not fast AND not very slow.

ii. Conditional form: e.g., IF x is fast THEN y is slow.

iii. Unconditional form: e.g., the speed is fast.

Usually, the fuzzy rule (if then rule) is defined as a fuzzy relation R that is expected to be
a binary relation for x and y within the product space X ×Y . Thus, the fuzzy rule A → B can
be interpreted in two ways:
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1. A → B interpreted as A coupled with B then:

R = A → B = A×B =
∫

X×Y
µA(x)∗̂µB(y)|(x,y), (3.55)

where ∗̂ represents the T-norm operator, and R represent the fuzzy relation (i.e. A → B).

2. A → B interpreted as A entails B then:

• Material implication:
R = A → B = ¬A∪B. (3.56)

• Propositional calculus:

R = A → B = ¬A∪ (A∩B). (3.57)

• Extended propositional calculus:

R = A → B = (¬A∩¬B)∪B. (3.58)

• Generalization of Modus Ponens:

µR(x,y) = sup{c | µA(x) ∗̂ c ≤ µB(y) and 0 ≤ c ≤ 1} (3.59)

Again, ∗̂ represents the T-norm operator, and R represents the fuzzy relation (i.e.
A → B). Also, if A and B are two logic propositions then all four equations (3.56 -
3.59) can be reduced to the form (A → B ≡ ¬A∪B).

By combining the previous two interpretations with the two operators (T-norm and S-
norm), we can derive a number of formulations to calculate R = A → B. Where R is the fuzzy
set that represents the fuzzy relation with a two-dimensional membership function, that is:

µR(x,y) = f (µA(x),µB(y))) = f (a,b), (3.60)

where f (a,b) represent the fuzzy implication function transforming the membership grade
of x in A and y in B into (x,y) in A → B.

3.7.1 Compound Rules

In general, a linguistic expression might include a compound rule structure. Applying the
properties and operations of the fuzzy set can reduce the compound rule into a simplified
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rule. Therefore, the two compound rules (Conjunctive and Disjunctive) can be expressed as
follows:

(i) Conjunctive antecedents: A multiple conjunctive antecedent can be expressed as:

IF x is A1 AND x is A2 . . .AND x is An THEN y is Bs (3.61)

Equation 3.61 can be simplified as

IF x is As THEN y is Bs, (3.62)

where As = A1 ∩A2 ∩·· ·∩An and As can be expressed by using membership function
form based on intersection operation as

µAs(x) = min [µA1(x), µA2(x), . . . , µAn(x)] (3.63)

(ii) Disjunctive antecedents: In a similar way, the multiple disjunctive antecedent can be
expressed as:

IF x is A1 OR x is A2 . . .OR x is An THEN y is Bs (3.64)

Equation 3.64 can be simplified as

IF x is As THEN y is Bs (3.65)

where As = A1 ∪A2 ∪·· ·∪An and As can be expressed by using membership function
form based on union operation as

µAs(x) = max [µA1(x), µA2(x), . . . , µAn(x)] (3.66)

3.7.2 Aggregation of Rules

Ordinarily, the structure of the rule-based systems contain more than one rule. The aggrega-
tion of rules can be defined as the process of obtaining the overall consequent. It results from
the accumulation of the contribution of all individual rules in the system. If a system of rules
is jointly satisfied, then the rules are connected by (AND) connectives. In this case, the fuzzy
intersection of the entire rule’s consequents are to be used to obtain the aggregated output yi ,
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where i = 1,2,3, . . . ,r :
y = y1 AND y2 AND · · ·AND yr (3.67)

or equivalently,
y = y1 ∩ y2 ∩ ·· ·∩ yr (3.68)

or, by using the membership function form

µy(y) = min [µy1(y), µy2(y), . . . , µyr(y)] for y ∈ Y. (3.69)

Furthermore, the aggregated output can be found by using fuzzy union if there is at least
one rule that is satisfied. In this case, a disjunctive system of rules can be used and OR
connectives connecting the rules for all of the rule’s consequents yi , where i = 1,2,3, . . . ,r:

y = y1 OR y2 OR · · ·OR yr (3.70)

or equivalently,
y = y1 ∪ y2 ∪ ·· ·∪ yr (3.71)

or, by using the membership function form

µy(y) = max [µy1(y), µy2(y), . . . , µyr(y)] for y ∈ Y (3.72)

3.8 Fuzzy Reasoning

Fuzzy reasoning, or approximate reasoning, can be defined using conditional rule-forms
to explain the relationship between logic values. In other words, we can infer the truth of
proposition B depending on A (i.e. A → B). Since the traditional basic rule of inference uses
Modus Ponens as a particular case, here we use the so-called generalized Modus Ponens
(GMP) [46]. For example, assume that A defined as "the apple is red", and B as "the apple is
ripe", if A is true, then B it is also true. The general GMP of this example can be expressed
as follows:

premise 1 (fact): x is A,

premise 2 (rule): if x is A then y is B,

consequence (conclusion): y is B.

However, if we know that "the apple is more or less red" then we can infer that "the apple is
more or less ripe" which can be denoted as:
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premise 1 (fact): x is A′,

premise 2 (rule): if x is A then y is B,

consequence (conclusion): y is B′,

where A and A′ are fuzzy sets of appropriate universe X and B and B′ are fuzzy sets of Y and
A → B can be expressed as fuzzy relation R on X ×Y . Then the fuzzy set B inferred by "x is
A" and the fuzzy rule "if x is A then y is B" can be defined as:

µB′(y) = maxx min[µA′(x), µR(x,y)]

= ∨x [µA′(x) ∧ µR(x,y)],
(3.73)

or equivalently,
B′ = A′ ◦R = A′ ◦ (A → B). (3.74)

The previous definitions represent the inference procedure of fuzzy reasoning that can be
used to derive the consequences, as long as it implies the fuzzy relation A → B, as a binary
fuzzy relation. Further discussion follows in order to cover different cases where single or
multiple fuzzy rules are combined with single or multiple antecedents; which can affect
in explaining the system behaviour. However, this will be presented by using Mamdani’s
fuzzy inference functions and max-min composition as they have more intuitive, easier to
understand rule bases, and broad applicability.

3.8.1 Single Rule with Single Antecedent

This type can be considered as the simplest case, the equation (3.73) represents the formula
of this case. However, simplifying this equation yields

µB′(y) = [∨x(µA′(x)∧µA(x)]︸ ︷︷ ︸
w

∧µB(y)

= w ∧ µB(y).

(3.75)

Figure (3.21) shows the inference mechanism of this case and how to conclude the
consequent of a fuzzy reasoning problem of single rule and single antecedent. The shaded
field of the antecedent part of this figure represents the degree of match w resulted from
calculating the maximum of µA′(x)∧µA(x). Consequently, the membership function of B′ is
equal to B snipped by w, shown as the consequent part of the same figure.
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Fig. 3.21 Single rule with single antecedent.

3.8.2 Single Rule with Multiple Antecedents

This type using a fuzzy rule which contains two antecedents, the following expression
represents the corresponding GMP for this case:

premise 1 (fact): x is A′ and y is B′,

premise 2 (rule): if x is A and y is B then z is C,

consequence (conclusion): z is C′.

A more straightforward form of A×B →C, can be used for the fuzzy rule shown in premise
2. By using Mamdani’s fuzzy inference function, we can transfer this rule into a ternary
fuzzy relation Rm as follows:

Rm(A,B,C) = (A×B)×C

=
∫

X×Y×Z
µA(x)∧µB(x)∧µC(z)/(x,y,z).

Consequently;
C′ = (A′×B′)◦ (A×B →C).

µC′(z) = ∨x,y[µA′(x)∧µB′(y)]∧ [µA(x)∧µB(y)∧µC(z)]

= ∨x,y{[µA′(x)∧µB′(y)∧µA(x)∧µB(y)]}∧µC(z)

= {∨x[µA′(x)∧µA(x)]︸ ︷︷ ︸
w1

}∧{∨y[µB′(y)∧µB(y)]︸ ︷︷ ︸
w2

}∧µC(z)

= (w1 ∧w2)︸ ︷︷ ︸
firing strength

∧ µC(z),

(3.76)
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where w1 and w2 represents the degrees of compatibility between (A,A′) and (B,B′) respec-
tively. In other words, w1 is the maximum of µA(x)∧µA′(x) (i.e., A∩A′); similarly for w2

(i.e., B∩B′). The term (w1 ∧w2) expresses the degree of satisfaction of the rule’s antecedent,
it is also called degree of fulfilment or firing strength of the fuzzy rule. The shaded area
of figure (3.22) shows the graphic interpretation of this case, where µC′(z) is the resulting
output that is equal to µC(z) snipped by the firing strength w, where w = w1 ∧w2.

Fig. 3.22 Single rule with multiple antecedent.

3.8.3 Multiple Rules with Multiple Antecedents

This type is applying at least two fuzzy rules and antecedents. Usually, it is using the union of
the fuzzy relation corresponding to the fuzzy rules. Thus, the following expression represents
the GMP form for this case:

premise 1 (fact): x is A′ and y is B′,

premise 2 (rule 1): if x is A1 and y is B1 then z is C1,

premise 2 (rule 2): if x is A2 and y is B2 then z is C2,

consequence (conclusion): z is C′,

we can use the GMP form above in addition to the drawing of the fuzzy reasoning of this
case shown in figure (3.23) as an inference scheme to determine the fuzzy set C′. Let
R1 = A1 ×B1 →C1 and R2 = A2 ×B2 →C2. Since the max-min composition operator, ◦ is
distributive over the ∪ operator, then:

C′ = (A′×B′)◦ (R1 ∪R2)

= [(A′×B′)◦R1]∪ [(A′×B′)◦R2]

=C′
1 ∪C′

2,

(3.77)
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Fig. 3.23 Multiple rule with multiple antecedent

where C′
1 and C′

2 represents the inferred fuzzy sets for rules 1 and 2, respectively. The shaded
area of figure (3.23) shows the graphic interpretation of the operation of fuzzy approximation
multiple rules with multiple antecedents.



Chapter 4

Fuzzy Inference System
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4.1 Introduction

This chapter will present the implementation methodology of the fuzzy logic and fuzzy theory
to formulate and solve real-world problems using fuzzy systems. The fuzzy inference system
(FIS) can be defined as a computing framework using fuzzy if-then rules combined with the
fuzzy reasoning based on the fuzzy set theory in order to describe the mapping from input to
output by fuzzy variables and fuzzy relations. It can be considered as one of the successful
applications in different areas, such as classification of data, expert system, decision analysis,
and time-series forecasting. The multidisciplinary character of the FIS provides several
nomenclature, such as fuzzy rule base system, fuzzy-expert system, fuzzy-model, fuzzy-
associative memory, fuzzy-logic controller [61]. The process of FIS contains all the pieces
of fuzzy logic operations, membership functions, linguistic variables, fuzzy-relations,
fuzzy rules (if-then), and fuzzy-reasoning that we have discussed in the previous section.

In general, a system structure often contains three stages (i.e., input-processing-output).
As a fuzzy inference system, the inputs can be either fuzzy or crisp values. However, the
produced outputs are often fuzzy. In some cases, if the FIS is used as a controller, then the
output can be crisp values. The processing stage includes three components i.e., fuzzification,
inference engine, and defuzzification; supported by the fuzzy knowledge base (FKB). The
fuzzy knowledge base is to be constructed of two parts. First, the rule-base, which includes
the fuzzy if-then rules; second, the database, which consists of the membership functions
definitions (types and numbers). The inference engine represents the mechanism of reasoning
for the inference procedure. This can be processed using different inference methods, such as
Mamdani fuzzy models and Sugeno fuzzy models. Figure 4.1 interprets the overall structure
of the fuzzy inference system.

In this chapter, all the figures, diagrams, and examples have been created by the author,
except where indicated with the word "reproduced".

4.2 Fuzzy Inference Control

4.2.1 Fuzzification

In general, implementing the fuzzy logic controller is often accompanied by using crisp data.
Therefore, fuzzification plays a vital role in converting crisp (real) input values into fuzzy
sets. The fuzzification can be defined as the process of mapping the observed input data
into fuzzy sets. In other words, it is providing a membership grade of the crisp (or numeric)
values using membership functions stored in the fuzzy knowledge base. It determines the
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Fig. 4.1 Fuzzy inference system.

intersection value between the numeric input and the membership function. Since the FIS
can take either fuzzy or crisp inputs, fuzzification can be handled by two methods:

• Singleton fuzzification: Assume we have the universe of discourse X where xi ∈ X . A
fuzzy Singleton Axi will represent the membership value that is mapping the real value
of xi into a fuzzy Singleton

µAxi
(x) =

1, if x = xi

0, otherwise.
(4.1)

This type of fuzzification is simplifying the computation, and it can be applied when
there is no noise.

• Axi is fuzzy: This type is mapping the real values of xi where xi ∈ X , into a fuzzy set
Axi , and it can be described by a membership function

µAxi
(x) =

1, if x = xi

[0,1], xi < 1.
(4.2)

Thus, the fuzzification process may involve assigning membership values for the given
crisp quantities which interpret the extent to which it belongs to the fuzzy set µAxi

(x). The
fuzzy set can be characterised by various types of MFs introduced in Section (3.4). Figure 4.2
shows the use of three different types of MF to process the fuzzification of xi ∈ X . It
elucidates that x = xi ∈ X has different membership values (i.e., fuzzified grade) when using
several types of MF such as, A1, trapezoidal with membership grade of µA1(xi); A2, triangular
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Fig. 4.2 Fuzzification in different types of MFs. Reproduced from [117]

with membership grade of µA2(xi); and A3, Gaussian with membership grade of µA3(xi)

respectively.

4.2.2 Inference Engine

The inference engine can be considered as the decision-making unit, which implements
the inference operations on the rules. In other words, it performs the mapping of inputs to
outputs by using a number of fuzzy if-then rules. The inference engine uses the max-min
and max-product compositions to combine the membership values and calculate the firing
strengths (weight) of each rule, then aggregate qualified consequent membership functions
to obtain an overall output. The T-norm and T-conorm operators are used to perform the
combining and aggregation of rules. Figure 4.3 (surrounded by a dashed line) shows the
inference engine block diagram.

Fig. 4.3 Fuzzy Inference Engine. Reproduced from [61].
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4.2.3 Defuzzification

We can define the defuzzification as the process of converting a fuzzy value into a numeric
(crisp) value. It can be considered as the inverse of the fuzzification process. In other words,
it represents the method of extracting real, numeric values from a fuzzy set. The literature
presents many defuzzification methods. The choice of the most appropriate defuzzification
method for a particular application depends on the application we use. Runkler [111]
presented good research to identify the appropriate method. Broadly, there are some methods
used for processing the defuzzification of the fuzzy sets. A brief explanation of the most
used methods follows.

4.2.3.1 Centroid of Area Method (COA):

It is also referred to as the centre of gravity or centre of area method. It can be considered
as one of the most used methods. This method works by dividing the total area of the
membership function distribution into several levelled sub-areas. This is similar to the
calculation of expected values of probability distributions [61]. Thus, the defuzzified value is
extracted by calculating the centre of gravity of each sub-area and then finding the summation.
Mathematically, the general form of this method for the continuous universe can be expressed
as follows:

zCOA =

∫
Z µC′(z)z dz∫
Z µC′(z) dz

, (4.3)

and for m quantization levels in the output of a discrete universe, it is given by

zCOA =
∑

m
i=1 µC′(zi).zi

∑
m
i=1 µC′(zi)

, (4.4)

where µC′(z) represents the aggregated output membership function shown in figure 3.23
(aggregation of rules).

4.2.3.2 Centre of Sums Method (COS):

This method also represents one of the most commonly used methods. It is using the algebraic
sum of each output fuzzy set to calculate the defuzzified value. In other words, it is using
the summation instead of the union of the output fuzzy sets. Formally, the mathematical
expression for the discrete case can be given as follows.

zCOS =
∑

M
i=1 zi.∑

m
i=1 µC′

k
(zi)

∑
M
i=1 .∑

m
i=1 µC′

k
(zi)

, (4.5)
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where M represents the number of fuzzy variables, m is the number of fuzzy sets, and µC′
k
(zi)

is the MF for the k-th fuzzy set.

4.2.3.3 Mean of Maximum Method (MOM):

It is also referred to as the middle of max method. This method identifies the output range
of the fuzzy variable corresponding to the elements with the highest value of membership.
The mean of all the local maxima is considered to be a single defuzzified output (crisp output).
Mathematically, it can be denoted as

zMOM =
∑

M
i=1 µmaxC′(zi)

M
, (4.6)

where µmaxC′(zi) is the maximum values of membership in the fuzzy output variable C′

and M, which represents the number of times when the membership function reached the
local-maximum value.

Figure 4.4 shows the difference between the defuzzified values for each method used for
obtaining the crisp output of the aggregated fuzzy output variable C′, shown in figure 3.23.

Fig. 4.4 Different defuzzification methods for obtaining crisp output. Adapted from [61]

4.3 Fuzzy Inference Methods (Inference Mechanism)

There are two main methods of modelling a FIS. The first one is known as a Mamdani FIS,
which is one of the most commonly used inference methods. Another well-known inference
approach is the Takagi-Sugeno [130] FIS; often only referred to as Sugeno-type. The main
difference between the two approaches lies in the consequent part of the fuzzy rules. The
Mamdani fuzzy system’s output is a variable with corresponding membership functions. In
contrast, T-S fuzzy systems employ linear functions of input variables as rule consequents.
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Moreover, when using Mamdani fuzzy systems, the resulting output needs to be defuzzified
in such models. The T-S approach is where the output is a function, thus not requiring
defuzzification. Also, Mamdani is usually requires prior expert knowledge to develop the FIS
(i.e., determining the membership functions and the associated parameters). Whilst T-S can
be generated automatically when historical data are available, enabling supervised learning.

4.3.1 Mamdani Fuzzy Inference Method

According to the literature, the Mamdani fuzzy inference method can be considered as one of
the first control systems built using fuzzy set theory [82]. Mamdani’s system was improved
depending on Zadeh’s effort [161] on fuzzy algorithms for complex systems and decision
processes. As defined, the output of a Mamdani-type inference is expected to be fuzzy sets
in the form of membership functions. Each output variable should have its fuzzy set. All
output fuzzy sets have to be combined using the aggregation process and be defuzzified in
order to produce a real number (crisp value) as the final inference result.

Figure 4.5 shows a Mamdani-FIS, which consists of two inputs x and y (premises)
and one output represented by z (consequent). Every input x,y and output z contain two
membership functions, i.e., {A1,A2},{B1,B2} and {C1,C2}, respectively. A collection of
R rules characterises a typical form of Mamdani-FIS rule, thus

k : if x is Ak
i and y is Bk

j then z is Ck
l , (4.7)

where k = 1,2, . . . ,R, i = 1,2, . . . ,N, j = 1,2, . . . ,M and l = 1,2, . . . ,L. R represents the
maximum number of rules. Whereas M symbolises the numbers of MFs for inputs, and L
expresses the number of MFs for the output. Consider the inference mechanism in figure 4.5,
there are two rules to be used,

Rule1: IF x is A1 AND y is B1 ,THEN z is C1 ,

Rule2: IF x is A2 AND y is B2 ,THEN z is C2 .

Consider x1 and y1 as crisp values specified for inputs x and y, respectively. Adopting
max-min, and max-product as the composition rules methods can demonstrate the process of
the previous two rules. In other words, we are performing the max and algebraic product using
T-norm and T-conorm operators, respectively, to process the fuzzification and inferencing.
Figure 4.5(a) shows that the inferred output for each rule is a fuzzy set clipped down by the
firing strength with AND operator (usually T-norm) from the antecedent part via minimum
or product rule. Figure 4.5(b, d) illustrates the consequent portion of every rule utilising
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Fig. 4.5 Two-input single-output Mamdani fuzzy model. Reproduced from [117]

max/min, and max/product rules, sequentially. Figure 4.5(c, e) shows the process of rule
aggregation for both the max-min as well as the max-product rules of composition. The
defuzzification operations have been carried out by applying the centre of area method z∗COA

(fig. 4.5(c, e)).

Example 4.1 Assume that we have a Mamdani-FIS with two inputs x and y which express
the antecedents, three fuzzy sets (linguistic variables such as low, medium and high), with
triangular MF, and a single output z symbolising the consequent. The rule-base includes the
following:

Rule1: IF x is low AND y is medium ,THEN z is low ,

Rule2: IF x is medium AND y is high ,THEN z is high .

Let us assume that x1 = 3.89 and y1 = 5.58 are two numeric values. Their membership
values µk(x1) and µk(y1) (k symbolises the MFs low, medium, or high) can be determined
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Fig. 4.6 Max/min Mamdani fuzzy inference method. Adapted from [117]

using the triangular MFs. The aggregated outputs of the rules are given by

Rule 1: µlow(z) = max [ min [µlow(x), µmedium(y)]]

Rule 2: µhigh(z) = max [ min [µmedium(x), µhigh(y)]]

Figure 4.6(a) shows the antecedents part of the Mamdani inference system for our example
which contains two rules r1 and r2. At this stage, the minimum membership value of
[µlow(x), µmedium(y)] and [µmedium(x), µhigh(y)] are to be propagate into the consequent part
(fig. 4.6(b)). The consequent MFs of each rule is to be computed by clipping the maximum
values based on the produced firing strength, i.e., max [ min [µlow(x), µmedium(y)]] and
max [ min [µmedium(x), µhigh(y)]] as shown in figure 4.6(b). After that, the consequent MFs
are to be aggregated using the max operator (fig. 4.6(c)), then defuzzified using the centroid
of area method (fig. 4.6(d)).

4.3.2 Sugeno Fuzzy Inference

This section will introduce the Sugeno fuzzy inference system, which is also known as
a Sugeno–Takagi model (TSK). This model was first introduced by Takagi, Sugeno, and
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Kang [126] [130] as an effort to formalize a systematic approach to generate fuzzy rules
from an input-output data set. A general form of a common rule in a Sugeno model with two
inputs and a single output is defined by:

k : if x is Ai and y is B j then zk = f (x,y), (4.8)

where k = 1,2, . . . ,R, i = 1,2, . . . ,N, and j = 1,2, . . . ,M. N, M and L are the numbers of
MFs for the inputs and output, respectively, x and y are the inputs, R is the maximum number
of rules, Ai and B j are fuzzy MFs for the inputs at the antecedent part and zk = f (x,y) is a
crisp function in the consequent part.

The firing strengths wk (weights) in the antecedents part are to be obtained using the
minimum or product composition as the inferencing method of the rules using the AND
operator. Thus

wk =


min(µAi,µB j)

or,

prod(µAi,µB j).

for k = 1,2, . . . ,R. (4.9)

The consequence function zk = f (x,y) can be a polynomial or any other type of function
as long as it can appropriately explain the output of the model within the fuzzy region
identified by the premise of the rule. In the case of a polynomial function, it usually comes
with {ak,bk,ck} parameters. Once these parameters are known, the consequence zk can be
computed for each rule. After that, the overall output z (aggregated results) can be calculated
via both the firing strengths (weights) and the computed values of zk. This will compute
the weighted average of the crisp output z which works as an alternative method of the
defuzzification process in the Mamdani model. Mathematically, the weighted average (w)
form can be as follows:

z = ∑wk fk =
∑wk fk

∑wk
for k = 1,2, . . . ,R. (4.10)

Ordinarily, Sugeno systems are utilised for modelling the inference system when the output
MFs are either linear or constant values. According to the degree of order, we can classify
the fuzzy inference system into two types as follows:

4.3.2.1 First-order Sugeno Fuzzy Model:

Takagi and Sugeno (1985) proposed the first-order Sugeno fuzzy model [130] [126] to
be when the consequent functions of the Sugeno fuzzy model are a first-order (linear)
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Fig. 4.7 First-order Sugeno fuzzy model. Reproduced from [117]

polynomial. Assume that we have a Sugeno model containing two inputs x and y and one
output z. Each input has two membership functions {A1,A2} and {B1,B2}, respectively, and
{z1,z2} represents the output (consequent) functions. Two rules explain this system, thus:

Rule1: IF x is A1 AND y is B1 ,THEN z1 = a1x+b1y+ c1

Rule2: IF x is A2 AND y is B2 ,THEN z2 = a2x+b2y+ c2

where {a1,b1,c1} and {a2,b2,c2} represent the parameters of the polynomial function
zk = f (x,y), where k = 1,2. Figure 4.7 illustrates the previous first-order Sugeno fuzzy
model were two crisp values x1 (for input x) and y1 (for input y) are used. Figure 4.7(a)
illustrates the rules’ inferencing procedures after applying the minimum-product composition
in order to compute the firing strengths w1 and w2. Figure 4.7(b)) demonstrates the consequent
part of the Sugeno model, where z1 and z2 are obtained. The overall output is computed
by equation 4.10 using the weighted average of the crisp outputs zk and the weights (firing
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strengths wi) of every individual rule determined in Equation 4.9. It can be computed by:

z =
w1z1 +w2z2

w1 +w2

Figure 4.7(c)) shows the overall output z (aggregated) result.

4.3.2.2 Zero-order Sugeno Fuzzy Model:

The Sugeno model can be considered zero-order only if the output function in the conse-
quence part is a constant. Referring to the case that we discussed in the previous enumerate
(4.3.2.1), the general form of the two rules of zero-order Sugeno fuzzy model can be ex-
pressed as follows:

Rule1: IF x is A1 AND y is B1 ,THEN z1 = c1

Rule2: IF x is A2 AND y is B2 ,THEN z2 = c2

where c1 and c2 are constant values. The fuzzy singleton can be used to determine the
consequent of each rule. This can be considered as a special case of the Mamdani model.
The obtained values of zero-order Sugeno model is a smooth function of its input variables
as long as the contiguous membership functions in the antecedent have enough overlap. By
comparing the zero-order Sugeno model with Mamdani model, in Mamdani, the overlap
of the membership functions in the consequent part does not have a certain effect on the
smoothness of the output. The input/output behaviour and the smoothness of the fuzzy
system can be identified from the overlap of the MFs at the antecedent part [60]. In some
cases, if a zero-order Sugeno fuzzy model is processed under certain minor constraints,
then it can be considered equivalent to the radial basis function network with respect to the
functional perspective [120].

Figure 4.8 demonstrates the discussed case of Sugeno model in the previous section
(4.3.2.1) with respect to zero-order Sugeno model. The antecedent part (fig 4.8(a)) is using
the minimum or product composition in order to compute the firing strengths w1 and w2.
Whereas, the aggregation part (fig 4.8(c)) is using the weighted average to compute the
overall output zi. Figure 4.8(b) illustrates the consequent portion of the zero-order Sugeno
model where z1 and z2 are computed. The triangular and step function represents the special
cases for the consequent membership function in which provide the defuzzified values c∗1
and c∗2 of the MFs.
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Fig. 4.8 Zero-order Sugeno fuzzy model. Reproduced from [117]

4.3.3 Comparison Between Sugeno and Mamdani Models

This section will discuss the difference between the Mamdani and Sugeno fuzzy models.
It is very important to find a suitable model that can be used to solve a particular problem.
Giving the main difference between these two models will allow the researchers to find the
specifications and advantages of each model in order to choose the right one among them.
The differences between these two fuzzy inferences, also called fuzzy models, are mainly
represented by the consequent parts of their fuzzy rules, aggregations and defuzzification
procedures. Table 4.1 summarizes these differences.
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Table 4.1 Comparison between Sugeno and Mamdani models

MAMDANI SUGENO

Advantages: • Intuitive. • Computationally efficient.

• Well-suited to human input. • Works well with linear tech-
niques.

• More interpretable rule base. • Works well with adaptive tech-
niques and optimization.

• Have widespread acceptance. • Guarantees output surface conti-
nuity.

• Well-suited to mathematical anal-
ysis.

Specifications: Fuzzification • Generating the MFs rely on experts. • Generates the MFs automatically.

Inputs • Single values. • Data sets.

Rules composition • Max-mini or Max-product. • Max-mini or Max-product.

Consequent • Fuzzy sets. • Functions (usually polynomial).

Aggregation • Fuzzy set. • Weighted average.

Defuzzification • Crisp value. • Constant.
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This chapter introduces the theoretical framework of the adaptive neuro-fuzzy system.
As the name implies, the neuro-fuzzy system can be defined as a combined model consisting
of two approaches; an adaptive Artificial Neural Network (ANN) and a Fuzzy Inference
System (FIS). In other words, it is a hybrid, intelligent system [96]. The concepts of the fuzzy
inference system have been discussed in detail in the previous chapter. Therefore, the first part
of this chapter describes the needed concepts of adaptive ANNs. Accordingly, in the second
part, we present a class of adaptive networks that are combined with FIS, i.e., Adaptive
Neuro-Fuzzy Inference System (ANFIS). This will provide a unifying framework that
subsumes almost all the needed information which includes FIS and the adaptive ANN.

In this chapter, all the figures, diagrams, and examples have been created by the author,
except where indicated with the word "reproduced".

5.1 Adaptive Neural Networks

5.1.1 Introduction to ANNs

A neural network can be defined as a set of processing units (also known as nodes or neurons)
that proceed by sending signals to each other along weighted connections. The way in which
these units are connected depends on the specific network model [29]. Each unit can accept
a number of input signals and produce one output signal. In general, inputs are combined
by calculating the weighted sum of all inputs. The output is then computed by passing
this weighted sum of inputs through an activation function. In general, a neural network is
composed of an input layer, an output layer, and will contain any number of hidden layers
between. Network topology refers to the type of network being created (inputs, hideen
layers, outputs) and helps us to define the complexity of the network [151]. This varies
from simple perceptrons to more complex convolution networks. The complexity of the
network is controlled by the number of layers and nodes chosen and the transfer function
used. The higher the number of layers and nodes, the greater the degrees of freedom in the
underlying network model. This needs controlling carefully. Too few nodes will result in an
under-trained network that has inferior training capabilities. Too many parameters can result
in an over-trained network that has low prediction capability.

Data quality and quantity is a crucial factor. There needs to be enough data to ensure
convergence of the network from the given samples. Data is usually separated into training
data and test data. The network is trained on the first set and validated on the second.
Variations of this approach, using n-fold cross-validation, can be employed. The data can be
synthetic data providing a good understanding of the problem space is known so that data
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that meaningfully represents the underlying problem can be generated and used to test the
network.

5.1.2 Architecture of ANN

5.1.2.1 Neuron Architecture

Neurons, also referred to as units or nodes, can be defined as a processor that is processing
input signals through an activation rule in order to calculate the output signal. Therefore, we
can identify the essential elements that represent the main structure of the neuron, as shown
in Figure (5.1). A single network neuron consists of:

Fig. 5.1 Single neuron.

• Input signals: which represents the incoming weights from other neurons.

• Node: the summing junction where the input signals are collected and processed via an
activation function (referred to as the transfer function) in order to produce the output.
In other words, it represents the core of the neuron, which consists of two components.
First is the summing junction where the sum of the product of the input signals and its
corresponding weights ∑xiwi of the i− th neuron to be calculated. The second part is
the transfer function f (∑xiwi) in which the output signal is to be computed.

• Output: which represents the calculated outgoing weights signal to be sent to other
neurons (usually in the next layer).

• A threshold value: also referred to as the bias, is a fixed value added to the summing
junction in order to prevent the case of when the summing is equal to zero. It plays a
vital role in adapting the output weights as an additional parameter of the neuron.
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Assume that we have n inputs x1,x2, . . . ,xn to a neuron i with corresponding weights
wki = [w1i,w2i, . . . ,wni]. Thus:

sumi = (w1i.x1 +w2i.x2 + · · ·+wni.xn)

=

( n

∑
k=1

wki.xk

) (5.1)

Furthermore, by adding threshold value bi, which represents a bias:

sumi =

( n

∑
k=1

wki.xk

)
+bi (5.2)

The equation 5.2 will then represents the input to the transfer function ( f ). Thus the
output (yi) of (i− th) neuron can be obtained by:

yi = f (sumi) = f
(( n

∑
k=1

wki.xk

)
+bi

)
(5.3)

In ANNs, the output of each neuron depends on its transfer function. We can identify
two types of transfer function according the nature of its parameters, i.e., modifiable or
non-modifiable parameters. Therefore, neurons can be classified into two types:

1. Fixed neuron:
The ANN neuron can be defined as fixed if the node has a function with a non-
modifiable parameter set, sometimes called a non-parameterized function. We use a
circle to represent the fixed neuron. Figure (5.2a) shows a schematic view of this type.
Here we introduce some different types of transfer function that can be used under this
classification with its corresponding form:

• Hard-limit function:

y = f (sum) =

0 if sum ≤ 0,

1 if sum > 0.
(5.4)

• Linear function:
y = sum (5.5)

• Step function:

y = f (sum) =

−1 if sum ≤ 0,

+1 if sum > 0.
(5.6)
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(a) Fixed neuron. (b) Adaptive neuron.

Fig. 5.2 A schematic view of an artificial neuron.

2. Adaptive neuron:
The adaptive neuron (Fig. 5.2b) is a node whose overall behaviour is determined by a
parameterized function with a set of adjustable parameters. Ordinarily, the adaptive
network is composed of a set of neurons (fixed and/or adaptive) connected by directed
links. These neurons are to use its functions to process incoming signals in order to
generate the node output. Changing the parameters of the adaptive neurons means
we modify the neuron function, which affects the overall network behaviour. We use
a square to signify the adaptable neuron, Figure (5.2b) shows a schematic view of
this type. Again we show some different types of parameterized functions that can be
considered under this classification with its corresponding form:

• Log-Sigmoid function:

y = f (sum) =
1

1+ e−a(sum)
, (5.7)

where a denotes the parameter of the activation function. We can clearly see that
the nature of the distribution of this function depends on the value of a.

• Tan-Sigmoid function:

y = f (sum) =
1− e−a(sum)

1+ e−a(sum)
(5.8)

More types of parameterized functions with details can be found in section 3.4.2.
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5.1.2.2 Network Architecture

In general, the neural network pattern assumes that the basic structure of a network is
comprised of layers connected by direct links. Each layer should have at least one neuron.
The layers can be divided into three types, i.e. input, hidden, and output. A composition of
these three types represents the network structure or topology. Thus, the hidden layer can be
more than one layer. Figure (5.3) shows a schematic view of a single layer of m neurons. Let
us consider that there are n inputs connected to this layer, such as:

Fig. 5.3 A schematic view of a single-layer of NN.

x =


x1

x2
...

xn

 .

The weights of the network and the biases are defined by the following weight matrix W and
bias vector b simultaneously:

W =


w11 w12 . . . w1m

w21 w22 . . . w2m
...

... . . . ...

wn1 wn2 . . . wnm

 , b =


b1

b2
...

bn

 .

Then, the output of the network Y can be written in vector form as:

Y = f (W.x+b) (5.9)
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5.1.3 Adaptive Network Architecture

When all neurons in all layers of the network are fixed (non-modifiable), then the network
can be classified as typical neural architecture. Otherwise, if the network contains at least
one adaptive neuron, then it is an adaptive network. In other words, an adaptive network
(Fig. 5.4) is a network whose overall behaviour of its input-output mappings is determined by
a set of modifiable parameters. In most common cases, adaptive networks are heterogeneous.
Every single neuron has a particular function, which often differs from the others. Links in
this type of network network are only used to designate the propagation path of a neuron’s
outputs. In other words, the links are not accompanied by weights [61]. Each node in the
adaptive network has its local parameter set. The union of these parameters represents the
network’s overall parameter set.

Fig. 5.4 Adaptive network in layered representation [61].

5.1.4 Feed-Forward ANN

According to the directional connectivity of the neurons, the artificial neural networks can be
categorised into two classes, feed-forward network and recurrent network. The network
can be considered as feed-forward if the propagation process of each individual neuron
within the network follows one direction (in the forward pass) from the input (left) to the
output (right). On the contrary, if there is one link (or more) that forms a feedback path
in the network, then it can be considered as recurrent. There are seven different types of
feed-forward neural network that are distinguished, such as:

• Multilayer perceptron networks.

• Radial basis function networks.
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• Generalized regression neural networks.

• Probabilistic neural networks.

• Belief networks.

• Hamming networks.

• Stochastic networks.

Taking a different viewpoint, if we look at the structure of a feed-forward network from a
graph theory side, it can be represented by an acyclic graph with one direction and without
directed cycles. Whereas, a recurrent network always contains at least one directed cycle.
Figure (5.4) represents a layered feed-forward adaptive network. It can be noticed that the
neurons in the same layer are not linked to each other. Moreover, the outputs of all neurons
in a specific layer are to be fed-forward to the succeeding layer. The input-output mapping of
the adaptive feed-forward network is static; depending on the network structure, this mapping
can be a linear or nonlinear relationship. Our target is to model a system that is constructed
of a desirable network based on nonlinear mapping adjusted via the input-output data set.
This data set is commonly named training data.

Adjusting the network parameters plays a vital role in improving the network’s per-
formance; these procedures are known as adaptation algorithms and also termed as the
learning rules. Ordinarily, measuring a network’s performance can be obtained by calculat-
ing the difference between the desired output and the network’s output following similar input
conditions; this difference is termed as an error measure. By applying a specific metric
(and thus optimization technique) to obtain an error measure, we can derive the learning rule.

5.1.5 Supervised Learning

In general, learning (also referred to as a training algorithm) in the neural network can be
defined as the procedures of updating and modifying the weights, biases, and parameters of
a network. It represents the techniques that can be used to train a network and optimize a
particular input-output mapping to a specific desired targeted output. Broadly, the ANN can
be divided into two types of learning, i.e. either supervised or unsupervised. The ANN can
be classified as unsupervised if there are no target values on which to be compared with the
network outputs to determine the errors. In other words, there is neither calculation nor feed
back of the predicted error in order to update the network.

In contrast, the mechanism of the supervised ANN operates on modifying its parameters
and updating the weights depending on the feedback obtained from error calculations (i.e.,
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the difference between the target (desired) output and the network output). In other words,
the form of supervised learning is applicable if the input-output relationship of the training
scenarios is obtainable. As the input is applied to the network, the forward pass will be
propagated through each layer to the output layer. In the output layer the network provides
its predicted value. An error can be determined by comparing the network’s output with
its corresponding target value. These errors then get fed back to the network in order to be
used by the learning rule to adjust the network parameters and move the network outputs as
close as possible to the targets. The adaptation algorithm will keep repeating the process of
minimizing the current errors of all processing elements continuously in order to modify the
network parameters until an acceptable global error reduction is reached. During training, the
parameters of a network are optimized by a applying supervised learning rule. Figure (5.5)
shows a schematic view of supervised learning.

Fig. 5.5 A schematic view of supervised learning.

There are many supervised learning rules, some of which are:

• Widrow–Hoff learning rule

• Gradient descent learning rule

• Delta learning rule

• Backpropagation learning rule

• Cohen–Grossberg rule

• Adaptive conjugate gradient model of Adeli and Hung learning rule.

We will focus on introducing the required learning methods that represent the core of the
structure for the adaptive neuro-fuzzy inference system that will be discussed in the next
sections, such as the backpropagation learning algorithm for adaptive feedforward networks.
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5.1.5.1 Backpropagation Learning Algorithm

The following explanation of the Backpropagation algorithm follows closely the description
is given by Jang et al. [61].

Backpropagation, in its standard from, is a gradient descent algorithm. In general, the
process of computing the gradient vector in a network and using this to update the network’s
weights is known as backpropagation. It is termed like this due to the way in which errors are
propagated back from the output layer, towards the input layer. The backpropagation learning
rule uses the gradient descent (also referred to as the gradient method or steepest descent)
algorithm as a backward pass optimization method. This section introduces a learning rule
for adaptive networks, which is, in essence, the gradient descent method. The core of the
gradient descent learning rule concerns how to use the chain rule to find a gradient vector
in which each element is defined as the derivative of an error measure with respect to a
parameter. Once the gradient vector is obtained, the parameters can be updated via several
regression techniques and derivative-based optimization.

Assume that we have a feed-forward, adaptive neural network as shown in Figure (5.6)
which has L layers. The network has an N(l) neurons in layer l (i.e. l = 0,1, . . . ,L; where
l = 0 is the input layer). Then the output of node i [i = 1,2, . . . ,N(l)] in layer l can be
denoted as Ol,i and its corresponding function as fl,i. As mentioned, the output of neurons
in the adaptive networks relies on two main factors. The incoming signals and the set of
parameters which accompaniment to its function. Therefore, the output of a neuron can be
expressed as:

Fig. 5.6 A feedforward adaptive neural network.

Ol,i = fl,i(Ol−1,1, Ol−1,2, . . . ,Ol−1,N(l−1), α, β , γ, . . .) (5.10)
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where α, β , γ, . . .etc. are the neuron’s functions parameters.
Suppose we have D entries in our data set, then the error measure for the d-th entry

(where 1 ≤ d ≤ D) can be defined as the sum of squared errors as follows:

Ed =
N(L)

∑
k=1

(tk −OL,k)
2 (5.11)

where tk is the k-th element of the d-th targeted (desired) output vector. while OL,k is the k-th
actual output component resulting from processing the d-th input vector forwards through
the network. The network then can achieve its goals when Ed is equal to zero, which means,
the network’s output vector is equal to the target output vector in the d-th training data.

In order to proceed to the minimization of the error measure by using gradient descent, we
first need to obtain the gradient vector. Prior to computing the gradient vector, the following
causal relationships of a network must be observed:

modifying
parameter

α

=⇒
effecting

neurons outputs
(containing α)

=⇒
effecting the
outputs of the

network
=⇒

change in
error

measure

where the symbol =⇒ refers to the causal relationships. This shows that even a small
modification applied to the parameter α can affect the output of all neurons which contain
this parameter. As a result, the overall outputs, including the output of the final layer, will
be affected. This, in turn, will affect the training accuracy of the network. This explains the
concept behind the calculation of the gradient vector, which can be applied by feeding back a
form of the derivative, beginning at the output layer and then passing through all layers until
reaching the input layer.

Let us assume that the error signal is denoted as δl,i (concerning the output of node i in
the layer l) which represents the derivative of the error measure Ed . Thus:

δl,i =
∂+Ed

∂Ol,i
(5.12)

This expression is called ordered derivative [145]. This type of derivative is different from
the typical partial derivative with respect to the way of the function’s differentiation. This can
be explained as follow, if we consider the output of an internal neuron Ol, j (where l ̸= L), the
partial derivative ∂Ed

∂Ol,i
is equal to zero, where Ed does not depend directly on Ol,i. However,

it is clear that Ed depends indirectly on Ol,i, because if the output of an internal neuron i in
layer l, i.e. Ol,i has been changed and propagate through indirect paths towards the output
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layer; this will provide a similar change in Ed . Consequently, δl,i represents the ratio of these
two changes when they are made infinitesimal.

• Difference between the ordered derivative and the ordinary partial derivative:
Before we proceed with the explanation of the differentiation of the error measures,
let us discuss the difference between the ordered derivative and the ordinary partial
derivative in more details from a mathematical viewpoint. Assume that we have a

Fig. 5.7 Simple ordered derivative adaptive network. Reproduced from [61]

simple adaptive network with two nodes as its illustrate in figure 5.7, where z is a
function of x and y, while, y is a function of x. Thus:z = g(x,y),

y = f (x).

Consider the ordinary partial derivative ∂ z
∂x ; it has been assumed that all other input

variables (such as y) are constant. Thus:

∂ z
∂x

=
∂g(x,y)

∂x
.

This means by using the ordinary partial derivative; we assume that the function g
has two independent inputs variables such as x and y, and ignoring the actual fact of
y is a function of x. Whereas, the ordered derivative considers this indirect causal
relationship. Thus:

∂+z
∂x

=
∂g(x, f (x))

∂x

=
∂g(x,y)

∂x

∣∣∣∣
y= f (x)

+
∂g(x,y)

∂y

∣∣∣∣
y= f (x)

∂ f (x)
∂x

.

This explains the benefit of use ordered derivative, which takes direct and indirect
paths into account when dealing with the causal relationship.
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Therefore, calculating the error signal at layer L can be extracted directly using the following
expression:

δL,i =
∂+Ed

∂OL,i
=

∂Ed

∂OL,i
=−2(ti −OL,i). (5.13)

Whereas, the error signal for the i-th internal neuron of the l-th layer can be derived by using
the chain rule. Thus:

δl,i =
∂+Ed

∂Ol,i︸ ︷︷ ︸=
N(l+1)

∑
n=1

∂+Ed

∂Ol+1,n︸ ︷︷ ︸
∂ fl+1,n

∂Ol,i
=

N(l+1)

∑
n=1

δl+1,n
∂ fl+1,n

∂Ol,i
, (5.14)

where the expression ∂+Ed
∂Ol,i

represents the error signal at layer l, and ∂+Ed
∂Ol+1,n

represents the
error signal at layer l +1. Also 0 ≤ l ≤ L−1. This means, the error signal arriving into an
internal neuron at layer l is obtained as linear combination propagated back from the neuron
at layer l +1. Therefore, by applying Equation (5.13) we can find the error signals of the
output layer L, and then applying Equation (5.14) in order to find the error signals for all
i-th neurons in l-th layer. This has to be run repeatedly until the target output is reached.
Obtaining the error signals sequentially and processing them, starting from the output layer
towards the input layer, is referred to as back-propagation.

As mentioned earlier, the chain rule has been applied to find the derivative of the error
measure with respect to each parameter, which is referred to as the gradient vector. Assume
that α represents a parameter at the ith neuron at layer l. Thus:

∂+Ed

∂α
=

∂+Ed

∂Ol,i

∂ fl,i

∂α
= δl,i

∂ fl,i

∂α
. (5.15)

In some cases, the parameter α can be shared among different neurons; thus Equation (5.15)
is to be expressed into the more general form:

∂+Ed

∂α
= ∑

O∗∈S

∂+Ed

∂O∗
∂ f ∗

∂α
, (5.16)

Where S represents the set of neurons which contains the parameter α; f ∗, and O∗ are the
function and output, sequentially, for the generic neuron in S.

The derivative of E (the overall error measure) with respect to α is:

∂+E
∂α

=
D

∑
d=1

∂+Ed

∂α
. (5.17)
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Therefore, if the parameter α comes under a straightforward gradient descent without line
minimization, then its formula can be written as:

∆α =−η
∂+E
∂α

, (5.18)

where η represents the learning rate, this can be further expressed as:

η =
k√

∑α

(
∂E
∂α

)2
, (5.19)

in which k represents the step size. The step size can be defined as the length of every
transition within the gradient direction with respect to the parameter range.

5.1.6 Hybrid Learning Rule

As the name implies, hybrid learning can be defined as a combination of two optimization
learning technique. Generally, in order to identify the parameters of an adaptive network,
we can use the gradient descent optimization method (i.e. the backpropagation learning
rule). However, we have to take into account that this method does (in some cases) take
more time to converge compared with other methods. Therefore, in 1990’s, Jang [59] [60]
introduced a hybrid model comprised of two combined methods, i.e. the gradient descent
(GD) and least-squares estimator (LSE). This hybrid model can speed up the processing
time of the parameter’s identification when the output of a network is linear. Thus, if some of
the network’s parameters are linear, then it can be trained by using the linear least-squares
method. In order to explain this, first, we need to introduce two types of learning models.
That is, (off-line and on-line) learning. The main difference between the two types lies in
the method of updating the parameters. Off-line learning takes place only after processing all
the training data set. In other words, it can be modified after a full epoch has taken place.
It can be presented based on Equation (5.17); this type is also referred to as batch learning.
Whereas, the on-line learning mechanism lies in pattern-by-pattern learning. Consequently,
the parameters are to be modified instantly after processing each input-output data pair,
iteratively. The processing procedure can be performed using the formula in Equation (5.15).

Since we are interested in presenting the essential concept in which will be used in
ANFIS, therefore, the off-line learning will be discussed in more details as follow:
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5.1.6.1 Off-Line Learning

Suppose we have an adaptive network producing a singular output. Thus:

O = F(i,P), (5.20)

where F represents the overall function that been used to perform the network’s rules, i
represents the input variables vector, and P is the parameters set. Assume that some of the
parameters included in P are linear, thus if a function is to be used, such that the composite
of H with F (H ◦F) is leaner in any element of P, then we can modify these parameters
using the least-square method [61]. Therefore, the overall parameters set P is to be split into
two parts:

P = P1 ⊕P2, (5.21)

(where ⊕ is a direct sum) if the component of P2 is linear, then H ◦F represents the linear
relationship within the parameters in P2, and by applying H to Equation (5.20) we have:

H(O) = H ◦F(xi,P), (5.22)

where H(O) linear with respect to the parameters in P2. By assuming that the value of the
elements of P1 are given, we then able to process D training data using Equation (5.22) and
produce the following equation in matrix form:

Aθ = Y (5.23)

where θ in unbeknown vector in which all its components are parameters in P2. It can be
clearly noticed that Equation (5.23) is identical to least square estimation form. This means
that the problem we are discussing is a standard linear least-squares. However, we can find
the solution with respect to θ by minimizing ∥Aθ −Y∥2, which represent what is known as
the least-square estimator (LSE) θ ∗:

θ
∗ = (AT A)

−1
ATY, (5.24)

here we have the term AT represents the transpose of A. If AT A is non-singular, then
(AT A)−1AT is the pseudo-inverse of A. Considering Equation (5.23), if we assume that the
i-th row of A to be aT

i and the i-th element of y to be yT
i , respectively, then we can iteratively
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compute θ By:

θi+1 = θi +Di+1ai+1(yT
i+1 −aT

i+1)

Di+1 = Di −
Diai+1aT

i+1Di

1+aT
i+1Diai+1

, (5.25)

where i = 0,1, . . . ,D−1, D is the entry data set, and θ ∗ is equal to θD. However, in order
to start processing Equation (5.25), we initially need to set a satisfied startup value such as
θ0 = 0 and D0 = γI, where γ is a large positive number and I is an M×M identity matrix.

At this stage, the parameters of an adaptive network can be optimized by a combination of
LSE and GD. The two combined methods represent the core of the hybrid learning that can be
presented in an off-line (batch) learning, where each epoch consisting of a forward-pass and
backward-pass, respectively. By applying the forward-pass, we are processing the network
input vector through the network’s layers towards the output layer. The calculation of each
neuron’s outputs in every layer will produce corresponding values for a single row in A and
Y matrices in Equation (5.23), then we can iteratively compute all rows using all the training
data pairs in order to complete A and Y . This will allow us to determine all parameters in P2

by using either Equation (5.24) or Equation (5.25). By completing forward-pass the P2 is
determined, then we can identify the network output vector to be compared in its turn with
the desired output in order to compute the error measure.

Accordingly, the backwards-pass can use the derivative of the error measure to propagate
the error signals in a backward path starting from the output layer toward the input layer
[see Equations (5.13) and (5.14)]. Consequently, after using all training data, we reach
the end of the backwards-pass and all the parameters in P1 are updated using GD method
[see Equation (5.18)]. The hybrid learning has some advantages that can be summarised as
follows:

• It is decreasing the search space dimension that initially has been explored by the GD
method.

• It is reducing the convergence time.

• Using the squared error measure will ensure the global optimum point in the space of
P2 parameters by fixing the values of P1 parameters.
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5.2 Adaptive Neuro-Fuzzy Inference System (ANFIS)

5.2.1 Introduction to ANFIS

In the previous section, the concept of adaptive networks has been discussed from the
viewpoint of structure and adaptation algorithms. Functionally, there are two constraints that
can restrict the configuration of an adaptive network. Firstly, the piece-wise differentiability
of the neuron’s functions, and secondly by compelling it to use the feedforward network type.
These minimal constraints have given the adaptive networks the chance to be used in a wide
variety of applications.

In this section, we introduce the adaptive neuro-fuzzy inference system (ANFIS),
which can be defined as a type of adaptive network that is equivalent to FIS in its functional
manner. The adaptive neuro-fuzzy inference system can be considered as an intelligence
approach which consists of a combination of adaptive artificial neural networks and a
fuzzy inference system. Therefore, ANFIS has the advantages of both methods and the
ability to formulate an input-output mapping using specific data pairs based on if-then
rules as well as suitable membership functions. ANFIS was first introduced in the 1990s
by Jang [59] [60] [61]; he proposed the methods of combining different neural network
techniques with the fuzzy inference system (FIS).

Technically, ANFIS is a supervised multi-layer feed-forward adaptive network combined
with a Sugeno-type fuzzy model. There are two main approaches which represent the
basis of ANFIS; this has given it the advantage of using both numerical and linguistic
knowledge. Since we are using first order Takagi-Sugeno type fuzzy models, the fuzzification
process represented by the extraction of the rule and membership functions’ shape can be
determined using a given input-output data set without relying only on expert knowledge.
Usually, the membership functions come with adjustable parameters. For the framework of
adaptive learning, ANFIS uses the hybrid learning process consisting of a combination of
backpropagation (gradient descent) and the least-squares estimator algorithm. This will allow
FIS to learn from the data, which plays an important role in identifying the rules depending
on actual values within the fuzzy logic. Therefore, ANFIS can be considered as one of
the most used systems for parameters estimation of the complex systems [10]. Table (5.1)
illustrates ANFIS features.

ANFIS can be considered as one of the most superior intelligence techniques that are ca-
pable of dealing with fuzziness, complexity, uncertainty, adaptation capability, non-linearity,
ambiguity, and rapid learning capacity; particularly when high precision and reliability in
prediction problems is required [92] [168]. The features of ANFIS are compared with other
methods to show its advantages over these models. Table (5.2) illustrates this comparison.
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Table 5.1 ANFIS features.

Description Specification

Network type multi-layer feed-forward adaptive network

Learning type Supervised learning

Network nature Dynamic

Learning paradigm Off-line (Batch learning)

Learning algorithm Hybrid learning process

Forward learning rules Least-square estimator (LSE)

Backward learning rules Gradient descent (GD)

Training process Input-output data set

Fuzzy model Takagi-Sugeno type fuzzy model

Inference engine process Given input-output data

Output Either constant or linear

5.2.2 ANFIS Structure

Assume that the FIS under consideration has two inputs x1 and x2 and one output Z. For a
first-order Sugeno fuzzy model, the rule-base contains two fuzzy if-then rules - generally
denoted as in the following form:

Rule1: If x1 is A1 and x2 is B1 , then f1 = p1x1 +q1x2 + r1,

Rule2: If x1 is A2 and x2 is B2 , then f2 = p2x1 +q2x2 + r2.

Ai and Bi are the fuzzy sets in the antecedents part, and fi is the output set in the consequence
part within the fuzzy region specified by the fuzzy rule. The pi, qi and ri are the design
parameters that are determined during the training process. Five layers represent the ANFIS
structure, which is considered to be a feed-forward adaptive neural network. Figure (5.8)
shows an example ANFIS structure containing the five layers with two input variables.

(i) Layer 1: Every i-th neuron in this layer is a neuron function that can be adapted. The
output of this layer can be denoted by:

O1,i = µAi(x1), for i = 1,2

O1,i = µBi−2(x2), for i = 3,4.
(5.26)
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Table 5.2 ANFIS features compared to other methods. Reproduced from [92].

Model

Features

Data
complexity

and non
linearity

Data
uncertainty

and non
crisp data

set

Intelligent
modelling

and
forecasting

Fuzzy
data mod-

elling

High
precision

and
reliability

Dealing
with

ambiguity

Data
Pre-Post

Processing

ANFIS ✓ ✓ ✓ ✓ ✓ ✓ ✓

Genetic Algorithm ✓ ✓ ✓ ✓

ANN ✓ ✓ ✓

Nonlinear Regression ✓ ✓ ✓ ✓

Decision Tree ✓ ✓ ✓ ✓

Linear Regression ✓ ✓

Fuzzy Regression ✓

The term O1,i represents the membership grade of a fuzzy set A′ = {A1,A2,B1,B2}
and it determines the degree to which the given input x1 or x2 satisfies the quantifier A′.
The membership function for A′ can be any parametrized membership function such
as the generalized bell function for example:

µAi(x1) =
1

1+
∣∣x1−cAi

aAi

∣∣2bAi
, µBi−2(x2) =

1

1+
∣∣x2−cBi−2

aBi−2

∣∣2bBi−2
. (5.27)

{aAi,bAi,cAi} when i = 1,2 and {aBi−2,bBi−2,cBi−2} when i = 3,4 represents the pa-
rameter set. Changing these parameter values will affect the bell function’s shape.
Parameters in this layer are referred to as premise parameters.

(ii) Layer 2: The neurons in this layer are fixed and labelled Ti. Their output (firing
strength) is the product of all the incoming signals:

O2,i = wi = µA j(x1)µB j(x2), j = 1,2 (5.28)

Each neuron’s output represents the firing strength of a rule. In general, any other
T-norm operators that perform fuzzy AND can be used as the neuron function in this
layer.

(iii) Layer 3: The neurons in this layer are fixed nodes labelled N. The i-th neuron
calculates the ratio of the i-th rule’s firing strength to the sum of all rules firing
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Fig. 5.8 ANFIS structure for the Sugeno fuzzy model.

strengths:
O3,i = wi =

wi

w1 +w2
. (5.29)

The outputs of this layer are called normalized firing strengths.

(iv) Layer 4: Each neuron i in this layer is an adaptive neuron with a neuron function:

O4,i = wi fi = wi(pix1 +qix2 + ri), (5.30)

wi is a normalized firing strength from Layer 3 and {pi,qi,ri} is the parameter set of
the i-th neuron. In this layer, the parameters are called consequent parameters.

(v) Layer 5: There is one single neuron in this layer, labelled ∑. It computes the overall
output as the summation over all incoming signals:

overall output (Z) = O5,i = ∑
i

wi fi =
∑i wi fi

∑i wi
(5.31)

Table 5.3 Two passes of ANFIS hybrid learning algorithm.

Signals Premise parameters Consequent parameters

Forward Pass Neurons output Fixed Least-squares estimator

Backward Pass Error signals Gradient Descent Fixed
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The ANFIS models of the Sugeno-type, constructed for the problems discussed here, are
solved using a hybrid learning algorithm. A combination of backwards-error propagation,
using Gradient Descent, is combined with Least-squares estimation. In other words, there are
two learning strategies that have been used in order to train ANFIS; a) learning of antecedent
MFs and b) the consequent parameters. The Gradient Descent method is used to adapt the
premise parameters at Layer 1, while the Least-squares estimator method is used to identify
the consequent parameters at Layer 4. The hybrid learning algorithm can be simply divided
into two passes, a forward pass and a backward pass. In the forward pass, the node outputs
are propagated forward to Layer 4, where the Least-squares estimator is used to solve for the
consequent parameters. In the backward pass, the error signals are propagated backwards
in order to update the premise parameters using the Gradient Descent method. Table (5.3)
demonstrate the activities of each pass.
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6.1 Introduction

The conceptual framework of the adaptive neuro-fuzzy inference system (ANFIS) architecture
and its relative approaches have been introduced in the previous part [Chapters (3 to 5)].
We described the mechanism of combining a fuzzy inference system (Sugeno-type) with an
adaptive neural network ANN in order to provide ANFIS. Typically, an ANFIS structure
contains 5 layers (detailed in Section (5.2.2)), the neuron’s functions at the second and
fourth layers are to be adaptable. Since the network is a feed-forward type, it uses the
backpropagation algorithm to optimize the network parameters. The parameters at the
first layer are referred to as premise parameters. While the parameters at the fourth layer
are termed consequent parameters. A hybrid learning algorithm which includes two passes
(forward and backwards) is to be used to optimize the parameters of the membership functions
(MFs) (which determines their shape) as part of the problem-solving process. On the forward
pass, the least-squares estimator (LSE) method will be used to update the consequent
parameters at layer 4. Whereas, the gradient descent (GD) method is to be employed on the
backward pass to optimize the premise parameters at layer 1.

Functionally, the inference engine of the Sugeno-type fuzzy model and the parameter’s
modification process of the hybrid learning algorithm, both are using the input-output data
sets to process ANFIS. It means, when using ANFIS, the quality and quantity of the given
data sets play a very important role in solving the problem. ANFIS can be considered as one
of the best techniques in dealing with prediction problems which have fuzziness, complexity
and uncertainty in their nature. Nevertheless, this can only be true if the data quality and
quantity are good and enough. However, the scarcity of the data raises concerns when
attempting to construct models of this type.

When data sets are large, there is usually sufficient coverage of the problem space to
ensure that both the premise parameters and consequent parameters can be resolved optimally.
When there are small amounts of data however, the data may not capture the problem well
and, as a result, over-fitting can occur. Even though ANFIS is theoretically known to be
a universal approximator [61], training them accurately on small data sets is a significant
problem in practice.

In ANFIS modelling, problems often arise when the number of samples used for training
is significantly less than the number of modifiable parameters in the model. Even for simple
models, with only a small number of membership functions, the total number of modifiable
parameters (linear and non-linear) can be much higher than the number of data samples.
When this occurs, the system has a high tendency of over-fitting, which means the residual
errors on the training data are very small but the prediction error is very large. However,
prediction errors are largely due to the system’s inability to generalise well to the unseen data
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on which a prediction is required. N-fold cross-validation can help to a point, given that the
sample data is often reduced into training and test sets, but when the total samples of data
available is low, this does little to solve the problem.

When data are scarce, the literature suggests that the number of membership functions
should be fixed in advance, together with their premise parameters (thus fixing the number
and initial shape of the MFs) to reduce the likelihood of over-fitting [163]. Therefore, when
data is scarce, the premise parameters are fixed, and only the consequent parameters, linking
the decision rules together, are optimised by the learning algorithm.

One way to overcome the challenge of having a small data set is to find a way of expanding
the data by capturing its distributional properties. Though oversampling is reasonably well
understood for classification tasks (SMOTE and its variants for example [38]), it not so well
understood for regression-type problems. This work will show that by replacing the discrete
training data with a carefully chosen and carefully optimised continuous model, the new
model can be re-sampled, and from it, a finer granularity of data obtained. The expanded
data can be used to improve prediction accuracy for an ANFIS model.

In this chapter, the equations (6.1 to 6.6) and the equations (6.11 to 6.12), in additional to
all of the work, tables, figures, and diagrams have been created and developed by the author.

6.2 Development of Model 1

6.2.1 Model 1 Structure

The main goal of this work is to develop a model that can deal with the data scarcity problem
in ANFIS modelling. We are proposing a combined model to improve ANFIS performance
in dealing with low numbers of data samples. This can be achieved by producing a carefully
optimised continuous function which can be used to reliably generate input data as an
alternative to the original discrete given data. Referring to Figure (5.8), the ANFIS structure
contains five active layers (1 to 5) preceded by the input layer labelled as (0) layer. This work
will propose two combined models; thus, the proposed ANFIS model will have two parts,
pre-processing model at layer 0 will represent the first part, and ANFIS with the layers 1 to 5
represents the second part.

• Pre-processing model:
In this part of the proposed model, we intend to employ layer 0 as a pre-processing
layer rather than an input layer only. The structure of this part is composed of two
sub-models, i.e. re-sampling and scaling models. This works sequentially. Firstly, for
the re-sampling model, we use radial basis function (RBF) interpolation approaches
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(Linear, Cubic, and Multiquadric) as a data expansion model. These methods can
be used to expand (by re-sampling) the raw data into a new data set in order to have
enough training data samples to allow the learning algorithm to optimize the premise
parameters in layer 1. With the proposed model creating more data within the original
data space, this gives ANFIS the ability to optimize the premise parameters and fine-
tune the membership functions. It will overcome the over-fitting problem that can
occur if the total number of samples in the training set is less than or equal to the
number of model parameters [88] being optimized.

Secondly, for the scaling model, we used Chebyshev transformations and zero mean
methods in order to deal with re-scaling the data if it has a significant variance of its
values among the inputs [52].

• ANFIS model:
This part will represent the ANFIS architecture which contains five layers that are
combined with the pre-processing model. The first layer is the fuzzification layer,
where membership functions and their parameters are to be generated. The second and
third layers are to determine the structuring and normalization of the rule strengths,
respectively. The fourth layer is to determine the consequent parameters of the rules.
Consequently, layer five will compute the overall output as a summation of all incoming
signals. It has been obvious that the first and fourth layers are the parameterized layers
to be modified by the hybrid learning algorithm. The premise parameters (Layer 1)
and the consequent parameters (Layer 4) are optimized using the Gradient Descent
method and Least-squares estimator method, respectively. It can proceed if the ANFIS
model has enough data in which to converge reliably.

Figure (6.1) illustrates the different steps performed to implement the proposed model,
where Layer 0 acts as a pre-processing data layer. The flowchart of this layer shows the
process of the proposed pre-processing model. The first step is to determine whether the
number of samples in the data sets D are enough to process ANFIS or not. At this stage, the
size of the entry data sets D, and the total parameter number P are to be compared. It can
be done after determining the total number of model parameters P, which can be found as
follows:

P = P1 +P2, (6.1)

where P1 and P2 represents the number of premise and consequent parameters, respectively.
It can be noticed that Equation (6.1) is identical to Equation (5.21). It means we are following
the hybrid learning rules by defining the MF’s parameters (non-linear) as the premise
parameters and the first-degree polynomial function (linear) as the consequent parameters.
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Fig. 6.1 The first proposed model.

However, P1 can be calculated by adding the parameters of each membership function that
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been assigned to the inputs using the following formulas:

P1 =
n

∑
i=1

numµA(xi)×ai (6.2)

where n represents the number of inputs, numµA(xi) is the number of MFs (fuzzy sets) assigned
to input i, and ai is the number of non-linear parameters of a specific MF type for input i.

Example 6.1 Assume that we have an ANFIS model containing three inputs, i.e. (x1,x2,

and x3) each input has two MFs. The types of these MFs are (Triangular, Gaussian, Triangu-
lar), respectively. Referring to Equation (3.25) which represents the general formula of the
Triangular function, we can find that it has three parameters. Also, Equation (3.28) showed
that the Gaussian function has two parameters. Then, by using the Equation (6.2) we find
that:

P1 = (2×3)+(2×2)+(2×3) = 16

The consequent parameters P2 can be computed by multiplying the total number of rules R

by the number of coefficients C of the linear polynomial function corresponding to each rule.
The total number of rules can be extracted using the following formula:

R =
n

∏
i=1

numµA(xi). (6.3)

In order to find C we need first to demonstrate the general formula of the linear polynomial
function, thus:

f j(x) =
( n

∑
i=1

pi j.xi

)
+q j, for j = 1,2, . . . ,R (6.4)

where pi j represents the coefficient of the i-th input in the j-th rule , and q j is the additive
constant. Consequently, C is computed by:

C = n+1, (6.5)

Then we can find P2 as follows:
P2 = R×C (6.6)
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Referring to Example (1) discussed above, we can find that:

Total number of rules (R) = 2×2×2 = 8,

Number of coefficients (C) = 3+1 = 4,

Number of consequent parameters (P2) = 8×4 = 32.

The total number of parameters P will be:

P = 16+32 = 48.

If D ≤ P then the data set is too small and we are facing an over-fitting problem [88].
However, to avoid the risk of over-fitting, as well as the suggestion of fixing the premise
parameters and restricting our approach to finding only the consequent parameters [163],
then we employ one of the three suggested data expansion methods.

After that, we move into another screening point to deal with the problem of data entry
that may have to differ in its orders of magnitude between different inputs. At this point,
the model will determine the needed action and process the right path in dealing with it.
Two actions are available, either pass the data directly into ANFIS (if no scaling is needed),
or move into the scaling model which has two scaling approaches. One of these scaling
approaches (i.e. the Chebyshev transformation method or the zero mean method) will be
performed in order to process the data.

The task of the first part of the flowchart shown in Figure (6.1 - layer 0) is to pass the
data into ANFIS after pre-processing it in order to improve the prediction performance. The
second part illustrates the layers from 1 to 5. It represents the ANFIS structure where the
hybrid learning algorithm will be applied. It will gain the optimal model, which contains the
best values of the premise parameters for the fine-tuned membership functions’ shape that
can be used for future prediction.

6.2.2 Proposed Data Expansion Model

6.2.2.1 Data Expansion - Proposed Models

In this section, we describe how each set of data (inputs and outputs), are expanded by fitting
a continuous radial basis function (RBF) model to the discrete samples and then re-sampling
the models to obtain a larger, but representative, data set. The proposed method below is to
be applied to each discrete sample in turn.
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We assume that each discrete set of data {(xi,yi)}m
i=1 takes the form y = f (x), where

x and y are known and f is usually unknown. Our aim is to accurately approximate f by
finding coefficients c1,c2, . . . ,cn such that

yi =
n

∑
j=1

c jφ j(xi), for i = 1,2,3, . . . ,m, (6.7)

which, for simplicity, we write as yi = F(xi). By enforcing the conditions (6.7) we can solve
a system of linear equations of the form

Ac = y, where Ai, j = φ j(xi), (6.8)

which is square if m = n. We explore the effectiveness of this approach when φ takes the
forms

φ(x) = r Linear RBF (6.9)

φ(x) = r3 Cubic RBF (6.10)

φ(x,ρ) = (r2 +ρ
2)

1
2 Multiquadric RBF, (6.11)

where
r = ∥x− x j∥2

is the Euclidean distance between the data point x and the function centres x j and ρ is a
scalar [115]. We have deliberately chosen these functions for their desirable properties.

The linear RBF is shape-preserving, and so there is less chance that undesirable properties,
such as over-smoothing, will affect the ability to construct accurate expansion models. This
function is particularly useful when no knowledge of the underlying smoothness proprieties
of the data is known. A simple straight-line fit is returned fitting the convex hull of the data
set.

The cubic RBF is known to be the best interpolating function to uni-variate data in terms
of minimising a certain variation measure [28], and so is included to minimise over-fitting
and remove the need for a regularisation term. When fitting smooth functions to data, it is
important that the reconstructed curve has good generalisation properties. The properties of
cubic radial basis functions ensure that the fitted model will have minimum variation (i.e.,
be flatter) over the range of the data and is, therefore, more reliable than say polynomial
models which suffer considerably from over-fitting. It can be easily seen in the polynomial
interpolation case where the degree of the fitting function needs to be very high to meet the
interpolation conditions (6.7) - causing significant "wobble" in the underlying fit. Moreover,
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without careful consideration of the degree of the fitting function, or how the abscissa
domain is scaled, the polynomial will very likely not yield a model at all due to significant
ill-conditioning of the resulting linear system. Alternates such as Chebyshev polynomials or
piece-wise splines can be considered, but they are not as straight forward as RBFs to work
with.

A trade-off between fidelity (Linear RBF) and smoothness (Cubic RBF) can be found by
using the multiquadric function. The multiquadric function allows us to mimic the shape-
preserving properties of the linear RBF while introducing a measure of curvature through
the parameter ρ [20]. In fact, the standard multiquadric approach is modified (as described
below) rather than applied strictly as defined above. As we shall see from the later sections,
in certain circumstances, fitting a cubic RBF may not be appropriate. So we introduce
a modified multiquadric approach and justify its use. It should be noted that while the
multiquadric function allows us to prevent the reconstruction from over-smoothing at turning
points, it does not interpolate the data - and so there will be some potential loss of accuracy.
The extent to which this occurs depends on the trade-off required between over-smoothing
and reproduction accuracy. For high-accuracy requirements, the cubic function is advised.

6.2.2.2 Expansion Using a Modified Multiquadric Approach

When calculating the expansion data using the multiquadric function we choose two pa-
rameters ρ1 and ρ2 for the basis functions φ(x,ρ). The first value is used to calculate the
fitting coefficients in (6.7) by solving the system (6.8) and the second is used to calculate the
expansion values y∗ on the expanded data set xk ∈ [xmin,xmax] using

y∗ = A∗c, where A∗
k, j = φ j(xk,ρ2). (6.12)

Figure (6.2) shows four different cases of the curve fitting using the multiquadric expan-
sion approach. As an example, a sinusoidal function, sampled at 15 equally spaced points on
the interval [−2π,2π] and fitted with a linear RBF are to be expanded using the multiquadric
RBF. According to the expected values of ρ1 and ρ2, there are four fitting scenarios can be
considered:

• ρ1 = ρ2 > 0: This will result in a very similar looking fit to the cubic RBF.

• ρ1 = ρ2 = 0 : When the smoothness parameter gets closer to zero, the multiquadric
function approaches the linear RBF.

• ρ1 > ρ2: This case will show an over-smoothing fitting.
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• ρ2 > ρ1: This case results an under-smoothing fitting.
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Fig. 6.2 Expansion of modified multiquadric RBF approach using various values for the
parameters ρ1 & ρ2.

Figure (6.2a) illustrates the effects of fitting the piece-wise linear data with a smooth multi-
quadric curve when ρ1 = ρ2; here we used ρ = 1 for both that results in an over-smoothing
fit, which is identical to the cubic RBF. Figure (6.2b) clearly shows the effects of using zero
values for both parameters, which leads to the linear RBF. Figure (6.2c) shows a significant
over-smoothing when ρ1 is greater than ρ2. However, choosing a value for ρ1 that is greater
than ρ2 will increase the curvature and results in more over-smoothing. The over-smoothing
is particularly noticeable at the turning points. While this phenomenon may not always be
a problem, there are occasions when over-smoothing could cause significant problems. If
the data represents values that are constrained to be strictly greater than zero, for example,
then over-smoothing near boundaries could result in negative quantities being included in the
expansion set. While Figure (6.2d) shows the case of under-smoothing when ρ2 is greater
than ρ1.

We have found that replacing the original smoothing parameter with one of slightly higher
value when re-sampling, results in a fitting curve that stays within the convex hull of the
original data set while still allowing for a measure of smoothness. The level of smoothness
required can be determined by varying the choice of values for both ρ1 and ρ2. The restriction
here resulting in the fitting function lying within the convex hull of the data set is entirely
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governed by choice of the two smoothness parameters. Smooth near-interpolation can take
place without this restriction by using different parameter values.

Figure (6.3) shows how the use of different values for both ρ1 and ρ2 (under the condition
ρ2 > ρ1) can provide different fits to the data. It can be clearly noticed that all the fits
are located within the convex hull of the original data set. For instance, consider the blue
dotted line which used the values of ρ1 = 1 and ρ2 = 1.2. This can be considered a better
curve fit because it satisfies the condition of staying within the convex hull of the original
data and it does not have significantly under-smoothing curvature. Further refinements
of the Mulitquadric’s shape parameters could see the approximation curve move towards
near-interpolation whilst continuing to satisfy the desirable properties already discussed.
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Fig. 6.3 The multiquadric RBF is used here with different values of ρ1 and ρ2.

6.2.3 Proposed Data Scaling Model

Combining inputs with significantly different scales can cause problems in ANFIS modelling.
In some cases, real-life problems have inputs that differ by many orders of magnitude. The
main problem is that each membership function corresponds to a different input. Hence, the
coefficients (multipliers) need to be combined effectively to produce accurate outputs and
so must be changed considerably to do a good job. It does not only introduce additional
time needed for training but it also potentially introduces instabilities and poor conditioning.
Though this work is not aiming to advocate any one particular method of data scaling (as
different applications may require different considerations), we have chosen two specific
approaches to investigate, and we present their results for comparison.

Scaling to the interval [-1 1], using a straightforward linear transformation, is known to
significantly improve conditioning and stability in polynomial modelling with Chebyshev
basis functions. So we use this approach here and evaluate its effectiveness for the ANFIS
model. Another prevalent method of standardisation is to normalise data to have zero mean
and a standard deviation of one (often called z-scores). Details showing how the data is
scaled is shown below [52]:
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• Chebyshev Scaling can be used to map the general interval [a,b] to [−1,1]. If the data
vector x ∈ ℜm and a = min(x) and b = max(x) then the transformation function takes
the form

x̂ =
(x−a)+(x−b)

b−a
, ∀x ∈ x. (6.13)

• Zero-mean Scaling takes a data vector x ∈ ℜm, calculates its mean (µ) and standard
deviation (σ ) and computes

x̂ =
(x−µ)

σ
, ∀x ∈ x. (6.14)

We intend to investigate whether different scaling approaches and data expansion models
yield significantly improved results.

6.3 Implementation of Model 1: Case Study

6.3.1 Problem Definition

Economically, oil production is one of the most important fields worldwide. The oil industry
can be classified into two types, i.e. either producing the crude oil or the petroleum products
such as fuels (gas, gasoline, jet fuel, diesel,. . . , etc.) and other oil derivatives.

Iraq is one of the major oil-producing countries of the world. Modelling the production of
petroleum products in this country has been chosen as a test case for exploring opportunities
for improving the production planning for the medium-term planning horizon. Accordingly,
the discussion has been opened with the expert’s team at the Iraqi Ministry of Oil in order to
develop an understanding and to explore and evaluate the current status. The historical data
for the production and consumption rates for four fuel products (Liquefied Petroleum Gas,
Gasoline (Petrol), Kerosene, and Diesel Fuel) as well as the methods used for forecasting
have been requested to be provided. This represents the first stage of this project which seeks
to evaluate the accuracy and efficiency of the existing method of consumption forecasting
and exploring the scientific alternative forecasting techniques that can improve the prediction
accuracy. The discussion provides the following indicators:

• The consumption is uncertain and fluctuating due to seasonality and some other factors.

• The consumption data built is scarce, all available historical data are available for three
years only covering the period of 2015 to 2017 at a monthly basis; that is, the total
number of observations is 36 values only.
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• The current prediction method depends totally on the experience of the experts using
simple classical methods.

• There are set factors affecting the consumption rate. These factors can be classified
as quantitative and qualitative. Some factors can be specified under fuzzy or vague
concepts, such as, when the weather is "hot" the consumption increases.

• The most important product that contains consumption forecasting and production
planning issues is Gasoline (Petrol).

According to the indicators mentioned above, an accurate prediction technique is needed
in order to obtain an accurate prediction. This technique needs to deal with a hybrid state
that contains qualitative (expert judgement and opinion) and quantitative variables at the
same time. It also needs to deal with the uncertainty and vagueness of the consumption
and the affecting factors. Moreover, this technique should be able to deal with the lack of
information.

6.3.2 Proposed Structure: Classification of Variables

So far, we have introduced the ANFIS structure as an input-output mapping system. There-
fore, using this type of system will need to classify the input and output variables. In our
case, the input variables will represent the affecting factors, and the output variable will be
the predicted consumption rates. According to the experts at the Iraqi Ministry of Oil, one of
the main executives interest at this stage is the gasoline consumption problem. This concern
arises because of the fluctuation of consumption of this product during the year’s seasons.
Therefore, extensive discussions with the experts have been made to identify the problem
and the influencing factors that causes such fluctuations in gasoline consumption. Some
assumptions have been determined, and we need to take these into consideration when we
obtain the structure of the model, thus:

• The consumption is seasonal and uncertain.

• There is a monopoly of producing petrol in this country and all petrol supplied is
provided only by the Ministry of Oil. Which means, there are no other competitive
companies. This gives the supplier a big challenge of making sure that there is sufficient
quantity to reach the consumption rates.

• The total supply capacity can be obtained from production, inventory, and imported
quantities. However, it can be affected by a set of internal and external factors. The
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internal factors are represented by the scarcity of crude oil, unexpected breakdown, and
scheduled maintenance. The external factors, which are considered to be the hardest to
control and uncertain, are things such as the unscheduled and random cuts in the main
power source (Iraq has suffered from power problems for a long time). Terrorist actions
are also one of the factors that affect capacity as they happen surprisingly from time to
time. This can also affect the crude oil supplies, manpower availability, and even the
power supply. Another external factor that can affect the capacity is unexpected bad
weather, which can affect the planned periodic maintenance schedules, and so forth.
Consequently, the fuzziness of the capacity variable results from a combination of all
these factors.

The experts suggested three main factors that can affect consumption. These are production
capacity, weather temperature, and the number of cars. These factors will be considered as
the model variables that provide a cause and effect relation with gasoline consumption. The
current method for predicting consumption depends totally on the experience of experts using
simple, classical methods. We propose an ANFIS model of the form shown in figure 6.4,
based on the Takagi-Sugeno approach [130]. This enables ANFIS to be developed based
on the data (that will be collected) to give an understanding of how the consumption can be
better predicted. These three factors can be considered as ANFIS inputs with the gasoline
consumption representing the output. Therefore, we have:

System Petrol
f
orecasting

S
ystem: 3 inputs, 1 outputs, 0 rules

Input #1: Capacity

Input#2: Temperature

Input #3: Cars

Output 

Predicted Consumption

Z(x)

Gasoline Forecasting  

Fuzzy Inference System

(Sugeno)

Fig. 6.4 Proposed ANFIS model - variables structure.

• Capacity (input 1): This estimate the amount of gasoline the Ministry of Oil can supply.

• Temperature (input 2): The temperature values measure the variation of the weather
during the year, which is known to affect the consumption of gasoline.

• Number of cars (input 3): This represents the number of cars using gasoline and thus
impacts significantly on its consumption.
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• Consumption (output): This quantity represents the amount of sales expected.

According to the FIS methodology, each input can be represented by assigning various types
and numbers of membership functions.

It is important to make the clear distinction that the model is not expected to use data
at time t to predict data for time t + 1. Though data is collected over time, we are not
producing a time series model in the traditional sense. The factors that affect consumption
in a given year are impacted by an estimate of the values in the same time period and it is
this relationship that the ANFIS model seeks to determine. By training a model that is able
to learn a functional relationship between its input (independent) and output (dependent)
quantities, using historical data, then, with reliable estimates available, accurate predictions
can be made.

6.3.3 Data Collection

As a test case, we are using data provided by the Iraqi Ministry of Oil. In order to build an
accurate model, we have been supplied with three years of historical data for 2015, 2016 and
2017, which is recorded at monthly intervals giving a total of only 36 samples per variable.
The historical data for the consumption rates for gasoline that have been collected showed
that the range of the consumed quantities was between 450 and 670 thousands cubic meters
per month. Figure (6.5) illustrates the line chart for the provided data. The x-axis represents
the time periods, and the y-axis represents the consumption rate measured in cubic meters.
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Fig. 6.5 The actual consumption for gasoline recorded at monthly intervals between 2015
and 2017.

Due to the nature of the data, we can notice that:

• The consumption is uncertain and fluctuating during each period (year) due to season-
ality and other effects.
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• The demand increased significantly to reach its peaks and declined again between the
period of months from April to November of each year.

• The trend of demand for all 36 months shows that it rose.

Experts believe the reason behind this fluctuation is caused by a set of factors, some of which
can be defined as internal; such as the production capacity, and others as external; such as the
weather temperature or consumer behaviour. Therefore, the data for the affecting factors have
been collected from different sources according to its nature. Weather data (temperature)
have been collected from the Iraqi Meteorological Organization and Seismology. Whereas
the data for the number of cars provided by the Central Statistical Organization Iraq. The
capacity data has been collected from the same source at the Ministry of Oil-Iraq. Figure 6.6
shows the plots of the historical data for the same period (2015-2017).

It is not difficult to see that there are likely correlations within the data. For example,
we can see that the highest consumption for each year is recorded during the hottest months
of the year. Moreover, the overall trend in consumption across the three-year period is
increasing in line with the rising number of cars on the roads in the country.

6.3.4 Variables Correlation Analysis

Statistically, correlation is a way of measuring the relationship between two variables. It
indicates to what extent the variables are depending on each other. The range of expected
correlation values is between [+1 -1]. The positive correlation of two variables means the
relationship is positive, and they increase and decrease in parallel and vice versa.

Table (6.1) illustrates the correlation between the inputs-output variables of the proposed
model showed in Figure (6.4). The SPSS software has been used to obtain the Pearson
correlation between the consumption and the other three affecting factors (Capacity, Weather
Temperature, Cars) in order to use them as ANFIS inputs. Figure (6.7) illustrates the
Correlation scattering of r-value size for all the variables.

Table 6.1 Correlation between consumption and all inputs.

Capacity Cars Temperature

Consumption 0.812∗∗ 0.810∗∗ 0.477∗

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).
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Fig. 6.6 Raw input data determined by experts to have the greatest influence over consumption
prediction. The data has been recorded at monthly intervals between 2015 and 2017.

Notably, the correlation coefficient (r-value) between consumption and both the capacity
and numbers of cars are significant with r equal to (0.812, 0.810), respectively, at the level
of (0.01). This means the relationship between the consumption and these two variables
is positive and strong. In other words, this positive relation means whenever the value of
the capacity and the number of cars increases, the consumption will increase. Consumption
is correlated positively with weather temperature but not strong with r = 0.477 with a
significance level of (0.05).
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Fig. 6.7 Correlation scattering of r-value size.

6.3.5 RBF Interpolation (Data Expansion) Performance

As mentioned previously, the collected raw data set is consists of only 36 values per variable.
Each value represents one-month data in a particular set. This number of data is scarce
compared to other similar types of problems. We know that ANFIS is a hybrid system which
utilizes both the neural networks and fuzzy approach. The primary key consideration for the
neural networks is the quality and quantity of the data. There will need to be enough data to
ensure the convergence of the network from the given samples can be satisfied. Therefore, if
we use the thirty-six pairs of data sets (months), we gain this kind of accuracy; while if we
re-sample it into a higher number of data sets by employing mathematical tools, then we may
improve our results. Logically, we are dealing with monthly data as a base framework, so
we can either re-sample it into weekly or daily amounts as a logical smaller time framework
(period). Therefore, we are looking at re-sampling every year into either 52 weeks or 365
days. By using the forms (6.9) to (6.11), the function F(x) is constructed and consistently



6.3.5 RBF Interpolation (Data Expansion) Performance 131

re-sampled over a refined domain to expand the data sets for ANFIS. Each data set of 36
monthly values is expanded into two further sets of 156 data samples (representing weekly
data) and 1095 data samples (representing daily data). There are three methods that will be
used as an expanding tool. They are the Linear RBF, Cubic RBF, and Modified Multiquadric
RBF as already defined.
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Fig. 6.8 The three radial basis functions are shown here modelling the original data labelled
Input 1 - Capacity. Additional highlighting shows the behaviour of the fitting functions at
some of the turning points.

Figure (6.8) shows how the different RBF fitting functions for the data of the first
input (capacity) fair at the turning points, clearly highlighting where over-smoothing needs
to be considered. The solid black line represents the Linear RBF expanded data after
applying Equation (6.9) to the raw data of input 1. The red dash line demonstrates the
Cubic RBF interpolated data using Equation (6.10). The blue dotted line illustrates expanded
data resulting from applying the Modified Multiquadric RBF - Equation (6.11). We used
ρ1 = 0.05 and ρ2 = 0.2 as the Multiquadric smoothing parameters, chosen based on our
interpretation of the underlying curvature of the data. These two specific values produced a
fitting curve that stays within the convex hull of the original data set while still allowing for a
measure of smoothness. The required level of smoothness can be determined by choosing
different values for both ρ1 and ρ2.
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(a) Input 2 (Temperature) RBF interpolation.
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(b) Input 3 (Cars) RBF interpolation.
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(c) Output (Consumption) RBF interpolation.

Fig. 6.9 The three RBFs are shown here re-sampling the original data sets of the input 2,
input 3 and the output variables.

The same fitting functions have been applied into the second and third inputs, i.e. tempera-
ture and cars, respectively, as well as the output (consumption) in order to provide the system
with the same number of data pairs. Figures (6.9a to 6.9c) shows the resulted expanded data.

6.3.6 Model Solving Procedures

6.3.6.1 Data Splitting

In order to train and validate the quality of the ANFIS model, it is necessary to partition the
data into two sets, one for training and one for validation. The proposed methodology here is
to split the data into two sets. The first two years, 2015 and 2016, will constitute training
data and will be either the original 24 months of data or expanded data (104 weeks or 730
days). The third-year, 2017, will be used for validation and will be either the original 12
months data or expanded data (i.e. 52 weeks or 365 days). This will provide a corresponding
ratio of 67% of the data set for training, and 33% for testing.
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6.3.6.2 Validation Models

In ANFIS models, both topology and membership function types determine the total number
of parameters that need optimising. Hence, if a model is chosen such that the total number of
parameters exceeds the number of data, then it is expected to perform poorly. As a test case,
three ANFIS models have been chosen to validate the proposed model (see Section 6.2.1) and
demonstrate the effect of the model’s complexity on the total number of parameters that must
be resolved to produce a good predictor. The structure of the first validation model (ANFIS
1) contains two MFs for each input, i.e. two Triangular, two Difference Sigmoidal, and two
Triangular, respectively. The second validation model (ANFIS 2) contains four Triangular,
three Difference Sigmoidal and two Gaussian MFs for inputs (1 to 3), respectively. While
the third validation model (ANFIS 3) is to have four Gaussian MFs for each input. All these
validation models will be discussed in more details in the next sections.

Table (6.2) demonstrates the overall information of the three models. By reviewing the
information listed in this table, it can be noticed that the first validation model (ANFIS 1)
has the lowest complexity with total parameters of (52) and eight fuzzy rules. While the
complexity of the second validation model (ANFIS 2) is fairly complex compared to the first
and third models; with total parameters of (124) and (24) fuzzy rules. However, (ANFIS
3) can be considered as the most complicated validation model among the other two by
containing (280) parameters and (64) fuzzy rules.

6.3.6.3 Evaluation Methods

Different statistical methods can be used in order to assess the performance of the models.
However, in this work, the coefficient of determination and the normalised root mean square
error measure has been used to evaluate the performance of the proposed model. Let us
define the output of the FIS as Z(xi), where xi ∈ ℜ3 contains the three inputs at time i and let
ti represent the corresponding target or desired output (consumption). To ensure a consistent
interpretation of the accuracy of the ANFIS models, we use two metrics. The first one is the
coefficient of determination (i.e., R2) which can be defined as:

R2 = 1− ∑
m
i=1(ti −Z(xi))

2

∑
m
i=1(ti − t)2 .

Where m is the number of validation samples and t is the average of the target values. The
R2 value assesses how well the ANFIS model explains and predicts the consumption. The
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Table 6.2 Structure of the three validation models - case study 1.

Model Input MF Type MF Num ANFIS Info

ANFIS
1

1
2
3

Triangular
D.Sigmoidal
Triangular

2
2
2

Number of Node 34

Linear Parameter 32

Non-linear parameter 20

Total Parameter 52

Fuzzy rules 8

ANFIS
2

1
2
3

Triangular
D.Sigmoidal
Gaussian

4
3
2

Number of Node 72

Linear Parameter 96

Non-linear parameter 28

Total Parameter 124

Fuzzy rules 24

ANFIS
3

1
2
3

Gaussian
Gaussian
Gaussian

4
4
4

Number of Node 158

Linear Parameter 256

Non-linear parameter 24

Total Parameter 280

Fuzzy rules 64

second one is the normalised root mean square error measure, defined as:

NRMSE =
RMSE

tmax − tmin
,

where

RMSE =

√
1
m

m

∑
i=1

(ti −Z(xi))
2.

Dividing the RMSE by the range over which the predictions are required allows us to
compare accuracy across the different scales of prediction approaches. Although the training
data and test data are mapped to similar intervals via the two scaling approaches they are not
identical.

6.3.7 Empirical Results

In this section, we present the results of the investigations carried out on the gasoline
consumption prediction problem. By applying our proposed model (section 6.2.1) into the
three validation models (i.e., ANFIS 1, 2 and 3) listed in Table (6.2), we get the results shown
in Tables (6.3, 6.5 and 6.7) respectively. Each validation model has eight experiments. These



6.3.7 Empirical Results 135

experiments include all three proposed expansion methods (i.e., Linear RBF, Cubic RBF,
and Modified Mutiquadric RBF) combined with two scaling methods (i.e. Chebyshev and
Zero-mean).

The results of the eight experiments for each ANFIS model are separated into two parts
according to the scaling method. The first four experiments represent the results of using
Chebyshev scaling. While the second four expressing the results of utilizing the Zero-mean
scaling. In order to better evaluate the different approaches, model performance is classified
into two types, i.e. local performance and global performance. In the local performance,
we compare and contrast the results of using non-expanded (original) and expanded data
within a specific scaling method. However, we highlight and explain the improvements and
differences in performance for each part internally, whereas the global performance explains
the overall results for all eight experiments of each model.

A total of 24 experiments have been carried out using the three validation ANFIS models
listed in Table (6.2). All experiments were solved by using Matlab’s FIS modelling software
(i.e., genfis1, anfis & evalfis). However, we chose to use the Matlab functions directly with
the grid partitioning method rather than via the available toolbox. All of the networks were
trained for 100 epochs. We could not find an acceptable model for any combination of
choices without first scaling the data. Therefore, we do not present results for non-scaled
data. All of the 24 experiments were using the data for three years spanning the period 2015
to 2017. The 2015 and 2016 data was used to train the models, and the 2017 data was used to
evaluate the prediction accuracy. In the Tables (6.3 to 6.5), for each combination of choices
(shown row-wise) the data can be either monthly, weekly or daily. The RBF expansion
method can be none (—), Linear (Lin), Cubic (Cub) or Multiquadric (Mul). The scaling
method is either Chebyshev (Ch) or Z-scores (Z-s).

6.3.7.1 First Validation Model (ANFIS 1)

Referring to the ANFIS validation models explained in Table (6.2), the structure of the first
model (ANFIS 1) contained two MFs for each input. However, in this section, we will
discuss this model in more detail. The first input (capacity) is represented by triangular MFs
using two linguistic terms, namely Low Capacity (LC) and High Capacity (HC). The second
input (temperature) is expressed with two Difference Sigmoidal MFs named as Cold Weather
(CW) and Hot Weather (HW). Whereas the third input (number of cars) characterized by two
Triangular MFs titled as Small Number (SN) and Large Number (LN), respectively. This
architecture produced (20) non-linear (premise) parameters and (32) linear (consequence)
parameters. Figure (6.10) shows the network structure of ANFIS 1 (MATLAB output).
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Fig. 6.10 ANFIS 1 structure.

Depending on the structure showed in Figure (6.10), the complexity of this model can be
classified as low. Applying Equations (6.1 to 6.6) into ANFIS 1 showed that the total number
of parameters is (52), which is exceeding the number of original data pairs (36). In this case,
we need to expand the original data into a proper order of magnitude. This will overcome the
problem of having the number of data samples that is less than the number of parameters. In
other words, the data needs to be expanded into a reasonable level that can provide the model
with enough number of data pairs in order to keep the balance between the model complexity
from one side, and accuracy and efficiency from the other side. Therefore, finding the best
number of expanded data is important in order to gain better performance of the model.

Logically, as a time framework, the lower levels of time period from the original monthly
data will be either weeks or days. Therefore, the monthly data are to be replaced with
(52×3) data points provided (156) weeks data samples using the forms (6.9 to 6.11). This
will increases the number of input data up to an appropriate level which is compatible with
the complexity of this model. Consequently, it can help to overcome the over-fitting problem
for this model and gain a good predictor.

Table (6.3) illustrates eight experiments resulting from solving ANFIS 1 using all possible
combinations of expansion and scaling methods proposed in model 1 (Fig. 6.1).

By reviewing the results listed in Table (6.3) we can find that:

1. ANFIS 1 Local performance (Chebyshev scaling), experiments (1-4):
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Table 6.3 Results of the first validation model (ANFIS 1).

Experi-
ment Data Samples Expansion Scaling NRMSE R2

Performance

Local Global

1 Monthly 36 —— Ch 0.4406 0.5427 —— ——

2 Weekly 156 Lin RBF Ch 0.1039 0.8875 ↗ 34% ↗ 34%

3 Weekly 156 Cub RBF Ch 0.1299 0.8391 ↗ 30% ↗ 30%

4 Weekly 156 Mul RBF Ch 0.1047 0.9196 ↗ 38% ↗ 38%

5 Monthly 36 —— Z-s 0.7373 0.7476 —— ↗ 20%

6 Weekly 156 Lin RBF Z-s 0.0829 0.9097 ↗ 16% ↗ 37%

7 Weekly 156 Cub RBF Z-s 0.0935 0.9055 ↗ 16% ↗ 36%

8 Weekly 156 Mul RBF Z-s 0.0698 0.9529 ↗ 21% ↗ 41%

• All expanded data (experiments 2-4) performed significantly better than non-
expanded data (experiment 1). Nearly 30% to 38% improvement in prediction
accuracy compared to experiment one.

• The best performance resulted from using the Multiquadric RBF approach (where
ρ1 = 0.01 and ρ2 = 0.2) which provides up to 4% improvement compared with
Linear RBF and 8% compared to Cubic RBF.

2. ANFIS 1 Local performance (Z-score), experiments (5-8):

• Again, we can see that all expanded data (experiments 6-8) perform better than
non-expanded data. Approximately 16% to 21% improvement in prediction
accuracy compared to experiment five.

• The best performance resulted from using the Multiquadric RBF approach, which
gives an improvement of up to 5% compared to Linear and Cubic RBF.

3. ANFIS 1 Global performance, where all experiments (2-8) will be compared with
experiment one as a base because it shows the lowest performance for this model.

• It can be noticed that the Z-scores scaling method outperformed (by nearly 20%)
the Chebyshev scaling when using non-expanded data.

• The results of solving this model showed that in all experiments, looking at
both NRMSE and R2, the expanded data performs significantly better than non-
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expanded data. It is interesting to see that if no underlying knowledge of the
shape of the data is known, then even a simple linear fit to the data can outperform
a non-expanded model.

• We can also see that using the Z-scores scaling approach gives an improvement of
between 3% and 6% depending on the expansion methods used when compared
to Chebyshev scaling, respectively.

• When care is taken, expanding the data using a more sophisticated model, such
as the Multiquadric RBF (where ρ1 = 0.01 and ρ2 = 0.2) the model can perform
even better with an order of magnitude difference in the error (seen in experiment
4 and 8). Approximately 38% and 41% improvement in prediction accuracy for
the two scaling approaches can be seen, respectively.

• The highest performance resulted from experiment eight with the lowest predic-
tion error of (0.0698) and the highest R2 (95.29%).

Depending on the results listed in Table (6.3) and its discussion above, we introduce the
results of experiment eight (i.e. optimal results) in more detail below.

Figure (6.11) shows the predicted consumption values for 2017 using the non-expanded
data - experiment 5 (fig. 6.11a) and expanded data - experiment 8 (fig. 6.11b). The prediction
graphs clearly show that by re-sampling the original data into optimised expanded data, we
can obtain a substantial improvement. This is significant considering the impact this model
has on potential manufacturing decisions.
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Fig. 6.11 Targeted and predicted gasoline consumption for validation data of ANFIS 1: (a)
Before expansion (experiment 5), (b) After expansion (experiment 8).
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Fig. 6.12 Regression scatter plot of the targeted and predicted gasoline consumption for
validation data of ANFIS 1: (a) Before expansion (experiment 5), (b) After expansion
(experiment 8).

Figure 6.12 confirms how well the model fits the data. The regression scatter plots
demonstrate how well the model captures the variation in the underlying data. The plot
corresponding to experiment eight (6.12b) clearly shows how 95% of the variability (equal
to R = 0.97619) is explained by the model constructed using the expanded data. The
corresponding fit for experiment five is shown in figure (6.12a).

The initial and final (optimal) values of the premise parameters for experiment eight are
listed in detail in Table (6.4). Each input has corresponding MFs assigned to it. Inputs 1
and 3 used two triangular MFs; each MF has three parameters (a, b, c) (see Equation 3.24).
Input 2 used two Difference Sigmoidal MFs; each MF has four parameters (two pairs of
{a1,c1,a2,c2}) (see Equation 3.32).

The initial default values of the premise parameters are to be placed automatically by
ANFIS. Figure (6.13) shows the plot of initial MFs of these three inputs.

After training with hybrid learning algorithms, the optimal values of the premise param-
eters showed in Table (6.4) are described in Figure (6.14). By reviewing the shapes of the
trained membership functions of Capacity (Fig. 6.14a), they are not showing a noticeable
change after training. Both membership functions, low capacity (LC) and high capacity (HC)
have slight changes that can barely be noticed.

In Figure (6.14b), after training, the membership function of temperature shows evident
changes. The crossover point between the cold weather (CW) and the hot weather (HW)
has moved upward. For the (CW), the slope has slightly decreased from a2initial = 6.742 to
a2optimal = 6.725. While the crossover point has moved towards the right, this resulted from
the increase of the c2 value, i.e., from c2initial =−0.1 to c2optimal = 0.0417 which changed the



140 Data Expansion Model for ANFIS Optimization: Proposed Model 1

Table 6.4 Premise parameters - experiment 8 - ANFIS 1.

Input MF Type MFs Initial Parameters Optimal Parameters

a b c a b c

Capacity
(Input 1)

Triangular
(LC) -6.06 -2.048 1.963 -6.06 -2.075 1.996

(HC) -2.048 1.963 5.974 -2.012 1.93 5.974

a1 c1 a2 c2 a1 c1 a2 c2

Temp.
(Input 2)

Difference
Sigmoidal

(CW) 6.742 -3.067 6.742 -0.1 6.742 -3.067 6.725 0.0417

(HW) 6.742 -0.1 6.742 2.866 6.737 -0.578 6.742 2.866

a b c a b c

Cars
(Input 3)

Triangular
(SN) -4.749 -1.414 1.92 -4.749 -1.416 1.923

(LN) -1.414 1.92 5.255 -1.415 1.919 5.255
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Fig. 6.13 Initial membership functions of ANFIS 1 inputs.
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Fig. 6.14 Final (trained) membership functions of ANFIS 1, experiment 8.

corresponding x-axis coordinate value. For the (HW), the slope also slightly decreased from
a1initial = 6.742 to a1optimal = 6.737. While the crossover point has moved towards the left, this
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resulted from the increase of c1 value from c1initial =−0.1 to c1optimal = 0.578 which changed
the corresponding x-axis coordinate value. This increased the intersection area between
the two membership functions (CW and HW), which can provide better performance and
efficiency for the model when optimizing the firing strength of the rules for the second input.

In Figure (6.14c), evident changes can be noticed for the trained MFs of input 3 (number
of cars). For the triangular membership function of the small number (SN), the bottom left
vertex "parameter a" maintained the same initial value. While the peak "parameter b" and the
bottom right vertex "parameter c" has been increased. In another side, the bottom right vertex
of the large number (LN) membership function kept fixed. Slight changes in the peak and
bottom left vertex values have been made after training. These optimal parameters for both
membership functions (SN & LN) have extended the support areas toward the right. This
provided a larger intersection area from the left side for both MFs, which can be reflected
positively in the fuzzification process.

The above analysis indicates that when using models with low complexity, precisely
like ANFIS 1. The expanded data performed significantly better than the original data. The
fine-tuning of the MFs resulted from optimizing the premise parameters. It showed that the
second "temperature" and the third "number of cars" inputs have a significant impact on the
gasoline consumption problem while the first input "capacity" has less impact than the other
two inputs.

6.3.7.2 Second Validation Model (ANFIS 2)

The structure of the second validation model (ANFIS 2) contains four Triangular, three
Difference Sigmoidal and two Gaussian MFs for inputs (1 to 3), respectively. The MFs of
the first input named as Very Low Capacity (VLC), Low Capacity (LC), High Capacity (HC)
and Very High Capacity (VHC). The MFs of the second input termed as Cold Weather (CW),
Natural Weather (NW) and Hot Weather (HW). Finally, the MFs of the third input titled
Small Number (SN) and Large Number (LN). Figure (6.15) shows the network structure of
ANFIS 2 (MATLAB output).

It can be noticed that this model is more complicated than the first one in which the
number of the total parameters has increased up to (124), and the topology showed (24) fuzzy
rules. Thus, the original data are to be re-sampled into a reasonable level that can keep the
model solving the over-fitting problem. Here, the weekly (156) expanded data can be tested
in order to find the best fitting model that can overcome the over-fitting problem. The results
of solving this model using all proposed scaling and expanding approaches combination
are shown in Table (6.5). Here we used (ρ1 = 0.02 and ρ2 = 0.2) as the Multiquadric RBF
approximation parameters.
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Fig. 6.15 ANFIS 2 structure.

Table 6.5 Results of the second validation model (ANFIS 2).

Experi-
ment Data Samples Expansion Scaling NRMSE R2

Performance

Local Global

9 Monthly 36 —— Ch 0.1852 0.5805 —— 0%

10 Weekly 156 Lin RBF Ch 0.1100 0.8433 ↗ 26% ↗ 26%

11 Weekly 156 Cub RBF Ch 0.1039 0.8424 ↗ 26% ↗ 26%

12 Weekly 156 Mul RBF Ch 0.0633 0.9543 ↗ 37% ↗ 37%

13 Monthly 36 —— Z-s 0.1609 0.6937 —— ↗ 11%

14 Weekly 156 Lin RBF Z-s 0.1327 0.8900 ↗ 20% ↗ 31%

15 Weekly 156 Cub RBF Z-s 0.1813 0.5856 ↘ -11% ↗ 1%

16 Weekly 156 Mul RBF Z-s 0.0642 0.9495 ↗ 26% ↗ 37%

By reviewing the results listed in Table (6.5) we can find that:

1. ANFIS 2 Local performance (Chebyshev scaling), experiments (9-12):

• The results showed that experiments (10-12) performed significantly better than
experiment (9), Nearly 26% to 37% improvement in prediction accuracy com-
pared to experiment 9. In other words, the proposed expansion methods provide
better results than non-expanded by overcoming the over-fitting problem.
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• The modified Multiquadric RBF approach (where ρ1 = 0.02 and ρ2 = 0.2)
showed the best performance among the other expansion approaches. It pro-
vides significant improvement up to 11% compared with Linear RBF and Cubic
RBF.

2. ANFIS 2 Local performance (Z-score), experiments (13-16):

• The results of using Multiquadric and Linear RBF expansion (experiments 14
& 16) showed improvements of up to 26% & 20% respectively, compared to
experiment (13).

• Using the Cubic RBF expansion (experiment 15) indicates a defect in performance
compared to the non expanded data (experiment 9). The results showed that
the NRMSE increased up to nearly 2%, offset by a fall in R2 value down to
-11%. That is because the Cubic RBF is showing significant over-smoothing
near boundaries. Figure (6.16) shows the plots of RBF approximation for this
experiment. It can be noticed that there is a significant over-smoothing in some
turning points which caused this defect.
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Fig. 6.16 The RBFs of experiment 15 (ANFIS 2) with additional highlights in some turning
points.
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This defect occurs in this particular case of experiment (15) when the Z-score
scaling is combined with the Cubic RBF (specifically for the weekly expansion
of 156 samples). However, it can be considered as a case of poor prediction for
the structure of ANFIS 2 model.

• The best performance resulted from using the Multiquadric RBF expansion and
Z-score scaling approaches, which gives up to 26% improvement compared
to non-expanded data (experiment 13) and 6% compared to the Linear RBF
expansion.

3. ANFIS 2 Global performance: Here we are analysing the results of experiments
(10 to 16) compared to experiment (9) as a base because it shows the lowest (best)
performance for this model.

• Here we can see that using the Z-scores scaling method performed up to 11%
better than the Chebyshev scaling when using non-expanded (original) data.

• Looking at the two scaling methods, it can be noticed that the performance
measures of each pair of any particular expansion method showed disparity
behaviour compared to other expansion methods. For the Linear RBF expansion
(experiments 10 & 14) , using Z-score scaling showed an improvement of 5%
compared to Chebyshev scaling. Whereas, the use of the Cubic RBF with
Chebyshev scaling (experiment 11) outperformed the Z-score results (experiment
15) by nearly 25%. The use of Multiquadric RBF expansion with both scaling
methods (experiments 12 & 16) provides a similar performance value of 37%.

• Although the Cubic RBF showed a defect when combined with Z-score (exper-
iment 15), it did however, have an improvement of 1% in overall performance
compared to experiment nine. Therefore, we can conclude that using expanded
data showed improvements in all experiments.

• The best performance resulted in experiment twelve, represented by the lowest
prediction error (0.0633) and the highest R2 (95.43%).

The discussion above indicates that experiment twelve has the best performance among
all results listed in Table (6.5). We introduce the results of this particular experiment in more
detail below.

Figure (6.17) illustrates the graphs of convergence between the target and predict values
of the validation data for the gasoline consumption. Figure (6.17a) represents the results of
experiment (9) using the original data. While Figure (6.17b) shows the results of experiment
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(12) using the expanded data. An evident improvement can be seen by re-sampling the
original data into optimised expanded data.

2 4 6 8 10 12

Original data - months

-1

-0.5

0

0.5

1

C
o
n
s
u
m

p
ti
o
n

Target

Predict

(a) Before expansion.

10 20 30 40 50

Expanded data - weeks

-1

-0.5

0

0.5

1

C
o
n
s
u
m

p
ti
o
n

Target

Predict

(b) After expansion.

Fig. 6.17 Targeted and predicted gasoline consumption for validation data of ANFIS 2,
Table (6.5): (a) experiment 9 (b) experiment 12.

Figure (6.18) emphasises the ability of the model to fit the data. The regression scatter
plots shows how well the model captures the variation of data. By reviewing Figure (6.18b)
which represents experiment twelve, we can notice how nearly 95% of the variability (equal
to R = 0.97686) is explained by the model constructed using the expanded data; compared to
(R = 0.76188) when using original data at experiment nine in Figure (6.18a).
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Fig. 6.18 Regression scatter plot of the targeted and predicted gasoline consumption for
validation data of ANFIS 2: (a) experiment 9 (b) experiment 12.

Table (6.6) illustrate the initial and optimal premise parameters for each membership
function of all inputs of experiment twelve. The first input uses four Triangular MFs; each
MF has three parameters (a, b, c). The second input uses three Difference Sigmoidal MFs;
each MF has four parameters (two pairs of {a1,c1,a2,c2}). Whereas the third input utilizes
two Gaussian MFs; each MF has two parameters of (σ& c) (see Equation 3.28).
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Table 6.6 Premise parameters - experiment 12 - ANFIS 2.

Input MF Type MFs Initial Parameters Optimal Parameters

a b c a b c

Capacity
(Input 1)

Triangular

(VLC) -1.667 -1 -0.3333 -1.667 -0.9969 -0.334

(LC) -1 -0.3333 0.3333 -1.002 -0.3259 0.346

(HC) -0.3333 0.3333 1 -0.3293 0.3364 1.002

(VHC) 0.3333 1 1.667 0.3098 0.9976 1.667

a1 c1 a2 c2 a1 c1 a2 c2

Temp.
(Input 2)

Difference
Sigmoidal

(CW) 15 -1.5 15 -0.5 15 -1.5 15 -0.6087

(NW) 15 -0.5 15 0.5 15 -0.5509 15 0.5156

(HW) 15 0.5 15 1.5 15 0.5386 15 1.5

σ c σ c

Cars
(Input 3) Gaussian

(SN) 0.8493 -1 0.8387 -1.006

(LN) 0.8493 1 0.8391 1.003

Figures (6.19 & 6.20) show the plots of the initial and optimal MFs of the three inputs of
ANFIS 2 listed in Table (6.6), respectively.
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Fig. 6.19 Initial membership functions of ANFIS 2 inputs.

Despite the fact that experiment twelve provides a significant improvement in model
performance, the shapes showed in Figures (6.19 & 6.20) indicate that no significant changes
have occurred on the trained MFs when compared to the initial ones. In other words, there
are no major differences between the initial and optimal values of the premise parameters.
This means, when solving ANFIS 2 using the scaling and expanding combination specified
in experiment (12), it provides a useful initial topology design that is not far from the optimal.
This has sped up the ANFIS system computations and uses only 15 epochs in the training
process in order to find the optimal model.
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Fig. 6.20 Final (trained) membership functions of ANFIS 2, experiment 12.

For instance, looking at final MFs of the second input (temperature) (Fig. 6.20b), at first
glance, it looks similar to the initial MFs (Fig. 6.19b). Nevertheless, even slight changes in
the optimal parameter values of (c2) at the cold weather (CW) MF, (c1&c2) at the natural
weather (NW) MF and (c1) at the hot weather (HW) MF; have made some influence on the
fuzzification area. These changes have moved (CW) towards the left and (HW) towards the
right, slightly. Also, it extends the (NW) area by moving its left and right sides outward. As
a result of these movements, the crossover points have moved downward, and the overlap
between all MFs have been decreased. However, this provides a wider area for (NW), which
gives more flexibility when composing the fuzzification process with other MFs.

Overall, all the inputs (capacity, temperature and cars) nearly have the same impact in the
model.

6.3.7.3 Third Validation Model (ANFIS 3)

The third validation model (ANFIS 3) is to have four Gaussian MFs for each input. This
can be labelled as Very Low Capacity (VLC), Low Capacity (LC), High Capacity (HC) and
Very High Capacity (VHC) for the first input. For input two, we used Cold Weather (CW),
Natural Weather (NW), Hot Weather (HW) and Very Hot Weather (VHW). While input
three can have Small Number (SN), Medium Number (MN), Large Number (LN) and Very
Large Number (VLN). Figure (6.21) illustrates the network structure of ANFIS 3 (MATLAB
output).

When the number of membership functions increases, this is accompanied by an increase
in non-linear parameters alongside the number of rules and the linear parameters simulta-
neously. In other words, the topology of the network will increase; thus, the model is to
be classified as high complexity. Looking at the number of MFs assigned to each input
of ANFIS 3 and the network structure shown in (Fig. 6.21), ANFIS 3 can be classified as
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Fig. 6.21 ANFIS 3 structure.

high complexity model. Consequently, the total number of parameters of this validation
model has raised to (280). This increases in parameters occurred due to the use of four
Gaussian MFs for each input. It means there is a higher number of both linear and non-linear
parameters to be resolved. An expansion into (156) weekly data would not have covered the
(280) total parameters for this model. Given the temporal nature of the data, it made sense
to consider expansion that followed a monthly-weekly-daily pattern. Therefore, sampling
the RBF fits at (365 x 3) data points provided three year’s worth of daily data on which
to evaluate the approach. Solving ANFIS 3 using daily data (i.e. 1095 samples) with all
possible combinations of expansion and scaling methods will provide eight experiments. The
results of these experiments are shown in Table (6.7).

By reviewing the results listed in Table (6.3), we can observe that increasing the model
complexity has a positive effect on the non-expanded data compared to ANFIS 1. The
prediction error improved from 0.4406 at experiment (1) to 0.1181 at experiment (17).
Particularly, ANFIS 3 results can be discussed as follow:

1. ANFIS 3 Local performance (Chebyshev scaling), experiments (17-20):

• All expanded data (experiments 18-20) outperformed non-expanded data (experi-
ment 17).

• Both Linear RBF and Multiquadric RBF (where ρ1 = 0.01 and ρ2 = 0.2) provides
approximately up to 16% of improvements.
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Table 6.7 Results of the third validation model (ANFIS 3).

Experi-
ment Data Samples Expansion Scaling NRMSE R2

Performance

Local Global

17 Monthly 36 —— Ch 0.1181 0.7922 —— 0%

18 Daily 1095 Lin RBF Ch 0.0646 0.9536 ↗ 16% ↗ 16%

19 Daily 1095 Cub RBF Ch 0.1162 0.8357 ↗ 4% ↗ 4%

20 Daily 1095 Mul RBF Ch 0.0666 0.9566 ↗ 16% ↗ 16%

21 Monthly 36 —— Z-s 0.1218 0.7984 —— ↗ 1%

22 Daily 1095 Lin RBF Z-s 0.0987 0.9360 ↗ 14% ↗ 14%

23 Daily 1095 Cub RBF Z-s 0.0848 0.8896 ↗ 9% ↗ 10%

24 Daily 1095 Mul RBF Z-s 0.0943 0.9531 ↗ 15% ↗ 16%

• The Cubic RBF provides up to 4% of performance improvement, which 12%
less when compared to the other two expansion approaches. Again this can be
attributed to the over-smoothing of the interpolated data at the turning points.

2. ANFIS 3 Local performance (Z-score), experiments (21-24):

• All expanded data (experiments 22-24) performs better than non-expanded data.
Approximately 9% to 15% improvement in prediction accuracy compared to
experiment (21).

• The best performance resulted from using the Multiquadric RBF approach, which
gives an improvement of up to 6% compared to the Cubic RBF and 1% compared
to the Linear RBF.

3. ANFIS 3 Global performance, where all experiments (18-24) will be compared with
experiment seventeen as a base lowest performance model.

• Looking at both NRMSE and R2 in Table (6.3), we can observe evident improve-
ments in the enhanced data sets when compared to the original data.

• A comparison of Linear RBF expansion results for both scaling methods showed
that Chebyshev scaling outperformed the Z-scores by nearly 2%. Whereas,
when using Cubic RBF, the Z-scores outperformed Chebyshev by 6%, while
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the Multiquadric RBF produced a similar performance increase for both scaling
methods of approximately 16%.

• It can be noted that three different experiments (18, 20 & 24) were very close in
their results; in which their global performance were approximately up by 16%.
However, by considering both NRMSE and R2, the highest performance among
these three experiments was in experiment twenty, represented by its prediction
error of (0.0666) and highest R2 of (95.66%).

• An interesting difference, however, is the shift in performance due to the way
in which the data has been scaled. Here we see that the result of experiment
twenty, which was obtained by using the Chebyshev scaling, combined with the
Multiquadric RBF approach (where ρ1 = 0.01 and ρ2 = 0.2), has outperformed
its rivals.

The result of experiment twenty will be introduced in more detail and compared to
experiment seventeen in order to show the improvement in prediction accuracy. Figure (6.22)
shows how well the model can predict the consumption for 2017 for the expanded model
(Fig. 6.22b), when compared with the best non-expanded model (Fig. 6.22a). A significant
improvement in performance can be seen after applying our proposed model. It is very clear
that the curve of the predicted values is very close to the target values with an evident rate of
convergence.
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Fig. 6.22 Targeted and predicted gasoline consumption for validation data of ANFIS 3: (a)
experiment 17 (b) experiment 20.

Figure 6.23 shows the relation between target and predicted consumption using original
data (experiment 17) and expanded data (experiment 20). The regression model of experiment
twenty (Fig. 6.23b) shows how nearly 95.66% of the variability (equal to R = 0.97804)
is explained by the model when using expanded data. Whereas, experiment seventeen
(Fig. 6.23a) shows (R = 0.89007) when using the original (non-expanded) data. These
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regression scatter plots illustrate the goodness of our model in reducing the deviation of the
predicted data.
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Fig. 6.23 Regression scatter plot of the targeted and predicted gasoline consumption for
validation data of ANFIS 3: (a) experiment 17 (b) experiment 20.

Figure (6.24) gives an indication for a typical ANFIS rate of convergence of experiment
(20). Figure (6.24a) illustrates the rate of decay of the residuals for the training data (training
error). It shows the greatest reduction in the training error at the start of the modelling process
with finer tuning occurring later. Figure (6.24b) demonstrates the rate of convergence to the
2017 test data (checking error). A typical ANFIS behaviour is showing initial oscillations
in the prediction error as the parameters begin to train before settling to a gradual rate of
convergence.
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Fig. 6.24 Typical rate of convergence ANFIS 3: (a) Training error. (b) Validation Error.

Table (6.8) illustrates the initial and final (optimal) values of the premise parameters
for experiment twenty. The Gaussian function has been used for all three inputs. Each
input contains four membership functions. Each membership function has two parameters
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of (σ& c) (see Equation 3.28). Where, c determines the centroid of the bell shape and σ

represents the width.

Table 6.8 Premise parameters - experiment 20 - ANFIS 3.

Input MF Type MFs Initial Parameters Optimal Parameters

σ c σ c

Capacity
(Input 1) Gaussian

(VLC) 0.2831 -1 0.2833 -0.9901

(LC) 0.2831 -0.3333 0.1663 -0.4733

(HC) 0.2831 0.3333 0.2139 0.2707

(VHC) 0.2831 1 0.3087 0.9668

Temp.
(Input 2) Gaussian

(CW) 0.2831 -1 0.2811 -0.9808

(NW) 0.2831 -0.3333 0.258 -0.2893

(HW) 0.2831 0.3333 0.3263 0.3687

(VHW) 0.2831 1 0.3087 0.9957

Cars
(Input 3) Gaussian

(SN) 0.2831 -1 0.237 -1.007

(MN) 0.2831 -0.3333 0.0767 -0.3836

(LN) 0.2831 0.3333 0.1539 0.2368

(VLN) 0.2831 1 0.2668 0.9819

The plot of these initial and optimal MFs for all three inputs of ANFIS 3 can be found in
Figures (6.25 & 6.26).
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Fig. 6.25 Initial membership functions of ANFIS 3 inputs.

By reviewing the shapes of the final (optimal) membership functions showed in Fig-
ure (6.26) we can find the following:

• Figure (6.26a) shows the four trained MFs for capacity. It can be seen that some MFs
show significant changes.
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Fig. 6.26 Final (trained) membership functions of ANFIS 3, experiment 20.

– The membership function of very low capacity (VLC) shows slight changes.
These changes are represented by a small increase in value of (σV LCinitial = 0.2831)
to (σV LCoptimal = 0.2833) and (cV LCinitial =−1) to (cV LCoptimal =−0.9901). These
changes have made the MF width slightly shrink together with a little movement
toward the right, which can barely be noticed.

– The low capacity (LC) membership function has significant changes. The value
of σ decreased by approximately 12% (difference between (σLCinitial = 0.2831)
and (σLCoptimal = 0.1663). This effected (LC) by shrinking the width of the bell
shape to be notably narrower. The value of c decreased by nearly 14% (difference
between (cLCinitial = −0.3333) and (cLCoptimal = −0.4733). This reduced the
value of the centroid of the Gaussian curve which, in turn, moved the position
of the bell shape centre toward the left on the corresponding value on the x-axis
coordinate.

– The high capacity (HC) membership function shows evident changes. The value
of σ decreased from (σHCinitial = 0.2831) to (σHCoptimal = 0.2139) as well as the
value of c from (cHCinitial = 0.3333) to (cHCoptimal = 0.2707). This caused approxi-
mately 7% decrease in the width of the bell shape and moved its centre toward
the left by 0.0626 points on its corresponding value on the x-axis coordinate.

– The membership function of very high capacity (VHC) showed slight changes.
The σ value increased by nearly 2.5%, and the c value decreased by a very small
amount of 0.43%. These made the bell shape a little broader and moved it slightly
toward the left.

The trained MFs of the first input (capacity) shows significant changes in the crossover
points of the bell shape curves. Consequently, the overlaps between the MFs were
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almost squeezed. This will make the fuzzification areas more specific, which can help
in providing more efficient firing strengths.

• Figure (6.26b) shows the final trained MFs of temperature. At first glance, the optimal
MFs give the impression that there is no significant changes, when compared to the
initial MFs (Fig. 6.25b). However, if we look closely, we will notice that:

– The width of the natural weather (NW) membership function bell has been shrunk
by 2.5%, and the shape has moved slightly toward the right.

– The area of hot weather (HW) membership function extended by nearly 4% and
moved toward the right.

– The area of very hot weather (VHW) membership function extended by nearly
2.5% and moved slightly toward the left.

As a result of these changes, all the overlap area between the (CW & NW) shrinks and
the crossover point has decreased. While the intersection areas between (NW & HW)
and (HW & VHW) have been extended and the crossover points have increased.

• The optimal MFs of the third input "number of cars" (Fig. 6.26c) showed significant
changes. The medium number (MN) and the large number (LN) MFs are the most
considerable shifts. These changes are similar to some extent to the optimal MFs of
the first input (Fig. 6.26a), especially for the second and third MFs. It is not difficult to
see that the medium number (MN) bell shape is significantly compressed by nearly
20% as well as the large number (LN) by 13%. They have both moved toward the left.

Again, as a result of those significant changes, the overlap areas were considerably squeezed.
Furthermore, all the crossover points moved down toward the x-axis. In other words, the
fuzzification range for each membership function became more specific. This yields more
accurate firing strengths when composing the fuzzification process with other MFs.

The above analysis shows that increasing the model complexity has a positive effect
in optimizing the premise parameters. The expanded data performed significantly better
than the original data. It showed that the first "capacity" and the third "number of cars"
inputs have a significant impact on the gasoline consumption problem while the second input
"temperature" has less of an impact than the other two inputs when the model complexity is
increased.
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6.3.8 Model Validation

This section demonstrates alternative data sets that have been used to validate our proposed
model. A case study formed from a real-life example of natural gas demand prediction
presented by [16]. The data used in this case study is taken directly from their work. Based
on the most standard indicators used in the literature, the authors designed their FIS prediction
model to include five inputs (independent variables), which are: national income, consumer
price index, gross domestic product, population, and demand taken from the previous year.
There is one target output (dependent variable) which represents the natural gas demand.
They collected 34 samples of actual data per input. Their data was collected annually and
covered the period from 1973 to 2006. The data was gathered from Energy Balance 2006
of Iran and Statistical Centre of Iran. We use this data to evaluate the effectiveness of our
approach for both expanded and non-expanded data. It should be noted that the original
work applied limited pre-processing of the data prior to modelling. This consisted of scaling
the data to the range [0, 1]. Furthermore, their ANFIS model used a constant output in the
forward process to calculate the consequent part of their model, whereas we are using the
linear (first-degree polynomial function) to calculate the output. The authors did not provide
any information about which generation method they used to construct the ANFIS model;
such as Grid Partitioning, Subtractive Clustering, or FCM Clustering for example. For our
experiment, the first 29 years’ data (from 1973 to 2001) have been used for the training
process, with the remaining five years used to test the capability of the trained model to
accurately predict the demand in those years.

A total of 9 experiments have been carried out using our proposed model. We restrict
all evaluating experiments to use the Chebyshev scaling method, Gaussian membership
functions and the modified Multiquadric expansion method; where we show results for a
range of values of ρ1 and ρ2. This simple but effective trial and error approach allows us to
show how the modified Multiquadric method can be used to improve the prediction accuracy
and provide even better results when tuning its parameters. The original work demonstrated
a best prediction accuracy of 0.0029. After squaring the NRMSE for experiment 22 we
obtain a comparative measure of 0.0011. Not only is this a significant improvement in
prediction accuracy, but it is obtained by applying a much simpler model combined with
more intelligent pre-processing. We showed that almost 99% of the variability (equal to R =
0.9988) is explained by the model constructed using the expanded data; compared to 94% (R
= 0.9722).
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6.3.9 Discussions and Conclusions

This chapter aimed to demonstrate the importance of using carefully chosen expansion
and scaling methods as pre-processing data techniques in order to develop and enhance
the performance of ANFIS prediction. Three radial basis function approximation methods
and two scaling methods have been combined with ANFIS to produce our proposed model
1, shown in this chapter. A real-life problem of predicting the consumption of petroleum
products has been chosen as a test case. Three of ANFIS’s models have been chosen as
validation models. These validation models were chosen with different levels of complexity
in order to evaluate the proposed model. A total of twenty four experiments have been carried
out and solved using all potential combinations of using different expansion and scaling
methods. By reviewing the overall results of the validation models, we can conclude the
following:

1. Changing the data pattern, whether through scaling or expanding has improved the
ANFIS performance and consequently improves the results.

2. Using RBF expansion methods provides two positive impacts. First, to overcome the
over-fitting problem. Second, to improve the prediction accuracy, mainly when the
input data are scarce.

3. In all experiments, looking at the global performance, the use of expanded data
performed better than the non-expanded data.

4. When care is taken to expand the data using carefully chosen values of the Multiquadric
RBF parameters (i.e. ρ1 & ρ2). The Multiquadric RBF provides better performance
than the Linear and Cubic RBFs.

5. The Cubic RBF almost always provides the lowest performance compared to the
Linear and Multiquadric. This is potentially due to the over-smoothing problems of
the expanded data at the turning points.

6. Even slight changes in the ANFIS parameter values (after being optimized) provides
evident improvements in the prediction accuracy and system performance.



Chapter 7

Outliers Mitigation Model for ANFIS
Optimization: Proposed Model 2
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7.1 Introduction

An outlier can be defined as one or more observed values that shows significant deviation
from the underlying trend of a specific data set that it belongs to. In other words, it is a data
point that lies at an abnormal distance from the shape of the population. There are several
reasons why outliers can occur. These can be mistakes caused by human error, mechanical
faults, deceptive behaviour, the behaviour of the system, or natural deviations in populations.
Generally, outliers are known as one of the affecting factors that may reducing the ability
to produce an accurate model. However, this can be true up to some extent, because not all
outliers are to be considered as as invalid values, and has to be removed. For instance, in
some cases, when the outliers are generated by the system, it might be illustrating something
important about the system behaviour. Removing them in this case means that we miss some
important observations. Therefore, only the outliers that are affecting the model are to be
mitigated. Many approaches can be used for detecting outliers; such as graphing methods,
mathematical modelling, statistical models, and so forth. These approaches are almost
identical in their fundamental purpose [54]. However, in this work we intend to introduce an
algorithm that performs the outliers removal as a solution method for the outliers problem,
rather than discussing the detection methods. This can be achieved by using the model fitting
approach. In other words, this chapter aims to propose a robust outlier mitigation model that
can help in modelling noisy data and provide a better fitting model to be used in ANFIS.

The use of RBFs (Linear, Cubic, and Multiquadric) as the basis functions for explicit
interpolation was introduced in the previous chapter as part of the first proposed model.
Practically, the use of these techniques as a direct expansion methods works on interpolating
the data utilizing RBFs (specifically in our case) for producing expanded data sets. This can
be achieved by using a number of RBF centres that are equal to the original data points when
calculating the Euclidean distance between the data points and the function’s centres.

Mathematically speaking, for interpolation, we intend to solve a square system of linear
equations, in which the number of basis functions is equal to the number of data points
(Sec. 6.2.2.1). This will provide a square system of linear equations. Each basis function in
this system is to be accompanied by a coefficient (i.e., unknown parameter). In other words,
the number of unknown parameters is equal to the number of original data samples. These
parameters are to be modifiable and represents the degrees of freedom of the model. We
aim to optimize these coefficients in order to provide the best fitting model to the original
data. Increasing or decreasing the number of degrees of freedom gives the model more or
less flexibility to twist and change when fitting the data. Therefore, when the data are stable
and do not have significant noise or outliers, then it is possible to set the degrees of freedom
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equal to the number of data points. This will allow the model to go through every single
point of the data sample when interpolating.
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Fig. 7.1 Direct RBFs fitting for a simple sinusoidal curve modified to contain four outliers.

A significant problem in data modelling is dealing with the effects of outliers (noise) in
the data [35] [164]. A simple example is shown in Figure (7.1). Here we have a sinusoidal
function, sampled at 30 equally spaced points on the interval [−2π,2π]. These data points
have been modified to contain four outliers distributed randomly. These outliers are to be
considered as the points that do not represent the underlying trend of the data. Three RBF
types (i.e. Linear, Cubic, and Multiquadric) are to be fitted to those points using interpolation.
As can be observed, the outliers have had a significant impact on the fitted curves. We can
see that the impact of the outliers is such that it has moved the fitted curve away from the
underlying shape of the data. Because we are interpolating, the model has sufficient degrees
of freedom to fit the data points accurately, which means the curve passes through all of
the accurate points but also through all of the outliers – except the Mulitquadric which we
discuss below.

Referring to Figure (7.1), it is not difficult to see that the Linear RBF (blue line) and Cubic
RBF (black dotted line) passes through all of the original data points when interpolating. This
should be expected due to the nature of these two interpolation techniques. In contrast, the
Mutiquadric RBF (red dashes line) performs better (though not much) due to the modification
of its parameters. However, when near the outlying data samples, it is still showing a tendency
to deviate away from the underlying shape of the data when approximating. Consequently,
we can conclude that, when the data have noise or outliers, interpolation is not the right
choice for modelling. So, we need to find a method that can model good data and ignore the
noise and outliers. This can be achieved by restricting the number of degrees of freedom,
which means we have to choose a model that has a fewer number of parameters. In other
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words, it means that the square system of equations, providing an exact solution, is no longer
possible. This restriction will allow the model to avoid modelling the noise and to recover
the underlying curve, simultaneously.

Least-squares (LS) is known to be one of the most effective methods in reproducing
curves when the original data contains a small amount of noise. Standard least-squares (SLS)
is a common and straightforward choice in data approximation, as it is simple to interpret
and to apply. The least-squares error function takes the form

E1 =
m

∑
i=1

e2
i , where ei = yi −F(xi), (7.1)

where, F(xi) can be any fitting function. Here we were using the RBF fitting functions
(Linear, Cubic, and Multiquadric), which we introduced in Equations 6.9 to 6.11 as the
basis functions of the standard least-squares (SLS). Again, the LS method uses fewer basis
functions than the data points, which means it is not a square system of equations, and so there
are fewer coefficients than there are data points. Values for the coefficients are determined
by minimising E1 (7.1). However, we can see that the result of squaring any particular ei,
recorded at an outlying point, is a fitting curve that moves away from the underlying true
path of the data.

Figure (7.2) illustrates the SLS fitting using three RBFs as basis functions for the same
sinusoidal data points shown in the previous example. Here we reduced the number of
degrees of freedom of the model from 30 to 6. These six points represent the updated centres
of the model which allows the function centres to be distributed evenly though the data
range. The blue line represents the SLS fitting using the Linear RBF; the black dotted line
demonstrate the SLS fitting using the Cubic RBF. In contrast, the red dashed line shows the
SLS fitting using the modified Multiquadric RBF. Compared to Figure (7.1), it can be noticed
that SLS is performing much better than the interpolation approach when the data contains
outliers. However, the influence of outliers on the SLS fitted curves is still notable and has to
be considered. It is not difficult to see how the first and fourth outliers are pulling the curves
up towards them; showing on the left and right side of this fitting model. At the same time,
the second and third outliers in the middle are pulling the fitting curve down.

The reason for not getting a good fit is due to the nature of the Least-squares approach.
The SLS is working on minimizing the squares of errors between the fitted curve and the
original data points. When the data has outliers, the error values between the fitted curves
and these outliers are large, particularly after squaring them. The SLS methodology is trying
to choose a set of parameters for the model that minimizes the sum of the squared errors.
The problem here is there are four of those squared errors that are disproportionately large,
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Fig. 7.2 SLS fitting using RBFs for a simple sinusoidal curve modified to contain four
outliers.

caused by the outliers. Therefore, in order to reduce the overall least squares error, the fitting
curve moves towards those points. Therefore, although the SLS approximation is considered
as one of the best methods in dealing with small noise (Gaussian noise), it does not fair well
when the data contains outliers - even though this is still better than direct RBF interpolation.
Based on this, we need to find an appropriate method that can address the problem of outlier
mitigation.

There are some suggestions in the literature for dealing with this kind of problem. For
example, solution schemes that seek to minimise a different form of error function can be
employed [19].

E2 =
m

∑
1=1

|ei|. (7.2)

Because this error function seeks to minimise the sum of absolute deviations of the fitting
curve to the data, it is extremely good at ignoring outliers and fitting the trend. However,
there is a disadvantage, due to the fact that E2 can not be differentiated. This means that we
cannot formulate a simple solution scheme, that is as straight forward as SLS for solving
for the unknown parameters in the model. Because a traditional least-squares approach can
not now be used, other techniques, such as linear programming must be considered. These
methods are not as straightforward to apply as SLS and so tend to be avoided by practitioners
who do not have strong maths skills.

In order to overcome this problem, we are proposing a second model which uses a
modified Least Squares approach, which we call Transformed Least Squares (TLS), and we
introduce it in the coming sections. In this chapter, all equations, work, tables, figures, and
diagrams have been developed and created by the author.
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7.2 Development of Model 2

7.2.1 Model 2 Structure

Here we propose an expanded version of model 1, introduced in chapter 6. The pre-processing
model (layer 0 in Fig. 6.1) is to be modified to deal with data sets which are significantly
noisy or contain outliers. This has been achieved by adding the Transformed Least Squares
(TLS) to the pre-processing layer structure. At this stage, experts needs to have enough
understanding of the underlying data in order to make a decision about which approach
(algorithm) to be applied. In other words, the raw data are to be investigated by the experts in
order to find whether it has outliers or not before proceeding to the re-sampling and scaling
models. If yes, the TLS is to be applied as an outlier mitigation model. Then, the re-sampling
model, using radial basis functions (RBF) (Linear, Cubic, and Multiquadric) is applied
as before as the data expansion model to expand the scarce sample. The two previously
discussed scaling methods will then be applied if the data has a significant variance in its
values. These three stages (i.e. outlier mitigation, expansion, and scaling) represents the
components of the pre-processing (layer 0) of the second proposed model. The processed
data (output of layer 0) are to be propagated to the ANFIS layers and separated into training
and checking sets in order to process the hybrid learning rules. Figure (7.3) illustrates the
flowchart of different steps performed to implement the second proposed model.

7.2.2 Proposed Outlier Mitigation Model

7.2.2.1 Transformed Least-Squares (TLS)

Expanding data sets that contain any noise cannot use interpolation approaches, as the noise
will influence the predicted data. Of course, this does assume that the noise is unwanted and
detrimental to the expansion process. Taking a least-squares approach, as discussed above,
can help for the noise of a particular type, but it does not deal with all cases - such as outliers.
It is therefore appropriate that, in this work, we present a modification to the least-squares
approach that enables outliers to be considered straightforwardly.

We present a modified, or transformed, least-squares approach (TLS) to model data that
is believed to contain a small number of outliers [62]. Rather than minimising the form E1,
we minimize,

E3 =
m

∑
i=1

[G(ei)]
2, (7.3)
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Fig. 7.3 Th second proposed model structure.

where ei is as defined in (7.1) and

G(ei) =
ei√

1+ γe2
i

, (7.4)
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is the transformation function. γ is a fixed constant and should be chosen based on the
asymptotic bound required on any individual contribution to the error function (7.3). To
determine the coefficients in (6.7) we find a solution using iteratively re-weighted least-
squares. Specifically, we set

ki =
1

1+ γe2
i
, (7.5)

and solve

min
c

E3 =
m

∑
i=1

kie2
i . (7.6)

We begin by choosing an initial set of random coefficients c1,c2, . . . ,cn, (n < m) to allow
the multipliers ki to be evaluated for the first iteration. This is a similar approach to initialising
the weights in a neural network. A random selection of small values is usually fine to start
the iterative approach. We then proceed by repeating Steps 1 to 5 below:

Step 1. Calculate the numbers ki.

Step 2. Construct a diagonal matrix K that has all of the numbers k1,k2, . . . ,km down the
diagonal.

Step 3. Solve the weighted system of equations using standard least-squares

KAc = Ky, (7.7)

for the coefficients c1 to cn.

Step 4. If the difference in the value of the error function E3 for two consecutive iterations is
negligible then stop.

Step 5. Otherwise, calculate the errors ei and repeat from Step 1.

The usefulness of this approach is two-fold. Firstly, taking a least-squares approach, rather
than strict interpolation, allows us to reproduce more accurate data from the original data
that may contain Gaussian noise. Secondly, data that exhibits either mixed Gaussian noise
and outliers or simply outliers are dealt with effectively. The choice of n < m can be used to
control the amount of smoothing that needs to take place. An application of the TLS method
is shown in Figure (7.4) where a significant improvement over SLS and direct RBFs is
demonstrated. Speaking of the sub figures in Fig. (7.4), we used the same sinusoidal function
illustrated in the previous examples in Section (7.1) to create thirty data samples, which
includes four outliers. Here, each sub figure shows a comparison of the performance of the
two approximation approaches (i.e. SLS and TLS) as well as the direct RBF interpolation.
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Fig. 7.4 SLS TLS RBFs comparison.

Figure (7.4a) illustrates using the Linear RBF as the basis of the fitting function for
modelling the data using SLS (red dashes line), TLS (blue dotted line), and direct RBF
(black dotted line). Figure (7.4b) shows the curve fitting resulting from using the Cubic RBF
for the same three approaches. While Figure (7.4c) demonstrates the use of the modified
Multiquadric RBF to fit the data. We can clearly see that the asymptotic properties of the
TLS fitting method allow a more robust model to be formed to reflect the underlying shape
of the data.
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To see why a transformed least-squares approach can produce better results, we can
examine the properties of the function

e2
i

1+ γe2
i
, i = 1,2,3, . . . ,m.

When the value of any point-wise error ei is extremely small, this function behaves like e2
i .

So,

as ei −→ 0,
e2

i

1+ γe2
i
−→ e2

i .

When the point-wise error ei is large, then

as ei −→±∞,
e2

i

1+ γe2
i
−→ 1

γ
.
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Fig. 7.5 The squared transformed least-squares error function for γ = 2 showing an asymptotic
upper bound of 1

2 as the magnitude of errors increase.

When the point-wise errors are small, the function behaves like a standard least squares
operator. As the point-wise errors get large, their individual contribution to the error function
E3 is asymptotically bounded by 1/γ . Therefore, the extent to which any given point-wise
error can effect the position of the fitting curve is limited by choosing an appropriate value
for γ . A plot of the error function [G(e)]2 for γ = 2 is shown in figure 7.5.

7.3 Implementation of Model 2: Case Study

So far, we have introduced the TLS approach and demonstrated its performance in dealing
with outliers. However, we intend to evaluate the performance of this method by applying it
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to real data. Therefore, the gasoline prediction problem discussed in the previous chapter
will be used for this purpose. The same input-output structure of the proposed ANFIS of the
gasoline forecasting introduced in Section (6.3.2) will be utilized (see Fig. 6.4). There will be
three input variables, i.e., capacity, temperature, and the number of cars, which represents the
affecting factors; and the output variable will be the predicted consumption rates. The data
of the input variables will be modified to contain outliers in order to explore the effectiveness
of using the TLS on ANFIS performance.

7.3.1 Modified Data

As a test case, we are using the same data that been provided for the first proposed model
shown in Section (6.3.3) of the previous chapter. The historical data of four variables (i.e.
three inputs and one output) have been supplied. Each variable has thirty-six data samples
representing the monthly recorded value covering a three years time period from 2015 to
2017. The data set of the first input (capacity) is to be modified to contain one outlier.
Whereas the second (temperature) and third (number of cars) data sets are to be modified to
contain three outliers in each set. This modification on the original data set will create new
sets that can be used to validate the TLS proposed model. Figures (7.6a to 7.6f) shows the
original and modified data of the three inputs, respectively.

7.3.2 Outlier Mitigation Performance

In this section, we intend to apply our second proposed model using the TLS approach
for modelling the modified gasoline data. As mentioned before, modelling the data using
interpolation means that that the number of unknown parameters (i,e. degrees of freedom) is
equal to the number of original data points. So, we end up with a square system of linear
equations. In other words, all the data points are to be considered as RBF centres. Thus, we
produce a fitting curve that passes through all the data points, interpolating the original data
(see Fig. 7.1), including the outliers.

When using TLS, we restrict the linear system by reducing the number of degrees of
freedom (RBF centres) to a specific number (usually much less than the number of data
points). This will produce a sufficient curve fitting that maintains the underlying shape of the
data and ignores the effect of outliers. Accordingly, choosing the right number of centres is
to be considered as the primary key to gaining a good TLS fitting model. Therefore, it is vital
to experiment with all the possible numbers of centres by trial and error until we achieve the
best fit.
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(b) Modified Data of Input 1.
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(c) Original Data of Input 2.
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(d) Modified Data of Input 2.
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(e) Original Data of Input 3.
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(f) Modified Data of Input 3.

Fig. 7.6 Modified Data of all Inputs.

Due to the nature of our data, we are classifying the data sets of the three inputs into
two groups in order to explore the possibility of applying the TLS and its performance. The
criteria of this classification will depend on the data pattern.

• Smooth pattern: when the data has a continuity in its trend (linearly or non linearly),
then its pattern can be considered as a smooth curvature. One of the advantages of this
type of data is that it is easy to identify the outliers, even by eye. Accordingly, looking
at the inputs data, the temperature and number of cars, both can be classified as a steady
pattern. The TLS has been applied to both inputs to re-produce an expanded fitting
curve that keep the underlying trend of the original data and mitigates the outliers. Here
we intend to expand the 36 data samples (months) into 1095 (days). The trial and error
principle has been applied to find the best number of RBF centres that can produce the
best TLS fitting results. Figure (7.7) shows a comparison between interpolation using
direct RBFs (black line) and approximation using TLS (blue dashed line) of the second
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input (temperature). Here we have used seventeen RBF centres in order to obtain the
best TLS fits.
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Fig. 7.7 Comparison between TLS (17 Centres) and interpolating RBFs showing fitting
performance for the second input (Temperature).

Figure (7.8) compares the use of direct RBF interpolation with the TLS approximation
for the third input (number of cars). Here we used five centres for the TLS curve. It is
not difficult to see how the TLS outperforms the direct RBFs in mitigating the effect of
the outliers. The resultant fitting curves keep to the underlying trend of the original
data and ignore the outliers in both data sets, i.e. temperature and the number of cars.
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Fig. 7.8 Comparison between TLS (5 Centres) and Direct RBFs fitting performance for the
third input (Number of Cars).

• Random pattern: when the data is erratic, disorderly, or the curve is not following a
smooth trend, then its pattern can be considered as random. In other words, if the data
has notable randomness built into it then it will be difficult to explain the underlying
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pattern. Accordingly, the data of the third input (capacity) can be considered as random
pattern data. Referring to the Figures (7.6a and 7.6b), although the capacity data has
been modified to include one outlier, it is very difficult to distinguish this anomalous
value from the rest of the data points. That is due to the pattern of the data which
almost has built-in randomness and so notably fluctuates. Modelling this type of data
using TLS did not provide the desired fit. Even after trying all possible numbers of
centres, we could not find a good fit that keept the underlying shape of the original
data and ignored the outlier. In Figures (7.9a to 7.9f), we show evidence of the defect
in dealing with the random data when using TLS. Six different values for the centres
are illustrated in these figures. In all cases, the TLS has failed to provide a good
approximation model.
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(a) 5 Centres.
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(b) 10 Centres.
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(c) 15 Centres.
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(d) 20 Centres.
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(e) 25 Centres.

100 200 300 400 500 600 700 800 900 1000 1100

Expanded data scale

0 5 10 15 20 25 30 35

Actuale data scale

4

4.5

5

5.5

6

6.5

In
p
u
t 
1
: 
C

a
p
a
c
it
y

10
5

Direct RBF

TLS

Actual Data

(f) 30 Centres.

Fig. 7.9 Comparison between SLS (with different numbers of centres) and Direct RBFs
fitting performance for the first input (Capacity).

7.3.3 Empirical Results

In this section, we are presenting the results of investigations carried out on the same gasoline
prediction problem discussed in the previous chapter. We intend to use the same data supplied,
which had four variables. Three inputs. i.e. capacity, temperature, and the number of cars as
well as one output, i.e. consumption. Each data set contains 36 data points which represent
three years’ samples on a monthly basis. As discussed in the previous section, the TLS can
not deal with some specific shape of the data. When the data has a smooth distribution, then
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outliers present themselves in a way that is easier to detect and mitigate. When the underlying
trend in the data is erratic or oscillatory, then outliers may not appear to be any different from
the rest of the points. In this case, it would be difficult to gain good performance form the
TLS approach, and it will not be the right choice for approximation. This has been adequately
explained in an example of using one hypothetical outlier at the capacity data. Therefore,
we intend to use the original data (no modification or outliers) for two variables, i.e., the
output (consumption) and first input (capacity). In contrast, the data of the second and third
variables will be modified in which to have three outliers in each data set, as showed in the
previous section. In other words, the performance of TLS as the expansion technique as well
as outliers mitigation will be examined using all supplied data sets, which includes outliers
inserted into the temperature and number of cars data. Table (7.1) shows the data structure
that will be utilized to explore the performance of TLS in improving the ANFIS prediction
accuracy.

Table 7.1 Data structure for examining TLS performance in improving the ANFIS prediction
accuracy.

Variables Title Data Outliers Expansion method RBF Centres

Output Consumption Original —- Direct RBF 36

Input 1 Capacity Original —- Direct RBF 36

Input 2 Temperature Modified 3 TLS-RBF 16

Input 3 Num. of Cars Modified 3 TLS-RBF 5

It can be noticed that the number of RBF centres for the output (consumption) and the
first input (capacity) data sets are equal to the number of original data samples. This is due to
the use of the direct RBF technique as the expansion method which uses 36 RBF centres that
are equal to the number of data points when interpolating. As explained, this will provide a
square system of linear equations. Consequently, the expanded data will pass through all the
original data points. This means when the data does not contain outliers then we use the direct
RBF as the expansion method. In contrast, when the data contains outliers, such as input
two (temperature) and input three (num. of cars), then the TLS is to be utilized. The number
of RBF centres is to be reduced to sixteen and five, respectively. These restricted centres
provided a better approximation fitting that keeps to the underlying trend of the original
data and ignores the outliers. In such a case, both expansion techniques are to be used in
solving this type of problem. Therefore, we will use the term Hybrid Expansion to express
a common solving strategy that includes both expansion methods working simultaneously.
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As a test case, we intend to apply our second proposed model, shown in Section (7.2.1),
into the ANFIS validation models listed in Table (6.2) in chapter (6). However, we choose to
use the structure of one experiment from each ANFIS model rather than use all introduced
experiments (see Tables 6.3, 6.5, & 6.7). These three experiments have been selected as
they provided the optimum results out of twenty-four experiments (one of eight in each
ANFIS model). Note that these experiments were originally solved using only the direct RBF
method. Whereas in this chapter, we are intending to expand the data by applying the hybrid
RBF approximation into the same ANFIS structure as the selected optimum experiments.
In other words, we are using the TLS (where it is needed) combined with the direct RBF to
approximate the data. Table (7.2) shows the details of the data scope, and the expansion and
scaling methods that will be used for each experiment.

Table 7.2 Structure of selected experiments.

Model Exp.
Expanded Data Expansion

Scaling
Scope Samples Method RBF Coefficients

ANFIS 1 8 Weekly 156 Hybrid Mul ρ1 = 0.01, ρ2 = 0.2 Z-score

ANFIS 2 12 Weekly 156 Hybrid Mul ρ1 = 0.02, ρ2 = 0.2 Chebyshev

ANFIS 3 20 Daily 1095 Hybrid Mul ρ1 = 0.01, ρ2 = 0.2 Chebyshev

Here we applied the hybrid expansion (i.e. TLS-RBF and Direct-RBF) into experiments
eight, twelve, and twenty, rather than use Direct-RBF only. Again, we used the hybrid
expansion due to the outliers detected in the data sets of input 2 and 3 only.

In order to validate our proposed model, we intend to solve all three experiments explained
in Table (7.2) using two expansion techniques. First, we apply the Direct RBF method to all
data sets (including the noisy data) to solve the three ANFIS models, then we solve the same
data sets using the hybrid expansion. By applying these two methods into the same data sets
we are showing how the TLS has improved the prediction accuracy of ANFIS.

Table (7.3) demonstrates the results of solving the gasoline problem using our second
proposed model. As mentioned, the results shown in this table represents the ANFIS outputs
of three experiments. Each experiment has been examined using two expansion techniques.
It also illustrates the performance improvement of each experiment based on the difference
between the results of both expansion methods. Looking at RMSE, NRMSE and R2 values,
the results of all experiments showed that the hybrid RBF has significantly outperformed the
direct RBF when the data are noisy.
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Table 7.3 Results of solving various experiments using the Direct and Hybrid RBF expansion
techniques.

Model Exp.
Direct RBF Expansion Hybrid Expansion

Performance
RMSE NRMSE R2 RMSE NRMSE R2

ANFIS 1 8 0.7102 0.1901 0.6054 0.2334 0.0625 0.9593 ↗ 35%

ANFIS 2 12 0.8837 0.4419 0.2829 0.3483 0.1742 0.7619 ↗ 48%

ANFIS 3 20 0.8116 0.4058 0.2243 0.1824 0.0912 0.9461 ↗ 72%

Considering the results of experiment eight, it is not difficult to notice that using the
hybrid RBF expansion has decreased the RMSE by 0.4768. Also, the NRMSE has been
reduced by 0.1276 from 0.1901 using the direct RBF to 0.0625 using the hybrid RBF expan-
sion. Moreover, applying the hybrid RBF improved the prediction performance considerably
increasing by nearly 35% compared to the direct RBF. Similarly, experiment twelve shows a
significant decrease in both RMSE and NRMSE with values of 0.5354 and 0.2677, respec-
tively. The performance of this experiment increased by nearly 48% when using the hybrid
RBF as an expansion method for our proposed model.

Figure (7.10) shows the convergence between the targeted and predicted values of the
validation data for experiment eight. Figure (7.10a) represents the results of using the direct
RBF as an expansion method. Figure (7.10b) elucidates the results of using the hybrid
expansion (i.e. TLS-RBF for inputs 2 & 3, and Direct-RBF for the output and input 1).

5 10 15 20 25 30 35 40 45 50

Expanded data - weeks

-1

0

1

2

C
o
n
s
u
m

p
ti
o
n

Target

Predict

(a) Direct RBF expansion.

5 10 15 20 25 30 35 40 45 50

Expanded data - weeks

-2

-1

0

1

2

C
o
n
s
u
m

p
ti
o
n

Target

Predict

(b) Hybrid RBF expansion.

Fig. 7.10 Targeted and predicted gasoline consumption for validation data of experiment 8:
(a) Direct RBF expansion (b) Hybrid RBF expansion.

The graphs clearly showed that substantial improvement could be obtained when using
hybrid RBF. Looking at Figure (7.10b), it is not difficult to see how the prediction curve is
showing a small deviation from the underlying trend of the targeted data curve. Whereas,
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using the direct RBF (Fig. 7.10a) provides an evident deviation between the two curves. The
behaviour of the predicted data has failed to converge with the target data in most areas.

Figure (7.11) demonstrates the regression scatter plots of experiment eight using both
expansions (direct and hybrid). It shows up to what level the model can fit the data. Fig-
ure (7.11a) clearly illustrates how nearly 39.5% of the variation of the data (equal to R =
0.7781) has not been captured by the model when using direct RBF expansion. In contrast,
Figure (7.11b) demonstrates how nearly 96% of the variability (equal to R = 0.97944) is
explained by the model using the hybrid RBF expansion.
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Fig. 7.11 Regression scatter plot of the targeted and predicted gasoline consumption for
validation data of experiment 8: (a) Direct RBF expansion (b) Hybrid RBF expansion.

Experiment twenty showed the highest rate of improvement in performance. Using
the direct RBF expansion to solve this model provided a fragile prediction scenario. The
error measures represented by the RMSE and NRMSE emphasised very high values of
(0.8116) and (0.4058), respectively. Therefore, the performance of this experiment decreased
to an unacceptable level to reach 22%. However, using the hybrid RBF expansion has
outperformed its rival. Looking at row-wise results of experiment twenty in Table (7.3),
it can be noticed that the RMSE and NRMSE shows a significant decrease of 0.6292 and
0.3146, respectively. Consequently, the performance of this experiment has been increased
dramatically, by nearly 72% to reach 94.61%.

Figure (7.12) shows a comparison of the convergence between the targeted and predicted
values using both expansion methods. Referring to Figure (7.12a), it is not difficult to see
how the predicted values showed considerable lack of convergence when using the direct
RBF as an expansion method. In other words, the predicted values are in high variation and
far from the targeted data. In contrast, Figure (7.12b), shows how well the model can predict
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when using the hybrid RBF expansion. The curve of the predicted values is very close to the
target values with an evident rate of convergence.
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Fig. 7.12 Targeted and predicted gasoline consumption for validation data of experiment 20:
(a) Direct RBF expansion (b) Hybrid RBF expansion.

Figure (7.13) confirms the capability of the model to fit the data. The plots of the
regression scatter shows how well the model captures the variation of the data. Figure (7.13a)
represents the regression scatter plot of the proposed model using the direct RBF expansion.
We can notice that nearly 22% of the variability (equal to R = 0.47357) is explained by the
model. This can be considered as a meager value of the coefficient of determination R2.
Whereas, nearly 95% of the variability (equal to R = 0.9727) is explained by the model using
the hybrid RBF expansion (Fig. 7.13b).
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Fig. 7.13 Regression scatter plot of the targeted and predicted gasoline consumption for
validation data of experiment 20: (a) Direct RBF expansion (b) Hybrid RBF expansion.
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7.3.4 Model Validation

This section illustrate alternative data sets that have been utilized to validate the TLS ap-
proach. A case study formed from a real-life problem of natural gas consumption forecasting
presented by [17]. The data used in this case study have been taken directly from their work.
The authors designed their ANFIS model to include some input variables which includes Gas
Price, GDP, Inflation Rate, Population, Unemployment Rate, and one output representing
Gas consumption.

They collected 36 samples of actual data per input. We used this data to evaluate the
effectiveness of the TLS approach. Analysing the original data showed that two data sets
contain outliers. The second input variable (GDP) contains 3 outliers, and the forth input
variable (Population) contain one outlier. We employed the TLS approach to mitigate the
existing outliers when generating the expanded data. The results showed an outstanding
improvement of almost 20% of the prediction accuracy when compared to the author’s
original results using the standard ANFIS model.

7.3.5 Discussions and Conclusions

This chapter illustrated a mathematical solution method to the outliers problem. We have
developed a robust outliers mitigation model that can help in accurately modelling data
containing noise. This model has been shown to provide a better fit for ANFIS optimization.
We have shown the difference between applying the RBFs directly as an interpolating
technique to expand the data, and the use of SLS and TLS as approximation expansion
techniques. The RBFs (Linear, Cubic, and Multiquadric) have been used as the basis
functions for all mentioned techniques. The real-life problem of predicting the consumption
of petroleum products introduced in Chapter (6) has been utilized as a test case for the second
proposed model in this chapter. As explained, the gasoline problem comes with four variables,
i.e. three inputs and one output. The data sets of the output and the first input variables were
identical to the original data provided in Chapter (6). In comparison, the data sets of the
second and third input variables were modified to include some outliers in order to investigate
the robustness of the proposed model. We decided to select one experiment from each ANFIS
validation model introduced in Chapter (6). A total of three experiments with three different
structures have been carried out and solved using two expansion techniques. Firstly, we used
the Direct RBF expansion to interpolate all data sets (including the ones containing outliers).
Secondly, we used a Hybrid RBF expansion, i.e. using Direct RBF interpolating when there
are no outliers and TLS-RBF approximation when there were outliers. By reviewing all the
discussion and results showed in this chapter, we can conclude the following:
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1. When the data have noise or outliers, interpolation is not the right choice for modelling.
In fact, applying the direct RBF to the noisy data showed an abysmal prediction
accuracy.

2. Standard least-squares (SLS) approximation can perform better than the interpolation
approach when the data contains outliers. However, the SLS fitted curves were notably
influenced by the outliers.

3. Transformed Least-Squares (TLS) showed an outstanding performance in mitigating
outliers when approximating a smoothness trend (linearly or non linearly) data set.

4. When the data is erratic, fluctuating in its nature, the TLS has failed to provide the
desired fit in modelling this type of data.

5. In all experiments, the results showed that the hybrid RBF has significantly outper-
formed the direct RBF when the data are noisy.

6. When care is taken, expanding the data using a more sophisticated model such as TLS,
the model can perform even better with an order of magnitude difference in its error
measures and prediction accuracy.



Chapter 8

ANFIS Optimization as a Fuzzy Expert
System: Proposed Model 3
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8.1 Introduction

The Encyclopedia Britannica defines an Expert System as:

"A computer program that uses artificial-intelligence methods to solve problems within
a specialized domain that ordinarily requires human expertise."

This chapter introduces a tool, developed by the author, for optimizing ANFIS. Based
on the definition above, it is sensible to define this as a Fuzzy Expert System (FES). It
is clear from the definition above that an expert system can be thought of as a computer
system that can simulate the human expert’s capability of decision-making. As a division
of Artificial Intelligence (AI), expert systems are utilized to solve complex problems by
applying inference and knowledge in addition to traditional coding procedures. In other
words, expert systems represent smart programs that use knowledge and reasoning to deal
with characterised problems that usually depend on human expertise for their solutions.
Accordingly, expert systems can consist of two subsystems, the Knowledge Base (KB) and
the inference engine. The rules and facts are to be represented by the knowledge base, while
the inference engine infers new facts by applying the rules into the existing facts [58] [71].

In contrast, when the problem under consideration contains uncertainty or subjectivity,
then the fuzzy logic is to be employed as an inference mechanism rather the Boolean
logic. In other words, the knowledge base of the system will be obtained depending on the
human operator’s knowledge which can be recorded in two forms, linguistic information and
numerical information. Therefore, it can be named as fuzzy knowledge base. Before the
emanation of neuro-fuzzy techniques, only the linguistic information was used in building
the fuzzy systems in most problems. Later on, with learning algorithms, the nero-fuzzy
approaches (such as ANFIS) has appeared. Thus, the numerical information represented by
the historical data (input-output data pairs) is to be used to refine the MFs systematically.
Mimicking a human expert using linguistic information combined with numerical data to
fine-tune the membership functions will result in the Fuzzy Expert System (FES). Thus, the
general form of the expert system become more specific as a fuzzy expert system [108] [134]
[135].

ANFIS models represent one of the effective models of fuzzy expert systems. It has
two main input categories, i.e. the numerical data sets and the fuzzy knowledge base. The
numerical data sets represent the historical data that can be collected from different sources.
While the fuzzy knowledge base (MF’s type and number) is to be obtained based on the
knowledge often provided by human experts.
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This means, ANFIS models are to be developed intuitively by human intervention.
Nonetheless, the knowledge base proposed by experts does not necessarily represents the
only one that can provide the best solution. For sure, there are several other combinations
of MFs (types and numbers) that may provide a better prediction performance of ANFIS.
Therefore, in this work, we aimed to proposed an Adaptive Neuro-Fuzzy Inference Expert
System (ANFIES) that can look at all the possible scenarios of the fuzzy knowledge bases.
This will give us the ability to find the best fuzzy knowledge base (MFs types and number
combinations) of the ANFIS inputs. Consequently, we gain the optimal prediction perfor-
mance. However, in this chapter, we are presenting a tool of solving ANFIS as a fuzzy expert
system rather than discussing the expert system approaches.

8.2 Development of Model 3

8.2.1 Proposed Fuzzy Expert System Model

In the previous two chapters (6 & 7) we introduced two proposed models. Each model
contains two main parts in its structure, i.e. the pre-processing (re-sampling) model at layer
0 and ANFIS procedures in layers (1 to 5) (see Figures 6.1 & 7.3). We have developed a data
expansion model and outlier mitigation model, respectively, as data optimization models.
These two models have been applied into three unique fuzzy knowledge base (MFs type and
number showed in Table 6.2) that been specified prior to the run of ANFIS. In this chapter,
we present a tool that complements what was previously achieved. We are proposing a model
that can obtain the optimal solution by investigating all the possible combinations of the
fuzzy knowledge base structures at layer 1, rather than using one specific structure.

In this section, we are presenting the development of the third proposed model. In
MATLAB, there are eleven membership functions that can be utilized for each input variable
as part of the ANFIS solving procedure (see Section 3.4.2). However, we intend to employ
five diversified MFs types out of the eleven MFs to examine the ANFIES. These MFs are the
Triangular (trimf), Trapezoidal (trabmf), Gaussian (gaussmf), Generalized Bell (gbellmf),
and Difference Sigmoidal (dsigmf).

Assume that we have an ANFIS model that contains (n) input variables and one output.
There are five types of MFs that can be assigned to each input variable (one at a time). Each
MF can be represented by 2, 3 or 4 intervals (number of MFs) for every single input variable.
Using all these MFs (types and number) will provide the total number of fuzzy knowledge
base combinations, i.e. (T KB).
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These combinations represent all possible fuzzy knowledge bases that can be used to
solve ANFIS models. Looking at Figure (8.1) which illustrates all the possible scenarios of
combinations that can be used as a KB for ANFIS. The total number of knowledge bases can
be created as follows:

T KB = K1 ×K2, (8.1)

where K1 represents the MF’s types combinations, and K2 is the MF’s number combinations.
K1 can be obtained by multiplying the total number of MF’s types (T MFtypes) used for each
input variable. It can be extracted using the following formula:

K1 =
n

∏
i=1

T MFtypesi (8.2)

K2 can be calculated by multiplying the total number of MFs intervals (T MFnum) used for
each MF in each input variable. The following formula can be used to find K2:

K2 =
n

∏
i=1

T MFnumi (8.3)

In this chapter, all equations and derived expressions have been developed by the author.
Moreover, the application tool presented in this chapter has been entirely created from scratch
using the MATLAB app designer.

For example, assume that we have an ANFIS model that contains three input variables,
and we are using two types of MFs (i,e. trimf and trapmf) for the first and second input
variables, respectively. While the third input variable will use three types of MFs (i,e. trimf,
trapmf and gaussmf). Thus, the total number of used types of MFs will be as follows:

K1 =
3

∏
i=1

T MFtypesi = 2×2×3 = 12

This will provide a (12×3) MFtype matrix, as highlighted in Table (8.1). In contrast, each
type of MF in each input variable can be represented by two options (i.e. either 2 or 3 MFs
number for each type in each input variable). For instance, if we choose the (trimf) as the
type of MF for the first input variable, then it can be either ( 2 trimfs) or (3 trimfs). In order
to find the total combination of MFs number, we use the following:

K2 =
3

∏
i=1

T MFnumi = 2×2×2 = 8
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Fig. 8.1 KB combinations of proposed expert ANFIS.

This will provide a (3× 8) MFnum matrix, as highlighted in Table (8.1). The total fuzzy
knowledge bases (T KB) that will result from the combinations of MFtype and MFnum can be
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calculated as follows:
T KB = K1 ×K2 = 12×8 = 96

Table (8.1) shows all the fuzzy knowledge base combinations of the previous example. Each
KB j listed in this table (where j = 1 to 96) is composed of two sets of information. Thus, a
set of types of MFs (located at the MFtype matrix) is to be combined with a corresponding
set of number of MF (located at the MFnum matrix). For instance, the structure of KB54

(highlighted) results from the intersection of the seventh combination of the MFtype matrix
and the sixth combination of the MFnum matrix. This means when we are at KB54 the fuzzy
knowledge base will compose of "3 trapmf" for input 1, "2 trimf" for input 2, and "3 trimf"
for input 3. And so forth.

These fuzzy knowledge bases are to be employed by the ANFIES to represent the main
structure of layer (1) at all the ANFIS models. In other words, each knowledge base is unique,
and represents one ANFIS model out of 96 models. All these models are to be solved and
compared to each other via its results in order to find the best ANFIS that outperforms all
other models.

Table 8.1 Example of KB combination.

MFnum Matrix

Comb. 1 2 3 4 5 6 7 8

Input1 2 MFs 2 MFs 2 MFs 2 MFs 3 MFs 3 MFs 3 MFs 3 MFs

Input2 2 MFs 2 MFs 3 MFs 3 MFs 2 MFs 2 MFs 3 MFs 3 MFs

MFtype Matrix Input3 2 MFs 3 MFs 2 MFs 3 MFs 2 MFs 3 MFs 2 MFs 3 MFs

Comb. Input 1 Input 2 Input 3

1 trimf trimf trimf KB1 KB2 KB3 KB4 KB5 KB6 KB7 KB8

2 trimf trimf trapmf KB9 KB10 KB11 KB12 KB13 KB14 KB15 KB16

3 trimf trimf gaussmf KB17 KB18 KB19 KB20 KB21 KB22 KB23 KB24

4 trimf trapmf trimf KB25 KB26 KB27 KB28 KB29 KB30 KB31 KB32

5 trimf trapmf trapmf KB33 KB34 KB35 KB36 KB37 KB38 KB39 KB40

6 trimf trapmf gaussmf KB41 KB42 KB43 KB44 KB45 KB46 KB47 KB48

7 trapmf trimf trimf KB49 KB50 KB51 KB52 KB53 KB54 KB55 KB56

8 trapmf trimf trapmf KB57 KB58 KB59 KB60 KB61 KB62 KB63 KB64

9 trapmf trimf gaussmf KB65 KB66 KB67 KB68 KB69 KB70 KB71 KB72

10 trapmf trapmf trimf KB73 KB74 KB75 KB76 KB77 KB78 KB79 KB80

11 trapmf trapmf trapmf KB81 KB82 KB83 KB84 KB85 KB86 KB87 KB88

12 trapmf trapmf gaussmf KB89 KB90 KB91 KB92 KB93 KB94 KB95 KB96
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8.2.2 Development of a Tool for Optimizing the Proposed Model

A tool for optimization has been programmed using MATLAB in order to get better perfor-
mance. We designed and developed a specific application that gives the user an intuitive
input-output environment. Figure (8.2) illustrates the coding flowchart of the proposed fuzzy
expert system. It shows the sequence of all the interactive procedures for the developed tool.
These procedures include all the inputs, interactive selection options, solving process, and
outputs. Thus,

• Inputs: represented by:

– Input-output data sets.

– Training- testing data splitting (numbers or percentages).

– Number of target extended data.

– Number of RBF centres when using TLS.

– Modified Multiquadric RBF curvature parameters.

– Number of designated epochs.

• Interactive selection options: represented by:

– Selection of the data range (Actual, scaled and expanded).

– Selection of scaling method (Chebyshev or Zero-mean).

– Selection of expansion method ((Direct RBF or TLS).

– Selection of the basis function (Linear RBF, Cubic RBF, or Modified Multiquadric
RBF).

– Selection of MF’s types and number of each input.

• Solving process represented by:

– Expansion process.

– Scaling process.

– Generating MF’s types matrices.

– Generating MF’s number matrices.

– Generating fuzzy knowledge base matrix.

– Performing ANFIS solving algorithms.

– Finding optimal solution.
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Fig. 8.2 Flowchart of the proposed expert ANFIS.

• Outputs: represented by:

– Total number of tested models.

– Optimal ANFIS model (best fuzzy knowledge base).

– Optimal epoch number.

– Minimum RMSE and normalized RMSE for the training and testing fitting data.
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– Plotting of the original data, expanded data (Direct RBF and TLS), predicted
data, initial and trained membership functions, errors, regressions, 3D surfaces,
and histograms.

The proposed tool of the expert ANFIS has been developed by using the App Designer
in MATLAB. It provides a friendly user interface application which makes dealing with
the expert system easier and convenient. The application has been built with an intelligent
interactive environment which allows it to change the interface components automatically
according to the number of inputs extracted from the entered data sets. Figure (8.3) shows a
screenshot of the designed application. In order to show all components with its full options,
we have chosen data set samples containing six inputs and one output. Therefore, it can
be noticed that six input panels, one for each input, appears in Figure (8.3). The results
of solving the model will appear in the same interface of the application. It will show the
evaluation error criteria and the fitting plot for both training and testing data sets.
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8.3 Implementation of Model 3

8.3.1 Expert System Solving Procedures

In this section, we intend to validate our proposed ANFIES using the gasoline prediction
problem introduced in Chapter (6). The provided data sets showed in Section (6.3.3) will
be used as the input-output data for the ANFIES. These data represent three input variables
and one output variable (see Section 6.3.2). These data sets included thirty-six data samples
(i.e. the monthly recorded values of three years) with no outliers. In other words, the number
of data samples is small and will be less than the number of total parameters (premise and
consequent) in all cases of ANFIS’s knowledge base. Therefore, the DRBF (linear, Cubic,
and Modified Multiquadriq) will be used to expand the data. The expanded data are to be in
the forms of weekly (156 samples) or daily (1095 samples) to replace the monthly samples.
These expansion methods are to be combined with two scaling methods (i.e. Chebyshev and
Zero-mean) to solve ANFIES. Combining all these methods represents the pre-processing
(re-sampling) model (layer 0 at Fig. 7.3). Using all the possible combinations of the previous
methods to process the data sets into dual time frames (i.e. weekly and daily) will produce
twelve data structures. Each data structure will be solved individually using our proposed
ANFIES.

As mentioned in the previous section, the fuzzy knowledge base matrix is to be built
using either two, three or four MFs (3 numbers) for each MF type out of (5 types). These
MFs types and numbers are to be used for each input variable individually. The maximum
number of MFs types combinations can be extracted using Equation (8.2) as follows:

K1 =
3

∏
i=1

T MFtypesi = 5×5×5 = 125.

This will produce a (125×3) MFtype matrix in the case when the model uses all five MFs in
each input. In contrast, The maximum possible MFnum combinations can be calculated using
Equation (8.3) as follows:

K2 =
3

∏
i=1

T MFnumi = 3×3×3 = 27.

This will produce a (3×27) MFnum matrix. Consequently, the fuzzy knowledge base will be
in the form of (125×27) matrix, and the total number of knowledge bases can be calculated
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using Equation (8.1) as follows:

T KB = K1 ×K2 = 125×27 = 3375.

This represents the maximum number of fuzzy knowledge bases that can be extracted if all
MFtype and MFnum are applied to all inputs. These fuzzy knowledge bases are to be used to
solve the proposed ANFIES for each data structure.

8.3.2 Empirical Results

In this section, we are presenting the results of solving the gasoline prediction problem
using the third proposed ANFIES model. As mentioned, this problem has three inputs, i.e.
capacity, temperature, and the number of cars as well as one output (consumption). We
aim to use the proposed ANFIES model to find the best fuzzy knowledge base among all
the possible knowledge bases. In other words, we intend to find the optimal ANFIS model,
which provides the minimum prediction errors. The ANFIES will be applied to all twelve
data structures resulting from combining the scaling and expansion methods. This will allow
us to validate the robustness of our model by applying it to various forms of data sets.

Fig. 8.4 Screen shot for the optimization tool after being run.
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By way of explanation, assume that we are solving one of the data structures mentioned
in the previous section using our proposed application. This will allow us to select various
combinations of MFs types and numbers (usually selecting all). Thus, the application will
extract the optimal solution by comparing the results of different ANFISs. Figure (8.4) shows
a screenshot of the created application. It can be noticed how the application’s interface
has shown the tick-box options for three inputs only. This is due to the interactive interface
modifying the panel’s components automatically according to the input data sets. In contrast,
the data structure shown in Figure (8.4) combines the Chebyshev scaling and the modified
Multiquadric expansion with (ρ1 = 0.01 & ρ1 = 0.2). The data are to be expanded into daily
samples (1095). The maximum number of epochs was chosen to be up to 100 epochs. The
results of solving this ANFIES using the previous options took 330 minutes to obtain all
possible models and achieves the optimal ANFIS.

Similarly, we intend to apply our proposed ANFIES to all twelve data structure mentioned.
Table (8.2) illustrates the results of solving all data structures using the direct RBF as an
expansion method. All the runs were using 100 epochs. The first six rows show the results of
the weekly expanded data followed by the daily data. As discussed, we are testing a number
of different data sets (data structures). That means each data structure will have its own
properties and characteristics. Therefore, we will not follow the comparison strategy between
the solved models when analysing the overall results.

It is not difficult to see that the proposed ANFIES has provided impressive results in
all cases. Looking at the NRMSE, we can find that all error values were less than 0.08.
In fact, in some cases, the NRMSE reached 0.05 or even less. In contrast, the coefficient
of determination R2 values showed how well the model could capture the variation in the
underlying data. Again, in all cases, the results of R2 indicates superior fitting performance.
The performance values ranged from 84% to 97%. Nearly 50% of the tested models showed a
performance value of more than 94%. Overall, a total of (37,800) models have been tested in
order to find the optimal ANFIS model for different scenarios of data scaling and expansion
of the gasoline problem.

Figures (8.5 to 8.16) shows the plots of all cases. Each figure contains two sub-figures.
From the left, we have a box plot for all elements of the RMSE matrix for each model. Then
we have the plot of the minimum RMSEs of all MF types combinations on the right. Here
we used a box plot to show the range of errors that accompanies each model. The y-axis
represents the 27 values of RMSEs corresponding to each MF types combination in the
x-axis. From the results of each case, we can indicate the minimum RMSE of each model.
These RMSEs were extracted and plotted as the second plot in each figure.
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Table 8.2 Expert ANFIS results.

Data Structure

Tested

KB of the Optimal Models

NRMSE R2Set

Data Expansion

Scale

Input 1 Input 2 Input 3

Scope Samples Method RBF KBs Type Num. Type Num. Type Num.

1 Weekly 156 Direct Lin Ch 2,700 trimf 3 dsigmf 4 gaussmf 3 0.0633 94.47%

2 Weekly 156 Direct Cub Ch 2,700 trimf 3 dsigmf 4 dsigmf 3 0.0723 91.99%

3 Weekly 156 Direct Mul Ch 2,700 trimf 4 dsigmf 3 gbellmf 3 0.0506 97.06%

4 Weekly 156 Direct Lin Z-s 3,375 gbellmf 4 gaussmf 4 trimf 3 0.0688 89.26%

5 Weekly 156 Direct Cub Z-s 3,375 trimf 3 dsigmf 4 trimf 3 0.0739 91.03%

6 Weekly 156 Direct Mul Z-s 3,375 gaussmf 3 gbellmf 4 gaussmf 2 0.0580 94.98%

7 Daily 1095 Direct Lin Ch 3,375 dsigmf 2 gbellmf 4 gaussmf 4 0.0549 94.18%

8 Daily 1095 Direct Cub Ch 2,700 trimf 4 dsigmf 4 trapmf 3 0.0680 92.56%

9 Daily 1095 Direct Mul Ch 3,375 gaussmf 4 gaussmf 4 trapmf 3 0.0498 96.04%

10 Daily 1095 Direct Lin Z-s 3,375 gbellmf 3 gaussmf 3 trapmf 3 0.0719 84.83%

11 Daily 1095 Direct Cub Z-s 3,375 gbellmf 2 gbellmf 4 trapmf 3 0.0712 92.01%

12 Daily 1095 Direct Mul Z-s 3,375 gaussmf 3 gaussmf 4 trimf 3 0.0570 96.07%
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(a) Box-plot of the results of 2700 ANFIS models.
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Fig. 8.5 Expert ANFIS outputs of the data structure number (1) in Table (8.2).
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(a) Box-plot of the results of 2700 ANFIS models.
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Fig. 8.6 Expert ANFIS outputs of the data structure number (2) in Table (8.2).
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(a) Box-plot of the results of 2700 ANFIS models.
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Fig. 8.7 Expert ANFIS outputs of the data structure number (3) in Table (8.2).



194 ANFIS Optimization as a Fuzzy Expert System: Proposed Model 3

1 25 50 75 100 125

MFs type (125 Models)

0

2

4

6

8

10

R
M

S
E

s
 o

f 
2

7
 m

o
d

e
ls

(c
o

m
b

in
a

ti
o

n
 o

f 
M

F
s
 n

u
m

.) Minimum RMSE

(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.8 Expert ANFIS outputs of the data structure number (4) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.9 Expert ANFIS outputs of the data structure number (5) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.10 Expert ANFIS outputs of the data structure number (6) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.11 Expert ANFIS outputs of the data structure number (7) in Table (8.2).
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(a) Box-plot of the results of 2700 ANFIS models.
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Fig. 8.12 Expert ANFIS outputs of the data structure number (8) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.13 Expert ANFIS outputs of the data structure number (9) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.14 Expert ANFIS outputs of the data structure number (10) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.15 Expert ANFIS outputs of the data structure number (11) in Table (8.2).
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(a) Box-plot of the results of 3375 ANFIS models.
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Fig. 8.16 Expert ANFIS outputs of the data structure number (12) in Table (8.2).
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8.3.3 Discussions and Conclusions

This chapter illustrated the development process of the proposed expert ANFIS model and the
MATLAB application tool that been constricted to optimize the prediction performance of
ANFIS models. We proposed an ANFIES as a fuzzy expert system to solve causal forecasting
problems. The proposed model works by investigating all available fuzzy knowledge base
combinations in order to find the best model and optimal solution. In other words, we
introduced a new mechanism that examines all possible MFs combinations (types and
numbers) for known data sets rather than using one specific MF’s structure. This can help
the experts to overcome the gaps that may occur at the design stage of the knowledge base.

In order to show (validate) the efficiency of our proposed expert ANFIS model, we
employed five MFs types out of the eleven MFs available in MATLAB (see section 3.4.2).
Each one of the utilized MF has been represented by three different intervals (i.e. either 2,3,
or 4 MFs) at a time. These MF’s types and numbers are to be assigned to all input variables
of ANFIS during the solving process. The duty of the proposed expert system, is to examine
these combinations, and provide the best one.

At this stage, We have limited the ANFIS’s knowledge bases structure into specific
types and numbers of the MFs in order to reduce the model complexity to some extend.
In other words, simplifying the model complexity will result in reducing the mathematical
computations as well as the application running time. Consequently, we examined the
mechanism of the proposed ANFIES model using bounded knowledge bases. However, the
rest of the MFs types can be added in the future work. The gasoline prediction problem in
Chapter (6) has been used as a test case for the third proposed model in this chapter.

By proposing this expert system and designing this application, we are trying to provide
the researchers with various options that can be used to solve ANFIS problems. In fact, we
know that each problem has its own characteristics, variables and data, which may be unique
and not similar to any other problem. Therefore, we seek to obtain a tool that provides the
researchers with various mathematically robust approaches in order to deal with different
types of problems. By reviewing all the discussion and results shown in this chapter, we can
conclude the following:

1. Using the proposed ANFIES model has contributed to obtaining better results. This
has been achieved by investigating all possible MFs combinations in order to reach the
best knowledge base; and provides the optimal ANFIS prediction model.

2. Solving time is different from one problem to another. It depends on various factors
that can affect the timings. For instance, the data type, the data size, number of inputs,
and the knowledge base structure (MFs types and numbers).
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In this chapter, we are introducing the thesis conclusions and the main research contribu-
tions. After that, the future work related to the research area can be concluded and given in
order of priority.

9.1 Conclusions

In this work, we have addressed the problem of enhancing the prediction accuracy of a non-
standardized operational research optimization model for solving the aggregate production
planning problem. The main novelty and contribution of the present work is to propose
methods to solve a complex prediction model in circumstances where the data are scarce,
poorly scaled, and potentially noisy. Moreover, the complexity of the model can raise due to
the fuzziness, uncertainty, fluctuation, and non-linearity extant in the problem nature. This
research focused on proposing a mathematical model formed from robust pre-processing data
techniques such as interpolation, approximation, and scaling, combined with expert ANFIS.

In chapter (6) we demonstrated novel modifications to the interpolation and approximation
approaches in dealing with data scarcity for ANFIS problems. We developed a combined
model that can deal with the rarity of data in order to improve prediction accuracy and model
performance. This has been achieved by adding a pre-processing layer to ANFIS in order to
replace the original discrete data by carefully optimised continuous data. The pre-processing
layer composing the expansion and scaling models works sequentially. We used radial basis
function (RBF) interpolation approaches (such as, linear, Cubic, and Multiquadric) as a data
expansion model. Moreover, we used Chebyshev intervals and zero mean normalisation as
scaling methods.

We have seen that when data is scarce, fitting continuous models to the data and re-
sampling can provide richer information on which to build a model. In presenting this
approach, we chose radial basis functions as our fitting models due to their sound theoretical
properties; guaranteeing solvability, preserving the shape of the data, and having minimum
variance to reduce over-fitting. In applying this technique we highlighted difficulties in fitting
data near boundaries where over-smoothing can be a significant problem - particularly at
turning points. We overcame this problem by modifying the multiquadric basis function to
allow shape-preserving near-interpolation to take place within the convex hull of the original
data set.

We have proposed three different approaches to process the data expansion providing
more flexibility in determining the closest expansion pattern to the original problem. For
instance, if we are dealing with a problem that needs the expanded data to be shape-preserving,
then we use the linear approximation. In this case, the original data points are to be connected
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by a straight line. In other words, the linear expansion can be considered as the best shape-
preserving function because it appears in the form of straight lines that passes through every
single point of the original data when it has applied. This method should be adopted when
no former knowledge about the curvature of the underlying data is known.

When using multiquadric RBFs, we were able to reduce the amount of over-smoothing at
turning points; which we demonstrated can cause significant problems. We noted, however,
that this came at a cost of accurately interpolating the data. The increased control needed
over the fitting function meant that we could produce only near-interpolation. That said,
the control of the shape parameters could be tweaked to balance the smoothness properties
with the fidelity of the fitting function. The cubic RBF interpolation showed considerable
over-smoothing at the turning points, though it still passed through every point of the original
data while interpolating. According to the nature of the problem under consideration, a
trade-off can take place between either using a multiquadric RBF, which provides smooth
near interpolation without over fitting; or applying cubic RBF that gives exact interpolation
with some over-smoothing. Though it could be argued that both cubic RBF and multiquadric
RBF can be used to fit interpolating curves, the cubic RBF is proven to have minimum
variance properties which make it the most desirable continuous interpolating curve to use.

A further consideration in this chapter was to explore the impact of two different types of
data scaling method on the accuracy of the final prediction model. We have found, on many
occasions, significant problems when trying to accurately train fuzzy systems on poorly
scaled data. Often, data can be drawn from a range of distributions where the data values
can vary considerably between sets. We have seen from our test case, for example, how this
can be problematic when training models to interpret data that have significantly different
orders of magnitude. In fact, for the oil/fuel industry data, we were not able to train a
satisfactory model without first normalizing the data. This was evident in our case study
where the difference between temperature and the number of cars was in the order of 105.
Most researchers believe that normalizing (or standardizing) the data can bring significant
improvements in the training stages, and so we investigated two ways that this might be
achieved. Though many pieces of research stated that normalization had taken place, few
actually demonstrated its impact on the accuracy of the final models. Therefore, in this work,
we looked at Chebyshev scaling and zero-mean scaling (z-scores), specifically.

In chapter (7), we introduced our second proposed pre-processing data model represented
by the use of Transformed Least Squares (TLS) as an outlier and noise mitigation solution
method. We have classified the noise into two categories, i.e. Gaussian noise (modest or
inconsiderable noise) and outliers (large discrete deviations from the underlying trend); in
some cases, it can be a mixture of both. We were conscious of the great difficulties that can
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arise from modelling with noisy data sets, which represents the biggest problem that can
be posed in the data expansion stage of the modelling process. Many artificial intelligence
approaches are greatly affected by noise and are often ill-equipped to deal with it. Least
squares is known to be effective if the data is Gaussain in nature alone, but few can cope
with outliers or even a mixture of both. It was therefore necessary to deal with the noisy data
problem prior to the ANFIS optimisation stages for the predictions. Gaussian noise can often
be dealt with very effectively by relaxing the interpolation conditions and choosing a subset
of the data as RBF centres (possibly using k-means). This forces the models to approximate,
rather than interpolate the data; following a standard least-squares approach to determine the
fitting coefficients.

By relaxing the interpolation requirements of the fitting function, an approximating
function can often smooth out the effect of the noise and pick up the underlying trend reliably.
However, dealing with outliers is a greater challenge. For this reason, we took the opportunity
to demonstrate the implementation of a method for mitigating the effect of outliers on the
fitting curve by asymptotically bounding their contribution to the error function using a
modified least-squares approach. We have found that using the RBFs (linear, Cubic, and
Multiquadric) as the basis for our approximation functions for the TLS approach, can be an
effective method in dealing with mixed noise distributions.

Additionally, in chapter (8), we developed An Adaptive Neuro-Fuzzy Inference Expert
System (ANFIES) that can simulate all possible solutions inferred from different fuzzy
knowledge base structures (MF types and numbers). We found that by letting the ANFIES
search for the best ANFIS model, it provided superior results than the use of expert knowledge
alone. Furthermore, we have developed an application tool using the MATLAB App Designer
in order to provide a comprehensive and convenient solution environment for users which
allows them to choose from various options, which includes all proposed models (i.e.,
pre-processing and expert system).

It is not the intention of this research to claim that ANFIS is the best approach to model
this kind of problem. Nor are we saying that this approach to improving ANFIS modelling
for scarce/sparse or poorly scaled data is better than any other approach. However, we are
claiming that there is a need to derive useful models, for a vast range of problems, for which
very little data is available and that this is a real problem not adequately addressed in the
literature.

This work has clearly shown that where the quantity and scale of data is a problem, there
are effective ways of dealing with it and the problem presented in this research helps us to
demonstrate these methods. Even if the expansion method is a simple linear interpolation of
the data, then significant improvement can be found. We believe that the approaches in this
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thesis can easily be applied to similar problems encountered in artificial neural networks -
particularly multi-layer perceptron networks and radial basis function networks.

9.2 Limitations of the Study

It is important to recognise that there are some assumptions and limitations associated with
this work. Firstly, the data expansion methods will not fill gaps where data is missing. For
example, if we were using data expansion to model a function f (x) on a given range of x,
but where data was missing for a large portion of the abscissa domain, we could not hope
to recover the missing trend accurately. However, due to the properties of the cubic RBF,
we can have confidence that the curve will remain fairly flat over the region of missing data.
This would at least ensure boundedness on the reproduced values. A further limitation, when
considering the TLS method for mitigating outliers is that this will only be effective where
clear outliers can be detected. Where the underlying trend is naturally fluctuating or chaotic,
the TLS curve may attempt to remove or smooth out portions of curve that are of interest and
contribute to the prediction in a valid away. Also, with regard to the constructed application
tool, when the model complexity increases, the solution times can take considerably longer
due to the complex calculations and optimization process of the ANFIS algorithm. It can also
be the case that solution times are not consistent between similar looking problems. Many
factors can affect this such as: data type, data size, number of inputs, and the knowledge
base structure (MFs types and numbers). Finally, all of the algorithms developed in this
research make extensive use of Matlab’s ANFIS library. The Matlab language that contains
the ANFIS solver algorithm, i.e., the FIS generating functions (genfis), are not available
yet for other applications such as Python. This has proved difficult when trying to extend
the functionality of the system to incorporate techniques such as k-fold cross validation for
example.

9.3 Future Work

In this work, we introduced a comprehensive, novel solution method for a particular problem,
i.e., the impact of data scarcity and outliers in solving neuro-fuzzy problems; which represents
a significant and challenging problem in other areas of optimization problems as well. We
believe that what we have presented in this work represents the first step in dealing with
such problems. However, different ideas, modifications, examination, and experiments have
been left for the future due to lack of time. From our point of view, we can deliver the future
development of the proposed model in five ways.
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1. We are planning to investigate the improvement in performance that we may gain by
employing different solution techniques and learning algorithms. This can be achieved
by extending our proposed model. One of these techniques is k-fold cross-validation.
This technique works on dividing the data sets into k subsets (so-called folds) that are
equal in size. One set is to be considered as the validation subset, and the remaining
(k-1) is to be the training subsets in which to interchange iteratively. This will allow
the ANFIS model to process all the given data sets as training and validation subsets
sequentially. In other words, the k-fold cross-validation technique may improve the
ANFIS performance, and make it converge more reliably by flipping the training and
testing subsets; which gives ANFIS the ability to train with all given data sets.

However, in order to facilitate this additional work it will be necessary to consider
developing the ANFIS solution in a different programming language. The reason for
this is due to the way in which Matlab’s ANFIS functions work. It is not currently
possible to restart the training process from a pre-trained parameter set. The current
Matlab implementation requires an initial FIS to be created before ANFIS optimises
the model on the given data. However, the implementation of cross-validation requires
the parameter set found from a given fold to be fed into the start of the next fold, hence
building on the quality of the fit to the previous data set. Re-initialising the parameter
set for each fold would defeat the object. As there was not sufficient time to redeploy
this algorithm in a different programming language, it was not possible to implement
cross-validation in the current study.

We have proposed an initial structure for the combined novel ANFIS-Cross-Validation
model to be developed under the future framework. We did not have the opportunity
to add it to this work due to the time limitation. Figure (9.1) illustrates the general
structure of the future proposed model.

2. We may extend the proposed expert ANFIS model, and the created application tool, in
the future work by including several approaches, algorithms, and tools. For example,
the ANFIS generation process can employ the fuzzy c-means and subtractive clustering
algorithms in addition to the grid partition algorithm used in this work. Furthermore,
the Simulink software can be combined with our MATLAB App-designer to produce a
comprehensive solution method and predictor. We believe that this will improve the
capabilities of the application tool as well as the proposed model.

3. The RBFs data expansion models are still believed to be promising in the future study
due to their features and properties of simplicity, flexibility, and robustness. Therefore,
it could be interesting to use the pre-processing data expansion models (i.e. the direct
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Fig. 9.1 Proposed model of using the K-Fold cross validation for ANFIS.

RBF interpolation and the TLS-RBF approximation) with other applications than
ANFIS, where the data quality and quantity represents a key-factor of the optimization
process. Multi-layer perceptrons and support vector machine regression are particular
examples that could be considered.

4. As part of the future developments, the knowledge base options (i.e. MFs types and
number) can be improved by adding more MF types to the application tool rather
than using five types only. That will provide a broader range of input options, and
could result in a more convenient solving environment to achieve more comprehensive
outcomes.

5. Finally, we may explore the effectiveness of feeding the proposed system with a differ-
ent range of input data and evaluating it by using the sensitivity analysis techniques.
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Additionally, we can investigate the robustness of our proposed model by applying it
into different domains.
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