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Abstract

The uncertainty found in many industrialization systems poses a significant challenge; partic-
ularly in modelling production planning and optimizing manufacturing flow. In aggregate
production planning, a key requirement is an ability to accurately predict demand from a
range of influencing factors, such as consumption for example. Accurately building such
causal models can be problematic if significant uncertainties are present, such as when
the data are fuzzy, uncertain, fluctuate and are non-linear. Al models, such as Adaptive
Neuro-Fuzzy Inference Systems (ANFIS), can cope with this better than most but even these
well-established approaches fail if the data is scarce, poorly scaled and noisy.

ANFIS is a combination of two approaches; Sugeno-type Fuzzy Inference System (FIS)
and Artificial Neural Networks (ANN). Two sets of parameters are required to define the
model: premise parameters and consequent parameters. Together, they ensure that the correct
number and shape of membership functions are used and combined to produce reliable
outputs. However, optimally determining values for these parameters can only happen if
there are enough data samples representing the problem space to ensure that the method can
converge. Mitigation strategies are suggested in the literature, such as fixing the premise
parameters to avoid over-fitting, but, for many practitioners, this is not an adequate solution,
as their expertise lies in the application domain, not in the Al domain.

The work presented here is motivated by a real-world challenge in modelling and pre-
dicting demand for the gasoline industry in Iraq, an application where both the quality and
quantity of the training data can significantly affect prediction accuracy. To overcome data
scarcity, we propose novel data expansion algorithms that are able to augment the original
data with new samples drawn from the same distribution. By using a combination of carefully
chosen and suitably modified radial basis function models, we show how robust methods can
overcome problems of over-smoothing at boundary values and turning points. We further
show how transformed least-squares (TLS) approximation of the data can be constructed to
asymptotically bound the effect of outliers to enable accurate data expansion to take place.
Though the problem of scaling/normalization is well understood in some Al applications,
we assess the impact on model accuracy for two specific scaling techniques. By comparing
and contrasting a range of data scaling and data expansion methods, we can evaluate their

effectiveness in reducing prediction error.
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Throughout this work, the various methods are explained and expanded upon using the
case study drawn from the oil and gas industry in Iraq which focuses on the accurate prediction
of yearly gasoline consumption. This case study, and others are used to demonstrate,
empirically, the effectiveness of the approaches presented when compared to current state of
the art. Finally, we present a tool developed in Matlab to allow practitioners to experiment
with all methods and options presented in this work.
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1.1 Introduction

Planning can be considered as one of the most important factors in developing enterprises.
Production planning and optimising the manufacturing flow represents an essential compo-
nent in the planning process. It can balance the available resources and capacities from one
side, with the demand or consumption from the other side; to give an idea to the management
as to what quantity of materials and other resources are to be procured and when. Opera-
tional Research (OR) techniques can be considered as one of the effective tools in solving
production planning problems [51, 138].

Rivett [110], classified seven basic structures of OR models. He showed that, in most
cases, solving a real-life problem can not be achieved by using these seven standard OR
approaches singly. Taha [128], stated that there is no one comprehensive approach that can
solve all mathematical models. He said, "The complexity and type of any mathematical
model dictates the nature of the solution method". Therefore, modelling real-world problems
represents a considerable challenge. The modellers have to deal with a process that may
contain various measurements. The main challenge is that when the problem is affected by
human behaviours. In this case, the explicit (standard) mathematical models may fail to
solve the real-life problems. In other words, if the standard OR mathematical models are
apt to solve the resulting model, then the available algorithms can be used. Otherwise, if
the mathematical relationships of the resulting model are too complex, then the modellers
may have to use the simulation and inference approaches to solve the problem. In fact, the
majority of real-life problems usually contain varying degrees of approximation [129]. In
most cases, modelling a real-life problem needs to combine various approaches, rather than
use one specific technique alone. This means obtaining a good optimized model will be more
likely to use a combination of OR algorithms as well as other approaches. In this case, it can
be called as combined optimization techniques.

As a matter of fact, most real-world problems usually contain several types of decision
variables. Some variables can be measured, and others need to be estimated. However,
building optimized planning models requires accurate input data. Therefore, the model
builder has to take into account how to find the best method of predicting and estimating
these input variables if needed. For instance, aggregate planning is one of the production
planning methods that can be solved using the OR’s mathematical models, such as linear
programming, to provide decision-makers with an overall plan. It has been applied mainly
to the production field, called Aggregate Production Planning (APP). The APP shows
how the capacity (production, and inventory), resources (workforce, subcontracting, and
facilities), and policies (hiring/firing, back-orders, and overtime) can match the required
demand/consumption at the lowest cost [93]. Figure (1.1) shows how the capacities, resources,
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policies and forecasting demand/consumption should be processed into operational research
mathematical tools to provide the APP. It can be noticed that one of the input variables, i.e.
demand/consumption, has to be estimated. The prediction of demand/consumption can be
considered as one of the most important affecting factors in different fields of industrial and
production planning. However, this can only be possible if the accuracy of the predicting
model is reliable. Which means, the efficacy of a production planning model depends on the
accuracy of the prediction model [88].

Forecasted
Demand or

Production Consumption
C iti
Inventory > apacities 1

Workforce OR
A
Mathematical || ggregate
Planning

Programming

Subcontractors Resources

Facilities
Hiring/Firing
Backorders Polices

Overtime

Fig. 1.1 Aggregate production planning operational activities.

Finding a suitable forecasting method that gives an accurate consumption prediction
represents an important factor in planning. Conventionally, there are several reliable statistical
forecasting approaches that are available. Generally, they are classified into qualitative and
quantitative techniques [13]. Qualitative forecasting methods are used when relying on expert
judgement and opinion to develop forecasts. It can be considered as an appropriate approach
when the historical data, for the forecasted variables are rare or not applicable. Quantitative
methods can be applied when the historical data is available, quantified, and reflective of
the future [11]. The main concern, at this stage, is represented by the rise in complexity
of the prediction model. For example, if the data contains fuzziness, uncertainty, and is
fluctuating in its nature; furthermore, there is the possibility of scarcity and significant noise
in the data. Other issues arise concerning the factors that affect consumption. Some factors
can be specified using fuzzy or vague concepts. All these can affect the model and make it
difficult for the traditional forecasting approaches to provide the desired accuracy.

Artificial Intelligence (Al) techniques, such as Adaptive Neuro-Fuzzy Inference System
(ANFIS), can be used as an effective prediction technique, which can provide significant
improvement when compared to the traditional forecasting methods. ANFIS can be specified

as one of the best prediction approaches that use a combination of neural networks and the
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fuzzy inference system algorithms. There are two main advantages to using ANFIS. Firstly,
the ability to deal with fuzziness and uncertainty. The second is the capability of this system
for performing parallel computations as well as its ability to simulate a nonlinear system that
is hard to characterize using traditional forecasting models [166].

The motivation for the current research has come from a problem posed by the Iraqi
Oil Industry. Here, they have a need to accurately predict oil consumption as part of an
aggregate production planning (APP) process. However, they are faced with a number of
challenges. The data that they use to guide their understanding of demand is uncertain. For
example, they are aware that consumption is affected by the number of cars on the road.
They are also aware that as the weather changes throughout the year, so does demand for
gasoline. Consumption, in this context, is a complex value dependent not only on those
factors affecting demand, but also on the capacity of gasoline that can be physically produced.
Further exploration of this problem shows that there is limited data available on which to
develop accurate models for prediction. additionally, as data is often recorded manually,
there are questions raised regarding the accuracy of the data and it is not uncommon to see
outliers present in the data set that can easily impact on the accuracy of the prediction models.
Finding a robust solution to this problem has focused the research that will follow and has
motivated the various approaches and techniques developed. However, further case studies
have also been used to attest to the wider applicability of the proposed solutions.

In this work, we are proposing a range of models that can help to overcome the problems
of forecasting within fuzzy environments, as well as dealing with the effects of scarce and
noisy data. This research will follow the form of non-standardized optimized models, formed
from a combination of ANFIS that works in parallel with the OR’s mathematical models in
order to solve the APP problem. The thesis structure includes 9 chapters, classified into four

parts. Figure (1.2) demonstrate a summary diagram of this structure.
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1.2 Research Questions

This work will contribute both theoretically and empirically to an enhanced understanding of
the solution methods that can be combined to optimize ANFIS as a prediction model. The
following questions have been raised as a result of notable gaps in the literature relating to

this problem:

1. What is the impact of data scarcity and outliers on the Adaptive Neuro-Fuzzy Inference
System (ANFIS) optimization?

2. To what extent does the model complexity versus data sample size pose a significant,

practical problem?

3. How can reliable data augmentation methods, such as Radial Basis Functions (Linear,
Cubic, and modified Multiquadric), be constructed and used as robust continuous

reliable data expansion models.

4. How can the modified Multiquadric RBF be tuned to provide robust and accurate data

expansion?

5. How can Transformed Least Squares (TLS) be used to mitigate the effect of outliers

when optimizing the model?

1.3 Research Statement

This work focuses on proposing robust mathematical models as a solution method for opti-
mizing the ANFIS parameters when the data are scarce, significantly noisy, and poorly scaled.
To demonstrate our novel approach, we look at the problem of consumption prediction as it
represents one of the most important input variables of building the APP. Often, consumption
is significantly affected by human behaviours. As such, we are often required to accept
that there is a need to deal with fuzziness and uncertainty when working with this type of
environment. When we are modelling data sets that contain fuzziness and uncertainty in its
nature, then it is appropriate to construct prediction models using fuzzy inference systems
(FIS). In addition, many real-world problems have limited data to work with and yet require
models with high prediction accuracy. Nonetheless, the scarcity and noise of the data raise
concerns when attempting to construct models of this type.

As has been mentioned in the previous section, ANFIS can be defined as a an expert
system that uses a combination of artificial neural networks (ANN) and FIS. The solution

method is based on a Takagi—Sugeno fuzzy inference system. The ANN component is
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a supervised multi-layer feed-forward adaptive network. Whereas the main body of the
fuzzy inference system (FIS) consists of four main components, i.e., fuzzification, fuzzy
knowledge base, inference engine, and the defuzzification process. The fuzzy knowledge
base, in turn, contains the types and numbers of Membership Functions (MFs) that can be
utilized within the solving process. Each MF includes a specified number of function-specific
parameters. The initial values of these parameters determine the initial shape of The MFs.
These parameters are to be optimised using a hybrid learning algorithm in order to optimize
ANFIS [61].

The main body of ANFIS networks consists of five layers. Thus, the numerical informa-
tion represented by the historical data (input-output data pairs) is to be processed through
these layers to fine-tune the network parameters. A hybrid learning algorithm, based on super-
vised learning from example data, must be applied to determine the parameters. The solution
algorithm consists of two passes, i.e. forward and backward passes. In the forward-pass,
the solution algorithm processes the so-called premise parameters. These are the Member-
ship Functions (MFs) built-in parameters which are located at layer one. Whereas, in the
backwards-pass, the network updates the linear parameters, named consequent parameters at
layer four.

There are many applications where ANFIS (Sugeno-type fuzzy models) provides better
models of an underlying problem than artificial neural networks alone. Nonetheless, there are
instances when obtaining a reliable model for either approach can be difficult. However, this
can only happen if there are enough data samples representing the problem space to ensure
that the method can converge. When the data samples are greater than the number of total
parameters (premise and consequent); then, there is enough coverage of the problem space
to optimize the parameters. In contrast, if the data samples are less than the total number
of parameters the data may not capture the problem well and, as a result, over-fitting can
occur. Although ANFIS is theoretically known to be a universal approximator [61], training
them accurately on small data sets is a significant problem in practice. When data is scarce,
the literature recommends that the premise parameters should be kept fixed and set prior to
training [163]. This will reduce the likelihood of over-fitting. Thus, only the consequent
parameters should be optimised by the learning algorithm. However, forcing the premise
parameters to stay fixed will limit the ability to optimize well when dealing with the fuzzy
nature of the problem.

A search of both recent and historical studies has not revealed any work presenting
an integrated solution to deal with this problem. One way to overcome this problem is to
expand the rare data into a larger, but representative, data set. Therefore, we are introducing

our proposed expansion models that can re-sample (augment) the original data with a
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larger number of data samples. Moreover, the proposed model can mitigate the effect of
outliers, where they exist, and produce a shape-preserving fitting curve that can keep the
underlying trend of the original data. We will show that this can be achieved by proposing
two mathematical models. The Radial Basis Functions (RBFs), such as Linear, Cubic, and
modified Multiquadric, are to be used as the basis functions for both models.

In the first proposed model, we intend to apply a direct radial basis function (DRBF) as
an interpolation model using the three types of (Linear, Cubic, and modified Multiquadric).
This model will be used as an expansion model when the raw data sets has no noise. We
will show that by replacing the discrete data with a carefully chosen and carefully optimised
continuous model, we can re-sample from it at a finer granularity and use this to optimise
prediction accuracy for an ANFIS model. As we construct our continuous prediction models,
we will highlight some dangers of over smoothing that we have encountered and justify why
shape-preserving models might be preferred in some cases. We will show how a modified
Multiquadric radial basis function (RBF) approach yields a family of shape-preserving
models that afford an amount of smoothness not found in other shape-preserving models
such as the linear RBFs.

In the second proposed model, we are addressing the problem of modelling data con-
taining noise classified as outliers. In order to overcome this problem, we intend to use
the modified Least Squares approach, so-called Transformed Least Squares (TLS) as an
approximation model. Again, RBFs (Linear, Cubic, and modified Multiquadric) will be
utilized as the basis approximation functions under the form of TLS. We choose a TLS
approach because traditional models, such as standard least squares, tend to cope poorly
due to the influence of these points on the resultant model. We are particularly interested
in finding ways to mitigate the effect of outliers on the model parameters as part of the
data expansion process, rather than through the application of any additional pre-processing
operations on the raw data. We will show that it is possible to asymptotically bound the con-
tribution of any outliers to the error function being minimised and so produce good models
for data expansion. Furthermore, we will show that it is possible to do this by employing a
straightforward iteratively re-weighted least-squares approach.

Furthermore, we intend to develop an application tool that makes dealing with all of our
proposed models straightforward and more manageable. This application will allow the user
to transact with a friendly user interface. This application will give users the ability to choose
from various options for each proposed model. Moreover, it will allow the user to select
different types and numbers of MFs. This means we are developing an expert system using
a tool that can simulate all possible fuzzy knowledge base combinations (MFs types and

numbers). An Adaptive Neuro-Fuzzy Inference Expert System (ANFIES) can be employed
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as a fuzzy expert tool which mimics expert knowledge, and human behaviour in order to
provide an accurate prediction model. Often, domain experts have a better understanding of
the data that describes the problem than they do of the mathematical models. From a practical
point of view, it can be both difficult and time-consuming to try many pre-fixed strategies in
pursuit of a good model. Therefore, creating a tool that can take the lead to examine all the
available fuzzy knowledge bases and extract the best model is proposed. This best model
(best fuzzy knowledge base), in its turn, must provide the optimum solution of the ANFIS.
Depending on that, we have proposed our third model. This model will provide a tool to
optimize ANFIES as a fuzzy expert system that can simulate the expert’s knowledge. This
proposed expert system application can provide the researchers with enough flexibility to
compare and contrast between ANFIS models and select the best one. We will demonstrate
the effectiveness of this approach through data taken from the oil/fuel industry; where data is

scarce.

1.4 Research Objectives

Major objectives of this research are to:

1. Develop an optimization model to solve complex prediction causal problems that con-
tain fuzziness, uncertainty, fluctuatiion, and non-linearity in their nature; particularly

when it is accompany with the problems of scarcity in data as well as outliers.

2. Investigate the effectiveness of using combined mathematical tools and techniques
such as expansion (interpolation and approximation), normalization, and scaling the

data in optimizing the prediction accuracy of ANFIS.

3. Explore the reliability of using the radial basis functions (Linear, Cubic, and modified

Multiquadric) as basis functions of interpolation and approximation models.

4. Explore the robustness of the transformed least squares (TLS) approach as an outlier

mitigation model.

5. Develop a fuzzy expert system application tool that can mimic the expert’s knowledge,
and provide an appropriate environment for processing the data and solving ANFIS
models; as well as an expert system that can be used with a novel application area,

such as health care services, education etc.
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In this chapter, we present relevant literature related to our work. We have three main
aims. One aim is to provide examples of research that demonstrate the move from traditional
statistical methods to machine learning (ML) methods in prediction and forecasting. Many
of these papers compare and contrast ML with traditional techniques for a range of problems.
The next aim is to present research comparing ANFIS systems with other ML approaches,
which also highlights the diverse areas of applications where ANFIS approaches are consid-
ered best. Finally we present the state-of-the-art for dealing with the sparse data and outlier

mitigation problems.

2.1 Forecasting Techniques and ANFIS

Economically, forecasting represents an important tool that allows enterprises to predict into
the future in order to plan their demand, consumption, sales, and production etc. Therefore,
finding reliable and efficient forecasting techniques are in high demand. The literature shows
that many forecasting approaches have been developed. Conventionally, statistical techniques
have been the most commonly used methods. In general, forecasting techniques are classified
into two groups; qualitative methods and quantitative methods. Qualitative methods of
forecasting rely on human expertise and judgement, whereas quantitative methods rely on
the use of historical data [49, 81]. Broadly speaking, quantitative methods are based on two
types of technique - i.e., time-series and causal models. Time-series (e.g., moving average,
exponential smoothing, and Box-Jenkins) are considered powerful tools in forecasting
and are used widely in a range of different applications [26, 89]. Causal models (e.g.,
regression and econometric models) have been used for solving complex prediction problems
using the methodology of cause and effect and influencing factors [80]. However, dealing
with complex models that may contain non-linearity in its nature represents a significant
challenge. There is evidence to show that the classical forecasting methods may not provide
the best-desired performance when predicting with these type of models. Therefore, finding
alternative solutions has become a high demand. Reviewing the literature shows that artificial
intelligence has been adopted as an effective forecasting technique for many models. In this
section, we intend to introduce and discuss the use of ANN and ANFIS as prediction models

as an alternative to the traditional forecasting methods.

2.1.1 Artificial Intelligence in Forecasting

There are abundant studies in the literature claiming that Artificial Intelligence techniques,

such as artificial neural networks (ANN), can be more effective than conventional forecasting
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methods for a large number of diverse application areas. Recently, Pao [103] adopted
an ANN and multiple linear regression models for analyzing the determinants of capital
structures of the conventional and high-tech manufacturing in Taiwan. He indicated that
ANNs produced the lowest forecasting error (i.e. Root Mean Square Error - RMSE) and a
better fit than the multiple linear regression model; mainly when dealing with non-linear
models. Mitrea et al. [87] investigated the performance of traditional forecasting techniques
for the inventory management problem. They compared the Moving Average (MA), and
Autoregressive Integrated Moving Average (ARIMA) with two ANN approaches represented
by a Feed-forward NN and Non-linear Autoregressive Network containing exogenous inputs
(NARX). The results showed that the ANN prediction was more accurate than both the (MA)
and (ARIMA) approaches. Noori ef al. [100] compared an ANN model to multivariate linear
regression models as a forecasting method for the river stream-flow problem. They found
that the ANN model offers a better prediction performance than the MLR model.

In the following year, Gosasang et al. [49] employed the Multi-layer Perceptron (MLP)
neural network technique and Linear Regression as a prediction model for the containerization
problem. They concluded that the MLP technique produced more accurate forecasting results
than using linear regression. Yip et al. [154] presented a comparison of two forecasting
techniques, the General Regression Neural Network (GRNN) and the traditional Box-Jenkins
time series models, to predict the cost of equipment’s maintenance in the construction field.
The results showed that the use of (GRNN) made significant improvements in forecasting
results compared with traditional Box-Jenkins time series models. In 2017, Laptev et al. [72]
utilized an end-to-end neural network to forecast the Uber trips completion time and its
effectiveness on reducing the waiting time of the riders. The researchers demonstrated that
ANN forecasting models could produce better results than some classical methods if the
number, length, and correlation of the time-series under consideration is high.

In 2019, further studies compared the multiple linear regression (MLR) to the ANN as
prediction approaches. Abdipour et al. [1] evaluated the performance of five ANN models
along with the MR model as a seed production predictor. They found that the MLP neural
network provided the best results out of the five ANNSs tested and outperformed the multiple
linear regression model. This study concluded that multiple linear regression failed in
explaining the non-linearity of the problem. In contrast, the MLP can overcome this problem
and provide a better prediction model. In another study, Kadam [64] used the MLR and
ANN as forecasting models of the groundwater quality and its suitability for drinking. The
results showed that the accuracy of prediction of the ANN model was higher than the MLLR
model. Later, Matyjaszek et al. [84] investigated the performance of three conventional

forecasting models, i.e., time series, ARIMA, and ROBUST models (robust regression and
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robust multivariate analysis) versus two ANN models, i.e., multi-layer feed-forward network
(MLFN) and GRNN. The study was conducted on the prediction of the price in financial
markets. The researchers indicated that applying these models on the full time-series showed
that the GRNN outperformed the traditional forecasting models. In contrast, using transgenic
time series showed that ARIMA offers satisfactory forecasting performance when compared
to the other models.

2.1.2 ANFIS as a Forecasting Model

There is a class of problems, for which data can be uncertain. Amongst all the artificial
intelligence techniques, a hybrid system such as neuro-fuzzy has the potential to give better
performance in forecasting compared to standard ANNs and other conventional methods.
A neuro-fuzzy system is a combination of an ANN and a fuzzy inference system (FIS);
therefore, it has the advantages of both methods [33]. Adaptive Neuro-Fuzzy Inference
Systems (ANFIS) can be considered as one of the most superior intelligence and effective
prediction techniques, which is capable of dealing with fuzziness, complexity, uncertainty,
non-linearity and ambiguity - particularly when high precision and reliability in prediction is
required [92]. In this section, a large and growing body of literature has been investigated to
give a comprehensive knowledge of ANFIS models and the range of problems on which they
have been applied.

2.1.2.1 The Performance of ANFIS in Forecasting

Compared to the ANN and other traditional forecasting methods, ANFIS has been shown
to offer better prediction performance in most cases. Efendigil et al. [40] developed a
comparison of prediction mechanisms for analyzing the effectiveness of using ANN and
ANFIS approaches in dealing with real-world fuzzy demand forecasting problems, as part of
a multi-level supply chain process. The results showed that ANFIS provided better estimation
and outperformed the ANN in forecasting accuracy. Azadeh and colleagues [15] compared
the use of conventional time series approaches and artificial intelligent approaches, such as
ANN and ANFIS, in solving the short-term natural gas demand problem. The overall results
showed that ANFIS provided significant improvements and more accurate outcomes over
ANN and standard time-series prediction. Later, Lohani et al. [75] investigated the ability of
auto-regression (AR) ANNs and ANFIS in providing better prediction of the hydrological
time series modelling for the river flow problem. The results showed that the ANFIS model
performed more accurately than both AR and ANN approaches in predicting the extreme river
inflow. Mahdavi and Khademi [77] forecasted oil consumption in Canada. The researchers
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undertook a comparative analysis of ANFIS against AR models. The results showed that
ANFIS provides significantly better estimation accuracy when compared with AR.

In 2016, Khademi et al. [68] used three different data-driven models; ANNs, ANFIS, and
multiple linear regression in order to forecast the compressive strength of recycled aggregate
concrete. The researchers found that ANFIS was more efficient than the ANN and that both
outperform the multiple linear regression approach. Yaici and Entchev [148], compared
the prediction performance of ANFIS and ANNSs in the solar thermal energy system. The
outcomes indicated that ANFIS had provided the highest accuracy and better reliability than
ANNs. However, in term of the efficiency of the processing speed and implementation, the
ANNs showed more flexibility than ANFIS.

In 2018, Mashaly et al. [83] concluded that ANFIS gave better forecasts than multiple
linear regression in predicting solar productivity. In another study in 2018, Aengchuan
et al. [3] investigated the prediction performance of both ANFIS and ANNs for uncertain
supply and demand as part of an inventory system. The results showed that ANFIS provided
a better fit and achieved the best performance when compared to the ANN model. Later,
Okwu and Adetunji [101] adopted the ANN and ANFIS models in solving the trans-shipment
problem. The research aimed to model and optimize the distribution costs in a multi-level
trans-shipment system. The results showed that the use of ANN and ANFIS reduced the
optimal total cost of distribution by 36% and 34%, respectively, when compared to the
classical model.

In 2020, Wong et al. [146], estimated the efficiency of biochar adsorption for the Cu
(IT) ions removal within the water. They compared and evaluated the performance of the
ANN, ANFIS and MLR as prediction models. They employed eleven various algorithms
to train the ANN models, and eight different MFs as knowledge base for ANFIS models.
The outcomes showed that both the ANN and ANFIS outperformed the MLR significantly.
However, the researchers concluded that ANFIS was found to provide the best performance.
Following that, Nanda et al. [95], adopted the ANN and ANFIS to estimate the fundamental
vibration frequencies that can be used to determine the fractures of the crosswise fixed shaft
(construction problem). The outcomes showed that the ANFIS model outperformed ANN
with an evident rate of average error value by 1.33%.

Despite prior evidence, some studies have claimed that ANNs provides better estimation
than ANFIS, albeit findings are somewhat contradictory. As a matter of fact, each problem
has its structure, such as properties, characteristics, and hypotheses. Therefore, finding
the right solution methods that are suitable for solving fuzzy problems, and applying them

appropriately, plays an important role when comparing these methods to each other. The
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literature showed that comparing the ANFIS models with ANN was incommensurate in
particular problems due to some determinants.

A study by Amid and Mesri [10] measured the prediction performance of the linear
regression, radial basis function neural networks (RBFNN), MLP, and ANFIS for broiler
production problem. The results showed that the RBFNN had provided the best prediction
performance, followed by ANFIS, linear regression, then MLP. Technically, the body struc-
ture of ANFIS network determinant to have only one output variable that can be processed in
a single ANFIS model. However, in this study, Amid and Mesri proposed their ANFIS model
to include three input variables and two output variables. From our viewpoint, the use of
ANFSI as an estimation method for this type of problem was not felicitous. A Co-active
Neuro-fuzzy (CANFIS) can be a better choice as a solution method for this type of problem
[61]. Consequently, comparing the results of ANFIS with ANN may not be right for this
particular problem.

In another study, Parvizi et al. [104], modelled a natural gas prediction problem using
ANN and ANFIS. Comparing the results showed that the ANN model was marginally better
than ANFIS. However, the researchers have limited the knowledge base of the ANFIS model
to use six Gaussian MFs for their proposed input variables. In our view, we would suggest
solving ANFIS using more types of MFs which may lead to better results. Using various types
of MFs will produce a wider ANFIS’s knowledge base, which can provide more flexibility
for the fuzzification process when dealing with fuzzy data. Therefore, the performance of
ANFIS model might be improved by using more MF types. Consequently, the comparison of
the two models’ results will be changed.

From our perspective, comparing ANFIS performance with other prediction methods
needs to be built on using valid hypotheses and correct assumptions, as well as different

types and numbers of MFs in order to obtain the best solution.

2.1.2.2 ANFIS in Different Applications

Neuro-fuzzy systems have been used widely in many applications and various fields such
as technical diagnostics and measurement [137], business [107], educational fields, medical
systems, economic systems, traffic control, forecasting and prediction [57], electrical and
electronics systems [16] [113], manufacturing and system modelling, and so forth [65][66].
More recent studies have confirmed that ANFIS has been vastly used in different applications.
For instance, Table 2.1 shows the use of ANFIS in various areas during the last decade.
Forecasting demand and consumption plays a vital role in an aggregate production
planning process [93]. In the last decade, ANFIS has been successfully adopted as a

prediction technique in this area. There are many studies professing the use of ANFIS and
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Table 2.1 Several instances of ANFIS applications

Year Authors Domain Methodology
2010 Boyacioglu and Avci [27] Stock market return prediction ANFIS
Talei et al. [133] Rainfall-runoff prediction modeling ANFIS
Firat and Giingor [45] Sediment level prediction ANFIS, ANN, MLR
2011 Alizadeh et al. [7] Stock portfolio return prediction ANFIS
2012 Saberlraji e al. [112] Students academic performance prediction ANFIS, LVQ
Al-Hmouz et al. [6] Mobile learning adaptation ANFIS
Najah er al. [94] Water quality prediction ANFIS, Wavelet de-noising
2013 Mahdavi and Khademi [77] Oil production forecasting ANFIS, AR, Data mining
Hosseinpour et al. [55] Road accident prediction ANFIS
Svalina et al. [127] Stock Exchange prediction ANFIS
Talei et al. [132] Rainfall-runoff prediction modeling ANFIS, DENFIS
2014 Khoshnevisan et al. [69] Agricultural, potato yield prediction ANFIS, ANN
Chen and Do [34] Students academic performance prediction =~ HANFIS, GA
Emamgholizadeh et al. [42] Groundwater level prediction ANFIS, ANN
2015 Wang and Ning [141] Bank cash flow optimization ANFIS, PSO
Vasileva-Stojanovska et al. [136] Educational quality of experience prediction ~ANFIS
Dragomir et al. [41] Renewable energy performance ANFIS, ANN
Wen et al. [144] Groundwater level prediction ‘WANFIS
2016 Hsu [56] E-Commerce cash flow ANFIS
Yaici and Entchev [148] Solar thermal energy prediction ANFIS, ANN
Su and Cheng [124] Stock forecasting ANFIS
Mahmud and Meesad [78] Stock market price prediction RENFSM, ANFIS
Mekanik et al. [85] Seasonal rainfall forecasting ANFIS, ANN
Atsalakis et al. [14] Stock market forecasting ANFIS
2017 Dokic and Jovi¢ [167] GDP health and growth analysis ANFIS
Yaseen et al. [152] Stream flow forecasting ANFIS
Rezakazemi et al. [109] Hydrogen separation evaluation ANFIS, GA, PSO
Amid and Mesri [10] Broiler production predictive models ANFIS, MLP, RBF
2018 Mashaly et al. [83] Solar energy prediction ANFIS
Yaseen et al. [153] Rainfall forecasting ANFIS
Stojcic et al. [123] Queuing systems time optimization ANFIS
Jones et al. [63] Population growth ANFIS
Aengchuan et al. [3] Inventory control ANFIS, FIS, ANN
2019 Bonakdari et al. [25] Soil temperature WANFIS, MLP, PSO
Benmouiza and Cheknane [22] Solar radiation forecasting ANFIS
Ahmadlou et al. [5] Flood susceptibility modelling ANFIS
Zhou et al. [165] Flood forecasting ANFIS, GA
Parvizi et al. [104] Natural gas reforming modelling ANFIS, ANN
2020 Sirabahenda et al. [119] River’s sediment concentrations and loads ANFIS
Ahanger et al. [4] Education quality assessment ANFIS
Wong et al. [146] Water quality ANN, ANFIS, MLR
Nanda et al. [95] Construction ANN, ANFIS
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demonstrating its performance as a demand and consumption forecasting technique. In
2010, Azadeh et al. [15] employed ANFIS to predict a short-term natural gas demand. The
researchers indicated that ANFIS provided better results than the ANN and the traditional
time series approach. They stated that ANFIS was the right choice as an intelligent model
for solving demand and consumption prediction problems. Mainly, when dealing with
causal modelling that contains multiple inputs, non-linearity, uncertainty, complexity, and
ambiguity in its nature. Later, Nadimi et al. [92] presented ANFIS as a prediction model
for long-term electricity consumption. The proposed ANFIS model was combined with
classical auto-regression (AR) in order to produce sufficient input data. The performance
of the proposed ANFIS-AR model was compared to an ANN model. ANFIS outperformed
the ANN and provided accurate results that were very close to the actual consumption
values. They concluded that ANFIS algorithm is one of the superior approaches that have the
capability to deal with fuzzy and complex consumption problems.

Mordjaoui and Boudjema [90], used ANFIS to estimate short-term electricity load
demand as part of power system planning procedures. The outcomes showed that the ANFIS
model provided high prediction accuracy when compared to other models such as ANNs. The
researchers concluded that the ANFIS model has the ability to handle the rapid fluctuations
in power demand, unlike ANN models. Azadeh et al. [17] proposed a combined long-term
natural gas consumption prediction model based on ANFIS and computer simulation model
(CS). The proposed model has been compared to ANN-MLP models as well as traditional
regression models. The outcomes showed that ANFIS-CS model outperformed the other
models and provided an applicable model with better performance. The researchers claimed
that their proposed model presented a unique and flexible ANFIS model in solving gas
consumption problems, which can be applied to estimate gas demand in the future.

In 2016, Yang et al. [150] adopted a combined prediction model which consisted of three
methods, i.e., ANFIS, Back Propagation(BP) neural networks, and ARIMA model to forecast
short-term electricity demand. The proposed model was working on using the ANFIS and
BP model to deal with the non-linearity of the data. Whereas, the ARIMA model dealt with
the linearity and seasonality. The results showed that using the proposed combined model
had a high prediction accuracy. The work presented by Panapakidis & Dagoumas [102] also
addresses the problem of natural gas demand. Here, they present an approach combining
ANFIS with genetic algorithms, wavelet transforms and feed-forward neural networks. The
results indicated that the proposed model was distinguished by a high level of flexibility
and comprehensive operation. An important conclusion made by the authors is the need for

robust data pre-processing to lower forecasting error.
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One year later, Kaveh et al. [67] employed ANFIS and ANN models to predict the
consumption of the drying energy for four crops as part of an agricultural problem. The
structure of the proposed model consisted of four input variables (i.e., air temperature, air
velocity, drying time, and produced type), and one output variable. The results of both
models showed that the ANFIS model had outperformed ANN and provided high capability
in evaluating all output. In 2020, Adedeji et al. [2] adopted ANFIS models to predict the
energy consumption of a multi-campus institution. They proposed two models in order to
forecast the consumption of four different campuses. First, ANFIS was used as a standalone
model. The second proposed model employed particle swarm optimisation (PSO) alongside
ANFIS to produce a combined hybrid prediction model. The performance of the two models
was compared. Based on the overall results, the researchers concluded that the hybrid
ANFIS-PSO model outperformed the straightforward ANFIS model.

2.1.2.3 Pre-Processing Data for ANFIS Problems

As defined in the previous sections, an ANFIS structure is based on two main methods, i.e.,
the fuzzy inference system (FIS) and artificial neural network (ANN). It takes the advantages
of both approaches; the FIS describes the uncertain phenomena, and the ANN provides a
self-learning ability. This means ANFIS uses a set of data samples in order to build the fuzzy
knowledge base and process the input-output mappings to fine-tune the MFs at the fuzzy
knowledge base. A significant concern is that the quantity and scale of the real data may not
be sufficient to train a reliable model. In many cases, the collected input data can be either
scarce or contain significantly different scales. Therefore, it is essential to find a robust data
processing model that can help to improve the prediction performance and reduce the error
measures.

Pre-/post-processing data is a well-known technique and has been widely used to improve
ANFIS performance. Nadimi et al. [92] compared ANFIS with ANN models as predic-
tion techniques for long-term power consumption. The structure of the proposed models
consisted of two input variables (i.e., population and Gross Domestic Product (GDP)) and
one output variable (i.e., electricity Consumption). The annual net consumption data of
seven industrialized countries have been drawn from the world bank development indicators.
Twenty-eight sets of data samples were available covering the period from 1980 to 2007.
Due to the difference of data scales, the proposed ANFIS model has been equipped with
pre-processing and post-processing techniques to remove any possible noise in the data. All
the input and output data samples have been scaled and normalized before being fed it into

ANFIS models. The researchers concluded that the use of pre and post data processing had
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provided higher precision to the performance of the proposed ANFIS model. However, they
did not provide any further details of the methods that had been used for data processing.

Azadeh & colleagues [15] presented ANFIS as a more superior method than ANN in
short-term prediction of the natural gas demand. The proposed ANFIS model structure
contained four inputs and one output. The authors adopted the daily natural gas consumption
for nearly six months period in order to demonstrate the applicability and comparability of
both models. They applied the Z-score technique to normalize the data over the range of
[0,1]. The scaling process was used to ensure that all data entries were equal in its weight.
The researchers claimed that significant improvements had been achieved when they used
scaling and pre-processing to remove noise in the data set prior to training ANFIS to model
demand prediction.

Najah et al. [94] proposed a composite forecasting model containing ANFIS and wavelet
de-noising technique (WDT-ANFIS) to predict water quality parameters. The combination of
these two methods was used to develop a model that can deal with the noise of data signals
caused by systematic and random errors. The main goal was to enhance the prediction
performance and accuracy of the water quality. A total of sixty data samples were gathered
from the mainstream of Johor River for the period of 1998-2007. However, these data
samples showed numerous inconsistencies in the data recorded by the relevant department.
Therefore, the researchers adopted the wavelet de-noising as a pre-processing tool in order to
enhance the data quality prior to being fed it into ANFIS. The results showed that the WDT
had contributed effectively in improving the prediction accuracy, and the proposed composite
WDT-ANFIS model outperformed the straightforward ANFIS model.

Mahdavi and Khademi [77] adopted a data mining technique as a pre-processing tool
to enhance the prediction performance of oil production using an ANFIS model. They
employed a data cleaning technique to enhance and integrate the data samples before feeding
it to ANFIS. The authors stated that the pre-processing operation consisted of two phases.
First, for integration, they take out any invalid values from the training data. Second, convert
the data into static by equalising the mean and variance of the data in time duration. Although
the results indicated that the proposed pre-processing model had played a part in improving
ANFIS performance, this study did not provide any evident details of the methodology that
had been used to process the data.

In their work, Azadeh et al. [17] proposed a combined prediction algorithm based on
ANFIS and Computer Simulation (CS) to forecast long-term gas consumption. The structure
of the model included four variables, i.e., three inputs and one output. The provided data sets
were on monthly basis samples covering the period from 2000 to 2008. This work offered a

new methodology of using the pre-post data processing. The pre-processing operation was
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represented by applying the CS model into the historical data. First, the provided data for
each year are to be examined in order to identify the best distribution function that fits it.
Second, the CS model is to be applied to generate random variables for each year using the
best probability distribution extracted from the first step. The outcomes of the CS model are
to be fed into ANFIS model in order to estimate the long-term gas consumption. Moreover,
the proposed ANFIS-CS model was compared to 12 various ANN-MLP models and 10
different types of regression models in order to evaluate the performance of the proposed
model. The ANFIS-CS outperformed all the other models and offered better prediction
accuracy.

Su and Cheng [124] used a hybrid stock prediction model based on the method of
integrated non-linear feature selection (INFS) and ANFIS time series model. They proposed
a solution algorithm which contains three main phases, i.e., data pre-processing, ANFIS
modelling, and forecasting and evaluation. The first phase (pre-processing) contains two
steps, firstly it works on converting the original data into technical indicators, and secondly,
selecting the important indicators using the INFS method. This should produce pre-processed
data that can be fed into ANFIS. The proposed model offered a specific type of pre-processing
operation that can be used when the input variables need to be in the form of technical
indicators. The results showed that the proposed model had provided better total profitability
and accuracy than the use of explicit data.

More recently, [99] approached the problem of fine-tuning the parameters governing
the shape of the ANFIS membership functions. The authors compared optimised and
non-optimised ANFIS applications to the problem of the estimation of freight train energy
consumption. They used a variant of the Bee Colony Optimization (BCO) algorithm, a meta-
heuristic approach, for the adjustment of fuzzy logic membership functions. They concluded
that the precision of the developed fuzzy reasoning model was significantly increased after
tuning membership functions by the BCO.

2.1.2.4 ANFIS Models: The Data Scarcity Problem

Data scarcity represents a significant challenge nowadays. In the previous sections, several
studies introduced different methodologies of pre-processing of ANFIS’s entry data, such
as scaling. However, a limited number of studies addressed a pre-processing solution for
dealing with a small data problem. Recent evidence suggests that ANFIS can be considered
as one of the preferred prediction methods in dealing with problems when the entry data
are scarce. However, this is true only to some limited extent. If we refer to the Nyquist

Theorem [37], which states that the more complex the underlying distribution is, more data
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is needed to be able to reproduce it accurately. In other words, as the problem complexity
increases, more data are needed to define it and capture that level of complexity.

Li et al. [73] indicated that, for building a precise and useful knowledge of any artificial
learning system, a sufficient number of data samples are needed before proceeding the training
process. Therefore, they proposed a comparison model to show how limited information
and small data are negatively affecting the performance and accuracy of prediction. They
compared the performance of traditional neural networks such as Pythia (a crisp learning
approach) with the ANFIS (a fuzzy learning technique) in solving the early scheduling of the
dynamic flexible manufacturing system problem. The main goal was to prove that expanding
the fuzzification domain range, by adding more data, can provide a wider fuzzification area
for better prediction accuracy. In other words, enlarging the training data sets will improve
the fuzzification process by extending the MF’s mapping area into a broader range. A set of
100 data samples were used to compare the prediction performance of both methods. The
researchers examined the performance of both methods using eleven data sets of different
sizes, clipped out of the original data. The smallest data set size consisted of only five samples,
whereas the largest represented the entire original data set of 100 samples. The results showed
that by adding more data, the performance is improved in both methods. However, the fuzzy
learning model (ANFIS) had significantly outperformed the crisp learning method (Pythia).
ANFIS testing accuracy increased from 79% (using the set of five data samples) to 93%
(using 100 data samples), whereas using Pythia provided prediction performance of 51%
(using a set of five data samples) to 78% (using 100 data samples). It is not difficult to notice
that solving the ANFIS using five data samples is even better than the Pythia using 100 data
sets. The authors concluded that by using fuzzy models, such as ANFIS, in modelling small
data sets, learning can improve the prediction accuracy.

In a later work , Li and his colleagues [74], developed another combined model using a
data trend estimation approach, mega-fuzzification, and ANFIS to overcome the rare data
problem in the early scheduling of the dynamic flexible manufacturing systems. This study
represents an improved version of the first model mentioned above. The results showed that
the prediction accuracy had increased from 69.3% (using a set of five data samples) to 94.7%
(using 100 data samples) using the proposed combined ANFIS model.

Sen et al. [116] examined the performance of ANFIS models and a genetic programming
(GP) technique in the sampling problem, mainly when the data are rare and continuous. The
k-fold cross-validation and fuzzy c-means clustering techniques were employed as a solution
algorithm for these methods (i.e., ANFIS and GP). The results indicate that the fuzzy c-means
is more reliable than the k-fold cross-validation for both methods, and that the ANFIS model
had outperformed the GP when modelling small data. Dewan et al. [39] developed an ANFIS
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model to predict the ultimate tensile strength of welded aluminium alloy joints. The structure
of the proposed model contained three inputs and one output variable. The data, consisting
of 73 samples, were obtained experimentally. The study showed that ANFIS was one of the
best methods when dealing with small data problems. They found that when predictions
were required using small experimental data sets, their approach yielded better results by
using leave one out cross-validation with ANFIS and ANN. The results indicated that the
ANFIS model offered more reliable performance and better prediction accuracy than ANN.

In another study, Barak and Sadegh [18] proposed a hybrid ARIMA-ANFIS ensemble
model to predict the annual energy consumption, mainly when the data were insufficient.
They presented three solution scenarios based on an ARIMA-ANFIS hybrid model as a
time series forecasting technique. Initially, the ARIMA model had been used to forecast
the linear part of the original data, prior processing the three scenarios. In the first scenario,
ARIMA forecasts the linear data, whereas the ANFIS model is used to predict the non-linear
(residuals) data. In the second scenario, the forecasting of linear data (ARIMA outputs)
is used as one of the ANFIS inputs in addition to the non-linear inputs. The last scenario
is similar to the second one. However, the researchers employed the AdaBoost (Adaptive
Boosting) as an ensemble method to enhance the data as a proposed solution method to deal
with the rarity of the data. The overall results indicated that the third scenario provided better
prediction than the other models, as the MSE enhanced from 0.058 to 0.026 compared to the
second scenario.

In 2019, Fachini et al. [43] adopted ANFIS as a voltage prediction model to determine the
critical bus voltage for the IEEE 14-bus system when the data is of a limited amount. They
indicated that ANFIS provides a better estimation for small data problems. The researchers
showed that using ANN techniques to find predictions with limited amounts of data gave
poor and inaccurate results. The authors further showed that this could be overcome by using
ANFIS.

Despite prior evidence, ANFIS can be used to solve problems with small data, if and
only if, there are sufficient data that can provide reliable learning knowledge to optimize
all ANFIS parameters (i.e. premise and consequent). In other words, performing ANFIS’s
hybrid learning algorithm requires the entry data sets to be greater than the number of total
parameters. Otherwise, the modellers are advised to either fix the MFs parameters (premise),
which means no further optimization for the fuzzification process will be made [61] [163];
or to obtain a reliable pre-processing data model that can expand the data samples up to a
sufficient number in which to satisfy this condition.

Delving in-depth into the literature, few related kinds of research was found in which to

deal with this problem. In 2009, Efendigil et al. [40], used the fuzzy and neural approaches
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to predict consumer demands within a multi-level supply chain, particularly when it is under
uncertainty. They employed ANNs and ANFIS as a bipartite methodology to propose their
forecasting models. A comparison of the two proposed models indicated that ANFIS had
provided better performance than ANN. The ANFIS structure of the proposed demand
forecasting system has been built with four input variables (i.e., unit sale price, product
quality, customer satisfaction level, and effect of promotion holidays), and one output (i.e.
demand quantity). Various input knowledge bases have been employed to investigate the
impact of using different types and numbers of MFs on the prediction accuracy. This structure
has been applied to three retailers. Real-world data have been obtained using a questionnaire
issued to retailing experts and pre-determined factors extracted from the literature. The
questionnaire provided only twenty-four data samples. The collected data was in the form
of a monthly basis covering a two-year period. Looking at the number of total parameters
(premise and consequent) accompanying each ANFIS model, the researchers indicated that
the number of data samples was insufficient. Therefore, they intended to expand the data into
96 monthly periods by generating more samples using Monte Carlo simulation. However,
the researchers did not provide any evidence to show the reliability and/or robustness of
the data generating model. Nor did they comment on the extent to which it can explain the
characteristics of the original 24 samples. Moreover, they did not supply enough information
about the original and expanded data for all input variables. Therefore, it is difficult to form
an opinion of the performance of the proposed expansion model.

To the best of our knowledge, using data expansion as a pre-processing technique to
overcome the data scarcity problem (specifically for ANFIS modelling) is only applied across
a limited range. We did an extensive search in the literature to cover this area. However, due
to the limitation that existed in the previous technique, we did not find more studies dealing
with this particular problem. With this motivation, our proposed model can be considered as
a novel work as it represents the first research using robust mathematical models to expand
the data for ANFIS modelling.

2.2 Sparse Data and Outliers

2.2.1 Sparse Data

Sparse data provides a challenge in many applications. There is evidence were some models
can deal with this problem and provide an enhanced range of data to overcome the data
sparsity problem. Here we will bring into account the most recent data sparsity modelling
research.
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Antholzer et al. [12], developed an image reconstruction model formed from a deep learn-
ing convolutional neural network (CNN) algorithm to be used in photo-acoustic tomography
(PAT) from sparse data. They employed a linear reconstruction algorithm to deal with the
data sparsity problem prior to the implementation of the CNN on the training data using
adjusted weights (the actual image reconstruction). The results showed that the proposed
model provides better quality image reconstruction compared to conventional approaches for
PAT from sparse data.

Beigi et al. [21], looked into the problem of sparse data for modelling personality in
social networks, which is caused by the small percentage of negatively-signed links compared
to positive links. They investigated the possibility of mitigating the data sparsity problem by
obtaining personal information. The authors proposed a signed link prediction (SLP) model
that allows experimental exploration of user personality through social media data. They
relied on the optimism and pessimism information obtained from the user’s personality in
order to establish more positive and negative links. Their research aimed to investigate the
possibility of obtaining personal information, and to determine if this information could help
in overcoming the data sparsity problem in this area. The results showed that the performance
of the SLP and all other prediction methods improved after increasing the size of the training
sample.

Chen et al. [32], proposed a novel method named Hierarchical Bayesian Data Augmenta-
tion (HBDA) to deal with data sparsity in fatigue S-N curves. The proposed method is to be
integrated with hierarchical Bayesian modelling (HBM) and Bayesian data augmentation
(BDA) to create a larger fatigue life data sample from the raw sparse samples. Four solution
strategies were processed to perform the proposed model. These strategies were validated
and compared using data drawn from the open literature. The results showed that the HBDA
(proposed method) significantly outperformed the conventional methods when compared
with the HBM/BDA alone, particularly with a small data sample. The authors have evaluated
the proposed model by applying it to a real-life problem where only limited data are available
for testing. Other, recent publications relating to the problem of modelling with small data
sets can be found in Table (2.2).

The lack of data, which is interchangeably described as scarce data or sparse data,
represents one of the big challenges to accurate data-driven model building. As a solution
method for this problem, data expansion via sample interpolation and approximation is
reasonably well understood and covered extensively in the literature. Wagner et al. [139],
compare and evaluate a range of regression-based interpolation methods for modelling daily
rainfall in data-scarce regions. This is particularly relevant to our work. In our work, we

compare and contrast a range of approaches to try to determine the most suitable model for
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Table 2.2 Sparse data most recent literature

Year Authors Domain Methodology

2017 Takwoingi et al. [131] Meta-analysis - sparse data  Hierarchical summary receiver
operating characteristic (HSROC)
2017  Yu and Baek [155] Sparse data in wireless Sparse Random Sampling (SRS)

sensor networks

2018 Chen et al. [31] Sparse data in computed Adaptive deep learning - image
tomography (CT) reconstruction

2018 Hao et al. [53] Low-sample size data in Pathway-Associated Sparse Deep
genomic medicine Neural Network (PASNet)

2019 Sinha et al. [118] Sparse data - time series The Koopman operator

2020 Feng et al. [44] Sparse data in recommender Fusion collaborative filtering method
systems

accurately reproducing the trend from scarce data. In their paper, the authors take a similar
approach. They recognise that where there are regions over which data density is a problem,
different interpolation schemes can yield different results. Their aim is to try to determine
the best approach. In his research, Coppejans [36] uses piece-wise cubic splines as a tool
to support a method for estimating statistical expectation. Our choice of using cubic radial
basis functions to model the data shares interesting overlaps with the theory of cubic spline
interpolation.

MacAllister et al. [76] investigated the feasibility of employing meta-models, Kriging
and Gaussian RBFs, as multivariate data approximation techniques to generate synthetic data
that can overcome problems due to the scarcity of training data for Bayesian networks. Their
proposed model was applied to predict customer behaviour for three companies (Amazon,
Apple, and Google) as well as identifying market trends. Particle Swarm Optimization (PSO)
was utilized to fine-tune the network parameters for four network structures using three small
data sets. The proposed models were used to increase the small data into three different
generated data sets of sizes: ten thousand, one-hundred thousand, and a million data points.
The results showed that using the proposed model provides increased accuracy over small
sample sets in training the Bayesian networks.

Inspired by this exciting development, we have been motivated to search for a suitable
mathematical solution to solve the problem of data scarcity that we faced. Despite all the
previously proposed models for dealing with the data sparsity problem, we could not find a
suitable one that we can be applied directly to our case study due to the fuzziness, uncertainty

and fluctuation in the original data.
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It is underlined that in all the published methods, limited studies discussed the use of
RBF interpolation to deal with the small data problem. In later chapters, where we introduce
the data interpolation and near-interpolation approach, we will refer the reader to relevant

research where more information on the forms being constructed can be found.

2.2.2 Outliers (anomaly) Mitigation

Outlier mitigation has been presented in many research areas and applications in the literature.
It has been discussed and developed using different solution methodologies and approaches.
Here, we bring into account some of the most recent research in this field.

Pozo-Prez et al. [105], presented a regression framework as an effective alternative to the
Receiver Autonomous Integrity Monitoring (RAIM) in GNSS signals. The proposed frame-
work is used for mitigating the unexpected large errors which do not meet the assumption
of Gaussian noise. The outcomes indicated that the proposed model provides a significant
improvement compared to other conventional approaches. Kim et al. [70], introduced a
solution algorithm that enhances the location accuracy of indoor pedestrian dead reckoning.
They compensated for the location error using the magnetic field map-matching technique.
The researchers employed the roughness weighting factors to mitigate the outliers using
multiple magnetic sensors as a hardware tool. The results showed that the proposed model
improved the performance in all indoor situations. Nikitin and Davidchack [98], introduced
the intermittently non-linear filters as an effective tool for real-time mitigation of outliers
and noise in electromagnetic interference (EMI). The authors provided an overview of the
tools and methodology that can be used for outlier enhancement. The results showed the
improvement in the signal that can be earned after applying the proposed model. Yang et
al. [149], showed how the Graduated Non-Convexity (GNC) approach can be used in combi-
nation with the non-minimal solvers to provide a robust solution for the outliers rejection.
The authors claimed that the proposed model is significantly faster than specialized solvers
and it has outperformed the classical approaches and provides more accurate results than
specialized local solvers.

Talking within the time series framework, the literature presented many approaches
that can be used to detect outliers in different applications. For instance, in 2016, Wang et
al. [142], proposed an online self-learning method that can discover the outliers. This model
can automatically recognise outlier time series in addition to its exact position without any
prior knowledge about the data. Two years later, Wang ef al. [143], looked at the problem
of outlier detection for multivariate time series and its challenges such as variable subsets,
different dimensions, and scale of the subset data. The authors introduced the multivariate
outliers algorithm as a solution method for the outlier detection problem. Later on, Munir et
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al. [91], proposed a deep learning-based outlier detection model for the cyclic and seasonality
outliers that may occur usually in data streaming under the time series framework. The results
showed that the proposed model has outperformed the state of the art of outliers detection
approaches. Along this direction, Amarbayasgalan et al. [9], proposed a deep learning-based
unsupervised outlier detection model which can be applied to batch and real-time outliers.
The outcomes indicated that the proposed model outperformed the state-of-the-art in outlier
detection approaches in most cases. Geiger et al. [48], also proposed an unsupervised
machine learning model for time-series outlier detection based on Generative Adversarial
Networks. The results showed that the proposed model was effective and outperformed the
baseline methods in most cases.

In summary, the literature review has shown that when it comes to dealing with scarce/sparse
data and outliers, the techniques presented are often bespoke to the application being studied.
This is natural, and expected, but does make transferring knowledge and understanding to
other applications difficult. It is clear too, that there is a balance to be found between effec-
tiveness of the approach and the simplicity of its implementation. A complex and difficult to
implement method is unlikely to be adopted in practice, regardless of how effective it might
be. A lesson that we have clearly learnt from the literature study is that effective, robust,

implementable methods are needed that generalise well to a wide range of applications.
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3.1 Introduction to Fuzzy Logic

Fuzzy logic (FL) can be defined as a precise logic of ambiguity and approximate reasoning. It
can be considered as an endeavour of formalization/mechanization of human capabilities. As
humans, we tend to learn knowledge from experiencing the world in which we live. We have
a limit in our abilities to understand the world and to find reasoning. However, we use our
capabilities to make reasonable decisions within an environment of ambiguity, uncertainty,
lack of/conflicting information, as well as inaccuracy of measurements [162]. In other words,
we use our capabilities of reasoning to make order within the heap of information (i.e.,
formulating human knowledge in a systematic method). The other factor which can limit our
desire for exactness is the natural language that we use for sharing/describing knowledge,
ideas, information, and so forth. We perceive the essential meanings of words which gives
the ability to communicate precisely to an acceptable level. However, in general, we often
cannot accurately agree among ourselves on a commonsense meaning for one single word
or term. This leads us to the fact that language is often ambiguous [120]. Essentially, our
comprehension of the real world requires us to interpret and combine many concepts (facts)
that do not have clearly defined boundaries. For instance, "small", "short", "very large",
"old", ...etc. These concepts can be considered as subjective terms that are true to some
extent but can also be false to another extent. Consequently, a human brain can interpret the
meaning of them, whereas computers might not (because it is using fixed rules and logic);
therefore, these concepts can be regarded as being fuzzy.

It is widely understood that computers must strive to represent and reason with fuzzy
knowledge about the real world in ways that are similar to the human brain. Lotfi Zadeh [160],
took the challenge over the crisp set theory by introducing the concept of the fuzzy set as
a mathematical tool for dealing with the fuzzy logic and uncertainties (such as vagueness,
imprecision) problems. Before 1965, probability theory was used as a useful tool for dealing
with uncertainties. The probability theory mechanism works based on two-valued logic,
which represents the concepts of classical or crisp set theory [106]. Whilst, Prof. Zadeh
argued that there are some uncertainties, which cannot be tackled using the probability theory
because it can only handle one out of the different types of possible uncertainties. Moreover,
the classical (crisp) sets describe events that either happens or not; it measures the possibility
for a given event and the expectation to occur (or not) by using probability theory. Conversely,
the fuzzy logic theory affords a mechanism to interpret any ambiguity that may be built in the
linguistic body, such as few, many, short, tall, ... and so forth. It gives an inference structure
that simulates human logical abilities. The Figure (3.1) represents the fuzzy logic system

(FLS) that is processing the inputs (vague, imprecise) to provide decisions.
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Imprecise Data

Fuzzy
Logic
System

Decisions

A 4

v

Vague
Statement

Fig. 3.1 A fuzzy logic system that takes vague statements and imprecise data such as short,
medium, tall and provides decisions.

In real-world problems, complexity can be measured by the degree of uncertainty. As
uncertainty rises, so does the complexity of the problem; which explains the reason why real
problems are often very complex. There is an intimate relationship between complexity and
fuzziness. As the complexity of a system surpasses a certain threshold, without a doubt, it
should become fuzzy [120].

In this chapter, all the figures, diagrams, and examples have been created by the author,

except where indicated with the word "reproduced".

3.2 Classical Sets (Crisp Sets)

The classical set is defined as the set of crisp events with definite boundaries, which means
there is a certainty of the events that either do or do not occur. In other words, an individual
entity is either to be a member (or not) of the set [30]. From another view, it means the
membership of crisp (classical) sets is without ambiguity. Assume the set X is a particular
Universal Set under consideration, which is composed of all possible individual elements
x (also known as members) which are related to some specific context. For example, if we
consider the integers 1 to 100, then all the integer numbers in the interval [1 — 100] will be
represented by our universal set X. Let us try to find the set A which represents the numbers
that can be wholly divided by five in the universe X. To obtain this set, we check each integer
number in the universal set in order to find out whether it belongs to A or not. Consequently,
there is a specified and well-defined boundary separating the elements in the set A from the
elements lying outside it.

A ={x1,x2,...,xn}. (3.1)

Or, it can be represented by its element property as:

A= {xP(x)}, (3.2)
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which means set A contains all values x that have the property P in the universe X.

The set A can be represented by the Characteristic Function (CF) as follows:

1, if xis a member of A,

Y

CF = y(x) = (3.3)

0, if xis not a member of A.

Where, y4(x) has any of the two values 1 (true) or O (false).
This Characteristic Function y4(x) represents the membership mapping in set A for the

element x in the universe X as shown in Figure (3.2)

»

Ya(x) 4

1

0 >
X

Fig. 3.2 Membership mapping for Crisp Set A

3.3 Fuzzy Sets

The fuzzy set can be defined as an adequate theory in dealing with the concept of ambiguity. It
makes it possible to use quantitative methods to deal with the fuzziness. The fuzzy sets based
on the concept of membership graded relatively in defining the sets [120]. In comparison to
the classical set, a fuzzy set provides a method for modelling the uncertainty related with the
vagueness, imprecision, and lack of information. The real-world problems are often complex
and uncertain, as its complexity increases, the fuzzy logic becomes the best way to solve
it [161]. Zadeh [160] generalized the assumption of a crisp set from (definitely in / out) to
the interval of real values that can be called membership degrees (MD), using the concept
of the membership function (MF) which expresses to what degree an entity can be judged
to be part of a set. In other words, a fuzzy set is a set without a crisp boundary, which means
the elements in the fuzzy set can have differing degrees of membership within the set. This
means that the element can be a member of the fuzzy set according to its membership value.
That is, the transition from "member of a set" to "not member of a set" is progressive and
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characterized by a membership function that maps every individual element within the fuzzy
set.

Definition: 3.1 Membership Function (MF)
The membership function is considered as the unique method to characterize and represent
the fuzziness of the fuzzy set [117]. It associates each element in the universe with its
membership value (degree of membership) in a particular fuzzy set. The mapping interval of
the fuzzy set is to be real-numbered values within [0, 1]. Suppose that we have the fuzzy
set A in the universe X, and u (x) represents the degrees of membership of x related to each
element in A within the universe X within the interval [0, 1] [117]. Thus, the fuzzy set A can
be represented by its membership function which consists of two terms, first is the element x,

and second is its degree of membership (membership value) p4(x). It can be denoted by:

Alx) ={(x,ua(x)) | x € X} (3.4)

The previous expression (3.4) can be viewed as a simple form for representing the
membership function of the fuzzy set. There is no steady rule for specifying the form of a
membership function; usually, it depends on the problem type and nature. The membership

function will be discussed in more details in the next sections.

Example 3.1
Assume that a fuzzy set A contains five elements A = {x1,x;,x3,x4,X5} characterized by
Ua (x) that maps every individual element x in the universe X to the values (0.3, 1.0, 0.6, 0.5
and 0.2) respectively. this fuzzy set can be represented as follows:

A(x) = {(x1,0.3), (x2,1.0), (x3,0.6), (x4,0.5), (x5,0.2)},

figure (3.3) shows the mapping for the above fuzzy set A.

3.3.1 Types of Fuzzy Sets

According to the nature of the universe, the fuzzy set can be either discrete or continuous. It

can be denoted as follows:

* Discrete Fuzzy Set: Consider the universal set X that contains discrete objects, any

fuzzy set within this universe will be a discrete fuzzy set. It can be formulated as:

-

A(x) = ‘LLA()C,')/xl', xeX, 3.5)

1

1
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0.3
0.2

Fig. 3.3 Fuzzy set.

where 7 is the number of elements that belongs to the fuzzy set A.

* Continuous Fuzzy Set: Consider the universal set X that contains continuous objects,
then the mathematical form of any fuzzy sets within this universe can be formulated

as:

AW = [ ale)/x (3.6)

The symbols Y and [ in the previous equations 3.5 and 3.6 does not indicate the mathe-
matical operations of the summation or integration. However, they are utilized to point out
the pairs of (element, membership value) that illustrate the discrete and continuous fuzzy
sets [61].

3.3.2 Operations of Fuzzy Sets

Assume the universe X contains two fuzzy sets A and B. The following operations and
relations can be defined:

1. Union of fuzzy sets: The union of two fuzzy sets is composed of all the elements in
the universe that can appear in either set A(x) or set B(x) or in both, simultaneously

(refer to Fig. 3.4a). Its membership function can be expressed by s p(x) as follows:
paus(x) = pa(x) vV ug(x), (3.7)
where V refers to the maximum operator 1.e.:

Haup(x) = max{pia(x), pp(x)}.
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Example 3.2

Suppose we have the following fuzzy sets:

A(x) = {(x1,0.1), (x2,0.2), (x3,0.3), (x4,0.4), (x5,0.5)}
B(x) = {(x1,0.5), (x2,0.6), (x3,0.7), (x4,0.8), (x5,0.9)}

Then:

Htaup(x) = max{pia(x), pp(x)}
= {(xl,O.S), (X2,0.6), (X3,0.7), (X4,0.8), (X5,0.9)}.

2. Intersection of fuzzy sets: The intersection of two fuzzy sets represents all the
elements in the universe that belongs to both sets A(x) and B(x) simultaneously (refer
to Fig. 3.4b). It can be denoted by psnp(x) as follows:

tang(x) = pa(x) A ug(x) (3.8)
where A refer to the minimum operator, i.e.:
Hans(x) = min{a (x), up(x)}-

Referring to the previous example (2), the intersection of the two fuzzy sets A(x) and

B(x) can be given as:

Hanp(x) = min{pa(x), tp(x)}
= {(xl,O.l), (XQ,O.Q), (X3,0.3), (X4,0.4), (X5,0.5)}.

3. Complement of fuzzy sets: The complement of fuzzy sets signifies the collection of
all elements in the universe that do not belong to the fuzzy set A(x) (refer to Fig. 3.4¢).

It can be expressed by A(x) as follows:

A(x)=1—A(x), forall x € X, (3.9)
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Referring to the previous example (2), the complement of the fuzzy sets A(x) can be

given as:
A(x) = {(x1,0.9), (x2,0.8), (x3,0.7), (x4,0.6), (x5,0.5)}.
A A
u(x) 4 u(x)
1 B 1 A B
0 p” > 0 p >
(a) Union of two fuzzy sets. (b) Intersection of two fuzzy sets.
A
u(x)
I ! \
0 >

(c) Complement of a fuzzy set.

Fig. 3.4 Fuzzy set operations.

4. Subset of fuzzy sets: The fuzzy set A(x) is a subset of B(x), if the membership value
Ua (x) of each element in A(x) is less than pp(x) of the corresponding x in B(x). It can

be signified as follows:

A(x) CB(x), if pa(x) < pp(x), (3.10)

Referring to the previous example 2: A(x) C B(x), because u4(x) < ug(x) for all
xeX.

5. Equality of fuzzy sets: Two fuzzy sets A(x) and B(x) are to be equal, if and only if
all p4 (x) are equal to all its corresponding pp(x). It can be signified as follows:

A(x) =B(x), if pa(x) = up(x), (3.11)
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Referring to the previous example 2: A(x) # B(x), because 4 (x) # upg(x) for different
xeX.

6. Algebraic product of fuzzy sets: The algebraic product of two fuzzy sets A(x) and
B(x) results from the product of the membership value pi4(x) of each element in A(x)

by the pp(x) of the corresponding x in B(x).It can be denoted by A(x).B(x) as follows:

A(x).B(x) = {(x, ua(x).up(x)), x € X}, (3.12)
Referring to the previous example 2, the algebraic product can be given as:

A(x).B(x) = {(x1,0.05), (x2,0.12), (x3,0.21), (x4,0.32), (x5,0.45)}.

7. Multiplication of a fuzzy set by a crisp number: Assume that we have a crisp
number a, the multiplication of a fuzzy set A(x) by this crisp number will provide a
new fuzzy set resulting from multiplying a by the membership value pi4(x) of each

element in A(x). It can be expressed by a.A(x) as follows:
aA(x) ={(x, ax ps(x)), xe X} (3.13)

Let us consider our previous example (2), if we multiply the first fuzzy set A(x) by

a = 0.3, the result will be as follows:

a.A(x) = {(x1,0.03), (x2,0.06), (x3,0.09), (x4,0.12), (x5,0.15)}.

8. Power of fuzzy set: Raising the fuzzy set A(x) up to the p-th power, i.e. AP(x) will
provide a new fuzzy set resulting from raising the membership value u4(x) of each
element in A(x) up to the p-th power, i.e. ta(x) }”. Power of fuzzy set can be expressed
by AP (x) as follows:

AP(x) = {(x, {ta(x)}"), x € X} (3.14)

Referring to the previous example (2), if we raise the first fuzzy set A(x) to the second
power (i.e. p = 2) the result will be as follows:

A%(x) = {(x1,0.01), (x2,0.04), (x3,0.09), (x4,0.16), (x5,0.25)}.
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9.

10.

11.

12.

Arithmetic summation of fuzzy sets: The arithmetic summation of two fuzzy sets
A(x) and B(x) can be defined as follows:

A(x)+B(x) = {(x, uatp(x)), x € X}, (3.15)
where pa1p(x) = pa(x) + pp(x) — Ha(x).pp(x).

Let us consider our previous example (2),if we add the two fuzzy sets A(x) and B(x)
using arithmetic summation, the result will be as follows:

A(x) 4+ B(x) = {(x1,0.55), (x2,0.68), (x3,0.79), (x4,0.88), (x5,0.95)}.

Bounded summation of fuzzy sets: The bounded summation of two fuzzy sets A(x)
and B(x) can be defined as follows:

A(x) ®B(x) = {(x, taos(x)), x € X}, (3.16)

where facp(x) = min{1, pa(x) + 1a(x)}.
Referring to the previous example (2), if we add the two fuzzy sets A(x) and B(x) using
bounded summation, the result will be as follows:

A(x) @ B(x) = {(x1,0.6), (x2,0.8), (x3,1.0), (x4,1.0), (xs5,1.0)}.

Arithmetic difference of fuzzy sets: The arithmetic difference of two fuzzy sets A(x)
and B(x) can be defined as follows:

A(x)—B(x) = {(x, ua_p(x)), x € X}, (3.17)

where pia—p(x) = ty5(x).
Referring to the previous example (2), if we subtract the two fuzzy sets A(x) and B(x)

using arithmetic difference, the result will be as follows:

Now, B(x) = {(x1,0.5), (x2,0.4), (x3,0.3), (x4,0.2), (x5,0.1)}
Therefore, A(x)—B(x) = {(x1,0.1), (x2,0.2), (x3,0.3), (x4,0.2), (x5,0.1)}

Bounded difference of fuzzy sets: The bounded difference of two fuzzy sets A(x)

and B(x) can be defined as follows:

A(x) ©B(x) = {(x, tacp(x)), x € X}, (3.18)
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where Lacp(x) = max{0, pa(x)+ pp(x) —1}.

Referring to the previous example (2), if we subtract the two fuzzy sets A(x) and B(x)

using bounded difference, the result will be as follows:

A(x)©B(x) = {(x1,0), (x2,0), (x3,0), (x4,0.2), (x5,0.4)}.

Cartesian product of fuzzy sets: Consider the two universal sets X and Y, which

include a pair of fuzzy sets, i.e. A(x) and B(y). The Cartesian product of these two

fuzzy sets can be expressed as follows:

Haxp(x,y) = min (ka(x), 45 (y))- (3.19)

Example 3.3
Suppose we have the following two fuzzy sets defined in the X and Y

A(X) = {(x1,0.2), ()C2,0.4), (X3,0.5), (X4,0.7), (XS,O.3)},

B(y) ={(31,0.3), (y2,0.5), (v3,0.4)}.

Now, if we multiply the two fuzzy sets A(x) and B(y) using Cartesian product, the

result will be as follows:

min(pa(x1), u(y1)) = 0.2,min(pa (x1), u(y2)) = 0.2,min(pa(x1), up(v3)) = 0.2,
min(pa(x2), tp(y1)) = 0.3, min(Ua (x2), u(y2)) = 0.4, min(pa (x2), up(v3)) = 0.4,
min(pa(x3), up(y1)) = 0.3,min(la (x3), u(y2)) = 0.5, min(pa (x3), up(v3)) = 0.4,
min(pa(xs), ug(y1)) = 0.3, min(pa(x4), up(y2)) = 0.5, min(Ua(xs), ua(y3)) = 0.4,
min(pa(xs), ug(y1)) = 0.3, min(pa(xs), up(y2)) = 0.3, min(Ua(xs), ua(y3)) = 0.3.

02 02 02
03 04 04
AxB={03 05 04
03 0.5 04
03 03 03
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3.3.3 Classification of Fuzzy Sets

Suppose we have an element x belonging to the fuzzy set A with a membership value i (x)
within the universe X. According to the membership function representation, we can illustrate

four classifications for the fuzzy set as follows:

* Normal fuzzy set: The fuzzy set can be classified as normal if the universe contains
at least one element with a membership value equal to one. In other words, the highest
value (peak) of the membership function = 1.0, i.e., Peak(x) = u(x) = 1.0, (refer to
Fig. 3.5a).

* Subnormal fuzzy set: The subnormal fuzzy set can be considered when the high-
est value of the membership function is less than 1.0, i.e., Peak(x) < 1.0, (refer to
Fig. 3.5b).

* Convex fuzzy set: The fuzzy set can be classified as convex if the membership
function contains membership values that progressively (increase and/or decrease) in

simultaneity with the increasing of the elements value, (refer to Fig. 3.5a and 3.5b).

* Non-Convex fuzzy set: The non-convex fuzzy set can be considered when the mem-
bership function has membership values fluctuating (up and/or down) in simultaneity

with the increasing of the elements value, (refer to Fig. 3.5¢).

3.4 Membership Functions (MF)

As mentioned earlier in the membership function definition, the fuzzy set can be characterized
by the MFs. Assume that we have the fuzzy set A within the universe X. The MF describes the
relationship between each element x in A with its degree of membership 4 (x). It quantifies
the grade of membership of this particular element within the interval [0, 1]. The MFs can be
defined and expressed mathematically as well as graphically. There are different ways of
formulating and parameterizing the MFs. The shape of MFs is also adopted as an essential
criterion in representing the fuzzy sets. In this section, we intend to discuss various topics
related to MFs.

3.4.1 Membership Function Structure

The structure of the membership function of a fuzzy set can be defined by the following

regions (refer Fig. 3.6)
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(a) Normal convex fuzzy set. (b) Sub-normal convex fuzzy set.

1a(x)|
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(c) Non-convex fuzzy set.

Fig. 3.5 Classification of fuzzy sets.

* Core
The core of MF for a fuzzy set A consists of all the elements x € X where the MF value
is equal to 1 (i.e., 4 (x) = 1.0). Thus:

Core(A(x)) = {x|ua(x) = 1.0 ,x € X}, (3.20)

A fuzzy set A can be classified as normal if we can find at least one element x € X
with MF value equal to one (4 (x) = 1.0). In other words, the core of the MF should
have at least one value.

* Crossover
The Crossover point of the MF for the fuzzy set A consists of all elements x € X where
the MF value is equal to 0.5 (i.e., t4(x) = 0.5). Thus:

Crossover(A(x)) = {x|pua(x) =0.5,x € X }. (3.21)

* Boundary
The Boundary region of the MF for the fuzzy set A consists of all elements x € X
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Fig. 3.6 Structure of membership function.
where the MF value is between 0 and 1 (i.e., 0 < p4(x) < 1). Thus:
Boundary(A(x)) = {x|0 < pa(x) < L,x € X}. (3.22)

* Support
The Support region of the MF for the fuzzy set A consists of all elements x € X where
the MF value is greater than O (i.e., 0 < p4(x) < 1). Thus:

Support(A(x)) = {x|ua(x) > 0,x € X }. (3.23)

3.4.2 Membership Function Formulation and Parameterization

The membership function can be represented both graphically and mathematically (which is
considered as the most precise way). According to the number and type of the inputs variables
and parameters, the MFs are classified into two categories, i.e. one or two dimensions [61].
The impacts of modifying parameters value for the one dimension’s MFs and its effectiveness
in fine-tuning the fuzzy inference system will be discussed in this section. As follows, we

are introducing the most commonly used MFs which are classified into four types.
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3.4.2.1 Piece-wise Linear Functions

These functions can be considered as the simplest MF. It can be represented by using straight
lines. There are two MFs that can be classified under this type. First, is the triangular
membership function, which is a collection of three points that forms a triangle (Fig. 3.7a).
Whilst the second named as the trapezoidal membership function, that consists of four points
resulting in a truncated triangle with a flat top (Fig. 3.7b).

0 20 40 60 80 100 0 20 40 60 80 100
X X

(a) Triangle-Shaped MF. (b) Trapezoid-Shaped MF.

Fig. 3.7 Piece-wise linear functions.

* Triangle Membership Function
The triangle membership function can be specified by a triangle curve representing a
function of the x depending on three scalar parameters {a,b,c} which represent the
three edges of the triangle. The general formula of this MF can be denoted as followed:

( 0, x <a.
. o, a<x<bh.
Triangle MF, f(x;a,b,c) = a (3.24)
—, b<x<ec
L0, xX>c.
Or, by using max-min, we can write the definition in the compact form:
Triangle MF, f(x;a,b,c) = max| min Al a’ e ,0 . (3.25)
b—a c—b

where a < b < c. These parameters represent the three vertices for the x coordinates
of the Triangle MF. The parameters (a,c) represent the left and right "feet"; the
parameter b represent the peak of the triangle. Figure (3.7a) shows a triangle MF
defined by (x;20,50,80); that is @ = 20 and ¢ = 80, which represent the x coordinates
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that allocated on the first and third corners of the triangle, while b = 50 represent the

highest value of the x coordinates (the peak of triangle).

We can obtain the desired triangle MF by changing the parameter set {a,b,c} into dif-
ferent values. Figure (3.8) illustrate the effects of changing the parameters sequentially.
As shown in figures (3.8a, 3.8¢), if we change the parameter a and ¢ within the interval
[—10,+10] to modify the left or right foot values (x coordinates); the slope of the left
or right side of the triangle will be changed. Moreover, if we change the value of the
parameter b with the same range, the top corner (peak of triangle) and the slope of
both left and right sides of the triangle will be changed simultaneously (Fig. 3.8b).

Membership Grades

0 20 40 60 80 100 0 20 40 60 80 100
X X

(a) Changing parameter a. (b) Changing parameter b.

Membership Grades

0 20 40 60 80 100

(c) Changing parameter c.

Fig. 3.8 Effects of changing Triangular MF parameters.

* Trapezoidal Membership Function

The trapezoidal curve is similar (to some degree) to a triangle with a flat top (Fig. 3.7b).
This means, it will have two vertices on the top instead of one, which resulting in a
trapezoidal curve consisting of four points. This curve, representing the trapezoidal
membership function, has four scalar parameters {a,b,c,d} which represent the four
edges of the trapezoidal shape. The general formula of this MF can be denoted as
followed:
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0, x<a.
%, a<x<bh.
Trapezoidal MF, f(x;a,b,c,d) =< 1, b<x<ec. (3.26)
%, c<x<d.
0, x>d.

\

Again, by using max-min, we can write the definition in the compact form:

Trapezoidal ME,  f(x:a,b,c,d) = max (min <ﬂ 1, @) ,0) . 32D
b—a 'd—c

where a < b < ¢ < d. These parameters represent the four vertices for the x coordinates
of the trapezoidal MF. The parameters (a,d) represent the left and right "feet", whilst
the parameters (b, c) represent the left and right "top" of the trapezoidal MF shape.
Figure (3.7b) shows a trapezoidal MF defined by (x;20,40,60,80) ; that is a = 20 and
d = 80, which represent the x coordinates allocated on the first and fourth vertices of
the trapezoidal shape, while » = 40 and ¢ = 60 represent the values of the x coordinates
allocated on the second and third vertices of the shape. Figure (3.9) shows the effects
of changing each of the parameters on the slope of both sides of the trapezoidal MF
shape.

3.4.2.2 The Gaussian Distribution Functions

There are three membership functions that can be considered as Gaussian distribution
functions. The first MF, called simple Gaussian MF, consists of two parameters {c,c}
that represent the Gaussian curve. The second MF is the two-sided Gaussian MF which
represents a composite of two different Gaussian curves. It is determined by four parameters
{o1,c1,02,c2}. Each pair of these parameters represents a simple Gaussian curve on one
side. The third MF is the generalized bell. This MF has three parameters {a,b,c}. Figure
(3.10) illustrates the plotting of the three functions. These MFs can be considered to be
the most popular functions used in processing fuzzy sets. It is characterized by two major
features. First, the smoothness and simplicity of its notation. Second, the nonzero values of

the membership function at all points.

» Simple Gaussian Curve Function
Two parameters specify the Gaussian MF. These parameters are o and ¢, where, ¢

determines the centroid of the curve, and ¢ represents the width. The plot shown



50

Fuzzy Logic & Fuzzy Set Theory

\‘
3

£
)

2

Membership Grades
o o o o o
N

o
~ o

Membership Grades
c o o0 o o o
RS &

o
g

(b) Changing parameter b.

3

o

Membership Grades
c o o o o o
v e R oa

o

o

(c) Changing parameter c. (d) Changing parameter d.

Fig. 3.9 Effects of changing Trapezoidal MF parameters.

in figure (3.10a) illustrates the Gaussian MF with parameters 0 = 2 and ¢ = 5. The
general mathematical formulation for this MF can be denoted as:

1 xfc)z

Simple Gaussian MF, f(x;0,c) = e 205 (3.28)

Figure (3.11) illustrates the effects of changing the Gaussian MF parameters. The first
part (Fig. 3.11a) shows how the width of the Gaussian curve is varying from the centre
by increasing and decreasing the value of the first parameter ¢ within the interval of
[1,3] of the original value of ¢ = 2. The figure (3.11b) shows the moving of the centre
point of the Gaussian curve that is resulting from changing the parameter ¢ = 5 within
the interval of [3,7].

Two-Sided Gaussian Curves

The two-sided Gaussian MF is specified by combining two simple Gaussian MF
parameters; that is {0},c1,02,c2}. The first pair o7 and ¢ represent the shape of
the left curve of the MF, while, the second pair 0, and ¢, determined the right curve
of the MF shape. Consequently, the two-side Gaussian MF will have two different
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(a) Simple Gaussian MF. (b) Two-sided Gaussian MF.
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Fig. 3.10 Gaussian distribution functions.

curves from the left and right sides of the centroid of the MF shape (Fig. 3.10b).
Mathematically, this MF can be denoted by:

Two-Sided Gaussian MF,  fi(x;0;,¢c;) =e 29" . (3.29)

Where i = 1,2, represents the left or right MF according to its parameters that represents
the two sides of the function.

* The Generalized Bell Function

A generalized bell MF is determined by three parameters {a,b,c}. The parameter
a represents the width of the MF around the centre point. Whereas the parameter b
represents the slope of the sides around the fixed crossover point of the MF. The value
of this parameter is usually positive, as a negative value will result in flipping the shape
of the MF upside-down. The parameter ¢ determines the centroid value of the MF. The
plot shown in figure (3.10c) illustrates the generalized bell MF with parameters a = 2,
b =3 and ¢ = 5. The general formula of this MF can be denoted as follows:
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Fig. 3.11 Effects of changing simple Gaussian MF parameters.

The Generalized Bell MF,  f(x;a,b,c) = (3.30)

1

T e

The generalized bell function can be considered as a direct generalization of the Cauchy
distribution in the probability distribution, sometimes so-called as the Cauchy MF.
Figure (3.12) shows the effects of changing each parameter in a generalized bell MF
of (x;2,3,5). The first part (Fig. 3.12a) shows the effectiveness of changing the value
of parameter a = 2 within the interval of [1,3] on the width of the MF curve from the
centroid. Secondly, figure (3.12b) illustrates the varying of the side’s slope caused by
increasing and decreasing the values of the second parameter b within the interval of
[1.5,6]. The third figure (3.12c), shows the moving of the centroid of the MF curve
resulting from changing the parameter ¢ = 5 within the interval of [3,7]. The figure

(3.12d) demonstrates the effect of changing two parameters a and b at the same time.

3.4.2.3 The Sigmoid Curve Functions

The sigmoid curve functions contain three types of membership functions; the sigmoidal MF,

difference sigmoidal MF and product sigmoidal MF. The difference between the first one and

the other two is that the sigmoidal MF is either open to the left or right; whilst the difference

and product sigmoidal MF are closed and asymmetric, which results from combining two

sigmoidal MF. Figure (3.13) shows the plot of these three types.

» Sigmoidal Membership Function

This membership function is determined by two parameters {a,c}. The parameter a
represents the slope of the curve, while the parameter ¢ represents the x coordinate
value of the crossover point. The shape of this MF is to be open to the left and the right
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Fig. 3.12 Effects of changing Generalized Bell MF parameters.

(Fig. 3.13a). This function can be represented by:

1

Sigmoidal MF, f(x;a,c) = 5o
e

(3.31)
* Difference Sigmoidal function
This membership function represents two different asymmetric sigmoidal curves. That
means, it will depend on two pairs of parameters {a;,cy,az,c;}, each pair aj, ¢i or ap
,c2 will represent one sigmoidal function for one of the two sides (fig 3.13b). This MF

can be denoted by:

1

Difference Sigmoidal MF,  f(x;a;,¢;) = Theala)

(3.32)

Where i = 1,2, draws the left or right of the MF. The difference of the two functions

can be denoted as:

f(xsar,cr,az,¢2) = fi(xar,c1) — fa(xaz,c2). (3.33)
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Fig. 3.13 Sigmoid curve functions.

Figure (3.14) illustrates the effects of changing the difference sigmoidal MF parameters
ofa; =4, c1 =6, a; =4 and ¢, = 3. Figures (3.14a, 3.14c) shows the effect of changing
the parameters a; and a, within the interval of [2,6], while, figures (3.14b, 3.14d)
demonstrates the effect of changing the parameters ¢; within the interval [4, 8] and ¢;
within the interval of [2,5].

Product Sigmoidal function

Similar to the difference sigmoidal function, the product sigmoidal MF represents the
product of two asymmetric sigmoidal curves (fig. 3.13c). It has the same parameters
that were listed in the order of {aj,c;,a,c;}. This means, the function will have the
same mathematical formulation as the previous one. However, the relation between

the two functions will be as followed:

fxsap,cr,a,¢2) = fi(xap,cr) X fa(x;az,¢2). (3.34)
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Fig. 3.14 Effects of changing Difference Sigmoidal MF parameters.

3.4.2.4 Quadratic and Cubic Polynomial Curves Functions

There are three membership functions included under the Quadratic and Cubic Polynomial
group of functions. The asymmetrical polynomial curve function, the mirror-image function,

and the zero extremes function (refer to fig. 3.15).

* Asymmetrical polynomial membership function
The asymmetrical polynomial curve function can be specified by two parameters {a,b}.
The shape of this MF curve is open to the left. According to the shape of this function,
it also called Z-shape MF (fig. 3.15a). The mathematical formulation for this function
can be denoted as follows:

1, x<a
—a\2 b
1-2(2)" g <x<atb
fxab)=¢ =) o (3.35)
2(54)° P <xso
0, x>b
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Fig. 3.15 Quadratic and Cubic Polynomial curves functions.

* Mirror-Image membership function
The mirror-image function depends on two parameters {a,b}. In contrast to the
asymmetrical polynomial curve function, the curve of this function is open to the
right, which gives an S-shape and accordingly it so-called S-membership function (fig.

3.15b). The mathematical formulation for this function can be denoted as follows:

(

0, x<a.
—a\2
2(x=2)" a<x<atb
f(xa,b) = < (=3) , T2 (3.36)
1-2(33)° " <x<bh
L1, x>b

* Zero Extremes membership function

The zero extremes MF is specified by four parameters {a,b,c,d} as shown in (fig.
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3.15¢). The mathematical formulation for this function can be denoted as follows:

;

0, x<a
2(7)°  asxset
1-2(34)°, “b<x<b
f(xa,b,c,d) =141, b<x<c (3.37)
1-2(3%)°, c<x< e
2707, Sf<asd
0, x>d

3.5 Linguistic Variables

According to Zadeh [161], dealing with system analysis problems using the traditional
methods has become inadequate, particularly in dealing with humanistic systems. The reason
behind this is because the humanistic systems are highly affected by human judgement,
thinking, and emotions. Zadeh [156] pointed out the need for finding an alternative method
to achieve the modelling of human thinking. However, using natural language in describing
ideas and sharing knowledge will resulting in vagueness. We often use words and sentences
to express and give a meaningful explanation for particular processes. Thus, any universe
can be represented linguistically, For example, if we take X = ""age'', "'speed'' or ''tallness"'
as a universe under consideration. These words or sentences are predominantly called fuzzy
variables or Linguistic Variables [157] [158] [159]. The words age, speed, and tallness are
linguistic variables if they contain Linguistic Labels (or in other words, linguistic terms or
linguistic values) instead of numerical values. For instance, the linguistic variable age can be
separated into the linguistic labels ("'young'', '""'middle aged' or "old").

Example 3.4
Assume that X = "tallness" represents the universe (i.e., linguistic variable) under con-
sideration. We can identify some points as a milestone for the tallness (i.e., x; = 160cm,
xp = 170cm, x3 = 180cm, x4 = 190cm, x5 = 200cm) in height. Then we can define two fuzzy
sets A1 and A, within X, to have linguistic labels "tall" and "very tall" respectively. Let A be
associated with the grade of membership pi4, (x) of (0, 0.6, 1.0, 0.5, 0) and A, with s, (x) of
(0, 0, 0.1, 0.3, 0.9) respectively. The MF of the fuzzy sets for the two linguistic labels "tall"
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and "very tall" can be written as:

A1 (x) = Wy (x) = {(x1,0), (x2,0.6), (x3,1.0), (x4,0.55), (x5,0)}
Ao (x) = Myeryratr (x) = {(x1,0), (x2,0), (x3,0.1), (x4,0.3), (x5,0.9)}

Figure (3.16) shows the graphical representation of the two fuzzy sets "tall" and "very tall"
within the universe "tallness". For instance, it can be clearly noted that the element x4 is a
member of the fuzzy set "tall" with grade of membership 0.55 and to the fuzzy set "very tall"
with grade of membership 0.3.

Linguistic Variable - Tallness

Heau 1
allness e ~
o
1 ,/‘1 \\ 09
/ \
4 \\
0.6/’ .
4 0'55‘\ R,
P . - * -Linguistic Label 1 - Tall
,’ 0.3/ Linguistic Label 2 - Very Tall
U4 \
/ 0.1 N
/ \
0 v A S
X1 X2 X3 Xg xs X
160 170 180 190 200

Fig. 3.16 Plotting of linguistic labels (fuzzy sets) of the linguistic variable (universe) "Tall-
ness".

3.5.1 Linguistic Variables and its Related Terminology

We commonly separate the universe into several fuzzy sets associated with membership
functions in order to cover the universe X (i.e., the whole set) in a comprehensive manner.
As has been mentioned earlier, each universe of discourse (linguistic variable) consists of
some fuzzy sets (linguistic label). In this section, we will define three levels of linguistic

terminology corresponding with the hierarchies of the fuzzy sets as follows:

* Linguistic variable: The linguistic variable represents the terminology of the universe
of discourse or in other words, Whole set (the collection of all elements in the universe).

" on

Such as, X = ""age"', "'speed", ''size'’, ..., etc.

* Linguistic label: It is also called the primary terms or linguistic values. It can be
derived from the linguistic variable to represent the terminology of the fuzzy sets (i.e.,

the collection of particular elements and its membership grades in the universe). For
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example, consider the linguistic variable ''speed' which can be derived into some

linguistic label such as A(x) = ""slow", "'medium' and '"'fast"".

* Linguistic hedges: the linguistic hedges can be derived from the primary terms (i.e.,
the linguistic labels). It represents the terminology of the modified fuzzy sets (the
collection of particular elements and its membership grades within the fuzzy set). For

example, consider the linguistic hedges (''very slow'', ''more or less slow'', ""quite

" on

slow', "extremely slow', ... .etc) which can be derived from the linguistic label

""slow"".

Figure (3.17) shows the linguistic variable "speed' and its linguistic labels & hedges.

Linguistic Variable

(Universal Set) Speed
Linguistic Label L

(Fuzzy Set) Slow Medium Fast

|
Linguistic Hedges very More Quite  Extremely Not Very More Quite  Extremely
slow or slow slow medium fast or fast fast
(Modified Fuzzy Set) Less Less
slow fast

Fig. 3.17 Linguistic variable "Speed" and its linguistic labels and hedges.

Generally, the characterization of a linguistic variable can be denoted by the quinary
(x,T(x),X,G,M) where x represent the variable name (e.g., Speed); T'(x) is a fuzzy set (term
set) of x that represent the linguistic labels (e.g., slow, medium, fast, ..., and so forth); X is
the universe; G is the syntactic rule that creates the labels in 7'(x), and M is the semantic rule
of every linguistic label [117, 61, 86].

Example 3.5
Assume that we have the speed as a linguistic variable, then we can define its linguistic labels

(terms) T (speed) as follows:

T (speed) = {slow, not slow, very slow, not very slow, more or less slow, ...,
medium speed (i.e., not slow & not fast), not medium speed, ..., (3.38)
fast, not fast, very fast, more or less fast, not very fast, ..., '

not very slow and not very fast, ...}
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Commonly we use "speed is fast" to assign the linguistic label "fast" to the linguistic variable
"speed". On the contrary, if we use the numerical variable to interpret the speed, we say
"speed = 120km" to assign a digital value to the numerical variable. Whereas, we used the
syntactic rule to generate the linguistic label "fast" for the linguistic variable T (speed). On
the other side, the semantic rule gives the membership function of each linguistic label. If
we use the typical membership function (e.g., Gaussian) to represent the linguistic variable
T (speed). Each linguistic label is to be characterized by a fuzzy set in the universe speed (i.e.,
X =[0,200]). All linguistic labels (terms) and its hedges can be plotted using the Gaussian

membership function with different modified parameters (o, ¢), as shown in figure (3.17).

Slow Me&ium Fast
1

Linguistic Labels

Slow

e \ery slow

= = = More or less slow
Medium

Fast
—— Very fast
------ More or less fast

Degree of membership

0 20 40 60 80 100 120 140 160 180 200
Linguistic Variable "Speed"

Fig. 3.18 Typical Gaussian MF of linguistic Variable "Speed" and its linguistic labels &
hedges.

Referring to the previous example (5), it can be noted that the linguistic variable

" "

T (speed) composed of some linguistic labels (primary terms) such as ("slow", "medium
speed", and "fast") modified by the linguistic hedges (e.g., "very", "more or less", "quite",
"extremely”, ..., etc.) in addition to the negation (Not), then linked by connectives such as

(and, or, either, neither, . .., etc.).

3.5.2 Concentration and Dilation of Linguistic Labels

As mentioned earlier, the linguistic hedges can be derived by modifying the linguistic label.
Referring to the previous example (5), assume that the linguistic label (A = slow) is a fuzzy
set with a membership function L, (x). Then, we can derive linguistic hedges by modifying
A into A* as follows:

AK = (slow)t = /X (Lston (X)) /. (3.39)
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Accordingly, we can define the concentration as the operation that can modify the

linguistic label by squaring its membership values , it can be denoted by:
CON(slow) = (slow)* = [Usow(x)]> = very slow, (3.40)

and the dilation as:

DIL (slow) = (slow)> = [Uson(x)]"> = more or less slow, (3.41)

Where, CON(slow) and DIL(slow) represent the linguistic hedges "very" and "more or

less" respectively (refer to figure 3.18).
Also, the negation (Not) and the connectives AND and OR of two linguistic labels

(medium) and (fast) can be denoted as:

NOT (medium) = —(medium) = / [1 — Wedium(X)]/x,
X
medium AND fast = medium N fast = / [Mmedium (%) A Pras (x)] /X, (3.42)
X

medium OR fast = medium\U fast = / [Wmedium (%) V ras (x)]/x.
X

The linguistic terms "medium AND fast" and "medium OR fast" are shown in figures
(3.19a & 3.19b). The highlighted area representing the intersection and union of the two

membership functions respectively.

,_Slow Medium Fast ,_Slow Medium Fast

Degree of membership
Degree of membership

® 100 ) o 100 0
Linguistic Variable "Speed” Linguistic Variable "Speed”

(a) Medium AND fast. (b) Medium OR fast.

Fig. 3.19 Connectives AND & OR of two linguistic labels.

By using all the previous terms of CON(x) and DIL(x), the hedges (very and more or
less), the negation (NOT), and the connectives (AND, OR), all can be driven in the preceding
equation (3.42). Accordingly, we can create a composite linguistic label, for example, "slow
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but not very slow" and "not very fast and not very slow" ..., etc; these composites can be

represented mathematically.

Example 3.6
Referring to example 5, presume that we have the linguistic labels "slow" and "fast", if we
use the Gaussian membership function to define these two terms each linguistic label is to
be characterized by a Gaussian membership function with different parameters (o, c) in the

universe "Speed", i.e., X = [0,200] i.e. :

02
Wsiow = gauss(x;30,0) = e 20500) :

1 (x=20042

(*=50-)

Ufas =  gauss(x;30,200) =e 2130 ) |

(3.43)

where x represents the the speed of a given car. Consequently, we can create the member-

ship functions of the following composite linguistic labels:

* Very (fast) = CON (fast) = [Usay (x)]2

1 (x=20042 2
:/ |:e_2(x30 ):| /X.
X

* More or less (fast) = DIL (fast) = [l rs (x)]0>
-/ \/e—éwfo“)z/x_
X

* Not slow and not fast = —slow N — fast

Slow but not very slow = slow N —slow?

1,x=042 1,x=042 2
() ]
X

» Extremely fast = very very very fast

CON(CON(CON(fast) = ((fast>)?)?> = /X [e 2(550 )218 / x.
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3.6 Fuzzy Relations

Following the earlier description of the fuzzy sets operations, in this section, we are consider-
ing the mathematical representation of the linguistic statements using the concept of fuzzy
relations [97]. Assume that we have two universes under consideration, labelled X and Y.
Then we can define a binary fuzzy relation R from the fuzzy set A in X to the fuzzy set B in
Y using the Cartesian product of A x B in the universal space X x Y as follows:

RZAXB:{( (‘xﬂy)7 ‘LLR(X,y)H(X,y)GXXY}, (3~44)

where Ug(x,y) = taxp(x,y) is a two-dimensional fuzzy set, which can also be called a
fuzzy relation matrix.

Recalling the fuzzy operations (Cartesian product and Algebraic product) of two fuzzy
sets that has been introduced in section (3.3.2), the binary fuzzy relation can be provided by
using the following:

* Cartesian product:
According to equation (3.19), we have the ability to compose a binary fuzzy relation
for the preceding equation (3.44) using the Cartesian product, which can be denoted as

follows:
R=AxB=Y ur(x,y)|(x,y) =Y min(pa(x), up(y)), (3.45)

* Algebraic product:
According to equation (3.12), we can compose a binary fuzzy relation for the preceding
equation (3.44) using the Algebraic product, which can be denoted as follows:

R=AxB=Y ur(x,y)|(x,y) =Y min(pa(x).up(y)), (3.46)

where the symbol (}) does not refer to the numerical summation, but instead refers to all
possible combinations of all elements in both fuzzy sets.

Example 3.7

Suppose we have the following two fuzzy sets defined in the universes X and Y:
A(X) = {(X], 10)7 (X270.7), (X3,0.5), (X4,0.4), (X5,0.2>},

B(y) ={(v1,0.3), (y2,1.0), (y3,0.4)}.
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Now, the binary fuzzy relation R can be obtained by multiplying the two fuzzy sets A(x) and
B(y) using the Cartesian product. The result will be as follows:

(1,3 (1,1} {L4] [o3 1 04
(7,3} {71} {74} |03 07 04
R=AxB= {53} {51} {5.4}]=103 05 04
(4,3} {41} {44} |03 04 04
(2,3} {2.1} {2.4}] |02 02 02

The result of using the Algebraic product to obtain the binary fuzzy relation R will be:

(1,3 (o (L4 ] o3 1 04
(7,3} {71} {7.4}] |021 0.7 0.8
R=AxB= {523} {51} {54} =015 05 02
(4,3} {41} {44} |0.12 04 0.16
{23} {21} {2.4}] |006 02 0.08]

So far, we know that the binary fuzzy relations are resulting from combining two fuzzy
sets by using either Cartesian product or Algebraic product fuzzy operations. However,

we can find the composition of two relations by using the same previous fuzzy operations
(Fig. 3.20).

Fuzzy Fuzzy Fuzzy Fuzzy
Set A Set B Set B Set C
Fuzzy Fuzzy
Relation (R1) Relation (R2)

| |
l

Composition of
Fuzzy Relation

Fig. 3.20 Composition of two fuzzy relations.
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Accordingly, we will establish the best known composition operations as follows:

3.6.1 Max-Min Composition

Assume that there are two fuzzy relations R and R, defined on the space of the universes
X xY and Y x Z, respectively. Consequently, the max-min composition of these two fuzzy

relations can be defined as:

Crnax—min =R10 R

(3.47)
={(x,2), max [min(ug, (x,y), ur,(v,2))] | x EX,y €Y,z € Z},
which is equivalent to,
.LLR10R2 (X, Z) = max[min(u& (xay)a .uRz (y7 Z))]7 (348)
and by using matrix form,
[ci] = [rlij] © [r2jk] ) (3.49)
where,
Cik = max[min(rlij, I’gjk)] ) (3.50)
3.6.2 Max-Product Composition
Considering the same notations we used in max-min composition, then:
max-product = Ug,or, (X,z) = max[min(ug, (x,y).Ur,(¥,2))], (3.51)
and by using matrix form,
[ea] = [r1;;] o[r2,], (3.52)
where,
Cik = max[min(rlij.rzjk)] ) (3.53)
Example 3.8

Presume that we have the following relation matrices which represents two fuzzy relations
Ry and R,. Such as,
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0.2 06 02
0.1 0.8 0.6

0.3 0.5
Ry={[ry]= (02 07
0.6 0.9

Now we want to find the composition R o R, between of the two fuzzy relation. Firstly, by

using max-min composition as follows:

Cl1 = max[min(rln,rzn),min(rln,r221),min(r113,r231),]
= max|[min(0.2,0.3),min(0.6,0.2),min(0.2,0.6), |
=0.2

c12 = max[min(ry,,,r2,,), min(ry,,,r2,,), min(ry 5, r2,),|
= max[min(0.2,0.5), min(0.6,0.7),min(0.2,0.9),
=0.6

c21 = max[min(ry,,,7r2,, ), min(ry,,,r2,, ), min(r1,;,725,),]
= max[min(0.1,0.3),min(0.8,0.2),min(0.6,0.6), |
=0.6

22 = max[min(ry,,,72,,), min(ry,,,r2,,), Min(r1,;,72s,),]
= max|min(0.1,0.5),min(0.8,0.7),min(0.6,0.9), |
=0.7

0.2 0.6
Cmaxfmin -
0.6 0.7

Secondly, by using the max-product composition and following the same procedures we will

have the following relation matrix:
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0.12 0.18
0.36 0.56

Cinax— product —

3.7 Fuzzy If-Then Rules

Fuzzy if-then rules can be defined as the conditional statement of fuzzy logic; also called the

fuzzy rule. It takes the following form:
If < fuzzy proposition > Then < fuzzy proposition >

such as,
ifxisAthenyis B, orA — B (3.54)

where A and B represents the linguistic labels (i.e. fuzzy sets) on the universes X and Y,
respectively. Predominantly, the term (x is A) refers to antecedent or premise, whereas (y
is B) refers to consequence or conclusion. There are some common examples of the fuzzy

rules such as:
o If Speed is fast Then Pressure is low.
o If Service is good Then Tip is average.
 If Road is wet Then Safety distance must be long.
Generally, there are three forms represents the linguistic variables [117]:
i. Assignment form: A common example of this type is, x is not fast AND not very slow.
ii. Conditional form: e.g., IF x is fast THEN y is slow.
ii1. Unconditional form: e.g., the speed is fast.

Usually, the fuzzy rule (if then rule) is defined as a fuzzy relation R that is expected to be
a binary relation for x and y within the product space X x Y. Thus, the fuzzy rule A — B can
be interpreted in two ways:
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1. A — Binterpreted as A coupled with B then:

R=A—SB=AxB= | ma()sus()|(xy), (3.55)

where % represents the T-norm operator, and R represent the fuzzy relation (i.e. A — B).
2. A — B interpreted as A entails B then:

* Material implication:
R=A—B=-AUB. (3.56)

* Propositional calculus:
R=A—B=-AU(ANB). (3.57)
* Extended propositional calculus:
R=A—B=(-AN—-B)UB. (3.58)
* Generalization of Modus Ponens:
Ur(x,y) =sup{c| pa(x) ¢ <up(y)and0<c<1} (3.59)

Again, % represents the T-norm operator, and R represents the fuzzy relation (i.e.
A — B). Also, if A and B are two logic propositions then all four equations (3.56 -
3.59) can be reduced to the form (A — B=-AUB).

By combining the previous two interpretations with the two operators (T-norm and S-
norm), we can derive a number of formulations to calculate R =A — B. Where R is the fuzzy

set that represents the fuzzy relation with a two-dimensional membership function, that is:

;,LR(x,y) - f(.uA(x)v.uB(y))) - f(avb)v (3.60)

where f(a,b) represent the fuzzy implication function transforming the membership grade
of xin A and y in B into (x,y) in A — B.

3.7.1 Compound Rules

In general, a linguistic expression might include a compound rule structure. Applying the

properties and operations of the fuzzy set can reduce the compound rule into a simplified
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rule. Therefore, the two compound rules (Conjunctive and Disjunctive) can be expressed as

follows:

@)

(ii)

Conjunctive antecedents: A multiple conjunctive antecedent can be expressed as:

IFxis Ay ANDxisA;...AND xis A, THEN y is By (3.61)

Equation 3.61 can be simplified as
IF x is A; THEN y is By, (3.62)

where Ay, = A1 NA;N---NA, and A can be expressed by using membership function

form based on intersection operation as
HaA (x) = min [.uAl (x)v Ha, (x)7 <oy Ha, (x)] (3.63)

Disjunctive antecedents: In a similar way, the multiple disjunctive antecedent can be

expressed as:

IFxisA; ORx1sA,...ORx1s A, THEN y is By (3.64)

Equation 3.64 can be simplified as
IF x is Ay THEN y is By (3.65)

where Ay, = A UAU---UA,, and A can be expressed by using membership function

form based on union operation as

M (x) = max [nu’Al (x)7 Ha, (x)a -+ Ha, (x)] (3.66)

3.7.2 Aggregation of Rules

Ordinarily, the structure of the rule-based systems contain more than one rule. The aggrega-

tion of rules can be defined as the process of obtaining the overall consequent. It results from

the accumulation of the contribution of all individual rules in the system. If a system of rules

is jointly satisfied, then the rules are connected by (AND) connectives. In this case, the fuzzy

intersection of the entire rule’s consequents are to be used to obtain the aggregated output y; ,
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where i =1,2,3,...,r:
y=Yy1 AND y; AND ---AND y, (3.67)

or equivalently,
y=y1 Ny NNy, (3.68)

or, by using the membership function form

ty(y) = min [y, (v), Wy, (y), ---, Uy, (y)] forye?Y. (3.69)

Furthermore, the aggregated output can be found by using fuzzy union if there is at least
one rule that is satisfied. In this case, a disjunctive system of rules can be used and OR

connectives connecting the rules for all of the rule’s consequents y; , where i = 1,2,3,...,r:
Yy=Y1ORy; OR ---OR y, (3.70)

or equivalently,
y=y1tUyUuU- Uy, (3.71)

or, by using the membership function form

My (y) = max [y, (¥), y,(¥), -+, My, (y)] foryeY (3.72)

3.8 Fuzzy Reasoning

Fuzzy reasoning, or approximate reasoning, can be defined using conditional rule-forms
to explain the relationship between logic values. In other words, we can infer the truth of
proposition B depending on A (i.e. A — B). Since the traditional basic rule of inference uses
Modus Ponens as a particular case, here we use the so-called generalized Modus Ponens
(GMP) [46]. For example, assume that A defined as "the apple is red", and B as "the apple is
ripe", if A is true, then B it is also true. The general GMP of this example can be expressed

as follows:

premise 1 (fact): XIS A,

premise 2 (rule): if xis A thenyis B,

consequence (conclusion): yis B.

However, if we know that "the apple is more or less red" then we can infer that "the apple is

more or less ripe" which can be denoted as:
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premise 1 (fact): xis A,

premise 2 (rule): if xis A then y is B,

consequence (conclusion): yis B,

where A and A are fuzzy sets of appropriate universe X and B and B’ are fuzzy sets of ¥ and
A — B can be expressed as fuzzy relation R on X x Y. Then the fuzzy set B inferred by "x is
A" and the fuzzy rule "if x is A then y is B" can be defined as:

pp (y) = max, min[piy(x), Ur(x,y)]

(3.73)
= Vy [ (x) A ur(x,y)],

or equivalently,
B =A'ocR=A"o(A— B). (3.74)

The previous definitions represent the inference procedure of fuzzy reasoning that can be
used to derive the consequences, as long as it implies the fuzzy relation A — B, as a binary
fuzzy relation. Further discussion follows in order to cover different cases where single or
multiple fuzzy rules are combined with single or multiple antecedents; which can affect
in explaining the system behaviour. However, this will be presented by using Mamdani’s
fuzzy inference functions and max-min composition as they have more intuitive, easier to

understand rule bases, and broad applicability.

3.8.1 Single Rule with Single Antecedent
This type can be considered as the simplest case, the equation (3.73) represents the formula
of this case. However, simplifying this equation yields

pp (¥) = [Va(par (x) A pa (x)] A (y)

- 7

M (3.75)
=w A Ug(y).

Figure (3.21) shows the inference mechanism of this case and how to conclude the
consequent of a fuzzy reasoning problem of single rule and single antecedent. The shaded
field of the antecedent part of this figure represents the degree of match w resulted from
calculating the maximum of fi,/(x) A t4(x). Consequently, the membership function of B’ is

equal to B snipped by w, shown as the consequent part of the same figure.
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Premlse min Conse‘quence

w(X)

Fig. 3.21 Single rule with single antecedent.

3.8.2 Single Rule with Multiple Antecedents

This type using a fuzzy rule which contains two antecedents, the following expression
represents the corresponding GMP for this case:

premise 1 (fact): xisA’and yis B/,

premise 2 (rule): if xis A and y is B then z is C,

consequence (conclusion): zis C'.

A more straightforward form of A x B — C, can be used for the fuzzy rule shown in premise
2. By using Mamdani’s fuzzy inference function, we can transfer this rule into a ternary

fuzzy relation R,, as follows:

Ru(A,B,C) =(AxB)xC

= ‘U,A(x>/\[.LB(X)/\NC(Z)/(Xa%Z)'
XxYxZ

Consequently;
C'=(A' xB)o(AxB—C).

per(2) = Vay[tar (x) A g (0)] A T (x) A g (v) A pe(z)]
= Vay{ [Har (x) A g (3) A pa (x) A s ()]} A te(2)
= {yx [1ar(x) A i (X)l} A {Yy [ (v) A g (y)l} Alc(2) (3.76)

vV TV
w1 wo

= WiAwz) A pe(z),
——

firing strength
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where wy and wy represents the degrees of compatibility between (A,A’) and (B, B’) respec-
tively. In other words, w; is the maximum of pa (x) A tas(x) (i.e., ANA’); similarly for wy
(i.e., BNB'). The term (w; Awy) expresses the degree of satisfaction of the rule’s antecedent,
it is also called degree of fulfilment or firing strength of the fuzzy rule. The shaded area
of figure (3.22) shows the graphic interpretation of this case, where pc(z) is the resulting
output that is equal to L¢(z) snipped by the firing strength w, where w = wj A wy.

Premise min Consequence

")‘(; 0

Fig. 3.22 Single rule with multiple antecedent.

3.8.3 Multiple Rules with Multiple Antecedents

This type is applying at least two fuzzy rules and antecedents. Usually, it is using the union of
the fuzzy relation corresponding to the fuzzy rules. Thus, the following expression represents
the GMP form for this case:

premise 1 (fact): xisA’and yis B/,
premise 2 (rule 1): if xis A; and y is By then zis Cy,
premise 2 (rule 2): if x is Ap and y is B then z is (s,

consequence (conclusion): zis C’,

we can use the GMP form above in addition to the drawing of the fuzzy reasoning of this
case shown in figure (3.23) as an inference scheme to determine the fuzzy set C’'. Let
Ry =A; xBy — C1l and R, = A; x B, — C2. Since the max-min composition operator, o is
distributive over the U operator, then:

C/

(A’x B')o (R{URy)
[((A"x B"YoRJU[(A" x B') oRy] (3.77)
CiuUch,
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Premise Consequence
; |

v \

Aggregation of rules —>

Fig. 3.23 Multiple rule with multiple antecedent

where C| and C}, represents the inferred fuzzy sets for rules 1 and 2, respectively. The shaded
area of figure (3.23) shows the graphic interpretation of the operation of fuzzy approximation

multiple rules with multiple antecedents.



Chapter 4

Fuzzy Inference System
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4.1 Introduction

This chapter will present the implementation methodology of the fuzzy logic and fuzzy theory
to formulate and solve real-world problems using fuzzy systems. The fuzzy inference system
(FIS) can be defined as a computing framework using fuzzy if-then rules combined with the
fuzzy reasoning based on the fuzzy set theory in order to describe the mapping from input to
output by fuzzy variables and fuzzy relations. It can be considered as one of the successful
applications in different areas, such as classification of data, expert system, decision analysis,
and time-series forecasting. The multidisciplinary character of the FIS provides several
nomenclature, such as fuzzy rule base system, fuzzy-expert system, fuzzy-model, fuzzy-
associative memory, fuzzy-logic controller [61]. The process of FIS contains all the pieces
of fuzzy logic operations, membership functions, linguistic variables, fuzzy-relations,
fuzzy rules (if-then), and fuzzy-reasoning that we have discussed in the previous section.

In general, a system structure often contains three stages (i.e., input-processing-output).
As a fuzzy inference system, the inputs can be either fuzzy or crisp values. However, the
produced outputs are often fuzzy. In some cases, if the FIS is used as a controller, then the
output can be crisp values. The processing stage includes three components i.e., fuzzification,
inference engine, and defuzzification; supported by the fuzzy knowledge base (FKB). The
fuzzy knowledge base is to be constructed of two parts. First, the rule-base, which includes
the fuzzy if-then rules; second, the database, which consists of the membership functions
definitions (types and numbers). The inference engine represents the mechanism of reasoning
for the inference procedure. This can be processed using different inference methods, such as
Mamdani fuzzy models and Sugeno fuzzy models. Figure 4.1 interprets the overall structure
of the fuzzy inference system.

In this chapter, all the figures, diagrams, and examples have been created by the author,

except where indicated with the word "reproduced".

4.2 Fuzzy Inference Control

4.2.1 Fuzzification

In general, implementing the fuzzy logic controller is often accompanied by using crisp data.
Therefore, fuzzification plays a vital role in converting crisp (real) input values into fuzzy
sets. The fuzzification can be defined as the process of mapping the observed input data
into fuzzy sets. In other words, it is providing a membership grade of the crisp (or numeric)

values using membership functions stored in the fuzzy knowledge base. It determines the
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Fuzzy
IF-Then
Rules

MFs Database

Fuzzy
Knowledge
Base

! Y v
Input ——> Fuzzification > In::rgeirr:ce:e > Defuzzification ——> Qutput
1 J 4
C;f;;’_) MF Mamdani L Fuzzy _ Crisp J
Input Assignments or Output Output
Sugeno

Fig. 4.1 Fuzzy inference system.

intersection value between the numeric input and the membership function. Since the FIS

can take either fuzzy or crisp inputs, fuzzification can be handled by two methods:

* Singleton fuzzification: Assume we have the universe of discourse X where x; € X. A
fuzzy Singleton Ay, will represent the membership value that is mapping the real value

of x; into a fuzzy Singleton

I, if x =ux;
Ha,, (x) = ‘ 4.1)
0, otherwise.

This type of fuzzification is simplifying the computation, and it can be applied when

there is no noise.

* Ay, is fuzzy: This type is mapping the real values of x; where x; € X, into a fuzzy set

Ay, and it can be described by a membership function

1, if x = x;
Ha,, (x) = (4.2)
[0, 1], x; < 1.

Thus, the fuzzification process may involve assigning membership values for the given
crisp quantities which interpret the extent to which it belongs to the fuzzy set Ha,, (x). The
fuzzy set can be characterised by various types of MFs introduced in Section (3.4). Figure 4.2
shows the use of three different types of MF to process the fuzzification of x; € X. It
elucidates that x = x; € X has different membership values (i.e., fuzzified grade) when using

several types of MF such as, A1, trapezoidal with membership grade of fi4, (x;); A2, triangular



78 Fuzzy Inference System

My (x) A
1 As
Moy (x;) A
Man(X;) A

M3 (x;)

Fig. 4.2 Fuzzification in different types of MFs. Reproduced from [117]

with membership grade of p4, (x;); and Az, Gaussian with membership grade of pi4, (x;)

respectively.

4.2.2 Inference Engine

The inference engine can be considered as the decision-making unit, which implements
the inference operations on the rules. In other words, it performs the mapping of inputs to
outputs by using a number of fuzzy if-then rules. The inference engine uses the max-min
and max-product compositions to combine the membership values and calculate the firing
strengths (weight) of each rule, then aggregate qualified consequent membership functions
to obtain an overall output. The T-norm and T-conorm operators are used to perform the
combining and aggregation of rules. Figure 4.3 (surrounded by a dashed line) shows the

inference engine block diagram.

E Rule 1 i

' . Wi . Fuzzy |

L2 x is Ay >y is By :

E Rule 2 i

! A Wy [ . B Fuzzy ¥ |
Crisp r) X 1S Ay Y LS by iFuzzy . Crisp

X— or E— . . Z ; > Defuzzifier ——>

Fuzzy ! . . . I

H M . . A :

E Rule r i

| Wr | Fuzzy |

X is A, >y is B, :

Fig. 4.3 Fuzzy Inference Engine. Reproduced from [61].
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4.2.3 Defuzzification

We can define the defuzzification as the process of converting a fuzzy value into a numeric
(crisp) value. It can be considered as the inverse of the fuzzification process. In other words,
it represents the method of extracting real, numeric values from a fuzzy set. The literature
presents many defuzzification methods. The choice of the most appropriate defuzzification
method for a particular application depends on the application we use. Runkler [111]
presented good research to identify the appropriate method. Broadly, there are some methods
used for processing the defuzzification of the fuzzy sets. A brief explanation of the most

used methods follows.

4.2.3.1 Centroid of Area Method (COA):

It is also referred to as the centre of gravity or centre of area method. It can be considered
as one of the most used methods. This method works by dividing the total area of the
membership function distribution into several levelled sub-areas. This is similar to the
calculation of expected values of probability distributions [61]. Thus, the defuzzified value is
extracted by calculating the centre of gravity of each sub-area and then finding the summation.
Mathematically, the general form of this method for the continuous universe can be expressed

as follows:
Jz M (2)zdz

2C0A = ; (4.3)
Jz be(2) dz
and for m quantization levels in the output of a discrete universe, it is given by
m 1(z:).2;
ZCOA = Zl—mLC(’)‘, (4.4)
ey Her(zi)

where L(z) represents the aggregated output membership function shown in figure 3.23

(aggregation of rules).

4.2.3.2 Centre of Sums Method (COS):

This method also represents one of the most commonly used methods. It is using the algebraic
sum of each output fuzzy set to calculate the defuzzified value. In other words, it is using
the summation instead of the union of the output fuzzy sets. Formally, the mathematical

expression for the discrete case can be given as follows.

Lz Xy be (z)
z2cos =
X be(z)

) (4.5)
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where M represents the number of fuzzy variables, m is the number of fuzzy sets, and e (zi)
is the MF for the k-th fuzzy set.

4.2.3.3 Mean of Maximum Method (MOM):

It is also referred to as the middle of max method. This method identifies the output range
of the fuzzy variable corresponding to the elements with the highest value of membership.
The mean of all the local maxima is considered to be a single defuzzified output (crisp output).
Mathematically, it can be denoted as

Z?il Mmaxc! (Zi)

MoM = i , (4.6)

where . (zi) is the maximum values of membership in the fuzzy output variable C’
and M, which represents the number of times when the membership function reached the
local-maximum value.

Figure 4.4 shows the difference between the defuzzified values for each method used for

obtaining the crisp output of the aggregated fuzzy output variable C’, shown in figure 3.23.

A
(z) /_ C'
K maxC'}---_-
Z
Mean of Maximum \— Centroid of Area

Centre of Sums

Fig. 4.4 Different defuzzification methods for obtaining crisp output. Adapted from [61]

4.3 Fuzzy Inference Methods (Inference Mechanism)

There are two main methods of modelling a FIS. The first one is known as a Mamdani FIS,
which is one of the most commonly used inference methods. Another well-known inference
approach is the Takagi-Sugeno [130] FIS; often only referred to as Sugeno-type. The main
difference between the two approaches lies in the consequent part of the fuzzy rules. The
Mamdani fuzzy system’s output is a variable with corresponding membership functions. In

contrast, T-S fuzzy systems employ linear functions of input variables as rule consequents.
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Moreover, when using Mamdani fuzzy systems, the resulting output needs to be defuzzified
in such models. The T-S approach is where the output is a function, thus not requiring
defuzzification. Also, Mamdani is usually requires prior expert knowledge to develop the FIS
(i.e., determining the membership functions and the associated parameters). Whilst T-S can

be generated automatically when historical data are available, enabling supervised learning.

4.3.1 Mamdani Fuzzy Inference Method

According to the literature, the Mamdani fuzzy inference method can be considered as one of
the first control systems built using fuzzy set theory [82]. Mamdani’s system was improved
depending on Zadeh’s effort [161] on fuzzy algorithms for complex systems and decision
processes. As defined, the output of a Mamdani-type inference is expected to be fuzzy sets
in the form of membership functions. Each output variable should have its fuzzy set. All
output fuzzy sets have to be combined using the aggregation process and be defuzzified in
order to produce a real number (crisp value) as the final inference result.

Figure 4.5 shows a Mamdani-FIS, which consists of two inputs x and y (premises)
and one output represented by z (consequent). Every input x,y and output z contain two
membership functions, i.e., {A1,A2},{B1,B2} and {C1,C2}, respectively. A collection of
R rules characterises a typical form of Mamdani-FIS rule, thus

k : if xis Af and y is BY then z is CJ, 4.7)

where k =1,2,....R, i=1,2,....N, j=1,2,.... M and [ = 1,2,...,L. R represents the
maximum number of rules. Whereas M symbolises the numbers of MFs for inputs, and L
expresses the number of MFs for the output. Consider the inference mechanism in figure 4.5,

there are two rules to be used,

Rulel: IFxisA; ANDyis B; ,THEN zis C; ,
Rule2: IF xis A, AND yis B ,THEN zis C; .

Consider x; and y;p as crisp values specified for inputs x and y, respectively. Adopting
max-min, and max-product as the composition rules methods can demonstrate the process of
the previous two rules. In other words, we are performing the max and algebraic product using
T-norm and T-conorm operators, respectively, to process the fuzzification and inferencing.
Figure 4.5(a) shows that the inferred output for each rule is a fuzzy set clipped down by the
firing strength with AND operator (usually T-norm) from the antecedent part via minimum

or product rule. Figure 4.5(b, d) illustrates the consequent portion of every rule utilising
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|
Aggregation and |
defuzzification i

_____________________________________

Fig. 4.5 Two-input single-output Mamdani fuzzy model. Reproduced from [117]

max/min, and max/product rules, sequentially. Figure 4.5(c, e) shows the process of rule
aggregation for both the max-min as well as the max-product rules of composition. The
defuzzification operations have been carried out by applying the centre of area method z{-,,
(fig. 4.5(c, e)).

Example 4.1 Assume that we have a Mamdani-FIS with two inputs x and y which express
the antecedents, three fuzzy sets (linguistic variables such as low, medium and high), with
triangular MF, and a single output z symbolising the consequent. The rule-base includes the
following:

Rulel: IF x is low AND y is medium ,THEN z is low ,
Rule2: IF x is medium AND y is high ,THEN zis high .

Let us assume that x; = 3.89 and y; = 5.58 are two numeric values. Their membership
values g (x1) and tg(y1) (k symbolises the MFs low, medium, or high) can be determined
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Fig. 4.6 Max/min Mamdani fuzzy inference method. Adapted from [117]

using the triangular MFs. The aggregated outputs of the rules are given by

Rule 1: ,Lllow(Z) = max [ min [.ulow(x)v .umedium(y)”
Rule 2: .u'high (Z) = max [mm [.umedium (x), .u'high (y)]]

Figure 4.6(a) shows the antecedents part of the Mamdani inference system for our example
which contains two rules r1 and r2. At this stage, the minimum membership value of
[Miow(X), Mimediwm(Y)] and [Wnediwm(X), Unign(y)] are to be propagate into the consequent part
(fig. 4.6(b)). The consequent MFs of each rule is to be computed by clipping the maximum
values based on the produced firing strength, i.e., max [ min [l (X), Wnedium(y)]] and
max [ min [Upedium(X), Unign(y)]] as shown in figure 4.6(b). After that, the consequent MFs
are to be aggregated using the max operator (fig. 4.6(c)), then defuzzified using the centroid
of area method (fig. 4.6(d)).

4.3.2 Sugeno Fuzzy Inference

This section will introduce the Sugeno fuzzy inference system, which is also known as

a Sugeno—Takagi model (TSK). This model was first introduced by Takagi, Sugeno, and
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Kang [126] [130] as an effort to formalize a systematic approach to generate fuzzy rules
from an input-output data set. A general form of a common rule in a Sugeno model with two

inputs and a single output is defined by:
k : if xis A; and y is Bj then 7 = f(x,y), (4.8)

where k=1,2,...,R,i=1,2,...,N,and j=1,2,...,M. N, M and L are the numbers of
MFs for the inputs and output, respectively, x and y are the inputs, R is the maximum number
of rules, A; and B; are fuzzy MFs for the inputs at the antecedent part and z; = f(x,y) is a
crisp function in the consequent part.

The firing strengths wy (weights) in the antecedents part are to be obtained using the
minimum or product composition as the inferencing method of the rules using the AND
operator. Thus

min(lia;, Us;)
Wk = 1 or, for k=1,2,...,R. (4.9)

prOd(‘uAn.qu)'

The consequence function z; = f(x,y) can be a polynomial or any other type of function
as long as it can appropriately explain the output of the model within the fuzzy region
identified by the premise of the rule. In the case of a polynomial function, it usually comes
with {a, by, cx} parameters. Once these parameters are known, the consequence z; can be
computed for each rule. After that, the overall output z (aggregated results) can be calculated
via both the firing strengths (weights) and the computed values of z;. This will compute
the weighted average of the crisp output z which works as an alternative method of the
defuzzification process in the Mamdani model. Mathematically, the weighted average (w)

form can be as follows:

Lwifi fork=1,2,...,
YW

Ordinarily, Sugeno systems are utilised for modelling the inference system when the output

=Y Wi = R. (4.10)

MFs are either linear or constant values. According to the degree of order, we can classify
the fuzzy inference system into two types as follows:
4.3.2.1 First-order Sugeno Fuzzy Model:

Takagi and Sugeno (1985) proposed the first-order Sugeno fuzzy model [130] [126] to

be when the consequent functions of the Sugeno fuzzy model are a first-order (linear)
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Fig. 4.7 First-order Sugeno fuzzy model. Reproduced from [117]

polynomial. Assume that we have a Sugeno model containing two inputs x and y and one
output z. Each input has two membership functions {A1,A,} and {B, B, }, respectively, and
{z1,22} represents the output (consequent) functions. Two rules explain this system, thus:

Rulel: IFxis A; AND yis By ,THEN z; = a1x+ b1y + ¢
Rule2: IF xis A AND yis B, ,THEN z, = axx+ bry+c»

where {aj,b;,c1} and {an,by,c,} represent the parameters of the polynomial function
zx = f(x,y), where k = 1,2. Figure 4.7 illustrates the previous first-order Sugeno fuzzy
model were two crisp values x; (for input x) and y; (for input y) are used. Figure 4.7(a)
illustrates the rules’ inferencing procedures after applying the minimum-product composition
in order to compute the firing strengths w; and w,. Figure 4.7(b)) demonstrates the consequent
part of the Sugeno model, where z; and z; are obtained. The overall output is computed

by equation 4.10 using the weighted average of the crisp outputs z; and the weights (firing
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strengths w;) of every individual rule determined in Equation 4.9. It can be computed by:

W12 + W22
w1 +wsp

Figure 4.7(c)) shows the overall output z (aggregated) result.

4.3.2.2 Zero-order Sugeno Fuzzy Model:

The Sugeno model can be considered zero-order only if the output function in the conse-
quence part is a constant. Referring to the case that we discussed in the previous enumerate
(4.3.2.1), the general form of the two rules of zero-order Sugeno fuzzy model can be ex-
pressed as follows:

Rulel: IFxisA; AND yis By ,THEN z; = ¢
Rule2: IFxis A AND yis By ,THEN 2, = ¢;

where ¢ and ¢, are constant values. The fuzzy singleton can be used to determine the
consequent of each rule. This can be considered as a special case of the Mamdani model.
The obtained values of zero-order Sugeno model is a smooth function of its input variables
as long as the contiguous membership functions in the antecedent have enough overlap. By
comparing the zero-order Sugeno model with Mamdani model, in Mamdani, the overlap
of the membership functions in the consequent part does not have a certain effect on the
smoothness of the output. The input/output behaviour and the smoothness of the fuzzy
system can be identified from the overlap of the MFs at the antecedent part [60]. In some
cases, if a zero-order Sugeno fuzzy model is processed under certain minor constraints,
then it can be considered equivalent to the radial basis function network with respect to the
functional perspective [120].

Figure 4.8 demonstrates the discussed case of Sugeno model in the previous section
(4.3.2.1) with respect to zero-order Sugeno model. The antecedent part (fig 4.8(a)) is using
the minimum or product composition in order to compute the firing strengths w; and w».
Whereas, the aggregation part (fig 4.8(c)) is using the weighted average to compute the
overall output z;. Figure 4.8(b) illustrates the consequent portion of the zero-order Sugeno
model where z; and z, are computed. The triangular and step function represents the special
cases for the consequent membership function in which provide the defuzzified values c]
and c of the MFs.
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By

Aggregation

Fig. 4.8 Zero-order Sugeno fuzzy model. Reproduced from [117]

4.3.3 Comparison Between Sugeno and Mamdani Models

This section will discuss the difference between the Mamdani and Sugeno fuzzy models.
It is very important to find a suitable model that can be used to solve a particular problem.
Giving the main difference between these two models will allow the researchers to find the
specifications and advantages of each model in order to choose the right one among them.
The differences between these two fuzzy inferences, also called fuzzy models, are mainly
represented by the consequent parts of their fuzzy rules, aggregations and defuzzification

procedures. Table 4.1 summarizes these differences.



Table 4.1 Comparison between Sugeno and Mamdani models

MAMDANI

SUGENO

Advantages:

e Intuitive.

e Well-suited to human input.

e More interpretable rule base.

e Have widespread acceptance.

e Computationally efficient.

e Works well with linear tech-
niques.

e Works well with adaptive tech-
niques and optimization.

e Guarantees output surface conti-
nuity.

e Well-suited to mathematical anal-
ysis.

Specifications: Fuzzification

Generating the MFs rely on experts.

e Generates the MFs automatically.

Inputs

Single values.

Data sets.

Rules composition

e Max-mini or Max-product.

e Max-mini or Max-product.

Consequent e Fuzzy sets. e Functions (usually polynomial).
Aggregation e Fuzzy set. e Weighted average.
Defuzzification e Crisp value. e Constant.
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Chapter 5

Adaptive Neuro-Fuzzy System
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This chapter introduces the theoretical framework of the adaptive neuro-fuzzy system.
As the name implies, the neuro-fuzzy system can be defined as a combined model consisting
of two approaches; an adaptive Artificial Neural Network (ANN) and a Fuzzy Inference
System (FIS). In other words, it is a hybrid, intelligent system [96]. The concepts of the fuzzy
inference system have been discussed in detail in the previous chapter. Therefore, the first part
of this chapter describes the needed concepts of adaptive ANNs. Accordingly, in the second
part, we present a class of adaptive networks that are combined with FIS, i.e., Adaptive
Neuro-Fuzzy Inference System (ANFIS). This will provide a unifying framework that
subsumes almost all the needed information which includes FIS and the adaptive ANN.

In this chapter, all the figures, diagrams, and examples have been created by the author,

except where indicated with the word "reproduced".

5.1 Adaptive Neural Networks

5.1.1 Introduction to ANNs

A neural network can be defined as a set of processing units (also known as nodes or neurons)
that proceed by sending signals to each other along weighted connections. The way in which
these units are connected depends on the specific network model [29]. Each unit can accept
a number of input signals and produce one output signal. In general, inputs are combined
by calculating the weighted sum of all inputs. The output is then computed by passing
this weighted sum of inputs through an activation function. In general, a neural network is
composed of an input layer, an output layer, and will contain any number of hidden layers
between. Network topology refers to the type of network being created (inputs, hideen
layers, outputs) and helps us to define the complexity of the network [151]. This varies
from simple perceptrons to more complex convolution networks. The complexity of the
network is controlled by the number of layers and nodes chosen and the transfer function
used. The higher the number of layers and nodes, the greater the degrees of freedom in the
underlying network model. This needs controlling carefully. Too few nodes will result in an
under-trained network that has inferior training capabilities. Too many parameters can result
in an over-trained network that has low prediction capability.

Data quality and quantity is a crucial factor. There needs to be enough data to ensure
convergence of the network from the given samples. Data is usually separated into training
data and test data. The network is trained on the first set and validated on the second.
Variations of this approach, using n-fold cross-validation, can be employed. The data can be
synthetic data providing a good understanding of the problem space is known so that data
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that meaningfully represents the underlying problem can be generated and used to test the

network.

5.1.2 Architecture of ANN
5.1.2.1 Neuron Architecture

Neurons, also referred to as units or nodes, can be defined as a processor that is processing
input signals through an activation rule in order to calculate the output signal. Therefore, we
can identify the essential elements that represent the main structure of the neuron, as shown

in Figure (5.1). A single network neuron consists of:

/ neuron

outgoing weights send

Incoming weights from signals to other neurons

other neurons

Fig. 5.1 Single neuron.

* Input signals: which represents the incoming weights from other neurons.

* Node: the summing junction where the input signals are collected and processed via an
activation function (referred to as the transfer function) in order to produce the output.
In other words, it represents the core of the neuron, which consists of two components.
First is the summing junction where the sum of the product of the input signals and its
corresponding weights ) x;w; of the i —th neuron to be calculated. The second part is
the transfer function (Y x;w;) in which the output signal is to be computed.

* Output: which represents the calculated outgoing weights signal to be sent to other
neurons (usually in the next layer).

* A threshold value: also referred to as the bias, is a fixed value added to the summing
junction in order to prevent the case of when the summing is equal to zero. It plays a
vital role in adapting the output weights as an additional parameter of the neuron.
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Assume that we have n inputs x1,x7,...,X, to a neuron i with corresponding weights

Wki = [Wli,W2i, . ,Wni]. Thus:

sum; = (Wy;. X1 +wi.xp + -« + WpiXp)
" (5.1)
= Y wiixe
k=1

Furthermore, by adding threshold value b;, which represents a bias:

n
sum; = ( Z Wki-xk> + b; (5.2)
k=1
The equation 5.2 will then represents the input to the transfer function (f). Thus the
output (y;) of (i —th) neuron can be obtained by:

yi = f(sum;) = f(( Zn: wk,-.xk) —I—bi> (5.3)

k=1
In ANN:Ss, the output of each neuron depends on its transfer function. We can identify
two types of transfer function according the nature of its parameters, i.e., modifiable or

non-modifiable parameters. Therefore, neurons can be classified into two types:

1. Fixed neuron:
The ANN neuron can be defined as fixed if the node has a function with a non-
modifiable parameter set, sometimes called a non-parameterized function. We use a
circle to represent the fixed neuron. Figure (5.2a) shows a schematic view of this type.
Here we introduce some different types of transfer function that can be used under this

classification with its corresponding form:

¢ Hard-limit function:

0 if sum <0,
y = f(sum) = . (5.4)
1 if sum > 0.

¢ Linear function:

y = sum (5.5)

* Step function:

—1 if sum <0,
y = f(sum) = ‘ (5.6)
+1 if sum > 0.
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X1

w
X2 y Xo0—— 2 279 f() —>y
"r \\\\ z w ’, \\\
! A function with : ," A function with
! non-modifiable ! modifiable parameter
Xn Summing parameter Xn Summing
junction junction
(a) Fixed neuron. (b) Adaptive neuron.

Fig. 5.2 A schematic view of an artificial neuron.

2. Adaptive neuron:
The adaptive neuron (Fig. 5.2b) is a node whose overall behaviour is determined by a
parameterized function with a set of adjustable parameters. Ordinarily, the adaptive
network is composed of a set of neurons (fixed and/or adaptive) connected by directed
links. These neurons are to use its functions to process incoming signals in order to
generate the node output. Changing the parameters of the adaptive neurons means
we modify the neuron function, which affects the overall network behaviour. We use
a square to signify the adaptable neuron, Figure (5.2b) shows a schematic view of
this type. Again we show some different types of parameterized functions that can be

considered under this classification with its corresponding form:

* Log-Sigmoid function:

1

y = f(sum) = T o atm)’ (5.7)

where a denotes the parameter of the activation function. We can clearly see that

the nature of the distribution of this function depends on the value of a.

* Tan-Sigmoid function:

1 — g—a(sum)

y=flowm) = (5.8)

More types of parameterized functions with details can be found in section 3.4.2.
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5.1.2.2 Network Architecture

In general, the neural network pattern assumes that the basic structure of a network is
comprised of layers connected by direct links. Each layer should have at least one neuron.
The layers can be divided into three types, i.e. input, hidden, and output. A composition of
these three types represents the network structure or topology. Thus, the hidden layer can be
more than one layer. Figure (5.3) shows a schematic view of a single layer of m neurons. Let

us consider that there are n inputs connected to this layer, such as:

v
<
—

Xn

The weights of the network and the biases are defined by the following weight matrix W and

bias vector b simultaneously:

Wil W12 ... Wi by

w1t Wz ... Wom b2
W — s b —

Wnl W2 - Wum b,

Then, the output of the network Y can be written in vector form as:

Y = f(Wx+Db) (5.9)
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5.1.3 Adaptive Network Architecture

When all neurons in all layers of the network are fixed (non-modifiable), then the network
can be classified as typical neural architecture. Otherwise, if the network contains at least
one adaptive neuron, then it is an adaptive network. In other words, an adaptive network
(Fig. 5.4) is a network whose overall behaviour of its input-output mappings is determined by
a set of modifiable parameters. In most common cases, adaptive networks are heterogeneous.
Every single neuron has a particular function, which often differs from the others. Links in
this type of network network are only used to designate the propagation path of a neuron’s
outputs. In other words, the links are not accompanied by weights [61]. Each node in the
adaptive network has its local parameter set. The union of these parameters represents the

network’s overall parameter set.

Layer 3
Input Layer Layer 1 Layer 2 (output Layer)
3
X1 () 8 X8
4
Xy 7 9 X9
5

Fig. 5.4 Adaptive network in layered representation [61].

5.14 Feed-Forward ANN

According to the directional connectivity of the neurons, the artificial neural networks can be
categorised into two classes, feed-forward network and recurrent network. The network
can be considered as feed-forward if the propagation process of each individual neuron
within the network follows one direction (in the forward pass) from the input (left) to the
output (right). On the contrary, if there is one link (or more) that forms a feedback path
in the network, then it can be considered as recurrent. There are seven different types of

feed-forward neural network that are distinguished, such as:

* Multilayer perceptron networks.

e Radial basis function networks.
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* Generalized regression neural networks.
* Probabilistic neural networks.

* Belief networks.

* Hamming networks.

* Stochastic networks.

Taking a different viewpoint, if we look at the structure of a feed-forward network from a
graph theory side, it can be represented by an acyclic graph with one direction and without
directed cycles. Whereas, a recurrent network always contains at least one directed cycle.
Figure (5.4) represents a layered feed-forward adaptive network. It can be noticed that the
neurons in the same layer are not linked to each other. Moreover, the outputs of all neurons
in a specific layer are to be fed-forward to the succeeding layer. The input-output mapping of
the adaptive feed-forward network is static; depending on the network structure, this mapping
can be a linear or nonlinear relationship. Our target is to model a system that is constructed
of a desirable network based on nonlinear mapping adjusted via the input-output data set.
This data set is commonly named training data.

Adjusting the network parameters plays a vital role in improving the network’s per-
formance; these procedures are known as adaptation algorithms and also termed as the
learning rules. Ordinarily, measuring a network’s performance can be obtained by calculat-
ing the difference between the desired output and the network’s output following similar input
conditions; this difference is termed as an error measure. By applying a specific metric

(and thus optimization technique) to obtain an error measure, we can derive the learning rule.

5.1.5 Supervised Learning

In general, learning (also referred to as a training algorithm) in the neural network can be
defined as the procedures of updating and modifying the weights, biases, and parameters of
a network. It represents the techniques that can be used to train a network and optimize a
particular input-output mapping to a specific desired targeted output. Broadly, the ANN can
be divided into two types of learning, i.e. either supervised or unsupervised. The ANN can
be classified as unsupervised if there are no target values on which to be compared with the
network outputs to determine the errors. In other words, there is neither calculation nor feed
back of the predicted error in order to update the network.

In contrast, the mechanism of the supervised ANN operates on modifying its parameters
and updating the weights depending on the feedback obtained from error calculations (i.e.,
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the difference between the target (desired) output and the network output). In other words,
the form of supervised learning is applicable if the input-output relationship of the training
scenarios is obtainable. As the input is applied to the network, the forward pass will be
propagated through each layer to the output layer. In the output layer the network provides
its predicted value. An error can be determined by comparing the network’s output with
its corresponding target value. These errors then get fed back to the network in order to be
used by the learning rule to adjust the network parameters and move the network outputs as
close as possible to the targets. The adaptation algorithm will keep repeating the process of
minimizing the current errors of all processing elements continuously in order to modify the
network parameters until an acceptable global error reduction is reached. During training, the
parameters of a network are optimized by a applying supervised learning rule. Figure (5.5)

shows a schematic view of supervised learning.

Target
ANN .
Architecture - ] Error
Inputs —> Py Output Cal.
Weights
N
Adjust the parameters
Feedback |<—

Fig. 5.5 A schematic view of supervised learning.

There are many supervised learning rules, some of which are:
* Widrow—Hoff learning rule
* Gradient descent learning rule

* Delta learning rule

Backpropagation learning rule

Cohen—Grossberg rule

Adaptive conjugate gradient model of Adeli and Hung learning rule.

We will focus on introducing the required learning methods that represent the core of the
structure for the adaptive neuro-fuzzy inference system that will be discussed in the next
sections, such as the backpropagation learning algorithm for adaptive feedforward networks.
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5.1.5.1 Backpropagation Learning Algorithm

The following explanation of the Backpropagation algorithm follows closely the description
is given by Jang et al. [61].

Backpropagation, in its standard from, is a gradient descent algorithm. In general, the
process of computing the gradient vector in a network and using this to update the network’s
weights is known as backpropagation. It is termed like this due to the way in which errors are
propagated back from the output layer, towards the input layer. The backpropagation learning
rule uses the gradient descent (also referred to as the gradient method or steepest descent)
algorithm as a backward pass optimization method. This section introduces a learning rule
for adaptive networks, which is, in essence, the gradient descent method. The core of the
gradient descent learning rule concerns how to use the chain rule to find a gradient vector
in which each element is defined as the derivative of an error measure with respect to a
parameter. Once the gradient vector is obtained, the parameters can be updated via several
regression techniques and derivative-based optimization.

Assume that we have a feed-forward, adaptive neural network as shown in Figure (5.6)
which has L layers. The network has an N (/) neurons in layer [ (i.e. [ =0,1,...,L; where
[ = 0 is the input layer). Then the output of node i [i = 1,2,...,N(/)] in layer / can be
denoted as O;; and its corresponding function as f; ;. As mentioned, the output of neurons
in the adaptive networks relies on two main factors. The incoming signals and the set of
parameters which accompaniment to its function. Therefore, the output of a neuron can be

expressed as:

Layer 3
Layer 0 Layer 1 Layer2  (output Layer)
=0 =1 =2 L=3
fl,l 01’1
x . 0
0,1 01'2 fa1 21 @ 03,1
fl,Z
xo,z f2,2 0 f32 03,
2,2
fis 015

Fig. 5.6 A feedforward adaptive neural network.

O1i= f1i(01-1.1, O1-125 -, O N(=1)s O By Vs --) (5.10)
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where &, B, 7,...etc. are the neuron’s functions parameters.
Suppose we have D entries in our data set, then the error measure for the d-th entry
(where 1 <d < D) can be defined as the sum of squared errors as follows:

N(L)
Eq=) (1= Ops)’ (5.11)
k=1
where 7 is the k-th element of the d-th targeted (desired) output vector. while Oy j is the k-th
actual output component resulting from processing the d-th input vector forwards through
the network. The network then can achieve its goals when E; is equal to zero, which means,
the network’s output vector is equal to the target output vector in the d-th training data.
In order to proceed to the minimization of the error measure by using gradient descent, we
first need to obtain the gradient vector. Prior to computing the gradient vector, the following
causal relationships of a network must be observed:

modifying effecting effecting the change in
parameter ==  neurons outputs =—  outputs of the — error
o (containing o) network measure

where the symbol = refers to the causal relationships. This shows that even a small
modification applied to the parameter ¢ can affect the output of all neurons which contain
this parameter. As a result, the overall outputs, including the output of the final layer, will
be affected. This, in turn, will affect the training accuracy of the network. This explains the
concept behind the calculation of the gradient vector, which can be applied by feeding back a
form of the derivative, beginning at the output layer and then passing through all layers until
reaching the input layer.

Let us assume that the error signal is denoted as 0; ; (concerning the output of node i in

the layer /) which represents the derivative of the error measure E;. Thus:

0= (5.12)

This expression is called ordered derivative [145]. This type of derivative is different from
the typical partial derivative with respect to the way of the function’s differentiation. This can
be explained as follow, if we consider the output of an internal neuron O; ; (where [ # L), the
partial derivative g%;’i is equal to zero, where E,; does not depend directly on O, ;. However,
it is clear that E; depends indirectly on O, ;, because if the output of an internal neuron i in
layer /, i.e. O;; has been changed and propagate through indirect paths towards the output
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layer; this will provide a similar change in E;. Consequently, 0; ; represents the ratio of these

two changes when they are made infinitesimal.

* Difference between the ordered derivative and the ordinary partial derivative:
Before we proceed with the explanation of the differentiation of the error measures,
let us discuss the difference between the ordered derivative and the ordinary partial

derivative in more details from a mathematical viewpoint. Assume that we have a

X &) z
Fig. 5.7 Simple ordered derivative adaptive network. Reproduced from [61]

simple adapti