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Abstract 

Condition Monitoring (CM) of fluid machines plays a critical role in maintaining efficient 
productivity in many processing industries. Conventional vibration techniques generally 
provide more localised information with the need for many sensors, associated data acquiring 
and processing efforts, which are difficult for system deployment and are reluctantly accepted 
by those industries, for example paper mills and food production lines making marginal profits. 
To find adequate CM techniques for such industries this research investigates a new cost-
effective scheme of implementing CM, which combines the high diagnostic capability of using 
Surface Vibration (SV) with the global detection capability of using the Instantaneous Angular 
Speed (IAS) measurements and Airborne Sound (AS). To address specific techniques involved 
in the scheme, this research is arranged in three consecutive Phases: Phase I is the technical 
evaluation; Phase II is the field implementation practices and Phase III is the application of AS 
through Convolution Neural Networks (CNN). 
In Phase I, widely used reciprocating compressor is investigated numerically and 
experimentally, which clarifies the performances of SV, IAS, AS, pressure and motor current 
in a quantitative way for differentiating common faults such as leakages happening in valves 
and intercoolers, faulty motor drives and mechanical transmission systems. It paves the 
foundations for the field implementation in Phase II. 
In Phase II, this novel scheme is realised on three sets of vacuum pumps in a paper mill. Based 
on an analytic study of dynamic responses to common faults on these pumps, a field test was 
conducted to verify the feasibility of the scheme and the preliminary study shows that airborne 
sound can show the relative spectral components for each machine to a good degree of 
accuracy.  
Knowledge gained from the preceding phases of study is now applied to Phase III. New 
techniques based on airborne signal differences through CNN have been demonstrated to give 
a good indication of the sound propagation and location of noise sources under all operating 
discharge pressure conditions at 100% validation accuracy, proving that the state of the art deep 
leaning approaches can be used to deal with complicated acoustic data. 
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 Introduction 

This chapter embarks on a broad description of the area of the research, with an explanation 

of the reasons for undertaking this specific project, research motivation, aims and objectives, 

work plan and a report structure. Compressors and vacuum pumps play an important role in 

maintaining efficient productivity in many industries. If proper maintenance is not followed the 

machines can cause irreparable damage to themselves and the processes which could, in turn, 

lead to a large deficit to the company. Some of the disadvantages are as follows: 

• A decrease of Overall Equipment Effectiveness (OEE) 

• Increase of downtime to the business 

• Make employees life harder which will lead to frustration 

• Produce more waste instead of a good quality product 

• The risk of losing customers if the product is not delivered on time and not of good 

quality. 

Nowadays in this modern highly automated industry, there has always been an increasing 

demand concerning the safety, quality, reliability, productivity and performance of machinery. 

To improve the productivity of the plant, CM has been implemented in many sectors of 

industries and has brought many benefits including:  

• Advanced warning of potential plant problems, minimising unscheduled downtime 

• Reduction of maintenance costs by improving the predictability of productivity levels 

• Improving machine service time by minimising unscheduled and planned maintenance 

• Maintaining the high standard quality through CM 

• Reducing potential risks of machine failures improving OEE 

• Improving morale within production and engineering  

• Employees and Employers satisfaction and hence more confidence in the market. 
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 Background 

This research is based on the development of a robust and innovative approach to the 

monitoring of key machines such as compressors and pumps as these machines are critical in 

process industries. This research will be investigated in three consecutive phases. 

Phase I is the technical evaluation and improvement, in which various techniques relating to 

SV and IAS have been examined and refined based on a two-stage Reciprocating Compressor 

(RC) which shares many physical processes such as pressured flows, electrical powers and 

mechanical rotors.  

Phase II is the field implementation on the vacuum pumps which has been carried out in a paper 

mill facility. The main vacuum pumps at this facility are being monitored daily and a report is 

produced monthly where recommendations are being made for the engineers to take necessary 

actions before a failure occurs. The condition monitoring techniques used on that site are the 

vibration and frequency analysis. In April 2014, one of the vacuum pumps of that facility; 

“Pump M243” the “Dewatering Box Vac pump 1” failed and the plant was down for weeks. 

The reason for that impeller being cracked was due to the build-up of limescale. The shaft Non-

Drive End (NDE) bearing was spinning on the shaft. The CM System on site did detect an 

initial failure but as the readings were only being taken monthly, the engineers were unable to 

react responsively and the failure had already occurred before the report was generated on the 

09/04/14 as shown from Figure 6-7.  

According to the Root Cause Analysis (RCA) exercise of why the bearing was loaded and 

heated up was due to a lack of lubrication and scale build-up, this pump could have run for a 

longer period but due to its environment, it is recorded as failing every five years. In 2014, that 

was the second time it had failed. It was predicted that this pump would fail again in 2019, 

therefore the decision was taken to replace that pump in 2018 with a refurbished pump at the 

cost of £30,000. That company has also bought an additional pump already at the price of 

£149,000 which is kept as a replacement. To prevent any major incident in the future the 

frequency of the data collection by the CM team on site has been increased from monthly to 

weekly and the lubrication programme has also been increased. 

Phase III is designed to study the airborne sound acoustic learned from the industrial 

monitoring machine from Phase II and to locate the ideal position to capture the acoustic signal 

from the compressor through various analysis. Phase III also studies and applies the 

Convolutional Neural Networks (CNN) in determining and localising an optimal position away 
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from the compressor, for the collection of data and to show which signal proves to be a good 

indication of sound propagation which can easily locate noise sources under the four operating 

discharge pressure conditions at the highest validation accuracy. 

 Research Motivation 

There are lots of new research methods in Condition Monitoring however they are not being 

used wisely in industries. Applying some of the new methods will make machines more reliable 

and cost-effective and this has inspired the author to execute his ideas and experience in 

developing a new approach on how to diagnose different parameters of this system: 

• Instantaneous Angular Speed and Power Consumption 

• Instantaneous Multi-Current Signature 

• Process Parameters  

• Angular Velocity 

• Convolutional Neural Networks 

These parameters will give the machine a better life expectancy and will enable us to prolong 

its longevity and predict its failure. 

 Research Aims and Objectives 

1.3.1 Aims 

This research aims to develop a cost-effective scheme of implementing CM for fluid machines, 

which combines the high diagnostic capability of using Surface Vibration (SV) with the global 

detection capability of using the Instantaneous Angular Speed (IAS) measurements, Non-

Destructive Testing (NDT) via Airborne Acoustic (AS) and Convolutional Neural Networks 

(CNN). The project will be fulfilled in three consecutive phases: 

Phase I - Technique validation, in which various monitoring techniques including SV and IAS 

are examined and refined based on a two-stage reciprocating compressor to identify their 

potential advantages and disadvantages for large scale field applications. The performances of 

fault detection, diagnosis and condition prognosis are evaluated along with the feasibility of 

deployment, operation and installation investment. As a result, it will suggest an integral 

scheme that can be deployed easily to multiple sets of fluid machines such as vacuum pumps.  



Page 37 of 303 
 

Phase II - Field implementation, in which the proposed approaches will be evaluated and 

refined further by applying it to three sets of vacuum pumps referred to as the target machine. 

Both the hardware and software will be developed based on the field machines and then the 

monitoring performances will be evaluated based on on-site measured data and corresponding 

maintenance records. The sensing data storage and processing techniques will be ensured in 

the aspects of suitability, not only for the convenience of deployment and cost-effectiveness 

but also for monitoring the likely faults during long term operation. 

Phase III – Skills from preceding phases of the study are applied to a reciprocating compressor. 

An innovative movable system set up with an array of four microphones that can be moved at 

different horizontal and vertical distances away from the compressor is being implemented. 

New techniques based on Non-Destructive Testing (NDT) is being applied such as airborne 

acoustic techniques which have proven to be a good indication of the sound propagation and 

for the locating of noise sources under all operating discharge pressure conditions. The 

Convolutional Neural Network (CNN) has been implemented to identify an ideal position of 

sound localisation at the highest validation accuracy. 

1.3.2 Objectives 

The main objectives are detailed as follows: 

Phase I 

Objective 1: Understand the current CM technology and find the gap in its application by 

reviewing the existing systems in the market and research community through intensive 

literature review.  

Objective 2: To design a mathematical model and numerical analysis for the investigation of 

the behaviour of the dynamic responses of the Reciprocating Compressor (RC). 

Objective 3: To design and build a comprehensive reciprocating compressor test facility in the 

lab to simulate faults and obtain experimental data. Sample data will assist in analysing the 

effectiveness of the system with different monitoring strategies.  

Objective 4: To familiarise and study the practical and theoretical aspects of all components of 

the compressor and study the function of the data acquisition so that samples of the raw data 

signal from the machine can be captured, analysed and a report produced. Also to understand 

the signal processing methods and techniques used for analysis which is the Frequency and 
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Time Domain, Root Mean Square (RMS), Instantaneous Angular Speed (IAS) spectrum and 

Current Waveform Spectrum.  

Objective 5: To seed-specific quantified faults into the machine so that experimental data can 

be gained on the subsequent system behaviour and its effect on the compressor performance so 

that data can be compared and analysed. 

Objective 6: To implement various techniques relating to SV and IAS into the system to analyse 

the effect and evaluate the possibility for field implementation in phase II. Examine the 

detection and diagnosis performances of the developed CM systems in line with potential issues 

for field implementation. 

Phase II  

Objective 1: To study and evaluate the current CM technology which offers the most potential 

to the paper industry by exploring existing systems in the market and research community. 

Develop a scheme based on the typical paper industry and built on actual demand, addressing 

the gap in technology and develop a mathematical model based on the system. 

Objective 2: To assess the capability of the target system through its working history and 

planned maintenance schedule for comparison in discussion and evaluation by examining the 

suitability and performance during the full course of the CM process, which includes the 

measurement system specification, data acquisition definition and implementation, data 

analysis method selection and evaluation, detection and diagnosis performance confirmation. 

Objective 3: To conduct and look at the feasibility of the scheme in terms of sensor installations 

and performances, data acquisition methods, system specification and fault diagnosis 

admissibility so that sample data could easily be taken and analysed. 

Objective 4: To conduct a quantitative study and fault mode analysis of these pumps by 

examining the detection and diagnosis performances of the vacuum pumps by using the 

(vibration data statistic, airborne sound statistic, frequency spectra for vibration and envelope 

spectra) techniques to prove its effectiveness and IAS approaches. 

Phase III 

Objective 1: To apply airborne sound acoustic learned from the industrial monitoring machine 

from Phase II into the Broomwade compressor used in phase I.  

Objective 2: To develop a movable rig for the collection of 16-point data collection away from 

the reciprocating compressor. 
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Objective 3: To study, identify, quantify and qualify the best location to capture the acoustic 

signal from the compressor. 

Objective 4: To study the RMS of frequency range according to the sound localisation. 

Objective 5: To Study and apply the Convolutional Neural Networks (CNN) in determining 

and localising an optimal position away from the compressor for the collection of signals to 

find which signal proves to be a good indication of sound propagation and locating noise 

sources under the four operating discharge pressure conditions. 

1.3.3 Work Plan 

The planning of this research has been done in a methodological manner and three separate 

Phases. The work in Phase I is mainly the study and monitoring of the compressor with various 

monitoring techniques and fault simulation where the results and knowledge gained will assist 

in enabling the field implementation plan in Phase II in an industrial setting. Phase II 

emphasises on the introduction, application and cost benefits on the Industrial machine. Phase 

III is set to be applied back into a laboratory setting to study the application of acoustics to 

laboratory machinery and the study of data mining techniques based on Convolutional Neural 

Networks. 

 Thesis Structure 

Chapter One  

Introduction 

Chapter one gives a brief overview of the area of research with an explanation of why this 

specific project is being undertaken. The Liquid Ring Vacuum Pump (LRVP) is identified as 

a crucial machine in the paper industry. To improve its reliability and get a better overview of 

the actual system performance a new approach is sought to be implemented. A brief 

introduction is given on the social and cost benefits of condition monitoring followed by the 

background, research motivation, aims, objectives and work plan followed by a structured 

report.  

Chapter Two  

Literature Review of Condition Monitoring Techniques 

Chapter two provides a structured outline of the current Condition Monitoring techniques used 

in industry and new research advances. This starts with a review of standard current CM 
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techniques, the industrial CM in four main parts: the vibration, lubrication, thermal and process 

parameters. It is then followed by the new research methods: motor signature current analysis, 

ultrasound, airborne acoustic, instantaneous angular speed and new vibration methodology. It 

also explains the study of acoustics monitoring, a review of all techniques neural and 

conventional neural networks, artificial intelligence, application of convolutional neural 

networks, deep learning and condition monitoring techniques applied to fluid Machines. 

Phase I Chapter Three 

Mathematical Modelling and Numerical Analysis of Dynamics Responses of a Two 

Stage Reciprocating Compressor with Different Faults 

This chapter examines the behaviour of the dynamic response of a reciprocating compressor 

by mathematical modelling and numerical analysis. The model comprises an electrical motor 

model, in-cylinder pressure model, mass flow models crankshaft IAS model, valve motion 

model. This is then accompanied by a numerical analysis which will focus on the evaluation 

of monitoring information that is included in each dynamic response followed by key findings 

and results. 

Chapter Four  

Evaluation of Waveform Analysis Based on Intrusive and Non-Intrusive In-cylinder 

Pressure Measurements 

This chapter describes the establishment of the Test Rig and then summarises the achievement 

in Phase I, which addresses the implementation of the updated techniques, reviewed in chapter 

two, upon a laboratory compressor bench. This section also outlines the test faults cases of the 

compressor pressure trace, test procedure and performance characteristic and also introduces 

the experimental work undertaken on the test rig to evaluate common CM techniques including 

time domain and frequency domain methods applied to vibration, Motor Current Signature 

Analysis (MCSA), IAS and RMS. 

Phase II Chapter Five 

Analytic Modelling of a Liquid Ring Vacuum Pump 

This chapter depicts an analytical analysis of a Liquid Ring Vacuum Pump (LRVP). It gives a 

thorough understanding of the dynamic behaviour and operation of the LRVP to assist in the 

monitoring and accurate diagnosis of the machine in Phase II. This chapter starts with an 

introduction of the LRVP followed by an overview of the model. A good understanding of gas 
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flow and pressure pulsations is also described based on an analytic theoretical model of the 

operating principle of LRVP at various parameters followed by key findings. 

Chapter Six 

A Preliminary Implementation of Vibration and Acoustics Monitoring to an Industrial 

Environment 

Chapter Six introduces the “Industrial Machine” the Liquid Ring Vacuum Pump (LRVP), with 

an abstract of its functionality and categories. A brief overview of the liquid vacuum pump 

construction, operation and its effectiveness through its reliability followed with the current 

advanced techniques on the vacuum pump and the actual CM used on the site.  

Chapter six also introduces the preliminary experimental work carried out in Phase II from the 

existing facility by applying the technical knowledge gained from Phase I. This is followed by 

an explanation of the characteristics of the vacuum pump instrumentation, measurement, data 

acquisition and the vacuum pump experiment plan. It also describes the data collection process 

for all three systems with a brief description of the work carried out on the test facility to 

investigate the statistical data analysis of the motor, pumps, gearboxes vibration and airborne 

sound data. More experimental work has also been carried out on the data analysis of the 

measured vibration signal of the three systems in the time domain, airborne sound data, spectra 

of vibration, envelope spectra vibration followed by a discussion. 

Phase III Chapter Seven 

Acoustic Monitoring of the Laboratory Compressor based on Conventional Analysis 

Chapter Seven gives an understanding of sound generation mechanisms from a compressor and 

the deficiency in loss of performance and capacity with potential knocking effect. A brief 

overview of ‘noise sources’ and their dynamic characteristics is explained together with a 

summary of the type of faults and wear in a compressor. A review of acoustics monitoring 

study using Conventional Analysis Techniques has been undertaken. Airborne acoustic 

monitoring has proven to be a possibility for replacing the need for several vibration sensors 

that need mounting at various locations on the machine with the potential of being detached 

from the machine’s surface. This chapter also explains the general system set up and how this 

investigation has proceeded. A spiral array has been used to locate sources of airborne sound 

at a higher frequency. This section stipulates the difference from the time domain RMS 

Analysis and the distance of the microphones in contrast with the compressor.  
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Chapter Eight 

Acoustic Monitoring of the Laboratory Compressor with State-of-the-Art Convolutional 

Neural Networks  

Chapter Eight is based on Convolutional Neural Networks (CNN) which will be used to extract 

the data from RC acoustics for the detection of the machine airborne signal differences between 

the data collection of sixteen points from a reciprocating compressor. Different fault scenarios 

will be assessed to gauge CNN capability and to try to localise an optimal position away from 

the compressor for the collection of signals. This section also explains the methodologies, 

general system set up, preferred classification, data preparation, a brief example of data 

processing and training results. 

Chapter Nine 

Conclusion and Further Works 

Chapter Nine reviews the research objectives and achievements. The foundation of this thesis 

is based on the conclusions from all three Phases followed by the contribution to knowledge 

and lastly discusses possible areas of future works which the author considers would further 

improve this study and make a useful contribution to the advance monitoring of rotating and 

fluids machines 
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 Literature Review of Condition Monitoring Techniques 

This chapter briefly describes different types of Condition Monitoring (CM) techniques 

available and provides a structured outline of the current CM used in the industry together 

with its application to fluid machines. It starts with a review of the standard current CM 

techniques and is then followed by the new research methods, namely: motor current signature 

analysis; ultrasound; airborne acoustic; instantaneous angular speed and new vibration 

methodology. This chapter also gives an overview of acoustics monitoring and a review of 

Artificial Neural Networks (ANN) techniques such as Neural and Conventional Neural 

Networks (CNN), Application of convolutional neural networks, deep learning and condition 

monitoring techniques applied to fluid machines.  
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 Review of Conventional Condition Monitoring Techniques  

With the development of modern technologies, especially in electronic, communication and 

engineering, many CM techniques are available for the industry at a reduced cost. Many 

industries are interested in applying CM through its impressive and powerful condition-based 

monitoring techniques, machine failures have a detrimental effect on productivity and 

maintenance costs therefore a high level of interest in condition monitoring is vital. This 

method enables the company to monitor each piece of equipment and has its own holistic and 

personalised condition management programme. This technology has flourished and has 

shown an increase in data accuracy. The algorithms that are used are precise and reliable in 

assessing equipment condition and predicting an accurate diagnosis of equipment failure [1-4]. 

Many other predictive maintenance techniques can be used to monitor machine condition. 

Machine operators are the most powerful diagnostic tool in a plant and they can use their senses 

(sight, smell, sound and touch). It has been proven that if manufacturing team members are 

encouraged to use these correctly they can detect 75% of all equipment related problems at an 

early stage [5]. 

CM performs the continuous analysis of machinery and the early detection of problems by 

means of several different measurement and data processing techniques. Based on 

measurement techniques, CM can be generalised in three general-purpose monitoring 

parameters  

• Vibration 

• Lubrication 

• Thermal  

• Power 

• Process 

To gain an understanding of each of the techniques, a brief overview is explained in this 

chapter. The characteristics of each technique will be explained in the aspect of its operating 

principles and application conditions.  

2.1.1 Vibration 

Any machine that has moving parts can generate vibration and has the possibility for vibration 

monitoring. Some of the common machine parts monitored are gears, bearings, shafts, machine 
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frame and more. Vibration can be sensed by an accelerometer which is distorted or changed 

when vibration occurs. It may sense the displacement, velocity or acceleration however it is 

not only accelerometers that can be used for measuring vibration. All rotating and reciprocating 

machines such as electric motors generate a wide range of vibration frequencies. The total 

spectrum of frequencies is called a machine signature [4, 6, 7]. Even two identical machines 

will have different signature due to the small dimensional and assembly differences [4]. Each 

peak on the spectrum has its fundamental reason and if there are lots of machine faults the 

shape of the peak levels in the signatures will change drastically.  

An example is a rotor which develops basic frequencies that originate in a motor. The amplitude 

of the signal at these frequencies will normally increase if the machine develops a fault [4]. 

Another example is an imbalanced shaft which if constantly exciting the assembly, will develop 

a forced damped vibration due to the driving force. The amplitude of the forced vibration is 

highly determined by the magnitude of the driving force. If the forcing frequency coincides 

with a natural frequency of the system, the resulting amplification leads to an extremely high 

and destructive level of vibration and this is called ‘resonance’. If a fault produces a signal at 

a known frequency, then the magnitude of that signal is expected to rise as the faults develop 

[4]. The vacuum pump consists mainly of rotating parts therefore if the correct sensor is used 

and at the correct place on the machine this would give a good indication of the health of the 

machine and according to Alhussein Salim Albarbar to implement a successful CM based 

monitoring system care should be given to the sensor selection, feature extraction and 

comparison and lastly the decision process determination [8]. 

2.1.2 Lubrication 

To reduce the cost of machine energy consumption and reduce unnecessary breakdown, it is 

vital to improve the reliability and availability of those machines as they depend largely on the 

protective properties of the lubrication. Transmission such as gearboxes will require the oil to 

be properly applied and free from any degradation for a good run. The purpose of lubrication 

oil condition monitoring, degradation and detection is to determine whether oils have 

deteriorated to a point where they no longer satisfy their requirement [9]. Lubrication oil is an 

important information source for early machine failure detection just like the human blood 

sample testing to detect the sign of any disease. In recent years, the health of condition 

monitoring and prognostic of lubrication oil has become very popular among academics and 

industries. A lot of work and effort has been put into the oil diagnostic and prognostic system 

development and research. Lubrication oil monitoring provides approximately ten times earlier 
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warnings for machine malfunction and failure in comparison with the vibration-based machine 

health monitoring techniques [10].  

Many researchers have stated that the main function of lubrication oil is to provide a continuous 

layer of film between surfaces in relative motion to reduce friction and prevent the process of 

wear and hence prevent the seizure of mating parts. The secondary function is to cool the 

working parts, protect metal surfaces against corrosion, flush away the ingress of contaminants 

and keep the mating component reasonably free of deposits. In a lubricating system, variation 

in the physical, chemical, electrical (magnetic) and optical properties change the character of 

the lubrication conditions and lead to the degradation of its protective properties [11].  

2.1.3 Thermal 

Any human being, machine, process or system constantly releases thermal energy to the 

environment in the form of invisible radiant energy. When a component or body heats up it 

radiates more energy from its surface [12]. Medical Thermography is also being used clinically 

for the research of early pre-clinical diagnosis and control during the treatment of homeostatic 

imbalances. It’s a non-contact tool that uses the heat from the body to help in diagnosing a 

health condition.  

In its application, the Digital Infrared Thermal Imaging (DITI) is used extensively, mainly in 

the fields of Rheumatology, Neurology, Physiotherapy, Sports medicine and Oncology [13]. 

Thermography is the science of obtaining images of the heat distribution of a system. With 

thermal imaging, the inspection can be done while the machine is in full operation and there is 

no need for any planned maintenance nor any loss of production.  

The advantage of thermal imaging is huge:  

• It can pinpoint a failure at a very early stage and remedial work can be planned and 

conducted before a sporadic failure occurs which could then cause a longer delay in 

production. 

• It has a great accuracy that can aid to quickly scan and measure the temperature 

distribution of the entire surfaces of the machine and electrical equipment that are under 

normal load. 

• Thermal imaging is a non-destructive testing process which involves no physical 

contact and consequently there is no potential for damage to the system or machine 

under investigation. 
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• Increases safety and reduces the risk of fire [14]. 

 

2.1.4 Power Parameters 

Many plants do not consider the monitoring of power parameters in their electrical system and 

this technology is emerging rapidly nowadays. This can include the monitoring of electrical 

parameters including resistance, current and voltages. Any rise in current from a motor will 

indicate an increase in resistance. In turn, this shows an indication of anomaly happening to 

the system. This indicates the possibility from a misalignment, jam, blocked filters or damaged 

bearings. The list is long and can include the monitoring of Instantaneous Angular Speed (IAS) 

and Motor Current Signature Analysis (MCSA) which is discussed later in this chapter [15] 

[16] [17]. 

2.1.5 Process Parameters 

Process parameters are other types of elements that can be measured from a system. Many 

businesses are not running within the operating range of their equipment. Process parameters 

are a feature that can be unrecognized and should be part of the predictive maintenance 

programme. If the process of parameter monitoring is included alongside other monitoring 

programmes, the prediction of the machine failure will be more accurate hence improving the 

reliability of the machine. The lack of awareness of the technology means that machines could 

be running at 50% efficiency and the loss is hidden and unknown which is a form of waste. 

Process inefficiency nowadays is a serious problem in the plant and the losses in productivity 

and profitability are sometimes greater than the total cost of the maintenance operation. If the 

process parameters programme includes the monitoring of the suction, discharge pressures and 

the current load of compressors and vacuum pumps it would have saved companies a lot of 

money [18]. 

The integration and maintenance of components such as; flow meter, ammeter, voltage 

detector, pressure gauge and much more would be very beneficial and would help the machine 

to stay healthier and more reliable. However, even though some of the systems are equipped 

with gauges, thermometers and other instruments, many of the gauges are broken or no longer 

functioning through lack of planned maintenance. Machines that can be also monitored through 

the process parameters are boilers, heat exchangers, pumps and much more critical systems in 

a plant [18]. 
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2.1.6 Application of Conventional Condition Monitoring to Fluid Machine 

Not many CM techniques have been applied to the monitoring of fluid machinery. A brief 

overview of the following few techniques used, such as the vibration sound, IAS, temperature, 

motor currents applied to fluid machines is explained below.  

Based on current CM techniques it has been proven that Surface Vibration (SV) of a cylinder 

head, dynamic cylinder pressure and crankshaft Instantaneous Angular Speed (IAS) is 

achievable for the detection and diagnosis of valve faults on a two-stage reciprocating 

compressor [19]. Accelerometers are preferred to microphones as they can withstand high 

temperature and are cheaper. The time-domain analysis of the vibration signal provides good 

information about the location and severity of the valve faults whereas the frequency spectrum 

of the valve impact can assist for fault detection [19]. According to Elahi, IAS provides useful 

information on a compressor that can be used for fault detection and fault diagnoses and the 

signal is very much less likely to be distorted during sampling in an industrial environment 

compared with vibration or airborne acoustic signal [19].  

Mona Jawad Al-Qattan’s [16] study was based on Industrial Application of Speed and Power 

for fault Detection and diagnosis of a large compressor. Her findings in the definition of the 

effect on IAS and power consumption is that by varying the volumetric clearance pressure this 

consequently changes the re-expansion and compression strokes of a healthy single stage single 

cylinder double acting compressor and the IAS undergoes a remarkable change [16]. In her 

work, the power consumption trends are directly related to the area under the Pressure-Volume 

(PV) curve which indicates that any factor that affects the PV curve would automatically be 

reflected in the power consumption plot. According to Mona, her research on the CM system 

of the hydrogen make-up compressor shows that when the cylinder pressure increases, the load 

on the compressor increases which leads to a decrease in the speed. In addition to that, the 

excess volumetric clearance reduced the load on the compressor which in turn increased the 

IAS [16]. 

 Review of Latest Condition Monitoring Ideas 

Condition monitoring provides thorough information about the status and health of the 

machine, warning engineers to replace a component in a system before deterioration occurs. 

This will also help with the pre-planning of potential breakdowns thus avoiding any expensive 

urgent repairs.  

Nowadays the level of quality and precision in condition monitoring is improving.  
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The advantage of such a highly advanced predictive maintenance tool is that it can be used to 

not only spot developing faults within a system but also to identify factors in a machine that 

can cause these faults to develop in the first place. The following sub-chapter gives an overview 

of some of those new technologies. 

2.2.1 Motor Current Signature Analysis 

Motor Current Signature Analysis (MCSA) is a relatively new technique and is quickly gaining 

access in the industry [20]. This technology is an online analysis of current, detecting faults 

and analysing the trend in a three-phase motor drive whilst the machine is running [17]. 

This technique was first used in 1980 [21]. It is an inexpensive system which can help in the 

reliability base maintenance programme and provides savings in the power consumption by 

providing the most efficient motors [22]. 

The Motor Current Signature Analysis can identify faults such as: 

• shorted turns in low voltage windings  

• broken rotor bars abnormality 

• air gap eccentricity and certain mechanical failures [17]. 

MCSA is the monitoring of stator current, more specifically the supply current to the motor. 

The single stator current monitoring system is the most commonly used in the monitoring of 

only one phase of the motor supply current. The motor stator windings are used as a transducer 

in MCSA and pick the induced current signals from the rotor and at the same time reveal 

information about the health and state of the stator [23].  

2.2.2 Ultrasound 

The monitoring of ultrasound uses the same principles as the vibration analysis. Both systems 

monitor the noise that is being generated by the machines to determine the actual monitoring 

condition. Ultrasonic monitors the higher frequencies, unlike the vibration monitoring which 

can measure a signal from <1 to 20000 Hertz (Hz) [18]. The frequency range for the ultrasonic 

signal is 20000 to 100000 Hertz and are beyond the range of a human being [24]. The 

instrument electronically decodes the ultrasound frequencies through a process called 

“heterodyning”, down into the audible range where they are heard through headphones and 

observed as intensity and or dB levels on a display panel. Sound can be received in two ways, 

i.e through the air and solid surfaces [24].  
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The main application for ultrasonic monitoring is in leak detection [18] which assists in 

determining effective leak (mechanical and electrical) and followed-up by action to resolve the 

issue.  

2.2.3 Ultrasonic Condition Monitoring 

Ultrasonic Condition Monitoring (UCM) is a technique that uses airborne (non-contact) and 

structure-borne (contact) instruments to receive high-frequency emissions produced by any 

operating equipment [24]. 

There are two types of ultrasound monitoring techniques, active and passive. 

The active technique is an approach where a precisely guided beam of ultrasound is transmitted 

to a physical structure to analyse both surfaces and sub-surfaces discontinuities like disbands, 

delamination, cracks and porosity at early stages. 

The guided wave interacts with the structural discontinuity that reflects from a depth in material 

or scattering of guided waves in all directions which results in a transmission loss [25]. 

The passive ultrasound is used mainly for the contact methods of monitoring bearing faults, 

gear failures, pump cavitation, lubrication and non-contact methods of a leak in a boiler, 

condensers and heat exchangers monitoring [26], corona in high voltage equipment and 

electrical discharge [27]. 

Airborne ultrasound detects high-frequency sound produced by mechanical equipment, 

electrical discharges and most leakages which are highly shortwave making them very 

directional and localised, making it easy for them to be separated from background plant noises 

to enable detection of their exact location [24]. 

2.2.4 Instantaneous Angular Speed 

The analysis of the Instantaneous Angular Speed (IAS) is another form of CM monitoring 

technique that can be used in any rotating machine, reciprocating engines [28-30] gear 

transmission [30, 31] roller bearings [32] by the aid of an encoder.  

The encoder is attached to the drive end shaft of the rotating machine and the measured IAS is 

the value of the angular speed at any instant. It is measured in radian per second or Revolution 

Per Minute (RPM) [33]. 

The IAS is key information which assists in understanding the machine operation and 

identifying any potential faults. The IAS is the averaged data between two increments on the 
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encoder. The rotation of the shaft is the result of the global operation of the machine which 

contains valuable information about all the mechanical processes contributing to the constant 

rotation. Any failure has a theoretical effect on the instantaneous speed [28-30]. 

When a crankshaft rotates during an angle dѲ in time dt, the average angular speed over the 

interval dt is given by Ѡ(t)= dѲ/dt. 

The smaller time interval dt means that Ѡ(t) will be closer to the IAS. These methods can be 

applied to diagnose faults such as leaking valves within the compressor. 

The IAS of any compressor will vary over the working cycle as stated by Yuhua et al from the 

Mechanical System and Signal Processing (MSSP) [34, 35]., 

During the compression stroke, the IAS will be less than during the expansion stroke. The main 

disadvantage of this technique is that it requires more work and is complicated to implement. 

However this technique is good for confirming the identification of faults detected by other 

methods [36]. 

2.2.5 Application of Latest Condition Monitoring Ideas to Fluid Machine 

Liang et al [37] developed a procedure for valve fault diagnosis utilising the vibration responses 

both analytically and experimentally. The procedure used Smoothed-Pseudo-Wigner Ville 

Distribution (SPWVD) to interpret monitored impact vibration responses. The impact between 

the valve plate and seat operation shows a characteristic pattern in the time-frequency. A higher 

frequency vibration is observed at the closed position as opposed to when open coinciding with 

a higher pressure in the cylinder during the compression stroke causing the valve to move faster 

and resulting in a higher impact on the valve seat. This study shows that a discharge valve takes 

more time to open than close due to the difference in spring stiffness. 

Besides, Elhaj et al [38] also conducted a study on the early detection of leakage in 

reciprocating compressor valves using vibration and acoustic wavelet features. Their main 

finding was that valve leakage is the primary issue that causes failure and this can have a major 

effect on the operation and performance [19].  

They found that there are two main sources of vibration and acoustics, the valve impact and 

the non-stationary flow induction. Their work shows that the conventional analysis in the time-

frequency domain could not detect information from the acoustic signal due to noise 

interference [38]. This assumption is in line with Mohamed Ali Elhaj’s statement at the 

beginning of the literature review [19]. 
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However, according to Elhaj et al [38] the joint time-frequency domain analysis of the 

Continuous Wavelet Transform (CWT) was capable of extracting fault detection successfully 

however the acoustic monitoring needed more signal processing than vibration monitoring but 

this can be implemented remotely as stated by the authors [38]. 

Manepatil et al [39] developed a mathematical model to simulate the effect of piston ring 

leakage and valve faults on a compressor cycle. Manepatil’s work was to simulate the effects 

of faults so that the cylinder pressure could be determined in the time domain and to predict 

the machine performance of CM. His study proved that suction valves leakage resulted in a 

steeper re-expansion stroke, followed by a decrease in the discharge pressure peak, an increase 

in the volumetric efficiency, flow rate and a decrease in the performance ratio. The discharge 

valve leakage resulted in a flatter re-expansion stroke which causes the compression stroke to 

move.  

The Discharge valve leakage indicated a decrease in the volume flow rate, an increase in 

volumetric efficiency and the cylinder pressure. Besides, the piston ring leakage ends up with 

a decrease in volumetric efficiency and cylinder pressure [39]. 

 Review of Acoustics Monitoring  

Direct sound listening on moving machinery is intuitively used by experienced engineers 

through the holding of a screwdriver against a bearing housing however this method provides 

an intuitive evaluation which is more of an art rather than science [40]. 

Several diagnostic techniques using sound signatures and data processing have been designed 

but they have not been used widely which causes great difficulty in the interpretation of sound 

signals. The instrumentation technique is like the vibration analysis but the problem lies in the 

fundamental between the transmissions [40]. Sound is vibration transmitted through liquid, 

solid or gas. It is made up of frequencies that are easily detected by ears. Acoustics is the study 

of sound over the entire range of different sources types, propagation modes and receiving 

conditions [40] 

2.3.1 Airborne Acoustics 

Sound monitoring is the fluid-borne pressure wave phenomena which are also known as 

airborne. Generally, this is simply airborne and may not be either melodious or harmonic in 

the tonal sense [41]. Sound is a scalar quantity with no directional parameter and the 

positioning of the sensor makes no difference, this a big problem in the diagnostic monitoring 
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of airborne sound [41]. Airborne acoustic can be used for the measurement and detection of 

defects in the rolling element bearings [42], gearbox system [43] and much more. Airborne 

acoustic monitoring has different advantages and disadvantages. 

It has the possibilities of replacing the need for several vibration sensors that need mounting at 

various locations on the machine and the potential of being detached from the machine surface. 

The airborne acoustic by nature is a non-contact system and is good in high frequency and short 

wavelengths [43]. 

2.3.2 Acoustic 

Acoustics is the science of sound which deals with the origin of the sound and its propagation, 

either in free space, pipes and channels or in closed spaces [44]. It can also be defined as the 

study of sound over the entire range of different source types, propagation modes and receiving 

conditions [45]. Infrasound is below the sound of hearing which is less than 20 Hz known as 

the audible range [46]. Infrasound can cause health damage in an extreme situation, it has an 

unpleasant effect on human beings, a side effect being nausea [44]. Any sound with a frequency 

above the audible range of hearing, that is above 20 000 Hz (20 kHz), is known as an ultrasound 

[46]. Acoustic monitoring is the fluid-borne pressure wave phenomena which are also known 

as airborne. Generally, this is simply airborne and may not be either melodious or harmonic in 

the tonal sense [41]. Acoustic can be defined as a time-varying disturbance of the density of a 

fluid from its equilibrium value, which is accompanied by a proportional disturbance of sound 

pressure and is associated with small oscillatory movements of fluid particles [47]. Acoustic 

monitoring of machines has been around for many years and this technique focuses on the 

analysis of noise or acoustic signals. When machines operate they create both vibration and 

noise. The reason why acoustics is preferred for the monitoring of fluid machines is that it is 

non-destructive.  

2.3.3 Microphones 

Microphones are used to pick up acoustic signals instead of vibrational sensors. Microphones 

are sensitive, easy to mount and possess wide frequency response ranges that can generate 

appropriate and valuable information. It can be used in many applications where sensors cannot 

be added such as gearbox, bearing, engine and pumps [48], [49], [50] Microphones are 

electroacoustic transducers and can convert the acoustic signal into an electrical current which 

can be processed and displayed. They are known to be small in size, reliable, high in sensitivity 

and low in cost [51]. 
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2.3.4 Acoustic Compared to Vibration 

Vibration signal, measured on machines, generates a wide range of vibration frequencies with 

valuable information, however when implementing the vibration technology many sensors are 

required and need to be mounted on the machine, whilst with airborne sound measurement it 

can be placed away from the machine eradicating any high-temperature vibration sensors, 

mounting elements and reducing any associated risk. Some of the common machine parts 

monitored are gears, bearings, shafts, machines frame and many other mechanisms. If the 

correct sensor is used and at the correct place on a machine this would clearly give a good 

indication of the health of the machine but controversially this technique is limited to its 

application and machine availability as some plant run constantly and the sensors can’t be 

connected to the machine. The advantages of using airborne acoustic monitoring are that it has 

the capability of replacing the need for several vibration sensors that need mounting at various 

locations on the machine and the potential of being detached from the machine surface. The 

airborne acoustic, by nature, is a non-contact system and is good in both high frequency and 

short wavelengths [43].  

2.3.5 Application to Acoustic Monitoring  

G Ramroop et al investigated a comparison of conventional vibration and acoustic monitoring 

in a multi-stage gearbox system. They proved that acoustic condition monitoring offers more 

advantages over the conventional surface vibration methods [43]. However, the use of the 

correct techniques is dependent on its application whereas Saruhan et al in their work of 

vibration analysis of rolling element bearings defects, state that the best techniques to use for 

the rolling element bearings condition monitoring is the vibration spectrum analysis [52]. 

Conversely, Abdullah et al describes that acoustic emission offers earlier fault detection and 

improved identification capabilities than the vibration analysis in rolling element bearings [53]. 

 Review of Artificial Neural Networks 

There are various types of neural networks but they are all application dependent. In this 

research, CNN will be based on obtaining the data from Reciprocating Compressor (RC) 

acoustics for the detection of an ideal position away from the RC for collection of data. A good 

literature review is required on the topic hence below is a brief understanding of neural 

networks. The concept of “Artificial Intelligence” (AI) was first established in the mid 19th 

Century at Dartmouth College in the US by four professors: H.Simon et al at Carnegie Mellon 

University, Professor J.McCarthy at Stanford University and Professor L.Minsky at 
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Massachusetts Institute of Technology. Their vision on AI is that machines will have the 

capability to comprehend and react similarly to the human mind, opening the opportunity of 

using computers to simulate human intelligence [54]. According to Stefan Holtel in his article 

on “Artificial intelligence creates a wicked problem for the enterprise” he postulates that at the 

beginning of the 21st Century there is a possibility that artificial intelligence will be available 

on a larger scale and will outperform the human brainpower [55]. 

According to Yunhe Pan and his work on “Heading toward Artificial Intelligence 2.0,” he 

stipulates that AI is making a rapid transformation.  Media and politics are showing strong 

interest and big firms such as Google, Microsoft, Twitter, Apple and Intel are investing a huge 

amount of money in the research and development of AI [54]. 

The requirement for AI is needed in areas where it is not easy to prove analytical knowledge. 

With the aid of AI, new knowledge is created from the existing idea and input data form a set 

of monitored variables. AI can be used in CM vibration data sets and contains a lot of valuable 

information that can result in a large set of features. Nevertheless, Mahmud Ahmed believes 

that AI is an ideal method compared to the conventional methods such as frequency domain, 

time domain and envelope analysis, allowing great savings and efficiency. AI is more user-

friendly and economical compared to the conventional methods as it does not require a lot of 

human resources with a wealth of experience, nor an enormous amount of time which can be 

very significant in price [56]. 

2.4.1 Brief Development of Neural Network 

The first digital computer-based artificial neural network was developed in the early 1950s. 

Since then many researchers, mathematicians, scientists and engineers have done an enormous 

amount of work with Artificial Neural Networks (ANN) [57]. Neural networks are an excellent 

tool made up of a set of algorithms that assist us to learn lots of different types of patterns. It 

has been modelled very similarly to the human brain which is also designed to recognize 

patterns [58]. Our brain contains neurons which resemble a kind of organic switches. 

Depending on the strength of their chemical or electrical input these switches can alter their 

output state. The neural network in a human brain is an immense interconnected network of 

neurons [59].  

If we repetitively learn an art, that means we are hard-wiring our brain to the network and 

repeatedly activating certain neural connections. 
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The outcome would be fruitful which is tailored to the specified input [59]. The Biological 

Neural Networks (BNN) contain biological neurons or nerve cells and there are about 200 

billion neurons, 32 trillion connections. The neuron size is 10 to 6 cm, 6 to 10 joules per second 

of energy consumption with learning capability [60]. Artificial Neural Network merely tries to 

imitate the behavioural state of the brain [59]. A neural network is generally distributed into 

two sections of research. The first application is the neuronal modelling, which stresses on the 

biological plausibility of artificial neural network and the second approach is the exploration 

of the artificial neural networks as a parallel computing architecture application [61]. In this 

thesis, the second approach will be used. The following section gives some basic concepts of 

artificial neural networks.  

Neural Network (NN) transmits sensory data via a type of machine perception, labelling or 

clustering raw input. They recognize numerical patterns, contained in vectors, where there is 

all real-world data whether it be sound, images, text, time series, electrical or mechanical 

signals [58]. 

2.4.2 Basic Concepts 

As explained briefly above an ANN is made up of neurons, a connection topology and a 

learning algorithm [61]. ANN is fast but inferior to BNN with 102 to 104 nodes depending on 

the type of application and design network. The learning capability is very precise, well-

structured and formatted data is needed to tolerate ambiguity. It has a robust performance but 

has the potential to be tolerant to a fault and has a continuous memory [60]. Artificial Neural 

Networks can be considered as weighted directed graphs where neurons are nodes and directed 

edges with weights are connections between neuron outputs and neuron inputs. Weights are 

defined as the information used by the neural network to solve an issue.  

The ANN collects information externally in the form of pattern and image in vector form. 

These inputs are designated by the notation x(n) for number of inputs in a mathematical form. 

Each input is multiplied by its corresponding weights. 

Normally weight is the strength of the interconnection between neurons inside the neural 

network. Inside the computing unit, the weighted inputs are added. If the weighted sum is zero, 

bias is then added to increase the output to higher than zero or to scale up the system response. 

There are both linear and non-linear activation functions where the activation function is set to 

the transfer function to get the desired output. The most commonly used activation function is 

binary and sigmoidal hyperbolic [62]. 
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2.4.3 Artificial Neural Network Architecture 

Figure 2-1 below shows an ANN Model. In ANN, there are a huge number of artificial neurons 

called units which are organized in a series of layers. An ANN usually comprises of different 

layers as shown in Figure 2-2 below. 

Input Layer 

The Input layer contains Artificial Neurons which are specific units that are input from the 

outside world where the network will learn to recognize patterns or processes [60]. 

Output Layer 

Output Layer comprises of units that respond to information about how it learned any task [60]. 

Hidden Layer 

Hidden Layer is units that are between the input and output layers. The hidden layer changes 

the input so that the output unit can be utilized [60]. NN are generally fully linked where each 

hidden neuron is fully connected to every neuron in its previous input layer and the following 

output layer [60]. 

 

Figure 2-1 An Artificial Neural Network Model [62]  
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Figure 2-2 Artificial Neural Network [60] 

2.4.4 Convolutional Neural Networks  

Convolutional Neural Networks (CNN) is a combination of artificial neural networks and 

recent deep learning methods. Due to its distinct correlation in data mining, CNN’s can 

decrease the number of trained parameters in networks to improve the back-propagation 

algorithm deficit of a forward propagation network [63]. CNN pre-processing is much lower 

in comparison to other classification algorithms. In the olden days, the filter methods were 

hand-engineered whereas nowadays with adequate training, CNN can learn these filters and 

their characteristics. The CNN architecture is like the connectivity pattern of neurons in the 

human brain and was enthused by the organization of the visual cortex where each neuron 

responds to stimuli only in a restricted region on the visual field known as the receptive field 

[64]. 

Xiaofeng, et al postulated that CNN’s attain optimal results in the application of recognizing 

handwritten numerals and that CNN’s can be used in more various recognition tasks. The 

training speed and final training effect can be immensely influenced by the number of filters in 

each layer of CNN’s structure. The training time can be shortened and certain recognition rates 

retained if the suitable number of filters are selected appropriately in each layer. If there are 

not enough samples an excessive number of filters can make the network training fail to 

converge and prevent attaining an effective recognition. They strongly believe that if it is 

possible to increase the training speed of the network and improve the performance and the 

versatility of the models, great improvement of the technical level of convolutional neural 

networks in image recognition can be achieved and applied in various fields [63]. 
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As previously seen under the supervised learning chapter, a neural network is a strong tool 

where classification tasks are dependent on various labelled datasets [58]. Simard et al 

postulated that it is essential to get a larger training set, expand it by adding a new form of 

distorted data and that convolutional neural networks are appropriate for many visual document 

problems. However, they confirmed that CNN also exploits the facts that the inputs are 

dependent elements with the knowledge of input topology but arise from a spatial structure. 

According to their research, the convolutional neural network does not require complex 

methods, the results give better analysis and allow simple debugging [65]. 

2.4.5 Deep Learning 

Deep learning will be explained further in Chapter 8. Deep learning is a segment of machine 

learning that teaches computers to mimic human logical behaviour, in another sense to learn 

from experience [66] as explained previously. 

Machine learning algorithms employ computational methods to learn and project information 

directly from data without the need to depend on a predetermined equation as a model. This 

technique of deep learning is suitable for image recognition, facial recognition, the possibility 

of autonomous driving, lane detection, autonomous parking, pedestrian detection and motion 

detection. Deep learning takes advantage of the neural networks to learn important 

representations of features directly from data.  

Inspired by the biological nervous systems, neural networks combine multiple nonlinear 

processing layers, using simple elements operating in parallel. State-of-the-art accuracy in 

object classification, sometimes exceeding human capability, can be attained through the deep 

learning models [66]. 

Models are trained using a large set of labelled data and neural network architectures that 

consist of numerous layers, sometimes including some convolutional layers. Training these 

models can be intensive in computing and sometimes training can be accelerated by using a 

high-performance Graphics Processing Unit (GPU). Lots of deep learning systems use an 

image file, sometimes they are immense, for ease of accessibility, MATLAB gives access to 

the image datastore function to read batches of images automatically for faster machine 

learning processes and computer vision applications. If the memory is too large it imports data 

from the image collection and depending on the folder names it will label the image data 

automatically [66]. 
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2.4.6 Transfer Learning 

Deep learning applications are usually employed in transfer learning. A new pre-trained 

network can be used as an initial point to learn a new task. Fine-tuning a network with transfer 

learning is much easier and faster than training a new network. The network can be made to 

learn a new task quicker by utilising a smaller number of training images. The advantage is 

that the pre-trained network would have already learned a large set of features that can be 

applied to a wider array of other small tasks. It can fine-tune a pre-trained network with smaller 

data sets more efficiently than the original trained data. For a larger dataset, transfer learning 

may not be as fast as training a new network [66]. 

The advantages of transfer learning are: 

1. Faster and easier than training a new network 

2. Reduce dataset size and training time 

3. Transfer a pre-trained network learning features to a new problem  

4. Deep learning can be achieved without the need for learning how to create an entire 

network [66].  

2.4.7 Supervised and Unsupervised Learning 

Classification tasks depend on the labelled datasets where humans transfer their knowledge to 

the datasets so that the neural network learns the correlation between label and data which is 

known as supervised learning. This can identify a person in images, recognize facial 

expressions, detect faces, identify objects in images, recognize gesture in the video, identify 

speakers, transcribe speech to text voice recognition, classify text as spam (in emails), 

fraudulent claims and more [58]. 

The detection of similarities is made through grouping or clustering. Unsupervised learning is 

learning without labels. The world is made of a majority of unlabelled data.  

  Application of Artificial Neural Networks and Deep Learning 

Applied to Condition Monitoring 

A brief overview of the ANN technique applied to fluid Machine is explained below, such as 

the work of Ahmed Mahmud [56] who works on the use of advance soft computing for 

machinery CM. He believes that the investigation of vibration signal under different operating 

conditions has shown that the signal is complex and there is a huge amount of information 
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associated with the signal waveform and that this approach is difficult, however, his result 

demonstrates that the vibration analysis is a reliable technique to identify the health of 

reciprocating compressors by the valve motions. He also states that the time domain analysis 

and frequency domains are more sensitive to fault detection [56]. 

Nowadays ANN can automatically detect and diagnose machine condition. Probabilistic 

Neural Network (PNN) also exists which has improved in recent times as it provides sound 

statistical confidence levels [56]. It is possible to model higher-order interaction and predict 

multiple topics using shared hidden features through the Neural Networks according to Erik 

Wiener in his work on “A Neutral Network Approach to Topic Spotting”. His work was based 

on a data-driven approach to topic spotting that applies nonlinear networks to estimate topic 

probabilities [67].  

Tiwari et al developed an innovative technique based on the Bayesian Neural Network (BNN) 

to model the temperature variation record from the Western Himalayas. The BNN is trained 

with the Hybrid Monte Carlo (HMC) and Markov Chain Monte Carlo (MCMC) simulation 

algorithm.  

The result of the new algorithm was tested on destructive first-order Autoregressive (AR) and 

random models. It was then applied to model the temperature variation record decoded from 

widths of trees of the Western Himalayas for the period spanning over 1226 to 2000 AD. The 

best network parameters were chosen to model the actual tree ring temperature data. It was 

found that the BNN prediction model, when compared to ANN and AR models, makes a better 

prediction. This new BNN modelling technique is a feasible means for the study of climate and 

may be used for modelling other kinds of environmental data [68]. Patel et al used artificial 

intelligence techniques to predict and analyse bearing faults. They trained the backpropagation 

multilayer neural network and used it to test 369 pre-treated normalised features. They argue 

that support-vector machine techniques can give better results over ANN [69]. In M. Ahmed 

et al work, regarding the use of Genetic Algorithms (GAs) and neural networks (NNs) to select 

an effective diagnostic feature of a reciprocating compressor, a huge number of common 

features are computed from the time and frequency domains and envelope analysis. They found 

that the envelope analysis was the most capable of differentiating their application of GAs and 

NNs from three common faults, namely valve and intercooler leakage and loose drive belt. At 

the same time, the spread parameter of the probabilistic NN was optimised. They established 

that their technique, with the trained NN, possesses the general characteristics for fault 

detection and diagnosis [70]. Many researchers have effectively investigated machine failures 
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using ANN. Samanta et al compared the performance of bearing fault detection using two 

different classifiers: Artificial Neural Networks (ANN) and Support Vector Machines (SVM). 

Their findings demonstrate the effectiveness of the features and the classifiers in the detection 

of machine condition [71]. Samanta also used GAs to improve the features vector for fault gear 

detection using experimental vibration data from a gearbox. It was found that SVM is better 

than ANN, without GA. With GA the progress of both classifiers is comparable in most 

situations. The training time of SVMs is considerably less compared to ANNs [72]. 

Artificial intelligence (AI), if widely used in the field of condition monitoring and fault 

diagnosis of machines, will assist a lot of companies to save a large amount of money as 40% 

of company expenses go into maintenance. Maintenance cost is like an iceberg where most of 

the ice is underneath the water. The subsection of this chapter will explain some of the previous 

research and developments in the field of signal analysis through the aid of artificial 

intelligence. As previously explained above in Section 2.4 Review and Application Intelligent 

Systems, such as Artificial Intelligence, Artificial Neural Network (ANN), Genetic Algorithm 

(GA), Support Vector Machine (SVM) and Fuzzy Logic System (FLS), Deep Neural Network 

(DNN), Probabilistic Neural Network PNN, Bayesian Neural Network (BNN), Autoregressive 

(AR), Neural Networks (NNs) and Convolutional Neural Network (CNN) can be a great tool 

if it has the capability of automatically detecting and diagnosing machine condition. 

Scholars from Boston University and Cambridge University studied the interactions amongst 

earthquakes, precursor quakes and seeded fault quakes to create a new technique to predict a 

real earthquake. Those researchers have created an AI system to analyse and predict the 

acoustic signal coming from the faults.  

They have used steel blocks to simulate the physical forces at work in a real earthquake and 

record samples of the seismic signals and sounds that are emitted. Machine learning was then 

used to find the relationship between the acoustic signal coming from the faulty block then 

analyse and predict the failure. They successfully found that the machine learning algorithm 

was able to determine a specific pattern in the sound which was thought to be mere noise that 

normally happened long before an earthquake. This characteristic of the sound pattern can give 

an exact estimation of the stress on the fault and estimate the remaining time before it fails. 

This is a breakthrough in science as this is the first time that machine learning has been used 

to analyse acoustic data to predict when an earthquake will occur, without any warning, long 

before it happens. As the datasets are too large to handle manually, machine learning analyses 

the data and then gives an unbiased warning to people before an earthquake occurs [73]. 
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Past research has proven that the use of AI in ANN is capable and efficient in predicting faults 

in the machine [74]. More work has been done in the machine diagnosing of bearing, rotating 

machine and mechanical gear with more vibration signal compared to acoustic. There is a big 

demand for more Acoustic Emission (AE) analysing tools for a different source of AE data. 

Due to this demand new advances have been made in flexible pattern recognition software, 

combining traditional graphical AE analysis and Advanced Supervised Pattern Recognition 

(ASPR) and Supervised Pattern Recognition (SPR). Various test cases on the application of 

ASPR techniques on AE data has explained the damage evolution and the possibility of noise 

discrimination [75]. 

Balusahi et al have recommended a system to diagnose the faults of gears by wavelet 

transformation and ANN for AE signal processing. Features were being taken from the wavelet 

transformation and used as an input to an ANN-based on analysing method [76]. The AE 

vibration signal was utilised as an input signal in the fault prognosis systems. In addition to 

that ANN was used as a prognosis system in detecting failures in rotating machine [77]. 

Previous study in the use of AE for early detection of helicopter rotor head dynamic component 

faults has been done using the wavelet method to analyse stress wave of a flight test data by 

assessing the background noise in comparison to machine failure results. To determine the 

correct flight regime the feed-forward neural network was utilised as a classifier [78]. 

The utilisation of neural networks in a grinding test with an aluminium-oxide-grinding wheel 

was tried to reach the classification on burn degrees on the surface of the grinding machine by 

Aguiar et al. The inputs of the neural networks used for the statistics from the digital signal 

processing were the AE and power signal together [74]. 

Goebel et al designed a hybrid architecture, containing fuzzy logic and neural network to 

withstand the feeble point of the common methods for monitoring and diagnosing an 

unattended milling machine. Acoustic emission and force spindle current were utilised as 

inputs to the neural network after undergoing some signal processing in the calculation of the 

membership functions of the fuzzy relations. The problem of tool wear and chattering was also 

approached by fuzzy logic principles [79]. 

Artificial intelligence has many advantages in comparison to traditional mathematical 

modelling and statistical analysis [80].  

It has been found that ANN is the most popular method in condition monitoring with Acoustic 

emission signal. More work has been carried-out on ANN in comparison to the use of fuzzy, 
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SVM and GA [80] and CNN [81]. ANN-based on AE has been successfully applied to several 

applications.  

However, the application of AE, advance signal processing combined with AI in the 

conditioning of machine is limited. There is still a gap in the world of AI to CM where lots of 

new advancement in this technology can be achieved. This allows for more opportunities in 

the development of new intelligent signal processing techniques, sensor and data acquisition in 

the field of condition monitoring, hence the reason why CNN will be used to mine data from 

RC acoustics for the detection of best location for data collection in this study as this is a novel 

approach and is a contribution to knowledge. Furthermore, this CNN based scheme will allows 

high diagnostic accuracy, as well as the determination of the most suitable microphone 

localisation. 

 Research Gap Identified 

A lot of developments have been made in the field of CM by many scholars in the last half 

century however as our world is becoming increasingly competitive, demand from industries 

is becoming the norm. However further demand shows a surge in superior precision and high 

quality. Technology is moving so fast that the computational of data and cost of system 

implementation is becoming unfeasible.  

Numerable amounts of research is studied in various types of CM used in the industry together 

with its application to fluid machines. Whilst there are many new research methodologies 

namely: MCSA; ultrasound; airborne acoustic; instantaneous angular speed and new vibration 

methodology, ANN techniques such as Neural and CNN however there is little evidence new 

techniques based on airborne signal differences through CNN combined with acoustic. 

Although it is evident that those previously discussed techniques are already making an 

industry change their limited process capability and the reduced relationship and integration to 

CNN is evident. 

However, the application of AE, advance signal processing combined with AI in the 

conditioning of machine is limited. There is still a gap in the world of AI to CM where lots of 

new advancement in this technology can be achieved. This opens more opportunities in the 

development of new intelligent signal processing techniques, sensor and data acquisition in the 

field of condition monitoring.  

Therefore, CNN techniques in conjunction with acoustical signal have been used to determine 

the characteristics and difference in accuracy in finding the most suitable signal acquisition 
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position from a two-stage reciprocating compressor with various discharge pressure with and 

without faults. 
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Phase I 

Evaluating Condition Monitoring Techniques based on a Laboratory 

Compressor 

 

Chapter 3 

Mathematical Modelling and Numerical Analysis of Dynamic Responses of a Two-Stage 

Reciprocating Compressor with Different Faults 

Chapter 4 

Evaluating Condition Monitoring Techniques based on Intrusive and Non-intrusive In-

Cylinder Pressure Measurements 
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 Mathematical Modelling and Numerical Analysis of Dynamics 

Responses of a Two-Stage Reciprocating Compressor with Different 

Faults 

This chapter investigates the dynamic responses behaviour of a two-stage reciprocating 

compressor by modelling and numerical analysis. The dynamic responses of interests include 

Instantaneous Angular Speed (IAS)/torsional vibration, motor current, structural vibration and 

airborne acoustics that can be perceived by non-intrusive or even remote ways. The model 

developed consists of a motor model, in-cylinder pressure model, mass flow models, crankshaft 

IAS model, valve motion model that takes into account common faults on valves, intercoolers, 

motor and mechanical transmission. The numeral analysis focuses on the evaluation of 

monitoring information that is included in each dynamic response. Specifically, the numerical 

solutions of different models are obtained for both baseline and faulty cases; the solutions due 

to faults is subtracted from the baseline one, which results in pure changes or signatures 

caused by faults for a straightforward and yet accurate comparison made in the angular 

domain. Based on these changes quantitative evaluations can be made for each dynamic 

response upon its suitability for implementing system-level and/or component level 

diagnostics. Besides, critical comments are also made on the complexity of data acquisition 

and process of the responses. 
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 Introduction 

The use of external measurements signals such as current, pressures, IAS, vibration and 

acoustics for motoring compressors, a good knowledge of the various internal processes 

variables such as pressure oscillations, air flows, valve, piston and crankshaft movements are 

all essential. The investigation of reciprocating processes using mathematical modelling can 

be an effective tool which enables to link the external measurements with internal variables 

consequently gaining an understanding of characteristics of measurements towards revealing 

the changes inside the compressor. In general, the world around us operates through the 

description of our beliefs and those beliefs are translated into the language of Mathematics 

[82]. 

In this chapter multiple models are derived and overviewed for the conversion of electrical 

energy from an induction motor into the compressive energy of a Reciprocating Compressor 

(RC). To examine external measurements of interest the model includes a power flow electrical 

model, three-phase induction motor model, dynamic of a crankshaft and piston-driven 

mechanism model, torque performance model of the induction motor to the crankshaft, 

kinematics of a crankshaft piston mechanism model, in-cylinder pressure model, mass flow 

model of suction and discharge valve dynamic model. 

The derivation process will allow the various physical processes in compressor operation to be 

understood analytically through sub-process, which helps to gain a general trend of different 

influence factors on compressor operation and paves the way for subsequent numerical 

analysis. The numerical analysis then allows for a more accurate understanding of the complex 

compressor system that is integrated by several models with different physical principles. In 

particular, the changes of interested measurements can be quantified for subsequent data 

acquisition and analytics in accurate and efficient methods.  

The effect of various physical parameters has been considered for mathematical analysis and 

appropriate thermodynamic equation has been utilised for the models. Many advantages can 

be emancipated from models such as: 

• Assisting in getting a good knowledge of the machine and the relationships of its 

component predicting fault signatures in RC. Machine reliability can also be improved 

through the modelling of the reciprocating compressor and fault simulation [83]. 

• Can help formulate ideas and identify underlying assumptions [82]. 
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• Can assist Matlab to perform numerical calculations. 

Specifically the model development mainly follows the work [84] that has been validated 

experimentally. However, new understandings of modelling Vibro-acoustics have been 

included to more accurately describe the vibroacoustic formulation and behavioural changes 

with operating conditions and fault variations.  

 Overview of Reciprocating Compressor Models 

The focus of this study is on a two-stage, single-acting reciprocating compressor, with ‘V’ form 

cylinders, which are employed widely in industry. The compressor delivers compressed air to 

a horizontal air receiver. The crankshaft is driven by a ‘V’ type transmission belt which is 

powered by an electric motor where the electrical energy is converted through a connecting rod 

from mechanical rotational to linear motion as shown in Figure 3-4.  

At the start of the compressor, the motor starts driving the pulleys through the V-belt which 

then in turn force the crankshaft to rotate causing the first cylinder (low pressure) piston to 

move downwards from Top Dead Centre (TDC) to the Bottom Dead Centre (BDC) and this 

causes the suction valve to open through the pressure difference across the valve head. In the 

compression cycle, the (BDC) returns to (TDC), once the in-cylinder pressure is higher than 

the plenum pressure this causes the valve to be forced open moving the pressure to the next 

stage of the second cylinder (high pressure) through the intercooler which cools the air by 

removing the heat that is created after the first stage compression. After the second stage air 

starts to build in the storage tank to a set value, when that is reached a diaphragm pressure 

switch cuts off the electrical circuit and stops the motor. The processes of the model are based 

primarily on the electrical, mechanical and fluid transmission and motion which will be 

discussed further below.  

3.2.1 Mathematical Modelling Objectives 

The objectives of the mechanistic model are to evaluate the dynamic response and effect of the 

different operating conditions of the existing reciprocating compressor model. The model will 

also investigate the working principles of how gas in a reciprocating compressor is created. 

Initiating from the motor induction, crankshaft motion, in pressure volumes of both first and 

second stage, intercooler pipe gas transmission to air distribution. This can provide important 

signatures that can’t be studied and simulated in a real-time scenario [84], developed scientific 

understanding, tests the effect of changes in the system and help the decision making [82]. The 
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language of mathematics is very precise and this will describe the behaviour of the 

reciprocating compressor and assist in formulating ideas and identify underlying assumptions 

[82]. Solving engineering problems through computational approaches are vital due to their 

application and effectiveness. As briefly explained above, the language of mathematics is very 

precise as it is a concise language with well-defined rules where the numerical calculations can 

only be achieved by computers [82]. 

3.2.2 An overview of Reciprocating Compressor Modelling 

Some relatively simple mathematical models have been developed since 1950 which explains 

the compressor, its working mechanism and fluid. The early model was developed by 

Costagliola [85]. His study was mainly based on the analysis of valve dynamics, most models 

are now based to some degree on his pioneering work. 

In 1967, Wambsganss et al [86] developed a similar model based on the performance of a 

sealed hermetic refrigeration compressor fitted with reed type valves and using air or R12 

refrigerant. Their correlation could be judged as being good when allowances are made due to 

the size of the small compressor and its valve. MacLaren et al carried out a similar exercise 

and concluded that an analytical model could provide qualitative results much more cost-

effectively. The assumption has been made that the valve had only a single degree of freedom 

and this was not sufficient to represent the valve dynamic in a high-speed compressor [87]. 

Borisoglebski et al [88] combined the simultaneous flow and dynamic equations into a single 

non-linear differential equation, the same as Costagliola. In 1970, Traversari et al designed a 

model based on the theory of Costagliola with few modifications compared to MacLaren et al. 

Traversari concluded that there were differences between analytical and experimental results 

[89]. 

There are a variety of approaches on how to simulate the cycle of a compressor and the first 

type of model is the polytropic or isentropic principle inside the cylinder according to Li [90] 

and Posch et al [91]. They are used to predict mass flow rate, electrical power and discharge 

temperature. Posch [91] concluded that there is no obvious model that can satisfy the accuracy 

demands. Singh postulates that the modelling for a reciprocating compressor can be improved 

by accounting for the suction and discharge line oscillation which would bind a stronger 

internal relationship within its mechanism [92]. Manepatil et al [39] developed a mathematical 

model to simulate the effect of piston ring leakage and valve faults on a compressor cycle. His 

model proved that the in-cylinder pressure can predict compressor performance [39]. Besides, 
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Liang et al [37] developed a procedure for valve fault diagnosis utilising the vibration responses 

of the cylinder head. Elhaj et al model on numerical simulation shows how valve leakage 

influences the load with various operating condition. His experimental model demonstrates the 

use of in-cylinder pressure and speed fluctuations of the crankshaft to detect and diagnose 

various faults [84] [93]. Dutra et al model on the hermetic RC for prediction of compressor 

performance proposed a single-phase motor model for the calculation of motor slip and 

estimation speed of the compressor at the different operating condition. His work was also 

based on the relationship of motor efficiency and compressor power. The predicted model was 

in good agreement with his experimental model [94]. 

The brief review above demonstrates the existence of some RC models in determining the 

simulation of the behaviour affecting its performance. However, not many researchers have 

modelled an RC with the objectives of investigating the dynamic responses behaviour and 

numerical analysis. 

 Motor Current Model 

3.3.1 Fundamentals of Induction Motors 

The principles of a three-phase motor are briefly discussed in the following for dynamic 

modelling. Induction motor consists of two main components: the stator and rotor both of 

which have three identical and symmetrical windings positioned 120° apart. A small air gap 

separates the rotor from the stator as shown in Figure 3-1 and the legend is indicated in Table 

3-1 [95]. 
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Figure 3-1 Three Phase Induction Motor [95]Error! Reference source not found. 

Table 3-1 Three Phase Four Pole Induction Motor 

Three Phase Four Pole Induction Motor 

1 Phase 1 

2 Phase 3 

3 Phase 2 

4 Rotor 

5 Air gap 

6 Stator 

Three sets of voltages (𝑉𝑉₁,𝑉𝑉₂,𝑉𝑉₃) are applied to the stator causing three sets of current 

(𝐼𝐼₁, 𝐼𝐼₂, 𝐼𝐼₃) to flow. A rotating magnetic field which is also known as the synchronous speed 𝑛𝑛𝑠𝑠 

and rotor speed 𝑛𝑛 is produced with alternate N-S poles.  

𝑛𝑛𝑠𝑠 = 120𝑓𝑓
𝑝𝑝

 (3.1) 

where 𝑓𝑓 is electric supply frequency of the stator in hertz; 𝑝𝑝 is the number of pole pairs. 

The definition of slip is the difference between the synchronous speed 𝑛𝑛𝑠𝑠 and rotor speed 

𝑛𝑛 which is calculated by [95]: 

𝑠𝑠 =
𝑛𝑛𝑠𝑠 − 𝑛𝑛
𝑛𝑛ₛ  (3.2) 
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Figure 3-2 Power Flow Electrical Model of an Induction Motor [95] 

Figure 3-2 describes the conversion of electrical energy into mechanical energy in an induction 

motor. Initially the electrical power 𝑃𝑃𝑖𝑖𝑖𝑖 flows into the stator. A partial of the electrical power 

𝑃𝑃𝑠𝑠𝑠𝑠𝑖𝑖 is dissipated heat in the windings due to the stator copper losses whereas the remaining 

electrical power 𝑃𝑃𝑖𝑖𝑖𝑖  is dissipated heat in the stator core due to iron losses. Consequently, the 

remaining electrical power 𝑃𝑃𝑎𝑎𝑎𝑎  is transported across the air gap and transferred to the rotor 

through electromagnetic induction. 𝑃𝑃𝑟𝑟𝑠𝑠𝑖𝑖  which is another percentage of electrical power is 

dissipated as heat due to the rotor copper losses. Lastly 𝑃𝑃𝑚𝑚which is the residual electrical power 

is available in the form of mechanical power [95]. 

In practice mechanical power to drive the load < 𝑃𝑃𝑚𝑚 due to 𝑃𝑃𝑤𝑤𝑓𝑓𝑖𝑖where 𝑃𝑃𝑟𝑟𝑠𝑠𝑖𝑖 = 𝑃𝑃𝑎𝑎𝑎𝑎   , therefore 

mechanical power can be expressed as: 

𝑃𝑃𝑚𝑚 =𝑃𝑃𝑎𝑎𝑎𝑎 − 𝑃𝑃𝑟𝑟𝑠𝑠𝑖𝑖   (1 − 𝑠𝑠)𝑃𝑃𝑎𝑎𝑎𝑎  (3.3) 

Motor torque 𝑇𝑇𝑚𝑚  can be calculated by the mechanical power by combining Equations (2) and 

(4) as described by [95]. 

𝑇𝑇𝑚𝑚 =
𝑃𝑃𝑚𝑚

�2𝜋𝜋 𝑛𝑛
60�

=
60
2𝜋𝜋  

(1− 𝑠𝑠)𝑃𝑃𝑎𝑎𝑎𝑎
(1 − 𝑠𝑠)𝑛𝑛𝑠𝑠

= 9.55
𝑃𝑃𝑎𝑎𝑎𝑎
𝑛𝑛𝑠𝑠

 
(3.4) 

3.3.2 Three Phase Symmetrical Induction Motor Model 

To understand the induction motor principle it is essential to understand the three-phase 

symmetrical winding in the stator function and the relationship of how the voltage equation of 

the stator and rotor equation is normally developed in respect to its mutual and self-inductance 

due to the phase angle between the stator and the rotor symmetrical winding. The winding is 
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displaced by 120º with equivalent Nₛ turns whilst the three phases of the rotor winding are also 

displaced by 120º with nr equal number of turns. The rotor θr separates the three-phase winding 

of the rotor as shown in Figure 3-3 and this phase angle causes the electromagnetic forces to 

rotate the rotor [96] [97]. 

 

Figure 3-3 Three Phase Symmetrical Induction Motor Model [96] 

The voltage equations of an induction motor can be formulated for the rotor and stator 

respectively as [96] [98]. 

𝑉𝑉𝑟𝑟 = 𝑅𝑅𝑟𝑟𝐼𝐼𝑟𝑟 + 𝑝𝑝𝜓𝜓𝑟𝑟 (3.5) 

𝑉𝑉𝑠𝑠 = 𝑅𝑅𝑠𝑠𝐼𝐼𝑠𝑠 + 𝑝𝑝𝜓𝜓𝑠𝑠 (3.6) 

And the voltage, current and flux linkage vectors:  

𝑉𝑉𝑟𝑟 = (𝑉𝑉𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝑉𝑉𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑉𝑉𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 )ᵀ (3.7) 

𝑉𝑉𝑠𝑠 = (𝑉𝑉𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝑉𝑉𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑉𝑉𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 )ᵀ (3.8) 

𝑖𝑖𝑟𝑟 = (𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 )ᵀ (3.9) 

𝑖𝑖𝑠𝑠 = (𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 )ᵀ (3.10) 

𝜓𝜓𝑟𝑟 = �𝜓𝜓𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝜓𝜓𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝜓𝜓𝑟𝑟  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 �ᵀ (3.11) 

𝜓𝜓𝑠𝑠 = �𝜓𝜓𝑠𝑠  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1  𝜓𝜓𝑠𝑠  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝜓𝜓𝑠𝑠  𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 �ᵀ (3.12) 

𝑅𝑅𝑟𝑟 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑔𝑔(𝑅𝑅𝑟𝑟𝑅𝑅𝑟𝑟𝑅𝑅𝑟𝑟) (3.13) 

𝑅𝑅𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑔𝑔(𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠𝑅𝑅𝑠𝑠) (3.14) 

The flux linkage is described by currents and inductances as: 

�𝜓𝜓𝑟𝑟𝜓𝜓𝑠𝑠
� = �Lrs LrrLss Lsr

� ∙ �𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠
� (3.15) 
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Where the rotor inductance matrix:  

𝐿𝐿𝑟𝑟𝑟𝑟 = �
𝐿𝐿𝑟𝑟𝑟𝑟 𝑀𝑀𝑟𝑟  𝑀𝑀𝑟𝑟
𝑀𝑀𝑟𝑟  𝐿𝐿𝑟𝑟𝑟𝑟  𝑀𝑀𝑟𝑟
𝑀𝑀𝑟𝑟  𝑀𝑀𝑟𝑟  𝐿𝐿𝑟𝑟𝑟𝑟

� 
(3.16) 

stator inductance matrix  

𝐿𝐿𝑠𝑠𝑠𝑠 = �
𝐿𝐿𝑠𝑠𝑠𝑠 𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠
𝑀𝑀𝑠𝑠 𝐿𝐿𝑠𝑠𝑠𝑠 𝑀𝑀𝑠𝑠
𝑀𝑀𝑠𝑠 𝑀𝑀𝑠𝑠 𝐿𝐿𝑠𝑠𝑠𝑠

� 

and mutual inductance 

(3.17) 

𝐿𝐿𝑠𝑠𝑟𝑟 = �
𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟   𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟1  𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟2
𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟2  𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟   𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟1
𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟1  𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟2  𝑀𝑀𝑠𝑠𝑟𝑟𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟

� 
(3.18) 

𝐿𝐿𝑟𝑟𝑠𝑠 = 𝐿𝐿𝑠𝑠𝑟𝑟𝑇𝑇  (3.19) 

The final model is represented below as: 

�𝑉𝑉𝑟𝑟𝑉𝑉𝑠𝑠
� = �𝑍𝑍𝑟𝑟𝑠𝑠  𝑍𝑍𝑟𝑟𝑟𝑟

𝑍𝑍𝑠𝑠𝑠𝑠  𝑍𝑍𝑠𝑠𝑟𝑟
 � ∙ �𝑖𝑖𝑟𝑟𝑖𝑖𝑠𝑠

� (3.20) 

With impedance matrices defined as follows: 

Zrr =  �
𝑅𝑅ᵣ+ pLᵣᵣ 𝑝𝑝𝑀𝑀ᵣ 𝑝𝑝𝑀𝑀ᵣ
𝑝𝑝𝑀𝑀ᵣ 𝑀𝑀ₛᵣcosθᵣ 𝑝𝑝𝑀𝑀ᵣ
𝑝𝑝𝑀𝑀ᵣ 𝑝𝑝𝑀𝑀ᵣ 𝑅𝑅ᵣ+ pLᵣᵣ

� 
(3.21) 

𝑍𝑍𝑟𝑟𝑠𝑠 = 𝑍𝑍𝑠𝑠𝑟𝑟𝑇𝑇  (3.22) 

𝑍𝑍𝑠𝑠𝑠𝑠 = �
𝑅𝑅𝑠𝑠 + 𝑝𝑝𝐿𝐿𝑟𝑟𝑟𝑟      𝑝𝑝𝑀𝑀𝑠𝑠           𝑝𝑝𝑀𝑀𝑆𝑆 
 𝑝𝑝𝑀𝑀𝑠𝑠        𝑅𝑅𝑠𝑠 + 𝑝𝑝𝐿𝐿𝑠𝑠𝑠𝑠      𝑝𝑝𝑀𝑀𝑠𝑠

     𝑝𝑝𝑀𝑀𝑠𝑠             𝑝𝑝𝑀𝑀𝑠𝑠      𝑅𝑅𝑠𝑠 + 𝑝𝑝𝐿𝐿𝑠𝑠𝑠𝑠
�   

(3.23) 

𝑍𝑍𝑠𝑠𝑟𝑟 = �
𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟    𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₁   𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₂
𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₂   𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟    𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₁
𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₁   𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟₂   𝑝𝑝𝑀𝑀𝑠𝑠𝑟𝑟 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐𝑟𝑟

� 

(3.24) 

With current components calculated, electromagnetic torque 𝑇𝑇𝑎𝑎  can be obtained by: 

𝑇𝑇𝑎𝑎 = 𝑃𝑃𝑀𝑀𝑠𝑠𝑟𝑟[𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1 (𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟 + 𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟1 +  𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟2) +

 𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1 (𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟2 +  𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟 +   𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟1) +

 𝑖𝑖𝑠𝑠 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 (𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎1 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟1 +  𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎2 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟2 +   𝑖𝑖𝑟𝑟 𝑃𝑃ℎ𝑎𝑎𝑠𝑠𝑎𝑎3 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐𝑟𝑟) ]  

(3.25) 
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 IAS of Crankshaft – Low-Frequency Vibrations 

The following compressor model Figure 3-4 illustrates a crankshaft and piston in motion 

accompanied by the legend Table 3-2. A brief overview of the general operation of the air 

generation and its mechanism is briefly explained above. The crankshaft is driven by an 

induction motor which in turn operates in a rotational motion together with the connecting rod. 

The connecting rod transmits the compressive and tensile forces from the crankshaft and its 

piston and rotates both ends causing the up and down movement in a reciprocation motion. 

This reciprocation movement helps the piston to moves in a linear motion inside the cylinder. 

The model is based as a function of the crankshaft angle represented as θ. The compressor 

cyclic process comprises of the suction and discharge processes where the cycle commences 

with the Top Dead Center (TDC) 𝑐𝑐 = 0°  in the low pressure cylinder and finishes at the same 

place after one full revolution when 𝑐𝑐 =  360°. As the high-pressure cylinder leads the low-

pressure cylinder by 𝜋𝜋
2
 therefore this phase difference is taken into account when applying the 

equation to the high-pressure cylinder.  

Crankshaft and Piston Driven Mechanism model 

 
 

Figure 3-4 Compressor Model [84] 
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Table 3-2 Legend 

Key components 
1 Electric Motor 
2 Belt 
3 Crankshaft 
4 Connecting Rod 
5 First Stage Cylinder 
6 Piston 
7 Cylinder 
8 Stroke 
9 Suction Valve 
10 Discharge Valve 
11 Suction Plenum 
12 Discharge Plenum 
13 Air Filter 
14 Intercooler Pipe 
15 Second Stage Cylinder 
16 Discharge Pipe 
17 Receiver 
18 Clearance Volume 
19 BDC 
20 TDC  

 

In a simplistic form, the torque balance of the crankshaft is also influenced by the air inside the 

cylinder, vertical unbalanced inertia forces and the load of the motor and as per Newton’s 

second law is: 

𝐽𝐽 𝜔𝜔�̇�𝑠(𝑡𝑡) = 𝑇𝑇𝑎𝑎 (𝑡𝑡)− 𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟 𝑓𝑓,𝑓𝑓 (𝑡𝑡)  − 𝑇𝑇𝑓𝑓𝑖𝑖ℎ (𝑡𝑡) (3.26) 

Where 𝐽𝐽 is the overall moment of inertia for the mechanical and electrical movement of the 

reciprocation and rotational elements of the compressor, and  𝜔𝜔𝑠𝑠 is Instantaneous Angular 

Speed (IAS) of the crankshaft. Besides the subscripts i, d, c, L, H, LH stand for the inlet, discharge, 

cylinder, low-pressure first stage, high-pressure second stage, both low and high pressure first 

and second stage. 𝑇𝑇𝑎𝑎 (𝑡𝑡) is to induction motor torque; 𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟 𝑓𝑓𝑓𝑓 (𝑡𝑡) is the cylinder pressure 

resultant torque, the connecting rods for both suction and discharge stages and the reciprocating 

inertia force of the pistons [84].  

𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟 𝑓𝑓𝑓𝑓(𝑡𝑡) = −𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟𝑓𝑓 + 𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟𝑓𝑓 (3.27) 

and 𝑇𝑇𝑓𝑓𝑓𝑓𝑓𝑓 (𝑡𝑡) is the frictional torque of the entire system. 
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3.4.1 Pressure Torque 

The methodology proposed herein is the model which consists of the crankshaft piston 

mechanism, valves motion in both stages and in-cylinder pressure. A description of the 

reciprocating operation and design is previously described above. The displacement of the 

compressor piston from TDC is indicated as 𝑥𝑥𝑝𝑝 for a crank angle of θ rotation as shown in 

Figure 3-5 assuming that the crankshaft rotates steadily at 𝜔𝜔, angular speed [84] [93]. The 

piston C travels in a straight line causing the crank to rotate the connecting rod 𝑙𝑙1 and the red 

dotted circle is the loci of the crank mechanism. 

The resultant torque due to internal pressures for both the first and second stage compressions, 

the force of inertia of the piston and the connecting rod is described as: 

𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟 𝑓𝑓𝑓𝑓 = �𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓 + 𝑓𝑓𝑚𝑚𝑝𝑝𝑓𝑓�𝑟𝑟 (3.28) 

Where 𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓  is the force produced tangentially by the internal cylinder pressure, the inertia of 

the reciprocating mass produces the tangential force 𝑓𝑓𝑚𝑚𝑝𝑝𝑓𝑓  and crankshaft radius is 𝑟𝑟1. The 

internal pressure in a cylinder can be attained by the tangential force  

𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓 = 𝑃𝑃𝑠𝑠𝑝𝑝𝑆𝑆𝑠𝑠𝑠𝑠

⎝

⎛𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 + sin𝑐𝑐 
�𝑟𝑟1 𝑙𝑙1� � 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐

�1− �𝑟𝑟 𝑙𝑙1� � ² 𝑠𝑠𝑖𝑖𝑛𝑛2 𝑐𝑐
  

⎠

⎞ 

(3.29) 
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Figure 3-5 Crankshaft Piston Model 

where 𝑃𝑃𝑠𝑠𝑝𝑝,𝑆𝑆𝑠𝑠𝑠𝑠  and 𝑑𝑑 stand for in-cylinder pressure, cross sectional area of the cylinder and bore 

diameter of the cylinder respectively.  

3.4.2 Inertia Torque 

The inertia of the reciprocating mass produces torque applied to the crankshaft, which can be 

calculated by: 

𝑓𝑓𝑚𝑚𝑝𝑝𝑓𝑓 = 𝑀𝑀𝑟𝑟𝑚𝑚�̈�𝑥𝑝𝑝

⎝

⎛sin𝑐𝑐 + cos𝑐𝑐 
�𝑟𝑟1 𝑙𝑙1� � 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐

�1− �𝑟𝑟 𝑙𝑙1� � ² 𝑠𝑠𝑖𝑖𝑛𝑛2 𝑐𝑐
  

⎠

⎞ 

(3.30) 

where 𝑚𝑚𝑟𝑟𝑚𝑚 ,𝑚𝑚𝑝𝑝𝑖𝑖 ,𝑖𝑖𝑛𝑛𝑑𝑑 𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚  are the reciprocating mass of first and second stages, piston mass 

and reciprocating mass of the connecting rod and: 

𝑚𝑚𝑟𝑟𝑚𝑚 = 𝑚𝑚𝑝𝑝𝑖𝑖 + 0.5𝑚𝑚𝑠𝑠𝑟𝑟𝑚𝑚 (3.31) 
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by taking the TDC of the low-pressure stage as the reference point, the displacement of piston 

is 

𝑓𝑓_𝑚𝑚𝑡𝑡𝑓𝑓 = 𝑚𝑚_𝑟𝑟𝑚𝑚 𝑥𝑥 ̈_𝑝𝑝 (𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐 + 𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 ((𝑟𝑟_1 ⁄ 𝑙𝑙_1 )  𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐)/√(1− (𝑟𝑟

⁄ 𝑙𝑙_1 )^2 𝑠𝑠𝑖𝑖𝑛𝑛²𝑐𝑐)) 

(3.32) 

𝑥𝑥𝑝𝑝 = 𝑥𝑥𝑜𝑜𝑠𝑠𝑜𝑜 + 𝑟𝑟1 (1− 𝑟𝑟1𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐) +  𝑙𝑙1 �1 −�1 − �𝑟𝑟1 𝑙𝑙1� �
2
𝑠𝑠𝑖𝑖𝑛𝑛²𝑐𝑐� 

(3.33) 

where the term 𝑥𝑥𝑜𝑜𝑠𝑠𝑜𝑜 means the clearance distance between the cylinder head at TDC and the 

piston. The piston’s velocity and acceleration can be acquired by differentiating it with respect 

to time: 

�̇�𝑥 = 𝜔𝜔𝑟𝑟1 𝑠𝑠𝑖𝑖𝑛𝑛𝑐𝑐
�1+𝑟𝑟1 𝑖𝑖1� �𝑠𝑠𝑜𝑜𝑠𝑠𝑐𝑐

�1− �𝑟𝑟1 𝑖𝑖1� �
2
𝑠𝑠𝑖𝑖𝑖𝑖²𝑐𝑐               

  
(3.34) 

Acceleration can be simplified as  

�̈�𝑥𝑝𝑝 = 𝜔𝜔2𝑟𝑟1 �𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 + 𝑟𝑟1
𝑙𝑙1� 𝑐𝑐𝑐𝑐𝑠𝑠2𝑐𝑐� (3.35) 

due to the square term �𝑟𝑟1 𝑙𝑙1� �  𝑠𝑠𝑖𝑖𝑛𝑛2𝑐𝑐 < 1 

 Pressure Oscillations – the Root of Vibroacoustic   

3.5.1 In-cylinder pressures 

The operation of the RC is briefly explained in Section 3.2. The reciprocating compressor 

increases air pressure in an oscillating way due to periodic reciprocating motions of the piston. 

These reciprocating motions are primary causes of vibrations in terms that they create dynamic 

loads to the structures enclosing the pressure chamber and crankshaft system. Besides, the 

volumetric change inside the cylinder is the direct source of sound waves. Therefore, modelling 

and understanding pressure behaviour is vital to understand the dynamics of secondary 

parameters such as motor current, IAS, vibration and acoustics of valve operation. Especially, 

these external measurements are extensively investigated in engines for in-cylinder pressure 

reconstructions [99]. 

Following the application of the fundamental gas laws and ignoring the slow effect of heat 

transfer to surroundings, the cylinder pressures 𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 in either the Low Pressure (LP) stage 

or High-Pressure stage (HP) can be obtained according to the first law of thermodynamics 

[100]: 



Page 81 of 303 
 

�̇�𝑃𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓 =
1

𝑉𝑉𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓
 (𝐶𝐶𝑐𝑐𝑖𝑖𝑓𝑓,𝑓𝑓

2 �̇�𝑚𝑐𝑐𝑖𝑖𝑓𝑓,𝑓𝑓−𝐶𝐶𝑐𝑐𝑜𝑜𝑓𝑓,𝑓𝑓
2 �̇�𝑚𝑐𝑐𝑜𝑜𝑓𝑓,𝑓𝑓 − 𝛾𝛾𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓�̇�𝑉𝑠𝑠𝑐𝑐𝑓𝑓 ,𝑓𝑓) (3.36) 

�̇�𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 denotes in-cylinder pressure derivatives for L and H stages respectively; 𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 is the 

equation of volume cylinder pressure; and the cylinder volume 𝑉𝑉𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 is determined by the 

piston motion and clearance volume 𝑉𝑉𝑠𝑠𝑐𝑐𝑜𝑜𝑓𝑓,𝑓𝑓: 

𝑉𝑉𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 = 𝑆𝑆𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓𝑋𝑋𝑃𝑃𝑖𝑖𝑓𝑓,𝑓𝑓 + 𝑉𝑉𝑠𝑠𝑐𝑐𝑜𝑜𝑓𝑓,𝑓𝑓 (3.37) 

The rate of change in the cylinder volume 𝑉𝑉𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 can be determined using the velocity of the 

piston and geometric parameters of cylinder: 

�̇�𝑉𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 = �̇�𝑋𝑃𝑃𝑖𝑖𝑓𝑓,𝑓𝑓�̇�𝑆𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 (3.38) 

The mass flow rate through the inlet and outlet valves are �̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓,𝑓𝑓 and �̇�𝑚𝑣𝑣𝑜𝑜𝑓𝑓,𝑓𝑓 which consists of  

�̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓 , �̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓 , �̇�𝑚𝑣𝑣𝑜𝑜𝑓𝑓 𝑖𝑖𝑛𝑛𝑑𝑑 �̇�𝑚𝑣𝑣𝑜𝑜𝑓𝑓 representing the mass flow rates for the first stage inlet and 

discharge/outlet valves and second stage respectively as shown in Figure 3-6 below. 

 

Figure 3-6 Mass Flow Rate of First and Second Stage Valves [93] 

The square speed of sound in the inlet plenum is 𝐶𝐶𝑐𝑐 𝑖𝑖𝑓𝑓,𝑓𝑓 
2 = 𝛾𝛾𝑅𝑅𝑇𝑇𝑖𝑖𝑓𝑓,𝑓𝑓 and the square speed of 

sound in the cylinder is 𝐶𝐶𝑐𝑐 𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 
2 = 𝛾𝛾𝑅𝑅𝑇𝑇𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓. The gas constant for air is R and 𝐷𝐷𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 stands 

for the cylinder diameter. Assuming if the gas goes through an isentropic process there will be 

no heat transfer in the vicinity, which is acceptable as fast dynamic behaviours such as in-

cylinder pressure are examined in this study. This will result in a varied temperature at different 

stages of the compression process and can be determined as: 
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𝑇𝑇𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 = 𝑇𝑇𝑖𝑖𝑓𝑓,𝑓𝑓 �
𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓

𝑃𝑃𝑖𝑖𝑓𝑓,𝑓𝑓
� � ⁽ᵞ⁻¹⁾ ᷁ᵞ (3.39) 

where 𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 is the cylinder pressure, 𝑇𝑇𝑖𝑖𝑓𝑓,𝑓𝑓 is the average absolute temperature of the inlet air 

at atmospheric temperature calculated according to ℃ + 273𝐾𝐾. 

According to Equation (3.40), to calculate in-cylinder pressures, piston motions and flow rates 

through valves should be calculated. Equations giving piston motions are derived in Section 

3.4.1. Next is to develop the formulas to calculate mass flows.  

3.5.2 Mass Flows through Valves 

The mass flow model through the suction and discharge valve can be obtained by mass flow 

rates �̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓𝑓𝑓 , �̇�𝑚𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓 at the cylinder pressure �̇�𝑃𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓 and the mass flow rate is illustrated into the 

inlet/suction and outlet/discharge flow rates as described in Figure 3-7. As the dynamic of the 

valve plates and pin-cylinder pressures changes it is these flow rates that induce airborne 

sounds in suction and discharge plenums according to the model developed in [101] [102]. 

However, the constant passages are not considered as their acoustic impedances remain the 

same for the fixed geometric dimensions for the compressor underline.  

 

Figure 3-7 Mass Flow Model of Suction and Discharge Valves [103] 

The suction and discharge valve and its dynamic behavioural equation and mass flow rate of 

�̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓𝑓𝑓 (kg/s) is modelled below as an incompressible flow through and an orifice port (valve): 

�̇�𝑚𝑣𝑣𝑖𝑖𝑓𝑓,𝑓𝑓 = 𝛽𝛽𝑖𝑖𝑓𝑓,𝑓𝑓 𝐶𝐶𝑜𝑜𝑖𝑖𝑓𝑓,𝑓𝑓  𝐴𝐴𝑓𝑓𝑖𝑖𝑓𝑓,𝑓𝑓��2𝜌𝜌𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓 |𝑝𝑝𝑖𝑖𝑓𝑓,𝑓𝑓 − 𝑝𝑝𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓|� 
(3.40) 

Where the flow direction parameter is 𝛽𝛽𝑖𝑖𝑓𝑓𝑓𝑓 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑛𝑛�𝑝𝑝𝑖𝑖𝑓𝑓,𝑓𝑓 − 𝑝𝑝𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓� 
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𝑝𝑝𝑖𝑖𝑓𝑓𝑓𝑓  represent the pressure in the suction plenum, 𝐶𝐶𝑜𝑜𝑖𝑖𝑓𝑓𝑓𝑓  is the variable inlet/suction coefficient 

which is to reduce the flow area which is a product of the divided flow and changes in the valve 

lift, 𝐴𝐴𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓 is the maximum flow area of the suction valve according to G.R Price et al [104] 

and: 

𝜌𝜌𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 = 𝜌𝜌𝑟𝑟𝑎𝑎𝑓𝑓�𝑝𝑝𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓 𝑝𝑝𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓⁄ �¹/ᵞ (3.41) 

is derived from the isentropic flow which is the density of the air inside the cylinder. 

The same approach is applied to get the mass flow rate of the discharge valve which is 

represented as: 

�̇�𝑚𝑣𝑣𝑜𝑜𝑓𝑓,𝑓𝑓 = 𝛽𝛽𝑣𝑣𝑜𝑜𝑓𝑓,𝑓𝑓 𝐶𝐶𝑜𝑜𝑣𝑣𝑜𝑜𝑓𝑓,𝑓𝑓  𝐴𝐴𝑓𝑓𝑣𝑣𝑜𝑜𝑓𝑓,𝑓𝑓��2𝜌𝜌𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓|𝑝𝑝𝑖𝑖𝑓𝑓,𝑓𝑓 − 𝑝𝑝𝑠𝑠𝑐𝑐𝑓𝑓,𝑓𝑓|� 
(3.42) 

As mass flows are coupled with cylinder pressures in a nonlinear way, it is hard to find a closed-

form analytic solution for the pressure differential equations. Therefore, the requirements of 

the numerical method are needed to analyse pressure behaviours.  

 Valve Dynamics - High-Frequency Vibrations 

The performance of a compressor is highly dependent on the valve operation. Valves can be 

manually or automatically operated through the difference in pressure, flow or temperature and 

are vital; they can be physically designed and positioned inside the cylinder to allow a flow of 

gas either inside or outside of the cylinder with at the least one suction valve and one discharge 

valve in each compression chamber [105] [106]. Compressor valves contain some basic parts 

such as valve seat, sealing elements, lift constraint (guard) and spring(s). The vital part of a 

compressor valve is the sealing element which is normally spring-loaded and can move 

between two stops. The valve moves linearly [107] [38] and is closed when it rests against the 

valve seat and fully opened when resting against the valve guard. The sealing element can then 

travel between these distances which are called the valve lift. The sealing element does not 

move mechanically, it is moved by the action of the air force and a spring force. Whilst the 

valve is opened, the flowing gas will apply a dynamic gas pulling force on the valve plate 

which is of the order of magnitude of the pressure drop of the gas flow across the valve and is 

multiplied by the valve plate area. When the valve is closed it has to be able to hold the full 

static pressure discrepancy between suction and discharge pressures which can be very high 

[106]. Figure 3-8, shows the model of a non-linear vibration impact system [84] [93]. 
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Figure 3-8 Valve Model of a Non- Linear Vibration Impact System [93] 

The action of opening and closing of the inlet/suction valve derived the equation of motion for 

the inlet/suction valve when 0 ≤ 𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠 ≥ 𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠 𝑚𝑚𝑎𝑎𝑚𝑚 is: 

𝑀𝑀𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓�̈�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓+𝐶𝐶𝑜𝑜𝑠𝑠𝑓𝑓,𝑓𝑓�̇�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓 + 𝐾𝐾𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓=Ʃ𝑓𝑓𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓,𝑓𝑓 (3.43) 

When the valve is completely open or closed and the valve plate is in contact with the valve 

seats the impacts 0 ≤ 𝑋𝑋𝑜𝑜𝑣𝑣𝑓𝑓,𝑓𝑓 𝑐𝑐𝑟𝑟 𝑋𝑋𝑜𝑜𝑣𝑣𝑓𝑓,𝑓𝑓 ≥ 𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠 𝑚𝑚𝑎𝑎𝑚𝑚 is: 

𝑀𝑀𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓�̈�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 + 𝐶𝐶𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓�̇�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 + 𝐾𝐾𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 + 𝐶𝐶𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓�̇�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓+𝐾𝐾𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓

= Ʃ𝑓𝑓𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓  

(3.44) 

The valve plate displacement, velocity and acceleration are represented by: 

𝑋𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 �̇�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓  𝑖𝑖𝑛𝑛𝑑𝑑 �̈�𝑋𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓. The damping coefficient is expressed by 𝐶𝐶𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓 , The equivalent 

mass of the inlet valve plate is 𝑀𝑀𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓,; The contact stiffness between the seat valve for both 

suction and discharge process is denoted by 𝐾𝐾𝑠𝑠𝑠𝑠𝑓𝑓𝑓𝑓; The non-linear spring stiffness when the 

valve is in motion between the valve seats is 𝐾𝐾𝑖𝑖𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 whilst the contact damping coefficient is 

represented by 𝐶𝐶𝑠𝑠𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓 . The resultant force acting on the valve plate is represented by Ʃ𝑓𝑓𝑟𝑟𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓  

which is a combination of three forces: the pre-set spring force, the valve weight and the force 

due to the pressure difference between each side of the valve which is represented by 𝑓𝑓𝑠𝑠𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓 , 

𝑊𝑊𝑟𝑟𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓  and 𝐶𝐶𝑓𝑓𝑠𝑠  𝑆𝑆𝑟𝑟𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓�𝑃𝑃𝑖𝑖𝑓𝑓𝑓𝑓 − 𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓� respectively, where 𝑃𝑃𝑖𝑖𝑓𝑓𝑓𝑓 is the pressure in the inlet 

plenum, 𝑃𝑃𝑠𝑠𝑐𝑐𝑓𝑓𝑓𝑓 is the cylinder pressure, 𝐶𝐶𝑓𝑓𝑠𝑠 is a coefficient changing with the valve’s lift 

magnitudes and 𝑆𝑆𝑟𝑟𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓 is the slot area for a single channel due to pressure difference between 

each side of the valve. 
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Following in a similar way, the equation of motion of discharge valves can be obtained in the 

same forms as Equations (3.43) and (3.44). 

The required equivalent inlet valve plate mass is a third of the valve spring-mass added with 

the valve plate mass and represented as: 

𝑀𝑀𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓=1 3�
𝑀𝑀𝑠𝑠𝑝𝑝𝑟𝑟𝑖𝑖𝑖𝑖𝑎𝑎 + 𝑀𝑀𝑝𝑝𝑖𝑖𝑎𝑎𝑝𝑝𝑎𝑎  (3.45) 

where the calculated damping coefficient is: 

𝐶𝐶𝑜𝑜𝑠𝑠𝑓𝑓𝑓𝑓 = 2𝜉𝜉�𝐾𝐾𝑖𝑖𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓𝑀𝑀𝑝𝑝𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 (3.46) 

In which the damping ratio ξ due to fluid viscous effect and spring stiffness 𝐾𝐾𝑖𝑖𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓. 

The resultant force acting on the valve plate represented by Ʃ𝑓𝑓𝑟𝑟𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 .is  

Ʃ𝑓𝑓𝑟𝑟𝑣𝑣𝑠𝑠𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑝𝑝𝑠𝑠𝑣𝑣𝑜𝑜𝑓𝑓𝑓𝑓 + 𝑊𝑊𝑟𝑟𝑠𝑠𝑣𝑣𝑓𝑓𝑓𝑓 (3.47) 

 Implementation of Numerical Analysis 

3.7.1 Numerical Calculation Flowchart 

To understand the characteristics of the interesting parameters, a couple of differential 

equations need to be solved numerically. A popular explicit Runge-Kutta solver is available in 

MATLAB, which allows differential equations to be solved with a great degree of accuracy by 

its adaptive time steps, being suitable for solving equations with different physical parameters 

in this study.  

Based on the interconnections between various equations, the solver is programmed according 

to the flowchart shown in Figure 3-9. In this way, two sets of differential equations 

corresponding to the AC motor subsystem and RC subsystem are solved iteratively with respect 

to time increment. 

Through several times of trial and error in balancing the accuracy and computational efficiency, 

it has been found that the time step and internal errors settings used can result in solutions for 

motor currents and cylinder pressures being agreeable with experiments, as was validated in 

reference [84] [93]. 
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Figure 3-9 Basic Flowchart of Numerical Analysis 

Moreover, the vibroacoustic due to valve motions and mass flow rates are obtained by a post 

convolution, which will be detailed in the foregoing analysis. In this way, it avoids the high 

demands for computational complexity in solving partial differential equations relating to 

sound waves in the valve plenums and the structural dynamics using finite element analysis.  

Thereafter, the solution process was carried out for Baseline (BL) conditions under three 

successive discharge pressures: 60 psi, 90 psi and 120 psi (or 0.41 MPa, 0.62 MPa, and 

0.83MPa) respectively. These pressures correspond the lowest, medium and the highest 

operating pressures that are specified with the RC. The same solution procedure is then used 

for different faults cases including Inlet Valve Leakage (IV-Leak), Discharge Valve Leakages 

(DV-Leak) in HP stage and Intercooler Leakages (IC-Leak), which are set in airflow passages, 

also transmission Belt Looseness (BL-Loose) and Motor Broken Bars (Motor-BRB) which are 

on system level.  

To gain an in-depth understanding of behaviours for the interested variables including in-

cylinder pressures, motor current, crankshaft IAS, vibrations and acoustics, their results are 

Electric Torque 𝑇𝑇𝑎𝑎 

Valve motions at 𝑡𝑡 = 𝑡𝑡 + 𝑑𝑑𝑡𝑡 

Mass flow rates through valves 

In-cylinder pressures & load 𝑇𝑇𝑝𝑝𝑚𝑚𝑟𝑟 𝑓𝑓,𝑓𝑓  

Rotational motions of motor and RC crankshaft 

Initial values for solving coupled differential equations in the interval of 𝑇𝑇 

Vibration from valve motion 
convolved with valve system 

impulse response function ℎ𝑣𝑣(𝑡𝑡) 

𝑡𝑡 ≥ 𝑇𝑇? 

Motor stator & rotor currents 

  

Acoustics from mass flow rates 
convolved with structure 

impulse response function ℎ𝑎𝑎(𝑡𝑡) 
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presented in the angular domain that corresponds to the rotation of the crankshaft. This allows 

each variable to be easily correlated with key dynamic events: intake, compression, discharge 

and expansion sub-processes involved in an RC. Furthermore, these results are also compared 

with the baseline case under different discharge pressures so that it is possible to identify the 

key differences of various faults from baseline and between different ones, which overlays the 

basis for analysing experimental data which are usually contaminated with strong noise and 

unexpected interferences.  

3.7.2 Fault Simulation Models 

Leakages are a common fault in fluid machines. In this study, air leakages are simulated in 

three main parts: HP discharge valve, HP inlet valve and of HP stage, intercooler between LP 

and HP which are exposed to high dynamic load and thermal impact. An additional mass flow 

rate is induced to each part by increasing the equivalent flow area by 0.2%, 2% and 0.2% 

respectively, which can result in similar amplitude changes in-cylinder pressures. These 

leaking flows are calculated by using Equation (3.40), (3.42) and then included in Equation 

(3.36) for calculating in-pressures. These three fault cases are denoted by DV2-Leak, IV2-Leak 

and IC-Leak for the convenience of the preceding analysis. 

Transmission belt is inevitably subject to wear and fatigue, consequently leading to a loosened 

belt transmission or more slippages between belt and pulleys. To simulate this effect, a higher 

slip coefficient of 0.02 is used, which is doubled compared with the baseline value of 0.01 that 

is induced by considering the effect of elasticity in a longitudinal direction of the belt. For ease 

of foregoing discussion, this fault is shortened as BL-loose.  

AC motors are rugged machines but can also be faulty mechanically and electrically due to 

high dynamic load operations of RC machines. Broken Rotor Bars (BRB) are a common fault 

and can be simulated by reducing the resistance values by 5% in one of the three rotor phases. 

 In-cylinder Pressure Characteristics with Compressor Faults 

3.8.1 In-cylinder Pressure under Different Discharge Pressures 

As a direct indicator in-cylinder pressure is one of the most important measures of RC 

performance. Meanwhile, it is also the root of vibro-acoustics. Therefore an in-depth 

understanding of the behaviours of in-cylinder pressure will lay fundamental comprehension 

of the changes in other indirect parameters such as motor current signal, IAS and vibroacoustic. 

Consequently it helps to develop effective methods to monitor the condition of RCs. 
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Figure 3-10 In-Cylinder Pressures under Different Discharge Pressures  

Figure 3-10 presents the in-cylinder pressures of both LP and HP stages against crankshaft 

angles for two operating cycles (2 × 360°=720°). Presenting the pressures this way can easily 

identify the dynamic events including the TDC’s and BDC’s of piston motions and Inlet Valve 

Opening (IVO), Inlet Valve Closing (IVC), Discharge Valve Opening (DVO) and Discharge 

Valve Closing (DVC). Besides, the key sub-process of RC working cycles can be seen easily, 

which are expansion, intake, compression and discharge, as illustrated in the plot for the LP 

stage. For HP stage, the cylinder has a 90° delay. Similarly, all dynamic events can be easily 

found in the graph. Based on these dynamic activities, vibroacoustic including IAS, can be 

easily understood which will be examined in foregoing sections.  

Moreover, the profiles of in-cylinders are agreeable with the theoretical prediction. Especially 

the pressure amplitudes during the discharge stage which significantly increases with the RC 

loads i.e. the static discharge pressure, whereas only a small variation is shown in other sub-

processes. These confirm not only the accuracy of numerical calculation but also gives 

quantitative measures for the pressure change in amplitudes and positions, which provide 

sufficient knowledge for setting up data acquisition systems and analysis tools.  
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3.8.2 Pressure Changes by Different Faults 

To see the change in pressure due to different faults, pressure differences Δ are calculated by 

subtracting the baseline pressure from corresponding pressures as presented in Figure 3-11. 

These two graphs show the changes when RC is under a lower discharge pressure and a higher 

discharge pressure respectively.  

 
Figure 3-11 Changes in in-Cylinder Pressures at the LP Stage due to Faults 

It can be seen that for the LP stage a significant change is exhibited in the discharge phase for 

different leakages including IV2-leak, DV2-leak and IC-leak. Although these leaks occur in 

HP stages, they transfer to the LP stage because of air leakages through the intercooler passage. 

It means that by observing pressure of either cylinder such leakages can be detected. Besides, 

IC-leak can be differentiated from other leaks by referring to its negative values. However, 

faults not occurring on the air passages such as BL-loose and Motor-BRB cannot be resolved 

sufficiently, although tiny oscillations can be seen they are hard to be measured in practice.  

Pressure changes at HP stage are shown in Figure 3-12. Note that the crank angle is aligned to 

that of the LP, which is different to the present HP pressure by Figure 3-10, to find a consistent 

change that can be easily achievable in a real situation and avoids any confusions in forgoing 

discussion. It can be seen in the figure, pressure changes spread over entire angular ranges even 

though the discharge phase shows higher oscillations. This provides more information for 

detecting and diagnosing the three leak cases directly occurring in air passages. Similar to LP 
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pressure changes in Figure 3-11, it is still hard to see the change induced by BL-loose and 

Motor-BRB by HP pressures, further confirming it is not easy to detect such faults by pressure 

analysis alone.  

 
Figure 3-12 Changes in in-Cylinder Pressures at HP Stage due to Faults 

 IAS – Torsional Vibration Characteristics with Compressor Faults 

Because of the easiness of measurements and robust signatures, IAS or torsional vibration of 

RC’s crankshaft is an indirect parameter for indicating the operating condition of RCs. As 

shown in the aforementioned modelling sections IAS or 𝜔𝜔𝑠𝑠 in Equation (3.26) it results from a 

combined effect of motor torque, air and inertial torques. Changes in pressures due to faults 

will greatly affect IAS signatures.  

3.9.1 IAS under Different Discharge Pressures 

The top plot of Figure 3-13 presents IAS signatures varying with the load or discharge 

pressures. Clear differences can be seen in both the peaks and troughs of IAS profiles. 
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Figure 3-13 Crankshaft IAS under Different Discharge Pressures 

In particular, the peak-peak amplitudes increases with discharge pressures, effectively 

indicating the pressure changes of in-cylinders with interactions between motor torques and 

load torques shown by the model and bottom graphs in Figure 3-13. Interestingly, the changes 

in load torques happen in a limited angular range from 180° to 270° where the HP cylinder is 

in the compression cycle, whereas the electric torque shows a change in a wider range and 

higher amplitudes. Because of the effect of these wider and higher amplitude changes, the IAS 

display the corresponding changes. In other words, the coupling effect between RC torque and 

electrical torque by the dynamics of a rotational system governed by Equation (3.26) magnifies 
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the changes in mechanical torques and consequently makes it possible to detect and diagnose 

faults in RC systems. However, IAS is probably less informative for component-level diagnosis 

i.e. unable to pinpoint which stages may have faults.  

3.9.2 IAS Changes due to Faults 

 

Figure 3-14 Changes in IAS for lower and higher-pressure operations 

To see the changes caused by various faults, the difference between faulted IAS and the 

baseline is calculated and presented in Figure 3-14. Similar to pressure changes, IAS allows 

leak related faults to be diagnosed with great confidence by the high changing amplitudes and 

distinctive patterns. Moreover, it also allows other two faults; BL-loose and Motor-BRB to be 

diagnosed effectively as the change of patterns along with amplitude variations are 

significantly different between these two and from the other three faults. Particularly, loosened 
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belt transmissions are less responding to dynamic fluctuations of crankshaft motions and result 

in a biased but relatively level change. For the motor faults, additionally slow oscillatory 

components at twice slip frequency arise in the motor current, the change mainly follows the 

slow oscillation due to BRB effects. This shows that IAS provides good detail of monitoring 

information and for system-level diagnostics. 

 Motor Current Characteristics with Compressor Faults 

3.10.1 Current Signals under Different Discharge Pressures 

To balance the torque oscillations as shown in Figure 3-13, AC motor current will also adjust 

adaptively to overcome RC load for steady operations. This adjustment results in an Amplitude 

Modulation (AM) to the supply components at 50 Hz. As shown by the top graph of Figure 

3-15, there is a clear change in current signal amplitudes, being time/angle-varying in 

accordance with the torque graphs. Besides, the spectrum of motor current signals shown by 

the bottom graph of Figure 3-15 exhibits clear sidebands around supply frequency. Especially 

the amplitudes of sidebands shows an increase with the discharge pressures. This demonstrates 

that the sidebands can be an effective indicator to show the changes in the RC system.  

  
Figure 3-15 Motor Currents under Different Discharge Pressures  
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3.10.2 Current Signal Change due to Faults 

By taking away the baseline effect from the motor current signals due to faults, Figure 3-16 

highlights the changes in current signal due to various faults simulated. It can be seen that 

significant changes are exhibited in the motor current. It allows all different faults to be detected 

and diagnosed for both the lower and higher-pressure operations. This shows that motor current 

signals can provide comprehensive information for condition monitoring.  

 

Figure 3-16 Changes in Motor Currents due to Faults under Different Discharge 
Pressures  
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by amplitude changes alone. Therefore, a dedicated signal processing is needed to combine 

both the phase and amplitude changes for a joint diagnostic feature. In general, motor current 

signals can also provide sufficient information for system-level diagnostics. 

 Acoustic Characteristics with Compressor Faults 

In-cylinder pressure can be taken as direct acoustics as they have the feature of pressure 

oscillations. As seen in Figure 3-10 of Section 3.8, in-cylinder waves generally exhibit slower 

fluctuation and thus are regarded as low-frequency acoustic waves. Because these acoustic 

waves are enclosed inside cylinders an intrusive measurement is needed to measure it and is 

probably costly and inconvenient to be used for condition monitoring. Nevertheless, in-

cylinder pressure is unable to diagnose faults from other sub-systems such as electric motor 

and loose belt as discussed in Section 3.8.  

However, the rapid suction and discharge effects driven by in-cylinder pressures will lead to a 

time-varying mass flows, which consequently radiates more sound waves into the inlet and 

discharge passages. These passages often have typical distinctive acoustic outlines. Their 

distinctive resonance modes can be excited by the fast changes in flow rates and produce sound 

waves. Especially, the sound waves leaking from the suction side can be perceived remotely 

by a microphone which is potentially useful for indicating the changes in RC conditions. 

Therefore, this section focuses on investigating these mass flows and characterising the general 

behaviours of the sounds including main frequency bands and potentials for differentiating the 

faults of interests.  

3.11.1 Acoustic Responses under Different Discharge Pressures 

Figure 3-17 presents mass flow rates through four valves, which are denoted as IV1, DV1, IV2 

and DV2 respectively, when RC is operating at three discharge pressures. Typically, these flow 

rates exhibit localised pulses with short durations. LP stage ones show much fewer fluctuations 

than that of HPs. This agrees to the dynamics of in-cylinder pressures as the pressure changes 

of LP is lower and less oscillatory, which was explored according to Figure 3-10 in Section 

3.8. Besides, with the changes in discharge pressures, these flow rate pulses can be observed 

to have certain variations in amplitudes and time shifts. This indicates that they can be used for 

detection and diagnostics. However, as these small changes are localised within a narrow 

time/angular range, they exhibit as highly nonstationary and it is probably difficult to perceive 

and process such signals for achieving accurate detections. Besides, it will be more expensive 
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to measure flows with such small changes as it needs a high specification measurement system 

in terms of sensitivity, dynamic range and temperature resistance. Besides, it needs time-

frequency methods such as wavelet decomposition and Short-Time Fourier transform (STFT) 

to resolve the changes of every nonstationary flow rate signals shown in Figure 3-17. These 

methods not only require high computational power but also always suffer from numerical 

error, therefore inefficient to resolve small changes.  

 

 
Figure 3-17 Mass Flow Rates through Four Valves under Different Discharge Pressures  
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modelled as an acoustic duct system with several acoustic modes corresponding to the mass 

enclosed in the chambers of valve plenum, pipeline and inlet silencer. These acoustic modes 

can be easily determined based on the geometrical dimensions of each chamber along with 

experimental calibrations [102]. The top graph of Figure 3-18 shows such modes by IRFs 

estimated based on the dimension of flow passages and spectral profile of measured acoustic 

signals. With IRFs available, a convolution was performed in the time domain to obtain 

acoustic responses, which are shown by the middle and bottom plots of Figure 3-18 for the 

waveforms and spectrum respectively. This time approach, rather than the frequency approach 

[108] allows waveforms to be obtained for a more direct and accurate comparison with less 

computing effort.  
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Figure 3-18 Acoustic Waves from Different Flow Rates under Different Discharge 

Pressures  
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the frequency range from 120Hz to 600Hz in which the 3rd acoustic mode at 580Hz is related 

to the acoustic chamber of valve plenum. 

In general, because of the magnification and smoothing of acoustic modes inflow passages, 

acoustic signals exhibit to be more stationary and carry better resolvable information regarding 

pressure changes. Additionally, acoustic signals can mainly be observed in a low-frequency 

band below 600Hz, Therefore, acoustic signals provide information for both components and 

system-level diagnostics. 

3.11.2 Acoustic Response Changes with Faults 

To verify the performance of using acoustics for fault diagnosis further, typical changes in 

acoustic signals for different fault cases were obtained by subtracting the baseline signal. 

Figure 3-19 presents the change for the acoustics of inlet valve at LP state, where acoustic 

waves can run to open-air through RC silencer, compared with other valves where their 

acoustic waves are enclosed by mechanical structures which can have higher attenuation to 

wave transmissions.  

It can be seen in the figure the acoustic changes from the baseline and between different cases 

for both the lower and higher pressures. Not only these changes significantly enhance the faults 

occurring inflow passages, IV2-Leak, DV2-Leak and IC-Leak, but also faults in other 

components such as Motor-BRB and BL-Loose become more detectable, as highlighted by the 

plots inside the blue box, even though they cannot be detected using in-cylinder pressures. This 

shows acoustic monitoring can also have the capability for whole system monitoring, being as 

powerful as using IAS and motor current signals. 
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Figure 3-19 Changes in Acoustics Waves due to Various Faults under Different 

Discharge Pressures  
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3.12.1 Valve Vibration with Discharge Pressures 

Vibrations due to valve are mainly created by valve dynamic movement. Figure 3-20 shows 

the valve plate displacement for under different operating pressure, which is obtained according 

to Equation (3.43) and (3.44) for inlet and discharge valves respectively. It is evident from the 

figure that the suction valves motion across a wider angular range with high amplitudes because 

of their lower stiffness of valve spring. In this way it allows the cylinder to be fully charged. 

Moreover, the valve plate often reaches its maximum (1.5 mm), creating impacts on valve 

plates. Besides, as the HP stage has a higher-pressure fluctuation, its inlet valve undergoes 

more oscillations and creates more impacts on its seat. Moreover, the impact looks stronger 

and shifts later when RC operates under higher pressures, as illustrated by the HP IV2 

displacement graph on the third row of the figure.  

 

Figure 3-20 Valve Plate Displacements under Different Discharge Pressures  
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even though its amplitude is smaller. This probably shows that the valve close landing is soft 

due to the gradual reduction of in-cylinder pressure during the expansion process. Similar to 

valve displacement, HP valves exhibit higher oscillatory forces but its peak value is only 

slightly higher than LP valves, besides, each valve has different angular positions for opening 

and closing events. For example, the HP DV2 exhibit later opening and earlier closing as 

discharge becomes higher, which is steadier than amplitude changes and can be easily 

characterised for valve diagnosis. This insightful information is very helpful to explain the 

vibration measurements, but impact forces are limited in a short angular range, like 

displacement, which is difficult to be measured for on-line monitoring. 

 
Figure 3-21 Valve Impact Forces Applied to Surrounding under Different Discharge 

Pressures  
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Especially, HP valve shows a higher vibration for the low discharge pressure of 60psi than 

other two high-pressure cases. Also, all vibration signals become more complicated in terms 

of oscillatory patterns, showing that it needs more advanced signal analysis tools such as time-

frequency methods to directly process these signals to resolve the steady behaviour of valve 

opening and closing events, which is more promising to indicate changes in in-cylinder 

pressures.  

 

Figure 3-22 Vibration Responses of Structures from Valve Impact Force under 
Different Discharge Pressures  
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rich information about valve motions to indicate in-cylinder pressures and valve motion 

behaviours for system and components level diagnostics. 

It is worth noting that as these differences are found in the angular domain, IAS and its torsional 

incremental phases need to be accurately obtained to achieve this analysis which has to use a 

high-resolution encoder for high accuracy measurement IAS. It means that valve vibrations 

should be measured along with IAS measurement to have an accurate diagnostics.  

 

Figure 3-23 Changes in Vibration Responses due to Faults under Different Discharge 
Pressures  
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3.13.1 Modelling and Numerical Simulation 

The direct numerical comparison between the signatures with baseline removed provides an 

easy and feasible approach to quantitatively evaluate different dynamic responses. As a result, 

for the first time, accurate and reliable head to head comparisons are obtained numerically for 

these four popular dynamic responses, ordinary these are hard to be achieved by experimental 

studies as there are many uncertain errors in data acquisition and data processing 

Modelling Vibroacoustic responses as multi-modal systems allows quantitative analysis of 

structural vibration and airborne acoustics from valve motions, gaining a detailed 

understanding of vibroacoustic and provide sufficient knowledge for data acquisition and 

processing. In this way this numerical study is efficiently completed, demonstrating the 

capability to perform the large volume of analysis tasks over different fault cases under a wide 

range of discharge pressures. It would take too long by other modelling schemes such as Finite 

Element Analysis (FEA) and boundary element analysis. 

3.13.2 Numerical Results 

By comparing numerical results under different cases, it has been found that:  

a) In-cylinder pressure show good details of RC operations and can be used for diagnosing 

faults occurring in flow passages such as various air leakages happening in valves and 

intercoolers. However, it cannot indicate faults from motor drives and mechanical transmission 

systems for a system-level diagnosis. 

b) IAS show significant changes between different fault cases, providing sufficient detail to 

diagnose fault location largely and thus can be used for system-level diagnostics but not the 

component-level diagnostics.  

c) Motor current signal also shows significant changes between different fault cases 

providing sufficient detail to diagnose fault location largely for system-level diagnostics but 

not for the component-level diagnostics.  

d) Acoustics from both flow passages and structural vibration provides more resolvable 

information regarding different faults. It is understood that acoustic modes are the critical effect 

that turns the impulsive valve flow events into more stationary responses so that the perceived 

signals have higher SNR compared with direct measurements of such events, besides flow-

induced acoustics mainly below 700Hz being lower than that of structural vibrations. 
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Moreover, acoustics have rich information for both the system-level and the component-level 

diagnostics however advanced signal processing methods must be accompanied. Nevertheless, 

its remote data acquisition proves much more convenient for field applications compared with 

the contacting measurements of using structural vibrations.  

e) Valve vibration response shows a wide band response and contains detailed and 

comprehensive information for implementing not only component diagnostics but also system-

level monitoring. However, similar to acoustic signals, this high-frequency signature is very 

complicated and needs high-resolution data acquisitions and advanced signal processing tools 

to resolve different valve events that have small differences. 
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 Evaluation of Waveform Analysis Based on Intrusive and Non-

Intrusive In-cylinder Pressure Measurements  

Chapter four addresses the implementation of the key updated techniques, reviewed in chapter 

2, upon a laboratory Reciprocating Compressor (RC) test bench, which is planned as Phase I 

of the research. 

The testing compressor is then equipped with four potential monitoring systems: 

• Surface Vibration (SV) Condition Monitoring (CM) using two accelerometers mounted 

on the surface of the two cylinders; 

• Instantaneous Angular Speed (IAS) CM using one shaft encoder mounted on the end of 

the crankshaft; 

• Pressure CM using two pressure transducers installed intrusively into the two 

cylinders; 

• Motor current CM using one current sensor mounted on the electrical power supply 

line. 

This chapter focusses on the vibration-based Condition Monitoring (CM) for four common 

fault cases: Discharge Valve Leakage (DVL), Suction Valve Leakage (SVL), Intercooler 

Leakage (IL) and Loose Transmission Belt (LB). It also studies the compressor crankshaft 

Instantaneous Angular Speed (IAS), Current waveform, Root Mean Square (RMS) Envelope, 

Current Spectrum analysis in comparison with the above four seeded parameters. Through this 

study, the behaviours of pressure, vibration and current differences of these faults can be 

identified as the basis for fault detection and diagnosis. To show the effects of each fault on the 

compressor, in-cylinder pressures are presented together with the vibration and electrical 

signals. Because compressors operate under different discharge pressures, the investigation is 

made of three typical operating pressures: (40 psi) 2.8 bar, (80 psi) 5.5 bar and (120psi) 8.3 

bar respectively under each fault to explore the changes and monitoring performance.  

The work in Phase I will then prepare the author to apply the techniques to Phase II in the field 

implementation plant at an industrial level. Phase II is explained further in chapter five and 

six. 
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4.1 Introduction 

As previously described in Section 2.1.1 any machine that has moving parts can produce 

vibration and has the potential for vibration monitoring and which would consequently produce 

noise. All rotating and reciprocating machines generate a wide range of vibration frequencies, 

the total spectrum of frequencies is called a machine signature [4, 6, 7]. Even two identical 

machines will have different signatures due to the small dimensional and assembly differences 

[4]. Each peak on the spectrum has its fundamental reason and if there are lots of machine 

faults the shape of the peak levels in the signatures will change drastically.  

These signal signatures can be processed and analysed through a range of techniques such as 

the Time and frequency domain. Any variation in those signatures would detect any incipient 

failures before any catastrophic failure occurs.  

The monitoring of reciprocating compressors and fault diagnosis is a vital procedure in the 

good running of these machines. Signal analysis is another important technique in the 

monitoring of machines. The generated signal contains useful information about the actual 

machine status and has the possibility of data extraction for fault diagnostic. Fast Fourier 

Transform (FFT) is another common mathematical technique used for signal processing in the 

conversion of time domain to frequency domain. Frequency domain has the capability of 

identifying and isolating certain specific frequency components. Time-Frequency analysis is a 

powerful technique used for the condition monitoring of machinery. The time-frequency 

analysis is more advantageous compared to the FFT due to its two-dimensional representations 

of frequency versus scale and time. 

4.2 Compressor Experimental Data Analysis 

4.2.1 Time Domain Signal and Analysis 

This part of the thesis is based on the measurement techniques for the detection of specific 

faults in reciprocating compressors. Several sensors have been mounted on the body of the 

compressors. The data processing techniques used to analyse these signals were of the 

conventional methods created in the application of time domain, frequency domain, time-

frequency domain and adaptive approaches. 

The time-domain signal represents the time history of the energy contained in the signal and is 

dominated by the most energetic or noisiest elements. Time-domain measurement is often 
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considered the simplest of the measurement techniques and requires relatively inexpensive and 

unsophisticated instrumentation. In the time domain, a defect condition is often detected and 

evaluated using statistic descriptors of the vibration signal, such as the peak value, Root Mean 

Square (RMS), Crest factor or Kurtosis [109]. 

To achieve a good performance of machine fault diagnosis, the type of features extraction and 

selection process is paramount as per Ahmed Mahmud [56]. He also stated that Vibration 

monitoring techniques can be used to detect faults in a compressor, vacuum pumps body and 

different components in their early stages. This information can then be used to prolong the life 

of the compressor and protect the system from any catastrophic failure. The vibration signal 

measurement on the cylinder head of a compressor is mainly a combination of the response to 

two main types of vibration excitation; a) flow-induced vibration when the airflow interacts 

with valves or other associated components which cause periodic oscillation in the flow and b) 

vibration due to the abrupt opening and closing of the valve plate when hitting the seat [56]. 

A. Mahmud also stated that the time domain analysis leads to popular statistical feature 

parameters such as RMS, peak factor, skewness and kurtosis whereas the frequency domain 

analysis, which is the (Standard Fourier Transform) analysis, produces features including 

amplitudes at frequencies.  

His study explores the features derived from the time domain, frequency domain and envelope 

analysis, which are the most commonly used in Condition Monitoring (CM) [56]. 

Similarly, Kim et al [110] state that the time domain analysis of the vibration signals waveform 

is a raw unprocessed signal obtained from the vibration transducer and it is a graph amplitude 

of the vibration signal as a function of time. The time-domain signal is complex because it is 

the sum of all the individual frequency components that are present and is also a visual 

representation of the instantaneous value of motion. When executing a fault diagnosis using 

the time domain vibration signal, statistical methods are invariably applied and the most 

common statistical parameters are the (RMS), Crest Factor (CF), peak value (PK), skewness 

(SK) and kurtosis [110]. 

Even according to G.Dalpiaz et al [111] in their work on the effectiveness and sensitivity of 

vibration processing techniques for local fault detection in gears, they state clearly that the time 

domain analysis is based on the time series by plotting its amplitude against time and their 

characteristic features of signals are very much similar as mentioned by A. Mamud [70] such 

as the mean, peak to peak interval, standard deviation, crest factor, RMS, skewness and kurtosis 
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are calculated and used to describe the statistics of signals. These features are generally called 

time-domain features of statistical parameters. 

Shreve stated that the main purpose of vibration signals is to determine the magnitude of the 

vibration generated and the source of the vibration. To achieve a good vibration analysis this 

will depend largely on the data acquisition system and processes used to measure the amplitude 

and frequency of the individual components, relative phases of the vibration signal and trend 

of the overall vibration level [112]. 

4.2.2 Frequency Domain Analysis of Vibration Signal 

Rao states that the spectrum of the frequency-domain signal is a plot of the amplitude of the 

vibration signal as a function of frequency. The vibration signal of a machine is generated both 

by the individual components and by their assembly and installation and that each component 

in a working machine will generate specific identifiable frequencies, thus a given frequency 

spectrum can be attributed directly to corresponding machine components [113]. 

Spectral analysis, also called the frequency domain, gives the spectral information and is 

sometimes used for data analysis. The frequency-domain transforms the signals from the time-

domain into the frequency-domain through the Fast Fourier transform (FFT). The spectrum 

analysis is the most widely used conventional analysis through the (FFT) [114]. 

The main principle of spectral analysis is to look at the spectrum in its entirety at certain 

frequency components of interest and then extract features from the signal. The power 

spectrum is one of the most commonly used tools in the spectrum analysis. There are other 

useful tools for spectrum analysis such as the graphical presentation of the spectrum, frequency 

filters, envelope analysis and sideband structure analysis [115]. 

Equally, Ali Kahirdey states that the time domain, the frequency domain analysis, is also one 

of the popular methods used in the ball bearing analysis. He states that in the frequency domain 

analysis, both low and high-frequency range of the signal is analysed using the (FFT) analysers. 

Due to the complexities in the vibration behaviour of the ball bearings and the interaction 

between the defects and the rolling elements, this causes shock pulses that excites the natural 

frequency of the whole system which results in an increase of the vibrational energy at these 

excited frequencies [116]. 
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Even Heng et al state that there is a limitation with the time domain compared to the frequency 

domain as each component of the gear has its characteristic frequency as does any faults 

associated with that component. These frequency signatures, or signal spectral content, are a 

good key to check the bearing condition. These signatures will also not be lost in the overall 

signal as they appear at distinct frequencies. The (FFT) of the vibration signal is the most 

common way for converting the time domain to the frequency domain. Trending of the 

frequency components is a common approach [117]. 

4.3 Establishment of the Laboratory Test Rig 

This chapter provides a full demonstration of the model to give readers a broad idea of the test 

rig facilities design, construction and how faults will be seeded into the compressor to gain the 

required experimental data for comparison intended for future projects. The measurement 

system, signal analysis and data management will be then analysed based upon this compressor. 

 

4.3.1 Test Rig Description 

The test rig consists of a Broomwade TS-9 compressor as shown in Figure 4-1. This specific 

compressor has been used previously by researchers from the Centre for Efficiency and 

Performance Engineering (CEPE) group and is the property of the School of Computing and 

Engineering at the University of Huddersfield. A risk assessment has been carried out before 

using the device and regular checks are being carried out by the relevant authority. The 

compressor comprises of three main components, the induction motor, two cylindrical 

compression unit of which is composed of a low and high pressure cylinder and an air receiver. 

The compressor delivers compressed air at 0.8 MPa (8bar)/120 psi to the horizontal air receiver 

tank with a maximum working pressure of about 1.35MPa (13.5bar)/200 psi. It’s a two-stage, 

single-acting reciprocating compressor and the cylinders are in the “V” form. The crankshaft 

is driven by a ‘V’ type transmission belt and the electric motor is a foot mounted, squirrel cage, 

air-cooled, type KX-C184. A 2.5kW motor rated speed of 1420 rpm, drive a multi-belt pulley 

system at ratio transmission of 3:2:1. The speed of the flywheel is rated at 440 rpm. 

The following Table 4-1 shows the Compressor Specification and Figure 4-1 shows the 

Broomwade TS-9 Compressor Layout 
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Table 4-1 Compressor Specification 

Broom Wade TS9 Compressor 

Max working pressure 200 psi=1.38 MPa      

Number of cylinders 2 cylinders at 90° opposed 

Piston stroke  76.2 mm 

Compressor Speed 420 rpm at 7.2 Hz 

Motor Power  2.5Kw  

Motor Speed  1420 rpm 

Voltage  380/420V 

Current  4.1/4.8 A 

Low Pressure First Stage Cylinder/Piston Diameter  93.6 mm 

High Pressure Second Stage Cylinder/Piston Diameter  55.6 mm 

 

 

Figure 4-1 Broomwade TS-9 Compressor Layout 
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Brief Operation 

On the start-up of the compressor, the motor drives the pulleys through the v belt which then, 

in turn, forces the crankshaft to rotate causing the first cylinder (low pressure) to compress and 

then steps to the next stage to the second cylinder (high pressure), through the intercooler which 

cools the air by removing the heat that is created after having been compressed through the 

first stage. That heat helps the air to develop and demands an increase of horsepower for further 

air compression. Cooling is then vital as it assists in limiting the temperature discharge and 

reduces the power demand. 

The air passing through the intercooler is supplied by the crankcase breather which allows air 

to flow in and out of the crankcase through the displacement of the pistons [75]. Air now starts 

to build in the storage tank to a set value of about 8 bars. As soon as that value is reached a 

diaphragm pressure switch cuts off the electrical circuit to the motor and stops the motor from 

turning. Whenever air from the receiver is used, the air pressure drops and the motor starts 

again filling up the tank to the required amount and that cyclic event carries on.  

On top of the receiver, there is a pressure relief valve which acts also as a safety valve. It is set 

to 200 psi approximately 13.8 bars. In the case of an excessive volume of air and if the 

diaphragm pressure switch failed the tank is protected by that pressure relief valve. In the case 

of a disaster or for the comfort of data sampling an extra emergency push button is added to 

the device. The compressor motor is supplied by a three-phase direct online starter. Tyco anti-

vibration pad is utilised on the compressor feet to reduce the noise and vibration level. A 

manual valve has been fitted to release any trapped condensation. Figure 4-2 General System 

Set up. 
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Figure 4-2 General System Set up 

4.3.2 Introducing different Common Compressor Fault  

The vibration and motor current signals have been studied to be able to conduct a thorough 

evaluation of the Reciprocating Compressor (RC) performance. Five working condition data 

sets were being collected sequentially one at time. Before instigating any fault to the 

compressor, it is essential to have a baseline sample, this is when the compressor is operating 

under normal condition free from any failure.  

After that process, the common faults were separately seeded into the system. They are the 

discharge valve leakage, suction valve leakage, intercooler leakage and loose transmission belt. 

The experimental test sequence was as shown in Table 4-2 and the baseline signal deviations 

were measured 

Table 4-2 Sequential Experimental Test Conditions 

Experimental Test Conditions 

Test Cases Description 

BL  Healthy Compressor/Baseline 

DVL Discharge Valve Leakage at 2nd Stage 

SVL Suction Valve leakage at First Stage 

IL Intercooler Leakage 

LB Loose Transmission Belt 
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4.3.2.1 Simulation of Valve Leakage 

Discharge Valve 

Compressor valves work in a harsh environment and are exposed to a huge number of impacts 

per second during their lifetime. This makes valves the most susceptible part of the compressor. 

During the compressing cycle, non-uniformity wear is inevitable and this can lead to a faulty 

valve which in turn reduces the reliability of the compressor. In this research, the test rig valve 

is fitted with a faulty plate valve as shown in Figure 4-3. 

As explained briefly above, the compressed gas is transferred from the first stage suction valve 

(low-pressure) cylinder to the second stage discharge valve (high pressure) cylinder through 

the intercooler pipe.  

Efficient operation of the discharge valve is important to the functioning of the compressor, if 

not it can affect the performance of the machine enormously. A leaky valve is also the most 

common fault in RC. Any leakage in the valve is an extra reduction flow of air which will 

decrease the compressor performance. A leaking valve causes high-temperature air to be forced 

across the valve surface by differential pressure which accelerates the deterioration of the valve 

plate, including the valve spring, and weakens the compressor performance considerably [121].  

The discharge leak valve occurs more often due to the high impact velocity and temperatures 

in the chamber. The flow of gas to and from the leaking valve travelled around the enclosure 

in an erratic flow pattern, through cylinder openings and cavities under and above the valve. 

The uneven distribution of gas flow can affect and cause other plate valves to wobble during 

the opening and closing motion creating an abnormal mechanical action [121]. 

Discharge valve leakage is more critical than the leakage in the inlet valve as the pressure is 

greater than upstream of the inlet valve and it reduces the compressor capacity. 

The introduced faulty valve to simulate the leak is a 2mm diameter drilled hole which is 2% of 

the cross-sectional airflow. Figure 4-5 (a) shows the faulty discharge valve and Figure 4-5 

shows the test rig compressor schematic. 
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Figure 4-3 Second Stage-Discharge Valve Components 

4.3.2.2 Simulation of Intercooler Leakage 

The pressure is carried from the first stage to the second stage through pipes and here leakage 

is very common in the intercooler joints. In this case, a loose intercooler fault is seeded into 

the system. To simulate this fault the intercooler pipe joint was loosened slightly by one 

revolution to model a minor leak as illustrated in Figure 4-5 (b). However, it was not practical 

to measure the leakage as a percentage of the airflow cross-sectional area. 

The function of the intercooler is to chill the 2nd stage air by removing the heat that is created 

after having been compressed through the first stage. Cooling assists in limiting the temperature 

discharge and reduces the power demand, if improper cooling is carried out this will affect the 

performance of the machine and more work will be required to keep the machine running at 

the desired pressure. 

Suction Valve 

The suction valve is the initial phase of the first cylinder (low pressure) compressing the air in 

the first stage chamber and then passing it to the next stage, the second stage cylinder (high 

pressure). Therefore, this cylinder pressure is a direct parameter in measuring the operating 

performance of a reciprocating compressor. It expresses all the functions and working 

processes in all the subsystems components, such as valve movement in each stage, air-flow 

dynamics and motor speed-load signature etc. A faulty valve spring is seeded into the RC as 

shown in Figure 4-5 (c). 

4.3.2.3 Simulation of Loose Transmission Belt 

The loose transmission belt is also another common fault in the compressors. It never reaches 

its designed speeds as the belt will slip on the drive pulleys causing faults, e.g. excessive noise 

and vibration. The compressor also never reaches its designed outlet pressure and most failures 
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in industries are also usually caused by a loose transmission belt. The compressor transmission 

belt undertakes a great variable load when driven and the load amplitude will be more than 

three times higher during the transient start-up process. The amplitude during acceleration will 

surpass the amplitude of the friction force between the wheel and the belt resulting in slippage 

during this time. The slip will gradually wear the belt and deteriorate the inside structure which 

will lead to a loose belt [56] [122]. 

To simulate this fault, the belt was loosened in the system by reducing the distance of the two 

drive pulleys from 169mm to 174mm by an adjusting clamp and with the aid of a Dial Test 

Indicator also known as a (DTI). This will show the accuracy and determine whether any 

corresponding changes could be detected in the cylinder pressures. Figure 4-4 gives an 

overview of the test procedure. 

 

Figure 4-4 Loose Transmission Belt Procedure 
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Figure 4-5 Test Rig Schematic Diagram and Fault Simulation 

4.4 Instrumentation and Measurement 

Several studies have previously been used for the machine condition monitoring by the same 

test rig. However, a variety of sensors were mounted on the test rig such as dynamic and static 

pressure transducers, accelerometers, thermocouple, shaft encoder and current transducers. 

Sample data was collected from those transducers and projected to the Data Acquisition System 

(DAC) and Coaxial BNC cables were utilised for noise signal reduction. 

4.4.1 Accelerometer 

Two accelerometers are situated on the first and second stage pressure cylinder to measure the 

vibration level. They are of type YD-3 with a frequency range from 0.4 to 10 kHz, at a 

sensitivity of 74mv/ms-2, capable of withstanding temperatures of up to 150°C and acceleration 

of up to 2000ms-2. Those accelerometers are inexpensive, ideal for the environment and can be 



Page 119 of 303 
 

easily found on the market. The vibration signal goes to an amplifier then to the data 

acquisition. The following Figure 4-6 [123] shows the accelerometer and Table 4-3 describes 

the specifications. 

 

Figure 4-6 Accelerometer 

 

Table 4-3 Accelerometers Technical Specifications 

 

4.4.2 Thermocouple 

Figure 4-7 shows the thermocouple attached on top of the cylinder which records the 

measurement of the air temperature inside the cylinder. The thermocouples used are of ‘K- 

type’ with a linear response from -20 to 220oC. They are connected to an amplifier that is 

powered by a 240-volt supply and the output is then connected to the data acquisition channel. 

The monitoring of temperature in both the 1st and 2nd stages is vital for safety reasons and the 

protection of the sensors. 
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Figure 4-7 Accelerometer Thermocouple, Pressure Transducer  

4.4.3 Dynamic Pressure Transducer 

Two dynamic pressure sensors were used and they operate at a pressure of 4 MPa (40bar 

equivalent to 600 psi) and an upper-frequency limit of approximately 4 kHz. A small hole had 

to be drilled into each cylinder head and the (GEMS) type 2200 strain gauge pressure 

transducer fitted into the holes. These pressure sensors are economical and within the 

compressor and pressure limit. The maximum output of these sensors is 100 mV and Figure 

4-8 shows the pressure transducer. It is being powered by a 10 Vdc power supply without 

amplification. The transducer is connected directly to the Data acquisition, Figure 4-9 shows 

the on-line raw data-trace of the dynamic pressure of the 1st and 2nd stage compression and 

Table 4-4 shows the technical specifications. 

 

Figure 4-8 In-Cylinder Pressure Sensor 
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Figure 4-9 On-line Raw Data Trace of the Dynamic Pressure 

Table 4-4 Pressure Sensor Specifications 

 

4.4.4 Static Pressure Transducer 

The static pressure sensor as shown in Figure 4-10 is used on the receiver. It is a Sensor 

Technics, Type ‘PS20000’’V’ 

‘V’, functioning at a range of 0 to 1.35 MPa (13.5bar), at a maximum output of 100 mV with 

a supply of 15 Vdc and a temperature ranging from -20°C to + 105°C. The sensor switches the 

compressor motor cut off as and when required and triggers the data collection at various 

pressures according to the “Matlab” programme. 
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Figure 4-10 Static Pressure Sensor (Storage Pressure) 

4.4.5 Shaft Encoder 

The Shaft Encoder shown in Figure 4-11 is a (Hengstler) incremental optical encoder which is 

coupled to the driveshaft and is designed to measure the Instantaneous Angular Speed (IAS) at 

the optimum accuracy. The end of the crankshaft has 360 opaque segments evenly spread out 

around its perimeter to capture the small change in the shaft speed. The encoder is powered at 

10 Vdc and connected to the Personal Computer (PC) via the Data Acquisition. This encoder 

is ideal for the application and is economical and Figure 4-12 shows the online raw encoder 

data.  

 

Figure 4-11 Shaft Encoder 
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Figure 4-12 On-line Raw Encoder Data 

4.4.6 Electrical Current and Power Measuring Devices 

Previous researchers at the University of Huddersfield have worked on the capabilities of the 

power supply parameter to detect the fault in induction motors, gearboxes and pumps but not 

on a reciprocating compressor. There was already an instrument used by previous academics 

for the measurement of motor currents, voltages and power, Figure 4-13 shows the Three-phase 

measurement unit. The motor current and voltage in each phase was measured by a Mounting 

Hall Effect Current Transformer (MHCT) which will be explained later. 

The measured value for the current in each line is fed into the measurement unit as presented 

in the schematic diagram in Figure 4-14 below, which makes the conversion into voltage 

measurement, filters the signal and feeds it to the data collection channel and Figure 4-15 shows 

the online motor current raw data.  

The same device can also be used to measure the instantaneous current, voltage and power in 

each of the three phases. The maximum current of the phase current measuring unit is 5A, the 

voltage line to line is 12.8V and electrical power is 10 Vdc. 
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Figure 4-13 Three Phase Current Measuring Unit 

 

Figure 4-14 Three Phase Measurement Unit [124]  
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Figure 4-15 On-line Motor Current Raw Data 

4.4.7 Stator Current Transducer 

The stator current transducer is a Hall Effect current transducer, “RS number 286-327” which 

has now been discontinued. The part was inexpensive and even the equivalent product is very 

similar physically and economically however it is more performant, the ‘RS’ number is 180-

7357. The device has an accuracy of ± 0.9 % and operates at a frequency bandwidth of DC to 

200 kHz. Table 4-5 shows the Hall Effect Current Transducer specifications. 

The input current ranges from 0 to 70 A, operating at a maximum temperature of ± 85° and a 

minimum temperature of -40°. The difference in this product compared to the previous 

discontinued current transducer is that the original one operates at a bandwidth of DC to 100 

kHz and the operating temperature is 15° lesser. 

Table 4-5 Hall Effect Current Transducer (RS 286-327) Technical Specifications 
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4.5 Data Acquisition System  

The data acquisition used for this project is a Power 1401/2701 from the Cambridge Electronic 

Design (CED), which is illustrated in Figure 4-16. It is a robust, high-performance system for 

capturing and analysing different dynamic data. There are 16 input waveform channels on a 

standard Power 1401. Eight channels are available through a front panel Bayonet-Neil-

Concelman (BNC) connector labelled as Analogue Digital Converter (ADC) inputs. 

There are another eight through the rear panel Analogue Expansion D socket. These channels 

work at an input range of ±5V but can be configured to ±10 V if modified. The waveform input 

channels are buffered through amplifiers. The ADC can convert an input signal to a 16-bit 

digital value at approximately 800 kHz in one channel mode and 625 kHz if the channel is 

being interchanged [125]. The Power 1401 has an easy installation set-up for its software. Both 

the PC and the (Data Acquisition) DAC system should be switched on whilst carrying out this 

process. The provided Universal Serial Bus (USB) plug should be connected to both machines 

then the system will auto-detect the USB and will look for its driver followed by the instruction 

on the screen until it is finished [125]. For a simplified and automatic data acquisition of various 

test conditions, a software packet is developed on NI Lab windows platform. It allows the 

acquisition to be conducted automatically at given time intervals and specified discharge 

pressures. Seven channels have been used in this experimental study as shown in Table 4-6 

Table 4-6 Type of Channel Used 

 



Page 127 of 303 
 

 

Figure 4-16 Data Acquisition Cambridge Electronic Design (CED) 

4.5.1 Data Management and Measurement System Procedure 

 

Figure 4-17 Test Bed Layout of the Experimental System 

Figure 4-17, shows the Test Bed layout of the experimented system in which the sensor 

placement and signal flows are detailed. To achieve a high level of practical experience a test 

procedure was developed as follows; Four data files were collected for each set of the collected 
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sample from the test rig. As described above, from the type of data channel used each system 

was connected from the DAQ system to various part of the instrumentation of the RC under 

test. A directory was specifically created where the collected data was placed. A structured 

filename was also created for the identification of the related file numbers, specific test, 

compressor load and various faults conditions.  

4.5.2 Test Procedure 

The procedure to take the reading of the baseline was carried out in two separate stages, with 

a pressure transducer installed on the first and second stage. The transducers, in turn, carry the 

raw signal to the data acquisition and the signal is recorded by a computer for further 

investigation. These signals are then taken away to be computed offline in MATLAB. 

Benchmarking the in-cylinder pressure trace from the RC was necessary and five sets of data 

were acquired from the test rig under the healthy conditions of the Baseline (BL). Similarly, 

five sets of data were collected for each of the four different faulty conditions (DVL, SVL, IL 

and LB). The test cases and operating conditions are detailed in Table 4-7. There are five tested 

cases, consisting of the healthy case or baseline (BL) and four faulty cases, which were tested 

one by one under three representative discharge pressures, corresponding the lower pressure 

operation of (40psi), the mid limit of (80psi) and higher limit of (120psi). Moreover, the faulty 

cases are the common problems in the RC, as reviewed earlier. 

4.6 Pressure and Vibration Analysis during Valve Operation  

There are four dynamic events in the operation: Suction Valve Open (SVO), Suction Valve 

Closed (SVC), Discharge Valve Open (DVO), Discharge Valve Closed (DVC) and two-

position: Bottom Dead Centre (BDC), Top Dead Centre (TDC) and these events can be seen 

on a time trace of pressure and vibration. To comprehend the comparison of cylinder pressures, 

vibration and valve movement, it is necessary to understand the operation of the SVO, SVC, 

DVO, DVC and the position of TDC, BDC. The reason for this is to know when the suction 

discharge valve opens and closes and where the top dead centre and bottom dead centre are for 

further study.  

In Figure 4-18 the TDC mark which shows 240 degrees is to be neglected as further work is 

required.  

Also only the first and second stage healthy valve operation at 40psi is explained in detail. 
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4.6.1 First Stage Healthy Condition Valve Operation at 40, 80 & 120 psi 

The following Figure 4-18 to Figure 4-20 describes how the changes in discharge tank pressure 

for the 1st stage at 40, 80 and 120 psi affect the opening and closing times of the valve’s 

operation during its cycle. 

1st stage valve operation 

In the 1st stage, the low-pressure cylinder piston leads the 2nd stage by approximately 90°.   

When the 2nd stage piston is at TDC the 1st stage SVO open and DVO opens, the 1st stage valve 

operates at a healthy condition of a 40 psi as is shown in Figure 4-18 and operates as follows. 

On the 2nd stage, when the piston is at TDC, the 1st stage SVO and DVO opens. The time taken 

for the DVO to open and close depends a lot on the discharge pressure. If the discharge pressure 

is lower, the DVO opens later as a lower pressure in the discharge tank will need lesser pressure 

in the cylinder before the DVO open. 

 

 

Figure 4-18 Healthy Condition 1st Stage Vibration & Pressure at 40 psi 

 

1st Stage Valve Operation at 80 psi 

From Figure 4-19, zero degrees (0º) corresponds to the (TDC) of the 1st stage the piston moving 

downward from 0º to about 30º approximately and from there the pressure decreases slightly 

then shows the expansion process. At this pressure, (SVO) the suction process starts. 
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At 31º onwards to about 179º, the pressure remains at the minimum constant level illustrating 

clearly the suction process. When (SVC) closes, marking the end of this process, the 

compression begins.   

From 180º to about 295º the pressure increases gradually up to the maximum, showing the 

compression stroke. At this pressure, the discharge valve (DVO) is pushed open.  

Beginning at 296º to approximately 358º the pressure remains slightly the same, showing the 

discharge process. At about 359º (DVC) closes and a new expansion process starts at TDC 

again. 

 

Figure 4-19 Healthy Condition 1st Stage Vibration & Pressure at 80 psi 

 

Figure 4-20 Healthy Condition 1st Stage Vibration & Pressure at 120 psi 
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Figure 4-19 and Figure 4-20 also clearly show how the impact in the discharge tank pressure 

affect the opening and closing times of the 1st stage valves which are obvious for all three 

discharge tank pressures: 40 psi, 80 psi and 120 psi. It is evident that the change in the 

crankshaft angle of the 1st stage-discharge valve closes with a decrease in discharge pressure 

and hence requires lesser work. 

 

Figure 4-21 Operation of a Healthy Condition at 40 psi of a 1st Stage Valve 

Figure 4-21 describes a brief operation of a healthy condition 1st stage at 40 psi. At 0° to 30°  

(SVO) shows the expansion phase. From 30° to 179° approximately is the (SVC) stage which 

is the suction process. From 180° to 295° more or less is the (DVO) compression process and 

then followed by the discharge process. However, this procedure will vary at 80 and 120 psi. 

4.6.2 Second Stage Healthy Condition  

Figure 4-22 shows how the changes in discharge tank pressure for the 2nd stage at 40 psi affect 

the opening and closing times and the remaining two discharge tank pressures. The 2nd stage 

80 psi is shown in Figure 4-23 and Figure 4-24 shows the 2nd stage at 120 psi.  

2nd stage valve operation 

In the 2nd stage, the high-pressure cylinder piston leads the 1st stage by 45°.   When the 1st stage 

piston is at TDC the 2nd stage SVC closes and DVC closes, the 2nd stage valve operates at a 
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healthy condition of 40 psi as is shown in Figure 4-22 and operates as follows; On the 1st stage, 

when the piston is at TDC, the 2nd stage SVC and DVC closes. The time taken for the DVO to 

open and close depends a lot on the discharge pressure. If the discharge pressure is higher, the 

DVO opens later as a higher pressure in the discharge tank will need higher pressure in the 

cylinder before the DVO springs open. 

 

Figure 4-22 Healthy Condition 2nd Stage Vibration & Pressure at 40 psi 

Figure 4-23 and Figure 4-24 also clearly show how changes in the discharge tank pressure 

affect the opening and closing times of the 2nd stage valves which are obvious for all three 

discharge tank pressures: 40 psi, 80 psi and 120 psi. It is clear that the change in the crankshaft 

angle of the 2nd stage-discharge valve opens with an increased discharge pressure and hence 

requires more work. 
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Figure 4-23 Healthy Condition 2nd Stage Vibration & Pressure at 80 psi 

 

Figure 4-24 Healthy Condition 2nd Stage Vibration & Pressure at 120 psi 

Healthy Conditions of a 120 psi, 2nd Stage Valve Operation 

The 2nd stage valve operation of a healthy condition at 120 psi is shown in Figure 4-24  

The (SVC), (DVO) & (SVO) on every discharge pressure on the 2nd stage varies whereas 

(TDC) is nearly always at the same position. 

At 90° (SVC) of the second stage, the compression begins until (DVO) open. From 225° (DVO) 

till 270° the pressure reduces gradually with some irregularities. At 270°, (TDC) of the 2nd 
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stage, the piston moves downward from 271º to around 300º (SVO) and from there the pressure 

rises slightly to the expansion process.  

Each case shows that less work is required in the suction stage whereas in the second stage 

(compression cycle) more work is required and the pressure oscillation is at a higher discharge 

pressure. 

4.7 Healthy and Faulty Condition in-Cylinder Pressure Trace in Time Domain 

Analysis 

Time-domain measurement is one of the simplest of the measurement techniques and requires 

relatively inexpensive and unsophisticated instrumentation for machine fault diagnostic [126]. 

The time-domain analysis uses the amplitude of the time signal to detect any abnormality in 

the machine operation as it holds useful information to study the changes in the machine 

operation [127]. The time-domain analysis calculates the characteristic features from the time 

waveform signals as a statistical measurement of the waveform. 

To show the effectiveness and severity of the faults, this section analyses the change in cylinder 

pressures for both stages of a healthy compressor under different discharge pressure of (40, 80 

and 120 psi) in the time domain. Figure 4-25 to Figure 4-33 shows the comparison of the 

following fault cases. 
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Table 4-7 Test Cases and Operating Conditions 
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4.7.1 Baseline (BL) Test 

A baseline signature for a healthy compressor under normal operating conditions is important 

as a point of reference when compared to a faulty RC system.  

To achieve this, the RC was first thoroughly inspected and validated by the University 

technician and then a series of samples under different load conditions were being taken. 

4.7.2 Changes in Cylinder Pressures under Healthy Condition for First and Second 

Stages 

Figure 4-25 illustrates the waveform of the first and second stages cylinders pressure under 

different load discharge pressure of (40, 80 and 120) psi. It is obvious that the baseline of the 

first stage (suction valve) BL1 operates at a lower pressure than the second stage and that the 

2nd stage cylinder pressure increases as the discharge pressure increases. 

Pressure oscillates more at high discharge pressure. Each shows, in detail, that intake, 

compression, discharge, expansion and hence less current is required in the suction stage, 

whereas in the second stage (compression cycle) more work is required. 

 

 
Figure 4-25 Pressure Trace of Both 1st and 2nd Stage Baseline (BL) 
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4.7.3 Changes in Cylinder Pressures under Discharge Valve Leakage  

Different simulated cases of the cylinder pressure waveform effect for both the first and second 

stage cylinders at different discharge pressure is shown in Figure 4-26 and from observation it 

is obvious that the simulated faults have caused a change on the performance of the compressor 

especially at the higher discharge pressure. 

From the 1st stage of Figure 4-26 for all three cases of the (SVO) 0° to about 30° and (DVO) 

300° until the (DVC) 360°, the baseline is lower than the faulty discharge valve leakage and 

the pressure is nearly the same under all three conditions.  

 

Figure 4-26 Pressure Trace of 1st Stage Baseline with Discharge Valve Leakage 

 

On the 2nd stage at 80 psi from Figure 4-27, the pressure at DVO 180° is higher and from DVC 

280° to SVC 300° is higher under 7 bar and approximately 11 bar at 120 psi DVO 200° because 

more work is required to compress the cylinder. 
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Figure 4-27 Pressure Trace of 2nd Stage Baseline with Discharge Valve Leakage 

4.7.4 Changes in Cylinder Pressures under Suction Valve Leakage  

On the 1st stage from Figure 4-28 SVO and DVO until the DVC, the baseline is lower than the 

suction valve leakage and the pressure differs under all three conditions, being much higher up 

to 7 bar at SVO and 8 bar at DVO at 120 psi. 

 

Figure 4-28 Pressure Trace of 1st Stage Baseline with Suction Valve Leakage  
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Figure 4-29 Pressure Trace of 2nd Stage Baseline with Suction Valve Leakage  

From Figure 4-29 the 2nd stage, the pressure in between DVO and DVC is higher under 8 bar 

at 80psi and approximately 10 bar at 120 psi because more work is required to compress the 

cylinder when there is a faulty component. 
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Figure 4-30 Pressure Trace of 1st Stage Baseline with Intercooler Leakage  

 

Figure 4-31 Pressure Trace of 2nd Stage Baseline with Intercooler Leakage  
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4.7.6 Changes in Cylinder Pressures under Loose Transmission Belt 

Figure 4-4 gives an overview of the test procedure whereas Figure 4-32 and Figure 4-33 

illustrates the trends of the healthy cylinder pressures with the introduction of a 5mm 

misaligned faulty belt on the 1st and 2nd stage-discharge valve.  

4.7.7 Performance Characteristics of both the First and Second Stage with Loose Belt 

Transmission Pressure Trace 

It can be seen from Figure 4-32 the 1st stage from SVO and DVO until the DVC, the baseline 

is virtually the same as the loose belt and the pressure at 120 psi is slightly higher at SVO just 

under 4 bar. 

Figure 4-33 shows the baseline pressure of the 2nd stage is negligible in comparison to the 

seeded fault at 40 and 80 psi. Between DVO and DVC the pressure is higher under 8 bar at 

80psi and approximately 11 bar at 120 psi because more work is required to compress the 

cylinder when there is a loose pipe. 

 

Figure 4-32 Pressure Trace of 1st Stage Baseline with Loose Belt Leakage  
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Figure 4-33 Pressure Trace of 2nd Stage Baseline with Loose Belt Leakage  
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the other hand, because the leakage is very small, it causes invisible changes to the pressures 

in the second stages of the suction process and significant changes in the discharge process. 

Each case shows that less work is required in the suction stage whereas in the second stage 

(compression cycle) more work is needed and that the pressure oscillates higher at the 

discharge pressure. 

4.9 Reciprocating Compressor Condition Monitoring Based on Common Non-

Intrusive Measurements 

This section focusses on different condition monitoring techniques including vibration-based 

Condition Monitoring (CM), Instantaneous Angular Speed (IAS), Current waveform, Root 

Mean Square (RMS) Envelope, Current Spectrum analysis in comparison for four common 

fault cases: Discharge Valve Leakage (DVL), Suction Valve Leakage (SVL), Intercooler 

Leakage (IL) and Loose Transmission Belt. Through this study, the behaviours of pressure, 

vibration and current differences of these faults can be identified as the basis for fault detection 

and diagnosis. To show the effects of each fault on the compressor, in-cylinder pressures are 

presented together with the vibration and electrical signals. Because compressors operate under 

different discharge pressures, the investigation is made up of three typical operating pressures: 

(40 psi) 2.8 bar, (80 psi) 5.5 bar and (120psi) 8.3 bar respectively under each fault to explore 

the changes and monitoring performance.  

4.9.1 Vibration-Based Condition Monitoring  

4.9.1.1 Vibration-Based Condition Monitoring of Discharge Valve Leakage  

Discharge Valve Leakage Vibration at 2.8 Bar 

As shown in Figure 4-34, a leaking discharge valve causes the change of vibration in the 1st 

stage to be negligible in the period from 0º of the TDC to about 30º of the SVO of the crank 

angle in the 1st stage cylinder. Following that sequence, the discharge valve leakage vibration 

signal is at its peak at about 60º of the crank angle but slightly lower than the baseline. In 

between the BDC and SVC of the cylinder from 135 º to 180 º, the vibration’s signal is minimal. 

At about 285º of the DVO of the cylinder, the discharge valve leaking vibration signal is nearly 

equal to the baseline but slightly higher than at the BDC of the cylinder. Finally, at TDC and 

DVC, the leaking discharge valve vibration signal is about five times higher than the vibration 

signal at the DVO of the cylinder and is equal to the baseline.  
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Figure 4-34 Discharge Valve Leakage Induced Pressure and Vibration at 2.8 Bar 

The vibration signal of the 2nd stage, under the discharge valve leak in the compression process 

from 0º to 135º of the crank angle, is negligible. At about 165ºof the crank angle at DVO the 

discharge valve leak is slightly higher than baseline. Following that sequence at the TDC and 
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the crank angle, the leaking discharge valve signal is lower than the baseline by half of its 

magnitude. Finally, at the SVO of the cylinder, at about 300º of the crank angle, the discharge 

valve leak vibration is minimal and higher than the baseline. 

 

Figure 4-35 Discharge Valve Leakage Induced Pressure and Vibration at 5.5 Bar 
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signal is lower than the baseline by half of its magnitude. Finally, at the SVO of the cylinder at 

about 310º of the crank angle, the discharge valve leak vibration is equal to the baseline and 

slightly higher than the 5.5 bar discharge leak valve signal from the previous figure. 

 

Figure 4-36 Discharge Valve Leakage Induced Pressure and Vibration at 8.3 Bar 

4.9.1.2 Vibration-Based Condition Monitoring of Suction Valve Leakage 

Suction Valve Leakage Vibration at 2.8 Bar  

As illustrated in Figure 4-37, a leaking suction valve causes the change of vibration in the 1st 

stage to be at its peak at the TDC of the 1st stage cylinder, then after that process at about 60º. 

Just after the SVO of the cylinder, the signal is half the size of the signal at TDC and lower 

than the baseline signal. From the BDC and SVC of the cylinder to the full revolution, the 

suction valve leak is slightly higher but very minimal. 

The vibration signal of the 2nd stage, under the suction valve leak in the compression process 

from 0º to 135º of the crank angle, is slightly higher but very minimal. At about 145º of the 

crank angle, just before the DVO, the suction valve leak is at its peak.  

Following that sequence, the suction valve leak signal is randomly slightly lower to the baseline 

just after the SVO of the cylinder, at about 325º of the crank angle until the full revolution. 
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Figure 4-37 Suction Valve Leakage Induced Pressure and Vibration at 2.8 Bar 

Suction Valve Leakage Vibration at 5.5 Bar  

As shown in Figure 4-38 a leaking suction valve causes the change of vibration in the 1st stage 

to be at its peak at the TDC of the 1st stage cylinder then after that process, at about 60º, just 

after the SVO of the cylinder, the signal is below the baseline. From the BDC and SVC of the 

cylinder to the full revolution the suction valve leak is slightly higher but very minimal. 

The vibration signal of the 2nd stage, under the suction valve leak in the compression process, 

from 0º to 130º of the crank angle, is slightly higher but very minimal. At about 130º of the 

crank angle, just after the BDC and SVC of the cylinder, the suction valve leak increases its 

magnitude slightly and goes to its peak at the DVO of the cylinder at about 200º of the crank 

angle. After that sequence, the vibration signal is up to the full revolution. 
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Figure 4-38 Suction Valve Leakage Induced Pressure and Vibration at 5.5 Bar 

Suction Valve Leakage Vibration at 8.3 Bar  

As shown in Figure 4-39, a leaking suction valve causes the change of vibration in the 1st stage 

to be at its peak at the TDC of the 1st stage cylinder then after that process, at about 55º just 

after the SVO of the cylinder, the vibration signal is minimal and approximately the same to 

the baseline signal in the rest of the cycle 

The vibration signal of the 2nd stage under the suction valve leak in the compression process, 

from 0º of the TDC to 125º of the crank angle, is slightly lower but very minimal. At about 

126º of the crank angle, just after the BDC and SVC of the cylinder, the suction valve leak 

increases its magnitude slightly and goes to its peak after the DVO of the cylinder is at about 

210º of the crank angle, then goes slightly lower at 260º at the DVC and TDC of the cylinder 

and finally the suction valve leak signal goes down until the cycle is completed. 
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Figure 4-39 Suction Valve Leakage Induced Pressure and Vibration at 8.3 Bar 

4.9.1.3 Vibration-Based Condition Monitoring of Intercooler Leakage 

Intercooler Leakage Vibration at 2.8 bar  

Figure 4-40 shows a leaking intercooler vibration in the 1st stage to be constant from the TDC 

of the cylinder until its full cycle without any variation. Whereas the baseline vibration signal 

is at its peak at about 50º of the crank angle. 

The vibration signal of the 2nd stage, under the intercooler leak in the compression process from 

0º of the TDC to 140º of the crank angle before the DVO, is nearly constant with minimal 

variation.  

At about 178º of the crank angle at the DVO, the intercooler leak is at its peak. Following that 

sequence, the intercooler leak signal increases randomly but minimal, to its full cycle. 
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Figure 4-40 Intercooler Leakage Induced Pressure and Vibration at 2.8 Bar 

Intercooler Leakage Vibration at 5.5 Bar  

From the Figure 4-41 Intercooler Leakage Induced Pressure and Vibration at 5.5 Bar the 

leaking intercooler causes the change of vibration at the 1st stage to be constant from the TDC 

of the cylinder until its full cycle, without any variation. Whereas the intercooler leak vibration 

signal is at its peak at about 272º of the crank angle and slightly lower than the baseline. 

The vibration signal of the 2nd stage, under the intercooler leak in the compression process, 

from 0º of the TDC to 160º of the crank angle just after the BDC and SVC, is nearly constant 

with minimal variation. At about 200º of the crank angle at the DVO, the intercooler leak is 

high. Following that sequence, the intercooler leak signal increases randomly until at the DVC 

where the vibration signal is at its peak and then reduces randomly and progressively to its full 

cycle. 
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Figure 4-41 Intercooler Leakage Induced Pressure and Vibration at 5.5 Bar 

Intercooler Leakage Vibration at 8.3 Bar  

As can be seen from Figure 4-42 Intercooler Leakage Induced Pressure and Vibration at 8.3 

Bar, the leaking intercooler causes the change of vibration at the 1st stage to be slightly higher 

at the TDC, 0º of the crank angle then is at its peak about 60º after the SVO. Following that 

sequence, the leaking intercooler vibration signal is minimal with very little vibration to the 

end of its cycle. 

The vibration signal of the 2nd stage, under the intercooler leakage in the compression process, 

from 0º of the TDC to 178º of the crank angle just after the BDC, SVC is nearly constant with 

minimal variation. At about 179º of the crank angle before the DVO, the intercooler leak is 

high. Following that sequence, the intercooler leak signal increases randomly until at the DVC 

where the vibration signal is at its peak and then reduces randomly and progressively to its full 

cycle. 
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Figure 4-42 Intercooler Leakage Induced Pressure and Vibration at 8.3 Bar 

4.9.1.4 Vibration-Based Condition Monitoring of Loose Belt  

Loose Belt Vibration at 2.8 Bar  

As shown in Figure 4-43 Loose Belt Induced Pressure and Vibration at 2.8 Bar causes the 

change of vibration at the 1st stage to be higher from the TDC of the cylinder at 0º to the full 

revolution of the crank angle. The only place where the loose belt is at its peak is at 

approximately 60º just after the SVO and at the DVC and TDC of the cylinder where it is 

slightly lower. 

The vibration signal of the 2nd stage, under the loose belt in the compression process, from 0º 

to 145º of the crank angle is negligible. At about 146º of the crank angle, just before the DVO, 

the loose belt is slightly higher. Following that sequence after the DVO, at about 185º of the 

crank angle it is slightly higher and is at its peak at the DVC at 270º of the crank angle.  

Subsequently, after that sequence, the intercooler leakage signal decreases progressively to its 

full cycle. 
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Figure 4-43 Loose Belt Induced Pressure and Vibration at 2.8 Bar 

Loose Belt Vibration at 5.5 Bar  

 

Figure 4-44 Loose Belt Induced Pressure and Vibration at 5.5 Bar 
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As shown from Figure 4-44 Loose Belt Induced Pressure and Vibration at 5.5 Bar, a loose belt 

causes the change of vibration at the 1st stage to be higher from the TDC of the cylinder at 0º 

to the full revolution of the crank angle. The only place where the loose belt is at its peak is at 

approximately 60º just after the SVO and at the DVC and TDC of the cylinder where it is 

slightly lower. 

The vibration signal of the 2nd stage, under the loose belt in the compression process from 0º 

of the TDC to 70º of the crank angle, just after the SVO, is minimal and has slight variation 

until after the SVO where the vibration signal is slightly higher. Following that sequence, from 

75º to the DVO at about 205º of the crank angle, the vibration signal is minimal and constant. 

The loose belt vibration signal is at its peak at about 206º and 265º just before the DVC. 

Following that sequence, the loose belt signal decreases randomly until at the DVC and then 

reduces randomly and progressively to its full cycle.  

Loose Belt Vibration at 8.3 Bar  

 

Figure 4-45 Loose Belt Induced Pressure and Vibration at 8.3 Bar 

As shown from Figure 4-45 Loose Belt Induced Pressure and Vibration at 8.3 Bar, a loose belt 

causes the change of vibration at the 1st stage to be at its peak at the TDC of the cylinder at 0º 

to the full revolution of the crank angle. Following that sequence, just after the SVO at 
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approximately 60º of the crank angle, the vibration signal has a slight increase and then goes 

constant with no variation and very minimal change to its full cycle. 

The vibration signal of the 2nd stage, under the loose belt in the compression process, from 0º 

of the TDC to 70º of the crank angle, just after the SVO, is minimal and has a slight variation 

until after the SVO where the vibration signal is slightly higher. Following that sequence, it is 

at its peak just before the DVC and the loose belt vibration signal decreases randomly to its 

full cycle. 

4.9.2 Discussion  

For the discharge valve leakage of the second stage, the vibration profile of the first stage is 

slightly lower for the entire operating cycle. This is because the slight decrease in discharge 

valve vibration is induced by a lesser backflow of the leakage. Meanwhile, the vibration profile 

of the second stage shows a clear picture of more vibration activities and increases 

progressively with a significant vibration increase in amplitudes during the discharge process, 

compared with the baseline under higher load. 

For the suction valve leakage at the first stage, the vibration profile is insignificant for the entire 

operating suction cycle, this is because of the significantly increased suction pressure induced 

by the more backflow of the leakage. Meanwhile, the vibration profile of the second stage 

shows a minimal increase during the suction process but with higher increases in amplitudes 

during the discharge process, compared with the baseline. 

For the leaking intercooler, the vibration profile of the first stage is slightly higher at the suction 

process operating cycle under higher load, this is caused by small leakage flows. Alternatively, 

the changes of vibration are significantly higher during the expansion process between the 

suction valve closing and discharge valve opening in the second stages. 

For the loose transmission belt, the vibration profile of the first stage, under higher load, is 

lower for the entire operating cycle with more activities at the suction process, this is caused 

by a small leakage flow. On the other hand, the changes in vibration are significantly higher 

during the discharge valve process in the second stages. 

Each case shows that less work is required in the suction stage whereas in the second stage 

(compression cycle) more work is needed and that the pressure oscillates higher at the 

discharge pressure. 
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4.10 Motor Current Signature Analysis Based Condition Monitoring 

This section compares the motor current signature analysis of four compressor faults: discharge 

valve leakage, suction valve leakage, intercooler leakage and belt looseness. Through this 

comparison, the behaviours and differences of electric current signals between these faults, in 

comparison from the baseline (healthy compressor), can be identified as the basis for fault 

detection and diagnosis.  

To show the effects of each fault on the compressor, in-cylinder pressures are presented 

together with the electric signals. This presentation also allows the changes in current 

waveforms to be explored in line with pressure changes. 

Because compressors operate under different discharge pressures, the comparison is made at 

three typical operating pressures: (40 psi) 2.8 bar, (80 psi) 5.5 bar and (120 psi) 8.3 bar 

respectively under each fault to explore the changes and monitor performance under discharge 

pressures.  

4.10.1 MCSA based Condition Monitoring Discharge Valve Leakage 

MCSA of Discharge Valve Leakage at 2.8 Bar  

As shown in Figure 4-46, a leaking discharge valve causes the pressure at the 1st stage to be 

slightly lower than that of the baseline by about 0.1 bar in the period from 0º to 280º of the 

crank angle at a starting pressure of about 3.4 bar at 0º of the TDC. Following that sequence, 

the discharge valve leakage then remains roughly the same to the end of the cycle with both 

waveforms at their highest at about 3.5 bar. 

The pressure waveform of 2nd stage, under the discharge valve leakage, the compression 

process is slightly higher than the baseline from 0º to 170º, by about 0.2 bar, whereas the 

discharge process in the period of 171º to 191º the baseline pressure increases by about 0.2 bar 

and then it remains the same in the rest of the cycle. From observation, it is clear that the 

pressure at the 2nd stage illustrates a slight increase, which means the compressor shifts away 

from its optimal operation and may work at lower efficiency. 

Corresponding to this change, the power supply current shows no difference for the leaking 

discharge valve current signal. This amplitude current also shows that it needs the same current 

consumption whilst delivering the same quantity of air, confirming that the compressor uses 

the same power and hence lower efficiency. The amplitude of the current signal is at the highest 
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after the DVO of the 1st stage at a crank angle of about 310º and lowest at a crank angle of 

about 180º, with the leaking discharge valve signal slightly lower. 

 

Figure 4-46 Current and Pressure Trace for Baseline and Discharge Valve Leak at 2.8 
Bar  

MCSA of Discharge Valve Leakage at 5.5 bar  

As displayed in Figure 4-47, a leaking discharge valve causes the 1st stage pressure to be 

slightly lower than that of the baseline by about 0.1 bar in the period from 0º to 280º of the 

crank angle, at a starting pressure of about 3.5 bar at 0º of the TDC. Following that sequence, 

the discharge valve leakage then remains roughly the same to the end of the cycle with both 

waveforms at their highest at approximately 3.7 bar. 

The pressure waveform of 2nd stage under the discharge valve leakage in the compression 

process, is visibly higher than the baseline from 0º to 195º, by about 0.1 bar and is at its peak 

at about 7.7 bar, whereas the discharge process in the period of 196º to 206º the baseline 

pressure increases by about 0.1 bar and then it remains roughly the same in the rest of the cycle. 

It is clear that the pressure at the 2nd stage shows a clear increase, which means the compressor 

shifts away from its optimal operation and works at a slightly higher efficiency. 
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Corresponding to this change the power supply current shows a slightly higher increase for the 

leaking discharge valve current signal. This slightly higher amplitude current also shows that 

it needs more current consumption whilst delivering a slightly higher quantity of air, 

confirming that the compressor uses more power and hence slightly higher efficiency.  

The amplitude of the discharge current signal is at the highest after the DVO of the 1st stage at 

a crank angle of about 300º, phase-shifted leading the baseline by 5º and lowest at a crank angle 

of about 175º, with the discharge valve leakage current signal slightly lower and phase-shifted 

leading the baseline by 5º. 

 

Figure 4-47 Current and Pressure Trace for Baseline and Discharge Valve Leak at 5.5 
Bar 

MCSA of Discharge Valve Leakage at 8.3 Bar  

As presented in Figure 4-48, a leaking discharge valve causes the pressure at the 1st stage to be 

slightly lower than that of the baseline by about 0.1 bar in the period from 0º to 290º of the 

crank angle at a starting pressure of about 3.6 bar at 0º of the TDC. Following that sequence, 

the discharge valve leakage then remains roughly the same to the end of the cycle with both 

waveforms at their highest at about 3.9 bar. 
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The pressure waveform of 2nd stage under the discharge valve leakage in the compression 

process, is slightly higher than the baseline from 0º to 195º, by about 0.1 bar and is at its peak 

at about 11.2 bar, whereas the discharge process in the period of 196º to its full revolution, both 

the leaking discharge valve and baseline waveforms remain roughly the same in the rest of the 

cycle. From observation, it is clear that the 2nd stage pressure shows a clear increase, which 

means the compressor shifts away from its optimal operation and works at a higher efficiency. 

Corresponding to this change the power supply current shows a slight increase for the leaking 

discharge valve current signal. This higher amplitude current also shows that it needs more 

current consumption whilst delivering a higher quantity of air, confirming that the compressor 

uses more power and hence higher efficiency.  

The amplitude of the current signals is at the highest at DVO of the 1st stage at a crank angle 

of about 290º and lowest at a crank angle of about 160º with the discharge valve leakage current 

signal slightly lower. 

 

Figure 4-48 Current and Pressure Trace for Baseline and Discharge Valve Leak at 8.3 
Bar 
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4.10.2 MCSA Based Condition Monitoring of Suction Valve Leakage 

MCSA of Suction Valve Leakage at 2.8 bar  

As illustrated in Figure 4-49, a leaking suction valve causes the 1st stage pressure to be higher 

than that of the baseline by about 0.8 bar at 0º of the TDC. The starting pressure of the leaking 

suction valve is 4.3 bar of the TDC which then converges with the baseline to approximately 

30º of the crank angle, still slightly higher by about 0.3 bar in the period from 31º to 285º of 

the crank angle. 

Following that sequence the suction valve leakage then climbs to its peak at about 5 bars at a 

difference of 1.5 bar higher than the baseline pressure signal then reduces to about 1 bar in the 

rest of the cycle. The pressure waveform of the 2nd stage under the suction valve leakage in the 

compression process is higher than the baseline from 0º to 155º, by about 0.8 bar. It is at its 

peak at 4 bars and lower than the baseline by about 0.4 bar at 170º, whereas the discharge 

process in the period of 180º to 270º of the crank angle, the leaking suction valve is lower than 

the baseline waveforms in the region of 0.3 bar and the leaking suction valve is higher by about 

1 bar in the rest of the cycle. It is clear that the 2nd stage pressure shows a slight increase, which 

means the compressor shifts away from its optimal operation and may work at low efficiency. 

 

Figure 4-49 Current and Pressure Trace for Baseline and Suction Valve Leak at 2.8 bar 
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Corresponding to this change, the power supply current shows a slightly higher increase for 

the leaking suction valve current signal. This amplitude current also shows that it needs more 

current consumption whilst delivering the same quantity of air, confirming that the compressor 

uses more power and hence lower efficiency. The amplitude of the current signals is at the 

highest at a crank angle of about 320º angle with the suction valve leak current signal phase-

shifted lagging by about 10º and at the lowest at a crank angle of about 195º with the suction 

valve leak current signal slightly higher and phase-shifted leading by about 10º. 

MCSA of Suction Valve Leakage at 5.5 Bar  

As shown in Figure 4-50, a leaking suction valve causes the pressure at the 1st stage to be a 

little higher than that of the baseline by about 2 bars at 0º of the TDC. The starting pressure of 

the leaking suction valve is 6 bars of the TDC then converges with the baseline to 

approximately 45º of the crank angle, still slightly higher by about 0.6 bar in the period from 

46º to 285º of the crank angle. Following that sequence, the suction valve leakage then climbs 

to its peak at about 7.8 bar at a difference of 3.2 bar higher than the baseline pressure signal, 

then diminishes to about 2.8 bar in the rest of the cycle. 

 

Figure 4-50 Current and Pressure Trace for Baseline and Suction Valve Leak at 5.5 bar 
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The pressure waveform of the 2nd stage under the suction valve leakage in the compression 

process is higher than the baseline from 0º to 180º, by about 2 bars.  

It is at its peak at about 5 bars and lower than the baseline by about 0.8 bar at 190º whereas the 

discharge process in the period of 191º to 290º of the crank angle, the leaking suction valve is 

lower than the baseline waveforms in the region of 0.8 bar and the leaking suction valve is 

higher by about 1.8 bar in the rest of the cycle. From observation, it is clear that the pressure at 

the 2nd stage shows more increase, which means the compressor shifts away from its optimal 

operation and would work at a slightly higher efficiency with the suction valve leak at its peak 

at 7 bars lower than the baseline by about 0.8 bar. 

Corresponding to this change the power supply current shows a slight increase for the leaking 

suction valve current signal. This slightly higher amplitude current also shows that it needs 

more current consumption whilst delivering a slightly higher quantity of air, confirming that 

the compressor uses more power and hence slightly higher efficiency. The amplitude of the 

current signals for the suction valve leak is at the highest at a crank angle of about 358º and 

lowest at a crank angle of about 175º with the suction valve leak current signal slightly lower 

and phase-shifted lagging by about 5º. 

MCSA of Suction Valve Leakage at 8.3 bar  

As described in Figure 4-51, a leaking suction valve causes the 1st stage pressure to be much 

higher than that of the baseline by about 3.2 bar at 0º of the TDC. The starting pressure of the 

leaking suction valve is 6.9 bar of the TDC then converges with the baseline to approximately 

45º of the crank angle, still slightly higher by about 0.5 bar in the period from 46º to 290º of 

the crank angle.  

Following that sequence the suction valve leakage then climbs to its peak at about 8.6 bar at a 

difference of 4.2 bar higher than the baseline pressure signal then diminishes to about 3.3 bar 

in the rest of the cycle. 

The pressure waveform of the 2nd stage under the suction valve leakage in the compression 

process is higher than the baseline from 0º to 200º, by about 2.2 bar at TDC. It is at its peak at 

about 10 bars and lower than the baseline by about 1 bar at 200º whereas in the discharge 

process in the period of 201º to 268º of the crank angle, the leaking suction valve is lower than 

the baseline waveforms in the region of 1 bar. From 269º to 290º the leaking suction valve 

leads to 4 bars, higher by about 2.1 bar in the rest of the cycle. 
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Figure 4-51 Current and Pressure Trace for Baseline and Suction Valve Leak at 8.3 bar 

From observation, it is clear that the pressure at the 2nd stage shows a higher increase, which 

means the compressor shifts away from its optimal operation and works at high efficiency with 

the suction valve leak at its peak at 10 bars lower than the baseline by about 1 bar. 

Corresponding to this change the power supply current shows a slightly higher increase for the 

leaking suction valve current signal. This higher amplitude current also shows that it needs 

more current consumption whilst delivering a higher quantity of air, confirming that the 

compressor uses more power and higher efficiency. The amplitude of the current signals for 

the suction valve leak is at the highest at a crank angle of about 260º and phase-shifted lagging 

the baseline current signal by about 30º and lowest at a crank angle of about 185º with the 

suction valve leak current signal slightly lower and phase-shifted leading by about 25º. 

4.10.3 MCSA Based Condition Monitoring of Intercooler Leakage 

MCSA of Intercooler Leakage at 2.8 bar  

As shown in Figure 4-52, a leaking intercooler causes the 1st stage pressure to be slightly lower 

than that of the baseline by about 0.1 bar in the period from 0º to 280º of the crank angle at a 

starting pressure of about 3.4 bar at 0º of the TDC. Following that sequence, the intercooler 
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leakage then shows a difference of 0.2 bar lower than the baseline from approximately 281º to 

the end of the cycle and highest at about 3.5 bar. 

 

Figure 4-52 Current and Pressure Trace for Baseline and Intercooler Leak at 2.8 bar 

The pressure waveform of the 2nd stage under the intercooler leakage in the compression 

process is slightly lower than the baseline from 0º to 170º, by about 0.2 bar, whereas the 

discharge process in the period of 171º in the rest of the cycle the baseline pressure remains 

roughly the same. From observation, it is clear that the pressure at the 2nd stage shows a slight 

increase, which means the compressor shifts away from its optimal operation and may work at 

low efficiency. 

Corresponding to this change, the power supply current shows a slight increase in the leaking 

discharge valve current signal. This amplitude current also shows that it needs more current 

consumption whilst delivering the same quantity of air, confirming that the compressor uses 

more power and hence lower efficiency. As illustrated, the amplitude of the current signal is at 

its highest after the DVO of the 1st stage at a crank angle of about 360º and phase-shifted 

leading the baseline signal by about 5º and lowest at a crank angle of about 180º, phase-shifted 

leading the baseline by approximately 5º as well with the leaking discharge valve signal slightly 

lower. 
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MCSA of Intercooler Leakage at 5.5 bar  

As presented in Figure 4-53, a leaking intercooler causes the 1st stage pressure to be slightly 

lower than that of the baseline by about 0.1 bar in the period from 0º to 280º of the crank angle, 

at a starting pressure of about 3.5 bar at 0º of the TDC. Following that sequence, the intercooler 

leakage then shows a difference of 0.2 bar lower than the baseline from approximately 281º to 

the end of the cycle, highest at about 3.7 bar. 

 

Figure 4-53 Current and Pressure Trace for Baseline and Intercooler Leak at 5.5 bar 

The pressure waveform of the 2nd stage under the intercooler leakage in the compression 

process is slightly higher than the baseline from 0º to 195º, by about 0.1 bar and is at its peak 

at about 7.7 bar, whereas the discharge process in the period of 196º to 206º the baseline 

pressure increases by about 0.1 bar and then it remains roughly the same in the rest of the cycle. 

From observation, it is clear that the 2nd stage pressure shows a clear increase, which means 

the compressor shifts away from its optimal operation and works at a slightly higher efficiency. 

Corresponding to this change the power supply current shows a slight increase for the leaking 

discharge valve current signal.  
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This slightly higher amplitude current also shows that it needs more current consumption whilst 

delivering a slightly higher quantity of air, confirming that the compressor uses more power 

and hence slightly higher efficiency. 

The amplitude of the current signal is slightly higher after the DVO of the 1st stage at a crank 

angle of about 320º, phase-shifted lagging the baseline by about 20º and lowest at a crank angle 

of about 190º phase-shifted lagging the baseline by approx. 20º with the leaking discharge 

valve signal slightly lower. 

MCSA of Intercooler Leakage at 8.3 bar  

As shown in Figure 4-54, a leaking intercooler causes the 1st stage pressure to be slightly lower 

than that of the baseline by about 0.1 bar in the period from 0º to 280º of the crank angle at a 

starting pressure of about 3.6 bar at 0º of the TDC. Following that sequence, the intercooler 

leakage then shows a difference 0.2 bar lower than the baseline from approximately 281º to the 

end of the cycle and highest at about 3.9 bar. 

The pressure waveform of 2nd stage under the intercooler leakage in the compression process 

is the same from 0º to 155º at a starting pressure of 5 bar, after that, the intercooler leakage is 

lower by about 0.05 bar from approximately 156º to 200º and is at its peak at 11.2 bar, whereas 

the discharge process in the period of 201º to 265º the intercooler leakage pressure increases 

by about 0.1 bar and then it remains roughly the same in the rest of the cycle. From observation, 

it is clear that the 2nd stage pressure shows a much higher increase which means the compressor 

drifts away from its optimal operation and may work at high efficiency. 

Corresponding to this change the power supply current shows a slightly higher increase for the 

leaking discharge valve current signal. This higher amplitude current also shows that it needs 

more current consumption whilst delivering a higher quantity of air, confirming that the 

compressor uses more power and hence higher efficiency. The amplitude of the current signal 

is slightly higher after the DVO of the 1st stage at a crank angle of about 315º, phase-shifted, 

leading the baseline by about 25º and lowest at a crank angle of about 190º, phase-shifted, 

leading the baseline by approximately 20º with the leaking discharge valve signal slightly 

lower. 
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Figure 4-54 Current and Pressure Trace for Baseline and Intercooler Leak at 8.3 bar 

4.10.4 MCSA Based Condition Monitoring of Loose Belt  

MCSA of Loose Belt at 2.8 bar  

As illustrated in Figure 4-55, the loose belt in the 1st stage pressure is the same from 0º of the 

TDC to 30º of the crank angle, at a pressure of approximately 3.6 bar. From 31º to about 300º 

of the crank angle the loose belt pressure is slightly lower by about 0.05 bar of the baseline. 

Following that sequence, the loose belt pressure then remains roughly the same to the end of 

the cycle with both waveforms at their highest at about 3.5 bar. 

The pressure waveform of the 2nd stage under the loose belt in the compression process is the 

same from 0º to 110º at starting pressure of 2.8 bar then the loose belt pressure decreases by 

about 0.1 bar compared to the baseline from 111º to 190º of the crank angle and is at its peak 

at about 4.3 bar, whereas the discharge process in the period of 191º to the rest of the cycle the 

loose belt pressure remains roughly the same. From observation, it is clear that the 2nd stage 

pressure shows a slight increase, which means the compressor shifts away from its optimal 

operation and now works at a lower efficiency. 

Corresponding to this change the power supply current shows a slight decrease in the leaking 

discharge valve current signal. This amplitude current also shows that it needs more current 
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consumption whilst delivering the same quantity of air, confirming that the compressor uses 

more power and hence lower efficiency.  

The amplitude of the current signal is slightly lower after the DVO of the 1st stage at a crank 

angle of about 320º, phase-shifted, lagging the baseline by about 20º and lowest at a crank 

angle of about 190º, phase-shifted, lagging the baseline by approximately 20º with the loose 

belt signal slightly lower. 

 

Figure 4-55 Current & Pressure Trace for Baseline and Loose Belt leak at 2.8 bar 

MCSA of Loose Belt at 5.5 bar  

As shown in Figure 4-56, the loose belt 1st stage pressure is the same from 0º of the TDC to 

30º of the crank angle at a starting pressure of approximately 3.5 bar. From 31º to about 315º 

of the crank angle the loose belt pressure is slightly lower by about 0.1 bar of the baseline. 

Following that sequence, the loose belt pressure then remains roughly the same to the end of 

the cycle with both waveforms at their highest at about 3.7 bar. 

The pressure waveform of 2nd stage under the loose belt in the compression process is the same 

from 0º to 135º starting at a pressure of 3.6 bar then the loose belt pressure decreases by about 

0.05 bar from 136º to 191º of the crank angle and is at its peak at about 7.7 bar, whereas the 

discharge process in the period of 191º to the rest of the cycle the loose belt pressure remains 

0 45 90 135 180 225 270 315 360 405 450 495 540 585 630 675 720
-8

-6

-4

-2

0

2

4

6

8

10

12
Pressure and Electrical Current for Baseline and Loose Belt at 2.8bar

M
ot

or
 C

ur
re

nt
 (A

) &
 P

re
ss

ur
e 

(b
ar

)

Crank Angle (Deg.)

 

 

1st Stage Pressure for Baseline
2nd Stage Pressure for Baseline
1st Stage Pressure for Loose Belt
2nd Stage Pressure for Loose Belt
1st & 2nd Stage Baseline Current
1st & 2nd Stage for Loose Belt Current



Page 169 of 303 
 

roughly the same. From observation, it is clear that the 2nd stage pressure shows a clear increase, 

which means the compressor shifts away from its optimal operation and would work at a 

slightly higher efficiency. 

Corresponding to this change the power supply current shows a slight decrease in the leaking 

discharge valve current signal. This slightly higher amplitude current shows that the current 

consumption increases slightly whilst trying to deliver a slightly higher quantity of air, 

confirming that the compressor is trying to use more power and hence slightly higher 

efficiency.  

 

Figure 4-56 Current and Pressure Trace for Baseline and Loose Belt at 5.5 bar 

The amplitude of the current signal is slightly lower after the DVO of the 1st stage at a crank 

angle of about 320º, phase-shifted, lagging the baseline by about 20º and lowest at a crank 

angle of about 150º, phase-shifted, lagging the baseline by approximately 25º with the loose 

belt signal slightly lower. 

MCSA of Loose Belt at 8.3 bar  

As shown in Figure 4-57, the loose belt of the 1st stage pressure is the same from 0º of the TDC 

to 100º of the crank angle at a starting pressure of approximately 3.6 bar. From 101º to about 

300º of the crank angle the loose belt pressure is slightly lower by about 0.1 bar of the baseline. 
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Following that sequence, the loose belt pressure then remains roughly the same to the end of 

the cycle with both waveforms at their highest at about 3.9 bar. 

The pressure waveform of the 2nd stage under the loose belt in the compression process is about 

0.3 bar lower than the baseline from 0º to 135º starting at a pressure of 3.7 bar. 

After that, the loose belt pressure decreases to about 0.1 bar from 136º to 191º of the crank 

angle and is at its peak at about 11.2 bar, whereas the discharge process in the period of 191º 

to the rest of the cycle the loose belt pressure remains roughly the same. From observation, it 

is clear that the 2nd stage pressure shows a higher increase, which means the compressor shifts 

away from its optimal operation and works at a higher efficiency. 

 

Figure 4-57 Current and Pressure Signals for Baseline and Loose Belt at 8.3 bar 

4.10.5 Discussion 

The power supply current shows a slight decrease in the leaking discharge valve current signal. 

The higher amplitude current shows that the current consumption is high whilst trying to 

deliver a higher quantity of air, confirming that the compressor is trying to use more power and 

hence higher efficiency. As illustrated in Figure 4-49, the amplitude of the current signal is 

slightly lower after the DVO of the 1st stage at a crank angle of about 300º, phase-shifted, 

lagging the baseline by about 10º and lowest at a crank angle of about 105º, phase-shifted, 
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lagging the baseline by approximately 10º with the loose belt signal slightly lower. Generally, 

the discharge valve leakage at the second stage causes the current profile of the first stage 

amplitude current to increase at its peak in the period discharge valve process. Whereas, the 

current profile of the second stage is behind but with a small decrease in the current amplitudes 

and slightly shifted compared with the baseline.  

For the suction valve leakage at the second stage, the current profile of the first and second 

stage amplitude current increases at its peak in the period discharge valve process. Whereas, 

the current profile of both the first and second stage is leading the baseline current but at the 

same amplitudes and shifts significantly compared with the baseline at 5.5 bar. 

For the leaking intercooler, the current profile of the first stage is slightly lower and the 

amplitude current increases at its crest in the period discharge valve process. Whereas, the 

current profile of both the first and second stage lags the baseline current but at the same 

amplitudes and slightly shifts compared with the baseline.  

For the faulty transmission belt, the current profile of the first stage is slightly lower and the 

amplitude current increases at its crest in the period discharge valve process. Whereas, the 

current profile of both the first and second stage lags the baseline current but at same amplitudes 

and slightly-phase shifted compared with the baseline.  

The amplitude current needs the same current consumption whilst delivering the same quantity 

of air, hence working at a different level of efficiency and being higher at the 2nd stage. 

Each case shows that less work is required in the suction stage whereas in the second stage 

(compression cycle) more work is needed, and the pressure oscillates higher at the discharge 

pressure and hence uses more current. 

4.11 IAS Based Condition Monitoring  

An extra fault was introduced in this section as the opportunity arose to allow multiple faults 

to diagnose simultaneously. 

The defective data is already explained previously in Table 4-7 Test Cases and Operating 

Conditions for only the Discharge Valve Leakage, Suction Valve Leakage, Intercooler Leakage 

and Belt Looseness. 

Whilst the Defective Stator (DS) and both DS combine with DVL, these are new faults being 

seeded into the system. As cylinder pressure is the most vital parameter in measuring the 

operating performance of a Reciprocating Compressor (RC), these tests will give a clear 
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understanding of its performance under different pressure and load. It expresses all the 

functions and working processes in all the sub-systems components, such as valve movement 

in each stage, air-flow dynamics and motor speed-load signature. 

4.11.1 IAS based Condition Monitoring of Crankshaft  

IAS of Crankshaft Based Condition Monitoring Combined of 1st and 2nd Stage at 40, 80 

and 120 psi 

In this test the faulty stator winding, discharge valve leakage and both DVL and stator fault 

have been seeded. The main purpose of this exercise is to compare and localise failures at 

various steps of the compressor stages though the instantaneous angular speed. Figure 4-58 

shows the 1st & 2nd stage pressure at 40, 80 and 120 psi over two revolutions of the compressor 

cycle and the consistency of the waveform is apparent. Figure 4-59 shows the comparison of 

the IAS signal and the pressure of the 1st & 2nd stage at 40, 80 and 120 psi respectively. From 

Figure 4-58,less work is carried out in the 1st stage between approximately 20° to 180° and 

more is done at approximately 220° to 320 °.  

Minimum work is done during the 2nd stage expansion stroke, between crank angles of about 

20° to approximately 90°, whereas maximum work is done between approximately 100° to 

180° during the compression cycle followed by the discharge.  

Considering the amount of work to be done in the 2nd stage as shown from Figure 4-59, at 120 

psi the IAS speed is 20° to 70° throughout when both suction valves (SVO) are open and reach 

its maximum. 

At about 100° when the 2nd stage suction valve closes, a gradual deceleration can be observed 

in the IAS performance as more work is needed to compress the 2nd stage gas. 

The 1st stage suction valve closes at about 170° and now the machine starts to discharge the 2nd 

stage compress gas in the 1st stage cylinder. This carries on until to the 2nd stage (DVO) is at 

about 270° and a maximum deceleration of the IAS can be observed. Between 270° and 360° 

the 2nd stage goes through its suction stroke and 1st stage discharges gas to the cylinder. The 

shape of the IAS signal is very like a sinusoidal waveform. The maximum value of the IAS is 

approximately 90° of the crank angle and the minimum value is at 230°. 
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Figure 4-58 1st and 2nd Stage Pressure Signals at 40, 80 and 120 psi 

The reason that the 2nd stage at 120 psi was considered for the above situation is that because 

it is the IAS that feeds back to the motor to produce variations in the motor current.  

The process applies also to the stator, DVL, combine DVL and stator and baseline. The ICL is 

the only seeded fault that behaves differently during the IAS of the crankshaft at 40 and 80 psi 

while at 120 psi it’s slightly lower by about 10 (rpm) from the suction valve open SVO up to 

the discharge valve open DVO.  

From the DVO to the DVC it’s remarkably higher and very like the trends. 

Figure 4-59 illustrates how the IAS affect the pressure. 

The greater the discharge pressure the greater the piston must work and the value of the IAS 

decreases as the discharge pressure increases. The maximum value of the IAS depends on the 

discharge pressure as it happens when both the 1st and 2nd stage suction valves are open. 

The range in rpm is small compared with the inseminated fault but if those faults were of a 

higher magnitude the values would have made a bigger and catastrophic impact.  
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See also Table 4-8 IAS of the Crankshaft at 40, 80 and 120 psi for the comparison. 

Table 4-8 IAS Values of the Crankshaft at 40, 80 and 120 psi 

 

 Baseline Stator DVL DVL + 

Stator 

ICL 

40 psi 448 450 448 447 445 

80 psi 447 449 446 445 442 

120 psi 446 448 445 443 440 

 

Figure 4-59 IAS of Crankshaft at 40, 80 and 120 psi 

4.11.2 Current Waveform Based Condition Monitoring 

The current fault of the baseline, faulty stator, faulty discharge valve together with the faulty 

stator and intercooler fault at 40, 80 and 120 psi can be compared in Figure 4-60 Current 

Waveform Comparison below. 

The amplitude of the current of the crank angles discharge pressure from 100° to 225° 

approximately, lower than that from 250° to 360° and the amplitude increase with the discharge 
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pressure. This concludes that the current signal can be used to obtain valued information about 

the operation of the compressor. 

The current can be an indication of the torque exerted by the motor, therefore, the maximum 

and minimum values of current correspond to an increase and decrease in the IAS. 

Figure 4-61  RMS / Envelope Signal Waveform shows the Root Mean Square (RMS) values 

of the currents and is accompanied by the envelope signal for the baseline and the seeded faults 

for an accurate comparison. 

 

Figure 4-60 Current Waveform Comparison 

4.11.3 RMS/Envelope Analysis 

As illustrated in Figure 4-61, the RMS values are calculated for all the cases to quantify the 

differences for all individual faulty cases. The RMS values of the current signals change 

depending on the load fluctuation. At different operating discharge pressure such as 50 psi, the 

current signals are also changing with the different kind of faulty cases. The RMS signal under 

the faulty condition is higher than that of the baseline and the RMS value of the current signal 

of the intercooler leakage is lowest in the five conditions. 
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However, when the discharge pressure increases, the RMS values of the current signal 

increases accordingly under its conditions. This shows that if a failure is detected from the 

compressor, the load fluctuation characteristic will be different, consequently the RMS values 

and its change will be different to that of a healthy compressor with the increase of the 

discharge pressure. It should also be noted that this study mainly focuses on a higher-pressure 

range and based on this investigation failures can be identified and analysed by the RMS 

analysis in a relationship with the discharge pressures. 

 

Figure 4-61 RMS / Envelope Signal Waveform 

The envelope signal analysis has also proved it can allow a complete separation between the 

faulty conditions at different discharge pressures. The trends are very close to that of the RMS 

signal proving that it can capture the modulation characteristics with precision, however the 

envelope signal is slightly narrower than the RMS current signal.  

4.11.4 Current Spectrum Analysis 

An electric motor is a fundamental part of the conversion of electrical to mechanical energy in 

industries and the frequency analysis has proven to be better for the determination of motor 

condition such as eccentricity, misalignment, bearing deterioration and much more. A typical 
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motor drawing current will display the main component frequency at 50 or 60 Hz [128]. The 

supply frequency in this study is at 50 Hz as United Kingdom mains frequency is nominally 

50 Hz and this can sometimes fluctuate between ±1% of 50 Hz. The main frequency is 

supplemented by a pair of sidebands of  ±7.3 Hz which is the compressor operating frequency. 

Figure 4-62, shows the current spectra signal at 40, 80 and 120 psi for all five cases. From 

observation, the current spectra in all the three-discharge pressures plot the 50 Hz supply 

frequency and its harmonics are known as “sidebands” The spectrum displays a high level of 

Amplitude Modulation (AM). at 50 Hz fundamental and two sidebands (𝐹𝐹 − 𝑓𝑓1) 𝑖𝑖𝑛𝑛𝑑𝑑 (𝐹𝐹 +

𝑓𝑓1)  ≈ 42.7 and 57.3 Hz. The first sidebands are slightly higher than the second sidebands 

showing the induced faults DVL combined with stator being at the peak trailed by the DVL 

with the assumption that the pressure of the RC increases in parallel with the amplitude of the 

sidebands. 

 

Figure 4-62 Current Spectrum Signal 
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4.11.5 IAS Spectrum Analysis 

 

Figure 4-63 IAS Spectrum Comparison 

Instantaneous Angular Speed (IAS) can offer useful information about the health and behaviour 

of a machine. Machinery such as RC rotates at a constant speed however in practicality the 

angular speed varies due to load fluctuations during operation. Any change in IAS indicates 

the presence of a fault and the possibility of failures. The spectral signatures, as shown in Figure 

4-63, provide very important information concerning its frequency and fault conditions. The 

signals are closely related to the RC dynamics and have less noise however slightly demanding 

in the implementation phase due to the encoder mounting. Any failure is directly related to a 

frequency component and is displayed by a specific signature. At a discharge pressure of 40, 

80 and 120 psi it is clear that the peaks, for all cases, are very similar in symmetry however the 

peak amplitudes vary and there are mixed spectral faults in peak 1 (P1) 1st  harmonic 7.2 Hz, 

peak 2 (P2) 2nd harmonic, peak 3 (P3) 3rd harmonic, peak 4 (P4) 4th harmonic, peak 5 (P5) 5th 

harmonic and peak 6 (P6) 6th harmonic. 

At 40 psi peak (P1) 7.2 Hz, DVL is at its peak and ICL lowest, Peak (P2) at approximately 15 

Hz ICL is highest and BL the lowest, peak (P3) at 22.5 Hz DVL combined with Stator are at 

the highest and ICL lowest, at about 29 Hz peak (P4) ICL is highest and DVL combined with 

0 5 10 15 20 25 30 35 40 45 50
0

10

20
A

m
pl

itu
de

(A
)

IAS Spectrum Comparison at  - 40psi
BL
Stator
DVL
DVL+Stator
ICL

0 5 10 15 20 25 30 35 40 45 50
0

10

20

A
m

pl
itu

de
(A

)

IAS Spectrum Comparison at  - 80psi

0 5 10 15 20 25 30 35 40 45 50

Frequency(Hz)

0

10

20

A
m

pl
itu

de
(A

)

IAS Spectrum Comparison at  - 120psi

P1

P2 P3 P4 P5 P6



Page 179 of 303 
 

the stator is the lowest and peak (5) and (6) at approximately 37 and 44 Hz the amplitudes is at 

its lowest with ICL slightly lower. 

At 80 psi the trend is very similar to 40 psi however peak (P1) amplitude is higher compared 

to the 40 psi with ICL the lowest and the rest of the harmonics more or less similar to the 40 

psi in exception of peak (P2) slightly lower that of peak (P2) 40 psi discharge pressure. 

At 120 psi all five cases are at the maximum at peak (P1) compared to the 40 and 80 psi 

discharge pressure. At peak (P1) the DVL combined with the stator is at the upper limit, DVL 

and stator individually and baseline in the middle range and ICL at its lowest. The rest of the 

harmonics are more or less similar to the 80 and 40 psi discharge pressure with the exception 

of peak (P2) lower than the 40 and 80 psi discharge pressure. 

The presence of low-frequency harmonics in the compressor could be associated with the shaft 

misalignment, imbalance, eccentricity cracks or bearing failure.[129]. 

4.11.6 Discussion 

It has been found that the dynamic pressure, IAS and motor current monitoring allows full 

detection of all induced faults including different leakages of discharge, inlet and intercooler, 

driving belt looseness and motor stator asymmetries with moderate signal conditioning and 

analysis. However, both IAS and motor current monitoring provides good information 

regarding fault location and severity. 

In this study only, the time domain application has been used for fault comparison of the 

cylinder under pressure at 2.8, 5.5 and 8.3 bar for the 1st and 2nd stage. Four control parameters 

have been used; the baseline against discharge valve leakage, suction valve leakage, intercooler 

leakage and belt looseness.  

So far, the time domain analysis result seems to be an easy method but not very accurate 

however it is still to be considered as the study of the frequency domain is left for future works.  

In the meantime, vibration can provide both detection and diagnosis of these faults under the 

cost of high processing efforts. Considering those unacceptable intrusive disturbances of 

pressure monitoring and difficulties and safety issues of current transducers in production lines, 

it has concluded that IAS is relatively easy to be implemented because of the easiness of the 

sensor installation and low cost of the whole system. To composite its diagnostic deficiency, 

portable vibration monitoring system will be combined which needs to include more advanced 

signal analysis and diagnosis techniques. 
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 Analytic Modelling of a Vacuum Pump 

This chapter presents an analytic analysis of the industrial target machine in Phase II which 

is the Liquid Ring Vacuum Pumps (LRVP) in a paper mill. It gives an in-depth understanding 

of the dynamic behaviour and operation of the machine and assists the monitoring and 

accurate diagnosis of the LRVP. Based on variation in key performance parameters such as 

pressure and flow rate, the behaviour of external dynamic responses such as acoustics, 

vibration and rotor IAS are understood qualitatively, which is sufficient for understanding the 

data characteristic in this preliminary study. As LRVP share the operation process of 

reciprocating compressors in terms of internal pressure oscillations, the qualitative results 

made in Reciprocating Compressor (RC) in Chapter 3 and Chapter 4 can be referred to LRVP 

data analysis. 
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 Introduction  

The Liquid Ring Vacuum Pump (LRVP) is a rotary type of pumps much like a vane vacuum 

pump and rotary piston vacuum pumps. Due to having liquid (water) seals LRVP has no 

exhaust valve, the friction surface and its compression is nearly isothermal or has little 

temperature change. With these distinctive features it is widely used in food, paper, 

pharmaceutical, metallurgy, petroleum, chemical and other industries to transport explosive 

gas with dust, non-condensable gas and water mixture. 

In principle, LRVPs mainly consist of a vaned impeller and circular pump housing. The 

impeller is located eccentrically from the pump housing. When the impeller rotates, liquid 

(usually water) is fed into the pump casing and forms a moving cylindrical ring against the 

inside of the housing due to an effect of centrifugal acceleration. This liquid ring and the vane 

blades constitute a series of chambers. Working fluid such as gas or air is sucked into the 

chambers through an inlet port in the end of the housing. Pressures of fluid trapped in the 

chamber vary periodically as the volume changes when rotating the eccentric impeller. For an 

individual chamber, the pressure changes will be traditionally examined in three sub processes 

which includes suction, compression and discharge. This is very similar to that of a 

reciprocating compressor, see Figure 3-10, meaning that the force variation and dynamics of 

LRVP behave like a RC.  

In addition, because the effect of liquid ring sealings, considerable power will be consumed 

through the frictional effects of fluids and interactions between fluid and stationary casing.  

In general, dynamic behaviours of a LRVP can also be examined based on these gas impulsions 

and the friction excitations, which will then pave the fundamental for analysing measured 

vibration, acoustics and motors current signals to achieve fault detection and diagnosis.  

As LRVP is a typical bladed rotor system, it can suffer from faults which commonly occur in 

such rotor systems. Typically, it can have impeller defects due to cavitation erosions, bearing 

defects, shaft seal malfunctions and various internal and external leakages. 

There are high demands for condition monitoring of LRVPs to ensure the safety and efficiency 

of the production activities relying on LRVPs, which are evidenced by many general 

discussions and explanations on websites in relation to trouble shooting of LRVPs. However, 

extensive reviews have found little publications relating to LRVP dynamic modelling in 
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association with fault cases. This shortage of in-depth knowledge in the dynamic behaviours 

makes it difficult to implement vibro-acoustic based CM techniques on this machine.  

To overcome this shortage, this chapter presents a study of the dynamic responses of LRVPs 

through modelling the air and water flow processes. A preliminary study has shown that LRVP 

operations share with a reciprocating machine the various sub-processes in terms of suction, 

compression, discharge and expansion. This study then focuses on analytic modelling in which 

the details of dynamic similarities are examined so that both the quantitative and qualitative 

results obtained based on the RC made in Chapter 3 and Chapter 4 can be referred in a greater 

degree for LRVP data analysis and CM implementation. This would avoid the repetitive studies 

made in Chapter 3 and Chapter 4. In addition, the dynamic effect of liquid ring frictions is also 

examined to understand its amplitudes and frequency characteristics when internal leakages 

occur due to faulty impellers. 

 

 Overview of Liquid Ring Vacuum Pump Models 

A vacuum pump converts mechanical input energy of a rotating shaft, driven by an electric 

motor, into pneumatic energy by releasing the air contained within an enclosed space causing 

the internal pressure level to become lower than the atmospheric pressure. The volume released 

and the pressure difference produced will determine the amount of energy produced and the 

internal forces applied to the impeller, bearings, and shafts. 

LRVP are well known for producing vacuum for the process industries. It is similar to the 

rotary positive-displacement pump but instead it employs water as the sealing element to 

formulate a series of compression chambers. Sub-process of suction, compression and 

discharge are formed by the circulation of a ring of liquid around the housing of the multi-

bladed rotating impeller which is located in eccentricity between the pump housing and the 

rotating blade as explained in the above section. This operation is made possible due to the 

eccentricity of the rotating impeller. This can be elaborated more by the schematic of Figure 

5-1 [130]. 
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Figure 5-1 A schematic of liquid ring vacuum pumps [131] 

The modelling of LRVP is an ongoing issue faced by academics as their theoretical results 

deviate from their actual performance due to a lack of fundamental study in the performance 

which limits its development in both reliability and performance. A universal theoretical model 

based on the operating cycle principle of the “suction-compression-discharge-expansion” 

performance of a liquid ring vacuum pump was implemented to solve the above issue by Si 

Huang et al. It was possible to accurately predict the liquid ring vacuum pump performance 

parameters such as shaft power, actual suction and discharge capacity and the global efficiency 

by the proposed theoretical model without the restriction of other important data such as the 

empiric range, the pump design and overall data. This model has proven to be a feasible tool 

for the application in the performances of the liquid ring pump due to its isothermal advantages 

of the compression process and the fluid acting as the seal [132]. 

A lot of work has been carried out on the industrial application and design of the LRVP 

however if compared to other types of compressors and pumps very little study has been done 

on the LRVP [132] [133]. 

Pfleiderer formulated an equation for the theoretical suction capacity in LRVP and drew a 

theoretical model of the compression ratio and the liquid ring area at each circumferential angle 

in the pump based on the ideal operating cycle theory of the “suction-compression-discharge” 

in Reciprocating Compressor (RC) [134]. 
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Following that Schulz et al derived a relatively equivalent equation aimed at the theoretical 

suction capacity. It was found that both the equation of the theoretical suction capacity and its 

model has primarily been employed only during the designing stage of LRVP [135] [136]. 

Equation 5.1 to 5.3 below shows the theoretical suction capacity revealed by the impeller 

rotational speed and the geometric parameters stays the same, irrespective of the compression 

ratio of discharge pressure to suction pressure. The solution is not in line with the existing 

condition, especially when the compression ratio is quite high, however Prager [137] developed 

an empirical formula as shown in equation 5.4 and 5.5 for the actual suction capacity related 

on LRVP experimental data performance, but the legitimacy of the formula was limited by the 

amount of collected data and the maximum unidentified factual suction capacity. Powle [138] 

created Equation 5.6 for the ratio of the actual discharge capacity to the maximum actual 

discharge capacity, as the lowest suction pressure of the LRVP was too near to the saturated 

vapour pressure of the working liquid. 

As shown in Equation 5-7 Bodik described a closer connection between the shaft power and 

the rotational speed of the LRVP. 

 

Pfleiderer [134]          :  𝑞𝑞𝑝𝑝ℎ = 1
2
𝜇𝜇𝜔𝜔2  

2 [(1− 𝛼𝛼)² − 𝑣𝑣²] (5.1) 

𝑞𝑞𝑠𝑠 =  
𝜆𝜆

𝜆𝜆𝑚𝑚𝑎𝑎𝑚𝑚
𝑞𝑞𝑠𝑠 𝑚𝑚𝑎𝑎𝑚𝑚 (5.2) 

Vacuum pumps:  𝜆𝜆
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

= 0.147 𝑋𝑋3 − 1.297 𝑋𝑋2 + 0.150𝑋𝑋 + 1 (5.3) 

Prager [137] 

Compressor:         𝜆𝜆
𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚

= 0.707𝑋𝑋3 − 1.527𝑋𝑋2 + 0.1782𝑋𝑋 + 1 

 

(5.4) 

 

𝑋𝑋 =
�𝑃𝑃𝑜𝑜 𝑃𝑃𝑠𝑠� − 1�

��𝑃𝑃 𝑃𝑃𝑠𝑠� �
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Powle [138]                            𝑞𝑞𝑜𝑜 =  
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(5.6) 

 

Bodik [139]                                   𝐴𝐴𝐴𝐴2   
3 +B𝐴𝐴2 

 

 

(5.7) 

 Gas Flow and Pressure Pulsations 

As briefly described above by Si Huang et al [132], his model was based on a analytic 

theoretical model of the operating cycle principle of “suction-compression-discharge-

expansion” performance of an LRVP and was successful due to its isothermal advantages of 

the compression process and fluid acting as the seal, whereas Pfleiderer’s [134] derivative for 

the “suction-compression -discharge” is based on the actual operating cycle of the LRVP and 

Figure 5-2 gives a brief overview of the Fundamental operation of the model. The model in 

Figure 5-2 (a) is structured into three processes; “suction, compression, discharge”. The process 

starts with the suction stage at pressure PIS curves 1-2 and stays constant until it attains qth the 

highest suction capacity. The volume of the gas diminishes whilst the pressure rises till PId 

during the compression process curves 2-3. The discharge pressure PId  during the discharge 

phase curves 3-4 stays constant until all the gas is released from the system. Figure 5-2 (c) 

relates to the zone in the LRVP and is partitioned into 4 segments in the following zonal order; 

segment HCE suction zone, segment ECF compression zone, segment FCG the zone, segment 

GCH the expansion stage, consequently some remaining gas q0 which is remaining in the LVRP 

returns to the suction region after the gas has been discharged. The LVRP working principle is 

very similar to the RC. This remaining gas moves to qe as shown in Figure 5-2 (b) and Figure 

5-2 (c). In Figure 5-2 (b) it is shown as curve 4-1 and Figure 5-2 (c) represented as section 

GCH, qe which is also the expansion process. 
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Figure 5-2 Operating Parameters of a Liquid Ring Vacuum Pump [132] 

The suction volume in an LRVP equates to 𝑞𝑞𝑠𝑠    = 𝑞𝑞𝑝𝑝ℎ −  𝑞𝑞𝑎𝑎  (𝑖𝑖𝑓𝑓 𝑝𝑝𝑠𝑠  ≤  𝑝𝑝𝑣𝑣 ,𝑞𝑞𝑠𝑠  = 0). The 

theoretical result differs from the practical as the remaining gas and its expansion phase were 

not take into consideration in the theoretical model from Figure 5-2 (a). From Figure 5-2 (c) 

the theoretical model includes an expansion stage based on Figure 5-2 (a) of the ideal operating 

model. 

Each sector is briefly detailed and formulated below based on Figure 5-2 of the operating 

parameters of the LRVP. 

1) Suction Phase 

The distance from the centre of the impeller to any point on the LRVP surface in the suction 

area is described as: 
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𝑟𝑟𝜑𝜑 = 𝑟𝑟2 �
2(𝑅𝑅 − 𝜌𝜌)
𝜇𝜇𝑟𝑟2

+ 𝑉𝑉2 

Where,                                 𝜌𝜌 = 𝑟𝑟2  �1 + � 𝑎𝑎
𝑟𝑟2
�
2

+ 2   𝑎𝑎
𝑟𝑟2

 𝑐𝑐𝑐𝑐𝑠𝑠𝜑𝜑        

(5.8) 

 

 (5.9) 

If the LRVP breathe-in to its maximum, the theoretical suction capacity qth which is also 

described as the volumetric flow of gas passing through sector CE is: 

𝑞𝑞𝑝𝑝ℎ =  
1
2  𝜇𝜇𝜔𝜔𝑏𝑏𝑟𝑟2  

2 [(1− 𝛼𝛼)2 − 𝑣𝑣2] (5.10) 

2) Compression Phase  

The distance from the centre of the impeller to any point on the LRVP surface in the 

compression area is defined as; 

𝑟𝑟𝜑𝜑 =  𝑟𝑟2 �
(1−∝)2  + (𝜎𝜎 − 1) 𝑣𝑣2    

𝜎𝜎  
(5.11) 

The suction pressure to the compression ratio 𝜎𝜎 of the pressure at the angle of the circumference 

is; 

1
𝜎𝜎2  = 𝐴𝐴2 �1−

𝜎𝜎 − 1
𝜀𝜀 � (5.12) 

Where 

𝐴𝐴 = 2(𝑅𝑅 − 𝜌𝜌) 𝜇𝜇𝑟𝑟2⁄ [(1− 𝛼𝛼)2 − 𝑣𝑣2];  𝜀𝜀 = 𝑔𝑔𝜔𝜔2𝑟𝑟22
2𝑃𝑃𝐼𝐼𝑆𝑆
�  

 

(5.13) 

3) Discharge Phase 

The distance from the centre of the impeller to any point on the LRVP surface in the discharge 

area is defined as; 

𝑟𝑟𝜑𝜑 = 𝑟𝑟2�𝑣𝑣2 +  
2(𝑅𝑅 − 𝜌𝜌)
𝜇𝜇𝑟𝑟2

    �
1
3  �1 +

1
𝜀𝜀�                                                

 

(5.14) 

4) Expansion Phase 

The distance from the centre of the impeller to any point on the LRVP surface in the expansion 

area can also be evaluated by (5.14). Consequently, the complete profile of the LRVP can be 

attained corresponding to equation (5.8), (5.11) and (5.14). 
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The volume of the return gas to the suction area of the LRVP is computed by equation (5.15) 

below where the circumferential angle is 𝜑𝜑 = 2𝜋𝜋 to the middle of the blade and 𝑟𝑟𝜑𝜑=2𝜋𝜋  is the 

distance away from the surface of the liquid ring. 

𝑞𝑞0  = � 𝜔𝜔
𝑟𝑟𝜑𝜑=2𝜋𝜋

𝑟𝑟1
𝑟𝑟𝑏𝑏𝑑𝑑𝑟𝑟 =

1
2  𝜇𝜇𝜔𝜔𝑏𝑏�𝑟𝑟𝜑𝜑=2𝜋𝜋2 − 𝑟𝑟12�                            

(5.15) 

 

After a polytropic expansion procedure the volume flow of the gas alters from 𝑞𝑞0 to 𝑞𝑞𝑎𝑎 and 

goes through the following sequence: 

𝑞𝑞𝑎𝑎 =  𝑞𝑞0 �
𝑝𝑝𝑜𝑜
𝑝𝑝𝑠𝑠
�
1 𝑚𝑚�

 
(5.16) 

The suction volume of the LRVP is now explained as: 

𝑞𝑞𝑠𝑠 =  �
0
1
2
𝜇𝜇𝜔𝜔𝑏𝑏𝑟𝑟22[(1− 𝛼𝛼)2− 𝑣𝑣2] −  𝑞𝑞0 �

𝑝𝑝𝑜𝑜
𝑝𝑝𝑠𝑠
�
1 𝑚𝑚�

 � 𝑝𝑝𝑠𝑠>
𝑝𝑝𝑠𝑠 ≤  𝑝𝑝𝑣𝑣

𝑝𝑝𝑣𝑣   
(5.17) 

Now corresponding to the isothermal compression procedure, the discharge volume 𝑞𝑞𝑜𝑜 can be 

expressed as: 

𝑞𝑞𝑜𝑜 =
𝑞𝑞𝑠𝑠𝑝𝑝𝑠𝑠
𝑝𝑝𝑜𝑜

 (5.18) 

 

Figure 5-3 Gas pressure pulsations of a Liquid Ring Vacuum Pump [140] 

Based on flow variations and pressure equations it is possible to obtain gas pressure pulsations 

in one impeller chamber. Figure 5-3 shows a typical pressure pulsation diagram from a 

Computational Fluid Dynamic (CFD) analysis. From this figure, it can be seen that the pressure 

1) 3)  4) 2) 2) 
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difference between suction and discharge phases are significant but is much smaller compared 

with a RC machine. Nevertheless, the pressure difference and flow vortex between the suction 

line and the suction port will couple acoustic waves into the suction line as does the discharge 

line and port. This effect will lead to acoustic vibration coupled not only to these two lines but 

to the housing structures and will produce vibrations.  

Overall, as there are a series of intermittent such pressure pulsations, each being partitioned by 

the impeller blade, the total pressure pulsations, along with volume-flow rate, will still exist. 

Such pulsation will cause oscillations on the rotating shaft. Consequently, it will further lead 

to fluctuations of the impeller rotor system and thereby the Instantaneous Angular Speed (IAS) 

and motor current signatures. 

 Dynamic Effect of Liquid Ring 

Due to the combined effect of centrifugal acceleration and gas pressures, the pressure 

distribution is not uniform. According to the Finite Element Analysis (FEA) based numeric 

study made by [140], quantitative pressure differences are typically in a range as depicted in 

Figure 5-4. The high pressure in the discharge phase can reach up to 320kPa and the low 

pressure just before such phase is as low as 210kPa. This biased pressure distribution means 

that there is a radial load applied to both the propeller rotor and the casing. Moreover, this load 

becomes higher at the tip of the impellers blade and lower at the gas chamber, which results in 

an impulsive force being applied to the casing and thereby induces casing vibration and 

acoustic radiations. Because of the higher pressure fluctuation and stronger fluid coupling this 

water ring induced vibration is much higher compared with that induced by gas pulsations. 

This water ring induced vibration can have a characteristic frequency 𝑓𝑓𝑤𝑤 :   

𝑓𝑓𝑤𝑤 =  𝑁𝑁𝑏𝑏𝑓𝑓𝑟𝑟 ± 𝑓𝑓𝑟𝑟  (5.17) 

Where 𝑁𝑁𝑏𝑏 is the number of blade and 𝑓𝑓𝑟𝑟  is rotor frequency. The sidebands are due to the biased 

pressure distributions. This shows that under steady operation the dynamic responses including 

casing vibration, airborne acoustics, rotor IAS and motor current will exhibit typical 

modulation contents which are common in many mechanical systems such as gear 

transmissions, rolling bearing and so on. Especially, this modulation becomes more significant 

when faults exist such as blade corrosions and increased bearing clearances which often cause 

further biased pressures.  
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Figure 5-4 Water pressure pulsations of a Liquid Ring Vacuum Pump [140] 

Another essential dynamic excitation is flow vortex. Because of interactions between water 

ring, blade tips, discharge ports etc there are strong vortices inside LRVP flow fields which are 

illustrated in Figure 5-5 from the FEA analysis carried out by [140]. These will be inevitably 

coupled to casing to generate vibration and acoustics. As the distribution of vortices are in a 

random and localised matter, the vibration induced often exhibit a broad band in a relatively 

high frequency range.  

Overall, dynamic responses of a LRVP consists of both discrete and random components. The 

discrete or harmonic components are periodic according to blade number and rotation speed 

but modulated by rotation components. The random or irregular one is often in the high 

frequency range and can also be modulated by the rotation and blade components. As these 

high frequency components can often be magnified by the resonances of casing structures, it 

probably has a better signal to noise ratio for detecting and diagnosing faults due to defects in 

blade, casing and abnormal bearings.  
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Figure 5-5 Flow fields inside of a Liquid Ring Vacuum Pump [140] 

 

 Key Findings 

The Analytical Modelling analysis has not been reported on in as much detail as that of the RC 

in this chapter as these two types of fluid machines are both positive displacement pumps and 

most of the results from the RC can be applied to the LRVP studies. In particular they both 

share similar principles in terms of electrical, mechanical, fluid dynamic behaviours and 

operation to that of an RC in relation to the internal pressure oscillations as described partially 

in the qualitative results made in RC in Chapters 3 and 4. This can be referred to in conjunction 

to the LRVP data analysis. Section 3.8.1, Figure 3-10 demonstrates that the force variation and 

dynamics of the RC behave like an LRVP based on a single chamber where pressure varies in 

the suction, compression and discharge stages. 
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 A Preliminary Implementation of Vibration and Acoustics 

Monitoring to an Industrial Environment 

This chapter gives an introduction of the industrial target machine in Phase II which is the 

Liquid Ring Vacuum Pump (LRVP), followed with a review of Condition Monitoring (CM) 

benefit, functionality and categories. An overview of the vacuum pump and its reliability is also 

explained followed by the current CM techniques applied to the target machine and a brief 

description of the actual CM used on the site. Moreover, it also presents the results of the 

preliminary study carried out for the three sets of vacuum pumps. In particular, high acoustic 

signals in the time domain allows the abnormal motor in one of the three sets to be indicated, 

which is confirmed by vibration analysis in both the frequency domain by spectrum and 

envelope analysis. 
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 Industrial Target Machine  

The LRVP is a key piece of equipment for many process industries such as petroleum, food 

and paper production, for creating vacuum. It is like a rotary positive-displacement pump but 

instead employs liquid as the main element in the gas compression. This compression is formed 

by the circulation of a ring of liquid around the casing of the multi-bladed rotating impeller 

which is eccentric between the pump casing and the rotating blade. During every revolution, 

each rotor chamber is partially filled and emptied creating a piston action within each set of the 

rotating impeller blades. This phenomenon is made possible due to the eccentricity of the 

design. The pump is designed in such a way that when the rotor chamber is emptying the liquid, 

it allows gas in and releases the gas when the compression is over. The LRVP uses only a 

certain amount of seal liquid to attain the vacuum and it’s a one moving part with no metallic 

contact in the compression chamber [130],[141] as shown in Figure 5-1, chapter 5.2. 

6.1.1 Vacuum Pump Categories 

There are two main types of vacuum pump categories which are the gas transfer vacuum pumps 

and the trapping or entrapment vacuum pumps as shown below in Figure 6-1. 

The following are just a brief overview of some of the vacuum pump types: 

The Entrapment Vacuum Pump 

The entrapment vacuum pump operates by trapping molecules within a confined space and 

may need regeneration as it is limited in its capacity [142]. 

The Gas Transfer Pump 

The gas transfer pump is known as a positive displacement vacuum pump and the kinetic 

vacuum pump, using momentum to accelerate gas from the vacuum side to the exhaust side 

[142]. 

The Positive Displacement Pump 

The positive displacement pump, suction side, has an expanded cavity on the discharge side. 

On the expansion of the suction side, cavity liquid flows into the pump, the cavity collapses 

and the liquid flows out of the discharge. The positive displacement vacuum pumps can be 

divided into two categories, namely the reciprocating displacement pump or the rotary vacuum 

pump [142]. 
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Types of Vacuum Pump Used in Industry 

 

Figure 6-1 Types of Vacuum Pump [143] 
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The Kinetic Vacuum Pump 

The kinetic vacuum pump is a pump in which the momentum is divulged to the gas or the 

molecules in such a way that the gas is transferred continuously from the inlet to the outlet 

[143]. 

There are two types of kinetic vacuum pumps, they are the fluid entrainment pumps and the 

drag vacuum pumps [143]. 

6.1.2 Common Failure Mode 

In many systems, actuators are required to operate periodically so that some mechanical 

variable stays within a certain fixed range like a compressor or vacuum pump system. These 

systems are widely used in industrial facilities, aircraft and marine vessels and they have an air 

receiver or vacuum tank which ensures instant availability and provides for short periods of 

demand which is periodically charged by a compressor or pump creating a cycling system. 

These cycles create electrical power usage and follow a regular pattern of charging and 

discharging based on pressure.  

The disadvantages that actuators can suffer in a cycling system is the detection of faults that 

cause the actuators to over operate. To alleviate this problem a model is developed to detect 

these effects and explain how changes in the controlled variable affect the operating schedule 

actuator [118]. Another disadvantage is that a common pump cannot be used due to different 

applications in different industries.  

This has been made possible where there is both pressure and power in a representative cycling 

system aboard the USCGC Seneca. Whenever the (System Usage Event) SUE removes the 

vacuum from the system, a sharp drop is observed in the measurement of the vacuum pressure 

and when the number of SUE’s increase, the discharge period shortens and the number of pump 

runs increases. However, the aim of Robert William Cox thesis was mainly to model the 

cycling system in determining the behaviour of the actuator under both faulty and non-faulty 

conditions [118]. 

Mahmud applied seven compressor fault types to a compressor mainly with valve, intercooler 

leakage, belt slippages and combined faults. The advantages of applying these faults may be 

useful to the vacuum pump with a belt but most vacuum pumps do not have a valve or 

intercooler hence these may not be possible [56]. 
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At the 69th Conference of the Italian Thermal Machines Engineering Association, Stiaccinia, 

et al [119] developed a numerical model for the analysis of a reciprocating compressor coupled 

with its pipelines. The prime feature of the model is to couple the time-domain computation of 

the thermodynamic cycle of the reciprocating compressor with the frequency domain 

modelling of the pipeline systems.  

The advantage of the multi-domain interaction is the possibility of modelling a compressor 

with a quasi-steady time-domain approach and the pipelines with an acoustic approach, this 

will allow the modelling of complex pipelines configurations with a linear equation system. 

The model proves that the computational tool is reliable and fast for the thermodynamic and 

acoustic analysis of the reciprocating compressor plants considering the mutual interaction 

between the compressor and its pipelines [119]. 

Zhen Dong presents the use of dynamic time warping (DTW) to process the motor current 

signal for detecting and quantifying common faults of a two-stage reciprocating compressor.  

The advantage of using this technique is that the DTW suppresses the supply frequency 

component and highlights the sideband components, based on the introduction of a reference 

signal, which has the same frequency components as the power supply. The sideband 

components contain more useful information for the indications of faults and conditions of the 

monitored machine [120]. 

6.1.3 Condition Monitoring Benefit  

LRVP’s are used in a lot of process industries such as the petrochemical, pharmaceuticals, 

chemicals, food and paper industries as they are versatile machines and can handle “wet loads”. 

The production of paper is a highly competitive industry and the mill cannot afford any 

unpredicted breakdowns which would lead to unscheduled downtime. To prevent this and 

ensure the smooth running of the production, the correct condition monitoring techniques 

should be applied to the machine.  

The following savings, by avoiding the loss of production and unscheduled maintenance, 

means a very good and quick payback on the initial investment in monitoring the equipment. 

This will, in turn, create a big impact on high maintenance and operational costs.  

If the LRVP is monitored by the appropriate techniques and inspected at the correct time 

intervals, the machine will be more reliable and not only be more efficient but the approximate 

time of when to send the pumps for refurbishment would be known instead of replacing the 
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pump earlier than its natural end of life. This would also reduce the maintenance budget and 

reduce the risk of any unscheduled downtime. 

 Current Monitoring Techniques used in Vacuum Pump 

The current monitoring techniques used in the vacuum pump nowadays is vast. Some 

companies are now introducing an online vibration monitoring system that is easy to operate, 

easy to install and available at a price that would make it an option as standard equipment. An 

example is the ‘Fag Smart check’ which is good for the detection of problems such as bearing 

wear, unbalance, misalignment and caking on the vacuum pump depending on its application 

[144]. Like the above example, the ‘Fab Works-iMS’ is a web-enabled remote monitoring 

package for the Edwards vacuum pump [145], the ‘EBANET3’ which is for the monitoring of 

a dry vacuum pump [146]. ‘PRUFTECHNIK’ which has developed a monitoring system of the 

vacuum pump for paper machines aimed for Gardner Denver Nash Deutschland GmbH, that 

measure the frequency-selective recording of machine vibration, roller bearing monitoring, in-

depth diagnosis using analysis of vibration spectra, envelope spectra and time signals, 

temperature measurement at pump bearings and water supply motor current and the rotational 

speed, pressure on suction and pressure sides [147]. Also, a vast amount of research has been 

done in the monitoring of a dry vacuum pump such as: using the statistical method [148], 

monitoring of dry vacuum pump characteristics by a mobile device [149], a (LabVIEW) based 

system for CM of a dry vacuum pump using AR modelling techniques [150], but there has 

been little work done on the wet liquid vacuum pump, more specifically in the field of Surface 

vibration and instantaneous angular speed based performance monitoring. 

6.2.1 Reliability of Vacuum Pumps 

There are multiple criteria which can influence the performance of a vacuum system. It is 

imperative to maintain the vacuum pump system and all its parts including the upstream and 

downstream pipeline. Any minor leakage will affect pump performance. Most of the common 

problems encountered in the vacuum system could be due to some of the following 

possibilities: 

• A variation in the utility specification 

• The malfunctioning of a part not doing what it is supposed to do 

• An inconsistency in the process conditions and variations 

• Loss of fluid in the system. 
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For the vacuum pump to operate in a good condition, care should be taken to ensure good 

operation of the vacuum system. Appadoo et al show a brief overview of some common 

problems and the causes and effects encountered in the liquid ring vacuum pump, together with 

a suitable troubleshooting approach which is explained through the failure analysis method 

[151]. 

 Target Machine  

At the paper mill facility, two measurements are recorded by the data collector at each point of 

the pump’s system. They are the velocity and acceleration measurements. Each system is 

divided into three subsections, the motor, gearbox and pump and Figure 6-2 shows the existing 

facility layout of the pumps.  

Figure 6-3 shows the layout of the three pumps position and gives the exact location of the data 

collection point of each pump.  

Each system has nine points of readings that are taken and hence seventeen measurements per 

system which is explained below. As for position 1 DE from Figure 6-5 below, only one axial 

velocity data is captured. Samples will be taken on three different pumps; the M243 Dewatering 

Box Vac Pump, M256 Tail Cutter Box Vac Pump and the M242 the Trans Shoe/ “Uhle” Box 

Vac Pump. 

Readings are taken at various positions on the motors.  

At position 1 Non-Drive End (NDE) two sets of readings, the vertical velocity and vertical 

acceleration trend are being collected. 

At position 2 Drive End (DE) two sets of readings are again taken, the vertical velocity and 

vertical acceleration trend and the motor have only one axial velocity reading taken at position 

2 DE.  

Position 3 is the Input Gearbox (GBI), horizontal velocity and horizontal acceleration trend. 

Position 4 is (GBI), horizontal velocity and horizontal acceleration trend.  

Position 5 is Output Gearbox (GBO), horizontal velocity and horizontal acceleration trend. 

Position 6 is GBO, horizontal velocity and horizontal acceleration trend. 

Position 7 is the pump DE, vertical velocity and vertical acceleration trend. 

Finally, position 8 is the pump NDE, vertical velocity and vertical acceleration trend.  
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Figure 6-5 and Figure 6-6 below show the measurement of the three pumps taken on the 10th 

of July 2015 by the onsite CM team.  

Samples were also taken by the author on that same date which is shown further in chapter six 

which will conclude the effectiveness of the measurement through a thorough analysis. 

 

Figure 6-2 Existing Test Facility  

The layout of the three Pumps and Sensors Position 

 

Figure 6-3 Pump and Sensors Position 

 

Existing Test Facility 
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6.3.1 The Data Collector Dynamix 2500 

The Data Collector 

 

Figure 6-4 The Data Collector Dynamix 2500  

The ‘Dynamix 2500’ data collector as shown in Figure 6-4 is the device that the CM team used 

to gather all the information from the system in the existing test facility. This device is known 

to be good for the diagnostic and trending of machine vibration measurements on machines 

like motors, compressors, pumps, gearboxes, fans, mixers, centrifuges, hammer mills. It is also 

effective in the analysis of various operation such as unbalance in a machine, the remote 

analysis of time recordings of a machine’s vibration and much more [152]. The device has a 

wide variety of features, it can operate in 10.50°C (14.122°f) temperatures ranges, it is also 

certified for “ATEX Zone 2” and “IEC Ex” for hazardous environments equipped with a 

sunlight-visible colour LCD, offers Mil-spec drop rating and “IP65” sealing. 

6.3.2 M243, 2nd Dewatering Box Vac Pump Trend 

Only the M243 velocity and acceleration trend captured by the CM team on site is shown here 

as an indication to the level of analysis. 
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Velocity Trend 

Figure 6-5 shows the vertical velocity trend of position 1 and if the blue trend is lower than the 

yellow alarm level this indicates that there is no problem, however, if it is higher than the alarm 

level, then the frequency spectrum needs to be analysed as this trend will determine which part 

of the machine or components is causing the vibration to increase by the peaks Fast Fourier 

Transform (FFT), Ball Spin Frequency (BSF), Ball Pass Frequency Outer Race (BPOR), Ball 

Pass Frequency Inner Race (BPIR) and running motor speed. 

 

Figure 6-5 Motor Position 1 Velocity Trend  

Acceleration Trend 

The same applies for Figure 6-6 to the vertical acceleration trend of motor position 1. If the 

blue trend is lower than the yellow alarm level this shows that there is no problem but if it is 

higher than the alarm level then the frequency spectrum needs to be analysed as this trend will 

determine which part of the machine or components is causing the vibration to increase by the 

peaks (FFT, BSF, BPOR, BPIR and running motor speed). 
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Figure 6-6 Motor Position 1 Acceleration Trend  

6.3.3 On-Site CM Recommendation 

See each position representation below: 

• Position 1 vertical velocity and acceleration, NDE  

• Position 2 vertical velocity and acceleration, DE  

• Position 2 only one axial velocity, DE 

• Position 3 input gearbox horizontal velocity and acceleration, GBI 

• Position 4 input gearbox horizontal velocity and acceleration, GBI 

• Position 5 output gearbox horizontal velocity and acceleration, GBO 

• Position 6 output gearbox horizontal velocity and acceleration, GBO 

• Position 7 pump vertical velocity and acceleration, DE 

• Position 8 is the pump position vertical velocity and acceleration, NDE 

M243, 2nd Dewatering Box Vac Pumps and for the remaining positions of this pump the trends 

are similar to the above Figure 6-5 and Figure 6-6 of the velocity and acceleration. The trend 

does not exceed the alarm level, yellow line. 
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Same as above applies for the M256 Tail Cutter Box Vac Pump 2 and M242 Transshoe/ “Uhle” 

Box Vac Pump where there is no discrepancy according to the CM report from the onsite team. 

The following report from Figure 6-7 dated 09/04/14 below explained of a recommendation 

that was made of the dewatering box vacuum pump where the bearing vibration level has 

increased. The pump bearing was supposed to be inspected at the earliest opportunity but as 

the CM report is generated every month the damage was quick to turn into a catastrophic failure 

causing the plant to ground to a halt at that time. See Appendix 1 for the picture taken on 

24/04/14 of the damaged shaft impeller and build-up of limescale. 

 

Figure 6-7 M243 Dewatering Vacuum Pump Report of 09/04/14 

 Discussion 

Machine failures can easily occur causing an adverse effect on the maintenance costs and an 

increase in the loss of production therefore the level of interest in condition monitoring is vital. 

This system enables the company to monitor each critical piece of equipment and has its own 
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holistic and personalised condition management programme. This new technology data is 

accurate and the algorithms that are used are precise and reliable in assessing equipment 

condition enabling prediction and accurate diagnosis of equipment failure. In the meantime, 

many different techniques have been developed for condition monitoring. However the 

performance of techniques is highly application dependent. A huge variety of techniques have 

been developed to diagnose and monitor any dynamic and static machinery such as the 

Ultrasonic Analysis, Wear Debris Analysis, Oil Analysis, Vibration Analysis the Motor 

Current Signature Analysis which is the ‘MCSA’. 

The wet liquid ring vacuum pump remains an area where not enough research has been done 

in advance signal monitoring hence the reason this has led the author to embark into this area 

of research. Particular attention was also drawn to the incidents that occurred in 2014 as 

explained in Section 1.1 which has been a good motivational area of study. In Phase II of the 

preliminary research, after a qualitative study and fault mode analysis of these pumps, a field 

test was conducted to verify the feasibility of the scheme in terms of sensor installations, 

performances, data acquisition methods, system specification and fault diagnosis admissibility.  

The reason for the three machines chosen is because one of those pumps had a serious issue in 

2014 due to it degrading so fast and failing just in a matter of weeks soon after it was captured 

by the CM team on-site. The solution is to find a better approach to diagnosing and accurately 

localising the fault before it fails, to do a cross-comparison within the three systems and 

differentiate their condition based on the techniques that will be applied in the field 

implementation plan of Phase II and to prove the feasibility of the techniques by applying it to 

the target machines to examine the suitability and performance during the full course of a CM 

process by studying and applying the: 

• Measurement system specification 

• Data acquisition definition and implementation 

• Data analysis method selection and evaluation 

• Detection and diagnosis performance confirmation. 
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 Implementation of Vibration and Acoustics Monitoring of the 

Industrial Machines 

6.5.1 Test Facility 

The plant room consists of three systems. Each structure has a set of equipment working 

together as part of a mechanism which transmits power to the Liquid Ring Vacuum Pump 

(LRVP) to operate. Every structure comprises of an electric motor, gearbox and vacuum pump. 

Samples will be taken from the three different systems. The first pump is driven by an 850kW 

motor and the remaining two are driven by two 400 kW electric motors. A risk assessment has 

been done before working with these machines and the area is regularly checked by the relevant 

engineering department to ensure safety is met. 

6.5.2 Characteristics of the Vacuum Pump 

Vacuum is used on different locations of the paper machine and at different stages in the 

papermaking. The three vacuum pumps are laid horizontally and the electric motors, gearboxes 

and pumps are shown in Figure 6-2 and Figure 6-3 respectively. The specifications of the 

systems are found in Table 6-1 and Table 6-2 correspondingly. 

Table 6-1 Specification of the 850-kW Motor, H1 SH 13 type Gearbox Nash Model 
Pump ‘P2620’ 

Motor Specification Gear Box Specification Pump Specification 
Power 850kW Types H1 SH 13 B  Nash Model  P2620 

Voltage 3300V  N1 994 

Pressure 
Differential 
Max  15 PSI 

Frequency 50Hz n2 245.43/min 
  Temp 
Design 60° F  

Speed (rpm) 930 VG 320 Temp Max  200° F  

Current 
  

178A 
  

Weight 
  

2450Kg 
   Bearing Type  

 Timken Assy 
092A4 both the 
Drive end and 
Non-Drive end 

Bearings: 

Drive end:  
6326/C3 
 
 

Power 
 
 

685 KW 

 
 Speed design  
 

RPM 225/225 
 

Non-Drive end 6324/C3 Oil  175   
Power factor 0.86      Speed Max  RPM 227/227 
Phases 3      Speed Min  RPM 180/200 
Weight 5600Kg         
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Table 6-2 Specification of the 400kW Motor, H1 SH 9 B type Gearbox Nash Model 
Pump ‘904U1’ 

Motor Specification Gearbox Specification Pump Specification 
Power 400kW Types H1 SH 9 B  Nash Model  904U1 

Voltage 3300V  n1 992/min 

Pressure 
Differential 
Max  15 PSI 

Frequency 50Hz n2 244.14/min 
  Temp 
Design 60° F  

Speed (rpm) 930 VG 320 Temp Max  200° F  

Current 87A Weight 2450Kg  Bearing Type  

 Timken Assy 
092A4 both 
the Drive end 
and Non-Drive 
end 

Bearings: 
Drive end: 6324/C3 

Power 
 

325 KW 
  Speed design  RPM 225 

Non-Drive end 
 6319/C3 Oil 68   

Power factor 
 0.84     
Phases 3      Speed Max  RPM 227 
Weight 3000Kg      Speed Min  RPM 180 

6.5.3 Instrumentation and Measurement 

Different types of measurement equipment were used to measure the target machine and 

positioned at different locations of the system depending on the context of use. Table 6-3 shows 

the equipment utilised during the study and each component will be briefly explained below. 

Table 6-3 Equipment/Material used 

Equipment 

Equipment/Material 
Type of 
equipment Quantity 

4-Channel Data 
Acquisition YE 6231 1 
Vibration Sensors CA-YD-185 3 
Microphone  CHZ-211 1 

Microphone Stand 
 Microphone 
Stand 1 

Glue for vibration Sensor  Glue 1 

Cables  Cables 
50 
meters 
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Piezoelectric Accelerometer/Vibration Sensors 

Three of the vibration measurement sensors type “CA-YD-185” were utilised with a frequency 

range of 0.5 to 5,000Hz at three different sensitivities as shown in Table 6-4 below. 

The sensors are capable of withstanding temperatures of up to 120°C and acceleration of up to 

1000ms-2 and are ideal for this kind of environment. They were used for the motor Non-Drive 

End (NDE), motor Drive End (DE), Gearbox Input (GBI), Gearbox Output (GBO), pump Drive 

End (DE) and pump Non-Driven End (NDE) to measure the vibration level. These vibration 

signals are then transferred to the data acquisition to be recorded and Figure 6-8 below shows 

the accelerometer used during the investigation. 

 

Figure 6-8 Vibration Sensor 

Table 6-4 Vibration Sensor Specification 

Characteristics of sensor CA-YD-185 

Sensitivity: 20 ± 5° C 

Sensor (1) =4.93; % mv/ms-2 

Sensor (2) =4.98; % mv/ms-2 

Sensor (3) =5.0; % mv/ms-2 

The Microphone 

The specific device used to measure the acoustic signal is a ½ inch microphone, type “CHZ-

211” as shown in Figure 6-9 below with the frequency response characteristic of 20 to 20 kHz 

and the microphone specification is illustrated in Table 6-5 below. The microphone was 

selected due to its capability and suitability for the type of environment. The microphone was 

used to monitor the gearbox and pump airborne sound. The acoustic signals are then transferred 

to the data acquisition. 
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Figure 6-9 Microphone 

Table 6-5 Microphone Specification 

Microphone Type: CHZ-211 

Sensitivity: 52.0 mV/Pa 

Temperature -20° C to 60°C 

Frequency range: 20-20kHz 

Dynamic range: SPL blow which the total 
harmonic distortion < 3%: 146Db 

 

4-Channel Data Acquisition 

 

Figure 6-10 Data Acquisition 

The data acquisition used for this project is a data logger and analysis system model YE6231 

and is illustrated in Figure 6-10. It is a 4 channel, 24-bit resolution, synchronised acquisition at 

100 kHz per channel with continuous sampling length and a maximum of four units can be 

used by one Personal Computer (PC). 



Page 210 of 303 
 

6.5.4 Experiment Plan  

The sensors and microphones have been positioned at different locations on the target machine 

during the data collection process and Figure 6-11 gives an overview of the precise locations 

of where the test samples have been taken.  

Table 6-6 shows the legend and the measurement sensor position as described in Table 6-7 

Three tests were being carried out on three different sets of machines. 

Dewatering Box Vacuum Pump Experiment Plan 

 

Figure 6-11 Dewatering Box Vacuum Pump 

 

Table 6-6 Legend 

Legend 
Motor  Gearbox  Pump  

ML 
(NDE) 

Motor Left Non-
drive end GBI Gearbox Input Left PL (DE) 

Pump Left 
Drive end 

MR 
(DE) 

Motor Right Drive 
end GBO 

Gearbox Output 
Right PR((NDE) 

Pump Right 
Non-drive 
end 

    AB (GB) 
Airborne Sound 
Gear Box AB (P) 

Airborne 
Sound Pump 
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Sensor Layout 

Table 6-7 Measurement Sensor Position 

Test No. Position Vibration Acoustics 

1 
Left VM1L, VG1L, VP1L AG1 

Right VM1R, VG1R, VP1R AP1 

2 
Left VM2L, VG2L, VP2L AG2 

Right VM2R, VG2R, VP2R AP2 

3 
Left VM3L, VG3L, VP3L AG3 

Right VM3R, VG3R, VP3R AP3 

 

The acronyms are explained as follows : 

• VM1L: Vibration Motor 1 Left 

• VM1R: Vibration Motor 1 Right 

• VG1L: Vibration Gearbox 1 Left 

• VG1R: Vibration Gearbox 1 Right 

• VP1L: Vibration Pump 1 Left 

• VP1R: Vibration Pump 1 Right 
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6.5.5 Data Collection and Processing Procedure 

 

Figure 6-12 General System Layout 

The data was collected on the actual machines whilst they were running, below is the process 

for the data collection. Figure 6-12 shows the general system layout of the test system and 

Figure 6-13 illustrates the Schematic of the Data Acquisition. 

The test has been performed according to the following sequences as shown from Figure 6-14 

to Figure 6-21. This gives a visual understanding of the geographical position of the sensors 

laid on the machine whilst under observation.  

The data recording time for the data collection process is 30 seconds at a sampling rate of 96 

kHz, the higher the sampling frequency used the better with 96 kHz being the highest on that 

data acquisition. 
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To achieve advanced signal processing, the average of the signal is required and will be 

separated into numerous segments. To obtain a higher frequency resolution the signal should 

be recorded for a longer period. 

 

Figure 6-13 Schematic of Data Acquisition 

In this experiment, three sets of tests have been carried out. Each test is repeated five times to 

secure a reliable and accurate result and this will be explained fully in the following sub-section 

of this chapter. 

For the test system no. 1, the Motor 1, Gearbox 1 and Pump 1 were under observation and the 

samples were taken in the following order: 

1.1) Vibration of Motor 1 left (NDE), Gearbox Input 1 left, Pump (DE) 1 left; Acoustics for 

Gearbox 1 

1.2) Vibration of Motor 1 right (DE), Gearbox Output 1 right, Pump (NDE) 1 right; Acoustics 

for Pump 1 

The following test system no. 2, the Motor 2, Gearbox 2 and Pump 2 were under observation 

and the data taken in the following order: 
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2.1) Vibration of Motor 2 left (NDE), Gearbox Input 2 left, Pump (DE) 2 left; Acoustics for 

Gearbox 2 

2.2) Vibration of Motor 2 right (DE), Gearbox Output 2 right, Pump (NDE) 2 right; Acoustics 

for Pump 2 

Finally, for the test system no. 3, the Motor 3, Gearbox 3 and Pump 3 were under observation 

and the samples logged in the respective order: 

3.1) Vibration of Motor 3 left (NDE), gearbox input 3 left, pump (DE) 3 left; acoustics for 

gearbox 3 

3.2) Vibration of Motor 3 right (DE), gearbox output 3 right, pump (NDE) 3 right; acoustics 

for pump 3. 

 

Figure 6-14 Motor Left (NDE) 

 

Figure 6-15 Motor Right (DE) 

 

Motor Left (NDE) 

 

Motor Right (DE) 
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Figure 6-16 Gearbox Input Left Position 

 

Figure 6-17 Gearbox Acoustic 

 

Figure 6-18 Gearbox Output Right Position 

 

Gearbox Input (Left) 

 

Gearbox Acoustic  

 

Gearbox Output (Right) 
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Figure 6-19 Pump (Drive End) 

 

 

Figure 6-20 Acoustic Sensor positions for Pump 

 

Figure 6-21 Pump (Drive End) Position 

Pump (DE) 

 

Pump Acoustic 

 

Pump (DE) 
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 Vibration and Statistical Data Signals in the Time Domain  

The vibration signal in time domain processing is a sector in applied mathematics and 

engineering that works with operation on or analysis of signals in either continuous or discrete 

time. The desired signal may include images depending on the type of measurement, it could 

be sound or sensor data signalisation [153]. All rotating and reciprocating machines such as 

electric motors, compressors and vacuum pumps generate a wide range of vibration 

frequencies. The total spectrum of frequencies is called a machine signature [4, 6, 7]. Each 

peak on the spectrum has its fundamental reason and if there are lots of machine faults the 

shape of the peak levels in the signatures will change considerably.  

An example is a rotor which can develop basic frequencies. The amplitude of the signal at these 

frequencies will normally increase if the machine develops a fault [4]. An imbalanced shaft 

which is constantly exciting the assembly, as another example, will develop a forced damped 

vibration due to the driving force. The amplitude of the forced vibration is highly determined 

by the magnitude of the driving force. If the forcing frequency coincides with a natural 

frequency of the system, the resulting amplification leads to an extremely high and destructive 

level of vibration and this is called ‘resonance’. 

If a fault produces a signal at a known frequency then the magnitude of that signal is expected 

to rise as the fault develops [4].  

The technique used in this phase is the vibration signal in the time domain for all three motors, 

gearboxes, pumps, airborne sound data for gearboxes and pumps. Time-domain measurement 

is often considered the simplest of the measurement techniques and requires relatively 

inexpensive and unsophisticated instrumentation. 

In the time domain, defect condition is often detected and evaluated using statistic descriptors 

of the vibration signal such as the peak value, Root Mean Square (RMS), Crest factor or 

Kurtosis [109]. 

Kurtosis is one of the useful and widely used statistical parameters. This method is normally 

used to indicate and detect spikiness in the signal [154]. Any healthy machine will generally 

exhibit a “Gaussian” or normal amplitude density. As the machine begins to deteriorate it starts 

to generate amplitude distribution signals that deviate from Gaussian. The kurtosis is a means 

of measuring the deviation from the normal distribution which can be calculated in real-time 

from the signal [155]. 
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RMS, which is also the value of the vibration signal, is a time analysis feature that is the 

measurement of the power contained in a vibration signature. This feature is good to track the 

overall noise level, but no information is provided on which part is failing. It is ideal to detect 

any major out of balance in any rotating system [156]. 

Mean absolute is another popular and easy method of measuring forecast error. It is the average 

of the difference between the forecast and actual demand [157]. 

Peak-factor or crest value is another parameter that can indicate if there is a significant change 

in the waveform of the signal. According to Bruel & Kjaer application notes in detecting a 

faulty rolling element, the crest factor is equal to the peak amplitude of a waveform divided by 

the RMS value. This can give an idea of how much the waveform is affected. The impact can 

be associated with roller bearing wear, cavitation and gear tooth wears [158]. 

This study also uses the vibration signal in the time domain which is then compared to the 

statistical data vibration techniques. 

6.6.1 Motor Vibration Signal  

In this study, the vibration signal in the time domain is made possible due to the signals 

obtained by the accelerometers and the microphone. 

 

Figure 6-22 Signals in Time Domain of all Three Motors 

0 0.5 1 1.5 2 2.5 3
-20

0

20

Time(s)

A
m

pl
itu

de
(m

/s
2 ) Vibration signals from Motor 1

 

 
NDE
DE

0 0.5 1 1.5 2 2.5 3
-20

0

20

Time(s)

A
m

pl
itu

de
(m

/s
2 ) Vibration signals from Motor 2

0 0.5 1 1.5 2 2.5 3
-20

0

20

Time(s)

A
m

pl
itu

de
(m

/s
2 ) Vibration signals from Motor 3



Page 219 of 303 
 

Figure 6-22, Figure 6-24 and Figure 6-26 represent the measured vibration signals in the time 

domain for Motors, Gearboxes and Pumps respectively. 

From Figure 6-22 it can be seen that the vibration signal of Motor 1 at DE is greater than the 

NDE and much lower compared to Motor 2 and 3 though Motor 1 is a bigger motor in size. 

The vibration signal of Motor 2 NDE is higher than the DE but signal is lower compared to 

Motor 3.  

The Motor 3 vibration DE is higher in comparison to Motor 2 DE. Motor 3 vibration signal is 

much higher even that both Motor 2 and 3 are both of similar size. When compared to Motor 

1 the vibration level much lower. This means that motor 3 could potentially have some internal 

component failures and needs attention. 

Statistical Data of Motor Vibration  

The statistical data properties and quality of the tested data of the vibration for all three motors, 

gearboxes, pumps and airborne sound were selected to do a comparison with the vibration 

techniques as they are easy and simple to understand. This includes the application of kurtosis, 

measurement of Root Mean Square (RMS), mean abs and the peak or crest factor as described 

in Section 2.1. 

 

Figure 6-23 Motors Vibration Data Statistics 

Figure 6-23, Figure 6-25 Figure 6-27 show the quality of the motors vibration data statistics of 

Motors, Gearboxes, Pumps and Airborne sound. Each test was repeated five times to get a more 
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reliable result as it improved data robustness and captured any data that may have been 

accidentally missed. 

For this study (DE1) signal is measured on the drive end of Pump 1 and (NDE1) signal is 

measured on the non-drive end of Pump 1. Similarly, (DE2) and (NDE2) is for Pump 2, (DE3) 

and (NDE3) for Pump 3.  

The variation in the measurement and majority of the data is stable in Figure 6-23 except for 

the DE3 of motor 3 where there is a slight discrepancy in the vibration on the motor RMS and 

motor amplitude from the five sets of data. This indicates a small degree of unbalance of the 

shaft or bearing wear. 

6.6.2 Gearbox Vibration Signal 

Figure 6-24 shows the vibration signal of the Gearboxes 1, 2 and 3 in the time domain and the 

Gearbox Input (GBI) vibration represented in blue is greater than the Gearbox Output (GBO) 

in red.  

Gearbox 1, GBI vibration level is higher than the GBO and for gearbox 2 the vibration level of 

the GBI is greater than the GBO. For Gearbox 3 the vibration level is lower than both gearbox 

1 and 2 and it is apparent that gearbox 1 and 2 GBI has a problem which needs addressing. 



Page 221 of 303 
 

 

Figure 6-24 Vibration Data from all Three Gearboxes 

 

Statistical Data of Gearboxes Vibration  

From observation, the repeatability of most of the data looks good, excluding the kurtosis and 

peak factor value for the Gearbox Output from Figure 6-25. This means that there are some 

random impulses in the measured vibration signal on the gearbox 1 input. This is an indication 

of the beginnings of deterioration in the gearbox output where attention is required. 
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Figure 6-25 Gearboxes Vibration Data Statistics 

6.6.3 Pump Vibration Signal  

 

Figure 6-26 Vibration Data of all Three Pumps 

Figure 6-26, displays the vibration data of Pumps 1, 2 and 3 in the time domain. For Pump 1, 

the DE vibration level is higher than the NDE and the same applies for pump 2 whereas, for 

Pump 3, the vibration level of the DE is lower than Pump 1 and 2. 

The NDE vibration level here is slightly higher than the DE therefore Pump 2 needs more 

attention as there may be a fault in the impeller or other internal components of the pump. 
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Statistical Data of Pumps Vibration  

Figure 6-27 below shows some random minor impulses in the measurement of the vibration 

signal from all the pumps. There is a slight instability on the peak factor, possibility indicating 

early wear in a bearing or the rotor for all of the three pumps. 

 

Figure 6-27 Pump Vibration Data Statistics 

 Airborne Sound Data for Gearboxes 

Airborne sound can measure the sound of the machine and its environment. It contains different 

kinds of information and measures noises more than vibrations.  

The first sensor is put near the gearbox, the second one is located near the pump. The airborne 

sound of Gearbox 1 has a slight variation at 0.5 s as seen in Figure 6-28. Airborne sound on 

Gearbox 2 is random and slightly higher than Gearbox 1 whereas Gearbox 3 sound level is 

more inconsistent and higher than Gearbox 1 and 2 which means there is a possibility of gear 

tooth wear or misalignment. 
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Figure 6-28 Airborne Sound Data for all Three Gearboxes 

6.7.1 Airborne Sound Data for Pumps  

Figure 6-29, shows the airborne sound data from Pumps 1, 2 and 3. Sound from Pump 1 and 

Pump 2 is similar but Pump 3 has some variations, probably misalignment or bearing failure. 

 

Figure 6-29 Airborne Sound Data of Pumps 1, 2 and 3 
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Statistical Data of Airborne Sound for Both Gearboxes and Pumps 

Figure 6-30 shows the Airborne Sound data statistic of all the three gearboxes and pumps.  

This reliable data shows a slight change that could be the external noise around pump 3 which 

affects the mean abs and peak factor marginally. 

The vibration signal proves that the DE of Motor 3 could potentially have some internal 

component failures and needs attention. 

The variation in the statistical data measurement also proves that the DE of Motor 3 has a slight 

discrepancy in the vibration on the motor RMS and sound amplitude from the five sets of data.  

This indicates a small degree of unbalance of the shaft or bearing wear. 

Overall, for the motor vibration, the motor 3 drive end is higher in comparison to both motor 1 

& 2 which proves that motor 3 could potentially have some internal component failures and 

needs attention. 

 

Figure 6-30 Airborne Sound Data Statistics 

For the gearbox statistical data properties, the variation in the measurement and majority of the 

data is stable, excluding Motor 3, where there is a slight discrepancy in the vibration on the 

motor, this indicates a small degree of unbalance of the shaft or bearing wear. 

For the Gearbox vibration, gearbox 1 and 2 input have some problems which need addressing. 

From the gearbox statistical data, some random impulses are measured in the vibration signal 

of gearbox 1 input which indicates the beginning of the deterioration of the tooth. 
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For the pump motor vibration, Pump 2 needs more attention as there might be a fault in the 

impeller or other internal components of the pump. 

For the pump statistical data, there is a slight instability on the peak factor possibly indicating 

early wear in bearing or rotor for all of the three pumps. 

For the Airborne sound data for gearboxes, Gearbox 3 sound level is more inconsistent and 

higher than Gearbox 1 and 2 which means there is a possibility of gear tooth wear or 

misalignment, whereas the airborne sound data from pump 3 seems to have more variations 

and there may be a possibility of misalignment or pump bearing failing that needs attention. 

 Vibration Signals and Acoustic Spectra in the Frequency Domain  

The frequency-domain can be analysed through a computer-based programme called the Fast 

Fourier Transform (FFT) or a frequency analyser. This technique will show one or more 

discrete frequencies around which energy is focussed. 

The intention of using frequency domain analysis in the diagnostic of machinery is to find the 

key frequency component that reflects the mechanical condition of the machine. The frequency 

component of the vibration signal is always linked to the dynamic and mechanical condition 

of the equipment. 

The most widely and commonly used method for examining the spectrum of the vibration 

signal in rotating machines is the frequency domain. In terms of fault detection, any change in 

the mechanical condition of the machine is most likely to result in a change in the vibration 

signal. The vibration produced by the normal and damaged components consists of the 

fundamentals and harmonics of the meshing frequencies. Localised faults produce a short pulse 

in the vibration signal and this creates an amplitude modulated signal. Their effect is visible by 

the low-level sidebands of the rotational speed of the faulty components [154]. 
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6.8.1 Spectra of Vibration Signal from Motors 

 

Figure 6-31 Spectra of Vibration Signals from Motor 1, 2 and 3 

The spectra of the vibration signal from all three motors are shown in Figure 6-31. 

In Figure 6-31, there are some discrete frequencies in the spectrum of the motors vibration 

signal, this also confirmed the presence of the shaft rotational frequency, rotor bar pass 

frequency and bearing characteristic frequencies.  

In the motor 3 DE, the vibration is slightly higher and a couple of additional resonance 

frequencies can be observed due to the vibration transfer path difference which indicates a 

small degree of the unbalanced shaft, bearing wear or damaged impeller. There is more 

frequency resonance in the higher frequency band for motor 3 whilst motor 2 vibration is the 

lowest. 

6.8.2 Spectra of Vibration Signal from Gearboxes 

Figure 6-32, illustrates the spectra of vibration from the gearboxes. It can be seen in the figure 

that there are many discrete frequencies, including shaft frequencies, meshing frequencies and 

bearing characteristic frequencies and gearbox 2 vibration is higher whilst gearbox 3 is the 

lowest. The difference between the measured signals may be induced by bearings due to the 

bearing type being different. 
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Figure 6-32 Spectra of Vibration Signals from Gearbox 1, 2 and 3 

6.8.3 Spectra of Vibration Signal from Pumps 

 

Figure 6-33 Spectrum of Vibration Signals from Pumps 1, 2 and 3 
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Figure 6-33, represents the spectra of vibration from pump 1, 2 and 3. There are some discrete 

frequencies in the low frequency which are related to the shaft and pump rotational frequencies. 

As the pump’s components are different and sensors are not all located at the same position 

this could be a contributory factor for the variation in frequencies which in turn cause the 

vibration differences. For both pumps 1 and 2 their spectrums have revealed that the DE is in 

a critical situation with pump 3’s vibration being lower in comparison and pump 3’s DE being 

higher. 

6.8.4 Acoustic Signals for Gearboxes and Pumps 

Figure 6-34, shows the Spectra of the Acoustic signals for Gearboxes and Pumps 

 

Figure 6-34 Spectra of Acoustics for Pumps and Gearboxes 
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There are distinctive discreet components in the low-frequency range, most of them being 

correlated to the operational physics of the motors, gears and pumps, even though high 

background noise can be observed due to room reflections. This shows the high feasibility to 

use remote AS measurement for monitoring such equipment. Besides, there is a high-frequency 

tone at 8100Hz from all three-pump sets comprising of the gearboxes and motors which may 

come from the electronic noises of the variable motor speed, pump set 2 sound being the lowest. 

 

Figure 6-35 Spectrum of vibration and airborne sound for Pump Set 3 

For more detailed analysis, a direct comparison of the Spectra between the Vibration and 

Airborne sound (with a multiplication of frequency) for pump set 3 is shown in Figure 6-35. 

There are some distinct similar frequencies in the pattern whilst at its peak amplitudes at about 

approximately 50, 100, 250, 600, 900, and 1200 Hz.  
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This further confirms that there is a good correlation between the spectrum vibration and the 

airborne sound. It is inexpensive and also an easy deployment technique to apply.  

Based on the spectrum comparison, it is possible to use remote sound to indicate the health 

conditions for all the machines as the same frequency content in low frequency exists. 

 Envelope Spectra of Vibration  

Envelope spectra analysis involves spectral analysing of the envelope or amplitude modulation 

component of time history. It can be very useful in providing diagnostic information regarding 

the early failures of bearings [109] and gears [156].  

An impulse is produced each time a loaded rolling element contacts a defect or another surface 

in the bearing or when a faulty gear tooth get in contacts with another tooth. This impulse has 

a very short impact compared to the interval between the pulses. The energy from the defect 

pulse will be distributed at a very low level over a wide range of frequencies which in turn 

makes the bearing or tooth effects difficult to detect by conventional spectrum analysis when 

they are in contact with the presence of vibration from other machine components. 

Fortunately, the impact usually excites a resonance in the system at a much higher frequency 

than vibration generated by the other components. This structural energy is usually 

concentrated into a narrow band that is easier to detect than the widely distributed energy of 

the bearing defect frequencies. With a wearing part and breakage, the sideband activity near-

critical frequencies, such as the output shaft frequency, is expected to increase. The whole 

spectrum contains very high periodic signal associated with the gear mesh frequencies [145]. 

6.9.1 Envelope Spectra of Motors 

Figure 6-36 shows some discrete frequencies in the envelope spectra which may have been 

caused either by an imbalanced shaft, faulty bearing or damaged impeller. It is obvious from 

the envelope Spectra of Motor Vibration that there is one more frequency resonance in the 

higher frequency band for motor pump set 1 and 3 compared to motor pump set 2 with motor 

pump set 3 being the more critical. Figure 6-37 and Figure 6-38 shows the Envelope Spectra 

Vibration for all three gearboxes and pumps. 
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Figure 6-36 Envelope Spectra of Motor 1, 2 and 3 

6.9.2 Envelope Spectra of Gearboxes 

There are several discrete frequencies in the vibration on the Envelope Spectra of the Gearbox 

pump set 1 and 2, as shown from Figure 6-37, which include shaft frequencies, meshing 

frequency, and bearing characteristic frequencies. The difference between the measured signals 

is induced by bearings because the bearing type and gear tooth number are different. 
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Figure 6-37 Envelope Spectra of Gearboxes 1, 2 and 3 

6.9.3 Envelope Spectra of Pumps 

According to Figure 6-38 of the Envelope Spectra vibration, of the pump set 1, 2 and 3, pump 

set 1 condition seems less severe. The higher pitch frequencies on pump set 2 DE and 3 NDE 

could be because of the pump blade rotational frequency, bearing wear, misalignment and other 

associated components and require assistance. 
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Figure 6-38 Envelope Spectra of Pumps 1, 2 and 3 

 

 Discussion 

Due to the environment being noisy, low frequency background noise can be observed due to 

room reflections. However, as the analysis was quite in-depth with various techniques it was 

proven that all the three motors results on the motor vibration are relatively similar to the results 

of the motor vibration data statistics. Nevertheless, even whilst motor three being half the size 

of motor one, it indicates a higher vibration amplitude and for the three gearboxes and pumps 

their results were quite consistent. 
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Based on the Airborne sound study on the gearboxes and pumps it can be seen that the airborne 

sound of gearbox 1 has a slight variation. Airborne sound on gearbox 2 is random and slightly 

lower than gearbox 3 whereas gearbox 3 sound level is more inconsistent and higher which 

means there is a possibility of gear tooth wear or misalignment. The sound data for pump 1 and 

pump 2 are similar however pump 3 has some variations, probably misalignment or bearing 

failure. 

In the spectra vibration analysis, it was found that motor 3 vibration is higher and some 

additional resonance frequencies can be observed. For the spectra of vibration gearbox 3, 

vibration is lower than gearbox 1 and 2 whereas pump 2 spectra vibration is higher than pump 

1 and 2. 

Based on the vibration on the Envelope Spectra motor 3 DE, the vibration is higher which 

indicates a degree of the unbalanced shaft, bearing wear or damaged impeller. There is more 

frequency resonance in the higher frequency band for motor 3. There are many discrete 

frequencies in the vibration on the Envelope Spectra of the Gearboxes which may include shaft 

frequencies, meshing frequency and bearing characteristic frequencies. The difference between 

the measured signals may be induced by bearings because the bearing type and gear tooth 

number are different. It was found that gearbox of pump set 1 and 2 is higher than the gearbox 

of pump set 1. Analysis shows pump set 2 DE and pump set 3 NDE show higher pitches. 
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Phase III 

Investigating Acoustic Condition Monitoring based on the Laboratory 

Compressor 

 

Chapter 7  

Acoustic Monitoring of the Laboratory Compressor based on Conventional Analysis 

Chapter 8  

Acoustic Monitoring of the Laboratory Compressor with State-of-the-Art Convolutional 

Neural Networks  
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 Acoustic Monitoring of the Laboratory Compressor Based on 

Conventional Analysis 

To address the difficulties of using vibration for field applications, this chapter focus on the 

studies of using remote acoustic monitoring based on a laboratory environment. It provides an 

in-depth understanding of the signal generation mechanisms from the compressor deficiency 

in loss of performance and its possible potential knocking effect. A brief overview of “noise 

sources” and their dynamic characteristics is explained together with a summary of the type 

of faults and wear in a compressor. A review of the acoustics monitoring study using 

conventional analysis techniques has been undertaken. The general system set up and of how 

this investigation has been progressed, the sound imaging, sound localization and frequency 

analysis and its Root Mean Square (RMS) values followed with a discussion has also been 

explained. 
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 Acoustics Monitoring in Compressor 

Review of Acoustics Monitoring Study using Conventional Analysis Techniques  

Acoustic monitoring is a powerful tool that has entered a new era, an age of complex and 

precision engineering [51]. With evolution, several diagnostic techniques using sound 

signatures and data processing have been designed but have not been used widely which causes 

great difficulty in the interpretation of sound signals. The instrumentation technique is like the 

vibration analysis but the fundamental problem lies between the transmission [159]. Airborne 

acoustic can be used for the measurement and detection of defects in the rolling element 

bearings [42], gearbox system [43] and much more. It contains different kinds of valuable 

information and measures noise more than vibration. It is more practical than vibration as it 

does not need to be attached to the machine and is considered as Non-Destructive Testing 

(NDT). The benefits of sound monitoring are immense as they are non-contact, low-cost 

implementation and flexible application. Based on the characteristics of sound propagation, 

such as reflection and diffraction, the position of the microphone has a great influence on the 

monitoring results which is demonstrated in this study. In this chapter, the position of the 

microphone is changed to collect the noise signal for comparison. A combination of the 

vibration signal and the acoustic camera analysis is implemented to comprehend the influence 

of the microphone position. The analysis results show that the signal attenuation and frequency 

distribution differ from different locations and is greatly affected by the environment. 

Airborne acoustic monitoring has the possibilities of replacing the need for several vibration 

sensors that need mounting at various locations on the machine and the potential of being 

detached from the machine surface. The airborne acoustic, by nature, is a non-contact system 

and is good in high frequency and short wavelengths [43]. Another advantage of acoustic 

monitoring is when noise is under investigation, this technique provides a more direct source 

of noise and generation mechanisms [160]. However, there remains a problem with acoustic 

monitoring as the signals may be contaminated by any background noise, which may include 

influences such as parasite and interference from related sound sources. Nevertheless, scholars 

such as Zafar et al. claim that noise filtration in airborne acoustic data of a machining process 

shows a promising future [161].  

Acoustic Emission (AE) was originally developed for the non-destructive testing of static 

structures, however, due to the extension of its application in recent times, it is now possible to 

monitor rotating machinery.  
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Elasha et al. presents a new technique for the application of AE in the monitoring of a large 

helicopter (CS-29) main gearbox and postulated that their results demonstrate that AE can 

detect a small bearing anomaly within the helicopter gearbox [162]. The primary task in the 

condition monitoring of the gearbox, as described by Sharma et al, is to identify the presence 

of defect to avoid any sporadic failures. In their experimental investigation on AE generated 

during the meshing of gears of a healthy and a well-cracked gear, it was strongly argued that 

AE technique is capable of diagnosing a crack in the gear tooth at different load conditions 

proving that AE technique has the potential for the assessment of the condition of gearbox 

[163], this is in very close to Elasha et al. findings [162].  

Elamin et al. also strongly agree that the acoustic emission signal is shown to be effective for 

the detection of exhaust valve faults in a diesel valve engine. They posit that AE is an extremely 

powerful condition monitoring tool and that the variation in the signal indicates the presence 

of an engine failure [164]. Wang et al describe their work based on the Fault Diagnosis of 

Reciprocating Compressor Valve using Acoustic Emission and prove that the fault of a crack 

in a valve disc has not been possible to diagnose by acoustic emission signal effectively [165]. 

Elamin describes that AE signals are unlikely to be influenced by noise from a long distance 

but will need to be reduced and be more localised as damping of different sources is critical in 

attaining a good sensor location. Previous scholars [166], have established that AE source 

characteristic is quite complex and is becoming more complicated by the factor which affects 

AE wave transmission and attenuation which includes internal damping, reflection, conversion 

mode and diffraction [166]. 

Based on those assumptions and previous research, there lies a gap in the knowledge in the 

characteristics of sound propagation, such as reflection and diffraction. This study shows how 

those microphones influence the placements for the condition monitoring of reciprocating 

compressors. This study proves that the sensor microphones have a great impact on the 

monitoring results. 

7.1.1 Sound Generation  

A compressor is made of several key components that require to be maintained and cared for 

through a good maintenance system. To be able to develop a good acoustic monitoring program 

for the machine, a thorough understanding is required of faults in compressors which generate 

sound with a knocking effect. In general, problems with reciprocating compressors fall into 

one of the following broad categories: failure to run, loss of capacity, noise and vibration [105]. 
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“Noise” which also known as “Knocks” is often described as a mechanical, or friction-related 

sound [105]. Noise is omnipresent in any operating compressor. Faults in the compressor can 

originate from bearing, crankshaft, motor, crankcase, cylinder, loose belt, and valve. When 

these parts start to deteriorate noise can be heard from the compressor which also shows a sign 

of potential mechanical failure. These faulty components in the compressor will produce noise 

and these forces can cause a rise in the acoustic level which can also reduce the performance 

of the compressor. Similarly to vibration, in acoustics, the source of noise in a compressor 

system can be attributed to the compressor internal or external components, gas motion in the 

compressor itself and any associated piping system. In an ideal world, the flow of air would be 

steady without any pulsation, however in practice, the discharge pressures are not steady due 

to the valve motion and contained high temperature due to the second stage cylinder high 

compression actions. 

7.1.2 Sources of Noise 

Noise sources depend on their dynamic characteristics and would usually instigate from 

components such as: 

Cylinder Knocks 

Cylinder knock may happen through loose pistons, insufficient head clearance, broken piston 

rings, loose rider bands, loose or broken valves, moisture carryover of “liquid slugging”. 

The frame or Running Gear Knocks 

A knock or noise in a compressor running gear is usually caused by a loose or worn bearing 

that has too much clearance. 

• Loose flywheel or sheave 

• Worn or loose bearings 

• Large clearance on crosshead pin-to bushing 

• Loose mechanical gland packing  

• Connecting rod hitting end of the piston rod in the crosshead 

• Belt misaligned, causing the motor rotor to “weave” and bump 

Squealing Noise 

Whereas squealing noise in the compressor is caused by the following: 
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• Compressor or motor bearing too tight 

• Lack of oil 

• Belt slipping or worn 

• Leaking joint or gasket [105] 

The following chapter demonstrates how sound is generated and localised. 

 Methodology 

This work presents a high level of signalisation techniques with identification to quantify and 

qualify the best location to capture the acoustic signal from a machine. Four 

sensors/microphones have been used at four different distances and heights from the 

compressor to get the ideal position for a proper analytical exploration into the signal. A 

computational algorithm has been developed in MatLab software code for the comparison of 

different sensors in contrast with the correct location. Two separate data acquisition systems 

were used during the data collection process. In total 16 channels of data were collected. The 

two systems were necessary as the CED 16 channel unit (model 1401), as shown in Figure 7-2, 

does not support acoustic monitoring hence the reason the Sinocera 16 channel unit (model 

YE6232B) as shown in Figure 7-1, was utilised and coupled to CED (model 1401). 

See Table 7-1 and Table 7-2 below which shows the specification for the data acquisitions  

Table 7-1 Data Acquisition 1 

Data Acquisition 1 

Manufacturer/Software Sinocera/YE7600 

Type YE6232B 

No. of Channels 16CH, selectable voltage/IEPE input 

A/D conversion resolution 24 bits 

Input range/Power Supply ≤±10VP/4mA/+24VDC 

Gain x1, x10, x100 

Filter Independent Anti-filtering 

Sample Rate (Max) 96kHz/CH, Parallel 
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Figure 7-1 Data Acquisition 1 

 

Table 7-2 Data Acquisition 2 

Data Acquisition 2 

Manufacturer Cambridge Electronic Design 

Type Power 1401/CED 2701 

No. of Channels 16CH 

Input range Selectable to ±5V or ±10V 

Interface USB 2.0 

A/D conversion resolution 16 bits 

Memory Expandable to 1 Gbyte to 2 Gbytes 

1 Ch Mode 800kHz 

 

 

Figure 7-2 Data Acquisition 2 

7.2.1 Measurement System Layout 

As previously described, 16 position signals have been captured by four similar microphones 

varied at four different distances and heights from the compressor to compare the airborne 

signal. Figure 7-3 below shows the system layout of those microphones. 
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Figure 7-3 System Layout 
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Sensor Arrangement 

A Broomwade TS-9 compressor has been used as shown in Chapter 4 with the Compressor 

Specification Table 4-1. 

The simulation test was conducted with four acoustic sensors as described below in Table 7-3. 

Sensor 1 is a “BAST YG201” serial no. 07228 is set at 50, 100, 150 and 200 cm and height of 

1.7 m from floor level known as channel 5 from the data acquisition. 

Sensor 2 is a “BAST YG201” serial no. 07066 set at 50, 100, 150 and 200 cm and height of 

1.4 m from floor level known as channel 6 from the data acquisition. 

Sensor 3 is a “BAST YG201” serial no. 07198 set at 50, 100, 150 and 200 cm and height of 

1.1 m from floor level known as channel 8 from the data acquisition. 

Sensor 4 is a “BAST YG201” serial no. 100252 set at 50, 100, 150 and 200 cm and height of 

0.8 m from floor level known as channel 10 from the data acquisition. 

 

Table 7-3 Acoustic Sensor 

Sensor 1, 2, 3 & 4 

Serial Number 07228, 07066, 07198, & 100252 

Microphone Type BAST YG201 

Sensitivity ± 0.5 dB 

Temperature -40° to + 85°C 

Frequency Range 16 Hz to 100 KHz 
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General System Set up 

Figure 7-4 shows the System set up with an array of four sensors/microphones positioned 

vertically which can be moved at different distances and Figure 7-5 shows the Test Bed layout 

in which the sensor placement and signal flows are detailed.  

 

Figure 7-4 System Set up  

  

Sensor 1 

Sensor 2 

Sensor 3 

Sensor 4 
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Figure 7-5 Test Bed Layout 
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7.2.2  Test Cases and Procedures  

To study the acoustic monitoring techniques, a series of tests were carried out while the 

machine was in operation. The test cases and operating conditions are detailed in Table 7-4. 

Table 7-4 Test Cases 

Test Cases Fault Locations 

Healthy (BL) n/a 

Discharge Valve leakage (DVL) At 2nd Stage Discharge Valve 

Suction Valve Leakage (SVL) At 1st Stage Suction Valve 

Intercooler leakage (IL) Intercooler 

Loose Belt (LB) Transmission belt 

7.2.3 Sound Imaging 

Figure 7-6 Spiral Array Acoustic Camera displays a Spiral Array Acoustic camera with 64 

microphones. This device can display a sound field like an image and hence can visualise the 

position and shape of the field [167]; it assists in the localisation of acoustic signal generation 

mechanisms, in this case, from the compressor under study. Table 7-5 shows the Spiral Array 

Specification. 

Table 7-5 Spiral Array Specification 

Spiral Array 

Acoustic Imaging 

Sensors 64 

Aperture 1 m 

Sensitivity 50mv/Pa 

Dynamic 34dB-140dB 
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Figure 7-6 Spiral Array Acoustic Camera 

 Techniques Evaluation 

This section proved the feasibility of the acoustical condition monitoring technique and its 

possibilities of extracting features without the need for attaching any equipment to the machine 

whilst in operation, also known as Non-Destructive Testing (NDT). For this study, the 

Discharge Valve Leakage (DVL) is compared with the Baseline (BL) to demonstrate its 

operation and how it can affect the performance of the Reciprocating Compressor (RC). The 

area of study is Root Mean Square (RMS) comparison, Vibration against the Acoustic 

Spectrum, Short-Time Fourier Transform (STFT) and the sound frequency analysis. Acoustic 

imaging is also studied and its effectiveness has proven to be possible. The technology of 

acoustic imaging has the capability of visualizing and localizing the source of sound position 

in the various frequency bands to alleviate any noise intrusion. 
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7.3.1 RMS Analysis in Time Domain 

The RMS analysis is shown in Figure 7-7, the values are calculated for all the cases to quantify 

and qualify the differences of the acoustic signal in comparison to pressure at 0.8, 1.1, 1.4 and 

1.7 m height from the floor level and 50, 100, 150 and 200 cm away from the compressor. 

RMS Analysis of 50, 100, 150 200 cm away from Compressor 

 

Figure 7-7 RMS Analysis 

The RMS values of the sound pressure variation are dependent on the load fluctuation of the 

operation of the machine.  

The RMS of sound pressure value at 50 cm is higher in comparison to the remaining three 

distances at 100, 150 and 200 cm under all operating discharge pressure conditions. RMS of 

50 and 100 cm reveal that the amplitude of the acoustic signal is at its peak when the acoustic 

sensor is at a height of 1.1m from the ground. In this location it reveals most detail about the 

sound propagation and location of the noise sources under all operating discharge pressure 

conditions. However, the RMS acoustic signal of the sound pressure decreases when the 

microphones are further away from the compressor. Based on this method, it defines that if the 

distance to the object is increased, then the RMS height is decreased. Nevertheless, at acoustic 

of 1.1mh in yellow colour at 50 cm away from the source, it seems to be the location in this 

analysis that generates more noise from the RC. 
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RMS Comparison of Baseline against Discharge Valve Leakage 

Figure 7-8 demonstrates the RMS comparison of BL against DVL in respect to the sensor 

height and its distance away from the compressor. From this study, it is possible to tell when 

the DVL is deviating and see how the trend of the sound generation from the RC is affected. It 

is noticeable that the RMS signal is prone to be influenced by the measuring distance. This 

comparison also clarifies that if the distance to the object is increased the RMS height 

decreases. 

 

Figure 7-8 Comparison between Baseline and Discharge Valve Leakage 
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7.3.2 Vibration Spectrum VS acoustic spectrum in Frequency Domain 

From both the vibration and acoustic spectrum of the RC as shown in Figure 7-9, there are 

some discrete frequencies in the low frequency under 1500Hz especially under the 600Hz 

which are related to discharge leak valve due to its high impact velocity. The flow of gas to 

and from the leaking valve travelled around the enclosure in an erratic flow pattern, through 

cylinder openings and cavities under and above the valve. The uneven distribution of gas flow 

can affect and cause other plate valves to wobble during the opening and closing motion 

creating an abnormal mechanical action and hence the reason the noise level increases. 

Frequency of Vibration Spectrum VS Acoustic Spectrum 

 

Figure 7-9 Frequency of Vibration and Acoustic Spectrum  

Figure 7-10 displays an unevenly spread into 4 intervals. The acoustic signal contains the 

vibration components but it is different in acoustic. Due to the reciprocating nature of the 

machine and the residual imbalance the peak is aligned with the harmonics of the rotational 

frequency of the crankshaft. The correlation under 500 Hz between both the acoustic and 

vibration looks dissimilar. 
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Figure 7-10 Frequency of Vibration and Acoustic Spectrum  

 

7.3.3 Short-Time Fourier Transform from 0 to 110 psi 

Short-Time Fourier Transform (STFT) is implemented at a high level to observe the frequency 

change of vibration and acoustic from Figure 7-11. 

The data shown demonstrates a combination of how the components change based on the 

vibration and acoustic signal against time and frequency. The changes for both vibrations occur 

within the range of 0.32 to 0.345 kHz whilst for acoustic it is within 0.22 to 0.23kHz. This 

indicates that STFT Vibration has a number of visible spectral components in the frequency 

range of 0.32 to 0.345 kHz compared to the acoustic signal. Both SFTT plots demonstrate 

valuable feature trends of the RC baseline against DVL and the harmonics decrease linearly 

with the pressure. However, vibration STFT appears to be better than acoustic for this exercise 

and further works are required in simulating and studying all the seeded faults on the RC such 

as DVL, intercooler and suction leakage. 
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Figure 7-11 Acoustic in Short Time Fourier Transform 

7.3.4 Rotational frequency 

The vibration of the shaft mechanism usually happens at the rotational frequency of the 

machine shaft and when the system is changing state. The environment where the measurement 

is taken can also have an impact on the way the sound travels. Figure 7-12 details the rotational 

frequency of three sets of tests for BL and DVL of the RC. For each parameter and pressure 

two instantaneous values were recorded. This was repeated on a minimum of three separate 

occasions and the results were averaged to those data points. It is obvious that on baseline and 

DVL the sound pressure levels decay linearly.  
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The noise level of the DVL is lower compared to baseline which was recorded by the 

microphones. The fluctuation of the three sets of data of baseline and DVL can be attributed to 

a range of compressible factors. The sound pressure level of the RC operates steadily, the 

rotational speed converges and as the faults decrease the efficiency of the compression, hence 

increasing the load. Further works are suggested with an emphasis in analysing all the seeded 

faults as suggested for the STFT vibration above. 

 

Figure 7-12 Rotational Frequency 

7.3.5 Sound Localisation through Acoustic Imaging Technology 

This study aims to identify the exact noise sources location from the RC through the acoustic 

imaging and frequency analysis by computing RMS value in the frequency domain. The Sound 

Imaging was found to be the best approach as it allows the connection between the frequency 

with acoustic signal generation mechanisms.  

Test Procedures 

As described in Figure 7-6 Spiral Array Acoustic Camera with 64 microphones was used as 

the device has the capability of displaying a sound field like an image, hence can visualise the 

position and shape of the field. The test procedure is similar to that as described in Section 

7.2.2, however, in this exercise, only the second stage, Discharge Valve Leakage (DVL) was 

under test. The DVL has a 2 mm hole drilled as explained in Section 4.3.2.1 Simulation of 

Valve Leakage and Figure 4-3 shows the faulty valve plate. 
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Valve Leakage Simulation 

Discharge valve leakage is more critical than the Suction Valve Leakage (SVL) as the valve 

works at high pressure and is more exposed to impacts and wear therefore it is obvious that at 

this stage a higher sound level will be generated. The Spiral Array Acoustic Camera was placed 

at 2 metres away from the RC. Four sensors were placed at different heights as described in 

chapter 7.2.1 in the Measurement System Layout which collects and analyses the raw 

acoustical signal as explained in Chapter 7.2. 

Frequency Range Analysis According to Sound Localisation. 

There is a variety of reasons for the valve to generate sound as explained in Chapter 7.1.1 and 

the discharge valve is amongst them. The frequency analysis study has made it possible to 

identify the noise sources where the distributed noise pattern radiates and at a known frequency. 

After a series of tests and analysis, it has been possible to locate the noise generation from the 

RC, where the distributed noise pattern radiates and at a known frequency. Figure 7-13 shows 

the frequency ranges from 125 to 3300Hz. The investigation started at a low frequency of 125 

to 200 Hz initially and slowly progressed up to 3300 Hz. From observation, the sound is 

produced from the entire compressor and its surroundings and the reflection can be taken as 

the area source. At 312 to 600 Hz a big spot can be jumping up and down in front of the 

compressor and its surroundings. At 600 to 900 Hz below it is obvious that the compressor 

cylinders, both first and second stage crankshaft and motor radiate the noise. It is more visible 

and excited by an eccentric wheel at 900 to 1200 Hz. At 1200 to 1500 Hz shows noise radiation 

slightly below the head of the first and second stage compressor and is inclined more toward 

the driving belt. From 1500 to 2400 Hz the noise sources are detected at both stage cylinder 

heads and moving around this area. At frequency ranges from 2400 to 3300 Hz the noise 

sources are coming from the second stage cylinder, intercooler and the crankshaft. However at 

frequency ranges of 3000 to 3300 Hz below it is clearer that the compressor cylinder second 

stage radiates the noise and is much sharper. The acoustic imaging has been able to segment 

the frequency band and distinguish where the noise source is being generated from the RC. 

Relationship of the Frequency Analysis to the Cylinder Pressure and Vibration Analysis 

This shows a clear indication that the DVL of the RC requires more work. This also 

demonstrates a correlation to Section 4.7.3 Changes in Cylinder pressure under Discharge 

Valve Leakage at 120 psi and Section 4.9.1.1 Vibration-based Condition Monitoring of the 

Discharge Valve Leakage Vibration at 8.3 bar of the 2nd stage cylinder, where DVL operates 
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at its highest pressure and oscillating at approximately 11 bar at 120 psi and requires more 

compression. This supports the finding in this study of the RMS Frequency Range Analysis 

where the detection of the cylinder knock generates more noise from the compressor 2nd stage. 

 

Figure 7-13 Frequency Range Analysis from 125 to 3300Hz 
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7.3.6 3D Column Chart Analysis 

The 3D column chart from Figure 7-14 to Figure 7-19 shows the difference in RMS when the 

baseline is subtracted from the DVL readings, over the frequency range 0 to 12kHz and for a 

range of sensor heights and distances from the target machine.  Frequency Range from 2100 to 

3300Hz shows a good distribution in sequence at 0.5 metres. 

 

Figure 7-14 Bar Diagram from 0 to 12000 Hz 
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Figure 7-15 Bar Diagram from 1200 to 1500 Hz  

 

Figure 7-16 Bar Diagram from 1500 to 1800 Hz  
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Figure 7-17 Bar Diagram from 1800 to 2100 Hz  

 

Figure 7-18 Bar Diagram from 2100 to 2400 Hz  
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Figure 7-19 Frequency Range from 2100 to 3300Hz 

 Discussion 

From the Time Domain RMS Analysis, the acoustic signal at 1.1m height, 50 cm away from 

the compressor, shows a good indication of the sound propagation and for locating noise 

sources under all operating discharge pressure conditions. However, the RMS acoustic signal 

of the sound pressure decreases when the microphones are further away from the compressor. 

The Spiral Array can locate sources of airborne sound at a higher frequency. Based on this 

finding it is clear that the second stage cylinder valve was generating more noise as it was 

seeded with a faulty valve. This faulty discharge pressure was also not steady due to the faulty 

valve motion and contained a high temperature due to the second stage cylinder high 

compression actions. This caused a rise in the acoustic level which reduced the performance of 

the compressor. The harmonics shift can indicate an abnormal operating state caused by the 

faults. RMS of the specific frequency range can indicate the faults which are consistent with 

the sound localisation from the sound imaging device. Based on 7.3.5 of the Sound localisation 

it is evident that at high-frequency ranges of 3000 to 3300 Hz the compressor cylinder second 

stage radiates more noise and is much sharper. It was possible to section the frequency band 

and differentiate where the noise source is being generated from the RC. To end, the 3D 

Column Chart Analysis Figure 7-19 at 2100 to 3300Hz shows a good distribution. 
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 Acoustic Monitoring of the Laboratory Compressor with State 

of-the Art Convolutional Neural Networks 

For efficient acoustic data analysis, Chapter eight is the final part of Phase III and focussed 

on the Convolutional Neural Networks (CNN). As a state of the art technology, CNN can be 

applied to raw data for extracting optimised diagnostic information, which avoids the 

inefficiency of signal analysis based feature extraction and optimisation. CNN will be used to 

mine acoustical data from a Reciprocating Compressor (RC) and locate an optimal position 

away from the RC for the data collection, demonstrating which signal has a good indication of 

sound propagation and locating of noise sources under four operating discharge parameters. 

CNN architectures and training procedures are detailed. The results show this CNN based 

scheme allows high diagnostic accuracy, as well as the determination of the most suitable 

microphone localisation. 
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 Acoustic Signal from Reciprocating Compressor 

The acoustical signal emanating from RC is time-varying because various components 

manifest a significant change with time and this can increase frequency modulation. These 

unveiled modulation frequencies proved the roughness, impulsive, abrupt change of amplitude 

with time, varying wideband and harmonic [168]. The non-stationary process is common when 

equipment runs under various loads and conditions. The reciprocating compressor is a good 

example where there are transient signals generated during the various stages in the process, 

including the stop and start of the motor. These signals can be in the form of acoustic, vibration, 

current and much more. The acoustic signal in the RC can be regarded as a tough non-stationary 

signal due to its harsh operation and can also contain critical information of the compressor 

condition and its mechanism. These non-stationary processes can provide a good indication of 

the state of the equipment which cannot be realised by a stationary signal.  

8.1.1 Common Feature Analysis Methods 

To conduct an effective diagnosis and prognosis, the most significant and responsive features 

should be chosen. The lack of accuracy in this process selection can reduce the effectiveness 

and reliability of the study. To reach a good agreement in this pre-arrangement, a brief 

explanation is given below by using common feature analysis methods to explain the ‘Time 

Domain Analysis’, ‘Spectral Analysis’ and ‘STFT Analysis’, which will reveal the signal 

characteristics and also express the advantages of the Short-Time Fourier Transform (STFT). 

Time Domain Analysis 

Time-domain parameters such as kurtosis, Root Mean Square (RMS), crest factor, peak to peak 

and skewness is generally known as statistical parameters and time-domain features, they can 

provide an unsteady time-varying signal and are normally used for the non-stationary signal.  

Kurtosis is a well used feature, it is based on the distribution of signal data with time series 

random variable [169]. It is a measure of the distribution intensity. The time-domain techniques 

normally relate to a specific change of the waveform signal in time. 

The signal of the Root Mean Square (RMS) and crest factor are well known and the easiest 

features in the time domain analysis. RMS is very effective in finding any imbalance and other 

associated faults in the rotating machine. The downfall is that it cannot detect a deteriorating 

part [169]. RMS technique characteristic is to have a good time resolution at the same time 
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keeping a poor frequency resolution whereas crest factor is usually explained as the ratio of 

peak value over RMS value of a given signal and can indicate the shape of the waveform.  

Peak-to-peak is the variance between the maximum and minimum amplitude of the signal 

whereas skewness is generally defined as the characteristic parameter qualifying the 

asymmetry degree of signal distribution. Defects can highly influence the distribution 

symmetry and intensify the level of skewness. 

Spectral Analysis 

The Frequency domain analysis gives spectral facts of signals and is achieved by altering the 

time domain signal into the frequency domain. The advantage of this analysis is that it can 

isolate a certain frequency of attention. Fast Fourier Transform (FFT) can provide the 

frequency domain of a steady signal but not for Time Varying signal and is mainly used for 

stationary signal and “windowing”, however FFT is simple to implement compared to STFT. 

Nevertheless, the FFT analysis has some serious shortfalls. One of them is that time 

information is lost in the transformation to the frequency domain [170]. FFT is a stationary 

signal that cannot identify when an event has taken place, this is not generally used in the time 

domain parameters.  

Short Time Fourier Transform Analysis 

Signal processing is present in a variety of applications. Its main objective is to provide 

underlying information on specific problems in the decision making process and the use of the 

correct approach is fundamental. The popular technique used for studying non-stationary 

signals is the STFT and for this reason it has a fundamental place in the time frequency domain. 

The signal is non-stationary if the spectral contents or frequency changes with respect to time. 

STFT works in choosing a localised window function in the time frequency function and the 

signal is divided into smaller time intervals in respect to the moving window function. This 

technique is called “Windowing” the signal. Each interval is analysed with the Fourier 

Transform which will then determine the frequency at which the interval exists [171].  

STFT is described as a form of collaboration between the time and frequency based views of a 

signal. It explains what is happening in both situations, at what frequencies and the occurrence 

of a signal. The precision of this information is determined based on the size of the window. 

The shortcomings are that as soon a particular size for the time window is selected these 

frequencies will apply for that specific window. Signals come in various forms and some may 
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need a more flexible method [172]. The spectrogram remains to be the main technique used as 

it can be easily calculated as the magnitude squared of the STFT of the time-frequency analysis 

[173]. 

In Fourier Transforms the sum of the sinusoids of different frequencies are separated from the 

waveform, the amplitudes are identified and a frequency amplitude of the signal is obtained. 

The STFT is also a Fourier Transform that is dependent on time [174]. 

 Data Mining Based on Convolutional Neural Networks  

In this study, CNN is used which is a combination of artificial neural networks and recent deep 

learning methods. Artificial Intelligence (AI) endeavour to give machine human-like 

capabilities such as the use of Neural (NN) [175]. This technology has been used for a lot of 

image and pattern recognition tasks in recent years. CNN’s are a type of multi-layer neural 

networks mainly built for the processing of two-dimensional data. This technique has proven 

to be feasible by previous researchers such as Xiaofeng et al and they deeply endorse that if 

the training speed of a network is increased and the models have improved, a higher level of 

convolutional neural networks in image recognition is attainable and can be applied in a variety 

of fields [63]. Simard et al also propose that CNN can be used in many visual issues if a bigger 

training set is utilised and that the technique is simple and can give a good evaluation [65]. 

Chapter 2.4 give an in-depth literature review of CNN and its application. 

Some of the core keywords used in this study are briefly explained below for clarification. 

CNN uses convolutional layers to filter inputs for valuable data. This process of convolution is 

about merging input data, also known as the feature map, with a filter or convolution kernel to 

create a transformed feature map. The filters are altered based on the learned parameters to 

extract the most important information for a specific job. CNN fine-tunes itself automatically 

in finding the best feature based on the job [176]. A neuron usually works by applying non-

linear filtering to a weighted sum of its inputs. Neurons are small computational elements 

organized in a layered structure applied as CNN inputs [177]. 

Convolution layers are formed by neurons known as kernels which perform a non-linear 

filtering operation by moving a small context window, also recognised as the kernel’s receptive 

field on the layer’s input. This also computes a series of activations as the windows cover it 

sequentially. Local connectivity also known as localised filtering represents a key feature in 

obtaining invariance against shifts of recognizable input patterns. It is vital in image 
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recognition that a target object is recognized regardless of its position in the input picture. The 

activations computed by each kernel are collected in matrices called feature maps which is also 

represented as the actual convolutional layer’s output. The networks can achieve shift 

invariance at the price of losing the entire original input because of the small dimension of field 

receptivity. 

This problem can be solved with the implementation of the sequential stacking of more 

convolution layers, however, the pooling layer between two sequential convolutional layers is 

most widely used as it can quickly achieve wider overviews. This process fundamentally 

subsamples each feature map, reducing its dimension and extracting the highest value from a 

window that moves along each feature map and this is called max-pooling. The network can 

learn higher level features on a wider input overview without the requirement of many 

convolutional layers due to the pooling layers. This, in some situations, can be an overfitting 

issue of result to the large number of parameters to be trained. The last CNN layer will reveal 

the actual network’s prediction. It is usually made of fully connected neurons and each of them 

will immediately precede the entire layer output.  

Finally, due to classifications difficulties, it is normal to use the softmax function as neurons’ 

nonlinearity, subsequently linking each of the possible classes to a specific neuron [178]. 

8.2.1 Preferred Classification 

Supervised Learning  

The supervised learning method is used in this experiment to analyse and evaluate the 

collection of signals data to find out which position and signal proved to be a good indication 

of sound propagation under the four operating discharge pressure conditions. This method is 

used to process the labelled datasets where the data is transferred to the datasets so that the 

neural network learns the correlation between label and data. This type of classification is 

known as supervised learning which is a powerful instrument where classification tasks are 

dependent on various labelled datasets [58]. Simard et al. also postulate that the quality of a 

learned system is dependent on the size and quality of the training set [65] with a higher degree 

of accuracy. This type of Artificial Intelligence (AI) learning can also identify a person in 

images, recognize facial expressions, detect faces, identify objects in images, recognise gesture 

in the video, identify speakers, transcribe speech to text voice recognition and more [58]. These 

have also been briefly described in chapter 2.4.7. 
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 Determination of the Best Sound Acquisition Position Based on Convolution 

Neural Networks 

As described in Section 7.2.1 of the Measurement System Layout, sixteen position signals have 

been captured by four similar microphones, varied at four different distances and heights from 

the compressor, to compare the airborne signal against data validation training accuracy. Figure 

7-3 shows the System Layout of those microphones “acoustic sensors” concerning the 

compressor. The result also enables to qualify and quantify the ideal acoustic signal location 

where data can be taken which will enable us to identify the ideal location for the data 

collection. The system layout gives an overview of how the 16 sensors are positioned. 

8.3.1 General System Set up 

Section 7.2.1 Figure 7-4 is the same System Set up with an array of four microphones vertically, 

as explained earlier, which can be moved to different positions and Figure 7-5 shows the same 

Test Bed layout being used for this chapter. 

8.3.2 Test Simulation 

In this experiment the same “Broomwade TS-9” compressor has been used as shown in Section 

4.3.1, Figure 4-1. Three common fault cases have been seeded into the system at four different 

operating parameters: Baseline (BL), Discharge Valve leakage (DVL), Suction Valve Leakage 

(SVL) and Intercooler leakage (IL) and the acoustical data is collected for further processing. 

CNN technique is preferred as the CNN network supervised learning methods will satisfy the 

criteria to handle a large number of learning samples, train them and give good accuracy [65] 

[66]. 

For clarification, this study is not for fault classification. The objective is to be able to extract 

the acoustical data of the four test cases at various positions away from the compressor, and 

through the implementation of CNN, be able to locate the best position away from the RC for 

the data collection, demonstrating which signal has a good indication of sound propagation and 

locating of noise sources under the four operating discharge parameters. This is achieved by 

the aid of four microphones that will be moved at different heights and distances from the 

observed machine.  

Sixteen points of data collection will be taken as explained in Chapter Seven and the following; 

Figure 7-1 Data Acquisition 1, Figure 7-2 Data Acquisition 2, Figure 7-3 System Layout, 
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Figure 7-4 System Set up, Figure 7-5 Test Bed Layout and Figure 7-6 Spiral Array Acoustic 

Camera are applied to this study. 

8.3.3 Test Procedures 

To collect acoustical data, a series of tests were carried out while the machine was in operation. 

The data was taken from the four test cases and the operating conditions are detailed in Table 

8-1 below. 

Table 8-1 Four Test Cases 

Test Cases Fault Locations 

Healthy (BL) N/A 

Discharge Valve Leakage (DVL) At 2nd Stage Discharge Valve 

Suction Valve Leakage (SVL) At 1st Stage Suction Valve 

Intercooler Leakage (IL) Loose Intercooler 

 Data Preparation  

This study has used the original acoustical data from chapter seven where four microphones 

have been used at four different distances and heights from the RC under four different 

operating working conditions as explained in 8.3 above. To attain an optimal result, the 

handling of the datasets gained from the microphones requires great care and a high level of 

pre-processing precision.  

8.4.1 Pre-processing Steps 

The pre-processing procedural steps are as follows: 

1) The sample data taken from the RC is converted into images and arranged into one 

main folder called “CNN train” as shown in Figure 8-1, “CNN train folder”. 

 

Figure 8-1 CNN Train Folder 

2) It is then divided into16 folders, “Step30 Data 11 to 44” as illustrated in Figure 8-2. 
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Figure 8-2 Step 30 Data 11 to 44 Folder 

3) The 16 folders are now subdivided into four subfolders as shown in Figure 8-3. 

 

Figure 8-3 Divided Four Subfolders 

4) Each subfolder will have (12 X 63) = 756 Images as presented in Figure 8-4. 

 

Figure 8-4 Image Subfolder 
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5) Sixteen different networks need training hence (756 X 4) = 3024 Images. Each network 

will require 3024 images. For the 16 CNN, a total of (3024 X 16) = 48384 images are 

required. These images are now ready for training. 

6) However before the training process, a MatLab algorithm was computed in the STFT 

program to get FFT and the following operation is performed internally (nfft = 256*4, 

winx = Kaiser(nfft,18), overlap = round(0.9*nfft)), take the modulus of the 

complex number and form a two-dimensional image, the size of the image is 513*1967 

= 1009071  

Data frequency domain after the STFT process. 

The Spectrogram Figure 8-5 shows the data frequency domain after the STFT process. 

 

Figure 8-5 Data after STFT 

Further processing is required to obtain the data in the frequency domain as shown in Figure 

8-6. The image has been narrowed by (image .^ 0.5) The images are normalised to hexadecimal 

depth to highlight the changes in detail: (image =image/(max(max(image))))*65535.  

Note: For Figure 8-5 and Figure 8-6 a majority of the frequencies between 2000-12000Hz are 

almost zeros as the interest is on the amplitude difference in time and frequency domain not 

the absolute value of the amplitude, therefore, the values are not negligible because the 

amplitude value in some frequency ranges are too small. 
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Figure 8-6 Amplitude Height Data 

 

Figure 8-7 Data in Frequency Domain Changes on the Time Axis 

The above Figure 8-7 shows the side view of the data in the frequency domain. The figure 

proves that the frequency changes on the time axis. 
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Figure 8-8 Waterfall View in the Time Axis 

Figure 8-8 shows the waterfall view in the time axis and it is evident that there are 3 peaks and 

3 periods. Each period of the signal is approximately 30. If the width of each image is cut to 

101, which covers the three periods and the offset between the two consecutive images is 30, 

therefore the length of 1967 will have to be offset by 30 but this can vary depending on size. 

To get the number of partial images from the spectrogram, the length (1967-101)/30= 63 partial 

images. 

63 images were picked up for each condition, distance, height, pressure and the size of each 

image is 513*101. All images are divided into 16 categories based on the distance and height 

(4x4=16). 

These images are now ready for training. After training the data set size of the network the 

network/validation accuracy can be found. 

  CNN Design and Training Processing 

CNN Design 

This study is to find the most suitable signal acquisition position from the RC though CNN and 

the spectrogram obtained by the STFT as described in the time-frequency characteristics of the 

acoustical signals, however, it still requires further extraction to distinguish more features for 

the classification and identification of various signal. The acoustical datasets obtained from the 

microphones need thorough preparation before the CNN training. The evaluation of the 

acoustical images is done through the CNN deep learning network technique. The captured 
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images have relevant information in localising the most suitable signal acquisition position. As 

previously described CNN is ideal for image classification and pattern recognition in assisting 

for the accurate feature extraction [58], [126], [179]. In this investigation, the CNN network 

architecture and design was not straight forward and to achieve an optimal result and 

understanding of the relationship between training and validating the accuracy of the network, 

the key parameters were changed by four sets of trial and error exercises in accordance with 

the following sequential structure as illustrated in Figure 8-9. The concept is to try to get more 

width network with smaller convolution kernels from an initial stage. 

 

Figure 8-9 CNN Structure Trial 

In order to extract more information from the images, only the first and second training trial 

will be briefly explained further and were arranged into three convolution kernels. Each 

convolution layer is accompanied by the normalised (can be trained) and pooling layer. The 

first convolutional layer contains fifteen convolutional kernels; 13*13 filter size, the second 
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convolution layer was organised into ten convolutional kernels; 10*10 filter size and the third 

convolution layer arranged into seven convolutional kernels; 7*7 filter size. The size of the 

convolution kernels also defines the information of the image and in the second structure only 

the first two convolutional layers filter size were changed while the kernels was unchanged. 

 Analysis based on Randomness Training 

Network Structure Impact on the Results 

The Table network representation displayed 16 networks and each network is classified as 

(Distance, Height) in cm as shown in Table 8-2. 

Table 8-2 Validation Table Network Representation 

 

The separation of the dataset preparation for the Networks and the evaluation was repeated 

twice, the validation accuracy of the 16 networks are derived as shown from Table 8-3 and 

Table 8-4 which will be briefly further below. To achieve the highest accuracy the dataset had 

to be first evaluated. During the import of the labelled dataset, the images were fragmented into 

70%/30% where 70% of the images data is used for training the data set size and 30% is used 

for the validation purposes/network testing. The key parameters used during the training 

process are the Learning Rate = 0.01, and MaxEpochs = 3. The test for the first trial and second 

trial are shown in Table 8-3 and Table 8-4 where N(4,1) is 25% and N(4,2) is 44.5% on the 

first attempt and the second attempt N(4,1) is 25% and N(4,2) is also 25%.  

Table 8-3 First Validation Test using 30% Dataset 
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Table 8-4 Second Validation Test using 30 % Dataset 

 

As this is only at an initial stage and the result is not great, more testing is required. The training 

process for the 16 datasets took two days in total to be completed. 

To ensure that the low accuracy is not due to short training time, N(4,1) training was carried 

out for a second time with Max Epochs = 8. Figure 8-10 shows the progress of the second set 

of training of N(4,1) at a longer time with max epochs 8 to ensure a higher accuracy is reached. 

Table 8-5 shows the result of the validation accuracy which is regrettably lower therefore 

unfortunately the validation accuracy did not change with a lengthier training time of 108 min 

6 sec. 

 

Figure 8-10 Training of Network (4,1) in Progress at a Longer Time 
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Table 8-5 Validation Accuracy of Network (4,1) at a Longer Training Time 

 

Subsequent CNN Structure Trial  

To understand the relationship between the training and network dataset size, key parameters 

were changed in the second set of trial and error CNN Structure accordingly, with the first 

convolutional layer now containing fifteen convolutional kernels; 19*19 filter size, the second 

convolution layer was prepared into ten convolutional kernels; 13*13 filter size and the third 

convolution layer arranged into seven convolutional kernels; 7*7 filter size.  

The aim is to get a new network with bigger convolution kernels in the first two layers. N (4,1) 

and (4,2) were trained again and their training progress are shown below in Figure 8-11 and 

Figure 8-12. 

 

Figure 8-11 Second Training Progress of Network (4,1) 
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From Table 8-6 the validation accuracy of the network (4,1) was carried out at a shorter time 

of 22 min 56 sec with max epochs 3. It was found that if the training time is shorter the 

validation accuracy is slightly increased however this still needs improvement. 

Table 8-6 Validation Accuracy of Network (4,1) at 69.93 % at a Smaller Training Time 

 

 

 

Figure 8-12 Training of Network (4,2) in Progress 

Table 8-7 shows the validation accuracy of the network (4,2) at a much shorter time of 21 min 

31 sec with max epochs 3. The validation accuracy is still lower and requires more work. 
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Table 8-7 Validation Accuracy of Network 44 at 49.12 % with a Smaller Training Time 

 

To explore if a smaller network with smaller convolution kernels can have higher accuracy, 

N(4,1) and (4,2) were trained for a longer time (MaxEpochs = 8) as shown below in Figure 

8-13 and Figure 8-14. 

 

Figure 8-13 Training of Network (4,1) in Progress  

 

Table 8-8 shows the validation accuracy results at 92.29% where the training time is increased 

to 56 min 55 sec. It also shows the training of the network with a longer period with max epochs 

8 to ensure a higher accuracy closer to 100% but still needs enhancing. N(4,2)  
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Table 8-8 Training Processing of Network 41 (Smaller Convolution Kernels and Longer 
Training Time) 

 

Figure 8-14 were also trained for a longer time as explained briefly above at (Max Epochs = 

8). It was found that N(4,1) made significant progress as shown in Table 8-8 whilst the 

validation accuracy of N(4,2) made little improvement at a validation accuracy of 25% from 

Table 8-9. 

 

Figure 8-14 Training of Network (4,2) in Progress 
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Table 8-9 Training Processing of Network42 (Smaller Convolution Kernels and Longer 
Training Time) 

 

A third trial was carried out with the following CNN Structure, with the first convolutional 

layer being twenty-one convolutional kernels; 13*13 filter size, the second convolution layer 

was organised into fifteen convolutional kernels; 10*10 filter size and the third convolution 

layer arranged into eleven convolutional kernels; 7*7 filter size, still the validation accuracy 

shows no improvement and are not described any further. 

Note: 

The above analysis illustrates the principles of the training in full of chanciness, therefore it is 

difficult to complete effective training for a certain network. Different figures record the 

training process of the collected acoustical data from various positions. The difference in 

accuracy verifies that the information quantity of the collected signals at various positions is 

different. Finding a suitable acquisition position is the purpose of this study.  

8.6.1 Final CNN Training Phase 

Finally, based on previous analysis inaccuracies, the fourth CNN training structure has a bigger 

structure where the first convolution layer is comprised of twenty-five convolutional kernels, 

the second convolution layer contains twenty convolutional kernels and the third convolution 

layer arranged into fifteen convolutional kernels. The filter sizes of the convolution kernels are 

set in the following arrangement: the first layer is 33*33, the second layer is 21*21, and the 

third layer is 17*17. Figure 8-15 illustrates the CNN Design Architecture. The wider and 

deeper the network, the better training effect, however it takes longer. It was unfortunate to 

state that aside from a lot of practice, there is no direct way to determine the right size of 
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network and that it is vital that computers with good computing power are essential for the 

training. 

 

Figure 8-15 CNN Design Architecture 

These convolution layers will be used to extract the images features and they use the linear 

rectification technique for activation whereas the pooling layers use the maximum pooling 

technique which picks only the active feature in a pooling region. The nodes of the convolution 

and pooling layers are connected to the target nodes through the fully connected layer after the 

activation process. Finally, the fully connected layer, which is the last output of the neuron, is 

followed by the softmax function and the final CNN structure is illustrated in Figure 8-16 

supplemented with a more rational explanation. 
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Figure 8-16 Final CNN Structure 

The input datasets comprise of 48384 images with the size of the two-dimensional image at 

1009071 and designed into three convolution kernels. Each convolution layer is accompanied 

by the normalised (can be trained) and pooling layer. The convolutional layers (33*33), 

(21*21) and (17*17) are used to extract the features of the images at different stages. All the 

convolutional layers use the linear rectification method as shown in Figure 8-16 even though 

the pooling/(hidden) layers uses the maximum pooling method. The nodes of the convolutional 

and pooling layers are linked to the target node via the fully connected layer after the activation 

phase, whereas the output layer returns to the softmax function. The acoustical data sets 

obtained from the microphones need thorough preparation before the training of CNN to gain 

a reliable high-performance accuracy in finding the most suitable signal acquisition position.  
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 Final CNN Structure Validation Accuracy using various percentage Dataset 

Accuracy Achieved through Convolution Neural Networks 

Machines emit noise whilst in operation but for the case of the RC and due to its age, more 

noise is generated. This comes mainly from the cylinders as the pistons are the only main 

moving mechanism. Each acoustical signal will show a different trend depending on its noise 

severity and the position away from the compressor. Knowing the best location to collect this 

data through a non-intrusive diagnosis technique based on a combination of acoustic and CNN, 

the difference in accuracy is described below and has proven to be an effective technique in 

finding the most suitable signal acquisition for the RC. 

A quantitative approach is used to explore the validation accuracy as described in Table 8-10 

based on the final CNN Structure, with the convolution layer consisting of twenty-five, twenty 

and fifteen convolutional kernels, with filter size of convolution kernels set to 33*33, 21*21, 

and 17*17 as previously described in Figure 8-16. 

The study uses 5 different proportions of the total available data set for training purposes. The 

specific percentages are 5, 10, 20, 30 and 70% of the data set size. In each case the remainder 

of the data set (95%, 90%, 80%,70% and 30%) is used for network testing/validation purposes.  

With a training to validation ratio of 5%:95% the accuracy ranged from 33.57%, N(4,1) at (200, 

80)cm to 94.25%, N (1,3) at (50,140)cm. The validation accuracy is low and requires more 

processing until 100% validation accuracy is reached. 

As the aim is to locate the optimum cluster for data collection and to see the variation in the 

accuracy, therefore with a training to validation ratio of 10%:90% the accuracy ranged from 

65.4%, N(2,2) at (100, 110)cm to 98.35%, N (2,4) at (100, 170)cm is unstable and needs further 

processing until this is reached. 

With a training to validation ratio of 20%:80% the accuracy ranged from 85.87%, N(4,2) at 

(200,110)cm to 99.3%, N (3,3) at (150,140)cm more data set are required for training and the 

accuracy of the network is still low. 

With a training to validation ratio of 30%:70% the accuracy ranged from 83.7%, N(4,1) at 

(200,80)cm to 99.5% , N (1,4) at (50,170)cm. As the training set rises to 30% the accuracy of 

the network decreases however it can still be improved as the desired accuracy is not yet 

attained. 
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Finally with a training to validation ratio of 70%:30% the accuracy ranged from 97.36 %, 

N(2,1) at (100,80)cm to 100%, N(3,1) at (150,80)cm, N(4,1) at (200,80)cm, N(2,2) at 

(100,110)cm, N(1,3) at (50,140)cm and grouped in N(1,4) at (50,170)cm, N(2,4) at 

(100,170)cm and N(3,4) at (150,170)cm. As the training set size rises to 70% the accuracy is 

increased to a higher validation accuracy. This proves that the cluster N(1,4), N(2,4) and N(3,4) 

is the best location for a good indication of sound propagation at a highest validation accuracy 

of 100%. 

Table 8-10 Validation Accuracy Analysis 
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 Discussion 

This proves that the results show that a larger deeper convolutional neural network can achieve 

better accuracy based on the challenging acoustic dataset through supervised learning and it is 

evident that the smaller and narrower network results in a higher degradation of accuracy.  

The accuracy in finding a suitable location for the acquisition of the acoustical data under the 

four operating discharge pressures has improved as the network was made larger and trained 

for longer. The CNN technique used for this classification and pattern recognition has proven 

to be effective.  

It has been possible to validate which is the best location for a good indication of sound 

propagation at a training dataset size of 70% and validation accuracy using 30% dataset. 

Position (50, 170)cm, (100, 170)cm, (150, 170)cm, away from the compressor, manifest an 

ideal point to locate an optimal position for the collection of signals and has proven to be a 

good indication of sound propagation and for locating noise sources under the four operating 

discharge pressure conditions at different heights and distances. 

The findings from this study prove that by training a smaller network, the accuracy worsens, 

whilst using more kernels and a bigger network, the higher the accuracy. However, a bigger 

network requires more time and it is important to find the right smaller structure that will reach 

higher accuracy and this was achieved through trial and error. Training the network can be a 

form of art rather than science as there are no set kernels. 
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 Conclusions and Further Work 

This chapter concludes this thesis and is distributed into four sections; section one summarises 

the achievements of the research work described in this thesis and relates these achievements 

to the objectives which are defined in sub-chapter 9.1. This research has been undertaken in 

three Phases and examined under different advanced methods for the predictive 

maintenance/condition monitoring of rotating and fluid machines. Section 9.2 outlines the 

conclusion drawn from Phase I, Phase II and Phase III of this thesis. Contribution to 

knowledge is drawn from Section 9.3 and the final Section 9.4 discusses possible areas of future 

works which the author considers would further enhance this study and make a useful 

contribution to the advance monitoring of rotating and fluids machines. 
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 Review of Research Objectives and Achievements 

Several objectives were defined at the beginning of this thesis and they are documented in 

Section 1.3 Research Aims and Objectives. To ascertain if the specified conditions have been 

fulfilled, each of these objectives are to be visited in this chapter and the key findings 

summarised. Moreover, the contribution to knowledge and novelty is identified. The condition 

monitoring of the vacuum pump in the paper industry has received little consideration and the 

monitoring of the system is achieved fundamentally by the vibration analysis. To accomplish 

this research several objectives need to be met and the following shows a review of the 

progress: 

Aim: This study aims to focus on the enhancement of the condition monitoring of a 

reciprocating compressor in a lab environment and a large industrial vacuum pump used in the 

paper industry by using a conventional and state of art monitoring system. To achieve this 

research, studies have been carried out in three separate successive phases. Phase I is the 

techniques evaluation, the objectives and achievements are as follows: 

9.1.1 Phase I 

Objective 1: Understand the current Condition Monitoring (CM) technology and find the gap 

in its application by reviewing the existing systems in the market and research community 

through intensive literature review. 

Achievement: This has been made possible, the results are in Chapter 2 and the work is 

distributed in all three Phases. 

Objective 2: To design a mathematical model and numerical analysis for the investigation of 

the behaviour of the dynamic responses of the Reciprocating Compressor (RC). 

Achievement: This is accomplished in Chapter 3 of the mathematical modelling and numerical 

analysis in the dynamic responses of the RC. 

Objective 3: To design and build a comprehensive reciprocating compressor test facility in the 

lab to simulate faults and obtain experimental data. These data samples will assist to analyse 

the effectiveness of the system with different monitoring strategies.  

Achievement: Chapter 4 gives an explanation of the development, design and the test rigs with 

all the instruments used, together with the analysed report explaining the findings. 

Objective 4: To familiarise and study the practical and theoretical aspects of all components of 

the compressor and study the function of the data acquisition so that samples of the raw data 
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signal from the machine can be captured, analysed and a report produced. Also to understand 

the signal processing methods and techniques used for analysis which is the Frequency and 

Time Domain, Root Mean Square (RMS), Instantaneous Angular Speed (IAS) spectrum and 

Current Waveform Spectrum.  

Achievement: The results of this objective are in chapter four where different types of faults 

were seeded into the system then analysed and a report produced. Chapter four also shows the 

results of the various signal processing methods and techniques used for analysis, such as the 

Frequency and Time Domain, RMS, IAS spectrum and Current Waveform Spectrum.  

Objective 5: To seed specific quantified faults into the machine so that experimental data can 

be gained on the subsequent system behaviour and its effect on the compressor performance so 

that data can be compared and analysed. 

Achievement: This has been made possible, the results are in Chapter 4 in evaluating the 

condition monitoring techniques based on intrusive and non-intrusive in-cylinder pressure 

measurements 

Objective 6: To implement various techniques relating to Surface Vibration (SV) and IAS into 

the system to analyse the effect and evaluate the possibility for field implementation in phase 

II. Examine the detection and diagnosis performances of the developed CM systems in line 

with potential issues for field implementation  

Achievement: Chapter 4 explained the application of the SV and IAS techniques. In Phase I of 

the compressor work it has also been found that the dynamic pressure, IAS and motor current 

monitoring allows full detection of all induced faults including different leakages of discharge, 

inlet and intercooler, driving belt looseness and motor stator asymmetries with moderate signal 

conditioning and analysis. 

9.1.2 Phase II 

Objective 1: To study and evaluate the current CM technology which has the most potential to 

the paper industry by exploring the existing systems in the market and research community. To 

develop an analytic modelling of a vacuum pump and to implement a scheme based on a typical 

paper industry, built on actual demand. 

Achievement: This has been made possible and the result of the analytic vacuum pump 

modelling is in Chapter 5 and the evaluation of the current CM technology, which has the most 

potential to the paper industry, is as shown in Chapter 6. 
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Objective 2: To assess the capability of the target system through its working history and 

planned maintenance schedule, for comparison in discussion and evaluation, by examining the 

suitability and performance during the full course of the CM process which includes the 

measurement system specification, data acquisition definition and implementation, data 

analysis method selection and evaluation, detection and diagnosis performance confirmation. 

Achievement: A good understanding of data measured and how it has been interpreted has 

helped to gather several assumptions which have been documented in Chapter 6. 

Objective 3: To conduct and investigate the feasibility of the scheme in terms of sensor 

installations and performances, data acquisition methods, system specification and fault 

diagnosis admissibility to enable sample data to be easily taken and analysed. 

Achievement: Chapter 6 explains the feasibility of the scheme in terms of sensor installations. 

Objective 4: To conduct a qualitative study and fault mode analysis of these pumps by 

examining the detection and diagnosis performance of the vacuum pumps by using the 

(vibration data statistic, airborne sound statistic, frequency spectra for vibration and envelope 

spectra) techniques to prove its effectiveness and IAS approaches. 

Achievement: In Phase II of the Industrial CM work, Section 6.10 discussion, it has been found 

that there are discrete frequencies in the Envelope Spectra of the motors, pumps, and gearboxes 

which may be caused by some imbalance and wearing parts. However, it was not possible to 

install the shaft encoder for IAS acquisitions in Phase II of the vacuum pump as it was not 

practical to stop the machine due to high demand in production, but this is a possibility for 

future work.  

9.1.3 Phase III 

Objective 1: To apply Airborne sound acoustic learned from the Industrial Monitoring Machine 

from Phase II, into the Broom Wade compressor used in phase I.  

Achievement: The results are in Chapter 7 Acoustic Monitoring of the Laboratory Compressor 

Based on Conventional Analysis. 

Objective 2: To develop a movable rig for the collection of 16-point data away from the 

reciprocating compressor. 

Achievement: This has been made possible through Section 7.2.1 measurement system layout 

and the Figure 7-4 General System Set up. 
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Objective 3: To study, identify, quantify and qualify the best location to capture the acoustic 

signal from the compressor. 

Achievement: This has been made possible as shown in Section 7.3.5 Sound Localisation 

through Acoustic Imaging Technology 

Objective 4: To study the Root Mean Square (RMS) range according to the sound localisation. 

Achievement: This has been made possible as shown in Section 7.3.1 of the RMS Analysis in 

Time Domain. 

Objective 5: To Study and apply the Convolutional Neural Networks (CNN) in determining 

and localising an optimal position away from the compressor for the collection of signals to 

find which signal proves to be a good indication of sound propagation and locating noise 

sources under the four operating discharge pressure conditions. 

Achievement: The results are from Section 8.6 to 8.7 within which the CNN network has proven 

to be effective and confirming which is the best location for a good indication of sound 

propagation using 70% of the data set size for training and 30 % of the data set for the validation 

purposes/network testing. Position (50, 170) which is 50 cm away from the compressor at a 

height of 170 cm, Network (N) (1,4), N (2,4) at (100, 170)cm away and N(3.4) at (150, 170)cm 

away is the ideal point to locate an optimal position for the collection of signals and the 

detection of noise sources under the four operating discharge pressure conditions at different 

distances and heights. 

 Conclusions drawn from Experimental Results  

The progress made in this thesis allows numerous conclusions and key findings to be reached 

in all three phases. 

9.2.1 Phase I  

From the mathematical modelling and numerical analysis of dynamics responses of the RC 

based from Chapter 3, it can be concluded that the in-cylinder pressure describes the RC 

operation and can be utilised for fault diagnosing in flow passages, however at a system level 

diagnosis it does not have the capability to indicate any surge from motor drives and 

mechanical transmission systems. IAS and motor current can both be used for system level 

diagnostics due to the significant changes between various fault cases however not at a  
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component level diagnostics. Acoustics from flow passages and structural vibration was found 

to be a better approach in respect to various faults comparison. 

It can be concluded from the work in Section 4.7 that a time domain approach for the detection 

and diagnosis of faults in a Reciprocating Compressor (at various working pressures) is a 

relatively simple and straight forwards method, but it does not result in an accuracy that would 

ideally be sought. It is for this reason that a frequency domain equivalent approach is included 

within the recommendations for future work. 

From the analysis in Section 4.9.1 it was found that vibration can provide both detection and 

diagnosis of these faults under the cost of high processing efforts.  

The conclusion from the work in Section 4.11 proves that IAS is relatively easy to implement 

due to the simple sensor installation and low cost of the whole system and to compensate its 

diagnostic deficiency, a portable vibration monitoring system can be combined, however it will 

require more advanced signal analysis and diagnosis techniques. 

The work in Section 4.10 and 4.11 concludes that the dynamic pressure, IAS and motor current 

monitoring allows good information regarding fault location and severity. It also gives a full 

detection of all induced faults including different leakages of discharge, inlet and intercooler, 

driving belt looseness and motor stator asymmetries. 

9.2.2 Phase II 

From the Analytical Modelling analysis work in Chapter 3 and the study from Chapter 4 it is 

concluded that LRVP share the same characteristic in the operation to that of the RC in relation 

of the internal pressure oscillations and as shown in Section 3.8.1, Figure 3-10 of the In-

Cylinder Pressures under Different Discharge Pressures. 

The conclusion drawn in Phase II is that the study from Phase I was beneficial in assisting the 

author and giving the knowledge and skill required to apply his learning in Phase II of an 

industrial working environment.  

In can be concluded from the study in Phase II Section 6.6, 6.7 and 6.2.1 that the project is 

feasible and reliable as the consistency in the level of vibration on the Drive End (DE) of motor 

3 as shown from the Figure 6-23, Figure 6-22, Figure 6-31 and Figure 6-36 indicates that the 

drive end of motor 3 has some concerns and needs addressing before it becomes a major 

problem.  
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It was found that Pump 3 also seems to be having an issue as shown from the Figure 6-29 and 

Figure 6-30 as these discrete frequencies could indicate the early start of bearing failure, worn 

or cracked blade, misalignment or unbalanced shaft rotation. The analysis of the techniques 

used has proven to be effective as there are some problematic internal system components 

concern on system 3, motor 3 and pump 3. 

It has been proven that it is possible to use airborne sounds to indicate the health conditions for 

all of the machines as the frequency contents in low-frequency range exists which are 

correlated with vibration content based on the spectrum analysis of both sound and vibration 

signals from the vacuum pump system. 

It has also been found that the proposed monitoring scheme, in terms of sensor installations, 

data acquisition procedures and signal processing methods in Chapter 6 are sufficiently 

acceptable. Especially, it needs only two microphones which are set up remotely, therefore the 

overall system can be relatively low cost and easily deployed in the field as detailed by the 

author [151]. 

9.2.3 Phase III 

From Phase III, Section 7.3.1, Figure 7-7 it can be concluded that the RMS Analysis, acoustic 

signal at 1.1m height and 50 cm away from the compressor, shows a good indication of the 

sound propagation and in locating noise sources under all operating discharge pressure 

conditions. However, the RMS acoustic signal of the sound pressure declines when the 

microphones are further away from the compressor.  

It can be concluded from Section 7.3.5 that the Spiral Array Figure 7-6 can locate sources of 

airborne sound at higher frequency as shown from Figure 7-13 as the second stage cylinder 

valve creates more noise when faulty. It is also proven that the distributed noise sources from 

Figure 7-13 radiate at a known frequency of 3000 to 3300Hz . 

The conclusion from the work in Section 8.5 and 8.6 shows that there is no set principle for the 

CNN training procedure as it is done randomly and can be daunting to complete any effective 

training  

From the study in Section 8.7 it was found that the CNN network was able to confirm which is 

the best location for a good indication of sound propagation. The final training achieved a 

higher validation of accuracy indicating the best location was whilst using 70% of the data set 

size for training and 30 % of the remaining dataset was used for validation purposes. 
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It can be concluded from Section 8.6 that when training a smaller network, the accuracy is 

lesser compared to a bigger network with more kernels where the accuracy is higher. However, 

a bigger network requires more time and it is important to find the right structure that will reach 

higher accuracy. 

 Contribution to Knowledge 

The achievements of this research have led to a number of new contributions to knowledge in 

improving the monitoring of fluid machines. 

First Contribution:  

The mathematical modelling and numerical simulation of the RC and its results have 

successfully proven that direct numerical diagnostic between the signatures with baseline 

provides an easy and feasible approach to quantitatively assess various dynamic responses such 

as IAS/torsional vibration, motor current, structural vibration and airborne acoustics. It is the 

first time that accurate and reliable head to head comparisons have been attained numerically 

for these dynamic responses as detailed in Chapter 3.13.1. Due to the numerous amounts of 

uncertain errors in data acquisition and data processing, these are not easy to be accomplished. 

The numerical study has effectively demonstrated the ability to perform a larger volume of 

analysis tasks over different fault cases under a wide range of discharge pressures due to the 

modelling of vibroacoustic responses as multi-modal systems. This enables quantitative 

analysis of structural vibration and airborne acoustics from valve motions, gaining a detailed 

understanding of vibroacoustic providing sufficient knowledge for data acquisition and 

processing.  

Second Contribution:  

No previous work has investigated an RC in conjunction to a LRVP and as described in the 

qualitative results made from the RC works in Chapter 3 and Chapter 4 which can be referred 

to LRVP data analysis as LRVP share the same operation process to that of RC in relation to 

the internal pressure oscillations. From Section 3.8.1, Figure 3-10 it is also proven the that the 

force variation and dynamics of LRVP behave like an RC. 

Third Contribution 

So far no study has been found to investigate the detection and diagnosis of three sets of 

vacuum pump in a paper industry whilst in operation. The work presented in Chapter 6 is 
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believed to be unique in providing new combined CM approaches to detect anomalies based 

on the three sets of the vacuum pump. 

Fourth Contribution: Combined Approach to CM 

No previous research has used a spiral array to locate sources of airborne sound at a higher 

frequency and other combined conventional analysis techniques, at various distances and 

heights, away from an RC as detailed in Chapter 7. 

Fifth Contribution:  

No works have been found to investigate the finding of a suitable location for the acquisition 

of the acoustical data under the four operating discharge pressures from an RC through CNN. 

From this study it was found that training a smaller network worsens the training accuracy 

whilst using more kernels and a bigger network produced higher accuracy. However, a bigger 

network requires more time and it is important to find the right  structure that will reach higher 

accuracy through trial and error. 

 Suggestion for Future Research 

The study has shown that acoustic monitoring is a more economical and promising method for 

machine monitoring in processing industries. CNN can also be efficient however it is quite 

time consuming to train the networks. To find more cost effective approaches it is suggested 

that the future study will focus on: 

First Suggestion: The investigation of more cost effective measurements techniques such as 

how CNN can be applied to thermal imaging, high-speed visions, micro acoustic arrays and 

Infrared Thermal (IRT) video recording to automatically track the condition of machines. 
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Improving this technology in diagnosing machine fault detection and prediction will allow the 

detection of many advanced fault conditions in machines at the highest accuracy.  

Second Suggestion: The development of other fault detection techniques such as wireless 

encoders to monitor the IAS and motor current monitoring in fluid and rotating machine is 

recommended. 

Third Suggestion: Implement and monitor the proposed RC fault detection techniques to other 

mechanical components such as bearings, pistons, pulleys, flywheels, connecting rods, leaking 

joints or gaskets, belt slipping, lack of lubrication and valves. 

Fourth Suggestion: Recommend that the frequency domain is to be considered for further 

work in the investigation of in-cylinder fault comparison againgst the time domain. 

Fifth Suggestion: Recommend further academic research to extract features for more efficient 

data processing such as high effective denoising algorithms. 

Sixth Suggestion: Evaluate and develop other novel fault diagnosis AI methods such as fuzzy 

neural networks, fuzzy logic which will improve a better quality of vibration and acoustic 

monitoring depending on its application. 

Seventh Suggestion: Recommend further academic research to extract features for more 

accurate and efficient data processing in the field, such as the Principal Component Analysis 

(PCA), Canonical Variate Analysis (CVA) and statistic methods for utilising existing control 

data. 

Eighth Suggestion: Recommend that further academic research should be conducted into the 

effective use of envelope features to detect vibration faults in RCs. 

Ninth Suggestion: Recommendation of further academic research in the combination of Six 

Sigma application to condition monitoring techniques such as vibration and acoustic to 

improve the Overall Effectiveness (OEE) of the Plant. 
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Published 

1. Performance Monitoring and Fault Diagnosis of Vacuum Pumps based on Airborne 

Sound, R. Appadoo, Prof. A. D. Ball & Dr F. Gu, School of Computing and 

Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK. 

Proceedings of the 24th International Conference on Automation & Computing, 

Newcastle University, Newcastle upon Tyne, UK, 6-7 September 2018. 

2. Condition Monitoring of Reciprocating Compressor on Acoustic Imaging, Miaoshuo 

Li, Robin Appadoo, Fengshou Gu and Andrew Ball, School of Computing and 

Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK. 

The 32nd International Congress and Exhibition on Condition Monitoring and 

Diagnostic Engineering Management (COMADEM 2019). 

Submitted 

1. An Investigation into the Influence of Microphone Placements for the Condition 

Monitoring of Reciprocating Compressors; Robin Appadoo, Miaosho Li, Fengshou Gu, 

Andrew D. Ball, School of Computing and Engineering, University of Huddersfield, 

Queensgate, Huddersfield HD1 3DH, UK. Fifth Annual University of Huddersfield 

PGR Conference, 31st March 2020. 

To be Submitted 

1. An Investigation based into the CM of common Non-Intrusive Measurements based 

on a fluid machine. 

2. A Combined Study of IAS based Condition Monitoring of a Reciprocating with 

Current Waveform based CM. 
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Appendix 1 

 

Appendix 1 Damage Shaft, Impeller and Build-up of Scales Picture taken on 24/04/14 
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