

University of Huddersfield Repository

Bramall, Ellis

Selective advantage of the tRNA I34 Deamination in Eukaryotes

Original Citation

Bramall, Ellis (2020) Selective advantage of the tRNA I34 Deamination in Eukaryotes. Masters thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35474/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

University of Huddersfield

Selective advantage of the tRNA I34 Deamination in Eukaryotes

Author: Ellis Bramall Supervisor: Dr. Martin Carr

A dissertation submitted in partial fulfilment of the requirements for the degree of Masters by Research

Department of Biological and Geographical Sciences

School of Applied Sciences

University of HUDDERSFIELD Inspiring tomorrow's professionals

Copyright Statement

• The author of this thesis (including any appendices and/ or schedules to this thesis) owns any copyright in it (the "Copyright") and he has given The University of Huddersfield the right to use such Copyright for any administrative, promotional, educational and/or teaching purposes

• Copies of this thesis, either in full or in extracts, may be made only in accordance with the regulations of the University Library. Details of these regulations may be obtained from the Librarian. Details of these regulations may be obtained from the Librarian. This page must form part of any such copies made.

• The ownership of any patents, designs, trademarks and any and all other intellectual property rights except for the Copyright (the "Intellectual Property Rights") and any reproductions of copyright works, for example graphs and tables ("Reproductions"), which may be described in this thesis, may not be owned by the author and may be owned by third parties. Such Intellectual Property Rights and Reproductions cannot and must not be made available for use without permission of the owner(s) of the relevant Intellectual Property Rights and/or Reproductions

Declaration of Authorship

I, Ellis Bramall, declare that this dissertation titled, "Selective advantage of the tRNA I34 Deamination in Eukaryotes" and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this University.

• Where any part of this dissertation has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• I have acknowledged all main sources of help.

Signed:

Date: 18/09/2020

Acknowledgements

First and foremost a big thank you to Dr. Martin Carr for giving me this opportunity to carry out this study and contribute to your research. Working with you over these last two years has allowed me to discover the world of bioinformatics and my appreciation for it.

Secondly, I would like to thank Covid-19 for showing me that even in tough circumstances I have the ability to power through and get the job done. A special thanks to my mum who has constantly given me her love, support and guidance. I would also like to thank Layla, Georgia, Kristine, Anais, Charlie, Jack, Molly and Grace for collectively keeping me sane.

I also have to thank my grandparents, Marian and Ian, who not only provided the means and resources to undertake this research but have also been amazing and loving role models throughout my life.

Finally, I would like to thank my boyfriend Kyle for keeping me comfortable, motivated and fed through quarantine. Without you I would have never even considered undertaking this task, it was you who allowed me to see my own intelligence and worth.

Abstract

Introduction: A tRNA modification which deaminates adenosine into inosine at position 34 of tRNAs for the threonine, alanine, proline, serine, isoleucine, leucine, valine and arginine (TAPSILVR) amino acids within eukaryotes is carried out by an enzyme known as hetADAT. This deamination allows for certain codons, known as ADAT preferred codons, to be recognised by tRNA types which are usually non-complementary.

Aims: By looking at the patterns of codon usage within 33 different protists from a range of eukaryotic supergroups, an estimation into the origins of the TAPSILVR tRNA deamination in eukaryotes can be proposed. Secondly, by determining the codon usage of the protists, whether or not the TAPSILVR tRNA deamination allows for the selection of the ADAT preferred codons due to translational efficiency and/or accuracy can also be examined.

Methodology: Optimal codons were identified for each of the 33 protists with the use of CodonW and expression data provided by the NCBI SRA. Under a selection model, the optimal codons are those which correspond to the most abundant tRNA molecules, therefore, the number of genes present with each protist's genome was found for each tRNA. Certain patterns in the tRNA copy numbers can also show consistency with the presence of the I34 tRNA deamination. A34 tRNA molecules were modified to show the I34 deamination and screened for within available small tRNA data in order to provide evidence for the presence of the deamination.

Results: The codon usage of the majority of the protists along with their tRNA gene copy numbers showed consistency with not only the use of the I34 tRNA deamination but also for the selection of the ADAT preferred codons due to the deamination. tRNA molecules modified with the I34

deamination were found in species belonging to the eukaryotic supergroups of Amoebozoa, Opisthokonta, Excavata, Alveolata and Stramenopiles.

Conclusions: The presence of the I34 tRNA deamination has now been found in eukaryotic supergroups across the eukaryotic tree of life, whilst a selective pressure towards the use of ADAT preferred codons has been found to affect the codon usage bias of organisms from all of the eukaryotic supergroups researched. Therefore, this study has provided evidence that the origin of the I34 tRNA deamination carried out by hetADAT lies in the last common ancestor of the eukaryotes, where it most likely provided an advantage for the use of ADAT preferred codons.

List of Abbreviations and terms used

A34	Adenosine at the 34 th position
A37	Adenosine at the 37 th position
ADAT	Adenosine deaminase acting on tRNA
AT	Adenine and thymine nucleotide bases
BLAST	Basic Local Alignment Search Tool
CDS	Coding region of a gene
CUB	Coding usage bias
eToL	eukaryotic Tree of Life
ExPASy	Expert Protein Analysis System
FASTA	Text-based format for representing nucleotide/ amino acid sequences
Fop	Frequency of optimal codons
GC	Guanine and cytosine nucleotide bases
GC3s	Guanine or cytosine content at the third position of codons
HEG	Highly expressed genes
I34	Inosine at the 34 th position
I37	Inosine at the 37 th position
JGI	Joint Genome Institute
mRNA	Messenger Ribonucleic Acid
miRNA	Micro Ribonucleic Acid
Nc	Effective number of codons used
NCBI	National Center for Biotechnology Information
ncRNA	Non-Coding Ribonucleic Acid
ORF	Open Reading Frame
P-value	The probability that a difference occurred by random chance
SAM	Sequence Alignment Map
SAR	The supergroups of Stramenopiles, Alveolata and Rhizaria
SEQTK	Toolkit for processing sequences in the FASTA format
SILVR	The amino acids serine, isoleucine, leucine, valine and arginine
SMALT	DNA aligning tool
SRA	Sequence Read Archive
TadA	tRNA adenosine deaminase A
TAPSILVR	The amino acids threonine, alanine, proline serine, isoleucine,
	leucine, valine and arginine
tRNA	Transfer Ribonucleic Acid
WEG	Weakly expressed genes

Contents

Copyright Statement	2
Declaration of Authorship	3
Acknowledgements	4
Abstract	5
List of Abbreviations	7
1.0 Introduction	
1.1 Codon Usage Bias	
1.1.1 Synonymous Codons	
1.1.2 Mutation Pressure	
1.1.3 Selection	
1.1.4 Translational Efficiency and Translational Accuracy	14
1.1.5 tRNA Abundance	15
1.2 A-to-I modification	15
1.3 Eukaryotic Tree of Life	
1.3.1 Amoebozoans, Opisthokonta and Apusozoans	
1.3.2 Excavata, Stramenopiles, Alveolata and Rhizaria	
1.4 Aims and Objectives	23
2.0 Materials and Methods	
2.1 Data Collection	24
2.2 Determining Gene Expression Levels	
2.3 Separation of Domains and Non-Domains	
2.4 Statistical Analysis	27
2.4.1 Identification of Optimal Codons	
2.4.2 Codon Usage in Domains and Non-Domains	
2.4.3 Optimal Codon Usage in Domain and Non-Domain Codons	
2.4.4 Usage of ADAT Preferred Codons	
2.5 Identification of tRNA Genes	
2.6 Evidence of Deamination	
3.0 Results	
3.1 The Degree of Codon Usage Bias in the Protists	
3.2 Optimal Codon Identification	
3.3 Codon Usage within the Protists Using Expression Data	41
3.4 tRNA abundance	47

3.5 The Presence of the A-to-I Deamination	48
4 Discussion	50
4.1 The Overall CUB of the Protists in Relation to their Optimal Codons	50
4.2 Fop Values found for the Protein Coding Domains and the Non-Domains	51
4.3 Frequency of ADAT Preferred Codons within the Highly and Weakly Expressed Genes	52
4.4 Frequency of ADAT Preferred Codons within the Protein Coding Domains and the Non-Domains	.52
4.5 tRNA Genes	52
4.5.1 Chimeric tRNA	52
4.5.2 SeC tRNA	53
4.5.3 Major tRNA Genes and the Optimal Codons for the Two-Fold Amino Acids	53
4.5.4 Major tRNA Genes and the Optimal Codons for the TAPILVR Amino Acids	55
4.6 Major tRNA genes compared to the optimal codons within the supergroups	56
4.6.1 Amoebozoa	56
4.6.2 Opisthokonts and T. trahens	57
4.6.3 Excavata	58
4.6.4 Alveolata	60
4.6.5 Stramenopiles	62
4.6.6 Rhizaria	64
4.7 Presence of the I34 tRNA deamination	65
4.8 Presence of the I37 tRNA deamination	66
4.9 The Selection towards ADAT preferred codons throughout the Supergroups	66
4.10 Conclusion	68
5.0 References	69
6.0 Appendix	82
6.1 Nc Plots	82
6.2 Codon Usage – Correspondence Analysis	99
6.3 Codon Usage – Expression Data	133
6.4 Codon Usage – Protein Coding Domains and Non-Domains	167
6.5 Optimal Codons	200
6.6 SeC tRNA genes	217
6.7 tRNA genes found for each organism	218

1.0 Introduction

1.1 Codon Usage Bias

In all known organisms DNA is used to transcribe RNA, which is translated into proteins made up of amino acid monomers. As there are 20 different amino acids, their usage is determined by codons, three nucleotide codes found in mRNA. There are 64 codons in total, however in the standard genetic code 61 of these codons code for amino acids, whilst the remaining three act as STOP codons. In other genetic codes this is not always the case, notably within certain ciliates the codons UAA and UAG, known as STOP codons within the standard genetic code, code for glycine when found at internal positions within genes (Jukes & Osawa, 1993).

1.1.1 Synonymous Codons

As there are 61 codons coding for 20 amino acids, the majority of amino acids are coded for by multiple codons, ranging from two to six codons each (Figure 1). Methionine and tryptophan are the only two amino acids which are coded for by a singular codon. Codons which code for the same amino acids are known to each other as synonymous.

Phe	υυυ	Ser	UCU	His	CAU	lle	AUU
Phe	UUC	Ser	UCC	His	CAC	Ile	AUC
Leu	UUA	Ser	UCA	Gln	CAA	Ile	AUA
Leu	UUG	Ser	UCG	Gln	CAG	Asp	GAU
Leu	CUU	Ser	AGU	Asn	AAU	Asp	GAC
Leu	CUC	Ser	AGC	Asn	AAC	Glu	GAA
Leu	CUA	Thr	ACU	Lys	AAA	Glu	GAG
Leu	CUG	Thr	ACC	Lys	AAG	Gly	GGU
Val	GUU	Thr	ACA	Cys	UGU	Gly	GGC
Val	GUC	Thr	ACG	Cys	UGC	Gly	GGA
Val	GUA	Tyr	UAU	Arg	CGU	Gly	GGG
Val	GUG	Tyr	UAC	Arg	CGC	Met	AUG
Pro	CCU	Ala	GCU	Arg	CGA	Trp	UGG
Pro	CCC	Ala	GCC	Arg	CGG	TER	UAA
Pro	CCA	Ala	GCA	Arg	AGA	TER	UAG
Pro	CCG	Ala	GCG	Arg	AGG	TER	UGG

Figure 1 | **The Standard Genetic Code** This figure shows the amino acids and the codons which correspond to them. Codons in blue represent synonymous STOP codons. Codons in orange are non-synonymous. Codons in green are synonymous.

The first two bases of synonymous codons, excluding those for serine, leucine and arginine, are conserved, whilst the third base differs. Therefore, a case could be made that for the purpose of translation, the third base, in certain synonymous codons, is redundant. According to The Wobble Hypothesis, this redundancy allows for non-Watson-Crick base pairings to occur between the third base of a codon and the first base of the tRNA anticodon (Crick, 1966). It is this 'wobble' which allows for the pairing of uracil and guanine. The 'wobble' also allows for the modified adenine base, inosine, to pair with adenine, cytosine and uracil (Gerber, 1999).

Although synonymous codons code for the same amino acids, they are not used in equal frequencies; depending on the organism, certain synonymous codons are utilised more than others (Grantham *et al.*, 1980). This unequal distribution of synonymous codons is known as codon usage bias (CUB) (Comeron and Aguadé, 1998). CUB not only varies between species but it also differs

between genes present within the same genome (Grantham *et al.*, 1980). Within the AT rich *Dictyostelium discoideum* genome for example there is a large degree of codon usage variation present within silent sites of genes, with the GC content ranging from under 10% to above 30% (Sharp & Devine, 1989). The length of genes has been shown to positively correlate with codon usage in both *Escherichia coli* and *Gnetum luofuense* (Moriyama, 1998; Deng *et al.*, 2020); whereas a negative correlation was observed in *Saccharomyces cerevisiae* and *Drosophila melanogaster* (Moriyama, 1998). Although studies have suggested that the main factor which determines codon usage within genes is their expression level (Zhou *et al.*, 2016). This correlation has been observed in many organisms including *Cuscuta australis*, *Drosophila melanogaster* and *Pseudomonas aeruginosa*. (Liu *et al.*, 2020; Duret & Mouchiroud, 1999; Gupta & Ghosh, 2001).

To determine the overall CUB of a gene the 'effective number of codons' (Nc) of the gene is measured (Wright, 1990). This value can range from 20, where only one codon is used per amino acid, to 61 were all codons are present at equal frequency within the gene. There are many factors which could possibly influence CUB, the three main mechanisms being mutational pressure, genetic drift and natural selection (Figuet *et al.*, 2014; Machado *et al.*, 2019). The CUB for each gene is due to a combination between these mechanisms and therefore, rarely does a single mechanism influence CUB independently.

1.1.2 Mutation Pressure

When DNA is replicated there is a chance that mutations can occur, differences in local mutation rates therefore, can result in base composition changes across genomes. However, due to other influences on CUB, mutational pressure is hard to observe except when its biases are extreme. In these extreme cases, mutational pressure has forced whole genomes to shift to either extreme GC or extreme AT content (Eichinger *et al.*, 2005, Scala, 2002). In prokaryotic genomes GC content

has been shown to range from 25% to 75% (Musto *et al.*, 2006), highlighting a strong mutational bias influencing codon usage. This bias can also be seen in protists, for instance within the genome of *Dictyostelium discoideum* which has a GC content of 25% (Eichinger, 2005).

Due to the redundancy of codons, the best way to measure mutational drift within an organism is to find the GC content at the third position of codons (GC3s). However, if a genes' codon usage is subjected to a selective force stronger than that of mutational pressure, the GC3s value of the gene would no longer be neutral, and therefore, a weak indicator of mutational pressure. This could be somewhat resolved by looking at GC content in non-coding DNA as these regions are more likely to remain neutral from natural selection.

1.1.3 Selection

Natural selection can act upon organisms' genes with the use of codons that provide a selective advantage when utilised instead of their synonymous counterparts; these codons are referred to as "optimal codons". For many species, the use of optimal codons within genes is strongly correlated with expression levels and the abundance of corresponding tRNA molecules (Goy and Gautier, 1982; Sharp *et al.*, 2010). When first conceived, optimal codons were considered to be those that complemented the most abundant tRNA isotype (Ikemura, 1981). However, possibly due to the difficulty of quantifying tRNA levels, an alternative method to identify optimal codons was implemented by identifying those codons which appeared more frequently in highly expressed genes (Akashi and Eyre-Walker, 1998).

As expression data is not always available, a program called CodonW (Pedan, 1999) identifies codons found in higher frequencies in biased genes compared to genes with little bias; based upon axis 1 of a correspondence analysis. However, this method works under the assumption that mutational pressure is a minor factor on CUB (Pedan, 1999). The frequency of optimal codons (F_{op}) of a gene can be calculated by dividing the number of optimal codons found in the gene by the total amount of codons in said gene (Ikemura, 1981).

There are two mechanisms through which selection may operate, though they are not mutually exclusive: translational efficiency and translational accuracy.

1.1.4 Translational Efficiency and Translational Accuracy

As there are a limited number of ribosomes in a cell, when translating genes at high rates, their low quantity can become a limiting factor (Metzl-Raz *et al.*, 2020). This can be minimised by the utilisation of optimal codons which speed up the translation process faster than their synonymous counterparts (Sørensen & Pedersen, 1991). Therefore, if selection was operating under translational efficiency, the degree of selective pressure would be higher on the codon usage in highly expressed genes than that of weakly expressed genes. In unicellular organisms, like the protists examined in this study, growth rate and the rate of protein synthesis are positively correlated (Pakula, 2005). A high growth rate indicates a high chance of reproductive success, emphasising the advantage that selection due to translational efficiency provides for protists.

Selection also may operate in order to maximise the accuracy of translation. If a protein is subject to amino acid misincorporation during translation there is a chance that its function could be lost. This indicates a need for selection to increase translational accuracy. Precup and Parker (1987) showed that the use of optimal codons within *E. coli* genes reduced amino acid misincorporation 10-fold, compared to that of non-optimal synonymous codons. Translational accuracy is of greater importance to the protein coding domains of a gene than their non-domain encoding regions of genes. Therefore, when under a selection via translational accuracy model optimal codons are found at higher frequencies in the protein coding domains when compared to the non-domains, this can be seen within *Drosophila* transcription factor encoding genes (Akashi, 1994).

1.1.5 tRNA Abundance

As previously mentioned, optimal codons are usually those recognised by the most abundant tRNA. It is expected that tRNA abundance is determined by the amount of tRNA genes present for each type in the genome, known as their copy number (Iben & Maraia, 2012). Thus, in species where selection influences codon usage, the copy number for each tRNA within a genome determines the optimal codons; therefore, the tRNA copy number is likely to be an important factor in CUB.

The copy number for each tRNA varies between species and differs greatly between kingdoms (Marck & Grosjean, 2002). Prokaryotes normally have around 20-25 different tRNAs, whilst eukaryotes can have up to 40-45 different tRNAs in their genomes (Grosjean *et al.*, 2009). For each case however, the number of different tRNA is always lower than the number of different codons used in the genome (Iben & Maraia, 2012). Therefore, in order for each codon to be recognised some tRNAs have to recognise multiple codons, this is achieved via the wobble position.

1.2 A-to-I modification

Adenosine deaminase acting on tRNAs (ADAT) are a family of enzymes that deaminate adenosine to inosine in tRNA. As previously mentioned inosine on the first base of tRNA anticodons (I34) can pair, via 'the wobble', with adenine, cytosine and uracil (Figure 2) (Crick, 1966). This suggests that an anticodon with inosine at the wobble position has the ability to correspond with three different codons, potentially allowing a single species of tRNA to fulfil the role of three different tRNA species. ADAT enzymes are present in all domains of life (Zinshteyn & Nishikura, 2009),

however ADAT enzymes that convert adenosine present on the first base of tRNA anticodons (A34) to I34 are only present in Bacteria and Eukaryota (Gerber, 1999).

Figure 2 | Schematic representation of inosine wobble base pairings to adenine, cytosine and uracil. (Crick, 1966)

In Bacteria, the A34-to-I34 modification is catalysed by tRNA adenosine deaminase A (TadA), which carries out this interaction on only tRNA^{Arg} (Torres, 2014). In eukaryotes, however, the ADAT enzyme, a heterodimer comprised of ADAT2/ADAT3 (hetADAT), modifies base 34 in eight different tRNA types: tRNA^{Thr}, tRNA^{Ala}, tRNA^{Pro}, tRNA^{Ser}, tRNA^{Ile}, tRNA^{Leu}, tRNA^{Val} and tRNA^{Arg} (Boccaletto *et al.*, 2017). The eight amino acids that the tRNAs correspond to are known collectively as TAPSILVR amino acids. Notably, tRNA^{Gly} is not listed despite the presence of the other 4-box tRNAs; this is due to the absence of A34 tRNA^{Gly} in genomes due to its unstable nature (Grosjean *et al.*, 2009).

A third ADAT enzyme has also been found in eukaryotes, ADAT1. Instead of A34, ADAT1 modifies A37 into I37 in tRNA^{Ala} only. It has recently been suggested in Torres (2014) that the modification of A37 by ADAT1 is independent of the presence of I34. The evidence does suggest that the I34 modification can and does occur independently of the I37 modification (Maas, Gerber & Rich, 1999), although the supporting literature provided in the review does not provide evidence that the I37 modification is independent of the I34 modification. Therefore, it is unclear if ADAT1's interaction depends on the interaction of hetADAT. ADAT1's interaction could also depend on the presence of I34, thereby only modifying the products of hetADAT activity.

The presence of A34 containing tRNAs is strongly correlated with the appearance of ADAT enzymes (Novoa *et al.*, 2012). Hence, within eukaryotes, where hetADAT corresponds to many tRNA types, the amount of tRNA_{ANN} types has been found to be much greater than Archaea or Bacteria (Chan & Lowe, 2009). In fact, in Archaea, where ADAT enzymes are absent, tRNA_{ANN} types are not found (Marck & Grosjean, 2002). In bacteria, the only tRNA_{ANN} found is tRNA^{Arg}_{ACG}, which is the only tRNA molecule deaminated by TadA (Wald & Margalit, 2014). This poses the question whether the appearance of ADAT enzymes in eukaryotes and bacteria drove selection for tRNA_{ANN} types or whether the appearance of tRNA_{ANN} types has led to the adaptation of the ADAT enzymes. Nonetheless, the change in the tRNA diversity between the three domains of life is directly correlated to the ADAT enzymes ability to potentially impact codon usage.

As stated, the deamination of adenosine to inosine at the wobble position of a tRNA suggests an increase in the number of codons the tRNA can recognise. However, due to the complicated rules of anticodon:codon pairing, there are some base pairings that are less efficient than others. Computer simulations have shown that A34 tRNAs are capable of reading C, A or G ending codons (Lim, 1995), although these pairings have been shown to decrease translational efficiency in the ribosome (Lim, 2001). The pairing of A34 tRNAs with C-ending codons within ribosomes also results in a destabilising action between the P-site and the A-site, whereas the utilisation of I34 tRNA has been shown to reduce this effect (Lim, 1995). In fact, I34 tRNAs bind preferentially to C with an increase in translational efficiency (Torres *et al.*, 2014). Although, I34 tRNAs can also read U and A ending codons, translating such codons has been shown to be inefficient (Percudani, 2001). However, the lack of efficiency is less important in weakly expressed genes however, so I:A and I:U binding could be tolerated within these genes.

It is clear that, when utilised, the I34 modification allows for a greater accuracy when reading Cending codons than that of A34 tRNA. Additionally, since A34 tRNA isotypes are rarely seen in the same genome as their G34 counterparts (Torres *et al.*, 2014), the evidence suggests that I34 tRNAs are utilised in order to read C-ending codons efficiently in genomes lacking the G34 tRNA isotypes (Grosjean *et al.*, 2009). There is a certain advantage to both the efficiency and accuracy of translation when I34 tRNA as opposed to A34 tRNA are utilised to read C-ending codons, therefore these codons are known as "ADAT-preferred codons" (Torres, 2014). ADAT-preferred codons have recently been shown in Rafels-Ybern (2017) to be abundant within the genomes of organisms within the eukaryotic kingdoms of Metazoa, Plantae and Fungi and Protists. Therefore, as the use of ADAT-preferred codons is widespread throughout eukaryotes, the origin of TAPSILVR tRNA deamination most likely lies within the protists, or within their last common ancestor.

1.3 Eukaryotic Tree of Life

Although the most well-known eukaryotes are animals, plants and fungi, the majority of eukaryotes are single-celled protists (Del Campo *et al.*, 2014). Protists are often overlooked in

eukaryotic based studies (Sibbald & Archibald, 2017); however, since the vast amount of eukaryotic diversity is found within protists, their evolutionary importance cannot be ignored. Due to their diversity, the eukaryotic Tree of Life (eToL) has been divided into 'supergroups'. Over the years, the number of these supergroups has fluctuated repeatedly between five and eight as a result of the use of phylogenetics and the continuous discoveries of new lineages of eukaryotes (Simpson & Roger, 2002; Keeling *et al.*, 2005). Along with the quantity of supergroups, the placement of each supergroup on the tree has also varied as the exact position of the root has yet to be determined (Burki *et al.*, 2019). Due to this for the purpose of this study, the interpretation of the eToL by Brown (2018) which utilises the Opimoda-Diphoda root, will be used. The Opimoda-Diphoda root segregates the super groups of Amoebozoa, Opisthokonta and Apusozoans from the supergroups of Excavata, SARs and Archaeplastida. This study will look at 33 organisms from all eukaryotic supergroups (Figure 3), excluding Archaeplastida, due to time constraints.

Figure 3 | Phylogeny of 33 protists showing the evolutionary relationships between the eukaryotic supergroups, based upon the phylogeny presented by Brown (2018) Constructed with the use of FigTree v. 1.4.3 (Rambaut, 2009).

1.3.1 Amoebozoans, Opisthokonta and Apusozoans

Amoebozoans are often characterised by the morphological trait of possessing pseudopodia or lamellipodia which can aid in locomotion or feeding (Lahr, Bergmann & Lopes, 2008). However, there is a noticeable discord between the molecular data and the morphological data of amoebozoans when determining phylogeny (Lara *et al.*, 2008). Although both types of data have been utilised in unison to form groupings of amoebozoans (Bapteste *et al.*, 2002), the relationships between these groups are not so easily resolved (Pawlowski & Burki, 2009). This study looks at four species of amoebozoans from different lineages in order to increase the possibility of closing this gap in knowledge. These species are: *Acanthamoeba castellanii*, an opportunistic pathogen from the class Discosea (Shabardina *et al.*, 2018), *Entamoeba histolytica*, an Archamoebae parasite which lacks mitochondria (Loftus *et al.*, 2005) and *Dictyostelium discoideum* and *Planoprotostelium fungivorum*, which are two slime molds that have the ability to aggregate into larger 'organisms' exhibiting a form of multicellularity (Eichinger *et al.*, 2005; Bapteste *et al.*, 2002).

The opisthokonts are probably the most well-known grouping of eukaryotes, consisting of both animals and fungi, however the group also includes many protists, defined by a posterior flagellum. Recent analysis of codon usage in three opisthokont protists pointed towards the utilisation of the A-to-I deamination in translation (Southworth *et al.*, 2018). Previous studies, which found evidence for hetADATs within metazoan and plant genomes, speculated that this modification was important in the evolution of multicellularity (Rafels-Ybern *et al.*, 2017; Porath *et al.*, 2017). Therefore, Southworth (2018) questions this idea by potentially revealing the presence and utilization of hetADATs prior to multicellularity in eukaryotes. This study attempts to expand upon the evidence found by Southworth (2018) by examining *Capsaspora owczarzaki*, which will be examined in greater depth, and similar organisms: *Sphaeroforma arctica*, which possess a unique capacity to grow into multi-nucleated cells without displaying any of the usual growth stages (Suga & Ruiz-Trillo, 2013), and *Fonticula alba*, a slime mold which forms aggregative multicellular fruiting bodies (Brown, Spiegel & Silberman, 2009). Each of these organisms share certain insights behind the mechanisms that led to true multicellularity.

Apusozoans are grouped together by their use of flagella and the presence of an organic shell found under their dorsal surface (Cavalier-Smith & Chao, 2010). Although Apusozoa is often grouped with Opisthokonta and Breviatea in the clade Obazoa, it is not recognised as a eukaryotic supergroup. However, the Apusozoan *T. trahens* has been included within this study in order to not neglect this minor phylum.

A previous study that focused on transposable elements in protists found evidence consistent with the presence of the A-to-I deamination by hetADATs within *Fonticula alba* and *Thecamonas trahens* (Bramall, 2019). The inclusion of these organisms within this study will serve to confirm or dispute this evidence. If confirmed, this again opens up the possibility of hetADATs strongly influencing codon usage and therefore moulding entire genomes prior to multicellularity. As the extent of hetADATs influence over eukaryotic codon usage can only be fully realised if both sides of the eToL are looked at, this study also examines protists within supergroups SARs and Excavata.

1.3.2 Excavata, Stramenopiles, Alveolata and Rhizaria

Excavates are protists that possess feeding grooves on one of their sides and they are also known to cause numerous parasitic diseases in animals and humans (Ortiz & Solari, 2019). The Excavata examined in this study are: *Giardia lamblia*, a well-known intestinal parasite responsible for Giardiasis (Einarsson, Ma'ayeh & Svärd, 2016), *Spironucleus salmonicida*, a fish parasite (Xu *et al.*, 2014) and *Leishmania major*, a pathogen associated with cutaneous leishmaniasis (Ivens, 2005). Alongside *T. brucei*, *T. cruzi* and *T. theileri*, members of the *Trypanosoma* genus which cause many parasitic infections, most commonly African Trypanosomiasis (Berriman, 2005; El-Sayed, 2005), and finally *L. pyrrhocoris* and *L. seymouri*, members of the Leptomonas genus (Flegontov *et al.*, 2016; Kraeva *et al.*, 2015).

The supergroup of SARs is made up of Stramenopiles, Alveolata and Rhizaria. Organisms within the supergroup Stramenopiles are categorised morphologically by the presence of a textured flagellum. Most Stramenopiles are algae, however, they also include oomycetes like *Phytophthora infestans*, the cause of the Irish potato famine (Haas *et al.*, 2009). To determine the presence of the A-to-I modification within Stramenopiles a large variety of organisms from the supergroup were studied: *Aphanomyces astaci*, *Aphanomyces invadans*, *Aureococcus anophagefferens*, *Nannochloropsis gaditana*, *Phytophthora infestans*, *Phytophthora sojae*, *Plasmopara halstedii*, *Pseudo-nitzschia multistriata*, *Saprolegnia parasitica* and *Thalassiosira pseudonana*.

Alveolata are an extremely diverse set of organisms known collectively by a few morphological similarities (Leander *et al*, 2003). Due to their diversity alveolates are separated into three morphological subgroups: apicomplexans, ciliates and dinoflagellates. This study includes two ciliates, *Tetrahymena thermophila* and *Stentor coeruleus*, and three apicomplexans from the *Plasmodium* genus: *P. gallinaceum*, *P. falciparum* and *P. vivax*. Rhizaria is said to be the least

understood of the eukaryotic supergroups (Burki & Keeling, 2014); this could be due to the fact that no rhizarian organisms are known to affect humans directly. Due to this bias complete rhizarian genomes are rare, which limited this study to two rhizarians: *Bigelowiella natans* and *Plasmodiophora brassicae*.

1.4 Aims and Objectives

The overall aim to the research carried out within this study is to provide an estimation into the origins of the TAPSILVR I34 tRNA deamination in eukaryotes. This will be achieved by comparing the usage of the ADAT preferred codons within the protists to the abundance of the different tRNA genes present within their genomes. Due to the recent availability of genomes and transcriptomes, research can be conducted on a wide range of protists from nearly all eukaryotic supergroups. Therefore, by looking at the distribution of tRNA deamination across eukaryotes the potential origin of the deamination within eukaryotes can be determined.

Research has shown that the eukaryotic ADAT1 evolved through gene duplication and divergence into the subunits of hetADAT (ADAT2 and ADAT3) (Gerber, 1999). Therefore, if the presence of the A-to-I deamination was found in organisms of supergroups from both sides of the eukaryotic tree, it would suggest that this duplication occurred in a eukaryotic ancestor to both clades. The relationship between the ADAT1 enzyme and the hetADAT enzyme, along with their respective modifications, is yet to be fully realised. Therefore, within this study both the I34 and the I37 modifications on tRNA^{Ala} genes will be compared to find any dependency between the two.

If evidence of the I34 deamination was found across the early eukaryotes observed in this study, the mechanisms behind the use of the ADAT preferred codons will be investigated in terms of natural selection. If the ADAT preferred codons were found in higher frequencies within the highly expressed genes of an organism when compared to its weakly expressed genes this would indicate that the usage of the ADAT preferred codons within the organism was due to selection via translational efficiency. Similarly, if the ADAT preferred codons were found in higher frequencies within the protein coding domains of the highly expressed genes of an organisms when compared to the non-coding domains, it would appear that the ADAT preferred codons were selected for in order to maximise translational accuracy within the organism.

This study will therefore be investigating three lines of research:

- 1. The estimation of the origin of the TAPSILVR I34 tRNA deamination in eukaryotes.
- 2. The determination of the forces behind the potential bias for the ADAT preferred codons.
- 3. The relationship between the modifications of ADAT1 and hetADAT.

2.0 Materials and Methods

2.1 Data Collection

The genome files for all 33 organisms investigated within this study were provided by EnsemblProtists, an online database housing genetic data for protists (Kersey et al., 2018). The annotated transcriptomes for each organism were also provided for by EnsemblProtists. Genomic data was stored as text files in FASTA format. Any viewing or manipulating of these genomic files was carried out using Notepad++ (version 7.8.8).

Transcriptomic expression data for all organisms in the study were provided by the NCBI Sequence Read Archive (SRA). Where possible ncRNA and miRNA transcriptomic data was also retrieved from the NCBI SRA. The accession numbers for each organisms' set of transcriptomic data can be found on Table 1, the choice of small RNA data for each organism is also shown.

Name	RNA data	ncRNA	miRNA
Acanthamoeba castellanii	SRX339674	-	-
Entamoeba histolytica	DRX099774	-	SRX219151
Dictyostelium discoideum	SRX7692151	-	SRX150810
Planoprotostelium fungivorum	SRX2638173	-	-
Thecamonas trahens	SRX096916	-	-
Fonticula alba	SRX183037	-	-
Capsaspora owczarzaki	SRX155797	-	ERX2681962
Sphaeroforma arctica	ERX2270207	-	ERX2678837
Giardia lamblia	SRX625517	-	SRX625517
Spironucleus salmonicida	SRX332235	-	-
Leishmania major	ERX190352	SRX541170	-
Leptomonas pyrrhocoris	SRX1044319	-	-
Leptomonas seymouri	SRX1046748	-	-
Trypanosoma brucei	SRX271982	SRX1071658	-
Trypanosoma cruzi	SRX574890	-	-
Trypanosoma theileri	ERX1819477	-	-
Tetrahymena thermophila	SRX5736565	-	-
Stentor coeruleus	SRX2366376	-	-
Plasmodium gallinaceum	SRX729933	-	-
Plasmodium falciparum	ERX3875738	SRX4668733	-
Plasmodium vivax	ERX1787321	-	-
Phytophthora infestans	SRX4277324	SRX759739	-
Phytophthora sojae	SRX4277319	-	SRX2268634
Plasmopara halstedii	ERX541772	-	-
Aphanomyces astaci	SRX236909	-	-
Aphanomyces invadans	SRX238128	-	-
Saprolegnia parasitica	SRX155938	-	-
Pseudo-nitzschia multistriata	SRX1070747	-	-
Thalassiosira pseudonana	SRX3397332	SRX553515	-
Nannochloropsis gaditana	SRX151683	-	-
Aureococcus anophagefferens	SRX4623563	-	-
Bigelowiella natans	DRX053601	_	_
Plasmodiophora brassicae	SRX4994054	-	-

 Table 1 | Organisms and SRA accession numbers
 A list of all organisms and their

transcriptomic data's SRA accession numbers, which correspond to the experiments in which the data was originally found.

2.2 Determining Gene Expression Levels

SMALT was used in order to map sequencing reads onto their respective annotated gene sequence (Hannes Ponstingl, Genome Research Ltd). For this to be done, each individual organism's CDS file was used to create an individual hash index in the form of two separate files, one with the extension .smi and the other with the extension .sma. The hash index for each organism was then loaded into memory and mapped via paired-end reads to the file containing the relevant organism's whole transcriptome. The output to this step was written onto a file with the extension .sam in a SAM output format. The lines of text which code for both the creation of the hash table and the .sam file are found at https://www.sanger.ac.uk/tool/smalt-0/.

Tablet was then used to tabulate the number of reads per CDS (Milne et al., 2013). As genes of longer length will have more reads mapped to them by SMALT than a gene of a shorter length with the same expression level expression was normalised by dividing the number of reads by the CDS length.

The genes showing zero expression were then removed from the data set. The top and bottom 5% expressed genes were then extracted from the organisms genomic file and placed in two .txt files respectively. This separation was performed with the use of the tool SEQTK (Li, 2013). The top and bottom 5% expressed genes were extracted in order to compare codon usage between the two extremes of expression. Additionally, the top 200 expressed genes were also extracted from the organisms genomic file using SEQTK. These steps were carried out for each of the 33 organisms investigated within this study.

2.3 Separation of Domains and Non-Domains

The top 200 expressed genes from each organism were each individually separated into protein coding domains and non-domains with the use of the NCBI protein annotation. Codons from the two distinct gene regions were placed into separate FASTA files. This was completed for all organisms investigated in this study, excluding the top 200 expressed genes of *B. natans*. Those genes whose protein coding domain region information was not available in the protein database were excluded from this line of research, as well as the genes' whose domain region spanned its entirety.

The genomic data provided by ensemble protists for *B. natans* had gene identifiers unique to the Joint Genome Institute (JGI) databases, and therefore, the identifiers for *B. natans* top 200 expressed genes were not able to be searched for within the NCBI's protein database. To overcome this, each of the 200 genes were placed separately into the online tool ExPASy (Gasteiger et al., 2003). ExPASy translates the genes' nucleotide sequence into all six potential protein sequences. Any open reading frames (ORFs) were then highlighted by the program, these ORFs were then placed into the NCBI program Conserved Domain Search in order to check their validity (Marchler-Bauer et al., 2017). Valid ORFs were then searched for using a standard protein BLAST (Altschul et al., 1990), another NCBI program, this search revealed the gene within NCBI's protein database allowing for its protein coding domains to be located.

2.4 Statistical Analysis

The majority of statistical analysis performed on the codons of the chosen 33 organisms were carried out with the use of CodonW v. 1.4.2 (Peden, 1999). This included correspondence analysis and determining the Fop, Nc and GC3s values for codons found in a given set of genes.

Due to the use of different genetic codes any statistical analysis conducted on the codons for the organisms *S. salmonicida* and *T. thermophila* was completed using the nuclear code of Ciliophora as a base which was provided within CodonW. Statistical analysis on the codons for all other organisms used the universal genetic code, again provided for by CodonW.

All graphs and tables showed in this document were produced through Excel 2016, along with any other calculations, unless stated otherwise.

2.4.1 Identification of Optimal Codons

Optimal codons for all 33 species were determined using two methods: correspondence analysis through CodonW and by comparing the 5% top and bottom expressed genes. Correspondence analysis was performed by inputting the complete transcriptomes of each species into CodonW, the estimated optimal codons for the species was then generated in the form of a fop.coa file. CodonW then determined the F_{op} values for each organism with the use of their respective fop.coa files. Values for both Nc and GC3s were also calculated in CodonW.

To determine optimal codons with the use of expression data the files containing the top and bottom 5% expressed genes for every organism were entered separately into CodonW. These files were used to determine the Nc and GC3s for the codons within them. The gene sequences ending in partial codons were then trimmed. The modified files were then placed back into CodonW and the genes were concatenated. This allowed for a .blk file to be produced containing a table showing the concatenated genes use of codons.

A two-tailed Fisher's exact test was then conducted using a 2-by-2 contingency table to calculate the significant differences, in the form of p-values, between the use of codons found in the top and bottom 5% expressed genes for each species. This was carried out using QuickCalcs, software provided by GraphPad (GraphPad Software, 2020). Any difference in codon usage which exhibited a p-value equal to or less than 0.001 was deemed as significant. Any codon which was found at a significantly higher rate in the top 5% when compared with the bottom 5% of expressed genes was deemed as optimal.

2.4.2 Codon Usage in Domains and Non-Domains

CodonW was also used to determine codon usage in both the domains and the non-domains of the non-excluded genes from the top 200 expressed genes for all 33 species. This analysis was conducted again by determining GC3s and Nc values. The gene sequences ending in partial codons were then trimmed and concatenated.

The concatenated genes were then used as an input to obtain a .blk file showing codon usage. The usage of individual ADAT codons in both the domains and the non-domains of each organism was then placed in a 2-by-2 contingency table using the same statistical analysis stated in section 2.4.1.

2.4.3 Optimal Codon Usage in Domain and Non-Domain Codons

CodonW records the designated optimal codons for sets of genes into fop.coa files. Custom fop.coa files were created for each organism used in the study based on the codon usage data attained from their top and bottom 5% expressed genes. The custom fop.coa files were then loaded into CodonW in order to calculate the F_{op} values for the functional domains and non-domain regions of the non-excluded top 200 expressed genes for each species. The F_{op} values for the top and bottom 5% expressed genes for each species. The F_{op} values for the top and bottom 5% expressed genes for each species.

2.4.4 Usage of ADAT preferred Codons

The usage of all ADAT preferred codons as opposed to their synonymous codon counterparts within the top and bottom 5% expressed genes and the functional domains and non-domains of the

non-excluded top 200 expressed genes were calculated for all investigated species. For each organism the difference between the usage of ADAT preferred codons in the top and bottom 5% expressed genes was tested for significance with the use of a 2-by-2 contingency table, the software for which provided by VassarStats (VassarStats, 2020), as well as the significant difference between the functional domains and non-domains. In this case a Yates's chi-squared test was conducted by VassarStats due to the large size of the input values. A p-value equal to or less than 0.001 was considered to be significant.

2.5 Identification of tRNA Genes

The copy numbers for each type of tRNA within each of the 33 organisms were found using tRNAscan-SE, an online resource capable of searching through regions of DNA for tRNA genes (Lowe & Chan, 2016). Each organism's genomic file was entered into the tRNAscan-SE search box in FASTA format. However, due to tRNAscan-SE being limited to queries that were less than five million nucleotides, organism's genomic files had to be separated and searched in multiple subdivisions. These subdivisions were made up of roughly 4.5 million nucleotides each, depending on the size of super-contigs. The tRNA genes found for each organism from the individual searches were then compiled into one data set when all runs were complete.

In cases where individual super-contigs exceeded five million nucleotides, the contents of the contig was separated into two, with both halves of the contig being searched individually. A third search was then carried out which incorporated the middle of the whole super-contig, in case any tRNA genes were separated when the contig was split. The tRNA genes found from these three searches were then compared to ensure no tRNA genes were recorded twice.

2.6 Evidence of Deamination

In order to identify the presence of tRNA modified by the A-to-I deamination, small RNA molecules were screened from organisms with available data. These organisms were: *E. histolytica* (amoebozoan), *D. discoideum* (amoebozoan), *F. alba* (opisthokont), *C. owczarzaki* (opisthokont), *S. arctica* (opisthokont), *L. major* (excavate), *T. brucei* (excavate), *P. falciparum* (alveolate), *P. infestans* (stramenopile), *P. sojae* (stramenopile) and *T. pseudonana* (stramenopile). Any TAPSILVR tRNA genes found within the organisms' genetic data by tRNA-scan which possessed anticodons with adenosine at their wobble position were isolated from the genome.

These isolated genes were screened for within the small tRNA data, along with modified versions of the genes. The modified version of the gene included a guanosine at the 34th position replacing A, as inosine is replaced with guanosine during the production of cDNA. Any tRNA^{Ala}_{AGC} genes that housed an A at the 37th position of the gene were modified three times, with each modified gene housing a different variation of potential post transcriptional modifications. The A at the 34th position was replaced with a G in the first modified gene (mod1), the A at the 37th position was replaced with a 37th position were replaced with G's (mod3). This line of research was introduced in order to better understand the relationship between the ADAT enzymes: hetADAT and ADAT1.

SMALT was utilised to map the ncRNA or miRNA reads, dependent on the organism, onto each organisms collection of modified and unmodified genes using the same method as stated in section 2.2. Tablet was then used to observe the mapped reads, where the presence of both the modified and unmodified tRNA molecules was noted.

3.0 Results

Due to the number of species within this study, when represented within tables they have been separated, via their supergroups, into different coloured categories: red for the amoebozoans, orange for the apusozoan, yellow for the opisthokonts, green for the excavates, blue for the alveolates, purple for the stramenopiles and plum for the rhizarians.

3.1 The Degree of Codon Usage Bias in the Protists

With the use of Nc values, the degree of CUB was determined for all the genes present in the transcriptomes of the 33 protists investigated in this study. For each organism the average Nc value of their genes was calculated (Table 2), these averages ranged from 31.87 in the stramenopile A. anophagefferens to 56.31 in the excavate T. brucei; whereas the Nc values of individual genes within the transcriptomes of the organisms ranged from 20 to 61. Along with Nc values, GC3s values were calculated for the genes present within the transcriptomes. GC3s reveals the direction of bias, towards either AT-ending codons or towards GC-ending codons. The mean GC3s was calculated for all organisms (Table 2), ranging from 0.11 for the amoebozoan E. histolytica to 0.91 for the stramenopile A. anophagefferens. This depicts a strong bias towards AT ending codons in E. histolytica and an even stronger bias towards GC ending codons within A. anophagefferens. There were nine organisms whose average GC3s value was close to or precisely 0.5, including at least one organism from each supergroup. The majority of the opisthokonts, including *T. trahens*, and the stramenopiles have a high average GC3s value, whilst the majority of the alveolates show a low average GC3s value. There is a large variation in the excavates and amoebozoans' average GC3s values, therefore, no trends can be seen.

Organism	Nc (±SD)	GC3s (±SD)	Number of genes
A. castellanii	42.99 ± 7.35	0.73 ± 0.15	14975
E. histolytica	33.82 ± 3.92	0.11 ± 0.05	8110
D. discoideum	33.00 ± 5.23	0.14 ± 0.08	13050
P. fungivorum	52.10 ± 5.43	0.54 ± 0.08	17125
T. trahens	38.71 ± 5.08	0.77 ± 0.07	10625
F. alba	38.24 ± 6.14	0.81 ± 0.09	6310
C. owczarzaki	47.85 ± 6.42	0.65 ± 0.08	10121
S. arctica	54.42 ± 6.35	0.54 ± 0.08	18731
G. lambila	53.58 ± 7.52	0.53 ± 0.10	7247
S. salmonicida	46.48 ± 7.86	0.37 ± 0.21	8320
L. major	44.94 ± 6.25	0.73 ± 0.08	8316
L. pyrrhocoris	44.60 ± 7.55	0.72 ± 0.13	13894
L. seymouri	47.91 ± 6.18	0.69 ± 0.09	8486
T. brucei	56.31 ± 4.71	0.50 ± 0.07	8728
T. cruzi	53.87 ± 5.23	0.54 ± 0.09	32274
T. theileri	50.36 ± 5.50	0.37 ± 0.13	11312
T. thermophila	41.60 ± 4.79	0.23 ± 0.06	24726
S. coeruleus	43.91 ± 4.33	0.23 ± 0.05	31427
P. gallinaceum	38.24 ± 5.77	0.18 ± 0.08	5247
P. falciparum	38.49 ± 4.21	0.16 ± 0.05	5354
P. vivax	51.33 ± 0.14	0.53 ± 0.14	5390
P. infestans	53.05 ± 5.49	0.54 ± 0.11	17764
P. sojae	46.32 ± 9.38	0.70 ± 0.14	26459
P. halstedii	54.08 ± 5.51	0.44 ± 0.07	15470
A. astaci	46.99 ± 5.35	0.71 ± 0.06	14015
A. invadans	47.51 ± 5.23	0.69 ± 0.06	10900
S. parasitica	37.96 ± 5.55	0.80 ± 0.07	20122
P. multistriata	51.13 ± 7.67	0.59 ± 0.15	12040
T. pseudonana	54.10 ± 7.80	0.47 ± 0.06	11673
N. gaditana	52.85 ± 6.11	0.61 ± 0.12	10930
A. anophagefferens	31.87 ± 9.51	0.91 ± 0.16	11521
B. natans	55.99 ± 4.88	0.50 ± 0.09	21685
P. brassicae	$4\overline{5.31} \pm 7.80$	0.73 ± 0.11	9728

Table 2 | **Average Codon Usage Statistics in the Transcriptomes of the 33 Protists.** All values to two decimal places. See Figures 5 to 37 in the appendix for a visualisation of the data shown within the table. Note – Nc, the effective number of codons; GC3s, guanine + cytosine content at synonymous third position of codon; SD, standard deviation.

Additionally, the average Nc and GC3s values were found separately for the top and bottom 5% expressed genes. These values were also found for the protein coding domains and non-domains of the non-excluded top 200 expressed genes for each species (Table 3).

If the CUB of an organism is influenced by the selection for the codons that provide translational efficiency, the highly expressed genes for that organism would show a greater bias, therefore, a lower Nc value than their weakly expressed counterparts. This can be seen in the vast majority of the protists where the top 5% expressed genes Nc value was lower than that of the bottom 5%. However, within the following protists, a lower Nc value was seen in the bottom 5% expressed genes: *D. discoideum* (amoebozoan), *L. seymouri* (excavate), *S. coeruleus* (alveolate), *P. multistriata* (stramenopile), *N. gaditana* (stramenopile) and *A. anophagefferens* (stramenopile) (Table 3).

Similarly, if codons which provide the greatest translational accuracy are selected for within an organism then the protein coding domain regions of genes will exhibit lower Nc values than their non-domain counterparts. The majority of protists show a stronger bias within their domain-encoding regions when compared to their non-domain regions whilst *E. histolytica* (amoebozoan), *T. brucei* (excavate), *T. cruzi* (excavate), *T. theileri* (excavate), *P. gallinaceum* (alveolate) and *P. vivax* (alveolate) show the opposite bias (Table 3).

	Top 5%		Bottom 5%		Protein Coding		Non-Protein	
	Expressed Genes		Expressed Genes		Domains		Coding Domains	
Organism	Nc	GC3s	Nc	GC3s	Nc	GC3s	Nc	GC3s
A. castellanii	34.66	0.85	39.51	0.81	31.33	0.87	33.74	0.81
E. histolytica	31.24	0.17	33.03	0.10	30.64	0.19	29.52	0.24
D. discoideum	32.46	0.21	31.02	0.10	31.84	0.28	32.26	0.25
P. fungivorum	52.25	0.55	53.22	0.52	50.66	0.58	51.71	0.54
T. trahens	34.94	0.82	40.48	0.75	31.96	0.84	35.46	0.80
F. alba	30.34	0.83	38.23	0.83	27.49	0.82	30.94	0.77
C. owczarzaki	36.90	0.75	50.70	0.61	32.85	0.79	36.26	0.71
S. arctica	51.50	0.55	53.95	0.50	44.89	0.58	46.96	0.53
G. lambila	50.63	0.60	57.02	0.50	48.99	0.65	50.43	0.62
S. salmonicida	41.45	0.52	45.28	0.24	36.93	0.59	36.98	0.55
L. major	35.71	0.82	46.11	0.72	35.99	0.82	39.49	0.76
L. pyrrhocoris	33.44	0.84	44.88	0.73	31.26	0.88	36.39	0.80
L. seymouri	47.67	0.70	42.93	0.74	44.40	0.72	47.15	0.69
T. brucei	51.89	0.52	57.33	0.49	50.88	0.57	50.50	0.54
T. cruzi	50.27	0.59	52.64	0.59	46.48	0.64	46.25	0.59
T. theileri	46.74	0.57	50.13	0.36	45.82	0.60	42.80	0.56
T. thermophila	36.01	0.31	39.78	0.21	31.63	0.42	34.29	0.37
S. coeruleus	44.19	0.26	42.39	0.21	41.11	0.27	41.16	0.29
P. gallinaceum	34.17	0.11	36.86	0.15	33.83	0.12	32.65	0.12
P. falciparum	37.21	0.17	39.94	0.17	38.00	0.15	38.26	0.17
P. vivax	49.91	0.55	52.94	0.54	48.50	0.54	46.65	0.55
P. infestans	41.42	0.74	54.41	0.56	35.22	0.79	35.46	0.77
P. sojae	32.24	0.88	49.91	0.66	28.88	0.92	30.74	0.86
P. halstedii	52.05	0.49	54.08	0.44	47.22	0.53	47.68	0.51
A. astaci	42.36	0.74	49.99	0.66	-	-	-	-
A. invadans	42.37	0.72	50.51	0.65	38.53	0.75	39.72	0.70
S. parasitica	31.91	0.85	37.63	0.81	28.04	0.85	31.46	0.78
P. multistriata	46.53	0.57	45.76	0.69	39.80	0.59	39.98	0.58
T. pseudonana	50.82	0.47	54.55	0.46	47.99	0.49	48.54	0.49
N. gaditana	52.40	0.58	51.21	0.63	46.83	0.69	49.74	0.59
A. anophagefferens	33.20	0.86	31.92	0.91	31.65	0.89	33.66	0.87
B. natans	52.14	0.50	54.49	0.47	45.25	0.49	49.25	0.35
P. brassicae	39.04	0.80	46.31	0.73	35.03	0.84	35.99	0.80

Table 3 | Nc and GC3s mean values for the top and bottom 5% expressed genes and the protein coding domains and non-domains for the 33 protists. . See Figures 5 to 37 in the appendix for a visualisation of the data shown within the table. Note – Nc, the effective number of codons; GC3s, guanine + cytosine content at synonymous third position of codon.
To visualise the degree of CUB within the transcriptomes of the 33 organisms Nc plots were produced (Appendix, Figures 5 - 37). Figure 4 shows genes present in the transcriptomes of *E. histolytica*, *T. brucei* and *T. trahens*, all displaying different degrees of codon bias.

The genes within the amoebozoan E. histolytica are shown to have a strong bias towards ATending codons, with highly biased genes showing lower GC3s values (Figure 3, A). This pattern can also be seen in *D. discoideum* (Figure 7) and in the majority of the researched alveolates (Appendix, Figures 21-24), with the exception of *P. vivax* (Appendix, Figure 25). The opposite can be seen in the transcriptome of T. trahens (apusozoan) where the genes showed a strong bias towards GC-ending codons, with highly biased genes featuring higher GC3s values (Figure 3, C). This pattern can also be seen in: A. castellanii (amoebozoan), F. alba (opisthokont), C. owczarzaki (opisthokont), L. major (excavate), L. pyrrhocoris (excavate), L. seymouri (excavate), P. sojae (stramenopile), A. astaci (stramenopile), A. invadans (stramenopile), S. parasitica (stramenopile), P. multistriata (stramenopile), A. anophagefferens (stramenopile) and P. brassicae (rhizarian) (Appendix, Figures 5, 10, 11, 15 - 17, 27, 29 - 32, 35 and 37). On the contrary, the genes within the excavate *T. brucei* showed very little indication of a relationship between GC3s and Nc values (Figure 3, B), along with P. fungivorum (amoebozoan), S. arctica (Opisthokont), G. lamblia (excavate), P. halstedii (stramenopile), T. pseudonana (stramenopile) and B. natans (rhizarian) (Appendix, Figures 8, 12, 13, 28, 33 and 36).

The Nc and GC3s values of all genes found in the transcriptome for each organism are shown as grey hollow circles. The average Nc and GC3s values for each organisms' set of genes are represented by a black dot. The average Nc and GC3s values for the top and bottom 5% expressed genes for each organism are represented by blue and red squares respectively. The average Nc and GC3s values for the top 200 expressed

genes for each organism are represented by green and purple triangles respectively. The red bellshaped curve represents the expected position of genes if their CUB was solely influenced by a neutral mutational bias (Wright, 1990). These particular Nc plots were chosen to illustrate the three different variations of patterns observed. The Nc plots for all genomes can be found in the appendix (Figures 5 to 37).

3.2 Optimal Codon Identification

The optimal codons for each of the 33 protists were determined by performing correspondence analysis with the use of CodonW (Appendix, Tables 12–42). Optimal codons were also identified by carrying out a comparison between the codon usage of the top and bottom 5% expressed genes for each organism (Appendix, Tables 43-75). The two methods used identified differing optimal codons for all of the protists examined although the size of this difference varied greatly (Appendix, Tables 108-140). Whilst the two methods for finding optimal codons in *P. sojae* (stramenopile) only differed by 2 codons (Tables 4B) and those found for *T. theileri* (excavate)(Table 4A) differed completely.

 Table 4A and 4B | Optimal Codons found for the excavate *T. theileri* (A) and the

 stramenopile *P. sojae* (B) using two methods: Correspondence Analysis (blue) and Expression

 Level (red). Codons shown with a blue background are those determined optimal by CodonW with

the use of a correspondence analysis. Codons shown with a red background are those found to be optimal when comparing the top and bottom 5% expressed genes. Codons shown with a purple background are those found to be optimal by both methods.

Due to the extreme differences in optimal codons found by correspondence analysis and by expression data in certain organisms, there must be some optimal codons that are false positives. As optimal codons identified by correspondence analysis are only considered genuine if highly biased genes are those that are highly expressed (Peden, 1999), a heavy influence of mutational pressure on the CUB of the organisms could invalidate this method. This can be seen within *T. theileri* as its CUB is heavily influenced by a mutational bias towards AT-ending codons and its highly expressed genes exhibit higher GC3s values than the highly biased genes (Appendix, Figure 20). As it is hard to determine if mutation has a strong influence over CUB only those optimal codons found by expression data will be discussed and taken forward in further research.

The Fop values were found for each organisms genome and for the found protein coding domains and non-domains of the top 200 expressed genes for each organism (Table 5).

Organism	CDS (±SD)	Top 5% Expressed Genes (±SD)	Bottom 5% Expressed Genes (±SD)	Protein-Coding Domains (±SD)	Non- Domains (±SD)
A. castellanii	0.59 ± 0.10	0.77 ± 0.08	0.63 ± 0.07	0.82 ± 0.07	0.79 ± 0.12
E. histolytica	0.47 ± 0.07	0.66 ± 0.09	0.42 ± 0.04	0.68 ± 0.09	0.72 ± 0.11
D. discoideum	0.28 ± 0.09	0.45 ± 0.14	0.45 ± 0.06	0.52 ± 0.12	0.54 ± 0.12
P. fungivorum	0.43 ± 0.06	0.44 ± 0.06	0.41 ± 0.06	0.46 ± 0.05	0.42 ± 0.06
T. trahens	0.64 ± 0.10	0.73 ± 0.11	0.60 ± 0.08	0.76 ± 0.11	0.72 ± 0.12
F. alba	0.58 ± 0.11	0.80 ± 0.14	0.52 ± 0.06	0.85 ± 0.13	0.80 ± 0.16
C. owczarzaki	0.50 ± 0.10	0.69 ± 0.13	0.47 ± 0.07	0.75 ± 0.12	0.67 ± 0.16
S. arctica	0.46 ± 0.07	0.57 ± 0.11	0.44 ± 0.07	0.66 ± 0.12	0.62 ± 0.17
G. lambila	0.50 ± 0.09	0.57 ± 0.12	0.48 ± 0.07	0.63 ± 0.12	0.59 ± 0.14
S. salmonicida	0.41 ± 0.18	0.62 ± 0.18	0.28 ± 0.10	0.69 ± 0.17	0.66 ± 0.18
L. major	0.62 ± 0.08	0.75 ± 0.11	0.60 ± 0.05	0.73 ± 0.11	0.72 ± 0.14
L. pyrrhocoris	0.64 ± 0.13	0.80 ± 0.15	0.65 ± 0.08	0.84 ± 0.08	0.79 ± 0.15
L. seymouri	0.29 ± 0.08	0.29 ± 0.07	0.24 ± 0.11	0.26 ± 0.07	0.29 ± 0.08
T. brucei	0.36 ± 0.06	0.41 ± 0.11	0.35 ± 0.04	0.45 ± 0.11	0.45 ± 0.13
T. cruzi	0.53 ± 0.07	0.53 ± 0.08	0.49 ± 0.10	0.51 ± 0.09	0.58 ± 0.11
T. theileri	0.33 ± 0.12	0.54 ± 0.17	0.31 ± 0.11	0.57 ± 0.17	0.53 ± 0.16
T. thermophila	0.45 ± 0.08	0.67 ± 0.13	0.45 ± 0.06	0.81 ± 0.12	0.74 ± 0.17
S. coeruleus	0.38 ± 0.05	0.45 ± 0.06	0.36 ± 0.04	0.50 ± 0.08	0.48 ± 0.08
P. gallinaceum	0.62 ± 0.10	0.67 ± 0.05	0.62 ± 0.06	0.65 ± 0.05	0.68 ± 0.09
P. falciparum	0.36 ± 0.05	0.41 ± 0.06	0.34 ± 0.04	0.37 ± 0.06	0.35 ± 0.06
P. vivax	0.33 ± 0.06	0.38 ± 0.07	0.33 ± 0.04	0.38 ± 0.08	0.37 ± 0.11
P. infestans	0.46 ± 0.10	0.69 ± 0.10	0.50 ± 0.09	0.82 ± 0.07	0.79 ± 0.12
P. sojae	0.61 ± 0.14	0.81 ± 0.12	0.56 ± 0.10	0.87 ± 0.08	0.81 ± 0.15
P. halstedii	0.41 ± 0.07	0.52 ± 0.08	0.41 ± 0.07	0.58 ± 0.10	0.52 ± 0.13
A. astaci	0.71 ± 0.07	0.75 ± 0.07	0.65 ± 0.07	-	-
A. invadans	0.60 ± 0.06	0.65 ± 0.08	0.54 ± 0.07	0.70 ± 0.08	0.63 ± 0.12
S. parasitica	0.63 ± 0.08	0.74 ± 0.12	0.64 ± 0.08	0.81 ± 0.16	0.75 ± 0.20
P. multistriata	0.42 ± 0.13	0.49 ± 0.10	0.32 ± 0.14	0.38 ± 0.08	0.37 ± 0.11
T. pseudonana	0.34 ± 0.06	0.37 ± 0.09	0.33 ± 0.04	0.39 ± 0.11	0.36 ± 0.13
N. gaditana	0.40 ± 0.08	0.44 ± 0.09	0.38 ± 0.09	0.40 ± 0.09	0.45 ± 0.10
A. anophagefferens	0.22 ± 0.14	0.26 ± 0.18	0.23 ± 0.14	0.23 ± 0.17	0.27 ± 0.17
B. natans	0.46 ± 0.06	0.54 ± 0.10	0.45 ± 0.07	0.64 ± 0.15	0.36 ± 0.07
P. brassicae	0.63 ± 0.10	0.73 ± 0.09	0.62 ± 0.09	0.78 ± 0.09	0.74 ± 0.11

Table 5 | Frequencies of Optimal Codons (Fops) of the top and bottom 5% of expressed genes and the protein coding domains and non-domains of the top 200 expressed genes for each organism. Note – CDS, Coding Sequence; SD, standard deviation.

3.3 Codon Usage within the Protists using Expression Data

The protein coding domains and non-domains of the top 200 expressed genes were found for each organism. Due to reliance on the NCBI database not all domains could be found and therefore they could not be examined (Table 6). This was the case for the stramenopile *A. astaci* were no domains could be found due to there being no data available.

Organism	N° of D and ND	
A. castellanii	105	
E. histolytica	60	
D. discoideum	56	
P. fungivorum	105	
T. trahens	111	
F. alba	105	
C. owczarzaki	122	
S. arctica	74	
G. lambila	93	
S. salmonicida	90	
L. major	61	
L. pyrrhocoris	31	
L. seymouri	99	
T. brucei	66	
T. cruzi	75	
T. theileri	53	
T. thermophila	70	
S. coeruleus	85	
P. gallinaceum	86	
P. falciparum	115	
P. vivax	98	
P. infestans	81	
P. sojae	88	
P. halstedii	87	
A. astaci	0	
A. invadans	100	
S. parasitica	70	
P. multistriata	58	
T. pseudonana	85	
N. gaditana	81	
A. anophagefferens	64	
B. natans	57	
P. brassicae	93	

 Table 6 | The number of Protein Coding Domains and Non-Domains for the top 200

 expressed genes for the 33 protists. Note- N°, number; D, Protein-coding domains; ND, Non-domains.

The overall usage of the ADAT preferred codons was found for each organisms' top and bottom 5% expressed genes (Table 7). If found at a higher frequency within the highly expressed genes then it can be concluded that collectively they are selected for due to translational efficiency. Although a p-value of 0.01 is commonly used in codon usage research as a cut off point for significant difference, within this study a value of 0.001 was chosen to improve upon the accuracy of the findings.

Organism	Top 5%	Bottom 5%	p-value
A. castellanii	0.56 (72440)	0.44 (72009)	p<0.0001
E. histolytica	0.08 (2406)	0.04 (1876)	p<0.0001
D. discoideum	0.18 (16104)	0.05 (7459)	p<0.0001
P. fungivorum	0.32 (73849)	0.29 (49801)	p<0.0001
T. trahens	0.53 (34081)	0.45 (69537)	p<0.0001
F. alba	0.62 (31208)	0.44 (67092)	p<0.0001
C. owczarzaki	0.48 (35986)	0.30 (48547)	p<0.0001
S. arctica	0.27 (27897)	0.21 (19039)	p<0.0001
G. lambila	0.29 (24190)	0.22 (23878)	p<0.0001
S. salmonicida	0.29 (12951)	0.08 (3290)	p<0.0001
L. major	0.37 (22641)	0.27 (63129)	p<0.0001
L. pyrrhocoris	0.39 (36233)	0.31 (63939)	p<0.0001
L. seymouri	0.28 (44649)	0.31 (18051)	p<0.0001
T. brucei	0.24 (8608)	0.18 (30996)	p<0.0001
T. cruzi	0.23 (54426)	0.21 (54963)	p<0.0001
T. theileri	0.26 (19327)	0.13 (16200)	p<0.0001
T. thermophila	0.18 (35711)	0.08 (22185)	p<0.0001
S. coeruleus	0.11 (24634)	0.09 (23476)	p<0.0001
P. gallinaceum	0.04 (1531)	0.05 (2385)	p<0.0001
P. falciparum	0.08 (2469)	0.07 (2474)	p<0.0001
P. vivax	0.24 (10497)	0.24 (17719)	p=0.3594
P. infestans	0.33 (40078)	0.24 (35639)	p=0.0001
P. sojae	0.45 (62852)	0.29 (62565)	p<0.0001
P. halstedii	0.19 (17371)	0.18 (9264)	p<0.0001
A. astaci	0.39 (37914)	0.33 (35189)	p<0.0001
A. invadans	0.37 (30238)	0.32 (24883)	p<0.0001
S. parasitica	0.47 (59833)	0.39 (91918)	p<0.0001
P. multistriata	0.37 (23580)	0.40 (59399)	p<0.0001
T. pseudonana	0.25 (14735)	0.21 (35231)	p<0.0001
N. gaditana	0.29 (15050)	0.32 (27715)	p<0.0001
A. anophagefferens	0.48 (16989)	0.46 (62910)	p<0.0001
B. natans	0.23 (37565)	0.19 (38824)	p<0.0001
P. brassicae	0.39 (27016)	0.35 (36806)	p<0.0001

Table 7 | The use of ADAT preferred codons within the top and bottom 5% of expressedgenes for the 33 protists. The codon usage data is given in two forms, inside and outside ofbrackets. The numbers outside the brackets represent the proportion of ADAT-preferred codonsfound within the set of genes as opposed to synonymous codons. The numbers inside of thebrackets represent the number of ADAT-preferred codons found within the set of genes. The p-

values shown were calculated by a 2x2 contingency table. Any p-value above 0.001 was deemed insignificant, these are shown using red text.

The overall usage of the ADAT preferred codons was also found for each organisms' protein coding domains and non-domains (Table 8). This was carried out to determine if they are collectively selected for due to translational accuracy, if this was the case they would be found at a greater frequency within their protein coding domains. Again, data which had a p-value above 0.001 were deemed not significantly different to improve accuracy.

Organism	Domains	Non-Domains	p-value
A. castellanii	0.61 (7400)	0.55 (2442)	p<0.0001
E. histolytica	0.09 (228)	0.14 (166)	p<0.0001
D. discoideum	0.26 (1000)	0.17 (580)	p<0.0001
P. fungivorum	0.36 (7690)	0.30 (5178)	p<0.0001
T. trahens	0.59 (4161)	0.47 (2563)	p<0.0001
F. alba	0.69 (7681)	0.57 (2905)	p<0.0001
C. owczarzaki	0.58 (5367)	0.43 (2373)	p<0.0001
S. arctica	0.30 (1744)	0.26 (545)	p<0.0001
G. lambila	0.35 (6082)	0.28 (3230)	p<0.0001
S. salmonicida	0.42 (2579)	0.33 (728)	p<0.0001
L. major	0.39 (1715)	0.32 (910)	p<0.0001
L. pyrrhocoris	0.40 (1300)	0.35 (515)	p=0.0027
L. seymouri	0.30 (4140)	0.27 (6364)	p<0.0001
T. brucei	0.31 (1427)	0.28 (656)	p=0.0042
T. cruzi	0.25 (2163)	0.23 (880)	p=0.0361
T. theileri	0.27 (1421)	0.24 (479)	p=0.0019
T. thermophila	0.30 (2569)	0.24 (763)	p<0.0001
S. coeruleus	0.14 (1058)	0.12 (346)	p=0.0100
P. gallinaceum	0.04 (307)	0.08 (253)	p<0.0001
P. falciparum	0.07 (689)	0.06 (759)	p=0.1703
P. vivax	0.23 (2315)	0.23 (1517)	p=0.8875
P. infestans	0.36 (2785)	0.37 (1076)	p=0.6468
P. sojae	0.53 (2968)	0.50 (1232)	p=0.0029
P. halstedii	0.21 (1538)	0.20 (710)	p=0.3929
A. invadans	0.40 (3431)	0.39 (2096)	p=0.0595
S. parasitica	0.56 (3041)	0.43 (926)	p<0.0001
P. multistriata	0.44 (2591)	0.42 (951)	p=0.2579
T. pseudonana	0.28 (1617)	0.26 (1228)	p=0.0171
N. gaditana	0.37 (2226)	0.28 (934)	p<0.0001
A. anophagefferens	0.49 (2002)	0.44 (2399)	p<0.0001
B. natans	0.25 (2115)	0.15 (262)	p<0.0001
P. brassicae	0.44 (3914)	0.40 (1093)	p=0.0003

 Table 8 | The use of ADAT preferred codons within the found protein coding domains and

 non-domains of the top 200 expressed genes for 32 protists with the exclusion of *A. astaci*. The

 codon usage data is given in two forms, inside and outside of brackets. The numbers inside of the

 brackets represent the number of ADAT-preferred codons found within the set of genes. The

 numbers outside the brackets represent the proportion of ADAT-preferred codons found within the

set of genes as opposed to synonymous codons. The p-values shown were calculated by a 2x2 contingency table, any p-value above 0.001 was deemed insignificant, these are shown using red text. *A. astaci* was excluded from this table due to the lack of data available.

3.4 tRNA abundance

As previously mentioned the number of genes present within a genome for a particular tRNA type positively correlates to the tRNA molecule abundance (Iben & Maraia, 2012). Therefore, the tRNA with the highest copy number for each amino acid is classified as the major tRNA gene and is expected to be the most abundant tRNA molecule for that amino acid. Under a selection model, the optimal codons are those which correspond to the most abundant tRNA molecules.

tRNAscan-SE was used to identify the tRNA genes from each species. From these the most abundant/only tRNA for each amino acid in each species was acknowledged as a major tRNA gene. Due to having a wide range of organisms, the number of tRNA genes found for each species varied greatly; with 4471 tRNA genes found within the stramenopile *P. infestans* and only 41 tRNA genes found within the alveolate *P. gallinaceum*.

All tRNA genes found, including those which were chimeric and pseudo, were initially recorded (Appendix, Tables 142-174). However, chimeric and pseudo tRNA genes were removed from further study in order to maximise accuracy (Appendix, Tables 175-207. In some organisms like the excavate *T. brucei* and the alveolate *P. falciparum* the removal of these tRNA genes was minimal, with only 2.3% and 3.2% of their tRNA genes being removed respectively. However, in the three stramenopiles *P. halstedii*, *A. astaci* and *N. gaditana* over 50% of their genes were removed. The consequence of the removal of chimeric and pseudo tRNA genes was a change in 19% of the major tRNA genes. The identified tRNA genes were then used to compare the major tRNA genes with the optimal codons found within each species. A comparison could not be made

when no tRNA genes were found for an amino acid or if no optimal codon could be identified. Additionally, if all tRNA genes for an amino acid were found at an equal frequency, meaning there were no major tRNA genes, a comparison could not be made.

3.5 The Presence of the A-to-I Deamination

The modified and unmodified versions of TAPSILVR tRNA molecules with adenosine at the wobble position were screened for within nc/miRNA reads found from NCBI for 11 of the protists (Table 9). There were some TAPSILVR tRNA molecules with adenosine at the wobble position that could not be screened due to the absence of the A34 tRNA genes within certain organisms. Although alanine, valine and arginine A34 tRNA molecules were present within *P. infestans* the isoaccepting G34 tRNAs were also found to be present, hence, the screening for the modified tRNA molecules for these amino acids could be carried out.

Orreganiana]	Г	A	4]	P	C A	S]	I]		۲	V	ŀ	ł
Organism	Μ	U	М	U	М	U	Μ	U	Μ	U	Μ	U	Μ	U	Μ	U
E. histolytica	Α	Р	Α	Р					Α	Α	Α	Α			Α	Α
D. discoideum	Α	Р	Р	Р	Р	Р	Р	Р	Α	Р	Р	Α	Р	Р		
C. owczarzaki	Р	Α	Α	Р	Р	Α	Α	Р	Р	Р	Р	Р			Р	Р
S. arctica			Р	Р			Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
G. lambila	Р	Р	Р	Р	Р	Р	Р	Р			Р	Р			Р	Р
L. major	Р	Р	Р	Α	Р	Р	Α	Р	Р	Р	Р	Р	Р	Р	Р	Р
T. brucei	Α	Α	Α	Р	Α	Р	Α	Р	Α	Р	Α	Α	Α	Р	Α	Α
P. falciparum	Р	Р	Р	Р	Р	Р	Р	Р			Р	Р	Р	Р	Р	Р
P. infestans	Р	Р			А	Α	Р	Р			Α	Р	Α	Р		
P. sojae	Р	Р	Р	Р	Р	Р	Р	Α	Р	Р	Р	Р			Р	Р
T. pseudonana	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р				

Table 9 | The Presence or Absence of the A34-to-I34 modified and unmodified TAPSILVR

tRNA molecules in 11 of the Protists. Black spaces are used to show a lack of data availability for screening. Note – M, modified TAPSILVR tRNA molecule; U, unmodified TAPSILVR tRNA molecule; A, absence of the tRNA molecule (red); P, presence of the tRNA molecule (green).

The presence of the A37-to-I37 modification was also screened for using modified versions of $tRNA^{Ala}_{AGC}$ molecules from nine organisms (Table 10). There were no A37 $tRNA^{Ala}_{AGC}$ molecules in the alveolate *P. falciparum* and the stramenopile *P. infestans*.

Orraniam	Modifications			
Organism	M37	M34 + M37		
E. histolytica	А	А		
D. discoideum	А	Р		
C. owczarzaki	А	Α		
S. arctica	А	Α		
G. lambila	А	Α		
L. major	А	Α		
T. brucei	А	Α		
P. sojae	А	Р		
T. pseudonana	A	Р		

Table 10 | **The Presence or Absence of the A37-to-I37 Modification in relation to the Presence of the A34-to-I34 Modification in Nine Protists.** Note – M37, A37-to-I37 modified Alanine tRNA molecule; M34 + M37, Alanine tRNA molecule with both the A34-to-I34 modification and the A37-to-I37 modification; A, absence of the modified tRNA molecule (red); P, presence of the tRNA molecule (green).

4.0 Discussion

The study was designed to provide an accurate estimation into the origins of the TAPSILVR I34 tRNA deamination in eukaryotes by looking at its distribution across the eukaryotes. This was achieved by performing various bioinformatical analyses on the genomes of 33 protists. Using the results of these techniques, statistical analysis allowed for the calculation for the usage of ADAT preferred codons within the genomes of the 33 protists. The usage of ADAT preferred codons was then compared with the tRNA genes for each protist; using this comparison the occurrence of the TAPSILVR I34 tRNA deamination within each protist could be determined. This data was used in conjunction with the presence of tRNA modified by the A-to-I deamination to accurately estimate the origin of the deamination in eukaryotes.

The usage of the ADAT preferred codons within different sections of the genomes of each protist was also calculated. The usage of the ADAT preferred codons within the protists' 5% highly expressed genes was compared to that within their 5% weakly expressed genes, in order to determine if the codons were selected for due to translational efficiency of the codons. While a comparison was made between the usage of the ADAT preferred codons within the gene regions that encode the functional domains and that encode the non-domain amino acids of the top 200 highly expressed genes of each protist to determine if translational accuracy of the codons provided a selectional advantage. Therefore, where data were available, the mechanisms behind the selection of the ADAT preferred codons could be estimated.

As a tertiary aim this study hoped to better understand the relationship between ADAT1 and hetADAT enzymes and their respective modifications. This was carried out by searching for the presence of three different modifications of the gene for tRNA^{Ala}_{AGC}. As tRNA^{Ala}_{AGC} genes could

only be identified in nine out of the 33 organisms, more data is needed to fully understand the relationship between the ADAT1 and hetADAT enzymes.

A third ADAT enzyme has also been found in eukaryotes, ADAT1. Instead of A34, ADAT1 modifies A37 into I37 in tRNA^{Ala} only. It has recently been suggested in Torres (2014) that the modification of A37 by ADAT1 is independent of the presence of I34. The evidence does suggest that the I34 modification can and does occur independently of the I37 modification (Maas, Gerber & Rich, 1999), although the supporting literature provided in the review does not provide evidence that the I37 modification is independent of the I34 modification. Therefore, it is unclear if ADAT1's interaction depends on the interaction of hetADAT. ADAT1's interaction could also depend on the presence of I34, thereby only modifying the products of hetADAT activity.

4.1 The Overall CUB of the Protists in Relation to their Optimal Codons

The majority of optimal codons found for *A. castellanii* (amoebozoan), *T. trahens* (apusomonadan), *F. alba* (opisthokont), *C. owczarzaki* (opisthokont), *G. lamblia* (excavate), *L. major* (excavate), *L. pyrrhocoris* (excavate), *P. infestans* (stramenopile), *P. sojae* (stramenopile), *A. astaci* (stramenopile), *A. invadans* (stramenopile), *S. parasitica* (stramenopile), *B. natans* (rhizarian) and *P. brassicae* (rhizarian) end in either G or C which is consistent with the overall bias of their genomes (Appendix, Figures 5, 9-11, 13, 15, 16, 26, 27, 29-31, 36 and 37). This shows that the overall CUB of these organisms is directly influenced by selection for GC-ending codons.

The optimal codons found for *E. histolytica* (amoebozoan), *D. discoideum* (amoebozoan), *P. fungivorum* (amoebozoan), *S. arctica* (opisthokont), *S. salmonicida* (excavate), *T. brucei* (excavate), *T. theileri* (excavate), *T. thermophila* (alveolate), *S. coeruleus* (alveolate), *P. halstedii* (stramenopile) and *T. pseudonana* (stramenopile) are also majority GC-ending, however, this bias

is not observed within their genomes (Appendix, Figures 6-8, 12, 14, 18, 20-22, 28 and 33). Therefore, the CUB of these organisms appears to be influenced by a mutational bias towards ATending codons whilst also being subjected to selection for GC-ending codons.

The majority of optimal codons found in *L. seymouri* (excavate), *T. cruzi* (excavate), *P. falciparum* (alveolate), *P. multistriata* (stramenopile), *N. gaditana* (stramenopile) and *A. anophagefferens* (stramenopile) are AT ending, which is not consistent with the GC3s values found within their genomes (Appendix, Figures 17, 19, 24, 32, 24 and 35). The CUB of these organisms must be influenced towards GC-ending codons via mutation, whilst selectional forces increase the use of AT-ending codons.

P. gallinaceum is the only protist to show a mutational bias towards AT-ending codons alongside and selectional bias towards AT-ending codons acting on its CUB (Appendix, Figure 23).

4.2 Fop Values found for the Protein Coding Domains and the Non-Domains

The Fop values found for the protein coding domains and non-domains revealed that within *E. histolytica* (amoebozoan), *D. discoideum* (amoebozoan), *L. seymouri* (excavate), *T. cruzi* (excavate), *P. gallinaceum* (alveolate), *N. gaditana* (stramenopile) and *A. anophagefferens* (stramenopile) optimal codons were found at a significantly higher frequency within their nondomains than their protein coding domains (Table 5). As optimal codons that increase translational accuracy would be found at a higher rate within the protein coding domains, evidence for selection due to translational accuracy could not be found within these organisms. Selection for translational accuracy also does not appear to affect the excavate *T. brucei* as there was no difference between the Fop of its protein coding domains and the Fop of its non-domains. The other 24 organisms showed a higher Fop within their domains than their non-domains (Table 5). Therefore, within these protists their optimal codons appear to be selected for their translational accuracy. The significant increase between the Fops of domains and non-domains was subtle in the majority of these organisms, with a range from 0.01 to 0.08, with the exception of the rhizarian *B*. *natans*.

Within *B. natans* the Fop of its domain regions was higher by 0.28 than its non-domain regions. This shows that the selection for codons that provide increased translational accuracy is much stronger within *B. natans* than in any of the other protists studied.

4.3 Frequency of ADAT Preferred Codons within the Highly and Weakly Expressed Genes

In 28 of the 33 organisms the ADAT preferred codons were used at a significantly higher rate in their top 5% expressed genes as opposed to their bottom 5% expressed genes (Table 7). Therefore, the ADAT preferred codons are collectively selected for within these organisms to increase their translational efficiency.

Collectively, the ADAT preferred codons were used at a significantly higher rate in their bottom 5% expressed genes as opposed to their top 5% expressed genes within *L. seymouri* (excavate), *P. gallinaceum* (alveolate), *P. multistriata* (stramenopile) and *N. gaditana* (stramenopile) (Table 7). No significant difference was found when comparing the use of ADAT preferred codons in the top and bottom 5% expressed genes for *P. vivax*. Therefore, the ADAT preferred codons do not appear to provide a selectional advantage in terms of translational efficiency within these five protists.

4.4 Frequency of ADAT Preferred Codons within the Protein Coding Domains and the Non-Domains

Collectively the ADAT preferred codons were found at a significantly higher frequency in the domains of 17 of the 33 organisms when compared to the frequency within in their non-domains (Table 8). Therefore, the ADAT-preferred codons appear to be selected for within these organisms due to translational accuracy.

The ADAT preferred codons were collectively found at a significantly lower rate in the domains of the amoebozoan *E. histolytica* and the alveolate *P. gallinaceum* than their non-domains. This corresponds with the strong bias towards AT-ending codons acting upon the CUB of *P. gallinaceum* (Appendix, Figure 23). The lack of selection due to translational accuracy for the ADAT preferred codons within *E. histolytica* is not consistent with its optimal codons as they were GC-ending. There was no significant difference between the usage of ADAT preferred codons within the domains of 13 of the protists. Therefore, showing that collectively, the ADAT preferred codons within these organisms were not selected for due to translational accuracy. However, this is assuming that the assumption that codons which are seen in higher frequencies within the protein coding domains as opposed to their non-domains is valid.

4.5 tRNA Genes

4.5.1 Chimeric tRNA

A significant number of tRNA genes found within the studied protist genomes were identified by tRNA-scan as chimeric. A tRNA gene is found to be a chimera when the anticodon found within the gene and the structure of the tRNA molecule correspond to different tRNA types (Perry, 2005).

The biological importance of these chimeric RNA molecules is not fully understood due to lack of research; however, they could serve to recode proteins given specific conditions (Lowe, 2016). At least one tRNA gene for tryptophan in 27 of the organisms was found to chimeric, in 17 of these cases all tryptophan tRNA genes were found to be either chimeric or pseudo (Appendix, Tables 142-174). This calls into question the validity of tRNA-scan and how it identifies chimeric genes.

4.5.2 SeC tRNA

During the search for tRNA genes putative tRNA genes containing a TCA anticodon for the amino acid selenocysteine (tRNA^{SeC}) were found in 27 of the protist's genomes (Appendix, Table 141). In the majority of these species only a single tRNA^{SeC} gene was found, however, two were found in the stramenopile *T. pseudonana* whilst three were found in both the excavate *T. cruzi* and the stramenopile *P. multistriata*. As the gene for tRNA^{SeC} was found within at least one protist belonging to each of the supergroups looked at within this study, it can be concluded that unless an extreme case of convergent evolution took place, the tRNA^{SeC} gene is ancestral to the eukaryotes. Due to the anticodon of tRNA^{SeC} complementing the known STOP codon UGA, this codon may not indicate the end of genes in organisms where the tRNA^{SeC} gene was found. Therefore, this may suggest that genes within the genomes which possess SeC tRNA require re-evaluation and re-annotation.

4.5.3 Major tRNA Genes and the Optimal Codons for the Two-Fold Amino Acids

For the two-fold degenerate amino acids, 16 of the protists (*A. castellanii*, *E. histolytica*, *P. fungivorum*, *T. trahens*, *F. alba*, *C. owczarzaki*, *S. arctica*, *G. lamblia*, *L. major*, *L. pyrrhocoris*, *T. brucei*, *T. theileri*, *T. thermophila*, *P. vivax*, *P. infestans* and *P. sojae*) showed a perfect match between their optimal codons and their major tRNA genes. However, this was not the case for *L*.

seymouri (excavate), *P. gallinaceum* (alveolate) and *N. gaditana* (stramenopile) as the optimal codons for the two-fold amino acids did not match up with any of the major tRNA genes.

The A34 and G34 tRNA genes which correspond to the amino acids of glutamine, lysine and glutamic acid were present within the majority of the protists. With 30 out of the 33 protists having both the A34 and G34 tRNA genes for at least one of these amino acids. Further research into the occurrence of the isoaccepting tRNA genes is needed to understand the significance of these findings.

Glutamine in both the excavate *S. salmonicida* and the alveolate *T. thermophila* is a four-folddegenerate amino acid. For both species the optimal codons for glutamine perfectly matched the apparent major tRNA gene. However, although the genetic code for tRNA isotype prediction can be changed in tRNAscan-SE to accommodate tRNA_{TTA} and tRNA_{CTA} this was not carried out, therefore, the most abundant tRNA molecule could not be determined for glutamine in *S. salmonicida* and *T. thermophila*.

4.5.4 Major tRNA Genes and the Optimal Codons for the TAPILVR Amino Acids

The codons for the TAPSILVR amino acids that were optimal in the highest number of organisms were the ADAT preferred codons (Appendix, Tables 208-213). However, the corresponding tRNA molecules were not seen to be the major tRNA molecule in any of the 33 species. Furthermore, the genes for the molecules tRNA^{Thr}_{GGT}, tRNA^{Pro}_{GGG}, tRNA^{Ser}_{GGA} and tRNA^{Leu}_{GAG} were absent in all of the 33 protists examined, whilst the genes for tRNA^{Ala}_{GGC} and tRNA^{Arg}_{GCG} were absent in nearly all the protists with the exception of the stramenopile *P. infestans*.

The major tRNAs for the TAPSILVR amino acids varied greatly throughout the organisms. The A34 tRNA gene for the TAPSILVR amino acids was found to be the major tRNA gene in the

highest number of organisms compared to the other isoaccepting tRNA genes. This meant that for the TAPSILVR amino acids only 23% of their optimal codons matched perfectly with the major tRNA gene throughout the species. However, due to the high amount of ADAT preferred optimal codons found for the TAPSILVR amino acids this number increased to 49% when the A34-to-I34 tRNA deamination is considered.

4.6 Major tRNA genes compared to the optimal codons within the supergroups

4.6.1 Amoebozoa

The ADAT preferred codons for threonine, alanine, isoleucine and leucine were deemed optimal in all of the amoebozoans, despite the absence of genes for their complementary tRNA molecules. The ADAT preferred codons for serine and valine, with the exception of *E. histolytica*, and for proline with the exception of *D. discoideum*, were also found to be optimal despite having no complementary tRNA molecules throughout the amoebozoans. As the major tRNA genes were almost exclusively the A34 tRNA genes, this data is consistent with the presence of the I34 tRNA deamination (Table 11). When the I34 tRNA deamination is considered the amoebozoans optimal codons go from complementing the major tRNA 23% of the time to 60% of the time. Showing that the I34 tRNA deamination allows for the selection for the ADAT preferred codons within the Amoebozoa.

Furthermore, due to the ADAT preferred codons being found at higher frequencies within the highly expressed genes (HEG) than the weakly expressed genes (WEG) for the four amoebozoans their selection appears to be driven by translational efficiency (Table 7). The selection for the ADAT preferred codons within the Amoebozoa also appears to be driven by translational accuracy

as, with the exception of *E. histolytica*, they were found at higher frequencies within their protein coding domains when compared to their non-domains (Table 8).

Amino Acid	A. castellanti	E. histolytica	D. discoideum	P. fungivorum
Thr	ACU, ACC	ACU, ACC	ACU, ACC	ACC, ACG
Ala	GCU, GCC	GCU, GCC	GCU, GCC	GCC
Pro	CCC	CCA	CCA	CCC
Ser	UCC, UCG	UCC, UCA, GCU	UCU, UCC, GCU	UCC
Ile	AUC	AUU, AUC	AUC	AUC
Leu	CUU, CUC	CUU, CUC	CUU, CUC	CUC, CUG
Val	GUU, GUC	GUU, GUC	GUC	GUC
Arg	CGU, CGC, AGG	AGA	CGU	AGA

 Table 11 | Optimal Codons paired with the Major tRNA Genes for the Four Amoebozoans.

 Optimal codons that complement the major tRNA gene are written in blue. The optimal codons

 that complement the major tRNA gene if the adenosine at the wobble position underwent

 deamination to inosine are written in green.

4.6.2 Opisthokonts and T. trahens

The tRNA genes that complement the ADAT preferred codons were not found in any of the opisthokonts or within *T. trahens*. However, at least six of the ADAT preferred codons were found to be optimal within each of the species, with the ADAT preferred codons for threonine, alanine, leucine, valine and arginine being found as optimal in all of the opisthokonts and *T. trahens*. The lack of G34 tRNA genes for the TAPSILVR amino acids meant that only 25% of their optimal codons complemented the major tRNA gene. However, as the majority of the major tRNA genes were A34 tRNA, this percentage increases to 66% when the I34 tRNA deamination is considered (Table 12). Therefore, the presence of the I34 tRNA modification allows for the selection of the ADAT preferred codons within the opisthokonts and *T. trahens*.

Within both the opisthokonts and the apusozoan *T. trahens* the ADAT preferred codons were seen at significantly higher frequencies in the HEG of the respective organisms when compared to the WEG (Table 7). They were also seen at significantly higher frequencies in the protein coding domains of the organisms when compared to their non-domains (Table 8). Therefore, overall the ADAT preferred codons were shown to be selected for both translational efficiency and accuracy in the opisthokonts and *T. trahens*.

Amino Acid	T. trahens	F. alba	C. owczarzaki	S. arctica
Thr	ACC, ACG	ACU, ACC	ACC	ACU, ACC
Ala	GCC	GCU, GCC	GCU, GCC	GCU, GCC
Pro	CCC, CCG	CCU, CCC	CCC	CCU, CCC
Ser	UCC, UCG	UCU, UCC	UCC, UCG	UCU, UCC
Ile	AUC	-	AUC	AUC
Leu	CUC	UUA, UUG, CUU, CUC	CUC	CUU, CUG
Val	GUC	GUU, GUC	GUC	GUC
Arg	CGU, CGC	CGU, CGC, AGA	CGC	CGU, CGC

 Table 12 | Optimal Codons paired with the Major tRNA Genes for the Apusomonadan T.

 trahens and Three Opisthokonts. Optimal codons that complement the major tRNA gene are

 written in blue. The optimal codons that complement the major tRNA gene if the adenosine at the

 wobble position underwent deamination to inosine are written in green.

4.6.3 Excavata

The genomes for both the excavates *G. lamblia* and *S. salmonicida* contain the gene for tRNA^{Val}_{GAC}. They were also the only excavates to have absence of the A34 tRNA gene for isoleucine. As both species are closely related, these similarities could be considered ancestral or a case of convergent evolution. All other G34 tRNA genes were absent from the excavates, whilst their complementary codons (ADAT preferred codons) were found to be optimal the majority of

the time. In *L. seymouri*, however, none of the ADAT preferred codons were found to be optimal despite the protists' overall bias for GC-ending codons.

For the TAPSILVR amino acids within the excavates, 23% of their optimal codons complemented their major tRNA gene. However, consistent with the presence of the I34 deamination, this percentage increased to 48% when the A34 major tRNA genes could be paired with the ADAT preferred optimal codons (Table 13). Thus, the I34 deamination allows for the selection of the ADAT preferred codons within the majority of the excavates examined with the exception of *L. seymouri*.

In *L. seymouri* no ADAT preferred codons were found to be optimal. However, collectively they were found in significantly higher frequencies within the protein coding domains when compared to the non-domains (Table 8). This points towards the possibility that the optimal codons for translational efficiency are not the optimal codons for translational accuracy. This is supported with the significantly higher frequency of both ADAT preferred codons for alanine and arginine within the protein coding domains when compared to the non-domains (Appendix, Table 88). However, this line of thought is highly speculative as there have been no previous reports of an organism possessing different sets of optimal codons for translational efficiency and accuracy.

The excavates *G. lamblia*, *S. salmonicida* and *L. major* also show significantly higher frequencies of ADAT preferred codons within the protein coding domains when compared to the non-domains (Table 8). Thus, presenting evidence that the ADAT preferred codons are selected for translational accuracy. Translational efficiency also appeared to drive the selection for the ADAT preferred codons within these organisms, along with the other excavates, except *L. seymouri* due to the ADAT preferred codons being seen in significantly higher frequencies within their HEG than their WEG (Table 7).

Amino Acid	G. lamblia	S. salmonicida	L. major	L. pyrrhocoris
Thr	ACC, ACG	ACC, ACG	ACC, ACG	ACG
Ala	GCC, GCG	GCC, GCG	GCU	GCU, GCC, GCG
Pro	CCG	CCC	CCC, CCG	CCC, CCG
Ser	UCC, UCG, AGC	UCU, UCC, UCG, AGC	UCC	UCC, UCG
Ile	AUC	AUC	AUC	AUC
Leu	CUU, CUC, CUG	CUU, CUC, CUG	CUG	CUG
Val	GUC	GUC, GUG	GUG	GUG
Arg	CGU, CGC, AGG	CGU, CGC	CGC	CGC
Amino Acid	L. seymouri	T. cruzi	T. theileri	T. brucei
Thr	ACU, ACA	ACU, ACC, ACA	ACC, ACG	ACG
Ala	GCA	GCU, GCC, GCA	GCC, GCG	GCC
Pro	CCU, CCA	CCU, CCA	CCC, CCG	CCC
Ser	UCU, UCA, AGU	UCU, UCC, UCA, AGU	UCC, UCG, AGC	UCC
Ile	AUU, AUA	AUU	AUC	AUC
Leu	UUG	CUU, CUC	CUC, CUG	CUC
Val	GUA	GUU, GUC, GUA	GUC, GUG	GUG
Arg	CGU, CGA	CGU, CGC	CGC	CGC

Table 13 | Optimal Codons paired with the Major tRNA Genes for the Eight Excavates.

Optimal codons that complement the major tRNA gene are written in blue. The optimal codons that complement the major tRNA gene if the adenosine at the wobble position underwent deamination to inosine are written in green.

4.6.4 Alveolata

The only tRNA gene which complements any of the ADAT preferred codons found within the alveolates was that of tRNA^{IIe}_{GAT} in *S. coeruleus*. This was unusual due to the presence of nine genes for tRNA^{IIe}_{AAT}, the co-existence of both the G34 and A34 gene is not usually seen within Eukaryota (Grosjean, 2009). This could be due to an error by tRNA-scan, however, there is no indication that this is the case.

As previously mentioned no TAPSILVR tRNA genes within any of the *Plasmodium* species could be deemed major as the number of genes for the tRNA molecules were identical. The majority of the A34 tRNA genes were found to be major within *T. thermophila* and *S. coeruleus*, with the exception of tRNA^{Pro}_{AGG} in *S. coeruleus* and tRNA^{Arg}_{ACG} in both species. Therefore, due to the majority of the ADAT preferred codons being optimal, the data was consistent with the presence of the I34 tRNA deamination. Furthermore, when the deamination is taken into account, the percentage that the optimal codons match the major tRNA genes increases from 41% to 78% (Table 14). Hence, within the alveolates the I34 tRNA deamination appears to allow for the selection of the ADAT preferred codons. The reasons behind this selectional force can be clearly seen in *T. thermophila*, *S. coeruleus* and *P. falciparum*, where the ADAT preferred codons are seen at a significantly higher proportion within their HEG when compared to their WEG, showing selected due to translational efficiency (Table 7). The ADAT preferred codons are only shown to be selected due to translational accuracy within *T. thermophila* where they are collectively found in significantly higher proportions within the protein coding domains than the non-domains (Table 8).

Amino Acid	T. thermophila	S. coeruleus
Thr	ACU, ACC	ACU, ACC
Ala	GCU, GCC	GCU, GCC
Pro	CCU, CCC	CCA
Ser	UCU, UCC	UCA
Ile	AUU, AUC	AUU, AUC
Leu	UUG, CUU, CUC	UUG, CUU, CUC, CUG
Val	GUU, GUC	GUC
Arg	CGU, AGA	CGU, AGA

Table 14 | Optimal Codons paired with the Major tRNA Genes for the Alveolates T.

thermophila and *S. coeruleus*. Optimal codons that complement the major tRNA gene are written in blue. The optimal codons that complement the major tRNA gene if the adenosine at the wobble position underwent deamination to inosine are written in green.

4.6.5 Stramenopiles

The majority of the G34 tRNA genes were absent from the stramenopiles with the exceptions of: $tRNA^{Ala}_{GGC}$, $tRNA^{Arg}_{GCG}$ and $tRNA^{Ile}_{GAT}$ within *P. infestans*, $tRNA^{Ile}_{GAT}$ within *P. halstedii* and, most notably, $tRNA^{Val}_{GAC}$ within *A. astaci*, *A. invadans*, *S. parasitica* and *N. gaditana*. Despite this, the ADAT preferred codon for alanine was deemed optimal in all of the stramenopiles, with the other ADAT preferred codons being found to be optimal in up to seven of the stramenopiles.

The ADAT preferred codon for valine was only found to be optimal in *A. invadans* and *S. parasitica*, were its corresponding tRNA gene was found to be optimal. Within the stramenopiles, the A34 tRNA molecule for valine does not appear to deaminate and if it does deaminate it appears to have no effect on the selection for the ADAT preferred codon of valine.

The A34 tRNA genes within the stramenopiles were often found to be the major tRNA genes for their respective amino acids. This, when the I34 tRNA deamination was considered, affected

whether or not the optimal codons of the TAPSILVR amino acids complemented the major tRNA genes. Without the presence of the deamination the optimal codons found for the TAPSILVR amino acids complemented 19% of the major tRNA genes, however, with the deamination this percentage rises to 39% (Table 15). Therefore, the I34 tRNA deamination allows for the selection for the ADAT preferred codons, with the exception of that for valine, within the stramenopiles.

The ADAT preferred codons are seen in significantly higher frequencies within the HEG than the WEG in the stramenopiles with the exceptions of *P. multistriata* and *N. gaditana* (Table 7). Therefore, the selection for the ADAT preferred codons within the majority of the stramenopiles is due to translational efficiency. The ADAT preferred codons appear to be selected for within the genomes of *S. parasitica*, *N. gaditana* and *A. anophagefferens* due to translational accuracy. This can be seen as collectively the ADAT preferred codons were found at significantly higher frequencies within their protein coding domains than their non-domains (Table 8).

Amino Acid	P. infestans	P. sojae	P. halstedii	A. asaci	A. invadans
Thr	ACC, ACG	ACC, ACG	ACG	ACC, ACG	ACG
Ala	GCC	GCC	GCU, GCC	GCC, GCG	GCC, GCG
Pro	CCC, CCG	CCC, CCG	CCU	CCC, CCG	CCC, CCG
Ser	UCC, UCG, AGC	UCC, UCG, AGC	UCG	UCG	UCG
Ile	AUC	AUC	AUU	AUC	AUC
Leu	CUC, CUG	CUC, CUG	CUU, CUG	UUG, CUC	UUG, CUC
Val	GUG	GUG	GUG	GUG	GUC, GUG
Arg	CGU, CGC	CGC	CGU, CGC	CGC	CGC
Amino Acid	S. parasitica	P. multistriata	T. pseudonana	N. gaditana	A. anophagefferans
Thr	ACG	ACU	ACC	ACU	ACU, ACC, ACA
Ala	CCU CCC				
	GCU, GCC	GCU, GCA	GCC	GCU	GCU, GCC, GCA
Pro	CCC	CCU, CCA	GCC CCC	GCU CCU	GCU, GCC, GCA CCU, CCC, CCA
Pro Ser	CCC UCG	CCU, GCA CCU, CCA UCU, UCA, AGU	GCC CCC UCC	GCU CCU UCU, UCA, AGU	GCU, GCC, GCA CCU, CCC, CCA UCU, UCA, AGU
Pro Ser Ile	CCC UCG AUC	CCU, CCA UCU, UCA, AGU AUU	GCC CCC UCC AUC	GCU CCU UCU, UCA, AGU AUU	GCU, GCC, GCA CCU, CCC, CCA UCU, UCA, AGU AUU, AUA
Pro Ser Ile Leu	CCC UCG AUC UUA, CUC	CCU, CCA CCU, CCA UCU, UCA, AGU AUU UUA, UUG, CUU	GCC CCC UCC AUC UUA, CUC	GCU CCU UCU, UCA, AGU AUU UUA, UUG, CUU	GCU, GCC, GCA CCU, CCC, CCA UCU, UCA, AGU AUU, AUA CUU, CUA
Pro Ser Ile Leu Val	CCC UCG AUC UUA, CUC GUC	CCU, GCA CCU, CCA UCU, UCA, AGU AUU UUA, UUG, CUU GUU, GUA	GCC CCC UCC AUC UUA, CUC	GCU CCU UCU, UCA, AGU AUU UUA, UUG, CUU GUU, GUA	GCU, GCC, GCA CCU, CCC, CCA UCU, UCA, AGU AUU, AUA CUU, CUA GUU, GUA

 Table 15 | Optimal Codons paired with the Major tRNA Genes for the Ten Stramenopiles.

 Optimal codons that complement the major tRNA gene are written in blue. The optimal codons

 that complement the major tRNA gene if the adenosine at the wobble position underwent

 deamination to inosine are written in green.

4.6.6 Rhizaria

The ADAT preferred codons for the SILVR amino acids were found to be optimal in both rhizarians, whilst the ADAT preferred codon for threonine was found optimal in *B. natans* and the ADAT preferred codon for alanine was found optimal in *P. brassicae*. No tRNA genes were found for those tRNA molecules that complement the ADAT preferred codons. However, consistent with the I34 tRNA deamination, the A34 tRNA genes were present and, in most cases, major.

When compared to the major tRNA genes the optimal codons for both rhizarians matched 38% of the time, however, when the I34 deamination was considered this increased to 58% (Table 16). Therefore, the deamination of A34 to I34 in Rhizaria is shown to contribute to the selection for the

ADAT preferred codons. The selection for the ADAT preferred codons appears to be due to both translational efficiency and accuracy. As both species showed significantly higher levels of ADAT preferred codons within their HEG when compared to their WEG (Table 7), and again in their protein coding domains when compared to their non-domains (Table 8).

Amino Acid	B. natans	P. brassicae
Thr	ACU, ACC	ACG
Ala	GCU	GCC, GCG
Pro	CCU	CCG
Ser	UCU, UCC	UCG
Ile	AUC	AUC
Leu	CUU, CUC, CUA	CUG
Val	GUU, GUA	GUC
Arg	CGU, CGC	CGU, CGC

 Table 16 | Optimal Codons paired with the Major tRNA Genes for the Two Rhizarians.

 Optimal codons that complement the major tRNA gene are written in blue. The optimal codons that complement the major tRNA gene if the adenosine at the wobble position underwent deamination to inosine are written in green.

4.7 Presence of the I34 tRNA deamination

The modified versions of all the TAPSILVR tRNA screened in *S. arctica* (opisthokont), *G. lambila* (excavate), *P. falciparum* (alveolate), *P. sojae* (stramenopile) and *T. pseudonana* (stramenopile) were present within the nc/miRNA reads (Table 9). In *D. discoideum*, *C. owczarzaki*, *L. major* and *P. infestans* the modified versions of the TAPSILVR tRNA were found for some amino acids but for others no modified version could be found (Table 9). Therefore, evidence that the I34 tRNA deamination occurs was found for all of the eukaryotic supergroups examined, except that for Rhizaria.

The amoebozoan *E. histolytica* and the excavate *T. brucei* showed no evidence for the presence of the A34-to-I34 modified tRNA molecules. However, as unmodified tRNA genes were also not located within the nc/miRNA reads, despite the presence of their genes within the organisms' genome, it suggests that the screen was too small due to a lack of nc/small RNA data.

4.8 Presence of the A37-to-I37 deamination

The presence of the I37 modification without the I34 modification was not seen in any of the protists. The I37 modification was present when the I34 modification was also present in *D*. *discoideum* (amoebozoan), *P. sojae* (stramenopile) and *T. pseudonana* (stramenopile) (Table 10). Therefore, this study provides evidence that the I37 modification carried out by ADAT1 is dependent on the I34 deamination carried out by hetADAT. Further research is required to determine the validity of this observation.

4.9 The Selection towards ADAT preferred codons throughout the Supergroups

The 33 protists researched within this study varied greatly when it came to their CUB. Despite this, the majority of the protists showed evidence that the I34 tRNA deamination allowed for the selection of the ADAT preferred codons. When the frequency of the ADAT preferred codons for the TAPSILVR amino acids were viewed collectively within the HEG and the WEG, 28 of the organisms showed a significantly higher frequency of the codons within the HEG, indicating selection via translational efficiency. The frequency of the ADAT preferred codons was also viewed collectively within the protein coding domains and the non-domains of the species, here 22 of the protists showed a significantly higher frequency for the use of the codons within the protein coding domains, indicating selection via translational accuracy. Of the protists studied 23 did not have any tRNA genes present in their genome that complemented the ADAT preferred codons.

amino acids (with the exception of *P. infestans*). Therefore, there is a strong indication that the I34 tRNA deamination takes effect in all the organisms studied.

The tRNA gene tRNA^{Val}_{GAC} appears in seven of the protists studied, *E. histolytica*, *G. lamblia*, *S. salmonicida*, *P. sojae*, *A. astaci*, *A. invadans* and *N. gaditana*, whilst in these same organisms the presence of the tRNA^{Val}_{AAC} gene could not be found. There is a possibility that hetADAT enzyme lost the ability to deaminate the A34 tRNA molecule for valine within these organisms, however, due to this pattern appearing throughout the supergroups, this loss would have had to happen via convergent evolution.

Within the Amoebozoa, Opisthokonta and Apusomonada the ADAT preferred optimal codons were almost always found to compliment the major tRNA gene, A34 (86%). This percentage decreases to 63% for the excavates, 61% for the alveolates, 56% for the stramenopiles and only 33% for the rhizarians. Therefore, it appears that the deamination of A34 TAPSILVR tRNA within the Amoebozoa, Opisthokonta and the Apusomonada allows for a higher rate of selection of the ADAT preferred codons, than those supergroups found on the other side of the tree (Figure 3).

Due to the findings of this study it can be concluded that the occurrence of the I34 tRNA deamination allows for the selection of the ADAT preferred codons within the seven eukaryotic supergroups observed in this study. Therefore, this suggests that this occurrence is either a result of two to seven cases of convergent evolution or that an unknown common ancestor of the supergroups held the ability to deaminate A34-to-I34 on TAPSILVR tRNA genes leading towards the selective advantage of the ADAT preferred codons.

As the I34 deamination has only been found to affect arginine tRNA molecules within Bacteria and has not been observed in Archaea (Gerber, 1999), the mechanism behind the TAPSILVR I34

68

tRNA deamination must have evolved within the Eukaryota. This study revealed that the deamination evolved within a eukaryotic protist ancestral to the known eukaryotic supergroups. It is likely that within this eukaryotic ancestor the gene for ADAT1 duplicated and diverged into the genes for ADAT2 and ADAT3, the subunits of hetADAT (Gerber, 1999). Therefore, further research into the evolution of the ADAT1 enzymes and their effect on tRNA molecules (the A37-to-I37 modification) must be carried out in order to fully understand the mechanisms behind the A34 tRNA deamination within the eukaryotes.

4.10 Conclusion

The analysis of the CUB in the early eukaryotic protists studied revealed the presence of a selective pressure toward ADAT preferred codons within seven of the eukaryotic supergroups. Due to the wide spread absence of the complimentary tRNA genes for the ADAT preferred codons whilst the most abundant tRNA gene for each TAPSILVR amino acid is often found to be those with adenosine at their wobble position. This study, therefore provides evidence that the origin of A34-to-I34 modification carried out by the hetADAT enzyme lies in the last common ancestor of the eukaryotes, where it most likely led to the selection of the ADAT preferred codons.

5.0 References

Akashi, H. (1994). Synonymous codon usage in *Drosophila melanogaster*: natural selection and translational accuracy. Genetics, 136(3):927-935.

Akashi, H., & Eyre-Walker, A. (1998). Translational selection and molecular evolution. Current Opinion in Genetics & Development, 8(6), 688–693. doi:10.1016/s0959-437x(98)80038-5

Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410. doi:10.1006/jmbi.1990.9999; 10.1016/S0022-2836(05)80360-2

Bapteste, E., Brinkmann, H., Lee, J. A., Moore, D. V., Sensen, C. W., Gordon, P., ... Philippe, H.
(2002). The analysis of 100 genes supports the grouping of three highly divergent amoebae:
Dictyostelium, Entamoeba, and Mastigamoeba. Proceedings of the National Academy of Sciences,
99(3), 1414–1419. doi:10.1073/pnas.032662799

Berriman, M. (2005). The Genome of the African Trypanosome *Trypanosoma brucei*. Science, 309(5733), 416–422. doi:10.1126/science.1112642

Boccaletto, P., Machnicka, M. A., Purta, E., Piątkowski, P., Bagiński, B., Wirecki, T. K., Crecy-Lagard, V., Ross, R., Limbach, P. A., Kotter, A., Helm, M., Bujnicki, J. M. (2017). MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Research, 46(D1), D303– D307. doi:10.1093/nar/gkx1030

Bramall, E. (2019). Investigating Retrotransposons in the Close Relatives of Animals. Undergraduate Dissertation. The University of Huddersfield. Brown, M. W., Spiegel, F. W., & Silberman, J. D. (2009). Phylogeny of the "Forgotten" Cellular Slime Mold, *Fonticula alba*, Reveals a Key Evolutionary Branch within Opisthokonta. Molecular Biology and Evolution, 26(12), 2699–2709. doi:10.1093/molbev/msp185

Brown, M. W., Heiss, A. A., Kamikawa, R., Inagaki, Y., Yabuki, A., Tice, A. K., Shiratori, T., Ishida, K., Hashimoto, T., Simpson, A. G., Roger, A. J. (2018). Phylogenomics Places Orphan Protistan Lineages in a Novel Eukaryotic Super-Group. Genome Biology and Evolution, 10(2), 427-233. doi:10.10.93/gbe/evy014.

Burki, F., & Keeling, P. J. (2014). Rhizaria. Current Biology, 24(3), R103–R107. doi:10.1016/j.cub.2013.12.025

Burki, F., Roger, A. J., Brown, M. W., & Simpson, A. G. B. (2019). The New Tree of Eukaryotes. Trends in Ecology & Evolution. doi:10.1016/j.tree.2019.08.008

Cavalier-Smith, T., & Chao, E. E. (2010). Phylogeny and Evolution of Apusomonadida (Protozoa: Apusozoa): New Genera and Species. Protist, 161(4), 549–576. doi:10.1016/j.protis.2010.04.002

Chan, P. P., & Lowe, T. M. (2009). GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Research, 37(Database), D93–D97. doi:10.1093/nar/gkn787

Comeron, J. M., & Aguadé, M. (1998). An Evaluation of Measures of Synonymous Codon Usage Bias. Journal of Molecular Evolution. 47(3), 268–274. doi:10.1007/pl00006384

Crick, F.H.C. (1966). Codon-anticodon pairing: The wobble hypothesis. Journal of Molecular Biology. 19(2), 548–555. doi:10.1016/s0022-2836(66)80022-0
Del Campo, J., Sieracki, M. E., Molestina, R., Keeling, P., Massana, R., & Ruiz-Trillo, I. (2014). The others: our biased perspective of eukaryotic genomes. Trends in Ecology & Evolution, 29(5), 252–259. doi:10.1016/j.tree.2014.03.006

Deng, N., Liu, C., Song, Q., Yao, M., Yang, R., Ma, F., & Tian, Y. (2020). Codon usage pattern analysis of *Gnetum luofuense* (Gnetales) based on transcriptome data. Agronomy Journal. doi:10.1002/agj2.20383

Duret, L., & Mouchiroud, D. (1999). Expression pattern and, surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proceedings of the National Academy of Sciences, 96(8), 4482–4487. doi:10.1073/pnas.96.8.4482

Eichinger, L., Pachebat, J. A., Glockner, G., Rajandream, M. A., Sucgang, R., Berriman, M., Song,

J., Olsen, R., Szafranski, K., Xu, Q., Tunggal, B., Kummerfeld, S., Madera, M., Konfortov, B. A.,
Rivero, F., Bankier, A. T., Lehmann, R., Hamlin, N., Davies, R., Gaudet, P., Fay, P., Pilcher, K.,
Chen, G., Saunders, D., Sodergren, E., Davis, P., Kerhornou, A., Nie., X., Hall, N., Anjard, C.,
Hemphill, L., Bason, N., Farbrother, P., Desany, B., Just, E., Morio, T., Rost, R., Churcher, C.,
Cooper, J., Haydock, S., Van Driessche, N., Cronin, A., Goodhead, I., Muzny, D., Mourier, T.,
Pain, A., Lu, M., Harper, D., Lindsay, R., Hauser, H., James, K., Quiles, M., Madan Babu, M.,
Saito, T., Buchrieser, C., Wardroper, A., Felder, M., Thangavelu, M., Johnson, D., Knights, A.,
Loulseged, H., Mungall, K., Oliver, K., Price, C., Quail, M. A., Urushihara, H., Hernandez, J.,
Rabbinowitsch, E., Steffen, D., Sanders, M., Ma, J., Kohara, Y., Sharp, S., Simmonds, M.,
Spiegler, S., Tivey, A., Sugano, S., White, B., Walker, D., Woodward, J., Winckler, T., Tanaka,
Y., Shaulsky, G., Schleicher, M., Weinstock, G., Rosenthal, A., Cox, E. C., Chisholm, R. L.,
Gibbs, R., Loomis, F. W., Platzer, M., Kay, R. R., Williams, J., Dear, P. H., Nogel, A. A., Barrell,

B, & Kuspa, A. (2005). The genome of the social amoeba *Dictyostelium discoideum*. Nature, 435(7038), 43–57. doi:10.1038/nature03481

Einarsson, E., Ma'ayeh, S., & Svärd, S. G. (2016). An up-date on Giardia and giardiasis. Current Opinion in Microbiology, 34, 47–52. doi:10.1016/j.mib.2016.07.019

El-Sayed, N. M. (2005). The Genome Sequence of Trypanosoma cruzi, Etiologic Agent of Chagas Disease. Science, 309(5733), 409–415. doi:10.1126/science.1112631

Figuet, E., Ballenghien, M., Romiguier, J., & Galtier, N. (2014). Biased Gene Conversion and GC-Content Evolution in the Coding Sequences of Reptiles and Vertebrates. Genome Biology and Evolution, 7(1), 240–250. doi:10.1093/gbe/evu277

Flegontov, P., Butenko, A., Firsov, S., Kraeva, N., Eliáš, M., Field, M. C., Filatov, D., Flegontova,
O., Gerasimov, E. S., Hlaváčová, J., Ishemgulova, A., Jackson, A. P., Kelly, S., Kostygov, A. Y.,
Logacheva, M. D., Maslov, D. A., Opperdoes, F. R., O'Reilly, A., Sádlová, J., Ševčíková, T.,
Venkatesh, D., Vlček, Č., Volf, P., Votýpka, J., Záhonová, K., Yurchenko, V., Lukeš, J. (2016).
Genome of *Leptomonas pyrrhocoris*: a high-quality reference for monoxenous trypanosomatids
and new insights into evolution of *Leishmania*. Scientific Reports. Article number: 23704 (2016).

Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31:3784- 3788 (2003).

Gerber, A. P. (1999). An Adenosine Deaminase that Generates Inosine at the Wobble Position of tRNAs. Science, 286(5442), 1146–1149. doi:10.1126/science.286.5442.1146

Gouy, M., & Gautier, C. (1982). Codon usage in bacteria: correlation with gene expressivity. Nucleic Acids Research, 10(22), 7055–7074. doi:10.1093/nar/10.22.7055 Grantham, R., Gautier, C., Gouy, M., Mercier, R., & Pavé, A. (1980). Codon catalog usage and the genome hypothesis. Nucleic Acids Research. 8(1), 197–197. 10.1093/nar/8.1.197-c

Grosjean, H., de Crécy-Lagard, V., & Marck, C. (2009). Deciphering synonymous codons in the three domains of life: Co-evolution with specific tRNA modification enzymes. FEBS Letters, 584(2), 252–264. doi:10.1016/j.febslet.2009.11.052

Gupta, S., & Ghosh, T. (2001). Gene expressivity is the main factor in dictating the codon usage variation among the genes in *Pseudomonas aeruginosa*. Gene, 273(1), 63–70. doi:10.1016/s0378-1119(01)00576-5

Haas, B. J., Kamoun, S., Zody, M. C., Jiang, R. H. Y., Handsaker, R. E., Cano, L. M., ... Torto-Alalibo, T. (2009). Genome sequence and analysis of the Irish potato famine pathogen *Phytophthora infestans*. Nature, 461(7262), 393–398. doi:10.1038/nature08358

Jukes, T. H., & Osawa, S. (1993). Evolutionary changes in the genetic code. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 106(3), 489–494. doi:10.1016/0305-0491(93)90122-1

Iben, J. R., & Maraia, R. J. (2012). tRNAomics: tRNA gene copy number variation and codon use provide bioinformatic evidence of a new anticodon:codon wobble pair in a eukaryote. RNA, 18(7), 1358–1372. doi:10.1261/rna.032151.111

Ikemura, T. (1981). Correlation between the abundance of *Escherichia coli* transfer RNAs and the occurrence of the respective codons in its protein genes: A proposal for a synonymous codon choice that is optimal for the *E. coli* translational system. Journal of Molecular Biology, 151(3), 389–409. doi:10.1016/0022-2836(81)90003-6

Ivens, A. C. (2005). The Genome of the Kinetoplastid Parasite, *Leishmania major*. Science, 309(5733), 436–442. doi:10.1126/science.1112680

Keeling, P. J., Burger, G., Durnford, D. G., Lang, B. F., Lee, R. W., Pearlman, R. E., ... Gray, M.W. (2005). The tree of eukaryotes. Trends in Ecology & Evolution, 20(12), 670–676.doi:10.1016/j.tree.2005.09.005

Kersey, P.J., Allen, J.E., Allot, A., Barba, M., Boddu, S., Bolt, B.J., Carvalho-Silva, D.,

Christensen, M., Davis, P., Grabmueller, C., Kumar, N., Liu, Z., Maurel, T., Moore, B., McDowall, M.D., Maheswari, U., Naamati, G., Newman, V., Ong, C.K., Paulini, M., Pedro, H., Perry, E., Russell, M., Sparrow, H., Tapanari, E., Taylor, K., Vullo, A., Williams, G., Zadissia, A., Olson, A., Stein, J., Wei, S., Tello-Ruiz, M., Ware, D., Luciani, A., Potter, S., Finn, R.D., Urban, M., Hammond-Kosack, K.E., Bolser, D.M., De Silva, N., Howe, K.L., Langridge, N., Maslen, G., Staines, D.M. & Yates, A. (2018). Ensembl genomes 2018: An integrated omics infrastructure for non-vertebrate species. Nucleic Acids Research, 46(1), D808. doi:10.1093/nar/gkx1011tRNAscan-SE

Kraeva, N., Butenko, A., Hlaváčová, J., Kostygov, A., Myškova, J., Grybchuk, D., Leštinová, T.,
Votýpka, J., Volf, P., Opperdoes, F., Flegontov, P., Lukeš, J., Yurchenko, V. (2015). Leptomonas
seymouri: Adaptations to the Dixenous Life Cycle Analyzed by Genome Sequencing,
Transcriptome Profiling and Co-infection with *Leishmania donovani*. PLOS Pathogens, 11(8),
e1005127. doi:10.1371/journal.ppat.1005127

Lahr, D. J. G., Bergmann, P. J., & Lopes, S. G. B. C. (2008). Taxonomic Identity in Microbial Eukaryotes: A Practical Approach Using the Testate Amoeba *Centropyxis* to Resolve Conflicts Between Old and New Taxonomic Descriptions. Journal of Eukaryotic Microbiology, 55(5), 409–416. doi:10.1111/j.1550-7408.2008.00339.x

Lara, E., Heger, T. J., Ekelund, F., Lamentowicz, M., & Mitchell, E. A. D. (2008). Ribosomal RNA Genes Challenge the Monophyly of the Hyalospheniidae (Amoebozoa: Arcellinida). Protist, 159(2), 165–176. doi:10.1016/j.protis.2007.09.003

Leander, B. S., Kuvardina, O. N., Aleshin, V. V., Mylnikov, A. P., & Keeling, P. J. (2003). Molecular Phylogeny and Surface Morphology of *Colpodella edax* (Alveolata): Insights into the Phagotrophic Ancestry of Apicomplexans. The Journal of Eukaryotic Microbiology, 50(5), 334– 340. doi:10.1111/j.1550-7408.2003.tb00145.x

Li, H. (2013). Seqtk: a fast and lightweight tool for processing FASTA or FASTQ sequences. <u>https://github.com/lh3/seqtk</u>

Lim, V. I. (1995). Analysis of Action of the Wobble Adenine on Codon Reading within the Ribosome. Journal of Molecular Biology, 252(3), 277–282. doi:10.1006/jmbi.1995.0494

Lim, V. I., Curran, J. F. (2001). Analysis of codon:anticodon interactions within the ribosome provides new insights into codon reading and the genetic code structure. RNA. Jul;7(7):942-57. doi: 10.1017/s135583820100214x.

Liu, X.-Y., Li, Y., Ji, K.-K., Zhu, J., Ling, P., Zhou, T., Fan, L-Y., Xie, S.-Q. (2020). Genomewide codon usage pattern analysis reveals the correlation between codon usage bias and gene expression in *Cuscuta australis*. Genomics. doi:10.1016/j.ygeno.2020.03.002

Loftus, B., Anderson, I., Davis, R., Alsmark, U. C. M., Samuelson, J., Amedeo, P., Roncaglia, P., Berriman, M., Hirt, R. P., Mann, B. J., Nozaki, T., Suh, B., Pop, M., Duchene, M., Ackers, J.,

Tannich, E., Leippe, M., Hofer, M., Bruchhaus, I., Willhoeft, U., Bhattacharya, A., Chillingworth,
T., Churcher, C., Hance, Z., Harris, B., Harris, D., Jagels, K., Moule, S., Mungall, K., Ormond, D.,
Squares, R., Whitehead, S., Quail, M. A., Rabbinowitsch, E., Norbertczak, H., Price, C., Wang, Z.,
Guillen, N., Gilchrist, C., Stroup, S. E., Bhattacharya, S., Lohia, A., Foster, P. G., Sicheritz-Ponten,
T., Weber, C., Singh, U., Mukherjee, C., El-Sayed, N, M., Petri Jr, W. A., Clark, G., Embley, M.,
Barrell, B., Fraser, C. M., Hall, N. (2005). The genome of the protist parasite *Entamoeba histolytica*. Nature, 433(7028), 865–868. doi:10.1038/nature03291

Lowe, T.M., Chan, P.P. (2016). tRNAscan-SE On-line: Search and Contextual Analysis of Transfer RNA Genes. Nucl. Acids Res. 44: W54-57

Lowe,T.M. and Eddy,S.R. (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25, 955–964.

Maas, S., Gerber, A. P., & Rich, A. (1999). Identification and characterization of a human tRNAspecific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proceedings of the National Academy of Sciences, 96(16), 8895–8900. doi:10.1073/pnas.96.16.8895

Machado, H. E., Lawrie, D. S., & Petrov, D. A. (2019). Pervasive Strong Selection at the Level of Codon Usage Bias in *Drosophila melanogaster*. Genetics, genetics.302542.2019. doi:10.1534/genetics.119.302542

Marchler-Bauer, A., Bo, Y., Han, L., He, J., Lanczycki, C.J., Lu, S., Chitsaz, F., Derbyshire, M.K., Geer, R.C., Gonzales, N.R., Gwadz, M., Hurwitz, D.I., Lu, F., Marchler, G.H., Song, J.S., Thanki, N. (2017). CDD/SPARCLE: Functional classification of proteins via subfamily domain architectures. Nucleic Acids Research, 45(1), D203. doi:10.1093/nar/gkw1129 Marck, C., & Grosjean, H. (2002). tRNomics: Analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. RNA, 8(10), 1189–1232. doi:10.1017/s1355838202022021

Metzl-Raz, E., Kafri, M., Yaakov, G., Barkai, N. 2020. Gene transcription as a limiting factor in protein production and cell growth. bioRxiv. doi: https://doi.org/10.1101/626242

Milne, I., Stephen, G., Bayer, M., Cock, P.J.A., Pritchard, L., Cardle, L., Shaw, P.D., Marshall, D.
(2013). <u>Using Tablet for visual exploration of second-generation sequencing data</u>. Briefings in
Bioinformatics 14(2), 193-202.

Moriyama, E. (1998). Gene length and codon usage bias in *Drosophila melanogaster*, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Research, 26(13), 3188–3193. doi:10.1093/nar/26.13.3188

Musto, H., Naya, H., Zavala, A., Romero, H., Alvarez-Valín, F., & Bernardi, G. (2006). Genomic GC level, optimal growth temperature, and genome size in prokaryotes. Biochemical and Biophysical Research Communications, 347(1), 1–3. doi:10.1016/j.bbrc.2006.06.054

Novoa, E. M., Pavon-Eternod, M., Pan, T., & Ribas de Pouplana, L. (2012). A Role for tRNA Modifications in Genome Structure and Codon Usage. Cell, 149(1), 202–213. doi:10.1016/j.cell.2012.01.050

Ortiz, S., Solari, A. (2019). Excavata-Kinetoplastea Trypanosomatidae Parasites and the Interaction with their Hosts. IJoTD. doi:10.23937/IJTD-2017/1710015

Pakula, T. M. (2005). The effect of specific growth rate on protein synthesis and secretion in the filamentous fungus *Trichoderma reesei*. Microbiology, 151(1), 135–143. doi:10.1099/mic.0.27458-0

Pawlowski, J., & Burki, F. (2009). Untangling the Phylogeny of Amoeboid Protists. Journal of Eukaryotic Microbiology, 56(1), 16–25. doi:10.1111/j.1550-7408.2008.00379.x

Peden, J. F. (1999). Analysis of Codon Usage. Department of Genetics. Thesis submitted to the University of Nottingham for the Degree of Doctor of Philosophy.

Percudani, R. (2001). Restricted wobble rules for eukaryotic genomes. Trends in Genetics, 17(3), 133–135. doi:10.1016/s0168-9525(00)02208-3

Perry,J., Dai,X. and Zhao,Y. (2005) A mutation in the anticodon of a single tRNAala is sufficient to confer auxin resistance in Arabidopsis. Plant Physiol., 139, 1284–1290.

Porath, H. T., Knisbacher, B. A., Eisenberg, E., & Levanon, E. Y. (2017). Massive A-to-I RNA editing is common across the Metazoa and correlates with dsRNA abundance. Genome Biology, 18(1). doi:10.1186/s13059-017-1315-y

Rafels-Ybern, À., Torres, A. G., Grau-Bove, X., Ruiz-Trillo, I., & Ribas de Pouplana, L. (2017). Codon adaptation to tRNAs with Inosine modification at position 34 is widespread among Eukaryotes and present in two Bacterial phyla. RNA Biology, 15(4-5), 500–507. doi:10.1080/15476286.2017.1358348

Rambaut, A. (2009). Computer program distributed by the author, website: http://tree.bio.ed.ac.uk/software/figtree/[accessed January 4, 2011]

Scala, S. (2002). Genome Properties of the Diatom *Phaeodactylum tricornutum*. Plant physiology, 129(3), 993–1002. doi:10.1104/pp.010713

Shabardina, V., Kischka, T., Kmita, H., Suzuki, Y., & Makałowski, W. (2018). Environmental adaptation of *Acanthamoeba castellanii* and *Entamoeba histolytica* at genome level as seen by comparative genomic analysis. International Journal of Biological Sciences, 14(3), 306–320. doi:10.7150/ijbs.23869

Sharp, P. M., & Devine, K. M. (1989). Codon usage and gene expression level in *Dictyostelium discoideum*: highly expressed genes do prefer optimal codons. Nucleic Acids Research, 17(13), 5029–5040. doi:10.1093/nar/17.13.5029

Sharp, P. M., Emery, L. R., & Zeng, K. (2010). Forces that influence the evolution of codon bias. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1544), 1203–1212. doi:10.1098/rstb.2009.0305

Sharp, P. M., & Li, W. (1986). An evolutionary perspective on synonymous codon usage in unicellular organisms. Journal of Molecular Evolution, 24 (1-2), 28-38. doi:10.1007/BF02099948

Sibbald, S. J., & Archibald, J. M. (2017). More protist genomes needed. Nature Ecology & Evolution, 1(5). doi:10.1038/s41559-017-0145

Simpson, A. G. ., & Roger, A. J. (2002). Eukaryotic Evolution: Getting to the Root of the Problem. Current Biology, 12(20), R691–R693. doi:10.1016/s0960-9822(02)01207-1

Sørensen, M. A., & Pedersen, S. (1991). Absolute in vivo translation rates of individual codons in *Escherichia coli*. Journal of Molecular Biology, 222(2), 265–280. doi:10.1016/0022-2836(91)90211-n

Southworth, J., Armitage, P., Fallon, B., Dawson, H., Bryk, J., & Carr, M. (2018). Patterns of Ancestral Animal Codon Usage Bias Revealed through Holozoan Protists. Molecular Biology and Evolution, 35(10), 2499–2511. doi:10.1093/molbev/msy157

Suga, H., Chen, Z., de Mendoza, A., Suga, H., Chen, Z., de Mendoza, A., Sebé-Pedrós, A., Brown,
M. W., Kramer, E., Carr, M., Kerner, P., Vervoort, M., Sanchez-Pons, N., Torruella, G., Derelle,
R., Manning, G., Lang, F., Russ, C., Haas, B. J., Roger, A. J., Nusbaum, C., Ruiz-Trillo, I. (2013).
The Capsaspora genome reveals a complex unicellular prehistory of animals. Nature
Communications, 4(1). doi:10.1038/ncomms3325

Suga, H., & Ruiz-Trillo, I. (2013). Development of ichthyosporeans sheds light on the origin of metazoan multicellularity. Developmental Biology, 377(1), 284–292. doi:10.1016/j.ydbio.2013.01.009

Torres, A. G., Piñeyro, D., Filonava, L., Stracker, T. H., Batlle, E., & Ribas de Pouplana, L. (2014). A-to-I editing on tRNAs: Biochemical, biological and evolutionary implications. FEBS Letters, 588(23), 4279–4286. doi:10.1016/j.febslet.2014.09.025

Wald, N., & Margalit, H. (2014). Auxiliary tRNAs: large-scale analysis of tRNA genes reveals patterns of tRNA repertoire dynamics. Nucleic Acids Research, 42(10), 6552–6566. doi:10.1093/nar/gku245

Wright, F. (1990). The "effective number of codons" used in a gene. Gene, 87(1), 23–29. doi:10.1016/0378-1119(90)90491-9

Xu, F., Jerlström-Hultqvist, J., Einarsson, E., Ástvaldsson, Á., Svärd, S. G., & Andersson, J. O. (2014). The Genome of *Spironucleus salmonicida* Highlights a Fish Pathogen Adapted to Fluctuating Environments. PLoS Genetics, 10(2), e1004053. doi:10.1371/journal.pgen.1004053

Zhou, Z., Dang, Y., Zhou, M., Li, L., Yu, C., Fu, J., Chen, S., Liu, Y. (2016). Codon usage is an important determinant of gene expression levels largely through its effects on transcription.
Proceedings of the National Academy of Sciences, 113(41), E6117–E6125.
doi:10.1073/pnas.1606724113

Zinshteyn, B., & Nishikura, K. (2009). Adenosine-to-inosine RNA editing. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 1(2), 202–209. doi:10.1002/wsbm.10

"Analyze a 2x2 contingency table". GraphPad Software, Inc. Accessed 30 March 2020. https://www.graphpad.com/quickcalcs/contingency1.cfm

"SMALT". Genome Research Ltd. (2015) http://www.sanger.ac.uk/resources/software/SMALT/

"2x2 Contingency Table". VassarStats, Inc. Accessed 30 March 2020.

http://vassarstats.net/tab2x2.html

6.0 Appendix

6.1 Nc Plots

General description of figures 5-37: The Nc and GC3s values of all genes found in the transcriptome for each organism are shown as grey hollow circles. The average Nc and GC3s values for each organisms set of genes are represented by a black dot. The average Nc and GC3s values for the top and bottom 5% expressed genes for each organism are represented by blue and red squares respectively. The average Nc and GC3s values for the found protein coding domains and non-domains of the top 200 expressed genes for each organisms are represented by green and purple triangles respectively. The red bell-shaped curve represents the expected position of genes if their CUB was solely influenced by a neutral mutational bias.

Figure 5 | Graph showing genome wide Nc plot for the Amoebozoan A. castellani

Figure 6 | Graph showing genome wide Nc plot for the Amoebozoan E. histolytica

Figure 7 | Graph showing genome wide Nc plot for the Amoebozoan D. discoideum

Figure 8 | Graph showing genome wide Nc plot for the Amoebozoan P. fungivorum

Figure 9 | Graph showing genome wide Nc plot for the Apusomonadan *T. trahens*

Figure 10 | Graph showing genome wide Nc plot for the Opisthokont F. alba

Figure 11 | Graph showing genome wide Nc plot for the Opisthokont C. owczarzaki

Figure 12 | Graph showing genome wide Nc plot for the Opisthokont S. arctica

Figure 13 | Graph showing genome wide Nc plot for the Excavate G. lamblia

Figure 14 | Graph showing genome wide Nc plot for the Excavate S. salmonicida

Figure 15 | Graph showing genome wide Nc plot for the Excavate *L. major*

Figure 16 | Graph showing genome wide Nc plot for the Excavate *L. pyrrhocoris*

Figure 17 | Graph showing genome wide Nc plot for the Excavate L. seymouri

Figure 18 | Graph showing genome wide Nc plot for the Excavate *T. brucei*

Figure 19 | Graph showing genome wide Nc plot for the Excavate *T. cruzi*

Figure 20 | Graph showing genome wide Nc plot for the Excavate *T. theileri*

Figure 21 | Graph showing genome wide Nc plot for the Alveolate *T. thermophila*

Figure 22 | Graph showing genome wide Nc plot for the Alveolate S. coeruleus

Figure 23 | Graph showing genome wide Nc plot for the Alveolate P. gallinaceum

Figure 24 | Graph showing genome wide Nc plot for the Alveolate *P. falciparum*

Figure 25 | Graph showing genome wide Nc plot for the Alveolate *P. vivax*

Figure 26 | Graph showing genome wide Nc plot for the Stramenopile *P. infestans*

Figure 27 | Graph showing genome wide Nc plot for the Stramenopile P. sojae

Figure 28 | Graph showing genome wide Nc plot for the Stramenopile P. halstedii

Figure 29 | Graph showing genome wide Nc plot for the Stramenopile A. astaci

Figure 30 | Graph showing genome wide Nc plot for the Stramenopile A. invadans

Figure 31 | Graph showing genome wide Nc plot for the Stramenopile S. parasitica

Figure 32 | Graph showing genome wide Nc plot for the Stramenopile *P. multistriata*

Figure 33 | Graph showing genome wide Nc plot for the Stramenopile *T. pseudonana*

Figure 34 | Graph showing genome wide Nc plot for the Stramenopile *N. gaditana*

Figure 35 | Graph showing genome wide Nc plot for the Stramenopile A. anophagefferens

Figure 36 | Graph showing genome wide Nc plot for the Rhizarian *B. natans*

Figure 37 | Graph showing genome wide Nc plot for the Rhizarian *P. brassicae*

6.2 Codon Usage – Correspondence Analysis

General description of tables 12-42: The codon usage data is given in two forms, inside and outside of brackets. The numbers inside of the brackets represent the amount the codon was found within the genome files. The numbers outside the brackets represent the relative synonymous codon usage (RSCU) (Sharp, 1986).

Amino		Highly	Weakly	Amino		Highly	Weakly
Anno	Codons	Biased	Biased	Anno	Codons	Biased	Biased
Ticius		Genes	Genes	Acius		Genes	Genes
Phe	UUU	0.18 (988)	0.72 (922)		UCU	0.24 (652)	0.80 (7033)
The	UUC*	1.82 (10211)	1.28 (1632)	Ser	UCC*	1.58 (4298)	0.83 (7333)
	UUA	0.00 (13)	0.24 (629)		UCA	0.09 (257)	1.37 (12096)
	UUG	0.26 (1126)	0.82 (2176)		UCG*	2.27 (6190)	1.33 (11740)
Lou	CUU	0.21 (907)	1.39 (3689)		AGU	0.09 (239)	0.57 (4994)
Leu	CUC*	3.21 (13960)	1.34 (3555)		AGC*	1.73 (4733)	1.11 (9833)
	CUA	0.03 (151)	1.04 (2749)		ACU	0.22 (843)	0.68 (5417)
	CUG*	2.28 (9899)	1.17 (3111)	The	ACC*	2.57 (9719)	0.86 (6867)
	GUU	0.15 (743)	1.03 (2387)	Thr	ACA	0.09 (337)	1.16 (9243)
N 7-1	GUC*	1.78 (8706)	1.12 (2575)		ACG	1.12 (4215)	1.29 (10251)
vai	GUA	0.06 (277)	0.72 (1663)	Tyr	UAU	0.15 (632)	0.94 (450)
	GUG*	2.02 (9890)	1.13 (2608)		UAC*	1.85 (7717)	1.06 (509)
	CCU	0.24 (695)	0.92 (9802)	Ala	GCU	0.29 (1939)	0.91 (8474)
Pro	CCC*	2.32 (6639)	0.59 (6227)		GCC*	2.71 (18086)	0.70 (6469)
	CCA	0.09 (256)	1.32 (14028)		GCA	0.08 (546)	1.16 (10787)
	CCG*	1.34 (3845)	1.17 (12402)		GCG	0.92 (6168)	1.22 (11331)
Hia	CAU	0.12 (374)	1.15 (5704)	Ile	AUU	0.28 (1219)	0.93 (975)
ms	CAC*	1.88 (5681)	0.85 (4181)		AUC*	2.69 (11717)	1.55 (1628)
Ch	CAA	0.13 (759)	1.53 (7903)		AUA	0.03 (139)	0.52 (549)
GIII	CAG*	1.87 (10905)	0.47 (2405)	Asp	GAU	0.31 (2557)	1.06 (2928)
A and	AAU	0.13 (671)	0.93 (947)		GAC*	1.69 (13951)	0.94 (2614)
ASII	AAC*	1.87 (9991)	1.07 (1086)	Glu	GAA	0.20 (2219)	1.30 (4147)
T and	AAA	0.06 (583)	0.85 (1491)		GAG*	1.80 (20096)	0.70 (2249)
Lys	AAG*	1.94 (20245)	1.15 (2022)		GGU	0.53 (2327)	0.74 (4400)
Cura	UGU	0.15 (205)	0.68 (4267)	Chr	GGC*	2.98 (13067)	1.09 (6524)
Cys	UGC*	1.85 (2602)	1.32 (8262)	Gly	GGA	0.24 (1033)	1.27 (7598)
	CGU	0.43 (1003)	0.66 (7416)		GGG	0.26 (1133)	0.90 (5350)
	CGC*	3.29 (7761)	1.00 (11174)	Met	AUG	1.00 (6214)	1.00 (2173)
A ma	CGA	0.41 (959)	1.12 (12618)	Тгр	UGG	1.00 (3535)	1.00 (9481)
Alg	CGG	0.91 (2154)	0.89 (10000)		UAA	1.38 (329)	0.19 (446)
	AGA	0.09 (216)	1.06 (11903)	TER	UAG	0.62 (148)	0.16 (367)
	AGG	0.87 (2058)	1.27 (14205)		UGA	1.00 (239)	2.65 (6091)

 Table 12A | Correspondence Analysis Results for the Amoebozoan A. castellani

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Phe	UUU*	1.77 (9798)	0.99 (1453)	Ser	UCU*	1.75 (4739)	1.55 (1206)
IIIC	UUC	0.23 (1270)	1.01 (1479)		UCC	0.09 (251)	0.30 (233)
	UUA*	3.96 (12071)	2.01 (2263)		UCA	2.81 (7598)	2.76 (2152)
	UUG	0.33 (1019)	0.48 (541)		UCG*	0.08 (229)	0.03 (26)
Lou	CUU	1.29 (3924)	3.06 (3439)		AGU*	1.22 (3315)	1.11 (866)
Leu	CUC	0.13 (394)	0.37 (417)		AGC	0.04 (114)	0.25 (193)
	CUA*	0.26 (804)	0.06 (66)		ACU	1.43 (3592)	2.36 (2935)
	CUG*	0.03 (96)	0.02 (18)	The	ACC	0.10 (251)	0.48 (595)
	GUU	2.19 (3811)	2.86 (4817)	Im	ACA*	2.36 (5912)	1.10 (1367)
Val	GUC	0.18 (321)	0.54 (909)		ACG*	0.10 (259)	0.07 (82)
vai	GUA*	1.42 (2472)	0.55 (926)	Tyr	UAU*	1.87 (7797)	1.50 (1831)
	GUG*	0.21 (371)	0.05 (80)		UAC	0.13 (526)	0.50 (617)
	CCU*	1.40 (2039)	0.34 (298)	Ala	GCU	1.44 (948)	2.56 (5699)
Pro	CCC	0.06 (89)	0.04 (32)		GCC	0.09 (60)	0.36 (810)
	CCA	2.50 (3653)	3.60 (3126)		GCA*	2.37 (1555)	1.06 (2353)
	CCG	0.04 (57)	0.02 (18)		GCG*	0.10 (63)	0.02 (39)
Hic	CAU*	1.88 (3034)	1.46 (1326)	Ile	AUU	1.87 (13544)	2.47 (4585)
1115	CAC	0.12 (195)	0.54 (487)		AUC	0.14 (978)	0.38 (709)
Cln	CAA	1.91 (5957)	1.95 (3555)		AUA*	0.99 (7159)	0.14 (267)
Gili	CAG*	0.09 (286)	0.05 (98)	Asp	GAU*	1.72 (5479)	1.62 (3902)
A and	AAU*	1.83 (12309)	1.45 (3071)		GAC	0.28 (889)	0.38 (926)
ASII	AAC	0.17 (1113)	0.55 (1179)	Cla	GAA*	1.86 (8991)	1.80 (7753)
T and	AAA*	1.80 (10562)	1.28 (8657)	Glu	GAG	0.14 (680)	0.20 (876)
Lys	AAG	0.20 (1179)	0.72 (4899)		GGU	0.97 (1450)	1.25 (1827)
Cura	UGU*	1.93 (6279)	1.35 (970)	Chr	GGC	0.05 (74)	0.05 (70)
Cys	UGC	0.07 (219)	0.65 (470)	Gly	GGA	2.71 (4053)	2.64 (3851)
	CGU*	0.92 (579)	0.57 (486)		GGG*	0.27 (404)	0.05 (76)
	CGC	0.04 (24)	0.03 (23)	Met	AUG	1.00 (3154)	1.00 (2550)
A	CGA*	0.68 (423)	0.17 (145)	Тгр	UGG	1.00 (1214)	1.00 (590)
Alg	CGG*	0.06 (37)	0.01 (12)		UAA	2.20 (293)	2.72 (362)
	AGA	4.03 (2523)	5.14 (4412)	TER	UAG	0.25 (33)	0.05 (7)
	AGG*	0.27 (171)	0.08 (72)		UGA	0.55 (73)	0.23 (30)

Table 13A | Correspondence Analysis Results for the Amoebozoan E. histolytica

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU*	1.68 (12413)	1.14 (9990)		UCU	0.78 (4001)	0.93 (3512)
1 ne	UUC	0.32 (2399)	0.86 (7524)		UCC	0.11 (560)	0.81 (3042)
	UUA*	4.95 (22132)	1.59 (9451)	Ser	UCA*	3.45 (17732)	2.10 (7908)
	UUG	0.37 (1640)	1.46 (8702)	501	UCG	0.08 (400)	0.64 (2418)
Lau	CUU	0.41 (1830)	0.78 (4646)		AGU*	1.51 (7763)	0.77 (2899)
Leu	CUC	0.04 (194)	0.67 (3980)		AGC	0.07 (385)	0.74 (2798)
	CUA	0.22 (990)	0.81 (4817)		ACU*	1.37 (5183)	0.78 (3016)
	CUG	0.01 (26)	0.69 (4095)	Thr	ACC	0.28 (1051)	1.20 (4615)
	GUU*	2.49 (5603)	0.99 (4520)	Inr	ACA*	2.30 (8676)	1.66 (6412)
Val	GUC	0.12 (259)	0.53 (2439)		ACG	0.06 (209)	0.35 (1363)
vai	GUA	1.28 (2887)	1.36 (6231)	Tyr	UAU*	1.88 (10101)	1.15 (8539)
	GUG	0.11 (252)	1.11 (5091)		UAC	0.12 (658)	0.85 (6264)
	CCU	0.59 (1331)	0.91 (1765)	Ala	GCU*	1.18 (1465)	0.77 (848)
Pro	CCC	0.07 (152)	0.55 (1066)		GCC	0.16 (205)	0.93 (1025)
Pro	CCA*	3.30 (7388)	2.03 (3922)		GCA*	2.60 (3237)	1.91 (2097)
	CCG	0.04 (86)	0.50 (973)		GCG	0.06 (78)	0.39 (433)
Hic	CAU*	1.89 (3557)	1.14 (8063)	Ile	AUU*	1.99 (18939)	0.95 (13323)
1115	CAC	0.11 (208)	0.86 (6138)		AUC	0.16 (1514)	0.73 (10264)
Cln	CAA*	1.96 (12075)	1.52 (15498)		AUA	0.85 (8037)	1.31 (18330)
GIII	CAG	0.04 (231)	0.48 (4865)	Asp	GAU*	1.92 (14733)	1.27 (4107)
	AAU*	1.93 (55930)	1.01 (13684)		GAC	0.08 (649)	0.73 (2377)
ASI	AAC	0.07 (1960)	0.99 (13284)	Chu	GAA*	1.82 (15137)	1.46 (7048)
T	AAA*	1.83 (21783)	1.32 (20709)	Glu	GAG	0.18 (1539)	0.54 (2588)
Lys	AAG	0.17 (2001)	0.68 (10665)		GGU*	2.97 (8270)	1.13 (1814)
Cruz	UGU*	1.91 (3653)	1.06 (3780)	Chr	GGC	0.09 (260)	0.64 (1024)
Cys	UGC	0.09 (173)	0.94 (3378)	Gly	GGA	0.88 (2442)	1.46 (2335)
	CGU*	0.73 (715)	0.30 (799)		GGG	0.06 (162)	0.77 (1237)
	CGC	0.01 (11)	0.23 (615)	Met	AUG	1.00 (3694)	1.00 (9994)
•	CGA	0.09 (86)	0.59 (1540)	Тгр	UGG	1.00 (1742)	1.00 (6861)
Arg	CGG	0.01 (9)	0.19 (512)		UAA	2.68 (584)	1.46 (11949)
	AGA*	4.84 (4720)	3.45 (9079)	TER	UAG	0.16 (35)	0.68 (5526)
	AGG	0.32 (310)	1.23 (3248)		UGA	0.16 (34)	0.86 (7010)

 Table 14A | Correspondence Analysis Results for the Amoebozoan D. discoideum

Amino		Highly	Weakly	Amino		Highly	Weakly
Acids	Codons	Biased	Biased	Acids	Codons	Biased	Biased
	TITIT	Genes	Genes		UCU*	Genes	Genes
Phe		0.40(4027) 1.54(13411)	0.00(0740) 1 12(8575)			1.30 (9419)	1.55(15509) 0.81(0312)
		1.34(13411) 0.21(1764)	1.12(0.573)			1.07(9942) 0.47(2822)	0.01(9312) 1.55(17824)
		1.08(6152)	0.31(3930) 0.62(4742)	Ser	UCA	0.47(2023)	1.55(17654)
		1.08(0132)	0.02(4742)			0.00(3900)	0.91(10303)
Leu		0.42(2410)	1.09(13040) 1 51(11664)		AGC*	0.40(2380) 1 21 (7202)	0.09(7893)
		2.01(14807)	1.31(11004)		ACU*	1.21(7202)	0.09(7928)
	CUA CUC*	0.16(1032) 1.40(7052)	0.74(3733) 0.02(7125)			1.02(15805)	0.82(7000)
	CUU	1.40(7933)	0.95(7155)	Thr	ACC*	1.95(13003)	0.07(0155) 1.52(14200)
		0.37(4287)	1.20(7803)	Tyr	ACA	0.55(4518)	1.53(14299)
Val		2.23 (10/12)	1.11 (7281)		ACG	0.03 (3142)	0.78(7231)
	GUA	0.34 (2528)	0.77 (5024)		UAU UAC*	0.31(2176)	1.01 (5062)
	GUU	0.80 (0419)	0.91 (3962)			1.09 (12074)	0.99 (4919)
		0.83(4036)	1.12(10113)	Ala	GCU CCC*	1.00 (9435)	1.17 (6546)
Pro		2.31 (11206)	0.66(6015)		GCC*	2.18 (20499)	0.79 (4460)
	CCA	0.01(2933)	1.45(13110)		GCA	0.34 (3068)	1.51 (8403)
		0.23(1197)	0.77(7024)			0.26(2021)	0.35(5000)
His	CAU CAC*	0.31(1093) 1.60(5047)	1.18(19902) 0.82(12066)	Ile	AUC*	0.42(5058)	1.13(9444) 1.22(10040)
	CAC.	1.09(3947)	1.26(10445)		AUC	2.49(10323)	1.53(10940) 0.52(4265)
Gln	CAA CAC*	0.04(3019) 1.26(11079)	1.20(19443) 0.74(11497)	Asp	AUA	0.09(099)	0.32(4203)
		1.30(11978)	0.74(11487)		GAU CAC*	0.78(8392)	1.12(12330)
Asn	AAU AAC*	0.51(5/47)	1.03 (3882)	Glu	GAC*	1.22(13012)	0.88(9793)
	AAC*	1.69 (20542)	0.97 (5526)		GAA GAG*	0.51(5412)	1.10 (18981)
Lys	AAA	0.28(3337)	1.05 (7811)		GAG*	1.49 (15708)	0.84(13/36)
	AAG*	1.72(20897)	0.95 (7028)		GGU*	1.29(10557)	0.72 (6724)
Cys	UGU	0.68 (2074)	1.05 (9416)	Gly	GGC	0.80 (6501)	0.88 (8219)
	UGC*	1.32 (4055)	0.95 (8511)		GGA*	1.81 (14/60)	1.52(14247)
	CGU*	1.03 (2678)	0.86 (11536)		GGG	0.10 (802)	0.88 (8191)
	CGC*	1.03 (2669)	0.59 (7898)	Met	AUG	1.00 (7467)	1.00 (5509)
Arg	CGA	0.49 (1265)	1.36 (18357)	Ттр	UGG	1.00 (5368)	1.00 (11868)
Ū	CGG	0.08 (220)	0.75 (10079)		UAA	1.75 (489)	0.60 (4314)
	AGA*	2.72 (7056)	1.73 (23263)	TER	UAG	0.41 (115)	0.49 (3518)
	AGG	0.65 (1688)	0.72 (9753)		UGA	0.84 (233)	1.92 (13896)

 Table 15A | Correspondence Analysis Results for the Amoebozoan P. fungivorum

Amino		Highly	Weakly	Amino		Highly	Weakly
Acids	Codons	Biased	Biased	Acids	Codons	Biased	Biased
	IIIII*	Genes	Genes		UCU	Genes	Genes
Phe		0.94(4342)	0.80(1010)	Ser		0.39 (1063)	0.90 (4106)
		1.06 (4904)	1.14(2147)			1.51(4120)	0.91(4139)
	UUA	0.00(6)	0.17(019)		UCA UCC*	0.28(7/4)	0.87 (3942)
		0.06 (226)	1.19 (4269)			3.48 (9472)	1.54 (6998)
Leu		0.64 (2275)	0.92 (3311)		AGU	0.04 (97)	0.56 (2557)
	CUC*	4.31 (15306)	1.58 (5648)		AGC	0.30 (826)	1.21 (5516)
	CUA	0.03 (111)	0.50 (1780)		ACU	0.42 (1317)	0.74 (2657)
	CUG	0.95 (3368)	1.64 (5884)	Thr	ACC*	2.75 (8576)	0.87 (3131)
	GUU	0.42 (1786)	0.73 (2679)	Tyr	ACA	0.21 (662)	0.82 (2973)
Val	GUC*	2.86 (12216)	1.12 (4114)		ACG	0.62 (1920)	1.57 (5668)
,	GUA	0.02 (88)	0.52 (1892)		UAU	0.12 (391)	0.79 (822)
	GUG	0.70 (2981)	1.63 (5961)		UAC*	1.88 (6267)	1.21 (1269)
	CCU	0.29 (781)	0.92 (5048)	Ala	GCU	0.57 (3919)	0.99 (7695)
Pro	CCC*	1.34 (3578)	0.61 (3381)		GCC*	2.66 (18334)	0.85 (6577)
	CCA	0.18 (485)	0.99 (5428)		GCA	0.26 (1804)	0.77 (6024)
	CCG*	2.18 (5815)	1.48 (8180)		GCG	0.52 (3556)	1.39 (10802)
Hic	CAU	0.27 (622)	1.06 (4799)	Ile	AUU	0.53 (2006)	0.69 (756)
1115	CAC*	1.73 (4063)	0.94 (4240)		AUC*	2.46 (9285)	1.94 (2120)
Clm	CAA	0.09 (311)	1.28 (5578)		AUA	0.00 (16)	0.36 (395)
GIN	CAG*	1.91 (6313)	0.72 (3114)	Asp	GAU	0.27 (1951)	0.83 (3195)
	AAU	0.10 (380)	0.63 (581)		GAC*	1.73 (12344)	1.17 (4512)
Asn	AAC*	1.90 (7384)	1.37 (1252)		GAA	0.14 (904)	0.64 (1930)
т	AAA	0.04 (238)	0.57 (803)	Glu	GAG*	1.86 (12409)	1.36 (4114)
Lys	AAG*	1.96 (12146)	1.43 (2004)		GGU	0.56 (2135)	0.81 (4792)
C	UGU	0.16 (185)	0.73 (3695)		GGC*	3.14 (11901)	1.61 (9514)
Cys	UGC*	1.84 (2189)	1.27 (6489)	Gly	GGA	0.12 (443)	0.77 (4574)
	CGU	0.73 (1461)	0.81 (5818)		GGG	0.18 (665)	0.81 (4763)
	CGC*	4.44 (8920)	1.50 (10748)	Met	AUG	1.00 (5615)	1.00 (3269)
	CGA	0.07 (135)	1.28 (9153)	Trp	UGG	1.00 (2490)	1.00 (6165)
Arg	CGG	0.69 (1384)	1.41 (10118)		UAA	1.50 (265)	0.25 (304)
	AGA	0.02 (47)	0.39 (2809)	TER	UAG	0.79 (140)	0.32 (392)
	AGG	0.05 (100)	0.60 (4285)		UGA	0.71 (126)	2.43 (2973)

 Table 16A | Correspondence Analysis Results for the Apusomonadan T. trahens

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.08 (157)	0.99 (863)		UCU	0.48 (483)	1.03 (1512)
rne	UUC*	1.92 (3829)	1.01 (872)		UCC*	3.20 (3196)	1.26 (1845)
	UUA	0.00 (0)	0.49 (678)	Ser	UCA	0.01 (10)	1.01 (1473)
	UUG	0.03 (33)	0.70 (965)		UCG	1.03 (1032)	1.33 (1942)
Lou	CUU	0.34 (448)	1.31 (1807)		AGU	0.06 (57)	0.48 (709)
Leu	CUC*	2.48 (3253)	1.76 (2420)		AGC*	1.22 (1218)	0.89 (1299)
	CUA	0.00 (6)	0.73 (1001)		ACU	0.35 (469)	0.78 (772)
	CUG*	3.14 (4116)	1.00 (1381)	The	ACC*	3.45 (4605)	1.10 (1085)
	GUU	0.43 (680)	0.74 (868)	Thr	ACA	0.01 (10)	1.19 (1168)
Val	GUC*	2.68 (4216)	1.39 (1627)		ACG	0.19 (259)	0.93 (911)
vai	GUA	0.00 (0)	0.66 (769)	Tyr	UAU	0.22 (294)	1.31 (635)
	GUG	0.89 (1400)	1.22 (1424)		UAC*	1.78 (2423)	0.69 (332)
	CCU	0.17 (166)	1.02 (3367)	Ala	GCU	0.42 (934)	0.94 (2431)
Pro	CCC*	2.29 (2271)	0.96 (3172)		GCC*	3.25 (7276)	1.15 (2971)
	CCA	0.01 (5)	0.92 (3018)		GCA	0.01 (18)	0.91 (2364)
	CCG*	1.54 (1523)	1.10 (3609)		GCG	0.32 (725)	1.01 (2612)
Hic	CAU	0.27 (268)	1.14 (2812)	Ile	AUU	0.42 (710)	1.03 (589)
1115	CAC*	1.73 (1725)	0.86 (2100)		AUC*	2.58 (4332)	1.18 (676)
Ch	CAA	0.02 (29)	1.33 (2450)		AUA	0.00(1)	0.79 (456)
GIII	CAG*	1.98 (3249)	0.67 (1224)	Asp	GAU	0.47 (1325)	1.06 (1492)
	AAU	0.18 (360)	1.19 (556)		GAC*	1.53 (4290)	0.94 (1319)
Asn	AAC*	1.82 (3749)	0.81 (382)	Cla	GAA	0.01 (46)	1.20 (1506)
T	AAA	0.01 (17)	1.15 (750)	Glu	GAG*	1.99 (6248)	0.80 (1005)
Lys	AAG*	1.99 (6022)	0.85 (558)		GGU*	1.17 (1620)	0.72 (1909)
C	UGU	0.12 (66)	0.86 (1493)	Cla	GGC*	2.56 (3535)	1.44 (3829)
Cys	UGC*	1.88 (1032)	1.14 (1994)	Gly	GGA	0.02 (23)	1.00 (2666)
	CGU*	0.93 (865)	0.63 (1449)		GGG	0.25 (343)	0.84 (2243)
	CGC*	4.54 (4219)	1.16 (2660)	Met	AUG	1.00 (2310)	1.00 (1240)
A	CGA	0.01 (9)	1.37 (3128)	Тгр	UGG	1.00 (838)	1.00 (2309)
Arg	CGG	0.51 (472)	1.60 (3675)		UAA	2.33 (240)	0.43 (241)
	AGA	0.00 (0)	0.51 (1162)	TER	UAG	0.23 (24)	0.30 (171)
	AGG	0.01 (11)	0.73 (1673)		UGA	0.44 (45)	2.27 (1285)

Table 17 | Correspondence Analysis Results for the Opisthokont F. alba

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dha	UUU	0.68 (2835)	0.91 (2540)		UCU	0.86 (1798)	0.87 (3739)
rne	UUC*	1.32 (5444)	1.09 (3051)		UCC*	1.57 (3310)	0.92 (3962)
	UUA	0.00 (5)	0.29 (1000)	Ser	UCA	0.13 (279)	1.12 (4800)
	UUG	0.33 (958)	1.23 (4163)		UCG*	2.20 (4634)	1.19 (5093)
Lou	CUU	0.82 (2351)	1.27 (4321)		AGU	0.06 (133)	0.65 (2785)
Leu	CUC*	3.37 (9705)	1.30 (4430)		AGC	1.17 (2460)	1.25 (5380)
	CUA	0.01 (24)	0.54 (1846)		ACU	0.86 (2458)	0.82 (2773)
	CUG*	1.48 (4259)	1.36 (4622)	The	ACC*	2.39 (6861)	0.92 (3091)
	GUU	0.79 (2845)	1.06 (2846)	Inr	ACA	0.12 (338)	1.10 (3724)
Val	GUC*	2.60 (9374)	1.35 (3620)		ACG	0.64 (1835)	1.16 (3919)
vai	GUA	0.01 (32)	0.62 (1665)	Tyr	UAU	0.20 (577)	1.03 (990)
	GUG	0.60 (2182)	0.97 (2601)		UAC*	1.80 (5184)	0.97 (926)
	CCU	0.45 (934)	0.84 (4041)	Ala	GCU	1.00 (5382)	1.10 (6503)
Pro	CCC*	2.55 (5303)	0.68 (3282)		GCC*	2.35 (12637)	0.76 (4491)
	CCA	0.19 (397)	1.37 (6650)		GCA	0.22 (1182)	1.14 (6736)
	CCG	0.82 (1698)	1.11 (5381)		GCG	0.42 (2267)	1.01 (5976)
Hic	CAU	0.15 (326)	1.06 (5643)	Ile	AUU*	1.27 (4603)	1.02 (1551)
1115	CAC*	1.85 (3948)	0.94 (4981)		AUC*	1.72 (6237)	1.56 (2362)
Cln	CAA	0.45 (1673)	1.36 (8119)		AUA	0.00 (12)	0.42 (642)
Gili	CAG*	1.55 (5699)	0.64 (3821)	Agen	GAU	0.38 (2217)	0.90 (2844)
A and	AAU	0.08 (341)	0.88 (1742)	Asp	GAC*	1.62 (9430)	1.10 (3461)
ASII	AAC*	1.92 (7999)	1.12 (2207)		GAA	0.29 (1873)	1.19 (3056)
Τ	AAA	0.04 (287)	1.11 (2869)	Giu	GAG*	1.71 (10928)	0.81 (2099)
Lys	AAG*	1.96 (13750)	0.89 (2291)		GGU	0.76 (2597)	0.78 (2662)
Crea	UGU	0.06 (63)	0.71 (4265)	Chr	GGC*	3.12 (10698)	1.30 (4394)
Cys	UGC*	1.94 (2136)	1.29 (7796)	Gly	GGA	0.10 (330)	1.22 (4148)
	CGU*	1.13 (1962)	0.94 (5369)		GGG	0.02 (84)	0.70 (2364)
	CGC*	4.49 (7776)	1.30 (7432)	Met	AUG	1.00 (4163)	1.00 (2347)
Ama	CGA	0.27 (475)	1.52 (8672)	Тгр	UGG	1.00 (2035)	1.00 (5133)
Arg	CGG	0.06 (107)	0.91 (5219)		UAA	2.60 (436)	0.26 (430)
	AGA	0.01 (13)	0.68 (3884)	TER	UAG	0.14 (23)	0.24 (410)
	AGG	0.03 (57)	0.65 (3709)		UGA	0.26 (44)	2.50 (4204)

 Table 18 | Correspondence Analysis Results for the Opisthokont C. owczarzaki
Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
DL	UUU	0.56 (2844)	0.99 (1922)		UCU*	1.05 (2087)	0.77 (4023)
Pne	UUC*	1.44 (7257)	1.01 (1964)	þ	UCC*	1.35 (2678)	0.56 (2908)
	UUA	0.26 (819)	0.85 (2090)	Sam	UCA	0.79 (1560)	1.17 (6101)
	UUG	1.07 (3396)	1.28 (3152)	Ser	UCG*	1.09 (2164)	0.92 (4769)
T	CUU*	0.80 (2547)	0.67 (1651)		AGU	0.86 (1706)	1.44 (7501)
Leu	CUC*	1.01 (3234)	0.83 (2049)		AGC	0.86 (1716)	1.14 (5963)
	CUA	0.67 (2142)	0.89 (2205)		ACU*	0.84 (2415)	0.76 (4680)
	CUG*	2.19 (6994)	1.49 (3675)	The	ACC*	1.63 (4695)	0.74 (4551)
	GUU	0.72 (2900)	0.69 (2353)	1 111	ACA	0.76 (2201)	1.59 (9722)
Vəl	GUC*	1.03 (4145)	0.69 (2339)		ACG	0.78 (2239)	0.91 (5558)
vai	GUA	0.61 (2465)	1.11 (3766)	Tun	UAU	0.50 (1827)	0.96 (2844)
	GUG*	1.65 (6665)	1.51 (5116)	1 yr	UAC*	1.50 (5512)	1.04 (3061)
	CCU*	0.91 (1725)	0.82 (4301)		GCU*	1.01 (4289)	0.83 (4560)
Pro	CCC*	1.81 (3413)	0.79 (4121)	Ala Ile	GCC*	1.63 (6888)	0.76 (4159)
	CCA	0.56 (1055)	1.46 (7622)		GCA	0.54 (2300)	1.45 (7985)
	CCG	0.72 (1349)	0.92 (4825)		GCG	0.81 (3433)	0.96 (5254)
Hic	CAU	0.51 (1009)	0.82 (4851)		AUU*	0.98 (4153)	0.82 (2251)
1115	CAC*	1.49 (2951)	1.18 (6941)		AUC*	1.74 (7348)	0.87 (2392)
Cln	CAA	0.53 (1598)	0.98 (11774)		AUA	0.28 (1164)	1.31 (3609)
Gili	CAG*	1.47 (4404)	1.02 (12356)	Acr	GAU	0.93 (5154)	1.08 (7588)
Acr	AAU	0.59 (2371)	1.07 (7560)	Asp	GAC*	1.07 (5941)	0.92 (6455)
ASII	AAC*	1.41 (5646)	0.93 (6538)	Chu	GAA	0.52 (3117)	0.95 (6258)
Τ	AAA	0.42 (2530)	0.94 (5099)	Giu	GAG*	1.48 (8769)	1.05 (6875)
Lys	AAG*	1.58 (9596)	1.06 (5741)		GGU*	1.36 (4751)	1.13 (5588)
Cura	UGU	0.90 (1810)	1.07 (1615)	Chr	GGC*	1.16 (4055)	1.03 (5090)
Cys	UGC*	1.10 (2217)	0.93 (1405)	Gly	GGA*	1.03 (3591)	0.89 (4423)
	CGU*	1.84 (2589)	0.76 (2603)		GGG	0.44 (1530)	0.95 (4684)
	CGC*	1.84 (2593)	0.91 (3121)	Met	AUG	1.00 (6469)	1.00 (6947)
A	CGA	0.77 (1091)	0.94 (3202)	Тгр	UGG	1.00 (2685)	1.00 (1885)
Alg	CGG	0.55 (777)	0.83 (2833)		UAA	1.57 (356)	0.72 (349)
	AGA	0.58 (815)	1.33 (4542)	TER	UAG	0.79 (180)	0.79 (384)
	AGG	0.41 (582)	1.24 (4225)		UGA	0.64 (145)	1.49 (722)

 Table 19 | Correspondence Analysis Results for the Opisthokont S. arctica

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dha	UUU	0.42 (755)	1.25 (2898)		UCU	0.93 (1778)	1.68 (5314)
Phe	UUC*	1.58 (2868)	0.75 (1734)	-	UCC*	1.21 (2330)	0.81 (2551)
	UUA	0.19 (258)	0.85 (2854)	Son	UCA	0.44 (842)	1.12 (3540)
	UUG	0.44 (610)	0.88 (2928)	Ser	UCG*	0.88 (1680)	0.51 (1612)
Lou	CUU	0.85 (1176)	1.49 (4992)		AGU	0.83 (1591)	0.91 (2872)
Leu	CUC*	2.55 (3542)	0.84 (2814)		AGC*	1.71 (3288)	0.97 (3071)
	CUA	0.37 (510)	1.02 (3406)		ACU	0.77 (2106)	1.21 (3523)
	CUG*	1.62 (2254)	0.91 (3043)	The	ACC*	1.06 (2899)	0.81 (2369)
	GUU	0.64 (1511)	1.27 (2845)	IIII	ACA	0.98 (2685)	1.43 (4168)
Val	GUC*	1.79 (4250)	0.80 (1797)		ACG*	1.20 (3296)	0.55 (1615)
vai	GUA	0.35 (835)	0.97 (2180)	Tun	UAU	0.58 (1348)	1.22 (2850)
	GUG*	1.22 (2899)	0.96 (2155)	I yı	UAC*	1.42 (3330)	0.78 (1826)
	CCU	0.81 (1349)	1.26 (2533)		GCU	0.77 (2516)	1.19 (4141)
Pro	CCC*	1.36 (2273)	0.74 (1487)	Ala	GCC*	1.42 (4619)	0.79 (2756)
	CCA	0.68 (1140)	1.43 (2863)	Ala	GCA	0.85 (2789)	1.53 (5297)
	CCG*	1.15 (1923)	0.57 (1133)		GCG*	0.96 (3128)	0.49 (1690)
Hic	CAU	0.45 (436)	1.10 (2542)	Ile	AUU	0.55 (850)	1.18 (3854)
1115	CAC*	1.55 (1515)	0.90 (2076)		AUC*	1.78 (2733)	0.76 (2495)
Ch	CAA	0.50(1000)	0.99 (4599)		AUA	0.66 (1013)	1.06 (3447)
GIII	CAG*	1.50 (2965)	1.01 (4715)	Acr	GAU	0.77 (3186)	1.18 (5623)
A and	AAU	0.68 (2181)	1.14 (4232)	Asp	GAC*	1.23 (5076)	0.82 (3890)
ASI	AAC*	1.32 (4246)	0.86(3202)	Clas	GAA	0.46 (1519)	0.96 (6079)
T	AAA	0.36 (1428)	0.84 (4183)	Giù	GAG*	1.54 (5031)	1.04 (6526)
Lys	AAG*	1.64 (6551)	1.16 (5784)		GGU	0.55 (2213)	0.97 (1520)
Crra	UGU	0.61 (4555)	1.05 (1143)	Chr	GGC*	1.51 (6114)	0.89 (1396)
Cys	UGC*	1.39 (10315)	0.95 (1026)	Gly	GGA	0.83 (3338)	1.33 (2072)
	CGU	0.039(337)	0.94 (1645)		GGG*	1.11 (4499)	0.81 (1258)
	CGC*	1.83 (1589)	0.89 (1558)	Met	AUG	1.00 (2045)	1.00 (3858)
A	CGA	0.31 (273)	0.93 (1622)	Тгр	UGG	1.00 (957)	1.00 (750)
Arg	CGG*	1.11 (966)	0.80 (1393)		UAA	0.56 (68)	0.99 (122)
	AGA	0.69 (600)	01.48(2583)	TER	UAG	1.14 (140)	1.06 (130)
	AGG*	1.66 (1446)	0.95 (1656)		UGA	1.30 (159)	0.95 (116)

 Table 20 | Correspondence Analysis Results for the Excavate G. lamblia

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.13 (305)	1.70 (11220)		UCU	0.17 (167)	1.77 (5259)
Plie	UUC*	1.87 (4258)	0.30 (1990)		UCC*	2.08 (1903)	0.27 (788)
	UUA	0.04 (65)	3.23 (13712)	Sor	UCA	0.19 (169)	2.01 (6008)
	UUG	0.13 (223)	0.70 (2984)	501	UCG*	1.30 (1194)	0.30 (844)
Lou	CUU	0.16 (263)	0.99 (4159)		AGU	0.12 (118)	1.26 (3765)
Leu	CUC*	2.52 (2076)	0.14 (559)		AGC*	2.13 (1952)	0.39 (1119)
	CUA	0.16 (259)	0.77 (3204)		ACU	0.16 (184)	1.67 (4284)
	CUG*	3.00 (4839)	0.17 (682)	The	ACC*	2.18 (2407)	0.29 (722)
	GUU	0.16 (251)	1.89 (4871)	1 111	ACA	0.15 (173)	1.78 (4690)
Vəl	GUC*	1.48 (2391)	0.27 (706)		ACG*	1.52 (1691)	0.26 (647)
v ai	GUA	0.15 (254)	1.49 (3793)	Tyr	UAU	0.12 (155)	1.71 (8860)
	GUG*	2.21 (3559)	0.35 (866)	1 yr	UAC*	1.88 (2393)	0.29 (1523)
	CCU	0.25 (292)	1.55 (2063)		GCU	0.20 (512)	1.62 (2467)
Duo	CCC*	1.95 (2244)	0.16 (220)	Ala	GCC*	1.88 (4697)	0.27 (423)
110	CCA	0.32 (375)	2.05 (2667)	Ala	GCA	0.27 (687)	1.86 (2883)
	CCG*	1.47 (1693)	0.24 (301)		GCG*	1.65 (4101)	0.24 (363)
His	CAU	0.17 (168)	2.68 (2923)	Ile	AUU	0.21 (242)	1.58 (13160)
111,5	CAC*	1.83 (1834)	0.32 (520)		AUC*	2.58 (3009)	0.24 (1949)
Chu	GAA	0.15 (372)	1.57 (9552)		AUA	0.21 (247)	1.18 (9866)
Giù	GAG*	1.85 (4551)	0.43 (2609)	Acn	GAU	0.19 (400)	1.71 (10261)
Acr	AAU	0.14 (186)	1.68 (14694)	Asp	GAC*	1.81 (3821)	0.29 (1694)
ASII	AAC*	1.86 (2442)	0.32 (2803)		CAA	0.14 (194)	0.50 (3546)
I vo	AAA	0.16 (252)	1.58 (13760)	Cln	CAG*	3.64 (5203)	0.15 (1079)
Lys	AAG*	1.84 (3009)	0.42 (3591)	Gill	UAA	0.03 (45)	2.55 (18027)
Cura	UGU	0.12 (126)	1.49 (2340)		UAG	0.20 (281)	0.80 (5674)
Cys	UGC*	1.88 (1898)	0.51 (776)		GGU	0.23 (337)	1.58 (2126)
	CGU*	0.19 (205)	0.63 (565)	Chy	GGC*	2.47 (3516)	0.35 (463)
Arg	CGC	3.03 (3247)	0.18 (146)	Gly	GGA	0.22 (330)	1.64 (2220)
	CGA	0.13 (142)	0.79 (674)		GGG*	1,08 (1532)	0.43 (550)
	CGG*	1.74 (1868)	0.16 (137)	Met	AUG	1.00 (1907)	1.00 (3777)
	AGA	0.15 (182)	3.65 (3192)	Тгр	UGG	1.00 (856)	1.00 (918)
	AGG*	0.75 (803)	0.58 (537)	TER	UGA	1.00 (394)	1.00 (416)

 Table 21 | Correspondence Analysis Results for the Excavate S. salmonicida

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.28 (722)	0.90 (2416)		UCU	0.57 (677)	0.89 (7517)
rne	UUC*	1.72 (4419)	1.10 (2927)	-	UCC*	1.64 (1954)	1.12 (9441)
	UUA	0.02 (28)	0.27 (990)	Sor	UCA	0.11 (133)	0.62 (5256)
	UUG	0.25 (430)	0.94 (3397)	Ser	UCG*	1.81 (2159)	1.43 (12079)
Lou	CUU	0.42 (738)	1.11 (4012)		AGU	0.17 (200)	0.38 (3181)
Leu	CUC*	1.51 (2628)	1.40 (5050)		AGC*	1.69 (2017)	1.57 (13308)
	CUA	0.12 (214)	0.56 (2033)		ACU	0.23 (414)	0.68 (3346)
	CUG*	3.68 (6386)	1.70 (6145)	The	ACC*	1.20 (2142)	1.03 (5041)
	GUU	0.31 (768)	0.70 (2917)	Im	ACA	0.25 (449)	0.98 (4794)
Val	GUC	0.94 (2320)	1.05 (4348)		ACG*	2.32 (4134)	1.31 (6425)
vai	GUA	0.11 (279)	0.61 (2514)	Tur	UAU	0.10 (224)	0.85 (1594)
	GUG*	2.64 (6540)	1.65 (6842)	1 yr	UAC*	1.90 (4136)	1.15 (2149)
	CCU	0.32 (411)	0.80 (5583)		GCU	0.44 (1175)	0.78 (8693)
Pro	CCC*	0.97 (1262)	0.68 (4743)	Ala	GCC*	1.49 (3969)	0.79 (8755)
	CCA	0.24 (306)	0.87 (6082)	Ala	GCA	0.19 (508)	0.91 (10112)
	CCG*	2.48 (3215)	1.64 (11431)		GCG*	1.88 (5019)	1.52 (16906)
Hic	CAU	0.19 (274)	0.84 (4621)	Ile	AUU	0.49 (1095)	0.84 (1267)
1115	CAC*	1.81 (2575)	1.16 (6369)		AUC*	2.45 (5442)	1.53 (2303)
Cln	CAA	0.08 (213)	0.83 (4743)		AUA	0.06 (129)	0.63 (945)
Gili	CAG*	1.92 (4905)	1.17 (6752)	Aan	GAU	0.41 (1488)	0.82 (4397)
A a m	AAU	0.15 (393)	0.64 (1301)	Asp	GAC*	1.59 (5799)	1.18 (6306)
ASI	AAC*	1.85 (4721)	1.36 (2738)	Clas	GAA	0.13 (659)	0.82 (4755)
T	AAA	0.07 (377)	0.70 (1615)	Glu	GAG*	1.87 (9461)	1.18 (6880)
Lys	AAG*	1.93 (10083)	1.30 (3011)		GGU	0.77 (1620)	0.85 (4837)
Crea	UGU	0.13 (132)	0.73 (3634)	Chr	GGC*	2.83 (5972)	1.47 (8381)
Cys	UGC*	1.87 (1964)	1.27 (6289)	Gly	GGA	0.11 (223)	0.95 (5382)
	CGU	0.69 (992)	0.95 (5589)		GGG	0.30 (624)	0.73 (4130)
	CGC*	4.60 (6649)	1.54 (9034)	Met	AUG	1.00 (4253)	1.00 (3631)
A	CGA	0.09 (134)	1.13 (6606)	Тгр	UGG	1.00 (1268)	1.00 (4628)
Arg	CGG	0.43 (622)	1.15 (6717)		UAA	1.41 (195)	0.35 (437)
	AGA	0.03 (48)	0.54 (3171)	TER	UAG	0.97 (134)	0.41 (509)
	AGG	0.15 (221)	0.69 (4034)		UGA	0.62 (86)	2.24 (2775)

 Table 21 | Correspondence Analysis Results for the Excavate L. major

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Phe	UUU	0.21(895)	1.01 (1238)		UCU	0.28 (599)	1.04 (3595)
TIIC	UUC*	1.79(7790)	0.99 (1211)	-	UCC*	1.71 (3630)	0.79 (2719)
	UUA	0.02(54)	0.26 (805)	Ser	UCA	0.07 (139)	1.17 (4029)
	UUG	0.25(736)	0.45 (1375)	SCI	UCG*	1.92 (4083)	1.35 (4648)
Leu	CUU	0.23(693)	1.87 (5701)		AGU	0.15 (325)	0.60 (2062)
Leu	CUC*	1.52(4511)	1.19 (3635)		AGC*	1.87 (3968)	1.05 (3626)
	CUA	0.05(141)	1.24 (3792)	The	ACU	0.13 (399)	0.81 (2575)
	CUG*	3.94(11715)	0.99 (3008)		ACC*	1.31 (4175)	0.81 (2572)
	GUU	0.20(889)	1.04 (3793)	1 111	ACA	0.10 (321)	1.11 (3509)
Val	GUC	0.93(4038)	1.02 (3709)		ACG*	2.46 (7831)	1.26 (3995)
vai	GUA	0.05(225)	0.89 (3262)	Trom	UAU	0.06(224)	1.28 (1164)
	GUG*	2.82(12273)	1.05 (3823)	1 yr	UAC*	1.94(7096)	0.72 (658)
	CCU	0.23 (543)	1.07 (6513)		GCU	0.32 (1674)	1.11 (9519)
Pro	CCC*	1.24 (2990)	0.81 (4916)	Ala	GCC*	1.61 (8433)	0.70 (5998)
	CCA	0.10 (234)	0.97 (5884)	Ala	GCA	0.12 (625)	1.13 (9629)
	CCG*	2.43 (5860)	1.14 (6932)		GCG*	1.95 (10237)	1.06 (9052)
Uia	CAU	0.09(227)	1.12 (7575)	Ile	AUU	0.42(1561)	1.00 (567)
1115	CAC*	1.91(4855)	0.88 (5895)		AUC*	2.55(9425)	1.32 (754)
Ch	CAA	0.07(283)	1.51 (8724)		AUA	0.02(87)	0.68 (387)
Gili	CAG*	1.93(8073)	0.49 (2838)	Acn	GAU	0.30(1838)	1.14 (5861)
A and	AAU	0.08(387)	1.04 (886)	Asp	GAC*	1.70(10499)	0.86 (4452)
ASI	AAC*	1.92(8991)	0.96 (824)	Chu	GAA	0.08(608)	1.63 (9630)
T	AAA	0.05(421)	1.33 (1517)	Giu	GAG*	1.92(14464)	0.37 (2182)
Lys	AAG*	1.95(16428)	0.67 (756)		GGU	0.66 (2587)	0.79 (5952)
Cura	UGU	0.10 (173)	0.77 (3954)	Chr	GGC*	2.97 (11571)	1.00 (7532)
Cys	UGC*	1.90 (3234)	1.23 (6315)	Gly	GGA	0.08 (328)	1.63 (12317)
	CGU	0.68 (1521)	0.95 (8383)		GGG	0.29 (1117)	0.58 (4406)
	CGC*	4.78 (10678)	1.21 (10680)	Met	AUG	1.00(6811)	1.00 (955)
Arg	CGA	0.03 (77)	1.55 (13685)	Тгр	UGG	1.00 (2400)	1.00 (5065)
	CGG	0.42 (928)	1.13 (9968)		UAA	1.88(431)	0.38 (899)
	AGA	0.01 (15)	0.58 (5164)	TER	UAG	0.78(180)	0.23 (534)
	AGG	0.08 (189)	0.59 (5196)		UGA	0.34 (78)	2.39 (5631)

 Table 22 | Correspondence Analysis Results for the Excavate L. pyrrhocoris

DI	UUU	0.44 (1351)	0.90 (1986)		UCU	0.52 (765)	1.03 (3855)
Phe	UUC*	1.56 (4847)	1.10 (2428)		UCC*	1.50 (2210)	0.76 (2863)
	UUA	0.06 (131)	0.38 (1180)	C	UCA	0.22 (321)	1.03 (3859)
	UUG	0.45 (956)	0.85 (2661)	Ser	UCG*	1.57 (2316)	1.11 (4169)
τ.	CUU	0.44 (941)	1.53 (4814)		AGU	0.26 (390)	0.69 (2596)
Leu	CUC*	1.69 (3587)	1.26 (3965)		AGC*	1.94 (2862)	1.38 (5198)
	CUA	0.16 (330)	0.86 (2697)		ACU	0.28 (567)	0.78 (2813)
	CUG*	3.19 (6760)	1.13 (3545)	The	ACC*	1.41 (2877)	0.93 (3371)
	GUU	0.34 (990)	0.89 (2666)	Inr	ACA	0.32 (653)	1.05 (3801)
Val	GUC	1.02 (2966)	1.14 (3438)		ACG*	1.99 (4070)	1.24 (4497)
vai	GUA	0.17 (488)	0.72 (2151)	True	UAU	0.18 (449)	0.99 (1439)
	GUG*	2.47 (7157)	1.25 (3756)	1 yr	UAC*	1.82 (4617)	1.01 (1455)
	CCU	0.38 (620)	1.04 (4907)		GCU	0.51 (1688)	1.06 (7527)
Dro	CCC*	1.18 (1926)	0.84 (3954)	Alo	GCC*	1.59 (5295)	0.75 (5344)
110	CCA	0.33 (531)	1.00 (4698)	Ala	GCA	0.33 (1085)	1.16 (8230)
	CCG*	2.11 (3432)	1.13 (5325)		GCG*	1.58 (5248)	1.03 (7315)
His	CAU	0.21 (352)	0.97 (5025)		AUU	0.77 (1990)	0.87 (1064)
1115	CAC*	1.79 (2970)	1.03 (5388)	Ile	AUC*	2.17 (5584)	1.43 (1752)
Cln	CAA	0.16 (441)	1.16 (5548)		AUA	0.06 (150)	0.71 (867)
Gill	CAG*	1.84 (5118)	0.84 (4046)	Acn	GAU	0.52 (2165)	1.03 (3538)
Acn	AAU	0.24 (723)	0.88 (1141)	Asp	GAC*	1.48 (6149)	0.97 (3311)
ASII	AAC*	1.76 (5426)	1.12 (1439)	Chu	GAA	0.20 (1069)	1.34 (4916)
T and	AAA	0.11 (594)	1.05 (2186)	Giu	GAG*	1.80 (9537)	0.66 (2419)
Lys	AAG*	1.89 (10016)	0.95 (1975)		GGU*	0.92 (2291)	0.79 (4186)
Cura	UGU	0.20 (238)	0.72 (4249)	Chr	GGC*	2.62 (6549)	1.15 (6048)
Cys	UGC*	1.80 (2191)	1.28 (7604)	Gly	GGA	0.16 (390)	1.36 (7189)
	CGU*	1.04 (1500)	0.86 (5559)		GGG	0.30 (757)	0.70 (3692)
	CGC*	4.16 (5995)	1.26 (8105)	Met	AUG	1.00 (4722)	1.00 (2011)
A 710	CGA	0.14 (202)	1.23 (7913)	Trp	UGG	1.00 (1688)	1.00 (5920)
Arg	CGG	0.48 (687)	1.10 (7094)		UAA	1.74 (232)	0.45 (1164)
	AGA	0.02 (29)	0.75 (4798)	TER	UAG	0.69 (92)	0.44 (1146)
	AGG	0.16 (233)	0.80 (5120)		UGA	0.57 (76)	2.12 (5526)

 Table 23 | Correspondence Analysis Results for the Excavate L. seymouri

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.84 (1632)	1.21 (4752)		UCU	1.00 (1645)	0.197 (2052)
rne	UUC*	1.16 (2251)	0.79 (3085)		UCC*	1.01 (1664)	0.92 (1941)
	UUA	0.45 (1170)	108 (2884)	Sor	UCA	0.94 (1548)	1.22 (2576)
	UUG	1.09 (2847)	1.94 (5190)	301	UCG	0.82 (1359)	1.03 (2173)
Lou	CUU*	1.64 (4269)	0.74 (1967)		AGU*	1.08 (1784)	0.83 (1765)
Leu	CUC*	1.00 (2613)	0.65 (1741)		AGC*	1.15 (1898)	1.03 (2189)
	CUA*	0.51 (1339)	0.42 (1112)		ACU*	1.01 (2241)	0.81 (1806)
	CUG*	1.31 (3413)	1.18 (3149)	The	ACC*	0.97 (2162)	0.91 (2011)
_	GUU*	1.12 (2930)	0.88 (1996)	1111	ACA	1.00 (2216)	1.25 (2769)
Val	GUC	0.59 (1535)	0.64 (1459)		ACG	1.02 (2265)	1.03 (2279)
vai	GUA	0.58 (1510)	0.73 (1651)	Tun	UAU	0.74 (1202)	1.16 (2085)
	GUG	1.71 (4467)	1.75 (3990)	I yr	UAC*	1.26 (2029)	0.84 (1506)
	CCU*	1.01 (1406)	0.88 (1475)		GCU*	1.21 (5370)	0.86 (1305)
Pro	CCC	0.88 (1227)	0.87 (1456)	Ala	GCC*	0.88 (3917)	0.78 (1187)
	CCA	1.10 (1533)	1.18 (1975)	Ala	GCA	1.00 (4429)	1.23 (1860)
	CCG	1.01 (1414)	1.07 (1793)		GCG	0.92 (4075)	1.13 (1705)
Hic	CAU	0.82 (1429)	0.91 (2071)		AUU*	1.36 (2960)	1.11 (2295)
1115	CAC*	1.18 (2039)	1.09 (2487)	Ile	AUC*	1.12 (2448)	0.84 (1725)
Cln	CAA	0.77 (3932)	1.03 (1896)		AUA	0.52 (1125)	1.05 (2177)
Gili	CAG*	1.23 (6251)	0.97 (1771)	Acn	GAU*	1.08 (5790)	1.08 (697)
	AAU	0.93 (2942)	0.93 (1659)	Asp	GAC	0.92 (4900)	0.92 (858)
ASI	AAC	1.07 (3395)	1.07 (1913)	Clas	GAA	0.85 (9952)	1.16 (1333)
T	AAA	0.64 (4189)	1.10 (2593)	Giù	GAG*	1.15 (13411)	0.84 (971)
Lys	AAG*	1.36 (8949)	0.90 (2101)		GGU*	1.57 (3169)	0.87 (1317)
Cruz	UGU	0.78 (709)	1.02 (3558)	Chr	GGC*	0.97 (1942)	0.78 (1175)
Cys	UGC*	1.22 (1107)	0.98 (3424)	Gly	GGA	0.79 (1586)	1.16 (1759)
	CGU*	1.62 (3950)	0.66 (1459)		GGG	0.67 (1352)	1.19 (1797)
	CGC*	1.74 (4223)	0.74 (1634)	Met	AUG	1.00 (4423)	1.00 (4280)
	CGA	0.66 (1601)	0.76 (1685)	Тгр	UGG	1.00 (929)	1.00 (3520)
Arg	CGG	0.90 (2195)	0.90 (1989)		UAA	1.28 (186)	0.84 (1545)
	AGA	0.39 (959)	1.21 (2666)	TER	UAG	0.93 (135)	0.53 (981)
	AGG	0.69 (1671)	1.73 (3814)		UGA	0.79 (115)	1.63 (2998)

 Table 24 | Correspondence Analysis Results for the Excavate T. brucei

Amino		Highly	Weakly	Amino		Highly	Weakly
Arids	Codons	Biased	Biased	Anino	Codons	Biased	Biased
Acius		Genes	Genes	Acius		Genes	Genes
Phe	UUU*	1.27 (9066)	0.94 (7858)		UCU	0.75 (3507)	0.94 (8124)
	UUC	0.73 (5237)	1.06 (8796)	-	UCC*	1.15 (5345)	0.93 (8008)
	UUA	0.24 (1794)	0.60 (3657)	Sor	UCA	0.65 (3038)	1.20 (10284)
	UUG	1.07 (8164)	2.06 (12600)	501	UCG*	1.19 (5549)	0.90 (7757)
Lou	CUU*	1.36 (10351)	0.75 (4565)		AGU*	0.88 (4073)	0.79 (6776)
Leu	CUC*	1.02 (7767)	0.93 (5666)		AGC*	1.38 (6399)	1.24 (10638)
	CUA	0.25 (1909)	0.41 (2480)		ACU	0.53 (3115)	0.80 (8028)
	CUG*	2.07 (15789)	1.26 (7717)	The	ACC	0.79 (4694)	0.84 (8503)
	GUU	0.80 (6893)	0.92 (5728)	Inr	ACA	0.98 (5796)	1.11 (11165)
Val	GUC	0.69 (5972)	0.88 (5441)		ACG*	1.70 (10098)	1.25 (12558)
Val	GUA	0.30 (2562)	0.58 (3596)	Tree	UAU	0.49 (2762)	1.04 (4349)
	GUG*	2.21 (19066)	1.62 (10022)	I yr	UAC*	1.51 (8507)	0.96 (4037)
	CCU	0.63 (2613)	0.82 (6096)		GCU	0.58 (6405)	0.88 (10450)
Duo	CCC*	0.97 (4014)	0.72 (5302)	Ala	GCC*	1.12 (12225)	0.67 (7962)
Pro	CCA	0.85 (3525)	1.05 (7760)	Ala	GCA	0.78 (8601)	1.17 (13858)
	CCG*	1.54 (6348)	1.41 (10408)		GCG*	1.52 (16602)	1.27 (14965)
Uia	CAU	0.75 (3569)	0.91 (8306)	Ile	AUU*	1.56 (9396)	1.09 (4680)
mis	CAC*	1.25 (5907)	1.09 (10036)		AUC	1.11 (6697)	1.28 (5499)
Clm	CAA	0.49 (5363)	1.21 (9692)		AUA	0.33 (1980)	0.63 (2713)
GIII	CAG*	1.51 (16310)	0.79 (6373)		GAU	0.87 (11875)	0.95 (5451)
	AAU	0.82 (6995)	0.82 (4514)	Asp	GAC*	1.13 (15533)	1.05 (5981)
ASI	AAC	1.18 (10151)	1.18 (6527)	Cha	GAA	0.57 (13557)	1.33 (9325)
T	AAA	0.51 (7790)	1.38 (10409)	Glu	GAG*	1.43 (34038)	0.67 (4726)
Lys	AAG*	1.49 (22881)	0.62 (4705)		GGU*	0.94 (6441)	0.72 (8614)
C	UGU	0.67 (1879)	0.84 (16670)		GGC*	1.57 (10789)	0.98 (11782)
Cys	UGC*	1.33 (3702)	1.16 (23092)	Gly	GGA	0.59 (4020)	1.58 (19006)
	CGU*	1.43 (8464)	0.72 (10080)		GGG*	0.90 (6195)	0.73 (8783)
	CGC*	1.88 (11146)	0.96 (13347)	Met	AUG	1.00 (12497)	1.00 (6729)
	CGA	0.62 (3658)	1.08 (15086)	Тгр	UGG	1.00 (4548)	1.00 (19899)
Arg	CGG*	1.19 (7088)	1.09 (15179)		UAA	0.88 (355)	0.53 (4894)
	AGA	0.25 (1510)	1.14 (15830)	TER	UAG	0.80 (325)	0.23 (2160)
	AGG	0.63 (3762)	1.00 (13907)		UGA	1.32 (532)	2.24 (20646)

 Table 25 | Correspondence Analysis Results for the Excavate T. cruzi

Amino Acids	Codons	Highly Biased	Weakly Biased	Amino	Codons	Highly Biased	Weakly Biased
Aclus		Genes	Genes	Acius		Genes	Genes
Phe	UUU*	1.70 (18453)	0.74 (1758)		UCU*	2.10 (17565)	0.76 (1101)
The	UUC	0.30 (3214)	1.26 (2995)		UCC	0.51 (4293)	1.27 (1846)
	UUA*	2.35 (22563)	0.24 (465)	Ser	UCA*	1.37 (11415)	0.68 (991)
	UUG	0.70 (6708)	0.83 (1606)	Bel	UCG	0.18 (1508)	1.05 (1524)
Len	CUU*	1.89 (18136)	0.80 (1562)		AGU*	1.69 (14133)	0.81 (1182)
Leu	CUC	0.43 (4102)	1.87 (3627)		AGC	0.14 (1179)	1.43 (2086)
	CUA*	0.41 (3954)	0.23 (438)		ACU*	1.39 (12371)	0.52 (997)
	CUG	0.23 (2181)	2.04 (3953)	The	ACC	0.43 (3865)	1.13 (2159)
	GUU*	1.53 (14282)	0.64 (1645)	1111	ACA*	1.78 (15903)	1.11 (2116)
Val	GUC	0.23 (2147)	0.83 (2145)		ACG	0.40 (3588)	1.24 (2382)
vai	GUA*	1.46 (13613)	0.30 (767)	T-m	UAU*	1.63 (12724)	0.43 (765)
	GUG	0.78 (7267)	2.24 (5784)	Туг	UAC	0.37 (2922)	1.57 (2754)
	CCU*	1.60 (9740)	0.52 (909)		GCU*	1.47 (12283)	0.57 (1852)
Due	CCC	0.35 (2124)	1.14 (2001)	Ala	GCC	0.61 (5126)	1.44 (4653)
Pro	CCA*	1.79 (10932)	1.01 (1773)	Ala	GCA*	1.47 (12229)	0.75 (2418)
	CCG	0.26 (1613)	1.32 (2316)		GCG	0.45 (3746)	1.24 (4024)
IIIa	CAU*	1.68 (12064)	0.43 (749)	Ile	AUU*	1.83 (19342)	1.18 (2083)
HIS	CAC	0.32 (2305)	1.57 (2749)		AUC	0.25 (2649)	1.52 (2681)
	CAA*	1.56 (17410)	0.48 (1217)		AUA*	0.92 (9676)	0.29 (513)
Gin	CAG	0.44 (4868)	1.52 (3811)		GAU*	1.84 (25157)	0.75 (2347)
	AAU*	1.77 (28461)	0.58 (1447)	Asp	GAC	0.16 (2155)	1.25 (3902)
Asn	AAC	0.23 (3633)	1.42 (3556)		GAA*	1.51 (31011)	0.47 (1944)
T	AAA*	1.46 (20370)	0.31 (1226)	Giù	GAG	0.49 (9995)	1.53 (6354)
Lys	AAG	0.54 (7573)	1.69 (6744)		GGU*	1.67 (12175)	1.09 (2567)
Cura	UGU*	1.80 (8594)	0.61 (807)	Chr	GGC	0.15 (1064)	1.66 (3917)
Cys	UGC	0.20 (979)	1.39 (1828)	Gly	GGA*	1.81 (13242)	0.60 (1406)
	CGU*	2.38 (13395)	1.10 (2076)		GGG	0.38 (2762)	0.65 (1539)
	CGC	0.26 (1453)	2.54 (4810)	Met	AUG	1.00 (13741)	1.00 (3682)
A ma	CGA*	1.54 (8655)	0.45 (857)	Trp	UGG	1.00 (6365)	1.00 (1785)
Arg	CGG	0.35 (1975)	1.07 (2027)		UAA	1.42 (246)	1.11 (311)
	AGA*	1.20 (6749)	0.32 (602)	TER	UAG	0.73 (127)	0.85 (237)
	AGG	0.26 (1487)	0.52 (980)		UGA	0.85 (148)	1.04 (292)

 Table 26 | Correspondence Analysis Results for the Excavate T. theileri

Amino		Highly	Weakly	Amino		Highly	Weakly
Animo	Codons	Biased	Biased	Anino	Codons	Biased	Biased
Acius		Genes	Genes	Acius		Genes	Genes
Phe	UUU	1.18 (14570)	1.46 (28208)		UCU*	2.21 (20766)	1.10 (9813)
The	UUC*	0.82 (10062)	0.54 (10387)		UCC	0.35 (3260)	0.53 (4783)
	UUA*	2.59 (19002)	1.48 (30770)	Sor	UCA*	1.56 (14643)	1.44 (12903)
	UUG	0.91 (6708)	1.20 (24956)	501	UCG	0.08 (746)	0.47 (4232)
Lou	CUU*	1.45 (10623)	0.95 (19803)		AGU	1.17 (11010)	1.34 (11997)
Leu	CUC*	0.57 (4177)	0.51 (10651)		AGC	0.62 (5852)	1.11 (9962)
	CUA	0.41 (3027)	1.03 (21396)		ACU*	2.30 (23490)	1.37 (13555)
	CUG	0.08 (557)	0.81 (16896)	Thr	ACC	0.46 (4662)	0.47 (4617)
	GUU*	2.28 (16093)	1.03 (8962)	1 111	ACA	1.20 (12239)	1.62 (16006)
Val	GUC*	0.62 (4342)	0.44 (3831)		ACG	0.05 (460)	0.55 (5461)
vai	GUA	0.95 (6682)	1.31 (11379)	T	UAU	1.36 (17471)	1.40 (16193)
	GUG	0.16 (1120)	1.21 (10484)	1 yr	UAC*	0.64 (8172)	0.60 (6918)
	CCU*	2.44 (13994)	1.44 (4677)		GCU*	2.47 (20611)	1.47 (6866)
Duo	CCC	0.43 (2435)	0.59 (1916)	Ala	GCC*	0.45 (3752)	0.39 (1831)
Pro	CCA	1.09 (6252)	1.59 (5179)	Ala	GCA	1.04 (8704)	1.64 (7637)
	CCG	0.04 (233)	0.38 (1232)		GCG	0.03 (253)	0.50 (2341)
Uia	CAU	1.21 (3887)	1.45 (11449)	Ile	AUU*	1.77 (20387)	1.14 (32905)
nis	CAC*	0.79 (2518)	0.55 (4372)		AUC*	0.53 (6072)	0.47 (13562)
Chu	GAA*	1.79 (17850)	1.16 (12916)		AUA	0.70 (8117)	1.39 (40017)
Giu	GAG	0.21 (2093)	0.84 (9443)	A	GAU*	1.62 (24531)	1.48 (8099)
	AAU	1.46 (36698)	1.51 (37359)	Asp	GAC	0.38 (5768)	0.52 (2820)
ASI	AAC*	0.54 (13520)	0.49 (12263)		CAA*	0.84 (8293)	1.01 (20269)
T and	AAA*	1.32 (22566)	1.27 (64793)	Chr	CAG	0.10 (957)	0.61 (12312)
Lys	AAG	0.68 (11623)	0.73 (37607)	GIN	UAA*	2.57 (25488)	1.42 (28690)
C	UGU*	1.18 (24493)	1.12 (6853)		UAG	0.50 (4957)	0.96 (19357)
Cys	UGC	0.82 (16888)	0.88 (5372)		GGU*	2.10 (21405)	1.00 (2386)
	CGU*	0.82 (1586)	0.19 (1000)	Clas	GGC	0.38 (3895)	0.52 (1240)
Arg	CGC	0.09 (176)	0.14 (743)	Gly	GGA	1.39 (14105)	1.53 (3655)
	CGA	0.07 (128)	0.41 (2199)		GGG	0.13 (1314)	0.95 (2275)
	CGG	0.01 (21)	0.13 (687)	Met	AUG	1.00 (8383)	1.00 (28831)
	AGA*	4.67 (9014)	3.37 (18174)	Тгр	UGG	1.00 (4315)	1.00 (7615)
	AGG	0.34 (656)	1.77 (9567)	TER	UGA	1.00 (1231)	1.00 (15631)

 Table 27 | Correspondence Analysis Results for the Alveolate T. thermophila

Amino	Codons	Highly Biased	Weakly Biased	Amino	Codons	Highly Biased	Weakly Biased
Acids	Couons	Genes	Genes	Acids	Couons	Genes	Genes
Dha	UUU*	1.56 (35202)	1.42 (11873)		UCU*	1.52 (18436)	1.40 (11495)
Pile	UUC	0.44 (10058)	0.58 (4819)	F	UCC	0.23 (2753)	0.47 (3843)
	UUA*	2.48 (27837)	1.89 (20577)	Son	UCA*	2.05 (24928)	1.71 (14063)
	UUG*	0.86 (9666)	0.83 (9018)	501	UCG	0.20 (2383)	0.28 (2299)
Lou	CUU	1.65 (18559)	1.72 (18821)		AGU*	1.49 (18115)	1.38 (11404)
Leu	CUC	0.26 (2898)	0.49 (5321)		AGC	0.52 (6257)	0.77 (6302)
	CUA	0.60 (6692)	0.80 (8770)		ACU*	1.82 (23284)	1.70 (11140)
	CUG	0.16 (1793)	0.27 (2981)	The	ACC	0.31 (4014)	0.60 (3939)
	GUU*	2.02 (21222)	1.90 (10370)	1 mr	ACA*	1.74 (22254)	1.52 (9972)
X 7-1	GUC	0.41 (4308)	0.52 (2812)		ACG	0.13 (1647)	0.19 (1236)
vai	GUA*	1.11 (11632)	1.01 (5476)	T	UAU*	1.63 (36090)	1.50 (12128)
	GUG	0.46 (4842)	0.57 (3129)	Tyr	UAC	0.37 (8201)	0.50 (4049)
	CCU*	1.98 (13712)	1.79 (6073)		GCU	2.11 (19465)	2.08 (13966)
Pro	CCC	0.12 (862)	0.26 (879)	Ala	GCC	0.29 (2714)	0.40 (2698)
	CCA	1.74 (12083)	1.70 (5764)	Ala	GCA*	1.40 (12914)	1.19 (7962)
	CCG	0.16 (1090)	0.25 (835)		GCG	0.20 (1838)	0.33 (2189)
Hic	CAU*	1.73 (7845)	1.61 (8114)	Ile	AUU*	1.44 (32912)	1.16 (18064)
ms	CAC	0.27 (1246)	0.39 (1947)		AUC	0.41 (9342)	0.66 (10341)
Ch	CAA*	1.60 (15559)	1.51 (29064)		AUA	1.15 (26435)	1.18 (18370)
GIII	CAG	0.40 (3873)	0.49 (9478)	Acn	GAU*	1.65 (27798)	1.49 (24984)
A and	AAU*	1.53 (34619)	1.34 (29366)	Asp	GAC	0.35 (5828)	0.51 (8636)
ASII	AAC	0.47 (10768)	0.66 (14383)	Chu	GAA*	1.64 (25454)	1.61 (75557)
T era	AAA*	1.65 (28859)	1.63 (78926)	Giu	GAG	0.36 (5676)	0.39 (18266)
Lys	AAG	0.35 (6176)	0.37 (17932)		GGU*	1.18 (15007)	1.04 (3317)
Cura	UGU*	1.36 (22912)	1.26 (2759)	Chr	GGC	0.36 (4581)	0.43 (1364)
Cys	UGC	0.64 (10731)	0.74 (1615)	Gly	GGA*	1.67 (21234)	1.39 (4425)
	CGU	0.76 (1931)	0.83 (4505)		GGG	0.79 (10015)	1.14 (3612)
	CGC	0.15 (386)	0.23 (1281)	Met	AUG	1.00 (16247)	1.00 (15119)
A 110	CGA	0.48 (1214)	0.57 (3115)	Trp	UGG	1.00 (9898)	1.00 (2304)
Alg	CGG	0.10 (245)	0.18 (988)		UAA	1.73 (908)	2.16 (1131)
	AGA*	3.44 (8720)	2.82 (15388)	TER	UAG	1.27 (663)	0.84 (440)
	AGG	1.08 (2734)	1.37 (7462)		UGA	0.00 (0)	0.00 (0)

 Table 28 | Correspondence Analysis Results for the Alveolate S. coeruleus

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU*	1.79 (6725)	1.43 (6020)		UCU*	1.40 (3989)	0.75 (527)
rne	UUC	0.21 (777)	0.57 (2429)		UCC	0.23 (664)	0.41 (285)
	UUA*	4.21 (9643)	2.13 (9318)	Ser	UCA	1.59 (4517)	1.75 (1220)
	UUG	0.68 (1569)	1.15 (5032)	Sel	UCG	0.14 (396)	0.50 (346)
Lou	CUU	0.54 (1231)	0.68 (2988)		AGU*	2.24 (6387)	1.69 (1181)
Leu	CUC	0.06 (127)	0.33 (1434)		AGC	0.40 (1145)	0.90 (632)
	CUA	0.44 (1003)	1.14 (5003)		ACU*	1.58 (3493)	0.75 (1667)
	CUG	0.08 (173)	0.56 (2462)	Thr	ACC	0.24 (530)	0.25 (569)
_	GUU*	1.79 (3101)	0.86 (2350)	1111	ACA	1.99 (4384)	2.36 (5264)
Vəl	GUC	0.15 (254)	0.24 (647)		ACG	0.19 (427)	0.64 (1436)
vai	GUA	1.74 (3004)	1.81 (4978)	Twr	UAU*	1.74 (8398)	1.45 (5633)
	GUG	0.32 (561)	1.09 (3004)	I yı	UAC	0.26 (1234)	0.55 (2147)
	CCU*	1.58 (1643)	1.19 (522)		GCU*	1.56 (1607)	0.86 (430)
Pro	CCC	0.23 (244)	0.43 (190)	Δla	GCC	0.22 (229)	0.31 (154)
	CCA@	2.06 (2140)	1.93 (848)	Ala	GCA	2.11 (2177)	2.33 (1165)
	CCG	0.13 (131)	0.46 (201)		GCG	0.11 (110)	0.51 (255)
Hic	CAU*	1.75 (3098)	1.44 (3366)	Ile	AUU*	1.39 (8070)	0.77 (12856)
1115	CAC	0.25 (436)	0.56 (1300)		AUC	0.15 (869)	0.23 (3754)
Cln	CAA*	1.74 (4452)	1.33 (6024)		AUA	1.46 (8441)	2.00 (33160)
Gili	CAG	0.26 (660)	0.67 (3035)	Acr	GAU*	1.80 (13950)	1.51 (1166)
A a m	AAU*	1.76 (37758)	1.46 (7848)	Asp	GAC	0.20 (1512)	0.49 (379)
ASII	AAC	0.24 (5183)	0.54 (2901)	Chu	GAA*	1.79 (18230)	1.36 (3670)
T	AAA*	1.74 (22047)	1.38 (27271)	Giu	GAG	0.21 (2174)	0.64 (1737)
Lys	AAG	0.26 (3230)	0.62 (12370)		GGU*	1.46 (2131)	0.67 (291)
Crea	UGU*	1.61 (2364)	1.23 (1272)	Chr	GGC	0.17 (243)	0.37 (160)
Cys	UGC	0.39 (577)	0.77 (788)	Gly	GGA	2.10 (3054)	2.06 (900)
	CGU*	0.39 (348)	0.22 (242)		GGG	0.27 (392)	0.91 (397)
	CGC	0.05 (46)	0.09 (98)	Met	AUG	1.00 (3851)	1.00 (15827)
	CGA	0.21 (192)	0.53 (582)	Тгр	UGG	1.00 (749)	1.00 (1341)
Arg	CGG	0.03 (25)	0.20 (220)		UAA	2.50 (214)	1.82 (13759)
	AGA*	4.68 (4177)	3.04 (3365)	TER	UAG	0.23 (20)	0.70 (5284)
	AGG	0.64 (572)	1.93 (2137)		UGA	0.27 (23)	0.48 (3591)

 Table 29 | Correspondence Analysis Results for the Alveolate P. gallinaceum

Amino Acids	Codons	Highly Biased	Weakly Biased	Amino Acids	Codons	Highly Biased	Weakly Biased
	IIII*	Genes	Genes		UCU	Genes	Genes
Phe		1.70(11030) 0.30(2005)	0.39(494)			0.41(1773)	0.59(463)
		3.66(1/2000)	3.56(4239)			1 /0 (6103)	1.93(1519)
		0.86(3368)	1.02(1210)	Ser	UCG	0.27(1193)	0.32(2/9)
		0.73 (2830)	0.67 (798)		AGU*	2.27 (9873)	1 36 (1066)
Leu	CUC	0.14 (546)	0.14 (164)		AGC	0.41 (1786)	0.39 (303)
	CUA	0.49 (1902)	0.49 (586)		ACU	0.98 (3734)	1 34 (1756)
	CUG	0.13 (490)	0.11 (135)		ACC	0.40 (1544)	0.50 (651)
	GUU	1.45 (4569)	1.99 (3649)	Thr	ACA*	2.25 (8594)	1.88 (2473)
	GUC	0.23 (712)	0.28 (504)		ACG*	0.37 (1412)	0.28 (372)
Val	GUA*	1.69 (5323)	1.30 (2378)		UAU*	1.80 (21662)	1.57 (2189)
	GUG*	0.63 (1968)	0.43 (786)	Tyr	UAC	0.20 (2413)	0.43 (592)
	CCU*	1.66 (2284)	1.44 (1277)		GCU	1.55 (1603)	1.91 (3254)
Pro	CCC*	0.41 (572)	0.28 (249)	A la	GCC	0.35 (360)	0.47 (805)
	CCA	1.75 (2415)	2.17 (1922)	Ala	GCA*	1.85 (1912)	1.40 (2382)
	CCG*	0.18 (244)	0.11 (96)		GCG	0.25 (259)	0.22 (368)
II:a	CAU*	1.74 (9995)	1.43 (1096)	Ile	AUU	1.15 (13745)	1.43 (3489)
HIS	CAC	0.26 (1510)	0.57 (437)		AUC	0.19 (2320)	0.25 (613)
Cha	CAA	1.74 (9381)	1.78 (2680)		AUA*	1.66 (19884)	1.32 (3235)
Gin	CAG	0.26 (1395)	0.22 (339)		GAU*	1.75 (25339)	1.56 (2798)
A	AAU*	1.72 (81443)	1.54 (2853)	Asp	GAC	0.25 (3559)	0.44 (787)
Asn	AAC	0.28 (13125)	0.46 (858)	Cha	GAA*	1.70 (21807)	1.67 (7519)
T	AAA	1.62 (37891)	1.63 (6623)	Glu	GAG	0.30 (3789)	0.33 (1462)
Lys	AAG	0.38 (8974)	0.37 (1507)		GGU	1.68 (3338)	2.01 (2438)
Cria	UGU*	1.79 (5329)	1.42 (1260)	Chr	GGC*	0.17 (343)	0.13 (155)
Cys	UGC	0.21 (627)	0.58 (516)	Gly	GGA*	1.71 (3398)	1.60 (1936)
	CGU	0.62 (841)	1.28 (684)		GGG*	0.43 (851)	0.27 (326)
	CGC	0.08 (114)	0.19 (104)	Met	AUG	1.00 (10834)	1.00 (2037)
A	CGA	0.47 (640)	0.86 (462)	Тгр	UGG	1.00 (813)	1.00 (436)
Alg	CGG	0.06 (75)	0.04 (23)		UAA	2.18 (194)	1.97 (175)
	AGA*	3.58 (4872)	2.89 (1548)	TER	UAG	0.25 (22)	0.84 (75)
	AGG*	1.20 (1628)	0.73 (388)		UGA	0.57 (51)	0.19 (17)

 Table 30 | Correspondence Analysis Results for the Alveolate P. falciparum

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
DI	UUU*	1.58 (3225)	0.72 (2463)		UCU*	1.56 (2071)	0.36 (658)
Phe	UUC	0.42 (846)	1.28 (4370)	-	UCC	0.43 (567)	1.44 (2651)
	UUA*	2.96 (3650)	0.27 (604)	Com	UCA*	1.75 (2315)	0.26 (485)
	UUG	0.86 (1064)	0.94 (2113)	Ser	UCG	0.28 (376)	0.85 (1559)
T	CUU*	1.09 (1342)	0.38 (860)		AGU*	1.57 (2073)	0.69 (1266)
Leu	CUC	0.21 (257)	1.68 (3784)		AGC	0.41 (544)	2.40 (4403)
	CUA*	0.68 (837)	0.46 (1035)		ACU*	1.51 (1940)	0.37 (534)
	CUG	0.21 (260)	2.27 (5125)		ACC	0.32 (416)	1.61 (2357)
	GUU*	1.64 (1717)	0.56 (1175)	Inr	ACA*	1.82 (2339)	0.41 (601)
X 7-1	GUC	0.26 (271)	1.03 (2161)		ACG	0.34 (433)	1.61 (2350)
vai	GUA*	1.70 (1787)	0.35 (726)	True	UAU*	1.59 (4561)	0.39 (1176)
	GUG	0.40 (418)	2.06 (4317)	Туг	UAC	0.41 (1182)	1.61 (4796)
	CCU*	1.61 (1490)	0.36 (445)		GCU*	1.43 (1279)	0.46 (955)
Pro	CCC	0.48 (443)	2.07 (2553)	Ala	GCC	0.30 (267)	1.56 (3247)
	CCA*	1.66 (1538)	0.58 (719)	Ala	GCA*	1.94 (1733)	0.59 (1224)
	CCG	0.26 (242)	0.98 (1206)		GCG	0.33 (294)	1.40 (2906)
Uia	CAU*	1.64 (1713)	0.41 (779)	Ile	AUU*	1.38 (2779)	0.89 (2294)
nis	CAC	0.36 (381)	1.59 (2997)		AUC	0.25 (510)	1.48 (3798)
Clm	CAA*	1.60 (2346)	0.54 (1242)		AUA*	1.37 (2750)	0.62 (1603)
GIN	CAG	0.40 (580)	1.46 (3391)		GAU*	1.67 (4840)	0.57 (2051)
	AAU*	1.65 (6033)	0.55 (2270)	Asp	GAC	0.33 (950)	1.43 (5137)
Asn	AAC	0.35 (1284)	1.45 (5987)	Clas	GAA*	1.71 (6002)	0.62 (3102)
T	AAA*	1.59 (7364)	0.59 (3090)	Glu	GAG	0.29 (999)	1.38 (6910)
Lys	AAG	0.41 (1889)	1.41 (7384)		GGU*	1.48 (1677)	0.41 (1000)
C	UGU*	1.48 (1643)	0.36 (516)		GGC	0.29 (333)	1.28 (3154)
Cys	UGC	0.52 (570)	1.64 (2373)	Gly	GGA*	1.84 (2087)	0.74 (1824)
	CGU*	1.05 (592)	0.21 (285)		GGG	0.39 (444)	1.56 (3840)
	CGC	0.26 (145)	1.12 (1531)	Met	AUG	1.00 (1537)	1.00 (2846)
	CGA*	0.67 (374)	0.53 (719)	Тгр	UGG	1.00 (698)	1.00 (842)
Arg	CGG	0.13 (72)	1.15 (1570)		UAA	2.03 (168)	0.40 (36)
	AGA*	2.93 (1649)	0.82 (1118)	TER	UAG	0.52 (43)	1.16 (104)
	AGG	0.96 (541)	2.19 (2993)		UGA	0.45 (37)	1.44 (129)

 Table 31 | Correspondence Analysis Results for the Alveolate P. vivax

Amino	Codons	Highly Biased	Weakly Biased	Amino	Codons	Highly Biased	Weakly Biased
Acids		Genes	Genes	Acids		Genes	Genes
Dha	UUU	0.42 (2814)	1.21 (2404)		UCU	0.59 (2193)	1.64 (5208)
Pne	UUC*	1.58 (10654)	0.79 (1575)	-	UCC*	0.97 (3574)	0.78 (2470)
	UUA	0.13 (608)	0.25 (885)	Som	UCA	0.46 (1690)	0.89 (2842)
	UUG*	0.92 (4392)	0.24 (836)	Ser	UCG*	1.97 (7274)	0.94 (2994)
Lou	CUU	0.60 (2886)	2.08 (7318)		AGU	0.71 (2615)	0.76 (2421)
Leu	CUC	1.34 (6399)	1.47 (5183)		AGC*	1.30 (4809)	0.99 (3156)
	CUA	0.37 (1763)	1.11 (3897)		ACU	0.57 (2701)	1.40 (3124)
	CUG*	2.65 (12672)	0.85 (2971)	The	ACC*	1.03 (4890)	0.87 (1936)
	GUU	0.40 (2420)	1.40 (6472)	Inr	ACA	0.48 (2280)	0.94 (2113)
Val	GUC	1.07 (6451)	1.16 (5369)		ACG*	1.91 (9044)	0.79 (1774)
vai	GUA	0.26 (1597)	0.82 (3816)	Tun	UAU	0.30 (1408)	1.32 (4148)
	GUG*	2.27 (13753)	0.62 (2846)	1 yr	UAC*	1.70 (8133)	0.68 (2151)
	CCU	0.81 (2659)	1.01 (4998)		GCU	1.05 (7268)	1.45 (10423)
Pro	CCC*	1.08 (3555)	0.89 (4370)	Ala	GCC*	1.47 (10204)	0.67 (4796)
	CCA	0.51 (1675)	1.24 (6120)	Ala	GCA	0.45 (3098)	1.08 (7784)
	CCG*	1.60 (5272)	0.86 (4254)		GCG*	1.04 (7182)	0.80 (5719)
His	CAU	0.34 (1066)	1.18 (10958)	Ile	AUU	0.83 (4243)	1.33 (1540)
1115	CAC*	1.66 (5194)	0.82 (7594)		AUC*	2.09 (10637)	0.98 (1128)
Cln	CAA	0.38 (2315)	1.68 (17131)		AUA	0.07 (379)	0.69 (800)
Gill	CAG*	1.62 (9780)	0.32 (3317)	Acn	GAU	0.48 (4351)	1.06 (7364)
Acr	AAU	0.36 (2172)	1.14 (1490)	Asp	GAC*	1.52 (13951)	0.94 (6479)
ASII	AAC*	1.64 (9923)	0.86 (1129)	Chu	GAA	0.46 (4891)	1.58 (11099)
T and	AAA	0.29 (3081)	1.51 (2051)	Giu	GAG*	1.54 (16525)	0.42 (2955)
Lys	AAG*	1.71 (18155)	0.49 (671)		GGU*	1.18 (5935)	0.70 (6722)
Crra	UGU	0.64 (1421)	0.96 (6003)	Chr	GGC*	2.03 (10192)	1.03 (9850)
Cys	UGC*	1.36 (3015)	1.04 (6534)	Gly	GGA	0.55 (2775)	1.60 (15308)
	CGU*	2.11 (5500)	1.11 (8895)		GGG	0.24 (1180)	0.66 (6323)
	CGC*	2.46 (6419)	1.10 (8851)	Met	AUG	1.00 (8892)	1.00 (713)
	CGA	0.56 (1466)	1.89 (15189)	Тгр	UGG	1.00 (3682)	1.00 (5719)
Arg	CGG	0.40 (1053)	1.02 (8169)		UAA	0.63 (24)	0.90 (3507)
	AGA	0.23 (607)	0.58 (4642)	TER	UAG	0.44 (17)	0.22 (838)
	AGG	0.24 (627)	0.30 (2427)		UGA	1.93 (74)	1.88 (7334)

 Table 32 | Correspondence Analysis Results for the Stramenopile P. infestans

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dha	UUU	0.06 (502)	1.09 (4670)		UCU	0.12 (514)	0.99 (4397)
Pne	UUC*	1.94 (16382)	0.91 (3887)	-	UCC*	1.29 (5663)	0.71 (3142)
	UUA	0.01 (52)	0.56 (2520)	Sor	UCA	0.04 (198)	1.15 (5122)
	UUG	0.12 (665)	1.03 (4647)	501	UCG*	2.53 (11154)	1.17 (5179)
Lan	CUU	0.12 (675)	1.30 (5874)		AGU	0.13 (560)	0.93 (4144)
Leu	CUC*	2.19 (12306)	1.03 (4678)		AGC*	1.89 (8343)	1.05 (4650)
	CUA	0.04 (199)	0.96 (4359)		ACU	0.11 (607)	1.03 (4796)
	CUG*	3.53 (19846)	1.12 (5053)	The	ACC*	1.32 (7382)	0.82 (3821)
	GUU	0.08 (644)	1.14 (5286)	IIII	ACA	0.06 (309)	1.12 (5229)
Val	GUC*	1.27 (9734)	0.93 (4274)		ACG*	2.52 (14125)	1.03 (4809)
vai	GUA	0.03 (227)	0.86 (3959)	Tur	UAU	0.04 (232)	1.03 (3669)
	GUG*	2.61 (19946)	1.07 (4952)	I yI	UAC*	1.96 (11922)	0.97 (3440)
	CCU	0.17 (738)	1.04 (4458)		GCU	0.28 (2759)	1.32 (8863)
Pro	CCC*	1.87 (8340)	0.67 (2862)	Ala	GCC*	2.46 (24477)	0.65 (4347)
	CCA	0.05 (207)	1.39 (5932)	Ala	GCA	0.06 (594)	1.11 (7463)
	CCG*	1.92 (8580)	0.90 (3820)		GCG*	1.21 (12007)	0.92 (6157)
Hic	CAU	0.04 (155)	1.09 (5447)	Ile	AUU	0.21 (1275)	1.26 (4629)
1115	CAC*	1.96 (8463)	0.91 (4574)		AUC*	2.78 (17227)	1.09 (3997)
Cln	CAA	0.06 (451)	1.24 (7924)		AUA	0.01 (55)	0.64 (2360)
Gill	CAG*	1.94 (14024)	0.76 (4861)	Acn	GAU	0.06 (657)	1.15 (7715)
Aan	AAU	0.04 (306)	1.08 (4596)	Asp	GAC*	1.94 (21054)	0.85 (5675)
ASII	AAC*	1.96 (14313)	0.92 (3912)	Chu	GAA	0.06 (724)	1.14 (7562)
T and	AAA	0.03 (372)	0.96 (5429)	Giu	GAG*	1.94 (23896)	0.86 (5708)
Lys	AAG*	1.97 (23754)	1.04 (5920)		GGU	0.29 (2090)	1.03 (5415)
Crea	UGU	0.08 (238)	0.95 (3913)	Chr	GGC*	3.43 (24842)	0.90 (4738)
Cys	UGC*	1.92 (5528)	1.05 (4307)	Gly	GGA	0.15 (1103)	1.29 (6770)
	CGU	0.57 (1794)	1.06 (5840)		GGG	0.13 (942)	0.78 (4084)
	CGC*	4.78 (15157)	1.10 (6052)	Met	AUG	1.00 (10486)	1.00 (5140)
Arg	CGA	0.11 (348)	1.41 (7774)	Trp	UGG	1.00 (4672)	1.00 (6240)
	CGG	0.38 (1201)	1.00 (5501)		UAA	1.67 (691)	0.51 (666)
	AGA	0.04 (116)	0.81 (4454)	TER	UAG	0.97 (402)	0.39 (505)
	AGG	0.13 (424)	0.61 (3353)		UGA	0.36 (147)	2.11 (2762)

 Table 33 | Correspondence Analysis Results for the Stramenopile P. sojae

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU*	1.48 (6024)	0.97 (6522)		UCU*	1.07 (3107)	0.71 (4243)
1 ne	UUC	0.52 (2114)	1.03 (6879)	-	UCC	0.51 (1483)	0.63 (3764)
	UUA	0.94 (3505)	0.92 (5079)	Sor	UCA	1.21 (3512)	1.20 (7169)
	UUG	1.31 (4886)	1.71 (9416)	501	UCG*	1.21 (3504)	1.07 (6440)
Lou	CUU*	1.59 (5951)	0.77 (4245)		AGU*	1.21 (3515)	0.85 (5126)
Leu	CUC	0.66 (2455)	0.77 (4256)		AGC	0.79 (2299)	1.54 (9251)
	CUA	0.61 (2288)	0.68 (3743)		ACU*	1.10 (3906)	0.85 (4812)
	CUG	0.89 (3334)	1.16 (6388)	The	ACC	0.53 (1893)	0.76 (4328)
	GUU*	1.14 (5186)	0.78 (3340)	1 111	ACA	1.24 (4414)	1.20 (6823)
Val	GUC	0.75 (3407)	1.01 (4343)		ACG	1.13 (4012)	1.20 (6808)
vai	GUA	0.79 (3595)	0.82 (3508)	Tun	UAU*	1.03 (2964)	0.98 (4462)
	GUG	1.32 (6025)	1.39 (5954)	1 yr	UAC	0.97 (2782)	1.02 (4675)
	CCU*	1.24 (3045)	0.63 (1705)		GCU*	1.59 (8806)	0.96 (4287)
Due	CCC	0.53 (1289)	0.63 (1706)	Ala	GCC*	0.70 (3897)	0.62 (2773)
F10	CCA	1.44 (3518)	1.56 (4231)	Ala	GCA	1.06 (5891)	1.31 (5855)
	CCG	0.79 (1932)	1.18 (3184)		GCG	0.65 (3622)	1.11 (4966)
Hic	CAU*	1.14 (2929)	0.98 (4825)	Ile	AUU*	1.79 (7389)	1.08 (5760)
1115	CAC	0.86 (2232)	1.02 (5039)		AUC	0.82 (3396)	1.10 (5838)
Cln	CAA	1.08 (6219)	1.15 (6936)		AUA	0.38 (1568)	0.82 (4390)
Gili	CAG*	0.92 (5272)	0.85 (5147)	Aan	GAU*	1.17 (10602)	0.99 (3219)
A and	AAU*	1.25 (6896)	1.01 (5180)	Asp	GAC	0.83 (7557)	1.01 (3304)
ASI	AAC	0.75 (4162)	0.99 (5066)	Chu	GAA	1.06 (13031)	1.22 (4382)
T	AAA	0.91 (8734)	1.02 (8793)	Giù	GAG*	0.94 (11441)	0.78 (2820)
Lys	AAG*	1.09 (10508)	0.98 (8383)		GGU*	1.70 (6254)	0.69 (2104)
Crea	UGU*	1.22 (1402)	0.80 (7190)	Chr	GGC	1.03 (3784)	1.05 (3166)
Cys	UGC	0.78 (897)	1.20 (10803)	Gly	GGA	0.97 (3577)	1.40 (4236)
	CGU*	2.38 (5744)	0.63 (4026)		GGG	0.30 (1105)	0.86 (2612)
	CGC*	1.43 (3464)	0.78 (4958)	Met	AUG	1.00 (6682)	1.00 (7836)
Ang	CGA*	1.24 (2988)	0.97 (6194)	Тгр	UGG	1.00 (2063)	1.00 (10516)
Alg	CGG	0.40 (965)	0.71 (4497)		UAA	1.41 (356)	0.77 (5007)
	AGA	0.38 (919)	1.64 (10397)	TER	UAG	0.91 (229)	0.64 (4149)
	AGG	0.18 (429)	1.27 (8063)		UGA	0.68 (171)	1.59 (10367)

 Table 34 | Correspondence Analysis Results for the Stramenopile P. halstedii

Amino	Codona	Highly Bissod	Weakly	Amino	Codona	Highly Bissod	Weakly
Acids	Couolis	Genes	Genes	Acids	Couolis	Genes	Genes
Dha	UUU	0.78 (4965)	1.00 (3298)		UCU	0.35 (985)	0.73 (2697)
Pne	UUC*	1.22 (7726)	1.00 (3274)	-	UCC*	1.42 (4046)	1.31 (4870)
	UUA	0.05 (200)	0.35 (1330)	San	UCA	0.16 (464)	0.75 (2779)
	UUG*	1.87 (7811)	1.40 (5360)	Ser	UCG*	2.40 (6817)	1.56 (5775)
Lan	CUU	0.32 (1340)	0.85 (3236)		AGU	0.33 (930)	0.69 (2563)
Leu	CUC*	1.96 (8193)	1.46 (5562)		AGC*	1.34 (3819)	0.96 (3539)
	CUA	0.11 (443)	0.53 (2010)		ACU	0.24 (950)	0.70 (3233)
	CUG*	1.70 (7093)	1.42 (5421)	The	ACC*	1.45 (5721)	1.24 (5701)
_	GUU	0.17 (900)	0.68 (3131)	Inr	ACA	0.24 (942)	0.85 (3921)
Val	GUC*	1.42 (7696)	1.25 (5721)		ACG*	2.08 (8218)	1.21 (5546)
vai	GUA	0.12 (657)	0.46 (2104)	Tran	UAU	0.19 (868)	0.67 (1571)
	GUG*	2.29 (12386)	1.60 (7328)	1 yr	UAC*	1.81 (8151)	1.33 (3146)
	CCU	0.47 (1295)	0.83 (3590)		GCU	0.27 (1634)	0.74 (4501)
Pro	CCC*	1.74 (4804)	1.09 (4730)	Ala	GCC*	1.81 (10936)	1.33 (8026)
	CCA	0.29 (789)	1.14 (4913)	Ala	GCA	0.24 (1428)	0.86 (5185)
	CCG*	1.51 (4179)	0.94 (4058)		GCG*	1.68 (10108)	1.08 (6514)
Hic	CAU	0.44 (1294)	0.84 (3743)	Ile	AUU	0.69 (3511)	1.03 (2935)
1115	CAC*	1.56 (4630)	1.16 (5183)		AUC*	2.28 (11624)	1.55 (4409)
Cln	CAA	0.97 (4401)	1.17 (6668)		AUA	0.03 (128)	0.41 (1169)
Gili	CAG*	1.03 (4694)	0.83 (4690)	Acr	GAU	0.26 (1991)	0.64 (5290)
A a m	AAU	0.15 (837)	0.63 (2319)	Asp	GAC*	1.74 (13548)	1.36 (11249)
ASII	AAC*	1.85 (10377)	1.37 (4986)	Chu	GAA	1.09 (8402)	1.09 (7009)
T and	AAA	0.25 (2192)	0.77 (3763)	Giù	GAG	0.91 (6956)	0.91 (5854)
Lys	AAG*	1.75 (15400)	1.23 (6011)		GGU	0.49 (2359)	0.85 (2651)
Crea	UGU	0.30 (592)	0.84 (1608)	Chr	GGC*	2.37 (11364)	1.46 (4552)
Cys	UGC*	1.70 (3328)	1.16 (2216)	Gly	GGA	0.27 (1291)	0.87 (2705)
	CGU	0.67 (1403)	1.03 (2706)		GGG*	0.87 (4185)	0.82 (2558)
	CGC*	3.86 (8022)	1.63 (4278)	Met	AUG	1.00 (6898)	1.00 (6062)
A	CGA	0.52 (1082)	1.48 (3898)	Тгр	UGG	1.00 (3461)	1.00 (2987)
Arg	CGG	0.84 (1739)	1.05 (2757)		UAA	1.91 (430)	1.11 (247)
	AGA	0.05 (110)	0.41 (1070)	TER	UAG	0.86 (194)	0.92 (205)
	AGG	0.06 (117)	0.41 (1068)		UGA	0.23 (51)	0.97 (216)

 Table 35 | Correspondence Analysis Results for the Stramenopile A. astaci

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.98 (6395)	0.95 (1653)		UCU	0.32 (894)	0.68 (1297)
rne	UUC	1.02 (6708)	1.05 (1834)		UCC	1.10 (3117)	1.13 (2147)
	UUA	0.06 (226)	0.28 (696)	Sor	UCA	0.22 (623)	0.68 (1284)
	UUG	1.34 (5253)	1.64 (4103)	Ser	UCG*	2.70 (7634)	1.64 (3118)
Lou	CUU	0.50 (1948)	0.77 (1935)		AGU	0.37 (1057)	0.67 (1273)
Leu	CUC*	2.37 (9246)	1.54 (3859)		AGC*	1.29 (3661)	1.20 (2284)
	CUA	0.14 (540)	0.37 (916)		ACU	0.29 (1104)	0.66 (1453)
	CUG*	1.60 (6240)	1.41 (3521)	The	ACC	1.08 (4148)	1.07 (2357)
	GUU	0.36 (1966)	0.72 (1723)	Inr	ACA	0.40 (1543)	0.85 (1877)
Val	GUC*	1.81 (9762)	1.35 (3229)		ACG*	2.23 (8528)	1.41 (3097)
vai	GUA	0.14 (735)	0.40 (963)	Tum	UAU	0.28 (1183)	0.62 (774)
	GUG*	1.69 (9107)	1.52 (3626)	1 yr	UAC*	1.72 (7387)	1.38 (1703)
	CCU	0.42 (1122)	0.92 (1241)		GCU	0.36 (1971)	0.74 (3348)
Pro	CCC*	1.15 (3059)	0.92 (1244)	Ala	GCC*	1.45 (7976)	1.17 (5268)
	CCA	0.57 (1502)	1.11 (1507)	Ala	GCA	0.43 (2363)	0.92 (4122)
	CCG*	1.86 (4925)	1.05 (1424)		GCG*	1.77 (9722)	1.17 (5241)
Hic	CAU	0.49 (1290)	0.80 (1638)	Ile	AUU	0.85 (3421)	1.14 (2111)
1115	CAC*	1.51 (3978)	1.20 (2463)		AUC*	2.08 (8379)	1.54 (2833)
Cln	CAA	0.93 (3142)	1.11 (5673)		AUA	0.07 (290)	0.32 (590)
Gili	CAG*	1.07 (3636)	0.89 (4503)	Acr	GAU	0.33 (1585)	0.62 (3806)
A a m	AAU	0.30 (1202)	0.64 (1680)	Asp	GAC*	1.67 (7886)	1.38 (8407)
ASII	AAC*	1.70 (6760)	1.36 (3601)	Cha	GAA	0.94 (3167)	1.07 (8886)
T	AAA	0.45 (1561)	0.62 (4549)	Glu	GAG*	1.06 (3574)	0.93 (7702)
Lys	AAG*	1.55 (5362)	1.38 (10047)		GGU	0.49 (1965)	0.89 (1368)
Crea	UGU	0.38 (915)	0.71 (521)	Chr	GGC*	2.01 (8037)	1.49 (2291)
Cys	UGC*	1.62 (3964)	1.29 (938)	Gly	GGA	0.39 (1569)	0.85 (1306)
	CGU	0.62 (930)	1.00 (1993)		GGG*	1.10 (4388)	0.76 (1166)
	CGC*	2.97 (4472)	1.82 (3614)	Met	AUG	1.00 (6686)	1.00 (4393)
Ang	CGA	0.85 (1275)	1.38 (2746)	Тгр	UGG	1.00 (4385)	1.00 (1273)
Alg	CGG*	1.28 (1928)	1.03 (2040)		UAA	1.20 (192)	1.23 (214)
	AGA	0.09 (139)	0.37 (730)	TER	UAG	1.19 (191)	0.88 (152)
	AGG	0.19 (281)	0.41 (818)		UGA	0.61 (97)	0.89 (155)

 Table 36 | Correspondence Analysis Results for the Stramenopile A. invadans

Amino Acids		Highly	Weakly	Amino	a 1	Highly	Weakly
	Codons	Biased Genes	Biased Genes	Acids	Codons	Biased Genes	Biased Genes
	UUU	0.74 (4874)	1.15 (4130)		UCU	0.07 (197)	0.63 (2587)
Phe	UUC*	1.26 (8367)	0.85 (3039)	-	UCC	0.76 (2292)	0.83 (3389)
	UUA	0.00 (17)	0.36 (1754)	G	UCA	0.03 (91)	0.63 (2572)
	UUG	0.53 (2337)	1.03 (4967)	Ser	UCG*	3.68 (11143)	1.95 (7975)
	CUU	0.41 (1775)	0.98 (4693)		AGU	0.09 (279)	0.63 (2558)
Leu	CUC*	4.41 (19284)	1.98 (9507)		AGC@	1.38 (4165)	1.32 (5405)
	CUA	0.01 (56)	0.37 (1763)		ACU	0.05 (229)	0.48 (2420)
	CUG	0.63 (2762)	1.28 (6172)		ACC@	1.00 (4311)	0.96 (4886)
	GUU	0.14 (776)	0.63 (3194)	Inr	ACA	0.07 (296)	0.81 (4103)
X 7. I	GUC*	2.73 (15005)	1.65 (8404)		ACG*	2.88 (12396)	1.76 (8922)
vai	GUA	0.01 (79)	0.38 (1922)	T	UAU	0.11 (532)	0.62 (1635)
	GUG	1.11 (6091)	1.34 (6797)	Tyr	UAC*	1.89 (9278)	1.38 (3650)
	CCU	0.13 (417)	0.58 (2622)		GCU	0.21 (1560)	0.65 (5343)
Pro	CCC*	1.34 (4178)	0.81 (3674)	Ala	GCC*	1.98 (14524)	1.15 (9513)
	CCA	0.07 (222)	1.12 (5071)	Ala	GCA	0.08 (556)	0.81 (6662)
	CCG*	2.46 (7695)	1.50 (6789)		GCG*	1.73 (12703)	1.39 (11482)
Hic	CAU	0.19 (649)	0.73 (3051)	Ile	AUU	0.66 (3623)	1.06 (3365)
1115	CAC*	1.81 (6155)	1.27 (5275)		AUC*	2.34 (12867)	1.55 (4914)
Cln	CAA	0.27 (1405)	1.01 (5033)		AUA	0.00 (9)	0.38 (1216)
GIII	CAG*	1.73 (8944)	0.99 (4885)	Agn	GAU	0.21 (1916)	0.58 (4181)
A a m	AAU	0.04 (270)	0.69 (2415)	Asp	GAC*	1.79 (16047)	1.42 (10172)
ASII	AAC*	1.96 (12227)	1.31 (4567)	Cha	GAA	0.50 (4826)	0.71 (3998)
T and	AAA	0.04 (426)	0.72 (2858)	Giu	GAG*	1.50 (14322)	1.29 (7331)
Lys	AAG*	1.96 (22412)	1.28 (5055)		GGU	0.60 (3191)	1.01 (3988)
Cura	UGU	0.07 (156)	0.58 (1705)	Chr	GGC*	3.21 (17077)	1.82 (7161)
Cys	UGC*	1.93 (4363)	1.42 (4135)	Gly	GGA	0.02 (85)	0.57 (2263)
	CGU	0.55 (1294)	1.00 (3527)		GGG	0.17 (910)	0.60 (2368)
	CGC*	4.93 (11689)	2.11 (7418)	Met	AUG	1.00 (8788)	1.00 (5512)
A	CGA	0.07 (158)	1.17 (4131)	Тгр	UGG	1.00 (3629)	1.00 (3631)
Alg	CGG	0.44 (1035)	1.05 (3700)		UAA	2.26 (719)	0.95 (313)
	AGA	0.01 (29)	0.38 (1329)	TER	UAG	0.65 (207)	0.86 (284)
	AGG	0.01 (13)	0.29 (1015)		UGA	0.09 (29)	1.19 (395)

 Table 37 | Correspondence Analysis Results for the Stramenopile S. parasitica

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Phe	UUU	1.00 (3947)	1.20 (8516)		UCU	0.18 (630)	1.32 (9368)
1 IIC	UUC*	1.00 (3947)	0.80 (5637)	-	UCC*	2.16 (7725)	0.68 (4800)
	UUA	0.01 (21)	0.85 (4956)	Ser	UCA	0.04 (127)	1.35 (9550)
	UUG	0.20 (819)	1.64 (9537)	SCI	UCG*	1.74 (6208)	0.96 (6814)
Lou	CUU	0.24 (992)	1.31 (7647)		AGU	0.06 (221)	0.98 (6935)
Leu	CUC*	2.70 (11247)	0.76 (4457)		AGC*	1.83 (6554)	0.70 (4983)
	CUA	0.06 (262)	0.73 (4273)		ACU	0.06 (201)	1.17 (6841)
	CUG*	2.79 (11614)	0.71 (4111)	The	ACC*	2.34 (8530)	0.69 (4073)
	GUU	0.27 (1170)	1.42 (8161)	1 111	ACA	0.20 (725)	1.37 (8025)
Vəl	GUC*	2.39 (10165)	0.85 (4888)		ACG*	1.41 (5141)	0.77 (4509)
vai	GUA	0.07 (302)	0.89 (5120)	Tur	UAU	0.12 (355)	1.09 (5031)
-	GUG*	1.27 (5393)	0.84 (4844)	1 yr	UAC*	1.88 (5424)	0.91 (4183)
	CCU	0.16 (683)	1.20 (5293)		GCU	0.16 (1232)	1.26 (8304)
Pro	CCC*	1.89 (8163)	0.59 (2622)	Ala	GCC*	2.36 (17611)	0.68 (4498)
	CCA	0.24 (1030)	1.52 (6732)	Ala	GCA	0.28 (2082)	1.45 (9557)
	CCG*	1.72 (7437)	0.69 (3046)		GCG*	1.20 (8964)	0.61 (4022)
Hic	CAU	0.11 (336)	1.20 (5126)	Ile	AUU	0.34 (870)	1.36 (10122)
1115	CAC*	1.89 (5967)	0.80 (3408)		AUC*	2.58 (6699)	0.89 (6605)
Cln	CAA	0.37 (1433)	1.29 (10142)		AUA	0.08 (215)	0.75 (5614)
Gili	CAG*	1.63 (6338)	0.71 (5527)	Acr	GAU	0.22 (1795)	1.27 (16831)
A a n	AAU	0.13 (498)	1.21 (12467)	Asp	GAC*	1.78 (14188)	0.73 (9661)
ASI	AAC*	1.87 (7424)	0.79 (8118)	Cha	GAA	0.53 (4789)	1.35 (21103)
T and	AAA	0.33 (1642)	1.19 (15812)	Giù	GAG*	1.47 (13178)	0.65 (10101)
Lys	AAG*	1.67 (8218)	0.81 (10664)		GGU	0.19 (1291)	1.18 (6707)
Cre	UGU	0.14 (264)	1.08 (3279)	Chr	GGC*	1.65 (10952)	0.68 (3884)
Cys	UGC*	1.86 (3581)	0.92 (2819)	Gly	GGA	0.60 (3991)	1.50 (8521)
	CGU	0.14 (500)	0.92 (3611)		GGG*	1.55 (10279)	0.64 (3624)
	CGC*	1.47 (5066)	0.62 (2442)	Met	AUG	1.00 (4786)	1.00 (9252)
	CGA	0.33 (1133)	1.42 (5595)	Тгр	UGG	1.00 (3349)	1.00 (3964)
Arg	CGG*	2.76 (9527)	0.54 (2112)		UAA	0.39 (77)	1.15 (228)
	AGA	0.17 (572)	1.70 (6680)	TER	UAG	1.48 (294)	0.72 (144)
	AGG*	1.14 (3937)	0.80 (3145)		UGA	1.13 (225)	1.13 (225)

 Table 38 | Correspondence Analysis Results for the Stramenopile P. multistriata

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
	UUU	0.72 (2522)	1.12 (4000)		UCU*	1.37 (2940)	1.12 (4510)
Phe	UUC*	1.28 (4520)	0.88 (3152)		UCC*	1.86 (3977)	0.65 (2606)
	UUA	0.08 (205)	0.95 (3444)	G	UCA	0.43 (914)	1.61 (6484)
	UUG*	1.96 (4926)	1.61 (5792)	Ser	UCG	0.70 (1499)	0.97 (3926)
	CUU*	1.53 (3863)	0.93 (3373)		AGU*	1.07 (2282)	0.95 (3816)
Leu	CUC*	2.03 (5109)	0.80 (2879)		AGC	0.57 (1223)	0.71 (2863)
	CUA	0.19 (487)	0.68 (2456)		ACU*	1.20 (3336)	0.99 (3367)
	CUG	0.20 (515)	1.03 (3702)	The	ACC*	1.81 (5022)	0.51 (1744)
	GUU*	1.23 (4036)	1.15 (3780)	Inr	ACA	0.34 (955)	1.55 (5281)
X 7-1	GUC*	1.33 (4376)	0.71 (2332)		ACG	0.65 (1801)	0.94 (3199)
vai	GUA	0.29 (956)	1.00 (3280)	Tree	UAU	0.52 (1449)	1.08 (2942)
-	GUG	1.15 (3774)	1.14 (3729)	Туг	UAC*	1.48 (4129)	0.92 (2515)
	CCU*	1.39 (2826)	0.98 (2932)		GCU*	1.35 (6593)	1.12 (3389)
Pro	CCC*	1.68 (3407)	0.44 (1324)	Ala	GCC*	1.71 (8356)	0.52 (1584)
	CCA	0.63 (1282)	1.70 (5097)	Ala	GCA	0.54 (2632)	1.79 (5414)
	CCG	0.30 (618)	0.88 (2653)		GCG	0.39 (1925)	0.57 (1741)
Hic	CAU	0.76 (1191)	1.17 (3669)	Ile	AUU*	1.45 (4723)	1.16 (4092)
1115	CAC*	1.24 (1941)	0.83 (2611)		AUC*	1.49 (4842)	0.93 (3296)
Cln	CAA	0.84 (2585)	1.40 (6383)		AUA	0.05 (178)	0.91 (3198)
GIII	CAG*	1.16 (3566)	0.60 (2720)	Aan	GAU	1.19 (6939)	1.24 (6316)
Aan	AAU	0.69 (2659)	1.08 (4533)	Asp	GAC*	0.81 (4721)	0.76 (3896)
ASII	AAC*	1.31 (4993)	0.92 (3893)	Chu	GAA	0.64 (4408)	1.17 (6339)
T	AAA	0.41 (2770)	1.10 (4539)	Giu	GAG*	1.36 (9313)	0.83 (4512)
Lys	AAG*	1.59 (10775)	0.90 (3717)		GGU	0.89 (3364)	1.04 (3406)
Crea	UGU	0.92 (1434)	1.02 (2942)	Chr	GGC	0.55 (2084)	0.71 (2310)
Cys	UGC*	1.08 (1676)	0.98 (2828)	Gly	GGA*	2.16 (8127)	1.50 (4905)
	CGU*	2.89 (4075)	0.92 (2515)		GGG	0.39 (1470)	0.74 (2425)
	CGC*	1.03 (1448)	0.42 (1163)	Met	AUG	1.00 (5493)	1.00 (5205)
A	CGA	0.38 (533)	1.24 (3387)	Тгр	UGG	1.00 (1956)	1.00 (4323)
Arg	CGG	0.11 (152)	0.70 (1918)		UAA	2.03 (345)	0.51 (687)
	AGA	0.35 (497)	1.69 (4632)	TER	UAG	0.62 (105)	0.53 (710)
	AGG*	1.24 (1748)	1.03 (2829)		UGA	0.35 (59)	1.96 (2645)

 Table 39 | Correspondence Analysis Results for the Stramenopile T. pseudonana

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.47 (1784)	1.38 (3744)		UCU	0.55 (1435)	1.39 (2074)
Plie	UUC*	1.53 (5832)	0.62 (1691)		UCC*	2.44 (6363)	0.64 (951)
	UUA	0.09 (335)	1.70 (3277)	Son	UCA	0.26 (666)	1.34 (2000)
	UUG	1.09 (4176)	1.19 (2286)	Ser	UCG*	1.12 (2928)	0.75 (1114)
Lou	CUU	0.49 (1866)	1.27 (2437)		AGU	0.32 (828)	1.12 (1673)
Leu	CUC*	2.15 (8282)	0.49 (939)		AGC*	1.31 (3407)	0.75 (1121)
	CUA	0.16 (600)	0.71 (1361)		ACU	0.34 (889)	1.15 (1799)
	CUG*	2.03 (7823)	0.65 (1248)	The	ACC*	1.74 (4576)	0.60 (934)
	GUU	0.25 (970)	1.33 (2251)	1 111	ACA	0.35 (926)	1.55 (2418)
Val	GUC*	1.41 (5469)	0.72 (1229)		ACG*	1.56 (4105)	0.70 (1091)
vai	GUA	0.19 (740)	1.14 (1930)	Tun	UAU	0.30 (732)	1.27 (2590)
	GUG*	2.15 (8382)	0.82 (1385)	1 yr	UAC*	1.70 (4215)	0.73 (1486)
	CCU	0.77 (2749)	1.47 (1665)		GCU	0.37 (2065)	1.33 (2173)
Pro	CCC*	1.96 (7015)	0.62 (708)	Ala	GCC*	1.92 (10657)	0.63 (1020)
	CCA	0.29 (1035)	1.31 (1487)	Ala	GCA	0.36 (1990)	1.40 (2277)
	CCG*	0.98 (3524)	0.60 (682)		GCG*	1.35 (7489)	0.65 (1058)
Hic	CAU	0.44 (1062)	1.32 (2197)	Ile	AUU	0.51 (1199)	1.46 (3536)
1115	CAC*	1.56 (3715)	0.68 (1126)		AUC*	2.30 (5366)	0.66 (1607)
Ch	CAA	0.50 (1804)	1.40 (3040)		AUA	0.19 (449)	0.88 (2141)
GIII	CAG*	1.50 (5363)	0.60 (1314)	Aan	GAU	0.39 (1977)	1.33 (3322)
	AAU	0.44 (1092)	1.35 (3234)	Asp	GAC*	1.61 (8283)	0.67 (1659)
Asn	AAC*	1.56 (3835)	0.65 (1545)		GAA	0.40 (3460)	1.29 (3531)
T	AAA	0.44 (2123)	1.29 (4434)	Glu	GAG*	1.60 (13722)	0.71 (1935)
Lys	AAG*	1.56 (7631)	0.71 (2426)		GGU	0.34 (1815)	1.21 (2127)
Crea	UGU	0.43 (574)	1.12 (1515)	Chr	GGC*	1.40 (7364)	0.69 (1216)
Cys	UGC*	1.57 (2109)	0.88 (1188)	Gly	GGA	0.58 (3080)	1.45 (2537)
	CGU	0.52 (1348)	1.16 (1501)		GGG*	1.67 (8831)	0.65 (1140)
	CGC*	1.68 (4322)	0.62 (804)	Met	AUG	1.00 (5184)	1.00 (2859)
	CGA	0.59 (1534)	1.15 (1486)	Тгр	UGG	1.00 (2761)	1.00 (1787)
Arg	CGG*	2.04 (5253)	0.54 (698)		UAA	0.65 (110)	1.23 (821)
	AGA	0.26 (659)	1.59 (2059)	TER	UAG	0.90 (152)	0.82 (549)
	AGG	0.91 (2354)	0.93 (1204)		UGA	1.45 (246)	0.94 (628)

 Table 40 | Correspondence Analysis Results for the Stramenopile N. gaditana

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Phe	UUU	0.02 (42)	1.14 (5826)		UCU	0.00 (6)	1.26 (4725)
ТПС	UUC*	1.98 (5474)	0.86 (4438)	-	UCC*	2.21 (3019)	0.85 (3182)
	UUA	0.00 (11)	0.53 (2652)	Ser	UCA	0.00 (6)	1.28 (4806)
	UUG	0.05 (124)	1.05 (5282)	Ser	UCG*	2.33 (3189)	0.92 (3469)
Lou	CUU	0.01 (13)	1.46 (7368)		AGU	0.01 (8)	0.83 (3133)
Leu	CUC*	4.78 (12062)	1.21 (6081)		AGC*	1.44 (1975)	0.87 (3269)
-	CUA	0.00 (7)	0.76 (3832)		ACU	0.00 (2)	1.11 (4271)
	CUG*	1.15 (2911)	1.00 (5023)	The	ACC	0.78 (1402)	0.83 (3196)
	GUU	0.00 (10)	1.15 (5467)	1 111	ACA	0.00 (4)	1.24 (4766)
Val	GUC*	3.01 (9358)	1.10 (5207)		ACG*	3.22 (5818)	0.81 (3094)
vai	GUA	0.00 (5)	0.67 (3195)	Tur	UAU	0.00 (7)	1.06 (3682)
	GUG	0.99 (3065)	1.07 (5071)	I yI	UAC*	2.00 (3827)	0.94 (3237)
	CCU	0.01 (12)	1.11 (3963)		GCU	0.00 (26)	1.11 (7817)
Dro	CCC*	1.80 (4273)	0.78 (2796)	Alo	GCC*	1.51 (10770)	0.84 (5929)
Pro	CCA	0.01 (16)	1.31 (4700)	Ala	GCA	0.00 (26)	1.25 (8821)
	CCG*	2.18 (5172)	0.79 (2841)		GCG*	2.48 (17699)	0.79 (5570)
Hic	CAU	0.00 (7)	1.09 (4993)	Ile	AUU	0.01 (7)	1.24 (5801)
1115	CAC*	2.00 (3106)	0.91 (4206)		AUC*	2.99 (4048)	1.03 (4789)
Cln	CAA	0.01 (25)	1.09 (6255)		AUA	0.00 (2)	0.73 (3418)
GIII	CAG*	1.99 (3318)	0.91 (5255)	Aan	GAU	0.01 (48)	1.17 (9480)
Aam	AAU	0.01 (14)	1.18 (5934)	Asp	GAC*	1.99 (11651)	0.83 (6790)
ASI	AAC*	1.99 (3304)	0.82 (4118)	Cha	GAA	0.02 (81)	1.07 (8998)
T	AAA	0.02 (73)	1.02 (6221)	Giù	GAG*	1.98 (8942)	0.93 (7796)
Lys	AAG*	1.98 (6200)	0.98 (5987)		GGU	0.01 (44)	1.10 (5272)
Cruz	UGU	0.00 (7)	1.00 (3198)	Chr	GGC*	3.64 (13764)	1.16 (5570)
Cys	UGC*	2.00 (2917)	1.00 (3220)	Gly	GGA	0.01 (36)	1.00 (4792)
	CGU	0.01 (16)	1.24 (4811)		GGG	0.34 (1282)	0.75 (3622)
	CGC*	4.03 (7791)	1.46 (5685)	Met	AUG	1.00 (2759)	1.00 (6155)
A	CGA	0.02 (38)	1.27 (4936)	Тгр	UGG	1.00 (2098)	1.00 (3443)
Arg	CGG*	1.88 (3625)	0.81 (3150)		UAA	0.64 (57)	0.81 (132)
	AGA	0.00 (4)	0.69 (2702)	TER	UAG	1.53 (137)	0.92 (149)
	AGG	0.06 (119)	0.53 (2067)		UGA	0.84 (75)	1.27 (207)

 Table 41 | Correspondence Analysis Results for the Stramenopile A. anophagefferens

Amino		Highly	Weakly	Amino		Highly	Weakly
Amno	Codons	Biased	Biased	Amno	Codons	Biased	Biased
Acius		Genes	Genes	Acius		Genes	Genes
Phe	UUU	0.51 (5641)	1.19 (9240)		UCU	0.69 (5370)	1.31 (8564)
1 IIC	UUC*	1.49 (16463)	0.81 (6247)		UCC*	1.41 (10984)	0.64 (4174)
	UUA	0.18 (1608)	1.22 (7148)	Sor	UCA	0.59 (4549)	1.45 (9461)
	UUG	0.68 (5947)	1.28 (7491)	Sel	UCG*	1.31 (10175)	0.57 (3727)
Lou	CUU	0.80 (7074)	1.34 (7861)		AGU	0.43 (3305)	1.21 (7914)
Leu	CUC*	2.12 (18645)	0.70 (4089)		AGC*	1.58 (12270)	0.82 (5392)
	CUA	0.42 (3719)	0.82 (4811)		ACU	0.54 (4013)	1.26 (7612)
	CUG*	1.80 (15828)	0.65 (3816)	The	ACC*	1.28 (9511)	0.67 (4041)
	GUU	0.64 (5933)	1.39 (8087)	Inr	ACA	0.67 (4975)	1.52 (9166)
Val	GUC*	1.30 (12053)	0.66 (3809)		ACG*	1.51 (11207)	0.55 (3348)
vai	GUA	0.39 (3619)	1.03 (5971)	True	UAU	0.49 (3845)	1.17 (6782)
	GUG*	1.67 (15530)	0.93 (5388)	1 yr	UAC*	1.51 (11916)	0.83 (4768)
	CCU	0.83 (5527)	1.42 (6010)		GCU	0.77 (9589)	1.42 (9267)
Pro	CCC*	1.25 (8342)	0.51 (2175)	Ala	GCC*	1.18 (14726)	0.49 (3235)
	CCA	0.74 (4926)	1.58 (6698)	Ala	GCA	0.74 (9217)	1.64 (10710)
	CCG*	1.18 (7874)	0.49 (2054)		GCG*	1.30 (16195)	0.45 (2934)
Uia	CAU	0.59 (4063)	1.29 (6750)		AUU	0.70 (6164)	1.29 (10833)
1115	CAC*	1.41 (9651)	0.71 (3693)	Ile	AUC*	1.87 (16567)	0.74 (6181)
Ch	CAA	0.58 (6157)	1.29 (11186)		AUA	0.44 (3876)	0.97 (8178)
Gili	CAG*	1.42 (15241)	0.71 (6183)	Agn	GAU	0.73 (11215)	1.41 (17968)
A and	AAU	0.55 (5789)	1.30 (15619)	Asp	GAC*	1.27 (19426)	0.59 (7519)
ASII	AAC*	1.45 (15109)	0.70 (8438)	Cha	GAA	0.53 (9709)	1.28 (19818)
T and	AAA	0.52 (8941)	1.20 (22386)	Giù	GAG*	1.47 (27054)	0.72 (11236)
Lys	AAG*	1.48 (25400)	0.80 (14881)		GGU	0.48 (5165)	1.01 (6179)
Crea	UGU	0.42 (1911)	1.13 (3725)	Chr	GGC*	1.46 (15620)	0.57 (3489)
Cys	UGC*	1.58 (7185)	0.87 (2877)	Gly	GGA	0.82 (8746)	1.76 (10758)
	CGU	0.59 (3551)	0.81 (3540)		GGG*	1.24 (13227)	0.67 (4091)
	CGC*	1.74 (10568)	0.41 (1808)	Met	AUG	1.00 (14824)	1.00 (10522)
Arg	CGA	0.79 (4804)	1.04 (4557)	Trp	UGG	1.00 (7378)	1.00 (4226)
	CGG*	1.09 (6637)	0.43 (1895)		UAA	0.81 (235)	1.18 (407)
	AGA	0.64 (3914)	2.22 (9686)	TER	UAG	0.99 (289)	0.70 (241)
	AGG*	1.14 (6945)	1.08 (4739)		UGA	1.20 (350)	1.13 (391)

 Table 42 | Correspondence Analysis Results for the Rhizarian B. natans

Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes	Amino Acids	Codons	Highly Biased Genes	Weakly Biased Genes
Dho	UUU	0.08 (374)	0.75 (4669)		UCU	0.06 (140)	1.15 (6223)
1 ne	UUC*	1.92 (8610)	1.25 (7773)		UCC*	1.21 (3046)	1.01 (5488)
	UUA	0.01 (55)	0.38 (2152)	Sor	UCA	0.08 (203)	0.94 (5075)
	UUG	0.23 (848)	1.08 (6134)	301	UCG*	3.13 (7861)	1.53 (8287)
Lou	CUU	0.08 (288)	1.34 (7624)		AGU	0.06 (161)	0.58 (3124)
Leu	CUC*	1.19 (4410)	1.00 (5718)		AGC*	1.46 (3665)	0.79 (4270)
	CUA	0.06 (227)	0.51 (2881)		ACU	0.04 (121)	0.92 (4169)
	CUG*	4.43 (16488)	1.70 (9703)	The	ACC*	1.24 (4034)	0.91 (4106)
	GUU	0.14 (681)	1.32 (8454)	1 111	ACA	0.10 (320)	0.87 (3915)
Vəl	GUC*	2.65 (12767)	1.36 (8703)		ACG*	2.62 (8517)	1.30 (5843)
vai	GUA	0.04 (189)	0.45 (2876)	Tur	UAU	0.07 (221)	0.87 (2766)
	GUG*	1.17 (5658)	0.88 (5646)	I yI	UAC*	1.93 (5686)	1.13 (3598)
	CCU	0.12 (350)	1.21 (5588)		GCU	0.08 (557)	1.10 (8459)
Pro	CCC*	1.18 (3357)	0.69 (3213)	Ala	GCC*	2.09 (13827)	0.98 (7525)
	CCA	0.16 (441)	0.99 (4574)	Ala	GCA	0.10 (630)	0.90 (6867)
	CCG*	2.54 (7196)	1.11 (5122)		GCG*	1.73 (11498)	1.02 (7836)
Hic	CAU	0.26 (698)	1.10 (4791)		AUU	0.18 (599)	1.22 (6647)
1115	CAC*	1.74 (4696)	0.90 (3933)	Ile	AUC*	2.74 (8960)	1.33 (7255)
Ch	CAA	0.13 (561)	0.87 (5879)		AUA	0.08 (247)	0.45 (2461)
GIII	CAG*	1.87 (8332)	1.13 (7594)	Acr	GAU	0.17 (1315)	0.98 (9930)
	AAU	0.08 (277)	0.86 (4529)	Asp	GAC*	1.83 (14078)	1.02 (10330)
ASI	AAC*	1.92 (6661)	1.14 (6002)	Chu	GAA	0.27 (1310)	1.04 (9216)
T	AAA	0.17 (666)	0.79 (4617)	Giu	GAG*	1.73 (8550)	0.96 (8572)
Lys	AAG*	1.83 (7154)	1.21 (7017)		GGU	0.17 (633)	0.97 (4444)
Crea	UGU	0.14 (258)	0.81 (2812)	Chr	GGC*	2.71 (10185)	1.34 (6138)
Cys	UGC*	1.86 (3478)	1.19 (4133)	Gly	GGA	0.08 (298)	0.87 (3973)
	CGU	0.32 (859)	1.32 (5495)		GGG*	1.04 (3895)	0.82 (3754)
	CGC*	3.04 (8177)	1.32 (5475)	Met	AUG	1.00 (5639)	1.00 (6827)
A	CGA	0.33 (894)	1.21 (5005)	Тгр	UGG	1.00 (2949)	1.00 (3885)
Arg	CGG*	1.79 (4809)	1.05 (4362)		UAA	0.71 (105)	0.96 (153)
-	AGA	0.03 (84)	0.53 (2183)	TER	UAG	0.81 (120)	0.63 (100)
	AGG	0.49 (1332)	0.58 (2400)		UGA	1.48 (220)	1.41 (224)

 Table 42 | Correspondence Analysis Results for the Rhizarian P. brassicae

6.3 Codon Usage – Expression Data

General description of tables 43-75: The codon usage data is given in two forms, inside and outside of brackets. The numbers inside of the brackets represent the amount the codon was found within the genome files. The numbers outside the brackets represent the proportion of that the codon was found within the set of genes as opposed to synonymous codons. The p-values shown were calculated by a 2x2 contingency table, any p-value above 0.001 was deemed insignificant, these are shown using red text.

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dha	UUU	0.10 (1036)	0.16 (1578)	p<0.0001		UCU	0.08 (1194)	0.07 (1648)	p=0.0023
Phe	UUC*	0.90 (9269)	0.84 (8149)	p<0.0001		UCC*	0.29 (4568)	0.21 (5039)	p<0.0001
	UUA	0.00 (33)	0.01 (177)	p<0.0001	Som	UCA	0.02 (363)	0.06 (1556)	p<0.0001
	UUG	0.06 (1309)	0.09 (2309)	p<0.0001	Ser	UCG	0.34 (5343)	0.33 (7939)	p=0.0089
Lou	CUU*	0.08 (1768)	0.07 (1750)	p<0.0001		AGU	0.02 (296)	0.04 (1033)	p<0.0001
Leu	CUC*	0.54 (12023)	0.41 (10710)	p<0.0001		AGC	0.25 (3865)	0.29 (6901)	p<0.0001
	CUA	0.01 (145)	0.03 (739)	p<0.0001		ACU*	0.10 (1490)	0.08 (1523)	p<0.0001
	CUG	0.32 (7046)	0.40 (10480)	p<0.0001	The	ACC*	0.63 (9036)	0.53 (9564)	p<0.0001
	GUU*	0.08 (1430)	0.07 (1386)	p<0.0001	1 III	ACA	0.03 (467)	0.08 (1531)	p<0.0001
Vəl	GUC*	0.46 (8272)	0.40 (8168)	p<0.0001		ACG	0.23 (3244)	0.30 (5488)	p<0.0001
vai	GUA	0.02 (359)	0.04 (780)	p<0.0001	Twr	UAU	0.09 (708)	0.14 (953)	p<0.0001
	GUG	0.44 (8024)	0.50 (10186)	p<0.0001	I yı	UAC*	0.91 (6920)	0.86 (5960)	p<0.0001
	CCU	0.12 (1443)	0.11 (1860)	p=0.0256		GCU*	0.15 (3370)	0.10 (2914)	p<0.0001
Pro	CCC*	0.60 (7196)	0.40 (6646)	p<0.0001	Ala	GCC*	0.65 (14570)	0.54 (16217)	p<0.0001
	CCA	0.03 (372)	0.12 (1939)	p<0.0001	1 Inu	GCA	0.03 (651)	0.08 (2432)	p<0.0001
	CCG	0.24 (2917)	0.37 (6104)	p<0.0001		GCG	0.17 (3862)	0.28 (8322)	p<0.0001
His	CAU	0.10 (599)	0.15 (1203)	p<0.0001		AUU	0.14 (1759)	0.13 (1377)	p=0.1825
1115	CAC*	0.90 (5403)	0.85 (6596)	p<0.0001	Ile	AUC*	0.85 (10978)	0.81 (8543)	p<0.0001
Cln	CAA	0.10 (899)	0.21 (2308)	p<0.0001		AUA	0.01 (127)	0.06 (610)	p<0.0001
Gili	CAG*	0.90 (8355)	0.79 (8752)	p<0.0001	Acr	GAU*	0.24 (3490)	0.20 (3103)	p<0.0001
A a m	AAU	0.09 (822)	0.15 (1455)	p<0.0001	Asp	GAC	0.76 (10905)	0.80 (12326)	p<0.0001
ASII	AAC*	0.91 (8732)	0.85 (8220)	p<0.0001	Cha	GAA	0.12 (2129)	0.20 (3377)	p<0.0001
T and	AAA	0.03 (608)	0.11 (1248)	p<0.0001	Giù	GAG*	0.88 (15130)	0.80 (13105)	p<0.0001
Lys	AAG*	0.97 (16910)	0.89 (10115)	p<0.0001		GGU*	0.23 (4069)	0.11 (2373)	p<0.0001
Crea	UGU	0.10 (315)	0.19 (918)	p<0.0001	Chr	GGC	0.65 (11292)	0.63 (13212)	p=0.0029
Cys	UGC*	0.90 (2843)	0.81 (4044)	p<0.0001	Gly	GGA	0.08 (1334)	0.10 (2187)	p<0.0001
	CGU*	0.13 (1724)	0.07 (1230)	p<0.0001		GGG	0.04 (736)	0.15 (3095)	p<0.0001
	CGC*	0.45 (5797)	0.42 (7122)	p<0.0001					
Arg	CGA	0.07 (913)	0.12 (1985)	p<0.0001					
	CGG	0.08 (1029)	0.22 (3777)	p<0.0001					
	AGA	0.04 (466)	0.05 (817)	p<0.0001					
	AGG*	0.22 (2868)	0.13 (2198)	p<0.0001					

 Table 43 | Codon Usage from Expression Data for the Amoebozoan A. castellani

A		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	Cm-
Acids		Genes	Genes	Sqaured	Acids		Genes	Genes	Sqaured
Dha	UUU	0.52 (1768)	0.85 (6455)	p<0.0001		UCU	0.24 (1274)	0.26 (2974)	p=0.0002
rne	UUC*	0.48 (1660)	0.15 (1113)	p<0.0001		UCC*	0.04 (216)	0.02 (254)	p<0.0001
	UUA	0.33 (2238)	0.60 (7594)	p<0.0001	Ser	UCA*	0.50 (2687)	0.42 (4782)	p<0.0001
	UUG	0.07 (476)	0.08 (1056)	p=0.0004	Ser	UCG	0.01 (47)	0.02 (206)	p<0.0001
T	CUU*	0.53 (3647)	0.21 (2695)	p<0.0001		AGU	0.18 (1000)	0.26 (2955)	p<0.0001
Leu	CUC*	0.06 (420)	0.03 (417)	p<0.0001		AGC*	0.04 (195)	0.02 (188)	p<0.0001
	CUA	0.01 (62)	0.06 (743)	p<0.0001		ACU*	0.55 (3144)	0.34 (2934)	p<0.0001
	CUG	0.00 (22)	0.01 (117)	p<0.0001	The	ACC*	0.10 (572)	0.04 (321)	p<0.0001
	GUU*	0.70 (4933)	0.52 (3414)	p<0.0001	Inr	ACA	0.34 (1929)	0.59 (5023)	p<0.0001
Val	GUC*	0.12 (874)	0.06 (415)	p<0.0001		ACG	0.01 (71)	0.03 (251)	p<0.0001
vai	GUA	0.16 (1134)	0.35 (2321)	p<0.0001	Trem	UAU	0.79 (2502)	0.91 (6691)	p<0.0001
	GUG	0.01 (91)	0.07 (438)	p<0.0001	Туг	UAC*	0.21 (668)	0.09 (653)	p<0.0001
	CCU	0.08 (311)	0.32 (1492)	p<0.0001		GCU*	0.61 (4885)	0.40 (1354)	p<0.0001
Pro	CCC	0.01 (28)	0.03 (163)	p<0.0001	Ala	GCC*	0.09 (682)	0.04 (134)	p<0.0001
	CCA*	0.91 (3447)	0.63 (2976)	p<0.0001		GCA	0.30 (2397)	0.53 (1809)	p<0.0001
	CCG	0.00 (4)	0.02 (99)	p<0.0001		GCG	0.00 (18)	0.03 (103)	p<0.0001
IIIa	CAU	0.75 (1463)	0.91 (2289)	p<0.0001		AUU*	0.83 (4945)	0.58 (9605)	p<0.0001
1115	CAC*	0.25 (488)	0.09 (231)	p<0.0001	Ile	AUC*	0.12 (719)	0.06 (945)	p<0.0001
Cla	CAA*	0.98 (3273)	0.92 (4974)	p<0.0001		AUA	0.05 (269)	0.36 (5948)	p<0.0001
GIN	CAG	0.02 (60)	0.08 (434)	p<0.0001		GAU	0.83 (4565)	0.88 (6254)	p<0.0001
	AAU	0.75 (3596)	0.89 (11076)	p<0.0001	Asp	GAC*	0.17 (936)	0.12 (891)	p<0.0001
Asn	AAC*	0.25 (1176)	0.11 (1382)	p<0.0001		GAA*	0.94 (6427)	0.90 (9725)	p<0.0001
T	AAA	0.65 (7106)	0.85 (10702)	p<0.0001	Glu	GAG	0.06 (443)	0.10 (1116)	p<0.0001
Lys	AAG*	0.35 (3854)	0.15 (1927)	p<0.0001		GGU	0.29 (1962)	0.27 (1608)	p=0.0021
C	UGU	0.78 (1900)	0.94 (3488)	p<0.0001		GGC	0.01 (82)	0.02 (129)	p<0.0001
Cys	UGC*	0.22 (534)	0.06 (205)	p<0.0001	Gly	GGA*	0.69 (4603)	0.64 (3847)	p<0.0001
	CGU	0.10 (448)	0.12 (581)	p<0.0001		GGG	0.01 (67)	0.07 (424)	p<0.0001
	CGC	0.00 (13)	0.01 (59)	p<0.0001					-
Arg	CGA	0.02 (78)	0.10 (489)	p<0.0001					
	CGG	0.00(1)	0.01 (50)	p<0.0001					
	AGA*	0.87 (4023)	0.70 (3300)	p<0.0001					
	AGG	0.01 (40)	0.05 (255)	p<0.0001					

 Table 44 | Codon Usage from Expression Data for the Amoebozoan E. histolytica

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaured	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaured
Dho	UUU	0.53 (3892)	0.78 (14984)	p<0.0001		UCU*	0.20 (3010)	0.15 (4693)	p<0.0001
rne	UUC*	0.47 (3484)	0.22 (4114)	p<0.0001		UCC*	0.08 (1173)	0.03 (974)	p<0.0001
	UUA	0.58 (7367)	0.73 (21898)	p<0.0001	Som	UCA	0.51 (7822)	0.56 (16873)	p<0.0001
	UUG	0.10 (1326)	0.10 (2950)	p=0.0266	Ser	UCG	0.01 (199)	0.02 (622)	p<0.0001
Lou	CUU*	0.13 (1679)	0.10 (3030)	p<0.0001		AGU	0.15 (2325)	0.22 (6728)	p<0.0001
Leu	CUC*	0.15 (1957)	0.02 (519)	p<0.0001		AGC*	0.05 (734)	0.02 (498)	p<0.0001
	CUA	0.02 (298)	0.06 (1673)	p<0.0001		ACU*	0.40 (5111)	0.35 (5939)	p<0.0001
	CUG	0.00 (24)	0.00 (102)	p=0.0097	Thr	ACC*	0.29 (3703)	0.09 (1619)	p<0.0001
	GUU	0.57 (5965)	0.57 (7411)	p=0.7463	1 111	ACA	0.30 (3888)	0.54 (9255)	p<0.0001
Vəl	GUC*	0.23 (2373)	0.05 (675)	p<0.0001		ACG	0.01 (75)	0.02 (279)	p<0.0001
vai	GUA	0.18 (1931)	0.34 (4415)	p<0.0001	Tyr	UAU	0.61 (3454)	0.89 (12575)	p<0.0001
	GUG	0.02 (240)	0.05 (604)	p<0.0001	I yI	UAC*	0.39 (2185)	0.11 (1602)	p<0.0001
	CCU	0.07 (709)	0.17 (1772)	p<0.0001		GCU*	0.43 (4808)	0.34 (2362)	p<0.0001
Pro	CCC	0.01 (160)	0.03 (305)	p<0.0001	Ala	GCC*	0.27 (2957)	0.08 (586)	p<0.0001
110	CCA*	0.91 (9942)	0.79 (8450)	p<0.0001		GCA	0.30 (3347)	0.56 (3971)	p<0.0001
	CCG	0.01 (62)	0.01 (152)	p<0.0001		GCG	0.00 (40)	0.02 (112)	p<0.0001
His	CAU	0.64 (2448)	0.90 (4589)	p<0.0001		AUU	0.57 (6463)	0.63 (21177)	p<0.0001
1115	CAC*	0.36 (1389)	0.10 (524)	p<0.0001	Ile	AUC*	0.33 (3773)	0.08 (2749)	p<0.0001
Cln	CAA*	0.98 (12416)	0.97 (10902)	p<0.0001		AUA	0.10 (1079)	0.29 (9629)	p<0.0001
Gill	CAG	0.02 (278)	0.03 (387)	p<0.0001	Acn	GAU	0.85 (7245)	0.93 (15479)	p<0.0001
Aan	AAU	0.72 (9549)	0.93 (37190)	p<0.0001	Asp	GAC*	0.15 (1322)	0.07 (1199)	p<0.0001
ASII	AAC*	0.28 (3720)	0.07 (2789)	p<0.0001	Cha	GAA	0.87 (9889)	0.90 (15860)	p<0.0001
T and	AAA	0.79 (11482)	0.90 (23502)	p<0.0001	Giù	GAG*	0.13 (1424)	0.10 (1769)	p<0.0001
Lys	AAG*	0.21 (3102)	0.10 (2729)	p<0.0001		GGU*	0.83 (8681)	0.68 (9687)	p<0.0001
Crea	UGU	0.81 (1691)	0.90 (5130)	p<0.0001	Chr	GGC*	0.05 (499)	0.04 (552)	p=0.0007
Cys	UGC*	0.19 (384)	0.10 (550)	p<0.0001	Gly	GGA	0.11 (1170)	0.25 (3546)	p<0.0001
	CGU*	0.41 (2763)	0.15 (1089)	p<0.0001		GGG	0.01 (68)	0.03 (371)	p<0.0001
	CGC	0.00 (8)	0.00 (32)	p=0.0003					
Ang	CGA	0.00 (34)	0.02 (178)	p<0.0001					
Arg	CGG	0.00 (4)	0.00 (18)	p=0.0042					
	AGA	0.57 (3912)	0.75 (5400)	p<0.0001					
	AGG	0.01 (93)	0.06 (461)	p<0.0001					

 Table 45 | Codon Usage from Expression Data for the Amoebozoan D. discoideum

Amina		Top 5%	Bottom 5%	Chi	Amina		Top 5%	Bottom 5%	Chi
Anido	Codons	Expressed	Expressed	Saarmo d	Anido	Codons	Expressed	Expressed	Samuel
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Sqaureu
Pho	UUU	0.32 (5378)	0.37 (4708)	p<0.0001		UCU	0.22 (8549)	0.21 (6252)	p=0.0132
1 ne	UUC*	0.68 (11271)	0.63 (7847)	p<0.0001		UCC*	0.19 (7489)	0.18 (5181)	p<0.0001
	UUA	0.10 (4002)	0.12 (3353)	p<0.0001	Sor	UCA	0.16 (6053)	0.18 (5323)	p<0.0001
	UUG	0.21 (8290)	0.20 (5886)	p=0.0011	Sel	UCG	0.14 (5437)	0.14 (4039)	p=0.2810
Lou	CUU	0.09 (3319)	0.11 (3194)	p<0.0001		AGU	0.12 (4674)	0.13 (3741)	p=0.0088
Leu	CUC*	0.28 (11016)	0.25 (7201)	p<0.0001		AGC	0.16 (6247)	0.16 (4626)	p=0.1778
	CUA	0.08 (2993)	0.10 (2825)	p<0.0001		ACU	0.19 (5463)	0.21 (4784)	p<0.0001
	CUG*	0.24 (9266)	0.23 (6555)	p=0.0002	The	ACC*	0.30 (8358)	0.28 (6233)	p<0.0001
	GUU	0.15 (4098)	0.17 (3303)	p<0.0001	Inr	ACA	0.26 (7337)	0.28 (6221)	p<0.0001
Val	GUC*	0.40 (10795)	0.37 (7208)	p<0.0001		ACG*	0.25 (7113)	0.23 (5032)	p<0.0001
vai	GUA	0.14 (3857)	0.17 (3352)	p<0.0001	T	UAU	0.35 (4519)	0.40 (4213)	p<0.0001
	GUG	0.31 (8282)	0.29 (5780)	p=0.0048	1 yr	UAC*	0.65 (8305)	0.60 (6219)	p<0.0001
	CCU 0.25 (4969)	0.28 (4408)	p<0.0001		GCU	0.23 (6228)	0.26 (5380)	p<0.0001	
Pro	CCC*	0.34 (6929)	0.27 (4313)	p<0.0001	A 1-	GCC*	0.37 (9848)	0.31 (6374)	p<0.0001
	CCA	0.27 (5399)	0.30 (4871)	p<0.0001		GCA	0.25 (6794)	0.27 (5538)	p<0.0001
	CCG	0.15 (2980)	0.15 (2423)	p=0.2498		GCG	0.15 (3942)	0.15 (3043)	p=0.4278
IIIa	CAU	0.34 (3457)	0.39 (3315)	p<0.0001		AUU	0.18 (4411)	0.21 (3859)	p<0.0001
HIS	CAC*	0.66 (6724)	0.61 (5153)	p<0.0001	Ile	AUC*	0.68 (16978)	0.61 (11181)	p<0.0001
	CAA	0.47 (8262)	0.49 (7060)	p<0.0001		AUA	0.14 (3453)	0.18 (3229)	p<0.0001
Gin	CAG*	0.53 (9470)	0.51 (7350)	p<0.0001		GAU	0.52 (11492)	0.51 (8688)	p=0.0318
	AAU	0.37 (7348)	0.40 (6240)	p<0.0001	Asp	GAC	0.48 (10761)	0.49 (8498)	p=0.0318
Asn	AAC*	0.63 (12576)	0.60 (9347)	p<0.0001		GAA	0.43 (11720)	0.46 (8964)	p<0.0001
_	AAA	0.32 (7794)	0.38 (7048)	p<0.0001	Glu	GAG*	0.57 (15820)	0.54 (10620)	p<0.0001
Lys	AAG*	0.68 (16194)	0.62 (11440)	p<0.0001		GGU	0.28 (7152)	0.27 (4780)	p=0.0952
	UGU	0.48 (3292)	0.50 (2923)	p=0.0826		GGC	0.19 (4956)	0.21 (3708)	p<0.0001
Cys	UGC	0.52 (3546)	0.50 (2960)	p=0.0826	Gly	GGA*	0.43 (11093)	0.40 (7055)	p<0.0001
	CGU	0.11 (2589)	0.12 (2171)	p=0.0277	Î	GGG	0.10 (2616)	0.12 (2176)	p<0.0001
Arg -	CGC	0.10 (2436)	0.11 (2110)	p=0.0010					1
	CGA	0.17 (3943)	0.17 (3118)	p=0.9409	1				
	CGG	0.05 (1132)	0.06 (1068)	p<0.0001	1				
	AGA*	0.38 (8859)	0.36 (6583)	p<0.0001	1				
	AGG	0.19 (4332)	0.18 (3338)	p=0.2430	1				

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dhe	UUU	0.47 (2892)	0.60 (5147)	p<0.0001		UCU	0.08 (1161)	0.08 (2382)	p=0.5244
rne	UUC*	0.53 (3297)	0.40 (3496)	p<0.0001		UCC*	0.16 (2178)	0.13 (3721)	p<0.0001
	UUA	0.00 (27)	0.00 (126)	p=0.0028	Sor	UCA	0.06 (899)	0.09 (2544)	p<0.0001
	UUG	0.04 (626)	0.06 (2281)	p<0.0001	Sel	UCG*	0.58 (8072)	0.45 (12760)	p<0.0001
Lou	CUU	0.14 (1992)	0.16 (5572)	p<0.0001		AGU	0.02 (306)	0.05 (1405)	p<0.0001
Leu	CUC*	0.54 (7748)	0.44 (15911)	p<0.0001		AGC	0.10 (1377)	0.19 (5278)	p<0.0001
	CUA	0.01 (175)	0.03 (1147)	p<0.0001		ACU	0.11 (1187)	0.15 (2772)	p<0.0001
-	CUG	0.26 (3778)	0.30 (10878)	p<0.0001	Thr	ACC*	0.50 (5204)	0.43 (8127)	p<0.0001
	GUU	0.13 (1700)	0.15 (4107)	p<0.0001	1111	ACA	0.07 (745)	0.13 (2491)	p<0.0001
Vəl	GUC*	0.51 (6861)	0.47 (12868)	p<0.0001		ACG*	0.31 (3262)	0.29 (5425)	p<0.0001
vai	GUA	0.02 (220)	0.04 (1163)	p<0.0001	Tur	UAU	0.09 (406)	0.21 (1261)	p<0.0001
	GUG	0.35 (4671)	0.34 (9378)	p=0.1990	1 yı	UAC*	0.91 (3965)	0.79 (4767)	p<0.0001
	CCU	0.11 (974)	0.12 (2305)	p=0.0003		GCU	0.17 (3248)	0.17 (9947)	p=0.0927
Pro	CCC*	0.23 (2085)	0.19 (3518)	p<0.0001	Ala	GCC*	0.46 (9075)	0.40 (23127)	p<0.0001
	CCA	0.08 (693)	0.15 (2858)	p<0.0001		GCA	0.10 (1866)	0.14 (8182)	p<0.0001
	CCG*	0.58 (5270)	0.54 (10063)	p<0.0001		GCG	0.28 (5414)	0.29 (16948)	p<0.0001
Hie	CAU	0.23 (795)	0.32 (2371)	p<0.0001		AUU	0.24 (1806)	0.26 (2752)	p=0.0120
1115	CAC*	0.77 (2711)	0.68 (5124)	p<0.0001	Ile	AUC*	0.75 (5596)	0.71 (7602)	p<0.0001
Cln	CAA	0.09 (477)	0.18 (1655)	p<0.0001		AUA	0.01 (68)	0.03 (304)	p<0.0001
GIII	CAG*	0.91 (5130)	0.82 (7555)	p<0.0001	Aan	GAU	0.21 (2147)	0.31 (6049)	p<0.0001
	AAU	0.08 (470)	0.18 (1264)	p<0.0001	Asp	GAC*	0.79 (8240)	0.69 (13231)	p<0.0001
Asn	AAC*	0.92 (5424)	0.82 (5872)	p<0.0001	Cl	GAA	0.08 (769)	0.15 (2835)	p<0.0001
Ŧ	AAA	0.03 (269)	0.10 (849)	p<0.0001	Glu	GAG*	0.92 (8960)	0.85 (16070)	p<0.0001
Lys	AAG*	0.97 (8443)	0.90 (7362)	p<0.0001		GGU	0.16 (2169)	0.15 (3523)	p=0.0048
C	UGU	0.15 (421)	0.23 (889)	p<0.0001		GGC*	0.66 (8753)	0.60 (13787)	p<0.0001
Cys	UGC*	0.85 (2387)	0.77 (3055)	p<0.0001	Gly	GGA	0.07 (955)	0.10 (2373)	p<0.0001
	CGU*	0.14 (1295)	0.12 (2722)	p<0.0001		GGG	0.10 (1360)	0.15 (3392)	p<0.0001
	CGC*	0.52 (4801)	0.43 (10029)	p<0.0001					
A 100	CGA	0.04 (383)	0.10 (2251)	p<0.0001					
Arg	CGG	0.25 (2343)	0.29 (6846)	p<0.0001					
	AGA	0.02 (150)	0.02 (513)	p=0.0008					
	AGG	0.03 (325)	0.04 (1008)	p=0.0008					

 Table 47 | Codon Usage from Expression Data for the Apusomonadan T. trahens

A		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	CM-
Acids		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Pho	UUU	0.09 (318)	0.19 (1252)	p<0.0001		UCU*	0.14 (939)	0.04 (873)	p<0.0001
1 110	UUC*	0.91 (3337)	0.81 (5448)	p<0.0001		UCC*	0.50 (3258)	0.29 (6097)	p<0.0001
	UUA*	0.02 (120)	0.00 (76)	p<0.0001	Sor	UCA	0.02 (98)	0.03 (702)	p<0.0001
	UUG*	0.03 (236)	0.02 (2135)	p<0.0001	501	UCG	0.15 (997)	0.31 (6399)	p<0.0001
Lou	CUU*	0.09 (647)	0.01 (1631)	p<0.0001		AGU	0.02 (131)	0.05 (1088)	p<0.0001
Leu	CUC*	0.42 (3180)	0.05 (5807)	p<0.0001		AGC	0.17 (1080)	0.27 (5520)	p<0.0001
	CUA	0.01 (75)	0.00 (323)	p=0.0061		ACU*	0.13 (651)	0.07 (844)	p<0.0001
	CUG	0.44 (3302)	0.91 (13037)	p<0.0001	The	ACC*	0.79 (4090)	0.62 (7805)	p<0.0001
	GUU*	0.14 (934)	0.07 (957)	p<0.0001	1 111	ACA	0.02 (126)	0.07 (886)	p<0.0001
Vəl	GUC*	0.63 (4104)	0.38 (5106)	p<0.0001		ACG	0.06 (307)	0.24 (3070)	p<0.0001
vai	GUA	0.01 (70)	0.02 (212)	p=0.0061	Tur	UAU	0.15 (369)	0.81 (1198)	p<0.0001
	GUG	0.21 (1356)	0.53 (7200)	p<0.0001	1 yı	UAC*	0.85 (2093)	0.19 (277)	p<0.0001
	CCU*	0.10 (490)	0.06 (1436)	p<0.0001		GCU*	0.17 (1550)	0.08 (2520)	p<0.0001
Pro	CCC*	0.54 (2735)	0.35 (8602)	p<0.0001	Ala	GCC*	0.72 (6789)	0.65 (21443)	p<0.0001
	CCA	0.03 (173)	0.07 (1634)	p<0.0001	Ла	GCA	0.02 (213)	0.06 (1973)	p<0.0001
	CCG	0.32 (1629)	0.52 (12719)	p<0.0001		GCG	0.09 (828)	0.22 (7179)	p<0.0001
His	CAU	0.21 (449)	0.32 (2387)	p<0.0001		AUU	0.20 (877)	0.20 (1310)	p=0.2534
1115	CAC*	0.79 (1644)	0.68 (5073)	p<0.0001	Ile	AUC	0.79 (3524)	0.77 (4931)	p=0.0457
Cln	CAA	0.04 (127)	0.17 (1553)	p<0.0001		AUA	0.02 (78)	0.02 (158)	p=0.0104
GIII	CAG*	0.96 (2753)	0.83 (7732)	p<0.0001	Acn	GAU	0.30 (1455)	0.32 (4037)	p=0.0428
Aan	AAU	0.12 (414)	0.39 (1679)	p<0.0001	Asp	GAC	0.70 (3351)	0.68 (8631)	p=0.0428
ASII	AAC*	0.88 (3158)	0.61 (2623)	p<0.0001	Cha	GAA	0.04 (193)	0.14 (1402)	p<0.0001
T	AAA	0.04 (198)	0.09 (355)	p<0.0001	Giù	GAG*	0.96 (4697)	0.86 (8942)	p<0.0001
Lys	AAG*	0.96 (4627)	0.91 (3487)	p<0.0001		GGU*	0.33 (2276)	0.08 (1938)	p<0.0001
C	UGU	0.17 (244)	0.18 (1175)	p=0.2460	Cl-	GGC	0.55 (3747)	0.55 (13808)	p=0.5406
Cys	UGC	0.83 (1188)	0.82 (5230)	p=0.2460	Gly	GGA	0.03 (201)	0.05 (1371)	p<0.0001
	CGU*	0.19 (1032)	0.07 (1295)	p<0.0001		GGG	0.09 (588)	0.32 (8177)	p<0.0001
	CGC*	0.64 (3528)	0.41 (7301)	p<0.0001					
A	CGA	0.02 (133)	0.07 (1190)	p<0.0001					
Arg	CGG	0.10 (577)	0.41 (7381)	p<0.0001					
	AGA*	0.02 (94)	0.01 (172)	p<0.0001					
	AGG	0.03 (145)	0.03 (626)	p=0.0019					

 Table 48 | Codon Usage from Expression Data for the Opisthokont F. alba

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Pho	UUU	0.37 (2411)	0.49 (5304)	p<0.0001		UCU	0.15 (1829)	0.15 (4452)	p=0.1192
T ne	UUC*	0.63 (4063)	0.51 (5517)	p<0.0001		UCC*	0.25 (2941)	0.19 (5917)	p<0.0001
	UUA	0.00 (63)	0.02 (612)	p<0.0001	Sor	UCA	0.05 (581)	0.10 (3067)	p<0.0001
	UUG	0.11 (1480)	0.21 (5889)	p<0.0001	501	UCG*	0.32 (3861)	0.25 (7716)	p<0.0001
Lou	CUU	0.15 (2004)	0.17 (4901)	p<0.0001		AGU	0.03 (391)	0.08 (2398)	p<0.0001
Leu	CUC*	0.47 (6364)	0.27 (7830)	p<0.0001		AGC	0.20 (2383)	0.22 (6814)	p<0.0001
	CUA	0.01 (123)	0.04 (1042)	p<0.0001		ACU	0.23 (2186)	0.22 (4463)	p=0.1281
	CUG	0.25 (3393)	0.29 (8434)	p<0.0001	Thr	ACC*	0.53 (5009)	0.34 (6816)	p<0.0001
	GUU	0.21 (2373)	0.27 (5852)	p<0.0001	1111	ACA	0.07 (653)	0.18 (3617)	p<0.0001
Vəl	GUC*	0.58 (6394)	0.36 (7937)	p<0.0001		ACG	0.18 (1686)	0.26 (5262)	p<0.0001
v ai	GUA	0.01 (157)	0.05 (1034)	p<0.0001	Tyr	UAU	0.16 (707)	0.30 (1991)	p<0.0001
	GUG	0.19 (2115)	0.32 (7087)	p<0.0001	1 yı	UAC*	0.84 (3742)	0.70 (4582)	p<0.0001
	CCU	0.15 (1228)	0.24 (4019)	p<0.0001		GCU*	0.26 (4332)	0.24 (8670)	p=0.0007
Pro	CCC*	0.50 (3988)	0.26 (4435)	p<0.0001	Ala	GCC*	0.49 (8326)	0.31 (10950)	p<0.0001
	CCA	0.12 (931)	0.23 (3967)	p<0.0001		GCA	0.11 (1777)	0.21 (7603)	p<0.0001
	CCG	0.23 (1812)	0.27 (4675)	p<0.0001		GCG	0.14 (2446)	0.24 (8460)	p<0.0001
His	CAU	0.17 (613)	0.38 (2585)	p<0.0001		AUU	0.41 (3143)	0.50 (6448)	p<0.0001
1115	CAC*	0.83 (2952)	0.62 (4293)	p<0.0001	Ile	AUC*	0.58 (4386)	0.46 (5885)	p<0.0001
Cln	CAA	0.30 (1970)	0.45 (6055)	p<0.0001		AUA	0.01 (58)	0.04 (472)	p<0.0001
GIII	CAG*	0.70 (4550)	0.55 (7416)	p<0.0001	Acn	GAU	0.24 (2030)	0.39 (6221)	p<0.0001
Acr	AAU	0.13 (815)	0.33 (3922)	p<0.0001	Asp	GAC*	0.76 (6257)	0.61 (9622)	p<0.0001
ASII	AAC*	0.87 (5617)	0.67 (7834)	p<0.0001	Chu	GAA	0.21 (1740)	0.39 (5778)	p<0.0001
T and	AAA	0.07 (636)	0.31 (3210)	p<0.0001	Giu	GAG*	0.79 (6455)	0.61 (9130)	p<0.0001
Lys	AAG*	0.93 (7847)	0.69 (7293)	p<0.0001		GGU	0.20 (2071)	0.22 (3737)	p<0.0001
Cura	UGU	0.10 (265)	0.24 (1168)	p<0.0001	Chr	GGC*	0.71 (7407)	0.49 (8234)	p<0.0001
Cys	UGC*	0.90 (2328)	0.76 (3753)	p<0.0001	Gly	GGA	0.07 (713)	0.18 (3087)	p<0.0001
	CGU	0.19 (1476)	0.18 (2973)	p=0.2181		GGG	0.03 (310)	0.11 (1819)	p<0.0001
	CGC*	0.63 (4972)	0.41 (6714)	p<0.0001					
A 1907	CGA	0.10 (777)	0.20 (3265)	p<0.0001					
Arg	CGG	0.05 (366)	0.12 (1983)	p<0.0001					
	AGA	0.02 (135)	0.05 (749)	p<0.0001					
	AGG	0.02 (187)	0.05 (830)	p<0.0001					

 Table 49 | Codon Usage from Expression Data for the Opisthokont C. owczarzaki

Amina		Top 5%	Bottom 5%	Chi	A mino		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	CIII- Second
Acids		Genes	Genes	Sqaured	Acias		Genes	Genes	Sqaured
Dho	UUU	0.28 (2704)	0.48 (3290)	p<0.0001		UCU*	0.19 (3224)	0.16 (2851)	p<0.0001
I lie	UUC*	0.72 (6815)	0.52 (3516)	p<0.0001		UCC*	0.18 (3086)	0.13 (2406)	p<0.0001
	UUA	0.07 (1377)	0.11 (1969)	p<0.0001	Sor	UCA	0.16 (2725)	0.17 (3134)	p=0.0017
	UUG	0.21 (4103)	0.21 (3778)	p=0.0787	501	UCG	0.15 (2510)	0.16 (2947)	p=0.0001
Lou	CUU*	0.17 (3377)	0.14 (2505)	p<0.0001		AGU	0.17 (2938)	0.20 (3627)	p<0.0001
Leu	CUC	0.15 (2929)	0.16 (2901)	p<0.0001		AGC	0.15 (2532)	0.18 (3187)	p<0.0001
	CUA	0.14 (2828)	0.13 (2374)	p=0.0267		ACU*	0.25 (3879)	0.23 (4023)	p<0.0001
	CUG*	0.26 (5244)	0.23 (4125)	p<0.0001	The	ACC*	0.34 (5256)	0.24 (4195)	p<0.0001
	GUU	0.22 (4178)	0.22 (3231)	p=0.4428	1 11	ACA	0.24 (3734)	0.31 (5412)	p<0.0001
Val	GUC*	0.23 (4321)	0.21 (3097)	p<0.0001		ACG	0.16 (2521)	0.22 (3738)	p<0.0001
vai	GUA	0.21 (3963)	0.23 (3383)	p<0.0001	True	UAU	0.30 (2357)	0.44 (2943)	p<0.0001
	GUG	0.34 (6523)	0.35 (5206)	p=0.2985	1 yr	UAC*	0.70 (5460)	0.56 (3709)	p<0.0001
	CCU*	0.28 (3079)	0.24 (2683)	p<0.0001		GCU*	0.29 (6666)	0.24 (4190)	p<0.0001
Pro	CCC*	0.38 (4199)	0.24 (2605)	p<0.0001	Ala	GCC*	0.34 (7656)	0.26 (4546)	p<0.0001
	CCA	0.20 (2151)	0.30 (3265)	p<0.0001	Ala	GCA	0.19 (4332)	0.28 (4946)	p<0.0001
	CCG	0.14 (1482)	0.23 (2496)	p<0.0001		GCG	0.18 (4169)	0.23 (4028)	p<0.0001
Uia	CAU	0.30 (1640)	0.43 (2641)	p<0.0001		AUU	0.35 (4643)	0.35 (3734)	p=0.4880
1115	CAC*	0.70 (3845)	0.57 (3473)	p<0.0001	Ile	AUC*	0.54 (7134)	0.35 (3705)	p<0.0001
Clm	CAA	0.35 (3169)	0.46 (4170)	p<0.0001		AUA	0.11 (1497)	0.29 (3106)	p<0.0001
GII	CAG*	0.65 (5764)	0.54 (4961)	p<0.0001	A	GAU	0.53 (8172)	0.53 (7422)	p=0.6754
A	AAU	0.37 (3915)	0.49 (4931)	p<0.0001	Asp	GAC	0.47 (7289)	0.47 (6685)	p=0.6754
Asn	AAC*	0.63 (6779)	0.51 (5229)	p<0.0001	CI	GAA	0.33 (5501)	0.46 (5779)	p<0.0001
T	AAA	0.26 (4285)	0.42 (4588)	p<0.0001	Glu	GAG*	0.67 (11309)	0.54 (6728)	p<0.0001
Lys	AAG*	0.74 (12082)	0.58 (6223)	p<0.0001		GGU*	0.37 (7114)	0.31 (4398)	p<0.0001
0.0	UGU	0.48 (2113)	0.52 (2583)	p=0.0005	CI	GGC	0.26 (4976)	0.27 (3813)	p=0.0628
Cys	UGC*	0.52 (2258)	0.48 (2391)	p=0.0005	Gly	GGA*	0.29 (5545)	0.23 (3365)	p<0.0001
	CGU*	0.31 (3584)	0.18 (2299)	p<0.0001		GGG	0.09 (1718)	0.19 (2752)	p<0.0001
	CGC*	0.24 (2771)	0.19 (2384)	p<0.0001					
	CGA	0.16 (1840)	0.16 (2043)	p=0.4326					
Arg	CGG	0.06 (693)	0.13 (1704)	p<0.0001					
	AGA	0.16 (1835)	0.19 (2457)	p<0.0001					
	AGG	0.08 (931)	0.14 (1757)	p<0.0001					

 Table 50 | Codon Usage from Expression Data for the Opisthokont S. arctica

Amino		Top 5%	Bottom 5%	Chi	Amino		Top 5%	Bottom 5%	Chi
Anno	Codons	Expressed	Expressed	CIII- Scoured	Anino	Codons	Expressed	Expressed	CIII- Scoured
Acius		Genes	Genes	Sqaureu	Actus		Genes	Genes	Sqaureu
Phe	UUU	0.41 (2315)	0.57 (4227)	p<0.0001		UCU	0.23 (3043)	0.25 (5146)	p<0.0001
	UUC*	0.59 (3346)	0.43 (7412)	p<0.0001		UCC*	0.20 (2638)	0.16 (3262)	p<0.0001
	UUA	0.05 (770)	0.11 (2542)	p<0.0001	Sor	UCA	0.10 (1396)	0.16 (3263)	p<0.0001
	UUG	0.11 (1761)	0.14 (3318)	p<0.0001	301	UCG*	0.14 (1823)	0.10 (2106)	p<0.0001
Lon	CUU*	0.26 (4137)	0.24 (5720)	p<0.0001		AGU	0.11 (1529)	0.14 (2807)	p<0.0001
Leu	CUC*	0.30 (4779)	0.19 (4475)	p<0.0001		AGC*	0.22 (3000)	0.19 (3899)	p<0.0001
	CUA	0.08 (1285)	0.14 (3257)	p<0.0001		ACU	0.23 (2412)	0.27 (3652)	p<0.0001
	CUG*	0.20 (3193)	0.18 (4377)	p<0.0001	The	ACC*	0.26 (2779)	0.23 (3166)	p<0.0001
	GUU	0.27 (3061)	0.29 (3617)	p=0.0394	Inr	ACA	0.26 (2794)	0.32 (4446)	p<0.0001
Val	GUC*	0.38 (4229)	0.26 (3316)	p<0.0001		ACG*	0.25 (2641)	0.18 (2445)	p<0.0001
vai	GUA	0.11 (1210)	0.19 (2430)	p<0.0001	Tree	UAU	0.42 (2425)	0.53 (3740)	p<0.0001
	GUG	0.24 (2656)	0.26 (3262)	p=0.0003	Туг	UAC*	0.58 (3344)	0.47 (3345)	p<0.0001
	CCU	0.28 (2141)	0.28 (2880)	p=0.3067		GCU	0.25 (3817)	0.26 (4508)	p<0.0001
Due	CCC	0.25 (1974)	0.24 (2435)	p=0.0204	Ala	GCC*	0.30 (4601)	0.24 (4170)	p<0.0001
Pro	CCA	0.23 (1820)	0.31 (3148)	p<0.0001	Ala	GCA	0.26 (4027)	0.34 (5783)	p<0.0001
	CCG*	0.24 (1831)	0.17 (1724)	p<0.0001		GCG*	0.20 (3097)	0.15 (2562)	p<0.0001
Uia	CAU	0.37 (1411)	0.46 (2636)	p<0.0001		AUU	0.32 (3042)	0.36 (4439)	p<0.0001
1115	CAC*	0.63 (2387)	0.54 (3042)	p<0.0001	Ile	AUC*	0.46 (4443)	0.33 (4061)	p<0.0001
Cla	CAA	0.28 (1802)	0.42 (3762)	p<0.0001		AUA	0.22(2081)	0.31 (3959)	p<0.0001
GIII	CAG*	0.72 (4604)	0.58 (5160)	p<0.0001		GAU	0.43 (4499)	0.53 (5945)	p<0.0001
	AAU	0.39 (2966)	0.51 (4443)	p<0.0001	Asp	GAC*	0.57 (6070)	0.47 (5267)	p<0.0001
Asn	AAC*	0.61 (4548)	0.49 (4313)	p<0.0001		GAA	0.28 (3366)	0.42 (5202)	p<0.0001
Ŧ	AAA	0.20 (2084)	0.35 (3615)	p<0.0001	Glu	GAG*	0.72 (8523)	0.58 (7251)	p<0.0001
Lys	AAG*	0.80 (8122)	0.65 (6802)	p<0.0001		GGU	0.18 (2109)	0.20 (2085)	p=0.0115
	UGU	0.36 (1647)	0.42 (2124)	p<0.0001		GGC*	0.35 (3972)	0.27 (2883)	p<0.0001
Cys	UGC*	0.64 (2992)	0.58 (2944)	p<0.0001	Gly	GGA	0.24 (2752)	0.30 (3124)	p<0.0001
	CGU*	0.18 (1638)	0.14 (1776)	p<0.0001		GGG	0.23 (2635)	0.23 (2472)	p=0.4667
	CGC*	0.32 (2976)	0.19 (2309)	p<0.0001					
	CGA	0.08 (749)	0.14 (1662)	p<0.0001					
Arg –	CGG	0.09 (871)	0.15 (1828)	p<0.0001					
	AGA	0.14 (1279)	0.21 (2561)	p<0.0001					
	AGG*	0.19 (1815)	0.18 (2175)	p=0.0008					

 Table 51 | Codon Usage from Expression Data for the Excavate G. lamblia
Amira		Top 5%	Bottom 5%	Chi	Amina		Top 5%	Bottom 5%	Chi
Anino	Codons	Expressed	Expressed	Saaured	Anino	Codons	Expressed	Expressed	CIII- Sciaure d
Actus		Genes	Genes	Squareu	Actus		Genes	Genes	Squareu
Phe	UUU	0.36 (1892)	0.78 (5488)	p<0.0001		UCU*	0.31 (2445)	0.27 (2600)	p<0.0001
1 IIC	UUC*	0.64 (3408)	0.22 (1527)	p<0.0001		UCC*	0.23 (1832)	0.07 (685)	p<0.0001
	UUA	0.18 (1755)	0.46 (5896)	p<0.0001	Sor	UCA	0.15 (1163)	0.28 (2683)	p<0.0001
	UUG	0.10 (952)	0.13 (1647)	p<0.0001	301	UCG*	0.09 (679)	0.06 (604)	p<0.0001
Lou	CUU*	0.25 (2419)	0.17 (2212)	p<0.0001		AGU	0.07 (556)	0.21 (1974)	p<0.0001
Leu	CUC*	0.30 (2866)	0.04 (559)	p<0.0001		AGC*	0.15 (1217)	0.10 (968)	p<0.0001
	CUA	0.05 (457)	0.14 (1871)	p<0.0001		ACU	0.37 (2580)	0.37 (2442)	p=0.9621
	CUG*	0.13 (1223)	0.06 (772)	p<0.0001	The	ACC*	0.35 (2439)	0.14 (955)	p<0.0001
	GUU	0.40 (3346)	0.42 (2508)	p=0.0891	Inr	ACA	0.15 (1057)	0.39 (2560)	p<0.0001
Val	GUC*	0.26 (2131)	0.09 (568)	p<0.0001		ACG*	0.13 (940)	0.10 (674)	p<0.0001
vai	GUA	0.19 (1544)	0.36 (2164)	p<0.0001	Trm	UAU	0.53 (1995)	0.78 (4485)	p<0.0001
	GUG*	0.16 (1304)	0.13 (786)	p<0.0001	1 yr	UAC*	0.47 (1743)	0.22 (1278)	p<0.0001
	CCU	0.37 (1836)	0.38 (1185)	p=0.9037		GCU	0.38 (3917)	0.36 (1598)	p=0.0082
Dro	CCC*	0.30 (1474)	0.09 (276)	p<0.0001	Alo	GCC*	0.31 (3176)	0.12 (534)	p<0.0001
F 10	CCA	0.23 (1141)	0.44 (1400)	p<0.0001		GCA	0.17 (1708)	0.40 (1789)	p<0.0001
	CCG	0.09 (455)	0.09 (292)	p=0.9839		GCG*	0.14 (1399)	0.11 (508)	p=0.0002
Uia	CAU	0.42 (970)	0.77 (1516)	p<0.0001		AUU	0.41 (3236)	0.49 (6198)	p<0.0001
1115	CAC*	0.58 (1334)	0.23 (449)	p<0.0001	Ile	AUC*	0.46 (3694)	0.11 (1428)	p<0.0001
Cha	GAA	0.55 (4347)	0.74 (4623)	p<0.0001		AUA	0.13 (1034)	0.40 (5040)	p<0.0001
Giu	GAG*	0.45 (3539)	0.26 (1600)	p<0.0001	A	GAU	0.52 (3454)	0.78 (4660)	p<0.0001
	AAU	0.44 (2546)	0.77 (7201)	p<0.0001	Asp	GAC*	0.48 (3162)	0.22 (1311)	p<0.0001
Asn	AAC*	0.56 (3252)	0.23 (2125)	p<0.0001		CAA	0.15 (972)	0.14 (1760)	p=0.0806
T	AAA	0.40 (3490)	0.75 (7281)	p<0.0001	Cla	CAG*	0.42 (2718)	0.08 (942)	p<0.0001
Lys	AAG*	0.60 (5327)	0.25 (2475)	p<0.0001	Gin	UUA	0.25 (1619)	0.58 (7179)	p<0.0001
C	UGU	0.30 (1229)	0.51 (2046)	p<0.0001		UAG	0.17 (1088)	0.20 (2484)	p<0.0001
Cys	UGC*	0.70 (2820)	0.49 (1988)	p<0.0001		GGU*	0.44 (3626)	0.34 (1355)	p<0.0001
	CGU*	0.29 (1570)	0.11 (401)	p<0.0001		GGC*	0.31 (2557)	0.15 (594)	p<0.0001
	CGC*	0.22 (1164)	0.08 (281)	p<0.0001	Gly	GGA	0.17 (1419)	0.39 (1548)	p<0.0001
	CGA	0.02 (95)	0.13 (469)	p<0.0001		GGG	0.09 (710)	0.12 (497)	p<0.0001
Arg	CGG	0.04 (218)	0.06 (198)	p=0.0007					
	AGA	0.32 (1705)	0.47 (1658)	p<0.0001					
	AGG	0.11 (596)	0.14 (492)	p<0.0001					

 Table 52 | Codon Usage from Expression Data for the Excavate S. salmonicida

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dho	UUU	0.22 (944)	0.41 (3441)	p<0.0001		UCU	0.14 (1078)	0.13 (6188)	p=0.0029
rne	UUC*	0.78 (3302)	0.59 (5031)	p<0.0001		UCC*	0.25 (1991)	0.20 (9773)	p<0.0001
	UUA	0.01 (69)	0.02 (685)	p<0.0001	Sor	UCA	0.04 (336)	0.07 (3281)	p<0.0001
	UUG	0.06 (573)	0.13 (3839)	p<0.0001	Ser	UCG	0.27 (2079)	0.25 (12398)	p=0.0087
Lou	CUU	0.11 (970)	0.13 (3888)	p<0.0001		AGU	0.04 (319)	0.06 (2886)	p<0.0001
Leu	CUC	0.26 (2366)	0.27 (8182)	p=0.0861		AGC	0.26 (2033)	0.30 (14781)	p<0.0001
	CUA	0.03 (268)	0.05 (1608)	p<0.0001		ACU	0.10 (620)	0.13 (2686)	p<0.0001
	CUG*	0.54 (4916)	0.41 (12412)	p<0.0001	The	ACC*	0.31 (2013)	0.28 (6038)	p<0.0001
	GUU	0.10 (892)	0.12 (2906)	p<0.0001	1111	ACA	0.11 (722)	0.20 (4164)	p<0.0001
Vəl	GUC	0.24 (2054)	0.26 (6244)	p=0.0001		ACG*	0.48 (3092)	0.39 (8371)	p<0.0001
vai	GUA	0.04 (321)	0.08 (1848)	p<0.0001	Tyr	UAU	0.10 (356)	0.23 (1552)	p<0.0001
	GUG*	0.62 (5298)	0.54 (12935)	p<0.0001	I yı	UAC*	0.90 (3189)	0.77 (5265)	p<0.0001
	CCU	0.12 (660)	0.14 (3678)	p=0.0003		GCU	0.15 (1654)	0.14 (7000)	p=0.0013
Pro	CCC*	0.26 (1401)	0.18 (4743)	p<0.0001	l Ala	GCC*	0.35 (3830)	0.26 (13106)	p<0.0001
110	CCA	0.10 (529)	0.19 (4879)	p<0.0001		GCA	0.08 (894)	0.17 (8394)	p<0.0001
	CCG*	0.52 (2823)	0.49 (12900)	p<0.0001		GCG	0.41 (4509)	0.43 (21493)	p=0.0026
His	CAU	0.16 (464)	0.26 (2692)	p<0.0001		AUU	0.20 (1011)	0.28 (2091)	p<0.0001
1115	CAC*	0.84 (2476)	0.74 (7607)	p<0.0001	Ile	AUC*	0.75 (3777)	0.60 (4531)	p<0.0001
Cln	CAA	0.09 (370)	0.20 (2649)	p<0.0001		AUA	0.04 (218)	0.13 (975)	p<0.0001
GIII	CAG*	0.91 (3744)	0.80 (10339)	p<0.0001	Acr	GAU	0.24 (1358)	0.30 (4792)	p<0.0001
Aan	AAU	0.11 (438)	0.21 (1503)	p<0.0001	Asp	GAC*	0.76 (4197)	0.70 (11092)	p<0.0001
ASI	AAC*	0.89 (3641)	0.79 (5614)	p<0.0001	Cl-	GAA	0.10 (691)	0.21 (3566)	p<0.0001
I wa	AAA	0.05 (389)	0.18 (1352)	p<0.0001	Giù	GAG*	0.90 (6503)	0.79 (13620)	p<0.0001
Lys	AAG*	0.95 (7004)	0.82 (6007)	p<0.0001		GGU*	0.22 (1769)	0.20 (4478)	p<0.0001
Crea	UGU	0.16 (383)	0.26 (1860)	p<0.0001	Chr	GGC*	0.66 (5304)	0.51 (11638)	p<0.0001
Cys	UGC*	0.84 (1986)	0.74 (5371)	p<0.0001	Gly	GGA	0.05 (372)	0.11 (2505)	p<0.0001
	CGU	0.15 (1181)	0.15 (3796)	p=0.9635		GGG	0.08 (652)	0.19 (4311)	p<0.0001
	CGC*	0.65 (5209)	0.41 (10512)	p<0.0001					
A	CGA	0.03 (267)	0.11 (2751)	p<0.0001					
Arg	CGG	0.09 (702)	0.21 (5291)	p<0.0001					
	AGA	0.02 (197)	0.04 (1143)	p<0.0001					
	AGG	0.06 (444)	0.09 (2257)	p<0.0001					

 Table 53 | Codon Usage from Expression Data for the Excavate L. major

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaured	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dho	UUU	0.16 (1099)	0.41 (4510)	p<0.0001		UCU	0.10 (1086)	0.11 (3551)	p<0.0001
rne	UUC*	0.84 (5822)	0.59 (6558)	p<0.0001		UCC*	0.28 (3213)	0.23 (7239)	p<0.0001
	UUA	0.01 (133)	0.03 (963)	p<0.0001	Sor	UCA	0.02 (270)	0.08 (2363)	p<0.0001
	UUG	0.05 (760)	0.13 (4143)	p<0.0001	Ser	UCG*	0.29 (3295)	0.24 (7542)	p<0.0001
Len	CUU	0.08 (1087)	0.11 (3438)	p<0.0001		AGU	0.03 (374)	0.08 (2552)	p<0.0001
Leu	CUC	0.21 (2907)	0.27 (8467)	p<0.0001		AGC	0.27 (3082)	0.26 (8049)	p=0.0018
	CUA	0.02 (213)	0.04 (1325)	p<0.0001		ACU	0.07 (764)	0.09 (1944)	p<0.0001
	CUG*	0.63 (8753)	0.42 (13133)	p<0.0001	Thr	ACC	0.32 (3288)	0.33 (7255)	p=0.0012
	GUU	0.09 (1159)	0.12 (2927)	p<0.0001	1111	ACA	0.06 (622)	0.14 (3091)	p<0.0001
Vəl	GUC	0.22 (2943)	0.27 (6859)	p<0.0001		ACG*	0.55 (5732)	0.43 (9426)	p<0.0001
vai	GUA	0.02 (324)	0.07 (1675)	p<0.0001	Tvr	UAU	0.07 (371)	0.15 (1229)	p<0.0001
	GUG*	0.67 (8898)	0.54 (13654)	p<0.0001	1 91	UAC*	0.93 (4702)	0.85 (7058)	p<0.0001
	CCU	0.11 (874)	0.15 (3393)	p<0.0001		GCU*	0.13 (2124)	0.11 (4782)	p<0.0001
Pro	CCC*	0.29 (2359)	0.25 (5526)	p<0.0001	1 Ala	GCC*	0.38 (6239)	0.29 (12262)	p<0.0001
110	CCA	0.05 (427)	0.16 (3545)	p<0.0001		GCA	0.05 (855)	0.23 (9717)	p<0.0001
	CCG*	0.55 (4457)	0.44 (9719)	p<0.0001		GCG*	0.44 (7389)	0.37 (15624)	p<0.0001
His	CAU	0.08 (333)	0.20 (1878)	p<0.0001		AUU	0.17 (1402)	0.32 (3272)	p<0.0001
	CAC*	0.92 (3867)	0.80 (7473)	p<0.0001	Ile	AUC*	0.80 (6537)	0.60 (6160)	p<0.0001
Gln	CAA	0.09 (567)	0.23 (3258)	p<0.0001		AUA	0.03 (215)	0.07 (764)	p<0.0001
	CAG*	0.91 (5542)	0.77 (10618)	p<0.0001	Asp	GAU	0.22 (1921)	0.31 (5054)	p<0.0001
Asn	AAU	0.07 (460)	0.21 (2158)	p<0.0001	710P	GAC*	0.78 (6808)	0.69 (11339)	p<0.0001
11311	AAC*	0.93 (6281)	0.79 (8094)	p<0.0001	Ghi	GAA	0.08 (818)	0.24 (4551)	p<0.0001
Lvs	AAA	0.04 (541)	0.24 (2614)	p<0.0001	Olu	GAG*	0.92 (9899)	0.76 (14283)	p<0.0001
Lys	AAG*	0.96 (12137)	0.76 (8451)	p<0.0001		GGU*	0.22 (2840)	0.21 (4389)	p=0.0002
Cve	UGU	0.15 (569)	0.26 (1582)	p<0.0001	Clv	GGC*	0.67 (8510)	0.49 (10376)	p<0.0001
Cys	UGC*	0.85 (3149)	0.74 (4620)	p<0.0001	Oly	GGA	0.04 (510)	0.11 (2348)	p<0.0001
	CGU	0.14 (1734)	0.18 (4203)	p<0.0001		GGG	0.06 (819)	0.19 (4104)	p<0.0001
	CGC*	0.73 (8747)	0.42 (10171)	p<0.0001					
Arg	CGA	0.03 (319)	0.11 (2547)	p<0.0001					
Alg	CGG	0.06 (683)	0.20 (4685)	p<0.0001					
	AGA	0.02 (186)	0.04 (866)	p<0.0001					
	AGG	0.03 (336)	0.06 (1484)	p<0.0001					

 Table 54 | Codon Usage from Expression Data for the Excavate L. pyrrhocoris

Amina		Top 5%	Bottom 5%	Chi	Amina		Top 5%	Bottom 5%	Chi
Anno	Codons	Expressed	Expressed	CIII-	Ammo	Codons	Expressed	Expressed	CIII- Sagurad
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Syaureu
Pho	UUU*	0.44 (3759)	0.31 (1136)	p<0.0001		UCU*	0.14 (3576)	0.11 (943)	p<0.0001
1 110	UUC	0.56 (4750)	0.69 (2580)	p<0.0001		UCC	0.19 (4706)	0.21 (1743)	p<0.0001
	UUA	0.04 (937)	0.03 (246)	p<0.0001	Sor	UCA*	0.10 (2384)	0.08 (633)	p<0.0001
	UUG*	0.15 (3814)	0.12 (1089)	p<0.0001	Sel	UCG	0.21 (5131)	0.23 (1943)	p<0.0001
Lou	CUU	0.13 (3156)	0.12 (1148)	p=0.6980		AGU*	0.10 (2409)	0.08 (634)	p<0.0001
Leu	CUC	0.24 (5877)	0.23 (2130)	p=0.4658		AGC	0.27 (6667)	0.29 (2374)	p=0.0008
	CUA	0.06 (1382)	0.05 (428)	p=0.0013		ACU*	0.13 (2120)	0.11 (665)	p<0.0001
	CUG	0.39 (9828)	0.45 (4165)	p<0.0001	The	ACC	0.30 (4948)	0.29 (1763)	p=0.0591
	GUU	0.14 (2624)	0.13 (999)	p=0.0779	1111	ACA*	0.18 (2998)	0.15 (899)	p<0.0001
Val	GUC	0.23 (4288)	0.23 (1733)	p=0.9629		ACG	0.39 (6309)	0.45 (2769)	p<0.0001
vai	GUA*	0.10 (1811)	0.07 (527)	p<0.0001	Tyr	UAU*	0.21 (1444)	0.18 (478)	p<0.0001
	GUG	0.54 (10228)	0.57 (4409)	p<0.0001	1 yı	UAC	0.79 (5315)	0.82 (2243)	p<0.0001
	CCU*	0.18 (2854)	0.15 (849)	p<0.0001		GCU	0.17 (5177)	0.16 (1734)	p=0.0086
Dro	CCC	0.24 (3822)	0.28 (1592)	p<0.0001	Alo	GCC	0.28 (8473)	0.30 (3224)	p=0.0005
110	CCA*	0.20 (3197)	0.15 (871)	p<0.0001	Ala	GCA*	0.20 (6055)	0.15 (1658)	p<0.0001
	CCG	0.38 (6124)	0.42 (2381)	p<0.0001		GCG	0.35 (10390)	0.39 (4157)	p<0.0001
Hic	CAU*	0.28 (1985)	0.23 (625)	p<0.0001		AUU*	0.35 (2962)	0.26 (1010)	p<0.0001
1115	CAC	0.72 (5184)	0.77 (2041)	p<0.0001	Ile	AUC	0.56 (4707)	0.67 (2569)	p<0.0001
Cln	CAA*	0.23 (2573)	0.18 (658)	p<0.0001		AUA*	0.09 (795)	0.07 (280)	p<0.0001
GIII	CAG	0.77 (8785)	0.82 (2988)	p<0.0001	Aan	GAU*	0.38 (4925)	0.30 (1347)	p<0.0001
•	AAU*	0.28 (2238)	0.20 (636)	p<0.0001	Asp	GAC	0.62 (8154)	0.70 (3129)	p<0.0001
ASI	AAC	0.72 (5824)	0.80 (2518)	p<0.0001	Cl-	GAA*	0.24 (4048)	0.19 (1045)	p<0.0001
T	AAA*	0.21 (1998)	0.16 (632)	p<0.0001	Giù	GAG	0.76 (12672)	0.81 (4416)	p<0.0001
Lys	AAG	0.79 (7416)	0.84 (3341)	p<0.0001		GGU	0.21 (3626)	0.21 (1444)	p=0.7543
C	UGU	0.26 (1230)	0.23 (533)	p=0.0064		GGC	0.48 (8174)	0.52 (3584)	p<0.0001
Cys	UGC	0.74 (3589)	0.77 (1828)	p=0.0064	Gly	GGA*	0.12 (2066)	0.09 (651)	p<0.0001
	CGU*	0.19 (3608)	0.16 (1157)	p<0.0001		GGG	0.19 (3254)	0.17 (1198)	p=0.0043
	CGC	0.41 (7828)	0.45 (3297)	p<0.0001					
	CGA*	0.11 (2098)	0.08 (568)	p<0.0001	1				
Arg	CGG	0.18 (3510)	0.17 (1254)	p=0.0172					
	AGA	0.04 (796)	0.05 (363)	p=0.0051					
	AGG	0.07 (1378)	0.10 (732)	p<0.0001					

 Table 55 | Codon Usage from Expression Data for the Excavate L. seymouri

Amino		Top 5%	Bottom 5%	Chi	Amino		Top 5%	Bottom 5%	Chi
	Codons	Expressed	Expressed	CIII- Scourad	Amino	Codons	Expressed	Expressed	CIII- Scoure d
Acius		Genes	Genes	Sqaureu	Acius		Genes	Genes	Syaureu
Pho	UUU	0.55 (2053)	0.57 (6540)	p=0.1093		UCU	0.18 (958)	0.16 (4948)	p=0.0016
1 110	UUC	0.45 (1674)	0.43 (5015)	p=0.1093		UCC*	0.17 (927)	0.15 (4730)	p=0.0005
	UUA	0.10 (686)	0.10 (3382)	p=0.5767	Sor	UCA	0.16 (857)	0.17 (5245)	p=0.0473
	UUG	0.20 (1363)	0.21 (7248)	p=0.0463	301	UCG	0.14 (765)	0.15 (4534)	p=0.3406
Lou	CUU	0.24 (1642)	0.25 (8373)	p=0.6590		AGU	0.16 (837)	0.19 (5899)	p<0.0001
Leu	CUC*	0.19 (1246)	0.15 (5110)	p<0.0001		AGC	0.19 (1007)	0.17 (5263)	p=0.0040
	CUA	0.07 (482)	0.09 (3151)	p<0.0001		ACU	0.22 (1013)	0.24 (4814)	p=0.0691
	CUG	0.19 (1291)	0.19 (6588)	p=0.6880	The	ACC	0.20 (913)	0.22 (4502)	p=0.0042
	GUU	0.30 (1749)	0.31 (8325)	p=0.0124	1 111	ACA	0.29 (1300)	0.29 (5955)	p=0.4763
Val	GUC	0.16 (945)	0.15 (4045)	p=0.1284		ACG*	0.29 (1304)	0.25 (5093)	p<0.0001
vai	GUA	0.15 (855)	0.17 (4433)	p<0.0001	Tur	UAU	0.44 (1007)	0.45 (3577)	p=0.1826
	GUG*	0.40 (2347)	0.37 (9760)	p<0.0001	I yı	UAC	0.56 (1301)	0.55 (4332)	p=0.1826
	CCU	0.23 (812)	0.26 (4201)	p<0.0001		GCU	0.26 (1658)	0.27 (7905)	p=0.1216
Dro	CCC*	0.26 (943)	0.13 (2058)	p<0.0001	Alo	GCC*	0.25 (1565)	0.21 (6027)	p<0.0001
110	CCA	0.27 (976)	0.33 (5173)	p<0.0001	Ala	GCA	0.25 (1598)	0.28 (8262)	p<0.0001
	CCG	0.23 (832)	0.28 (4435)	p<0.0001		GCG	0.24 (1510)	0.24 (7021)	p=0.6681
Hic	CAU	0.41 (784)	0.48 (4320)	p<0.0001		AUU	0.48 (1742)	0.46 (5949	p=0.0255
1115	CAC*	0.59 (1112)	0.52 (4700)	p<0.0001	Ile	AUC*	0.33 (1210)	0.28 (3625)	p<0.0001
Cla	CAA	0.44 (1194)	0.46 (6171)	p=0.0284		AUA	0.19 (685)	0.26 (3418)	p<0.0001
GIN	CAG	0.56 (1549)	0.54 (7297)	p=0.0296	A	GAU	0.51 (1856)	0.57 (10284)	p<0.0001
A	AAU	0.44 (1359)	0.51 (6570)	p<0.0001	Asp	GAC*	0.49 (1750)	0.43 (7650)	p<0.0001
Asn	AAC*	0.56 (1695)	0.49 (6384)	p<0.0001	Clas	GAA	0.44 (2051)	0.46 (11368)	p=0.0371
T	AAA	0.34 (1821)	0.44 (6587)	p<0.0001	Glu	GAG	0.56 (2578)	054 (13354)	p=0.0371
Lys	AAG*	0.66 (3586)	0.56 (8271)	p<0.0001		GGU*	0.37 (1957)	0.33 (7798)	p<0.0001
C	UGU	0.47 (770)	0.51 (3898)	p=0.0120		GGC*	0.24 (1265)	0.22 (5096)	p=0.0003
Cys	UGC	0.53 (858)	0.49 (3781)	p=0.0120	Gly	GGA	0.22 (1178)	0.23 (5349)	p=0.5105
	CGU	0.25 (1403)	0.24 (5955)	p=0.0194		GGG	0.17 (890)	0.23 (5322)	p<0.0001
	CGC*	0.32 (1804)	0.20 (4944)	p<0.0001			· · ·		*
	CGA	0.10 (541)	0.14 (3447)	p<0.0001					
Arg	CGG	0.13 (717)	0.18 (4430)	p<0.0001					
	AGA	0.08 (468)	0.10 (2625)	p<0.0001					
	AGG	0.12 (649)	0.15 (3781)	p<0.0001					

 Table 56 | Codon Usage from Expression Data for the Excavate T. brucei

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaured
Pho	UUU	0.61 (8601)	0.60 (9097)	p=0.0424		UCU*	0.16 (5428)	0.13 (5370)	p<0.0001
rne	UUC	0.39 (5572)	0.40 (6187)	p=0.0424		UCC*	0.20 (6455)	0.18 (7557)	p<0.0001
	UUA	0.05 (2000)	0.06 (2358)	p=0.1344	Sor	UCA*	0.15 (4897)	0.12 (4797)	p<0.0001
	UUG	0.19 (6786)	0.20 (8223)	p<0.0001	Ser	UCG	0.15 (5050)	0.22 (9360)	p<0.0001
Lou	CUU*	0.22 (7880)	0.18 (7238)	p<0.0001		AGU*	0.15 (4818)	0.12 (4898)	p<0.0001
Leu	CUC*	0.19 (6832)	0.16 (6504)	p<0.0001		AGC	0.19 (6365)	0.23 (9721)	p<0.0001
	CUA	0.04 (1492)	0.04 (1702)	p=0.7502		ACU*	0.18 (5328)	0.16 (4447)	p<0.0001
	CUG	0.32 (11496)	0.37 (15113)	p<0.0001	The	ACC*	0.22 (6387)	0.19 (5503)	p<0.0001
	GUU*	0.24 (7534)	0.20 (8032)	p<0.0001		ACA*	0.27 (7776)	0.21 (5889)	p<0.0001
Val	GUC*	0.18 (5790)	0.16 (6574)	p<0.0001		ACG	0.34 (9846)	0.45 (12752)	p<0.0001
vai	GUA*	0.09 (2802)	0.07 (2696)	p<0.0001	Trm	UAU	0.31 (2916)	0.31 (3009)	p=0.8264
	GUG	0.49 (15292)	0.57 (23113)	p<0.0001	1 yr	UAC	0.69 (6533)	0.69 (6692)	p=0.8264
	CCU*	0.20 (4554)	0.18 (4412)	p<0.0001		GCU*	0.21 (7954)	0.19 (7954)	p<0.0001
Duo	CCC	0.23 (5171)	0.23 (5467)	p=0.2859	Alo	GCC*	0.26 (10109)	0.22 (9538)	p<0.0001
PTO	CCA*	0.28 (6303)	0.24 (5772)	p<0.0001	Ala	GCA*	0.24 (9075)	0.20 (8341)	p<0.0001
	CCG	0.29 (6532)	0.36 (8643)	p<0.0001		GCG	0.30 (11466)	0.39 (16767)	p<0.0001
Uia	CAU	0.37 (3713)	0.37 (4584)	p=0.6860		AUU*	0.48 (7385)	0.45 (6733)	p<0.0001
1115	CAC	0.63 (6321)	0.63 (7895)	p=0.6860	Ile	AUC	0.38 (5913)	0.39 (5737)	p=0.7943
Cla	CAA*	0.38 (5844)	0.35 (4897)	p<0.0001		AUA	0.14 (2089)	0.16 (2400)	p<0.0001
GIN	CAG	0.62 (9625)	0.65 (9007)	p<0.0001		GAU*	0.47 (9699)	0.40 (8189)	p<0.0001
	AAU*	0.46 (7634)	0.41 (6106)	p<0.0001	Asp	GAC	0.53 (10965)	0.60 (12068)	p<0.0001
Asn	AAC	0.54 (8833)	0.59 (8894)	p<0.0001		GAA*	0.41 (12162)	0.37 (7987)	p<0.0001
T	AAA	0.35 (8442)	0.44 (5356)	p<0.0001	Glu	GAG	0.59 (17604)	0.63 (13455)	p<0.0001
Lys	AAG*	0.65 (15532)	0.56 (6752)	p<0.0001		GGU*	0.26 (8445)	0.21 (8052)	p<0.0001
C	UGU*	0.38 (3532)	0.32 (4340)	p<0.0001		GGC	0.34 (11194)	0.40 (15315)	p<0.0001
Cys	UGC	0.62 (5654)	0.68 (9230)	p<0.0001	Gly	GGA*	0.22 (7204)	0.17 (6352)	p<0.0001
	CGU*	0.22 (5775)	0.18 (5880)	p<0.0001		GGG	0.19 (6231)	0.22 (8181)	p<0.0001
	CGC*	0.29 (7769)	0.25 (8083)	p<0.0001					
	CGA	0.09 (2456)	0.12 (3845)	p<0.0001					
Arg	CGG	0.14 (3722)	0.20 (6524)	p<0.0001					
	AGA	0.10 (2523)	0.09 (2855)	p=0.0024					
	AGG	0.16 (4236)	0.16 (5257)	p=0.5039					

 Table 57 | Codon Usage from Expression Data for the Excavate T. cruzi

Amino		Top 5%	Bottom 5%	Chi	Amino		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	CIII-	Amino	Codons	Expressed	Expressed	CIII- Scoure d
Acius		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Dho	UUU	0.46 (2162)	0.75 (6947)	p<0.0001		UCU	0.20 (1836)	0.31 (6168)	p<0.0001
1 110	UUC*	0.54 (2551)	0.25 (2297)	p<0.0001		UCC*	0.18 (1697)	0.12 (2289)	p<0.0001
	UUA	0.07 (737)	0.26 (5526)	p<0.0001	Sor	UCA	0.15 (1353)	0.21 (4105)	p<0.0001
	UUG	0.15 (1669)	0.17 (3615)	p=0.0003	Ser	UCG*	0.10 (895)	0.06 (1116)	p<0.0001
Lou	CUU	0.21 (2276)	0.28 (5978)	p<0.0001		AGU	0.18 (1595)	0.24 (4760)	p<0.0001
Leu	CUC*	0.24 (2643)	0.11 (2453)	p<0.0001		AGC*	0.20 (1832)	0.07 (1415)	p<0.0001
	CUA	0.04 (469)	0.09 (1861)	p<0.0001		ACU	0.22 (1939)	0.31 (4307)	p<0.0001
	CUG*	0.29 (3224)	0.10 (2184)	p<0.0001	The	ACC*	0.23 (2033)	0.15 (2135)	p<0.0001
	GUU	0.24 (2632)	0.35 (5333)	p<0.0001	1 111	ACA	0.34 (3020)	0.40 (5565)	p<0.0001
Val	GUC*	0.15 (1660)	0.09 (1431)	p<0.0001		ACG*	0.21 (1885)	0.15 (2071)	p<0.0001
vai	GUA	0.11 (1240)	0.27 (4122)	p<0.0001	Tur	UAU	0.33 (1257)	0.67 (4148)	p<0.0001
	GUG*	0.49 (5254)	0.29 (4491)	p<0.0001	I yı	UAC*	0.67 (2496)	0.33 (2061)	p<0.0001
	CCU	0.23 (1493)	0.35 (4144)	p<0.0001		GCU	0.26 (3362)	0.32 (4541)	p<0.0001
Dro	CCC*	0.27 (1754)	0.15 (1804)	p<0.0001	Ala	GCC*	0.29 (3795)	0.19 (2770)	p<0.0001
F 10	CCA	0.32 (2064)	0.36 (4325)	p<0.0001		GCA	0.25 (3310)	0.33 (4682)	p<0.0001
	CCG*	0.18 (1145)	0.13 (1583)	p<0.0001		GCG*	0.20 (2540)	0.17 (2372)	p<0.0001
Uia	CAU	0.37 (1238)	0.66 (3741)	p<0.0001		AUU	0.49 (2982)	0.56 (6634)	p<0.0001
1115	CAC*	0.63 (2083)	0.34 (1891)	p<0.0001	Ile	AUC*	0.40 (2465)	0.15 (1778)	p<0.0001
Clm	CAA	0.37 (2033)	0.65 (5231)	p<0.0001		AUA	0.11 (669)	0.29 (3364)	p<0.0001
GIII	CAG*	0.63 (3504)	0.35 (2859)	p<0.0001	A	GAU	0.53 (3712)	0.80 (8052)	p<0.0001
	AAU	0.45 (2881)	0.73 (8074)	p<0.0001	Asp	GAC*	0.47 (3301)	0.20 (2022)	p<0.0001
Asn	AAC*	0.55 (3535)	0.27 (2957)	p<0.0001		GAA	0.41 (4508)	0.65 (9015)	p<0.0001
T	AAA	0.28 (3028)	0.65 (6749)	p<0.0001	Glu	GAG*	0.59 (6518)	0.35 (4793)	p<0.0001
Lys	AAG*	0.72 (7896)	0.35 (3686)	p<0.0001		GGU	0.39 (3684)	0.41 (5630)	p=0.0240
C	UGU	0.44 (1251)	0.71 (3489)	p<0.0001		GGC*	0.28 (2649)	0.12 (1631)	p<0.0001
Cys	UGC*	0.56 (1577)	0.29 (1415)	p<0.0001	Gly	GGA	0.22 (2023)	0.33 (4497)	p<0.0001
	CGU	0.29 (2507)	0.31 (4179)	p<0.0001		GGG	0.11 (1022)	0.15 (2050)	p<0.0001
	CGC*	0.39 (3380)	0.12 (1540)	p<0.0001					
	CGA	0.08 (690)	0.19 (2575)	p<0.0001					
Arg	CGG	0.08 (659)	0.10 (1388)	p<0.0001					
	AGA	0.09 (787)	0.19 (2546)	p<0.0001					
	AGG	0.09 (754)	0.09 (1138)	p=0.8614					

 Table 58 | Codon Usage from Expression Data for the Excavate T. theileri

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Pho	UUU	0.39 (7731)	0.75 (24652)	p<0.0001		UCU*	0.40 (10861)	0.33 (17787)	p<0.0001
rne	UUC*	0.61 (11944)	0.25 (24652)	p<0.0001		UCC*	0.12 (3221)	0.05 (2628)	p<0.0001
	UUA	0.36 (12918)	0.43 (22934)	p<0.0001	Ser	UCA	0.19 (5107)	0.26 (14099)	p<0.0001
	UUG*	0.18 (6546)	0.15 (8105)	p<0.0001	Ser	UCG	0.01 (214)	0.02 (1283)	p<0.0001
Lon	CUU*	0.27 (9518)	0.20 (10635)	p<0.0001		AGU	0.15 (4233)	0.21 (11329)	p<0.0001
Leu	CUC*	0.15 (5267)	0.06 (2994)	p<0.0001		AGC	0.13 (3676)	0.13 (7261)	p=0.6670
	CUA	0.04 (1287)	0.12 (6549)	p<0.0001		ACU*	0.59 (12722)	0.52 (16455)	p<0.0001
	CUG	0.01 (272)	0.03 (1746)	p<0.0001	Thr	ACC*	0.23 (4908)	0.10 (3036)	p<0.0001
	GUU*	0.59 (14152)	0.50 (12866)	p<0.0001	тш	ACA	0.18 (3817)	0.36 (11412)	p<0.0001
Val	GUC*	0.24 (5841)	0.11 (2774)	p<0.0001		ACG	0.00 (76)	0.02 (772)	p<0.0001
var	GUA	0.15 (3551)	0.31 (7905)	p<0.0001	Tvr	UAU	0.53 (8548)	0.72 (20880)	p<0.0001
	GUG	0.02 (535)	0.09 (2351)	p<0.0001	1 71	UAC*	0.47 (7505)	0.28 (8250)	p<0.0001
	CCU*	0.62 (8978)	0.55 (9173)	p<0.0001		GCU*	0.67 (17095)	0.56 (11986)	p<0.0001
Pro	CCC*	0.23 (3367)	0.07 (1202)	p<0.0001	Ala	GCC*	0.17 (4383)	0.09 (1963)	p<0.0001
110	CCA	0.14 (2039)	0.36 (6082)	p<0.0001		GCA	0.15 (3931)	0.33 (7000)	p<0.0001
	CCG	0.00 (50)	0.02 (325)	p<0.0001		GCG	0.00 (91)	0.03 (540)	p<0.0001
Hie	CAU	0.49 (3843)	0.73 (4736)	p<0.0001		AUU*	0.58 (16730)	0.51 (26894)	p<0.0001
1115	CAC*	0.51 (4069)	0.27 (1778)	p<0.0001	Ile	AUC*	0.29 (8425)	0.14 (7185)	p<0.0001
Clu	GAA*	0.92 (26061)	0.80 (21646)	p<0.0001		AUA	0.13 (3765)	0.36 (19042)	p<0.0001
Glu	GAG	0.08 (2393)	0.20 (5388)	p<0.0001	Asn	GAU	0.75 (16719)	0.81 (23196)	p<0.0001
Acn	AAU	0.56 (15200)	0.76 (41366)	p<0.0001	Ash	GAC*	0.25 (5658)	0.19 (5316)	p<0.0001
731	AAC*	0.44 (11987)	0.24 (13032)	p<0.0001		CAA*	0.35 (8619)	0.57 (11214)	p<0.0001
Lvs	AAA	0.46 (16579)	0.77 (33687)	p<0.0001	Gln	CAG	0.02 (379)	0.04 (2425)	p<0.0001
Lys	AAG*	0.54 (19405)	0.23 (10330)	p<0.0001	OII	UAA	0.52 (12966)	0.60 (33372)	p<0.0001
Cvs	UGU	0.47 (2946)	0.58 (11706)	p<0.0001		UAG	0.12 (2886)	0.15 (8623)	p<0.0001
C 93	UGC*	0.53 (3349)	0.42 (8557)	p<0.0001		GGU*	0.66 (15266)	0.37 (8998)	p<0.0001
	CGU*	0.15 (2346)	0.07 (915)	p<0.0001	Glv	GGC	0.08 (1946)	0.11 (2729)	p<0.0001
	CGC	0.02 (299)	0.03 (403)	p<0.0001	Oly	GGA	0.25 (5689)	0.46 (11272)	p<0.0001
Arg	CGA	0.00 (49)	0.03 (417)	p<0.0001		GGG	0.01 (250)	0.06 (1597)	p<0.0001
Alg	CGG	0.00 (10)	0.00 (51)	p<0.0001					
	AGA*	0.80 (12642)	0.73 (9473)	p<0.0001					
	AGG	0.02 (380)	0.13 (1709)	p<0.0001					

 Table 59 | Codon Usage from Expression Data for the Alveolate T. thermophila

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dha	UUU	0.62 (12588)	0.80 (28737)	p<0.0001		UCU	0.24 (7992)	0.28 (13913)	p<0.0001
Phe	UUC*	0.38 (7623)	0.20 (7401)	p<0.0001		UCC	0.05 (1711)	0.06 (2828)	p=0.0001
	UUA	0.30 (12420)	0.40 (24208)	p<0.0001	Som	UCA*	0.32 (10588)	0.24 (11742)	p<0.0001
	UUG*	0.15 (6097)	0.14 (8444)	p<0.0001	Ser	UCG	0.04 (1341)	0.04 (2112)	p=0.0495
Lou	CUU*	0.34 (13960)	0.26 (15751)	p<0.0001		AGU	0.24 (7937)	0.26 (13030)	p<0.0001
Leu	CUC*	0.07 (2976)	0.05 (2994)	p<0.0001		AGC	0.12 (3942)	0.12 (5727)	p=0.4844
	CUA	0.10 (3999)	0.12 (7285)	p<0.0001		ACU*	0.49 (13441)	0.44 (13637)	p<0.0001
	CUG*	0.04 (1590)	0.03 (1935)	p<0.0001	Thr	ACC*	0.12 (3391)	0.10 (3017)	p<0.0001
	GUU	0.48 (15344)	0.49 (13726)	p=0.1963	1 111	ACA	0.36 (9842)	0.43 (13204)	p<0.0001
Vəl	GUC*	0.16 (5206)	0.10 (2792)	p<0.0001		ACG	0.03 (872)	0.04 (1127)	p=0.0017
v ता	GUA	0.22 (7128)	0.29 (8097)	p<0.0001	Tyr	UAU	0.74 (12653)	0.79 (23953)	p<0.0001
	GUG	0.13 (4101)	0.12 (3505)	p=0.1063	I yI	UAC*	0.26 (4561)	0.21 (6186)	p<0.0001
	CCU	0.48 (9491)	0.48 (8908)	p=0.4135		GCU*	0.56 (18538)	0.50 (11159)	p<0.0001
Pro	CCC	0.04 (749)	0.05 (898)	p<0.0001	Ala	GCC*	0.11 (3529)	0.08 (1894)	p<0.0001
110	CCA*	0.44 (8696)	0.42 (7896)	p=0.0004		GCA	0.28 (9355)	0.36 (7989)	p<0.0001
	CCG	0.04 (733)	0.05 (920)	p<0.0001		GCG	0.04 (1420)	0.06 (1350)	p<0.0001
His	CAU	0.79 (7216)	0.83 (8977)	p<0.0001		AUU*	0.51 (16118)	0.45 (28363)	p<0.0001
	CAC*	0.21 (1935)	0.17 (1875)	p<0.0001	Ile	AUC*	0.23 (7072)	0.14 (9053)	p<0.0001
Gln	CAA	0.75 (12646)	0.79 (15352)	p<0.0001		AUA	0.26 (8221)	0.41 (25948)	p<0.0001
	CAG*	0.25 (4247)	0.21 (4108)	p<0.0001	Asn	GAU	0.76 (21854)	0.81 (23854)	p<0.0001
Asn	AAU	0.67 (16248)	0.76 (35011)	p<0.0001	Азр	GAC*	0.24 (6959)	0.19 (5524)	p<0.0001
Asi	AAC*	0.33 (8060)	0.24 (11225)	p<0.0001	Chu	GAA	0.81 (30170)	0.81 (32998)	p=0.7174
I ve	AAA	0.73 (28206)	0.82 (48351)	p<0.0001	Giù	GAG	0.19 (7141)	0.19 (7759)	p=0.7174
Lys	AAG*	0.27 (10541)	0.18 (10359)	p<0.0001		GGU*	0.33 (10705)	0.28 (6587)	p<0.0001
Cvs	UGU*	0.66 (5637)	0.56 (6978)	p<0.0001	Cly	GGC*	0.12 (3835)	0.10 (2383)	p<0.0001
Cys	UGC	0.34 (2896)	0.44 (5428)	p<0.0001	Oly	GGA	0.40 (12832)	0.41 (9773)	p=0.0004
	CGU*	0.15 (3405)	0.11 (2200)	p<0.0001		GGG	0.16 (5030)	0.21 (5043)	p<0.0001
	CGC	0.03 (775)	0.03 (626)	p=0.0520					
Arg	CGA	0.06 (1364)	0.09 (1790)	p<0.0001					
Alg	CGG	0.01 (323)	0.02 (461)	p<0.0001					
	AGA*	0.57 (12893)	0.55 (11046)	p<0.0001					
	AGG	0.17 (3792)	0.20 (4062)	p<0.0001					

 Table 60 | Codon Usage from Expression Data for the Alveolate S. coeruleus

Amina		Top 5%	Bottom 5%	Chi	A main o		Top 5%	Bottom 5%	Chi
	Codons	Expressed	Expressed	CIII- Scouro d	Amino	Codons	Expressed	Expressed	CIII- Scoura d
Aclus		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Sqaureu
Dho	UUU	0.88 (4437)	0.87 (4697)	p=0.2110		UCU	0.26 (2122)	0.33 (3797)	p<0.0001
1 ne	UUC	0.12 (625)	0.13 (712)	p=0.2110		UCC	0.05 (407)	0.07 (825)	p<0.0001
	UUA*	0.70 (6938)	0.56 (6530)	p<0.0001	Sor	UCA*	0.32 (2656)	0.28 (3304)	p<0.0001
	UUG	0.12 (1217)	0.16 (1887)	p<0.0001	Sel	UCG	0.02 (188)	0.03 (338)	p=0.0060
Lou	CUU	0.10 (989)	0.13 (1547)	p<0.0001		AGU*	0.29 (2404)	0.24 (2829)	p<0.0001
Leu	CUC	0.01 (95)	0.02 (282)	p<0.0001		AGC*	0.06 (507)	0.05 (554)	p<0.0001
	CUA	0.07 (658)	0.10 (1176)	p<0.0001		ACU	0.38 (2078)	0.37 (3179)	p=0.2227
	CUG	0.01 (85)	0.02 (186)	p<0.0001	The	ACC	0.06 (349)	0.07 (636)	p=0.0215
	GUU*	0.49 (2884)	0.44 (2041)	p<0.0001	1 m	ACA	0.51 (2840)	0.50 (4365)	p=0.1809
Val	GUC	0.04 (233)	0.03 (157)	p=0.1353		ACG	0.05 (266)	0.06 (519)	p=0.0032
vai	GUA	0.40 (2383)	0.43 (1993)	p=0.0052	Trm	UAU*	0.87 (4403)	0.84 (4779)	p<0.0001
	GUG	0.07 (411)	0.10 (442)	p<0.0001	1 yr	UAC	0.13 (672)	0.16 (908)	p<0.0001
	CCU	0.38 (1262)	0.48 (2140)	p<0.0001		GCU*	0.42 (1979)	0.36 (1119)	p<0.0001
Dro	CCC	0.05 (165)	0.07 (298)	p=0.0011	Ala	GCC	0.06 (282)	0.06 (187)	p=0.9961
F 10	CCA*	0.56 (1849)	0.42 (1841)	p<0.0001		GCA	0.50 (2342)	0.52 (1638)	p=0.0194
	CCG	0.01 (48)	0.03 (142)	p<0.0001		GCG	0.02 (112)	0.06 (184)	p<0.0001
Uia	CAU	0.85 (1865)	0.86 (2301)	p=0.2691		AUU*	0.49 (4811)	0.43 (5447)	p<0.0001
1115	CAC	0.15 (336)	0.14 (379)	p=0.2691	Ile	AUC	0.05 (450)	0.06 (751)	p<0.0001
Cln	CAA	0.88 (3039)	0.87 (3080)	p=0.0446		AUA	0.46 (4479)	0.52 (6600)	p<0.0001
GIII	CAG	0.12 (409)	0.13 (479)	p=0.0446	Aan	GAU*	0.90 (7023)	0.86 (6294)	p<0.0001
Aam	AAU	0.87 (11249)	0.87 (12607)	p=0.0855	Asp	GAC	0.10 (790)	0.14 (1005)	p<0.0001
ASI	AAC	0.13 (1748)	0.13 (1842)	p=0.0855		GAA	0.86 (6941)	0.85 (12895)	p=0.0910
T	AAA*	0.86 (12090)	0.83 (14090)	p<0.0001	Glu	GAG	0.14 (1156)	0.15 (2294)	p=0.0910
Lys	AAG	0.14 (1937)	0.17 (2894)	p<0.0001		GGU*	0.38 (2056)	0.29 (1081)	p<0.0001
C	UGU	0.79 (1441)	0.75 (1818)	p=0.0078		GGC	0.03 (141)	0.05 (197)	p<0.0001
Cys	UGC	0.21 (390)	0.25 (599)	p=0.0078	Gly	GGA	0.55 (3003)	0.59 (2209)	p=0.0003
	CGU	0.08 (370)	0.10 (437)	p=0.0057		GGG	0.05 (279)	0.08 (285)	p<0.0001
	CGC	0.01 (47)	0.01 (67)	p=0.0463					
	CGA	0.04 (197)	0.05 (243)	p=0.0138	1				
Arg	CGG	0.00 (9)	0.01 (42)	p<0.0001					
	AGA*	0.77 (3592)	0.67 (3057)	p<0.0001					
	AGG	0.09 (427)	0.15 (704)	p<0.0001					

 Table 61 | Codon Usage from Expression Data for the Alveolate P. gallinaceum

Amin		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	CM-	Amino	Codons	Expressed	Expressed	Cni-
Aclus		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Pho	UUU	0.78 (2868)	0.83 (2904)	p<0.0001		UCU	0.22 (1310)	0.26 (1475)	p<0.0001
1 ne	UUC*	0.22 (792)	0.17 (588)	p<0.0001		UCC	0.10 (577)	0.09 (511)	p=0.1875
	UUA*	0.66 (4729)	0.55 (4392)	p<0.0001	Sor	UCA	0.28 (1721)	0.30 (1734)	p=0.0654
	UUG	0.13 (915)	0.17 (1372)	p<0.0001	Sel	UCG	0.04 (213)	0.05 (299)	p<0.0001
Lou	CUU	0.12 (880)	0.13 (1024)	p=0.2167		AGU*	0.30 (1826)	0.24 (1393)	p<0.0001
Leu	CUC	0.03 (184)	0.03 (244)	p=0.0559		AGC	0.07 (394)	0.06 (362)	p=0.5749
	CUA	0.06 (395)	0.09 (676)	p<0.0001		ACU	0.30 (1263)	0.30 (1563)	p=0.8440
	CUG	0.01 (77)	0.03 (215)	p<0.0001	The	ACC*	0.16 (650)	0.10 (516)	p<0.0001
	GUU	0.43 (2165)	0.42 (1920)	p=0.2268	IIII	ACA	0.46 (1931)	0.50 (2584)	p=0.0009
Val	GUC	0.07 (343)	0.08 (363)	p=0.0409		ACG	0.07 (311)	0.10 (511)	p<0.0001
vai	GUA*	0.43 (2146)	0.36 (1671)	p<0.0001	Trm	UAU	0.84 (3218)	0.83 (3708)	p=0.5355
	GUG	0.07 (374)	0.14 (635)	p<0.0001	1 yr	UAC	0.16 (613)	0.17 (733)	p=0.5355
	CCU	0.29 (696)	0.41 (955)	p<0.0001		GCU	0.45 (1598)	0.46 (2320)	p=0.2903
Dre	CCC	0.09 (205)	0.10 (233)	p=0.1273	Ala	GCC*	0.14 (477)	0.10 (505)	p<0.0001
F 10	CCA*	0.59 (1411)	0.45 (1060)	p<0.0001	Ala	GCA	0.39 (1363)	0.36 (1819)	p=0.0375
	CCG	0.03 (71)	0.05 (109)	p=0.0030)	GCG	0.02 (87)	0.07 (346)	p<0.0001
Hic	CAU	0.76 (1409)	0.83 (1519)	p<0.0001		AUU	0.43 (2816)	0.42 (3512)	p=0.0800
1115	CAC*	0.24 (440)	0.17 (317)	p<0.0001	Ile	AUC*	0.09 (613)	0.07 (575)	p<0.0001
Cln	CAA	0.89 (2409)	0.87 (2653)	p=0.0291		AUA	0.47 (3060)	0.51 (4282)	p<0.0001
GIII	CAG	0.11 (292)	0.13 (385)	p=0.0291	Aan	GAU*	0.86 (4994)	0.81 (3763)	p<0.0001
	AAU	0.81 (6929)	0.83 (5753)	p=0.0009	Asp	GAC	0.14 (819)	0.19 (878)	p<0.0001
Asn	AAC*	0.19 (1653)	0.17 (1194)	p=0.0009		GAA*	0.89 (6991)	0.86 (5363)	p<0.0001
T	AAA	0.80 (8759)	0.82 (7441)	p=0.0088	Glu	GAG	0.11 (892)	0.14 (905)	p<0.0001
Lys	AAG	0.20 (2185)	0.18 (1689)	p=0.0088		GGU	0.42 (1763)	0.47 (1763)	p<0.0001
C	UGU*	0.84 (1094)	0.75 (1547)	p<0.0001		GGC	0.03 (139)	0.04 (148)	p=0.1220
Cys	UGC	0.16 (204)	0.25 (524)	p<0.0001	Gly	GGA*	0.50 (2092)	0.38 (1434)	p<0.0001
	CGU	0.11 (356)	0.20 (604)	p<0.0001		GGG	0.05 (203)	0.10 (391)	p<0.0001
	CGC	0.01 (33)	0.03 (102)	p<0.0001					
	CGA	0.06 (211)	0.14 (430)	p<0.0001					
Arg	CGG	0.00(7)	0.01 (31)	p<0.0001					
	AGA*	0.70 (2337)	0.46 (1381)	p<0.0001					
	AGG	0.11 (376)	0.14 (428)	p=0.0003					

 Table 62 | Codon Usage from Expression Data for the Alveolate P. falciparum

Amin		Top 5%	Bottom 5%	Chi	Amin		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	CM- Saaurad	Amino	Codons	Expressed	Expressed	Cni- Sagurad
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Syaureu
Phe	UUU	0.50 (2055)	0.55 (4483)	p<0.0001		UCU	0.10 (820)	0.09 (1415)	p=0.2283
1 110	UUC*	0.50 (2095)	0.45 (3655)	p<0.0001		UCC	0.21 (1774)	0.21 (3174)	p=0.5920
	UUA	0.15 (1316)	0.16 (2507)	p=0.6584	Sor	UCA*	0.11 (878)	0.09 (1318)	p<0.0001
	UUG	0.21 (1804)	0.21 (3442)	p=0.5506	501	UCG	0.12 (1028)	0.12 (1825)	p=0.5490
Lou	CUU	0.08 (671)	0.09 (1467)	p=0.0007		AGU	0.16 (1359)	0.18 (2772)	p<0.0001
Leu	CUC*	0.19 (1595)	0.17 (2777)	p<0.0001		AGC	0.30 (2458)	0.30 (4588)	p=0.1767
	CUA	0.12 (1026)	0.13 (2023)	p=0.1785		ACU	0.16 (815)	0.15 (1235)	p=0.0369
	CUG	0.25 (2115)	0.24 (3805)	p=0.0662	The	ACC	0.33 (1681)	0.34 (2900)	p=0.0850
	GUU	0.19 (1198)	0.22 (2206)	p=0.0002	1111	ACA	0.21 (1097)	0.22 (1829)	p=0.7942
Vəl	GUC*	0.22 (1326)	0.19 (1951)	p=0.0007		ACG	0.30 (1514)	0.29 (2476)	p=0.7021
vai	GUA	0.19 (1194)	0.19 (1911)	p=0.4877	Tur	UAU	0.34 (1340)	0.38 (2882)	p=0.0003
	GUG	0.40 (2444)	0.40 (4024)	p=0.7900	I yı	UAC*	0.66 (2566)	0.62 (4763)	p=0.0003
	CCU	0.13 (539)	0.16 (1053)	p=0.0026		GCU	0.16 (1222)	0.16 (1576)	p=0.8205
Dre	CCC	0.39 (1553)	0.41 (2790)	p=0.0094	Ala	GCC	0.28 (2124)	0.32 (3074)	p<0.0001
F 10	CCA*	0.31 (1250)	0.25 (1704)	p<0.0001	Ala 5	GCA*	0.32 (2393)	0.26 (2565)	p<0.0001
	CCG	0.17 (685)	0.18 (1242)	p=0.0916		GCG	0.23 (1716)	0.26 (2476)	p=0.0001
Uia	CAU	0.35 (873)	0.39 (2071)	p=0.0005		AUU	0.38 (2166)	0.38 (4407)	p=0.2583
1115	CAC*	0.65 (1611)	0.61 (3202)	p=0.0005	Ile	AUC*	0.34 (1967)	0.30 (3445)	p<0.0001
Cln	CAA	0.46 (1715)	0.47 (2937)	p=0.7569		AUA	0.28 (1638)	0.32 (3619)	p<0.0001
GIII	CAG	0.54 (1975)	0.53 (3339)	p=0.7569	Aan	GAU	0.46 (2987)	0.47 (4882)	p=0.2286
Aam	AAU	0.44 (3314)	0.48 (7031)	p<0.0001	Asp	GAC	0.54 (3442)	0.53 (5414)	p=0.2286
ASI	AAC*	0.56 (4155)	0.52 (7521)	p<0.0001		GAA	0.55 (5210)	0.54 (7556)	p=0.1304
T	AAA	0.48 (5526)	0.53 (8550)	p<0.0001	Glu	GAG	0.45 (4205)	0.46 (6351)	p=0.1304
Lys	AAG*	0.52 (5997)	0.47 (7707)	p<0.0001		GGU	0.17 (1280)	0.16 (1949)	p=0.0483
C	UGU	0.34 (606)	0.36 (1285)	p=0.1192		GGC	0.24 (1843)	0.24 (2987)	p=0.9205
Cys	UGC	0.66 (1192)	0.64 (2299)	p=0.1192	Gly	GGA*	0.33 (2519)	0.26 (3240)	p<0.0001
	CGU	0.05 (223)	0.06 (482)	p=0.4268	1	GGG	0.25 (1916)	0.33 (4105)	p<0.0001
	CGC	0.11 (444)	0.12 (1053)	p=0.0034				•	
	CGA*	0.11 (472)	0.09 (790)	p=0.0005					
Arg	CGG	0.08 (321)	0.10 (898)	p<0.0001	1				
	AGA*	0.34 (1431)	0.27 (2318)	p<0.0001]				
	AGG	0.31 (1323)	0.35 (3015)	p<0.0001					

 Table 63 | Codon Usage from Expression Data for the Alveolate P. vivax

Amin		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm- Scourod	Amino	Codons	Expressed	Expressed	Cni- Sagurad
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Syaureu
Phe	UUU	0.21 (1797)	0.41 (4480)	p<0.0001		UCU	0.10 (1723)	0.14 (3128)	p<0.0001
1 110	UUC*	0.79 (6798)	0.59 (6476)	p<0.0001		UCC*	0.17 (2785)	0.15 (3211)	p<0.0001
	UUA	0.02 (330)	0.08 (2126)	p<0.0001	Sor	UCA	0.07 (1155)	0.14 (2986)	p<0.0001
	UUG	0.13 (2437)	0.18 (4641)	p<0.0001	Sel	UCG*	0.34 (5623)	0.23 (5071)	p<0.0001
Lou	CUU	0.13 (2347)	0.17 (4360)	p<0.0001		AGU	0.10 (1650)	0.16 (3584)	p<0.0001
Leu	CUC*	0.24 (4474)	0.20 (5203)	p<0.0001		AGC*	0.21 (3520)	0.19 (4118)	p<0.0001
	CUA	0.06 (1153)	0.12 (3060)	p<0.0001		ACU	0.17 (2469)	0.23 (4053)	p<0.0001
	CUG*	0.42 (7895)	0.24 (6025)	p<0.0001	The	ACC*	0.28 (3992)	0.22 (3837)	p<0.0001
	GUU	0.13 (2207)	0.21 (4118)	p<0.0001	IIII	ACA	0.11 (1603)	0.23 (4005)	p<0.0001
Val	GUC	0.27 (4715)	0.28 (5448)	p=0.2611		ACG*	0.44 (6414)	0.33 (5785)	p<0.0001
vai	GUA	0.06 (1065)	0.15 (2959)	p<0.0001	Trm	UAU	0.14 (969)	0.32 (2790)	p<0.0001
	GUG*	0.54 (9431)	0.37 (7221)	p<0.0001	1 yr	UAC*	0.86 (5776)	0.68 (5887)	p<0.0001
	CCU	0.23 (2476)	0.24 (2918)	p=0.0149		GCU	0.29 (6486)	0.30 (6927)	p=0.0083
Due	CCC*	0.30 (3249)	0.19 (2332)	p<0.0001	1 Ala 1 1	GCC*	0.40 (8854)	0.23 (5191)	p<0.0001
F 10	CCA	0.12 (1310)	0.27 (3255)	p<0.0001		GCA	0.10 (2229)	0.23 (5199)	p<0.0001
	CCG*	0.35 (3848)	0.30 (3596)	p<0.0001		GCG	0.21 (4559)	0.24 (5430)	p<0.0001
Uia	CAU	0.16 (765)	0.37 (2570)	p<0.0001		AUU	0.29 (3105)	0.38 (4917)	p<0.0001
1115	CAC*	0.84 (4057)	0.63 (4308)	p<0.0001	Ile	AUC*	0.68 (7204)	0.50 (6414)	p<0.0001
Cln	CAA	0.20 (1708)	0.48 (5232)	p<0.0001		AUA	0.02 (254)	0.11 (1461)	p<0.0001
GIII	CAG*	0.80 (6800)	0.52 (5637)	p<0.0001	A	GAU	0.23 (3094)	0.41 (6368)	p<0.0001
	AAU	0.17 (1424)	0.38 (4213)	p<0.0001	Asp	GAC*	0.77 (10350)	0.59 (9007)	p<0.0001
ASI	AAC*	0.83 (7066)	0.62 (6774)	p<0.0001		GAA	0.23 (3533)	0.45 (7360)	p<0.0001
T	AAA	0.13 (1921)	0.38 (5645)	p<0.0001	Glu	GAG*	0.77 (11734)	0.55 (9077)	p<0.0001
Lys	AAG*	0.87 (13074)	0.62 (9094)	p<0.0001		GGU	0.29 (4851)	0.28 (4816)	p=0.2848
C	UGU	0.26 (935)	0.46 (2328)	p<0.0001		GGC*	0.52 (8814)	0.31 (5394)	p<0.0001
Cys	UGC*	0.74 (2625)	0.54 (2693)	p<0.0001	Gly	GGA	0.14 (2425)	0.26 (4413)	p<0.0001
	CGU*	0.36 (4205)	0.23 (3996)	p<0.0001		GGG	0.05 (895)	0.15 (2553)	p<0.0001
	CGC*	0.42 (4805)	0.23 (4003)	p<0.0001					
	CGA	0.08 (936)	0.23 (4103)	p<0.0001					
Arg	CGG	0.07 (767)	0.12 (2087)	p<0.0001					
	AGA	0.04 (463)	0.12 (2091)	p<0.0001					
	AGG	0.03 (384)	0.07 (1310)	p<0.0001					

Table 64	Codon	Usage from	Expression	Data for the	Stramenopi	le <i>P</i> .	infestans
----------	-------	-------------------	------------	--------------	------------	---------------	-----------

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dha	UUU	0.08 (956)	0.29 (4342)	p<0.0001		UCU	0.05 (1018)	0.12 (4575)	p<0.0001
Pne	UUC*	0.92 (11218)	0.71 (10527)	p<0.0001		UCC*	0.20 (4331)	0.18 (6784)	p<0.0001
	UUA	0.01 (146)	0.04 (1494)	p<0.0001	Som	UCA	0.03 (561)	0.10 (3631)	p<0.0001
	UUG	0.06 (1464)	0.17 (6599)	p<0.0001	Ser	UCG*	0.40 (8656)	0.27 (10189)	p<0.0001
Lou	CUU	0.05 (1405)	0.12 (4623)	p<0.0001		AGU	0.05 (976)	0.11 (4208)	p<0.0001
Leu	CUC*	0.31 (8019)	0.27 (10462)	p<0.0001		AGC*	0.28 (6134)	0.22 (8491)	p<0.0001
	CUA	0.02 (433)	0.08 (3047)	p<0.0001		ACU	0.08 (1522)	0.19 (5067)	p<0.0001
	CUG*	0.55 (14195)	0.31 (11829)	p<0.0001	The	ACC*	0.32 (6058)	0.27 (7164)	p<0.0001
	GUU	0.06 (1456)	0.17 (5307)	p<0.0001	1 111	ACA	0.03 (652)	0.14 (3645)	p<0.0001
Vəl	GUC	0.30 (7034)	0.33 (10418)	p<0.0001		ACG*	0.56 (10500)	0.40 (10422)	p<0.0001
vai	GUA	0.02 (440)	0.09 (2740)	p<0.0001	Tyr	UAU	0.05 (445)	0.25 (2733)	p<0.0001
	GUG*	0.62 (14614)	0.41 (12858)	p<0.0001	I yı	UAC*	0.95 (8795)	0.75 (8399)	p<0.0001
	CCU	0.11 (1567)	0.21 (4947)	p<0.0001		GCU	0.15 (4552)	0.25 (10698)	p<0.0001
Pro	CCC*	0.41 (6130)	0.24 (5442)	p<0.0001	Ala	GCC*	0.53 (16542)	0.29 (12665)	p<0.0001
110	CCA	0.05 (682)	0.20 (4543)	p<0.0001	Ана	GCA	0.04 (1268)	0.16 (6832)	p<0.0001
	CCG*	0.43 (6406)	0.35 (8178)	p<0.0001		GCG	0.28 (8648)	0.30 (12890)	p<0.0001
His	CAU	0.06 (393)	0.30 (2951)	p<0.0001		AUU	0.15 (2151)	0.29 (4761)	p<0.0001
	CAC*	0.94 (6193)	0.70 (6834)	p<0.0001	Ile	AUC*	0.84 (11906)	0.62 (10148)	p<0.0001
Gln	CAA	0.09 (1005)	0.37 (6032)	p<0.0001		AUA	0.01 (106)	0.09 (1410)	p<0.0001
Om	CAG*	0.91 (10596)	0.63 (10391)	p<0.0001	Asn	GAU	0.10 (1902)	0.32 (8320)	p<0.0001
Acn	AAU	0.06 (708)	0.26 (3686)	p<0.0001	Asp	GAC*	0.90 (16309)	0.68 (17624)	p<0.0001
ASI	AAC*	0.94 (10979)	0.74 (10398)	p<0.0001	Chu	GAA	0.10 (1996)	0.33 (8600)	p<0.0001
I vo	AAA	0.04 (842)	0.24 (4652)	p<0.0001	Giu	GAG*	0.90 (18633)	0.67 (17546)	p<0.0001
Lys	AAG*	0.96 (18422)	0.76 (14552)	p<0.0001		GGU	0.15 (3455)	0.21 (5781)	p<0.0001
Cre	UGU	0.12 (619)	0.34 (2396)	p<0.0001	Chy	GGC*	0.72 (16812)	0.40 (11050)	p<0.0001
Cys	UGC*	0.88 (4758)	0.66 (4692)	p<0.0001	Слу	GGA	0.08 (1850)	0.20 (5570)	p<0.0001
	CGU	0.17 (2623)	0.18 (5536)	p=0.4146		GGG	0.05 (1238)	0.19 (5239)	p<0.0001
	CGC*	0.65 (9866)	0.31 (9900)	p<0.0001					
Arg	CGA	0.05 (721)	0.17 (5434)	p<0.0001					
Alg	CGG	0.07 (1094)	0.17 (5245)	p<0.0001					
	AGA	0.02 (317)	0.08 (2375)	p<0.0001					
	AGG	0.04 (553)	0.09 (2978)	p<0.0001					

 Table 65 | Codon Usage from Expression Data for the Stramenopile P. sojae

Amin		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm- Scourod	Amino	Codons	Expressed	Expressed	Cni- Sagura d
Acius		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Phe	UUU	0.64 (4483)	0.61 (2657)	p=0.0168		UCU	0.17 (2454)	0.18 (1549)	p=0.6665
1 110	UUC	0.36 (2568)	0.39 (1674)	p=0.0168		UCC	0.11 (1610)	0.11 (938)	p=0.0817
	UUA	0.10 (1518)	0.13 (1355)	p<0.0001	Sor	UCA	0.18 (2483)	0.20 (1800)	p<0.0001
	UUG	0.22 (3389)	0.22 (2235)	p=0.3955	301	UCG*	0.23 (3223)	0.18 (1600)	p<0.0001
Lou	CUU*	0.25 (3833)	0.22 (2252)	p<0.0001		AGU	0.15 (2145)	0.17 (1513)	p<0.0001
Leu	CUC	0.14 (2146)	0.15 (1572)	p=0.0058		AGC	0.16 (2248)	0.16 (1427)	p=0.5542
	CUA	0.11 (1633)	0.12 (1196)	p=0.0187		ACU	0.27 (3358)	0.28 (1797)	p=0.8532
	CUG*	0.18 (2783)	0.16 (1690)	p=0.0002	The	ACC	0.17 (2099)	0.17 (1105)	p=0.7278
	GUU	0.26 (3595)	0.28 (2018)	p=0.0174	1 111	ACA	0.25 (3025)	0.29 (1923)	p<0.0001
Val	GUC	0.22 (3019)	0.23 (1669)	p=0.1241		ACG*	0.31 (3773)	0.26 (1703)	p<0.0001
vai	GUA	0.16 (2257)	0.19 (1352)	p<0.0001	Trm	UAU	0.41 (2326)	0.52 (1624)	p<0.0001
	GUG*	0.35 (4878)	0.31 (2254)	p<0.0001	1 yr	UAC*	0.59 (3380)	0.48 (1519)	p<0.0001
	CCU*	0.31 (2817)	0.28 (1330)	p<0.0001		GCU*	0.39 (6314)	0.32 (2577)	p<0.0001
Duo	CCC	0.17 (1482)	0.15 (717)	p=0.0130	Ala	GCC*	0.23 (3674)	0.17 (1384)	p<0.0001
F 10	CCA	0.31 (2736)	0.35 (1703)	p<0.0001	Ala	GCA	0.21 (3468)	0.29 (2387)	p<0.0001
	CCG	0.21 (1922)	0.22 (1056)	p=0.4847	7	GCG	0.17 (2827)	0.22 (1828)	p<0.0001
Uia	CAU	0.43 (1739)	0.56 (1574)	p<0.0001		AUU*	0.55 (5046)	0.47 (2585)	p<0.0001
1115	CAC*	0.57 (2316)	0.44 (1212)	p<0.0001	Ile	AUC	0.36 (3341)	0.34 (1879)	p=0.0041
Cln	CAA	0.47 (3254)	0.58 (2681)	p<0.0001		AUA	0.09 (859)	0.20 (1094)	p<0.0001
GIII	CAG*	0.53 (3633)	0.42 (1910)	p<0.0001		GAU	0.49 (5503)	0.56 (3474)	p<0.0001
	AAU	0.52 (4151)	0.58 (2633)	p<0.0001	Asp	GAC*	0.51 (5621)	0.44 (2725)	p<0.0001
Asn	AAC*	0.48 (3787)	0.42 (1930)	p<0.0001		GAA	0.49 (5828)	0.53 (3415)	p<0.0001
T	AAA	0.39 (4697)	0.48 (3145)	p<0.0001	Giù	GAG*	0.51 (6056)	0.47 (2983)	p<0.0001
Lys	AAG*	0.61 (7286)	0.52 (3415)	p<0.0001		GGU*	0.37 (4997)	0.33 (1954)	p<0.0001
C	UGU	0.50 (1711)	0.56 (1140)	p<0.0001		GGC*	0.32 (4223)	0.25 (1517)	p<0.0001
Cys	UGC*	0.50 (1720)	0.44 (911)	p<0.0001	Gly	GGA	0.23 (3100)	0.28 (1689)	p<0.0001
	CGU*	0.39 (3697)	0.23 (1580)	p<0.0001		GGG	0.08 (1011)	0.14 (840)	p<0.0001
	CGC*	0.30 (2823)	0.20 (1364)	p<0.0001				•	
	CGA	0.15 (1383)	0.23 (1544)	p<0.0001					
Arg	CGG	0.06 (569)	0.11 (772)	p<0.0001					
	AGA	0.06 (596)	0.15 (1033)	p<0.0001					
	AGG	0.04 (332)	0.08 (545)	p<0.0001					

 Table 66 | Codon Usage from Expression Data for the Stramenopile P. halstedii

A main a		Top 5%	Bottom 5%	Chi	A		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	CM- Scours d
Aclus		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Dho	UUU	0.41 (3350)	0.43 (3455)	p=0.0083		UCU	0.09 (1341)	0.11 (1733)	p<0.0001
1 ne	UUC	0.59 (4834)	0.57 (4584)	p=0.0083		UCC	0.23 (3433)	0.22 (3522)	p=0.0377
	UUA	0.02 (356)	0.04 (813)	p<0.0001	Sor	UCA	0.05 (803)	0.11 (1744)	p<0.0001
	UUG*	0.33 (6071)	0.25 (5132)	p<0.0001	Sel	UCG*	0.36 (5514)	0.27 (4467)	p<0.0001
Lou	CUU	0.08 (1511)	0.12 (2451)	p<0.0001		AGU	0.07 (1089)	0.10 (1652)	p<0.0001
Leu	CUC*	0.28 (5111)	0.26 (5438)	p<0.0001		AGC	0.20 (3028)	0.20 (3186)	p=0.4103
	CUA	0.03 (596)	0.07 (1455)	p<0.0001		ACU	0.10 (1345)	0.15 (2271)	p<0.0001
	CUG	0.25 (4551)	0.26 (5417)	p=0.0095	The	ACC*	0.36 (4945)	0.33 (5074)	p<0.0001
	GUU	0.08 (1324)	0.15 (2423)	p<0.0001	IIII	ACA	0.10 (1346)	0.17 (2639)	p<0.0001
Val	GUC	0.35 (5669)	0.34 (5644)	p=0.2906		ACG*	0.44 (6082)	0.35 (5297)	p<0.0001
vai	GUA	0.05 (854)	0.09 (1413)	p<0.0001	Trm	UAU	0.16 (992)	0.24 (1478)	p<0.0001
	GUG*	0.52 (8565)	0.43 (7125)	p<0.0001	1 yr	UAC*	0.84 (5140)	0.76 (4620)	p<0.0001
	CCU	0.17 (1697)	0.19 (2358)	p<0.0001		GCU	0.11 (2299)	0.17 (3489)	p<0.0001
Der	CCC*	0.37 (3779)	0.31 (3751)	p<0.0001	Ala	GCC*	0.43 (8688)	0.37 (7459)	p<0.0001
FIO	CCA	0.14 (1416)	0.23 (2854)	p<0.0001	Ala	GCA	0.10 (1944)	0.17 (3389)	p<0.0001
	CCG*	0.32 (3194)	0.27 (3269)	p<0.0001	1	GCG*	0.36 (7400)	0.30 (6040)	p<0.0001
Uia	CAU	0.31 (1593)	0.35 (2323)	p<0.0001		AUU	0.29 (2776)	0.33 (2930)	p<0.0001
1115	CAC*	0.69 (3619)	0.65 (4282)	p<0.0001	Ile	AUC*	0.69 (6628)	0.60 (5385)	p<0.0001
Cln	CAA	0.55 (4358)	0.56 (4862)	p=0.1284		AUA	0.02 (212)	0.08 (699)	p<0.0001
GIII	CAG	0.45 (3636)	0.44 (3869)	p=0.1284	A	GAU	0.19 (2512)	0.28 (3728)	p<0.0001
A	AAU	0.14 (1155)	0.25 (2033)	p<0.0001	Asp	GAC*	0.81 (10539)	0.72 (9541)	p<0.0001
Asn	AAC*	0.86 (7084)	0.75 (6123)	p<0.0001		GAA*	0.59 (6678)	0.50 (5806)	p<0.0001
T	AAA	0.19 (2309)	0.28 (3170)	p<0.0001	Glu	GAG	0.41 (4702)	0.50 (5853)	p<0.0001
Lys	AAG*	0.81 (9994)	0.72 (8128)	p<0.0001		GGU	0.17 (2349)	0.19 (2573)	p<0.0001
C	UGU	0.23 (902)	0.36 (1411)	p<0.0001	CI	GGC*	0.52 (7138)	0.42 (5619)	p<0.0001
Cys	UGC*	0.77 (3050)	0.64 (2559)	p<0.0001	Gly	GGA	0.11 (1523)	0.17 (2317)	p<0.0001
	CGU	0.15 (1505)	0.19 (2630)	p<0.0001		GGG	0.21 (2846)	0.22 (2906)	p=0.0231
	CGC*	0.53 (5330)	0.33 (4560)	p<0.0001					
	CGA	0.14 (1370)	0.20 (2693)	p<0.0001					
Arg	CGG	0.14 (1426)	0.17 (2289)	p<0.0001					
	AGA	0.02 (214)	0.06 (759)	p<0.0001					
	AGG	0.02 (245)	0.06 (765)	p<0.0001					

 Table 67 | Codon Usage from Expression Data for the Stramenopile A. astaci

Amino		Top 5%	Bottom 5%	Chi	Amino		Top 5%	Bottom 5%	Chi
	Codons	Expressed	Expressed	CIII- Scouro d	Amino	Codons	Expressed	Expressed	CIII- Scoura d
Aclus		Genes	Genes	Sqaureu	Acius		Genes	Genes	Sqaureu
Dho	UUU	0.44 (3202)	0.42 (2478)	p=0.0618		UCU	0.09 (1072)	0.11 (1234)	p<0.0001
1 ne	UUC	0.56 (4116)	0.58 (3403)	p=0.0618		UCC	0.19 (2316)	0.21 (2343)	p<0.0001
	UUA	0.02 (233)	0.03 (457)	p<0.0001	Sor	UCA	0.05 (629)	0.10 (1082)	p<0.0001
	UUG*	0.34 (5155)	0.22 (3314)	p<0.0001	Sel	UCG*	0.41 (5058)	0.28 (3163)	p<0.0001
Lan	CUU	0.09 (1377)	0.14 (2059)	p<0.0001		AGU	0.07 (889)	0.10 (1137)	p<0.0001
Leu	CUC*	0.32 (4751)	0.29 (4329)	p<0.0001		AGC	0.20 (2455)	0.20 (2246)	p=0.5950
	CUA	0.02 (358)	0.06 (901)	p<0.0001		ACU	0.11 (1312)	0.15 (1538)	p<0.0001
	CUG	0.21 (3149)	0.26 (3884)	p<0.0001	The	ACC	0.31 (3591)	0.30 (3066)	p=0.0948
	GUU	0.12 (1576)	0.17 (2002)	p<0.0001	1 111	ACA	0.11 (1315)	0.17 (1739)	p<0.0001
Val	GUC*	0.43 (5873)	0.39 (4707)	p<0.0001		ACG*	0.46 (5402)	0.38 (3924)	p<0.0001
vai	GUA	0.04 (612)	0.06 (781)	p<0.0001	Trm	UAU	0.16 (829)	0.25 (1016)	p<0.0001
	GUG*	0.41 (5591)	0.38 (4540)	p<0.0001	1 yr	UAC*	0.84 (4510)	0.75 (3013)	p<0.0001
	CCU	0.19 (1639)	0.20 (1628)	p=0.0890		GCU	0.15 (2665)	0.18 (2659)	p<0.0001
Duo	CCC*	0.33 (2865)	0.27 (2239)	p<0.0001	Ala	GCC*	0.39 (6815)	0.35 (5286)	p<0.0001
FIO	CCA	0.14 (1246)	0.22 (1832)	p<0.0001	Ala	GCA	0.11 (2025)	0.17 (2579)	p<0.0001
	CCG*	0.34 (2948)	0.30 (2491)	p<0.0001	1	GCG*	0.35 (6148)	0.30 (4470)	p<0.0001
Uia	CAU	0.27 (1123)	0.37 (1759)	p<0.0001		AUU	0.33 (2869)	0.32 (2069)	p=0.0312
nis	CAC*	0.73 (2985)	0.63 (3047)	p<0.0001	Ile	AUC*	0.65 (5558)	0.60 (3921)	p<0.0001
Cln	CAA*	0.58 (3921)	0.54 (3477)	p<0.0001		AUA	0.02 (183)	0.08 (544)	p<0.0001
GIII	CAG	0.42 (2844)	0.46 (2989)	p<0.0001		GAU	0.22 (2404)	0.28 (2892)	p<0.0001
	AAU	0.15 (1061)	0.25 (1441)	p<0.0001	Asp	GAC*	0.78 (8523)	0.72 (7467)	p<0.0001
Asn	AAC*	0.85 (6206)	0.75 (4217)	p<0.0001		GAA*	0.62 (6208)	0.48 (4315)	p<0.0001
T	AAA	0.20 (2197)	0.25 (2242)	p<0.0001	Glu	GAG	0.38 (3797)	0.52 (4669)	p<0.0001
Lys	AAG*	0.80 (8897)	0.75 (6595)	p<0.0001		GGU	0.22 (2598)	0.21 (1928)	p=0.2510
C	UGU	0.18 (602)	0.33 (931)	p<0.0001		GGC*	0.48 (5768)	0.43 (3923)	p<0.0001
Cys	UGC*	0.82 (2727)	0.67 (1905)	p<0.0001	Gly	GGA	0.11 (1316)	0.17 (1553)	p<0.0001
	CGU	0.18 (1572)	0.19 (2047)	p=0.0441		GGG	0.19 (2318)	0.19 (1778)	p=0.9312
	CGC*	0.50 (4342)	0.35 (3699)	p<0.0001					-
Arg	CGA	0.15 (1267)	0.18 (1925)	p<0.0001					
	CGG	0.12 (1073)	0.16 (1718)	p<0.0001					
	AGA	0.02 (172)	0.06 (610)	p<0.0001					
	AGG	0.03 (243)	0.06 (623)	p<0.0001					

Table 68	Codon	Usage from	Expression	Data for t	the Strameno	pile A. invadans
		0	-			

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dho	UUU	0.39 (4072)	0.50 (8346)	p<0.0001		UCU	0.03 (516)	0.03 (1093)	p=0.0132
rne	UUC*	0.61 (6256)	0.50 (8256)	p<0.0001		UCC	0.12 (2144)	0.13 (4381)	p<0.0001
	UUA*	0.02 (385)	0.01 (390)	p<0.0001	Son	UCA	0.02 (359)	0.04 (1199)	p<0.0001
	UUG	0.12 (2666)	0.13 (6098)	p=0.0019	Sel	UCG*	0.58 (10064)	0.46 (15020)	p<0.0001
Lou	CUU	0.09 (2034)	0.10 (4771)	p=0.0002		AGU	0.03 (542)	0.06 (1884)	p<0.0001
Leu	CUC*	0.64 (14302)	0.54 (25726)	p<0.0001		AGC	0.22 (3832)	0.27 (8888)	p<0.0001
	CUA	0.01 (191)	0.02 (1169)	p<0.0001		ACU	0.04 (589)	0.04 (1168)	p=0.0081
	CUG	0.12 (2707)	0.20 (9490)	p<0.0001	Thr	ACC	0.26 (4185)	0.26 (7268)	p=0.9216
	GUU	0.06 (1149)	0.08 (2625)	p<0.0001	1 111	ACA	0.04 (663)	0.10 (2687)	p<0.0001
Vəl	GUC*	0.64 (12214)	0.53 (18021)	p<0.0001		ACG*	0.66 (10788)	0.61 (17101)	p<0.0001
۷ai	GUA	0.02 (317)	0.03 (1037)	p<0.0001	Tyr	UAU	0.10 (762)	0.13 (1666)	p<0.0001
	GUG	0.28 (5375)	0.36 (12186)	p<0.0001	1 yı	UAC*	0.90 (7178)	0.87 (10691)	p<0.0001
	CCU	0.07 (841)	0.07 (1689)	p=0.1551		GCU*	0.08 (2230)	0.07 (3563)	p<0.0001
Pro	CCC*	0.33 (4206)	0.27 (6421)	p<0.0001	Ala	GCC*	0.49 (13136)	0.37 (17756)	p<0.0001
110	CCA	0.06 (741)	0.13 (3243)	p<0.0001	1 7	GCA	0.04 (1187)	0.10 (4954)	p<0.0001
	CCG	0.55 (6957)	0.53 (12803)	p=0.0037		GCG	0.39 (10437)	0.46 (22233)	p<0.0001
His	CAU	0.14 (841)	0.21 (2696)	p<0.0001		AUU	0.25 (3265)	0.30 (5500)	p<0.0001
1115	CAC*	0.86 (5290)	0.79 (10453)	p<0.0001	Ile	AUC*	0.74 (9646)	0.68 (12345)	p<0.0001
Cln	CAA	0.22 (1950)	0.34 (5739)	p<0.0001		AUA	0.02 (206)	0.02 (392)	p=0.0002
OIII	CAG*	0.78 (7038)	0.66 (10978)	p<0.0001	Acn	GAU	0.15 (2345)	0.16 (4215)	p=0.0263
Aan	AAU	0.07 (685)	0.13 (1705)	p<0.0001	Asp	GAC	0.85 (13043)	0.84 (22029)	p=0.0263
ASII	AAC*	0.93 (9524)	0.87 (11620)	p<0.0001	Chu	GAA	0.29 (4291)	0.28 (6607)	p=0.4486
T wa	AAA	0.06 (1087)	0.14 (2813)	p<0.0001	Giù	GAG	0.71 (10737)	0.72 (16825)	p=0.4486
Lys	AAG*	0.94 (15706)	0.86 (17512)	p<0.0001		GGU*	0.20 (3649)	0.14 (3567)	p<0.0001
Crea	UGU	0.08 (391)	0.14 (1197)	p<0.0001	Chr	GGC*	0.73 (13612)	0.67 (16556)	p<0.0001
Cys	UGC*	0.92 (4443)	0.86 (7064)	p<0.0001	Gly	GGA	0.02 (340)	0.05 (1310)	p<0.0001
	CGU*	0.13 (1697)	0.09 (2563)	p<0.0001		GGG	0.05 (1003)	0.14 (3440)	p<0.0001
	CGC*	0.72 (9299)	0.59 (15906)	p<0.0001					
Arg	CGA	0.04 (474)	0.09 (2385)	p<0.0001					
	CGG	0.08 (1079)	0.20 (5472)	p<0.0001					
	AGA	0.02 (195)	0.01 (345)	p=0.0529					
	AGG	0.01 (129)	0.01 (379)	p=0.0009					

 Table 69 | Codon Usage from Expression Data for the Stramenopile S. parasitica

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dho	UUU	0.36 (226)	0.50 (5568)	p<0.0001		UCU*	0.16 (208)	0.09 (2833)	p<0.0001
rne	UUC*	0.64 (402)	0.50 (5508)	p<0.0001		UCC	0.29 (364)	0.28 (8715)	p=0.1043
	UUA*	0.03 (410)	0.02 (708)	p<0.0001	Son	UCA*	0.08 (101)	0.06 (1881)	p<0.0001
	UUG*	0.26 (333)	0.12 (3554)	p<0.0001	Sel	UCG	0.20 (250)	0.24 (7552)	p<0.0001
Lou	CUU*	0.26 (330)	0.10 (2933)	p<0.0001		AGU*	0.10 (132)	0.06 (1963)	p<0.0001
Leu	CUC	0.26 (337)	0.35 (10241)	p<0.0001		AGC	0.16 (207)	0.26 (8105)	p<0.0001
	CUA	0.05 (647)	0.05 (1540)	p=0.3796		ACU*	0.21 (186)	0.10 (2043)	p<0.0001
	CUG	0.14 (181)	0.36 (10488)	p<0.0001	Thr	ACC	0.44 (393)	0.46 (9730)	p<0.0001
	GUU*	0.32 (359)	0.17 (3518)	p<0.0001	1 111	ACA	0.17 (151)	0.17 (3551)	p=0.7327
Vəl	GUC	0.39 (445)	0.43 (8897)	p<0.0001		ACG	0.18 (163)	0.28 (5876)	p<0.0001
V cli	GUA*	0.12 (137)	0.08 (1730)	p<0.0001	Tyr	UAU	0.25 (102)	0.25 (1905)	p=0.7781
	GUG	0.17 (197)	0.32 (6614)	p<0.0001	I yI	UAC	0.75 (303)	0.75 (5703)	p=0.7781
	CCU*	0.29 (205)	0.10 (2298)	p<0.0001		GCU*	0.23 (320)	0.11 (3661)	p<0.0001
Pro	CCC	0.31 (218)	0.37 (8248)	p<0.0001	Ala	GCC	0.44 (608)	0.45 (14834)	p=0.0002
110	CCA*	0.23 (163)	0.17 (3889)	p<0.0001	1 1 1	GCA*	0.19 (265)	0.17 (5514)	p<0.0001
	CCG	0.16 (113)	0.36 (7989)	p<0.0001		GCG	0.14 (201)	0.26 (8632)	p<0.0001
His	CAU*	0.37 (107)	0.21 (1845)	p<0.0001		AUU*	0.36 (268)	0.26 (3208)	p<0.0001
	CAC	0.63 (183)	0.79 (6787)	p<0.0001	Ile	AUC	0.58 (435)	0.62 (7631)	p<0.0001
Gln	CAA*	0.53 (270)	0.42 (4871)	p<0.0001		AUA	0.06 (485)	0.12 (1451)	p<0.0001
	CAG	0.47 (237)	0.58 (6766)	p<0.0001	Asn	GAU*	0.47 (468)	0.31 (7017)	p<0.0001
Asn	AAU*	0.31 (196)	0.26 (3581)	p<0.0001	Азр	GAC	0.53 (527)	0.69 (15308)	p<0.0001
ASI	AAC	0.69 (429)	0.74 (10297)	p<0.0001	Chu	GAA*	0.59 (630)	0.46 (10961)	p<0.0001
I vs	AAA	0.30 (297)	0.38 (6466)	p<0.0001	Olu	GAG	0.41 (436)	0.54 (12950)	p<0.0001
Lys	AAG*	0.70 (697)	0.62 (10732)	p<0.0001		GGU*	0.26 (339)	0.12 (3645)	p<0.0001
Cvs	UGU*	0.32 (816)	0.24 (1309)	p<0.0001	Cly	GGC	0.23 (301)	0.35 (10447)	p<0.0001
Cys	UGC	0.68 (170)	0.76 (4210)	p<0.0001	Giy	GGA*	0.40 (525)	0.23 (7024)	p<0.0001
	CGU*	0.23 (175)	0.06 (1618)	p<0.0001		GGG	0.11 (142)	0.30 (9084)	p<0.0001
	CGC	0.19 (148)	0.21 (5636)	p=0.0002					
Arg	CGA*	0.22 (170)	0.13 (3288)	p<0.0001					
Aig	CGG	0.09 (661)	0.33 (8611)	p<0.0001					
	AGA*	0.16 (124)	0.09 (2477)	p<0.0001					
	AGG	0.10 (798)	0.18 (4630)	p<0.0001					

 Table 70 | Codon Usage from Expression Data for the Stramenopile P. multistriata

A main a		Top 5%	Bottom 5%	Chi	A main o		Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	Cm-
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Sqaureu
Dho	UUU	0.51 (2571)	0.53 (7073)	p=0.0008		UCU	0.19 (2532)	0.21 (8118)	p<0.0001
1 ne	UUC*	0.49 (2520)	0.47 (6208)	p=0.0008		UCC*	0.18 (2447)	0.15 (5855)	p<0.0001
	UUA*	0.09 (1076)	0.07 (2251)	p<0.0001	Sor	UCA	0.17 (2285)	0.18 (7131)	p=0.0064
	UUG	0.33 (3960)	0.33 (10883)	p=0.9953	Sel	UCG	0.14 (1924)	0.16 (6201)	p=0.0001
Lau	CUU	0.19 (2261)	0.19 (6426)	p=0.1253		AGU	0.19 (2552)	0.18 (7133)	p=0.0148
Leu	CUC*	0.21 (2575)	0.20 (6505)	p<0.0001		AGC	0.12 (1657)	0.13 (4959)	p=0.5087
	CUA	0.08 (995)	0.09 (3034)	p=0.0028		ACU	0.29 (2531)	0.30 (7393)	p=0.0576
	CUG	0.10 (1164)	0.12 (3962)	p<0.0001	The	ACC*	0.26 (2267)	0.21 (5148)	p<0.0001
	GUU	0.30 (2837)	0.29 (7315)	p=0.0731		ACA	0.25 (2223)	0.27 (6639)	p=0.0051
Val	GUC	0.24 (2286)	0.23 (5794)	p=0.0196		ACG	0.20 (1742)	0.22 (5495)	p<0.0001
vai	GUA	0.17 (1591)	0.17 (4406)	p=0.1533	Trm	UAU	0.41 (1668)	0.43 (4351)	p=0.0091
	GUG	0.30 (2837)	0.31 (7948)	p=0.0064	1 yr	UAC	0.59 (2445)	0.57 (5783)	p=0.0091
	CCU	0.30 (2104)	0.31 (6182)	p=0.1313		GCU	0.32 (3612)	0.31 (9828)	p=0.3695
Duo	CCC*	0.23 (1666)	0.19 (3806)	p<0.0001	Ala	GCC*	0.26 (2970)	0.22 (6844)	p<0.0001
FIU	CCA	0.32 (2266)	0.34 (6880)	p=0.0011	Ala	GCA	0.30 (3392)	0.33 (10429)	p<0.0001
	CCG	0.15 (1062)	0.17 (3335)	p=0.0023	3	GCG	0.13 (1472)	0.14 (4497)	p=0.0003
Uia	CAU	0.49 (1457)	0.54 (4816)	p<0.0001		AUU	0.46 (3112)	0.46 (8406)	p=0.8325
1115	CAC*	0.51 (1491)	0.46 (4169)	p<0.0001	Ile	AUC*	0.42 (2810)	0.39 (7073)	p=0.0001
Cln	CAA	0.59 (2945)	0.56 (8899)	p=0.0035		AUA	0.12 (833)	0.15 (2708)	p<0.0001
GIII	CAG	0.41 (2064)	0.44 (6865)	p=0.0035	Aan	GAU*	0.62 (5671)	0.60 (15377)	p<0.0001
A	AAU	0.47 (2881)	0.48 (8855)	p=0.2521	Asp	GAC	0.38 (3425)	0.40 (10259)	p<0.0001
ASI	AAC	0.53 (3281)	0.52 (9750)	p=0.2521	Cl-	GAA	0.45 (4407)	0.45 (11943)	p=0.4439
T	AAA	0.34 (2907)	0.35 (7413)	p=0.0164	Glu	GAG	0.55 (5394)	0.55 (14354)	p=0.4439
Lys	AAG	0.66 (5731)	0.65 (13699)	p=0.0164		GGU	0.26 (2736)	0.26 (7218)	p=0.7747
C	UGU	0.54 (1449)	0.52 (3125)	p=0.0763		GGC	0.16 (1677)	0.18 (5024)	p<0.0001
Cys	UGC	0.46 (1247)	0.48 (2920)	p=0.0763	Gly	GGA*	0.43 (4538)	0.40 (10990)	p<0.0001
	CGU*	0.30 (2304)	0.27 (5664)	p<0.0001		GGG	0.15 (1544)	0.16 (4303)	p=0.0269
	CGC	0.13 (982)	0.12 (2553)	p=0.1640					
A	CGA	0.16 (1267)	0.17 (3692)	p=0.0279	1				
Arg	CGG	0.06 (447)	0.08 (1636)	p<0.0001					
	AGA	0.18 (1387)	0.19 (4096)	p=0.0050					
	AGG	0.18 (1357)	0.17 (3502)	p=0.0534					

 Table 71 | Codon Usage from Expression Data for the Stramenopile T. pseudonana

Amira		Top 5%	Bottom 5%	Chi	Amina		Top 5%	Bottom 5%	Chi
Anino	Codons	Expressed	Expressed	Cni-	Amino	Codons	Expressed	Expressed	Saoure d
Acius		Genes	Genes	Sqaureu	Acius		Genes	Genes	Syaureu
Dho	UUU*	0.45 (2687)	0.40 (2805)	p<0.0001		UCU*	0.18 (1831)	0.14 (2628)	p<0.0001
1 ne	UUC	0.55 (3285)	0.60 (4220)	p<0.0001		UCC	0.24 (2474)	0.30 (5641)	p<0.0001
	UUA*	0.08 (1109)	0.05 (1115)	p<0.0001	Sor	UCA*	0.12 (1254)	0.09 (1736)	p<0.0001
	UUG*	0.23 (3030)	0.21 (4698)	p=0.0003	Sel	UCG	0.18 (1840)	0.17 (3165)	p=0.0281
Lan	CUU*	0.17 (2266)	0.14 (3145)	p<0.0001		AGU*	0.10 (1074)	0.09 (1728)	p=0.0007
Leu	CUC	0.20 (2643)	0.27 (6022)	p<0.0001		AGC	0.19 (1951)	0.22 (4115)	p<0.0001
	CUA	0.06 (802)	0.06 (1243)	p=0.0891		ACU*	0.19 (1569)	0.15 (1699)	p<0.0001
	CUG	0.25 (3269)	0.26 (5687)	p=0.0311	The	ACC	0.30 (2420)	0.33 (3899)	p<0.0001
	GUU*	0.17 (1690)	0.12 (1727)	p<0.0001	Inr	ACA	0.21 (1657)	0.19 (2264)	p=0.0450
Val	GUC	0.29 (2870)	0.34 (4899)	p<0.0001		ACG	0.30 (2433)	0.33 (3836)	p<0.0001
vai	GUA*	0.13 (1324)	0.10 (1474)	p<0.0001	Trm	UAU	0.34 (1280)	0.33 (1501)	p=0.4360
	GUG	0.41 (4167)	0.44 (6251)	p=0.0011	1 yr	UAC	0.66 (2485)	0.67 (3022)	p=0.4360
	CCU*	0.29 (2156)	0.27 (4127)	p<0.0001		GCU*	0.21 (2616)	0.16 (3500)	p<0.0001
Duo	CCC	0.35 (2554)	0.36 (5655)	p=0.0160	Ala	GCC	0.35 (4361)	0.39 (8365)	p<0.0001
FIO	CCA	0.15 (1101)	0.15 (2303)	p=0.7465	5 Ala 4	GCA	0.19 (2353)	0.17 (3724)	p=0.0011
	CCG	0.21 (1520)	0.22 (3418)	p=0.0244		GCG	0.26 (3306)	0.28 (6037)	p=0.0004
Uka	CAU*	0.45 (1525)	0.39 (2284)	p<0.0001		AUU*	0.36 (2415)	0.30 (2047)	p<0.0001
nis	CAC	0.55 (1855)	0.61 (3567)	p<0.0001	Ile	AUC	0.50 (3316)	0.55 (3785)	p<0.0001
Cla	CAA	0.44 (2361)	0.41 (3392)	p=0.0011		AUA	0.14 (914)	0.16 (1105)	p=0.0004
Gin	CAG	0.56 (2964)	0.59 (4784)	p=0.0011		GAU*	0.38 (2657)	0.35 (3526)	p<0.0001
	AAU	0.41 (2077)	0.42 (2289)	p=0.1113	Asp	GAC	0.62 (4270)	0.65 (6676)	p<0.0001
Asn	AAC	0.59 (3024)	0.58 (3129)	p=0.1113		GAA	0.36 (3147)	0.34 (5403)	p=0.0042
Ŧ	AAA	0.36 (3104)	0.41 (3631)	p<0.0001	Glu	GAG	0.64 (5545)	0.66 (10312)	p=0.0042
Lys	AAG*	0.64 (5502)	0.59 (5188)	p<0.0001		GGU*	0.20 (2247)	0.14 (2725)	p<0.0001
G	UGU*	0.42 (1051)	0.36 (1306)	p<0.0001		GGC*	0.33 (3665)	0.30 (5963)	p<0.0001
Cys	UGC	0.58 (1479)	0.64 (2358)	p<0.0001	Gly	GGA	0.23 (2529)	0.23 (4527)	p=0.8781
	CGU*	0.17 (1511)	0.12 (2170)	p<0.0001		GGG	0.24 (2733)	0.34 (6854)	p<0.0001
	CGC*	0.26 (2256)	0.22 (3902)	p<0.0001					
	CGA*	0.16 (1439)	0.14 (2521)	p<0.0001					
Arg	CGG	0.17 (1517)	0.25 (4325)	p<0.0001					
F	AGA*	0.11 (972)	0.09 (1566)	p<0.0001					
	AGG	0.13 (1124)	0.17 (2919)	p<0.0001					

 Table 72 | Codon Usage from Expression Data for the Stramenopile N. gaditana

Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d	Amino Acids	Codons	Top 5% Expressed Genes	Bottom 5% Expressed Genes	Chi- Sqaure d
Dha	UUU*	0.17 (588)	0.11 (1318)	p<0.0001		UCU*	0.07 (386)	0.03 (724)	p<0.0001
Phe	UUC	0.83 (2785)	0.89 (11118)	p<0.0001		UCC	0.30 (1792)	0.29 (6441)	p=0.0245
	UUA	0.03 (257)	0.02 (618)	p<0.0001	Sor	UCA*	0.06 (377)	0.03 (636)	p<0.0001
	UUG	0.07 (607)	0.07 (2325)	p=0.0421	Ser	UCG	0.32 (1906)	0.38 (8482)	p<0.0001
Lou	CUU*	0.07 (574)	0.04 (1239)	p<0.0001		AGU*	0.05 (302)	0.03 (581)	p<0.0001
Leu	CUC	0.60 (4914)	0.59 (20110)	p=0.0228		AGC	0.19 (1138)	0.24 (5446)	p<0.0001
	CUA*	0.03 (283)	0.02 (731)	p<0.0001		ACU*	0.07 (343)	0.04 (659)	p<0.0001
	CUG	0.19 (1522)	0.27 (9141)	p<0.0001	The	ACC	0.24 (1178)	0.22 (3743)	p=0.0019
	GUU*	0.07 (442)	0.03 (904)	p<0.0001	1111	ACA*	0.08 (392)	0.04 (740)	p<0.0001
Vəl	GUC	0.62 (4096)	0.66 (17587)	p<0.0001		ACG	0.62 (3084)	0.70 (12258)	p<0.0001
vai	GUA*	0.04 (290)	0.02 (542)	p<0.0001	Tyr	UAU*	0.14 (345)	0.08 (689)	p<0.0001
	GUG	0.27 (1811)	0.29 (7734)	p=0.0091	1 yı	UAC	0.86 (2105)	0.92 (7819)	p<0.0001
	CCU*	0.08 (410)	0.04 (892)	p<0.0001		GCU*	0.06 (692)	0.03 (1741)	p<0.0001
Pro	CCC*	0.40 (2087)	0.37 (8524)	p<0.0001	Ala	GCC*	0.38 (4562)	0.34 (20257)	p<0.0001
110	CCA*	0.08 (411)	0.04 (875)	p<0.0001	1 1	GCA*	0.07 (800)	0.03 (1482)	p<0.0001
	CCG	0.44 (2299)	0.55 (12724)	p<0.0001		GCG	0.50 (6069)	0.60 (35565)	p<0.0001
His	CAU*	0.20 (442)	0.12 (931)	p<0.0001		AUU*	0.13 (473)	0.10 (851)	p<0.0001
1115	CAC	0.80 (1758)	0.88 (6903)	p<0.0001	Ile	AUC	0.79 (2967)	0.84 (7019)	p<0.0001
Cln	CAA*	0.18 (589)	0.15 (1164)	p<0.0001		AUA*	0.08 (301)	0.06 (475)	p<0.0001
GIII	CAG	0.82 (2667)	0.85 (6725)	p<0.0001	Acn	GAU*	0.14 (965)	0.07 (1961)	p<0.0001
Aan	AAU*	0.18 (503)	0.13 (950)	p<0.0001	Asp	GAC	0.86 (5862)	0.93 (24392)	p<0.0001
ASII	AAC	0.82 (2242)	0.87 (6595)	p<0.0001	Cha	GAA*	0.15 (982)	0.11 (2253)	p<0.0001
T wa	AAA	0.13 (786)	0.12 (1418)	p=0.0049	Giu	GAG	0.85 (5697)	0.89 (18367)	p<0.0001
Lys	AAG	0.87 (5192)	0.88 (10709)	p=0.0049		GGU*	0.07 (530)	0.04 (1110)	p<0.0001
Crea	UGU*	0.13 (246)	0.07 (522)	p<0.0001	Chr	GGC	0.77 (6001)	0.77 (23365)	p=0.9643
Cys	UGC	0.87 (1714)	0.93 (6951)	p<0.0001	Gly	GGA*	0.05 (420)	0.04 (1217)	p<0.0001
	CGU*	0.05 (363)	0.04 (1282)	p<0.0001		GGG	0.11 (849)	0.15 (4668)	p<0.0001
	CGC*	0.57 (4051)	0.53 (17073)	p<0.0001					
Arg	CGA	0.06 (445)	0.05 (1741)	p=0.0043					
	CGG	0.22 (1554)	0.32 (10285)	p<0.0001					
	AGA*	0.05 (325)	0.02 (486)	p<0.0001					
	AGG*	0.05 (331)	0.04 (1172)	p<0.0001					

 Table 73 | Codon Usage from Expression Data for the Stramenopile A. anophagefferens

Amira		Top 5%	Bottom 5%	Chi	Amina		Top 5%	Bottom 5%	Chi
Anido	Codons	Expressed	Expressed	Sagure d	Acids	Codons	Expressed	Expressed	Scoure d
Actus		Genes	Genes	Syaneu	Actus		Genes	Genes	Syaureu
Phe	UUU	0.36 (4891)	0.48 (8292)	p<0.0001		UCU*	0.21 (5346)	0.18 (6766)	p<0.0001
Inc	UUC*	0.64 (8531)	0.52 (9147)	p<0.0001		UCC*	0.21 (5295)	0.15 (5678)	p<0.0001
	UUA	0.09 (2539)	0.11 (3922)	p<0.0001	Ser	UCA	0.15 (3842)	0.19 (7034)	p<0.0001
	UUG	0.14 (4097)	0.20 (7609)	p<0.0001	5C1	UCG	0.14 (3600)	0.14 (5313)	p=0.2832
Ιου	CUU*	0.25 (7452)	0.20 (7577)	p<0.0001		AGU	0.11 (2707)	0.14 (5297)	p<0.0001
Leu	CUC*	0.24 (7092)	0.20 (7434)	p<0.0001		AGC	0.19 (4886)	0.19 (7001)	p=0.6300
	CUA*	0.13 (3789)	0.11 (4086)	p<0.0001		ACU*	0.26 (5250)	0.24 (5842)	p<0.0001
	CUG	0.15 (4513)	0.18 (6682)	p<0.0001	Thr	ACC*	0.33 (6632)	0.23 (5709)	p<0.0001
	GUU*	0.32 (7413)	0.28 (7395)	p<0.0001	1 111	ACA	0.23 (4698)	0.31 (7590)	p<0.0001
Val	GUC	0.25 (5808)	0.24 (6249)	p=0.0030		ACG	0.19 (3775)	0.22 (5413)	p<0.0001
vai	GUA*	0.17 (4027)	0.16 (4062)	p<0.0001	Twr	UAU	0.34 (3679)	0.46 (4729)	p<0.0001
	GUG	0.26 (5914)	0.32 (8416)	p<0.0001	I yı	UAC*	0.66 (7277)	0.54 (5603)	p<0.0001
	CCU*	0.39 (6798)	0.31 (5994)	p<0.0001		GCU*	0.37 (11031)	0.29 (8684)	p<0.0001
Duo	CCC	0.18 (3238)	0.19 (3802)	p=0.0149	Ala	GCC	0.18 (5472)	0.20 (5984)	p<0.0001
PTO	CCA	0.29 (5021)	0.32 (6227)	p<0.0001	Ala	GCA	0.30 (9031)	0.33 (9884)	p<0.0001
	CCG	0.14 (2507)	0.18 (3547)	p<0.0001		GCG	0.14 (4264)	0.19 (5723)	p<0.0001
Uia	CAU	0.42 (3156)	0.49 (5487)	p<0.0001		AUU	0.36 (6873)	0.39 (8581)	p<0.0001
nis	CAC*	0.58 (4379)	0.51 (5771)	p<0.0001	Ile	AUC*	0.45 (8497)	0.38 (8329)	p<0.0001
Cla	CAA	0.40 (5548)	0.54 (8523)	p<0.0001		AUA	0.19 (3571)	0.23 (5111)	p<0.0001
GIN	CAG*	0.60 (8235)	0.46 (7249)	p<0.0001		GAU	0.52 (10869)	0.56 (12643)	p<0.0001
	AAU	0.39 (5912)	0.50 (10403)	p<0.0001	Asp	GAC*	0.48 (10164)	0.44 (10123)	p<0.0001
Asn	AAC*	0.61 (9436)	0.50 (10295)	p<0.0001		GAA	0.46 (10912)	0.52 (13972)	p<0.0001
-	AAA	0.37 (10859)	0.52 (15055)	p<0.0001	Glu	GAG*	0.54 (12830)	0.48 (12689)	p<0.0001
Lys	AAG*	0.63 (18439)	0.48 (14078)	p<0.0001		GGU*	0.21 (5615)	0.20 (5273)	p=0.0008
G	UGU	0.34 (1895)	0.40 (3577)	p<0.0001		GGC	0.24 (6277)	0.24 (6362)	p=0.2213
Cys	UGC*	0.66 (3714)	0.60 (5326)	p<0.0001	Gly	GGA*	0.38 (9991)	0.34 (8809)	p<0.0001
	CGU*	0.19 (4024)	0.13 (3439)	p<0.0001		GGG	0.17 (4483)	0.22 (5777)	p<0.0001
	CGC*	0.19 (4028)	0.15 (3968)	p<0.0001				· · · · · ·	-
Arg	CGA	0.16 (3246)	0.17 (4363)	p=0.0005					
	CGG	0.08 (1582)	0.11 (2757)	p<0.0001					
	AGA	0.19 (3851)	0.25 (6390)	p<0.0001					
	AGG	0.19 (3953)	0.19 (4897)	p=0.7002					

Table 74 | Codon Usage from Expression Data for the Rhizarian B. natans

A		Top 5%	Bottom 5%	Chi			Top 5%	Bottom 5%	Chi
Amino	Codons	Expressed	Expressed	Cm-	Amino	Codons	Expressed	Expressed	CM-
Acius		Genes	Genes	Sqaureu	Aclus		Genes	Genes	Sqaureu
Dho	UUU	0.11 (499)	0.15 (1069)	p<0.0001		UCU	0.07 (560)	0.07 (936)	p=0.5118
1 ne	UUC*	0.89 (3916)	0.85 (6015)	p<0.0001		UCC	0.22 (1883)	0.20 (2808)	p=0.0024
	UUA	0.01 (97)	0.03 (506)	p<0.0001	Sor	UCA	0.05 (425)	0.09 (1171)	p<0.0001
	UUG	0.10 (1027)	0.13 (2143)	p<0.0001	Sel	UCG*	0.41 (3506)	0.36 (4979)	p<0.0001
Lan	CUU	0.09 (967)	0.09 (1453)	p=0.1032		AGU	0.04 (360)	0.06 (827)	p<0.0001
Leu	CUC	0.22 (2335)	0.20 (3475)	p=0.0018		AGC	0.21 (1746)	0.22 (2981)	p=0.0393
	CUA	0.02 (256)	0.06 (957)	p<0.0001		ACU	0.08 (546)	0.08 (925)	p=0.0674
	CUG*	0.56 (5900)	0.50 (8427)	p<0.0001	The	ACC	0.30 (2106)	0.31 (3344)	p=0.2004
	GUU	0.16 (1626)	0.15 (2219)	p=0.0571	1111	ACA	0.07 (488)	0.13 (1454)	p<0.0001
Val	GUC*	0.57 (5732)	0.51 (7446)	p<0.0001		ACG*	0.56 (3971)	0.48 (5237)	p<0.0001
vai	GUA	0.03 (317)	0.06 (882)	p<0.0001	Trm	UAU	0.14 (464)	0.20 (907)	p<0.0001
	GUG	0.24 (2399)	0.28 (4008)	p<0.0001	I yı	UAC*	0.86 (2814)	0.80 (3641)	p<0.0001
	CCU	0.14 (834)	0.14 (1293)	p=0.8886		GCU	0.12 (1532)	0.12 (2261)	p=0.5612
Dro	CCC	0.23 (1367)	0.25 (2272)	p=0.0325	Ala	GCC*	0.43 (5536)	0.40 (7394)	p<0.0001
FIU	CCA	0.10 (621)	0.18 (1655)	p<0.0001	Ala	GCA	0.08 (983)	0.13 (2429)	p<0.0001
	CCG*	0.52 (3094)	0.43 (4005)	p<0.0001		GCG*	0.37 (4784)	0.35 (6520)	p<0.0001
His	CAU	0.28 (790)	0.37 (1585)	p<0.0001		AUU	0.22 (1391)	0.21 (1816)	p=0.0186
1115	CAC*	0.72 (2015)	0.63 (2744)	p<0.0001	Ile	AUC*	0.75 (4673)	0.71 (6256)	p<0.0001
Cln	CAA	0.15 (757)	0.24 (1686)	p<0.0001		AUA	0.03 (201)	0.08 (739)	p<0.0001
GIII	CAG*	0.85 (4168)	0.76 (5360)	p<0.0001	Aan	GAU	0.26 (2098)	0.29 (3014)	p<0.0001
Aam	AAU	0.15 (658)	0.22 (1316)	p<0.0001	Asp	GAC*	0.74 (5995)	0.71 (7447)	p<0.0001
ASI	AAC*	0.85 (3713)	0.78 (4744)	p<0.0001		GAA	0.28 (2180)	0.36 (2779)	p<0.0001
T	AAA	0.14 (1153)	0.27 (1609)	p<0.0001	Glu	GAG*	0.72 (5633)	0.64 (4869)	p<0.0001
Lys	AAG*	0.86 (7071)	0.73 (4427)	p<0.0001		GGU*	0.19 (1747)	0.14 (1638)	p<0.0001
C	UGU	0.18 (315)	0.24 (794)	p<0.0001		GGC*	0.54 (5031)	0.49 (5605)	p<0.0001
Cys	UGC*	0.82 (1400)	0.76 (2544)	p<0.0001	Gly	GGA	0.09 (864)	0.12 (1357)	p<0.0001
	CGU*	0.22 (1754)	0.14 (1772)	p<0.0001		GGG	0.19 (1759)	0.25 (2874)	p<0.0001
	CGC*	0.43 (3384)	0.31 (3811)	p<0.0001					
	CGA	0.10 (783)	0.16 (1963)	p<0.0001					
Arg	CGG	0.17 (1326)	0.22 (2723)	p<0.0001	1				
	AGA	0.02 (141)	0.05 (622)	p<0.0001					
	AGG	0.06 (505)	0.12 (1463)	p<0.0001					

 Table 75 | Codon Usage from Expression Data for the Rhizarian P. brassicae

6.4 Codon Usage – Protein Coding Domains and Non-Domains

General description of tables 76 - 107: The codon usage data is given in two forms, inside and outside of brackets. The numbers inside of the brackets represent the amount the codon was found within the genome files. The numbers outside the brackets represent the proportion of that the codon was found within the set of genes as opposed to synonymous codons. The p-values shown were calculated by a 2x2 contingency table, any p-value above 0.001 was deemed insignificant, these are shown using red text.

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Pho	UUU	0.04 (48)	0.13 (35)	p<0.0001		UCU	0.06 (78)	0.10 (60)	p=0.0043
	UUC*	0.96 (1061)	0.87 (242)	p<0.0001		UCC	0.33 (413)	0.33 (199)	p=0.9971
	UUA	0.00(1)	0.01 (4)	p=0.0024	Sor	UCA	0.01 (11)	0.03 (16)	p=0.0028
	UUG	0.04 (93)	0.06 (38)	p=0.0881	Sel	UCG*	0.37 (463)	0.27 (161)	p<0.0001
Lou	CUU	0.08 (170)	0.09 (54)	p=0.6528		AGU	0.01 (11)	0.03 (16)	p=0.0028
Leu	CUC	0.60 (1284)	0.54 (340)	p=0.0035		AGC	0.22 (282)	0.25 (154)	p=0.1523
	CUA	0.00 (4)	0.01 (8)	p=0.0003		ACU	0.11 (154)	0.15 (68)	p=0.0387
	CUG	0.27 (583)	0.30 (190)	p=0.1896	The	ACC	0.71 (967)	0.65 (295)	p=0.0161
	GUU	0.07 (118)	0.14 (69)	p<0.0001	Inr	ACA	0.01 (12)	0.05 (24)	p<0.0001
X 7-1	GUC	0.53 (937)	0.48 (243)	p=0.0569		ACG	0.17 (232)	0.15 (68)	p=0.3071
vai	GUA	0.01 (17)	0.02 (10)	p=0.0619	Т	UAU	0.07 (59)	0.13 (28)	p=0.0053
	GUG	0.40 (702)	0.36 (184)	p=0.1916	1 yr	UAC	0.93 (754)	0.87 (183)	p=0.0053
	CCU	0.10 (109)	0.14 (61)	p=0.0382		GCU	0.16 (313)	0.22 (232)	p<0.0001
Due	CCC	0.69 (749)	0.66 (294)	p=0.2687	Ala	GCC*	0.71 (1369)	0.64 (673)	p=0.0003
Pro	CCA	0.00 (3)	0.03 (13)	p<0.0001	Ala	GCA	0.01 (22)	0.03 (30)	p=0.0006
	CCG	0.21 (232)	0.18 (80)	p=0.1351		GCG	0.12 (229)	0.11 (111)	p=0.3116
IIIa	CAU	0.07 (39)	0.11 (21)	p=0.0301		AUU	0.13 (163)	0.13 (35)	p=0.9709
ПIS	CAC	0.93 (554)	0.89 (162)	p=0.0301	Ile	AUC	0.87 (1102)	0.84 (229)	p=0.1456
Clm	CAA	0.03 (29)	0.13 (42)	p<0.0001		AUA	0.00 (3)	0.04 (10)	p<0.0001
GIII	CAG*	0.97 (812)	0.87 (288)	p<0.0001	Aan	GAU	0.24 (318)	0.27 (128)	p=0.1834
Aan	AAU	0.05 (48)	0.11 (31)	p<0.0001	Asp	GAC	0.76 (1025)	0.73 (351)	p=0.1834
ASI	AAC*	0.95 (976)	0.89 (252)	p<0.0001	Cla	GAA	0.06 (82)	0.11 (69)	p<0.0001
T and	AAA	0.01 (24)	0.03 (28)	p=0.0004	Giu	GAG*	0.94 (1327)	0.89 (547)	p<0.0001
Lys	AAG*	0.99 (1783)	0.97 (796)	p=0.0004		GGU	0.31 (529)	0.28 (161)	p=0.1722
Cre	UGU	0.08 (23)	0.21 (14)	p=0.0014	Chr	GGC	0.63 (1074)	0.57 (330)	p=0.0172
Cys	UGC	0.92 (268)	0.79 (52)	p=0.0014	Gly	GGA	0.05 (80)	0.10 (58)	p<0.0001
	CGU*	0.17 (209)	0.10 (45)	p=0.0007		GGG	0.01 (25)	0.05 (27)	p<0.0001
	CGC	0.47 (579)	0.38 (169)	p=0.0015					
Arg	CGA	0.03 (42)	0.08 (36)	p<0.0001					
	CGG	0.03 (42)	0.07 (29)	p=0.0047					
	AGA	0.02 (26)	0.05 (22)	p=0.0019					
	AGG	0.27 (327)	0.31 (138)	p=0.0575					

 Table 76 | Codon Usage from Domains and Non-Domains for the Amoebozoan A. castellani

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.41 (104)	0.38 (51)	p=0.6632		UCU	0.20 (84)	0.27 (62)	p=0.0389
IIIC	UUC	0.59 (152)	0.62 (82)	p=0.6632		UCC	0.05 (21)	0.05 (12)	p=0.8924
	UUA	0.29 (151)	0.26 (59)	p=0.4433	Sor	UCA	0.50 (214)	0.40 (93)	p=0.0123
	UUG	0.08 (41)	0.09 (20)	p=0.6409	Sei	UCG	0.01 (3)	0.00 (0)	p=0.2001
Lou	CUU	0.55 (292)	0.51 (116)	p=0.2625		AGU	0.17 (71)	0.24 (55)	p=0.0284
Leu	CUC	0.08 (43)	0.12 (27)	p=0.1074		AGC	0.07 (31)	0.04 (9)	p=0.0811
	CUA	0.00(1)	0.01 (2)	p=0.1674		ACU	0.62 (256)	0.62 (152)	p=0.9887
	CUG	0.00 (0)	0.02 (4)	p=0.0023	Thr	ACC	0.13 (55)	0.13 (33)	p=0.9558
	GUU	0.74 (409)	0.73 (191)	p=0.8420	1 111	ACA	0.24 (99)	0.24 (58)	p=0.9310
Vəl	GUC	0.15 (85)	0.11 (28)	p=0.0752		ACG	0.01 (3)	0.01 (2)	p=0.8978
v ai	GUA	0.10 (58)	0.15 (38)	p=0.0913	Tyr	UAU	0.76 (172)	0.80 (94)	p=0.4146
	GUG	0.01 (4)	0.02 (5)	p=0.1282	I yI	UAC	0.24 (55)	0.20 (24)	p=0.4146
	CCU	0.04 (9)	0.04 (8)	p=0.8015		GCU	0.68 (391)	0.67 (294)	p=0.6452
Pro	CCC	0.00(1)	0.03 (6)	p=0.0254	Ala	GCC	0.08 (47)	0.14 (62)	p=0.0027
110	CCA	0.96 (236)	0.92 (179)	p=0.0990	1114	GCA	0.24 (137)	0.19 (86)	p=0.0980
	CCG	0.00 (0)	0.01 (1)	p=0.2596		GCG	0.00(1)	0.00 (0)	p=0.3808
His	CAU	0.75 (117)	0.72 (41)	p=0.6504	Ile	AUU*	0.81 (426)	0.69 (122)	p=0.0003
	CAC	0.25 (39)	0.28 (16)	p=0.6504		AUC	0.16 (83)	0.25 (44)	p=0.0081
Gln	CAA	0.99 (230)	1.00 (160)	p=0.1496		AUA	0.03 (14)	0.07 (12)	p=0.0132
	CAG	0.01 (3)	0.00(0)	p=0.1496	Asn	GAU	0.81 (258)	0.77 (138)	p=0.3501
Asn	AAU	0.75 (300)	0.71 (149)	p=0.3289	¹¹⁵ P	GAC	0.19 (62)	0.23 (41)	p=0.3501
ASI	AAC	0.25 (102)	0.29 (61)	p=0.3289	Gh	GAA	0.93 (350)	0.93 (301)	p=0.8363
Lvs	AAA	0.65 (548)	0.57 (364)	p=0.0043	Olu	GAG	0.07 (26)	0.07 (21)	p=0.8363
Ljs	AAG	0.35 (299)	0.43 (270)	p=0.0043		GGU	0.30 (149)	0.36 (80)	p=0.1232
Cvs	UGU	0.74 (136)	0.71 (109)	p=0.5276	Gly	GGC	0.01 (5)	0.05 (11)	p=0.0010
CJS	UGC	0.26 (47)	0.29 (44)	p=0.5276	Gly	GGA	0.67 (331)	0.58 (128)	p=0.0144
	CGU	0.11 (46)	0.07 (8)	p=0.3313		GGG	0.02 (8)	0.01 (3)	p=0.7850
	CGC	0.00(0)	0.00 (0)	-					
Arg	CGA	0.02 (7)	0.03 (3)	p=0.4149					
	CGG	0.00 (0)	0.00 (0)	-					
	AGA	0.87 (380)	0.89 (96)	p=0.5887					
	AGG	0.01 (4)	0.01 (1)	p=0.9917					

 Table 77 | Codon Usage from Domains and Non-Domains for the Amoebozoan E. histolytica

Amino	Coderra	Dorreir	Non-	Chi-	Amino	Codere	Dorreir	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Pho	UUU	0.34 (110)	0.51 (83)	p=0.0005		UCU	0.24 (125)	0.17 (91)	p=0.0045
1 ne	UUC*	0.66 (212)	0.49 (81)	p=0.0005		UCC	0.12 (60)	0.08 (42)	p=0.0423
	UUA	0.58 (334)	0.65 (184)	p=0.0491	Sor	UCA	0.47 (239)	0.52 (275)	p=0.0761
	UUG	0.07 (41)	0.07 (19)	p=0.8267	Sel	UCG	0.01 (4)	0.01 (4)	p=0.9673
Lou	CUU	0.13 (73)	0.11 (32)	p=0.5654		AGU	0.12 (61)	0.14 (73)	p=0.3515
Leu	CUC	0.22 (129)	0.15 (43)	p=0.0132		AGC	0.04 (23)	0.08 (42)	p=0.0207
	CUA	0.01 (3)	0.02 (7)	p=0.0122		ACU	0.44 (213)	0.40 (242)	p=0.1924
	CUG	0.00(0)	0.00 (0)	-	The	ACC	0.43 (209)	0.35 (211)	p=0.0056
	GUU	0.56 (310)	0.60 (193)	p=0.2784	1 111	ACA	0.13 (62)	0.25 (151)	p<0.0001
Val	GUC	0.32 (176)	0.22 (72)	p=0.0025		ACG	0.00(1)	0.00(1)	p=0.8754
v ai	GUA	0.11 (62)	0.15 (49)	p=0.0883	Tur	UAU	0.44 (99)	0.61 (82)	p=0.0018
	GUG	0.00 (2)	0.02 (7)	p=0.0105	I yı	UAC	0.56 (127)	0.39 (53)	p=0.0018
	CCU	0.02 (7)	0.05 (36)	p=0.0347		GCU	0.47 (253)	0.49 (252)	p=0.4798
Pro	CCC	0.01 (3)	0.01 (4)	p=0.4896	Ala	GCC*	0.36 (195)	0.26 (134)	p=0.0004
Pro	CCA	0.97 (307)	0.94 (669)	p=0.0629	Ala	GCA	0.17 (92)	0.25 (126)	p=0.0027
	CCG	0.00 (0)	0.00 (2)	p=0.3445		GCG	0.00 (0)	0.00 (2)	p=0.1468
His	CAU	0.42 (53)	0.60 (69)	p=0.0064		AUU	0.48 (224)	0.57 (145)	p=0.0192
TIS	CAC	0.58 (72)	0.40 (46)	p=0.0064	Ile	AUC*	0.49 (228)	0.29 (74)	p<0.0001
Cla	CAA	1.00 (296)	0.98 (615)	p=0.0573		AUA	0.03 (13)	0.13 (34)	p<0.0001
GIN	CAG	0.00(1)	0.02 (12)	p=0.0573		GAU	0.81 (290)	0.79 (202)	p=0.5356
	AAU	0.46 (190)	0.69 (352)	p<0.0001	Asp	GAC	0.19 (67)	0.21 (53)	p=0.5356
Asn	AAC*	0.54 (226)	0.31 (159)	p<0.0001		GAA	0.92 (398)	0.94 (419)	p=0.1918
Ŧ	AAA	0.75 (508)	0.77 (443)	p=0.4458	Glu	GAG	0.08 (35)	0.06 (26)	p=0.1918
Lys	AAG	0.25 (170)	0.23 (134)	p=0.4458		GGU*	0.92 (388)	0.76 (265)	p<0.0001
C	UGU	0.74 (64)	0.82 (32)	p=0.3489		GGC	0.03 (12)	0.07 (24)	p=0.0080
Cys	UGC	0.26 (22)	0.18 (7)	p=0.3489	Gly	GGA	0.05 (20)	0.17 (58)	p<0.0001
	CGU*	0.42 (149)	0.25 (51)	p<0.0001		GGG	0.00 (2)	0.00(1)	p=0.6792
	CGC	0.00(0)	0.00 (0)	-			-		
Arg	CGA	0.00 (0)	0.00 (0)	-					
	CGG	0.00 (0)	0.00 (0)	-					
	AGA	0.57 (200)	0.75 (156)	p<0.0001					
	AGG	0.01 (2)	0.00 (0)	p=0.2766					

Table	78	Codon	Usage f	from Do	omains	and Nor	-Domain	s for th	e Amoeboz	oan D.	discoideum
			0								

Amino	Codors	Domain	Non-	Chi-	Amino	Codors	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Phe	UUU	0.30 (523)	0.31 (370)	p=0.5733		UCU	0.22 (708)	0.21 (688)	p=0.3169
	UUC	0.70 (1218)	0.69 (823)	p=0.5733		UCC	0.21 (656)	0.21 (680)	p=0.7238
	UUA	0.10 (391)	0.10 (284)	p=0.4012	Sor	UCA	0.15 (465)	0.17 (545)	p=0.0156
	UUG	0.22 (904)	0.20 (566)	p=0.0691	Sel	UCG	0.14 (455)	0.14 (450)	p=0.6289
Lou	CUU	0.07 (290)	0.09 (246)	p=0.0089		AGU	0.13 (418)	0.12 (395)	p=0.2505
Leu	CUC	0.30 (1229)	0.28 (772)	p=0.0316		AGC	0.15 (472)	0.15 (476)	p=0.8638
	CUA	0.06 (261)	0.09 (245)	p=0.0002		ACU	0.20 (478)	0.19 (399)	p=0.5415
	CUG	0.25 (1011)	0.24 (676)	p=0.6328	The	ACC*	0.32 (771)	0.27 (554)	p<0.0001
	GUU	0.15 (429)	0.15 (268)	p=0.4858	1 111	ACA	0.23 (562)	0.28 (588)	p=0.0002
Val	GUC	0.41 (1157)	0.37 (679)	p=0.0027		ACG	0.25 (590)	0.26 (539)	p=0.3027
vai	GUA	0.13 (365)	0.15 (275)	p=0.0637	Tur	UAU	0.34 (475)	0.41 (358)	p=0.0005
	GUG	0.30 (837)	0.33 (609)	p=0.0202	1 yı	UAC*	0.66 (931)	0.59 (514)	p=0.0005
	CCU	0.25 (422)	0.22 (363)	p=0.0273		GCU	0.22 (605)	0.21 (386)	p=0.2296
Pro	CCC*	0.40 (667)	0.32 (534)	p<0.0001	Ala	GCC*	0.40 (1083)	0.32 (582)	p<0.0001
110	CCA	0.23 (388)	0.31 (507)	p<0.0001	Аіа	GCA	0.23 (609)	0.29 (530)	p<0.0001
	CCG	0.12 (199)	0.15 (251)	p=0.0054		GCG	0.15 (400)	0.19 (346)	p=0.0004
His	CAU	0.27 (282)	0.35 (265)	p=0.0003		AUU	0.16 (426)	0.20 (345)	p=0.0018
1115	CAC*	0.73 (747)	0.65 (484)	p=0.0003	Ile	AUC*	0.72 (1916)	0.66 (1154)	p<0.0001
Cln	CAA	0.43 (674)	0.48 (631)	p=0.0025		AUA	0.12 (319)	0.15 (257)	p=0.0106
Gill	CAG	0.57 (910)	0.52 (679)	p=0.0025	Acn	GAU	0.51 (1066)	0.54 (950)	p=0.0241
Acn	AAU	0.37 (706)	0.41 (616)	p=0.0298	Asp	GAC	0.49 (1044)	0.46 (804)	p=0.0241
Asn	AAC	0.63 (1205)	0.59 (902)	p=0.0298	Chu	GAA	0.40 (1063)	0.45 (997)	p=0.0010
I wa	AAA	0.31 (751)	0.34 (603)	p=0.0252	Giù	GAG*	0.60 (1583)	0.55 (1226)	p=0.0010
Lys	AAG	0.69 (1666)	0.66 (1152)	p=0.0252		GGU	0.30 (831)	0.26 (465)	p=0.0033
Cvc	UGU	0.46 (274)	0.55 (241)	p=0.0076	Chy	GGC	0.16 (444)	0.20 (353)	p=0.0013
Cys	UGC	0.54 (317)	0.45 (199)	p=0.0076	Gly	GGA	0.44 (1216)	0.42 (737)	p=0.0696
	CGU	0.11 (229)	0.10 (199)	p=0.2421		GGG	0.09 (252)	0.12 (217)	p=0.0010
	CGC	0.10 (211)	0.11 (223)	p=0.3284					
Ang	CGA	0.17 (355)	0.17 (346)	p=0.9115					
Alg	CGG	0.04 (74)	0.05 (98)	p=0.0363					
	AGA	0.40 (820)	0.36 (708)	p=0.0049					
	AGG	0.17 (356)	0.20 (404)	p=0.0145					

 Table 79 | Codon Usage from Domains and Non-Domains for the Amoebozoan P. fungivorum

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	couons	Domun	Domain	Sqaure d	Acids	couons	Domain	Domain	Sqaured
Phe	UUU	0.42 (341)	0.43 (199)	p=0.8905		UCU	0.07 (91)	0.09 (131)	p=0.0518
The	UUC	0.58 (465)	0.57 (267)	p=0.8905		UCC	0.14 (189)	0.16 (241)	p=0.1375
	UUA	0.00 (0)	0.00 (3)	p=0.0354	Ser	UCA	0.05 (67)	0.07 (103)	p=0.0348
	UUG	0.02 (36)	0.06 (73)	p<0.0001	Bel	UCG*	0.68 (922)	0.54 (817)	p<0.0001
Του	CUU	0.13 (223)	0.18 (202)	p=0.0012		AGU	0.01 (15)	0.03 (41)	p=0.0019
Leu	CUC*	0.59 (1000)	0.50 (581)	p<0.0001		AGC	0.05 (64)	0.11 (172)	p<0.0001
	CUA	0.01 (13)	0.02 (26)	p=0.0008		ACU	0.09 (114)	0.13 (109)	p=0.0120
	CUG	0.25 (429)	0.23 (269)	p=0.2438	The	ACC*	0.56 (680)	0.45 (379)	p<0.0001
	GUU	0.12 (173)	0.16 (158)	p=0.0019	1 111	ACA	0.04 (48)	0.10 (87)	p<0.0001
Val	GUC*	0.56 (825)	0.45 (445)	p<0.0001		ACG	0.31 (375)	0.32 (273)	p=0.5062
vai	GUA	0.01 (9)	0.02 (16)	p=0.0136	Tum	UAU	0.08 (46)	0.11 (26)	p=0.1184
	GUG	0.32 (477)	0.37 (368)	p=0.0083	I yr	UAC	0.92 (555)	0.89 (210)	p=0.1184
	CCU	0.10 (73)	0.11 (134)	p=0.2751		GCU	0.16 (306)	0.22 (485)	p<0.0001
Duo	CCC	0.22 (167)	0.19 (235)	p=0.1997	Ala	GCC*	0.50 (975)	0.44 (955)	p<0.0001
Pro	CCA	0.04 (33)	0.10 (118)	p<0.0001	Ala	GCA	0.06 (123)	0.09 (197)	p=0.0010
	CCG	0.64 (491)	0.60 (720)	p=0.0403		GCG	0.28 (550)	0.25 (541)	p=0.0160
Uia	CAU	0.14 (53)	0.30 (83)	p<0.0001	Ile	AUU	0.21 (231)	0.30 (110)	p=0.0004
ПIS	CAC*	0.86 (336)	0.70 (196)	p<0.0001		AUC*	0.79 (863)	0.68 (247)	p<0.0001
Cla	CAA	0.04 (33)	0.12 (87)	p<0.0001		AUA	0.00 (5)	0.02 (8)	p=0.0022
GIN	CAG*	0.96 (705)	0.88 (633)	p<0.0001		GAU	0.18 (216)	0.24 (202)	p=0.0002
	AAU	0.04 (30)	0.12 (54)	p<0.0001	Asp	GAC*	0.82 (1013)	0.76 (632)	p=0.0002
Asn	AAC*	0.96 (775)	0.88 (393)	p<0.0001		GAA	0.05 (57)	0.09 (67)	p=0.0001
.	AAA	0.01 (11)	0.02 (18)	p=0.0285	Glu	GAG*	0.95 (1208)	0.91 (699)	p=0.0001
Lys	AAG	0.99 (1017)	0.98 (731)	p=0.0285		GGU	0.17 (241)	0.17 (189)	p=0.9664
C	UGU	0.08 (30)	0.16 (48)	p=0.0013		GGC	0.68 (965)	0.67 (735)	p=0.3609
Cys	UGC	0.92 (340)	0.84 (249)	p=0.0013	Gly	GGA	0.05 (70)	0.08 (91)	p=0.0008
	CGU	0.13 (110)	0.13 (97)	p=0.8797		GGG	0.10 (137)	0.08 (89)	p=0.1547
	CGC*	0.58 (498)	0.45 (335)	p<0.0001		-			
Arg	CGA	0.03 (22)	0.07 (54)	p<0.0001					
	CGG	0.23 (198)	0.27 (197)	p=0.1076					
	AGA	0.01 (9)	0.03 (21)	p=0.0088					
	AGG	0.02 (20)	0.05 (37)	p=0.0043					

Table 80 | Codon Usage from Domains and Non-Domains for the Apusomonadan T. trahens

Amino	Codora	Domain	Non-	Chi-	Amino	Codora	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Codons	Domain	Domain	Sqaure d
Pho	UUU	0.07 (60)	0.25 (82)	p<0.0001		UCU	0.15 (205)	0.22 (157)	p=0.0004
1 ne	UUC*	0.93 (825)	0.75 (249)	p<0.0001		UCC*	0.58 (777)	0.44 (324)	p<0.0001
	UUA	0.04 (76)	0.05 (39)	p=0.3728	Sor	UCA	0.01 (17)	0.02 (18)	p=0.0433
	UUG	0.01 (23)	0.07 (56)	p<0.0001	Sel	UCG	0.09 (125)	0.13 (94)	p=0.0120
Lou	CUU	0.06 (112)	0.11 (82)	p=0.0001		AGU	0.02 (24)	0.02 (15)	p=0.6718
Leu	CUC	0.47 (840)	0.42 (322)	p=0.0126		AGC	0.14 (191)	0.17 (121)	p=0.1566
	CUA	0.01 (10)	0.03 (20)	p<0.0001		ACU	0.11 (138)	0.13 (60)	p=0.2888
	CUG*	0.40 (713)	0.32 (248)	p=0.0002	The	ACC*	0.84 (1033)	0.73 (333)	p<0.0001
	GUU	0.13 (212)	0.19 (102)	p=0.0007	1 III.	ACA	0.02 (22)	0.07 (31)	p<0.0001
Val	GUC*	0.72 (1150)	0.55 (293)	p<0.0001		ACG	0.03 (33)	0.07 (33)	p<0.0001
vai	GUA	0.01 (18)	0.03 (15)	p=0.0058	Tur	UAU	0.12 (75)	0.30 (49)	p<0.0001
	GUG	0.13 (215)	0.22 (118)	p<0.0001	1 yı	UAC*	0.88 (566)	0.70 (113)	p<0.0001
	CCU	0.06 (51)	0.12 (77)	p<0.0001		GCU	0.16 (303)	0.19 (206)	p=0.0211
Pro	CCC*	0.66 (574)	0.53 (340)	p<0.0001	Ala	GCC*	0.79 (1524)	0.68 (742)	p<0.0001
110	CCA	0.01 (5)	0.05 (32)	p<0.0001	Ala	GCA	0.02 (31)	0.04 (41)	p=0.0002
	CCG	0.27 (234)	0.29 (187)	p=0.3232		GCG	0.04 (80)	0.09 (101)	p<0.0001
His	CAU	0.12 (55)	0.32 (62)	p<0.0001		AUU	0.21 (246)	0.19 (60)	p=0.2841
1115	CAC*	0.88 (386)	0.68 (134)	p<0.0001	Ile	AUC	0.76 (884)	0.72 (232)	p=0.0807
Cln	CAA	0.02 (13)	0.13 (37)	p<0.0001		AUA	0.02 (28)	0.10 (32)	p<0.0001
Gill	CAG*	0.98 (673)	0.87 (240)	p<0.0001	Acn	GAU	0.28 (308)	0.34 (137)	p=0.0178
Agn	AAU	0.12 (104)	0.18 (59)	p=0.0023	Asp	GAC	0.72 (809)	0.66 (268)	p=0.0178
ASII	AAC	0.88 (800)	0.82 (265)	p=0.0023	Chu	GAA	0.02 (21)	0.10 (40)	p<0.0001
I wa	AAA	0.04 (48)	0.13 (65)	p<0.0001	Giù	GAG*	0.98 (1081)	0.90 (380)	p<0.0001
Lys	AAG*	0.96 (1279)	0.87 (451)	p<0.0001		GGU*	0.43 (649)	0.30 (163)	p<0.0001
Cre	UGU	0.06 (17)	0.29 (58)	p<0.0001	Chr	GGC	0.52 (781)	0.53 (290)	p=0.6940
Cys	UGC*	0.94 (268)	0.71 (141)	p<0.0001	Gly	GGA	0.01 (16)	0.06 (32)	p<0.0001
	CGU	0.20 (243)	0.18 (97)	p=0.2937		GGG	0.04 (66)	0.12 (66)	p<0.0001
	CGC*	0.73 (899)	0.58 (319)	p<0.0001					
A 110	CGA	0.00 (5)	0.04 (23)	p<0.0001					
Arg	CGG	0.05 (64)	0.12 (67)	p<0.0001					
	AGA	0.02 (21)	0.05 (28)	p<0.0001					
	AGG	0.01 (7)	0.04 (20)	p<0.0001					

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Phe	UUU	0.29 (266)	0.50 (192)	p<0.0001		UCU	0.17 (219)	0.17 (157)	p=0.7741
	UUC*	0.71 (636)	0.50 (190)	p<0.0001		UCC	0.29 (382)	0.27 (248)	p=0.2979
	UUA	0.00 (6)	0.01 (4)	p=0.5411	Sor	UCA	0.04 (50)	0.06 (54)	p=0.0215
	UUG	0.05 (96)	0.15 (115)	p<0.0001	SCI	UCG	0.31 (402)	0.29 (262)	p=0.3066
Lou	CUU	0.15 (266)	0.17 (134)	p=0.2530		AGU	0.02 (20)	0.03 (31)	p=0.0038
Leu	CUC*	0.59 (1023)	0.41 (320)	p<0.0001		AGC	0.18 (233)	0.17 (159)	p=0.8140
	CUA	0.01 (13)	0.02 (14)	p=0.0190		ACU	0.22 (288)	0.24 (161)	p=0.5192
	CUG	0.20 (344)	0.26 (201)	p=0.0009	The	ACC*	0.62 (800)	0.48 (327)	p<0.0001
	GUU	0.21 (331)	0.26 (181)	p=0.0114	Inr	ACA	0.05 (58)	0.08 (52)	p=0.0040
Val	GUC*	0.66 (1036)	0.48 (339)	p<0.0001		ACG	0.11 (142)	0.21 (141)	p<0.0001
vai	GUA	0.01 (10)	0.02 (16)	p=0.0006	True	UAU	0.12 (81)	0.21 (50)	p=0.0010
	GUG	0.13 (202)	0.24 (167)	p<0.0001	1 yr	UAC*	0.88 (571)	0.79 (185)	p=0.0010
	CCU	0.10 (84)	0.18 (117)	p<0.0001		GCU	0.27 (501)	0.30 (475)	p=0.0558
Duo	CCC*	0.65 (529)	0.48 (302)	p<0.0001	Alo	GCC*	0.58 (1069)	0.44 (686)	p<0.0001
FIU	CCA	0.07 (53)	0.13 (81)	p<0.0001	Ala	GCA	0.05 (98)	0.10 (159)	p<0.0001
	CCG	0.18 (142)	0.21 (135)	p=0.0776		GCG	0.09 (160)	0.16 (243)	p<0.0001
Uia	CAU	0.10 (43)	0.29 (68)	p<0.0001		AUU	0.37 (440)	0.45 (159)	p=0.0093
ПIS	CAC*	0.90 (395)	0.71 (170)	p<0.0001	Ile	AUC	0.63 (747)	0.54 (192)	p=0.0026
Cla	CAA	0.22 (174)	0.31 (123)	p=0.0007		AUA	0.00 (2)	0.01 (5)	p=0.0023
GIN	CAG*	0.78 (614)	0.69 (272)	p=0.0007		GAU	0.21 (241)	0.32 (138)	p<0.0001
A	AAU	0.09 (80)	0.17 (65)	p<0.0001	Asp	GAC*	0.79 (904)	0.68 (295)	p<0.0001
Asn	AAC*	0.91 (802)	0.83 (321)	p<0.0001		GAA	0.17 (191)	0.27 (112)	p<0.0001
Ŧ	AAA	0.03 (40)	0.10 (54)	p<0.0001	Glu	GAG*	0.83 (931)	0.73 (299)	p<0.0001
Lys	AAG*	0.97 (1348)	0.90 (499)	p<0.0001		GGU	0.19 (296)	0.24 (149)	p=0.0104
C	UGU	0.05 (20)	0.21 (33)	p<0.0001		GGC*	0.76 (1156)	0.63 (384)	p<0.0001
Cys	UGC*	0.95 (377)	0.79 (124)	p<0.0001	Gly	GGA	0.03 (53)	0.09 (56)	p<0.0001
	CGU	0.19 (217)	0.19 (102)	p=0.8880		GGG	0.02 (23)	0.04 (23)	p=0.0012
	CGC*	0.71 (817)	0.56 (298)	p<0.0001					
	CGA	0.06 (73)	0.10 (55)	p=0.0042					
Arg	CGG	0.02 (23)	0.05 (25)	p=0.0020					
	AGA	0.00 (3)	0.03 (17)	p<0.0001					
	AGG	0.01 (14)	0.06 (34)	p<0.0001					

 Table 82 | Codon Usage from Domains and Non-Domains for the Opisthokont C. owczarzaki

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.19 (85)	0.36 (52)	p<0.0001		UCU	0.19 (158)	0.21 (84)	p=0.5627
IIIC	UUC*	0.81 (353)	0.64 (94)	p<0.0001		UCC	0.26 (211)	0.18 (73)	p=0.0024
	UUA	0.06 (66)	0.09 (33)	p=0.0327	Sor	UCA	0.16 (127)	0.13 (52)	p=0.2081
	UUG	0.19 (212)	0.19 (69)	p=0.9574	Sei	UCG	0.12 (100)	0.11 (44)	p=0.4826
Του	CUU*	0.25 (273)	0.16 (57)	p=0.0006		AGU	0.14 (111)	0.20 (80)	p=0.0052
Ltu	CUC	0.13 (147)	0.15 (54)	p=0.3871		AGC	0.13 (110)	0.18 (72)	p=0.0462
	CUA	0.13 (141)	0.17 (62)	p=0.0289		ACU	0.27 (191)	0.25 (86)	p=0.5096
	CUG	0.24 (259)	0.23 (80)	p=0.6834	Thr	ACC	0.40 (285)	0.30 (104)	p=0.0018
	GUU	0.26 (272)	0.19 (63)	p=0.0085	1 111	ACA	0.19 (140)	0.26 (91)	p=0.0135
Vəl	GUC	0.23 (241)	0.26 (88)	p=0.2131		ACG	0.14 (102)	0.19 (67)	p=0.0344
v ai	GUA	0.19 (197)	0.25 (83)	p=0.0169	Tyr	UAU	0.21 (83)	0.32 (35)	p=0.0193
	GUG	0.33 (350)	0.31 (104)	p=0.4419	I yı	UAC	0.79 (310)	0.68 (75)	p=0.0193
	CCU	0.25 (126)	0.35 (100)	p=0.0038		GCU	0.31 (369)	0.32 (160)	p=0.6976
Pro	CCC*	0.51 (257)	0.28 (82)	p<0.0001	Ala	GCC	0.41 (494)	0.34 (170)	p=0.0038
110	CCA	0.14 (70)	0.23 (65)	p=0.0019	7 11 a	GCA	0.12 (146)	0.19 (96)	p=0.0002
	CCG	0.10 (50)	0.14 (41)	p=0.0685		GCG	0.16 (187)	0.15 (77)	p=0.8650
His	CAU	0.19 (50)	0.39 (42)	p<0.0001	Ile	AUU	0.33 (270)	0.32 (57)	p=0.7365
1115	CAC*	0.81 (208)	0.61 (66)	p<0.0001		AUC	0.57 (458)	0.49 (87)	p=0.0626
Gln	CAA	0.24 (112)	0.37 (75)	p=0.0002		AUA	0.10 (82)	0.19 (34)	p=0.0008
	CAG*	0.76 (364)	0.63 (126)	p=0.0002	Asn	GAU	0.55 (484)	0.51 (161)	p=0.1757
Asn	AAU	0.26 (136)	0.45 (99)	p<0.0001	¹¹⁵ P	GAC	0.45 (390)	0.49 (155)	p=0.1757
A SH	AAC*	0.74 (387)	0.55 (122)	p<0.0001	Gh	GAA	0.25 (228)	0.35 (145)	p<0.0001
Lvs	AAA	0.16 (164)	0.24 (80)	p=0.0005	Olu	GAG*	0.75 (695)	0.65 (272)	p<0.0001
L _J ₅	AAG*	0.84 (894)	0.76 (257)	p=0.0005		GGU	0.44 (435)	0.42 (149)	p=0.5326
Cvs	UGU	0.45 (79)	0.67 (49)	p=0.0014	Gly	GGC	0.20 (200)	0.18 (65)	p=0.4480
C 53	UGC	0.55 (97)	0.33 (24)	p=0.0014	GIy	GGA	0.30 (297)	0.29 (103)	p=0.7379
	CGU*	0.42 (324)	0.31 (106)	p=0.0007		GGG	0.05 (51)	0.10 (35)	p=0.0018
	CGC	0.25 (193)	0.21 (73)	p=0.2068					
Arg	CGA	0.13 (104)	0.12 (40)	p=0.4381					
	CGG	0.04 (32)	0.08 (26)	p=0.0154					
	AGA	0.11 (83)	0.20 (69)	p<0.0001					
	AGG	0.05 (39)	0.08 (27)	p=0.0598					

 Table 83 | Codon Usage from Domains and Non-Domains for the Opisthokont S. arctica

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Phe	UUU	0.33 (365)	0.44 (302)	p<0.0001	Ser	UCU	0.21 (500)	0.23 (488)	p=0.0523
	UUC*	0.67 (726)	0.56 (392)	p<0.0001		UCC	0.22 (538)	0.19 (400)	p=0.0069
Leu	UUA	0.03 (105)	0.05 (99)	p<0.0001		UCA	0.07 (178)	0.10 (217)	p=0.0006
	UUG	0.09 (341)	0.11 (222)	p=0.0347		UCG	0.15 (367)	0.13 (274)	p=0.0378
	CUU	0.25 (920)	0.27 (532)	p=0.2299		AGU	0.11 (272)	0.12 (247)	p=0.6700
	CUC*	0.37 (1333)	0.27 (540)	p<0.0001		AGC	0.24 (575)	0.23 (496)	p=0.8463
	CUA	0.06 (217)	0.08 (157)	p=0.0062	Thr	ACU	0.20 (461)	0.23 (377)	p=0.0245
	CUG	0.20 (721)	0.22 (435)	p=0.0689		ACC	0.28 (646)	0.26 (427)	p=0.1880
	GUU	0.25 (618)	0.31 (421)	p<0.0001		ACA	0.23 (526)	0.26 (418)	p=0.0540
Val	GUC*	0.46 (1124)	0.32 (425)	p<0.0001		ACG	0.29 (673)	0.25 (416)	p=0.0097
vai	GUA	0.07 (176)	0.11 (155)	p<0.0001	Tyr	UAU	0.37 (450)	0.43 (311)	p=0.0108
	GUG	0.22 (540)	0.26 (347)	p=0.0095		UAC	0.63 (765)	0.57 (413)	p=0.0108
	CCU	0.24 (331)	0.29 (349)	p=0.0054		GCU	0.24 (875)	0.25 (586)	p=0.4606
Duo	CCC*	0.30 (409)	0.23 (272)	p<0.0001	Ala	GCC	0.33 (1200)	0.31 (728)	p=0.1075
Pro	CCA	0.18 (250)	0.24 (289)	p<0.0001		GCA	0.22 (823)	0.26 (624)	p=0.0006
	CCG	0.27 (370)	0.24 (281)	p=0.0411		GCG	0.21 (786)	0.19 (443)	p=0.0098
Uic	CAU	0.29 (231)	0.34 (158)	p=0.0367	Ile	AUU	0.28 (608)	0.32 (377)	p=0.0209
1115	CAC	0.71 (573)	0.66 (301)	p=0.0367		AUC*	0.54 (1189)	0.46 (545)	p<0.0001
Cln	CAA	0.22 (318)	0.30 (316)	p<0.0001		AUA	0.18 (395)	0.23 (272)	p=0.0010
GIII	CAG*	0.78 (1099)	0.70 (753)	p<0.0001	Asp	GAU	0.37 (908)	0.45 (685)	p<0.0001
Aan	AAU	0.36 (627)	0.40 (417)	p=0.0482		GAC*	0.63 (1536)	0.55 (832)	p<0.0001
ASI	AAC	0.64 (1121)	0.60 (636)	p=0.0482	Glu	GAA	0.22 (654)	0.29 (458)	p<0.0001
T and	AAA	0.16 (400)	0.21 (282)	p<0.0001		GAG*	0.78 (2350)	0.71 (1129)	p<0.0001
Lys	AAG*	0.84 (2133)	0.79 (1044)	p<0.0001		GGU	0.19 (521)	0.18 (261)	p=0.6815
Cre	UGU	0.32 (386)	0.36 (228)	p=0.1180	Gly	GGC	0.37 (1042)	0.35 (508)	p=0.1792
Cys	UGC	0.68 (804)	0.64 (402)	p=0.1180		GGA	0.23 (645)	0.23 (328)	p=0.8173
Arg	CGU	0.18 (352)	0.17 (194)	p=0.5251		GGG	0.21 (602)	0.24 (355)	p=0.0272
	CGC*	0.39 (767)	0.28 (318)	p<0.0001					
	CGA	0.05 (105)	0.09 (100)	p=0.0003					
	CGG	0.07 (132)	0.10(118)	p=0.0005					
	AGA	0.10 (203)	0.14 (160)	p=0.0026					
	AGG	0.20 (396)	0.22 (247)	p=0.3349					

Table 84 C	odon Usage from	n Domains and Nor	n-Domains for th	e Excavate G. lamblia
---------------------	-----------------	-------------------	------------------	-----------------------

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.27 (205)	0.33 (73)	p=0.1410	Ser	UCU	0.32 (335)	0.25 (92)	p=0.0136
	UUC	0.73 (544)	0.67 (150)	p=0.1410		UCC	0.36 (379)	0.30 (110)	p=0.0319
Leu	UUA	0.13 (163)	0.09 (39)	p=0.0480		UCA	0.09 (92)	0.12 (45)	p=0.0713
	UUG	0.07 (90)	0.10 (41)	p=0.1182		UCG	0.06 (63)	0.09 (32)	p=0.1023
	CUU	0.24 (303)	0.26 (112)	p=0.3741		AGU	0.04 (47)	0.07 (27)	p=0.0495
	CUC	0.44 (551)	0.35 (147)	p=0.0011		AGC	0.13 (140)	0.18 (66)	p=0.0422
	CUA	0.03 (37)	0.09 (37)	p<0.0001	Thr	ACU	0.33 (342)	0.29 (90)	p=0.2457
	CUG	0.09 (113)	0.11 (48)	p=0.1885		ACC*	0.50 (524)	0.37 (113)	p<0.0001
	GUU	0.38 (480)	0.37 (115)	p=0.8398		ACA	0.09 (90)	0.18 (55)	p<0.0001
Val	GUC	0.34 (430)	0.27 (84)	p=0.0249		ACG	0.08 (82)	0.16 (50)	p<0.0001
vai	GUA	0.14 (180)	0.22 (70)	p=0.0004	T	UAU	0.44 (229)	0.48 (81)	p=0.4047
	GUG	0.14 (184)	0.14 (43)	p=0.8349	I yI	UAC	0.56 (293)	0.52 (88)	p=0.4047
	CCU	0.33 (196)	0.32 (84)	p=0.7309	Ala	GCU	0.36 (530)	0.36 (193)	p=0.9370
Dro	CCC*	0.46 (270)	0.31 (81)	p<0.0001		GCC	0.43 (642)	0.39 (211)	p=0.0724
Pro	CCA	0.17 (101)	0.24 (63)	p=0.0276		GCA	0.11 (163)	0.14 (75)	p=0.1003
	CCG	0.04 (24)	0.14 (37)	p<0.0001		GCG	0.10 (143)	0.12 (64)	p=0.1920
His	CAU	0.30 (96)	0.35 (38)	p=0.3769	Ile	AUU	0.29 (368)	0.39 (109)	p=0.0039
1115	CAC	0.70 (227)	0.65 (71)	p=0.3769		AUC*	0.64 (794)	0.45 (128)	p<0.0001
Chu	GAA	0.46 (531)	0.56 (217)	p=0.0021	Asp	AUA	0.07 (86)	0.16 (46)	p<0.0001
Giu	GAG	0.54 (612)	0.44 (173)	p=0.0021		GAU	0.43 (404)	0.40 (131)	p=0.4039
Aan	AAU	0.29 (248)	0.37 (85)	p=0.0328		GAC	0.57 (529)	0.60 (193)	p=0.4039
ASI	AAC	0.71 (605)	0.63 (147)	p=0.0328	Gln	CAA	0.14 (89)	0.18 (62)	p=0.0861
I we	AAA	0.28 (410)	0.32 (146)	p=0.0866		CAG	0.57 (371)	0.50 (172)	p=0.0383
Lys	AAG	0.72 (1049)	0.68 (304)	p=0.0866		UAA	0.15 (99)	0.16 (56)	p=0.7335
Cre	UGU	0.22 (116)	0.30 (49)	p=0.0485		UAG	0.14 (89)	0.15 (53)	p=0.5230
Cys	UGC	0.78 (402)	0.70 (112)	p=0.0485	Gly	GGU	0.46 (546)	0.40 (145)	p=0.0485
Arg	CGU*	0.33 (263)	0.20 (63)	p<0.0001		GGC	0.37 (447)	0.31 (113)	p=0.0274
	CGC	0.27 (213)	0.21 (66)	p=0.0451		GGA	0.12 (138)	0.21 (75)	p<0.0001
	CGA	0.01 (7)	0.03 (8)	p=0.0636		GGG	0.05 (62)	0.09 (32)	p=0.0173
	CGG	0.03 (25)	0.07 (23)	p=0.0040					
	AGA	0.27 (217)	0.34 (106)	p=0.0501					
	AGG	0.08 (67)	0.16 (50)	p=0.0005					

 Table 85 | Codon Usage from Domains and Non-Domains for the Excavate S. salmonicida

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.21 (71)	0.33 (51)	p=0.0031	Ser	UCU	0.11 (62)	0.18 (68)	p=0.0016
	UUC	0.79 (271)	0.67 (103)	p=0.0031		UCC	0.22 (125)	0.23 (87)	p=0.6621
Leu	UUA	0.01 (8)	0.02 (9)	p=0.1035		UCA	0.04 (22)	0.09 (35)	p=0.0006
	UUG	0.08 (55)	0.10 (38)	p=0.1661		UCG	0.30 (168)	0.21 (79)	p=0.0037
	CUU	0.12 (84)	0.15 (56)	p=0.1308		AGU	0.05 (26)	0.06 (24)	p=0.2203
	CUC	0.29 (207)	0.28 (104)	p=0.6937		AGC	0.29 (164)	0.22 (81)	p=0.0129
	CUA	0.03 (18)	0.05 (19)	p=0.0266	Thr	ACU	0.14 (68)	0.14 (41)	p=0.9352
	CUG	0.48 (347)	0.40 (150)	p=0.0083		ACC	0.32 (160)	0.28 (83)	p=0.2294
	GUU	0.13 (94)	0.14 (47)	p=0.6705		ACA	0.09 (46)	0.25 (75)	p<0.0001
Val	GUC	0.26 (180)	0.30 (98)	p<0.0001		ACG*	0.45 (226)	0.33 (98)	p=0.0007
vai	GUA	0.04 (25)	0.07 (23)	p=0.0140	Tyr	UAU	0.07 (21)	0.24 (34)	p<0.0001
	GUG	0.58 (405)	0.49 (160)	p=0.0086		UAC*	0.93 (261)	0.76 (110)	p<0.0001
	CCU	0.11 (38)	0.16 (45)	p=0.0649	Ala	GCU	0.17 (113)	0.22 (124)	p=0.0513
Dro	CCC	0.26 (88)	0.26 (71)	p=0.9567		GCC*	0.42 (272)	0.30 (169)	p<0.0001
PIO	CCA	0.08 (29)	0.15 (41)	p=0.0142		GCA	0.11 (70)	0.13 (74)	p=0.2250
	CCG	0.55 (187)	0.44 (121)	p=0.0057		GCG	0.30 (198)	0.36 (204)	p=0.0446
Uia	CAU	0.13 (24)	0.19 (36)	p=0.1312	Ile	AUU	0.26 (109)	0.27 (45)	p=0.6573
1115	CAC	0.87 (154)	0.81 (150)	p=0.1312		AUC*	0.71 (301)	0.55 (90)	p=0.0002
Cln	CAA	0.07 (18)	0.13 (24)	p=0.0166		AUA	0.04 (15)	0.18 (29)	p<0.0001
Gili	CAG	0.93 (250)	0.87 (154)	p=0.0166	Asp	GAU	0.26 (93)	0.30 (65)	p=0.2903
Acre	AAU	0.14 (38)	0.14 (20)	p=0.8196		GAC	0.74 (261)	0.70 (149)	p=0.2903
ASII	AAC	0.86 (242)	0.86 (119)	p=0.8196	Glu	GAA	0.13 (58)	0.17 (54)	p=0.2163
Terra	AAA	0.06 (34)	0.09 (32)	p=0.0610		GAG	0.87 (375)	0.83 (271)	p=0.2163
Lys	AAG	0.94 (529)	0.91 (309)	p=0.0610	Gly	GGU	0.26 (146)	0.27 (80)	p=0.7720
Cruz	UGU	0.13 (19)	0.30 (42)	p=0.0002		GGC	0.60 (337)	0.51 (152)	p=0.0126
Cys	UGC*	0.87 (132)	0.70 (97)	p=0.0002		GGA	0.06 (36)	0.08 (24)	p=0.3630
Arg	CGU	0.17 (89)	0.22 (91)	p=0.0485		GGG	0.08 (44)	0.14 (42)	p=0.0035
	CGC*	0.71 (382)	0.50 (208)	p<0.0001					
	CGA	0.03 (16)	0.07 (29)	p=0.0046					
	CGG	0.06 (31)	0.11 (45)	p=0.0053					
	AGA	0.01 (4)	0.06 (24)	p<0.0001					
	AGG	0.02 (13)	0.05 (23)	p=0.0142					

 Table 86 | Codon Usage from Domains and Non-Domains for the Excavate L. major
Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.10 (24)	0.34 (28)	p<0.0001		UCU	0.09 (32)	0.13 (25)	p=0.1474
Inc	UUC*	0.90 (207)	0.66 (55)	p<0.0001		UCC	0.24 (85)	0.24 (46)	p=0.9822
	UUA	0.00(1)	0.02 (3)	p=0.0116	Ser	UCA	0.02 (7)	0.06 (11)	p=0.0192
	UUG	0.02 (11)	0.14 (21)	p<0.0001	SCI	UCG	0.30 (106)	0.20 (37)	p=0.0064
Len	CUU	0.07 (35)	0.14 (21)	p=0.0049		AGU	0.02 (7)	0.07 (13)	p=0.0044
Leu	CUC	0.22 (111)	0.24 (36)	p=0.5104		AGC	0.32 (111)	0.30 (57)	p=0.6783
	CUA	0.02 (8)	0.04 (6)	p=0.0651		ACU	0.07 (27)	0.11 (13)	p=0.1820
-	CUG*	0.67 (344)	0.41 (61)	p<0.0001	Thr	ACC	0.32 (119)	0.35 (41)	p=0.5275
	GUU	0.08 (41)	0.11 (17)	p=0.2087	1 111	ACA	0.03 (12)	0.06 (7)	p=0.1764
Vəl	GUC	0.25 (129)	0.29 (44)	p=0.3195		ACG	0.58 (215)	0.48 (56)	p=0.0635
v ai	GUA	0.01 (5)	0.08 (13)	p<0.0001	Tur	UAU	0.05 (11)	0.23 (12)	p<0.0001
	GUG*	0.66 (346)	0.52 (79)	p=0.0009	1 yı	UAC*	0.95 (197)	0.77 (41)	p<0.0001
	CCU	0.13 (35)	0.18 (34)	p=0.1255		GCU	0.12 (66)	0.22 (85)	p<0.0001
Pro	CCC	0.26 (71)	0.28 (53)	p=0.6286	Ala	GCC	0.39 (210)	0.38 (146)	p=0.8442
110	CCA	0.03 (8)	0.10 (19)	p=0.0013	Ala	GCA	0.03 (16)	0.07 (28)	p=0.0022
-	CCG	0.58 (156)	0.43 (81)	p=0.0023		GCG*	0.46 (247)	0.32 (122)	p<0.0001
His	CAU	0.04 (6)	0.15 (7)	p=0.0159		AUU	0.18 (58)	0.17 (12)	p=0.7568
1115	CAC	0.96 (133)	0.85 (41)	p=0.0159	Ile	AUC	0.81 (255)	0.68 (48)	p=0.0115
Cln	CAA	0.09 (18)	0.22 (22)	p=0.0008		AUA	0.00(1)	0.15 (11)	p<0.0001
	CAG*	0.91 (190)	0.78 (76)	p=0.0008	Asn	GAU	0.18 (47)	0.27 (34)	p=0.0376
Asn	AAU	0.07 (20)	0.28 (21)	p<0.0001	Азр	GAC	0.82 (212)	0.73 (90)	p=0.0376
ASI	AAC*	0.93 (257)	0.72 (53)	p<0.0001	Chu	GAA	0.08 (23)	0.18 (31)	p=0.0011
I ve	AAA	0.02 (9)	0.07 (14)	p=0.0027	Olu	GAG	0.92 (262)	0.82 (138)	p=0.0011
Lys	AAG	0.98 (418)	0.93 (189)	p=0.0027		GGU	0.27 (128)	0.35 (84)	p=0.0207
Cvs	UGU	0.05 (8)	0.17 (9)	p=0.0070	Cly	GGC*	0.64 (309)	0.43 (104)	p<0.0001
Суз	UGC	0.95 (143)	0.83 (43)	p=0.0070	Oly	GGA	0.04 (18)	0.10 (24)	p=0.0007
	CGU	0.14 (56)	0.25 (56)	p=0.0004		GGG	0.05 (25)	0.12 (28)	p=0.0018
	CGC*	0.78 (320)	0.45 (101)	p<0.0001					
Arg	CGA	0.01 (6)	0.05 (11)	p=0.0105					
	CGG	0.04 (17)	0.12 (26)	p=0.0004					
	AGA	0.01 (3)	0.04 (8)	p=0.0091					
	AGG	0.02 (10)	0.11 (24)	p<0.0001					

 Table 87 | Codon Usage from Domains and Non-Domains for the Excavate L. pyrrhocoris

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domoin	Non-	Chi-
Acids	Codolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Pho	UUU	0.43 (347)	0.47 (461)	p=0.0918		UCU	0.13 (245)	0.15 (643)	p=0.0695
1 IIC	UUC	0.57 (465)	0.53 (526)	p=0.0918		UCC	0.19 (344)	0.20 (841)	p=0.3394
	UUA	0.03 (85)	0.04 (142)	p=0.0639	Sor	UCA	0.07 (133)	0.10 (440)	p<0.0001
	UUG	0.14 (356)	0.16 (515)	p=0.0996	501	UCG	0.21 (390)	0.20 (851)	p=0.2796
Lon	CUU	0.12 (303)	0.13 (408)	p=0.6447		AGU	0.11 (192)	0.09 (382)	p=0.0720
Leu	CUC	0.24 (601)	0.22 (698)	p=0.0184		AGC	0.28 (512)	0.25 (1046)	p=0.0072
	CUA	0.05 (118)	0.06 (200)	p=0.0195		ACU	0.10 (146)	0.15 (365)	p<0.0001
	CUG	0.41 (1014)	0.39 (1265)	p=0.1815	Thr	ACC	0.31 (442)	0.28 (672)	p=0.0156
	GUU	0.12 (230)	0.14 (369)	p=0.0599	1 111	ACA	0.16 (231)	0.19 (452)	p=0.0813
Vəl	GUC	0.23 (420)	0.23 (586)	p=0.8985		ACG	0.42 (588)	0.39 (934)	p=0.0480
vai	GUA	0.08 (153)	0.10 (253)	p=0.0693	Tur	UAU	0.18 (125)	0.22 (183)	p=0.0530
	GUG	0.57 (1045)	0.53 (1352)	p=0.0140	1 yı	UAC	0.82 (571)	0.78 (651)	p=0.0530
	CCU	0.16 (189)	0.19 (531)	p=0.0215		GCU	0.14 (342)	0.18 (833)	p<0.0001
Dro	CCC	0.23 (262)	0.24 (661)	p=0.2866	Alo	GCC*	0.31 (768)	0.27 (1262)	p=0.0007
110	CCA	0.19 (224)	0.21 (577)	p=0.2059	Ala	GCA	0.17 (430)	0.21 (957)	p=0.0009
	CCG*	0.42 (487)	0.35 (970)	p<0.0001		GCG	0.37 (919)	0.34 (1553)	p=0.0022
Hic	CAU	0.23 (158)	0.30 (307)	p=0.0020		AUU	0.38 (363)	0.33 (355)	p=0.0179
1115	CAC	0.77 (518)	0.70 (709)	p=0.0020	Ile	AUC	0.56 (538)	0.56 (605)	p=0.9451
Cln	CAA	0.20 (199)	0.25 (437)	p=0.0068		AUA	0.07 (63)	0.12 (127)	p<0.0001
Gill	CAG	0.80 (784)	0.75 (1326)	p=0.0068	Acn	GAU	0.39 (477)	0.39 (742)	p=0.9970
Aan	AAU	0.26 (183)	0.28 (340)	p=0.4095	Asp	GAC	0.61 (750)	0.61 (1167)	p=0.9970
ASII	AAC	0.74 (511)	0.72 (869)	p=0.4095	Chu	GAA	0.21 (337)	0.26 (641)	p=0.0004
T wa	AAA	0.18 (169)	0.19 (248)	p=0.2711	Giù	GAG*	0.79 (1250)	0.74 (1813)	p=0.0004
Lys	AAG	0.82 (791)	0.81 (1028)	p=0.2711		GGU	0.21 (302)	0.21 (501)	p=0.9088
Cvc	UGU	0.20 (101)	0.27 (160)	p=0.0050	Chy	GGC*	0.51 (745)	0.45 (1080)	p=0.0002
Cys	UGC*	0.80 (407)	0.73 (430)	p=0.0050	Gly	GGA	0.10 (146)	0.14 (338)	p=0.0002
	CGU	0.19 (329)	0.19 (528)	p=0.8993		GGG	0.19 (273)	0.21 (495)	p=0.1534
	CGC*	0.44 (765)	0.38 (1039)	p<0.0001					
Arg	CGA	0.10 (174)	0.12 (316)	p=0.1391					
	CGG	0.19 (326)	0.18 (497)	p=0.5005					
	AGA	0.02 (39)	0.05 (143)	p<0.0001					
	AGG	0.05 (88)	0.08 (217)	p=0.0003					

 Table 88 | Codon Usage from Domains and Non-Domains for the Excavate L. seymouri

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.35 (149)	0.56 (94)	p<0.0001		UCU	0.17 (92)	0.18 (61)	p=0.7681
ТПС	UUC*	0.65 (281)	0.44 (73)	p<0.0001		UCC	0.22 (121)	0.16 (53)	p=0.0192
	UUA	0.03 (26)	0.10 (37)	p<0.0001	Sor	UCA	0.14 (74)	0.13 (45)	p=0.9515
	UUG	0.17 (141)	0.19 (69)	p=0.3560	Sei	UCG	0.17 (90)	0.16 (53)	p=0.7730
Lou	CUU	0.27 (228)	0.22 (81)	p=0.1102		AGU	0.12 (65)	0.15 (52)	p=0.1870
Leu	CUC	0.25 (211)	0.19 (69)	p=0.0320		AGC	0.19 (103)	0.23 (77)	p=0.2152
	CUA	0.08 (69)	0.09 (31)	p=0.9033		ACU	0.21 (132)	0.26 (65)	p=0.1652
	CUG	0.20 (171)	0.21 (75)	p=0.9033	Thr	ACC	0.25 (155)	0.21 (54)	p=0.3190
	GUU	0.26 (220)	0.31 (86)	p=0.1308	1 111	ACA	0.24 (147)	0.32 (81)	p=0.0116
Vəl	GUC	0.19 (164)	0.19 (53)	p=0.9690		ACG*	0.30 (189)	0.21 (52)	p=0.0047
v ai	GUA	0.13 (107)	0.13 (35)	p=0.9743	Tyr	UAU	0.31 (92)	0.43 (38)	p=0.0553
	GUG	0.42 (360)	0.38 (106)	p=0.2146	1 yı	UAC	0.69 (201)	0.57 (50)	p=0.0553
	CCU	0.18 (59)	0.25 (70)	p=0.0296		GCU	0.24 (218)	0.29 (161)	p=0.0863
Pro	CCC	0.32 (107)	0.34 (93)	p=0.7710	Ala	GCC	0.29 (260)	0.33 (184)	p=0.1657
110	CCA	0.22 (74)	0.22 (60)	p=0.9453	Ala	GCA	0.24 (212)	0.22 (125)	p=0.5426
	CCG	0.28 (93)	0.19 (54)	p=0.0198	8	GCG	0.23 (205)	0.17 (94)	p=0.0050
His	CAU	0.32 (76)	0.46 (46)	p=0.0162		AUU	0.47 (264)	0.46 (76)	p=0.8909
1115	CAC	0.68 (162)	0.54 (53)	p=0.0162	Ile	AUC	0.43 (244)	0.39 (64)	p=0.3244
Gln	CAA	0.32 (109)	0.51 (112)	p<0.0001		AUA	0.09 (53)	0.15 (25)	p=0.0528
	CAG*	0.68 (229)	0.49 (109)	p<0.0001	Asn	GAU	0.48 (244)	0.53 (133)	p=0.2369
Asn	AAU	0.36 (152)	0.43 (70)	p=0.1089	мэр	GAC	0.52 (263)	0.47 (118)	p=0.2369
71,511	AAC	0.64 (272)	0.57 (91)	p=0.1089	Ch	GAA	0.39 (271)	0.44 (155)	p=0.1588
I ve	AAA	0.26 (209)	0.27 (105)	p=0.8548	Olu	GAG	0.61 (425)	0.56 (200)	p=0.1588
Lys	AAG	0.74 (600)	0.73 (291)	p=0.8548		GGU	0.42 (314)	0.34 (111)	p=0.0108
Cvs	UGU	0.32 (46)	0.41 (28)	p=0.3100	Cly	GGC	0.32 (236)	0.30 (98)	p=0.5739
Cys	UGC	0.68 (96)	0.59 (41)	p=0.3100	Oly	GGA	0.14 (104)	0.21 (69)	p=0.0054
	CGU	0.30 (236)	0.28 (112)	p=0.4948		GGG	0.12 (92)	0.16 (52)	p=0.1543
	CGC	0.42 (329)	0.35 (139)	p=0.0195					
Arg	CGA	0.07 (56)	0.07 (28)	p=0.9280					
	CGG	0.11 (88)	0.11 (46)	p=0.9642					
	AGA	0.03 (22)	0.07 (28)	p=0.0012					
	AGG	0.07 (55)	0.12 (48)	p=0.0056					

 Table 89 | Codon Usage from Domains and Non-Domains for the Excavate T. brucei

Amino	Codors	Domain	Non-	Chi-	Amino	Codors	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.56 (295)	0.73 (187)	p<0.0001		UCU	0.17 (223)	0.25 (122)	p=0.0001
	UUC*	0.44 (231)	0.27 (69)	p<0.0001		UCC	0.18 (234)	0.20 (96)	p=0.3534
	UUA	0.04 (51)	0.06 (33)	p=0.1695	Sor	UCA	0.13 (168)	0.13 (63)	p=0.9512
	UUG	0.16 (201)	0.21 (120)	p=0.0231	Sel	UCG*	0.17 (222)	0.09 (43)	p<0.0001
Lou	CUU	0.23 (283)	0.18 (105)	p=0.0255		AGU	0.16 (211)	0.15 (72)	p=0.5999
Leu	CUC	0.19 (239)	0.20 (116)	p=0.7644		AGC	0.21 (277)	0.19 (95)	p=0.5529
	CUA	0.03 (38)	0.03 (20)	p=0.7713		ACU	0.19 (227)	0.21 (113)	p=0.5623
	CUG	0.34 (415)	0.31 (180)	p=0.3261	The	ACC	0.21 (252)	0.26 (143)	p=0.0367
	GUU	0.23 (291)	0.27 (129)	p=0.0738	1 111	ACA	0.22 (265)	0.23 (126)	p=0.8769
Vəl	GUC	0.20 (254)	0.18 (88)	p=0.5387		ACG	0.37 (439)	0.31 (169)	p=0.0104
v ai	GUA	0.07 (86)	0.07 (34)	p=0.8562	Tur	UAU	0.24 (105)	0.44 (41)	p<0.0001
	GUG	0.51 (656)	0.48 (230)	p=0.2597	1 yı	UAC*	0.76 (338)	0.56 (52)	p=0.0001
	CCU	0.19 (149)	0.21 (83)	p=0.3321		GCU	0.19 (274)	0.27 (205)	p<0.0001
Pro	CCC	0.25 (200)	0.27 (104)	p=0.6154	Ala	GCC	0.29 (415)	0.26 (200)	p=0.1991
PIO	CCA	0.23 (181)	0.25 (96)	p=0.5178	Ala	GCA	0.21 (293)	0.21 (158)	p=0.9078
	CCG	0.33 (260)	0.27 (104)	p=0.0415		GCG	0.31 (445)	0.26 (195)	p=0.0088
His	CAU	0.32 (100)	0.47 (68)	p=0.0027		AUU	0.44 (267)	0.48 (87)	p=0.3963
1115	CAC	0.68 (216)	0.53 (78)	p=0.0027	Ile	AUC*	0.47 (286)	0.29 (53)	p<0.0001
Cln	CAA	0.35 (187)	0.44 (89)	p=0.0298		AUA	0.09 (52)	0.23 (41)	p<0.0001
Gill	CAG	0.65 (344)	0.56 (112)	p=0.0298	Acn	GAU	0.44 (376)	0.56 (128)	p=0.0018
Agn	AAU	0.45 (329)	0.50 (100)	p=0.2438	Asp	GAC	0.56 (470)	0.44 (99)	p=0.0018
ASII	AAC	0.55 (409)	0.50 (102)	p=0.2438	Chu	GAA	0.38 (449)	0.42 (169)	p=0.1600
T wa	AAA	0.33 (344)	0.31 (117)	p=0.6426	Giù	GAG	0.62 (726)	0.58 (230)	p=0.1600
Lys	AAG	0.67 (714)	0.69 (260)	p=0.6426		GGU	0.26 (373)	0.27 (124)	p=0.7346
Cre	UGU	0.23 (63)	0.51 (108)	p<0.0001	Chr	GGC*	0.38 (542)	0.25 (114)	p<0.0001
Cys	UGC*	0.77 (206)	0.49 (105)	p<0.0001	Gly	GGA	0.20 (282)	0.24 (112)	p=0.0370
	CGU	0.23 (190)	0.22 (84)	p=0.8186		GGG	0.17 (240)	0.24 (111)	p=0.0005
	CGC*	0.34 (283)	0.21 (80)	p<0.0001					
A	CGA	0.05 (41)	0.09 (34)	p=0.0106					
Arg	CGG	0.10 (84)	0.14 (52)	p=0.0848					
	AGA	0.08 (67)	0.11 (40)	p=0.1983					
	AGG	0.20 (165)	0.24 (90)	p=0.1527					

uzi
U

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids		0.40.44.00	Domain	Sqaured	Acids			Domain	Sqaured
Phe	UUU	0.43 (149)	0.57 (50)	p=0.0284		UCU	0.19 (105)	0.24 (63)	p=0.1499
-	UUC	0.57 (197)	0.43 (38)	p=0.0284		UCC	0.16 (87)	0.17 (46)	p=0.6574
	UUA	0.05 (36)	0.07 (23)	p=0.2118	Ser	UCA	0.11 (63)	0.13 (35)	p=0.5518
	UUG	0.15 (116)	0.19 (65)	p=0.1260	Ser	UCG	0.13 (70)	0.07 (18)	p=0.0145
Ιου	CUU	0.19 (144)	0.14 (48)	p=0.0659		AGU	0.16 (91)	0.18 (47)	p=0.7551
Ltu	CUC	0.25 (190)	0.21 (73)	p=0.2458		AGC	0.25 (137)	0.22 (58)	p=0.3820
	CUA	0.04 (31)	0.04 (13)	p=0.9825		ACU	0.19 (121)	0.28 (65)	p=0.0053
	CUG	0.32 (248)	0.35 (119)	p=0.4596	The	ACC	0.24 (153)	0.21 (49)	p=0.4278
	GUU	0.22 (162)	0.25 (74)	p=0.4273	1 111	ACA	0.33 (213)	0.30 (70)	p=0.4163
X 7 1	GUC	0.16 (115)	0.17 (51)	p=0.6783		ACG	0.24 (151)	0.21 (48)	p=0.4045
vai	GUA	0.11 (80)	0.11 (32)	p=0.9873	T	UAU	0.31 (90)	0.41 (28)	p=0.1581
	GUG	0.51 (377)	0.48 (144)	p=0.3367	1 yr	UAC	0.69 (202)	0.59 (41)	p=0.1581
	CCU	0.19 (70)	0.31 (61)	p=0.0015		GCU	0.24 (239)	0.31 (110)	p=0.0258
р	CCC	0.30 (111)	0.22 (42)	p=0.0363	Ala	GCC	0.31 (301)	0.32 (114)	p=0.7742
Pro	CCA	0.31 (115)	0.28 (55)	p=0.5123		GCA	0.25 (246)	0.18 (65)	p=0.0088
	CCG	0.19 (70)	0.19 (36)	p=0.9600		GCG	0.20 (193)	0.19 (70)	p=0.9919
	CAU	0.39 (91)	0.36 (44)	p=0.6847		AUU	0.48 (223)	0.52 (61)	p=0.5471
His	CAC	0.61 (143)	0.64 (78)	p=0.6847	Ile	AUC	0.42 (195)	0.33 (39)	p=0.0949
	CAA	0.26 (101)	0.43 (59)	p=0.0003		AUA	0.10 (46)	0.15 (18)	p=0.1360
Gin	CAG*	0.74 (283)	0.57 (77)	p=0.0003		GAU	0.50 (261)	0.49 (76)	p=0.9602
	AAU	0.40 (177)	0.46 (77)	p=0.2189	Asp	GAC	0.50 (261)	0.51 (78)	p=0.9602
Asn	AAC	0.60 (269)	0.54 (92)	p=0.2189		GAA	0.40 (360)	0.50 (116)	p=0.0132
Ŧ	AAA	0.30 (275)	0.25 (66)	p=0.2039	Glu	GAG	0.60 (529)	0.50 (117)	p=0.0132
Lys	AAG	0.70 (652)	0.75 (194)	p=0.2039		GGU	0.36 (218)	0.38 (92)	p=0.5148
Carr	UGU	0.32 (74)	0.53 (48)	p=0.0009	Cha	GGC	0.31 (189)	0.32 (77)	p=0.8026
Cys	UGC*	0.68 (154)	0.47 (42)	p=0.0009	Gly	GGA	0.20 (124)	0.15 (37)	p=0.1254
	CGU	0.23 (155)	0.28 (56)	p=0.1520		GGG	0.14 (83)	0.15 (35)	p=0.7848
	CGC	0.40 (269)	0.33 (65)	p=0.0856					
•	CGA	0.04 (27)	0.09 (18)	p=0.0078					
Arg	CGG	0.08 (57)	0.08 (15)	p=0.8032					
	AGA	0.11 (71)	0.12 (24)	p=0.6168					
	AGG	0.14 (95)	0.10 (20)	p=0.1800					

 Table 91 | Codon Usage from Domains and Non-Domains for the Excavate T. theileri

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Codolis	Domain	Domain	Sqaure d
Phe	UUU	0.18 (134)	0.32 (83)	p<0.0001		UCU*	0.49 (480)	0.37 (165)	p<0.0001
Inc	UUC*	0.82 (591)	0.68 (177)	p<0.0001		UCC*	0.23 (226)	0.15 (67)	p=0.0004
	UUA	0.29 (443)	0.36 (185)	p=0.0023	Sor	UCA	0.09 (88)	0.14 (63)	p=0.0038
	UUG	0.20 (313)	0.16 (85)	p=0.0577	SCI	UCG	0.00 (3)	0.00 (2)	p=0.6773
Lon	CUU	0.24 (370)	0.24 (123)	p=0.9479		AGU	0.09 (86)	0.15 (66)	p=0.0007
Leu	CUC	0.25 (393)	0.20 (105)	p=0.0187		AGC	0.09 (88)	0.18 (81)	p<0.0001
	CUA	0.01 (23)	0.03 (17)	p=0.0102		ACU	0.52 (515)	0.53 (194)	p=0.9798
	CUG	0.00 (4)	0.00 (2)	p=0.6396	Thr	ACC	0.39 (385)	0.37 (137)	p=0.4763
	GUU	0.53 (630)	0.54 (206)	p=0.6401	1 111	ACA	0.08 (80)	0.10 (38)	p=0.2140
Val	GUC	0.40 (480)	0.32 (120)	p=0.0024		ACG	0.00(1)	0.00 (0)	p=0.5395
vai	GUA	0.05 (58)	0.11 (42)	p<0.0001	Twr	UAU	0.39 (243)	0.37 (65)	p=0.7039
	GUG	0.02 (18)	0.03 (10)	p=0.1499	1 yı	UAC	0.61 (381)	0.63 (109)	p=0.7039
	CCU	0.54 (331)	0.56 (117)	p=0.6825		GCU	0.73 (1051)	0.71 (373)	p=0.6376
Pro	CCC	0.39 (241)	0.37 (78)	p=0.5661	Ala	GCC	0.23 (330)	0.22 (114)	p=0.6610
110	CCA	0.06 (39)	0.07 (14)	p=0.8810	Ala	GCA	0.05 (68)	0.06 (33)	p=0.1478
	CCG	0.00(1)	0.00(1)	p=0.4273		GCG	0.00 (0)	0.00 (2)	p=0.0184
His	CAU	0.27 (88)	0.39 (38)	p=0.0209		AUU	0.52 (615)	0.51 (207)	p=0.6628
1115	CAC	0.73 (242)	0.61 (60)	p=0.0209	Ile	AUC	0.43 (511)	0.35 (142)	p=0.0030
Chu	GAA*	0.98 (1010)	0.93 (371)	p<0.0001		AUA	0.05 (57)	0.14 (59)	p<0.0001
Giu	GAG	0.02 (25)	0.07 (28)	p<0.0001	Acn	GAU	0.65 (572)	0.67 (206)	p=0.5988
Acn	AAU	0.33 (312)	0.44 (265)	p<0.0001	Азр	GAC	0.35 (302)	0.33 (101)	p=0.5988
ASI	AAC*	0.67 (628)	0.56 (335)	p<0.0001		CAA	0.46 (339)	0.41 (206)	p=0.0423
I vs	AAA	0.21 (291)	0.38 (260)	p<0.0001	Ch	CAG	0.00 (4)	0.01 (5)	p=0.2480
Lys	AAG*	0.79 (1099)	0.62 (430)	p<0.0001	Olu	UAA	0.46 (396)	0.49 (248)	p=0.2825
Cve	UGU	0.34 (68)	0.37 (20)	p=0.6949		UAG	0.07 (60)	0.09 (46)	p=0.1571
Cys	UGC	0.66 (131)	0.63 (34)	p=0.6949		GGU*	0.84 (1058)	0.65 (220)	p<0.0001
	CGU	0.09 (67)	0.07 (19)	p=0.3330	Chy	GGC	0.05 (67)	0.12 (41)	p<0.0001
	CGC	0.00 (3)	0.00 (0)	p=0.2975	Oly	GGA	0.10 (129)	0.22 (73)	p<0.0001
Arg	CGA	0.00 (0)	0.00(1)	p=0.0958		GGG	0.00 (3)	0.01 (5)	p=0.0042
	CGG	0.00 (0)	0.00 (0)	p=0.0963					
	AGA	0.91 (707)	0.88 (247)	p=0.1711					
	AGG	0.00 (2)	0.05 (14)	p<0.0001					

 Table 92 | Codon Usage from Domains and Non-Domains for the Alveolate T. thermophila

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.52 (358)	0.59 (102)	p=0.1115		UCU	0.21 (212)	0.21 (77)	p=0.8568
IIIC	UUC	0.48 (332)	0.41 (72)	p=0.1115		UCC	0.06 (59)	0.08 (29)	p=0.1382
	UUA	0.24 (324)	0.27 (106)	p=0.1881	Sor	UCA	0.35 (359)	0.28 (103)	p=0.0185
	UUG	0.17 (227)	0.16 (62)	p=0.6866	Sei	UCG	0.02 (23)	0.05 (18)	p=0.0090
Lou	CUU	0.37 (497)	0.33 (129)	p=0.1892		AGU	0.22 (228)	0.23 (85)	p=0.6713
Leu	CUC	0.09 (119)	0.09 (34)	p=0.9667		AGC	0.14 (140)	0.14 (51)	p=0.8728
	CUA	0.10 (134)	0.09 (35)	p=0.5888		ACU	0.53 (525)	0.55 (247)	p=0.3474
	CUG	0.04 (50)	0.06 (23)	p=0.0552	Thr	ACC	0.18 (177)	0.15 (69)	p=0.2831
	GUU	0.50 (584)	0.48 (215)	p=0.6395	1 111	ACA	0.28 (280)	0.28 (123)	p=0.8346
Vəl	GUC	0.21 (242)	0.16 (72)	p=0.0463		ACG	0.01 (14)	0.02 (7)	p=0.8102
vai	GUA	0.18 (213)	0.24 (109)	p=0.0040	Tyr	UAU	0.68 (327)	0.68 (79)	p=0.9235
	GUG	0.12 (138)	0.11 (49)	p=0.6881	I yı	UAC	0.32 (154)	0.32 (38)	p=0.9235
	CCU	0.46 (274)	0.46 (113)	p=0.8937		GCU	0.62 (761)	0.62 (392)	p=0.8962
Pro	CCC	0.04 (25)	0.04 (10)	p=0.9098	Ala	GCC	0.12 (152)	0.11 (69)	p=0.3730
110	CCA	0.47 (280)	0.46 (113)	p=0.6877	Ана	GCA	0.24 (301)	0.25 (160)	p=0.6677
	CCG	0.02 (11)	0.04 (10)	p=0.0639		GCG	0.02 (23)	0.02 (13)	p=0.7757
His	CAU	0.69 (183)	0.75 (60)	p=0.3283		AUU	0.59 (609)	0.56 (159)	p=0.3332
1115	CAC	0.31 (81)	0.25 (20)	p=0.3283	Ile	AUC	0.27 (284)	0.22 (63)	p=0.0669
Cln	CAA	0.80 (445)	0.77 (167)	p=0.2323		AUA	0.14 (143)	0.22 (64)	p=0.0004
	CAG	0.20 (108)	0.23 (51)	p=0.2323	Asn	GAU	0.72 (817)	0.77 (247)	p=0.0766
Asn	AAU	0.60 (454)	0.70 (178)	p=0.0027	тэр	GAC	0.28 (318)	0.23 (74)	p=0.0766
ASI	AAC	0.40 (305)	0.30 (75)	p=0.0027	Chu	GAA	0.85 (1015)	0.82 (977)	p=0.0251
Lvs	AAA	0.65 (728)	0.64 (311)	p=0.6361	Olu	GAG	0.15 (175)	0.18 (216)	p=0.0251
Lys	AAG	0.35 (395)	0.36 (178)	p=0.6361		GGU	0.36 (424)	0.32 (134)	p=0.0956
Cvs	UGU	0.58 (145)	0.36 (14)	p=0.0115	Gly	GGC	0.13 (156)	0.14 (57)	p=0.9331
C.7.3	UGC	0.42 (107)	0.64 (25)	p=0.0115	Gly	GGA	0.41 (474)	0.44 (187)	p=0.1785
	CGU	0.14 (101)	0.12 (36)	p=0.4646		GGG	0.10 (115)	0.10 (44)	p=0.7294
	CGC	0.04 (31)	0.03 (10)	p=0.5145					
Arg	CGA	0.03 (23)	0.04 (12)	p=0.4753					
	CGG	0.00 (2)	0.02 (5)	p=0.0128					
	AGA	0.67 (484)	0.65 (189)	p=0.4122					
	AGG	0.11 (77)	0.14 (40)	p=0.1806					

 Table 93 | Codon Usage from Domains and Non-Domains for the Alveolate S. coeruleus

Amino	Coderry	Domein	Non-	Chi-	Amino	Coderry	Dorreir	Non-	Chi-
Acids	Codons	Domain	Domain	Sqaure d	Acids	Codons	Domain	Domain	Sqaure d
Phe	UUU	0.90 (908)	0.84 (335)	p=0.0022		UCU	0.27 (384)	0.21 (167)	p=0.0050
1 lie	UUC	0.10 (99)	0.16 (62)	p=0.0022		UCC	0.05 (70)	0.04 (34)	p=0.5746
	UUA	0.69 (1361)	0.68 (470)	p=0.5103	Sor	UCA	0.33 (472)	0.30 (231)	p=0.1069
	UUG	0.13 (253)	0.12 (86)	p=0.7604	Sei	UCG	0.02 (28)	0.02 (19)	p=0.4537
Lou	CUU	0.10 (196)	0.11 (77)	p=0.3914		AGU	0.28 (407)	0.35 (273)	p=0.0014
Leu	CUC	0.01 (16)	0.01 (4)	p=0.5362		AGC	0.05 (73)	0.07 (57)	p=0.0347
	CUA	0.07 (138)	0.07 (51)	p=0.7610		ACU	0.37 (397)	0.33 (151)	p=0.1425
	CUG	0.01 (12)	0.01 (8)	p=0.1536	Thr	ACC	0.06 (61)	0.09 (40)	p=0.0268
	GUU	0.51 (650)	0.43 (175)	p=0.0067	1 111	ACA	0.51 (557)	0.54 (248)	p=0.3946
Val	GUC	0.05 (58)	0.02 (9)	p=0.0373		ACG	0.06 (68)	0.05 (22)	p=0.2475
vai	GUA	0.37 (475)	0.46 (185)	p=0.0024	Tur	UAU	0.86 (771)	0.84 (335)	p=0.3298
	GUG	0.07 (93)	0.09 (36)	p=0.2918	1 yı	UAC	0.14 (121)	0.16 (62)	p=0.3298
	CCU*	0.38 (259)	0.26 (105)	p<0.0001		GCU	0.42 (486)	0.34 (109)	p=0.0067
Dro	CCC	0.06 (39)	0.35 (144)	p<0.0001	۸la	GCC	0.06 (63)	0.07 (22)	p=0.3550
110	CCA*	0.56 (380)	0.38 (155)	p<0.0001	Ala	GCA	0.50 (570)	0.56 (180)	p=0.0421
	CCG	0.01 (5)	0.01 (6)	p=0.2409		GCG	0.02 (25)	0.03 (9)	p=0.5102
Hic	CAU	0.84 (357)	0.88 (123)	p=0.2358		AUU	0.50 (918)	0.49 (327)	p=0.6417
1115	CAC	0.16 (66)	0.12 (16)	p=0.2358	Ile	AUC	0.05 (91)	0.05 (31)	p=0.7455
Cla	CAA	0.88 (617)	0.89 (273)	p=0.8080		AUA	0.45 (816)	0.46 (306)	p=0.5429
GIN	CAG	0.12 (81)	0.11 (34)	p=0.8080		GAU	0.90 (1203)	0.89 (660)	p=0.3863
	AAU	0.85 (1321)	0.85 (993)	p=0.8189	Asp	GAC	0.10 (128)	0.11 (80)	p=0.3863
Asn	AAC	0.15 (231)	0.15 (178)	p=0.8189		GAA	0.90 (1634)	0.88 (1107)	p=0.0990
-	AAA	0.85 (1922)	0.86 (1300)	p=0.3120	Glu	GAG	0.10 (176)	0.12 (145)	p=0.0990
Lys	AAG	0.15 (337)	0.14 (207)	p=0.3120		GGU	0.35 (407)	0.35 (165)	p=0.8886
~	UGU	0.76 (241)	0.76 (77)	p=0.9954		GGC	0.02 (23)	0.03 (14)	p=0.2102
Cys	UGC	0.24 (75)	0.24 (24)	p=0.9954	Gly	GGA	0.58 (673)	0.56 (259)	p=0.3830
	CGU	0.09 (88)	0.06 (27)	p=0.0500		GGG	0.05 (56)	0.06 (27)	p=0.4201
	CGC	0.01 (11)	0.02 (8)	p=0.3224			、/		
	CGA	0.04 (34)	0.03 (13)	p=0.5525					
Arg	CGG	0.00 (2)	0.00(1)	p=0.9491					
	AGA	0.77 (742)	0.79 (348)	p=0.6443					
	AGG	0.08 (81)	0.10 (46)	p=0.2423					

 Table 94 | Codon Usage from Domains and Non-Domains for the Alveolate P. gallinaceum

Amino	Codora	Domoin	Non-	Chi-	Amino	Codona	Domoin	Non-	Chi-
Acids	Codons	Domain	Domain	Sqaure d	Acids	Codons	Domain	Domain	Sqaure d
Pho	UUU	0.85 (1215)	0.85 (1740)	p=0.8570		UCU	0.24 (469)	0.22 (656)	p=0.1201
rne	UUC	0.15 (216)	0.15 (304)	p=0.8570		UCC	0.09 (179)	0.08 (225)	p=0.0482
	UUA*	0.66 (1996)	0.61 (1912)	p=0.0007	Sor	UCA	0.29 (562)	0.25 (742)	p=0.0034
	UUG	0.12 (360)	0.14 (433)	p=0.0147	Sel	UCG	0.05 (89)	0.05 (138)	p=0.8763
Lou	CUU	0.10 (319)	0.11 (341)	p=0.5476		AGU	0.27 (521)	0.32 (945)	p<0.0001
Leu	CUC	0.02 (62)	0.02 (74)	p=0.3637		AGC	0.06 (115)	0.08 (233)	p=0.0085
	CUA	0.08 (244)	0.09 (285)	p=0.1108		ACU	0.27 (378)	0.25 (428)	p=0.1127
	CUG	0.02 (59)	0.02 (64)	p=0.7416	Thr	ACC*	0.15 (209)	0.11 (188)	p=0.0005
	GUU	0.43 (590)	0.39 (637)	p=0.0131	1 111	ACA	0.48 (667)	0.56 (962)	p<0.0001
Vəl	GUC	0.06 (82)	0.06 (91)	p=0.5814		ACG	0.09 (128)	0.08 (145)	p=0.4078
v ai	GUA	0.41 (560)	0.43 (703)	p=0.3323	Tyr	UAU	0.88 (1498)	0.88 (2215)	p=0.9232
-	GUG	0.10 (131)	0.13 (210)	p=0.0061	1 yı	UAC	0.12 (201)	0.12 (300)	p=0.9232
	CCU	0.41 (298)	0.39 (315)	p=0.5118		GCU	0.44 (385)	0.41 (275)	p=0.1345
Pro	CCC	0.07 (53)	0.12 (95)	p=0.0025	Ala	GCC	0.11 (96)	0.10 (65)	p=0.3468
110	CCA	0.47 (345)	0.44 (356)	p=0.2417	Ala	GCA	0.41 (360)	0.44 (299)	p=0.3003
	CCG	0.05 (34)	0.05 (38)	p=0.9492		GCG	0.03 (27)	0.06 (39)	p=0.0108
His	CAU	0.82 (698)	0.86 (991)	p=0.0370		AUU	0.42 (1325)	0.38 (1579)	p=0.0044
1115	CAC	0.18 (151)	0.14 (166)	p=0.0370	Ile	AUC	0.07 (208)	0.07 (273)	p=0.8716
Gln	CAA	0.87 (855)	0.85 (1092)	p=0.1627		AUA	0.52 (1643)	0.55 (2257)	p=0.0067
	CAG	0.13 (128)	0.15 (194)	p=0.1627	Asn	GAU	0.87 (1579)	0.86 (2734)	p=0.4546
Acn	AAU	0.88 (3051)	0.86 (6745)	p=0.0285	Азр	GAC	0.13 (241)	0.14 (445)	p=0.4546
ASI	AAC	0.12 (421)	0.14 (1065)	p=0.0285	Chu	GAA*	0.89 (2211)	0.85 (2954)	p<0.0001
T ve	AAA*	0.84 (2922)	0.81 (4660)	p<0.0001	Giù	GAG	0.11 (271)	0.15 (503)	p<0.0001
Lys	AAG	0.16 (539)	0.19 (1120)	p<0.0001		GGU	0.39 (420)	0.40 (441)	p=0.7555
Cvc	UGU	0.88 (480)	0.89 (597)	p=0.5645	Chy	GGC	0.03 (36)	0.04 (49)	p=0.1982
Суз	UGC	0.12 (66)	0.11 (74)	p=0.5645	Oly	GGA	0.47 (505)	0.44 (479)	p=0.0706
	CGU	0.11 (105)	0.10 (124)	p=0.4303		GGG	0.10 (105)	0.12 (132)	p=0.1107
	CGC	0.01 (8)	0.02 (21)	p=0.0834					
Arg	CGA	0.08 (75)	0.08 (99)	p=0.9316					
Aig	CGG	0.01 (11)	0.01 (8)	p=0.2007					
	AGA	0.64 (587)	0.61 (725)	p=0.1144					
	AGG	0.14 (130)	0.18 (217)	p=0.0145					

 Table 95 | Codon Usage from Domains and Non-Domains for the Alveolate P. falciparum

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaured
Pho	UUU	0.50 (515)	0.51 (272)	p=0.8075		UCU	0.11 (185)	0.10 (130)	p=0.2342
IIIC	UUC	0.50 (513)	0.49 (264)	p=0.8075		UCC	0.23 (372)	0.19 (244)	p=0.0070
	UUA	0.16 (321)	0.18 (215)	p=0.0896	Sor	UCA	0.12 (200)	0.12 (152)	p=0.6190
	UUG	0.22 (439)	0.18 (213)	p=0.0126	Sei	UCG	0.14 (223)	0.11 (142)	p=0.0236
Lou	CUU	0.07 (146)	0.11 (137)	p<0.0001		AGU	0.15 (243)	0.19 (255)	p=0.0008
Leu	CUC	0.18 (375)	0.16 (193)	p=0.1143		AGC	0.26 (425)	0.30 (394)	p=0.0125
	CUA	0.13 (272)	0.12 (141)	p=0.2164		ACU	0.15 (185)	0.19 (141)	p=0.0184
	CUG	0.24 (487)	0.25 (293)	p=0.6499	Thr	ACC	0.32 (397)	0.30 (225)	p=0.4214
	GUU	0.17 (267)	0.18 (135)	p=0.8966	1 111	ACA	0.24 (305)	0.23 (175)	p=0.5998
Vəl	GUC	0.22 (334)	0.21 (161)	p=0.6781		ACG	0.29 (363)	0.28 (208)	p=0.5430
v ai	GUA	0.22 (334)	0.23 (177)	p=0.4686	Tyr	UAU	0.33 (295)	0.38 (198)	p=0.0471
	GUG	0.39 (605)	0.38 (296)	p=0.7123	I yı	UAC	0.67 (599)	0.62 (320)	p=0.0471
	CCU	0.12 (87)	0.11 (87)	p=0.9332		GCU	0.16 (316)	0.16 (183)	p=0.9863
Pro	CCC	0.42 (314)	0.36 (271)	p=0.0140	Ala	GCC	0.24 (456)	0.30 (339)	p<0.0001
110	CCA	0.32 (238)	0.34 (261)	p=0.2732	7114	GCA*	0.42 (809)	0.29 (329)	p<0.0001
	CCG	0.15 (110)	0.18 (139)	p=0.0563		GCG	0.18 (345)	0.24 (266)	p<0.0001
His	CAU	0.33 (151)	0.41 (139)	p=0.0174		AUU	0.36 (559)	0.36 (233)	p=0.8516
	CAC	0.67 (312)	0.59 (202)	p=0.0174	Ile	AUC	0.32 (498)	0.33 (214)	p=0.7791
Gln	CAA	0.50 (467)	0.49 (297)	p=0.5037		AUA	0.31 (482)	0.31 (202)	p=0.9287
	CAG	0.50 (459)	0.51 (313)	p=0.5037	Asn	GAU	0.47 (692)	0.49 (552)	p=0.2788
Asn	AAU	0.46 (731)	0.47 (573)	p=0.8073	¹¹⁵ P	GAC	0.53 (776)	0.51 (568)	p=0.2788
ASI	AAC	0.54 (850)	0.53 (654)	p=0.8073	Gh	GAA*	0.64 (1375)	0.57 (899)	p<0.0001
I vs	AAA	0.50 (1340)	0.50 (987)	p=0.5375	Olu	GAG	0.36 (783)	0.43 (677)	p<0.0001
Lys	AAG	0.50 (1366)	0.50 (970)	p=0.5375		GGU	0.16 (225)	0.18 (250)	p=0.1834
Cvs	UGU	0.34 (141)	0.36 (107)	p=0.4912	Gly	GGC	0.23 (313)	0.25 (348)	p=0.0996
C.7.3	UGC	0.66 (275)	0.64 (187)	p=0.4912	Oly	GGA	0.38 (526)	0.34 (466)	p=0.0234
	CGU	0.05 (39)	0.07 (44)	p=0.1405		GGG	0.23 (319)	0.23 (311)	p=0.7795
	CGC	0.09 (67)	0.14 (84)	p=0.0063					
Arg	CGA	0.12 (89)	0.11 (64)	p=0.3721					
	CGG	0.06 (46)	0.07 (44)	p=0.4681					
	AGA	0.37 (272)	0.30 (182)	p=0.0071					
	AGG	0.30 (225)	0.31 (191)	p=0.7294					

 Table 96 | Codon Usage from Domains and Non-Domains for the Alveolate P. vivax

Amino	Codora	Domain	Non-	Chi-	Amino	Codora	Domain	Non-	Chi-
Acids	Couons	Domain	Domain	Sqaured	Acids	Couons	Domain	Domain	Sqaure d
Phe	UUU	0.16 (90)	0.22 (41)	p=0.0678		UCU	0.11 (103)	0.13 (49)	p=0.3874
The	UUC	0.84 (458)	0.78 (142)	p=0.0678		UCC	0.15 (144)	0.21 (81)	p=0.0144
	UUA	0.01 (6)	0.01 (2)	p=0.8000	Sor	UCA	0.04 (36)	0.04 (14)	p=0.8448
	UUG	0.08 (95)	0.10 (30)	p=0.4479	SCI	UCG	0.48 (449)	0.38 (150)	p=0.0024
Leu	CUU	0.14 (158)	0.10 (32)	p=0.1047		AGU	0.05 (45)	0.05 (20)	p=0.7804
Leu	CUC	0.25 (284)	0.27 (85)	p=0.3582		AGC	0.18 (167)	0.19 (76)	p=0.4394
	CUA	0.03 (31)	0.05 (17)	p=0.0155		ACU	0.17 (180)	0.17 (71)	p=0.8120
	CUG	0.50 (576)	0.47 (146)	p=0.3023	Thr	ACC	0.34 (351)	0.31 (129)	p=0.2304
	GUU	0.11 (122)	0.17 (67)	p=0.0020	1 111	ACA	0.07 (71)	0.08 (35)	p=0.3319
Val	GUC	0.26 (281)	0.30 (116)	p=0.1098		ACG	0.42 (431)	0.44 (185)	p=0.4163
vai	GUA	0.03 (35)	0.03 (12)	p=0.9155	Tyr	UAU	0.07 (34)	0.07 (10)	p=0.8885
	GUG*	0.60 (652)	0.50 (192)	p=0.0005	I yı	UAC	0.93 (455)	0.93 (127)	p=0.8885
	CCU	0.25 (202)	0.24 (77)	p=0.8282		GCU	0.35 (438)	0.36 (249)	p=0.5836
Pro	CCC	0.31 (249)	0.33 (104)	p=0.4947	Ala	GCC*	0.51 (641)	0.42 (295)	p=0.0005
110	CCA	0.10 (80)	0.07 (22)	p=0.1237	Ala	GCA	0.03 (44)	0.06 (42)	p=0.0079
	CCG	0.35 (285)	0.36 (116)	p=0.6489		GCG	0.11 (145)	0.16 (110)	p=0.0059
His	CAU	0.05 (11)	0.12 (12)	p=0.0090		AUU	0.28 (192)	0.20 (35)	p=0.0248
1115	CAC	0.95 (233)	0.88 (85)	p=0.0090	Ile	AUC	0.71 (492)	0.78 (139)	p=0.0896
Cln	CAA	0.08 (46)	0.10 (22)	p=0.3773		AUA	0.01 (6)	0.03 (5)	p=0.0402
Om	CAG	0.92 (500)	0.90 (188)	p=0.3773	Asn	GAU	0.16 (126)	0.17 (49)	p=0.5963
Asn	AAU	0.07 (44)	0.12 (21)	p=0.0532	Азр	GAC	0.84 (672)	0.83 (237)	p=0.5963
ASII	AAC	0.93 (552)	0.88 (154)	p=0.0532	Chu	GAA	0.13 (129)	0.17 (68)	p=0.1064
I ve	AAA	0.05 (50)	0.08 (33)	p=0.0219	Giù	GAG	0.87 (834)	0.83 (338)	p=0.1064
Lys	AAG	0.95 (1041)	0.92 (406)	p=0.0219		GGU*	0.32 (345)	0.22 (92)	p=0.0005
Cve	UGU	0.18 (42)	0.21 (15)	p=0.5332	Chy	GGC	0.57 (616)	0.63 (256)	p=0.0384
Cys	UGC	0.82 (190)	0.79 (55)	p=0.5332	Gly	GGA	0.09 (103)	0.10 (42)	p=0.6439
	CGU*	0.49 (361)	0.33 (81)	p<0.0001		GGG	0.02 (23)	0.05 (19)	p=0.0083
	CGC	0.47 (343)	0.52 (127)	p=0.1346					
Ama	CGA	0.02 (13)	0.05 (13)	p=0.0027					
Arg	CGG	0.01 (9)	0.04 (9)	p=0.0128					
	AGA	0.01 (4)	0.03 (7)	p=0.0028					
	AGG	0.01 (4)	0.02 (6)	p=0.0098					

 Table 97 | Codon Usage from Domains and Non-Domains for the Stramenopile P. infestans

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.03 (15)	0.07 (11)	p=0.0348		UCU	0.03 (19)	0.05 (19)	p=0.0351
IIIC	UUC	0.97 (461)	0.93 (146)	p=0.0348		UCC	0.19 (141)	0.20 (75)	p=0.8237
	UUA	0.00 (0)	0.00(1)	p=0.0653	Sor	UCA	0.01 (11)	0.02 (8)	p=0.4565
	UUG	0.02 (24)	0.03 (11)	p=0.2149	Sel	UCG	0.53 (393)	0.46 (174)	p=0.0154
Lou	CUU	0.05 (51)	0.06 (19)	p=0.3685		AGU	0.02 (14)	0.03 (10)	p=0.4278
Leu	CUC	0.33 (364)	0.38 (122)	p=0.1264		AGC	0.22 (161)	0.25 (96)	p=0.2067
	CUA	0.00 (4)	0.00(1)	p=0.8832		ACU	0.05 (34)	0.11 (36)	p<0.0001
	CUG	0.59 (647)	0.52 (167)	p=0.0194	The	ACC	0.43 (314)	0.36 (116)	p=0.0513
	GUU	0.04 (39)	0.07 (28)	p=0.0180	1 111	ACA	0.01 (8)	0.01 (3)	p=0.8260
Vəl	GUC	0.31 (304)	0.34 (136)	p=0.2839		ACG	0.52 (380)	0.52 (165)	p=0.9838
vai	GUA	0.01 (8)	0.02 (8)	p=0.0625	Twr	UAU	0.01 (4)	0.01 (1)	p=0.9892
	GUG	0.64 (636)	0.57 (231)	p=0.0129	1 yı	UAC	0.99 (398)	0.99 (98)	p=0.9892
	CCU	0.08 (40)	0.07 (21)	p=0.7741		GCU	0.15 (177)	0.18 (131)	p=0.1271
Pro	CCC	0.52 (264)	0.45 (127)	p=0.0348	Alo	GCC*	0.71 (837)	0.63 (470)	p=0.0004
110	CCA	0.01 (7)	0.02 (6)	p=0.4477	Ala	GCA	0.01 (8)	0.01 (8)	p=0.3493
	CCG	0.38 (193)	0.46 (131)	p=0.0354		GCG	0.13 (154)	0.18 (132)	p=0.0047
His	CAU	0.01 (3)	0.03 (3)	p=0.2675		AUU	0.13 (81)	0.12 (20)	p=0.8743
1115	CAC	0.99 (226)	0.97 (93)	p=0.2675	Ile	AUC	0.87 (561)	0.88 (145)	p=0.7920
Cln	CAA	0.02 (10)	0.04 (9)	p=0.1270		AUA	0.00 (2)	0.00 (0)	p=0.4735
Om	CAG	0.98 (432)	0.96 (193)	p=0.1270	Asn	GAU	0.07 (53)	0.05 (14)	p=0.0824
Asn	AAU	0.04 (18)	0.01 (1)	p=0.0410	тэр	GAC	0.93 (657)	0.95 (295)	p=0.0824
ASI	AAC	0.96 (482)	0.99 (169)	p=0.0410	Ch	GAA	0.03 (27)	0.08 (36)	p=0.0002
I we	AAA	0.01 (11)	0.03 (12)	p=0.0105	Giù	GAG*	0.97 (776)	0.92 (396)	p=0.0002
Lys	AAG	0.99 (1022)	0.97 (396)	p=0.0105		GGU	0.20 (176)	0.15 (56)	p=0.0734
Cvs	UGU	0.09 (21)	0.08 (4)	p=0.8230	Chy	GGC	0.74 (669)	0.76 (277)	p=0.6599
Cys	UGC	0.91 (208)	0.92 (45)	p=0.8230	біу	GGA	0.05 (46)	0.08 (30)	p=0.0370
	CGU	0.27 (188)	0.25 (67)	p=0.4535		GGG	0.01 (7)	0.01 (3)	p=0.9417
	CGC	0.70 (487)	0.65 (177)	p=0.1453					
Arg	CGA	0.01 (8)	0.05 (13)	p=0.0005					
Alg	CGG	0.02 (12)	0.03 (7)	p=0.3911					
-	AGA	0.00(1)	0.02 (6)	p=0.0007					
	AGG	0.00 (3)	0.01 (3)	p=0.2309					

 Table 98 | Codon Usage from Domains and Non-Domains for the Stramenopile P. sojae

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaure d	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.59 (322)	0.62 (153)	p=0.3321		UCU	0.20 (195)	0.18 (118)	p=0.3306
ТПС	UUC	0.41 (228)	0.38 (93)	p=0.3321		UCC	0.11 (112)	0.12 (81)	p=0.5773
	UUA	0.07 (89)	0.13 (66)	p<0.0001	Sor	UCA	0.18 (176)	0.17 (114)	p=0.7556
	UUG	0.24 (289)	0.20 (100)	p=0.0835	Sei	UCG	0.27 (261)	0.22 (143)	p=0.0254
Lou	CUU	0.27 (327)	0.22 (110)	p=0.0312		AGU	0.11 (106)	0.12 (81)	p=0.3438
Leu	CUC	0.14 (163)	0.16 (78)	p=0.2450		AGC	0.13 (126)	0.18 (117)	p=0.0057
	CUA	0.10 (125)	0.08 (42)	p=0.2242		ACU	0.29 (294)	0.30 (147)	p=0.5028
	CUG	0.17 (209)	0.20 (100)	p=0.1780	Thr	ACC	0.18 (182)	0.21 (102)	p=0.1244
	GUU	0.25 (280)	0.26 (133)	p=0.7517	1 111	ACA	0.21 (220)	0.22 (107)	p=0.7786
Vəl	GUC	0.23 (251)	0.26 (134)	p=0.1186		ACG	0.32 (333)	0.27 (130)	p=0.0269
v ai	GUA	0.15 (168)	0.16 (83)	p=0.5808	Tur	UAU	0.33 (158)	0.46 (73)	p=0.0021
	GUG	0.37 (406)	0.31 (160)	p=0.0355	I yı	UAC	0.67 (322)	0.54 (84)	p=0.0021
	CCU	0.34 (298)	0.31 (122)	p=0.2312		GCU	0.42 (530)	0.38 (243)	p=0.0903
Pro	CCC	0.19 (167)	0.15 (60)	p=0.0831	Ala	GCC	0.26 (328)	0.24 (154)	p=0.3602
110	CCA	0.27 (239)	0.32 (126)	p=0.1121	Ala	GCA	0.16 (207)	0.21 (135)	p=0.0118
	CCG	0.20 (171)	0.23 (90)	p=0.2085		GCG	0.15 (191)	0.16 (105)	p=0.4700
His	CAU	0.31 (89)	0.50 (93)	p<0.0001		AUU	0.55 (450)	0.55 (158)	p=0.9359
1115	CAC*	0.69 (194)	0.50 (93)	p<0.0001	Ile	AUC	0.41 (335)	0.35 (101)	p=0.0748
Cln	CAA	0.38 (220)	0.52 (146)	p<0.0001		AUA	0.04 (34)	0.10 (30)	p<0.0001
Om	CAG*	0.62 (364)	0.48 (133)	p<0.0001	Asn	GAU	0.42 (370)	0.45 (187)	p=0.3264
Asn	AAU	0.44 (290)	0.44 (118)	p=0.9141	Азр	GAC	0.58 (501)	0.55 (225)	p=0.3264
ASI	AAC	0.56 (372)	0.56 (149)	p=0.9141	Chu	GAA	0.42 (416)	0.47 (224)	p=0.1357
I ve	AAA	0.34 (407)	0.37 (206)	p=0.1465	Olu	GAG	0.58 (564)	0.53 (257)	p=0.1357
Lys	AAG	0.66 (794)	0.63 (344)	p=0.1465		GGU*	0.43 (474)	0.33 (147)	p=0.0002
Cvs	UGU	0.47 (100)	0.40 (34)	p=0.2763	Cly	GGC	0.32 (350)	0.33 (145)	p=0.8044
Cys	UGC	0.53 (113)	0.60 (51)	p=0.2763	біу	GGA	0.20 (220)	0.24 (109)	p=0.0549
	CGU*	0.51 (419)	0.30 (112)	p<0.0001		GGG	0.05 (52)	0.10 (44)	p=0.0002
	CGC	0.33 (270)	0.37 (136)	p=0.2121					
Ara	CGA	0.08 (64)	0.13 (47)	p=0.0076					
Arg	CGG	0.03 (25)	0.07 (26)	p=0.0018					
	AGA	0.03 (26)	0.09 (35)	p<0.0001					
	AGG	0.02 (13)	0.04 (14)	p=0.0189					

 Table 99 | Codon Usage from Domains and Non-Domains for the Stramenopile P. halstedii

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.37 (337)	0.42 (177)	p=0.1265		UCU	0.07 (89)	0.11 (86)	p=0.0078
IIIC	UUC	0.63 (565)	0.58 (247)	p=0.1265		UCC	0.19 (233)	0.21 (169)	p=0.2909
	UUA	0.01 (11)	0.02 (21)	p<0.0001	Sor	UCA	0.03 (35)	0.07 (54)	p<0.0001
	UUG*	0.42 (709)	0.29 (243)	p<0.0001	Sei	UCG*	0.45 (552)	0.35 (281)	p<0.0001
Lou	CUU	0.06 (110)	0.09 (75)	p=0.0289		AGU	0.06 (71)	0.07 (60)	p=0.1422
Leu	CUC	0.31 (533)	0.36 (305)	p=0.0184		AGC	0.20 (238)	0.19 (153)	p=0.7864
	CUA	0.01 (22)	0.03 (24)	p=0.0060		ACU	0.11 (122)	0.12 (88)	p=0.3541
	CUG	0.18 (311)	0.21 (177)	p=0.1157	Thr	ACC	0.32 (369)	0.36 (262)	p=0.1061
	GUU	0.10 (147)	0.11 (96)	p=0.3761	1 111	ACA	0.08 (97)	0.11 (82)	p=0.0484
Vəl	GUC	0.43 (618)	0.45 (383)	p=0.2394		ACG*	0.49 (557)	0.41 (299)	p=0.0010
v ai	GUA	0.03 (43)	0.05 (44)	p=0.0071	Tur	UAU	0.10 (67)	0.18 (53)	p=0.0012
	GUG	0.44 (636)	0.38 (322)	p=0.0055	I yı	UAC	0.90 (580)	0.82 (242)	p=0.0012
	CCU	0.19 (162)	0.22 (159)	p=0.1145		GCU	0.14 (231)	0.18 (255)	p=0.0038
Pro	CCC	0.37 (313)	0.36 (256)	p=0.7034	Ala	GCC	0.42 (684)	0.41 (587)	p=0.7905
110	CCA	0.09 (77)	0.13 (94)	p=0.0093	Ala	GCA	0.08 (127)	0.10 (139)	p=0.0476
	CCG	0.35 (293)	0.28 (200)	p=0.0064		GCG	0.36 (595)	0.31 (440)	p=0.0017
His	CAU	0.21 (87)	0.27 (76)	p=0.0840		AUU	0.30 (318)	0.29 (122)	p=0.8074
1115	CAC	0.79 (328)	0.73 (210)	p=0.0840	Ile	AUC	0.69 (736)	0.69 (285)	p=0.7479
Cln	CAA	0.58 (394)	0.58 (290)	p=0.9294		AUA	0.01 (7)	0.02 (9)	p=0.0120
Gili	CAG	0.42 (285)	0.42 (212)	p=0.9294	Acn	GAU	0.18 (207)	0.23 (169)	p=0.0208
Aan	AAU	0.08 (68)	0.16 (72)	p<0.0001	Asp	GAC	0.82 (920)	0.77 (574)	p=0.0208
ASII	AAC*	0.92 (738)	0.84 (383)	p<0.0001	Chu	GAA	0.64 (733)	0.65 (457)	p=0.5532
Terra	AAA	0.13 (185)	0.22 (182)	p<0.0001	Giu	GAG	0.36 (412)	0.35 (242)	p=0.5532
Lys	AAG*	0.87 (1207)	0.78 (631)	p<0.0001		GGU	0.25 (328)	0.20 (150)	p=0.0212
Cruz	UGU	0.12 (40)	0.25 (50)	p<0.0001	Chr	GGC	0.50 (654)	0.51 (377)	p=0.5032
Cys	UGC*	0.88 (294)	0.75 (151)	p<0.0001	Gly	GGA	0.07 (97)	0.12 (88)	p=0.0005
	CGU	0.19 (176)	0.17 (83)	p=0.2619		GGG	0.18 (241)	0.17 (123)	p=0.3643
	CGC*	0.61 (563)	0.47 (232)	p<0.0001					
A	CGA	0.09 (79)	0.17 (84)	p<0.0001					
Arg	CGG	0.09 (83)	0.11 (53)	p=0.3139					
	AGA	0.01 (12)	0.03 (13)	p=0.0732					
	AGG	0.01 (6)	0.06 (31)	p<0.0001					

 Table 100 | Codon Usage from Domains and Non-Domains for the Stramenopile A. invadans

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaure d
Phe	UUU	0.28 (127)	0.36 (40)	p=0.1047		UCU	0.03 (20)	0.04 (14)	p=0.3053
TIIC	UUC	0.72 (328)	0.64 (72)	p=0.1047		UCC	0.08 (52)	0.12 (39)	p=0.0366
	UUA	0.03 (26)	0.05 (16)	p=0.0201	Sor	UCA	0.01 (5)	0.09 (29)	p<0.0001
	UUG	0.13 (127)	0.14 (44)	p=0.4005	SCI	UCG*	0.70 (449)	0.48 (151)	p<0.0001
Του	CUU	0.09 (93)	0.13 (39)	p=0.0686		AGU	0.02 (15)	0.07 (22)	p=0.0005
Leu	CUC*	0.70 (706)	0.48 (146)	p<0.0001		AGC	0.15 (99)	0.19 (61)	p=0.1351
	CUA	0.00 (5)	0.03 (9)	p=0.0003		ACU	0.03 (21)	0.11 (29)	p<0.0001
	CUG	0.06 (56)	0.17 (52)	p<0.0001	Thr	ACC	0.28 (183)	0.28 (72)	p=0.9909
	GUU	0.05 (42)	0.10 (24)	p=0.0028	1 111	ACA	0.03 (18)	0.09 (22)	p<0.0001
Vəl	GUC	0.73 (644)	0.64 (156)	p=0.0052		ACG*	0.66 (427)	0.52 (132)	p<0.0001
v ai	GUA	0.00 (2)	0.03 (8)	p<0.0001	Tyr	UAU	0.06 (22)	0.16 (18)	p=0.0012
	GUG	0.22 (190)	0.23 (55)	p=0.7401	I yı	UAC	0.94 (345)	0.84 (98)	p=0.0012
	CCU	0.07 (32)	0.09 (26)	p=0.1549		GCU	0.11 (116)	0.15 (93)	p=0.0052
Pro	CCC	0.38 (187)	0.36 (99)	p=0.4821	Ala	GCC*	0.65 (709)	0.52 (318)	p<0.0001
110	CCA	0.04 (20)	0.07 (20)	p=0.0621	Аіа	GCA	0.02 (18)	0.07 (40)	p<0.0001
	CCG	0.51 (251)	0.48 (133)	p=0.3676		GCG	0.23 (245)	0.26 (156)	p=0.1395
His	CAU	0.10 (23)	0.16 (16)	p=0.1578		AUU	0.20 (139)	0.26 (37)	p=0.1014
1115	CAC	0.90 (202)	0.84 (86)	p=0.1578	Ile	AUC	0.79 (560)	0.67 (96)	p=0.0012
Cln	CAA	0.11 (48)	0.32 (49)	p<0.0001		AUA	0.01 (9)	0.08 (11)	p<0.0001
Om	CAG*	0.89 (371)	0.68 (106)	p<0.0001	Asn	GAU	0.15 (103)	0.17 (43)	p=0.5932
Acn	AAU	0.07 (34)	0.17 (24)	p=0.0002	Asp	GAC	0.85 (562)	0.83 (211)	p=0.5932
ASI	AAC*	0.93 (473)	0.83 (121)	p=0.0002	Chu	GAA	0.28 (190)	0.37 (100)	p=0.0061
I ve	AAA	0.06 (61)	0.12 (48)	p=0.0002	Giù	GAG	0.72 (495)	0.63 (172)	p=0.0061
Lys	AAG*	0.94 (912)	0.88 (341)	p=0.0002		GGU	0.28 (224)	0.29 (71)	p=0.7973
Cve	UGU	0.06 (9)	0.09 (4)	p=0.4259	Chy	GGC	0.69 (558)	0.63 (157)	p=0.0807
Cys	UGC	0.94 (144)	0.91 (39)	p=0.4259	Gly	GGA	0.01 (8)	0.04 (9)	p=0.0039
	CGU	0.13 (85)	0.18 (55)	p=0.0587		GGG	0.02 (16)	0.04 (11)	p=0.0327
	CGC*	0.80 (512)	0.54 (166)	p<0.0001					
Arg	CGA	0.02 (13)	0.10 (31)	p<0.0001					
	CGG	0.03 (21)	0.06 (19)	p=0.0368					
	AGA	0.01 (9)	0.07 (20)	p<0.0001					
	AGG	0.00(1)	0.05 (16)	p<0.0001					

 Table 101 | Codon Usage from Domains and Non-Domains for the Stramenopile S. parasitica

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Codons	Domain	Domain	Sqaured	Acids	Codons	Domain	Domain	Sqaured
Phe	UUU	0.21 (111)	0.24 (41)	p=0.4732		UCU	0.17 (140)	0.18 (66)	p=0.7753
IIIC	UUC	0.79 (418)	0.76 (133)	p=0.4732		UCC	0.39 (315)	0.30 (109)	p=0.0022
	UUA	0.01 (9)	0.01 (5)	p=0.2990	Sor	UCA	0.03 (27)	0.05 (17)	p=0.2780
	UUG	0.26 (276)	0.22 (74)	p=0.1582	Sei	UCG	0.15 (123)	0.21 (77)	p=0.0145
Lou	CUU	0.32 (342)	0.31 (105)	p=0.7909		AGU	0.11 (89)	0.08 (29)	p=0.1014
Leu	CUC	0.28 (300)	0.33 (111)	p=0.0823		AGC	0.14 (113)	0.19 (68)	p=0.0444
	CUA	0.03 (31)	0.04 (12)	p=0.5349		ACU	0.20 (131)	0.22 (49)	p=0.5551
	CUG	0.10 (110)	0.09 (29)	p=0.3717	Thr	ACC	0.56 (365)	0.55 (123)	p=0.8151
	GUU	0.34 (295)	0.31 (77)	p=0.4275	1 111	ACA	0.10 (64)	0.10 (23)	p=0.8350
Val	GUC	0.46 (397)	0.47 (117)	p=0.6186		ACG	0.14 (94)	0.13 (29)	p=0.5955
vai	GUA	0.08 (72)	0.09 (21)	p=0.9058	Twr	UAU	0.23 (68)	0.19 (13)	p=0.4402
	GUG	0.12 (107)	0.13 (32)	p=0.7780	1 yı	UAC	0.77 (230)	0.81 (57)	p=0.4402
	CCU	0.48 (215)	0.42 (90)	p=0.1452		GCU	0.23 (210)	0.24 (140)	p=0.5895
Pro	CCC	0.31 (138)	0.31 (68)	p=0.8174	Ala	GCC	0.58 (527)	0.52 (303)	p=0.0448
110	CCA	0.14 (63)	0.15 (33)	p=0.6523	Ala	GCA	0.11 (97)	0.14 (82)	p=0.0394
	CCG	0.08 (35)	0.12 (25)	p=0.1072		GCG	0.09 (82)	0.09 (55)	p=0.7287
His	CAU	0.30 (52)	0.56 (28)	p=0.0007		AUU	0.31 (216)	0.32 (44)	p=0.7225
1115	CAC	0.70 (122)	0.44 (22)	p=0.0007	Ile	AUC	0.66 (463)	0.62 (84)	p=0.3367
Cln	CAA	0.55 (197)	0.59 (57)	p=0.4461		AUA	0.03 (22)	0.06 (8)	p=0.1152
Om	CAG	0.45 (161)	0.41 (39)	p=0.4461	Asn	GAU	0.45 (365)	0.47 (98)	p=0.5857
Asn	AAU	0.23 (93)	0.25 (29)	p=0.7352	Азр	GAC	0.55 (446)	0.53 (110)	p=0.5857
ASI	AAC	0.77 (310)	0.75 (89)	p=0.7352	Chu	GAA	0.58 (449)	0.55 (161)	p=0.2605
I ve	AAA	0.19 (132)	0.18 (53)	p=0.6308	Giù	GAG	0.42 (320)	0.45 (134)	p=0.2605
Lys	AAG	0.81 (562)	0.82 (246)	p=0.6308		GGU	0.28 (285)	0.22 (75)	p=0.0444
Cvs	UGU	0.21 (31)	0.24 (9)	p=0.7140	Chy	GGC	0.17 (171)	0.30 (103)	p<0.0001
Cys	UGC	0.79 (117)	0.76 (29)	p=0.7140	біу	GGA	0.48 (501)	0.41 (139)	p=0.0147
	CGU	0.29 (131)	0.22 (31)	p=0.1190		GGG	0.08 (79)	0.07 (24)	p=0.7206
	CGC	0.19 (86)	0.26 (36)	p=0.0829					
Arg	CGA	0.24 (109)	0.17 (24)	p=0.0884					
	CGG	0.07 (32)	0.09 (12)	p=0.5475					
	AGA	0.12 (53)	0.10 (14)	p=0.5841					
	AGG	0.09 (43)	0.16 (23)	p=0.0220					

multistriata

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids		0.46(0.40)	Domain	Sqaured	Acids	UCU	0.01 (000)	Domain	Sqaured
Phe	000	0.46 (242)	0.51 (194)	p=0.1361			0.21 (228)	0.16 (185)	p=0.0050
-	UUC	0.54 (288)	0.49 (189)	p=0.1361		UCC	0.21 (226)	0.19 (209)	p=0.1667
	UUA	0.07 (97)	0.07 (60)	p=0.7851	Ser	UCA	0.15 (166)	0.16 (176)	p=0.8578
	UUG	0.32 (438)	0.30 (271)	p=0.5028		UCG	0.13 (145)	0.15 (174)	p=0.1729
Leu	CUU*	0.24 (329)	0.17 (149)	p<0.0001		AGU	0.20 (212)	0.18 (208)	p=0.4965
	CUC	0.23 (317)	0.26 (232)	p=0.0963		AGC	0.10 (107)	0.16 (177)	p<0.0001
	CUA	0.06 (88)	0.09 (76)	p=0.0532		ACU	0.32 (247)	0.27 (204)	p=0.0597
	CUG	0.08 (109)	0.11 (102)	p=0.0045	Thr	ACC	0.29 (229)	0.24 (184)	p=0.0362
	GUU	0.32 (358)	0.28 (198)	p=0.0910	1 111	ACA	0.19 (151)	0.27 (201)	p=0.0005
Vəl	GUC	0.26 (299)	0.24 (168)	p=0.1896		ACG	0.20 (157)	0.22 (163)	p=0.4260
v ai	GUA	0.13 (150)	0.16 (115)	p=0.0785	Tyr	UAU	0.32 (136)	0.41 (115)	p=0.0167
	GUG	0.29 (329)	0.32 (231)	p=0.1129	I yI	UAC	0.68 (286)	0.59 (165)	p=0.0167
	CCU	0.33 (204)	0.27 (150)	p=0.0231		GCU	0.36 (436)	0.32 (334)	p=0.0160
Pro	CCC	0.28 (174)	0.26 (148)	p=0.5399	Ala	GCC	0.28 (329)	0.26 (277)	p=0.4952
110	CCA	0.28 (174)	0.32 (178)	p=0.1577	Ala	GCA	0.25 (296)	0.30 (312)	p=0.0105
	CCG	0.11 (69)	0.15 (84)	p=0.0469		GCG	0.11 (135)	0.13 (133)	p=0.3391
IIIa	CAU	0.45 (143)	0.49 (111)	p=0.3153		AUU	0.47 (380)	0.40 (171)	p=0.0173
nis	CAC	0.55 (175)	0.51 (114)	p=0.3153	Ile	AUC	0.43 (342)	0.42 (178)	p=0.8095
Cla	CAA	0.54 (225)	0.58 (236)	p=0.2968		AUA	0.10 (79)	0.18 (75)	p<0.0001
Gin	CAG	0.46 (192)	0.42 (174)	p=0.2968		GAU	0.63 (532)	0.58 (398)	p=0.0536
	AAU	0.43 (236)	0.42 (217)	p=0.7398	Asp	GAC	0.37 (312)	0.42 (286)	p=0.0536
Asn	AAC	0.57 (311)	0.58 (298)	p=0.7398		GAA	0.40 (369)	0.45 (348)	p=0.0253
_	AAA	0.27 (250)	0.32 (212)	p=0.0735	Glu	GAG	0.60 (558)	0.55 (422)	p=0.0253
Lys	AAG	0.73 (662)	0.68 (460)	p=0.0735		GGU	0.26 (278)	0.27 (216)	p=0.5679
	UGU	0.53 (142)	0.57 (85)	p=0.3810	-	GGC	0.13 (141)	0.18 (149)	p=0.0011
Cys	UGC	0.47 (128)	0.43 (64)	p=0.3810	Gly	GGA*	0.49 (535)	0.40 (320)	p<0.0001
	CGU*	0.36 (298)	0.23 (143)	p<0.0001		GGG	0.12 (136)	0.15 (125)	p=0.0642
	CGC	0.15 (123)	0.12 (78)	p=0.1976			,		
	CGA	0.12 (104)	0.18 (110)	p=0.0071					
Arg	CGG	0.04 (33)	0.06 (40)	p=0.0365					
	AGA	0.16 (132)	0.20 (124)	p=0.0523					
	AGG	0.17 (143)	0.21 (133)	p=0.0525					

pseudonana

Amino	Codona	Domain	Non-	Chi-	Amino	Codona	Domain	Non-	Chi-
Acids	Couolis	Domain	Domain	Sqaured	Acids	Couolis	Domain	Domain	Sqaured
Phe	UUU	0.34 (274)	0.44 (157)	p=0.0021		UCU	0.16 (157)	0.19 (172)	p=0.1992
TIK	UUC	0.66 (528)	0.56 (203)	p=0.0021		UCC*	0.32 (304)	0.22 (199)	p<0.0001
	UUA	0.05 (85)	0.06 (49)	p=0.2661	Sor	UCA	0.08 (74)	0.14 (131)	p<0.0001
	UUG	0.22 (361)	0.22 (173)	p=0.9144	Sei	UCG	0.19 (185)	0.17 (157)	p=0.1960
Lou	CUU	0.15 (237)	0.21 (164)	p<0.0001		AGU	0.07 (66)	0.11 (98)	p=0.0042
Leu	CUC	0.23 (371)	0.24 (182)	p=0.6854		AGC	0.18 (169)	0.18 (163)	p=0.9905
	CUA	0.05 (78)	0.06 (48)	p=0.1460		ACU	0.18 (181)	0.24 (125)	p=0.0038
	CUG*	0.30 (491)	0.20 (155)	p<0.0001	Thr	ACC*	0.35 (345)	0.26 (134)	p=0.0010
	GUU	0.15 (190)	0.16 (86)	p=0.3821	1 111	ACA	0.14 (135)	0.22 (114)	p<0.0001
Val	GUC	0.29 (386)	0.34 (184)	p=0.0354		ACG	0.34 (339)	0.27 (139)	p=0.0075
vai	GUA	0.09 (122)	0.12 (62)	p=0.1354	Tur	UAU	0.28 (146)	0.41 (74)	p=0.0012
	GUG*	0.47 (612)	0.38 (202)	p=0.0005	I yı	UAC	0.72 (380)	0.59 (108)	p=0.0012
	CCU	0.27 (195)	0.30 (175)	p=0.1897		GCU	0.19 (296)	0.25 (209)	p=0.0006
Pro	CCC*	0.44 (320)	0.33 (194)	p<0.0001	Ala	GCC*	0.41 (652)	0.33 (281)	p<0.0001
110	CCA	0.08 (60)	0.18 (104)	p<0.0001	Ala	GCA	0.14 (224)	0.19 (158)	p=0.0040
	CCG	0.21 (153)	0.19 (109)	p=0.3036		GCG	0.26 (403)	0.23 (197)	p=0.2169
His	CAU	0.32 (120)	0.49 (114)	p<0.0001		AUU	0.35 (354)	0.38 (103)	p=0.2739
1115	CAC*	0.68 (256)	0.51 (119)	p<0.0001	Ile	AUC*	0.59 (607)	0.46 (124)	p<0.0001
Cln	CAA	0.35 (205)	0.48 (137)	p=0.0002		AUA	0.06 (63)	0.16 (43)	p<0.0001
Om	CAG*	0.65 (379)	0.52 (148)	p=0.0002	Asn	GAU	0.33 (317)	0.40 (134)	p=0.0115
Acn	AAU	0.34 (221)	0.42 (107)	p=0.0170	Asp	GAC	0.67 (652)	0.60 (198)	p=0.0115
ASI	AAC	0.66 (430)	0.58 (145)	p=0.0170	Chu	GAA	0.27 (300)	0.40 (153)	p<0.0001
I we	AAA	0.26 (303)	0.34 (148)	p=0.0026	Giù	GAG*	0.73 (793)	0.60 (232)	p<0.0001
Lys	AAG	0.74 (854)	0.66 (290)	p=0.0026		GGU	0.19 (280)	0.20 (128)	p=0.9123
Cvs	UGU	0.23 (51)	0.46 (72)	p<0.0001	Cly	GGC	0.40 (579)	0.33 (217)	p=0.0027
Cys	UGC*	0.77 (175)	0.54 (83)	p<0.0001	Gly	GGA	0.18 (264)	0.20 (132)	p=0.2968
	CGU	0.20 (154)	0.13 (79)	p=0.0027		GGG	0.22 (325)	0.27 (178)	p=0.0185
	CGC*	0.37 (292)	0.25 (148)	p<0.0001					
Arg	CGA	0.17 (134)	0.15 (90)	p=0.3907					
	CGG	0.17 (132)	0.20 (119)	p=0.1004					
	AGA	0.04 (30)	0.13 (75)	p<0.0001					
	AGG	0.05 (42)	0.13 (75)	p<0.0001					

Table 104 | Codon Usage from Domains and Non-Domains for the Stramenopile N. gaditana

Amino	Cadarra	Damain	Non-	Chi-	Amino	Cadara	Damain	Non-	Chi-
Acids	Codons	Domain	Domain	Sqaure d	Acids	Codons	Domain	Domain	Sqaure d
Pho	UUU	0.16 (80)	0.17 (71)	p=0.6565		UCU	0.07 (58)	0.05 (50)	p=0.0910
1 ne	UUC	0.84 (416)	0.83 (341)	p=0.6565		UCC	0.32 (248)	0.29 (266)	p=0.1933
	UUA	0.02 (27)	0.03 (34)	p=0.2513	Sor	UCA	0.07 (53)	0.06 (53)	p=0.3771
	UUG	0.06 (79)	0.08 (95)	p=0.0942	Sel	UCG	0.33 (257)	0.34 (313)	p=0.6500
Lou	CUU	0.07 (84)	0.07 (81)	p=0.8728		AGU	0.03 (23)	0.05 (43)	p=0.0671
Leu	CUC	0.62 (775)	0.58 (679)	p=0.0304		AGC	0.18 (142)	0.21 (197)	p=0.1010
	CUA	0.02 (28)	0.04 (46)	p=0.0168		ACU	0.06 (48)	0.09 (60)	p=0.0944
	CUG	0.20 (252)	0.20 (237)	p=0.9907	The	ACC	0.23 (174)	0.24 (161)	p=0.9220
	GUU	0.06 (60)	0.06 (54)	p=0.9180	Im	ACA	0.07 (53)	0.08 (57)	p=0.3829
Val	GUC	0.61 (598)	0.63 (566)	p=0.3801		ACG	0.63 (469)	0.59 (404)	p=0.1412
vai	GUA	0.03 (28)	0.03 (30)	p=0.5470	Tum	UAU	0.11 (42)	0.19 (57)	p=0.0052
	GUG	0.30 (290)	0.27 (245)	p=0.2634	I yr	UAC	0.89 (336)	0.81 (248)	p=0.0052
	CCU	0.08 (47)	0.07 (64)	p=0.3633		GCU	0.05 (80)	0.05 (100)	p=0.2857
Dre	CCC*	0.44 (248)	0.34 (304)	p<0.0001	Ala	GCC	0.39 (586)	0.35 (777)	p=0.0259
Pro	CCA	0.07 (41)	0.05 (45)	p=0.0656		GCA	0.06 (86)	0.05 (109)	p=0.3108
	CCG	0.40 (226)	0.54 (492)	p<0.0001		GCG	0.50 (766)	0.56 (1232)	p=0.0022
Uia	CAU	0.12 (35)	0.23 (66)	p=0.0002		AUU	0.13 (77)	0.21 (72)	p=0.0009
ПIS	CAC*	0.88 (265)	0.77 (218)	p=0.0002	Ile	AUC*	0.83 (504)	0.69 (241)	p<0.0001
Cla	CAA	0.11 (52)	0.19 (79)	p=0.0019		AUA	0.05 (29)	0.10 (34)	p=0.0025
Gin	CAG	0.89 (414)	0.81 (347)	p=0.0019		GAU	0.14 (123)	0.13 (152)	p=0.4240
	AAU	0.17 (71)	0.19 (65)	p=0.4199	Asp	GAC	0.86 (773)	0.87 (1060)	p=0.4240
Asn	AAC	0.83 (350)	0.81 (275)	p=0.4199		GAA	0.11 (103)	0.15 (192)	p=0.0058
_	AAA	0.10 (94)	0.10 (89)	p=0.7202	Glu	GAG	0.89 (809)	0.85 (1053)	p=0.0058
Lys	AAG	0.90 (807)	0.90 (808)	p=0.7202		GGU	0.08 (84)	0.06 (78)	p=0.0261
~	UGU	0.09 (26)	0.10 (32)	p=0.8486		GGC	0.76 (789)	0.76 (1013)	p=0.6061
Cys	UGC	0.91 (257)	0.90 (300)	p=0.8486	Gly	GGA	0.04 (43)	0.07 (88)	p=0.0113
	CGU	0.05 (45)	0.05 (70)	p=0.8174		GGG	0.11 (116)	0.12 (162)	p=0.5281
	CGC*	0.65 (551)	0.54 (748)	p<0.0001					<u>1</u> *
	CGA	0.04 (35)	0.06 (78)	p=0.1088					
Arg	CGG	0.21 (181)	0.28 (382)	p=0.0007					
	AGA	0.02 (13)	0.03 (35)	p=0.1117					
	AGG	0.03 (23)	0.05 (64)	p=0.0222					

Table 105 Codon Usage from D	omains and Non-Domains fo	r the Stramenopile A.
--------------------------------	---------------------------	-----------------------

anophagefferens

Amino	Codona	Domoin	Non-	Chi-	Amino	Cadana	Domoin	Non-	Chi-
Acids	Codons	Domain	Domain	Sqaured	Acids	Codons	Domain	Domain	Sqaure d
Dho	UUU	0.21 (130)	0.50 (74)	p<0.0001		UCU	0.25 (294)	0.21 (71)	p=0.1560
rne	UUC*	0.79 (497)	0.50 (74)	p<0.0001		UCC*	0.35 (423)	0.13 (43)	p<0.0001
	UUA	0.04 (62)	0.23 (83)	p<0.0001	Son	UCA	0.10 (123)	0.21 (70)	p<0.0001
	UUG	0.10 (153)	0.20 (73)	p<0.0001	Sel	UCG	0.12 (144)	0.17 (59)	p=0.0108
Lou	CUU	0.41 (606)	0.17 (60)	p<0.0001		AGU	0.04 (53)	0.17 (58)	p<0.0001
Leu	CUC*	0.28 (416)	0.12 (43)	p<0.0001		AGC	0.13 (155)	0.11 (38)	p=0.3799
	CUA	0.07 (101)	0.16 (58)	p<0.0001		ACU*	0.33 (345)	0.20 (44)	p=0.0001
	CUG	0.10 (145)	0.12 (43)	p=0.2230	Thr	ACC*	0.42 (435)	0.18 (39)	p<0.0001
	GUU*	0.42 (509)	0.24 (51)	p<0.0001	1 111	ACA	0.15 (156)	0.40 (88)	p<0.0001
Val	GUC	0.27 (329)	0.17 (37)	p=0.0025		ACG	0.10 (106)	0.22 (48)	p<0.0001
v ai	GUA	0.10 (127)	0.31 (66)	p<0.0001	Tur	UAU	0.23 (113)	0.64 (96)	p<0.0001
	GUG	0.21 (255)	0.28 (61)	p=0.0148	1 yı	UAC*	0.77 (377)	0.36 (55)	p<0.0001
	CCU*	0.61 (496)	0.26 (37)	p<0.0001		GCU*	0.57 (949)	0.30 (56)	p<0.0001
Pro	CCC	0.09 (76)	0.28 (40)	p<0.0001	Ala	GCC	0.13 (211)	0.17 (32)	p=0.0746
110	CCA	0.22 (182)	0.38 (55)	p<0.0001	Ана	GCA	0.24 (406)	0.37 (68)	p=0.0002
	CCG	0.07 (60)	0.09 (13)	p=0.5047		GCG	0.07 (113)	0.16 (30)	p<0.0001
His	CAU	0.26 (67)	0.63 (79)	p<0.0001		AUU	0.38 (352)	0.38 (99)	p=0.8602
1115	CAC*	0.74 (194)	0.37 (47)	p<0.0001	Ile	AUC*	0.56 (511)	0.28 (73)	p<0.0001
Gln	CAA	0.36 (230)	0.71 (92)	p<0.0001		AUA	0.06 (54)	0.34 (90)	p<0.0001
	CAG*	0.64 (413)	0.29 (37)	p<0.0001	Asn	GAU	0.59 (547)	0.62 (56)	p=0.5612
Asn	AAU	0.29 (190)	0.62 (105)	p<0.0001	msp	GAC	0.41 (379)	0.38 (34)	p=0.5612
21,511	AAC*	0.71 (474)	0.38 (65)	p<0.0001	Ch	GAA	0.45 (467)	0.64 (89)	p<0.0001
I vs	AAA	0.25 (297)	0.86 (453)	p<0.0001	Olu	GAG*	0.55 (579)	0.36 (49)	p<0.0001
Lys	AAG*	0.75 (894)	0.14 (73)	p<0.0001		GGU	0.27 (395)	0.22 (28)	p=0.2254
Cvs	UGU	0.28 (72)	0.58 (95)	p<0.0001	Gly	GGC	0.18 (273)	0.25 (32)	p=0.0739
Cy3	UGC*	0.72 (181)	0.42 (69)	p<0.0001	Oly	GGA	0.47 (695)	0.33 (42)	p=0.0018
	CGU*	0.33 (289)	0.19 (45)	p<0.0001		GGG	0.08 (122)	0.21 (27)	p<0.0001
	CGC*	0.26 (225)	0.12 (28)	p<0.0001					
Arg	CGA	0.11 (95)	0.14 (33)	p=0.1606					
Arg	CGG	0.04 (36)	0.12 (29)	p<0.0001					
	AGA	0.14 (120)	0.30 (71)	p<0.0001					
	AGG	0.13 (110)	0.12 (27)	p=0.6853					

Table 106 | Codon Usage from Domains and Non-Domains for the Rhizarian B. natans

Amino	Codons	Domain	Non-	Chi-	Amino	Codons	Domain	Non-	Chi-
Acids	004012	2 0 11111	Domain	Sqaured	Acids	00000	2 0 1 1 1 1	Domain	Sqaured
Phe	UUU	0.08 (48)	0.10 (15)	p=0.4250		UCU	0.04 (41)	0.07 (26)	p=0.0190
	UUC	0.92 (525)	0.90 (128)	p=0.4250		UCC	0.25 (238)	0.23 (79)	p=0.4676
	UUA	0.01 (9)	0.01 (3)	p=0.6528	Ser	UCA	0.03 (28)	0.05 (18)	p=0.0479
	UUG	0.07 (95)	0.11 (38)	p=0.0086	Ser	UCG	0.44 (424)	0.34 (119)	p=0.0016
Len	CUU	0.10 (140)	0.10 (35)	p=0.9552		AGU	0.03 (31)	0.05 (16)	p=0.2320
Leu	CUC	0.24 (329)	0.24 (82)	p=0.9481		AGC	0.21 (201)	0.26 (89)	p=0.0662
	CUA	0.02 (24)	0.02 (6)	p=0.9823		ACU	0.06 (61)	0.06 (15)	p=0.9389
	CUG	0.57 (801)	0.53 (182)	p=0.1149	Thr	ACC	0.32 (326)	0.34 (88)	p=0.4667
	GUU	0.14 (186)	0.14 (52)	p=0.7638	1 111	ACA	0.05 (46)	0.10 (26)	p=0.0005
Vəl	GUC*	0.63 (859)	0.53 (195)	p=0.0009		ACG	0.58 (586)	0.50 (127)	p=0.0229
v ai	GUA	0.03 (39)	0.05 (20)	p=0.0143	Tur	UAU	0.10 (45)	0.18 (17)	p=0.0309
	GUG	0.21 (280)	0.27 (98)	p=0.0094	I yı	UAC	0.90 (395)	0.82 (77)	p=0.0309
	CCU	0.13 (86)	0.14 (40)	p=0.8769		GCU	0.11 (173)	0.12 (80)	p=0.4035
Dro	CCC	0.24 (159)	0.23 (68)	p=0.6557	Ala	GCC	0.50 (786)	0.47 (308)	p=0.2183
F 10	CCA	0.06 (40)	0.12 (36)	p=0.0015	Ala	GCA	0.05 (77)	0.10 (63)	p<0.0001
	CCG	0.56 (367)	0.51 (151)	p=0.1441		GCG	0.35 (549)	0.32 (208)	p=0.1607
IIIa	CAU*	0.20 (69)	0.04 (27)	p<0.0001		AUU	0.19 (182)	0.18 (26)	p=0.7047
HIS	CAC	0.80 (273)	0.96 (664)	p<0.0001	Ile	AUC	0.79 (744)	0.79 (114)	p=0.9761
	CAA	0.11 (76)	0.19 (46)	p=0.0017		AUA	0.02 (19)	0.03 (5)	p=0.2720
Gin	CAG	0.89 (613)	0.81 (197)	p=0.0017		GAU	0.23 (240)	0.24 (72)	p=0.7419
	AAU	0.09 (52)	0.16 (23)	p=0.0137	Asp	GAC	0.77 (803)	0.76 (229)	p=0.7419
Asn	AAC	0.91 (544)	0.84 (125)	p=0.0137		GAA	0.26 (270)	0.31 (116)	p=0.0632
_	AAA	0.10 (127)	0.14 (47)	p=0.0440	Glu	GAG	0.74 (759)	0.69 (255)	p=0.0632
Lys	AAG	0.90 (1169)	0.86 (300)	p=0.0440		GGU	0.21 (254)	0.21 (108)	p=0.9980
	UGU	0.16 (35)	0.17 (8)	p=0.8310		GGC	0.59 (717)	0.57 (295)	p=0.4597
Cys	UGC	0.84 (187)	0.83 (39)	p=0.8310	Gly	GGA	0.08 (92)	0.10 (51)	p=0.1121
	CGU	0.24 (244)	0.18 (60)	p=0.0248		GGG	0.13 (162)	0.13 (67)	p=0.8364
	CGC	0.47 (473)	0.49 (159)	p=0.6557					*
Arg	CGA	0.10 (103)	0.11 (35)	p=0.8273					
	CGG	0.13 (131)	0.14 (47)	p=0.5492					
	AGA	0.01 (15)	0.02 (6)	p=0.6706					
	AGG	0.04 (36)	0.06 (20)	p=0.0486					

 Table 107 | Codon Usage from Domains and Non-Domains for the Rhizarian P. brassicae

6.5 Optimal Codons

General description of tables 108 - 140: Codons shown with a blue background are those determined optimal by CodonW with the use of a correspondence analysis. Codons shown with a red background are those found to be optimal when comparing the top and bottom 5% expressed genes. Codons shown with a purple background are those found to be optimal by both methods.

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	IIIa	CAU		AUU
Phe	UUC		UCC	HIS	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lan	CUU		AGU	A a m	AAU	Asp	GAC
Leu	CUC		AGC	ASII	AAC	Cha	GAA
	CUA	Thr	ACU	Lys Cys	AAA	Giù	GAG
	CUG		ACC		AAG		GGU
	GUU		ACA		UGU	Gly	GGC
Val	GUC		ACG		UGC		GGA
vai	GUA	Tree	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
Pro	CCU		GCU	Ang	CGA		
	CCC	Ala	GCC	Alg	CGG		
	CCA		GCA		AGA		
	CCG		GCG		AGG		

Table 108 | Optimal Codons for the Amoebozoan A. castellani

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG		GAU
Lau	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	Thr	ACU	Lys Cys	AAA	Giù	GAG
	CUG		ACC		AAG		GGU
	GUU		ACA		UGU	Gly	GGC
Val	GUC		ACG		UGC		GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 109 | Optimal Codons for the Amoebozoan E. histolytica

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG		GAU
Tem	CUU	-	AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	The	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Inr	ACA	Cys	UGU	Chr	GGC
X7-1	GUC		ACG		UGC	Gly	GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ama	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 110 | Optimal Codons for the Amoebozoan D. discoideum

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lou	CUU		AGU	Acr	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Cys	UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	Tree	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Duo	CCC	Ala	GCC	Alg	CGG		
110	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 111 | Optimal Codons for the Amoebozoan P. fungivorum

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Som	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIII	CAG	Aan	GAU
Lon	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Chr	GAA
	CUA	The	ACU	Lys	AAA	Giu	GAG
	CUG		ACC		AAG		GGU
	GUU	Inr	ACA	Cys	UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ang	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 112 | Optimal Codons for the Apusomonadan T. trahens

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Som	UCA	Cln	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	A	GAU
Lau	CUU		AGU	Acr	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Chu	GAA
	CUA	Thr	ACU	I wa	AAA	Giu	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Im	ACA	Cys	UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	True	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

Table 113 | Optimal Codons for the Opisthokont F. alba

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Plie	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Ser	UCA	Clm	CAA		AUA
	UUG		UCG	Gin	CAG	Aan	GAU
Lan	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Chu	GAA
	CUA	The	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Inr	ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ama	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 114 | Optimal Codons for the Opisthokont C. owczarzaki

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Uia	CAU		AUU
rne	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Som	UCA	Chr	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Low	CUU		AGU	Acre	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	Thr	ACU	T	AAA	Giu	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Inr	ACA	Cys	UGU	Gly	GGC
Val	GUC		ACG		UGC		GGA
vai	GUA	Tum	UAU		CGU		GGG
	GUG	Гуг	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 115 | Optimal Codons for the Opisthokont S. arctica

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Acn	GAU
Lau	CUU		AGU	Acr	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Chu	GAA
	CUA		ACU	Lys	AAA	Giù	GAG
	CUG	The	ACC		AAG		GGU
	GUU	Inr	ACA	C	UGU	Chr	GGC
X7-1	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	A ra	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 116 | Optimal Codons for the Excavate G. lamblia

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Chr	GAA		AUA
	UUG	Ser	UCG	Giù	GAG		GAU
Lon	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC		CAA
	CUA	Thr	ACU	T	AAA	Cln	CAG
	CUG		ACC	Lys	AAG	Gin	UAA
	GUU	Inr	ACA	Cura	UGU		UAG
Val	GUC		ACG	Cys	UGC		GGU
vai	GUA	Tree	UAU		CGU	Chr	GGC
	GUG	1 yr	UAC		CGC	Gly	GGA
	CCU		GCU	Ara	CGA		GGG
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 117 | Optimal Codons for the Excavate S. salmonicida

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Plie	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Tee	CUU	-	AGU		AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Glu	GAA
	CUA	Thr	ACU	T	AAA		GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Cys	UGU		GGC
X7-1	GUC		ACG		UGC	Gly	GGA
vai	GUA	T	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ang	CGA		
Pro	CCC	Ala	GCC	Arg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 118 | Optimal Codons for the Excavate L. major

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Ser	UCA	Clm	CAA		AUA
	UUG		UCG	Gin	CAG		GAU
Tan	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Cha	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 119 | Optimal Codons for the Excavate L. pyrrhocoris

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Com	UCA	Cla	CAA		AUA
	UUG	Ser	UCG	Gin	CAG		GAU
Lon	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	The	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Inr	ACA	Cys	UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 120 | Optimal Codons for the Excavate L. seymouri

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Hig	CAU		AUU
rne	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Chr	CAA		AUA
	UUG	Ser	UCG	GIN	CAG	Aan	GAU
Tan	CUU		AGU	A a a	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Glu	GAA
	CUA	Thr	ACU	T	AAA		GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Cys	UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	I yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 121 | Optimal Codons for the Excavate T. brucei

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lon	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	The	ACU	Lys	AAA	Giù	GAG
	CUG		ACC		AAG		GGU
	GUU	Imr	ACA	Cre	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA	1 1	AGA		
	CCG		GCG		AGG		

 Table 122 | Optimal Codons for the Excavate T. cruzi

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIN	CAG		GAU
T	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Cla	GAA
	CUA	Thr	ACU	Lys Cys	AAA	Glu	GAG
	CUG		ACC		AAG		GGU
	GUU		ACA		UGU	Gly	GGC
Val	GUC		ACG		UGC		GGA
vai	GUA	Tree	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ama	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 123 | Optimal Codons for the Excavate T. theileri

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Plie	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Ser	UCA	Cha	GAA		AUA
	UUG	Ser	UCG	Giu	GAG	Acn	GAU
Lou	CUU		AGU	Acr	AAU	Asp	GAC
Leu	CUC		AGC	ASII	AAC		CAA
	CUA	The	ACU	T	AAA	Cln	CAG
	CUG		ACC	Lys	AAG	GIN	UAA
	GUU	Inr	ACA	Cara	UGU		UAG
Val	GUC		ACG	Cys	UGC		GGU
vai	GUA	Tree	UAU		CGU	Gly	GGC
	GUG	Туг	UAC		CGC		GGA
	CCU		GCU	Ama	CGA		GGG
Dro	CCC	Ala	GCC	Alg	CGG		
Pro	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 124 | Optimal Codons for the Alveolate T. thermophila

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIN	CAG	Aam	GAU
Lan	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Chu	GAA
	CUA	Thr	ACU	Lys	AAA	Giù	GAG
	CUG		ACC		AAG		GGU
	GUU		ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tree	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	A ra	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 125 | Optimal Codons for the Alveolate S. coeruleus

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Plie	UUC		UCC	1115	CAC	Ile	AUC
	UUA	Som	UCA	Cln	CAA		AUA
	UUG	Ser	UCG	Gili	CAG		GAU
Lou	CUU		AGU	Acm	AAU	Asp	GAC
Leu	CUC		AGC	ASII	AAC	Cha	GAA
	CUA		ACU	Lys	AAA	Giù	GAG
	CUG	The	ACC		AAG		GGU
	GUU	1 mr	ACA	Cura	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Arg	CGA		
Pro	CCC	Ala	GCC	Aig	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 126 | Optimal Codons for the Alveolate P. gallinaceum

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	1115	CAC	Ile	AUC
	UUA	Ser	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIN	CAG	Aan	GAU
Tan	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Chr	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tum	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 127 | Optimal Codons for the Alveolate P. falciparum

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG		GAU
Lon	CUU	-	AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Glu	GAA
	CUA	Thr	ACU	Lys Cys	AAA		GAG
	CUG		ACC		AAG		GGU
	GUU		ACA		UGU	Chr	GGC
Val	GUC		ACG		UGC	Gly	GGA
vai	GUA	T-m	UAU		CGU		GGG
	GUG	Туг	UAC		CGC		
	CCU		GCU	Ama	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 128 | Optimal Codons for the Alveolate P. vivax

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
rne	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	A	GAU
Lan	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Cla	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Cura	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	True	UAU		CGU		GGG
	GUG	I yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

Table 129 | Optimal Codons for the Stramenopile P. infestans

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sor	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIN	CAG	Aan	GAU
Lon	CUU	-	AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU	Im	ACA	Cura	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tree	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 130 | Optimal Codons for the Stramenopile P. sojae

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GIN	CAG	Aan	GAU
Tan	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Glu	GAA
	CUA	Thr	ACU	T	AAA		GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tum	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Alo	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

Table 131 | Optimal Codons for the Stramenopile P. halstedii

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU	Ile	AUU
Plie	UUC		UCC	nis	CAC		AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lon	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Chu	GAA
	CUA	Thr	ACU	T	AAA	Giù	GAG
	CUG		ACC	Lys	AAG		GGU
	GUU		ACA	Cvc	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	lyr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Arg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 132 | Optimal Codons for the Stramenopile A. astaci

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Phe	UUU	Ser	UCU	His	CAU	Ile	AUU
	UUC		UCC		CAC		AUC
	UUA		UCA	Gln	CAA		AUA
	UUG		UCG		CAG	Asp	GAU
Lan	CUU		AGU	Asn	AAU		GAC
Leu	CUC		AGC		AAC	Glu	GAA
	CUA	Thr	ACU	Lys	AAA		GAG
	CUG		ACC		AAG	Gly	GGU
Val	GUU		ACA	Cys	UGU		GGC
	GUC		ACG		UGC		GGA
	GUA	Tyr	UAU	Arg	CGU		GGG
	GUG		UAC		CGC		
Pro	CCU	Ala	GCU		CGA		
	CCC		GCC		CGG		
	CCA		GCA		AGA		
	CCG		GCG		AGG		

 Table 133 | Optimal Codons for the Stramenopile A. invadans

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Phe	UUU	Ser	UCU	His	CAU	Ile	AUU
	UUC		UCC		CAC		AUC
	UUA		UCA	Gln	CAA		AUA
Leu	UUG		UCG		CAG	Asp	GAU
	CUU		AGU	Asn	AAU		GAC
	CUC		AGC		AAC	Glu	GAA
	CUA	Thr	ACU	Lys	AAA		GAG
	CUG		ACC		AAG	Gly	GGU
Val	GUU		ACA	Cys	UGU		GGC
	GUC		ACG		UGC		GGA
	GUA	Tyr	UAU	Arg	CGU		GGG
	GUG		UAC		CGC		
Pro	CCU	Ala	GCU		CGA		
	CCC		GCC		CGG		
	CCA		GCA		AGA		
	CCG		GCG		AGG		

 Table 134 | Optimal Codons for the Stramenopile S. parasitica

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Phe	UUU	Ser	UCU	His	CAU	Ile	AUU
	UUC		UCC		CAC		AUC
	UUA		UCA	Gln	CAA		AUA
	UUG		UCG		CAG	Asp	GAU
Tan	CUU		AGU	Asn	AAU		GAC
Leu	CUC		AGC		AAC	Glu	GAA
	CUA	Thr	ACU	Lys	AAA		GAG
	CUG		ACC		AAG	Gly	GGU
Val	GUU		ACA	Cys	UGU		GGC
	GUC		ACG		UGC		GGA
	GUA	Tyr	UAU	Arg	CGU		GGG
	GUG		UAC		CGC		
Pro	CCU	Ala	GCU		CGA		
	CCC		GCC		CGG		
	CCA		GCA		AGA		
	CCG		GCG		AGG		

 Table 135 | Optimal Codons for the Stramenopile P. multistriata

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Phe	UUU	Ser	UCU	His	CAU	Ile	AUU
	UUC		UCC		CAC		AUC
	UUA		UCA	Gln	CAA		AUA
	UUG		UCG		CAG	Asp	GAU
Lou	CUU		AGU	Asn	AAU		GAC
Leu	CUC		AGC		AAC	Glu	GAA
	CUA	Thr	ACU	Lys	AAA		GAG
	CUG		ACC		AAG	Gly	GGU
Val	GUU		ACA	Cys	UGU		GGC
	GUC		ACG		UGC		GGA
	GUA	Tyr	UAU	Arg	CGU		GGG
	GUG		UAC		CGC		
Pro	CCU	Ala	GCU		CGA		
	CCC		GCC		CGG		
	CCA		GCA		AGA		
	CCG		GCG		AGG		

 Table 136 | Optimal Codons for the Stramenopile T. pseudonana
Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
rne	UUC		UCC	1115	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	GII	CAG	Aan	GAU
Low	CUU		AGU	Acre	AAU	Asp	GAC
Leu	CUC		AGC	Asn	AAC	Chu	GAA
	CUA		ACU	T	AAA	Giù	GAG
	CUG	The	ACC	Lys	AAG		GGU
	GUU	1 111	ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	I yr	UAC		CGC		
	CCU	Ala	GCU	Ara	CGA		
Dro	CCC		GCC	Alg	CGG		
110	CCA		GCA		AGA		
	CCG		GCG		AGG		

 Table 137 | Optimal Codons for the Stramenopile N. gaditana

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
Phe	UUC		UCC	nis	CAC	Ile	AUC
	UUA	San	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lon	CUU		AGU	A	AAU	Asp	GAC
Leu	CUC		AGC	ASI	AAC	Cha	GAA
	CUA		ACU	Lys	AAA	Giù	GAG
	CUG	Thr	ACC		AAG		GGU
	GUU		ACA		UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tum	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 138 | Optimal Codons for the Stramenopile A. anophagefferens

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dho	UUU		UCU	Uia	CAU		AUU
rne	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	ser	UCG	GIN	CAG	Aam	GAU
Tan	CUU		AGU	Aan	AAU	Asp	GAC
Leu	CUC		AGC	ASN	AAC	Chu	GAA
	CUA		ACU	т.,	AAA	Glu	GAG
	CUG	Thr	ACC	Lys	AAG		GGU
	GUU		ACA	Crea	UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tur	UAU		CGU		GGG
	GUG	I yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Dro	CCC	Alo	GCC	Alg	CGG		
110	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 139 | Optimal Codons for the Rhizarian B. natans

Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons	Amino Acids	Codons
Dha	UUU		UCU	Hia	CAU		AUU
Plie	UUC		UCC	nis	CAC	Ile	AUC
	UUA	Sam	UCA	Clm	CAA		AUA
	UUG	Ser	UCG	Gin	CAG	Aan	GAU
Lou	CUU		AGU	Acr	AAU	Asp	GAC
Leu	CUC		AGC	ASII	AAC	Chu	GAA
	CUA		ACU	I wa	AAA	Giu	GAG
	CUG	The	ACC	Lys	AAG		GGU
	GUU	1 111	ACA		UGU	Chr	GGC
Val	GUC		ACG	Cys	UGC	Gly	GGA
vai	GUA	Tum	UAU		CGU		GGG
	GUG	1 yr	UAC		CGC		
	CCU		GCU	Ara	CGA		
Pro	CCC	Ala	GCC	Alg	CGG		
	CCA	Ala	GCA		AGA		
	CCG		GCG		AGG		

 Table 140 | Optimal Codons for the Rhizarian P. brassicae

6.6 SeC tRNA genes

Organism	Sequence Name	tRNA Type	Anticodon	Isotype Model
A. castellanii	KB007909	SeC	TCA	SeC
D. discoideum	4	SeC	TCA	SeC
P. fungivorum	scaffold214_0	SeC	TCA	SeC
T. trahens	GL349473	SeC	TCA	SeC
C. owczarzaki	KE346370	SeC	TCA	SeC
S. arctica	KQ242101	SeC	TCA	SeC
L. major	6	SeC	TCA	SeC
L. pyrrhocoris	LpyrH10_03	SeC	TCA	SeC
L. seymouri	Lsey_0079	SeC	TCA	SeC
T. brucei	9	SeC	TCA	SeC
	TcCL_ESM_contig_00012	SeC	TCA	SeC
T. cruzi	TcCL_NonESM_contig_00066	SeC	TCA	SeC
	TcCL_Unassigned_contig_00513	SeC	TCA	SeC
T. theileri	TM35_Tth_2_V1	SeC	TCA	SeC
T. thermophila	GG662308	SeC	TCA	SeC
S. coeruleus	SteCoe_contig_43	SeC	TCA	SeC
P. gallinaceum	PGAL8A_v1_76	SeC	TCA	SeC
P. falciparum	14	SeC	TCA	SeC
P. vivax	12	SeC	TCA	SeC
P. infestans	supercont1-1	SeC	TCA	SeC
P. sojae	PHYSOscaffold_5	SeC	TCA	SeC
A. astaci	scaffold_4916	SeC	TCA	SeC
A. invadans	scf_2373_170_contig_1	SeC	TCA	SeC
S. parasitica	KK583202	SeC	TCA	SeC
	contig30	SeC	TCA	SeC
P. multistriata	contig168	SeC	TCA	SeC
	contig246	SeC	TCA	SeC
T. pseudonana	18	SeC	TCA	SeC
1. pseudonana	9	SeC	TCA	SeC
N. gaditana	16	SeC	TCA	SeC
A. anophagefferens	GL833131	SeC	TCA	SeC
B. natans	scaffold_5	SeC	TCA	SeC

Table 141 | SeC tRNA genes found within the 33 protists

6.7 tRNA genes found for each organism

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	8	Uia	ATG	0		AAT	11
rne	GAA	12		GGA	0	1115	GTG	6	Ile	GAT	1
	TAA	1	Son	TGA	3	Cln	TTG	4		TAT	4
	CAA	2	Ser	CGA	6	GIII	CTG	16	Acm	ATC	1
Lau	AAG	21		ACT	0	Acn	ATT	2	Asp	GTC	24
Leu	GAG	0		GCT	11	ASII	GTT	21	Chu	TTC	7
	TAG	4		AGT	20	Lug	TTT	4	Glu	CTC	22
	CAG	10	The	GGT	0	Lys	CTT	32		ACC	0
	AAC	14	1 111	TGT	2	Crea	ACA	3	Chr	GCC	23
Val	GAC	0		CGT	6	Cys	GCA	10	Gly	TCC	5
vai	TAC	2	Trm	ATA	1		ACG	16		CCC	4
	CAC	11	1 yr	GTA	13		GCG	0	Met	CAT	11
	AGG	13		AGC	23	A 100	TCG	4	Trp	CCA	14
Due	GGG	0	Ala	GGC	0	Arg	CCG	3			
Pro	TGG	2	Ala	TGC	3		TCT	3	Total A	Anticodons	found:
	CGG	9		CGC	8		CCT	8			464

 Table 142 | Number and type of tRNA genes found for the Amoebozoan A. castellani

 (chimeric and pseudo genes includeed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	0	Uia	ATG	0		AAT	1
rne	GAA	2		GGA	0	ПIS	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	3		TAT	29
	CAA	1	Ser	CGA	0	GIII	CTG	1	Acn	ATC	0
Lou	AAG	2		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	0	ASII	GTT	1	Chu	TTC	3
	TAG	12		AGT	3	I wa	TTT	0	Giu	CTC	1
	CAG	0	The	GGT	0	Lys	CTT	1		ACC	0
	AAC	0	1 111	TGT	1	Cvc	ACA	0	Chy	GCC	0
Vəl	GAC	2		CGT	0	Cys	GCA	0	Gly	TCC	1
vai	TAC	0	Tur	ATA	0		ACG	2		CCC	4
	CAC	1	I yı	GTA	2		GCG	0	Met	CAT	0
	AGG	0		AGC	3	Ang	TCG	0	Trp	CCA	0
Duo	GGG	0	Alo	GGC	0	Alg	CCG	1			
rro	TGG	1	Ala	TGC	0		TCT	0	Total A	Anticodons	found:
	CGG	2		CGC	0		CCT	2			88

 Table 143 | Number and type of tRNA genes found for the Amoebozoan E. histolytica (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	9	Uic	ATG	0		AAT	17
rne	GAA	15		GGA	0	1115	GTG	9	Ile	GAT	0
	TAA	19	Son	TGA	16	Cln	TTG	13		TAT	4
	CAA	4	Ser	CGA	1	GIII	CTG	1	Acn	ATC	0
Lau	AAG	11		ACT	0	Aan	ATT	0	Asp	GTC	22
Leu	GAG	0		GCT	12	ASII	GTT	18	Chu	TTC	19
	TAG	3		AGT	18	I wa	TTT	22	Giu	CTC	3
	CAG	1	The	GGT	0	Lys	CTT	10		ACC	0
	AAC	20	1 111	TGT	6	Cra	ACA	0	Chr	GCC	18
Val	GAC	0		CGT	1	Cys	GCA	8	Gly	TCC	5
vai	TAC	7	Trm	ATA	0		ACG	7		CCC	0
	CAC	1	1 yr	GTA	12		GCG	0	Met	CAT	7
	AGG	1		AGC	15	A	TCG	1	Trp	CCA	7
Due	GGG	0	Ala	GGC	0	Arg	CCG	0			
rro	TGG	15	Ala	TGC	8		TCT	11	Total A	Anticodons	found:
	CGG	0		CGC	0		CCT	1			398

 Table 144 | Number and type of tRNA genes found for the Amoebozoan D. discoideum (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	12	Uia	ATG	0		AAT	15
rne	GAA	12		GGA	0	nis	GTG	8	Ile	GAT	0
	TAA	4	Son	TGA	3	Cln	TTG	6		TAT	2
	CAA	6	Ser	CGA	4	GIII	CTG	14	Acn	ATC	0
Lou	AAG	11		ACT	0	Acn	ATT	0	Asp	GTC	16
Leu	GAG	0		GCT	8	ASII	GTT	15	Chu	TTC	6
	TAG	2		AGT	13	I wo	TTT	6	Giù	CTC	16
	CAG	8	Thr	GGT	0	Lys	CTT	18		ACC	0
	AAC	13	1 111	TGT	5	Cur	ACA	0	Chy	GCC	14
Vəl	GAC	0		CGT	3	Cys	GCA	6	Gly	TCC	20
vai	TAC	3	Tur	ATA	0		ACG	8		CCC	1
	CAC	4	1 yı	GTA	14		GCG	0	Met	CAT	7
	AGG	10		AGC	18	Ana	TCG	5	Тгр	CCA	10
Duo	GGG	0	Ala	GGC	0	Alg	CCG	1			
110	TGG	5	Ala	TGC	7		TCT	10	Total A	Anticodons	found:
	CGG	2		CGC	2		CCT	3			376

 Table 145 | Number and type of tRNA genes found for the Amoebozoan P. fungivorum (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	0	Uia	ATG	0		AAT	6
rne	GAA	4		GGA	0	1115	GTG	0	Ile	GAT	0
	TAA	2	Son	TGA	2	Cln	TTG	0		TAT	1
	CAA	3	Ser	CGA	4	GIII	CTG	0	Acn	ATC	0
Lou	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASII	GTT	2	Chu	TTC	1
	TAG	0		AGT	0	I wa	TTT	1	Giu	CTC	0
	CAG	2	The	GGT	0	Lys	CTT	1		ACC	0
	AAC	2	1 111	TGT	2	Crea	ACA	0	Chr	GCC	10
Val	GAC	0		CGT	2	Cys	GCA	0	Gly	TCC	2
vai	TAC	0	Tree	ATA	0		ACG	4		CCC	2
	CAC	2	1 yr	GTA	2		GCG	0	Met	CAT	4
	AGG	0		AGC	5	A 100	TCG	3	Trp	CCA	1
Duc	GGG	0	Ala	GGC	0	Arg	CCG	1			
rro	TGG	2	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	2		CGC	1		CCT	2			88

 Table 146 | Number and type of tRNA genes found for the Apusomonadan T. trahens (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	21	Цia	ATG	0		AAT	28
rne	GAA	14		GGA	0	nis	GTG	18	Ile	GAT	1
	TAA	4	Son	TGA	2	Cln	TTG	4		TAT	1
	CAA	1	Ser	CGA	6	GIII	CTG	17	Acn	ATC	0
Lou	AAG	15		ACT	0	Acn	ATT	0	Asp	GTC	31
Leu	GAG	0		GCT	8	ASII	GTT	15	Chu	TTC	5
	TAG	2		AGT	23	I wa	TTT	6	Giù	CTC	31
	CAG	11	The	GGT	0	Lys	CTT	38		ACC	0
	AAC	27	1 111	TGT	2	Cura	ACA	0	Chr	GCC	32
Val	GAC	0		CGT	2	Cys	GCA	11	Gly	TCC	1
vai	TAC	2	Trm	ATA	1		ACG	35		CCC	4
	CAC	6	1 yr	GTA	11		GCG	0	Met	CAT	8
	AGG	16		AGC	30	Ang	TCG	0	Trp	CCA	11
Duo	GGG	0	Alo	GGC	0	Arg	CCG	3			
rio	TGG	4	Ala	TGC	5		TCT	3	Total A	Anticodons	found:
	CGG	10		CGC	7		CCT	1			534

 Table 147 | Number and type of tRNA genes found for the Opisthokont F. alba (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	3
rne	GAA	3		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	0	Cln	TTG	1		TAT	0
	CAA	0	Ser	CGA	0	GIII	CTG	3	Acn	ATC	0
Lou	AAG	4		ACT	0	Acn	ATT	0	Asp	GTC	7
Leu	GAG	0		GCT	0	ASII	GTT	2	Chu	TTC	2
	TAG	1		AGT	3	Lug	TTT	1	Glu	CTC	5
	CAG	2	The	GGT	0	Lys	CTT	5		ACC	0
	AAC	4	1 111	TGT	1	Crea	ACA	0	Chr	GCC	5
Val	GAC	0		CGT	2	Cys	GCA	1	Gly	TCC	3
vai	TAC	1	Trm	ATA	0		ACG	3		CCC	0
	CAC	1	1 yr	GTA	2		GCG	0	Met	CAT	4
	AGG	3		AGC	6	A 100	TCG	1	Trp	CCA	1
Due	GGG	0	Ala	GGC	0	Arg	CCG	0			
Pro	TGG	0	Ala	TGC	2		TCT	1	Total A	Anticodons	found:
	CGG	2		CGC	2		CCT	1			91

 Table 148 | Number and type of tRNA genes found for the Opisthokont C. owczarzaki (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	7	Uia	ATG	0		AAT	13
rne	GAA	11		GGA	0	nis	GTG	8	Ile	GAT	1
	TAA	4	Son	TGA	4	Cln	TTG	7		TAT	3
	CAA	5	Ser	CGA	3	GIII	CTG	7	Acn	ATC	0
Lou	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	15
Leu	GAG	G 0		GCT	5	ASII	GTT	12	Chu	TTC	5
	TAG	2	Thr	AGT	9	Lys	TTT	8	Giu	CTC	12
	CAG	1		GGT	1		CTT	15		ACC	1
	AAC	7		TGT	6		ACA	0	Chy	GCC	16
Vəl	GAC	1		CGT	4	Cys	GCA	7	Gly	TCC	11
vai	TAC	10	Trm	ATA	0		ACG	12		CCC	0
	CAC	5	1 yr	GTA	8		GCG	0	Met	CAT	11
Pro	AGG	10		AGC	12	Ang	TCG	5	Trp	CCA	6
	GGG	0	Ala	GGC	0 Arg	CCG	0				
	TGG	7		TGC		TCT	6	Total A	Anticodons	found:	
	CGG	2		CGC	5		CCT	2			325

 Table 149 | Number and type of tRNA genes found for the Opisthokont S. arctica (chimeric and pseudo genes included)

tRNA	Anticodon	No.	tRNA	Anticodon	No.	tRNA	Anticodon	No.	tRNA	Anticodon	No.
type		iouna	type		louna	type		louna	type		iouna
Phe	AAA	0		AGA	1	His	ATG	0		AAT	0
ТПС	GAA	1		GGA	0	1115	GTG	1	Ile	GAT	13
	TAA	1	Son	TGA	3	Cln	TTG	3		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acr	ATC	0
Lou	AAG	2		ACT	0	Acr	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	1	ASII	GTT	2	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Glu	CTC	2
	CAG	1		GGT	0		CTT	2		ACC	0
	AAC	0		TGT	1		ACA	0	Chr	GCC	2
Val	GAC	2		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	2		CCC	1
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	3
	AGG	1		AGC	2	Ang	TCG	1	Trp	CCA	1
Duo	GGG	0	0 1 Ala	GGC	$\begin{array}{c c} 2 \\ \hline 0 \end{array}$ Arg	CCG	1				
Pro	TGG	1		TGC	1	1	TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			73

 Table 150 | Number and type of tRNA genes found for the Excavate G. lamblia (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dha	AAA	0		AGA	5	II:a	ATG	0		AAT	0
Phe	GAA	6		GGA	0	HIS	GTG	3	Ile	GAT	6
	TAA	4	G	TGA	1	Cl-	TTC	5		TAT	2
	CAA	2	Ser	CGA	1	Glu	CTC	3	A	ATC	0
Lou	AAG	5		ACT	0	A	ATT	1	Asp	GTC	6
Leu	GAG	0		GCT	5	Asn	GTT	9		TTG	1
	TAG	1	Thr	AGT	5	Lys	TTT	2	Clm	CTG	2
	CAG	1		GGT	0		CTT	5	GIII	TTA	-
	AAC	0		TGT	1	Cvs	ACA	0		CTA	-
Vəl	GAC	3		CGT	2	Cys	GCA	4		ACC	0
vai	TAC	2	Trm	ATA	0		ACG	4	Chr	GCC	0
	CAC	1	1 yr	GTA	3		GCG	0	Gly	TCC	2
	AGG	2		AGC	7	A	TCG	1		CCC	1
Pro	GGG	0	Ala	GGC	0	Arg	CCG	1	Met	CAT	5
	TGG	2		TGC	2		TCT	3	Trp	CCA	2
	CGG	1		CGC	1		CCT	2	Total An	ticodons found:	133

 Table 151 | Number and type of tRNA genes found for the Excavate S. salmonicida (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	3
rne	GAA	2		GGA	0	1115	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	3	Aan	ATC	0
Lou	AAG	3		ACT	0	Acm	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASI	GTT	3	Chu	TTC	1
	TAG	1	Thr	AGT	3	Lys	TTT	1	Glu	CTC	2
	CAG	2		GGT	0		CTT	4		ACC	0
	AAC	2		TGT	1		ACA	0	Gly	GCC	4
Val	GAC	0		CGT	2	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	4		CCC	1
	CAC	2	1 yr	GTA	3		GCG	0	Met	CAT	2
	AGG	AGG 2		AGC	2	A 100	TCG	1	Trp	CCA	1
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	1	Total A	found:		
	CGG	2		CGC	2		CCT	1			81

 Table 152 | Number and type of tRNA genes found for the Excavate L. major (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	4
rne	GAA	2		GGA	0	ПIS	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	0	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	0	GIII	CTG	3	Acn	ATC	0
Lou	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	4
Leu	GAG	0		GCT	0	ASII	GTT	3	Chu	TTC	2
Val	TAG	1	Thr	AGT	3	Lys Cys	TTT	1	Giu	CTC	4
	CAG	3		GGT	0		CTT	5		ACC	0
	AAC	3		TGT	1		ACA	0	Gly	GCC	4
	GAC	0		CGT	3		GCA	2	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	7		CCC	1
	CAC	4	1 yr	GTA	3		GCG	0	Met	CAT	3
Pro	AGG	2		AGC	2	Ang	TCG	1	Trp	CCA	2
	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	3		CGC	3		CCT	1			101

 Table 153 | Number and type of tRNA genes found for the Excavate L. pyrrhocoris (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	4
rne	GAA	2		GGA	0	1115	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	2	Acn	ATC	0
Lau	AAG	2		ACT	0	Aan	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASII	GTT	3	Chu	TTC	2
	TAG	1	Thr	AGT	3	Lys	TTT	1	Giu	CTC	3
	CAG	3		GGT	0		CTT	3		ACC	0
	AAC	3		TGT	1		ACA	0	Chr	GCC	4
Val	GAC	0		CGT	2	Cys	GCA	2	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	6		CCC	1
	CAC	4	1 yr	GTA	3		GCG	0	Met	CAT	3
	AGG	2	Ala	AGC	3	A 100	TCG	1	Trp	CCA	2
Due	GGG	0		GGC	0 1	CCG	1				
Pro	TGG	1		TGC		TCT	1	Total A	found:		
	CGG	3		CGC	2		CCT	1			92

 Table 154 | Number and type of tRNA genes found for the Excavate L. seymouri (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	2
rne	GAA	2		GGA	0	ПIS	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	2	Acn	ATC	0
Lon	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	2
Leu	GAG	0		GCT	2	ASII	GTT	2	Chu	TTC	1
Val	TAG	1	Thr	AGT	1	Lys Cys	TTT	1	Giu	CTC	2
	CAG	1		GGT	0		CTT	3		ACC	0
	AAC	2		TGT	1		ACA	0	Cly	GCC	3
	GAC	0		CGT	1		GCA	2	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	3		CCC	1
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	2
	AGG 1		AGC	2	Ang	TCG	1	Trp	CCA	1	
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	1	Total Anticodons foun			
	CGG	1		CGC	2		CCT	1			63

 Table 155 | Number and type of tRNA genes found for the Excavate T. brucei (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	4
Phe	GAA	3		GGA	0	HIS	GTG	1	Ile	GAT	0
	TAA	2	Sam	TGA	2	Clm	TTG	2		TAT	4
	CAA	1	Ser	CGA	2	GIII	CTG	4	Acn	ATC	0
Lou	AAG	3		ACT	0	Acr	ATT	0	Asp	GTC	2
Leu	GAG	0	Thr	GCT	2	ASII	GTT	3	Chu	TTC	2
	TAG	2		AGT	2	Lys	TTT	2	Giu	CTC	4
	CAG	2		GGT	0		CTT	4		ACC	0
	AAC	2		TGT	2		ACA	0	Chy	GCC	2
Vəl	GAC	0		CGT	1	Cys	GCA	2	Gly	TCC	2
vai	TAC	2	Tur	ATA	1		ACG	3		CCC	2
	CAC	2	1 yr	GTA	2		GCG	0	Met	CAT	4
	AGG 1		AGC	1	Ang	TCG	2	Тгр	CCA	2	
Pro	GGG	0	Ala	GGC	0	0 Arg 2	CCG	2			
	TGG	1		TGC	2		TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	2			99

 Table 156 | Number and type of tRNA genes found for the Excavate T. cruzi (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	3	Uia	ATG	0		AAT	5
rne	GAA	14		GGA	0	1115	GTG	2	Ile	GAT	0
	TAA	3	Son	TGA	2	Cln	TTG	2		TAT	1
	CAA	2	Ser	CGA	1	GIII	CTG	4	Acn	ATC	0
Lou	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	2	ASII	GTT	5	Chu	TTC	4
	TAG	1	Thr	AGT	3	Lys	TTT	2	Giu	CTC	7
	CAG	5		GGT	0		CTT	7		ACC	0
	AAC	3		TGT	3		ACA	0	Chr	GCC	4
Val	GAC	0		CGT	1	Cys	GCA	2	Gly	TCC	5
vai	TAC	4	Trm	ATA	0		ACG	7		CCC	1
	CAC	5	1 yr	GTA	4		GCG	0	Met	CAT	4
Pro	AGG	3		AGC	2	Ang	TCG	2	Trp	CCA	2
	GGG	0	Ala	GGC	0 3	CCG	1				
	TGG	2		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	2		CGC	4		CCT	1			145

 Table 157 | Number and type of tRNA genes found for the Excavate T. theileri (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	20	Uia	ATG	0		AAT	29
rne	GAA	24		GGA	0	1115	GTG	16	Ile	GAT	0
	TAA	20	Son	TGA	9	Chu	TTC	36		TAT	13
	CAA	14	Ser	CGA	2	Glu	CTC	7	Acm	ATC	0
Lou	AAG	18		ACT	0	Aan	ATT	0	Asp	GTC	31
Leu	GAG	0		GCT	15	ASI	GTT	31		TTG	37
	TAG	3	Thr	AGT	23	Lys	TTT	29	Cln	CTG	7
	CAG	2		GGT	0		CTT	33	GIII	TTA	-
	AAC	21	Thr	TGT	6	Cvs	ACA	0		CTA	-
Vəl	GAC	0		CGT	1	Cys	GCA	18		ACC	0
vai	TAC	6	Tur	ATA	0		ACG	8	Chr	GCC	31
	CAC	3	1 yı	GTA	19		GCG	0	Gly	TCC	12
	AGG	20		AGC	32	Ang	TCG	1		CCC	1
Duo	GGG	0		GGC	0 Arg	CCG	1	Met	CAT	12	
rro	TGG	7	Ala	TGC	11		TCT	25	Тгр	CCA	21
	CGG	1		CGC	2		CCT	2	Total An	ticodons found:	680

 Table 158 | Number and type of tRNA genes found for the Alveolate T. thermophila (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	9
rne	GAA	5		GGA	0	nis	GTG	6	Ile	GAT	1
	TAA	6	Son	TGA	5	Cln	TTG	6		TAT	9
	CAA	7	Ser	CGA	3	GIII	CTG	5	Aan	ATC	10
Lou	AAG	7		ACT	0	Acr	ATT	0	Asp	GTC	2
Leu	GAG	0		GCT	7	ASII	GTT	9	Chu	TTC	9
	TAG	2	Thr	AGT	8	Lys	TTT	11	Giu	CTC	4
	CAG	2		GGT	0		CTT	5		ACC	0
	AAC	4		TGT	4		ACA	0	Chr	GCC	8
Val	GAC	0		CGT	4	Cys	GCA	7	Gly	TCC	5
vai	TAC	4	Trm	ATA	0		ACG	3		CCC	3
	CAC	4 3 Ty	1 yr	GTA	12		GCG	0	Met	CAT	9
Pro	AGG	5		AGC	10	Ang	TCG	2	Trp	CCA	6
	GGG	0	Ala	GGC	0	0 Arg 3	CCG	2			
	TGG	6		TGC	3		TCT	7	Total A	found:	
	CGG	3		CGC	2		CCT	3			259

 Table 159 | Number and type of tRNA genes found for the Alveolate S. coeruleus (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	1
rne	GAA	1		GGA	0	1115	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Aan	ATC	0
Lou	AAG	1		ACT	0	Acm	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASI	GTT	1	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Glu	CTC	1
	CAG	0		GGT	0		CTT	2		ACC	0
	AAC	1		TGT	1		ACA	0	Gly	GCC	1
Val	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	1		CCC	0
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	1
	AGG	1	Ala	AGC	1	A 100	TCG	1	Trp	CCA	1
Duo	GGG	0		GGC	0 Arg	CCG	0				
rro	TGG	1		TGC	1	1	TCT	1	Total A	found:	
	CGG	1		CGC	1		CCT	1			43

 Table 160 | Number and type of tRNA genes found for the Alveolate P. gallinaceum (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Цia	ATG	0		AAT	1
rne	GAA	1		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acn	ATC	0
Lou	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASII	GTT	1	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Giù	CTC	1
	CAG	1		GGT	0		CTT	1		ACC	0
	AAC	1		TGT	1		ACA	0	Chr	GCC	1
Val	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	1		CCC	0
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	1
	AGG	1		AGC	1	Ang	TCG	1	Trp	CCA	1
Pro	GGG	0	Ala	GGC	0 1	CCG	0				
	TGG	1		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	1		CGC	1		CCT	1			43

 Table 161 | Number and type of tRNA genes found for the Alveolate P. falciparum (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	1
rne	GAA	2		GGA	0	1115	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acm	ATC	0
Lou	AAG	1		ACT	0	Acm	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASI	GTT	1	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Glu	CTC	1
	CAG	1		GGT	0		CTT	1		ACC	0
	AAC	1		TGT	1		ACA	0	Chr	GCC	1
Val	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	1		CCC	0
	CAC	1	Туг	GTA	1		GCG	0	Met	CAT	1
	AGG	1		AGC	1	A 100	TCG	1	Trp	CCA	1
Due	GGG	0		GGC	0	0 Arg	CCG	0			
rro	TGG	1	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			44

 Table 162 | Number and type of tRNA genes found for the Alveolate P. vivax (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	3		AGA	129	Uia	ATG	2		AAT	132
rne	GAA	151		GGA	25	nis	GTG	112	Ile	GAT	8
	TAA	192	Son	TGA	548	Cln	TTG	214		TAT	19
	CAA	202	Ser	CGA	79 CTG 231 0 Asn ATT 3	Acn	ATC	6			
Lou	AAG	87		ACT	0	Acr	ATT	3	Asp	GTC	531
Leu	GAG	0		GCT	122	ASII	GTT	161	Chu	TTC	172
	TAG	24	Thr	AGT	159	Lys	TTT	128	Giu	CTC	353
	CAG	61		GGT	0		CTT	127		ACC	6
	AAC	130		TGT	80		ACA	0	Chr	GCC	75
Val	GAC	3		CGT	155	Cys	GCA	104	Gly	TCC	50
vai	TAC	56	Trm	ATA	0		ACG	79		CCC	60
	CAC	342	1 yr	GTA	91		GCG	5	Met	CAT	172
	AGG	103		AGC	280	Ang	TCG	21	Trp	CCA	120
Pro	GGG	0	Ala	GGC	17 Arg 97	CCG	4				
	TGG	533		TGC		TCT	19	Total A	found:		
	CGG	132		CGC	134		CCT	3			6852

 Table 163 | Number and type of tRNA genes found for the Stramenopile P. infestans (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	60	Uia	ATG	0		AAT	31
rne	GAA	113		GGA	0	nis	GTG	60	Ile	GAT	0
	TAA	8	Son	TGA	3	Cln	TTG	20		TAT	0
	CAA	16	Ser	CGA	32	GIII	CTG	22	Acn	ATC	0
Lou	AAG	29		ACT	0	Acn	ATT	0	Asp	GTC	5
Leu	GAG	0		GCT	7	ASII	GTT	5	Chu	TTC	73
	TAG	4	Thr	AGT	28	Lys	TTT	8	Giu	CTC	172
	CAG	10		GGT	0		CTT	133		ACC	0
	AAC	61		TGT	7		ACA	0	Cly	GCC	42
Val	GAC	0		CGT	28	Cys	GCA	7	Gly	TCC	38
vai	TAC	8	Trm	ATA	0		ACG	40		CCC	38
	CAC	38	1 yr	GTA	8		GCG	0	Met	CAT	50
	AGG	70		AGC	71	Ang	TCG	10	Trp	CCA	8
Duo	GGG	0	41.	GGC	0 Arg	CCG	6				
rro	TGG	10	Ala	TGC	33		TCT	3	Total A	Anticodons	found:
	CGG	6		CGC	216		CCT	50			1687

 Table 164 | Number and type of tRNA genes found for the Stramenopile P. sojae (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	2	Цia	ATG	0		AAT	5
rne	GAA	1		GGA	0	nis	GTG	2	Ile	GAT	3
	TAA	1	Son	TGA	4	Cln	TTG	3		TAT	4
	CAA	2	Ser	CGA	1	GIII	CTG	3	Acn	ATC	1
Lou	AAG	2		ACT	0	Acn	ATT	1	Asp	GTC	1
Leu	GAG	0		GCT	5	ASII	GTT	8	Chu	TTC	5
	TAG	2	Thr	AGT	4	Lys	TTT	4	Giu	CTC	6
	CAG	1		GGT	0		CTT	1		ACC	0
	AAC	1		TGT	4		ACA	1	Chy	GCC	4
Vəl	GAC	0		CGT	2	Cys	GCA	15	Gly	TCC	6
vai	TAC	4	Trm	ATA	0		ACG	2		CCC	1
	CAC	4	1 yr	GTA	2		GCG	1	Met	CAT	8
	AGG	2		AGC	2	Ang	TCG	1	Trp	CCA	1
Pro	GGG	0	Ala	GGC	0 Arg	CCG	2				
	TGG	3		TGC	8	8	TCT	4	Total A	found:	
	CGG	1		CGC	1		CCT	2			154

 Table 165 | Number and type of tRNA genes found for the Stramenopile P. halstedii (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	2
rne	GAA	3		GGA	1	1115	GTG	3	Ile	GAT	0
	TAA	2	Son	TGA	2	Cln	TTG	4		TAT	3
	CAA	18	Ser	CGA	7	GIII	CTG	8	Acm	ATC	0
Lou	AAG	2		ACT	0	Acm	ATT	0	Asp	GTC	11
Leu	GAG	0		GCT	11	ASI	GTT	4	Chu	TTC	4
	TAG	2	Thr	AGT	4	Lys	TTT	9	Glu	CTC	3
	CAG	9		GGT	2		CTT	100		ACC	0
	AAC	0		TGT	5		ACA	0		GCC	3
Val	GAC	7		CGT	2	Cys	GCA	12	Gly	TCC	13
vai	TAC	5	True	ATA	0		ACG	5		CCC	5
	CAC	6	1 yr	GTA	3		GCG	0	Met	CAT	3
	AGG	12		AGC	3	A 100	TCG	3	Trp	CCA	10
Due	GGG	0		GGC	0 Arg	CCG	2				
rro	TGG	6	Ala	TGC	3		TCT	6	Total A	Anticodons	found:
	CGG	5		CGC	5		CCT	2			346

 Table 166 | Number and type of tRNA genes found for the Stramenopile A. astaci (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	7	Uia	ATG	0		AAT	4
rne	GAA	5		GGA	0	nis	GTG	1	Ile	GAT	1
	TAA	2	Sam	TGA	4	Clm	TTG	8		TAT	1
	CAA	22	Ser	CGA	23	GIII	CTG	7	Acn	ATC	0
Lon	AAG	10		ACT	0	Acr	ATT	0	Asp	GTC	15
Leu	GAG	1		GCT	12	ASII	GTT	6	Chu	TTC	2
	TAG	4	Thr	AGT	3	Lys	TTT	8	Giu	CTC	3
	CAG	10		GGT	0		CTT	14		ACC	0
	AAC	0		TGT	28		ACA	0	Gly	GCC	12
Vəl	GAC	11		CGT	7	Cys	GCA	11	Gly	TCC	11
vai	TAC	7	Trm	ATA	0		ACG	9		CCC	6
	CAC	5	1 yr	GTA	2		GCG	0	Met	CAT	4
	AGG	2		AGC	5	Ang	TCG	4	Trp	CCA	10
Pro	GGG	0	Ala	GGC	1 Arg	CCG	1				
	TGG	8		TGC		TCT	5	Total A	Anticodons	found:	
	CGG	5		CGC	5		CCT	2			339

 Table 167 | Number and type of tRNA genes found for the Stramenopile A. invadans (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	2		AGA	10	Uia	ATG	0		AAT	2
rne	GAA	6		GGA	0	1115	GTG	3	Ile	GAT	1
	TAA	3	Son	TGA	3	Cln	TTG	5		TAT	3
	CAA	8	Ser	CGA	5	GIII	CTG	1	Acn	ATC	0
Lau	AAG	5		ACT	0	Acn	ATT	0	Asp	GTC	7
Leu	GAG	0		GCT	7	ASII	GTT	9	Chu	TTC	2
	TAG	4	Thr	AGT	8	Lys	TTT	4	Giu	CTC	1
	CAG	5		GGT	0		CTT	11		ACC	0
	AAC	1		TGT	3		ACA	0	Chr	GCC	2
Val	GAC	5		CGT	5	Cys	GCA	5	Gly	TCC	7
vai	TAC	16	True	ATA	0		ACG	0		CCC	5
	CAC	17	Туг	GTA	5		GCG	1	Met	CAT	13
	AGG	5		AGC	6	A 100	TCG	4	Trp	CCA	4
Pro	GGG	0	Ala	GGC	0 7	CCG	4				
	TGG	4		TGC		TCT	3	Total A	Anticodons	found:	
	CGG	3		CGC	0		CCT	2			242

 Table 168 | Number and type of tRNA genes found for the Stramenopile S. parasitica (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	7	Uia	ATG	0		AAT	8
rne	GAA	8		GGA	0	nis	GTG	4	Ile	GAT	0
	TAA	1	Son	TGA	2	Cln	TTG	5		TAT	0
	CAA	5	Ser	CGA	4	GIII	CTG	3	Acn	ATC	0
Lou	AAG	9		ACT	0	Acr	ATT	0	Asp	GTC	12
Leu	GAG	0		GCT	4	ASII	GTT	8	Chu	TTC	7
	TAG	4	Thr	AGT	8	Lys	TTT	6	Giu	CTC	4
	CAG	1		GGT	0		CTT	8		ACC	0
	AAC	7		TGT	3		ACA	0	Chy	GCC	7
Vəl	GAC	0		CGT	3	Cys	GCA	0	Gly	TCC	11
vai	TAC	3	Tur	ATA	0		ACG	0		CCC	0
	CAC	1	1 yr	GTA	5		GCG	0	Met	CAT	6
Pro	AGG	5		AGC	12	Ang	TCG	4	Trp	CCA	4
	GGG	0	Ala	GGC	0 5	CCG	0				
	TGG	5		TGC		TCT	3	Total A	found:		
	CGG	1		CGC	2		CCT	2			207

 Table 169 | Number and type of tRNA genes found for the Stramenopile P. multistriata (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	2	Uic	ATG	0		AAT	3
1 110	GAA	3		GGA	0	пь	GTG	2	Ile	GAT	0
	TAA	1	Sor	TGA	2	Cln	TTG	1		TAT	0
	CAA	2	501	CGA	1	Gill	CTG	2	Acn	ATC	0
Lon	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	4
Leu	GAG	0		GCT	3	ASI	GTT	4	Chu	TTC	3
	TAG	1	Thr	AGT	2	Lys	TTT	3	Giù	CTC	3
	CAG	1		GGT	0		CTT	3		ACC	0
	AAC	2		TGT	2		ACA	0	Chr	GCC	3
Val	GAC	0		CGT	1	Cys	GCA	0	Gly	TCC	4
V AL	TAC	2	Typ	ATA	0		ACG	0		CCC	0
	CAC	1	1 yı	GTA	3		GCG	0	Met	CAT	5
	AGG	2		AGC	4	Arr	TCG	1	Тпр	CCA	2
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	2	Total .	Anticodons	found:	
	CGG	1		CGC	1		CCT	1			87

 Table 170 | Number and type of tRNA genes found for the Stramenopile T. pseudonana (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uic	ATG	0		AAT	1
гце	GAA	3		GGA	0	пв	GTG	2	Ile	GAT	3
	TAA	3	Sor	TGA	2	Cln	TTG	3		TAT	0
	CAA	2	501	CGA	1	GIII	CTG	1	Acn	ATC	0
Lou	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	3	ASI	GTT	2	Chu	TTC	3
	TAG	2	Thr	AGT	0	Lys	TTT	3	Gau	CTC	1
	CAG	1		GGT	0		CTT	1		ACC	0
	AAC	0		TGT	2	Cvs	ACA	0	Chy	GCC	3
Val	GAC	1		CGT	1	Cys	GCA	2	блу	TCC	2
vai	TAC	3	Typ	ATA	0		ACG	2		CCC	1
	CAC	1	1 yı	GTA	3		GCG	0	Met	CAT	7
Pro	AGG	0		AGC	1	Arm	TCG	2	Тıр	CCA	2
	GGG	0	A la	GGC	0 Arg	CCG	0				
	TGG	3	Ala	TGC	4	4	TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			87

 Table 171 | Number and type of tRNA genes found for the Stramenopile N. gaditana (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	2
rne	GAA	2		GGA	0	1115	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	3
	CAA	1	Ser	CGA	2	GIII	CTG	0	Acr	ATC	0
Lon	AAG	3		ACT	0	Acm	ATT	0	Asp	GTC	4
Leu	GAG	0		GCT	1	ASII	GTT	2	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Glu	CTC	2
	CAG	1		GGT	0		CTT	3		ACC	0
	AAC	0		TGT	1		ACA	0	Chy	GCC	4
Val	GAC	1		CGT	2	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	4		CCC	1
	CAC	0	1 yr	GTA	0		GCG	0	Met	CAT	1
	AGG	3		AGC	0	A 100	TCG	2	Trp	CCA	1
Pro	GGG	0	Ala	GGC	0 Arg	CCG	2				
	TGG	1		TGC	1	1	TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	1			69

 Table 172 | Number and type of tRNA genes found for the Stramenopile A. anophagefferens (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	3
rne	GAA	6		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	2	Son	TGA	2	Cln	TTG	2		TAT	1
	CAA	2	Ser	CGA	3	GIN	CTG	2	Acn	ATC	0
Lou	AAG	4		ACT	1	Acn	ATT	0	Asp	GTC	7
Leu	GAG	0		GCT	1	ASII	GTT	3	Chu	TTC	6
	TAG	1	Thr	AGT	2	Lys	TTT	3	Giu	CTC	2
	CAG	2		GGT	0		CTT	3		ACC	0
	AAC	2		TGT	2		ACA	3	Chy	GCC	2
Vəl	GAC	0		CGT	2	Cys	GCA	1	Gly	TCC	3
vai	TAC	2	Tur	ATA	0		ACG	2		CCC	3
	CAC	2	1 yı	GTA	3		GCG	0	Met	CAT	3
	AGG	4		AGC	1	Ana	TCG	1	Trp	CCA	2
Pro	GGG	0	Ala	GGC	0 Arg	CCG	1				
	TGG	4		TGC		TCT	1	Total Anticodons four			
	CGG	2		CGC	0		CCT	1			109

 Table 173 | Number and type of tRNA genes found for the Rhizarian B. natans (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	3	Uia	ATG	0		AAT	6
rne	GAA	4		GGA	0	1115	GTG	3	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	2		TAT	1
	CAA	2	Ser	CGA	4	GIII	CTG	4	Acm	ATC	0
Lon	AAG	3		ACT	0	Acm	ATT	0	Asp	GTC	8
Leu	GAG	0		GCT	2	ASII	GTT	12	Chu	TTC	4
	TAG	1	Thr	AGT	3	Lys	TTT	2	Glu	CTC	5
	CAG	5		GGT	0		CTT	7		ACC	0
	AAC	5		TGT	2		ACA	0	Chr	GCC	7
Val	GAC	0		CGT	3	Cys	GCA	3	Gly	TCC	2
vai	TAC	1	Trm	ATA	0		ACG	5		CCC	2
	CAC	3	Туг	GTA	3		GCG	0	Met	CAT	5
	AGG	3		AGC	5	A 1907	TCG	3	Trp	CCA	2
Due	GGG	0	Ala	GGC	0 Arg	CCG	2				
Pro	TGG	2		TGC	3	3	TCT	1	Total A	Anticodons	found:
	CGG	4		CGC	4		CCT	1			154

 Table 174 | Number and type of tRNA genes found for the Rhizarian P. brassicae (chimeric and pseudo genes included)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	8	Uia	ATG	0		AAT	10
rne	GAA	0		GGA	0	nis	GTG	6	Ile	GAT	0
	TAA	1	Som	TGA	2	Clm	TTG	4		TAT	2
	CAA	2	Ser	CGA	5	GIII	CTG	16	Acn	ATC	0
Lou	AAG	21		ACT	0	Acr	ATT	0	Asp	GTC	0
Leu	GAG	0		GCT	11	ASII	GTT	0	Chu	TTC	5
	TAG	3	Thr	AGT	19	Lys	TTT	4	Giu	CTC	21
	CAG	10		GGT	0		CTT	31		ACC	0
	AAC	12		TGT	2		ACA	0	Chy	GCC	21
Vəl	GAC	0		CGT	6	Cys	GCA	9	Gly	TCC	5
vai	TAC	2	Trm	ATA	0		ACG	16		CCC	4
	CAC	10	1 yı	GTA	13		GCG	0	Met	CAT	9
	AGG	11		AGC	23	Ang	TCG	4	Trp	CCA	13
Pro	GGG	0	Ala	GGC	0 3 Arg	CCG	3				
	TGG	2		TGC		TCT	2	Total A	found:		
	CGG	7		CGC	8	3	CCT	8			374

 Table 175 | Number and type of tRNA genes found for the Amoebozoan A. castellani (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	0	Uia	ATG	0		AAT	1
rne	GAA	0		GGA	0	1115	GTG	1	Ile	GAT	0
	TAA	0	Son	TGA	1	Cln	TTG	1		TAT	17
	CAA	1	Ser	CGA	0	GIII	CTG	1	Acn	ATC	0
Lou	AAG	2		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	0	ASII	GTT	0	Chu	TTC	0
	TAG	12	Thr	AGT	3	Lys	TTT	0	Giu	CTC	0
	CAG	0		GGT	0		CTT	1		ACC	0
	AAC	0		TGT	1		ACA	0	Chr	GCC	1
Val	GAC	2		CGT	0	Cys	GCA	0	Gly	TCC	1
vai	TAC	0	Tree	ATA	0		ACG	2		CCC	3
	CAC	0	1 yr	GTA	1		GCG	0	Met	CAT	0
	AGG	0		AGC	1	A 100	TCG	0	Trp	CCA	0
Pro	GGG	0	Ala	GGC	0 0	CCG	1				
	TGG	0		TGC		TCT	0	Total A	found:		
	CGG	2		CGC	0		CCT	2			61

 Table 176 | Number and type of tRNA genes found for the Amoebozoan E. histolytica (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	9	Uia	ATG	0		AAT	17
rne	GAA	15		GGA	0	nis	GTG	9	Ile	GAT	0
	TAA	18	Son	TGA	15	Cln	TTG	13		TAT	4
	CAA	4	Ser	CGA	1	GIN	CTG	1	Acn	ATC	0
Lou	AAG	11		ACT	0	Acn	ATT	0	Asp	GTC	22
Leu	GAG	0		GCT	12	ASII	GTT	0	Chu	TTC	0
	TAG	3	Thr	AGT	18	Lys	TTT	22	Giu	CTC	1
	CAG	0		GGT	0		CTT	10		ACC	0
	AAC	20		TGT	6		ACA	0	Chy	GCC	18
Vəl	GAC	0		CGT	0	Cys	GCA	8	Gly	TCC	5
vai	TAC	7	Tur	ATA	0		ACG	0		CCC	0
	CAC	1	1 yr	GTA	0		GCG	0	Met	CAT	7
Pro	AGG	1		AGC	15	Ang	TCG	0	Trp	CCA	0
	GGG	0	Ala	GGC	2 0 Arg	CCG	0				
	TGG	15		TGC		TCT	11	Total A	found:		
	CGG	0		CGC	0		CCT	0			327

 Table 177 | Number and type of tRNA genes found for the Amoebozoan D. discoideum (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	12	Uia	ATG	0		AAT	15
rne	GAA	12		GGA	0	1115	GTG	8	Ile	GAT	0
	TAA	3	Son	TGA	2	Cln	TTG	5		TAT	2
	CAA	5	Ser	CGA	4	GIII	CTG	13	Acn	ATC	0
Lou	AAG	11		ACT	0	Acn	ATT	0	Asp	GTC	16
Leu	GAG	$\begin{array}{c c} \hline \mathbf{J} & 0 \\ \hline \mathbf{J} & 2 \end{array}$		GCT	6	ASII	GTT	13	Chu	TTC	5
	TAG	2	Thr	AGT	13	Lys	TTT	5	Giu	CTC	16
	CAG	7		GGT	0		CTT	17		ACC	0
	AAC	13		TGT	5		ACA	0	Chr	GCC	14
Val	GAC	0		CGT	3	Cys	GCA	6	Gly	TCC	20
vai	TAC	3	True	ATA	0		ACG	8		CCC	1
	CAC	4	1 yr	GTA	14		GCG	0	Met	CAT	6
	AGG	10		AGC	18	A 100	TCG	0	Trp	CCA	6
Pro	GGG	0	Ala	GGC	0 6	CCG	1				
	TGG	4		TGC		TCT	0	Total A	found:		
	CGG	2		CGC	2		CCT	0			338

 Table 178 | Number and type of tRNA genes found for the Amoebozoan P. fungivorum (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	0	Цia	ATG	0		AAT	6
rne	GAA	0		GGA	0	ПIS	GTG	0	Ile	GAT	0
	TAA	2	Som	TGA	2	Clm	TTG	0		TAT	0
	CAA	3	Ser	CGA	4	GIII	CTG	0	Acn	ATC	0
Lou	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASII	GTT	2	Chu	TTC	0
	TAG	0	Thr	AGT	0	Lys	TTT	0	Giu	CTC	0
	CAG	2		GGT	0		CTT	1		ACC	0
	AAC	2		TGT	2		ACA	0	Chr	GCC	10
Vəl	GAC	0		CGT	2	Cys	GCA	0	Gly	TCC	2
vai	TAC	0	Trm	ATA	0		ACG	4		CCC	2
	CAC	1	1 yı	GTA	2		GCG	0	Met	CAT	0
	AGG	0		AGC	5	Ang	TCG	0	Trp	CCA	0
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	2		TGC		TCT	0	Total A	found:		
	CGG	2		CGC	1	-	CCT	0			69

 Table 179 | Number and type of tRNA genes found for the Apusomonadan T. trahens (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	21	Uia	ATG	0		AAT	27
rne	GAA	13		GGA	0	nis	GTG	15	Ile	GAT	0
	TAA	1	Son	TGA	2	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	6	GIII	CTG	17	Acm	ATC	0
Lou	AAG	15		ACT	0	Acm	ATT	0	Asp	GTC	30
Leu	GAG	0	Thr	GCT	8	ASI	GTT	1	Chu	TTC	4
	TAG	1		AGT	22	Lys	TTT	3	Glu	CTC	31
	CAG	11		GGT	0		CTT	38		ACC	0
	AAC	27		TGT	0		ACA	0	Chy	GCC	32
Val	GAC	0		CGT	2	Cys	GCA	10	Gly	TCC	0
vai	TAC	1	True	ATA	0		ACG	34		CCC	0
	CAC	6	Туг	GTA	11		GCG	0	Met	CAT	2
	AGG	16		AGC	30	A 100	TCG	0	Trp	CCA	0
Pro	GGG	0	Ala	GGC	0 3 Arg	CCG	3				
	TGG	2		TGC		TCT	2	Total A	found:		
	CGG	10		CGC	7		CCT	1			468

 Table 180 | Number and type of tRNA genes found for the Opisthokont F. alba (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	3
rne	GAA	0		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	0	Son	TGA	0	Cln	TTG	0		TAT	0
	CAA	0	Ser	CGA	0	GIII	CTG	3	Acn	ATC	0
Lou	AAG	4		ACT	0	Acn	ATT	0	Asp	GTC	0
Leu	GAG	0		GCT	0	ASII	GTT	0	Chu	TTC	0
Val	TAG	0		AGT	3	Lys Cys	TTT	1	Giù	CTC	0
	CAG	2	Thr	GGT	0		CTT	5		ACC	0
	AAC	0		TGT	0		ACA	0	Chy	GCC	5
	GAC	0		CGT	2		GCA	1	Gly	TCC	2
vai	TAC	1	Tym	ATA	0		ACG	3		CCC	0
	CAC	0	1 yı	GTA	2		GCG	0	Met	CAT	0
	AGG	3		AGC	6	Ang	TCG	0	Trp	CCA	0
Pro	GGG	0	Ala -	GGC	0 1	CCG	0				
	TGG	0		TGC		TCT	0	Total A	Anticodons	found:	
	CGG	2		CGC	2	2	CCT	1			54

 Table 181 | Number and type of tRNA genes found for the Opisthokont C. owczarzaki (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	13
rne	GAA	9		GGA	0	1115	GTG	0	Ile	GAT	0
	TAA	3	Son	TGA	4	Cln	TTG	0		TAT	0
	CAA	5	Ser	CGA	3	GIII	CTG	5	Acn	ATC	0
Lon	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	15
Leu	GAG	0		GCT	5	ASII	GTT	0	Chu	TTC	0
	TAG	2	Thr	AGT	0	Lys	TTT	6	Giu	CTC	2
	CAG	1		GGT	0		CTT	15		ACC	0
	AAC	7		TGT	0		ACA	0	Chy	GCC	16
Val	GAC	0		CGT	4	Cys	GCA	6	Gly	TCC	10
vai	TAC	10	Trm	ATA	0		ACG	1		CCC	0
	CAC	5	1 yr	GTA	8		GCG	0	Met	CAT	0
	AGG	0		AGC	2	A 100	TCG	0	Trp	CCA	0
Due	GGG	0	Ala	GGC	0 Arg	CCG	0				
Pro	TGG	5		TGC	4	4	TCT	0	Total A	Anticodons	found:
	CGG	2		CGC	5		CCT	0			182

 Table 182 | Number and type of tRNA genes found for the Opisthokont S. arctica (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	0
rne	GAA	1		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acr	ATC	0
Lou	AAG	2		ACT	0	Acr	ATT	0	Asp	GTC	2
Leu	GAG	0		GCT	1	ASII	GTT	2	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Giù	CTC	2
	CAG	1		GGT	0		CTT	2		ACC	0
	AAC	0		TGT	1		ACA	0	Chr	GCC	2
Vəl	GAC	2		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	0	Trm	ATA	0		ACG	2		CCC	1
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	2
	AGG	1		AGC	2	Ang	TCG	1	Trp	CCA	0
Pro	GGG	0	Ala	GGC	0 Arg	CCG	1				
	TGG	1	Ala	TGC	1	1	TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			52

 Table 183 | Number and type of tRNA genes found for the Excavate G. lamblia (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	5	IIIa	ATG	0		AAT	0
Phe	GAA	5		GGA	0	ПIS	GTG	3	Ile	GAT	0
	TAA	3	Sor	TGA	1	Chu	TTC	5		TAT	2
	CAA	2	Ser	CGA	1	Glu	CTC	0	Acr	ATC	0
Lon	AAG	5		ACT	0	Acm	ATT	0	Asp	GTC	6
Leu	GAG	0		GCT	5	ASII	GTT	0		TTG	1
	TAG	1	Thr	AGT	4	Lys	TTT	0	Cln	CTG	2
	CAG	1		GGT	0		CTT	5	GIII	TTA	-
	AAC	0	1 111	TGT	1	Cre	ACA	0		CTA	-
Vəl	GAC	3		CGT	1	Cys	GCA	4		ACC	0
v ai	TAC	2	Tur	ATA	0		ACG	4	Cly	GCC	1
	CAC	1	I yı	GTA	3		GCG	0	Gly	TCC	2
	AGG	2		AGC	7	A 1400	TCG	1		CCC	1
Due	GGG	0	Ala	GGC	0	Arg	CCG	1	Met	CAT	0
rro	TGG	2	Ala	TGC	2		TCT	3	Trp	CCA	0
	CGG	1		CGC	1		CCT	2	Total An	ticodons found:	102

 Table 184 | Number and type of tRNA genes found for the Excavate S. salmonicida (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	3
Pne	GAA	2		GGA	0	HIS	GTG	2	Ile	GAT	0
	TAA	1	Som	TGA	1	Clm	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	3	Acn	ATC	0
Lou	AAG	3		ACT	0	Acr	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASII	GTT	3	Chu	TTC	1
	TAG	1	Thr	AGT	3	Lys	TTT	1	Giù	CTC	2
	CAG	2		GGT	0		CTT	3		ACC	0
	AAC	2		TGT	1		ACA	0	Chr	GCC	4
Val	GAC	0		CGT	2	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	4		CCC	1
	CAC	0	1 yr	GTA	3		GCG	0	Met	CAT	2
	AGG	2		AGC	2	A 110	TCG	1	Тгр	CCA	0
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	2		CGC	2		CCT	1			77

 Table 185 | Number and type of tRNA genes found for the Excavate L. major (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	4
rne	GAA	2		GGA	0	1115	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	0	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	0	GIII	CTG	3	Aan	ATC	0
Lou	AAG	3		ACT	0	Acm	ATT	0	Asp	GTC	4
Leu	GAG	0		GCT	0	ASI	GTT	3	Chu	TTC	2
	TAG	1		AGT	3	Lys	TTT	1	Glu	CTC	4
	CAG	3	Thr	GGT	0		CTT	5		ACC	0
	AAC	3		TGT	1		ACA	0	Chr	GCC	4
Val	GAC	0		CGT	3	Cys	GCA	2	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	7		CCC	1
	CAC	0	1 yr	GTA	3		GCG	0	Met	CAT	3
	AGG 2		AGC	2	A 100	TCG	1	Trp	CCA	0	
Duo	GGG	0		GGC	0 Arg	CCG	1				
rro	TGG	1	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	3		CGC	3		CCT	1			95

 Table 186 | Number and type of tRNA genes found for the Excavate L. pyrrhocoris (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Цia	ATG	0		AAT	4
rne	GAA	2		GGA	0	nis	GTG	2	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	2	Acn	ATC	0
Lou	AAG	2		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	2	ASII	GTT	3	Chu	TTC	2
	TAG	1	Thr	AGT	3	Lys	TTT	1	Giù	CTC	3
	CAG	3		GGT	0		CTT	3		ACC	0
	AAC	3		TGT	1		ACA	0	Chr	GCC	4
Val	GAC	0		CGT	2	Cys	GCA	2	Gly	TCC	1
vai	TAC	1	Trm	ATA	0		ACG	6		CCC	1
	CAC	0	1 yr	GTA	3		GCG	0	Met	CAT	3
	AGG	2		AGC	3	Ang	TCG	1	Тгр	CCA	0
Pro	GGG	0	Ala	GGC	0 1	CCG	1				
	TGG	1		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	3		CGC	2		CCT	1			86

 Table 187 | Number and type of tRNA genes found for the Excavate L. seymouri (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	2
rne	GAA	2		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	2	Acn	ATC	0
Lou	AAG	1		ACT	0	Acm	ATT	0	Asp	GTC	2
Leu	GAG	0		GCT	2	ASI	GTT	2	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Glu	CTC	2
	CAG	1		GGT	0		CTT	3		ACC	0
	AAC	2		TGT	1		ACA	0	Chr	GCC	3
Val	GAC	0		CGT	1	Cys	GCA	2	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	3		CCC	1
	CAC	0	1 yr	GTA	1		GCG	0	Met	CAT	2
	AGG	AGG 1		AGC	2	A 100	TCG	1	Trp	CCA	0
Due	GGG	0		GGC	0 Arg	CCG	1				
rro	TGG	1	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	1			61

 Table 188 | Number and type of tRNA genes found for the Excavate T. brucei (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	4
rne	GAA	2		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	2	Com	TGA	2	Clm	TTG	2		TAT	2
	CAA	1	Ser	CGA	2	GIN	CTG	4	Acn	ATC	0
Lau	AAG	3		ACT	0	Aam	ATT	0	Asp	GTC	2
Leu	GAG	0		GCT	2	Asn	GTT	3	Chu	TTC	2
	TAG	2		AGT	2	Lys	TTT	2	Glu	CTC	4
	CAG	2	Thr	GGT	0		CTT	4		ACC	0
	AAC	2		TGT	2		ACA	0	Chr	GCC	2
Val	GAC	0		CGT	1	Cys	GCA	2	Gly	TCC	2
vai	TAC	2	Trm	ATA	1		ACG	3		CCC	2
	CAC	0	1 yr	GTA	2		GCG	0	Met	CAT	4
	AGG	1		AGC	1	Ang	TCG	2	Trp	CCA	0
Pro	GGG	0	Ala	GGC	0	0 Arg	CCG	2			
	TGG	1		TGC	2		TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	2			92

 Table 189 | Number and type of tRNA genes found for the Excavate T. cruzi (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	3	Uia	ATG	0		AAT	5
rne	GAA	14		GGA	0	ПIS	GTG	2	Ile	GAT	0
	TAA	3	Sor	TGA	2	Cln	TTG	2		TAT	1
	CAA	2	Thr	CGA	1	GIII	CTG	4	Acn	ATC	0
Lon	AAG	3		ACT	0	Acn	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	2	ASII	GTT	5	Chu	TTC	4
	TAG	1		AGT	3	Lvs	TTT	2	Glu	CTC	7
	CAG	5		GGT	0	Lys	CTT	7		ACC	0
	AAC	3	1 mr	TGT	3	Cvc	ACA	0	Cly	GCC	4
Vol	GAC	0		CGT	1	Cys	GCA	2	Gly	TCC	5
vai	TAC	4	Tum	ATA	0		ACG	7		CCC	1
	CAC	0	I yr	GTA	4		GCG	0	Met	CAT	4
	AGG	3	- Ala -	AGC	2	Arg	TCG	2	Trp	CCA	0
Pro	GGG	0		GGC	0		CCG	1			
	TGG	2		TGC	3		TCT	1	Total A	Anticodons	found:
	CGG	2		CGC	4		CCT	1			138

 Table 190 | Number and type of tRNA genes found for the Excavate T. theileri (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	19	Цia	ATG	0		AAT	28
rne	GAA	24		GGA	0	nis	GTG	0	Ile	GAT	0
	TAA	18	Son	TGA	9	Chu	TTC	36		TAT	8
	CAA	14	Ser	CGA	2	Glu	CTC	7	Acm	ATC	0
Lou	AAG	18		ACT	0	Acm	ATT	0	Asp	GTC	31
Leu	GAG	0		GCT	15	ASI	GTT	0		TTG	13
	TAG	3	Thr	AGT	22	Lys	TTT	29	Cln	CTC	2
	CAG	1		GGT	0		CTT	33	GIII	TTA	-
	AAC	21		TGT	6	Cvc	ACA	0		CTA	-
Vəl	GAC	0		CGT	1	Cys	GCA	15		ACC	0
vai	TAC	6	Trm	ATA	0		ACG	6	Chr	GCC	31
	CAC	3	1 yı	GTA	18		GCG	0	Gly	TCC	12
	AGG	20		AGC	32	Ang	TCG	1		CCC	1
Duo	GGG	0		GGC	0	0 Arg	CCG	1	Met	CAT	12
rro	TGG	7	Ala	TGC	11		TCT	24	Тгр	CCA	12
	CGG	0		CGC	2		CCT	2	Total Ar	ticodons found:	576

 Table 191 | Number and type of tRNA genes found for the Alveolate T. thermophila (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	6	Uia	ATG	0		AAT	9
rne	GAA	5		GGA	0	nis	GTG	5	Ile	GAT	1
	TAA	5	Son	TGA	5	Cln	TTG	6		TAT	1
	CAA	7	Ser	CGA	3	GIII	CTG	5	Acm	ATC	10
Lou	AAG	7		ACT	0	Acm	ATT	0	Asp	GTC	0
Leu	GAG	0		GCT	6	ASI	GTT	0	Chu	TTC	9
	TAG	2	Thr	AGT	8	Lys	TTT	11	Glu	CTC	4
	CAG	2		GGT	0		CTT	5		ACC	0
	AAC	4		TGT	4		ACA	0	Chr	GCC	8
Val	GAC	0		CGT	4	Cys	GCA	5	Gly	TCC	5
vai	TAC	4	True	ATA	0		ACG	0		CCC	3
	CAC	3	1 yr	GTA	11		GCG	0	Met	CAT	8
	AGG	5		AGC	9	A 100	TCG	2	Trp	CCA	5
Dere	GGG	0	A 1-	GGC	0	Arg	CCG	0			
rro	TGG	6	Ala	TGC	3		TCT	6	Total A	Anticodons	found:
	CGG	3		CGC	2		CCT	3			225

 Table 192 | Number and type of tRNA genes found for the Alveolate S. coeruleus (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Цia	ATG	0		AAT	0
rne	GAA	1		GGA	0	ПIS	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acn	ATC	0
Lon	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASII	GTT	1	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Giu	CTC	1
	CAG	0		GGT	0		CTT	2		ACC	0
	AAC	1		TGT	1		ACA	0	Chy	GCC	1
Val	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Tur	ATA	0		ACG	0		CCC	0
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	1
	AGG	1		AGC	1	Ang	TCG	1	Trp	CCA	1
Pro	GGG	0	Ala	GGC	0 Arg	CCG	0				
	TGG	1		TGC		TCT	1	Total A	Anticodons	found:	
	CGG	1		CGC	1		CCT	1			41

 Table 193 | Number and type of tRNA genes found for the Alveolate P. gallinaceum (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	0
rne	GAA	1		GGA	0	1115	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Aan	ATC	0
Lou	AAG	1		ACT	0	Acm	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASI	GTT	1	Chu	TTC	1
	TAG	1		AGT	1	Lys	TTT	1	Glu	CTC	1
	CAG	1	Thr	GGT	0		CTT	1		ACC	0
	AAC	1		TGT	1		ACA	0	Cly	GCC	1
Val	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	True	ATA	0		ACG	1		CCC	0
	CAC	1	1 yr	GTA	1		GCG	0	Met	CAT	1
	AGG 1	1		AGC	1	A 1907	TCG	1	Trp	CCA	1
Dere	GGG	0		GGC	0 Arg	CCG	0				
rro	TGG	1	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			42

 Table 194 | Number and type of tRNA genes found for the Alveolate P. falciparum (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	0
rne	GAA	1		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	1		TAT	1
	CAA	1	Ser	CGA	1	GIII	CTG	1	Acn	ATC	0
Lou	AAG	1		ACT	0	Acr	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	1	ASII	GTT	1	Chu	TTC	1
	TAG	1	Thr	AGT	1	Lys	TTT	1	Giu	CTC	1
	CAG	1		GGT	0		CTT	1		ACC	0
	AAC	1		TGT	1		ACA	0	Chy	GCC	1
Vəl	GAC	0		CGT	1	Cys	GCA	1	Gly	TCC	1
vai	TAC	1	Tur	ATA	0		ACG	1		CCC	0
	CAC	1	1 yı	GTA	1		GCG	0	Met	CAT	1
Pro -	AGG	1		AGC	1	Ang	TCG	1	Trp	CCA	1
	GGG	0	Ala	GGC	0 1	CCG	0				
	TGG	1		TGC		TCT	1	Total A	found:		
	CGG	1		CGC	1		CCT	1			42

 Table 195 | Number and type of tRNA genes found for the Alveolate P. vivax (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	125	Uia	ATG	0		AAT	122
rne	GAA	143		GGA	0	1115	GTG	105	Ile	GAT	1
	TAA	178	Son	TGA	8	Cln	TTG	203		TAT	2
	CAA	192	Ser	CGA	63	GIII	CTG	211	Acn	ATC	2
Lou	AAG	83		ACT	0	Acn	ATT	0	Asp	GTC	197
Leu	GAG	0		GCT	121	ASII	GTT	137	Chu	TTC	164
	TAG	16		AGT	152	Lys	TTT	94	Giù	CTC	335
	CAG	58	Thr	GGT	0		CTT	109		ACC	1
	CAG5AAC2	25		TGT	63		ACA	0	Chr	GCC	69
Val	GAC	0		CGT	125	Cys	GCA	83	Gly	TCC	45
vai	TAC	12	Trm	ATA	0		ACG	78		CCC	58
	CAC	17	1 yr	GTA	81		GCG	5	Met	CAT	150
	AGG	95		AGC	276	A 100	TCG	18	Тгр	CCA	7
Due	GGG	0	Ala	GGC	1	Arg	CCG	4			
Pro	TGG	84	Ala	TGC	96		TCT	2	Total A	Anticodons	found:
	CGG	127		CGC	126		CCT	2			4471

 Table 196 | Number and type of tRNA genes found for the Stramenopile P. infestans (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	60	Uia	ATG	0		AAT	23
rne	GAA	110		GGA	0	ПIS	GTG	60	Ile	GAT	0
	TAA	7	Son	TGA	3	Cln	TTG	18		TAT	4
	CAA	15	Ser	CGA	30	GIII	CTG	22	Acn	ATC	0
Lou	AAG	29		ACT	0	Acn	ATT	0	Asp	GTC	5
Leu	GAG	0		GCT	7	ASII	GTT	5	Chu	TTC	55
	TAG	3		AGT	28	I wa	TTT	8	Giu	CTC	171
	CAG	10	The	GGT	0	Lys	CTT	131		ACC	0
	AAC	0	1 111	TGT	6	Crea	ACA	0	Chr	GCC	41
Vəl	GAC	0		CGT	28	Cys	GCA	7	Gly	TCC	38
vai	TAC	4	Tur	ATA	0		ACG	33		CCC	38
	CAC	8	I yı	GTA	8		GCG	0	Met	CAT	38
	AGG	70		AGC	71	Ang	TCG	10	Trp	CCA	0
Duo	GGG	0	Alo	GGC	0	Alg	CCG	6			
rro	TGG	10	Ala	TGC	33		TCT	3	Total A	Anticodons	found:
	CGG	6		CGC	199		CCT	4			1465

 Table 197 | Number and type of tRNA genes found for the Stramenopile P. sojae (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
	AAA	0		AGA	2	TI:a	ATG	0		AAT	5
Pne	GAA	0		GGA	0	HIS	GTG	0	Ile	GAT	1
	TAA	1	Som	TGA	3	Clm	TTG	0		TAT	3
	CAA	1	Ser	CGA	0	GIN	CTG	3	Acn	ATC	0
Lon	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	0
Leu	GAG	0		GCT	2	ASII	GTT	1	Chu	TTC	2
	TAG	1		AGT	3	Two	TTT	2	Giù	CTC	2
	CAG	0	The	GGT	0	Lys	CTT	1		ACC	0
	AAC	1	1111	TGT	1	Cve	ACA	0	Chy	GCC	1
Vol	GAC	0		CGT	2	Cys	GCA	8	Giy	TCC	2
vai	TAC	0	Twr	ATA	0		ACG	0		CCC	0
	CAC	0	1 yr	GTA	1		GCG	0	Met	CAT	3
	AGG	2		AGC	2	Arg	TCG	0	Trp	CCA	0
Dro	GGG	0	Alo	GGC	0	Alg	CCG	2			
110	TGG	0	Ala	TGC	4		TCT	1	Total A	Anticodons	found:
	CGG	0		CGC	1		CCT	2			67

 Table 198 | Number and type of tRNA genes found for the Stramenopile P. halstedii (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	6	Цia	ATG	0		AAT	1
rne	GAA	2		GGA	0	ПIS	GTG	3	Ile	GAT	0
	TAA	1	Com	TGA	2	Clm	TTG	3		TAT	1
	CAA	4	Ser	CGA	6	GIII	CTG	8	Acm	ATC	0
Lon	AAG	2		ACT	0	Acm	ATT	0	Asp	GTC	9
Leu	GAG	0		GCT	7	Asn	GTT	0	Chu	TTC	3
	TAG	2		AGT	3	T	TTT	6	Glu	CTC	2
	CAG	8	The	GGT	0	Lys	CTT	1		ACC	0
	AAC	0	Inr	TGT	4	Crea	ACA	0	Chr	GCC	3
Val	GAC	5		CGT	1	Cys	GCA	0	Gly	TCC	1
vai	TAC	3	Trm	ATA	0		ACG	4		CCC	5
	CAC	2	1 yr	GTA	3		GCG	0	Met	CAT	1
	AGG	12		AGC	3	Ang	TCG	3	Trp	CCA	7
Due	GGG	0	Ala	GGC	0	Arg	CCG	2			
Pro	TGG	5	Ala	TGC	3	3	TCT	3	Total A	found:	
	CGG	5		CGC	5		CCT	1			161

 Table 199 | Number and type of tRNA genes found for the Stramenopile A. astaci (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	7	Hic	ATG	0		AAT	2
гпе	GAA	3		GGA	0	1115	GTG	0	Ile	GAT	0
	TAA	2	Son	TGA	2	Ch	TTG	7		TAT	1
	CAA	4	Ser	CGA	14	Gill	CTG	7	Acn	ATC	0
Lon	AAG	10		ACT	0	Acn	ATT	0	Asp	GTC	14
Leu	GAG	0		GCT	11	Asu	GTT	2	Chu	TTC	2
	TAG	3		AGT	3	Two	TTT	8	Giù	CTC	3
	CAG	10	The	GGT	0	Lys	CTT	2		ACC	0
	AAC	0	Thr	TGT	5	Cre	ACA	0	Clv	GCC	11
Val	GAC	8		CGT	1	Cys	GCA	0	бу	TCC	0
vau	TAC	6	Trm	ATA	0		ACG	9		CCC	6
	CAC	5	1 yr	GTA	2		GCG	0	Met	CAT	1
	AGG	2		AGC	5	Ang	TCG	4	Trp	CCA	9
Duo	GGG	0	Ala	GGC	0	Arg	CCG	1			
FTO	TGG	7	Ala	TGC	3		TCT	4	Total An	ticodons for	ınd:
	CGG	5		CGC	5		CCT	2			218

 Table 200 | Number and type of tRNA genes found for the Stramenopile A. invadans (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found									
Dho	AAA	0		AGA	10	Uia	ATG	0		AAT	2
rne	GAA	5		GGA	0	ПIS	GTG	2	Ile	GAT	0
	TAA	1	Som	TGA	2	Clm	TTG	3		TAT	2
	CAA	7	Ser	CGA	5	GIII	CTG	1	Acn	ATC	0
Lou	AAG	5		ACT	0	Acn	ATT	0	Asp	GTC	6
Leu	GAG	0		GCT	6	ASII	GTT	8	Chu	TTC	0
	TAG	2		AGT	7	I wa	TTT	3	Giu	CTC	1
	CAG	5	The	GGT	0	Lys	CTT	11		ACC	0
	AAC	1	1 111	TGT	3	Cru	ACA	0	Chr	GCC	1
Val	GAC	5		CGT	5	Cys	GCA	4	Gly	TCC	6
vai	TAC	2	Trm	ATA	0		ACG	0		CCC	5
	CAC	2	1 yr	GTA	4		GCG	0	Met	CAT	8
	AGG	5		AGC	6	Ang	TCG	4	Trp	CCA	0
Due	GGG	0	Ala	GGC	0	Arg	CCG	4			
Pro	TGG	3	Ala	TGC	7	TCT	2	Total A	Anticodons	found:	
	CGG	3		CGC	0		CCT	1			175

 Table 201 | Number and type of tRNA genes found for the Stramenopile S. parasitica (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	7	Uia	ATG	0		AAT	8
rne	GAA	8		GGA	0	1115	GTG	4	Ile	GAT	0
	TAA	1	Son	TGA	2	Cln	TTG	0		TAT	0
	CAA	5	Ser	CGA	4	GIII	CTG	3	Acn	ATC	0
Lou	AAG	9		ACT	0	Acn	ATT	0	Asp	GTC	12
Leu	GAG	0		GCT	4	ASII	GTT	0	Chu	TTC	7
	TAG	4		AGT	8	I wa	TTT	6	Giu	CTC	4
	CAG	1	The	GGT	0	Lys	CTT	8		ACC	0
	AAC	0	1 111	TGT	0	Crea	ACA	0	Chr	GCC	7
Val	GAC	0		CGT	0	Cys	GCA	0	Gly	TCC	11
vai	TAC	3	True	ATA	0		ACG	0		CCC	0
	CAC	0	1 yr	GTA	5		GCG	0	Met	CAT	6
	AGG	5		AGC	11	A 100	TCG	4	Trp	CCA	1
Due	GGG	0	Ala	GGC	0	Arg	CCG	0			
rro	TGG	5	Ala	TGC	5		TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	1			174

 Table 202 | Number and type of tRNA genes found for the Stramenopile P. multistriata (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	2	Uic	ATG	0		AAT	3
гце	GAA	2		GGA	0	пв	GTG	2	Ile	GAT	0
	TAA	1	Sor	TGA	2	Cln	TTG	1		TAT	0
	CAA	2	501	CGA	1	Gili	CTG	2	Acn	ATC	0
Lou	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	3	ASI	GTT	1	Chu	TTC	2
	TAG	1		AGT	2	Ive	TTT	3	Gau	CTC	3
	CAG	1	The	GGT	0	Lys	CTT	3		ACC	0
	AAC	0	1 111	TGT	1	Cve	ACA	0	Chy	GCC	2
Val	GAC	0		CGT	1	Cys	GCA	0	блу	TCC	3
vai	TAC	1	Typ	ATA	0		ACG	0		CCC	0
	CAC	0	1 yı	GTA	3		GCG	0	Met	CAT	3
	AGG	2		AGC	3	Arm	TCG	1	Тıр	CCA	1
Dro	GGG	0	A la	GGC	0	Alg	CCG	1			
110	TGG	1	Ala	TGC	1		TCT	1	Total A	Anticodons	found:
	CGG	1		CGC	1		CCT	1			69

 Table 203 | Number and type of tRNA genes found for the Stramenopile T. pseudonana (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uic	ATG	0		AAT	1
1 110	GAA	2		GGA	0	пь	GTG	1	Ile	GAT	0
	TAA	0	Sor	TGA	2	Cln	TTG	0		TAT	0
	CAA	1	501	CGA	1	Gill	CTG	1	Acn	ATC	0
Lon	AAG	1		ACT	0	Acn	ATT	0	Asp	GTC	1
Leu	GAG	0		GCT	2	Asu	GTT	2	Chu	TTC	1
	TAG	1		AGT	0	Two	TTT	1	Giù	CTC	1
	CAG	0	Thr	GGT	0	Lys	CTT	1		ACC	0
	AAC	0	тш	TGT	1	Cre	ACA	0	Chr	GCC	1
Val	GAC	1		CGT	1	Cys	GCA	0	Gıy	TCC	1
v ता	TAC	1	Two	ATA	0		ACG	1		CCC	1
	CAC	1	1 yı	GTA	2		GCG	0	Met	CAT	3
	AGG	0		AGC	1	Aug	TCG	0	Тıр	CCA	0
Duo	GGG	0	A la	GGC	0	Alg	CCG	0			
FIO	TGG	0	Ala	TGC	4		TCT	0	Total .	Anticodons f	ound:
	CGG	1		CGC	1		CCT	0			42

 Table 204 | Number and type of tRNA genes found for the Stramenopile N. gaditana (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	1
rne	GAA	2		GGA	0	nis	GTG	0	Ile	GAT	0
	TAA	1	Som	TGA	1	Clm	TTG	1		TAT	3
	CAA	1	Ser	CGA	2	GIII	CTG	0	Acn	ATC	0
Lon	AAG	3		ACT	0	Acr	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	1	ASII	GTT	2	Chu	TTC	1
	TAG	1		AGT	1	Lung	TTT	1	Giu	CTC	2
	CAG	0	The	GGT	0	Lys	CTT	3		ACC	0
	AAC	0	1 111	TGT	1	Cura	ACA	0	Chy	GCC	3
Val	GAC	0		CGT	2	Cys	GCA	0	Gly	TCC	1
vai	TAC	0	Trm	ATA	0		ACG	4		CCC	1
	CAC	0	1 yr	GTA	0		GCG	0	Met	CAT	0
	AGG	2		AGC	0	Ang	TCG	2	Trp	CCA	1
Due	GGG	0	Ala	GGC	0	Arg	CCG	2			
rro	TGG	1	Ala	TGC	1		TCT	2	Total A	Anticodons	found:
	CGG	1		CGC	2		CCT	1			58

 Table 205 | Number and type of tRNA genes found for the Stramenopile A. anophagefferens (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	1	Uia	ATG	0		AAT	0
rne	GAA	2		GGA	0	nis	GTG	1	Ile	GAT	0
	TAA	1	Son	TGA	1	Cln	TTG	2		TAT	1
	CAA	1	Ser	CGA	2	GIII	CTG	2	Acn	ATC	0
Lou	AAG	4		ACT	1	Acn	ATT	0	Asp	GTC	3
Leu	GAG	0		GCT	1	ASII	GTT	0	Chu	TTC	5
	TAG	1		AGT	2	I wa	TTT	2	Giu	CTC	2
	CAG	1	The	GGT	0	Lys	CTT	2		ACC	0
	AAC	1	1 111	TGT	2	Crea	ACA	0	Chy	GCC	2
Val	GAC	0		CGT	2	Cys	GCA	1	Gly	TCC	3
vai	TAC	2	Trm	ATA	0		ACG	2		CCC	1
	CAC	1	1 yr	GTA	2		GCG	0	Met	CAT	3
	AGG	2		AGC	1	A 100	TCG	1	Trp	CCA	1
Due	GGG	0	Ala	GGC	0	Arg	CCG	1			
rro	TGG	2	Ala	TGC	3		TCT	1	Total A	Anticodons	found:
	CGG	0		CGC	0		CCT	1			73

 Table 206 | Number and type of tRNA genes found for the Rhizarian B. natans (chimeric and pseudo genes removed)

tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found	tRNA type	Anticodon	No. found
Dho	AAA	0		AGA	3	IIIa	ATG	0		AAT	6
Phe	GAA	4		GGA	0	ПIS	GTG	3	Ile	GAT	0
	TAA	1	Com	TGA	1	Cla	TTG	2		TAT	0
	CAA	2	Ser	CGA	4	Gin	CTG	0	A	ATC	0
Tau	AAG	3		ACT	0	A	ATT	0	Asp	GTC	8
Leu	GAG	0		GCT	2	Asn	GTT	4	Cha	TTC	4
	TAG	1		AGT	3	Lys	TTT	0	Giù	CTC	0
	CAG	5	Thr	GGT	0		CTT	7		ACC	0
	AAC	5	Inr	TGT	2		ACA	0	Chy	GCC	6
Val	GAC	0		CGT	3	Cys	GCA	3	Gly	TCC	2
vai	TAC	1	Trm	ATA	0		ACG	5		CCC	2
	CAC	3	1 yr	GTA	2		GCG	0	Met	CAT	5
	AGG	3		AGC	5	A 100	TCG	0	Trp	CCA	2
Dwo	GGG	0	Alo	GGC	0	Arg	CCG	1			
Pro	TGG	2	Ala	TGC	2		TCT	0	Total An	ticodons fou	ınd:
	CGG	4		CGC	4		CCT	0			125

 Table 207 | Number and type of tRNA genes found for the Rhizarian P. brassicae (chimeric and pseudo genes removed)