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Abstract 

The skin is the largest organ in the body and acts as a barrier to protect from the 
external environment as well as having an important immunogenic function. 
Damage to the skin such as wounding results in the loss of protection to the host 
and can permit the invasion of opportunistic pathogens, which can cause 
disruption to the healing process resulting in a chronic wound. Pseudomonas 
aeruginosa is an opportunistic pathogen and a coloniser of chronic wounds and 
is becoming increasingly recognised as major cause of hospital acquired 
infections due to its ability to secrete a variety of virulence and pathogenic factors 
such as toxins, proteases, vesicles and in addition biofilm formation. One of the 
main controls of preventing infections in hospitals is the use of biocides such as 
ethanol, which are frequently used in routine hospital cleaning.  

Two strains of Pseudomonas (aeruginosa, hospital strain (PS3) isolated from a 
chronic wound dressing and (fluorescens, a laboratory reference strain (PF) that 
had no known virulence factors were grown in different media, supplemented with 
ethanol or glucose and in an additional media, simulated wound fluid for 24 or 80 
hours. The effects of culture conditions on the response of the bacteria and their 
secretions was investigated directly and also by studying their effects on the 
keratinocyte cell line (HaCaT).  

PS3 80 hour cultures showed an increased production of all the virulence factors 
tested compared to 24 hours cultures. In addition there was some differences 
between culture conditions with PS3 grown in ethanol producing a greater 
amount of hemolysin and pyocyanin, however, live bacteria from these cultures 
had little effect on keratinocytes unlike the corresponding extracellular secretions. 
The secretions from cultures grown with ethanol for 80 hours produced increased 
toxicity resulting in greater keratinocyte death and longer healing times in a 
scratch assay model of wound healing, in addition there was a high pro-
inflammatory response from the keratinocytes compared to those exposed to live 
bacteria grown in the same conditions and also when compared to secretions 
from glucose grown PS3. Generally the secretion of CXCL8 was higher from cells 
exposed to PS3 secretions when grown in ethanol, however there was greater 
expression of MAMP receptors in keratinocytes exposed secretions SWF and 
glucose grown PS3. PF cultures grown in the same conditions produced no 
measurable virulence factors and the secretions had no toxic effects on the 
keratinocytes, however faster healing in the scratch assay occurred for some 
conditions.  

The increase in virulence factors seen from ethanol grown PS3 in addition to the 
high toxicity in keratinocytes from 80 hour cultures indicates that prolonged 
exposure to trace amounts of ethanol within the bacterial microenvironment can 
influence the production of immunogenic and increase virulence factor production 
from PS3. Considering PS3 is a clinical isolate and there is increasing wide 
spread use of ethanol based products within clinical environments these studies 
highlight how the improper use of disinfection products may be enhancing 
bacterial pathogenicity and virulence within clinical isolates and enhancing 
microbial fitness potentially leading to an emergence of bactericidal resistant 
bacteria. 
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1.1 The skin 

The skin is the largest and potentially the most complex organ in the human body, 

it acts primarily as a physical barrier between the host and the external 

environment to provide protection to the host (Miller, 2008) . As part of the barrier 

function, the skin constantly receives signals from the external environment which 

are detected through receptors which aid in the regulation of body temperature 

and prevention of water loss (Abdallah et al., 2017). In addition to its barrier and 

protective function, the skin is made up of a variety of cell types that provide a 

vast cellular network with cellular functions involved in structure, immunity and 

circulation (Menon, 2002). The skin is made up of 3 layers; epidermis, dermis and 

hypodermis (figure 1.1) (Kanitakis, 2002) each of which have a slightly different 

function and different cell types to reflect this. 
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Figure 1.1 The structure of the skin. Diagram of the skin showing the location of the three 

layers; epidermis, dermis and hypodermis where the epidermis forms the most outer layer and 

the associated cells types found there. Adapted from Pasparakis et al. (2014)  
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The hypodermis is the inner layer of the skin and is mainly composed of 

fibroblasts and adipose tissue but also contains many immune cells, and acts to 

attach the dermis and epidermis to the under lying tissue such as bones and 

muscles. The next layer the dermis is made primarily of collagen fibres which 

provide flexibility and mechanical strength to the skin as well as containing blood 

vessels, nerve endings and sweat glands which are involved in the control of 

body temperature, in addition it also contains immune cells such as macrophages 

and mast cells (Nguyen and Soulika, 2019). It also acts to support the function of 

the epidermis and facilitates the delivery of nutrients and removal of waste 

products to contribute to the health of the epidermis. The epidermis forms the 

outer layer of the skin and is primarily composed of three main cell types; 

keratinocytes, which contribute to immune function, melanocytes which are 

responsible for pigmentation and Langerhans cells which are a type of dendritic 

cell involved in antigen presentation. The epidermis is made up of five different 

layers, each of which contribute to providing a strong protective function and 

continued renewal of the skin.  

Stratum corneum         uppermost top layer. 
Stratum lucidum           mainly located on the palms and soles  
Stratum granulosum  
Stratum spinosum        
Stratum basale             deepest layer            
 
 
As the epidermis forms the outer layer of the skin and is in constant contact with 

the external environment it can be susceptible to damage (Dabboue et al., 2015) 

which can permit the invasion of potential harmful pathogens and thus specific 

healing responses are required. As part of its protective function, the skin has an 
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important immunologic role and can provide a rapid first line of defence against 

invading microbes (Hirobe, 2014).   

1.1.1 Keratinocytes 

Keratinocytes are the most abundant cell types in the epidermis, accounting for 

around 90% of the cells found there (Nestle et al., 2009). In the stratum basale, 

keratinocytes exist in an undifferentiated state before they undergo cell division 

to begin the maturation process which involves change of shape and the 

production and expression of different keratin filaments, (Matsui and Amagai, 

2015) which occurs throughout the different layers of the epidermis until full 

maturation has been reached in the stratum corneum, where they become 

terminally differentiated and undergo desquamation (skin cell shedding) (Baroni 

et al., 2012). As keratinocytes are one of the main cell types found in the 

epidermis it is important that they can support the epidermis structure as well as 

its immune function. They are also essential in maintaining the skins barrier 

function, particularly in the stratum corneum where they can form tight junctions 

between other keratinocytes to promote the protection of the host to invading 

microorganisms such as bacteria, viruses and fungi as well as protecting against 

biological and chemical damage such as by ultra-violet (UV) radiation. More 

recently, keratinocytes have been found to contribute to both innate and adaptive 

immune functions within the skin (Nestle et al., 2009) and have been identified 

as being pivotal in initiating innate immune and inflammatory responses in the 

skin.   
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1.1.2 Keratinocytes in culture 

The use of keratinocyte cell lines to study the normal physiology of dermal 

keratinocytes is well established (Boelsma et al., 1999). One main cell line used 

to study keratinocytes in culture is HaCaT, which is a spontaneously immortalized 

human keratinocyte cell line often used to investigate epidermal keratinocytes 

(Deyrieux and Wilson, 2007, Smits et al., 2017). An adaptation methodology was 

recently used to transform the culture conditions of HaCaT cells to serum free 

low calcium medium which involved the gradual replacement of serum 

supplemented media with keratinocyte serum free media (KSFM) over a period 

of 6 passages which resulted in an adapted (less differentiated) cell line termed 

HaCaTa, which more closely represent  primary cells (Al Tameemi et al., 2014). 

HaCaT cells are often used in culture in order to investigate host-pathogen 

interactions relating to the skin, an area of research which is important in 

understanding pathogenic and host defence mechanisms (Pan et al., 2014). 

1.2 The skin as an immune organ 

The theory that the skin acts as an immune organ was first proposed by Streilein 

(1983) who suggested that the skin had specialised functions involved in immune 

surveillance.  The skin is now widely recognised as being an active immune organ 

with the ability to provide resistance to microorganisms through both innate and 

adaptive immune responses (Guttman-Yassky et al., 2019). Immune responses 

are defined as the way a host defends itself against foreign material. The aim of 

the immune response is to destroy invading organisms that would otherwise harm 

or kill the host (Hoebe et al., 2004). 
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 Immune responses within the skin are dependent on surveillance and a network 

of communication between both non-immune and immune cells each of which 

can contribute to immune and inflammatory responses (Salmon et al., 1994). In 

addition the skin is the location for a wide variety of soluble immune mediators 

such as chemokines and cytokines which aid in the orchestration and regulation 

of immune responses and inflammation (Dinarello, 2000) which are important in 

the innate immune response.  Innate immune responses are the first to be 

triggered, and provide a rapid first line of defence to invading pathogens and can 

be initiated by both immune and non-immune cells throughout the dermis and 

epidermis (Coates et al., 2018). Due to their abundance within the epidermis and 

having the greatest exposure to the external environment keratinocytes have 

receptors that aid in the recognition of foreign microbes and thus have been 

considered true innate immune cells within the skin (Bernard et al., 2012).  

1.2.1 Pattern recognition receptors 

Pattern recognition receptors (PRRs) are defined as non-clonal germ line 

encoded receptors that are important in the initiation of innate immune responses 

(Suresh and Mosser, 2013). First discovered by Janeway (1989) PRRs are 

involved in the recognition of microbial patterns present on microorganisms 

known as microbial associated molecular patterns (MAMPs). Upon MAMP 

stimulation of PRRs, cell pathways are initiated leading to the activation of a cell-

signalling cascades resulting in cytokine production, recruitment of phagocytes 

and stimulation of the adaptive immune response (Palm and Medzhitov, 2009, 

Kumagai and Akira, 2010, Moretti and Blander, 2014) leading to the eventual  

clearance of the invading microbe (Mogensen, 2009).  
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PRRs have also been found to be stimulated by danger associated molecular 

patterns (DAMPs) which unlike microbial ligands, are released or expressed by 

host cells in response to stress or injury (Land, 2015). Several families of PRRs 

have been identified, including toll like receptors (TLRs), C-type lectin receptors 

(CLRs), nucleotide-binding oligomerization domain (NOD) like receptors (NLRs) 

and retinoic acid-inducible gene1 receptors (RLRs) (Jang et al., 2015) 

(Amarante-Mendes et al., 2018) which are found in a variety of cell types involved 

in innate immunity and can be expressed in both intracellular compartments and 

as transmembrane receptors. Of all the PRR families, the toll like receptors have 

been the most extensively studied especially their role in the innate immune 

response.  

1.2.2 Toll like receptors 

TLRs are expressed on a variety of different cell types that are involved with 

initiating early components of the innate immune response within the skin (Hari 

et al., 2010) including keratinocytes (Valins et al., 2010).  Much research has 

shown that TLRs 1-6 and 9 are expressed on keratinocytes (Baker et al., 2003, 

Lebre et al., 2007) and in addition to these findings Kollisch et al. (2005) 

demonstrated by RT-PCR that TLR10 mRNA is expressed in keratinocytes 

supported by Lebre et al. (2007).   

TLRs are type 1 trans-membrane receptors that consist of an N terminal ecto 

domain that is involved in the recognition of MAMPs that form a unique horse-

shoe structure (Botos et al., 2011) a single transmembrane helix and a C-terminal 

cytoplasmic signalling domain, also known as Toll IL-1 receptor (TIR) domain 

which is involved in activating intracellular signalling pathways (Jin and Lee, 
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2008; Botos et al, 2011). TLR synthesis occurs in the endoplasmic reticulum and 

they are then passed to the golgi where they can be localised to the cell surface 

or remain in the endosomes or lysosomes (Lee and Barton, 2014, Kawasaki and 

Kawai, 2014).   

TLRs are all involved in the recognition of specific MAMPs presented by 

microorganisms (Tanimura and Miyake, 2014) (table 1.1). Microbes can express 

many different MAMPs depending on the species of bacteria, and these are 

generally conserved within species (Newman et al., 2013). Whilst conserved, 

MAMPS can differ between strains with some strains having more virulent and 

pathogenic properties which can also be influenced by other factors including the 

environment and the length of time the bacteria grow (Mogensen, 2009).  

TLRs 1, 2, 4, 5 and 6 are all cell surface transmembrane receptors (Barton and 

Kagan, 2009) and as such they are responsible for the recognition of MAMPs 

presented extracellularly. TLR 2 can form heterodimers with TLR 1 and 6 mostly 

recognise Gram positive MAMPs including lipopeptides, peptidoglycan (PGN) 

and lipoteichoic acid (Oliveira-Nascimento et al., 2012) TLR 4 and its co-receptor 

CD-14 is involved in the recognition of lipopolysaccharide (LPS) from Gram 

negative bacteria and TLR 5 is involved in the recognition of bacterial flagellin 

(Borish and Steinke, 2003). TLRs 3, 7, 8 and 9 are all found in intracellular 

compartments (Barton and Kagan, 2009) and are responsible for the recognition 

of MAMPs presented intracellularly (Kawasaki and Kawai, 2014) and are mainly 

involved in the recognition of single and double stranded RNA, which are 

associated with viral infections (Kawai and Akira, 2011). TLR 9 can recognise 

hypo-methylated CpG DNA which can be found in both viral and bacterial DNA 
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(Pohar et al., 2017). A summary of the TLR’s, cellular location and their ligand is 

shown in table 1.1.  

TLR MAMP Special Features Location 

1 Bacterial tri-acyl 

lipopeptides 

Heterodimers with 

TLR2 

 Cell membrane 

2 Peptidoglycan (PGN), 

lipopeptides, and 

lipoteichoic acid, some 

LPS. Mainly gram 

positive MAMPs 

Heterodimers with 

TLR1/6 

 Cell membrane 

3 Viral dsRNA   

 

 

Intracellular  

compartments 

4 Gram-negative bacterial 

endotoxin (LPS) 

  Cell membrane 

5 Flagellin   Cell membrane 

6 Bacterial di-acyl 

lipopeptides 

Heterodimers with 

TLR2 

 Cell membrane 

7 Viral ssRNA   

 

 

Membranes -  

intracellular  

compartments 

8 Viral ssRNA   

 

 

Membranes -  

intracellular  

compartments 

9 Hypomethylated CpG 

motifs of bacterial and 

viral DNA 

  

 

 

Membranes -  

intracellular  

compartments 

10 Unknown Not much known  Not identified 

 

Table 1.1 Toll like receptors and their ligands. Specific Toll like receptors and their 

corresponding microbial ligand and location in different human cell types (Miller and Modlin, 

2007b) (Takeda and Akira, 2005).  
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Once a TLR has been activated by a specific MAMP, a number of cell signalling 

cascades are initiated which leads to the activation of innate and adaptive 

immune responses often via the Myleoid Differentiation factor 88 (MyD88) 

dependent pathway, which is common to most TLRs (Takeda and Akira, 2005). 

When activated TLRs will interact with MyD88, this is done via the Toll/IL-1 

receptor domain present on the TLR (Miller and Modlin, 2007a). MyD88, once 

activated can recruit other signalling molecules including IRAK-1, and IRAK-4 

and TNF receptor associated factor (TRAF6), which leads to the activation of 

nuclear factor-κ-B (NF-κB), which acts as a transcription factor for 

immunomodulatory genes involved in the immune response including the 

stimulation of cytokines, chemokines, antimicrobial peptides (AMPs) and co-

stimulatory molecules such as CD40, a crucial modulator of the adaptive immune 

response (Chandel et al., 2014). 
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Figure 1.2 MyD88 Toll like receptor signalling pathways. Schematic diagram showing location 

of TLR’s, the MAMPs that activate them and the subsequent signalling pathways. As shown on 

the diagram, each of the signalling pathways leads to the activation of NF- κB, which in turn 

promotes transcription of immunomodulatory genes. Adopted from (Miller and Modlin, 2007b). 
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Whilst recognition of MAMPs from invading microbes leads to the initiation of 

immune responses via TLR signalling, microorganisms have evolved ways to 

modulate host responses including, blocking of TLR signalling molecules such as 

NF- κB, evasion of phagocytosis and the modification of MAMPs to weaken the 

activation of TLRs (Arpaia and Barton, 2013, McGuire and Arthur, 2015). All of 

these factors aid in the invasion process of microorganisms and allow evasion 

from the immune system. 

1.2.3 Pro-inflammatory cytokines 

Cytokines are small chemical mediators that contribute to communication 

between cells (Zhang and An, 2007). Cytokines can be released by a variety of 

cell types in response to invading microorganisms and are key in the regulation 

of host immune responses to infection, inflammation and trauma (Dinarello, 

2000). The activation of TLRs by their MAMPs initiates a cell signalling cascade 

that results in cytokine release from the host cell as described in section 1.2.2. 

Cytokines can signal to the host immune system to attract other immune cells 

such as macrophages to the site of infection and mediate interactions between 

immune cells to link the innate and adaptive immune responses (Sokol and 

Luster, 2015). 

Cytokines can be categorised as either promoting or attenuating inflammation 

(pro/anti-inflammatory). Pro-inflammatory cytokines include interleukin (IL) 1 

(CXCL1) and 8 (CXCL8) and Interferon gamma (IFN-γ), and anti-inflammatory 

cytokines include IL-10 and IFN-α (Cavaillon, 2001). One of the most important 

pro-inflammatory cytokines produced by a variety of cells in the skin including 

keratinocytes is IL-8 (CXCL8), where it can recruit neutrophils and macrophages 
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in response to inflammatory stimuli as well as promoting keratinocyte migration 

through binding to CXC receptors present on these cells (Sauder, 1990, Brat et 

al., 2005). 

CXLC8 has an important role in the skin immune system such as aiding in tissue 

repair following damage (Gillitzer and Goebeler, 2001) however the over 

production of CXCL8 has been linked to pathogenesis of wounds and 

inflammatory skin disorders such as psoriasis (Kemény et al., 1994). It is 

important that the secretion of both pro and anti-inflammatory cytokines from host 

cells is balanced to ensure clearance of the microorganism without incurring 

damage to the host (Cicchese et al., 2018). 

1.3 Pseudomonas 

The Pseudomonas genus is the largest genus of Gram negative bacteria, with 

over 140 species currently identified (Gomila et al., 2015) with species 

classification based on 16S rRNA gene sequence, cellular fatty acid analysis and 

various biochemical tests (Ozen and Ussery, 2012), common species of 

Pseudomonas  include aeruginosa, fluorescens and syringae, Pseudomonas is 

regarded  an important genus of Gram negative bacteria consisting of species 

with both medical and biotechnological applications (Ozen and Ussery, 2012). In 

addition, it has a vastly diverse genome with many species having the ability to 

thrive in a wide variety of environments including water and soil (Winsor et al., 

2016) and it can cause a number of plant and animal diseases. The highly diverse 

Pseudomonas genus is reflected in the genomic analysis with most genes being 

species specific or shared by a subset of the species (figure 1.4). This gives 

flexibility to the Pseudomonas genus and allows adaptation to specific 
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environments (Gross and Loper, 2009) some overlap seen between species 

(figure 1.3). 

 

 

Figure 1.3 Genomic analysis of Pseudomonas strains Venn diagram illustrating the genomic 

analysis of 4 different Pseudomonas strains from 4 different species, adopted from Gross and 

Loper (2009).  
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1.3.1 Pseudomonas fluorescens 

Pseudomonas fluorescens (PF) are obligate anaerobes that thrive in a variety of 

mineral salts as well as in the presence of a wide range of carbon sources 

(Ganeshan and Arthikala, 2005) and have an optimum growth temperature of 25-

30°C (Donnarumma et al., 2010). They are commonly found in soils and water 

and are often present on the roots and leaves of plants (Silby et al., 2009, Trippe 

et al., 2013). They are widely regarded as a plant commensal and provide a 

useful biotechnological tool in controlling plant pathogens due to their ability to 

produce secondary metabolites that can act as antimicrobials with (Paulsen et 

al., 2005, Haas and Defago, 2005).  

PF is also associated with humans, for example it can colonise the circulatory 

system of patients who have undergone blood transfusions, it can also be found 

in patient samples from the mouth and lungs however it is not thought to cause 

any specific diseases in these organs (Scales et al., 2014).  
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1.3.2 Pseudomonas aeruginosa  

Pseudomonas aeruginosa was first isolated from a bandage from a cutaneous 

wound in 1882 by Carle Gessard (Lister et al., 2009) and was identified as a 

pathogen in 1890 by Charrin (Bodey et al., 1983). Pseudomonas aeruginosa is 

now widely recognised as an opportunistic pathogen capable of causing plant 

and animal diseases. It is a rod - shaped bacteria approximately 1-5µm long and 

0.5-1.0µm wide (Bhawsaw and Singh, 1989) which produces a grape like fruity 

aroma and has a blue-green colouration caused by the production of two main 

pigments pyocyanin and pyoverdine (Wu et al, 2011). It has an extremely broad 

metabolic diversity, which allows it to thrive in a wild variety of environments 

including soil, water, plants and vegetables and hospitals and which permits it to 

succeed as an opportunistic pathogen (LaBauve and Wargo, 2012).  

Pseudomonas aeruginosa is the most important infective agent in the lungs of 

individuals with cystic fibrosis (CF) as well as other pulmonary diseases such as 

pneumonia and chronic obstructive pulmonary disorders (COPD) (Hurley et al., 

2012). CF is caused by mutations in an epithelial chloride channel which causes 

a reduced NaCl and water secretion in the lungs resulting in thickened mucus 

accumulating on the surfaces of the lungs, leading to decreased bacterial 

clearance resulting in the persistent colonisation and infection (Al-Wrafy et al., 

2017). The continued presence of Pseudomonas aeruginosa within the lungs 

leads to chronic infection and promotes the decline of lung function leading to 

poor clinical outcomes which results in increased mortality and morbidity (Smith 

et al., 2017).  
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Pseudomonas aeruginosa has also been linked to a broad spectrum of other 

diseases in humans including urinary tract infections and burn infections (Fazeli 

et al., 2012) where it can cause both acute and chronic infections. Pseudomonas 

aeruginosa rarely infects healthy individuals with those most at risk including 

patients who are immuno-compromised, undergoing chemotherapy or have a 

physical break in the skin barrier either from a wound or following surgery (Kerr 

and Snelling, 2009).  

The majority of Pseudomonas aeruginosa infections occur in health care or 

hospital settings and is becoming increasingly recognised as a leading pathogen 

involved in both acute and chronic hospital acquired infections (El Zowalaty et al., 

2015). Once infections are established, traditional treatment options such as 

antibiotics are limited due to increased emergence of antibiotic resistant strains 

within the aeruginosa species (Bassetti et al., 2018). The selective pressure 

amongst clinical strains of Gram negative bacteria provides resistance to 

antibiotic killing mechanisms, in addition antibiotics can affect characteristics that 

promote infection, particularly in hospital environments (Beceiro et al., 2013). For 

example, within the aeruginosa species, antibiotic resistance mutations have be 

found to alter characteristics associated with bacterial fitness and virulence 

(Geisinger and Isberg, 2017) which produces great versatility within the 

aeruginosa species making it a high risk pathogen for public health (Rodulfo et 

al., 2019).  
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1.4 Pathogenicity and virulence  

The term pathogenicity refers to the ability of a pathogen to cause host damage, 

with virulence often referring to the degree of the damage caused, which is 

normally relative to the pathogenicity (Casadevall and Pirofski, 1999) and both 

terms are often used interchangeably to describe ways in which microorganisms 

can successfully invade a host cell and cause disease. Virulence is controlled by 

specialised cell appendages termed virulence factors, which can be cell attached 

and/or secreted and can interact with specific features of host cells including 

receptors and signalling pathways to cause disruption to defence mechanisms 

(Doxey et al., 2019). Virulence factors are under tight genetic control of the 

pathogen and their expression can change dependent on the pathogens ability 

to sense multiple environmental clues including changes in pH, temperature or 

metal ion availability (Thomas and Wigneshweraraj, 2014). 

1.4.1 Pseudomonas aeruginosa and associated virulence factors 

Pseudomonas aeruginosa possess an arsenal of different virulence factors that 

are cell-attached and/or secreted, which ultimately work together to allow the 

pathogen to invade host cells and cause disease. Each virulence factor can act 

in a different way and has its own specific role in promoting initial infection, 

bacterial survival, evasion of host immune responses and dissemination into the 

host (Ballok and O'Toole, 2013). Examples of virulence factors in Pseudomonas 

aeruginosa include flagella, hemolysins, proteases lipopolysaccharide (LPS) 

production, exotoxin (Exo) secretion and biofilm production (figure 1.4). 
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Figure 1.4 Virulence factors of Pseudomonas aeruginosa. Schematic diagram showing the 

cell attached and secreted virulence factors associated with Pseudomonas aeruginosa. Created 

by author based on Sadikot et al. (2005).  
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Flagella and pili are cell-attached appendages that have been identified as having 

roles in the motility and adhesion of Pseudomonas aeruginosa (Tran et al., 2011). 

Flagella are long whip like appendages which protrude through the bacterial cell 

membrane and are primarily composed of flagellin.  The flagella rotate rapidly in 

a corkscrew like motion to act as a motor to aid in motility and swarming, a term 

that refers to the movement of bacteria over semi-solid surfaces (Kearns, 2010). 

By contrast, pili are small hair like projections, composed of pilin which are 

involved in promoting adhesion to host environments as well as twitching motility 

by the reversible assembly and disassembly to pull the bacteria along a surface 

(Persat et al., 2015). For Pseudomonas aeruginosa, motility and adhesion is of 

particular importance to allow movement through viscous environments such as 

the thick lung mucus of cystic fibrosis patients and sloughed skin cells often found 

in wound beds that it often colonises.  

Once initial attachment has occurred, Pseudomonas aeruginosa can secrete a 

variety of virulence factors to promote acute infection. Secretion of molecules 

from Gram negative bacteria is an important physiological characteristic which 

allows them to interact with their wider environment without the need to utilise 

energy (Kulp and Kuehn, 2010). One of the main secreted virulence factors 

expressed upon attachment to host cells, is the activation of the type three 

secretion system, which allows exotoxins to be directly injected into the host cell 

cytoplasm causing direct cell damage (Galle et al., 2012). Other secreted 

virulence factors involved in promoting acute infections include proteases and 

lipases which are involved in the degradation of host cell proteins and lipids, 

particularly those within host cell membranes (Gellatly and Hancock, 2013). In 

addition to these, Pseudomonas aeruginosa can also exploit its pigments as 
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secreted virulence factors, with pyocyanin having the ability to interfere with 

electron transfer pathways in host cells (Rada and Leto, 2013). Whilst 

Pseudomonas aeruginosa has a multitude of virulence factors, not all are needed 

or expressed at the same time. Some virulence factors are only expressed within 

certain environments for example pyoverdines, which are involved in iron 

scavenging, are only secreted in iron limiting conditions (Voulhoux et al., 2006).  

In addition to the cell attached and secreted virulence factors, Pseudomonas 

aeruginosa also has another mechanism that can deliver virulence factors into 

host cells, through the formation and secretion of outer membrane vesicles. 

1.5 Outer membrane vesicles 

Outer membrane vesicles (OMVs) are small (50-250nm) spherical, membrane 

bound structures that are secreted from the outer membrane of Gram negative 

bacteria (Beveridge, 1999). Production of OMVs by Gram negative bacteria is 

part of the normal growth process and has been found in a variety of 

environments including planktonic cultures, fresh and salt water sources as well 

as infected human tissue (Schwechheimer and Kuehn, 2015, Ellis et al., 2010). 

OMVs have been found to have a wide variety of biological functions dependent 

on the species of bacteria, with one of the main common functions being to 

facilitate interactions between the pathogen and its environment and to promote 

bacterial survival (Kuehn and Kesty, 2005).  
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As OMVs are shed from the outer membrane of Gram negative bacteria and are 

derived from the cell envelope they contain many different fragments and proteins 

that make up cell envelope of the parent cell (Jan, 2017). The outer membrane 

is often rich in immunogenic and virulence factors including LPS, and PGN which 

is often found in the periplasmic space (Anand and Chaudhuri, 2016). The 

secretion of OMVs by pathogenic Gram negative can aid in the delivery of these 

virulence factors and thus promote infection within the host cells. 

1.5.1 Outer membrane vesicles of Pseudomonas aeruginosa  

Considering Pseudomonas aeruginosa is well-established as a prevalent 

pathogen and coloniser of human tissue, it is unsurprising that the secretion of 

OMVs has been identified as essential for its pathogenesis (Choi et al., 2011). 

Due to the small size of OMVs, the virulence factors and other toxins associated 

with them can penetrate much further into host tissue than the bacterium itself 

and thus allows the delivery of virulent material to sites distant from the original 

site of colonisation (Macdonald and Kuehn, 2013). The delivery of virulence 

factors via vesicles occurs through fusion with the host cell membrane where they 

can then cause direct cell cytotoxicity or distribute to the specific locations and 

target a range of host cell processes (Bomberger et al., 2009). 

OMVs derived from Pseudomonas aeruginosa could potentially be relevant in the 

pathogenesis of diseases, and have been detected in infected human tissue 

(Metruccio et al., 2016). The activation of TLRs is primarily through the 

recognition of immunogenic factors, and OMVs from Pseudomonas aeruginosa 

have been found to possess LPS, flagellin and CpG DNA all of which are capable 

of binding to host cell TLRs triggering cytokine release and the generation of an 
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immune response (Ellis et al., 2010). In addition, OMVs can act as decoy agents 

which can divert host immune responses away from the original site of 

colonisation (Cooke et al., 2019, O'Donoghue and Krachler, 2016).  

Production of OMVs from Pseudomonas aeruginosa can be influenced by a 

variety of factors and their secretion is thought to be an environmental -dependent 

process (Orench-Rivera and Kuehn, 2016). Factors present in the bacterial 

micro-environment that can influence OMV secretion include bacterial population, 

temperature, pH and nutrient availability and potentially cause bacterial stress 

which can often lead to increased vesicle production (Klimentova and Stulik, 

2015). In addition, Pseudomonas aeruginosa can alter the expression of outer 

membrane MAMPs and associated virulence factors (Schwechheimer and 

Kuehn, 2015) depending on environmental cues present within the bacterial 

micro-environment, via quorum sensing. As OMVs are derived directly from the 

parent cell it is likely that the OMVs will reflect this altered expression which in 

turn will promote virulence and bacterial survival within the host.  

1.6 Quorum sensing 

The ability of bacteria to alter gene expression based on environmental conditions 

is a highly controlled and regulated process that involves quorum sensing (QS) 

(Venturi, 2006). Quorum sensing is a cell to cell communication mechanism that 

allows bacteria to share information with other bacteria within a population via the 

release of extracellular (EC) signalling molecules (Rutherford and Bassler, 2012). 

These signalling molecules are known as autoinducers (AIs) and are produced 

and released by bacteria into the immediate environment (Abisado et al., 2018) . 

As the bacterial population increases, AIs in the local environment accumulate 
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which allows bacteria to detect and respond to the increased numbers. The 

increased concentration of AIs within the population is detected by receptors 

present in the cytoplasm or in the cell membrane which can then activate specific 

genes allowing the whole population to respond in a co-ordinated manner by the 

collective altering of gene expression (Diggle et al., 2007). Both Gram positive 

and Gram negative bacteria are capable of using quorum sensing however the 

signalling mechanisms are different, Gram positive bacteria use small post-

translationally modified peptides named auto-inducing peptides (AIPs) as AIs 

whereas Gram negative bacteria use acyl-homoserine lactones (AHLs) (Miller 

and Bassler, 2001).  

Quorum sensing can be utilised by bacteria to regulate gene expression 

mediating a range of biological functions including motility, antibiotic resistance 

and virulence factor production, all of which become more efficient when 

undertaken in a whole population (Papenfort and Bassler, 2016). The role of QS 

is critical for the control and orchestration of virulence factor production and as 

such has become an increasing area of research (Antunes et al., 2010).  

There are 4 main intracellular communication signals that contribute to the 

quorum sensing network of Pseudomonas; las, rhl, PQS and IQS (Lee and 

Zhang, 2015). However much of the research has focused on the two main 

systems termed las and rhl both of which are AHLs, and have been identified as 

being responsible for the collective control of Pseudomonas virulence factors 

(Pearson et al., 1997). Genes coding for virulence factors that are regulated by 

QS systems include those responsible for the production of elastase, proteases, 

rhamolipids, exotoxins and pyocyanins (Antunes et al., 2010). In addition to this, 

AHLs produced by Pseudomonas have also been shown to directly interact with 
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mammalian host cells and their signalling pathways in both in-vivo and in-vitro 

models (Holm and Vikstrom, 2014). The ability of Pseudomonas to utilise QS 

mechanisms to collectively alter gene expression involved in virulence factor 

production provides Pseudomonas with the adaptability that facilitates its 

pathogenesis and its ability to cause disease. 

In addition to the control of genes that directly code for virulence factors, another 

important function controlled by the environment and QS is the ability to produce 

generalised phenotypic changes, with one of the most important change being 

the ability of Pseudomonas to form biofilms (Sauer and Camper, 2001).  

1.7 Biofilms 

Biofilms are an organised community of surface associated microorganisms 

encased in an extracellular matrix consisting of bacterium derived secretions 

collectively termed extracellular polymeric substances (EPS) (Flemming et al., 

2007). In nature bacteria often exist in the form of biofilms rather than in 

planktonic (freely-suspended) cultures and these can be composed of a mix of 

bacterial species, however due to the difficulty of replicating mixed-species 

biofilms in vitro much of the research has focused on single population biofilms 

(Elias and Banin, 2012). Biofilms can form on a wide variety of surfaces including 

human tissue, water pipes and medical devices (Donlan, 2002). The ability of 

microorganisms to form biofilms is an essential survival strategy as it can protect 

the bacterium from environmental stresses such as extreme pH, metal toxicity 

and host immune responses (Chen et al., 2018). In addition to this, biofilms can 

enhance resistance to killing mechanisms such as antimicrobials or traditional 
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disinfectants (Ghafoor et al., 2011, Lineback et al., 2018) and thus can lead to 

persistent colonisation.  

The transition of planktonic culture to biofilm occurs through changes within the 

bacterial environment detected by QS mechanisms which then leads to collective 

alteration of the expression of genes mediating a variety of cellular functions 

including surface molecules, nutrient acquisition and virulence factors which 

allows bacteria to temporarily act as a multicellular organisms to promote survival 

in harsh unfavourable conditions (Kostakioti et al., 2013). Biofilm formation is 

dependent on the attachment of bacteria to surfaces, which once irreversibly 

attached allows further growth and the formation of micro-colonies which can then 

begin to form organised structures and become encased in EPS until eventual 

dispersal and break-up of the biofilm which allows released bacteria of increased 

virulence to colonise other environmental niches (Chang, 2017) (figure 1.5). The 

EPS surrounding the biofilm can account for up to 85% of the total biofilm mass 

and plays a central role in the establishment and development of the biofilm 

architecture and acts as a structural scaffold as well as providing protection from 

harsh environments (Wei and Ma, 2013).  

 

 

 

 

 

 



 47 

 

Figure 1.5 Formation and life cycle of biofilms in Pseudomonas aeruginosa. Schematic 

diagram showing each of the different stages of biofilm formation from initial attachment to 

maturing of the biofilm and then detachment and dispersal of the biofilm where cells become free 

growing (planktonic) again. Adapted from Lau et al. (2005) 
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Pseudomonas aeruginosa is widely recognised as a biofilm producer and 

depending on the strain and culture conditions phenotypic differences between 

different biofilms occur which is reflected in the composition of the EPS. In 

Pseudomonas aeruginosa biofilms, key EPS components include extracellular 

DNA, lipids, proteins, exopolysaccharides, as well as flagella and pili which have 

been shown to support biofilm attachment and structure (Chang, 2017, 

Rasamiravaka et al., 2015).  

Pseudomonas can produce three main exopolysaccharides that are important in 

determining biofilm structure Pel, Psl and alginate (Alg) (Ghafoor et al., 2011). 

Pel polysaccharide has been identified as important in pellicle formation, a 

specialised biofilm which occurs only at air-liquid interphases such as in wound 

beds (Limoli et al., 2015, Ryder et al., 2007). Psl polysaccharide has been 

identified as being important in the maintenance of cell-cell interactions within 

biofilms and cell-surface interactions on mucosal surfaces and airway epithelial 

cells. Alginate polysaccharide has been associated with mucoid strains of 

Pseudomonas aeruginosa, such as those that reside in the lungs of CF patients 

and has been found to contribute to biofilm stability, protection and water 

retention (Rasamiravaka et al., 2015). 

Due to the increased expression of virulence factors, the protection of the bacteria 

from the host and increased antibiotic resistance within biofilms, Pseudomonas 

aeruginosa biofilms become almost impossible to eradicate with traditional 

methods such as the use of antibiotics or other bactericidal products (Koo et al., 

2017). Many Pseudomonas aeruginosa infections are often associated with 

biofilm formation which causes persistent colonisation leading to chronic infection 

(Rasamiravaka et al., 2015). The main biofilm associated infections from 



 49 

Pseudomonas aeruginosa are in the lungs of patients with CF and in the wound 

bed of chronic wounds. In CF patients Pseudomonas aeruginosa has been 

shown to form small biofilm like micro-colonies and visual analysis of chronic 

wounds has also shown small biofilm like colonies, which were not found in acute 

infections (Mulcahy et al., 2014) however currently there is no definitive method 

for the detection of biofilms within clinical settings (Percival et al., 2015). 

In addition, Pseudomonas aeruginosa biofilms have been found on a variety of 

medical devices and surfaces within clinical environments including water 

systems, venous catheters and urinary catheters (Walker and Moore, 2015, 

Percival et al., 2015).  
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1.8 Wounds and wound healing 

A wound is defined as a disruption to the normal skin structure, function and/or 

architecture (Enoch and Leaper, 2005). One of the main functions of the skin is 

to act as a physical barrier between the host and the external environment and 

any breaks in the skin through physical or chemical damage, results in a loss of 

protection to the host. The ability of the skin to repair itself following the formation 

of a wound is essential to allow the restoration of the skins function (Ca et al., 

2019).  

Wound healing is a complex, orchestrated series of biological processes which 

consists of three main phases, inflammation, tissue formation and tissue 

remodelling (Rittie, 2016) (figure 1.6). The inflammatory stage is initiated in the 

early stages of wound repair and involves the formation of blood clots and the 

stimulation and recruitment of inflammatory cells such as monocytes and 

neutrophils, through the activation of DAMPs, to the site of infection to begin the 

removal of any foreign cells and infective agents (Landen et al., 2016). The tissue 

formation phase consists of the restoration of different components of the skin 

that have been damaged and involves formation of a new extracellular matrix 

(ECM) and the proliferation and migration of cells from the edge of the lesion 

resulting in re-epithelisation (Guo and Dipietro, 2010). The final phase, tissue 

remodelling, is responsible for the formation of a new strong and structured 

epithelium and the formation of scar tissue (Enoch and Price, 2004). The tissue 

remodelling phase can take up to 2 years depending on the severity of the wound, 

which is why closed wounds can deteriorate quickly if there is inadequate after 

care. 
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Figure 1.6 Stages of wound healing. Schematic diagram of the three main stages of wound 

healing that occurs within the skin and the cell types that carry out each stage to result in effective 

healing. Adapted from Kawasumi et al. (2012).  
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1.8.1 Models of wound healing 

There are a wide variety of experimental methodologies which can be employed 

to provide insight into the effects of a range of chemical and biological compounds 

on wound healing including the use of in-vivo, in-vitro and ex-vivo models (Ud-

Din and Bayat, 2017). In-vivo models are currently the most clinically relevant 

model of wound healing and often encompass both human and animal models 

(Sami et al., 2019).  The use of animal models in the investigation of wound 

healing has been well documented, with animal models often used as an attempt 

to replicate normal wound healing in humans, with both murine and porcine 

models being commonly used to investigate incisional wound healing as well as 

burn models (Ashrafi et al., 2018). Due to limitations in differences in skin 

architecture and mechanisms of wound healing as associated costs and ethical 

issues surrounding the use of animals in research (Wong et al., 2011) (Barré-

Sinoussi and Montagutelli, 2015) other models are often employed, such as in-

vitro models which can provide valuable information with regards to wound 

healing.  

One of the most common in-vitro models is the scratch assay which involves the 

creation of an artificial gap within a confluent single monolayer of cells which is 

then monitored for closure, generally over a few days until the gap has fully closed 

(Pastar et al., 2018). Other in-vitro models involve the migration of cells across a 

membrane where a chemoattractant is placed on one side of the membrane, 

which is then stained to determine the number of migrating cells known as the 

Boyden chamber assay (Guy et al., 2017), however this method is limited as it 

can only provide information regarding cell migration rather than wound closure. 

In-vitro models can provide an easy and cost-effective way to investigate both 
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proliferation and migration, both of which are essential for successful wound 

healing, however due to their reductive nature, in-vitro models may not be 

reflective of full wound healing within the skin. Ex-vivo models are often favoured 

over in-vitro models as they can provide a more relevant model of the skin 

architecture and often use cells and tissue obtained from donors commonly from 

surgical procedures (Corzo-León et al., 2019). Similar to the scratch assay, these 

models are often artificially wounded through incisions or burning to create a cell 

free area which can then allow the effects of re-epithelisation to be studied (Rakita 

et al., 2020). Ex-vivo wound healing models are advantageous in that they allow 

the effects of biological compounds to be investigated in a model that more 

closely resembles the skin (Ud-Din and Bayat, 2017).   

1.8.2 Pathology of wounds and chronic wounds 

The initiation and timings of each of the three main stages of wound healing is 

essential in maintaining the order of the healing process and any alterations to 

this or the cellular components involved can cause slow or impaired healing 

(Enoch and Leaper, 2005) that results in a chronic wound, which is defined as a 

wound that has not progressed orderly through the normal healing process 

(Frykberg and Banks, 2015). A variety of factors can cause delayed wound 

healing including ageing and pre-existing health conditions such as diabetes, 

where wounds of the lower leg are common due to nerve damage found in the 

lower extremities (Pendsey, 2010). Delayed wound healing often results in the 

wound held in a constant inflammatory state which can cause further tissue 

damage due to the constant release of pro-inflammatory cytokines and can allow 

the formation of an infection from invading microorganisms (Negut et al., 2018). 
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A wound infection can be local or invasive and is defined as the presence of 

multiplying microorganisms which can initiate a host immune response and 

causes delayed wound healing (Enoch and Price, 2004). Colonisation of the 

wound bed with microorganisms alone does not necessarily mean the wound bed 

is infected (Hanft and Smith, 2005). In acute wounds microbial colonisation can 

occur due to the prevalence of normal commensal bacteria on the skin however 

this is often not detrimental to the wound and orderly healing can progress 

(Bowler et al., 2001). If wounds become infected with pathogenic bacteria, or are 

exposed to a high bacterial load (over 105 bacteria per gram of wound tissue) or 

if there is biofilm formation, this leads to an invasive infection and a chronic wound 

can develop (Enoch and Price, 2004). 

The main colonisers of wounds including burns and other soft tissue lesions 

including diabetic ulcers is Pseudomonas aeruginosa, where it is responsible for 

both acute and chronic infections (Schaber et al., 2007). Acute infections with 

Pseudomonas aeruginosa often spread rapidly and can lead to sepsis resulting 

in poor clinical outcomes and high rates of mortality (Turner et al., 2014). In 

chronic infections, Pseudomonas aeruginosa can readily form biofilms within the 

wound bed leading to long term impaired healing leaving very limited treatment 

options and thus may result in amputation (Järbrink et al., 2017). The chronic 

wound bed provides a warm, and moist environment and the presence of necrotic 

debris within the wound provide an ideal surface for bacterial attachment (Zhao 

et al., 2013). In addition, the inflammatory state of chronic wounds can be 

enhanced further by the presence of a biofilm. In the case of Pseudomonas 

aeruginosa, this can be by the activation of TLRs through MAMP recognition such 

as LPS as well as QS molecules which can act on host cells to induce expression 
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of pro-inflammatory cytokines, creating a hyper inflammatory environment which 

enhances nutrient acquisition to the biofilm (Wolcott et al., 2008).  

1.8.3 Management of chronic wounds 

The management of chronic wounds is becomingly increasingly critical due to 

their increased prevalence linked to an increasing ageing population, and the 

morbidity associated with them (Han and Ceilley, 2017, Järbrink et al., 2017). In 

the UK, data from the NHS showed that in 2012 2.2 million patients were 

diagnosed with a wound that required health care treatment, with annual cost for 

the direct management and associated morbidities estimated to be around £5.3 

billion with patient care costs associated with non-healing wounds being 135% 

higher compared to healing wounds (Guest et al., 2017). In addition to this, it is 

estimated that the global wound care product market is set to exceed $15 billion 

by 2022 (Sen, 2019).  

As those most at risk of developing a chronic wound include the elderly and those 

with other health conditions such as diabetes, who are more likely to frequent 

hospital environments, and given the fact that Pseudomonas aeruginosa is an 

opportunistic pathogen that is frequently found in hospital environments, it is likely 

that infection with Pseudomonas aeruginosa could occur within hospital 

environments.  

1.9 Infections in health care settings 

Healthcare associated infections (HCAIs) can be caused by a wide range of 

infective agents and are defined as infections that develop as a result of receiving 

health care either directly in a hospital or health care facility. To be classified as 
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a HCAI the infection must appear in the first 48 hours following admission to 

hospital or appear within the first month of receiving health care and not be 

present at the time of patient admission (Haque et al., 2018). Some of the most 

common HCAIs that can occur within hospitals include surgical site infections, 

blood stream infections and soft tissue infections such as wounds (Feleke et al., 

2018). Healthcare associated infections are a major cause of morbidity and 

mortality worldwide and are becoming increasingly recognised as a global 

burden, however the extent of this is unknown due to the difficulty gathering 

reliable data particularly from developing countries due to lack of surveillance 

systems and issues surrounding the complexity of diagnosing infections (WHO, 

2011). According to the World Health Organisation (WHO) it is estimated that 

patients in developing countries are more likely to suffer from HCAIs, with 

infections associated with medical devices up to 13 times higher, and the risk of 

HCAIs in new-borns up to 20 times higher than in developed countries. In the UK 

alone it is estimated that 300,000 people acquire an HCAI every year costing the 

NHS approximately £1 billion, with £56 million estimated to be spent after patients 

are discharged (NICE, 2012). In the USA, around 1.7 million patients acquire 

HCAIs annually with a mortality rate of about 1 in 17 patients (Haque et al., 2018).  

Pseudomonas aeruginosa is the most common cause of HCAIs in health care 

settings (Kerr and Snelling, 2009, Pachori et al., 2019). Within clinical 

environments it has been found on a variety of surfaces including sinks and 

medical devices such as respirators and on medical practitioners’ hands (Wilson 

and Dowling, 1998). Currently it is estimated that Pseudomonas aeruginosa 

accounts for around 7% of all HCAIs in the USA (Harris et al., 2016) and is the 

second most frequent cause of both acute and chronic infection in patients with 



 57 

skin burns (Andonova and Urumova, 2013). Due to Pseudomonas aeruginosa 

strains increasing resistance to antibiotics and disinfectants, particularly those 

residing in hospitals there is an urgent need for adequate control measures to be 

adapted to prevent the opportunistic infections caused by these potentially 

pathogenic bacteria.   

1.9.1 Infection control and prevention methods 

According to the WHO, infection control and prevention is defined as a practical 

solution designed to prevent harm to patients and health workers from infectious 

agents. In hospitals, infection control and prevention methods are widely 

recognised as an important aspect in the maintenance of a safe hospital 

environment and in patient care and safety (Peters et al., 2018).  

The hospital environment is known to harbour many species of pathogenic 

bacteria with them being found to be prevalent in high contact areas such as 

telephones, keyboards, nurse call buttons, doorknobs and medical charts, where 

they can survive for long periods of time (Russotto et al., 2015, Saka et al., 2017). 

The contamination of these high-contact areas results in them acting as a 

reservoir of pathogenic bacteria and as they are high contact areas, they can 

easily contaminate hands of medical staff who can then transfer these pathogens 

to patients during care (Saka et al., 2017, Boyce, 2007) and it has been estimated 

that up to 40% of HCAIs are caused by cross infection via the hands of medical 

staff (Weber et al., 2010).   

One of the main infection control and prevention methods employed by hospitals 

and other clinical environments is routine environmental cleaning to maintain 

hygiene. During the 1990s in UK hospitals, cost saving reductions to cleaning 
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staff and services lead to reduced cleaning and a decrease in hospital hygiene 

(Dancer, 1999). The reduced level of cleaning, lead to a rapid increase of 

antibiotic resistant strains of Staphylococcus aureus (MRSA) the emergence of 

which generated interest surrounding pathogens in hospitals and their 

transmission, and as such there was an increased focus on hospital cleaning 

(Dancer, 2014) with cleaning now widely recognised as an effective way to 

manage the spread of infections, an important principle in controlling infections 

within hospital and clinical settings (Leas et al., 2015). The management of 

routine cleaning is critical in hospital environments, with importance placed on 

cleaning guidance, methods and the reporting of cleaning outcomes (NHS, 

2009). Whilst these policies are in place to facilitate the improvement of hospitals 

cleaning, its global application is limited due to inadequate facilities, such as lack 

of clean water or untrained staff often found in hospitals in developing countries 

(Dancer, 2014). In addition to this, staff members tasked with hospital cleaning 

often receive very little recognition, leading to decreased job satisfaction and 

performance (Cross et al., 2019).  

Cleaning involves the removal of solid debris such as dirt and grease however 

the act of cleaning itself does not eliminate microorganisms and must be followed 

by the use of disinfectants to ensure microorganisms are removed from the 

environment (Rutala and Weber, 2004). Disinfectants are commonly used in 

hospitals as part of routine hospital cleaning in addition to the sterilisation of 

medical equipment and skin decontamination prior to surgery (Huet et al., 2008). 

Both cleaning and disinfectants are required for decontamination in hospitals, in 

which environmental contamination is reduced to a level not considered harmful 

for health (Otter and Gellatly, 2018). Disinfectant products often contain biocides 
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which have a broad range of antimicrobial activity including disruption of bacterial 

cell membranes and inhibition of metabolic pathways resulting in cell lysis 

(Denyer and Stewart, 1998) examples of biocides include alcohols, iodine and 

chlorine (McDonnell and Russell, 1999). In addition to their use as part of 

environmental cleaning, biocides are often found in hand washes and hand rubs 

designed for use in hospitals with alcohol based hand rubs now being widely used 

in hospitals (Peters et al., 2018) with their use in place of traditional hand washing 

with soap and water recommended by the WHO before giving patient care, due 

to time efficiency and ease of use (Saito et al., 2017).  

1.9.2 Effects of biocides on virulence and pathogenicity  

The increase of HCAIs has led to the wide spread use of biocides in hospitals, 

however as their mechanism of action is similar to that of traditional antibiotics 

there is a possibility that microorganisms may develop resistance mechanisms to 

biocidal products (Capita et al., 2019, Ghanem and Haddadin, 2018). Some 

clinical isolates of Staphylococcus aureus have been found to have an increased 

expression of efflux pumps that are associated with antibiotic resistance following 

exposure to some biocidal compounds (Huet et al., 2008). In addition the 

exposure of clinical isolates of Escherichia coli (E.coli) to some biocides resulted 

in increased biofilm formation and increased pathogenicity in a wax worm model 

(Henly et al., 2019). The pathogenicity to wax worms of a clinical isolate of 

Pseudomonas aeruginosa has also been shown to increase when it is grown with 

ethanol as the main carbon source (Akbar, 2016).  

The increased number of biocidal resistant bacteria is thought to be a result of 

long term exposure to sub lethal concentrations of biocides (Maillard, 2005, 



 60 

Forbes et al., 2014).The increased use of biocidal products paired with inefficient 

cleaning methods in hospital environments and the presence of opportunistic 

bacteria may result in favourable environmental conditions to select for of highly 

pathogenic and resistant bacteria.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 61 

1.10 Aims  

Pseudomonas is becoming increasingly recognised as a leading cause of HCAIs 

and the role of the bacterial microenvironment within clinical settings may cause 

alterations of immunogenic and virulence factors which can aid in its ability to 

colonise human hosts, with particular importance placed on the use of biocidal 

products. This project aimed to investigate the role of media supplemented with 

different carbon sources (ethanol or glucose) as well as an additional media 

(simulated wound fluid) for 2 culture times (24 and 80 hours) on two 

Pseudomonas species, a clinical isolate of aeruginosa isolated from a discarded 

bandage from a chronic wound (PS3) and a laboratory reference strain 

Pseudomonas fluorescens (PF). The specific project aims are; 

➢ To investigate the role of growth condition and time in culture on the effects 

of specific virulence factors from both live bacteria and corresponding 

extracellular secretions.  

➢ To investigate the toxicity of extracellular secretions on keratinocytes in 

culture from both live bacteria and corresponding extracellular secretions 

grown in each of the different conditions, 

➢ To quantify the secretion of the pro-inflammatory cytokine from 

keratinocytes exposed to extracellular secretions from bacteria grown in 

each of the different conditions. 

➢ To investigate the role of extracellular secretions from each of the different 

growth conditions on a keratinocyte model of wound healing. 
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These aims will help to achieve further understanding the effects of how the 

bacterial microenvironment within clinical settings can influence mechanisms 

that can contribute to the pathogenicity and virulence of Pseudomonas how 

these can affect keratinocyte cells in culture to potentially improve the clinical 

outcomes of chronic wounds and other bacterial skin diseases.  
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Chapter 2 

Materials and Methods 
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HaCaT cells were kindly donated by Dr. Nikolaos Georgopoulos, Department of 

Biological and Geographical sciences, University of Huddersfield, UK. 

Pseudomonas strains and transcriptomic data for PS3 were kindly provided by 

Professor Paul Humphreys, Department of Biological and Geographical 

sciences, University of Huddersfield, UK. Staphylococcus epidermidis strain was 

purchased from ATCC. Materials used in ex-vivo skin models were kindly 

donated by Dr Joanna Shepherd, School of Dentistry, University of Sheffield UK.  

• A full list of reagents and suppliers can be found in appendix 
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2.1 Cell culture 

HaCaT cells (passage 43-53) were grown in culture and maintained in Dulbecco’s 

modified Eagle’s medium (DMEM), supplemented with L-glutamine (1%) and 

FBS (10%) Cells were routinely grown in 75cm3 culture flasks with vented caps 

to allow gaseous exchange during incubation (37° C and 5% CO2). The incubator 

contained sterile deionised water supplemented with aquaguard to keep 

contamination at a minimum. Cells were grown to approximately 80% confluence 

(figure 2.1) before being passaged to ensure their successful growth. 

 

Figure 2.1 HaCaT cell monolayer. HaCaT cells in culture in 75 cm3 tissue culture flasks at 80% 

confluence in preparation for passage. Monolayers were imaged and photographed by phase 

contrast microscopy using an EVOS XL core inverted microscope (Peqlab) at x10 magnification. 
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2.1.1 Sub culture of HaCaT cells 

Media was removed from the confluent flask using a sterile aspirator tip and the 

cells were washed with (0.1%) ethylenediaminetriacetic acid (EDTA) in 

phosphate buffered saline (PBS) and incubated (37°C, 5% CO2) for 10 minutes 

to allow the EDTA to break cell-cell interactions. EDTA was removed using a 

sterile aspirator tip and 0.8 ml of 0.25% trypsin-EDTA was added to the flask. 

Flasks were then tilted from side to side to ensure an even contact of trypsin on 

the cells. Cells were left to incubate (37°C, 5% CO2) for 2 minutes to allow the 

trypsin to break contacts between the cells and the bottom of the flask. Flasks 

were then tapped lightly and checked by microscopy to ensure all cells had lifted. 

After all the cells became detached complete media was added to the flask, a 

wash was performed and all cells were collected from the confluent flask. 

Continuation 75cm3 flasks were seeded at a split ration of 1:3 and media added 

to a total volume of 12ml. 
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2.1.2 Preparation of Sub-banks 

Sub-banks of HaCaT cells (passage 40 and 43) were prepared in order to 

maintain cell stocks throughout the project. CryoPure tubes were labelled with 

the cell line, date, passage number and split ratio, split ratio was 1:3 to ensure 

approximately 2 million cells per vial. Freezing media was prepared (80% 

complete cell culture media, 10% FBS and 10% DMSO). Cells were lifted from 

the flask and collected in media as described in section 2.1.1, cells were then 

transferred to a 50ml centrifuge tube and were centrifuged at 1200rpm/5min to 

pellet the cells.  Media was removed from the tube via aspiration and the pellet 

was re-suspended in freezing media with 1ml added to each CryoPure tube. 

Tubes were then placed in a “MrFrosty” cryogenic freezing container containing 

isopropanol and placed at -80˚C overnight to ensure a slow and consistent 

reduction in cell temperature. CryoPure tubes were then removed from the 

cryogenic container and transferred into a cell dewar containing liquid nitrogen 

for long term storage.  
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2.1.3 Seeding Cells 

Once a flask of cells had reached approximately 80% confluency, determined by 

microscopic observation, the cells could be used to seed various size well plates 

in order to perform experiments as shown in table 2.1  

 

Plate used Seeding Density/well 

6 well plate 3.0 x 105 

24 well plate 1.1 x 105 

96 well plate 7.5 x 103 

 

Table 2.1 Seeding densities. Initial cell numbers per well used to seed different multi-well plates 

for each of the different experiments in this study.  

 

One confluent 75cm3 culture flask gave approximately 8 x 106 cells which were 

lifted using EDTA and trypsin-EDTA as described in section 2.1.1, media was 

added to the flask and the cells were mixed, subsequently media was collected 

and placed in a 25ml tube. Of this cell suspension 10μl was taken and placed on 

a haemocytometer so cells could be counted. Each of the 4 corner squares were 

counted, this was done twice for both grids on the haemocytometer. Once 

counted, cell numbers were averaged and used to determine volume of cell 

suspension needed to achieve the correct seeding density. 
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2.2 Bacterial Culture 

Bacterial strains used in these experiments were Pseudomonas aeruginosa 

clinical isolate PS3, Pseudomonas fluorescens (PF) and Staphylococcus 

epidermidis (ATCC 12228). Bacterial strains were maintained on agar plates 

throughout experiments with stock plates kept at 4˚C. Pseudomonas stock plates 

were freshly prepared from -80˚C Microbank stock vials every 4 weeks. 

Staphylococcus epidermidis stock plates were freshly prepared from ATCC 

cultiloops. 

 

2.2.1 Preparation of Microbanks 

Microbanks of bacterial strains were prepared in order to keep stocks of bacterial 

strains throughout the project. Microbank tubes were labelled with the date, and 

the name of organism including the strain. Bacteria were streaked out and grown 

on agar plates overnight before preparing bacterial stocks, to ensure colonies 

would be at the same growth stage. Sterile loops were used scrape bacteria from 

the agar plate until the loop was covered with bacteria, loops were then used to 

inoculate the cryopreservative fluid and swivelled around the porous beads. 

Tubes were then mixed several times to ensure beads were thoroughly coated 

with the microorganism. The cryopreservative liquid was then pipetted off to leave 

beads as liquid free as possible and the lid was placed tightly back on the tube 

(figure 2.2) tubes were then placed in -80˚C freezer for long term storage.  
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Figure 2.2 Microbank preparation. Schematic showing the Microbank tube preparation for long 

term storage of microorganisms used in these experimental procedures. A, shows the mixing of 

the bacterial coated loop in the cryoperservative fluid and beads, B, shows removal of the liquid 

by pipetting and C shows the final Microbank tube ready for long term storage at -80˚C. 
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2.2.2 Pseudomonas Growth 

Pseudomonas strains were sub-cultured onto fresh tryptone soy agar (TSA) 

plates from -4˚C stock plates and grown overnight at 37˚C (PS3) or 30˚C (PF) 

before being used for suspension culture growth. For experimental procedures 

three liquid medias were used, 2 liquid mineral medias supplemented with either 

glucose or ethanol and simulated wound fluid (SWF) (1:1 FBS and maximum 

recovery diluent (MRD). The recipe for the mineral media is shown below in table 

2.2.  

Component Mineral Media Glucose 

(MMG) g/l 

Mineral Media Ethanol 

(MME) g/l or ml/l 

Dipotassium 

Phosphate 

4.5 4.5 

Ammonium Sulphate 1 1 

Magnesium Sulphate 

Heptahydrate 

1 1 

Sodium Chloride 0.1 0.1 

Calcium Chloride 0.1 0.1 

Ferric Chloride 0.02 0.02 

Casein 1 1 

Glucose 10 - 

Ethanol - 13.4 (1.34%) 

pH 7.4 7.4 

 

Table 2.2. Preparation of Mineral Media. Each component of mineral media shown in the left 

column with the corresponding amounts used per litre. 
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For suspension growth PF and PS3 were prepared to an OD of 0.27 at 620nm in 

MRD, which represented approximately 107 bacteria based on previous growth 

curves. For each growth media, (MMG, MME or SWF) 45ml of each was placed 

in sterile conical flasks, to this 5ml of Pseudomonas either PS3 or PF suspension 

was added before being placed in an incubator at 30˚C shaking at 100rpm. 

Bacterial cultures were left for 24 or 80 hours, these time points were chosen as 

previous work suggests the pathogenicity is increased in the hospital strain after 

80 hours of growth (Akbar, 2016).  

2.2.3 Staphylococcus epidermidis growth 

Staphylococcus epidermidis was sub-cultured onto Luria-Bertani (LB) agar from 

sterile culti-loops coated with Staphylococcus epidermidis. Agar plates were 

warmed to room temperature before use, loops were placed on the surface of the 

plate and were held for approximately 15 seconds to allow absorption of moisture 

before being streaked out and incubated overnight at 37°C. Following overnight 

incubation, 1 or 2 colonies were picked from the plate and used to set up 

suspension cultures in LB broth for 24 hours.  
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2.2.4 Preparation of Pseudomonas cell-free supernatant 

Pseudomonas strains were grown as described in section 2.2.2 and cultures were 

centrifuged in 50ml centrifuge tubes at 4000 rpm for 12 minutes, conditioned 

supernatant containing the extracellular (EC) products was transferred into a 

fresh 50ml centrifuge tube and the pellet was discarded into 2% trigene. The 

supernatant pH was adjusted to 7.4 before being sterile filtered through 0.45µm 

and 0.22µm pore filters to ensure any remaining bacteria was removed. 

Supernatants were diluted in complete DMEM in 1:2, 1:5 and 1:10 dilutions.  
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2.2.5 Cell free supernatant exposure assays 

It was investigated whether bacterial growth conditions would have an effect on 

the secretion of the pro-inflammatory cytokine CXCL8 and have an effect on 

viability of the cells in culture. 

Viability assays performed prior to full experiments, showed 7500 cells per well 

was the optimal seeding density to use for a 3 day experiment (figure 2.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3 Absorbance of different cell densities at 490nm. Absorbance of 5 different cell 

densities at 490nm 3 days after initial seeding in 96 well plates, where cell number per well 

represents the cell number when plates were initially seeded into 96 well plates. Data are mean 

+ standard deviation of 6 replicates where n=1.  
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HaCaT cells were seeded in 96 well plates at a density of 7.5 x 103 using a 

multichannel pipette and grown for 48 hours to around 80% confluence before 

being challenged with bacterial conditioned media. Conditioned media containing 

EC products was prepared as described in section 2.2.4, in addition, positive 

controls (10% DMSO) and negative controls of growth medium only were also 

prepared. Media was removed from the well and wells were treated with 200µl of 

corresponding dilution with each dilution replicated 6 times. Cells were then 

incubated for 4 hours at 37°C, after which the solutions were removed by 

aspiration and the cells washed with DMEM. Complete media was replaced and 

cells were incubated for a further 24 hours at 37°C and 5% CO2 to allow time for 

CXCL8 secretion into the surrounding media. Supernatants from individual wells 

for each condition were pooled and placed into labelled 1.5ml microtubes. These 

were then placed at -80˚C for storage before being analysed for CXCL8 secretion 

and quantification by ELISA. A schematic diagram of the methodology is shown 

in figure 2.4.  
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Figure 2.4: Flow through of cell free supernatant exposure assays. Schematic diagram 

showing the flow through of the methodology as described in section 2.2.5. Cells were seeded 

into 96 well plates and challenged with diluted bacterial conditioned media from each of the 

different Pseudomonas culture conditions. Media was collected 24 hours after initial exposure 

and stored for CXCL8 analysis.  
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2.3. MTS Assay 

Once supernatants were collected MTS assays were performed to ascertain if 

any death had occurred in the cells. MTS assays were performed using CellTiter 

96® Aqueous One Solution Cell Proliferation Assay following the manufacturer’s 

guidelines. The MTS tetrazolium compound is reduced by cells into a coloured 

formazan product that is soluble in cell culture medium which can then be 

measured by absorbance at 490nm.  

Fresh media was placed back onto the cells with each well receiving 200µl, 

followed by 20µl of CellTiter, this was performed in darkness due to light 

sensitivity of the reagent, cells were incubated for 4 hours at 37°C, 5% CO2 to 

allow the reaction to take place and the formazan colour to develop, after which 

the absorbance of each of the wells was read at 490nm using a FLUOstar 

OPTIMA plate reader. Experiments were performed in triplicate, in the three 

different growth conditions (MME, MMG SWF) for the 2 different strains of 

bacteria (PS3, PF). 
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2.4 CXCL8 quantification 

To quantify secretion of the pro-inflammatory cytokine CXCL8, enzyme linked 

immune-sorbent assay (ELISA) were performed using the R&D CXLCL8 kit, with 

the addition of the supplementary ancillary kit (R&D). Instructions were followed 

as per the manufacturer’s protocols. Each of the antibodies, and reagents were 

prepared according to the manufacture’s guidelines (table 2.3). 

Reagent/Antibody  

Capture Antibody reconstituted in 1ml of PBS 

Detection Antibody reconstituted in 1ml of assay reagent 

diluent 

IL-8 Standard reconstituted in 0.5ml deionised water 

Reagent Diluent Diluted 1:10 in deionised water for 

blocking buffer. 

Diluted 1:00 in TBS-Tween for assay 

reagent diluent.  

Streptavidin HRP Diluted 1:40 in assay reagent diluent 

 

Table 2.3. Reagents and antibodies used in the human CXCL8 ELISA. 

 

Capture antibody was diluted in plate coating buffer to a concentration of 1µg/ml 

and used to coat ELISA 96 well plates which were then sealed using disposable 

plate sealers and left overnight at room temperature. Wells were then rinsed with 

washing buffer with each well receiving 400µl this was repeated a total of 3 times 

with thorough blotting of the plate after each wash to ensure there was no 

remaining wash buffer in the wells. Blocking of the plate was done using blocking 

buffer with each well receiving 300µl and plates were sealed and left for 1 hour 
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at room temperature. Standard concentrations of CXCL8 were serially diluted in 

reagent diluent to give final concentrations of 2000, 1000, 500, 250, 125, 62.5 

and 31.3 pg/ml in addition samples were defrosted and thawed in preparation for 

ELISA analysis. Following blocking, plates were rinsed 3 times with washing 

buffer and blotted, 100µl of each standard was added, in duplicate, to the 

appropriate wells, 100µl of each sample was also added in duplicate to the 

corresponding wells, the plate was then sealed and left for 2 hours at room 

temperature. The plates were then washed again 3 times and blotted before 

100µl of the detection antibody (diluted in reagent diluent to 1µg/ml) was added 

to each well, plates were then sealed and left for a further 2 hours at room 

temperature. Following this, plates were washed three times and blotted before 

100µl Strep-HRP diluted 1 in 40 in reagent diluent was added to each well the 

plates were then sealed and kept in darkness for 20 minutes. Subsequently, 

plates were washed for a final time and blotted before the addition of solution A 

and B (1:1 ratio), with each well receiving 100µl. Upon addition a blue colour 

became evident and plates were sealed and left for 20 minutes in darkness to 

allow the colour to develop. Once colour had developed, 50µl of stop solution was 

added to each of the wells causing a change in colour from blue to yellow. The 

plate was then read using a FLUOstar OPTIMA plate reader. CXCL8 values were 

quantified according to the standards of the plate, standard curves were 

constructed using the plate reader OPTIMA software (appendix 2).   
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2.5 Bacterial Translocation Assays 

To investigate whether the role of bacterial growth conditions had an effect on 

the ability of Pseudomonas to attach and translocate into keratinocytes in culture, 

HaCaT cells were seeded on 24 well plates at a density of 1.1x 105 and left for 24 

hours to allow a monolayer of early confluence to be established. Pseudomonas 

strains were grown in the different growth conditions for both 24 and 80 hours as 

described in section 2.2.2 after which the cultures were centrifuged at 4,000rpm 

for 12 minutes to pellet the bacteria. The supernatant was removed by aspiration 

and bacterial pellets were re-suspended in Hanks Balanced Salt Solution (HBSS) 

supplemented with 10mM sodium bicarbonate, 10mM glucose and 10mM Tris-

base. HBSS was chosen due to its ability to minimise bacterial growth 1000 fold 

compared to DMEM (Clark et al., 2003). For some experiments this method was 

adapted such that the bacterial conditioned media supernatant was retained from 

the centrifuged cultures and used to pre-treat the cells before incubation with live 

bacteria.  

To quantify the number of bacteria added to the cells, ten-fold serial dilutions 

were prepared from the bacterial suspension and plated using the spread plate 

technique and plates were left to incubate overnight at 30°C, with serial dilutions 

kept at 4°C to prevent bacterial growth. Following incubation plates were counted 

and multiplicity of infection (MOI)’s were calculated using the following equation. 
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   Colony forming units per ml (cfu/ml) 
    MOI  = ---------------------------------------------------   
   Number of keratinocytes in culture 

 

Once MOI’s were determined, tubes containing serial dilutions of the bacteria 

suspension were warmed to room temperature before 1ml of each dilution was 

added to each well with a confluent layer of cells. Cells were exposed to the 

bacterial suspensions at MOIs of 100, 10 and 1 for 2, 4 or 6 hours. After this the 

bacteria from each well was removed and serial dilutions were prepared and 

plated. The cells were then washed with HBSS either with or without the antibiotic 

(polymixin B sulphate (1µg/ml)), and lifted from the wells using EDTA and trypsin. 

Presence of antibiotics allowed remaining external bacteria to be killed leaving 

internalised bacteria only. Once lifted cells were burst using sterile ultrapure water 

and pipetted up and down vigorously to ensure lysing had occurred, 100µl of this 

was taken and added to a TSA plate. A schematic diagram of the method used 

is shown in figure 2.5. Experiments were performed in triplicate, bacteria from 

wells was serially diluted once each time and plated out in duplicate using the 

spread plate technique.  
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Figure 2.5 Flow through of bacterial translocation assay. Schematic diagram showing the 

flow through of the methodology as described in section 2.5. Cells were seeded into 24 well plates 

and challenged with live PS3 either with or without a pre-treatment of bacterial conditioned media.  
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2.6 Scratch Assay  

Scratch assays were performed to investigate further the role of growth conditions 

on the closure of a scratch made in a layer of cells in culture. In order to develop 

a suitable methodology, various biological objects were used in initial scratch 

assays to determine which would give a consistent neat scratch and would allow 

suitable time frame in which to measure closure.  Scratches were photographed 

every 24 hours and measured using ImageJ software. Cells scratched with a 

P200 tip were almost 100% healed after 24 hours (figure 2.6), with the P1000 tip 

and aspirator tip showing similar rates of healing throughout all time points, with 

all scratches healed after 3 days (figure 2.6). 

 

 

Figure 2.6 Determination of methodology for scratch assays. Scratch closure over time from 

HaCaT monolayer scratched with three different pointed objects. Data are expressed as mean + 

standard deviation of 3 replicates where n=1.  
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Based on the data presented in figure 2.6 the aspirator tip was chosen to perform 

the scratch assay experiments as this gave the most consistent, clean and 

smooth scratch. 

HaCaT cells were seeded into 6 well plates at a density of 3 x 105 as described 

in section 2.1.3 and left for approximately 48 hours until early confluency. The 

media was then removed from the wells by aspiration and cell monolayers were 

‘scratched’ using an aspirator tip attached to a vacuum pump, fresh media was 

then placed back onto the cells. A line across one part of the scratch was marked 

on the underside of the wells with a fine liner pen and cells were photographed 

using an EVOS XL core inverted microscope at x4 magnification, representing 

time 0. Marking of the wells ensured the same area of scratch was imaged at 

each time point to avoid inconsistencies within the data.  

Media was then removed from the wells and cells were then exposed to dilutions 

of cell free media as prepared in section 2.3 for either 4 or 6 hours. Once 

exposure times were complete, DMEM was placed back on the cells and cells 

were incubated at 37°C, 5% CO2 for 5 days with cells imaged every 24 hours. 

The area of scratches was measured using ImageJ software.  
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2.7 Expression of TLR’s 

Flow cytometry was used to investigate the role of growth conditions on the 

activation of TLR’s on HaCaT cells. Flow cytometry is a laser-based technique 

involving the use of fluorescently labelled antibodies and dyes for the that can 

provide information about protein expression in individual cells within a population 

(McKinnon, 2018). 

2.7.1 Preparation for flow cytometry 

HaCaT cells were seeded in 24 wells at a density of 1.1 x 105 as described in 

section 2.1.3 and left for 24 hours to allow cells to form a monolayer of around 

80% confluence. Cells were exposed to cell free supernatant from each of the 

different growth conditions (1:2 dilution) for 4 hours before supernatant was 

removed and replaced with complete media. In addition to experimental 

conditions, controls were also included. Cells were then lifted using 0.5ml EDTA 

only, trypsin was omitted as this stage due to potential damage to cell receptors. 

Once cells had been lifted they were placed into corresponding labelled 1.5ml 

tubes and mixed thoroughly. 500µl of ice cold FACS buffer was added to each 

tube which were then centrifuged at 400g for 5 minutes.  

Antibodies were then prepared, and used are shown in table 2.4. Antibodies for 

control tubes were prepared first, controls included 3 fluorescence minus one 

(FMO) tubes, 3 compensation tubes, 1 test and 1 unstained tube. A summary of 

control tubes and corresponding antibodies can be found in table 2.5. 
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Antibody 

CD282 (TLR2) 

CD284 (TLR4) 

CD14 

 

Table 2.4 Antibodies used for flow cytometry experiments. 

Conditions Antibodies used 

Control - FMO (CD14) CD282, CD284 

Control - FMO (TLR2) CD14, CD284 

Control - FMO (TLR4) CD14, CD282 

Control - Compensation TLR 2 CD282 

Control - Compensation TLR 4  CD284 

Control - Compensation CD14 CD14 

Test Condition CD282, CD284, CD14 

Unstained None 

All experimental conditions CD282, CD284, CD14 

 

Table 2.5 Control conditions and antibodies used. 

 

For staining with antibodies 2µl of required antibody was used and tubes received 

a total volume of 50µl (antibody and FACS buffer). Tubes were then left to 

incubate for 30 minutes on ice in darkness, cells were then washed in FACS 

buffer and re-suspended in 300µl PFA (1%) and kept at 4°C overnight. Once 

samples had been stained and fixed flow cytometry could be performed.   
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2.7.2 Flow Cytometry 

Prior to running experimental samples on the flow cytometer (Guava easyCyte), 

cleaning was performed using deionised water and instrument cleaning fluid 

(ICF). Threshold changes to forward and side scatter were set based on controls 

(test) to ensure correct gating of the cell population. Once gating was performed 

and cell populations were gaged the samples were vortexed before ran on the 

flow cytometer, quick cleaning of the machine was performed between every 3 

samples. Once all samples had been analysed a deep clean of the machine was 

performed using deionised water and ICF. 
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2.8 Virulence Quantification 

Pseudomonas possess a variety of virulence factors which contribute to both 

virulence and pathogenicity. Quantification of virulence factors was used to 

investigate the role of growth conditions on their expression.  

2.8.1 Biofilm Formation. 

Pseudomonas strains, PS3 and PF were prepared to an OD of 0.27nm at 620nm 

in MRD as described in section 2.2. Sterile boiling tubes were prepared 

containing 18ml of fresh growth media MME, MMG or SWF, these were then 

inoculated with 2ml of bacteria either PS3 or PF. Tubes were then left to incubate 

at 30°C for up to 80 hours with photos taken at 24 hours and 80 hours.              

Experiments were performed in triplicate, in the three different growth conditions 

(MME, MMG and SWF) for the 2 different strains of bacteria (PS3 and PF). 

2.8.2 Pyocyanin Quantification 

Pyocyanin production was quantified using methodology adapted from Schaible 

et al. (2017). Pseudomonas cell free supernatant was prepared as described in 

section 2.2.4, and 5ml was taken and placed in a 25ml tube and the pyocyanin 

extracted with 3ml of chloroform. Subsequently this was then back extracted with 

1ml of 0.2M Hydrochloric acid (HCl), the aqueous phase of the second extraction 

was then measured in duplicate via spectrometry at 520nm. These experiments 

were performed in triplicate, in the three different growth conditions (MME, MMG 

and SWF) for the 2 different strains of bacteria (PS3 and PF).  
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2.8.3 Hemolysin and Protease Quantification 

Hemolysin and protease production was quantified using blood and milk agar 

plates. For hemolysin quantification, blood agar plates were prepared using TSA 

agar containing 5% horse blood, for protease quantification milk agar plates were 

prepared using TSA containing 10% milk. Pseudomonas was grown as described 

in section 2.2.2, once growth times were complete, cultures were centrifuged and 

cell free supernatant was prepared as described in section 2.2.4, of this 10l was 

added to the plates in a single drop form, with each plate receiving 5 drops of 

10l. The remaining bacterial pellet was re-suspended in MRD and serial 

dilutions were prepared to 10-6, of this 10l was added to separate plates in a 

single drop form, representing approximately 103 bacteria/10l. Plates were 

marked to indicate where the drops were placed, and were then then incubated 

at 30C for up to 5 days hours with plates checked for any clear zones every 24 

hours. Clear zones were measured using ImageJ software and expressed as a 

percentage area of the total plate. Experiments were performed in triplicate, in 

the three different growth conditions (MME, MMG and SWF) for the 2 different 

strains of Pseudomonas (PS3 and PF). 
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2.9 Ex-vivo skin models 

This work was performed as part of a collaboration with Dr Joey Shepherd at the 

University of Sheffield. Skin sections were obtained from Euroskin bank via 

cadaveric donations and models were constructed using methodologies adapted 

from (MacNeil et al., 2011) and (Shepherd et al, unpublished). Models consisted 

of dermal scaffolds populated with cultured dermal fibroblasts and keratinocytes 

to give a more realistic model of human skin.  

2.9.1 Fibroblast culture 

Dermal fibroblasts (p8-12) were grown in DMEM supplemented with FBS (10%) 

and fibroblast growth supplement containing basic fibroblast growth factor 

(1ng/µl) and insulin (1ng/µl) and were maintained in 75cm3 tissue culture vented 

flasks. Cells were grown to around 80% confluence before being passaged as 

described in section 2.1.1. Slight modification was needed due to the nature of 

the cell line, with EDTA exposure time reduced to 1 minute and trypsin exposure 

reduced to 1 minute also. Cells were passaged in a 1:4 ratio to ensure successful 

growth.  

2.9.2 HaCaT culture 

HaCaT cells (p32-38) were grown and maintained as described in section 2.1 

with the addition of TGF-alpha (2ng/ml) supplement in the media. Cells were 

passaged as described in section 2.1.1 in a 1:3 ratio to ensure successful growth.  
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2.9.3 Construction of 3D ex-vivo skin models 

Skin sections were placed in 100ml sterile PBS and incubated at 37C for 5 days 

before being placed in 100ml 1M NaCl for 24 hours in order to begin the 

detachment process of epidermis from the dermis. Once detachment was visible 

at the edges, the epidermis was removed by gentle scraping using a scalpel and 

subsequently discarded. The dermis was then washed with complete DMEM 

containing antibiotics and placed in 100ml complete DMEM and stored at 4C.   

Once the dermis had been prepared, this was then used as a scaffold for the ex 

vivo wound healing model. The dermis was cut using a scalpel into circular 

shapes approximately 2cm x 2cm, sterile forceps were used to handle the dermis 

to keep contamination to a minimum. Circular scaffolds were placed in 6 well 

inserts to check sizing before being placed in DMEM media to keep moist until all 

dermal scaffolds were prepared and 6 dermal scaffolds were set up per 

experiment. Once dermal scaffolds were prepared, HaCaT cells and cultured 

dermal fibroblasts were lifted from confluent 75cm3 flasks and counted via a 

haemocytometer as described in section 2.1.3. Scaffolds were individually placed 

in 6 well ‘bucket’ inserts which were then placed inside wells of a 6 well plate. 

Sterile metal ‘donut’ shaped rings were placed centrally on top of the dermal 

scaffolds, and were pressed down firmly. Once rings were in place 1.5ml of 

complete DMEM supplemented with TGF alpha (2ng/ml) was placed between the 

edge of the insert and the well to allow the underside of the dermis to be in contact 

with the media. Cells were seeded at a 1:3 ratio (2 x 105 fibroblasts: 6 x 105 

HaCaT) between the outer edge of the ring and the insert. The inner ring of the 

donut was treated with 200l dispase (2mg/ml) for 4 hours to allow enzymatic 
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break down of the dermis so that ‘healing’ could occur within the model (figure 

2.7). Following 4 hour dispase treatment, the area was washed with EDTA to 

inactivate the dispase, and was replaced with 100l complete DMEM. Models 

were left to incubate at 37C/5% CO2 for 48 hours, before all media was removed 

from the surface, leaving media only in the bottom of the well forming an air liquid 

interface (ALI). Models were then incubated for 14 days, with media changes 

occurring every 2-3 days with freshly prepared TGF alpha.   

 

 

Figure 2.7 Construction of ex-vivo skin models. Schematic diagram showing the construction 

of the ex-vivo skin models as described in section 2.9.3. The dispase treated area creates an 

artificial wound which, when the metal ring is removed, cells seeded on the outside can begin to 

‘heal’.  
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2.9.4 Exposure to cell free supernatant and CXCL8 secretion.  

Cell free supernatant from PS3 grown in mineral media supplemented with 

ethanol or glucose for 24 and 80 hours was prepared as described in section 

2.2.4 and diluted 1:2 in complete DMEM. In addition to these controls were set 

up containing non-conditioned growth media diluted 1:2 in DMEM. Once 

prepared, metal rings were removed and cell free supernatants were placed on 

top of the skin, with each well receiving 0.5ml of the corresponding dilution. Skin 

models were incubated for 4 hours, after which supernatants were removed using 

a pipette, and the skin returned to ALI. Skin models were incubated for 24 hours 

before the media was collected from underneath the skin models and stored for 

IL-8 quantification as described in section 2.4. Fresh complete DMEM 

supplemented with TGF alpha was then placed underneath the skin to maintain 

ALI, and models were incubated for a further 14 days with media changed every 

2-3 days.  

2.9.5 Tissue Sectioning  

Following 14-day incubation, skin models were prepared for sectioning and 

staining. Foil was moulded around 6 well inserts to form the circular shape similar 

to the skin and a drop of Neg-50 frozen section medium was place in the centre. 

The skin was lifted out of the insert using forceps and placed in the centre of the 

foil, the skin was then further covered with Neg-50 frozen section medium before 

being placed in liquid nitrogen for around 2 minutes until fully frozen, once frozen 

samples were stored at -80ºC. Tissue was sectioned using a cryostat (Leica 

CM1900), skin models were cut in half and 7mm sections were placed on glass 

slides, these were then checked under a microscope (Leica CTR6500) to ensure 
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good sections had been taken and slides were stored at -80C until ready for 

staining. 

2.9.6 Staining of tissue  

Prior to hemotoxylin and eosin (H&E) staining, slides were retrieved from -80ºC 

storage and allowed to air dry at room temperature for 10 minutes before samples 

were fixed on the slide in 4% paraformaldehyde (PFA) for a further 10 minutes. 

Once fixed, slides were treated as shown in 2.6 before being mounted using 

pertex, slides were then left to dry overnight before being imaged.  

Reagent/Treatment Time 

Running tap water 1 min 

Hematoxylin (Mayers) 7 mins exactly 

 Running tap water 2 mins exactly 

0.2% acid/water 20 secs exactly 

Running tap water 1 min 

37mM ammonia (or blueing reagent) 2 mins 

Running tap water 1 min 

70% IMS 1 min 

Eosin 2 mins exactly 

70% IMS 20 secs exactly 

100% IMS 15 secs exactly 

50:50 Xylene/100% IMS 30 secs exactly 

Xylene 1 min 

Xylene 1min 

Table 2.6 Hemotoxylin and Eosin staining procedure. 
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2.10 Statistics 

Results are expressed as mean +/- standard error of the mean (SEM) for the 

specified number of technical repeats, given by (n). Where standard error is not 

possible standard deviation of the mean is given, as indicated. Statistical analysis 

was performed using GraphPad (Prism8), with statistical significance determined 

using unpaired Student’s T-test or ANOVA analysis with Tukey’s post hoc test 

(used for multiple comparisons within one data set). Statistical differences are 

indicated by * p<0.05, ** p<0.01, ***p<0.001 or **** p<0.0001. 
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3.1 Introduction 

Pseudomonas aeruginosa is an opportunistic pathogen that can cause both 

acute and chronic infections within a clinical environment (Sadikot et al., 2005). 

Pseudomonas aeruginosa can cause serious infections in critically ill and immune 

compromised hospital patients, often leading to high morbidity and mortality 

(Bassetti et al., 2018).   

Pseudomonas aeruginosa infections are often mediated by the presence of 

virulence factors, Pseudomonas aeruginosa possess a wide variety of virulence 

factors that aid in its ability to colonise and invade human tissue. (Vasil, 1986). 

Colonisation can often lead to biofilm development, which can form on human 

tissue such as wound beds and on a variety of medical devices such as catheters 

which then become difficult to remove with traditional methods such as cleaning 

with anti-bacterial agents and the use of antibiotics (Chen et al., 2018). 

Quantification of virulence factors can be done by investigating genomic data or 

traditional laboratory techniques, however this gives little information regarding 

effects of these factors on the host.  

In-vitro models can provide a robust and cost effective method to investigate the 

possible in-vivo effects of a wide variety of factors and can reduce the need for 

animal experiments (Bocheńska et al., 2017). The spontaneously immortalised 

HaCaT cell line is often used as a keratinocyte model to study bacterial-host 

interactions due to its resemblance to primary cultured keratinocytes (Edwards et 

al., 2011). As keratinocytes account for around 90% of the epidermis and often 

form the skin’s first line of defence against toxic substances, the HaCaT cell line 
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makes an appropriate model to investigate effects of skin sensitivity to cytotoxic 

agents (Hoh and Maier, 1993).  

3.2 Quantification of Pseudomonas virulence 

factors. 

Pseudomonas possess a wide variety of virulence factors that mediate its 

pathogenicity and toxicity. Virulence factors are of particular importance for 

hospital strains of Pseudomonas, where they can aid in its ability to cause 

nosocomial infections potentially leading to serious complications in hospital 

patients.  

3.2.1 Biofilm formation occurs in Pseudomonas aeruginosa but 

not fluorescens 

Visual analysis of boiling tubes showed PS3 could form well established biofilms, 

within 24 hours (figure 3.1). PS3 grown in MM EtOH and SWF produced thicker 

and more structured biofilms compared to MM Glu tubes (figure 3.1). In addition 

there was a distinct green pigmentation directly below the biofilm in SWF grown 

PS3 (figure 3.1). Biofilms were not present in tubes inoculated with PF in any of 

the conditions (figure 3.1), with the cultures appearing similar to controls.  
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Figure 3.1 Biofilm formation from Pseudomonas grown for 24 hours. Boiling tubes containing 

growth media and inoculated with MRD only (control), PF or PS3 and incubated for 24 hours. 

Tubes contained 18ml of growth media and were inoculated with 2ml of MRD only, PF or PS3 

and incubated for 24 hours before being photographed. Images shown are representative of 3 

independent experiments.  
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The cultures were incubated for a total of 80 hours, after which biofilms had not 

formed in any tubes inoculated with PF (figure 3.2) For PS3 the appearance was 

similar to 24 hour incubation for MM EtOH and SWF, with a thick, well established 

biofilm and green pigmentation visible in SWF cultures was more vivid compared 

with 24 hour biofilms (figure 3.2). Tubes containing MM Glu inoculated with PS3 

showed disintegration of the biofilm, with holes being clearly visible and 

detachment occurring from the glass surface coupled with a thinning of the biofilm 

(figure 3.2).  Biofilm that had become disintegrated was floating as clumps in the 

tube (figure 3.3). 
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Figure 3.2 Biofilm formation from Pseudomonas grown for 80 hours. Boiling tubes containing 

growth media and inoculated with MRD only (control), PF or PS3 and incubated for 80 hours. 

Tubes contained 18ml of growth media and were inoculated with 2ml of MRD only, PF or PS3 

and incubated for 80 hours before being photographed. Images shown are representative of 3 

independent experiments.  
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Figure 3.3 Biofilm formation from PS3 only grown for 80 hours. Boiling tubes containing 

growth media and inoculated with PS3 after 80 hour incubation period. Images show biofilms 

imaged from the side of the boiling tubes, with differences in biofilm thickness being more clearly 

visible. Disintegration of the biofilm is also clearly visible in the tube containing MM Glu.  
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3.2.1.1 Expression of biofilm genes in PS3 

Currently 3 genes have been associated with Pseudomonas biofilms; Psl, Pel 

and Alg. Analysis of transcriptomes indicated an increased expression of nearly 

all Psl associated genes in MM Glu 24 hour cultures (figure 3.4). In 80 hour MM 

EtOH cultures there was an increased expression in all Psl genes compared to 

24 hours further establishing the biofilm components at 80 hours (figure 3.5). 

There was a decrease in some Psl genes in MM Glu in 80 hour cultures compared 

to 24 hours, contributing to the break-up of the biofilm. There were minimal 

differences in the expression of genes involved in Pel and Alg expression within 

80 hours cultures as well as minimal differences in the fold change of expression 

for Pel and Alg for both MM EtOH and MM Glu between 24 and 80 hours 

(appendix 3).   
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Figure 3.4 Expression values of Psl genes from PS3. Transcriptome analysis showing the total 

expression values, expressed as reads per kilo base per million mapped reads, of genes involved 

in Psl production (Psl A-O) from PS3 cultures grown in MM EtOH and MM Glu for 24 hours.  

 

Figure 3.5 Fold change in the expression values of Psl genes of PS3. Transcriptome analysis 

showing the fold change of the expression of genes involved in Psl (Psl A-O) production from PS3 

cultures grown in MM EtOH and MM Glu between 24 and 80 hour culture times.   
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3.2.2 Pyocyanin production from PS3 cultures is increased 

following 80 hour culture time.  

The effect of growth conditions on the production of pyocyanin from PS3 was 

investigated. For PS3 grown for 24 hours the highest concentration of pyocyanin 

was produced by MM EtOH with an absorbance of 0.16 at 520nm. The 

corresponding value for SWF was 0.1, and for MM Glu it was 0.02 (figure 3.6), 

but there was no significant differences found between these conditions. 

When PS3 was grown for 80 hours there was greater absorbance in all conditions 

with MM EtOH producing the highest absorbance of 0.4, with MM Glu 0.35 and 

SWF 0.15 (figure 3.6). Both ethanol and glucose conditioned media were 

significantly greater than SWF cultures (p ≤0.0001) (figure 3.6). 
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Figure 3.6 Pyocyanin production from cell free conditioned PS3 media grown for 24 and 

80 hours. Absorbance of pyocyanin at 520nm from PS3 cell free conditioned media from each of 

the growth conditions for 24 and 80 hour cultures is shown. Cell free media was measured via 

spectrometry at 520nm. Data is expressed as mean of 3 biological repeats + SEM. Two way 

ANOVA with Tukey’s post hoc test showed significance as indicated on the graph (****p ≤0.0001).  
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3.2.3 Quantification of protease production from PS3 cultures 

It was investigated whether protease production could be detected in the 

supernatants from PS3 cultures and whether growth condition had an effect on 

its production. However no protease activity could be detected throughout the 

incubation period for any of the culture conditions.  

To provide a more sensitive test of protease activity, live PS3 from suspension 

cultures were centrifuged, diluted and transferred to plates that contained milk 

agar and incubated for either 24 or 48 hours at 30C. For PS3 from cultures grown 

for 24 hours in all conditions there was a 15-20% clear zone area on the plate 

after a 24 hour incubation (figure 3.7). After 48 hours the clear zone had 

increased to approximately 40% of the total plate area (figure 3.7).  

Plates inoculated with PS3 that had been grown as a suspension culture for 80 

in any of the conditions showed no protease production after a 24 hour incubation 

of the plate, however after 48 hours the clear zone had increased to 

approximately 55-60% of the total plate area which was observed on plates 

inoculated with cultures grown in all conditions (figure 3.7).  
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Figure 3.7 Plate images and corresponding protease production from live PS3 grown for 

24 and 80 hours. Area of clear zones from milk agar plates inoculated with live PS3 from each 

of the different growth conditions from 24 and 80 hour cultures as indicated is shown. Milk agar 

plates were inoculated with 5 drops of approximately 1 x 103 live PS3 and incubated for 48 hours. 

Plates were imaged every 24 hours and clear areas measured using ImageJ software and 

expressed as a percentage of the total plate area. Data is expressed as mean of 3 biological 

repeats + SEM. Two way ANOVA showed no significant difference between any of the conditions.  

24 hours                           80 hours 

MM EtOH         MM Glu           SWF MM EtOH         MM Glu      SWF 

24hr  

 

 

48hr  
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3.2.4 Quantification of hemolysin production from PS3 cultures 

It was investigated whether hemolysin production could be detected from PS3 

and whether growth conditions have an effect on its production. No hemolysin 

production was detected in cell free conditioned media from PS3 cultures grown 

in any of the growth conditions throughout the incubation period.  

Hemolysin was not detected in plates inoculated with live PS3 and incubated at 

30C for 24 hours for either the 24 or 80 hour cultures after a 48 hour plate 

incubation there was also no activity from the 24 hour cultures (figure 3.8). After 

incubating the plates for 120 hours (5 days), hemolysin production was detected 

from plates inoculated with PS3 grown for 24 hours with MM EtOH producing an 

8% clear zone, MM Glu 12% and SWF showing 5% clear zones (figure 3.8), these 

values were not  significant from each other.  

Plates inoculated with live PS3 from 80 hour cultures produced hemolysin after a 

48 hour plate incubation (figure 3.8), and this increased after 120 hours (5 days) 

plates incubation with PS3 grown in MM EtOH having the greatest hemolysin 

production (45% clear zone), This was significantly greater than PS3 grown in 

MM Glu (26% clear zone) (p ≤0.01) and PS3 grown in SWF (28% clear zone) (p 

≤0.05) (figure 3.8). 
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Figure 3.8 Hemolysin production from live PS3 grown for 24 and 80 hours. Area of clear 

zones measured from blood agar plates inoculated with live Ps3 from each of the different growth 

conditions from 24 hour cultures 80 hour cultures as indicated. Blood agar plates were inoculated 

with 5 drops of approximately 1 x 103 live PS3 and incubated for up for 120 hours (5 days). Plates 

were imaged every 24 hours and clear areas measured using ImageJ software and expressed 

as a percentage of the total plate area. Data is expressed as mean of 3 biological repeats + SEM. 

Two way ANOVA with Tukey’s post hoc test showed significance as indicated on the graph (*p 

≤0.05, **p≤0.01). 

 

 

 

24 hours                                               80 hours 



 111 

3.2.5 Pseudomonas fluorescens did not express virulence 

factors 

PF was used as an additional reference strain as a comparison to the clinical 

isolate PS3. No positive results were observed for hemolysion or pyocyanin 

quantification from any PF cultures. 

Minimal protease activity was observed on plates inoculated with PF grown for 

24 hours, with 1-2% clear zones after 48 hour incubation of the plate, no protease 

activity was observed from plates inoculated with PF grown for 80 hours (data 

not shown).  

3.3 Quantification of toxicity of non-conditioned 

growth media on cultured keratinocytes. 

Initial experiments investigated whether exposure of HaCaT cells to different 

dilutions of the media used to grow the bacteria produced any acute toxic effects 

Keratinocytes were exposed to diluted non-conditioned growth media for 4 hours, 

cells were visually examined 24 hours after initial exposure and viability of the 

cells was determined by an MTS assay.  No change in the appearance of the 

cells exposed to any of the bacterial growth media was observed. In addition the 

MTS assay data indicated no toxic effects of any of the growth media, with a 

small, but not significant, increase in biomass compared to controls being 

observed (figure 3.9). 
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Figure 3.9 HaCaT viability following exposure to non-conditioned bacterial growth media. 

Percentage biomass change relative to control (complete DMEM) for each condition is shown, 

controls are indicated by the dashed line (100%). MTS data was measured 24 hours after an 

initial 4 hour exposure to non-conditioned growth media diluted 1:2 in complete DMEM. Data is 

mean + SEM of 3 independent experiments, (n=6 for each experiment). A two-way ANOVA 

showed no significance differences between growth conditions. 
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3.4 Investigation of Pseudomonas extracellular 

secretion toxicity on cultured human 

keratinocytes. 

Once it had been established that non-conditioned growth media alone had no 

acute toxic effects were observed, keratinocytes were exposed to cell free 

conditioned media from both Pseudomonas strains (PS3 and PF) grown in the 

three different conditions (MM EtOH, MM Glu and SWF) to investigate if growth 

conditions affected the toxicity of extra cellular secretions in either of these 

strains. Cells were checked visually 24 hours after initial exposure and visual 

observations were then confirmed via MTS assay. 

3.4.1 Pseudomonas conditioned media from 24 hour bacterial 

cultures does not cause toxicity in cultured human keratinocytes 

Visual analysis of the cells exposed to conditioned media from PS3 grown for 24 

hours in MM EtOH or MM Glu showed no apparent adverse effects on the 

morphology of the cells in culture, with cells exposed to the highest concentration 

(1:2 in complete DMEM) looking similar in size, shape and cell density to controls 

(growth media diluted 1:2 in complete DMEM) (figure 3.10). Conditioned media 

from the laboratory strain PF grown for 24 hours also did not have any visual 

effect on the cells in culture (figure 3.10). The lack of toxicity was confirmed by 

MTS data where PS3 and PF grown in MM EtOH, MM Glu or SWF showed no 

decrease in viability, with a small increase in biomass above control in almost all 

conditions and dilutions (figure 3.10). PS3 grown in MM Glu and diluted 1:2 in 

complete DMEM produced a small but not significant decrease in biomass 

compared to control. No statistically significant differences were observed 

between conditions (figure 3.10).  
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Figure 3.10 HaCaT images and corresponding viability data following exposure to 24 hour 

Pseudomonas cell free conditioned media. HaCaT images and percentage biomass change 

relative to control (complete DMEM) for each condition is shown, DMEM only treated cells are 

indicated by the dashed line (100%). MTS data was measured 24 hours after an initial 4 hour 

exposure to cell free conditioned media grown for 24 hours and diluted in complete DMEM as 

indicated.  Data is expressed as an average of three independent experiments + SEM (n=6 for 

each experiment). A two-way ANOVA showed no significant differences between conditions.  

   MM EtOH                       

 

 

 

     MM Glu 

  Growth media 1:2                         PS3 1:2                                    PF 1:2 
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3.4.2 Pseudomonas conditioned media from 80 hour bacterial 

cultures from ethanol supplemented cultures shows toxic 

effects in cultured keratinocytes 

Visual analysis of HaCaT cells exposed to cell free conditioned media from PS3 

grown in MM EtOH for 80 hours showed a visible stress response, with less cells 

visible and those that are being more rounded in appearance when exposed to 

conditioned media diluted 1:2 in complete DMEM compared to control (growth 

media diluted in DMEM) (figure 3.11). This was not observed in PS3 grown in 

MM Glu for 80 hours, where no visible stress response occurred (figure 3.11) with 

cells appearing similar to control (growth media diluted in complete DMEM). With 

PF conditioned media no visual stress was observed (figure 3.11) for either 

growth condition at a 1:2 dilution.  

The visual observations were confirmed by MTS data where cell free conditioned 

media from PS3 grown in ethanol for 80 hours produced a significant decrease 

in viability compared to MM Glu. This appeared to be concentration dependent 

(figure 3.11) resulting in 0% biomass at the 1:2 dilution, 90% biomass at the 1:5 

dilution and around 100% biomass at the 1:10 dilution (all diluted in complete 

DMEM). Cell free conditioned media from PF grown for 80 hours had a biomass 

similar to controls from both MM EtOH and MM Glu (figure 3.11).  
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Figure 3.11 HaCaT images and corresponding viability data following exposure to 80 hour 

Pseudomonas cell free conditioned media. HaCaT images and percentage biomass change 

relative to control (complete DMEM) for Pseudomonas cell free conditioned media for MM EtOH 

and MM Glu is shown, complete DMEM treated cells are indicated by the dashed line (100%). 

MTS data was measured 24 hours after an initial 4 hour exposure to cell free bacterial conditioned 

media that had been grown for 80 hours and diluted in complete DMEM. Data is expressed as 

average of three independent experiments (+) SEM (n=6 for each experiment). A two-way 

ANOVA with Bonferroni post hoc showed significance (**** p<0.001) between MM EtOH and MM 

Glu at the 1:2 dilution as indicated on the graph. 

   MM EtOH                       

 

 

 

    MM Glu 

         Growth media (1:2)                          PS3 1:2                                     PF 1:2 



 117 

3.3.3 PS3 grown in simulated wound fluid for 80 hours shows 

varied toxicity on cultured keratinocytes.  

PS3 grown in SWF gave varied results on HaCaT viability with no or minimal 

toxicity seen at the at a 1:2 dilution for 2 biological repeats however the third 

biological repeat showed a reduction in biomass to 19% compared to control 

(figure 3.12). These results lead to large variation particularly at the highest 

concentration (1:2) of PS3 cell free media (figure 3.12). 

 

 

Figure 3.12 Keratinocyte viability for each biological replica following exposure to 

Pseudomonas grown in simulated wound fluid for 80 hours.  Percentage biomass change 

relative to controls (complete DMEM) for 80 hour Pseudomonas cell free conditioned SWF, 

complete DMEM treated cells are indicated by the dashed line (100%). MTS data was measured 

24 hours after initial 4 hour exposure to cell free conditioned SWF grown for 80 hours and diluted 

in complete DMEM as indicated on the graph. MTS data expressed is the mean of 6 technical 

repeats + standard deviation for each experiment. 
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3.4.4 Comparisons of time in culture within ethanol or glucose 

grown PS3 on keratinocyte viability.  

In order to directly compare the effects of cell free conditioned media from 24 and 80 

hour cultures, MTS data from the two time points for PS3 grown in MM EtOH or MM Glu 

were plotted together. This clearly shows the significant loss of viable cells (p ≤ 0.0001) 

produced by the 1:2 dilution occurs only in response to secretions obtained from the 80 

hour cultures grown in MM supplemented with EtOH with no significant effect being 

produced by 24 hour cultures or with glucose supplementation for either culture time 

(figure 3.13).  

 

 

Figure 3.13 MTS data for keratinocyte viability following exposure to PS3 grown in MM 

EtOH or MM Glu for 24 and 80 hours. Percentage biomass change relative to controls (complete 

DMEM) for Pseudomonas cell free conditioned media with either EtOH or glucose as indicated 

DMEM treated cells are indicated by the dashed line (100%). MTS data was measured 24 hours 

after a 4 hour exposure to cell free conditioned media grown for 24 and 80 hours and diluted in 

complete DMEM. MTS data is expressed as the mean + SEM for 3 biological replicates (n=6 for 

each experiment). T test performed showed significance between time points as indicated on the 

graph (**** p ≤0.0001). 

MM EtOH                                          MM Glu 
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3.4.5 Determination of concentration dependent toxicity on 

cultured keratinocytes following exposure to PS3 conditioned 

cell free media  

To determine the concentration dependency of PS3 cell free conditioned media on 

cultured keratinocytes, the cells were exposed to additional dilutions (1:3 and 1:4 in 

complete DMEM) from 80 hour cultures of PS3 grown in MM EtOH or MM Glu. Cultured 

keratinocytes were exposed for 4 hours, with visual checks and viability determined 24 

hours after the 4 hour exposure. MTS data showed a concentration dependent 

relationship on keratinocyte toxicity for PS3 grown in MM EtOH with percentage biomass 

relative to control increasing from 3% to 90% with concentration (figure 3.14). This 

concentration dependency was not observed with PS3 grown in MM Glu, with the 

percentage biomass relative to control around 90-100% for all dilutions (figure 3.14). 

There was a significant difference between MM EtOH and MM Glu at the 1:2 dilution (p 

0.01) and at the 1:5 dilution (p 0.05). Due to the variation in the response of 

keratinocytes to 80 hour cultures of PS3 grown in SWF, the concentration dependency 

was not investigated. 
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Figure 3.14 MTS data for keratinocyte viability following exposure to PS3 grown in MM 

EtOH or MM Glu for 80 hours. Percentage biomass change relative to control (complete DMEM) 

for Pseudomonas cell free conditioned media in MM EtOH or MM Glu is shown, complete DMEM 

treated cells are indicated by the dashed line (100%). MTS data was measured 24 hours after a 

4 hour exposure to cell free conditioned media diluted in complete DMEM. MTS data is expressed 

as the mean +/- SEM for 3 biological repeats (n=6) A two-way ANOVA with Bonferroni post-hoc 

showed significance between MM EtOH and MM Glu at the 1:2 and 1:5 dilution (** p ≤0.01, * p 

≤0.05). 
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3.5 Investigation of toxicity mediated by direct 

exposure to Pseudomonas on cultured human 

keratinocyte viability.  

Once the effects of Pseudomonas conditioned cell free media on keratinocyte 

viability had been established, cells were exposed directly to live PS3 grown in 

the growth conditions to investigate the toxicity of the bacterial cells directly. 

Keratinocytes were exposed to approximately 1 x 105
 and 1 x 103  bacteria per 

well for 2 hours and cells were checked visually after 8 hours,  visual observations 

were then confirmed by MTS assay.  

3.5.1 Keratinocyte viability following exposure to live PS3 grown 

for 24 hours 

Observations of the cultured keratinocytes showed no visual appearance of 

stress in response to direct exposure to PS3 at the highest concentration of 

bacterial number of 1 x 105 per well from any of the growth conditions with all cells 

looking similar to the control (HBSS only) (figure 3.15).  There was also no effect 

of the direct exposure of PS3 grown in any condition of the viability of the 

keratinocytes as determined by an MTS assay (figure 3.15). Keratinocytes 

exposed to higher bacterial number of 1 x 105, all showed 100% biomass 

compared to control, in comparison, cells exposed to the lower bacterial number 

of 1 x 103 produced an increase in biomass conditions of around 20% above 

control (figure 3.15).  
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Figure 3.15 HaCaT images and corresponding viability data following exposure to live PS3 

grown for 24 hours. Keratinocyte images and percentage biomass change relative to control 

(HBSS only) after exposure to live PS3 grown in each of the conditions is shown, controls are 

indicated by the dashed line (100%). MTS assay was performed 8 hours after a 2 hour exposure 

to live PS3, data is mean (+) standard deviation of 6 technical replicates. HaCaT images show 

control cells (HBSS only) and treated cells 8 hours after 2 hour exposure to 1 x 105 bacteria from 

each of the growth conditions. 

HBSS only 

     MM EtOH                        MM Glu                          SWF 

1 x 105 

bacteria 

per well 
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3.4.2 Keratinocyte viability following direct exposure to live PS3 

grown for 80 hours 

PS3 grown in MM EtOH for 80 hours, showed no significant effect on the viability 

of keratinocytes when exposed to both concentrations of bacteria with the 

biomass of keratinocytes being about 90% of the control (HBSS only) (figure 

3.16). 

PS3 grown in MM Glu produced a small decrease in biomass to about 80% of 

the control when exposed to 1 X 105 bacteria and about 90% of the control when 

exposed to 1 x 103 bacteria (figure 3.16). PS3 grown in SWF, produced a slight 

decrease in biomass to about 90% of the control upon exposure to both bacterial 

numbers (figure 3.16).  
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Figure 3.16 HaCaT images and corresponding viability data following exposure to live PS3 

grown for 80 hours. Keratinocyte images and percentage biomass change relative to control 

(HBSS only) for exposure to live PS3 grown in each of the conditions is shown, controls are 

indicated by the dashed line (100%). MTS data was measured 8 hours after initial 2 hour exposure 

to PS3. Data is expressed as an average of one experiment + standard deviation of 6 technical 

replicates. Keratinocyte images show control cells (HBSS only) and keratinocytes 8 hours after 

initial 2 hour exposure to 1 x 105 bacteria from each of the growth conditions. 
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per well 

HBSS only 

    MM EtOH   MM Glu   SWF 
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3.5.3 Reduction of exposure time still shows toxicity of PS3 cell 

free conditioned media  

To confirm that the lack of toxicity observed on direct exposure of PS3 to the 

keratinocytes was not due to shortened exposure times of the cells to the live 

bacteria, additional experiments using 80 hour cell free conditioned media in 

which cells were exposed for the shorter time period of 2 hours were carried out. 

A reduction in biomass was seen 8 hours after a 2 hour exposure to PS3 cell free 

conditioned media with SWF showing the biggest decrease in biomass at a 1:2 

dilution to 6% compared to MM EtOH (58% biomass) (p≤0.0001) and MM Glu 

(87% biomass)  (p≤0.0001) at a 1:2 dilution (figure 3.17). In addition the decrease 

in biomass in response to PS3 grown in MM EtOH was significantly lower than 

that for MM Glu at a 1:2 dilution (p≤ 0.0001). A reduction in biomass also occurred 

at a 1:5 dilution, with biomass in response to SWF conditioned media being 60% 

and MM EtOH having 66% biomass, both of which were significantly lower than 

MM Glu (100%) (p≤0.0001). No significant differences were observed between 

conditions at a 1:10 dilution. 
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Figure 3.17 Keratinocyte viability data following shortened 2 hour exposure time to PS3 

cell free conditioned media Percentage biomass change relative to control (HBSS only) for 

exposure PS3 cell free conditioned media from each of the different growth conditions, controls 

are indicated by the dashed line (100%). MTS data was measured 8 hours after a 2 hour 

exposure. Data is expressed as an average of one experiment + standard deviation of 6 technical 

replicates. A two way ANOVA with Tukey’s post hoc showed significance between groups as 

indicated on the graph (**** p 0.0001). 
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3.6 Bacterial attachment and internalisation into 

cultured keratinocytes from PS3 grown for 24 

hours 

Bacterial attachment and/or internalisation into keratinocytes could represent 

factors in the pathology of chronic wounds. It was therefore investigated whether 

culture conditions had an effect on the attachment and internalisation of PS3 to 

keratinocytes. In addition, having shown virulence factors can be secreted by the 

bacteria and that at a high concentration these caused cellular stress, the effect 

of cell free conditioned media on Pseudomonas attachment or internalisation into 

keratinocytes was also investigated. Keratinocytes were exposed directly to PS3 

for 2 hours, with bacterial pellets re-suspended with HBSS only. In additional 

experiments, to investigate the role of secreted factors on this process cell free 

media was diluted 1:5 in HBSS and used as a pre-treatment before keratinocytes 

were exposed to live PS3.  

Further experiments were performed with an increased exposure time of 

keratinocytes to the bacteria of 4 hours but this approach was discontinued due 

to high levels of variance seen in MOI after the 4 hour incubation time (data not 

shown). Due to the lack of virulence seen from PF attachment and internalisation 

was not investigated.  
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3.6.1 Attachment and internalisation of live PS3 only from 24 and 

80 hour cultures.  

Initial experiments investigated attachment and internalisation from PS3 grown 

for 24 and 80 hours in each of the different culture condition resuspended in 

HBSS only, keratinocytes were exposed for 2 hours at an MOI of 100, 10 or 1. 

PS3 grown for 24 hours in MM Glu showed the greatest level of attachment and 

internalisation with approximately 2-3 bacteria per keratinocyte across each MOI 

(figure 3.18), this was significantly greater than SWF grown bacteria at an MOI of 

1 or 10 (p ≤0.01), and significantly greater than MM EtOH and at MOI of 100 (p 

≤0.05) (figure 3.18). MOI had minimal effects on the degree of bacterial 

attachment and or internalisation for MM Glu and MM EtOH, with a slight 

reduction in attachment and internalisation occurring at MOI 100 for MM EtOH 

(figure 3.18). For SWF grown PS3, bacterial attachment and internalisation 

increased proportionally with MOI (figure 3.18).  

In contrast to 24 hour data PS3 grown in MM EtOH, showed the greatest amount 

of attachment and internalisation with approximately 2 bacteria per keratinocyte 

across each MOI (figure 3.18), this was significantly greater to PS3 grown in 

MMG and SWF which showed minimal attachment and translocation at an MOI 

of 1 and 10 (p ≤0.0001). Significant differences were also seen at MOI 100 

between MM EtOH and Glu (p ≤0.001) and MM EtOH and SWF (p ≤0.01) (figure 

3.18). Similar to the data for 24 hour cultures, there was little effect of MOI on the 

number of bacteria attached or internalised, particularly for PS3 grown in MM 

EtOH, a small increase was seen at MOI 100 for MM Glu and SWF (figure 3.18). 
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Figure 3.18 Attachment and internalisation of PS3 grown for 24 and 80 hours into cultured 

keratinocytes. Bacterial attachment and translocation of PS3 grown in each of the different 

growth conditions to cultured keratinocytes at an MOI of 1, 10 and 100, where A represents 24 

hour cultures and B represents 80 hour cultures. Keratinocytes were washed thoroughly after 2 

hour exposure time and burst to get viable bacterial cell counts. Bacterial numbers were 

calculated from plate counts and are expressed as bacteria per cultured keratinocyte. Data is 

expressed as mean + SEM for independent experiments, with the plate counts duplicated for 

each repeat. A two way ANOVA with Tukey’s post hoc showed significant differences as indicated 

on the graph (* p≤.05, ** p ≤0.01, *** p ≤0.001, **** p ≤0.0001). 
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3.6.2 Internalisation from of live PS3 only from 24 and 80 hour 

cultures. 

Once the amount of attachment and internalisation of PS3 resuspended in HBSS 

only grown for 24 and 80 hours, had been determined, further experiments were 

carried out to determine the amount of internalisation of PS3 grown for 24 hours, 

into culture keratinocytes. These data quantifying the numbers of bacteria that 

had internalised into the keratinocytes were obtained from cells treated with the 

same bacterial suspension at the same time as the attachment and internalisation 

data previously reported (figure 3.18). 

For 24 hour conditions, whilst MM EtOH and MM Glu showed greater overall 

attachment and internalisation (figure 3.18) bacteria grown in SWF showed 

internalisation in greater numbers compared to MM EtOH and MM Glu (figure 

3.19), with MOI also having an effect. SWF grown bacteria showed the greatest 

level of internalisation for each MOI tested, and this was significant compared to 

MM EtOH at MOI 10 and 100 (p ≤0.01) and to MM Glu at MOI 10 (p ≤0.001) and 

MOI 100 (p ≤0.0001) (figure 3.19).  

For 80 hours growth conditions PS3 grown in MM EtOH showed the greatest 

amount of internalisation across each MOI (figure 3.19). As these data are 

quantifying the internalised bacteria that were obtained from cells on the same 

plate and time as the attached and internalisation data (figure 3.18), it indicates 

that PS3 grown on MM EtOH has greater attachment to keratinocytes, whereas 

PS3 grown in MM Glu and SWF internalise more, particularly at an MOI of 1 

(figure 3.19). MOI had little effect on bacterial internalisation, particularly for PS3 

grown in MM EtOH and MM Glu, for SWF however again there is a positive 

correlation between bacteria internalised and MOI (figure 3.19).  
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Figure 3.19 Internalisation only of PS3 grown for 24 and 80 hours into cultured 

keratinocytes. Bacterial internalisation of PS3 grown in each of the different growth conditions 

to cultured keratinocytes at an MOI of 1, 10 and 100 is shown, where A represents 24 hour 

cultures and B represents 80 hour cultures. Keratinocytes were incubated with antibiotics to 

remove external bacteria before being burst to internalised bacteria only. Bacterial numbers were 

calculated from plate counts and are expressed as bacteria per cultured keratinocytes. Data is 

expressed as mean + SEM for 3 independent experiments, with plate counts duplicated for each 

repeat. A two way ANOVA with Tukey’s post hoc showed significant differences as indicated on 

the graph (** p ≤0.01, *** p ≤0.001, **** p ≤0.0001). 
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3.6.3 Attachment and internalisation of live PS3 24 and 80 hour 

cultures with the addition of cell free media 

Once the amount of attachment and internalisation and internalisation only had 

been established for PS3 only grown in each of the conditions for 24 and 80 

hours, further experiments were performed to investigate the role of the cell free 

conditioned media. Cell free media was diluted 1:5 in HBSS used as a pre-

treatment before keratinocytes were exposed to live PS3.  

The addition of diluted cell free conditioned media generally had little effect on 

attachment and internalisation, with PS3 grown in MM Glu showing the greatest 

level of attachment across each MOI similar to when cells were exposed to live 

PS3 only (figure 3.18). This was significantly greater than PS3 grown in SWF at 

each MOI (p 0.05) and PS3 grown in MM EtOH at an MOI of 1 (p 0.05) and an 

MOI of 10 and 100 (p 0.01) (figure 3.20). 

Similar to 24 hours, at 80 hours the addition of diluted cell free media as a pre-

treatment generally had little effect on attachment and internalisation of PS3 

grown in MM EtOH, with the amount of attachment and internalisation being 

similar to keratinocytes that received no pre-treatment (figure 3.18) (figure 3.20), 

this was statistically significant to both MM Glu and SWF at MOI 1 and 10 at (p 

0.001, p 0.0001). There was an increase in attachment and internalisation for 

PS3 grown in SWF which was related to MOI, with significant differences seen 

between MM Glu and SWF (p 0.01) which was only observed at MOI 100 (figure 

3.20). 
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Figure 3.20 Attachment and internalisation of PS3 grown for 24 and 80 hours to cultured 

keratinocytes pre-treated with cell free conditioned media. Bacterial attachment and 

internalisation of PS3 grown in each of the different growth conditions to cultured keratinocytes 

at an MOI of 1, 10 or 100 is shown, where A represents 24 hour cultures and B represents 80 

hour cultures. Keratinocytes were washed thoroughly after 2 hour exposure time and burst to 

get viable bacterial cell counts. Bacterial numbers were calculated from plate counts and are 

expressed as bacteria per cultured keratinocytes. Data is expressed as mean + SEM for 3 

independent experiments with the plate counts duplicated for each repeat. A two way ANOVA 

with Tukey’s post hoc showed significant differences as indicated on the graph (** p≤0.01 *** p 

≤0.001, ****p ≤0.0001).  

 

 

 

 

 

 



 134 

3.6.4 Internalisation of PS3 24 and 80 hour cultures with the 

addition of cell free media 

Once the attachment and internalisation had been determined for PS3 with the 

addition of cell free media as a pre-treatment, the role of the addition of cell free 

media was assessed on internalisation only. These data quantifying the numbers 

of bacteria that had internalised into the keratinocytes were obtained from cells 

treated with the same bacterial suspension at the same time as the attachment 

and internalisation data previously reported (figure 3.20). 

For 24 hour cultures, PS3 grown in SWF showed the greatest level of 

internalisation at MOI 10 and 100 compared to MM EtOH (p ≤ 0.01) and MM Glu 

(p ≤0.001, p ≤0.0001) (figure 3.21), which was similar to when keratinocytes were 

exposed to live PS3 only (figure 3.19). At an MOI of 1 PS3 grown in MM EtOH 

showed the greatest level of internalisation (figure 3.21) however this was not 

significant to the other conditions.  

For the 80 hour conditions, PS3 grown in MM EtOH had the greatest level of 

internalisation across each MOI with statistical significances seen at MOI 1 

between MM Glu and SWF (p ≤0.0001) (figure 3.21). MOI did not have an effect 

on the amount of internalisation of PS3 grown in MM EtOH or MM Glu, but again 

it did for PS3 grown in SWF (figure 3.21). 
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Figure 3.21 Internalisation only of PS3 grown for 24 and 80 hours into cultured 

keratinocytes pre-treated with cell free conditioned media. Bacterial internalisation of PS3 

grown in each of the different growth conditions to cultured keratinocytes at an MOI of 1, 10 and 

100 is shown, where A represents 24 hour cultures and B represents 80 hour cultures. 

Keratinocytes were incubated with antibiotics to remove external bacteria before being burst to 

internalised bacteria only. Bacterial numbers were calculated from plate counts and are 

expressed as bacteria per cultured keratinocytes. Data is expressed as mean + SEM for 3 

independent experiments, with plate counts duplicated for each repeat. A two way ANOVA with 

Tukey’s post hoc showed significant differences as indicated on the graph (** p ≤0.01, *** p 

≤0.001, **** p ≤0.0001). 
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3.6.5. Expression of virulence factors associated with PS3 

attachment 

Whilst there was a low level of attachment, there was some differences between 

conditions and time points, suggesting potential differences in expression of 

genes involved in attachment. Transcriptome analysis showed increased 

expression of two genes involved in attachment, FleQ involved in expression of 

flagella (Hickman and Harwood, 2008) and PilA, involved in pili assembly (Persat 

et al., 2015) from 24 hour cultures of MM Glu, however after 80 hours, expression 

of both of these was higher from MM EtOH cultures (figure 3.22).  

 

 

     

Figure 3.22 Expression of FleQ and Pil A genes from PS3 grown for 24 and 80 hours. 

Expression values expressed as reads per kilo base per million mapped reads of FleQ and Pil A 

genes from PS3 grown in MM EtOH and MM Glu for 24 and 80 hours.  

 

 

24 hours                                                      80 hours 
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3.6.6 The skin commensal bacteria Staphylococcus epidermidis 

can internalise into keratinocytes more than PS3 

To determine whether the low levels of internalisation that occurred with the PS3 

was specific to this strain, the amount of internalisation of a common non 

pathological skin commensal Staphylococcus epidermidis was ascertained.  

Staphylococcus epidermidis at an MOI of 100 could internalise into cultured 

keratinocytes in higher numbers than PS3, with internalisation of 1-15 bacteria 

per 10 keratinocyte (figure 3.23). By comparison the highest amount of 

internalisation for PS3 was from PS3 grown in SWF for 80 hours at an MOI of 

100 and this was an average 0.8 bacteria per 10 keratinocytes (figure 3.21).  

 

 

 

Figure 3.23 Internalisation of Staphylococcus epidermidis grown for 24 hours in to 

cultured keratinocytes.  Bacterial internalisation of Staphylococcus epidermis grown in TSB for 

24 hours at an MOI of 100 is shown.  Bacterial numbers were calculated from plate counts and 

are expressed as bacteria per cultured keratinocyte. Data is expressed as the mean + standard 

deviation for 3 independent experiments 
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3.7 Summary and key findings 

Results in this chapter showed that PS3 cell free conditioned media caused 

toxicity of cultured human keratinocytes and that growth condition of the bacteria 

can influence toxicity. A total loss of viable cultured keratinocytes occurred at high 

concentrations of cell free conditioned media from PS3 grown in MM EtOH for 80 

hours, but this was not observed for PS3 grown in MM Glu or for PF grown in the 

same conditions. This was also not observed for PS3 grown for 24 hours 

indicating time in culture has an effect on the toxicity of secreted factors from 

PS3. 

Analysis of some virulence factors showed that PS3 could express virulence 

factors, all of which were increased for 80 hour culture times compared to 24 

hours, showing potential for culture time to have an effect of virulence of 

Pseudomonas. At the level of individual virulence factors there was no consistent 

significant difference PS3 grown in MM EtOH compared to other growth 

conditions. In addition, no protease or hemolysin activity could be detected in cell 

free conditioned media from PS3 grown in any of the conditions. No virulence 

factors were detected from PF in any of the assays used.  

PS3 showed a general low level of attachment and internalisation into cultured 

keratinocytes. For 24 hour cultures, PS3  grown in MM Glu showed the greatest 

level of attachment, by comparison at 80 hours, PS3 grown in MM EtOH showed 

greater attachment which was highly significant compared to other conditions. 

PS3 grown in MM EtOH for 80 hours also showed a greater amount of 

internalisation into keratinocytes however there was no consistent significance 

difference compared to the other conditions.  
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4.1 Introduction 

Whilst the skin acts as a physical barrier, damage to the skin can potentially lead 

to microbial invasion of the damaged and surrounding tissue, which is commonly 

found in hospital patients (Ki and Rotstein, 2008). HaCaT cells make a useful 

model to investigate immunological and inflammatory responses of the skin 

(Colombo et al., 2017) similar to dermal keratinocytes, they are known to express 

PRR’s, known as MAMP receptors which make them a suitable model to 

investigate host - pathogen interactions relating to the skin (Pivarcsi et al., 2003).   

Innate immune responses initiated within keratinocytes occur via MAMP 

receptors which upon recognition of bacterial MAMPs become activated. 

Pseudomonas possess a variety of MAMPs which can be cell attached or 

secreted and are specific in activating certain MAMP receptors (Lavoie et al., 

2011). Upon activation, a cell signalling cascade is generated resulting in pro-

inflammatory cytokine release, the pro-inflammatory cytokine CXCL8 is central to 

the innate immune response due its ability to target and recruit neutrophils to the 

site of infection through chemotaxis (Jundi and Greene, 2015). Following 

neutrophil activation other professional immune cells such as macrophages are 

recruited to the site of infection leading to inflammation which is an important and 

tightly regulated process which aids in the ability to clear invading microbes and 

promote healing (Piktel et al., 2019). In the case of persistent microbial invasion 

which often occurs in chronic wounds, clearance of invading microbes is not 

always achieved and this can lead to the overproduction of inflammatory 

mediators which can in turn be of benefit to invading microbes (Lin and Zhang, 

2017). In addition, dysregulation of inflammatory responses can cause further 

damage to host tissue (Ruffin and Brochiero, 2019).  Whilst a lot of research has 
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focused on cell attached MAMPs, little work has been carried out to investigate 

the interactions between host cells and secreted bacterial products (Kuipers et 

al., 2018).  

4.2 CXCL8 secretion from keratinocytes direct 

exposure to PS3 vs cell free conditioned media.  

In order to investigate the secretion of CXCL8 from keratinocytes in response to 

direct contact with PS3 compared to PS3 cell free conditioned media, 

keratinocytes were exposed to 1 x 105 bacteria or 1:2 dilution (in complete cell 

culture media) of the corresponding bacterial cell free growth media for 2 hours. 

This was then replace with complete culture media (supplemented with antibiotics 

(1g/ml) for cells exposed to live bacteria). Supernatants from the cells were 

collected 8 hours after initial exposure and CXCL8 was quantified by ELISA.  

 

4.2.1 CXCL8 stimulation from live PS3 and EC secretions from 

24 hour cultures 

Direct exposure of keratinocytes to direct PS3 from 24 hour cultures grown in all 

3 conditioned stimulated CXCL8 secretion.  PS3 grown in MM Glu or SWF 

produced the largest stimulation of CXCL8 secretion of 1250-1300 (pg/ml) (figure 

4.1), which was approximately 2 fold higher than Ps3 grown in MM EtOH (p 

≤0.05). 

The corresponding cell free conditioned media derived from the same cultures 

differed, with MM EtOH and MM Glu producing a concentration of 1100-1250 

(pg/ml) CXCL8. These were both significantly greater than SWF cell free 
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conditioned media (p ≤0.001, p≤0.01) for which there was a lower CXCL8 

secretion compared to exposure to live PS3 (figure 4.1). 

 

 

 

Figure 4.1 CXCL8 secretion from cultured keratinocytes following direct exposure for 2 

hours to live PS3 or the corresponding cell free conditioned media from 24 hour cultures. 

CXCL8 secretion was quantified by ELISA from samples taken 8 hours after a 2 hour exposure 

to the bacteria or cell free conditioned media.  Control treated cells (HBSS only) are indicated by 

the dashed line. Data are expressed as mean (+) standard deviation (n=2). A two way ANOVA 

with Tukey’s post hoc showed significances as indicated on the graph (*p ≤0.05, **p ≤0.01, ***p 

≤ 0.001).  
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4.2.2 CXCL8 stimulation from live PS3 and cell free conditioned 

media from 80 hour cultures 

Direct exposure to PS3 from 80 hour cultures grown in MM EtOH and MM Glu 

produced a minimal stimulation of CXCL8, with secretion being similar to control 

(HBSS only) (figure 4.2). By contrast PS3 grown in SWF produced a 5 fold 

increase in CXCL8 secretion compared to both MM EtOH and MM Glu (p ≤0.001) 

(figure 4.2) 

The corresponding cell free conditioned media from MM EtOH and MM Glu grown 

for 80 hours both produced a greater stimulation of CXCL8 secretion compared 

to the direct exposure of the cells to PS3. For MM Glu this was around 10 fold 

greater and for MM EtOH around 7 fold. The CXCL8 secretion stimulated by cell 

free conditioned media from MM Glu was significantly greater than for MM EtOH 

(p 0.05). CXCL8 secretion from SWF cell free conditioned media was not 

measured due to lack of viable cells as shown in figure 3.17.  
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Figure 4.2 CXCL8 secretion from cultured keratinocytes following direct exposure to live 

PS3 or the corresponding cell free conditioned media from 80 hour cultures. CXCL8 

secretion was quantified by ELISA 8 hours after a 2 hour exposure to bacteria or cell free 

conditioned media. Control treated cells (HBSS only) are indicated by the dashed line. Data are 

expressed as mean (+) standard deviation (n=2). A two way ANOVA with Tukey’s post hoc 

showed significances as indicated on the graph (*p ≤0.05, ***p ≤ 0.001).  
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4.3 CXCL8 secretion from Pseudomonas cell free 

conditioned media only. 

Once it was established that Pseudomonas cell free conditioned media 

stimulated CXCL8 secretion from keratinocytes more consistently than direct 

exposure to live Pseudomonas further experiments were conducted using cell 

free conditioned media only. Keratinocytes were exposed to cell free conditioned 

media diluted in complete DMEM from different culture conditions for a longer 

time period of 4 hours, the supernatant from the cells were then collected 24 

hours after initial exposure and CXCL8 secretion was quantified by ELISA.  

 

4.3.1 CXCL8 secretion from Pseudomonas cell free conditioned 

media from 24 hour cultures 

Exposure to PS3 cell free conditioned media grown for 24 hours stimulated 

CXCL8 secretion in all of the conditions and dilutions tested (figure 4.3) 

PS3 conditioned MM EtOH and MM Glu, resulted in the greatest CXCL8 secretion 

of around 2000pg/ml when keratinocytes were exposed to the 1:2 dilution, with 

both conditions being significantly higher than CXCL8 secretion from SWF 

conditioned media at the same dilution (p ≤0.0001) (figure 4.3).  

At the 1:5 dilution, the stimulation of CXCL8 secretion was around a 5 fold less 

compared to 1:2 in all conditions, however the secretion of CXCL8 was still 

significantly lower for SWF compared to MM EtOH (p ≤ 0.01) and MM Glu (p 

≤0.0001).  
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At a 1:10 dilution there was a further decrease in CXCL8 secretion, however for 

MM EtOH and SWF conditioned media CXCL8 secretion was similar to a 1:5 

dilution (figure 4.3). With similar significances occurring between MM EtOH and 

SWF (p ≤0.01) and MM Glu and SWF (p ≤0.001). 

Cell free conditioned media from PF grown for 24 hours showed a small CXCL8 

secretion compared to controls at a 1:2 dilution (figure 4.3). No significant 

differences were seen between conditions for PF conditioned media. 

 

 

Figure 4.3 CXCL8 secretion from cultured keratinocytes exposed for 4 hours to diluted cell 

free conditioned media from Pseudomonas cultures grown for 24 hours. CXCL8 secretion 

was quantified from supernatants collected 24 hours after initial 4 hour exposure. Data are 

expressed as mean (+) SEM (n=3, 2). A two way ANOVA with Tukey’s post hoc showed 

significances as indicated on the graph (**p ≤0.01, ***p ≤ 0.001, ****p ≤0.0001). 
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4.3.2 CXCL8 secretion from keratinocytes Pseudomonas cell 

free conditioned media from 80 hour cultures.  

Similar to cell free conditioned media from 24 hour cultures, PS3 cell free 

conditioned media grown for 80 hours stimulated CXCL8 secretion in a similar 

manner to the 24 hour cultures (figure 4.3 and 4.4). At the 1:2 dilution PS3 grown 

in MM Glu stimulated 1500 (pg/ml) CXCL8 secretion, this was significantly 

greater than MM EtOH (p ≤ 0.0001) (figure 4.4) but this was because no CXCL8 

secretion occured in response to the supernatant due to the lack of viable cells 

as shown in figure 3.11. At a 1:5 dilution, CXCL8 secretion from MM EtOH  was 

1613 (pg/ml), which was greater than MM Glu, however not significant (figure 

4.4). At a 1:10 dilution, there was a slight decrease seen in CXCL8 secretion 

compared to a 1:5 dilution for both conditions with MM EtOH PS3 conditioned 

media producing around 1300 (pg/ml) CXCL8 secretion, which was significantly 

greater than MM Glu conditioned media (1000 (pg/ml) (p ≤0.05). (figure 4.4) 

Cell free conditioned media from PF conditioned cultures grown for 80 hours at 

the 1:2 dilution, produced similar results to the  24 hour cultures (figure 4.4). Again 

there was no significant differences between the different conditions. 
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Figure 4.4 CXCL8 secretion from cultured keratinocytes exposed for 4 hours to diluted cell 

free conditioned media from Pseudomonas cultures grown for 80 hours. CXCL8 secretion 

was quantified from supernatants collected 24 hours after initial 4 hour exposure. Data are 

expressed as mean (+) SEM (n=3, 2). A two way ANOVA with Bonferroni post hoc showed 

significances as indicated on the graph (*p ≤0.05, ****p ≤0.0001). 
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4.3.3 PS3 grown in simulated wound fluid produced varied 

CXCL8 secretion from keratinocytes.  

PS3 grown in SWF gave varied results on CXCL8 secretion from cultured 

keratinocytes. For the 1:2 dilution, 5624 pg/ml of CXCL8 was produced in 1 

experiment on average but only 377 pg/ml in another (figure 4.5) For the third 

experiment CXCL8 was not measured due to lack of viable cells (figure 3.12). 

At the 1:5 and 1:10 dilutions for PS3 conditioned media, there was a lower 

variability but the 1st experiment consistently produced a higher CXCL8 secretion 

than the second two, this lead to overall large variation within the data (figure 

4.5). A similar variation also occurred in the MTS data (figure 3.12). 

 

Figure 4.5 CXCL8 secretion from cultured keratinocytes exposed for 4 hours to diluted cell 

free conditioned media from Pseudomonas cultures grown for 80 hour in SWF. CXCL8 

secretion was quantified from supernatants collected 24 hours after initial 4 hour exposure. Data 

are expressed as mean (+) standard deviation of 2 technical replicates. The different bars 

represent individual experiments. 
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4.3.4 Comparison of the effect of bacterial time in culture on 

CXCL8 secretion from cultured keratinocytes exposed to 

supernatants from ethanol or glucose grown PS3. 

To directly compare the effects of the cell free conditioned media from 24 and 80 

hour cultures on CXCL8 secretion, ELISA data from 24 and 80 hour cultures of 

PS3 grown in MM EtOH or MM Glu were plotted together (figure 4.6).  

Due to lack of cell viability in keratinocytes treated with a 1:2 dilution of PS3 grown 

in MM EtOH for 80 hours as indicated by the MTS data (figure 3.11), there was 

no CXCL8 secretion (figure 4.6). For a 1:2 dilution of MM Glu 24 and 80 hour 

cultures there was no significant difference in CXCL8 secretion.  

At a 1:5 dilution, supernatants from MM EtOH cultures grown for 80 hours 

produced a greater CXCL8 secretion compared to 24 hour cultures (figure 4.6) 

By contrast, cell free conditioned media from MM Glu cultures stimulated more 

CXLC8 secretion from 24 hours compared to 80 hour cultures. At a 1:5 dilution 

the differences in CXCL8 secretion within MM EtOH and MM Glu grown cultures 

was not significant (figure 4.6). 
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Figure 4.6 CXCL8 secretion from keratinocytes challenged with 24 and 80 hours PS3 cell 

free conditioned media from cultures grown in MM EtOH or MM Glu. The keratinocytes were 

exposed for 4 hours and CXCL8 secretion was quantified 24 hours after initial 4 hour exposure. 

Data is expressed as mean (+) SEM (n=3, 2). A T-test showed significances between groups as 

indicated on the graph (** p < 0.01). 
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4.4 Expression of MAMP receptors from cultured 

keratinocytes 

To investigate immune responses initiated by PS3 further flow cytometry was 

used to quantify the expression of the MAMP receptors TLR 2 and 4 and the 

associated co-receptor CD14 in response to cell free conditioned media from PS3 

cultures grown in the different growth conditions for 24 and 80 hours. 

Keratinocytes were seeded in 24 well plates and exposed for 4 hours to diluted 

cell free conditioned media from 24 hour cultures at a 1:2 dilution or for 80 hour 

cultures a 1:5 dilution was used, both were diluted in complete cell culture media. 

Non-conditioned growth media (diluted 1:2 in DMEM) was used as control.  

4.4.1 Expression of MAMP receptors from cultured keratinocytes 

following exposure to PS3 cell free conditioned media grown for 

24 and 80 hours.  

All the MAMP receptors tested were expressed by cultured keratinocytes in 

control conditions with the exception of TLR 4 that had minimal expression when 

exposed to diluted non-conditioned SWF (figure 4.7).  

For MM EtOH, there was little differences between control cells and cell free 

conditioned media from 24 hour cultures, with cell counts and levels of 

fluorescence being very similar (figure 4.7), media from 80 hour cultures 

produced similar counts and fluorescence for CD-14, but showed lower counts 

for TLR 2 and 4 compared to both control cell exposed to 24 hour conditioned 

media (figure 4.7).  
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For MM Glu, differences were observed between the control and 24 hour cell free 

conditioned media for TLR 2 and 4 with an increase in fluorescence for TLR 2 

and increase in the number of fluorescent cells for TLR 4. A very small increase 

in the expression of CD-14 also occurred (figure 4.7) In contrast, 80 hour MM Glu 

cultures produced a lower expression of TLR 2, TLR 4 and CD-14 expression 

compared to cells treated with media from 24 hour cultures, with both cell counts 

and fluorescence levels being similar to that of the control (figure 4.7).  

For SWF cultures, an increase in expression of both TLR 2 and 4 and CD14 

occured, with the amount of fluorescence and the number of fluorescent cells 

being increased compared to control (figure 4.7). For 24 and 80 hour cultures the 

expression of TLR 2 and 4 was increased compared to control, however the 

number of fluorescent cells was only higher following with treatment with 24 hour 

cell free SWF media (figure 4.7). For CD-14 expression, 80 hour cell free 

conditioned media treated cells showed similar level of expression to controls 

(figure 4.7). 



 154 

Control 

24 hours 

80 hours 

Control 

24 hours 

80 hours 

Control 

24 hours 

80 hours 

       MM EtOH                                        MM Glu                                           SWF  

T
L

R
 4

 
C

D
-1

4
 

T
L

R
 2

 

Figure 4.7 Expression of toll like receptors 2, 4 and CD-14 in cultured keratinocytes following exposure to PS3 cell free 

conditioned media. Keratinocytes were exposed for 4 hours to diluted cell free conditioned media grown for 24 or 80 hours from each of 

the different growth conditions as indicated. The keratinocytes were then lifted, stained and analysed by flow cytometry. 



 155 

In order to directly compare the effects of bacteria grown in different media on 

receptor expression, the data was replotted so the effects of bacteria grown for 

the same time in different media could be more easily compared (figure 4.8). The 

pattern of expression was similar for both TLR’s and CD-14 for both 24 and 80 

cultures (figure 4.8). 

 For 24 hour cultures, cell free media from both MM Glu and SWF increased the 

level of fluorescence for both TLR’s and CD-14 compared to MM EtOH (figure 

4.8).   SWF treated cells produced an increased number of fluorescent cells for 

TLR 2 and CD-14 compared to MM Glu and MM EtOH treatments whereas for 

TLR 4  MM Glu treated cells showed  a small increase compared to SWF and 

around a 4 fold increase compared to MM EtOH (figure 4.8). 

For 80 hour cultures, cell free conditioned media from MM Glu, produced a small 

increase in the number of fluorescent cells for TLR 2 and 4 compared to MM 

EtOH and SWF, however the total fluorescence was the same for each condition 

(figure 4.8). For CD-14 expression, MM Glu and MM EtOH conditioned media 

produced a similar level of expression with the number of fluorescing cells being 

around 2 fold higher than SWF treated cells (figure 4.8). 
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Figure 4.8 Expression of toll like receptors 2, 4 and CD-14 in cultured keratinocytes following exposure to PS3 

cell free conditioned media grown for 24 hours (A) or 80 hours (B) for each of the different growth conditions. 

Keratinocytes were exposed to the cell free conditioned media from 24 or 80 hour cultures for 4 hours before being lifted, 

stained and analysed by flow cytometry.  
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4.5 CXCL8 secretion from ex-vivo skin models. 

Although informative, simple monolayers of HaCaT cells is a very reductive model of 

skin physiology. For this reason it was investigated whether cells would act in a similar 

manner when assembled onto a dermal scaffold, which produce a more representative 

3D model of human skin. Models were constructed and incubated for 2 weeks to allow 

development of stratified layers before being challenged with Pseudomonas cell free 

conditioned media. Similar to the experiments on monolayers, the skin models were 

exposed to cell free conditioned media for 4 hours and samples were collected 24 

hours after initial exposure and CXCL8 was quantified by ELISA.  
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4.5.1 CXCL8 stimulation from skin models challenged with 

Pseudomonas fluorescens grown for 80 hours. 

 Cell free conditioned media from PF grown for 80 hours was used as a control and 

investigated in initial experiments. Models challenged with diluted (1:2) cell free 

conditioned media from PF 80 hour cultures produced little CXCL8 secretion of  

584pg/ml for ethanol grown PF and 163 pg/ml for glucose grown PF, with levels of 

CXCL8 secretion being similar to control (non-conditioned diluted media) (figure 4.9). 

Significant differences were observed between MM EtOH and MM Glu in both control 

and conditioned media treated cells (p 0.05) (figure 4.9). 

 

 

Figure 4.9 CXCL8 secretion from ex vivo skin models following exposure for 4 hours to 

Pseudomonas fluorescens cell free conditioned media. Ex vivo skin models were exposed to 

diluted cell free conditioned media from PF cultures grown for 80 hours. CXCL8 secretion was quantified 

from supernatants collected 24 hours after initial 4 hour exposure. Data are expressed as mean (+) 

standard deviation of 1 experiment (n=2). A T-test showed significances between groups as indicated 

on the graph (* p 0.05).  
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4.5.2 CXCL8 secretion from ex vivo skin models challenged with PS3 

grown for 24 and 80 hours. 

Once effects of laboratory reference strain PF had been established and minimal 

CXCL8 secretion was observed further experiments were conducted with PS3 grown 

for 24 and 80 hours. 

Exposure to PS3 grown for 24 and 80 hours showed increased CXCL8 secretion, with 

both 24 and 80 hour cell free conditioned media producing a 2 fold increase to control 

(figure 4.10). CXCL8 secretion data is similar to that for the cells grown as a monolayer 

for PS3 24 hour conditioned media at a 1:2 dilution (figure 4.4 and figure 4.10), in 

addition PS3 grown in MM EtOH for 80 hours also stimulated CXCL8 secretion. No 

significant differences were observed between conditions (figure 4.10) or within 

conditions (data not shown).  
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Figure 4.10 CXCL8 secretion from ex vivo skin models following exposure to PS3 cell free 

conditioned media. Ex vivo skin models were exposed to cell free conditioned media diluted 1:2 in 

complete DMEM from PS3 cultures grown for 24 hours (A) or 80 hours (B).  CXCL8 secretion was 

quantified from supernatants collected 24 hours after initial 4 hour exposure. Data are expressed as 

mean (+/-) standard deviation of 1 experiment (n=2).   
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4.6 Summary and key findings 

The results in this chapter show that PS3 can illicit CXCL8 secretion from cultured 

keratinocytes, and that cell free conditioned media containing secreted factors can 

generally produce a greater secretion compared to exposure of live bacteria. 

Keratinocytes exposed to cell free conditioned media from PS3 grown for 24 hours in 

MM EtOH and MM Glu showed greater CXCL8 secretion compared to those exposed 

to SWF. For 80 hour cultures, cells exposed to MM EtOH produced greater CXCL8 

secretion compared to MM Glu, with the exception of the 1:2 dilution, which was not 

measured due to lack of viable cells. SWF treated cells showed varied results in 

CXCL8 secretion with the biggest variation seen at the 1:2 dilution, however viability 

data shown in the previous chapter also showed large variation. Following direct 

comparison of 24 and 80 hour cultures, looking at the 1:5 dilution, within the different 

growth conditions it showed PS3 grown in MM EtOH for 80 hours could produce 

greater CXCL8 secretion, however for PS3 grown in MM Glu, 24 hour conditioned 

media produced the greater a greater CXCL8 secretion. From the flow cytometry data 

investigating the expression of selected MAMP receptors, cell free conditioned media 

from PS3 grown for 24 or 80 hours had no effect on the change in expression in any 

of the MAMP receptors, with expression levels being similar to control. For MM Glu 

and SWF, following exposure to cell free conditioned media from PS3 grown for 24 

hours, there was an increase in expression and/or number of cells emitting the signal 

for all 3 MAMP receptors. For 80 hour cultures cell free conditioned media from MM 

Glu cultures showed no differences compared to control, however for SWF 80 hour 

cultures, cell free conditioned media showed increases in expression for TLR2 and 

increase in cells omitting a signal for TLR4.  



 162 

For the ex-vivo skin model experiments, CXCL8 secretion was increased following 

exposure to PS3 compared to non-conditioned media and PF cell free conditioned 

media however, no significant differences were observed between growth conditions.  
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Chapter 5 

Investigation of cellular models of 

wound healing. 
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5.1 Introduction 

Wound healing is a conserved, intricate process by which the skin repairs itself after 

injury. There are many in vitro models that are currently employed to study wound 

healing including single cell monolayer models and ex-vivo models (Sami et al., 2019). 

Single cell monolayers provide a quick and cost effective way to investigate wound 

healing, with one of the most common assays being the scratch assay which provides 

an easy and low cost effective method to mimic cell proliferation and migration in 

response to various agents (Liang et al., 2007). Monolayers of cells are ‘scratched’ to 

create an artificial gap and are then monitored over a period of time to investigate how 

cells proliferate and migrate to achieve closure thus returning to the original monolayer 

state (Chen, 2012). Keratinocytes and skin fibroblast cells make suitable cell types for 

the scratch assay due to their ability to collectively migrate in a process known as 

‘sheet migration’ (Grada et al., 2017).  

Once cell proliferation and migration have been established within the scratch assay 

model, other more complex skin models can be employed such as three dimensional 

ex-vivo skin models, which have been in development since 1981 (Bell et al., 1981). 

These can provide a more relevant physiological model of human skin, and potentially 

provide a more realistic approach to studying tissue repair (MacNeil et al., 2011). 

Similar to the scratch assay, models are artificially damaged to provide an area to 

allow cell migration and proliferation which can then be measured often via histology 

staining.  

As mentioned in previous chapters, Pseudomonas aeruginosa is a persistent coloniser 

of wounds where colonisation can lead to impaired healing (Goldufsky et al., 2015). In 

addition to this there is debate about the role of microorganisms in wounds and 
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whether they can be used as a tool to pre-determine infectivity and healing (Bowler et 

al., 2001). Therefore it is important to understand the cellular mechanisms in response 

to Pseudomonas in order to address the management and treatment of chronic 

wounds.  
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5.2 Consistency check of scratch methodology used 

for cultured keratinocytes  

Initially experiments were performed to determine that scratches of similar sizes could 

be made consistently. A total of 30 scratches were made using an aspirator tip and 

were photographed at time 0, the total area of the scratches was measured using 

ImageJ software. The median area of the scratches was 10.6 x 105, with an 

interquartile range of 22 x 104 (figure 5.1). 

 

 

 

Figure 5.1 Scratch sizes in cultured keratinocytes. Initial sizes, in pixels, of 30 scratches made in 

cultured keratinocytes using an aspirator tip.  
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5.3 Determination of scratch closure from cultured 

keratinocytes exposed to growth media only 

In order to establish the effects of growth media, cells were scratched and challenged 

with diluted growth media (1:2 in complete cell culture media) for 4 or 6 hours. Wells 

were photographed every 24 hours for up to 5 days and the size of the scratches was 

measured using ImageJ software. There was some variation in the amount of closure 

in some conditions at day 1 following a 4 hour exposure times with scratches exposed 

to SWF showing the slowest initial closure of 17% which was significantly less than  

MM Glu (p ≤0.05) and significantly less than that of than that of  MM EtOH media and 

control (p ≤0.0001) (figure 5.2). In addition to this MM Glu treated cells were also 

produced significantly lower closure compared to MM EtOH treated cells and control 

(p ≤0.001) At day 2, scratch closure still remained significantly slower for SWF and 

MM Glu treated cells compared to control (p ≤0.01, p ≤0.0001), however at day 3 SWF 

and MM Glu treated cells showed closure to be the same as MM EtOH and control 

with all conditions reaching almost full scratch closure (figure 5.3). Similar patterns 

were observed following a 6 hour exposure, where SWF and MM Glu treated cells 

showed significantly less closure than that of the control (p ≤0.01) (p ≤0.0001) at day 

1, at day 2 however SWF treated cells showed closure to be similar to that of MM 

EtOH treated cells and control cells, but MM Glu still remained significantly slower 

compared to the other conditions and control (p ≤0.05, p ≤0.01). At day 3 each 

condition, showed similar closure to control, with each condition producing almost 

100% closure.  
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Figure 5.2 Representative scratch assay images and corresponding mean percentage scratch 

closure from cultured keratinocytes exposed to diluted growth media. Keratinocyte monolayers 

were scratched and exposed to non-conditioned growth media diluted 1:2 in complete cell culture 

media for 4 or 6 hours, controls (cell culture media only) are indicated by the red line. Data is mean 

(+) SEM of 3 independent experiments (n=2). A two way ANOVA with Tukey’s post hoc showed 

significances between groups graphs * p≤0.05, ** p ≤0.01, **** p≤ 0.0001), colour of stars indicates 

the treatment where significance lies. Keratinocyte images are representative of 4 hour exposure 

only. 
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5.4 Effect of Pseudomonas cell free conditioned 

media on keratinocyte scratch assays.  

Once effects of the different bacterial media on the scratch assays had been the 

determined the effects of exposure to Pseudomonas cell free conditioned media for 

grown in different conditions was investigated. The same method was used for the 

experiments with the non-conditioned media described above with both PS3 and PF 

conditioned media with a 4 or 6 hour exposure time.  

5.4.1 Determination of scratch healing after exposure to 

Pseudomonas cell free conditioned media from 24 hour cultures.  

Cell free conditioned media from Pseudomonas cultures grown for 24 hours in any of 

conditions did not have a significant effect on scratch closure from any of the 

conditions. 

Scratches exposed to PS3 cell free conditioned media for 4 hours, showed scratch 

closure to be the same as control with all conditions showing over 50% reduction in 

scratch size by day 2 (figure 5.3) and almost all conditions showing full scratch closure 

by day 4, with SWF grown PS3 taking slightly longer to fully close, occurring in 5 days 

(figure 5.3). No significant differences were observed between any conditions at any 

of the time points for PS3 cell free conditioned media. For the longer exposure time of 

6 hours to PS3 cell free conditioned media showed a slower rate of scratch closure 

with scratches only reaching 50% closure at day 2 for each condition. At day 4 full 

scratch closure had only occurred for keratinocytes exposed to PS3 grown in MM Glu, 

and after 5 days, full scratch closure had not occurred for PS3 cell free conditioned 

media from MM EtOH or SWF cultures (figure 5.3). 
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Figure 5.3 Representative images of scratches and corresponding mean scratch closure 

over time from cultured keratinocytes exposed to PS3 grown for 24 hours.  Scratches were 

exposed to cell free conditioned media from PS3 grown for 24 hours and diluted 1:2 in complete 

cell culture media for 4 or 6 hours. Scratches were photographed and closure determined every 24 

hours over 5 days. Data is mean (+) SEM of 3 independent experiments (n=2). A two way ANOVA 

showed no significant differences between groups. Keratinocyte images are representative of 4 

hour exposure only. 
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For scratches exposed to PF cell free conditioned media for 4 hours, MM EtOH and 

SWF showed very similar scratch closure throughout each time point reaching full 

closure at day 3 (figure 5.4). For both these conditions scratch closure was significantly 

greater than that for MM Glu at days 1 (p ≤0.001, p ≤0.01), days 2 and 3 (p ≤0.05), by 

day 4 there was no difference as scratch closure was almost complete for 

keratinocytes exposed to MM Glu (figure 5.4). 

In comparison 6 hour exposure times showed an increase in scratch closure for SWF 

conditioned media with scratches reaching full closure after 2 days (figure 5.4). This 

was significantly quicker than that for MM Glu and MM EtOH conditioned media at 

both days 1 and 2 (p ≤0.0001). For the 6 hour exposure to MM Glu conditioned media, 

scratch closure occurred at the same rate as after a 4 hour exposure (figure 5.4). For 

cells treated with MM EtOH cell free conditioned media scratch closure was slower for 

cells exposed for 6 hours, taking an extra 24 hours to achieve full healing compared 

to a 4 hour exposure.  Full scratch closure following a 6 hour treatment with either MM 

EtOH or MM Glu occurred after 4 days (figure 5.4). 
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Figure 5.4 Representative images of scratches and corresponding scratch closure over time 

from cultured keratinocytes exposed to PF grown for 24 hours.  Scratches were exposed to cell 

free conditioned media from PF grown for 24 hours and diluted 1:2 in complete DMEM for 4 and 6 

hours. Scratches were photographed and closure determined every 24 hours up to 5 days. A two 

way ANOVA with Tukey’s post hoc showed significance between groups (*p ≤0.05, ** ≤0.0001), 

colour of stars indicates the treatment where significance lies, black stars show significance to both 

the other treatments.  Keratinocyte images are representative of 4 hour exposure only. 
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5.4.1.1 PF grown in SWF for 24 hours showed accelerated closure to above 
control. 

Once scratch closure from keratinocytes exposed to 24 hour conditioned media had 

been determined, data were replotted together to investigate whether any significant 

differences in scratch closure were seen between conditioned media and the 

corresponding control of non-conditioned media.  Cell free conditioned media from PF 

cultures grown in SWF for 24 hours was the only condition to show significantly greater 

closure compared to non-conditioned media which was observed following both a 4 

and 6 hour exposure time (figure 5.5). Following a 4 and 6 hour exposure conditioned 

media produced significantly greater closure at day 1 compared to control (p ≤0.0001), 

with conditioned media producing around a 2 fold increase following 4 hour exposure 

and a 3 fold increase following a 6 hour exposure (figure 5.5). At day 2, following a 4 

hour exposure, again conditioned media produced significantly greater closure 

compared to control, showing 20% greater closure (p ≤0.0001) (figure 5.5). Following 

a 6 hour exposure at day 2, conditioned media showed slightly greater closure 

reaching 100% however this was not significant compared to cells treated with non-

conditioned media (figure 5.5).  
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Figure 5.5 Mean scratch closure from keratinocytes exposed to conditioned media from PF 

cultures grown in SWF for 24 hours compared to non-conditioned SWF. Scratches were 

exposed to conditioned or non-conditioned SWF diluted 1:2 in complete cell culture media for 4 or 

6 hours scratches were photographed and closure determined every 24 hours over 5 days. A two 

way ANOVA with Bonferroni post hoc showed significant differences between groups (**** 

≤0.0001).  
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5.4.2 Determination of scratch healing from treatment with 

conditioned media taken from Pseudomonas 80 hour cultures 

For SWF and MM Glu cultured grown for 80 hours the effect of a 4 hour exposure to 

the cell free media on the rate of scratch healing was similar to that for 24 hour cultures 

with around 50% closure by day 2 (figure 5.3 and figure 5.6) Scratches exposed to 

MM Glu showed further steady scratch closure reaching over 80% closure by day 3, 

which was significantly greater than SWF (p <0.05) which showed slower closure over 

days 3-5, with full scratch closure not occurring after 5 days (figure 5.6). 

Scratches exposed for 4 hours to PS3 grown in MM EtOH for 80 hour showed 

significantly slower closure compared to MM Glu and SWF (figure 5.6). The Initial 

scratch closure was slow with only 20% scratch closure achieved by day 2 which was 

significantly less than for the other two conditions (p ≤0.0001 to SWF, p≤0.001 to MM 

Glu) (figure 5.6). By day 4 scratch closure was only 50%, again significantly less than 

the other two conditions. (p ≤0.01 to SWF, p ≤0.0001 to MM Glu). By day 5 full closure 

had not occurred, with closure not being above 80% (figure 5.6). 

Following a 6 hour exposure to MM Glu initial scratch closure was similar to that for a 

4 hour exposure (figure 5.6). For SWF there was a slightly faster scratch closure 

reaching 60% by day 2, however, similar to 4 hour exposure, closure slowed between 

days 3-5, but full scratch closure occurred by day 5 (figure 5.6). For scratches exposed 

to PS3 grown in MM EtOH, scratch closure was slowed further compared to 4 hour 

exposures, with significant differences seen between MM EtOH and MM Glu and SWF 

at all time points (figure 5.6) (p ≤0.0001). There was actually a small increase in 

scratch size at day 1 leading to no overall scratch closure at day 2 and little closure 

occurred for all time points, with less than 50% closure occurring by day 5 (figure 5.6).  
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Figure 5.6 Representative images of scratches and corresponding mean scratch closure over 

time from cultured keratinocytes exposed to PS3 grown for 80 hours.  Scratches were exposed 

to cell free conditioned media from PS3 grown for 80 hours and diluted 1:2 in complete cell culture 

media for 4 and 6 hours, scratches were photographed and closure determined every 24 hours over 5 

days. A two way ANOVA with Tukey’s post hoc showed significant differences between groups (*p 

≤0.05, ** p 0.01, ***p 0.001 **** ≤0.0001), colour of stars indicates the condition where significance 

lies, black stars show significance to both of the other conditions. Keratinocyte images are  

representative of 4 hour exposure only. 
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PF cell free conditioned media had relatively little effect on scratch healing. After a 4 hours 

exposure to MM Glu or MM EtOH there was similar scratch closure reaching around 80% after 

2 days with MM Glu fully closing by day 3. For MM EtOH, closure was slower after day 2 with 

full scratch closure not occurring until day 5 (figure 5.7). For both conditions the initial scratch 

closure was significantly faster than that for SWF, with the amount of closure being 

significantly less at days 1 (p ≤0.001, p ≤0.05) 2 (p ≤0.01, p 0.0001) and 3 (p ≤0.05, p 0.01), 

however by day 5 full scratch closure had occurred (figure 5.7). 

For 6 hour exposure times, MM Glu produced a similar scratch closure to that of 4 hour 

exposure, with full closure occurring after 3 days (figure 5.7).  For MM EtOH and SWF scratch 

closure was slower than that for 4 hour exposure with SWF being significantly less than MM 

Glu at day 1 (p  0.01) and less than both MM Glu and MM EtOH (p 0.01) at day 2 (figure 

5.7). At day 3 MM EtOH and SWF showed similar closure (around 60%), and both were more 

than 90% closed by day 5 (figure 5.7). 
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Figure 5.7 Representative images of scratches and corresponding scratch closure over time from 

cultured keratinocytes exposed for 4 or 6 hours to PF conditioned media grown for 80 hours.  

Scratches were exposed to cell free conditioned media from PF grown for 80 hours and diluted 1:2 in 

complete culture media for 4 or 6 hours. Scratches were photographed and closure determined every 24 

hours up to 5 days. A two way ANOVA with Tukey’s post hoc showed significance between groups (*p 

≤0.05, **p 0.01, **** ≤0.0001), colour of stars indicates the condition where significance lies, black stars 

show significance to both of the other conditions. Keratinocyte images are representative of 4 hour 

exposure only. 
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5.4.2.1 PF grown in MM Glu for 80 hours showed accelerated closure to above 
control. 

Similar to section 5.4.1.1, once scratch closure from keratinocytes exposed to 80 hour 

conditioned media had been determined, data were replotted together to investigate 

whether any significant differences in scratch closure were seen between conditioned 

media and the corresponding control of non-conditioned media. Only cell free 

conditioned media from PF cultures grown in MM Glu for 80 hours showed accelerated 

closure above control, which differed from 24 hour cultures. The accelerated scratch 

closure was seen following a 4 and 6 hour exposure, with around a 20% increase in 

closure seen at days 1 and 2 following a 4 hour exposure, however these differences 

were not significant (figure 5.8). Greater differences between conditioned and non-

conditioned were observed following a 6 hour exposure with conditioned media 

showing a 40% increase in closure at day 1 and a 30% increase at day 2 however 

these were also not significant (figure 5.8). At day 3, minimal differences were seen 

between conditioned and non-conditioned media with both cell exposed to both 

treatments showing almost 100% closure (figure 5.8) 
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Figure 5.8 Mean scratch closure from keratinocytes exposed to conditioned media from PF 

cultures grown in MM Glu for 80 hours compared to non-conditioned media. Scratches were 

exposed to conditioned or non-conditioned SWF diluted 1:2 in complete cell culture media for 4 or 6 

hours scratches were photographed and closure determined every 24 hours over 5 days. A two way 

ANOVA with Bonferroni post hoc showed significant differences between groups (**** ≤0.0001). 
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5.4.3 Comparison of the effects of PS3 bacterial culture time on 

scratch healing  

To compare the effects of the cell free conditioned media from 24 and 80 hour cultures 

on scratch closure, scratch assay data from 24 and 80 hour cultures of PS3 grown in 

MM EtOH, MM Glu or SWF were plotted together (figure 5.9). This clearly shows that 

for PS3 grown in MM EtOH there is a significant difference between bacterial culture 

time and scratch closure conditioned media from 24 hour cultures producing more 

rapid and complete scratch closure compared to 80 hour cultures with significant 

differences seen at each time point with the biggest significant differences seen at 

days 2 and 3 (p 0.0001) (figure 5.9).  For scratches treated with media from 24 hour 

cultures there was 75% closure at day 2, by comparison for 80 hour cultures it was 

almost 4 fold less at 20% (figure 5.9). These differences were not observed for MM 

Glu or for SWF conditioned media for which scratch closure in response to 24 and 80 

hour cultures was the same throughout the experiment (figure 5.9). 
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     MM EtOH                                                           MM Glu                                                           SWF  

Figure 5.9 Comparison of scratch closure from keratinocytes exposed for 4 hours to PS3 grown for 24 or 80 hours in each of the different 

bacterial culture conditions. Scratches were exposed to cell free conditioned media diluted 1:2 in complete cell culture media for 4 hours, 

scratches were then photographed everyday with scratch closure determined every 24 hours over 5 days. Data is expressed as mean (+) SEM of 

3 independent experiments (n=2). A two way ANOVA with Tukey’s post hoc showed significance as indicated on the graphs (*p 0.05 **p 0.01, 

***p 0.001, ****p 0.0001).  
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5.4.4 Scratch closure in keratinocytes exposed 1:5 and 1:10 

dilutions of PS3 80 hour conditioned media 

Having established that a 1:2 dilution of PS3 grown for 80 hours in MM EtOH 

clear had a significant detrimental effect on the rate of scratch closure, the effect 

of 1:5 and 1:10 dilution of conditioned media was investigated (figure 5.10).  

A 1:5 dilution of PS3 conditioned MM EtOH, reduced scratch closure compared 

to MM Glu conditioned media, but was similar to SWF conditioned media (figure 

5.10).  

At the 1:10 dilution, minimal differences were observed between conditions with 

each condition showing similar scratch closure throughout each of the different 

time points (figure 5.10). Small differences in scratch closure were seen at day 3 

between MM EtOH/SWF and MM Glu however these were not significant.  
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Figure 5.10 Scratch closure from keratinocytes exposed for 4 hours to cell free conditioned 

media from each of the different growth conditions diluted 1:5 or 1:10 in complete cell 

culture media. Keratinocytes were exposed for 4 hours and then photographed every 24 hours 

for up to 5 days, with scratch closure determined every 24 hours. Data are mean (+) SEM of three 

independent experiments (n=2). 
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5.4.5 Size of scratch had no direct effect on scratch closure in 

experiments. 

To determine that size of scratch did not play a role in determining scratch closure 

and that effects seen were down to the presence of secreted factors within the 

cell free conditioned media, initial scratch area were collated at the end of the 

experiment and was plotted against the closure time  

Initial scratch size did not have an effect on scratch closure on keratinocytes, with 

scratches of a similar initial size taking different lengths of time for full scratch 

closure to occur (figure 5.11).  

 

Figure 5.11 Initial size of size of scratches made in HaCaT cell monolayers and time taken 

to achieve full scratch closure. Initial scratch sizes of keratinocytes exposed to cell free 

conditioned media from PS3 and PF for each growth condition were plotted against time taken 

for full scratch closure to occur. Each data point represents 1 scratch.  
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5.5 Determination of scratch closure from 

keratinocytes exposed to live Pseudomonas  

Once effects of cell free conditioned media from the different growth conditions 

had been assessed, scratches were exposed to live PS3 that had been grown in 

MM EtOH or MM Glu for 24 and 80 hours. The cultures were then centrifuged at 

4000rpm for 12 minutes, and the bacteria re-suspended at the same 

concentration in HBSS. A ten-fold serial dilution was prepared and scratched 

monolayers were exposed for 4 hours to PS3 at an MOI of 1 and 10. Following 

exposure, bacteria were removed and complete cell culture media supplemented 

with antibiotics (1g/ml) was placed on the cells. Due to the use of live bacteria, 

experiments were performed for a shorter time period of 3 days. Cells were 

photographed using an EVOX XL microscope and scratch closure was 

determined every 24 hours.  
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5.5.1 Scratch closure from keratinocytes exposed to PS3 at an 

MOI of 1 and 10 from 24 hour cultures. 

Scratches exposed to live PS3 from 24 hour cultures did not generally affect 

scratch closure in keratinocytes in culture. Scratches exposed to an MOI of 1 

from PS3 grown in MM EtOH had a similar scratch closure to control over all 3 

days (figure 5.12) For MM Glu grown bacteria scratch closure was generally 

overall slower, only reaching around 80% closure at day 3, however initial scratch 

closure at day 1 was greater than control and MM EtOH (figure 5.12). In 

comparison to the effect of cell free conditioned media shown (figure 5.3), scratch 

closure from keratinocytes exposed to live PS3 was around 20% greater 

compared to MM EtOH, by contrast for MM Glu the healing from exposure to live 

bacteria was around 20% slower compared to cell free conditioned media (figure 

5.3 and figure 5.12).  

When bacterial numbers were increased to an MOI of 10, the relative scratch 

closure was reversed, with MM Glu grown PS3 being similar to control with both 

being 100% healed by day 3 (figure 5.12). By comparison for PS3 grown in MM 

EtOH, only 80% scratch closure occurred by day 3 which was significantly less 

than that for MM Glu (p 0.01), but initially, at day 1, scratch closure was 

significantly greater than that for MM Glu and control (p 0.001) (figure 5.12).  

These differences in response to bacteria from the different growth conditions are 

more similar to that for cell free conditioned media (figure 5.3).  
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Figure 5.12 Keratinocyte images and corresponding mean scratch closure from 

keratinocytes exposed for 4 hours to live PS3 grown for 24 hours. Keratinocytes were 

exposed for 4 hours to PS3 at an of MOI 1 or 10 grown in MM EtOH or MM Glu, control (HBSS 

only) data are indicated by the dashed line. Data are expressed as mean (+) standard deviation 

of 1 experiment (n=2). A two way ANOVA with Bonferroni post hoc test showed significant 

differences as indicated on the graph ** (p 0.01, ***p 0.001).  
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5.5.2 Scratch closure from keratinocytes exposed to PS3 at an 

MOI of 1 and 10 from 80 hour cultures. 

Similar to 24 hour cultures, live PS3 grown for 80 hours did not have a detrimental 

effect on scratch closure. For scratches exposed to an MOI of 1 PS3 grown in 

MM EtOH and MM Glu showed similar closure throughout each of the time points, 

with initial scratch closure being above control (figure 5.13). Full scratch closure 

was seen from MM EtOH conditioned PS3 by day 3, with MM Glu grown PS3 

showing slightly lower but not significant scratch closure, reaching 80% closure 

(figure 5.13). 

When scratches were exposed to a higher bacterial number at an MOI of 10, 

similar to MOI 1, PS3 grown in both conditions showed similar scratch closure 

throughout each of the time points, however at day 3, a decrease in scratch 

closure was seen from PS3 grown in MM EtOH compared to an MOI of 1 with 

scratch closure reaching 80% (figure 5.13). For MM Glu the increase in bacterial 

number had minimal effect with scratch closure being similar to closure seen 

when keratinocytes were challenged with an MOI of 1 (figure 5.13).  
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Figure 5.13 Keratinocyte images and mean corresponding scratch closure data from 

keratinocytes exposed for 4 hours to live PS3 grown for 80 hours. Keratinocytes were 

exposed to PS3 grown in MM EtOH and MM Glu at an MOI of 1 or 10 for 4 hours control (HBSS 

only) are indicated by the dashed line. Data are expressed as mean (+) standard deviation of 1 

experiment (n=2). A two way ANOVA showed no significance between groups.  

D
ay

 3
   

   
   

   
   

  D
ay

 1
 

MOI 1                                                 MOI 10 

MM EtOH                   MM Glu                                               MM EtOH                      MM Glu 

D
a

y 
3

   
   

   
   

   
  D

ay
 1

 



 191 

5.5 Non-conditioned media showed minimal 

scratch closure using a migration assay.  

Once effects of cell free conditioned media had been established on proliferation 

and migration of cells into the scratched area of the keratinocytes, preliminary 

experiments were performed to investigate whether the role of cell migration on 

scratch recovery could be measured. To do this, once cells had reached 

confluence they were serum starved by replacing the normal growth media with 

DMEM supplemented with 1% FBS. Cells were then exposed to non-conditioned 

growth media only (diluted 1:2 in DMEM with 1% FBS) for 4 hours, the media 

was then removed and media containing 1% FBS was placed back on the cells.  

Minimal scratch closure was seen from cells treated with DMEM (1% FBS) with 

only 20% scratch closure seen after 3 days (figure 5.14). In addition to this, non-

conditioned growth media, showed a decrease in scratch closure from both MM 

EtOH and MM Glu following day 2 (figure 5.14). As minimal scratch closure 

occurred in control conditions these experiments were not continued.   
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Figure 5.14 Scratch closure from keratinocytes exposed to growth media only during a 

migration assay. Keratinocytes were serum starved and exposed to non-conditioned growth 

media (diluted in DMEM supplemented with 1% FBS) for 4 hours, controls (DMEM with 1% FBS) 

are indicted by the red line. Data are expressed as mean of 1 experiment.  
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5.6 Ex vivo models of wound healing 

Having established that PS3 and their secreted products had an effect on a model of 

wound healing using HaCaT monolayers, further experiments were performed using 

3D reconstructed dermal models. The models were assembled and grown for 2 weeks 

with rings placed on the growing surface. Following a 2 week incubation the inner 

portion of the ring was treated with dispase (2mg/ml) for 4 hours in order to disrupt the 

basement membrane, to create an artificial wound. The rings were then removed and 

the models were exposed to cell free conditioned media (diluted 1:2 in complete cell 

culture media) for 4 hours before being washed and then incubated for a further 2 

weeks. The models were then prepared for hematoxylin and eosin staining before 

being imaged. 

5.6.1 PS3 conditioned media shows disrupted healing of wounds 

within ex vivo models 

Models treated with non-conditioned media showed re-epithelisation of the ‘wound’ 

with a thin layer of HaCaT and fibroblast cells being visible all across top of the 

epidermis on the skin section (figure 5.15) indicating that growth media alone had no 

effect on the re-epithelisation of the wound. In addition to the epidermis, the dermis 

has ordered, stratified layers, indicative of undamaged skin (figure 5.15).
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For models exposed to PS3 conditioned media grown for 24 hours in MM EtOH or MM Glu 

minimal re-epithelisation compared to control occurred with no difference evident between the 

two conditions (figure 5.15).  In addition dermal layers of the models exposed to cell free 

conditioned media from PS3 grown for 24 hours also appear damaged with stratified layers 

not being visible in places and appearing thin. This erosion of the dermal layers was 

particularly evident in the models treated with MM EtOH indicating potential damage of the 

dermis (figure 5.15).  

Dermal models exposed to cell free conditioned MM EtOH grown for 80 hours, also showed 

minimal re-epithelisation of the wound with the epidermal layer almost being non-existent 

(figure 5.15). However the dermis exposed to MM Glu conditioned media appeared to be 

unaffected having neat and stratified layers similar to the control (figure 5.15). In contrast the 

dermis models exposed to cell free conditioned media from MM EtOH was damaged with 

minimal neat layers visible and the overall appearance looking fragile.  
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Figure 5.15 Ex-vivo skin models exposed to non-conditioned and conditioned growth media. 

Models were wounded and were exposed for 4 hours to conditioned growth media (diluted 1:2 in 

complete cell culture media) from PS3 cultures grown for 24 or 80 hours. Culture time is indicated on 

the left side of the panel, and the condition is indicated above the panel. Models were incubated for 2 

weeks to allow re-epithelisation of the wound to occur. Models were sectioned, stained and imaged to 

show a cross section of the artificial wound created on the ex-vivo model. Controls (growth media only 

diluted 1:2 in complete DMEM) were used and shown on the top row of the panel above to provide 

comparison between both conditioned and non-conditioned media to determine if re-epithelialisation 

had occurred in each of the different experimental conditions. Formation of new epithelia is visible for 

the control conditions and is indicated by the presence of a dark purple layer above the dermis.  
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5.7 Summary 

The results in this chapter show that the scratch assay was a suitable methodology to 

study wound healing, with closure being measurable over time from all conditions and 

initial scratch sizes being relatively consistent. All scratches showed almost full closure 

with the exception of those treated with cell free conditioned media from PS3 grown 

for 80 hours in MM EtOH, which produced significantly slower closure 5 days following 

a 4 hour exposure and an even bigger significant decrease in closure following a 6 

hour exposure. Cells exposed to PF conditioned media from cultures grown in SWF 

for 24 hours showed significantly greater closure above control following both 4 and 6 

hour exposures which was not observed for any other 24 hour cultures, in addition PF 

cell free conditioned media from MM Glu cultures grown for 80 hours also produced 

faster closure compared to control however differences were not significant. The 

exposure of cells to live PS3 had little effect on scratch closure, with results being 

similar to control, some variances were seen however these were not significant, as 

well there was little difference in scratch closure compared to the corresponding cell 

free conditioned media. The effects of cell migration only could not be studied due to 

the lack of closure seen from non-conditioned bacterial growth media. Further 

experiments using ex-vivo skin models showed differences between conditioned and 

non-conditioned media, with re-epithelisation occurring on the artificial wound created. 

For conditioned media there were minimal differences observed between culture 

conditions or time in culture, with all conditioned media producing no re-epithelisation 

and, in most cases, dermal damage also occurred.  
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5.8 General Summary of results 

Taken all together, the results of this study show that culture condition can have an 

effect on Pseudomonas and these differences can have an effect on the HaCaT cell 

line. In order to make comparisons of these effects easier and to act as a reference 

point, a summary table of the results found in this study has been created for both 

conditioned media (appendix 4) and live bacteria (appendix 5). Due to the lack of 

adverse effects seen from PF, PS3 data is summarised only. 
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6.1 Use of cultured keratinocytes to study 

Pseudomonas host-pathogen interactions within 

the skin.  

In-vitro models to study host-pathogen interactions in the skin, despite being 

reductive, can still provide relevant information regarding early defence 

mechanisms employed by the host (Barrila et al., 2018). Indeed whilst these are 

limited due to their inability to replicate normal physiological architecture (Brohem 

et al., 2011) in vitro models such as single layer cell lines can provide a cost-

effective and convenient method to study many biological processes. In addition 

to this cell lines provide a consistent population of cells allowing more 

reproducible results to be obtained (Kaur and Dufour, 2012).  As keratinocytes 

account for around 90% of the epidermis and often form the skins first line of 

defence against toxic substances as well as initiating skin immune responses 

(Colombo et al., 2017) this study utilised the human keratinocyte cell line HaCaT 

as an in vitro model of the host to study early host-pathogen interactions within 

the skin.  

The interactions between host and pathogen are important in providing insight 

into the infection, treatment and prevention of many diseases (Chattopadhyay et 

al., 2018). Host-pathogen relationships are complex and can result in a variety of 

cellular responses, with the outcome often dictated by the host’s response to the 

pathogen (Wollert et al., 2012). Whilst it is assumed host responses are activated 

as a defence mechanism, it is possible that the pathways activated may be of 

benefit to the pathogen (Ichikawa et al., 2000). Currently, host pathogen-

interactions often focus on the use of live bacteria to study host responses and 

Pseudomonas host-pathogen interactions have been well established using the 
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lung as a host model, due to its ability to cause chronic infections in the lungs of 

cystic fibrosis patients (Tang et al., 2014, Bhagirath et al., 2016). However 

considering Pseudomonas aeruginosa is nosocomial pathogen and involved in a 

variety of mild skin disorders (Wu et al., 2011) as well as a frequent coloniser of 

wounds (Morrison and Wenzel, 1984) it is surprising that little work has been 

carried out using the skin or skin cells as a host model. In addition, recently the 

role of bacterial secretions in mediating interactions with host cells independent 

of live bacteria has become an area of emerging interest.  
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6.2 Production of virulence factors from 

Pseudomonas 

Pseudomonas aeruginosa expresses a variety of virulence factors that are 

associated with its ability to cause disease. (Lau et al., 2004). Virulence factors 

can be both cell attached and secreted, with each having the ability to target host 

cells via specific mechanism, some of which aid in direct toxicity and some 

interfere with host responses to allow evasion of defence mechanisms initiated 

by the host.  

6.2.1 Biofilm production  

Pseudomonas has been recognised as being a biofilm producer as well as having 

the ability to form pellicles, which are specific biofilms that form only at air-liquid 

interfaces (Armitano et al., 2014, Friedman and Kolter, 2004). Currently three 

EPS polymers produced by Pseudomonas; alginate, Psl and Pel have been 

identified in the production of mature biofilms (Ghafoor et al., 2011). There are 

many factors that can influence Pseudomonas biofilm formation and regulation, 

including growth conditions quorum sensing and EPS production (Palmer et al., 

2007, De Kievit, 2009). In addition quorum sensing has been implicated in 

influencing EPS production of Pseudomonas however the extent of this is 

unknown (Frederick et al., 2011).  

In this study PS3 was identified as being a pellicle producer as pellicles were 

visible after 24 hours in all 3 conditions, with MM EtOH and SWF showing slightly 

thicker pellicles than MM Glu. In addition to this there was a difference in the 

expression of different biofilm genes, with greater expression of Psl genes in MM 

Glu and similar expression of associated Pel genes in MM Glu indicating that 
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within different environments, Pseudomonas can alter expression of genes 

involved in early biofilm formation (Musken et al., 2010).  

After 80 hour incubation, pellicles continued to appear thicker and better 

established in tubes with MM EtOH or SWF in comparison to tubes containing 

MM Glu, which began to show disintegration of the biofilm. The increased 

production of biofilm seen in MM EtOH tubes is supported by other findings which 

showed low concentrations of ethanol stimulated biofilm production in 

Pseudomonas (Tashiro et al., 2014) and could promote colonisation of plastic 

surfaces (Chen et al., 2014). In addition, there was a greater expression of Psl 

associated genes MM EtOH after 80 hours compared to 24 hour cultures 

providing a further explanation for the continued structurally strong biofilm visible 

in MM EtOH tubes at 80 hours. By comparison, expression of most Psl associated 

genes were decreased in MM Glu cultures, specific Psl genes A, B and D have 

been identified as being crucial for biofilm maintenance and structure (Wei and 

Ma, 2013) expression of these were decreased after 80 hours and this, most likely 

contributed to the break breakup of the biofilm.  Minimal differences in genes 

involved in Alg and Pel polysaccharide were seen between culture conditions at 

both 24 and 80 hours, however unlike Psl, these polysaccharides are not vital 

can be dispensable in biofilm formation (Baker et al., 2016, Vasseur et al., 2005).  

Whilst no transcriptomic data was available for SWF cultures in this study, there 

was a presence of green pigmentation in SWF tubes, which was identified as 

pyoverdine based on observations from other research (Meyer, 2000). 

Pyoverdines are strong iron scavengers, which play a role in biofilm formation 

(Banin et al., 2005). Under iron limiting conditions, which would be likely after 80 
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hours, pyoverdine production is increased, thus contributing further to the already 

established biofilm.  

PF was identified as being a non-pellicle producer with no visible pellicle after 24 

or 80 hours. However, previous data on biofilm formation from PF is mixed with 

some studies showing biofilms forming after 10 hours from PF (O'Toole and 

Kolter, 1998) whereas some have observed thin PF pellicles after 7 days 

(Rhodes, 1959) and others have shown PF to only form biofilms at lower 

temperatures of 10ºC and showed that PF attachment to surfaces is much 

weaker at 30ºC (Rossi et al., 2016) a feature that is essential for biofilm formation. 

6.2.2 Pyocyanin production 

Pyocyanin is responsible for the production of the blue green pigment and has 

been identified as a secreted virulence factor involved in supressing inflammatory 

responses of hosts (Allen et al., 2005) and in quorum sensing (Jayaseelan et al., 

2014). In this study pyocyanin was detected from MM EtOH and SWF 24 hour 

cultures but not MM Glu cultures, indicating that mechanisms involved in 

pyocyanin production are increased by the presence of ethanol or FBS (Katri and 

Gilboa-Garber, 2007). Following a further incubation of 80 hours, pyocyanin was 

detected in cell free conditioned supernatants at a higher absorbance compared 

to 24 hour cultures, however it has been suggested that pyocyanin production is 

increased in response to a decrease of nutrients such as sources of carbon 

(Whooley and McLoughlin, 1982) 

No pyocyanin was detected from any of the PF cultures indicating that PF is not 

capable of producing pyocyanin, whilst PF is capable of producing similar colour 

pigments pyocyanin has not been identified in PF (Scales et al., 2014).  
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6.2.3 Protease production 

Proteases are also recognised as an important secreted virulence factor that that 

are responsible for causing damage to host cells by degrading proteins and 

modulating the host immune response (Milesi Galdino et al., 2017, Oldak and 

Trafny, 2005). Three main proteases have been identified as being common to 

most Pseudomonas species; alkaline protease, elastase and collagenase 

(Morihara and Tsuzuki, 1977).  

Proteases were quantified by using skim milk agar plates to measure the 

breakdown of casein which is a common property of the main proteases identified 

(Sokol et al., 1979). After a 24 hour incubation period protease production was 

greater in 24 hour cultures compared to 80 hour cultures indicating increased 

protease production in 24 hour cultures. Due to more available nutrients from the 

original growth media at 24 hours compared to 80 hours it has been suggested 

that Pseudomonas aeruginosa will continue to secrete enzymes to continue 

gaining nutrients from the environment (Cezairliyan and Ausubel, 2017).  After 48 

hour incubation, bacteria from 80 hour cultures had greater protease activity 

compared to 24 hour cultures, suggesting there was not full activation of protease 

activity in the initial 24 hour incubation. As extracellular secretions, including 

proteases, are often dependent on quorum sensing (Park et al., 2014) any 

disruption to this often inhibits secretions (Cezairliyan and Ausubel, 2017). 

Protease production could not be detected in cell free conditioned media from 

any of the conditions suggesting lack of active protease in the conditioned 

supernatant, this is in contrast to other research which has shown protease 

activity from the supernatants from Pseudomonas aeruginosa cultures, however 
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supernatants were tested after shorted culture times of 18 hours (Casilag et al., 

2015) 

No differences in the amount of protease produced by the bacteria was seen 

between the different culture conditions at any time point, however due to the 

amount of protease produced and the number of bacteria used, the assay quickly 

became saturated. A refinement of the methodology used would be needed to 

further investigate the role of growth culture condition on protease production, 

with the need for a lower initial bacterial number and/or a different size petri dish 

with a larger surface area.  

No protease production was found from PF in this study, however some 

proteases have been found in other PF strains isolated from raw cow’s milk (Alves 

et al., 2016, Koka and Weimer, 2000).  

6.2.4 Hemolysin production 

Hemolysins are a secreted exotoxin implicated in the virulence and pathogenesis 

of Pseudomonas aeruginosa burn infections (Bnyan and Ahmed, 2013) as well 

as ocular and lung infections (Johnson and Boese-Marrazzo, 1980). Two main 

hemolysins have been identified from Pseudomonas aeruginosa, phospholipase 

C and a rhamnolipid (Van Delden and Iglewski, 1998).  

A small amount of hemolysin activity was detected after a 120 hour (5 day) 

incubation on an agar plate from 24 hour cultures, indicating 24 hour cultures 

produce a very low concentration of hemolysin. Hemolysin production was 

greater from 80 hour cultures, with clear zones visible on the plates after 48 hour 

incubation these continued to develop for up to 120 hours, these findings are 
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supported by Altenbern (1965) who found that hemolysin production was minimal 

from 24 hour cultures, but increased in 72 hour cultures. After 120 hour plate 

incubation of 80 hour cultures, PS3 grown in MM EtOH showed significantly 

greater hemolysin production compared to MM Glu and SWF this is supported by 

other research which shows in the presence of ethanol, hemolytic phospholipase 

C production was increased (Katri and Gilboa-Garber, 2007). An additional 

observation of the clear zones present on the plates was the appearance of a 

green colour indicative of partial hemolysis of blood cells caused by alpha 

hemolysin production (Buxton, 2005). No hemolysin production was observed 

from cell free conditioned media however it has been observed that hemolysin 

secretion does not occur in broth cultures (Berk, 1962).  

No hemolysin activity was detected in PF cultures however hemolysis production 

is not common in PF and only a few rare clinical isolates have been identified as 

having the ability to produce hemolysins (Sperandio et al., 2010).  

6.2.5 Quorum sensing on Pseudomonas virulence 

Similar to other Gram negative bacteria, the expression of virulence factors is 

controlled by QS mechanisms (Papenfort and Bassler, 2016, Smith and Iglewski, 

2003). There are 4 main intracellular communication signals that contribute to the 

QS network of Pseudomonas; las, rhl, PQS and IQS (Lee and Zhang, 2015) and 

most signalling networks have been implicated in the control of various virulence 

factors (Mattmann and Blackwell, 2010). In this study, whilst there was not always 

a clear difference in the production of different virulence factors between culture 

condition, the production of virulence factors was increased in all conditions after 

80 hours. Considering QS occurs in response to the increased numbers of 
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bacteria, it shows that PS3 can utilise quorum sensing mechanisms to change 

the production of virulence factors. In addition, as QS changes in response to the 

microenvironment (Lee and Zhang, 2015) with some subtle changes for specific 

virulence factors occurring in response to the different culture conditions, 

indicating that there could be a change in the QS mechanisms between 

conditions. Transcriptomic data of PS3 showed that PS3 expressed the main 

genes involved in each of the different signalling networks that contribute to 

overall quorum sensing, showing that PS3 can utilise all four communication 

systems. 

It was shown that PF is not able to produce the virulence factors that were 

investigated in this study, which potentially shows that QS mechanisms are not 

involved in the regulation of gene expression, with QS systems of PF identified 

as being involved in antibiotic production and colonisation of roots of plants 

(Martins et al., 2014).  

Differences in the expression of genes between culture conditions indicate that 

Pseudomonas aeruginosa can change quorum sensing mechanisms in response 

to the environment, these culture condition specific effects have been reported 

previously (Winzer et al., 2002). The change in quorum sensing mechanisms can 

provide a partial explanation for the differences seen in virulence factors that were 

quantified.  
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6.3 Interaction of Pseudomonas on cultured 

keratinocytes 

As discussed previously, Pseudomonas can cause a wide variety of skin 

infections where it can interact with host skin cells by the production of virulence 

and immunogenic factors to mediate the host responses. To aid with the 

promotion of colonisation and infections Pseudomonas can secrete OMVs which 

via the dissemination and delivery of vesicles aid in the interaction of 

immunogenic factors directly with host cells. The delivery of these factors though 

OMVs or via direct secretion into the environment allows interaction with host 

cells without the need for the direct presence of the live bacterium. Secretion of 

Pseudomonas OMVs can be influenced by the bacterial microenvironment which 

has also been found in other Gram negative bacteria (Yu et al., 2018). In addition, 

the presence of host stress mediators in the bacterial environment has been 

found to increase vesicle production by Pseudomonas (Macdonald and Kuehn, 

2013) and increase the expression of virulence factors as controlled by QS 

mechanisms (Moradali et al., 2017). Other research has also shown that OMV 

production can be influenced by the bacterial microenvironment, with different 

culture conditions found to affect the protein composition of OMVs in plant 

pathogens (Sidhu et al., 2008).  Changes in extracellular secretions caused by 

the bacterial micro-environment may have an effect on the cytotoxicity and 

immune responses of human skin cells in vivo.  
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6.3.1 Cytotoxic effects of Pseudomonas on cultured 

keratinocytes  

In this study the cytotoxic effects of cell free conditioned media from 

Pseudomonas cultures on HaCaT cells was assessed by the use of the MTS 

assay, which provides a quantitative measurement of mitochondrial metabolic 

rate (Wang et al., 2010). Cell metabolic activity assays are often employed to 

investigate the potential effects of biological agents on cell proliferation or cell 

cytotoxicity (Rampersad, 2012) as they can provide an indirect measurement of 

the quantity of viable cells.  

No detrimental effects were observed in cells exposed to growth media only, 

indicating any changes in biomass upon exposure to conditioned media are due 

to secreted products from the bacterial cultures. Cells exposed to non-

conditioned media or cell free conditioned media from 24 hour cultures showed 

up to 40% increased metabolic activity compared to control cells treated with 

normal cell culture media, with no differences seen between conditions or 

Pseudomonas strains suggesting there is no toxicity of Pseudomonas 

conditioned media from PS3 or PF after a 24 hour growth period. The increase in 

metabolic activity indicates increase in the number or metabolic activity of the 

cultured keratinocytes, which could be in response to a low level of cellular stress 

– caused by exposing the cells to diluted growth media itself rather than the 

effects of cell free conditioned media. It has previously been reported that the 

partial activation of cell stress pathways can increase the rate of cell metabolism 

without causing cellular damage (Fulda et al., 2010) a process which involves the 

activation of mitochondria (Picard et al., 2018). These findings are supported by 

Marano et al. (2015) which showed an increase in metabolic activity in normal 
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epidermal keratinocytes following exposure to Pseudomonas aeruginosa 

conditioned media grown for 24 hours.   

6.3.2 Toxicity of PS3 conditioned media from 80 hour cultures 

grown in mineral media with ethanol or simulated wound fluid on 

cultured keratinocytes  

A total loss of viable cells occurred consistently in keratinocytes exposed to a 1:2 

dilution of cell free conditioned media taken from PS3 cultures grown for 80 hours 

in MM EtOH, that did not occur with MM Glu conditioned media or for PF cultures 

grown in any of the media for 80 hours. This indicates that after 80 hours in culture 

there is a difference in toxicity of the extracellular factors secreted by the bacteria 

grown in different conditions but only for PS3, which may be caused by the 

alteration of the production of cell associated virulence factors of the parent 

bacterium or altered production of OMVs both of which can be caused by the 

bacterial microenvironment.  The loss of viable cells could be due to a greater 

concentration of toxic secretions in the media causing a high level of cell stress 

which cannot be overcome by the cell resulting in cell death (Krampe and Al-

Rubeai, 2010). Studies on cultured bronchial epithelial cells showed 

Pseudomonas aeruginosa secretions caused splicing of several proteins involved 

in endoplasmic reticulum function, resulting in prolonged endoplasmic reticulum 

stress (van 't Wout et al., 2015) which could provide an explanation for the loss 

of viable cells.  

SWF cell free conditioned media produced a variation in HaCaT viability, 

indicating variability in the toxicity of secretions from PS3 80 hour cultures, this 

could be due to inconsistencies with the growth media as SWF is a mix of MRD 

and FBS, as serum is a natural product, variation between batches of FBS, even 
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from the same manufacturer, is possible (Zheng et al., 2006). Variation in the 

toxicity is likely to be due to Pseudomonas responding to the availability of 

specific nutrients in the FBS. In addition to this, serum contains haemoglobin and 

thus large concentrations of iron which can be scavenged by pyoverdines which 

have been identified as having potential to be directly toxic to cells (Kirienko et 

al., 2019) and the production of these can be increased in response to iron limiting 

conditions (Granato and Kümmerli, 2017), which would be likely after 80 hour 

culture times.  

6.3.3 Effects of live PS3 on keratinocyte viability  

Keratinocytes exposed to live PS3 did not show any decrease in metabolic 

activity, indicating that live PS3 do not initiate toxic effects in the HaCaT cell line 

over a short exposure time of 2 hours. Transcriptome analysis of PS3 (Akbar et 

al., 2015) showed no ExsA expression, a gene thought to be involved in 

cytotoxicity (Evans et al., 2002, Cowell et al., 2000). When exposure times of cell 

free conditioned media were reduced to match those of live PS3, a similar pattern 

of loss of metabolically active cells occurred to that of 4 hours, indicating that the 

extracellular products from PS3 cultures can mediate cytotoxicity and cause loss 

of viable cells even over a shorter exposure time. These data indicate that it is 

factors secreted from PS3 that are responsible for its acute toxicity, this is 

important as these could penetrate more easily beyond the site of infection and 

thus results in the development of a chronic would. It also provides some 

justification for the use of cell free cultures to investigate the interactions of PS3 

with host cells. 
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6.4 Attachment and invasion of Pseudomonas 

aeruginosa 

Attachment of Pseudomonas to host cells is one of the first steps in establishing 

the infection process as well as being important in biofilm formation (Siryaporn et 

al., 2014) once attached, Pseudomonas can interact with host cells to modulate 

signalling pathways to allow entry into the host cell (Bucior et al., 2012). Invasion 

into the host cell is important in initiating infection, by internalising bacteria into 

the host cells and thus giving protection from host defence mechanisms, it also 

facilitates the penetration of infecting bacteria into basal layers of the tissue and 

the blood stream (Esen et al., 2001). Much of the work investigating the 

internalisation and attachment of bacteria into keratinocytes has focused on 

Staphylococcus aureus due to its prevalence as a skin and wound pathogen 

(Kintarak et al., 2004, Edwards et al., 2011) however, there has been little work 

has investigating Pseudomonas aeruginosa attachment and invasion of 

keratinocytes.  

6.4.1 Pseudomonas aeruginosa attachment and invasion into 

host cells 

The most striking feature of the interaction of PS3 with HaCaT cells is the 

relatively low level of attachment and internalisation. However, this is consistent 

with the lack of cytotoxicity which occurred in response to exposure to live PS3 

grown in any of the culture conditions tested here.  

PS3 grow for 24 hours in MM Glu showed the highest attachment and invasion 

but for 80 hour cultures it was MM EtOH, however both showed generally a very 

low level of attachment and invasion with no increase occurring with greater 
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concentration of bacterial number indicating bacterial number does not directly 

influence the Pseudomonas virulence that is involved in attachment. This is 

supported by other research which found MOI had no effect on the relative 

virulence of Pseudomonas upon attachment to different surfaces (Siryaporn et 

al., 2014). In addition there was also a very low level of invasion of Pseudomonas 

into HaCaT cells, with no invasion above 0.1 bacteria per cell, this is in contrast 

to other data which have shown Pseudomonas invasion to be as high as 1 x 106 

per 100 HaCaT cell (Hosseinidoust et al., 2013) however the methodology used 

OD of planktonic cultures to normalise for the numbers of bacteria added to the 

cultures so the level of invasion may be exaggerated. In addition to this in this 

study it was found that the invasion of Staphylococcus epidermidis into 

keratinocytes was higher compared to Pseudomonas suggesting the presence of 

a skin commensal which is part of the normal skin microbiome and of benefit to 

skin cells, (Sabaté Brescó et al., 2017) has greater internalisation in HaCaT than 

the potentially pathogenic Pseudomonas species. This surprising result indicates 

that the internalisation of Pseudomonas aeruginosa is not important in mediating 

its effects on keratinocytes and is supported by the data reported here that live 

bacteria have less acute effects on the cells compared to the cell free secretions. 

Considering that there was a change in the amount of bacterial attachment 

between growth conditions and it is hypothesised that the expression of virulence 

factors involved in mediating this can increase bacterial attachment to host cells 

(Kline et al., 2009), it indicates that Pseudomonas can alter the expression of 

virulence factors in response to changes in the environment. The transcriptomic 

data showed that after 24 hours in culture, there was increased expression of 

fleQ and a high expression of pilA in MM Glu cultures and at 80 hours there was 
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increased expression of pilA coupled with high expression of fleQ which indicates 

that both flagella and pili are required for Pseudomonas attachment (Conrad et 

al., 2011).  

 Interestingly at 24 hours, whilst MM Glu showed increased attachment, it was 

SWF cultures that showed increased invasion indicating PS3 grown in MM Glu 

has a low ability to invade host cells whereas at 80 hours, MM EtOH showed the 

greatest attachment to keratinocytes. Attachment to host cells is important in 

initial colonisation of Pseudomonas aeruginosa infections, considering that after 

80 hours MM EtOH showed the greatest attachment and invasion in the 

keratinocytes.  

As it was shown that the greatest stress response was produced by the cell free 

secretions from Pseudomonas aeruginosa it was hypothesized that the 

conditioned media might produce a cellular response that would increase the 

level of attachment and/or internalisation of bacteria. In addition, the removal of 

extracellular virulence factors that was done here might explain the very low 

amount of bacterial interaction with the cells due to the resuspension in HBSS. 

To test this, attachment and invasion assays were repeated with cells that had 

been pre-treated with diluted cell free culture media that would contain the 

secreted virulence factors. However, the addition of extracellular products had 

little effect on cell attachment and invasion and had a reduced effect on PS3 

attachment and invasion at 24 hours, particularly for PS3 grown in MM EtOH 

possibly indicating that EC secretions may be priming cell receptors in advance 

of attachment and invasion (Metruccio et al., 2016) which leads to greater cellular 

defence thus decreasing attachment and invasion of the Pseudomonas itself. 
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The low level of attachment and invasion suggests either this specific stain of 

Pseudomonas does not normally invade cells (at least in culture) or that it 

stimulates a mechanism in HaCaT cells that resist attachment and invasion. This 

could include the production of anti-microbial peptides (AMPs) which are 

produced by host cells and are active against a wide range a Gram negative 

bacteria (Wanke et al., 2011). The production of AMPs is reported to be 

upregulated in vitro in response to pro-inflammatory cytokines or bacteria 

(Schröder and Harder, 2006). In keratinocytes, β-defensins and cathelicidins 

constitute the major classes of AMPs as well and have been well studied (Braff 

et al., 2005).  

6.5 Initiation of immune responses 

MAMP receptors, also known as toll like receptors are a highly conserved family 

of type 1 transmembrane proteins involved in the recognition of recognition of 

ligands present on invading microbes. Pseudomonas possess many MAMPs that 

can bind to and activate TLRs on a variety of host cells, in addition to being cell 

attached MAMPs can be extracellular often associated with outer membrane 

vesicles (Koeppen et al., 2016). In this study quantification of the pro-

inflammatory cytokine CXCL8 was chosen as a measurement of TLR activation 

and initiation of innate immune responses by HaCaT cells in response to 

Pseudomonas and cell free conditioned media as keratinocytes have been 

shown to increase CXCL8 expression in response to inflammatory stimuli (Jiang 

et al., 2012).   
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6.5.1 Mediation of CXCL8 secretion in response to live PS3 

Cell attached immunogenic factors of Pseudomonas include flagellin, pili and 

LPS which can interact with TLR 2 and 5 to induce CXCL8 release from host cells 

(Gellatly and Hancock, 2013, Venza et al., 2009).  In this study exposure of 

keratinocytes to live PS3 grown for 24 hours could illicit CXCL8 secretion which 

was similar to that of corresponding cell free conditioned media, with the 

exception of PS3 grown in SWF where CXCL8 secretion from cell free 

conditioned media was minimal. These results indicate that cell attached 

appendages can produce CXCL8 secretion from HaCaT cells.  

By contrast exposure to live PS3 grown for 80 hours produced lower CXCL8 

secretion compared to 24 hour cultures, with PS3 from MM EtOH and MM Glu 

showing minimal CXCL8 secretion.  The decrease in CXCL8 secretion from live 

PS3 between 24 and 80 hours media indicates a change in the potential of 

immune-stimulatory activity between the two culture times. It has been suggested 

that a decrease in available nutrients encountered by pathogens can lead to 

decreased ability to stimulate immune response, thus leading to increased risk of 

colonisation at the site of infection and increased harm caused by the pathogen 

(Pike et al., 2019). In addition to this at 80 hours, greater CXCL8 secretion was 

seen in response to cell free conditioned media indicating that the initiation of 

host immune responses is mediated by the presence of extracellular factors such 

as pyocyanins, which have been found to induce CXCL8 secretion in a 

concentration dependent manner from airway epithelial cells (Denning et al., 

1998).  
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As previously discussed PS3 grown in MM EtOH after 80 hours showed 

increased expression of genes involved in flagellum and pili synthesis, but CXCL8 

secretion was low at 80 hours indicating a possible dampening of the host 

immune response, possibly in response to the lack of nutrients as described 

above (Pike et al., 2019). In addition, whilst the expression of genes controlling 

flagella were increased, the amount of the TLR5 ligand flagellin on the cell surface 

may have been low as shedding of flagellin is possible, in which rhamnolipids (a 

hemolysin) have been identified (Gerstel et al., 2009) the production of which 

were increased in MM EtOH 80 hour cultures in this study.  

6.5.2 Pseudomonas extracellular products modulation of CXCL8 

secretion 

Pseudomonas is known to secrete extracellular factors that can modulate host 

immune responses in order to help Pseudomonas invade and disseminate into 

host cells and tissues. In addition, in common with other Gram negative bacteria 

it will actively secrete outer membrane vesicles that carry immunogenic and 

virulent factors derived from the original pathogen (Bitto et al., 2018) and these 

will not only occupy the site of infection, they can also penetrate systemically.  

In this study it was shown that PS3 could stimulate CXCL8 secretion from 

keratinocytes challenged with diluted cell free conditioned media from 24 hour 

cultures, with MM EtOH and MM Glu conditioned media producing significantly 

more CXCL8 than SWF across each dilution, indicating that secreted factors 

present in conditioned media can stimulate CXCL8 secretion from cultured 

keratinocytes. Following incubation for 80 hours, there was an increase in CXCL8 

secretion from keratinocytes exposed to PS3 MM EtOH secretions in comparison 
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to 24 hour cultures and to MM Glu, with the exception of the 1:2 dilution where 

no CXCL8 could be measured, suggesting an increase in immunogenic factors 

in the MM EtOH conditioned media. SWF produced varied CXCL8 secretion, with 

high levels of CXCL8 secretion from keratinocytes indicative of the presence of 

immunogenic factors inducing a large immune and stress response, compared to 

low level CXCL8 secretion or unmeasurable CXCL8 secretion due to lack of 

viable cells as discussed in section 6.3.2. The variation seen in CXCL8 secretion 

is most likely due to variation of nutrients available in the growth media influencing 

the immunogenicity of vesicles and secreted extracellular factors. This is 

supported by Leidal et al. (2001) who found small differences in CXCL8 secretion 

from alveolar cell line A549 thought to be mediated by the presence of different 

factors present from Pseudomonas aeruginosa grown under different growth 

conditions, one of which was identified as being pyocyanin. In addition it is 

possible with the longer bacterial culture time there is an increase in the numbers 

of bacteria dying and subsequent lysis of cells could increase the concentration 

of immunogenic factors in the culture media.  

PF showed much lower CXCL8 secretion at both 24 and 80 hours in comparison 

to PS3, indicating the lack of immunogenic factors within the conditioned media 

and no change of additional immunogenic factors over time within the conditioned 

media, most likely due to not being a human pathogen (Scales et al., 2014). In 

this study, PF was identified as being non- virulent due to the lack of positive 

results found in biofilm formation and production of pyocyanin, proteases and 

hemolysins and as such the OMVs produced by PF may not contain any virulent 

or immunogenic factors. As MAMPs are highly conserved between species and 

MAMPs presented to the keratinocytes are both from Pseudomonas species, it 
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indicates that host cells have a mechanism to recognise secreted MAMPs in the 

absence of the pathogenic bacteria itself. This is thought to be mediated by the 

recognition of virulence factors from pathogenic bacteria, which PRRs recognise 

as danger signals such as LPS which can interact with TLR4 (Srinivasan, 2010) 

which provides an explanation to the differences seen in this study, as LPS is 

likely to be present in the conditioned media and can interact with TLR to induce 

CXCL8 secretion from the host cell . Additionally, it has been shown that primary 

keratinocytes produced different CXCL8 secretion to flagellin isolated from two 

different bacterial species, which is also likely to be present in the conditioned 

media and can interact with TLR5 to induce CXCL8 secretion. (Kollisch et al., 

2005).  

Similar results were obtained within the ex-vivo skin models, which were used to 

represent more of a realistic model of human skin compared to keratinocyte cell 

lines alone with PS3 stimulating a higher CXCL8 secretion compared to PF 

showing that HaCaT cells can act in a similar manner when assembled onto a 

dermal scaffold which provided more of a ‘keratinocyte like’ environment. 

However, no differences in CXCL8 secretion were observed between PS3 grown 

in MM EtOH and MM Glu for 24 or 80 hours, which may be due to the increased 

sensitivity of the model used, due to the requirement of additional nutrients in the 

media and the cadaver origin of the dermis. 

6.5.3 PS3 conditioned media and expression of MAMP receptors 

Considering PS3 conditioned media stimulated CXCL8 secretion from HaCaT 

cells and differences in the amount of CXCL8 secreted was evident between 

growth conditions and time in culture it was hypothesised that there could be a 
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change in the expression of MAMP receptors on cultured keratinocytes in 

response to PS3 conditioned media as it is known that in some conditions 

stimulation of MAMP receptors leads to modification of their expression.  

6.5.4 Toll like receptors in HaCaT cells 

HaCaT cells have been identified by real time PCR (RT-PCR) to express MAMP 

receptors (also known as toll like receptors) with a similar pattern of expression 

to normal human keratinocytes (Kollisch et al., 2005). In this study, changes of 

expression of TLR 2 and 4 were investigated in response to Pseudomonas 

conditioned media. In addition the expression cluster of differentiation 14 (CD -

14), a co-receptor involved in LPS recognition (Halmer et al., 2015) was also 

investigated. All of these receptors have previously been reported to be 

expressed in HaCaT cells (Song et al., 2002, Pivarcsi et al., 2004).  

Each of the TLRs investigated in this study can recognise specific MAMPs, which 

have been identified in Pseudomonas OMV’s (Jan, 2017), due to cells been 

exposed to cell free media only, any changes in expression would most likely be 

mediated through the presence of MAMPs on OMVs.  

The activation of TLR 4 could occur as LPS is present on OMVs and 

Pseudomonas can continuously shed LPS in its normal growth cycle (Kell and 

Pretorius, 2015) The role of LPS in activating TLR 2 and 4 has been disputed, 

with research showing that LPS activation of TLRs in normal epidermal 

keratinocytes is mostly mediated by TLR2 (Kawai et al., 2002) however in 

contrast other research has shown that LPS stimulates both TLR 4 and CD-14 

and that activation of both of these resulted in CXCL8 secretion (Song et al., 

2002).  
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In addition to LPS, TLR2 has been reported to be activated by PGN (Medzhitov, 

2007) resulting in an increase in CXCL8 secretion from TLR 2 in normal human 

keratinocytes when challenged with PGN from Staphylococcus aureus (Mempel 

et al., 2003). However in contrast, other work has found low NF-ĸB activation 

upon stimulation with PGN from Pseudomonas aeruginosa in the human 

embryonic kidney cell line (HEK293T) (Travassos et al., 2004) indicating that TLR 

2 activation by PGN may only be mediated by Gram positive PGN.  

As well as being a co-receptor involved in LPS recognition, activation of CD-14 

is involved in the activation of a range of toll like receptors to facilitate innate 

immune responses (Zanoni and Granucci, 2013), specifically CD14 interacts with 

TLR 7 and 9 to induce inflammatory responses in mice (Baumann et al., 2010).  

There were some subtle changes in the expression of TLR 2, 4 and CD-14 

receptors in HaCaT cells exposed to cell free conditioned media from some of 

the growth conditions found in this study, which are thought to be mediated by 

the presence of different MAMP ligands within the extracellular secretions from 

PS3. This suggests that the bacterial microenvironment may be able to alter the 

composition of certain MAMPs, which is supported by Pier (2007) who found 

variability in the lipid A structure of LPS depending on the culture environment of 

Pseudomonas aeruginosa which could influence TLR 4 mediated responses. 

Whilst there were some differences observed, due to lack of clarity seen in the 

histograms, it is difficult to draw conclusions regarding increased expression of 

these receptors mediated by the presence of the extracellular secretions from 

PS3 and more research is needed to investigate the role of other families of 

pattern recognition receptors and their role in mediating an immune response in 

keratinocytes.  
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6.5.5 Other pattern recognition receptors in HaCaT cells 

Whilst this study focused primarily on the role of TLR’s in HaCaT cells, there are 

other families of pattern recognitions receptors, as mentioned in section 1.2.1, 

and more generally other cell receptors which can interact with immunogenic and 

virulence factors of Pseudomonas which can mediate the host response and can 

potentially provide more insight into the biological effects on the HaCaT cells 

observed in this study. 

Factors involved in the production of Pseudomonas biofilms can interact with 

mannose receptors belonging to the family of c-type lectin receptors, which have  

been found to be expressed on normal human keratinocytes (Szolnoky et al., 

2001) with particular attention being paid to those where Psl is the predominant 

carbohydrate, due to Psl being rich in mannose. Psl from Pseudomonas 

aeruginosa biofilms was found to bind with mannose receptors present on 

dendritic cells which facilitated in their attachment, in addition dendritic cells 

treated with high molecular weight fractions taken from Pseudomonas biofilms 

showed higher levels of pro-inflammatory cytokine TGF alpha production (Singh 

et al., 2020). Additionally, other studies have found binding of macrophages to 

Pseudomonas aeruginosa biofilms via mannose receptors was increased when 

there was increased Psl expression (Rahman et al., 2015). In this study, genes 

involved in Psl production were increased in MM EtOH cultures after 80 hours 

which may have interacted with mannose receptors on the HaCaT cells in culture 

and may have been involved in the attachment to HaCaT cells as well as the 

generation of CXCL8 secretion. 
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In addition to mannose receptors, Pseudomonas can interact with NOD like 

receptors which have been identified as being involved in intracellular pattern 

recognition and mediation of immune responses in keratinocytes (Tervaniemi et 

al., 2016). The main NOD like receptors, NOD1 and 2 are involved in the 

recognition of peptidoglycan from Gram negative bacteria including 

Pseudomonas aeruginosa thought to be delivered by OMVs or through secretion 

systems and are involved in activation of NF- κB (Alhazmi, 2018) (Oviedo-Boyso 

et al., 2014) which can then act as a transcription factor for pro-inflammatory 

cytokines such as CXCL8, which may have contributed to CXCL8 secretion in 

this study. Additionally, in macrophages, other NOD like receptors have been 

found to be involved in the modulation of cell death pathways and pro-

inflammatory cytokines in response to internalised flagellin from Pseudomonas 

aeruginosa (Franchi et al., 2009). Whilst this has been observed in macrophages, 

it is possible the HaCaT cells used in this study may share NOD like receptor 

signalling mechanisms which may have contributed to the loss of viable cells 

seen from some conditions.  

As discussed here, Pseudomonas can interact with other host cell receptors 

which can recognise immunogenic and virulent factors presented both extra and 

intracellularly. These interactions can stimulate a variety of host responses 

including activation of cell death pathways and generation of innate immune 

responses. Additional experiments investigating the role of these receptors in 

keratinocytes would be beneficial to this work as it may provide more of insight 

into the observations made in this study and could provide more information 

regarding the role of the bacterial microenvironment on extracellular secretions 

and their effects within host cells.  
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6.6 Scratch assays as a model of wound healing 

Cultured cell monolayers provide a quick and cost effective way to investigate 

wound healing, with one of the most common assays being the scratch assay 

which provides an easy method to mimic cell proliferation and migration in 

response to various agents (Liang et al., 2007). Whilst the scratch assay is a 

reductive model of wound healing, they can provide valuable information about 

the effects of biological and chemical agents on the ability of cell proliferation and 

migration, without the use of more sophisticated models or animal models. The 

ability to create a cell free area within the scratch assay can be done by two main 

methods; damaging the cell monolayer by biological equipment such as a pipette 

tip or the use of silicon inserts where cells are seeded around the insert which is 

then removed upon confluency (Poujade et al., 2007). Whilst the use of an insert 

can create a consistent cell free area, inserts can be expensive and there is no 

physical damage to the cell monolayer, in this study damaging of the cell 

monolayer was chosen as it allows cells to undergo damage and disrupt cell 

interactions near to the scratch border, mimicking damage that would be 

encountered in a real-life setting (Hulkower and Herber, 2011). Validation of the 

method was also performed to ensure that the initial size and small variations in 

producing the scratch did not affect the rate of closure, because the precise 

method used to produce the scratch can itself cause alterations to the 

environment of the cells which can impede cell migration and produce variable 

healing (Cormier et al., 2015).  
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6.6.1 Pseudomonas effects on wound healing 

Much of the work focusing on Pseudomonas and wound healing has focused on 

the role of Pseudomonas virulence factors involved in attachment and the 

formation of biofilms in chronic wounds which have been associated with a 

detrimental effect on healing (Wolcott et al., 2008) However, there is little 

information regarding Pseudomonas virulence mechanisms involved in early 

colonisation of wounds or in acute infections, in addition the role of secreted 

extracellular products and their role in epithelial repair in early infection stages 

are poorly understood. In this study the effects of Pseudomonas secreted 

products on scratch closure in culture was assessed.  

There are many factors that have been associated with promoting or attenuating 

wound healing including host contact with secreted products from Pseudomonas 

(Wang et al., 2018) as well as components of host defence mechanisms that can 

be mediated by Pseudomonas these include TLR activation and CXCL8 

secretion (Chen and DiPietro, 2017). These have been discussed, along with 

their role in mediating responses from keratinocytes above however now the 

potential role of these factors in promoting or attenuating scratch closure will be 

considered.  

6.6.1.1 Effects of Pseudomonas extracellular products on wound healing 

As previously discussed specific secreted products have been identified in PS3 

cultures by being directly measured specifically these were pyocyanins, 

proteases and hemolysins. Research investigating wound repair in airway 

epithelial cell lines found there was a decrease in cellular migration and 

proliferation in airway epithelial cells when cells were exposed to excreted 
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products from Pseudomonas (Ruffin et al., 2016) which could explain why, in this 

study, almost all scratches showed slower closure compared to those treated with 

non-conditioned media. For the virulence factors detected here only pyocyanins 

were found in the cell free media with proteases and hemolysins only being 

measured in cultures with live bacteria not in the cell free supernatant alone. 

Pyocyanins have been found to impair the wound healing process in normal skin 

fibroblasts where cells challenged with pyocyanin from Pseudomonas aeruginosa 

showed cell enlargement and began to induce early cellular senescence (Muller, 

2006). Interestingly whilst proteases and hemolysins were only measured from 

live bacteria, and there were some significant differences seen in hemolysin 

production after 80 hours between conditions, scratches exposed to live bacteria 

grown for 80 hours did not show any differences in scratch closure indicating that 

hemolysin production did not play a role in closure in this model. However 

hemolysins and proteases have been identified as being important virulence 

factors in initiating other Pseudomonas infections such as in the lungs and 

corneas (Van Delden and Iglewski, 1998) rather than in skin infections and it has 

been found that clinical strains of Pseudomonas aeruginosa isolated from chronic 

wounds were deficient in protease and rhamnolipid production (Morgan et al., 

2019). In addition, other research has found that proteases produced by 

Pseudomonas can degrade proteins found on skin fibroblasts and can inhibit their 

growth (Koziel and Potempa, 2013) so potentially in a more realistic model the 

effects of hemolysin and proteases from live bacteria could be more profound.  

For PS3 exposed scratches, MM EtOH 80 hour conditioned media produced the 

greatest decrease in scratch closure, however, surprisingly there was not a clear 

reduction of cell viability that occurred when cells exposed to the same media 
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was analysed with a MTS assay. This is possibly due to the higher cell density 

and confluency used for the scratch assay. Interestingly, this culture condition did 

not consistently produce the greatest amount of each of the virulence factors 

measured which suggests it may be a combination of factors that affect scratch 

closure, or may be caused by other extracellular factors such as toxins that were 

not investigated in this study, for example exotoxin A, which has been found to 

delay wound healing in mice (Heggers et al., 1992).  

Whilst overall there was delayed healing from scratches exposed to PS3 excreted 

products, for PF, some conditions produced faster scratch closure compared to 

control. In this context, it is noteworthy that PF did not produce detectable 

amounts of any of the virulence factors tested nor was there a large increase in 

cell proliferation measured by the MTS assay. These data indicate that in the 

presence of secreted products from a non-virulent strain of Pseudomonas, 

scratch closure may be accelerated and might indicate that in some conditions 

commensal bacteria could be beneficial to the wound healing process. 

6.6.1.2 Effect of TLR activation and CXCL8 secretion on wound healing 

As previously discussed cell free conditioned media can stimulate some TLRs in 

cultured keratinocytes and previous research has shown that activation of TLRs 

and their stimulatory molecules, could either improve or impair the healing of a 

wound depending on the manner and timing in which the inflammatory responses 

were initiated (Dasu and Isseroff, 2012). The TLRs investigated in this study were 

TLR 2, 4 and the co-stimulatory receptor CD-14, with CXCL8 secretion also 

quantified as a measure of the initiation of immune response. Differences in the 

cellular responses on the exposure to media from different conditions and culture 



 228 

times occurred which could explain the subtle differences seen between scratch 

closure.  

It is thought that TLR activation is likely to play a role in influencing wound repair 

due to damage that occurs as a result of wounding and the likelihood that there 

will be microbial contamination (Chen and DiPietro, 2017). Some research has 

shown that the activation of TLRs can positively influence wound healing, such 

as the activation of intracellular TLRs such as TLR 3 and TLR 9 by their respective 

ligands (Dasu and Isseroff, 2012). For the extra-cellular TLRs and co receptors 

highlighted in this study, TLR4 has been shown to influence early wound healing 

with increased expression of TLR 4 in keratinocytes leading to increased cytokine 

release from keratinocytes from 6 hours to up to 3 days post wounding (Chen, 

2012). However other research has found that TLR 4 can negatively impact 

wound healing, particularly in response to a thermal injury (Breslin et al., 2008). 

Research investigating models of wound healing using knock out mice has found 

that TLR 2 and TLR 4 deficient mice had decreased wound healing compared to 

wild type mice (Suga et al., 2014). However, in a similar model using wounded 

diabetic mice it was shown that activation of TLR 2 and TLR 4 by their ligands 

resulted in accelerated healing compared to control wild type animals (Dasu et 

al., 2010).  

Stimulation of TLR’s investigated in this study is likely to be mainly through the 

presence of LPS in the cell free conditioned media however the reported role of 

LPS itself on wound healing is mixed. Research has shown that LPS can 

positively impact wound healing by stimulating epidermal growth factor receptors 

(EGFR) which can promote wound healing (Koff et al., 2006) however this was 
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only found when airway epithelial cells were challenged with low concentrations 

of LPS, with high concentrations of LPS found to be detrimental to healing. 

 Interestingly, whilst some bacterial growth conditions tested here produced an 

increased expression of the TLRs investigated, an effect that is probably 

mediated by the presence of LPS, it was only PF conditioned media treated cells 

that showed accelerated healing above control indicating that LPS present in the 

PS3 conditioned media does not accelerate wound healing above control. In 

addition, whilst there was increased expression of TLR 2, 4 and CD-14 

expression from SWF and MM Glu 24 hour cultures there was no significant 

differences in scratch closure between these conditions and for MM EtOH. There 

was no change in the expression of TLR 2, 4 or CD-14 in response to PS3 grown 

in MM EtOH for 24 or 80 hours thus the lack of scratch closure from the 80 hour 

media cannot be attributed a change in expression of each of the TLRs as full 

closure was seen from the control. 

6.6.1.3 Cytokine secretion and wound healing  

As previously discussed exposure of keratinocytes to cell free conditioned media 

from PS3 can stimulate significant secretion of the pro-inflammatory cytokines.  

Imbalances in cytokine release during wound healing can cause alterations to the 

normal wound healing process and result in ineffective healing. CXCL8 has been 

identified as having an important role in the progression of wound healing, 

particularly in the initial inflammatory stages (Ridiandries et al., 2018) however 

there is little information regarding the role of CXCL8 in cutaneous wound healing 

or the effects of CXCL8 on keratinocytes  (Jiang et al., 2012).  
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Research carried out on the comparison of tissue biopsies from patients with 

burns found CXLC8 secretion to be significantly higher in unhealed wounds 

compared to healed wounds and to normal skin and in cell line experiments 

performed within the same study, exposure of epidermal keratinocytes to high 

concentrations of CXLC8 (100ng/ml) caused a decrease in cell replication 

compared to control. At low concentrations (1ng/ml) exposure of keratinocytes to 

CXCL8 showed an increase in proliferation (Iocono et al., 2000) which indicates 

that at low concentrations, CXCL8 secretion may positively impact wound 

closure.  

By contrast, other research has shown that tissues isolated from chronic wounds 

had a low expression of CXCL8 receptors, compared to acute wounds as 

assessed by mRNA analysis, however these differences were not significant. In 

cell line experiments using HaCaT cells, exposure to recombinant human CXCL8 

produced increased cell migration over a period of 6 hours post wounding 

compared to control (Jiang et al., 2012) .  

In this study it was shown that whilst CXLC8 secretion was high from 

keratinocytes exposed to cell free conditioned media from PS3 grown for 24 

hours, it was only PF conditioned media that showed wound closure faster than 

control  indicating that low concentrations of CXCL8 can potentially increase 

wound healing as supported by findings described above (Iocono et al., 2000) 

however as this was only seen for SWF cultures, not MM EtOH cultures despite 

CXCL8 secretion being similar, it indicates that potentially there may be other 

pro-inflammatory cytokines involved that were not investigated in this study such 

as CXCL1, which are important in keratinocyte migration (Raja et al., 2007).  
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For PS3, at 24 hours both MM Glu and MM EtOH produced a larger CXCL8 

secretion than SWF cultures however in the scratch assay there were no 

significant differences in closure between these conditions.  For live PS3, CXCL8 

secretion from keratinocytes was generally lower than that produced by cell free 

conditioned media, particularly from 80 hour cultures of MM EtOH and MM Glu, 

with CXLC8 secretion being similar to that of the control. Scratches exposed to 

live PS3 from these conditions, showed an initial slightly faster closure compared 

to HBSS only resulting in a greater healing at the end of day 3, showing that whilst 

the presence of cell stress may have had an initial stimulatory effect on the cells, 

this is not mediated by CXCL8.  

Because of the more complex physiology of the ex-vivo skin model and the 

different mechanisms required for ‘wounding’ this model was generally more 

sensitive than the cell monolayers as some of the subtle differences between 

conditions previously observed did not occur. However differences in the re-

epithelisation between conditioned media and non-conditioned were observed 

showing that PS3 conditioned media can cause impaired wound healing in a 

more-realistic skin model, even though differences between the different PS3 

growth conditions were not apparent.   

It has been previously reported that exposure of HaCaT cells to CXCL8 increased 

cell migration (Jiang et al., 2012). This was not found in this study, however here 

the focus was on the role of EC secretions and scratch closure rather than the 

direct application of CXCL8 to HaCaT cells. Whilst CXCL8 was secreted from 

HaCaT cells exposed to most conditions tested here, the presence of 

immunogenic and virulent factors in the EC secretions and the reduced FBS in 

the media resulted in no migration, with controls also showing minimal migration. 
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In addition, much of the research in this area has focused on the stimulation of 

migration in the scratch assay and investigated the promotion of scratch closure 

rather than its attenuation and as such, images are often obtained up to 12 hours 

after wounding (Cormier et al., 2015, Justus et al., 2014) meaning potentially any 

increase in migration in this study was not seen due to scratches being left for 

extended periods in low serum conditions.  

6.7 Future work 

One of the major limitations of this work was the use of only one clinical isolate 

of Pseudomonas aeruginosa, due to limitations in obtaining other clinical isolates 

from wound bandages. Due to this, the clinical relevance of results obtained in 

this study may be limited in their applications. To overcome this it would be 

beneficial to firstly investigate the role of growth conditions in another clinical 

isolate of Pseudomonas aeruginosa and then to continue this further with another 

clinical isolate of a different species of bacteria such as strains of E.coli.  In 

addition to this limitation, infections that occur within the skin are often multi-

species infections (Yadav et al., 2017, Percival and Bowler, 2004) so the 

limitations of challenging keratinocytes in culture with bacterial products from one 

species may not be realistic in mimicking what would occur in a more real life 

setting.  

Another limitation of this work is the reductive nature of the models used to study 

skin host immune responses. Whilst this work focused on the use of monolayers 

of HaCaT cells as a model of skin, some key experiments were performed using 

ex-vivo skin models however these are still reductive in terms of mimicking a real-

life infection setting and due associated costs and extensive timings needed to 
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develop stratified skin models more long term experiments were needed in this 

study, particularly in terms of wound healing.  

6.8 Overall summary and key findings 

Pseudomonas is a highly versatile pathogen that is associated with human skin 

infections and can significantly impact the pathogenesis of disease, particularly 

those strains that commonly reside in clinical environments due to their 

opportunistic nature and increased resistance to both antibiotics and biocidal 

compounds. The versatility of Pseudomonas allows it to undergo genetic and 

phenotypic changes to adapt to different environmental conditions (Moradali et 

al., 2017) the investigation of which was the main focus of this study.  In this study 

the effects of growth condition on two Pseudomonas strains (a clinical isolate, 

PS3, and laboratory reference strain, PF) were investigated both directly through 

the quantification of select virulence factors and through the effects of secreted 

factors from the bacteria on the human skin cell line HaCaT.  

PS3 grown in ethanol showed increased biofilm, pyocyanin and hemolysin 

production, particularly after 80 hours in culture which indicates that ethanol can 

alter bacterial cell physiology, as supported by Smith et al. (2004). The effect of 

ethanol was not observed in the laboratory reference strain which indicates that 

ethanol alone cannot promote the production of virulence factors, rather that 

virulence mechanisms may need to-pre-exist.  

The alteration of bacterial cell physiology by ethanol was also further evident in 

the cell line experiments where full cytotoxicity occurred consistently following 80 

hour culture times and in the scratch assay, where PS3 grown in MM EtOH for 

80 hours produced the biggest delay in scratch closure, which indicates an 
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increase in virulent extracellular factors causing cell stress, which did not occur 

in response to bacteria grown in other conditions. When CXCL8 secretion was 

quantified from HaCaT cells, both the 1:5 and 1:10 dilution produced greater 

CXCL8 secretion compared to glucose and ethanol 24 hour cultures, indicating 

that in addition to virulence factors, immunogenic factors may also be altered by 

exposure of the bacteria to ethanol. Despite the high CXCL8 secretion 

investigation into the expression of MAMP receptors in the keratinocytes showed 

no change in any of the receptors selected in this study indicating this effect is 

probably mediated via a different MAMP receptor. The decrease in CXCL8 

secretion seen in response to PS3 grown in MM Glu from 80 hour cultures, which 

was also correlated with a decreased MAMP expression, indicates that 

production of immunogenic factors is decreased in this condition, possibly due to 

the reduction in the concentration of glucose in the media.  

The results of this study indicate that bacterial culture conditions can have an 

effect on the bacterial cell attached and secreted virulence and immunogenic 

factors associated in Pseudomonas aeruginosa, with time in culture also having 

an effect with these differences primarily occurring PS3 that were grown in 

ethanol conditioned media for 80 hours. Considering the striking effects seen 

from these conditions including the increased production of certain virulence 

factors in conjunction with the high level of toxicity in the HaCaT cells and longer 

healing times in the scratch assay, it indicates that prolonged exposure to ethanol 

within the bacterial microenvironment can alter microbial physiology through the 

production of pathogenic and virulent factors, particularly within clinical isolates, 

as PS3 was originally isolated from a discarded wound dressing, and these 

effects were not seen in the fluorescens strain. As Pseudomonas aeruginosa is 
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becoming increasingly recognised as an opportunistic pathogen that is known to 

reside in clinical environments with increasing antibiotic resistance found within 

the species. Additionally, there is increasing wide spread use of ethanol based 

products, particularly for disinfection of the hands which can then be transferred 

to high contact areas such as door handles and call buttons it is plausible that 

these opportunistic bacteria are being exposed to ethanol within their 

environment over prolonged periods of time. Taking into account the findings of 

this study, the improper use of ethanol-based products within clinical 

environments may potentially be leading to the new emergence of antibiotic and 

biocide resistant bacteria.  
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Appendix 1  

 Reagent Manufacturer Catalogue 
Number 

    

Cell culture Dulbeco’s Modified Eagles 
Medium 

Sigma D6546-
6X500ml  

FBS 500ml Sigma F7524-
500ML 

L-Glutamine 200nM solution Sigma G7513.100
ml 

EDTA 500g Sigma E9884 

PBS Sigma P5493-1L 

Trypsin-EDTA (0.25%) Sigma T4174-20ml 

Aquaguard Generon AQ-250-
50L-1 

Cell Titer Promega G3581 

6 well plates Sarstedt 83.392 

24 well plates Sarstedt 83.3922 

96 well plates Sarstedt 83.3924 

Bacterial 
culture 

Tryptone Soy agar LabM NCM0020B 

 
Maximum recovery diluent LabM NCM0085B 

ELISA Human IL-8/CXCL8 DuoSet 
ELISA 1 kit 

RnD DY208-05 

 
Ancillary Duo Set Reagent Kit 

2 
RnD DY008 

Flow cytometry CD282 (TLR2) Biolegend 309706 
 

CD284 (TLR4) Biolegend 312806 

CD14 Biolegend 301824 

ICF Millipore 4200-0140 

FACS clean Millipore 4200-1420 

Ex-vivo skin 
models 

Cadaver dermis Euroskin bank 
 

 
Fibroblast growth medium 

supplement 
Promocell C-39315 

Recombinant TGF alpha RnD 239-A-100 

Dispase I Sigma D4818-2MG 
Dispase I 

Transwell 'bucket' inserts Thermo Fisher 10380291 

Neg50 Thermo Fisher 6502B 

 

Table 8.1 Table of reagents. Table of reagents used in each of the experimental conditions in 

this study with details of supplier and product code.  
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Appendix 2 

 

 

Figure 8.1 Standard curve. Standard curve of known concentrations of CXCL8 constructed 

using OPTIMA software used to determine the concentration of CXCL8 secretion in samples 

collected from cells that were challenged with diluted Pseudomonas cell free conditioned media.  
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Appendix 3 

 

 

Figure 8.2 Fold change in the expression values of Pel genes of PS3. Transcriptome analysis 

showing the fold change of the expression of genes involved in Pel (Pel A-G) production from 

PS3 cultures grown in MM EtOH and MM Glu between 24 and 80 hour culture times.  

 

Figure 8.3 Fold change in the expression values of Alg genes of PS3. Transcriptome analysis 

showing the fold change of the expression of genes involved in Alg production from PS3 cultures 

grown in MM EtOH and MM Glu between 24 and 80 hour culture times.  
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Table 8.2 The effects of growth condition on conditioned media from PS3. A summary of the results gained in this study from experiments that investigated 

the role of conditioned media from PS3 grown in MM EtOH, MM Glu and SWF for 24 and 80 hours. Significance levels are indicated by * colour of stars indicates 

the treatment where significance lies, black stars show significance to both the other treatments. 

 Secreted products 
Time in culture 24 hours 80 hours 

Growth media 
MM 

EtOH 
MM 
GLU SWF 

MM 
EtOH 

MM 
GLU SWF 

Loss of metabolically acitve HaCaT cells - -   + **** - varied 

Pyocyanin production + + + +**** +**** + 

Protease production 48 hour incubation - - - - - - 

Hemolysin production 120 hour incubation - - - - - - 

CXCL8 (pg/ml) above control in HaCaT 1:2 dilution + **** + **** + - +  varied 

CXCL8 (pg/ml) above control in HaCaT 1:5 dilution +  ** + **** + + + varied 

CXCL8 (pg/ml) above control in HaCaT 1:10 dilution +  ** +  *** + + * + varied 

Change in expression of TLR 2 - + + - - + 

Change in expression of TLR 4 - + + - - + 

Change in expression of CD-14 - + + - - - 

CXCL8 (pg/ml) above control in ex-vivo skin model + + n/a + + n/a 

50% scratch closure by day 3 after 4 hour exposure + + + - ***  * +  * + 

100% scratch closure by day 5 after 4 hour exposure - + - -  * ** + + 

50% scratch closure by day 3 after 6 hour exposure + + + - **** + + 

100% scratch closure by day 5 after 6 hour exposure + + + - **** + + 
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Appendix 5 

  Live bacteria 
Time in culture 24 hours 80 hours 

Growth media 
MM 

EtOH 
MM 
GLU SWF 

MM 
EtOH 

MM 
GLU SWF 

Loss of metabolically acitve HaCaT cells - - - - - - 

Biofilm formed + + + + - + 

Protease production 24 hour incubation + + + - - - 

Protease production 48 hour incubation + + + + + + 

Hemolysin production 48 hour incubation - - - + + + 

Hemolysin production 120 hour incubation + + + + ** * + + 

Attachment/invasion above 1 bacteria per cell at  
MOI 1  

                                       MOI 100 

+ 
+ 

+  ** 

   +  * 
- 
+ 

  
+ **** 
+**** 

-  
 - 

-  
 + 

 Attachment/invasion above 1 bacteria per cell + pretreatment at  
MOI 1 

MOI 100 

-      
+ 

   +   * 

 +  **  *    
-  
+ 

+   
+ 

-  
- 

-  
+ 

 Invasion above 0.05 bacteria per cell at 
 MOI 1  

MOI 100 

-  
- 

-  
 - 

- 
+   

+ 

   + ** 
- 
 - 

- 
 - 

Invasion above 0.05 bacteria per cell + pretreatment at  
MOI 1 

MOI 100 

-        
- 

-         
- 

-  
+ 

+ 
 - 

- 
 - 

-  
 - 

CXCL8 (pg/ml) above control + + + + + + 

50% scratch closure by day 3 following exposure to MOI 1  + + + + + + 

50% scratch closure by day 3 following exposure to MOI 10 + + + + + + 

  Table 8.3 The effects of growth condition on live bacteria from PS3. A summary of the results gained in this study from experiments that investigated 

the role live bacteria from PS3 grown in MM EtOH, MM Glu and SWF for 24 and 80 hours. Significance levels are indicated by * colour of stars indicates 

the treatment where significance lies, black stars show significance to both the other treatments. 
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