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ABSTRACT 

 

 

Condition monitoring (CM) deliveries significant benefits to the industry by minimising 

breakdown losses and enhancing the safety and high-performance operation of machinery. 

However, the use of data acquisition systems with multiple sensors and high sampling rates 

leads to massive data and causes considerably high cost for purchasing and deploying hardware 

for data transmission, storage and processing. Hence, data compression is crucial and important 

to reduce the data size and speed up the calculation for the development of intelligent machine 

CM systems. Although data compression has received high attention in many fields, few 

researchers have focused on their research in the field of machine CM. Therefore, this PhD 

research concentrates on investigating novel and high-performance data compression 

algorithms according to the characteristics of one-dimensional (1D) and two-dimensional (2D) 

signals to solve the bottleneck of the massive data transmission, and hence improve the 

performance of remote and real-time machine CM systems. 

The research is carried out according to a compound experimental and analytic route based on 

a wireless senor network. To demonstrate the effectiveness of data compression based 

techniques for CM, the prototype of an intelligent wireless sensing system is developed using 

cost-effective micro-electromechanical systems (MEMS) accelerometers and the Bluetooth 

low energy (BLE) communication module. Moreover, various waveform parameters with low 

cost computing in time and frequency domains are investigated and identified that RMS is the 

most effective parameter to give good indication for the leakage in a piping system, showing 

that data compression via statistics is effective and thus indicates that the performance of data 

compression for CM highly depends on applications. 

Subsequently, high-performance but high-complexity methods are proposed base on dimension 

reduction, sparse representation, feature extraction and advanced compressive sensing (CS) for 

fault diagnosis of rotating machinery with 1D or 2D signals, which have the potentials to be 

implemented on MEMS modules in a wireless sensor network (WSN) in future. Firstly, a 

compression scheme based on dimension reduction is proposed to extract the periodic 

characteristics of the 1D vibration signal. Recurrence plot (RP) of vibration phase space 

trajectory and its quantification indicators, as well as principal component analysis (PCA), are 

combined to realize feature extraction, compression and fault classification for a tapered roller 

bearing system. 

Secondly, a two-step compression method is performed on 1D vibration signals based on 

frequency shift, adaptive sparse representation and CS is explored to overcome the problem of 

the large quantity of data storage for ball bearing fault diagnosis. Simultaneously, this 

compression method has the capability to reconstruct envelope signals with noise elimination. 
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Then, for 2D thermal images captured from a two-stage reciprocating compressor, the dense 

scale-invariant feature transform (SIFT) features indicating edge information are extracted and 

represented as a sparse matrix by sparse coding. The compressed features are used for the 

classification of six different types of faults with the support vector machine (SVM). 

Finally, the advanced CS technique is exploited on pre-processing the 2D thermal images of 

gearboxes to realise intelligent fault classification with high accuracy of more than 99.81% by 

a typical deep learning algorithm, namely convolutional neural network (CNN). The CNN 

calculation speed is dramatically accelerated with compressed images. All these proposed 

approaches are evaluated by simulations and experiments, which verifies that they can reliably 

detect the fault types or classify different fault types with very high accuracy. Besides, the 

proposed data compression based intelligent CM approaches provide theoretical bases for 

maintenance-free CM systems because data compression can save the transmission bandwidth 

and power consumption for remote and real-time machine CM systems. 

 

Key Words: Intelligent machine condition monitoring (CM), Data compression, Wireless 

sensor network (WSN), Compressive sensing (CS), Deep learning 
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 INTRODUCTION 

 

 

With the increase of the mechanical complexity and scale, the equipment management 

and maintenance are facing more and more challenges. Condition monitoring (CM) 

always plays a vital role in preventing the unexpected failure of machines and saving 

substantial maintenance costs. 

This chapter describes the applications and development of machine CM in Industry 

4.0. It also presents the importance of data compression for one-dimensional (1D) and 

two-dimensional (2D) signals in efficient CM. The lack of attention to data compression 

in CM activates the motivation of this research. To fulfil the research aim, the objectives 

are detailed in this chapter. Finally, the organisation of this thesis is outlined with a 

structure diagram. 
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1.1 Industry 4.0 and Machinery Maintenance 

The fourth industrial revolution, well known as Industry 4.0, is an intelligent era using 

information technology to achieve faster innovation in manufacturing and promote 

industrial development [1]. The development history of the industrial revolution is 

illustrated in Figure 1.1. Industry 4.0 characterizes a fusion of emerging technologies 

in the fields of physics, digital processing and biology, such as artificial intelligent (AI), 

robotics, Internet of Things (IoT), autonomous vehicles, 3D printing, nanotechnology, 

biotechnology, material science and energy storage [2]. It has the potential to raise 

global income levels and improve the quality of life because technology creates new 

products and services with high efficiency and productivity. 

 

Figure 1.1 The development of industrial revolutions 

Machinery plays an essential role in the industry. With the advent of Industry 4.0, the 

traditional industry is transforming into the direction of automation, digitization, 

intelligence and precision, which requires more scientific and efficient maintenance 

management of mechanical devices in various fields. During the operation of machines, 

it is necessary to strengthen their maintenance management to guarantee overall 

performance and optimize their operation quality. Moreover, mechanical failure can 

lead to large-scale downtime or catastrophic failure, which also may threaten human 

lives. Scientific and efficient maintenance can not only prolong the lifecycle of 

machines but also repair or replace faulty components in the early stage of failure to 

reduce the probability of disaster, save expenses and improve work efficiency [3]. 

Machinery maintenance is a series of organised activities implemented on a machine or 

a facility to keep it operating in an optimal state with high production output and 

minimum cost. It can be divided into unplanned maintenance and planned maintenance 

according to whether it is pre-planned, which is as shown in Figure 1.2. For machines 

that have an emergency or identified failure during machine operation, unplanned 

maintenance is prevailingly performed. Planned maintenance consists of corrective 

maintenance, improvement maintenance, preventive maintenance and predictive 

maintenance. Corrective maintenance aims to repair, replace or restore the faulty part 
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to avoid the repetitive occurrence from the source to maximize the effectiveness of 

plants and eliminate crashes. Improvement maintenance has the purpose of reducing or 

even eliminating maintenance requirements. It is subdivided into engineering services 

(facility construction), design-out maintenance (redesigning facilities to tolerate 

frequent occurrence of failure) and shutdown improvement maintenance (performed in 

total stoppage situation of the facility plant). Preventive maintenance is a series of 

activities that are performed on machinery before the occurrence of a failure, including 

replacement, adjustment and major overhaul. Predictive maintenance aims at detecting 

abnormal physical conditions of equipment and performing appropriate maintenance to 

maximise its service lifespan. Condition-based maintenance is the commonly used 

maintenance method because it can remotely detect and locate the faults in an early 

stage for large-scale devices in real time, especially with the aids of advanced 

technology. 

 

Figure 1.2 Maintenance strategies 

In the condition-based maintenance process, the innovation of technology combination 

reduces the investment of human resources and realised more efficient and effective 

management. For example, AI has made remarkable progress in recent years driven by 

the growth of computing and the availability of massive data. In September 2019, the 

robotics design company Boston Dynamics simultaneously released two promotional 

videos of the biped robot Atlas which consistently performed beautiful gymnastics and 

parkour movements, as well as a quadruped robot working in the harsh environments. 

Customers can perform practical tests by adding specialized sensors and software onto 

Spot to monitor construction sites and provide remote inspections for natural gas piping 

systems, oil and power facilities.  
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Moreover, intelligent condition-based maintenance is becoming increasingly attractive 

with the support of wireless networks and IoT to improve the development progress of 

Industry 4.0 [4], [5]. The wireless sensor network (WSN) is a distributed intelligent 

network system composed of one or multiple sensor nodes which can monitor physical 

or environmental conditions (such as pressure, temperature, motion or pollutants, etc.) 

in different locations. Currently, with the rapid development of the micro-

electromechanical systems (MEMS), system on chip, wireless communication and low-

power embedded technology, WSNs have been widely applied in intelligent 

transportation, environmental monitoring, machine condition monitoring and so on [6], 

[7]. Considering the development and broad applications of WSNs, it is necessary to 

introduce their advantages and disadvantages as follows. 

(1) Advantages: 

✓ Economic. The cost of MEMS is much lower than traditional sensors and data 

acquisition devices. 

✓ Flexible. Every sensor node in a WSN can move in any way and keep in touch 

with other nodes dynamically because of its self-organization. 

✓ Dynamic. Sensor node failures caused by environmental factors or energy 

depletion and adding a new sensor node will affect the structure of the WSN. 

However, WSNs can adapt to this challenge through dynamic system 

reconfiguration. 

✓ Integratable. The sensor nodes have the characteristics of low power 

consumption, small size and economic price, and can realise the integration of 

components and functions. 

(2) Disadvantages: 

✓ Lower transmission rate and limited bandwidth compared to wired networks. 

Hence, it may cause data loss if large amounts of data are transferred in real 

time from multiple sensors simultaneously. 

✓ More complex to configure but less safe than wired networks. 

✓ Easily affected by distance and surroundings. For example, Wi-Fi routers can 

work at the traditional 2.4GHz, reach up to about 46m indoors (with walls and 

furniture) and 92m outdoors. 

However, intelligent applications, like data fusion for various sensors, bring not only 

opportunities for CM of machinery but also challenges of the transmission, storage and 

processing of massive data. In recent years, the amount of data is exploding at an 

exponential rate rather than a linear rate. The data exponential growth will reduce the 

efficiency of CM and even paralyze intelligent online monitoring systems. Therefore, 

data compression becomes a crucial task to ensure the normal operation of CM systems 

and save a lot of expenses. 
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1.2 Machine Condition Monitoring 

Machine condition monitoring is an important action to monitor the health status of a 

machine by continuously observing changes of its state variables, such as temperature, 

pressure, vibration, acoustic and so on, to identify whether the machine is healthy or 

not. As soon as the state variables change, the machine should be diagnosed and 

repaired immediately. Otherwise, it will cause catastrophic failure to result in huge 

economic losses and even endanger human life. 

Rotating machinery plays a crucially essential role in Industry 4.0. Its condition 

monitoring has attracted more and more attention from many researchers in recent years. 

They explore efficient data processing methods to effectively reduce machine 

downtime and maintenance costs. According to sensing technology, the common 

machine CM techniques include visual inspection, oil analysis, performance trend, non-

destructive testing, electrical signal based methods, vibration and acoustic signal based 

methods. 

1.2.1 Visual Inspection 

Visual inspection is a basic method to monitor the condition of a machine through the 

senses of engineers, such as vision, hearing, smell and feel [8]. Visual inspection does 

not rely on complex sensors and acquisition equipment and experienced engineers are 

able to quickly and accurately identify faults that occur in machines. However, it is not 

appropriate to perform a manual visual inspection in some hazardous work 

environments, such as in the wind turbine field. Sometimes, artificial vision is difficult 

to meet the requirements, such as during mass production. Additionally, it needs 

quantifiable parameters to support the inspection and be recorded by engineers for 

comparation with future inspections. In general, severe defects can be inspected by 

engineers so that the early stage of faults can be ignored during the inspection. Finally, 

although it saves costs in the purchase and installation of sensors and acquisition 

equipment, long-term employment and training of a large number of engineers is costly 

and inefficient. With the development of science and technology, machines can replace 

the human eye to make measurements and detection in visual inspection, which is 

invaluable for defect detection. In fact, machine vision inspection is a non-intrusive CM 

method. It is characterized by increasing productivity and production automation. 

Besides, it is easy to implement information integration in machine vision inspection. 

However, machine vision inspection is usually limited to surface condition check and 

vulnerable to resolution. As a result, many other advanced technologies have been 

developed to monitor the condition of machines. 

1.2.2 Oil Analysis 

The oil analysis based CM method obtains information on the lubrication and the wear 

status of a machine by analysing the performance change of the medium such as 

lubricating oil of the monitored equipment to evaluate its working condition and predict 

its fault type [9]. 
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Oil analysis is further divided into oil physical and chemical property analysis and oil 

debris analysis. The performance of the lubricant directly affects the wear state of 

mechanical friction. Monitoring the performance of the lubricant is to detect the 

operation state of the system and prevent the failure caused by poor lubrication. Oil 

debris analysis primarily detects the source of failure caused by friction based on the 

material composition of the abrasive particles. The common analytical techniques 

include spectroscopic analysis, ferrographic analysis, magnetic plugs and so on [10], 

which are suitable for analysing different sizes of debris. However, instruments for oil 

analysis are expensive and it is difficult to monitor the status of lubricants online, 

especially in harsh environments. Furthermore, the sampling and testing processes are 

complicated, so that oil samples are susceptible to contamination during these processes 

and affects the analysis results. 

1.2.3 Performance Trend 

Performance trend monitoring is another basic technique for CM. The commonly used 

measurements of performance include pressure, speed, displacement and temperature, 

etc., which can be applied to monitor conditions of the rotating machines. 

The advantages of performance trend for CM include low sensor cost, low sampling 

frequency and easy understanding by engineers. Therefore, it is suitable for long-term 

online CM. However, some failures occur slowly, like fatigue wear. Early stage of 

faults has very little effect on these performance measurements so that they change 

slightly in the early stage of faults. It is difficult to determine whether the small changes 

of the captured performance are caused by ambient or early stage of faults. In addition, 

instruments require to be calibrated to guarantee the accuracy of the measurements. 

Many manufacturers equip some sensors to measure machine performance trends 

during production, such as Rolls-Royce Holdings PLC routinely monitoring aircraft 

engines under long-term service. 

Among these measurements, temperature is one of the most commonly used ones in 

CM of rotating machinery, as any instability or failure can cause temperature changes. 

If the influence of ambient on the change of the measured temperature can be eliminated, 

the temperature can characterise the changes of the mechanical operating states. 

Infrared thermal imaging technology displays the heat distribution of the object surface 

in a non-contact way, which can overcome the problem of instability caused by single-

point measurement. Actually, it is also a non-destructive testing technique. 

1.2.4 Non-destructive Testing 

Non-destructive testing (NDT) refers to changes in the reaction of heat, sound, light, 

electricity and magnetism caused by abnormalities or defects in the internal structure 

of the material without impairing or affecting the performance of the tested objects [11], 

[12]. It uses physical or chemical methods to check the structure, nature, quantity, shape, 

size, location and other changes of the internal and surface of the tested object by means 
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of modern technology and equipment. NDT is an indispensable and effective tool for 

industrial development. The traditional NDT techniques include radiographic testing 

(RT), ultrasonic testing (UT) [13], [14], magnetic particle testing (MT) and liquid 

penetrant testing (PT) [15], [16]. In addition, there are eddy-current testing (ECT) [17], 

acoustic emission detection (AE) [18], [19], infrared radiation and thermal testing (IR) 

[20] and remote filed testing (RFT) methods to detect defects of the objects. These NDT 

techniques are widely used in aerospace, military, automotive, electric power, railway, 

metallurgy, machinery and other industries [21]–[26]. 

Compared to the destructive testing, NDT has the following characteristics: the first 

one is non-destruction because it does not damage the structure of the objects; the 

second one is comprehensiveness because it can not only work on the raw material test 

and production inspection but also test the equipment in service. It focuses on the 

inspection range of weld surface defect inspection, status check, cavity inspection, 

assembly inspection and residue inspection. But these NDT techniques have their own 

advantages and disadvantages. For example, RT can display the internal defects of the 

weld as a 2D image and can be recorded. However, its shortcomings are that it has 

requirements for the thickness of the steel plate, high cost, great damage to human and 

environmental pollution. UT is a low-cost and no-polluting method, which is suitable 

for all kinds of environments, but it is not convenient to read data. MT is cheap and 

easy to operate, but it is only suitable for defect detection of magnetic or magnetic 

materials on the surface or near surface of magnetically permeable materials and 

requires an external power supply. PT is easy to operate and suitable for a wide range 

of environments but can only detect defects on the surface of the workpiece. ECT is 

expensive and only suitable for detecting small workpieces, surfaces and near-surface 

defects, although it is portable and can detect many types of materials. 

As described previously, all objects above absolute zero (-273°C) emit infrared 

radiation with the wavelength range of 0.78μm to 1000μm which can be captured by 

infrared thermography technology. As a non-destructive method, the thermal camera 

uses an infrared detector and an optical imaging objective lens to receive the infrared 

radiation energy distribution map of the target to obtain an infrared thermal image [27]. 

This thermal image corresponds to the heat distribution field of the object. In other 

words, thermal cameras work by converting invisible infrared energy from an object 

into a visible thermal image. The different colours of the thermal image represent the 

different temperatures of the object. This advanced technique captures the thermal field 

distribution of the surface of the object, rather than a single point temperature, and 

therefore has fairly high stability. Because of the characteristics of the thermal cameras 

and their non-contact measurement, they have been widely used in various fields, such 

as disease diagnosis, circuit board and power transformation box detection, geothermal 

exploration, atmospheric and ocean monitoring, etc. In recent years, it has been applied 

to mechanical fault monitoring in the industrial field [27], [28]. Many studies have 

shown the effectiveness and practicability of this technology in CM. In future, thermal 
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cameras can be equipped with devices like robots and drones for large-scale equipment 

CM. 

1.2.5 Electrical Signals 

The electrical signals, such as current, voltage and power, are the non-intrusive 

signatures which are widely used to diagnose the faults of induction motor-based drive 

systems [29]. The mechanical failures can cause changes in load torque and speed of 

rotating machines. And the speed change will induce additional signals related to the 

fault frequency in the electrical signals [30], which provides an effective method for 

mechanical fault diagnosis. The traditional method applied for the electrical signal 

processing is the spectrum analysis based on discrete Fourier transform (DFT). 

However, sometimes the fault features are too weak to extract, or the influence of noise 

may lead to high diagnostic error. To overcome these issues, the discrete wavelet 

transform (DWT), empirical mode decomposition (EMD), bispectrum (CB) and 

modulation signal bispectrum (MSB) methods are widely adopted to extract effective 

diagnostic features for CM [29]. 

There are several advantages of using electrical signals for machine CM. The first one 

is the easy installation. The sensors can be installed with non-contact and non-intrusive 

relative to machinery through remote implementation, which means it can be achieved 

remote online CM with electrical signatures. The second benefit is the low cost. The 

instruments that collect electrical signals are much cheaper than most of other sensors 

like accelerometers and AE sensors. Therefore, electrical signals are receiving more 

and more attention in the field of machine CM in recent years. 

1.2.6 Vibration and Acoustic Signals 

In the last few decades, vibration signals have been extensively applied for fault 

diagnosis of rotating machines because the captured responses can give accurate 

indications of internal system conditions. 

The traditional methods used for feature extraction and signal analysis include time 

domain statistics, fast Fourier transform (FFT) and short time Fourier transform (STFT), 

envelope spectrum analysis and wavelet transform. In addition, some statistic 

calculation algorithms have been particularly proposed to deal with these non-linear 

and non-stationary signals, such as singular value decomposition (SVD) [31], 

autoregressive model (AR) [32], principal component analysis (PCA), independent 

component analysis (ICA), kernel principal component analysis (KPCA) [33], 

modulation signal bispectrum [34] and so on [35]. 

One of the disadvantages of vibration signals for CM is the sensor installation, 

especially on large machinery in harsh environments. The acquisition of acoustic 

signals can be at a distance from the objects with the non-contact collection method. 

The acoustic signals can detect the very early stage of faults with sophisticated signal 

processing techniques [36] because they are extremely susceptible to environmental 
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noise contamination. Acoustic emission signals represent the acoustic radiation (elastic 

waves) generated when the internal structure of a solid material changes irreversibly. 

Generally, AE signals are in high-frequency regions (above 100 kHz), which can 

provide reliable features for early fault diagnosis of rotating machinery. AE devices are 

extremely expensive and the captured signals lead to a significantly large amount of 

data because of the high sampling rate (over megahertz). Vibration and acoustic signals 

also have a large amount of data due to the high sampling rate (tens of thousands hertz) 

required for the reliable and accurate fault features. The next subsection will highlight 

the importance of data compression in the field of machine CM, which has only 

received very little attention. 

1.3 Importance of Data Compression in Condition Monitoring 

Machine CM plays a vital role in the industry, which aims to reduce the maintenance 

cost and improve the efficiency and productivity of machines. Various types of signals 

captured with the high sampling frequency are processed to extract diagnostic features 

with sophisticated signal processing techniques. Long-term online CM inevitably 

results in an explosive growth of the data sets, consuming substantial resources of 

storage and processing. Therefore, one of the big challenges in the field of machine CM 

is data compression for the cost-effective purpose of CM. 

Data compression refers to reducing the amount of data to save the storage space and 

improve the efficiency of transmission, storage and processing. It is a technique to 

reorganise data according to advanced algorithms to reduce data redundancy and 

storage space, which includes lossy compression and lossless compression. Lossy 

compression is that the reconstructed compression data is not completely identical to 

the original one. Some information is discarded to exchange for a higher compression 

ratio. On the contrary, the reconstructed compression data obtained by lossless 

compression is identical to the original one. But its compression ratio is much lower 

than that of the lossy compression. 

The necessity of data compression for machine CM is summarized as follows. 

(1) Data volume exponential growth. With the development of technology, the accuracy 

and measurement range of sensing and acquisition instruments have continuously 

increased, leading to an exponential growth in data volume. AI has started to be 

applied to the field of machine CM, which requires various types of data from 

multiple channels simultaneously with a high sampling rate. 

(2) Limitation of wireless transmission. The MEMS based sensing and acquisition 

modules are much cheaper than traditional acquisition devices. Additionally, 

wireless sensing systems have the characteristics of better flexibility, scalability and 

maintainability in machine CM. WSNs have been developed rapidly and applied 

widely in recent years, but data transmission is limited by the transmission 

bandwidth, speed and energy consumption. 
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(3) Limitation of storage. The collected data can not only be used for real-time online 

CM but also can be stored for comparison of characteristic changes. Therefore, 

long-term storage will take up a lot of space. 

(4) Data redundancy. It is generally known that the more features extracted, the higher 

the accuracy of fault diagnosis. However, more features lead to complex 

calculations and greater exploration space. Hence, more features may be just 

effective data duplication, resulting in data redundancy and wasting space. 

Data compression can significantly reduce the cost of storage, data transmission time 

and communication bandwidth, which has received widespread attention in many fields, 

such as digital communication, medicine, WSNs, satellite imagery and so on. However, 

most of researchers have not recognised the importance of data compression in the field 

of machine CM in recent years. But it is significantly important to compress the data to 

effectively and efficiently promote the implementation and optimization of online and 

remotely intelligent condition monitoring with the wireless transmission in industrial 

applications. Therefore, the motivation of this research is to investigate the useful 

algorithms to compress 1D or 2D data and eliminate data redundancy to develop the 

intelligent CM for future usage after or even before data acquisition. 

1.4 Research Aim and Objectives 

Based on the previous description, this research aims to investigate the effective and 

efficient data compression algorithms, mainly applied to 1D and 2D signals, for 

intelligent fault diagnosis of machines, which have potentials to be implemented in 

embedded hardware to fundamentally reduce the amount of data. To accomplish this 

aim, the following objectives are set in the implementation of this research: 

(1) Review the popular advanced literature of data compression algorithms especially 

applied in the field of machine CM. Divide these compression techniques into the 

traditional post-acquisition compression and advanced pre-acquisition compression 

methods for further verification of application in CM. 

(2) Build a wireless sensor node with MEMS sensors to collect 1D characteristic 

signals and analyse the acquired signals to extract features based on compressed 

statistics for the remote condition monitoring in real time. 

(3) Verify the availability and effectiveness of the developed intelligent WSN node with 

compression function by experimental studies. 

(4) Investigate the dimension reduction based compression methods to save storage 

space for 1D diagnostic signals of CM and simultaneously distinguish the fault 

types with the compressed features. 

(5) Propose sparse representation based compression algorithms like compressive 

sensing for 1D diagnostic signals with a large compression ratio which has the 

potential to be implemented in the hardware for the pre-acquisition compression. 

(6) Develop the compression method according to extracting features from 2D thermal 

images for fault diagnosis. 
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(7) Exploit compressive sensing with an intelligent classification method on 2D 

thermal images captured by monitoring the condition of machines to differentiate 

various types of faults. The combined method has the potential to reduce the cost 

of data collection, transmission and storage. 

1.5 Organization 

This research involves several different compression techniques applied to different 

types of signals for mechanical components in the industrial field. The main structure 

of this thesis is organised as shown in Figure 1.3. It will be divided into eight chapters. 

The main contents of the remaining chapters are listed as follows. 

Chapter 2 overviews the recent development of compression technologies and 

applications in the field of machine CM, especially the application of WSNs and some 

innovative intelligent methods. Furthermore, the advanced compressive sensing 

algorithms are introduced and discussed, which provides potential pre-acquisition 

compression methods for machine CM. 

Chapter 3 expounds the importance of CM of piping systems and analyses the principle 

of vibration caused by leakage from the macroscopic and microscopic views. Then, the 

designed wired and wireless sensing systems with MEMS are introduced to achieve 

leakage detection with less wireless transmitted data in terms of the statistics based 

compression method. 

Chapter 4 proposes a compression method based on dimension reduction to effectively 

extract the periodic characteristics of the 1D vibration signal of the tapered roller 

bearing system. Recurrence plot and its quantification analysis, as well as principal 

component analysis, are combined to implement feature compression and classification. 

Chapter 5 investigates a two-step adaptive compression method based on sparse 

representation and compressive sensing to reduce the amount of data used for ball 

bearing fault diagnosis. In addition, the proposed compression method has the ability 

to eliminate noise and reconstruct signals. 

Chapter 6 explores a compression method based on sparse coding to reduce the dense 

scale-invariant feature transform (SIFT) features related to edge information extracted 

from the 2D thermal images of a reciprocating compressor to diagnose its various types 

of faults. 

Chapter 7 exploits the compressive sensing method on the 2D thermal images of 

gearboxes to realize intelligent fault diagnosis with the aid of the convolutional neural 

network (CNN). 

Chapter 8 reviews the achievements for the objectives mentioned in Chapter 1. Then, 

it concludes this research on data compression method investigation for intelligent 

machine CM and make some suggestions for future work in the related research fields. 
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Figure 1.3 Structure of the thesis 
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 LITERATURE REVIEW 

 

 

According to the importance and necessity of data compression in machine CM, this 

chapter overviews and summarizes the state-of-the-art research on data compression 

techniques in this field. It gives an overview of data compression methods in machine 

condition monitoring. Especially, an advanced random sampling based compression 

method, compressive sensing, is introduced and reviewed with the wide applications in 

various fields, particularly in machine condition monitoring. 
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2.1 Data Compression 

Data compression is not essential, but it is a critical procedure in signal processing to 

overcome the overwhelming data expansion issues in Industry 4.0. It uses a few bits to 

express the signal representation to achieve lossy or lossless compression because most 

of the actual data in physical world contain large quantities of redundancy information. 

Data acquisition is a process of converting analogue signals into digital signals and 

transmitting them. According to the well-known Nyquist-Shannon sampling theorem, 

an analogue signal waveform may be uniquely reconstructed without any loss from the 

samples acquired if the sampling rate is equal to or greater than twice the highest 

frequency component of this analogue signal. Figure 2.1 (a) states an analogue signal 

waveform with the frequency of 1 Hz. Figure 2.1 (b) exhibits the sampling pulses with 

the sampling rate of 10 Hz. The sampled signal is displayed in Figure 2.1 (c), which is 

composed of discrete points. These points can be transmitted according to certain 

transmission rules after quantisation and encoding. 

 

Figure 2.1 Simulated data acquisition process 

Generally, a discrete signal obtained at a higher sampling rate can represent the 

waveform more accurately, which also leads to massive data and complicated 

computation. In the field of signal processing, data compression can be implemented 

during the sampling process before data transmission or at the receiving end after the 

signal is sampled and transmitted. At the signal acquisition end, there are two main 
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types of data compression. The first one is the traditional method that data is uniformly 

sampled based on the Nyquist-Shannon sampling theorem and then quantized. The 

quantized signals can be compressed before data compression, i.e. in the process of 

encoding. The other one is compressive sensing. It makes a breakthrough compared to 

the traditional sampling theorem through the random sample instead of the uniform 

sample, which has been rapidly developed and widely applied in the last decade. At the 

receiving end, the received transmission data is successfully decoded and then stored 

for further signal processing. As an alternative, the decoded signal can be compressed 

and stored to save hard disk storage space. Some researchers have studied some 

effective data compression methods at the acquisition and receiving ends in the field of 

machine CM, which will be detailed and summarized as follows. 

2.1.1 Traditional Data Compression Methods 

Traditional data compression methods can be divided into pre-transmission 

compression and post-transmission compression. They require to strictly follow the 

Nyquist-Shannon sampling theorem when the signals are sampled. 

2.1.1.1 Pre-transmission Data Compression Methods 

With the development and application of wireless networks, condition monitoring of 

machinery working under harsh environments needs to be implemented with the 

wireless transmission on a large scale. Compared with the wired transmission, wireless 

transmission has the advantages of low cost, stable and robust performance, flexible 

networking, good extensibility, and low maintenance cost. In the meantime, it is limited 

by the transmission bandwidth, power consumption and computing ability of nodes in 

the process of the wireless node application in machine CM in the past decades. 

Therefore, some researchers are committed to studying the uniformly sampled signal 

to achieve compression in the encoding process at the data acquisition end before wired 

or wireless transmission, which is often referred to as source code. Source code 

primarily adopts the statistical characteristics of signal sources to resolve their 

correlations and then eliminate redundant information from signal sources to improve 

the effectiveness of communication through data compression. Differential pulse code 

modulation (DPCM), Huffman coding, run length coding (RLC), transform coding and 

other techniques are commonly used as the analogue signal coding techniques. 

DPCM encodes the difference (namely prediction error) between the sampled value and 

the predicted one instead of encoding each sampled value independently [37]. The 

range of the prediction error is smaller than that of the sampled value because the 

correlation between the sampled value and the predicted value is strong. Therefore, 

fewer bits will be used to encode the prediction error to reduce the bit rate. Chan et al. 

[37] studied a method to achieve twice compression of the bearing vibration signals 

before wireless transmission with downsampling of intrinsic mode function (IMF) 

decomposed by EMD and DPCM. Three experiments about the typical, misalignment 

and unbalance shafts were carried out and the results revealed that only the proposed 
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compression method achieved a higher performance and compression ratio than the 

wavelet transform (WT) for machine CM. 

Huffman coding is a compression technique used to reduce the number of bits needed 

to send or store. It is based on the frequency of occurrence of a data item (pixel in 

images). The principle is to use a lower number of bits to encode the data that occurs 

more frequently for lossless data compression [38]. Datta et al. [38] proposed a hybrid 

data compression technique to achieve remote CM of motors through DPCM along 

with Huffman coding. The sampled data was coded by DPCM firstly and then by 

Huffman coding to implement 20%-50% reduction in the amount of data transmitted. 

It has been demonstrated by decompression that the proposed method was lossy. In the 

following two years, these researchers developed corresponding software to receive, 

decompress and process the compressed and transmitted signals, which successfully 

detected the broken bar fault of induction motors [39]. Unfortunately, it only applied 

the simulated signals while practical experimental data was not tested. But the 

development of this scheme has promoted the progress of data compression in remote 

machine CM. 

If Huffman coding is intuitively based on probability to optimize the length of the data 

to achieve data compression, then arithmetic coding is truly lossless compression 

method based on information entropy. Huang et al. [40] investigated a lossless 

compression method with arithmetic coding applied on the quantitated parameters and 

errors of 2D discrete cosine transform (DCT) signals. It showed that the data volume 

only accounted for 32.47% of the original mechanical vibration signal was saved to 

achieve decompression without loss. 

Moreover, an efficient under-sampled method based on the fusion of kurtogram, band-

pass filter, band-pass sampling and the Hilbert transform (HT) was proposed to reduce 

the amount of wireless data transmission by over 80% [41]. The under-sampled data 

had the ability to realize the fault detection of motor bearings. More importantly, the 

authors designed a WSN prototype with a wireless module working at 433 MHz and 

evaluated its practicability with both simulation and experimental signals. 

2.1.1.2 Post-transmission Data Compression Methods 

The realization of lossless compression of complex data before transmission is the 

necessary requirement for the wireless machine CM system in future. At present, main 

pre-transmission data compression methods studied by researchers concentrate on the 

techniques applied to the traditional communication system data compression because 

of low computational complexity and easy implementation. However, the signal 

characteristics representing various types of machine faults are different from 

traditional communication systems. Fault information is easily seriously affected by 

noise or even lost during transmission. Many complicated compression algorithms have 

been proposed according to the signal characteristics used to monitor the machine 

condition. Unfortunately, most of them cannot be implemented on a large scale in 
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hardware at the acquisition end due to the limitation of storage capacity, computing 

ability, power consumption and the cost. Accordingly, they are commonly used at the 

receiving end (i.e. post-transmission) to effectively reduce the required storage space, 

especially for long-term online machine CM although they cannot be performed from 

the source of data acquisition. But with the development and advancement of the 

MEMS technology and nanotechnology, mature compression technologies have a great 

opportunity to realize on wireless sensor nodes. These post-transmission data 

compression algorithms are mainly based on transform coding, feature extraction, basic 

statistics, sparse representation, data or feature dimension reduction, and artificial 

intelligence. 

Wavelet transform is a transformation-based technique similar to DCT. The signal is 

described in the wavelet domain and the area where energy concentrated can be 

definitely identified. In 2004, Peng et al. [42] gave a detailed overview of the wide 

applications of WT in machine CM, including data compression. The principle of WT 

compression is essentially the sparsity of the signal. Most wavelet coefficients are very 

small and can be ignored with a few bits representing the raw signal, which will not 

generate a significant error in the stage of reconstruction. Simultaneously, it stated that 

WT based methods are more suitable for compression of non-stationary mechanical 

vibration signals. Wavelet packet transform (WPT) is also a technique that decomposes 

signals into wavelet packet bases and coefficients in the wavelet domain. The small 

coefficients below the given threshold will be set to zero to sparse the coefficient matrix. 

Hence, how to determine the threshold based on characteristics of vibration signals has 

become a hot topic in recent years. For example, Hao et al. [43] carried out the wavelet 

packet decomposition of the bearing fault signal to obtain 16 sub-bands and calculated 

the energy of each sub-band. Then the energy threshold was set according to the 

compression ratio to sparse the coefficient matrix. Finally, the sparse wavelet 

coefficients were encoded, which can be used for further signal reconstruction with the 

aid of the wavelet basis. These methods are more significant in hardware 

implementation before encoding at the acquisition end in theory. In fact, authors 

implemented them by processing the collected vibration signals. In addition, the 

adaptive wavelet basis is difficult to select and there are some inherent deficiencies 

such as border distortion, energy leakage [44]. Compared with wavelet compression, 

Guo et al. [44] developed a compression method based on the selected IMFs 

decomposed by the ensemble empirical mode decomposition (EEMD). The 

experiments performed on both a small electric motor in a laboratory and a real traction 

motor of a train demonstrated that only a few extremes with large amplitudes reserved 

can represent the original vibration signals because they had sufficient faulty impulses 

to indicate the bearing fault type of a motor, which means most of the data has been 

discarded to compress the tremendous amount of samples. 

The basic multivariable statistics of signals used for describing machine condition 

include mean, standard deviation, root mean square, kurtosis, peak, maximum, 
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skewness, energy, entropy, and some frequency domain features, like shaft frequency, 

fault frequencies and harmonics [45]. These extracted features obtain useful 

information for fault diagnosis and also reduces the amount of data used to detect faults 

of machines. 

However, dimensions of features extracted are still high and require to be further 

reduced and fused with other compression algorithms [46], such as the commonly used 

PCA, canonical discriminant analysis (CDA) and linear discriminate analysis (LDA). 

Moreover, the correlation between features can be eliminated to reduce the information 

redundancy and improve the calculation efficiency and fault diagnosis accuracy. For 

example, Sawitri et al. [47] applied PCA as the compression method to reduce the 

dimension of features extracted from the time domain and frequency domain (like mean, 

root mean square (RMS), peaks, entropy, variance, etc.) denoised current signals with 

both WT and PCA methods. The compressed feature parameters were utilized for the 

classification of 10 different conditions of the induction motor with support vector 

machine (SVM) to realize the average identification index of 83.51% with 14 principal 

components of 25 characteristic parameters. Chopade et al. [48], Dias et al. [49] and 

Ruiz-Carcel et al. [50] effectively and efficiently utilized PCA to reduce the dimension 

of features in the time, frequency and wavelet domains which were extracted from the 

current signals, position measurements and vibration signals to diagnose the 

mechanical fault types, respectively. PCA was also used to compress the first 32 

vibration envelope harmonic features of a two-stage reciprocating compressor by Smith 

et al. [51]. The compressed signals were as the input of the Naïve Bayes classifier to 

achieve a higher classification success rate of 83.3% instead of 75% with the raw 

envelope harmonic features for five different conditions of a two-stage reciprocating 

compressor. Additionally, both PCA and CDA methods were applied to reduce the 

dimensionality of the data from two planetary gearboxes [52]. The data were collected 

from two gearboxes applied in the bucket wheel drive unit. Furthermore, Arellano-

Espitia et al. [53] reduced the dimension of 15 statistical vibration features to a 2D 

feature set with PCA and LDA methods. But these linear techniques represent high-

dimensional features in low-dimensional space by a linear transformation. Compared 

with linear techniques, a non-linear technique autoencoder was applied in [53] with the 

achievement of higher classification accuracy for four different electromechanical 

system fault conditions. 

Although the linear compression approaches have high calculation efficiency, 

sometimes the feature representation obtained by nonlinear compression methods is 

more effective to distinguish various faults so that they attract widespread attention in 

recent years. A manifold is a low-dimensional local structure that appears in a high-

dimensional sample space. Manifold learning as an advanced compression technique 

can recover low-dimension manifold structures from high-dimensional samples. 

Commonly used non-linear dimension reduction methods based on manifold learning 

techniques for data compression include autoencoder, KPCA, locality preserving 
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projection (LPP), locally linear embedding (LLE) and isometric feature mapping 

(Isomap), etc. [54]. The following examples are the usage of non-linear manifold 

learning methods combining with other algorithms to implement mechanical fault 

diagnosis with dimension-reduced data. The autoencoder, as a non-linear smart 

compression technique, can reduce the input high-dimensional features with correlation 

and redundancy to a low-dimensional space through non-linear transform coding [55]. 

Calle et al. [56] also investigated the difference of fault features obtained after the 

dimension reduction by four compression algorithms: PCA, LDA, Relief and 

autoencoders. The researchers concluded that the best compression method for CM was 

confirmed because of the diversity of fault characteristics. But LDA and Relief had 

more prominent advantages on compressing their experimental data of bearings and 

gears. Additionally, the KPCA algorithm can map signals from low-dimensional to 

high-dimensional through non-linear kernel transformation. Then it is reduced to a low 

dimension to produce a different effect based on the added non-linear transformation. 

An adaptive KPCA method was applied to convert both statistical and energy features 

extracted from the wavelet sub-bands of audio signals decomposed with WPT into 

linear uncorrelated components to recognise the tool wear conditions in [57]. 

Curvilinear component analysis (CCA) focuses on small distances in the output space 

in the progress of manifold learning. Prieto et al. [58] studied CCA method on multiple 

time-based statistical features to extract new CCA features and visualized with 2D 

exhibition, as well as fault classification with a hierarchy of multilayer for bearings. To 

effectively extract optimal features and reduce dimensions from high-dimensional 

samples, Jiang et al. [59] proposed a regularized kernel marginal Fisher analysis 

(RKMFA) method to realize intelligent bearing fault diagnosis with the combination of 

the K-nearest neighbour (KNN) classifier. LPP as a typical manifold learning technique 

is to construct the distance relationship between the samples in the high-dimensional 

space and keep it in the mapping results so that the local neighbourhood structures of 

the samples are preserved while reducing the sample dimension and redundancy. 

Therefore, some researchers applied LPP to reduce the dimension of vibration features 

generated according to WPT for further classification with the SVM method to detect 

the tool wear status [60]. Wang et al. [61] also studied LPP for feature dimension 

reduction compared with PCA and KPCA to select and fuse the top ranked features 

with the vibration signals of a spiral bevel gear. In addition, they also compared the 

effectiveness of KPCA, LLE and Isomap on the selection and fusion of non-linear 

features, and demonstrated that KPCA performed the best effects on tool wear detection 

[62]. Isomap aims to find a low-dimensional space to ensure that the geodetic distance 

between the samples is approximately the same in the raw high-dimensional space and 

the dimension reduced space. It needs to calculate the global optimal solution for all 

samples resulting in the heavy calculation and low efficiency. The improved and 

commonly used algorithm is LLE because it discards the global optimal dimension 

reduction of all samples and only focuses on the local optimality. Some researchers 

improved the LLE method as the kernel sparse LLE (KS-LLE) to adaptively determine 
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neighbours of nonlinear system samples and their weights with kernel sparse 

representation [54]. The experimental results of gearbox fault diagnosis validated that 

the proposed KS-LLE method was more effective than the traditional manifold learning 

technique on both feature extraction and dimension reduction. In addition, Huang et al. 

[63], [64] verified that the discriminant diffusion maps analysis (DDMA) method was 

more suitable to reduce the redundancy of features and preserve the fault characteristics 

to monitor the condition of tool wear.  

Actually, most of the previously introduced references or researches use the 

compressed features as input for some machine learning methods like SVM, KNN and 

MLP to achieve the intelligent classification. In order to implement high classification 

accuracy, feature extraction and dimension reduction are two necessary preprocessing 

steps to obtain high performance of machine CM. In conclusion, these data dimension 

reduction techniques can solve the following problems: Firstly, it can alleviate the 

dimension disaster induced by the increase of data dimensions. As the data dimension 

increases, the memory and processing ability required to process the dataset rises 

exponentially. Besides, high-dimensional dataset normally has a higher sparsity which 

can be compressed; Secondly, dimension reduction can preserve fault related 

information while compressing data, so that information loss is minimized in this 

process. Finally, high-dimensional data has a complex structure and difficult to 

understand, but dimension reduction makes useful information visible in only two or 

three dimensions. However, the post-transmission data compression methods based on 

information statistics, feature extraction, sparse representation, dimension reduction 

and so on are limited by the wireless transmission. These compression methods are 

mostly applied to the raw vibration, electric signals, etc. with high sampling rates. 

Therefore, limited by the computing ability and power consumption of wireless sensor 

nodes, they can only be performed at the post-transmission end. Fortunately, they help 

to effectively and efficiently classify the different fault types and save the storage space. 

In future, an advanced compression method called compressive sensing has the 

potential to implement data compression on the hardware and break the traditional 

uniform sampling theorem at the pre-transmission end to achieve the on-board CM, 

wireless transmission of compressed data and reconstruction of raw signals. 

2.1.2 Compressive Sensing 

Compressive sensing (CS), proposed by Donoho et al. [65], is different from the 

traditional Nyquist-Shannon sampling theorem because it achieves randomly sampling 

instead of the uniform sampling and uses far fewer samples to reconstruct the original 

signals through optimization if the raw signals are sparse or compressible. Compared 

with the traditional data compression methods, CS has a high probability to achieve 

pre-acquisition compression on the hardware in the field of machine CM. Suppose a 

discrete-time signal 𝑥(𝑛), 𝑛 = 1,2, ⋯ , 𝑁  with the length of 𝑁 , it can be represented 

with a basis matrix of Ψ = [𝜓1, 𝜓2, ⋯ , 𝜓𝑁] , where 𝜓𝑖, 𝑖 = 1,2, ⋯ , 𝑁  are the basis 

vectors with the size of 𝑁 × 1. Then, signal 𝑥 can be expresses as 
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 𝑥 = ∑ 𝑠𝑖𝜓𝑖
𝑁
𝑖=1  or 𝒙 = Ψ𝒔 (2-1) 

where 𝑠𝑖, 𝑖 = 1,2, ⋯ , 𝑁 are the weighting coefficients and 𝒔 is the coefficient vector. 

This process is the sparse representation of the signal. If only 𝑘 (𝑘 ≪ 𝑁)  of the 

coefficients are nonzero and another 𝑁 − 𝑘 are zero, it can be said that signal 𝑥 is 𝑘-

sparse. If 𝑘 of the coefficients are large and another 𝑁 − 𝑘 of the coefficients are very 

small ones, signal 𝑥 is compressible [65]. In reality, most of digital signals are sparse 

or compressible in a specific transform domain. 

2.1.2.1 Encoding process 

In the encoding process, a sparse 𝑁-points signal 𝑥 is compressed by a random matrix 

Φ to get the signal 𝑦 with the length of 𝑀 (𝑀 < 𝑁) and signal 𝑦 will be sent at the 

transmitting end. Specifically, Φ is called measurement matrix with the size of 𝑀 × 𝑁. 

So that compressed signal 𝑦 is defined as 

 𝑦 = Φ𝑥 (2-2) 

Then, signal 𝑦 will be transferred with only a few samples, which is efficient and stable 

especially for the wireless transmission. CS has been extensively applied in image or 

signal processing and approximation calculation [66], [67]. However, most of the 

signals are not sparse or compressible in the time domain. Usually, it needs to involve 

basis vectors Ψ to enhance the sparsity characteristics. Then, signal 𝑦 can be expressed 

as 

 𝑦 = Φ𝑥 = ΦΨ𝑠 = Θ𝑠 (2-3) 

where, Ψ is the transformation matrix with the size of 𝑁 × 𝑁; Θ is the sensing matrix 

with the size of 𝑀 × 𝑁 and 𝑠 is the sparse representation of signal 𝑥 with 𝑘 zeros or 

negligibly small coefficients. In other words, signal 𝑥  is called 𝑘 -sparse in the Ψ 

domain, which can be compressed and has the potential to be reconstructed without or 

with little loss. There are several common transform domains exploited for a sparse 

representation of a signal, including time-domain representation, discrete Fourier 

transform, discrete cosine transform, discrete wavelet transform and so on. Figure 2.2 

shows the theory of signal representation and compression with pixel matrixes [68]. 

 

Figure 2.2 Matrix representation of signal compression 
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Furthermore, a stable measurement matrix should be designed reasonably to implement 

the signal recovery. In fact, Candes and Tao [69] have proposed that sensing matrix Θ 

must meet the routing information protocol (RIP) defined as follows, then the signal 

can be successfully reconstructed. 

RIP definition: for any 𝑘-sparse signal and the constant 𝛿𝑘 ∈ (0,1), sensing matrix Θ 

should satisfy with Equation (2-4). 

 1 − 𝛿𝑘 ≤
‖Θ𝑥‖2

2

‖𝑥‖2
2 ≤ 1 + 𝛿𝑘 (2-4) 

The equivalent condition of RIP is that measurement matrix Φ and sparse base matrix 

Ψ are irrelevant. In addition to the sparsity, the incoherence of these two matrices is the 

second essential requirement for CS to achieve signal reconstruction with high 

probability. Hence, measurement matrix Φ should be incoherent with orthogonal base 

matrix Ψ to make the sensing matrix Θ fulfil with RIP [69], [70] if 𝑀 ≥ 𝑐𝑘log(𝑁/𝑘), 

where 𝑐  a small constant [65]. There are some commonly used matrixes, such as 

Gaussian random matrix, Bernoulli random matrix, partially orthogonal matrix, 

Toeplitz and some deterministic sensing matrixes [71]. Table 2.1 compares the 

characteristics of random and deterministic sensing matrixes [72]. 

Table 2.1 Comparison between random and deterministic sensing matrixes 

Random Sensing Matrix Deterministic Sensing Matrix 

• Outside the mainstream of signal 

processing: worst case signal processing 

• Less efficient recovery time 

• No explicit constructions 

• Larger storage 

• Looser recovery bounds 

• Aligned with the mainstream of signal 

processing: average case signal 

processing 

• More efficient recovery time 

• Explicit constructions 

• Efficient storage 

• Tighter recovery bounds 

In general, the Gaussian random matrix is usually used as the measurement matrix to 

randomly sample the signal. 

2.1.2.2 Decoding process 

Decoding is a process of reconstruction in CS algorithms. In other words, the signal 

reconstruction process is the process of solving signal 𝑠 when the compressed signal 𝑦 

and sensing matrix Θ are known at the receiving end. After obtaining 𝑠, the original 

signal 𝑥  can be recovered from signal 𝑠 according to Equation (2-3). However, the 

number of equations (𝑀) is much less than that of variables (𝑁) in Equation (2-3). 

Therefore, it is difficult to reconstruct the original signal because the equations have no 

deterministic solution. Fortunately, since signal 𝑠 is 𝑘-sparse, it is hopeful to get an 

optimal solution from 𝑀  measurements with high probability if sensing matrix Θ 

satisfies the RIP. In [73], [74], it has been demonstrated that a sparse signal can be 
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reconstructed with tolerable distortion from very few measurements via the 

minimization strategies. 

Actually, the sparse signal 𝑠 means that the non-zero elements in 𝑠 are the least. To 

reconstruct this sparse signal is to solve the l0-norm of vector 𝑠. Based on the algorithm 

proposed by Candes et al. [69], 𝑘-sparse coefficients 𝑠 can be reconstructed through l0-

norm. 

 �̂� = arg min‖𝑠‖0    𝑠. 𝑡.    Θ𝑠 = 𝑦 (2-5) 

Nevertheless, l0-norm minimization is a non-deterministic polynomial complete (NPC) 

problem in general. To recover k-sparse or compressible signals of length N, l1-norm 

minimization is used effectively to solve this optimization problem because it aims to 

solve the convex optimization problem which is shown in Equation (2-6). 

 �̂� = arg min‖𝑠‖1    𝑠. 𝑡.    Θ𝑠 = 𝑦 (2-6) 

The l1-norm minimization is known as a fundamental convex optimization algorithm 

(convert l0-norm to l1-norm to solve by the linear programming), called basis pursuit 

(BP), to recover sparse solutions. In addition to the BP algorithm, the gradient 

projection method and the minimum regression method are another two main convex 

optimization algorithms. The greedy algorithm achieves the approximation of the signal 

vector by selecting the appreciate atoms for further iteration. Matching pursuit (MP), 

orthogonal matching pursuit (OMP) and their extended algorithms [75] are also widely 

exploited to solve this optimization problem. Due to the effectiveness of MP and OMP 

in solving convex optimization problems, their implementation procedures are briefly 

introduced. 

Suppose Θ in Equation (2-3) is an overcomplete dictionary matrix (the number of atoms 

is much larger than the length of signal 𝑦, i.e. 𝑀 ≪ 𝑁) whose each column vector 

represents an atom. The given signal 𝑦  can be represented as a sparse linear 

combination 𝑠 of these atoms. In other words, it satisfies the following relationship: 

 ‖𝑦 − Θ𝑠‖2 ≤ 𝜖 (2-7) 

where 𝜖 is a very small constant. The estimated optimal signal 𝑠 can be obtained by MP 

and OMP algorithms directly. 

(1) Matching pursuit 

The basic idea of MP is to select an atom from the dictionary matrix Θ that matches 

signal 𝑦 the best. Then, the residual of signal 𝑦 and the selected atom is calculated. 

After that, the second atom is selected to match the calculated residual. With the 

iterations of the aforementioned procedure, signal 𝑦 can finally be represented by the 

linear combination of all selected atoms plus the last residual value. If the final residual 

is in a negligible range, signal 𝑦 is approximately represented as a linear combination 

of these selected atoms. The algorithm steps are as follows: 

Input: sensing matrix Θ, measurement 𝑦 and sparsity 𝑘 
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Output: estimation �̂� and residual 𝑟𝑛 

Initialization: initial residual 𝑟0 = 𝑦 and iteration index 𝑡 = 0 

Step 1: Calculate the inner product of 𝑟0 and each atom (column) of Θ and select the 

atom with the maximum absolute inner product value as the best match atom in 

this iterative operation, which is expresses in Equation (2-8). 

 |〈𝑟0, 𝜃𝑐0
〉| = sup𝑖=1,2,⋯𝑁|〈𝑟0, 𝜃𝑖〉| (2-8) 

where 𝑐0 is the column index of the dictionary matrix; 〈∙〉 is the inner product 

function and sup(∙) is the function to get the maximum value. 

Step 2: Decompose 𝑦 into the two parts consisting of the vertical projection and the 

residual value of the best match atom 𝜃𝑐0
 as shown in the following equation: 

 𝑦 = 𝑠1𝜃𝑐0
+ 𝑟1 (2-9) 

where 𝑠1 is the weight of 𝑦 in the vertical direction of 𝜃𝑐0
 and 𝑟1 is the updated 

residual. 

Step 3: Set 𝑡 = 𝑡 + 1 and perform the same decomposition of Step 1 and Step 2 for 

the updated residual 𝑟1. 

Step 4: When the iteration meets the stopping criterion, 𝑦 can be expressed as: 

 𝑦 = ∑ 𝑠�̂�𝜃𝑐𝑡
+𝑛

𝑡=0 𝑟𝑛 (2-10) 

where 𝑠�̂� is the estimated weight and all weights generate the estimated �̂�. 

However, the residual can only be confirmed to be orthogonal to the currently selected 

atom, which will result in repeatedly selected atoms. In addition, more iterations are 

required and the selected atoms are not optimal for reconstruction. As a result, the OMP 

algorithm was investigated to overcome this issue. 

(2) Orthogonal matching pursuit 

In the OMP process, the residual is always orthogonal to the already selected atom. 

This means that an atom will not be selected twice, and the result will converge in a 

limited number of iterations. 

Input: sensing matrix Θ, measurement 𝑦 and sparsity 𝑘 

Output: estimation �̂� and residual 𝑟 

Initialization: initial residual 𝑟0 = 𝑦, index set Λ0 = ∅, selected atom set φ0 = ∅ and 

iteration index 𝑡 = 1 

Step 1: Calculate the inner product of 𝑟0 and each atom of Θ and select the atom with 

the maximum absolute inner product value as the best match atom in this iterative 

operation. Simultaneously, find the atom column index 𝑐𝑡  in Θ , which is 

expressed as: 
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 𝑐𝑡 = arg 𝑚𝑎𝑥𝑖=1,2,⋯𝑁 |〈𝑟𝑡−1, 𝜃𝑐𝑡
〉| (2-11) 

Step 2: Update the index set Λ𝑡 = Λ𝑡−1 ∪ {𝑐𝑡} and record the selected atom set φ𝑡 =

[φ𝑡−1, 𝜃𝑐𝑡
 ]. 

Step 3: Get 𝑠�̂� by the methods of the least squares as expressed: 

 𝑠�̂� = arg 𝑚𝑖𝑛 ‖𝑦 − φ𝑡�̂�‖2 (2-12) 

Step 4: Update the residual 𝑟𝑡 = 𝑦 − φ𝑡𝑠�̂� and set 𝑡 = 𝑡 + 1. 

Step 5: Determine whether 𝑡 > 𝑘 (𝑘 is the sparsity of 𝑠) is satisfied. If it is, stop the 

iteration and get the estimation �̂�; otherwise, repeat Step 1 to Step 5. 

According to the description of MP and OMP methods to reconstruct the representation 

coefficients or weights, signal 𝑥 also can be recovered with the orthogonal transform 

basis Ψ as follows. 

 �̂� = Ψ�̂� (2-13) 

As the kernel of CS, many researchers investigated related reconstruction algorithm in 

recent years [76]. Nevertheless, these reconstruction algorithms have many drawbacks 

such as high computational complexity and reconstruction distortion, so that 

reconstruction algorithm also needs to be improved. 

2.1.2.3 CS applications 

(1) Single-pixel compressive digital camera 

A single-pixel camera was developed according to the compressive sensing theory by 

the scientists at Rice University to solve the “inefficiencies” of modern digital camera. 

It is a very famous CS application. Its schematic diagram is shown in Figure 2.3 [77], 

which only acquires 𝑀 random pixel values instead of 𝑁 (𝑀 < 𝑁) to make high-quality 

photo storage more convenient with the smaller size. 

 

Figure 2.3 Schematic diagram of the single-pixel compressive camera 
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Figure 2.4 DMD micromirror structure 

The first lens can be used to project the image at a suitable size on the digital 

micromirror device (DMD). DMD, instead of the traditional charge-coupled device or 

complementary metal oxide semiconductor (CMOS) sensors, consists of an array of 𝑁 

tiny mirrors with two directions: +12o (reflecting the image towards the photo detector) 

and -12o (reflecting the image away from the photo detector) for each one. The direction 

of each mirror is independently controlled by a random-number generator (RNG). After 

that, the second lens is employed to focus the image reflected by the DMD on a single-

pixel sensor. Repeat this process to get only 𝑀  pixel points transferred via radio 

frequency (RF) technique. At last, reconstruct the original image with tolerable 

distortion at the receiver end [78], [79]. Figure 2.4 displays the structure of a DMD 

micromirror, which will provide a reference for the hardware development of CS-based 

wireless sensing systems for machine condition monitoring. 

(2) Medical applications 

Biological signals such as electrocardiogram (ECG) signals of the human body have 

the sparse features in time, frequency or wavelet domain so that the signals are 

compressible with CS to save the storage space. On the other hand, due to the damage 

to the human body caused by radiation, it is necessary to reduce the number of 

measurements while guaranteeing sufficient image quality. Traditionally, the medical 

imaging compression needs expensive instruments to acquire the entire signal and then 

throw away most of the useless information through compression. CS as an emerging 

compression method breaks the traditional Nyquist-Shannon sampling theorem, so it 

has been widely applied in medical imaging applications. In addition, the decrease of 

transferred data is conducive to the development of wireless transmission for medical 

images. For example, Wang et al. [80] proposed a compressed sensing encoder with 

high energy efficiency for wireless ECG systems that only uses one Analog-to-digital 

converter (ADC) instead of 64 channels. Craven et al. [81] also concentrated on 

researching of CS for ECG monitoring and proposed a CS architecture to successfully 

increase the compression ratio based on the combination of a novel redundancy removal 

scheme with quantization and Huffman entropy coding. Furthermore, CS is also 

investigated and applied for magnetic resonance imaging (MRI) signals. Chen et al. [82] 
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mainly dedicated efforts to reconstructing the images from undersampled k-sparse data 

relying on the wavelet tree structure which has remarkable improvements compared to 

the traditional compressive sensing on MRI signals. 

(3) WSN applications 

With the development of smart facilities, a wireless sensor network consists of spatially 

distributed autonomous devices using sensors to monitor physical or environmental 

conditions, like temperature, humidity, pressure, location, sound, etc. [83]. However, 

WSNs have the disadvantages of power supply and transmission bandwidth limitation. 

The energy consumption is mainly affected by the number and also the period of data 

transferred, which means that the transmission of large amounts of data over a long 

period will limit the random distribution of sensors because of a considerable amount 

of energy consumption. Accordingly, dramatically compressing the size of data before 

transmission is one of the most effective and efficient ways to set up the sensor nodes 

without external power supply and short-term maintenance. 

Due to the large demands for transmission bandwidth and data transmission power, CS, 

as an effective paradigm, has been exploited and further researched extensively to 

achieve a low sample rate but high sensing quality in WSNs. For example, Nguyen et 

al. [84] employed a high-efficient method to reduce the energy consumption for WSNs 

through the integration of random walk and CS to significantly prolong the network 

lifetime. In [85], Chen et al. utilized network coding and spatio-temporal compression, 

combined with CS to develop a clustered compression scheme which ensures the 

reconstruction of original data with useful signal characteristics. Wang et al. [86] 

proposed a CS-based approach to monitoring the wireless access points of vehicular 

networks, which successfully achieves the required estimation accuracy with low 

communication cost. 

(4) Machine CM applications 

Condition monitoring and fault diagnosis are significantly essential in the mechanical 

field. Signals containing fault information, like vibration signals and acoustic emission 

signals, require a high sampling rate according to the Nyquist–Shannon sampling 

theorem to ensure the effectiveness of the acquired signals. It results in a significant 

increase in the volume of data transmission, storage and processing. While, CS can 

compress the data to save the cost of transmission and storage for the complex 

machinery. For example, Wong et al. [87] emulated a CS mechanism through 

resampling the acquired the time waveform of vibration signals of roller element 

bearings with a random Bernoulli matrix. They have concluded through SVM results 

that CS helped significantly reduce the wireless transmission bandwidth requirement 

with slight performance degradation. Yuan et al. [88] proposed a CS based bi-step 

compression method to diagnose faults of aircraft onboard and simultaneously transmit 

the compressed features to the ground for further investigation and maintenance. Its 

effectiveness has been evaluated by the hydraulic plunger pump with two common fault 
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types and rolling bearings working under fluctuant conditions [89]. In addition, the 

authors have compared the accuracy of classification with CS compressed data and the 

raw data with other current approaches, and the compressed data can be reconstructed 

with little loss for other application in [89]. Tang and Wang et al. investigated several 

compression methods based on CS framework for fault detection of bearings, including 

constructing an over-complete dictionary on the basis of faulty vibration characteristics 

[90], detecting harmonics of faulty bearings with CS based compressed vibration 

signals [91], applying CS on peaks calculated by the peak-hold-down-sample algorithm 

[92] and combing statistical features in time domain with CS realizing two-stage 

compression [93]. Ahmed and Nandi et al. also made significant contributions to the 

data compression with CS in CM of bearings in recent years. They compared the 

classification performance of with CS based compressed data directly using the logistic 

regression classifier and with features extracted by PCA or LDA from the CS based 

compressed data in [94]. Furthermore, the extracted PCs and discriminant components 

were combined by CCA to express their correlation for the next step of classification 

with SVM, which showed very high classification accuracy with only three-stage 

processing [95], [96]. Additionally, they proposed the multiple measurement vector CS 

(MMV-CS) approach to extract features from the CS based compressed vibration 

signals of bearings. Then the extracted features were selected by combing with different 

algorithms, like Fisher score [97], [98], Laplacian score [98], [99], neighbourhood 

component analysis etc. [100], sparse autoencoder [101] and Relief-F, Pearson 

correlation coefficients and Chi-Square [98] for further feature dimension reduction. 

Finally, only a few features were preserved as the input of the various intelligent 

classifiers such as SVM, multi-class SVM, artificial neural networks (ANN) and deep 

neural networks (DNN). All developed approaches combined by these algorithms can 

effectively distinguish different fault types of bearings with the significantly reduced 

data volume. Ma et al. [102] proposed a Bayesian CS framework to compress vibration 

signals via the K-SVD dictionary learning method, then reconstruct original signals 

with the Laplace prior model. We also proposed frequency shift and envelope analysis 

based CS scheme to monitor the condition of rolling element bearings with the data 

compressed by several thousands of times compared with the raw signals [103]. Some 

researchers focused on the reconstruction algorithms to recover the received 

compressed data for other future analysis. For instance, a novel algorithm was proposed 

for the reconstruction of compressed vibration signals with CS and achieved remote 

machine CM [104]. Moreover, its advancements in wireless communication were 

introduced for detecting bearing and gear faults in rotating machines. In [70], the 

authors improved the OMP algorithm and exploited it as the stabled reconstruction 

method which could effectively improve its convergence speed in CS. Additionally, the 

investigated CS method has the potential to compress sparse sound vibration data of 

the aircraft for structural CM. 
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The CS applications on machine CM mainly include signal compression, feature 

extraction, fault classification and raw signal reconstruction with the acquired data at 

the receiving end. Its application at the acquisition end is limited by signal sparsity and 

commutating performance, so the CS based hardware implementation is a crucial 

challenge for machine CM at present [72]. 

2.2 Summary 

This chapter makes the extensive literature review of data compression methods 

including traditional uniform sampling and advanced non-uniform sampling methods 

performed at both data acquisition and receiving ends for machine CM. The traditional 

pre-transmission data compression methods can reduce the amount of data before 

transmission to save transmission bandwidth and power consumption of the sensor 

nodes, as well as the storage space. However, most of them cannot compress data 

according to the characteristics of signals, and useful information is easily lost during 

compression process or the compressed data cannot be recovered at the receiving end. 

The post-transmission data compression methods cannot solve the limitation of wireless 

transmission and power consumption, but they will reduce the amount of data to save 

the storage space. CS as an advanced compression method has the potential to 

implement sampling with a lower rate than the Nyquist-Shannon sampling theorem at 

the acquisition end. The introduction and overview of CS show its superiority in a 

wireless real-time machine CM system compared with other traditional compression 

methods. The review provides the basis for developing and improving data compression 

algorithms for CM of various machines in this thesis. 
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 LEAKAGE DETECTION IN PIPING 

SYSTEMS WITH AN INTELLIGENT WIRELESS 

VIBRATION SENSING SYSTEM 

 

 

WSNs attract more and more attentions in Industry 4.0 in these years because of their 

portability, wide distribution, programmability, remote controllability and stability. 

Piping systems are broadly applied in industry and home. The leakage induced by 

corrosion, weather, or man-made damage can lead to serious consequences such as 

explosion disasters, significant damage of industrial equipment and waste of resources. 

As a non-intrusive detection method, vibration shows great potential for detecting 

leakage in piping systems. Therefore, an intelligent wireless vibration sensing system 

is developed to monitor the condition of piping systems efficiently and efficiently based 

on data compression. Statistical features are extracted on the sensor node to reduce the 

amount of data for transmission, hence reducing power consumption and increasing 

the battery life of the wireless sensor node. 
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3.1 Vibration Mechanisms of Piping Systems 

Fluid supply systems have extremely complicated vibration sources due to their 

complex structures with valves, corners, clamps at different positions, as well as the 

different size and materials of pipes, etc. When the fluid passes through different parts 

of a piping system, the vibration frequency and amplitude caused by various vibration 

sources are different. Therefore, the comprehension of the vibration mechanisms of 

piping systems is significantly important and essential to monitor the status of the 

piping systems. So that the vibration mechanisms of the fluid supply piping systems 

will be presented and discussed from different views as follows. 

3.1.1 Microscopic Interpretation 

The fluid is composed of a large number of molecules. From a microscopic point of 

view, the generation of vibration closely relates to the force of molecules acting on the 

pipe wall. 

Generally, molecules randomly collide against the pipe wall with most of them moving 

towards the same direction with the fluid flow. In this process, a small portion of the 

kinetic energy of the fluid molecules is converted into heat energy and dissipated in the 

environment by the heat transfer effects of the pipes. Simultaneously, most kinetic 

energy will be converted into potential energy in the form of pressure oscillations [105] 

which can provide dynamic forces from the inner wall of the pipe. After that, the pipe 

wall can expand at a slight deformation under the action of pressure, then vibrations are 

induced on the external surface of the pipe. According to the kinetic analysis, when the 

fluid flow is fast, the molecules hit randomly against the pipe wall at a high speed 

resulting in a large vibration amplitude because of the high pressure inside the pipe wall.  

Figure 3.1 describes the pipe wall vibration principle from a micro perspective. The 

black arrow represents the fluid flow direction and blue arrows point to the random 

motion direction of each fluid molecule representing with blue dots. 

Average fluid flow

Fluid molecule

 

Figure 3.1 Representation of fluid molecule motion in a pipe from a micro perspective 

3.1.2 Natural Frequencies 

Natural frequencies, also called resonance frequencies, are specific frequencies, at 

which the system could vibrate with a larger amplitude compared to other frequencies 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

32 

 

under the small driving force due to the energy accumulation effects. In general, a 

system has numerous modes that can be characterised by the modal parameters of 

natural frequencies, modal shapes and damping ratios. However, the longitudinal 

modes and the circumferential modes are mainly considered in vibration of the pipe as 

illustrated in Figure 3.2, where m is the number of longitudinal half-waves in the 

longitudinal mode shape, n is the number of circumferential waves in the 

circumferential mode shape. As the fluid flow generates a wide range of excitation, the 

longitudinal mode and the circumferential mode can be excited at a low frequency and 

a high frequency respectively, which can cause a more pronounced vibration amplitude. 

m=0 m=1

m=2 m=3

n=0 n=1

n=2 n=3

(a) (b)  

Figure 3.2 Pipe vibration modes: (a) longitudinal modes, and (b) circumferential modes 

To calculate the natural frequencies of an infinitely long pipe with the cylindrical shell, 

Blevins proposed the following Equations (3-1) and (3-2) [106]–[108]. 

 𝑓𝑖 =
𝜆𝑖

2𝜋𝑅
[

𝐸

𝛾(1−𝜐2)
]
1/2

 (3-1) 

 λ𝑖 =
1

121/2

ℎ

𝑅

𝑖(𝑖2−1)

(1+𝑖2)1/2     𝑖 = 2,3,4 ⋯ (3-2) 

where, 

𝑓𝑖 is the natural frequency of the pipe, Hz; 

λ𝑖 is the frequency factor, dimensionless; 

𝑅 is the mean radius of the pipe wall, inches; 

𝛾 is the mass density of the pipe material, lb-sec2/in4; 

𝜐 is the Poisson’s ratio, dimensionless; 

ℎ is the pipe wall thickness, inches; 

𝑖 is the mode number, integer. 

When the fluid flows through a pipe to cause excitations around natural frequencies of 

the piping system, the vibration amplitude can be enlarged to give more features for the 

piping system condition monitoring. 
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3.1.3 Turbulent Flow 

The laminar flow inside water pipes can be destroyed by the small whirlpool when the 

flow rate significantly increases. Irregular fluid motion or mixing produces a velocity 

component that is perpendicular to the axial direction, which generates the turbulent 

flow or turbulence inside the pipe. Typically, fluid flow near a solid surface or fluid 

flow with a high liquid viscosity is laminar. However, most fluid flows are turbulent. 

Generally, turbulence occurs at high Reynolds numbers and is dominated by inertial 

forces [109]. The Reynolds number is an essential parameter used to estimate the flow 

patterns as shown in Equation (3-3). 

 𝑅𝑒 =
𝜌𝜈𝐿

𝜇
 (3-3) 

where, 

𝜌 is the density of the fluid, kg/m3; 

𝜈 is a fluid velocity, m/s; 

𝐿 is a characteristic linear dimension, m; 

𝜇 is the dynamic viscosity of the fluid, Pa·s or N·s/m2 or kg/(m·s). 

When the Reynolds number is greater than 2000, the effect of the inertia force can be 

higher than the viscous force, making the fluid flow relatively unstable, thereby 

increasing the small change in velocity as well. 

Figure 3.3 clearly shows that turbulence is formed due to disordered and irregular flow 

fields caused by the irregular shape of the valve. The fundamental characteristic of 

turbulence is the randomness of fluid movements. Both transverse pulsations and 

reverse movements relative to the fluid motion of a turbulent flow change rapidly with 

time. Therefore, pipes are easier to vibrate and deform because of heat transfer, kinetic 

energy conversion, etc. induced by the random motion of fluid flows. 

 

Figure 3.3 Simulation of turbulence at a valve 

3.1.4 Frictional Effects 

Another cause of pipe wall vibration is the internal friction [110] generated by the 

relative motion of the fluid inside of a pipe to the pipe wall. Internal friction, as an 
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inherent physical property of fluids, exists in the form of friction, which is produced by 

the resistance as deformations occur in the internal fluid. The friction between the pipe 

wall and fluid flow generates a force of friction inducing vibration. Frictional effects of 

the fluid against the pipe wall is simulated in Figure 3.4, which illustrates that frictional 

effects of liquid motion are the result of momentum transfer and cohesion function 

between the liquid molecules. 

 

Figure 3.4 Simulated frictional effects of the fluid against the pipe wall 

3.2 Design of the CM System with MEMS 

3.2.1 MEMS Sensor Nodes 

MEMS is a technology of micro high-tech devices by merging sensing, controller and 

communication functions based on the micro and nanotechnology. A MEMS sensor 

system is highly integrated with micromechanical and microelectronic functions 

because they are typically made of silicon-based materials and the semiconductor 

integrated circuits. It extensively plays an essential role in industrial, aerospace, 

military engineering, medical, automotive and other environments as shown in Figure 

3.5 with characteristics of tiny size, low cost, high reliability, easy integration, mass 

production and so on compared with the traditional acquisition systems [111]. 

Therefore, MEMS has been successfully utilized in a variety of fields in recent years, 

also including machine CM. 

 

Figure 3.5 MEMS applications 
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In general, a sensor node consists of four main components, a sensing unit, a processing 

unit, a communication unit and a power unit, to achieve the function of data acquisition. 

A typical structure of a sensor node is shown in Figure 3.6. 
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Figure 3.6 Typical structure of a sensor node 

3.2.1.1 Sensing Unit 

The function of a sensing unit is detecting different physical quantities in the 

surrounding environment with a variety of sensors, such as temperature, humidity, 

pressure and vibration. For example, MEMS accelerometers are classified into 

piezoresistive sensors and capacitive sensors according to the working principle. They 

are developed and manufactured to capture vibration signals [112]. Figure 3.7 gives the 

structures of these two different types of accelerometers [3], [4]. 

Piezoresistor

Substrate
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Cantilever

Proof 
mass
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Mass

Vibration
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Figure 3.7 Typical MEMS accelerometer structures: (a) piezoresistive sensor, and (b) 

capacitive sensor 

For the piezoresistive sensors shown in Figure 3.7 (a), as the sensor vibrates together 

with the objects, the inertia of the mass will cause a bending in cantilever, which leads 

to the stress making the piezoresistor resistance change. Accordingly, the output will 

be related to the acceleration of objects. The principle of the capacitive sensor shown 

in Figure 3.7 (b) is similar to the piezoresistive one. When the sensor vibrates with the 

shake of the objects, the movement of the seismic mass caused by the inertia will change 

the electric capacity between the mass and those two fixed sensing capacitors, which 

can indicate the acceleration of objects [112]. 

For the designer, some parameters should be carefully considered before selection of 

the appropriate sensing components, like the sensitivity, resolution, range and 

bandwidth. Table 3.1 shows the principal parameters of commonly used accelerometers 

manufactured by some famous companies. The least significant bit every gravity 

(LSB/g) gives the sensitivity of digital results of accelerometer analogue output after 

ADC. 
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Table 3.1 Typical accelerometers and parameters 

Company MEMS 
Range 

(g=9.8 m/s2) 

Sensitivity 

(LSB/g) 

Resolution 

(bits) 

Max. Data 

Rate (Hz) 

Analogue Devices 

Inc. 

ADXL345 ±2/4/8/16 256 10-13 3200 

ADXL313 ±0.5/1/2/4 1024 10-13 3200 

Bosh Sensortec BMA280 ±2/4/8/16 4096 14 2000 

InvenSense MPU-6500 ±2/4/8/16 16384 16 4000 

Kionix Inc. 
KX022 ±2/4/8 16384 16 1600 

KX122 ±2/4/8 16384 16 25600 

STMicroelectronics 
LIS2DS12 ±2/4/8/16 16384 16 6400 

LIS3DSH ±2/4/6/8/16 16384 16 1600 

3.2.1.2 Processing Unit 

A processing unit consists of the memory and the microcontroller with the primary 

functions of storage and computation, respectively. Due to its flexibility, a 

microcontroller can connect with other units through programming. 

ARM Cortex-M is a group of ARM processor cores, which can combine with a random-

access memory (RAM), read-only memory (ROM), register and other peripherals to 

integrate into a microcontroller. After ARM11, this product was named by “Cortex”, 

which can be divided into three series: A (for those high-end operating systems and 

applications based on virtual memory), R (for real-time system) and M (for 

microcontrollers). ARM Cortex-M products and their advantages are described in 

Figure 3.8. 

 

Figure 3.8 ARM Cortex-M series products and advantages 

Cortex-M0, with small chip size and low power consumption, is the smallest processor 

among ARM series. Compared with the Cortex-M0, M0+ improves performance with 

better compatibility and further reduces power consumption in the condition of 
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retaining all data instructions. However, Cortex-M3 not only completely exploits 

hardware-based interrupt handling but also has high computational performance. 

Cortex-M4 strengthens the computational capabilities by adding functions of digital 

signal control, floating point, parallel computing and so on. Finally, Cortex-M7 is the 

most high-performance member in the ARM Cortex-M family. It can significantly 

enhance the performance of the operation and digital signal control for high-end 

embedded applications, such as automotive electronics, smart home and other industrial 

applications. 

3.2.1.3 Communication Unit 

A communication unit has the function of information communication and 

transformation with a base station or neighbour sensors [113]. The wireless universal 

transmission media include RF, optical communication (like the laser) and infrared 

radiation, etc. In general, idle mode or sleep mode will be activated to reduce power 

consumption when the sensor node has no task. Table 3.2 compares the functions of 

traditional wireless transmission technologies [114], which can provide a reference for 

the choice of transmission way. 

Table 3.2 Comparison of traditional wireless transmission technologies 

Technique 
Transmission 

Rate 

Transmission 

Distance 

Power Consumption 

Features Sleep 

(μW) 

Transmit 

(mW) 

Receive 

(mW) 

Low Power 

Wi-Fi 
54Mbps 1km 300 350 270 

High speed, high reliability 

and high-power 

consumption 

BLE 5.0 2Mbps 
Up to 300m in 

theory 
- - - 

High speed, long distance, 

wide bandwidth, ultra-low 

power consumption and 

high compatibility 

BLE 4.2 1Mbps 

Up to 100m, 

Normally 

operate within 

10m 

8 60 53 

Low power consumption, 

low cost, high security and 

low latency 

ZigBee 250kbps 10 to 100m 4 72 84 

Low power consumption, 

low cost, low complexity 

and self-organization 

Enocean 125kbps Up to 30m 0.60 99.0 72.0 

Energy harvesting based 

and ultra-low power 

consumption 

Z-wave 40kbps 

Indoor: 

30m/40m 

Outdoor: 

100m 

3 70 65 

RF-based, low cost, low 

power consumption, low 

radiation, anti-interference 

and high reliability 

ANT 60kbps 30m at 0dBm 3 110 75 

Ultra-low power 

consumption, high 

flexibility and proprietary 
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A Bluetooth low energy (BLE) wireless transmission module was selected because of 

its advantageous characteristics, including low cost, high transmission rate, convenient 

networking, low power consumption, high communication security and better 

transmission performance. 

3.2.1.4 Power Unit 

The power consumption should be seriously taken into consideration in the progress of 

development of sensor nodes. The function of a power unit is supplying power for a 

sensor node with a battery or a universal serial bus (USB) interface. Batteries can be 

mainly categorised into the primary batteries and secondary ones based on the 

characteristics of reuse. The primary battery cannot be recharged and will be discarded 

until the energy depletion, such as the dry cell and zinc-air battery. It is really a waste 

of resources and easy to pollute environment. On the contrary, the secondary battery 

can be recharged with a long service life, like the storage cell and lithium cell, which 

are widely used in mobile phones, automobiles and other industrial products. Some 

typical battery products are displayed in Figure 3.9. There is no doubt that a 

rechargeable battery will be chosen to charge the sensor node, which also may be 

charged by the energy harvested from the monitored system or ambient environment. 

 

Figure 3.9 Battery products: (a) primary batteries, and (b) secondary batteries 

3.2.2 Wired MEMS Real-Time CM System 

3.2.2.1 Wired Sensor Node Design and Drive 

According to the units introduced in the previous subsection, the evaluation boards of 

Feather M0 Adalogger and ADXL345 shown in Figure 3.10 from Adafruit industry are 

selected as the microcontroller and sensing unit, respectively. 

Dry cell

Zinc-air 

battery

Storage cell

Lithium cell

(a) (b)
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Figure 3.10 Evaluation boards: (a) Feather M0 Adalogger, and (b) ADXL345 

The core of Feather M0 Adalogger has an ATSAMD21G18 ARM Cortex-M0 processor 

with 256K of FLASH and 32K of RAM [115]. A secure digital (SD) card inserted into 

the card slot on the board can store the data collected instead of the serial port 

communication. As shown in Figure 3.11, ADXL345 is a three-axis digital 

accelerometer with the board size of 25mm×19mm×3.14mm. Its resolution is 13 bits 

with the corresponding measurement range of ±16g. The digital filter, ADC, power 

management and other components are integrated into this evaluation board. It is 

accessible through either a serial peripheral interface (SPI) or inter-integrated circuit 

(I2C) digital interface to communicate with the processing unit. 

Power 

Management

Control & 

Interrupt LogicDigital 

Filter

ADC
Sense 

Electronics3-Axis 

Sensor

Serial I/O
32 Level 

FIFO

VS VDD I/O

GND

INT1
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SDA/SDI
/SDIO

SDO/ALT 
ADDRESS

SCL/SCLKCS
 

Figure 3.11 Diagram of the ADXL345 evaluation board 

The data transmission rate of I2C is 100 kbps, 400 kbps and 3.4 Mbps for standard mode, 

fast mode and high-speed mode, respectively. While it often goes over 10 Mbps at the 

SPI transfer mode. Table 3.3 lists the wire connection way between ADXL345 

evaluation board and Feather M0 Adalogger with the SPI mode. Figure 3.12 describes 

the physical connection of the sensor node. 
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Table 3.3 Wire connection between ADXL345 and Feather M0 Adalogger 

Function ADXL345 Feather M0 Adalogger 

Power Supply +3.3V 3V 

Ground GND GND 

Clock SCL SCK 

Chip Select CS Pin 10 

Data 

Transmission 

SDA 

(Serial data in) 

MOSI 

(Master out and slave in) 

Data 

Transmission 

SDO 

(Serial data out) 

MISO 

(Master in and slave out) 

Interrupt INT1 Pin 12 

 

ADXL345

Feather M0

 

Figure 3.12 Physical connection of a sensor node 

After the successful wire connection, the sensor node can be driven by an open-source 

software named Arduino with the interface shown in Figure 3.13. 

Through programming with this software, the microcontroller can give instructions to 

the sensor, receive and process the data coming from the sensor. The serial transmission 

rate, acceleration range, sampling frequency and the cut-off frequency of the high-pass 

filter can be set manually according to the requirements. The maximum acceleration 

range and sampling frequency are ±16g and 3200 Hz, respectively. It means the sensor 

node is designed successfully if the data is received without data loss by the computer 

through the micro serial port. 
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Figure 3.13 Arduino interface for programming to drive the sensor node 

Unfortunately, data loss exists in the progress of testing. The reason is the wrong data 

resolution protocol of the micro serial port in Feather M0 Adalogger. It has been solved 

by adding a communication module to collect data from the mini serial port instead of 

the micro serial port. The structure of the improved wired sensor node is illustrated in 

Figure 3.14. 

 

Figure 3.14 Improved wired sensor node structure 

3.2.2.2 Data Acquisition GUI Design 

The designed sensor node requires a data acquisition interface to monitor the condition 

of objects in real time and save data for further analysis. The MATLAB graphical user 

interface (GUI) is a user-friendly tool to design such a CM system. As shown in Figure 

3.15, the designed data acquisition GUI has the functions of port scan, parameter setting, 
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raw data saving, status display, time waveforms and spectra display, as well as RMS 

value calculation. Especially, the instruction of a cut-off frequency setting will be sent 

to Feather M0 Adalogger directly to operate a high-pass filter. The filtered signal can 

be clearly illustrated in both time domain and frequency domain. 

 

Figure 3.15 Designed data acquisition GUI 

3.2.3 Sensor Calibration 

3.2.3.1 Experimental Devices and Setup 

For the designed sensor node, it is necessary to calibrate the accuracy of the MEMS 

accelerometer. A commonly used piezoelectric accelerometer, CA-YD-182A with high 

accuracy and sensitivity, is selected to be the reference for ADXL345 because of its 

high sensitivity, stability and robustness. As illustrated in Figure 3.16, both ADXL345 

and CA-YD-182A are fixed in a manufactured metal base and installed on the top of 

the shaker. They can measure the vibration of the shaker activated by a digital signal 

generator. 
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Figure 3.16 Experimental devices for sensor calibration 

Table 3.4 compares the parameters of ADXL345 and CA-YD-182A. It is clear that the 

performance of CA-YD-182A is better than that of ADXL345. However, ADXL345 is 

superior to CA-YD-182A in terms of economic, programmability and integration, 

which benefits for production of portable and low-cost products. 

Table 3.4 Parameters of ADXL345 and CA-YD-182A 

Accelerometer 

ADXL345 

 

CA-YD-182A 

 

Sensitivity 
256 LSB/g 

(or 3.9 mg/LSB) 

2.05 

mV/(m/s2) 

Max. Range ±16g 2500 m/s2 

Bandwidth 0.1 to 1600 Hz 1 to 10,000 Hz 

Price £0.99 £190.56 

In this calibration test, the sampling frequency and measurement range of the designed 

sensor node is set to 1600 Hz and ±2g, respectively. Because the shaker shakes in the 

vertical direction, so that only signal in Z-axis will be saved and analysed. For CA-YD-

182A, it is a one direction accelerometer with the frequency of the data sampling is set 

to 96 kHz. The signal generator supplies a series of excitation signals, including 25.3 

Hz, 50.0 Hz, 99.7 Hz, 149.9 Hz, 199.9 Hz, 300.3 Hz, 399.9 Hz, 499.9 Hz, 600.0 Hz, 

650.0 Hz and 700.1 Hz. The sampling duration is 20 seconds. 

3.2.3.2 Results and Discussion 

As the sampling frequency set to collect signals from CA-YD-182A is too high, a low-

pass filter with the cut-off frequency of 800 Hz is applied. Figure 3.17 displays the 

spectra of vibration signals collected by ADXL345 and CA-YD-182A lined with blue 

and red colours, respectively. The difference in vibration frequencies obtained from 
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these two accelerometers is getting larger and larger. Moreover, the amplitude of 

vibration collected by the MEMS accelerometer is a little smaller. 

 

Figure 3.17 Spectra of two accelerometers for sensor calibration 

Both frequency and amplitude values of vibration collected by two accelerometers are 

recorded in Table 3.5. The calculated frequency error for CA-YD-182A is 0.00% to 

0.05%. On the contrary, it changes between 2.37% and 2.46% for ADXL345. It 

demonstrates that ADXL345 has lower precision than CA-YD-182A due to the 

accuracy and error of production, but ADXL345 can be used for vibration monitoring 

because of the frequency error can be fixed to approximately 2.40% according to the 

linear variation tendency. 

Table 3.5 Spectra details of CA-YD-182A and ADXL345 

Generator 

Frequency 

(Hz) 

CA-YD-182A ADXL345 

Frequency 
Amplitude 

Value (m/s2) 

Frequency 
Amplitude 

Value (m/s2) Value 

(Hz) 

Error 

(%) 

Value 

(Hz) 

Error 

(%) 

25.3 25.3 0.00 6.802 25.9 2.37 6.458 

50.0 50.0 0.00 8.193 51.2 2.40 7.642 

99.7 99.7 0.00 6.889 102.1 2.41 6.593 

149.9 149.9 0.00 6.071 153.5 2.40 5.602 

199.9 199.9 0.00 2.726 204.7 2.40 2.491 

300.3 300.3 0.00 4.593 307.7 2.46 4.135 

399.9 400.1 0.05 1.969 409.7 2.45 1.799 

499.9 500.0 0.02 1.399 512.0 2.42 1.317 

600.0 600.1 0.02 3.621 614.6 2.43 2.224 

650.0 650.1 0.02 1.657 665.6 2.40 1.272 

700.1 700.3 0.03 1.680 717.0 2.41 1.047 
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Figure 3.18 Amplitudes and RMS values at different frequencies 

Figure 3.18 shows the good consistency of frequency, amplitude and RMS values of 

CA-YD-182A and ADXL345, excluding the amplitude and RMS values at 600 Hz. 

Both the peak amplitudes and RMS values of ADXL345 are smaller than those of CA-

YD-182A. But the RMS values are much closer for these two sensors. It is clear that 

performance of ADXL345 is a little worse at higher frequencies. 

 

Figure 3.19 Spectra of ADXL345 with frequency calibrated 

Based on the results discussed for Table 3.5, ADXL345 can be calibrated with the 

frequency shown in Figure 3.19. Although performance of ADXL345 is not as good as 

CA-YD-182A, it is still widely applied due to its advantages of high economy, easy 
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programming and integration. As a result, the MEMS accelerometer ADXL345 can be 

used for vibration monitoring instead of piezoelectric sensors to save cost. 

3.2.4 Leakage Detection in Domestic Piping Systems 

3.2.4.1 Test Facilities and Experiments 

The experimental platform is a domestic piping system with copper pipes (copper pipe 

diameter is 15mm) installed on the wall in the laboratory. The structure of pipes at the 

corner and near taps is very complex so that it is easier to generate turbulences leading 

to large vibration amplitudes in these positions. Besides, the long straight pipe is prone 

to the pipe resonance. As a result, two detection positions, Position 1 and Position 2, 

were selected between the valve and two taps (Taps 1 and 2) as shown in Figure 3.20. 

Position 1 is very close to Tap 1 at the corner with ADXL345 and CA-YD-182A 

installed on the top and bottom of the pipe, respectively. Position 2 is located at the 

middle of the long straight pipe with a remote distance to the valve and Tap 2, where 

two accelerometers were installed neighbourly. The different size of leaks was 

simulated by independently opening Tap 1 or Tap 2 with different angles to detect the 

signals at Position 1 and Position 2, respectively, which is shown in Table 3.6. 

 

Figure 3.20 Experimental platform structure diagram 

Table 3.6 Flow representations with various tap rotation angles 

Flow Rate 
Rotation Angle of Tap 1 

(Position 1) 

Rotation Angle of Tap 2 

(Position 2) 

No Flow 0° 0° 
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Small Flow 30°, 60°, 90°, 120° 
15°, 30°, 45°, 60°, 75°, 

90°, 105° 

Medium Flow 
150°, 180°, 210°, 240°, 

270°, 300°, 330°, 360° 

120°, 135°, 150°, 165°, 

180°, 195°, 210°, 225°, 

240° 

Large Flow 450°, 540°, 630°, 720° 270°, 300°, 330°, 360° 

The vibration signals were synchronously collected by both CA-YD-182A with the 

DAQ system and ADXL345 with the designed sensor node at the sampling frequency 

of 96 kHz and 3200 Hz, respectively. Each test was carried out three times with 20 

seconds of data recorded. 

3.2.4.2 Results and Discussion 

(1) Experimental results at Position 1 (MEMS) 

 

Figure 3.21 Waveforms of four different leakage conditions at Position 1 

Figure 3.21 illustrated vibration waveforms at Position 1 of the pipes under four 

different conditions, representing zero leakage, small leakage, medium leakage and 

large leakage, respectively. It can be seen that the RMS value of zero leakage is the 

smallest. RMS value at the condition with a rotation angle of 60° is about twice as high 

as that with a rotation angle of 0°. The vibrational RMS value increases to a 

significantly high value, 2.65 m/s2, at the condition with a rotation angle of 240°. 

However, this value declines to 1.15 m/s2 at the condition with a rotation angle of 630°. 
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It means that RMS values increase initially then slightly decrease with the increase of 

leakage speeds, which displays that vibrational RMS values have nonlinear correlations 

with the rotation angle of taps and this is described as shown in Figure 3.22. 

 

Figure 3.22 Vibration RMS values and thresholds setting at Position 1 

The vibrational RMS value increases slightly when the rotation angle of the tap is less 

than 120°, then significantly rises until the rotation angle of the tap is up to 210°. It 

indicates that when the spindle of the tap goes up together with the handle, the 

resonance of the piping system excited by the force of water molecules acting on the 

pipe wall becomes more and more apparent. However, it will gently decrease when the 

rotation angle is too large because turbulence is relatively smaller when the gap inside 

of the tap nearly constant. As shown in Figure 3.22, two threshold lines, the yellow dot 

line and red dot line with the values of 0.8 m/s2 and 1.8 m/s2 respectively, are set to 

distinguish the leakage of the piping system qualitatively. But it is difficult to recognise 

the small and large leakage, especially. 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

49 

 

 

Figure 3.23 Vibration spectra of four different leakage conditions at Position 1 

Therefore, the spectra of vibration signals are illustrated in Figure 3.23. Both periodic 

responses induced by pipe resonances and wideband contents caused by turbulence and 

friction effects are displayed in spectra. The red dot rectangles indicate a particular 

frequency band from 130 Hz to 180 Hz for these four cases. 

 

Figure 3.24 Particular frequency analysis at Position 1 

Figure 3.24 further analyses the particular frequency band displayed with red dotted 

frames. Figure 3.24 (a) shows that the highest amplitude shifts with the change of 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

50 

 

rotation angles in the frequency band of 130 Hz to 180 Hz. Figure 3.24 (b) displays the 

frequency with peaks in this particular frequency band for each rotation angle. The peak 

value can clearly distinguish leakage when the rotation angle is lower than 135° or 

higher than 200°. However, considering complexity of the structure of the piping 

system at Position 1, this shifting frequency may be caused by turbulence and will be 

unstable and unfixed. Furthermore, sensor installation is complicated at this position. 

As a result, Position 1 is not suitable for leakage detection with the designed CM system. 

(2) Experimental results at Position 2 (MEMS) 

Position 2 locates in the middle of the long straight pipes. Tap 2 is a little tight, so the 

maximum angle rotated can only reach up to 360°. Figure 3.25 randomly illustrates four 

vibration signals of different leakage conditions with various rotation angle at Position 

2. The RMS value significantly varies in figures (a), (b) and figures (c), (d) which 

represent zero, small, medium and large leakage, respectively. A plotted curve for the 

various leaks shows the relationship between vibration RMS values and rotation angles 

in Figure 3.26. 

 

Figure 3.25 Waveform of four different leakage conditions at Position 2 
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Figure 3.26 Vibration RMS values and threshold setting at Position 2 

It demonstrates that vibration RMS value increases approximately with the rising of the 

rotation angle in Figure 3.26. Two threshold lines with the values of 0.11 m/s2 and 0.225 

m/s2 are set to show different levels of leakage quantity. The vibration amplitude 

significantly increases as the rise of the rotation angle, especially at the rotation angle 

greater than 60°. This is because the resonance of the pipe is excited by a force generated 

by the water flow with the response frequency band highlighted by the red dotted 

frames between 210 Hz and 280 Hz in Figure 3.27 (c) and (d). However, the resonance 

amplitude is very small at the small leakage because the energy is too small to visibly 

activate resonance of the pipe, which is shown in Figure 3.27 (b). 
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Figure 3.27 Vibration spectra of four different leakage conditions at Position 2 

 

Figure 3.28 Particular frequency analysis at Position 2 

Figure 3.28 indicates that peaks of frequency amplitudes appear between 220 Hz and 

225 Hz, which can be considered to be the natural frequency of the pipe system. 

However, there is no reliable relationship between leakage quantity and rotation angle. 

As a result, the vibration RMS values at Position 2 can be used to monitor condition of 

the piping system. 
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3.3 Improvement of the CM System with Data Compression 

Improvements in the condition monitoring system include designing a wireless sensor 

node, developing a mobile monitoring application, as well as the evaluation of the 

designed condition monitoring system. First, the specific statistics, RMS value, was 

demonstrated that it is useful for the leakage diagnostic of the piping system in the 

previous subsection. A compression method based on vibrational statistics supplies the 

potential to achieve remote control and observation of the equipment condition with 

mobile devices based on wireless transmission in practice. Moreover, the reduction in 

the amount of data transmitted considerably reduces power consumption, which 

supplies possibilities for achieving the maintenance-free condition monitoring system 

according to energy harvesting. 

3.3.1 Wireless Sensor Node Design 

A WSN node includes four indispensable components: sensor, processor, battery, and 

communication module. Figure 3.29 highlights the structure of a node and functions of 

each component. The sensor module can collect raw signals and transmit the analogue-

to-digital converted signals to the processor. Pre-processing and feature extraction are 

carried out in the processor unit to reduce the quantity of data transmitted and stored as 

much as possible because the power consumed by data processing is much less than 

that of data transmission [114]. The BLE module is responsible for the data packaging 

and transmission to the smartphone at an effective distance via Bluetooth. The lithium 

polymer battery supplies power for the other three units. At the receiving end, a mobile 

application is developed to monitor the real-time signal of the object. Furthermore, the 

node can achieve to directly upload data to the cloud database by the smartphone or 

other portable devices with the assistant of Wi-Fi if it is necessary. 

Sensor:
Raw signal collection 

and ADC

Microcontroller:
Pre-processing and 

feature extraction

BLE module:
Packing & transmission

SPI

Battery:
Lithium polymer  

power supply

SPI

 

Figure 3.29 Node structure and data acquisition process 

The designed wireless sensor node connection is shown in Figure 3.30. The 

accelerometer, ADXL345, is connected with Adafruit Feather M0 Bluefruit LE module 

by the SPI connection method. Adafruit Feather M0 Bluefruit LE is an all-in-one 

module which combines portable microcontroller cores (Cortex M0) with BLE 

transmission based on USB and battery charging. The advantages of this module 
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include its thin thickness, small size, light weight, good compatibility with Arduino, 

low power consumption and low cost. The rechargeable battery can supply power for 

the Feather M0 Bluefruit LE module. The accelerometer can be powered with 

continuous and stable energy by the Feather M0 Bluefruit LE module directly. 

 

Figure 3.30 Physical connection of the designed wireless sensor node 

As described in the previous subsection, the first challenge of the system improvement 

is the node driven by the programme in Arduino. The sampling frequency and 

acceleration measure range of ADXL345 are set to 3200 Hz and ±4g, respectively. To 

avoid the effect of the environmental noise caused by other behaviours, such as door 

closing and car passing, a high-pass filter with the threshold of 100 Hz is added to filter 

the signal with the frequency below 100 Hz. Furthermore, the vibration RMS value was 

demonstrated in the previous analysis that it is an effective and efficient indicator for 

CM of the piping system. 

Another challenge is installation of the accelerometer, which aims to ensure to capture 

an obvious vibration signal. It is well known that a sensor can effectively measure the 

vibration signals when contact way and transmission media are valid to minimize the 

loss in the process of transmission. Because the experiment was carried out with a 

standard domestic water piping system with copper, so the accelerometer base designed 

with copper can tightly attach to the surface of the copper pipe with the aid of silicon 

which increases the contract area and is helpful for signal transmission. Moreover, the 

thickness of the base is only 2 mm to effectively reduce energy attenuation during signal 

transmission. The copper base manufactured by the technicians at the University of 

Huddersfield is shown in Figure 3.31. 
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Figure 3.31 Copper base: (a) front view, and (b) side view 

The accelerometer, ADXL345, was attached to a copper sheet by ceramic adhesive with 

functions of fixation and insulation. Then, the sensor together with a copper sheet was 

screwed onto the copper base through the screw rods. The integrated node was fixed on 

the surface of the copper pipe with two clips and covered with a white junction box as 

shown in Figure 3.32. The switch button can control the on and off status of the node. 

 

Figure 3.32 Leakage detector node: (a) internal structure, and (b) appearance 

3.3.2 Mobile Monitoring Application Design 

In order to monitor condition of the object with the designed wireless sensor node in 

real time, a monitoring application is designed for the Android operation system with 

the Android Studio software as shown in Figure 3.33. 
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Figure 3.33 Android Studio software interface 

An Android application named “Leak Detector” was developed and its installation 

process and icon are shown in Figure 3.34 (a) and (b), respectively. 

(b)(a)

Version: 2.2.2

Scanning

Cancel Continue

 

Figure 3.34 Mobile application interfaces: (a) installation interface, and (b) icon interface 

As illustrated in Figure 3.35 (a), Adafruit Feather M0 Bluefruit LE can be discovered 

by the Bluetooth function of the mobile once the node is powered. Then, click the 

“CONNECT” button and the green LED on the Feather M0 Bluefruit LE board will 
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blink, indicating that wireless connection is being requested. After connection is 

successful, the points can be drawn with hollow circles connected by the blue lines to 

display the real-time values in the line chart as shown in Figure 3.35 (b). Additionally, 

the display frame above the line chart will clearly show the real-time RMS value of 

vibration signals. At the bottom of this interface, there is a function of saving datasets 

for further analysis. The switch button “State” aims to control whether the line chart is 

hidden or not. Button  is the key to the interface conversion from interface (b) to 

interface (c). Figure 3.35 (c) is a calibration panel which helps set thresholds of large, 

medium, and small flow rates. Button  is the path to switch to the process bar display 

interface which distinguishes the level of current water flow according to the thresholds. 

Similar to Figure 3.35 (b), Figure 3.35 (c) also has a function of vibration value display 

on the top of the process bar chart. Button  is applied to switch back to the line chart. 

Finally, there is a “RETURN” button on the top of the screen, which has the function 

of exit to the first connection interface. 

    
(a) (b) (c) (d) 

Figure 3.35 Mobile application interfaces of the Leak Detector: (a) connection interface, (b) 

line chart display interface, (c) calibration interface, and (d) process bar display interface 

Other sensors with either analogue or digital output also can be set as the sensing unit 

to connect to this microcontroller unit. Besides, a high-pass filter and RMS calculating 

are programmed in the processing unit to suppress the effect of low-frequency signals 

and reduce the amount of data transmission. Data can be received via mobile Bluetooth 

and observed on the mobile application in real time. 

3.3.3 Evaluation of the Designed Remote CM System 

The designed CM system can be validated by carrying out some experiments about 

remote leakage detection with the domestic piping systems in real time. The installation 

location of the wireless sensor node was the middle of the long straight pipe described 

in Figure 3.20 because it is easily prone to the pipe resonance.  
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The acceleration caused by the pipe wall vibration in three directions (X, Y, Z) were 

acquired with the sample rate of 3200 Hz separately. Then the RMS values of these 

three directions were calculated at various flow rates, which is shown in Figure 3.36. It 

can be seen that the RMS value in the Y direction is the best indicator to accurately 

distinguish the flow rates, following by it in the X direction, and the Z direction is the 

last. Two thresholds of 1 L/min and 2 L/min were set manually to distinguish small, 

medium and large leakage, respectively. 

 

Figure 3.36 Acceleration RMS in three different directions 

However, it may misjudge the condition of the piping system if only RMS values in a 

single direction are employed when the installation direction of the accelerometer is 

improper. So that a total vibration RMS value for these three directions is calculated as 

observed in Figure 3.37, which is much more stable and robust to detect leakage of the 

piping system. 
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Figure 3.37 Relation between vibration RMS values and flow rates 

A monitor video was taken to express how to use this designed CM system to 

effectively and efficiently detect the water leakage in real time when the node locates 

at about 6 to 7 meters far from the leak position and the monitoring location. 

  
(a) (b) 

  
(c) (d) 

Figure 3.38 Leakage real-time monitoring displayed with the line graph: (a) closed, (b) small 

leakage, (c) medium leakage, and (d) large leakage 

The line graphs and bar process charts are shown in Figure 3.38 and Figure 3.39 with 

closed, small leakage, medium leakage and large leakage states represented from (a) to 

(d), respectively. The acceleration amplitudes are about 0.195 m/s2, 0.214 m/s2, 0.346 

m/s2, and 1.521 m/s2 for these four different conditions in the line charts, which can 
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clearly distinguish whether there is a leak or not, and even can effectively distinguish 

the amount of the leak. 

  
(a) (b) 

  
(c) (d) 

Figure 3.39 Leakage real-time monitoring displayed with the bar process chart: (a) closed, (b) 

small leakage, (c) medium leakage, and (d) large leakage 

 

Figure 3.40 Pipe temperature change with the flow rate 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

61 

 

From the temperature, water flow coming from outside will change the temperature of 

the domestic pipe wall mainly because of thermal conduction and convection when a 

leak occurs since the temperature outside is significantly different from the room 

temperature. Figure 3.40 illustrates the pipe temperature and temperature difference 

from ambient temperature captured by the MEMS infrared thermometer called 

MLX90614 GY-906 connected with Feather M0 Bluefruit LE as shown in Figure 3.41. 

The infrared thermometer works based on thermal radiation of the pipes. It is apparent 

that speed of temperature change is closely related to the flow rate. The faster the water 

flows, that is to say, the bigger the leakage, the faster the pipe temperature changes. 

This phenomenon also is helpful for the effective detection of leaks. 

 

Figure 3.41 Infrared thermometer connected with Feather M0 Bluefruit LE 

In the future work, some new functions need to be investigated in this wireless sensor 

node to achieve more accurate, convenient and broad application on CM in various 

fields. For example, 

✓ Combine other features to assist vibrations to achieve efficient CM, such as 

detecting the ambient and object temperatures by infrared thermometers with 

the contactless method of installation. 

✓ Optimize the node design to reduce power consumption and achieve to upload 

the object condition to the cloud to support remote CM. 

✓ Develop the node to be a maintenance-free CM system according to energy 

harvesting, which will be applied extensively in CM, especially for mechanical 

fault detection. 

✓ It can be a potential application of on rotor sensing in CM of rotating machinery 

to reduce or even avoid the effect of the transfer path on the fault signal in future. 

Figure 3.42 illustrates our preliminary demo of on rotor sensing application, 

including the mobile application, hardware and its installation, as well as the 

monitoring interface. The designed cover box is detailed in Figure 3.43. 
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Figure 3.42 On rotor sensing application for rotating machines: (a) APP icon, (b) hardware 

design, (c) installation, and (d) monitoring interface 

  
(a) (b) 

  
(c) (d) 

Figure 3.43 Design of package for on rotor sensing application: (a) box body, (b) box cover, 

(c) internal structure, and (d) assemble 
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3.4 Summary 

In this chapter, an intelligent vibration sensing system, consisting of both the sensor 

node and the signal monitored mobile APP, was successfully designed based on the 

basic data compression method of the specific statistics (RMS values of vibration at 

three directions). The designed CM system can effectively and efficiently detect and 

assess leakage of the domestic piping system in real time according to the vibration 

mechanisms of the piping system. The intelligent wireless sensor node locates in the 

middle of the long straight pipe, where is easily prone to the pipe resonance induced by 

the water flow. The developed leak detector successfully detects leakage in piping 

systems using the compressed data. The detector consumes limited power because the 

amount of data transmitted is greatly reduced with an effective compression method. 

Besides, the developed leak detector not only successfully detects leakage but also 

saves power because the amount of data transmitted is greatly reduced with an effective 

compression method. Finally, even the designed CM system works very well, it can be 

further improved in power supply and remote monitoring, as well as applied as on rotor 

sensing for fault detection of rotating machinery in future. 
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 DIMENSION REDUCTION BASED 

COMPRESSION IN FAULT DIAGNOSIS OF TAPERED 

ROLLER BEARINGS 

 

 

Rolling element bearings are the essential parts of rotating machines, of which the 

faults can cause severe failures or even breakdown of a machine. The use of multiple 

sensors and the high-speed data acquisition device lead to a manifest disadvantage of 

high costs in purchasing hardware for data collection, transmission, storage and 

processing. As a result, this chapter and the next chapter investigate the compression 

algorithms for fault diagnosis of rolling element bearings based on 1D vibration signals. 

In this chapter, the recurrence quantification analysis upon the recurrence plot was 

developed to extract features and reduce data dimensions. The dimension reduction 

based compression method is efficient and effective to diagnose faults of tapered roller 

bearings. 
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4.1 Introduction 

4.1.1 Rolling Element Bearings 

Rolling element bearings, whose faults can cause serious failures or even breakdown 

of a machine, are the essential components of rotating machines to carry a load by 

placing rolling elements between inner and outer races. Rolling element bearings, 

including ball bearings, cylindrical roller bearings, spherical roller bearings, tapered 

roller bearings, needle roller bearings and CARB toroidal roller bearings, etc. are 

common types of bearings applied in the industry with the structures as shown in Figure 

4.1. 

 

Figure 4.1 Typical types of bearings applied in industry 

Early fault detection is a technology to monitor condition of rotating machinery during 

operation to prevent machine failures. System overload, shaft imbalance, insufficient 

lubrication, fatigue wear, and overheating are common factors to induce failures of the 

inner race, the outer race, roller elements and the cage of a bearing. 

The acquired bearing vibration signals usually exhibit typical modulation 

characteristics for fault diagnosis of rolling element bearings. Especially, the high-

frequency resonance technique treats the measured vibration responses as a result of 

the modulation between the periodic impulses and structural resonances. The bearing 

fault signal can be obtained by demodulation from a high-frequency band of the 

collected system vibration signal. The theoretical fault frequency of rolling element 

bearings can be calculated according to the rotation speed, number of balls, diameters 

of balls and the pitch circle, and the contact angle [116] for the judgement of fault types. 

The outer race fault frequency, fundamental cage frequency, roller fault frequency and 

inner race fault frequency are calculated as shown from Equations (4-1) to (4-4) in 
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theory, respectively. The roller diameter and pitch circle diameter in these equations 

are displayed in Figure 4.2. 

Outer race fault frequency 𝑓𝑜: 

 𝑓𝑜 =
𝑁𝑟

2
𝑓𝑠 (1 −

𝐷𝑟

𝐷𝑝
𝑐𝑜𝑠𝜑) (4-1) 

Fundamental cage frequency 𝑓𝑐𝑎𝑔𝑒: 

 𝑓𝑐𝑎𝑔𝑒 =
1

2
𝑓𝑠 (1 −

𝐷𝑟

𝐷𝑝
𝑐𝑜𝑠𝜑) (4-2) 

Roller fault frequency 𝑓𝑟: 

 𝑓𝑟 =
𝐷𝑝

2𝐷𝑟
𝑓𝑠 (1 −

𝐷𝑟
2

𝐷𝑝
2 𝑐𝑜𝑠2𝜑) (4-3) 

Inner race fault frequency 𝑓𝑖: 

 𝑓𝑖 =
𝑁𝑟

2
𝑓𝑠 (1 +

𝐷𝑟

𝐷𝑝
𝑐𝑜𝑠𝜑) (4-4) 

where, 

𝑁𝑟 is the number of rollers, dimensionless; 

𝑓𝑠 is the shaft rotating frequency, Hz; 

𝐷𝑟 is the roller diameter, mm; 

𝐷𝑝 is the pitch circle diameter, mm; 

𝜑 is the contact angle, degree. 

Dr
Dp

 

Figure 4.2 Schematic diagram of a rolling element bearing 

Using these equations, the theoretical fault frequency of most rolling element bearings 

can be calculated as a reference to diagnose bearing fault types. The tapered roller 

bearings with different types of faults are investigated in this chapter because of their 

wide heavy-duty applications. 
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4.1.2 Tapered Roller Bearings 

Tapered roller bearings were designed and applied since the early 20th century. They 

have a tapered inner race and an outer race with tapered rollers arranged between two 

ring raceways as displayed in Figure 4.3. It mainly bears combined (simultaneously 

acting radial and axial) loads operating at a high speed. The bearing capacity of the 

bearing depends on the contact angle of the outer race. The larger the angle, the greater 

the load carrying capacity. It can be divided into single row, double row and four-row 

tapered roller bearings according to the number of rows of rolling elements in the 

bearing. Tapered roller bearings are a type of rolling element bearings that is widely 

used in pairs for better radial load handling in various heavy-duty applications, such as 

vehicle wheels, differentials, pinion shafts, machine tool spindles, construction 

machinery, agricultural machinery, railway vehicle gear reduction devices, rolling mills, 

etc. 

 

Figure 4.3 Tapered roller bearing structure and components 

However, tapered roller bearings are prone to have a shortened lifespan or even be 

damaged directly if they undergo enormous amounts of stress under conditions of 

inadequate or starved lubricant, incorrect installation, or misalignment during operation. 

Figure 4.4 lists some common faults of tapered roller bearings, like bruising, etching, 

line spalling, cage deformation, roller binding and skewing, inadequate lubrication, 

peeling, excessive preload or overload and misalignment [117]. They are mainly caused 

by the debris contamination coming from the contaminated lubricant, a leaky seal or 

other fatigued parts, water or moisture contamination, the improper tool used for 

installation, starved lubricant, tremendously high stress and human error. 
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Figure 4.4 Damaged tapered roller bearings with different faults 

Clearance between the roller and outer raceway needs to be adjusted when the single 

row tapered roller bearing is installed. Bearings that are improperly handled during 

installation or that have large clearance error are highly susceptible to damage when 

subjected to heavy loads. In order to ensure the bearing can work stably, it is a crucial 

task to monitor their working state. 

However, the fault signal is often overwhelmed by noise in the low-frequency band, 

and it is necessary to demodulate the fault signal from a high-frequency band of the 

vibration signal which is captured at a sampling frequency of up to tens of thousands 

hertz. Both use of multiple sensors and high-speed data acquisition show considerable 

shortages of high system cost involved in purchasing hardware for data transmission, 

storage and processing. Therefore, a dimension reduction based feature compression 

method is developed for fault classification of tapered roller bearings and validated by 

some experiments. 

4.2 Compression Method 

In a mechanical system, possible states can be represented in the phase space with a 

corresponding phase space point. Each point of the phase space represents the position 

and momentum of each particle in the system [118]. Tapered roller bearings are usually 

used for the rotating machinery to withstand loads. There will be a noticeable periodical 

fault signal when a fault occurs. Hence, the signal can be converted into the high-
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dimensional phase space to analyse. Although valuable information in the high-

dimensional space is rich, it is not conducive to observation and analysis. A recurrence 

plot can be applied to observe the periodic information of a phase space trajectory in 

two dimensions. Recurrence quantitative measurements can evaluate the periodic 

information of this complicated system. However, the dimension of the extracted 

features is also too high to analyse further. Besides, the collected signal will be divided 

into segments after preprocessing due to the length of data collection and the limitation 

of computing ability. As a result, principal component analysis is used for dimension 

reduction by decreasing the number of principal components to classify the types of 

faults. 

4.2.1 Recurrence Plot 

Recurrence, proposed by Henri Poincaré in 1890 [119], is a fundamental characteristic 

of a dynamical system, which is useful for exploring all relevant features of behaviours 

of the system [120]. Recurrence plot (RP) is an advanced graphical tool to visualize the 

binary texture of time series of a dynamical system with lines and single dots, which 

was investigated by Eckmann et al. in 1987 [121]. It is easily constructed to implement 

the pattern analysis of a complex system with the aid of some recurrence quantification 

[122]. In theory, RP depicts pairs of times at which the phase space trajectory of the 

dynamical system visits roughly the same place in the phase space [120]. In other words, 

RP allows investigating the m-dimensional phase space trajectory through its 2D 

representation by dimension reduction. 

Let 𝑢(𝑡), 𝑡 = 1, 2, ⋯ , 𝑁, be a time series with the length of 𝑁 and its generated phase 

space trajectory can be expressed as [123] 

 

{
 
 

 
 

𝑥(1) = {𝑢(1), 𝑢(1 + 𝜏), ⋯ , 𝑢(1 + (𝑚 − 1)𝜏)}
⋯

𝑥(𝑖) = {𝑢(𝑖), 𝑢(𝑖 + 𝜏), ⋯ , 𝑢(𝑖 + (𝑚 − 1)𝜏)}
⋯

𝑥(𝑁 − (𝑚 − 1)𝜏) = {𝑢(𝑁 − (𝑚 − 1)𝜏), 𝑢(𝑁 − (𝑚 − 2)𝜏), ⋯ , 𝑢(𝑁)}

 (4-5) 

where 𝑥(𝑖), 𝑖 = 1,2, ⋯ , 𝑁 − (𝑚 − 1)𝜏, is the points of the trajectory generated in the 

phase space; 𝜏 and 𝑚 are the time delay and embedding dimension of the reconstructed 

phase space, respectively. 

Therefore, the 2D recurrence matrix 𝑅(𝑖, 𝑗) is expressed in Equation (4-6). 

 𝑅(𝑖, 𝑗) = {
1 if  ‖𝑥(𝑖) − 𝑥(𝑗)‖  ≤ 𝜀
0 otherwise

 (4-6) 

where 𝑥(𝑖) and 𝑥(𝑗) are the points in the phase space trajectory at which the system is 

situated at times 𝑖  and 𝑗 , respectively [124]; 𝜀  is a recurrence threshold predefined 

according to system characteristics. Equation (4-6) is also simply represented as 

 𝑅(𝑖, 𝑗) = Θ(𝜀 − ‖𝑥(𝑖) − 𝑥(𝑗)‖) (4-7) 
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where Θ(∙) is the Heaviside step function. If the Euclidean distance of these two system 

states at times 𝑖  and 𝑗  in the phase space is very close to 𝜀 , 𝑅(𝑖, 𝑗) = 1  and the 

coordinates (𝑖, 𝑗) will be a black dot in the grayscale recurrence graph; otherwise, it will 

be displayed as a white dot instead. 

However, there are three principal challenges in this process: time delay parameter (𝜏) 

estimation, optimal embedding dimension (𝑚) determination and predefined threshold 

(𝜀) selection. In [125], Chen and Yang mentioned that the time delay parameter and 

embedding dimension can be estimated with mutual information method and false 

nearest neighbour algorithm, respectively. Marwan et al. [120] reviewed various 

methods of threshold selection which provides an opportunity for the optimal threshold 

selection in this research. 

4.2.1.1 Time Delay Parameter Estimation 

There are three main methods for determining the reconstruction delay time: 

autocorrelation function, average displacement and mutual information methods. 

Autocorrelation function method is not suitable for nonlinear analysis and average 

displacement method is mainly based on experience with randomness. Although the 

mutual information method requires complex calculations, it is suitable for both linear 

and nonlinear systems from the perspective of information theory. In 1985, both Shaw 

[126] and Fraser et al. [127] proposed that mutual information is a good criterion for 

the selection of time delay in construction phase space from time-series data. 

Suppose that 𝑄 and 𝑆 are two systems, then the mutual information is defined as 

 𝐼(𝑄, 𝑆) = 𝐻(𝑄) + 𝐻(𝑆) − 𝐻(𝑄, 𝑆) (4-8) 

where 𝐻(𝑄) and 𝐻(𝑆) are the entropy of the systems 𝑄 and 𝑆, respectively; 𝐻(𝑄, 𝑆) is 

the joint entropy of the system 𝑄 and 𝑆. 

Let 𝑆  be the time series signal {𝑢(𝑡)}, 𝑡 = 1, 2, ⋯ , 𝑁 , 𝑄  be a time series signal 

{𝑢(𝑡 + 𝜏)} of 𝑆 with time delay 𝜏. Then, 𝑄  and 𝑆 can generate a 2D reconstruction 

image with the mutual information expressed as 

 𝐼(𝑄, 𝑆) = ∑ ∑ 𝑃𝑠𝑞(𝑠𝑖, 𝑞𝑗)𝑗𝑖 log2 [
𝑃𝑠𝑞(𝑠𝑖,𝑞𝑗)

𝑃𝑠(𝑠𝑖)𝑃𝑞(𝑞𝑗)
] (4-9) 

where 𝑃𝑠𝑞(𝑠𝑖, 𝑞𝑗) is the joint distribution probability in the reconstructed image when 

𝑆 = 𝑠𝑖 and 𝑄 = 𝑞𝑗; 𝑃𝑠(𝑠𝑖) and 𝑃𝑞(𝑞𝑗) are edge distribution probabilities. 

Fraser et al. [127] proposed a recursive approach to obtain mutual information 𝐼(𝑄, 𝑆). 

It is based on the probability of the edge distribution to divide the partitions and judge 

for each partition. Firstly, the probability of each side is equally divided according to 

the edge distribution. And the reconstructed image is divided into four partitions 

displayed with red lines in Figure 4.5. For each partition, it needs to determine whether 

there is a substructure or it is already sparse. If there is no substructure or it is sparse, it 

does not require further division. Otherwise, the partition should be further divided into 
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two equal parts according to the edge probability until the substructure can no longer 

be divided. Finally, mutual information can be calculated based on the divided 

partitions. They also demonstrated that the first minimum in the mutual information of 

these two systems provides the best available systematic criterion for selecting time 

delays for phase space trajectory [127]. 

0 1

32

0 1

32

s0 s1 s2 s3

q0

q1

q2

q3

 

Figure 4.5 Two steps in the sequence of partitions 

This method has been successfully used for various systems to determine the time delay 

parameter. Therefore, it is selected to estimate the time delay for the nonlinear vibration 

signals of the tapered roller bearing system. 

4.2.1.2 Embedding Dimension Determination 

Embedding dimension is a crucial parameter in the process of constructing the phase 

space trajectory. Many neighbours will be false when an embedding dimension is too 

low. Otherwise, the neighbours are all true if an embedding dimension is appropriate 

or higher. However, a high embedding dimension leads to the generated trajectory 

redundant and excessive computation. Therefore, an acceptable minimum embedding 

dimension should be determined by looking at the behaviour of near neighbours with 

the false nearest neighbour (FNN) algorithm, which was proposed by Kennel et al. 

[128]. 

FNN is a method to expand the time series into a multidimensional phase space, which 

simplifies modelling and prediction. It iteratively increases the dimensions of the phase 

space and measures changes of the neighbour relationship at each step. Two points that 

are not adjacent in the high-dimensional phase space may become adjacent when they 

are projected into the same coordinate, which are called false neighbours. As the 

embedding dimension increases, false neighbours are gradually eliminated. 
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In the 𝑚 -dimensional phase space, each phase point vector 𝑥(𝑖) = {𝑢(𝑖), 𝑢(𝑖 +

𝜏), ⋯ , 𝑢(𝑖 + (𝑚 − 1)𝜏)} has the 𝑟th nearest neighbour point 𝑥𝑁𝑁(𝑖) with the square of 

the Euclidean distance defined as 

 𝐷𝑚(𝑖, 𝑟) = ‖𝑥(𝑖) − 𝑥𝑁𝑁(𝑖)‖ (4-10) 

where ‖∙‖ is the Euclidean norm. When the dimension of the phase space increases 

from 𝑚 to 𝑚 + 1, the square of the distance between two points changes to 

 𝐷𝑚+1
2 (𝑖, 𝑟) = 𝐷𝑚

2 (𝑖, 𝑟) + [𝑥(𝑖 + 𝑚𝜏) − 𝑥𝑁𝑁(𝑖 + 𝑚𝜏)]2 (4-11) 

If 𝐷𝑚+1
2 (𝑖, 𝑟) is much larger than 𝐷𝑚

2 (𝑖, 𝑟), it may be caused by high-dimensional chaos 

attracting two non-adjacent points to become adjacent points when pro jected onto low-

dimensional orbits. Therefore, these points are false neighbours. The criterion for the 

false neighbour elimination is stated as 

 √
𝐷𝑚+1

2 (𝑖,𝑟)−𝐷𝑚
2 (𝑖,𝑟)

𝐷𝑚
2 (𝑖,𝑟)

=
|𝑥(𝑖+𝑚𝜏)−𝑥𝑁𝑁(𝑖+𝑚𝜏)|

𝐷𝑚(𝑖,𝑟)
> 𝜖 (4-12) 

where 𝜖 is the threshold. Kennel et al. found that for 𝜖 ≥ 10 the false neighbours are 

clearly identified. However, this criterion calculates an incorrect estimate when the 

signal contains noise or the sample length is limited. Then, the nearest false neighbour 

can be determined according to the criteria described in Equation (4-13). 

 
𝐷𝑚+1(𝑖)

𝐷𝐴
≥ 2 (4-13) 

where 𝐷𝐴 is the average distance between each point and all other points. It can be 

defined as 

 𝐷𝐴
2 =

1

𝑁
∑ [𝑥(𝑖) − �̅�]2𝑁

𝑖=1  (4-14) 

where �̅� =
1

𝑁
∑ 𝑥(𝑖)𝑁

𝑖=1 . 

Finally, the embedding dimension 𝑚 can be determined according to the nearest false 

neighbour with FNN. 

4.2.1.3 Predefined Recurrence Threshold Selection 

From Equations (4-6) and (4-7), it is manifest that the recurrence threshold 𝜀 should be 

chosen with special attention because if 𝜀 is too small, the potential recursive features 

of the system will not appear properly. On the other side, if 𝜀 is too large, it will result 

in many artefacts and tangential motion (misjudging simple continuous points on the 

trajectory) [120]. Moreover, noise affects the existing structure of the system signal. 

Therefore, it is foremost to select an appropriate threshold for various signals. 

Some methods for recurrence threshold selection have been proposed and improved by 

researchers in these years. For example, it should not exceed 10% of mean or the 

maximum phase space diameter [120], [129]–[131]; it is selected in terms of the 
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recurrence point density [132]; also, it considers the standard deviation of the time 

series [133] and so on. 

For rotating machinery with tapered roller bearings, fault features may be submerged 

by noise and be not apparent. According to this feature, it was found that the 

corresponding standard variance of the phase space trajectory for different cases is 

effective as the recurrence threshold in this study. The results will be presented in the 

next subsection to validate its availability on vibration signals of rotating machinery. 

4.2.2 Recurrence Quantification Analysis 

Recurrence quantification analysis (RQA) is an optimal quantification method to 

analyse nonlinear recurrence plots of dynamical systems. The quantification 

measurements are defined based on recurrence density, diagonal and horizontal 

(vertical) structures to estimate chaos transitions presented by its phase space trajectory. 

All commonly used measurements will be introduced below and applied to the 

proposed compression method. 

(1) Recurrence rate (𝑅𝑅) 

The basic and simplest measure of RQA is the recurrence rate indicating the density of 

recurrence points and expressed as shown in Equation (4-15). 

 𝑅𝑅 =
1

𝑁2
∑ 𝑅(𝑖, 𝑗)𝑁

𝑖,𝑗=1  (4-15) 

where 𝑅(𝑖, 𝑗) is the recurrence point defined in Equations (4-6) and (4-7); 𝑁  is the 

number of points on the phase space trajectory, also the length of the squared recurrence 

matrix. This indicator summarizes the proportion of the recurred states in the system. 

(2) Determinism (𝐷𝐸𝑇) 

𝐷𝐸𝑇 represents the percentage of recurrence points forming diagonal lines in RP. 

 𝐷𝐸𝑇 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑙𝑃(𝑙)𝑁
𝑙=1

 (4-16) 

where 𝑃(𝑙) is the probability of the length of diagonal lines with length 𝑙, which can be 

calculated with the histogram of length 𝑙; and 𝑙𝑚𝑖𝑛 is the minimum length of diagonal 

lines, 𝑙𝑚𝑖𝑛 = 2 in this study. Usually, a periodic signal has long diagonal lines; chaotic 

signals have very short ones; and stochastic signals have no diagonal lines [124]. As a 

result, 𝐷𝐸𝑇 will be large for a periodic system and very small for a stochastic system. 

(3) Laminarity (𝐿𝐴𝑀) 

Similar to 𝐷𝐸𝑇 , 𝐿𝐴𝑀  is defined as the percentage of recurrence points generating 

vertical lines in RP as shown in Equation (4-17). 

 𝐿𝐴𝑀 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑣𝑃(𝑣)𝑁
𝑣=1

 (4-17) 
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where 𝑃(𝑣) is the probability of the length of vertical lines with length 𝑣, which can be 

determined by the histogram of the length 𝑣 ; and 𝑣𝑚𝑖𝑛  is the minimum length of 

vertical lines, 𝑣𝑚𝑖𝑛 = 2 in this study. It is a typical measure to analyse the intermittency 

and laminar states [134]. 

(4) Ratio (𝑅𝐴𝑇𝐼𝑂) 

𝑅𝐴𝑇𝐼𝑂 denotes the ratio between 𝐷𝐸𝑇 and 𝑅𝑅 and expressed as 

 𝑅𝐴𝑇𝐼𝑂 = 𝑁2
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

(∑ 𝑙𝑃(𝑙)𝑁
𝑙=1 )

2 (4-18) 

(5) Averaged diagonal line length (𝐿) 

Moreover, the averaged diagonal line length is calculated in Equation (4-19) to measure 

the predictability time of the system. 

 𝐿 =
∑ 𝑙𝑃(𝑙)𝑁

𝑙=𝑙𝑚𝑖𝑛

∑ 𝑃(𝑙)𝑁
𝑙=𝑙𝑚𝑖𝑛

 (4-19) 

(6) Trapping time (𝑇𝑇) 

Same to 𝐿 , the averaged vertical line length reals the trapping time of the system 

described as 

 𝑇𝑇 =
∑ 𝑣𝑃(𝑣)𝑁

𝑣=𝑣𝑚𝑖𝑛

∑ 𝑃(𝑣)𝑁
𝑣=𝑣𝑚𝑖𝑛

 (4-20) 

(7) Longest diagonal line (𝐿𝑚𝑎𝑥) 

𝐿𝑚𝑎𝑥 is longest diagonal line on RP, which will be helpful to detect the periodicity of 

the phase space trajectory. 

 𝐿𝑚𝑎𝑥 = max({𝑙𝑖; 𝑖 = 1,2, ⋯ , 𝑁𝑙}) (4-21) 

(8) Longest vertical line (𝑉𝑚𝑎𝑥) 

Relative to the longest diagonal line, the longest vertical line 𝑉𝑚𝑎𝑥  is calculated 

according to the following equation. 

 𝑉𝑚𝑎𝑥 = max({𝑣𝑖; 𝑖 = 1,2, ⋯ , 𝑁𝑣}) (4-22) 

(9) Divergence (𝐷𝐼𝑉) 

𝐷𝐼𝑉 is the inverse of 𝐿𝑚𝑎𝑥, which would be an estimator for the Lyapunov exponent to 

the system. 

 𝐷𝐼𝑉 =
1

𝐿𝑚𝑎𝑥
 (4-23) 

(10) Diagonal entropy (𝐸𝑁𝑇𝑅) 

𝐸𝑁𝑇𝑅 is expressed according to the Shannon entropy to describe the complexity of RP 

as regards the diagonal lines. For the dynamical system with large noise, the complexity 

of the system is high, and the diagonal distribution is reduced leading to a larger value 

of 𝐸𝑁𝑇𝑅. 
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 𝐸𝑁𝑇𝑅 = − ∑ 𝑝(𝑙)ln(𝑝(𝑙))𝑁
𝑙=𝑙𝑚𝑖𝑛

 (4-24) 

(11) Trend (𝑇𝑅𝐸𝑁𝐷) 

𝑇𝑅𝐸𝑁𝐷 represents the relationship between the density of recurrence points in a line 

parallel to the mean diagonal and its distance to the mean diagonal. It is expressed as 

 𝑇𝑅𝐸𝑁𝐷 =
∑ (𝑖−�̃�/2)(𝑅𝑅𝑖−〈𝑅𝑅𝑖〉)

�̃�
𝑖=1

∑ (𝑖−�̃�/2)2�̃�
𝑖=1

 (4-25) 

where 𝑅𝑅𝑘 =
1

𝑁−𝑘
∑ 𝑅(𝑖, 𝑗)𝑁−𝑘

𝑗−𝑖=𝑘 ; 〈∙〉 is the function of calculating the average value; �̃� 

is the maximal number of diagonal lines parallel to the mean diagonal. 𝑇𝑅𝐸𝑁𝐷 is able 

to provide the stationary information of the dynamical system. 

(12) RP entropy (𝐸𝑛𝑡𝑟𝑜𝑝𝑦) 

In order to identify the distribution of points on the RP image, the entropy of RP is 

defined as 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑ 𝑝(𝑅(𝑖, 𝑗))ln (𝑝(𝑅(𝑖, 𝑗)))𝑁
𝑖,𝑗=1  (4-26) 

where 𝑝(𝑅(𝑖, 𝑗)) is the probability distribution of 𝑅(𝑖, 𝑗). 

All these twelve measures or indicators will be used to extract the periodicity, stability, 

pattern characteristics from the RP image to analyse the phase space trajectory of the 

dynamical system. In general, RP reduces the system signal from multidimensional to 

two dimensions. Then, RQA extracts 12 features as features from the 2D signal of RP 

to represent the phase space trajectory. Although the number of extracted features is 

small, the number of segments divided is large due to the long collected data. 

Additionally, some of these features have a strong correlation, which is redundant for 

fault diagnosis. Eliminating the feature redundancy can improve the efficiency and 

accuracy of fault detection. Fortunately, the principal component analysis has the ability 

to reduce the dimension of features. 

4.2.3 Principal Component Analysis 

Principal component analysis is a statistical technique to implement exploration and 

visualization of high-dimensional datasets [135]. Its main objectives are data 

preprocessing (like denoising and feature extraction) and data compression (like 

dimension reduction). PCA can synthesize potentially high-dimensional variables into 

linearly orthogonal and independent low-dimensional ones called principal components 

(PCs) [136]. The new low-dimensional datasets, especially the first principal 

component, retain most of the information of the original data for the application. 

The principle of PCA used for dimension reduction is introduced in detail. In the 

process of projecting 𝑁-dimensional features to 𝑘-dimensional (𝑁 > 𝑘), PCA requires 

to find a set of orthogonal coordinate axes sequentially from the original space. The 

first new coordinate axis is selected as the direction with the largest variance in the 
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original data. Then, the second new one is chosen as the direction in which the variance 

is the largest in the plane orthogonal to the first new coordinate axis. The third new one 

is the axis with the largest variance in the direction orthogonal to the plane of the first 

two axes. With the same criteria, 𝑁-dimensional coordinate axes can be obtained. 

Finally, it was surprisingly found that most of the 𝑁 coordinate axes were included in 

the first 𝑘 coordinate axes, and the subsequent axes contained almost zero variance. 

Therefore, only the first 𝑘 coordinate axes will be reserved because they keep most of 

the features of the original data. This is the procedure to achieve the dimension 

reduction of data features. 

From a statistical point of view, the mean of the sample 𝑋 is expressed as 

 �̅� =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1  (4-27) 

The covariance between sample 𝑋 and sample 𝑌 is described as 

 𝐶𝑜𝑣(𝑋, 𝑌) =
1

𝑛−1
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − �̅�)𝑛

𝑖=1  (4-28) 

The covariance matrix of 𝑁 samples is shown as 

 𝐶𝑜𝑣(𝑋1, 𝑋2, ⋯ , 𝑋𝑁) = [

𝐶𝑜𝑣(𝑋1, 𝑋1) 𝐶𝑜𝑣(𝑋1, 𝑋2) ⋯ 𝐶𝑜𝑣(𝑋1, 𝑋𝑁)

𝐶𝑜𝑣(𝑋2, 𝑋1)
⋯

𝐶𝑜𝑣(𝑋2, 𝑋2)
⋯

⋯
⋯

𝐶𝑜𝑣(𝑋2, 𝑋𝑁)
⋯

𝐶𝑜𝑣(𝑋𝑁, 𝑋1) 𝐶𝑜𝑣(𝑋𝑁, 𝑋2) ⋯ 𝐶𝑜𝑣(𝑋𝑁, 𝑋𝑁)

] (4-29) 

In fact, the eigenvectors of the covariance matrix of the data is the 𝑁-dimensional 

coordinate axes. The matrix composed of eigenvectors corresponding to the 𝑘 largest 

eigenvalues (i.e. the 𝑘 largest variances) is the 𝑘-dimensional coordinate axes [136]. 

Let 𝐴 be the covariance matrix, vector �⃗� is the eigenvector of matrix 𝐴, then 

 𝐴�⃗� = 𝜆�⃗� (4-30) 

where 𝜆 is the eigenvalue corresponding to the eigenvector �⃗�. A set of eigenvectors of 

a matrix is a set of orthogonal vectors. Morevoer, the matrix 𝐴 can be decomposed into 

 𝐴 = 𝑄Σ𝑄−1 (4-31) 

where 𝑄 is a matrix composed of eigenvectors of the matrix 𝐴; Σ is a diagonal matrix 

and the elements on the diagonal are the eigenvalues; 𝑄−1 is the inverse matrix of 𝑄. 

PCA algorithm can be realized according to covariance matrix decomposed with the 

singular value decomposition method as shown in Equation (4-32). 

 𝐴 = 𝑈Σ𝑉𝑇 (4-32) 

where 𝑈  and 𝑉  are the left and right singular orthogonal vector matrices, 

respectively; 𝑉𝑇  is the transposed matrix of 𝑉; the elements on the diagonal of the 

matrix Σ  are called singular values (recorded as 𝜆𝑖, 𝑖 = 1,2, ⋯ , 𝑛 ) arranged in 

descending order, and the other values are zero. To reduce the dimension of the features, 
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the vectors corresponding to the 𝑘 largest singular values are selected as the PCs based 

on the following criterion: 

 
∑ 𝜆𝑖

𝑘
𝑖=1

∑ 𝜆𝑖
𝑛
𝑖=1

≥ 99% (4-33) 

4.2.4 Proposed Compression Method 

As the system response of the rotating machinery is nonlinear with strong periodic 

characteristics, analysing the phase space trajectory of the vibration signal is an 

effective and efficient way to monitor the condition of rotating machines. But the high-

dimensional trajectory is difficult to visualize and analyse. RP and RQA can reduce the 

dimension and extract features of the vibration signals, respectively. PCA is also 

applied to reduce the dimension of extracted features. A similar approach has been 

applied in other fields, such as the medical field [137]–[141], electric and electrical 

field [142], [142], dynamics [143], chemical field [144] and so on. The procedure of 

the proposed dimension reduction based compression method for fault diagnosis of 

tapered roller bearings in the mechanical field is described as displayed in Figure 4.6. 

Resampled signal is divided into k 

segments u(t) with the length of N

Estimate time delay parameter τ 

based on manual information

Determine embedding dimension m 

with false nearest neighbour method

Generate the phase space trajectory 

x(t) of u(t) with determined τ and m

Set standard deviation of x(t) as the 

threshold ε of recurrence plot

Generate the recurrence plot R(i, j) 

for x(t) of each segment

Dimension reduction

Original signal is filtered with a band 

pass filter of [fl, fh]

Envelope the filtered signal 

Resample the envelope signal with 

Fs=3×(fh-fl) 

Recurrence quantification analysis to 

get p measurements for each R(i, j)

Principal component analysis to 

select the first q principal components

Generate a measurement quantization 

matrix T with the size of k×p

Classify different bearing fault types 

with the selected principal 

compoinents

Feature extraction

Dimension reduction

Preprocessing Data compression & fault classification

 

Figure 4.6 Flow chart of the proposed dimension reduction based compression method 
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The proposed compression method includes the preprocessing, data compression and 

fault classification with the vibration signals. Normally, the bearing fault frequency is 

modulated into a high-frequency band because of the modulation characteristics of the 

rotating mechanical system. As a result, a high sampling frequency (at least twice the 

highest modulation frequency) is required to acquire valuable information to monitor 

the condition of rotating machines according to the Nyquist sampling theorem. 

In order to avoid the problem of high-dimensional calculation of large amounts of data, 

it is necessary to pre-process the collected vibration data in advance. The frequency 

band of [𝑓𝑙 , 𝑓ℎ] is around the carrier frequency of the bearing system, which is rich of 

the modulated fault information. Then, a band-pass filter is used to obtain this narrow 

but informative band signal. After that, Hilbert transform is applied on this filtered 

signal to get the envelope signal. The fault frequency is converted from the high 

frequency band to a low frequency band by demodulation in the envelope signal. As a 

result, the envelope signal can be resampled with the sampling frequency of 𝐹𝑠 (where 

𝐹𝑠 = 3 × (𝑓ℎ − 𝑓𝑙)) which not only meets the requirement of the Nyquist sampling 

theorem but also reduces the amount of data. The resampled signal is divided into 𝑘 

segments with the length of 𝑁. To obtain more abundant information related to the 

failure cycle, the high-dimensional phase space  

However, it is difficult to directly observe the useful information from the high-

dimensional signals even they have abundant information. So the dimensionality of the 

signal is reduced from 𝑚 to 2 for each segment by generating a 2D recurrence graph 

according to the adaptive recurrence threshold 𝜀. The recurrence threshold is estimated 

by the corresponding standard variance of the phase space trajectory for different cases. 

This is the first step to compress the high-dimensional phase space trajectory of roller 

bearing signals. But it is difficult to directly observe accurate periodic information from 

the 2D recurrence graph. Hence, 𝑝 features representing periodicity, stationarity, etc. 

are extracted from the 2D image of every segment by RQA to quantify fault 

characteristics. Therefore, the amount of data used for fault diagnosis is compressed to 

only 𝑘 × 𝑝, where 𝑘 is the number of segments. Finally, the PCA method is applied to 

select the first 𝑞 principal components to reduce the size of the extracted features from 

𝑘 × 𝑝 to 𝑘 × 𝑞 (where 𝑞 < 𝑝). These 𝑘 × 𝑞 components can be successfully used for 

the fault classification of tapered roller bearings. 

4.3 Experiments 

To validate the proposed dimension reduction based compression method, some 

experiments of tapered roller bearings were carried out. The test facilities and seeded 

faults will be introduced at first. Then, the experimental results will be discussed to 

verify the proposed compression method. 
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4.3.1 Experimental Setup 

4.3.1.1 Test facilities 

A simple test rig was constructed to investigate the dynamics of tapered roller bearings 

because of their wide application in industry. Figure 4.7 shows the schematic diagram 

of the test rig, consisting of an induction motor, a flexible coupling, a ball bearing, a 

shaft and a tapered roller bearing. The tapered bearing with the model of TIMKEN 

31308 is the test object with the specification listed in Table 4.1 [145]. The Optima 

controller accurately controls the speeds of the AC motor. The parameters of the motor 

are described in Table 4.2. A K-type thermocouple was mounted on the surface below 

the bearing house to monitor the operating temperature of the tapered roller bearing, 

which can avoid too high working temperature. In addition, a Hengstler incremental 

encoder was installed at the fan end of the motor and connected by an elastic pipe. The 

encoder signal allows the estimation of the accurate speeds in various working 

conditions. Then, a charge type piezoelectric accelerometer (CA-YD-104T) was 

directly installed on the surface of the bearing house which is circled with a red ellipse 

in Figure 4.7. A charge amplifier with the model of Type 2635 from Brüel & Kjær 

company was used to convert the charge output from accelerometers to voltage, 

allowing the collection by the data acquisition hardware. The 16-bit NI 6221 from the 

National Instruments with the maximum sampling rate of 250 kS/s was applied to 

collect the output of the charge amplifier. The principal parameters of the sensors and 

data acquisition devices are expressed in Table 4.3. 

 

Figure 4.7 Tapered roller bearing test rig 

Table 4.1 Specification of the TIMKEN 31308 Table 4.2 Clarke AC motor 

Parameters Value 

Bore 40.0 mm 

Cup Outer Diameter 90.00 mm 

Cone Width 23.00 mm 

Cup Width 17.00 mm 

Bearing Width 25.25 mm 

Number of Rollers 15 
 

Parameters Values 

Rotating Speed 1420 RPM 

Power 4 kW 3 phases 

Frequency 50 Hz 

Rated Voltage 230-400 V 

Rated Current 15.9-9.2 A 

Connection Delta 
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Table 4.3 Specification of data acquisition equipment 

Device Parameters Values 

K-type 

Thermocouple 

Maximum Temperature +1100 °C 

Probe Diameter 3 mm 

Probe Length 150 mm 

Probe Material Stainless steel 

CA-YD-104T 

Accelerometer 

Sensitivity 35 pC/g 

Measurement Range 800 g 

Frequency Response 1~7000 Hz 

Operating Temperature -20~+120 °C 

Hengstler 

Incremental Encoder 

Number of Pulses 100 

Absolute Maximum Speed Max. 6000 rpm 

Supply Voltage 5 VDC±10% 

Operating Temperature -10~60 ℃ 

Vibration Proof 100 m/s2 (10~2000 Hz) 

Shock Resistance 1000 m/s2 (6ms) 

Type 2635 Charge 

Amplifier 

Brüel & Kjær 

Max. Input 105 pC 

Sensitivity Up to 10 V/pC 

Acceleration Output 0.1 mV to 1 V/ms-2 

Frequency Range 2 Hz TO 100 kHz 

NI 6221 

National Instruments 

ADC Resolution 16 bits 

Sample Rate 250 kS/s 

Input Range ±0.2 V, ±1 V, ±5 V, ±10 V 

Number of Channels 8 differential or 16 single ended 

 

This test rig was designed to investigate the effect of clearance changes in the tapered 

roller bearing on fault diagnosis according to the independent characteristics of the 

inner and outer races of this bearing. Figure 4.8 explains the details of the tapered roller 

bearing test rig. A cylinder structure was designed to push the inner ring axially and a 

screw nut was used to support the cylinder upon the screws on the shaft. Meanwhile, 

there are two grub screws to prevent the cylinder from moving due to the rotation of 

the shaft. The clearance changes were precisely measured with a slip metric gauge box 

set with the type of Matrix Pitter 8075 C [146], [147]. The larger the measured clearance 

shown in red arrows, the smaller the bearing clearance. 
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Figure 4.8 Diagram of the tapered roller bearing structure 

4.3.1.2 Defect seeding 

To simulate failure of the tapered roller bearing, the defects with the length of 4mm 

were created artificially on the outer race and the roller of two TIMKEN 31308 bearings, 

respectively, which are displayed in Figure 4.9. The bearing geometry is described in 

Table 4.1. One healthy bearing will be used as the baseline to compare with the faulty 

ones. 

 

Figure 4.9 Tapered roller bearings with seeded defects 

However, the contact angle of the tapered roller bearing is usually recommended 

between 10° and 30° when it operates. There is no fixed angle to calculate the fault 

frequency. Hence, the fault frequencies of the outer race and roller, as well as the effect 

of the bearing clearance are considered to be confirmed with the experiments. 

4.3.1.3 Test procedure 

Any unreasonable installation method can lead to improper clearance between bearing 

components. The improper clearance will shorten the lifespan of the tapered roller 

bearings. Figure 4.10 illustrates the life curve of the TIMKEN 31308 tapered roller 
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bearing affected by the installation clearance. When the axial clearance between the 

components is very close to zero, the rated life of the bearing is very high. It will 

decrease when the axial clearance increases in the direction of both preload and endplay. 

However, zero axial clearance is very difficult to achieve with the manual installation. 
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Figure 4.10 Typical life curve affected by the installation clearance 

In this experiment, two objectives will be achieved: diagnosis of different faulty 

bearings and influence of bearing component clearance on fault diagnosis. To achieve 

the first objective, the healthy bearing and faulty bearings were successively installed 

at zero axial clearance in the test rig. For the achievement of the second objective, 

bearings with the outer race fault and roller fault were installed at +0.04 mm clearance 

in the endplay direction; then, screwing the nut to the preload direction to make the 

clearance to be +0.02 mm, 0 mm and -0.02 mm in order. The AC motor operated at the 

full constant speed of about 1500 rpm without any additional load. The operation speed, 

temperature and vibration signals were collected by the sampling frequency of 50 kHz 

and recorded for 30 seconds with three repetitions. All recordings of these tests started 

when the temperature observed by the thermocouple was up to 30°C because the 

temperature has a large influence on the bearing component clearance. 

4.3.2 Fault Frequencies Estimation and Effect of Clearance Change 

As mentioned previously, the contact angle of the tapered roller bearing is difficult to 

determine for the fault frequency calculation. The fault frequencies of 31308 tapered 

roller bearings can be approximately estimated with the geometric dimensions shown 

in Figure 4.11 which are obtained using AutoCAD to measure the company's 

recommended bearing structure. The estimated bearing fault frequencies at the rotating 

speed of 1500 rpm are listed in Table 4.4. 
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Figure 4.11 Geometric dimensions of TIMKEN 31308 

Table 4.4 Estimated fault frequencies of 31308 

Parameter 
Outer Race Fault 

𝑓𝑜 

Cage Fault 

𝑓𝑐𝑎𝑔𝑒 
Roller Fault 

𝑓𝑟 

Inner Race Fault 

𝑓𝑖 

Frequency 

(Hz) 
159.79 10.65 72.36 215.21 

However, contact between the rollers and raceways is not a stable line contact in the 

procedure of mechanical operation. Besides, the contact angle will also change 

randomly. Hence, fault frequencies cannot match the experimental results, especially 

the roller fault frequency. 

To determine the fault frequency of the bearing more accurate, an exploratory 

experiment was carried out on two bearings with the independent large outer race fault 

and roller fault. The experiment is to examine the parameters used for the frequency 

calculation. Because the contact angle and the pitch radius are difficult to measure, the 

outer race fault and roller fault are used to calculate the contact angle and the ratio of 

roller and pitch diameters. Let 𝑥 =
𝐷𝑟

𝐷𝑝
, 𝑦 = 𝑐𝑜𝑠𝛼, then 

 𝑥 =
𝑓𝑠𝑟

2𝑓𝑟
[1 − (1 −

2𝑓𝑜

𝑁𝑟𝑓𝑠𝑜
)

2

] (4-34) 

 𝑦 = (1 −
2𝑓𝑜

𝑁𝑟𝑓𝑠𝑜
) /𝑥 (4-35) 

where 𝑓𝑠𝑜 and 𝑓𝑠𝑟 are the shaft frequency when the fault type is the outer race fault and 

roller element fault, respectively; 𝑓𝑟 is the roller fault frequency and 𝑓𝑜 is the outer race 

fault frequency; 𝑁𝑟 is the number of rollers. As explored by Su et al. in [148], some 

extra frequencies will occur caused by various reasons, which are described in Table 
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4.5. The roller fault frequency usually appears in the form of twice the frequency, which 

should be about 134 Hz in this test. 

Table 4.5 Extra frequencies caused by various reasons for different defects 

Causes 
Extra Frequencies for Different Defects 

Outer Race Fault Inner Race Fault Roller Fault 

Stationary Loading - 𝑓𝑠 𝑓𝑐𝑎𝑔𝑒 

Shaft Unbalance 𝑓𝑠 - 𝑓𝑠 − 𝑓𝑐𝑎𝑔𝑒 

Roller Errors 𝑓𝑐𝑎𝑔𝑒 𝑓𝑠 − 𝑓𝑐𝑎𝑔𝑒 - 

Transmission Path - 𝑓𝑠 𝑓𝑐𝑎𝑔𝑒 & 2𝑓𝑟 

 

The parameters 𝑥 and 𝑦 are calculated based on Equations (4-34) and (4-35) with two 

different experimental cases. It is apparent that there is a certain error between the 

theoretical and practical values by comparing Table 4.4 and Table 4.6. 

Table 4.6 Values of 𝑥 and 𝑦 calculated with the exploratory experiment 

Parameter 

Outer Race 

Fault (Hz) 

Roller Fault 

(Hz) 𝒙 𝒚 Contact Angle 

𝑓𝑜 𝑓𝑠𝑜 𝑓𝑟 𝑓𝑠𝑟 

Values 156.92 24.98 134.12 24.98 0.1813 0.8956 26.4° 

4.3.3 Results and Discussion 

The experiments are mainly divided into two tests: the first test monitors the healthy 

and faulty bearings operating at zero clearance between different components; the other 

test investigates the effect of different clearances on fault diagnosis of the tapered roller 

bearing. They will be analysed with the proposed compression method based on the 

traditional signal processing method. The results will be displayed and discussed in 

detail as follows. 

4.3.3.1 Healthy and faulty bearing diagnosis 

The first test aims to distinguish the healthy and faulty bearings at the clearance of 

components of 0mm. The captured datasets sampled with the sampling frequency of 

50kHz and recorded for 30 seconds are filtered by a band-pass filter with the frequency 

band of [3800, 4500] Hz. Then, the fault signals can be demodulated from the filtered 

vibration signals through the envelope analysis. Figure 4.12 displays parts of the 

envelope signals for the healthy and faulty tapered roller bearings. It is obvious that the 

envelope amplitude of the healthy bearing is smaller than that of the faulty ones. 

Additionally, there is no apparent periodicity for the healthy bearing. However, the 

envelope signals of the outer race fault bearing and the roller fault bearing have the 

significantly obvious periodicity of about 0.04 and 0.1 seconds, respectively. 
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Figure 4.12 Envelope signals of the healthy and faulty bearings 

In order to further diagnose the types of bearing faults, the spectra of the envelope 

signals are calculated with the fast Fourier transform as shown in Figure 4.13. For the 

healthy bearing, only the shaft frequency, 𝑓𝑠=24.9 Hz, clearly exists in Figure 4.13 (a), 

which states that the imbalance occurs induced by the manufacture or installation error. 

In Figure 4.13 (b), in addition to the shaft frequency, the outer race fault (𝑓𝑜=156.9 Hz) 

and its second harmonic, as well as their left and right sidebands related to the shaft 

frequency are apparently illustrated. However, the spectrum of the roller fault bearing 

is very complex in Figure 4.13 (c). As mentioned in Table 4.5, the signal of the roller 

fault bearing contains the cage fault frequency (𝑓𝑐𝑎𝑔𝑒=10.5 Hz) and the roller fault 

frequency (𝑓𝑟=134.1 Hz) in the spectrum. Besides, the harmonics and sidebands are 

also extremely intensive which complicates the signal periodicity. 
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Figure 4.13 Envelope spectra of the healthy and faulty bearings 

The trajectory in a phase space presents all possible states of a dynamical system. In 

order to extract more information to diagnose the fault types of the tapered roller 

bearing with fewer samples and features, a dimension reduction based compression 

method is proposed by combining the RP, RQA and PCA methods. 
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Figure 4.14 Mutual information and FNN results of the three cases 

The vibration signal should be pre-processed as Figure 4.6 shown. After the resample, 

the amount of data will be reduced to 2100 per second with the time period of 30 

seconds. Then, the resampled signal is divided into 63 segments with the length of 1000 

points for every segment. For each segment, a phase space will be created according to 

the determined time delay and embedding dimension. Figure 4.14 (a), (c) and (e) 

illustrate the mutual information between a time series signal and its time-delayed 

signals for the healthy and faulty bearings, respectively. The mutual information can be 

regarded as the amount of information about another random system contained in a 

random system. The time delay 𝜏 can be selected in terms of mutual information, which 

is selected as the set of [3 3 3] for these three cases. With the aid of the delayed time 

selected, the embedding dimension  𝑚 of the phase space can be confirmed by the FNN 

as shown in Figure 4.14 (b), (d) and (f). The dimension that none or just a few false 

nearest neighbours existing is the optimal dimension to choose. As a result, the 

dimension is chosen as the set of [5 5 6] for these three cases. With the determined time 

delay and dimension, the phase space trajectory can be generated. The first three-

dimensional trajectories of the healthy and faulty bearings are as shown in Figure 4.15. 
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Figure 4.15 State space plots for the healthy and faulty bearings 

To reduce the dimension of the trajectories, the 2D colour recurrence figures are plotted 

as illustrated in Figure 4.16 (a), (c) and (e). Two axes of the recurrence plots represent 

time. The colour recurrence plot is the real visual representation of the recurrence 

matrices. The colour values demonstrate that the Euclidean distance of the healthy 

bearing is shorter than the faulty ones. Moreover, the appearance of the periodic 

patterns is very different for these three cases, which indicates substantial differences 

in the periodicity of the vibration signals. However, it is difficult to get more 

information from these colour recursive figures. Therefore, the white-black recursive 

graphs are plotted with the recurrence threshold setting as the standard deviation of the 

trajectories [1.0906, 1.8187, 2.5510] in Figure 4.16 (b), (d) and (f) for these three 

different cases. It can be seen that the structural patterns of the recurrence plots of the 

faulty bearings are much more complicated than that of the healthy one, and the roller 

fault bearing is the most complicated. 

The recursive characteristics of the healthy bearing are distributed in Figure 4.16 (b). It 

can be seen that the main diagonal is highlighted in the black colour. But there are no 

other long lines parallel to the main diagonal. Only some very short diagonal lines are 

visible possibly caused by the background noise or the slight defect. Most areas of the 

recurrent plot are the single black points. It expresses that the periodicity of this 

trajectory is very weak, and this result is consistent with the signal characteristics of 

this healthy bearing as shown in Figure 4.13 (a). Compared with the healthy bearing, 

the texture in the recursive graph of the outer race fault bearing illustrated in Figure 

4.16 (d) is much more transparent to show the periodical information as displayed in 
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Figure 4.13 (b). Firstly, the diagonal lines except the main one is a little longer and 

more regular than those of the healthy bearing, which represents the transient behaviour 

like periodic impulse response. In addition, the pattern distribution is relatively uniform, 

indicating that the periodicity is relatively stable. Figure 4.16 (f) draws the white-black 

recursive graph of the roller fault bearing. It can be seen that the large diagonal 

structures occur as the laminar segments, which states the periodicity related to the cage 

frequency. Moreover, the distance between diagonal lines has small fluctuations 

explaining multiple periodicity emerges in this vibration signal. Finally, the recursive 

pictures specify that the pattern implies sufficient information to determine whether the 

bearing is healthy or faulty. However, RQA can be relied on to get more accurate states 

of the bearing instead on observing the recurrence plots. Simultaneously, it achieves 

the feature extraction process to reduce the number of parameters to be saved. 
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Figure 4.16 Colour and white-black recurrence plots for the healthy and faulty bearings 

Twelve recursive quantization parameters introduced in the previous subsection are 

extracted from the white-black recurrence plot of each segment to generate a feature 

matrix with the size of 63×12. Nevertheless, according to the definition of the RQA 

indicators, it is obvious that there is redundancy between these parameters. As a result, 

the PCA algorithm is used to decompose the features and obtain irrelevant PCs and 

reduce the dimension of the signal characteristics. Then, the first three PCs account for 

more than 99% are selected as values for the three axes to be plotted to classify different 

faults as shown in Figure 4.17. It is obviously verified that these three bearing states 

can be clearly distinguished. The points of the healthy bearing (blue star points) and the 

outer race fault bearing (red star points) gather very well because the periodical 

information of the dynamic system response output is relatively stable. Only these black 

points of the roller fault bearing are a little discrete because the fault frequencies 

involved in the roller fault bearing is relatively more. But they can be well separated 

from the blue and red star points to effectively implement the fault diagnosis of tapered 

roller bearings. 

 

Figure 4.17 Scatter plot of the healthy and faulty bearings 
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4.3.3.2 Effect of clearance on bearing defect diagnosis 

To investigate the effect of clearance on bearing defect diagnosis, some tests to change 

the clearance between components for the outer race fault bearing and the roller fault 

bearing were carried out. The results will be discussed as follows. 

(1) Outer race fault bearing 

The data sampling rate and the recorded period are the same as the previous experiment 

settings. The envelope signals of the filtered signals for different outer race fault bearing 

clearances are shown in Figure 4.18. As the clearance decreases, the periodicity 

becomes more and more obvious. 

 

Figure 4.18 Envelope signals of the outer race fault bearing at different clearances 

The envelope spectra of these four different clearances are illustrated in Figure 4.19. 

The shaft frequency 𝑓𝑠=24.9 Hz clearly emerges together with its harmonics, which 

demonstrates the misaligned shaft. Moreover, the outer race fault frequency and its 

second harmonic are very clear and recorded as 𝑓𝑜 and 2𝑓𝑜 in Figure 4.19. Besides, the 

left and right sidebands of the fault frequency and the second harmonic are also very 

apparent. More importantly, the outer race fault frequency decreases and its amplitude 

increases as the clearance reduces. This phenomenon indicates that the peak value of 

the fault frequency cannot be used to diagnose the severity of the defects when the 

bearing clearance changes because the clearance between the bearing components also 

affects the fault frequency value and its amplitude. 
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Figure 4.19 Envelope spectra of the outer race fault bearing at different clearances 

To reduce the number of samples for the fault diagnosis, the proposed dimension 

reduction based compression methods is applied for the envelope signals. The 

relationship between the mutual information and time delay are described in the left 

columns in Figure 4.20. The determined time delays of [2, 3, 2, 3] and dimensions of 

[5, 5, 6, 5] are used to create the phase space trajectories for these four cases with 

different clearances. The generated first three-dimensional phase space trajectories are 

displayed in Figure 4.21. 
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Figure 4.20 Mutual information and FNN results for the outer race fault bearing at difference 

clearances 

 

Figure 4.21 State space plots for the outer race fault bearing at different clearance 
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To extract features and reduce the dimension of the trajectories, the 2D colour and 

white-black recursive graphs are plotted in the left and right column of Figure 4.22, 

respectively. The white-black recurrence plots are determined with the thresholds of 

[1.0946, 1.4916, 1.8177, 1.9341] for these four cases. All four white-black recursive 

figures contain the diagonal lines representing the periodicity of signals. There are 

many short diagonals and single black dots in the case of clearance of +4 mm as shown 

in Figure 4.22 (b), which means the signal is a little chaotic and with the background 

noise. Figure 4.22 (d) and (f) are very similar with less single black dots and have some 

longer diagonal lines compared to Figure 4.22 (b). Some very small orthogonal 

segments appear in these two cases indicating that the states at these locations change 

slowly or does not change. The recurrence plot for the case with the clearance of -2 mm 

is displayed in Figure 4.22 (h). The longer diagonal lines are clearly visible, which 

explains the periodicity of the signal is significant. But the recursive figures are difficult 

to interpret the fault diagnosis of different clearances of the outer race fault bearing. 

Hence, RQA indicators are calculated to quantify the features in the RP figures. 
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Figure 4.22 Colour and white-black recurrence plots for the outer race fault bearing at 

different clearance 

As presented in the previous test, twelve recursive quantization parameters are 

extracted to form a 63×12 feature matrix. Then, the PCA method is applied on the 

extracted feature matrix to reduce the redundancy of the features. The size of the 

features is reduced to 63×3 because the first three PCs account for more than 99% of 

all information. The selected PCs for these four cases are plotted in Figure 4.23. It can 

be seen that these four cases can be clearly distinguished, which is used to determine 

whether the bearing clearance is normal or not to avoid misjudging the severity of 

bearing defects. 
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Figure 4.23 Scatter plot of different clearances of the outer race fault bearing 

(2) Roller fault bearing 

Similarly, some experiments about four different clearances were performed with a 

roller faulty tapered roller bearing. Figure 4.24 illustrates the envelope signals of these 

four cases. The periodicity in Figure 4.24 (a) is inconspicuous which may be induced 

by the poor contact between the faulty roller and the inner and outer races. There are 

significant impact signals in Figure 4.24 (b) to (d) generated by the excitation of the 

faulty roller. But the level of the SNR of the signal in Figure 4.24 (b) is lower than 

another two. 
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Figure 4.24 Envelope signals of the roller fault bearing at different clearances 

Figure 4.25 states the envelope spectra of the roller fault bearing at four different 

clearances. The rotating frequency 𝑓𝑠 is not very conspicuous because its magnitude is 

smaller than that of the cage fault frequency 𝑓𝑐𝑎𝑔𝑒 and its harmonics. Moreover, the 

roller fault frequency 𝑓𝑟 and its second harmonic, as well as many sidebands of them 

related to the cage fault frequency are distinctly illustrated. The frequency band of 

[133.8, 134.6] Hz is enlarged to detail the roller fault frequency. The fault frequency 

peak of the clearance of +4 mm did not appear, which may be induced by the non-

contact of the contact surface because of large clearance. Both the fault frequency 

magnitude and fault frequency value increase as the clearance decreases. 
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Figure 4.25 Envelope spectra of the roller fault bearing at different clearances 

As with the previous procedure, time delays and dimensions are explored according to 

the mutual information and FNN to create the trajectories of these four cases. The time 

delays and dimensions are determined as [4, 5, 4, 5] and [6, 6, 6, 6] based on the results 

displayed in Figure 4.26. The first three-dimensional phase space trajectories of these 

four cases are plotted in Figure 4.27. 

 

Figure 4.26 Mutual information and FNN results for the roller fault bearing at difference 

clearances 
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Figure 4.27 State space plots for the roller fault bearing at different clearance 

Figure 4.28 presents the colour and the white-black recurrence plots for these four 

different clearances of the roller fault bearing. The recurrence thresholds are set as 

[1.9380, 2.5577, 2.3800, 2.9056] for these four cases, respectively. They differ from 

the recursive maps of the outer race fault bearing because the diagonal lines exist as the 

laminar segments. Actually, these blocked square structures can reflect the cage fault 

frequency because they appear in a period of about 0.1 second. There are large white 

bands between the diagonal structures to form rectangular structures. This phenomenon 

indicates that the states of these locations rarely occur. It is very easy to distinguish the 

states of the clearance +4 mm from that of -2 mm because the density of the points is 

dramatically different. The general trend is that the fault display is clearer as the 

clearance is reduced. However, it is very difficult to distinguish all these four cases with 

RPs because their structures are hard to interpret. 
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Figure 4.28 Colour and white-black RPs for the roller fault bearing at different clearance 
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A 63×12 feature matrix is also generated with twelve extracted recursive quantization 

indicators for these four cases. The PCA algorithm is applied to eliminate the 

redundancy between these features and reduce the size of the matrix to 63×3, 

simultaneously. The selected PCs are applied for the classification with the result as 

shown in Figure 4.29. It is obvious that the cases with the clearances of +4 mm and -2 

mm are classified very well, but the other two cases have some overlaps with each other. 

But their cluster centres have a certain distance. It is not very easy to accurately identify 

a small clearance between the roller fault bearing components. 

 

Figure 4.29 Scatter plot of different clearances of the roller fault bearing 

4.4 Summary 

This chapter proposed a dimension reduction compression method for the fault 

diagnosis of tapered roller bearings. The time delay and dimension are the critical 

parameters in phase space trajectory, which are determined by the mutual information 

and FNN respectively. Then, twelve RQA indicators are extracted in the 2D RPs which 

are obtained by dimension reduction of phase space trajectories. The final step is to 

utilise the PCA to reduce the redundancy of the extracted features and classify the fault 

conditions. The results show that the bearings conditions can be successfully 

distinguished with only 189 data points whilst the raw vibration signal has a length of 

1,500,000 samples. 

In addition, the internal clearance of the tapered roller bearing affects the results of fault 

diagnosis, but the compressed features can help determine whether the bearing 

clearance is normal or not to avoid misjudging the severity of bearing defects. Only the 

classification result of the roller fault bearing is not very accurate because of complex 

periodic information, which mean the proposed compression method requires to be 

further improved for its wide applicability in bearing fault diagnosis. 
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 SPARSE REPRESENTATION BASED 

COMPRESSIVE SENSING IN FAULT DIAGNOSIS OF 

BALL BEARINGS 

 

 

This chapter investigates a sparse representation based compressive sensing method 

for fault diagnosis of ball bearings with high efficiency during the long-term condition 

monitoring. The two-step adaptive compression method based on frequency shift and 

compressive sensing was developed to significantly reduce the data sets of vibration 

signals. The performance of the proposed compression method was examined by both 

simulated vibration signals and experimental data. Moreover, indicators of 

reconstruction performance were studied to explain the effectiveness of this sparse 

representation based compressive sensing method. 
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5.1 Introduction 

Ball bearings are a typical type of rolling element bearings and widely applied in 

machines with rotating components, such as water pumps, automotive industries, home 

appliances and aerospace. A ball bearing with the structure as shown in Figure 5.1, 

consisting of the outer race, cage, balls and inner race, has functions of rotational 

friction reduction and supporting radial and axial loads [149], [150]. However, the 

faults on the outer race, the cage, rollers or the inner race will result in failure of ball 

bearings, which will cost an enormous amount of maintenance expenditure because of 

inevitable damages of a machine during operation. Therefore, it is essential to monitor 

the condition of ball bearings in a rotating machine, especially when it works under a 

heavy load in a harsh environment in a long time. 

Outer ring

Cage

Steel balls

Inner ring

 

Figure 5.1 Structure of a ball bearing 

Generally, according to the location where the fault occurs, the ball bearing component 

faults can be categorized as the outer race faults, cage faults, ball faults and inner race 

faults. The main causes of these faults include imperfections and irregularities in the 

manufacturing process, collisions during transportation, installation errors and wear 

and tear over long periods of use [150]. Many researchers have measured various types 

of signals to monitor the condition of ball bearings, like temperature [151], electrical 

characteristics [152], acoustic [153], [154], acoustic emission [155], [156] and vibration 

[157]–[160] signals. Vibration signals are commonly used ones because they are 

effective and reliable for bearing fault diagnosis and the transducers are relatively 

convenient to install. Once the localised fault occurs, a periodic vibration will be 

generated during the operation of the bearing. The vibration is closely related to the 

rotation speed and the ball number of the ball bearing, the size and depth of the defects 

as well. The relations between these typical fault frequencies and parameters of 

bearings have been introduced in the previous chapter. 

However, the vibration response of the system is a modulation signal with the fault 

features in a low frequency range modulated by the carrier signal into a high-frequency 

band [161]. Therefore, according to the Nyquist-Shannon sampling theorem, the signal 

must be collected with a higher sampling frequency, then the fault signal can be 

effectively demodulated with high accuracy for fault identification of bearings. As a 
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result, it is necessary to reduce the hardware cost in the processes of data transfer, 

storage and processing through preventing large amounts of data generated during 

online condition monitoring with multiple sensors and high sampling frequency. 

Compressive sensing is one of the most famous achievements in the field of signal 

processing in this century, and it has been effectively applied in the fields of MRI and 

image processing. It has the ability to reduce the amount of acquired data from the 

source according to the principle of non-uniform sampling, which is different from the 

Nyquist-Shannon sampling theorem with the uniform sampling. Besides, it has a noise 

reduction ability under the premise of meeting the conditions. Furthermore, when the 

original signal is sparse or compressible and the compression matrix satisfies the RIP 

protocol, the original signal can be reconstructed with or without loss [65]. In this 

chapter, a two-step adaptive compression algorithm is proposed to realise the fault 

detection of ball bearings with much fewer data according to the sparse representation 

based CS. 

5.2 Compression Method 

The vibration signal acquired from the bearing system usually exhibits as typical 

modulation characteristics with a periodic pulse excitation signal modulated by the 

system resonance into a high-frequency band. Usually, the sampling frequency of the 

system response signal is up to tens of thousands of Hz or even more. In order to solve 

this problem, a two-step adaptive compression method based on frequency shift and CS 

is proposed to reduce the amount of data used for fault diagnosis of ball bearings 

because it has the potential to achieve data reduction from the data acquisition system 

and also has the ability of noise reduction. Additionally, some performance 

measurements will be used to evaluate the reconstructed signals which are 

reconstructed with the greedy compression recovery algorithm. 

5.2.1 Methodology 

The proposed fault diagnosis method includes the following three steps: the frequency 

shift and envelope based compression step, the CS based compression step and the fault 

diagnosis step, the details of which is shown in Figure 5.2. 
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Original signal x1 with length of n

Calculate the envelope x and its 

spectrum X with DFT matrix Ψ 

Compress X  with Φ to get compressed 

signal y with the length of M (M<<N)

Shift frequency via e-j2πf
shift

t based on 
the analytic signal

Resample to N points (Fs=3× (fh-fl)) 

Band-pass filter with the frequency 

band of [fl, fh]

STEP 1: Frequency Shift and Envelope

Set a threshold ε to sparse the envelope 

spectrum X with the sparsity of K

Set the measurement matrix Φ with the 

size of M×N based on the determined 

parameter C (M>=CKlog(N/K))

STEP 2: Compressive Sensing

Reconstruct the sparse representation    

with y based on OMP

Determine fault 

type with

Reconstruct the 

envelope signal   

Evaluate the 

reconstruction 

performance

STEP 3: Fault Diagnosis
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Figure 5.2 Flow chart of the proposed two-step compression based ball bearing fault detection 

method 

The original signal 𝑥1  with the length of 𝑛  is a modulated signal with the fault 

information is modulated to the high-frequency band. This optimal high frequency band 

is chosen as [𝑓𝑙 , 𝑓ℎ] to filter the original signal. The band-pass filtered vibration signal 

can be shifted from a high frequency band [𝑓𝑙 , 𝑓ℎ]  to the lower one [𝑓𝑙 −

𝑓𝑠ℎ𝑖𝑓𝑡, 𝑓ℎ−𝑓𝑠ℎ𝑖𝑓𝑡] with 𝑓shift moving. Equations (5-1) and (5-2) show the process that 

signal 𝑓(𝑡) shifts 𝑓𝑠ℎ𝑖𝑓𝑡  to the low frequency band in the frequency domain if it is 

multiplied by 𝑒−𝑗2𝜋𝑓𝑠ℎ𝑖𝑓𝑡𝑡 in the time domain. 

 𝑠(𝑡) =
1

2𝜋
∫ 𝑆(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓

∞

−∞
↔ 𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡

∞

−∞
 (5-1) 

 

𝑔(𝑡) = 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑠ℎ𝑖𝑓𝑡𝑡 ↔ 𝐺(𝑓) = ∫ 𝑔(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

= ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑠ℎ𝑖𝑓𝑡𝑡𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡
∞

−∞

= ∫ 𝑠(𝑡)𝑒−𝑗2𝜋(𝑓+𝑓𝑠ℎ𝑖𝑓𝑡)𝑡𝑑𝑡
∞

−∞

= 𝑆(𝑓 + 𝑓𝑠ℎ𝑖𝑓𝑡)

 (5-2) 

However, the negative frequency component will affect the frequency shift result. 

Therefore, it is necessary to convert the signal into an analytic signal and then perform 

frequency shifting to generate an accurate frequency shift signal consisting of fault 

information. 

In mathematics and signal processing, an analytic signal is a complex function with no 

negative frequency components [162]. Suppose that 𝑠(𝑡), 𝑡 ∈ 𝑹 is a real-valued signal, 

then the analytic signal 𝑧(𝑡) can be defined as Equation (5-3): 

 𝑧(𝑡) = s(𝑡) + 𝑗�̂�(𝑡) (5-3) 

where 𝑗 is the imaginary unit with 𝑗2 = −1 and �̂�(𝑡) is the Hilbert transform of 𝑠(𝑡). 
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From the perspective of signal processing, Hilbert transform can be regarded as a signal 

through a linear time-invariant system with an impulse response of ℎ(𝑡) =
1

𝜋𝑡
 as shown 

in Figure 5.3 (a), which can also be recorded as 𝐻[𝑠(𝑡)] and calculated as the following 

equation. 

 𝐻[𝑠(𝑡)]  = �̂�(𝑡) = s(𝑡) ∗
1

𝜋𝑡
 (5-4) 

 

(a) Time domain

(b) Hilbert transform domain

h(t)=    s(t)
1

𝜋𝑡
 �̂�(𝑡) = s(𝑡) ∗

1

𝜋𝑡
 

 H(ω)=-jsgn(ω) S(ω) 𝑆 (𝜔) = −𝑗sgn(𝜔)𝑆(𝜔) 

 

Figure 5.3 Hilbert transform principle from the perspective of signal processing 

The frequency response of the impulse response ℎ(𝑡) =
1

𝜋𝑡
 is usually used as a Hilbert 

filter as shown in Equation (5-5) and Figure 5.3 (b). 

 ℎ(𝑡) =
1

𝜋𝑡
↔ 𝐻(𝜔)  = 𝐻 (

1

𝜋𝑡
) = −𝑗sgn(𝜔) (5-5) 

where sgn(𝜔) is a symbolic function and defined as: 

 sgn(𝜔) = {
1, 𝜔 ≥ 0

−1, 𝜔 < 0
 (5-6) 

As a result, the Fourier transform of �̂�(𝑡) is shown in Equation (5-7) if the Fourier 

transform of s(𝑡) is 𝑆(𝜔). 

 𝑆 (𝜔) = −𝑗sgn(𝜔)𝑆(𝜔) (5-7) 

Then, Fourier transform of 𝑧(𝑡) can be expressed as follows: 

 

𝑍(𝜔) = 𝑆(𝜔) + 𝑗𝑆 (𝜔)

= 𝑆(𝜔) + 𝑗(−𝑗sgn(𝜔)𝑆(𝜔))

= 𝑆(𝜔) + sgn(𝜔)𝑆(𝜔)

= 2𝑆(𝜔)𝑢(𝜔)

 (5-8) 

where 𝑢(𝜔)  is a unit step function with 𝑢(𝜔) = 1, 𝜔 > 0 . Therefore, the Fourier 

transform of an analytic signal has no negative frequency components. As a result, the 

frequency shift by the exponential function according to Equation (5-2) can be achieved 

on the analytic signals. After shifting frequency with an exponential function, the real 

part of the complex signal is the real-valued signal after the frequency shift.  

Then, the vibration signal is resampled to get 𝑁  points based on the bandwidth of 

(𝑓ℎ − 𝑓𝑙). The compressed signal is demodulated to get its envelope signal 𝑥 and the 

envelope spectrum 𝑋 with the DFT matrix Ψ. The fault frequency and its harmonics 
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can be recognised from signal 𝑋 with the high noise level. This is the first compression 

step which compresses the original signal from the length of 𝑛  to 𝑁  (that 𝑁 =

3 × (𝑓ℎ − 𝑓𝑙)). 

The second compression step is mainly achieved on the compressed envelope spectrum 

with the CS method. According to the requirements aforementioned in Chapter 2, the 

signal to be compressed with CS must be sparse or compressible. However, most of the 

practical vibration responses of mechanical systems are the non-sparse and non-

compressible signals. Hence, they need to be converted to other sparse or compressible 

domains with sparse representation according to the Equation (2-3). In the first 

compression step, the obtained envelope spectrum is a compressible signal. In order to 

get a better compression ratio and performance, the envelope spectrum signal can be 

further sparse to obtain accurate sparsity of the signal via the investigated adaptive 

signal sparse method. Firstly, all amplitude peaks with values of 𝐴𝑝 will be picked out 

and aligned in descending order. Then, a threshold value 𝜀 is determined according to 

𝜀 = 𝜅|max(𝐴𝑝) − min(𝐴𝑝)| [163], the threshold coefficient 𝜅 is set to 1%. After that, 

if there are five consecutive peaks satisfy Equation (5-9), then the first of them, 𝐴𝑝𝑖
 will 

be set as the peak threshold. Any peak with the value higher than the peak threshold 

will be reserved and other amplitudes of envelope spectrum will be set to zero to sparse 

the envelope spectrum signal with the sparsity of 𝐾. 

 |𝐴𝑝𝑖
− 𝐴𝑝𝑖+1

| < 𝜀, 𝑖 = 1,2, … , 𝑚 − 1 (5-9) 

where 𝑚 is the number of amplitude peaks. Then, the size of the measurement matrix 

can be determined to 𝑀 × 𝑁 according to Equation (5-10). 

 𝑀 >= 𝑐𝐾log(𝑁/𝐾) (5-10) 

where 𝑐 is a constant [65]. The sparse envelope spectrum signal is compressed with a 

Gaussian random matrix Φ into the observed signal 𝑦 with the length of 𝑀. According 

to the RIP protocol, the sparse representation �̂�  can be reconstructed via the 

optimization algorithm OMP once the observed signal 𝑦 is available. 

The last step is the fault diagnosis and reconstruction performance estimation. The 

reconstructed signal �̂� contains faulty signal components which are important to detect 

and diagnose the fault type of ball bearings. Moreover, the envelope signal �̂� can be 

reconstructed and denoised compared with the original envelope signal. The 

performance of reconstruction can be measured by some measurements introduced in 

the next subsection. 

5.2.2 Reconstruction Performance Evaluation Indicators 

The compression process and the reconstructed signal should be evaluated by some 

traditional statistical performance indicators, such as compression ratio, mean square 

error and percent root mean square difference [164]. Moreover, a more reasonable and 
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reliable method, fault feature signal-to-noise ratio (F-SNR) will be customized to 

evaluate the quality and efficiency of the reconstructed envelope spectrum for bearing 

fault diagnosis. 

5.2.2.1 Compression Ratio 

Compression ratio (𝐶𝑅) is the ratio of the length of the original signal to the length of 

the compressed signal, which can be calculated as shown in Equation (5-11). 

 𝐶𝑅 =
𝑁

𝑀
 (5-11) 

where 𝑁 is the length of the original signal and 𝑀 is the length of the compressed signal. 

For the same set of data, the larger the value of 𝐶𝑅, the less the amount of data needs 

to be stored after compression. 

5.2.2.2 Root Mean Square Error 

Root mean square error (𝑅𝑀𝑆𝐸) indicating the difference between the reconstructed 

and the original signals is defined by 

 𝑅𝑀𝑆𝐸 = √∑ (𝑥�̅�−𝑥𝑖)
2𝑁

𝑖=1

𝑁
 (5-12) 

where, 𝑥𝑖 is the 𝑖th element of the reconstructed signal and 𝑥𝑖 is the 𝑖th element of the 

original signal of length 𝑁. The higher the RMSE means the worse performance of 

signal reconstruction with CS. 

5.2.2.3 Percent Root Mean Square Difference 

Percent root mean square difference (𝑃𝑅𝐷) is mainly used to measure the distortion of 

the reconstructed signal compared with the original signal. It is given as shown in 

Equation (5-13). 

 𝑃𝑅𝐷 = √
∑ (𝑥�̅�−𝑥𝑖)

2𝑁
𝑖=1

∑ (𝑥𝑖)
2𝑁

𝑖=1

× 100 (5-13) 

5.2.2.4 Fault Feature Signal-to-noise Ratio 

𝐹-𝑆𝑁𝑅 is a newly developed indicator to evaluate the performance of signals based on 

the fault features. The fault frequency and its harmonics are picked out as the 

representative of the fault signals, and other remaining signals are treated as noise. 

𝐹-𝑆𝑁𝑅 is expressed as Equation (5-14). 

 𝐹-𝑆𝑁𝑅 = 20log10
𝐴𝑠𝑖𝑔𝑛𝑎𝑙

𝐴𝑛𝑜𝑖𝑠𝑒
= 20log10

𝐴𝑓𝑎𝑢𝑙𝑡

𝐴𝑜𝑡ℎ𝑒𝑟
 (5-14) 

where 𝐴𝑓𝑎𝑢𝑙𝑡  is the mean of those amplitudes of fault frequency and its harmonics; 

𝐴𝑜𝑡ℎ𝑒𝑟  is the mean of amplitudes of the remaining signals. It can be seen from the 

definition of this indicator that it is more reasonable and reliable to evaluate the 

performance of the signal used for fault detection. 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

109 

 

5.3 Simulation Study 

5.3.1 Model Simulation 

To validate the proposed two-step compression algorithm for fault diagnosis of ball 

bearings, the vibration signal of a rolling element bearing system with local defect is 

simulated as expressed in Equation (5-15) [165], [166]. 

 𝑥1(𝑡) = ℎ(𝑡) ∗ 𝑢(𝑡) + 𝑛(𝑡) (5-15) 

where,  

ℎ(𝑡) is the response of the system indicating the system resonant behaviours simulated 

as shown in Equation (5-16); 

𝑢(𝑡) is the periodic impulses produced by the elements passing through the defects; 

𝑛(𝑡) is the Gaussian white noise signal generated by the complicated environments, 

data acquisition systems and complex vibration signal transmission path. 

 ℎ(𝑡𝑖) = 𝑒−𝜏2𝜋𝑓𝑐𝑡𝑖𝑐𝑜𝑠(2𝜋𝑓𝑐𝑡𝑖) (5-16) 

where, 

𝜏 is the oscillation damping factor; 

𝑓𝑐  is one frequency of the system response which is also regarded as the carrier 

frequency; 

𝑡𝑖 is the time period of system response to an impulse excitation, which means it is the 

same as the period of the fault impulse, 
1

𝑓𝑜
, where 𝑓𝑜 is the fault frequency. 

Some key parameters of the model simulation are listed in Table 5.1. The sampling 

frequency, 𝐹𝑠 and the natural frequency of the system 𝑓𝑐 are set to be 25,600 Hz and 

2500 Hz, respectively. The outer race fault is simulated with the fault frequency of 

89.80 Hz. The simulated data length is 5 seconds to ensure the number of impulses is 

enough to operate. Part of the simulated impulse signal and the system resonance 

waveform are both illustrated in Figure 5.4 to express these two signals more clearly. 

Table 5.1 Key parameters for simulation 

Parameters Value 

Sampling Frequency, 𝐹𝑠 25,600 Hz 

Natural Frequency, 𝑓𝑐 2500 Hz 

Fault Frequency, 𝑓𝑜 89.80 Hz 

Data Length, 𝑡 5 seconds 
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Figure 5.4 Simulated impulse signal and system resonance 

Therefore, the signal waveform of ℎ(𝑡) ∗ 𝑢(𝑡) as the output of the ideal system without 

any noise is simulated through the convolution, which is plotted with the red colour in 

Figure 5.5 (a). It is a very clear periodic impulse signal. However, it is impossible that 

a realistic mechanical system signal has no noise because it is always affected by the 

ambient environment and the passing path. As a result, the Gaussian white noise 𝑛(𝑡) 

is added to this clean signal waveform to generate a signal 𝑥1(𝑡) with the SNR of -15 

dB, which is illustrated with the blue line and labelled as “With noise”. It is significantly 

different between the signals with noise and without noise. In particular, periodic 

features cannot be visually observed. 
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Figure 5.5 Simulated bearing signals with and without noise 

Moreover, the spectra of these two signals are also expressed in Figure 5.5 (b). It is 

clear that the energy and the fault information is mainly concentrated in the frequency 

band of [2000 Hz, 3000 Hz] because the carrier frequency is set to 2500 Hz in this 

simulated signal. This simulated signal with the outer race fault will be applied to 

investigate the proposed two-step compression method for the fault diagnosis. 

5.3.2 Results and Discussion 

5.3.2.1 Step One: Frequency Shift and Envelope 

In order to reduce the sampling frequency, the signal in the high-frequency band of 

[2000, 3000] Hz is converted into the analytic signal according to Equations (5-3) and 

(5-4). Then, the analytic signal can be shifted to a lower frequency band of [0, 1000] 

Hz with the exponential function e−j2π𝑓𝑠ℎ𝑖𝑓𝑡t (where 𝑓𝑠ℎ𝑖𝑓𝑡 = 2000 Hz) according to 

the Equation (5-2). Now, the fault information has been shifted to the frequency band 

of [0, 1000] Hz, so that it is not necessary to sample the signal with a very high sample 

rate. Then, the real part of the shifted signal can be selected to resample with the sample 

frequency of only 3000 Hz based on 𝐹𝑠0 = 3 × (𝑓ℎ − 𝑓𝑙) meeting the requirements of 

Nyquist-Shannon sampling theorem, where 𝑓ℎ = 3000 Hz and 𝑓𝑙 = 2000 Hz in this 

case. The envelope of this resampled signal, regarded as 𝑥(𝑡)  is the effective 

information related to the fault. 
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This is the first compression step of the proposed method which compressed the signal 

𝑥1(𝑡) from the length of 𝑡 × 𝐹𝑠  (5×25600) to 𝑡 × 𝐹𝑠0  (5×3000) to get the envelope 

signal 𝑥(𝑡) with the compression ratio up to 8.5. The spectra of the signal after the 

frequency shift and downsampling and its envelope spectrum written as 𝑋(𝑓)  are 

illustrated in Figure 5.6. The outer race fault frequency 𝑓𝑜𝑢𝑡𝑒𝑟 and its harmonics are 

quite clear in its envelope spectra. 

 

Figure 5.6 Spectra of the signal before and after envelope 

5.3.2.2 Step Two and Three: Compressive Sensing and Fault Diagnosis 

Based on the result of the first compression step, the number of data can be further 

reduced by CS, which has the potential to achieve in data acquisition system in future. 

Moreover, CS has the abilities to reduce the noise and reconstruct the signal before 

compression with the tolerable distortion. 

In order to further compress the envelope signal  𝑥(𝑡) with CS, it is necessary to sparse 

it according to the requirements of the CS theory. Fortunately, 𝑥(𝑡) is compressible in 

the frequency domain, so that the spectrum 𝑋(𝑓) is obtained to prepare for compression. 

However, the signal 𝑋(𝑓) is not sparse, which makes it difficult to determine some 

parameters in the CS algorithm implementation process. According to the method 

described in Equation (5-9), the sparsity of the envelope spectrum can be obtained by 

the proposed adaptive signal sparse method. The sparsity is set to 𝐾 = 16 for this 

envelope spectrum 𝑋(𝑓) after sparse. Furthermore, the parameter 𝑐 in Equation (5-10) 
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should be confirmed for further determination of the measurement matrix. In order to 

confirm the value of parameter 𝑐 used in Equation (5-10), 𝑐 is set from 0.4 to 16 with 

an interval of 0.1. The relation between 𝑃𝑅𝐷 and 𝑐 is investigated in Figure 5.7. The 

𝑃𝑅𝐷  value dramatically decreases at first and then keep constant when 𝑐 > 2 . It 

demonstrates that setting the value of 𝑐  to 2 is the best choice to trade off the 

compression performance and computing time. 

 

Figure 5.7 Relation between PRD and parameter 𝑐 

 

Figure 5.8 Comparison of original envelope and reconstruction at SNR = -15 dB 
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According to Equation (5-10), 𝑀  can be set to the minimum integer greater than 

𝑐𝐾log(𝑁/𝐾), which should be 𝑀 = 96 here. Hence, the measurement matrix Φ can be 

set to the size of 𝑀 × 𝑁 = 96 × 15000 to get the compressed envelope spectrum as 

the observation 𝑦 with the size of 𝑀 × 1. The sparse representation of the envelope 

spectrum 𝑋(𝑓) can be calculated via the optimization algorithm OMP. To eliminate the 

effects of randomness and validate the reliability and robustness of the proposed 

algorithm, the simulation was carried out 100 times with the average result shown in 

Figure 5.8. 

The envelope spectrum of the signal without noise expresses the outer race fault 

frequency and its harmonics clearly with the blue line. While the traditional envelope 

spectrum of the signal with noise (SNR = -15 dB) has the broadband noise even the 

fault frequency and harmonics are evident to detect the fault. Compared to the 

traditional envelope spectrum plotted with the green colour, the recovered sparse 

representation of the envelope signal 𝑥(𝑡) is more effective and efficient to detect the 

faults of ball bearings according to the fault frequency and its harmonics with much 

less noise as shown in Figure 5.8. It means that only 𝑀 values are transmitted and stored 

for the fault diagnosis of ball bearings, which saves a lot of resources and cost in 

industrial applications. Moreover, this adaptive compression step with CS has the 

function of noise elimination result in a lower level noise of the sparse representation 

signal for the better performance of fault detection. 

The last function of this method is to reconstruct the envelope signal according to 

Equation (2-6) with the DFT matrix. The reconstructed envelope signal is illustrated 

with the red line in Figure 5.8. Compared with the original envelope signal with noise 

in the green colour, the reconstructed envelope signal is an obvious periodic signal. Its 

periodicity almost overlaps with the envelope signal without noise plotted with the blue 

colour. This phenomenon further illustrates that CS can eliminate noise. At the same 

time, the reduced amplitude of the reconstructed envelope signal also indicates that CS 

has an inevitable loss in the process of signal reconstruction. However, the loss is 

tolerable because it does not affect the performance of fault diagnosis and reduce the 

impact of the noise. This is one of the important reasons for applying CS to ball bearing 

fault diagnosis because fewer points can help reconstruct the envelope signal with little 

loss. Figure 5.9 illustrates another two results to verify the effectiveness and reliability 

of the proposed method when the original signals are at the level of SNR = 0 dB and -

10 dB, respectively. 
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(a) SNR = 0 dB (b) SNR = -10 dB 

Figure 5.9 Comparison of original envelope and reconstruction at: (a) SNR = 0 dB, (b) SNR = 

-10 dB 

5.3.2.3 Performance Evaluation 

To evaluate the performance of the proposed two-step compression method in ball 

bearing fault diagnosis, the main indicators are used for different signals with various 

noise level. In the first compression step, the amount of data is compressed from 

128,000 to 15,000 with a compression ratio of about 8.53 according to the frequency 

shift, downsampling and envelope application. In the second compression step, CS 

plays a major role in reducing the number of sample points. It further compresses the 

amount of data from 15,000 to only 96 with a compression ratio of up to 156.25. But 

the second compression step is adaptive because the length of the observation is related 

to the signal sparsity. In total, the amount of data is compressed from 128,000 to 96 by 

combining these two compression steps, which achieves significantly considerable data 

reduction with the compression ratio of more than 1333 times. 

Table 5.2 Main indicator values compared with the signal with noise 

Indicators 
Original Signal SNR 

0 dB -5 dB -10 dB -15 dB 

𝐾 16 16 16 16 

𝑀 96 96 96 96 

𝐶𝑅 

Step 1 8.53 8.53 8.53 8.53 

Step 2 156.25 156.25 156.25 156.25 

2 Steps 1333.3 1333.3 1333.3 1333.3 

𝑅𝑀𝑆𝐸 (m/s2) Compared with noisy 

signal 

0.05 0.08 0.14 0.24 

𝑃𝑅𝐷 (%) 35.31 58.66 85.03 96.44 

𝑅𝑀𝑆𝐸 (m/s2) 0.03 0.04 0.06 0.09 
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Indicators 
Original Signal SNR 

0 dB -5 dB -10 dB -15 dB 

𝑃𝑅𝐷 (%) 
Compared with noise-free 

signal 
17.36 27.22 43.00 59.08 

𝐹-𝑆𝑁𝑅 (dB) 

Original envelope 

spectrum 
30.47 24.91 17.86 11.39 

Reconstructed envelope 

spectrum 
+Inf 58.65 52.36 43.04 

 

Table 5.2 listed the performance indicators of signals at different noise levels in the 

second compression step. The sparsity 𝐾 depends on the number of fault frequency and 

harmonic components in the envelope spectra because the fault frequency and harmonic 

components will be picked out in the process of finding the peaks meeting the 

requirements of Equation (5-9). The number of observations or measurements 𝑀 is 

determined according to Equation (5-10). It is evident that both 𝐾 and 𝑀 are the same 

for signals with different levels of noise because they have the same fault signals and 

the fault characteristics are obvious after sparse processing. Referring to Equation 

(5-11), the compression ratio 𝐶𝑅 can be calculated for each compression step and the 

two-step combined as listed in Table 5.5. 

Additionally, the reconstructed envelope signal can be evaluated from the time domain 

and the frequency domain. In the time domain, the reconstructed envelope signal is 

compared with the envelope of the original noisy signal and noise-free signal, 

respectively. Both 𝑅𝑀𝑆𝐸 and 𝑃𝑅𝐷 values increase as the original signal noise level 

decreases because the impact of noise on the fault signal is larger and larger. However, 

the reconstructed envelope signal is much closer to the envelope of the noise-free signal, 

which demonstrates that the CS method has the ability to eliminate the noise. In the 

frequency domain, the new developed indicator 𝐹-𝑆𝑁𝑅 is used on the original envelope 

spectra and the reconstructed envelope spectra. As shown in Figure 5.10, all points 

selected for the 𝐹-𝑆𝑁𝑅  calculation are displayed manifestly. The original and 

reconstructed envelope spectra for signals with the SNR of 0dB, -5dB, -10dB and -

15dB are presented in Figure 5.10 (a), (b), (c) and (d), respectively. The blue line and 

the red dot line separately plot the original signals before selecting fault features and 

the remaining signals, which means the difference between the signals drawn by the 

blue and red lines represents the selected fault features. 
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(a) (b) 

  
(c) (d) 

Figure 5.10 Fault features selected for 𝐹-𝑆𝑁𝑅 calculation: (a) SNR = 0 dB, (b) SNR = -5 dB, 

(c) SNR = -10 dB, and (d) SNR = -15 dB 

According to Equation (5-14), the mean of amplitudes of the fault features and the 

remaining signals are 𝐴𝑓𝑎𝑢𝑙𝑡 and 𝐴𝑜𝑡ℎ𝑒𝑟, respectively. From the results of 𝐹-𝑆𝑁𝑅, the 

fault components of the reconstructed envelope spectra are more abundant than the 

noise information. But the noise in the original envelope spectrum is significantly larger 

than that of the reconstructed envelope spectrum. Therefore, the proposed two-step 

compression method can be demonstrated to be effective and efficient with the 

simulated ball bearing signal. It not only reduces the amount of data with the 

compression ratio of more than 1500 times but also reconstructs the envelope signal 

with noise elimination. 

5.4 Experiments 

For the validation of the proposed two-step adaptive compression method, the 

simulation study was performed with the satisfactory results in both compression ratio 

and fault diagnosis. Then, it needs to be further verified by the experimental data 

because the mechanical system and the ambient environment may change during the 

actual application process and also the system response is much more complicated than 

the simulation. Therefore, an outer race failure test was carried out on a ball bearing 

test rig with the data acquired to verify the effectiveness of the proposed compression 

method. 
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5.4.1 Experimental Setup 

5.4.1.1 Test Facilities 

As described in Figure 5.11, the ball bearing test rig mainly consists of an Optima 

controller, an induction motor, supporting bearings, flexible couplings, the shaft and a 

DC generator. The Optima controller supplies 3-phases electricity to the 4kW induction 

motor and in the meantime the controller is also connected with the DC generator to 

control the load. The specification of the motor is the same as the specification listed in 

Table 4.2. Besides, considering the position of the faulty ball bearing, a piezoelectric 

accelerometer with the model number of CA-YD-185 was installed in the vertical 

direction on the top of the motor drive end bearing housing. In addition, a Hengstler 

incremental encoder was installed on the fan end of the motor, connected by an elastic 

pipe. Their specifications are listed in Table 5.3. Moreover, a 16-channel data 

acquisition system from Sinocera Piezotronics, Inc. was used to collect data with the 

sampling frequency of 96 kHz at 24-bit resolution. 

PC

DAQ

Sensors 

Motor and DC generator  
Optima controller

 

Figure 5.11 Schematic diagram of the ball bearing test rig 

Table 5.3 Specification of sensors 

Sensors Parameters Values 

Accelerometer 

(CA-YD-185) 

Voltage Sensitivity 5.106 mV/ms-2 

Power Supply 12~24 VDC 

Frequency Range 0.5~5000 Hz 

Accelerometer Limit 1000 m/s2 

Temperature Range  -40~120 ℃ 

Excitation Current 2~10 mA 

Hengstler 

Incremental 

Encoder 

Number of Pulses 100 

Absolute Maximum Speed Max. 6000 rpm 

Supply Voltage 5 VDC±10% 

Operating Temperature -10~60 ℃ 

Vibration Proof 100 m/s2 (10~2000 Hz) 

Shock Resistance 1000 m/s2 (6 ms) 
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5.4.1.2 Defect Seeding 

To simulate the failure occurred on the ball bearing, different sizes of the defects were 

created artificially on the ball bearings. The tested ball bearing is the type of 6206ZZ 

from NSK with the geometry enumerated in Table 5.4. Seven identical ball bearings 

were prepared, one of which was a healthy one and the other six were seeded small, 

medium and large defects on the outer and inner races, respectively. These six ball 

bearings with defects are illustrated in Figure 5.12. 

Table 5.4 Ball bearing specification 

Parameters Values 

Pitch Diameter, 𝐷𝑝 46.4 mm 

Roller Diameter, 𝐷𝑟 9.53 mm 

Shaft Rotating Frequency, 𝑓𝑠 24.90 Hz 

Roller Number, 𝑁𝑟 9 

Contact Angle, 𝜑 0 

Outer Race Fault Frequency, 𝑓𝑜 88.86 Hz 

Inner Race Fault Frequency, 𝑓𝑖 134.80 Hz 

 

Large 
Medium Small

Large Medium Small

(a) 

(b)  

Figure 5.12 The bearings with defects: (a) outer race faults, and (b) inner race faults 

The theoretical outer race fault frequency 𝑓𝑜 and inner race fault frequency 𝑓𝑖 can be 

calculated according to the Equation (4-4). When the test rig operates at the speed of 
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24.90 Hz, 𝑓𝑜 and 𝑓𝑖 are 88.86 Hz and 134.80 Hz, respectively, which are the particular 

frequencies to use for the identification of faults and shown in Table 5.4. 

5.4.1.3 Test Procedure 

In this test, the system was operated at the full constant speed of the motor and 100% 

load. The shaft rotating frequency is 24.9 Hz. Both the vibration signal and encoder 

signal were collected with the sampling frequency of 96 kHz and recorded for 5 seconds 

with three sets. All tests are divided into three groups: the first one is the healthy case 

regarded as the baseline; the second one is the outer race faults with the large, medium 

and small defects tested, respectively; the third one is the inner race faults also with the 

large, medium and small defects tested, separately. All datasets were saved as the .mat 

file format. 

5.4.2 Results and Discussion 

To validate the effectiveness the proposed two-step compression method on actual data, 

two groups of tests were conducted in this research: one for outer race faults with 

different sizes and the other for inner race faults. The cases of healthy, with large, 

medium and small defects are abbreviated as ‘Healthy’, ‘Large’, ‘Medium’ and ‘Small’, 

respectively. The results will be separately discussed from outer race faults and inner 

race faults. 

5.4.2.1 Ball Bearings with Outer Race Faults 

In this test, the datasets were recorded for 5 seconds with sampling frequency of 96 kHz 

for these four different sizes of outer race faults. The time waveforms of these four 

cases are illustrated with different colours in Figure 5.13 (a). The amplitudes 

dramatically reduces as the size of the faults decreases, which also can be distinguished 

with the RMS values. Besides, their spectra are also clearly described in Figure 5.13 

(b). The frequency band of [2000, 3000] Hz with large vibration amplitudes is better to 

use for the processing of fault diagnosis because the fault signal is modulated into this 

band. 
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Figure 5.13 Original signals of bearings with outer race faults: (a) time waveforms, and (b) 

spectra 

As introduced from Equations (5-2) to (5-8), the frequency in this special band can be 

shifted to a lower band of [0 1000] Hz to reduce the sampling frequency by analytic 

function. After the successful shifting with an exponential function, the sampling 

frequency can be reduced to 3000 Hz because the valid frequency bandwidth is only 

1000 Hz. The spectra of the shifted and down sampled signal are illustrated in Figure 

5.14 (a). As a result, the number of sampling points decreases from 480,000 to 15,000 

with the compression ratio of 32 in the first compression step. Then, envelope, as the 

demodulated method, is applied to this shifted signal and its spectrum are expressed in 

Figure 5.14 (b). The fault frequency around 90.2 Hz and its four harmonics are 

significantly explicit that these bearings have the outer race faults with different sizes 

of the defects. The larger the size of the defect, the bigger the magnitude of the fault 

frequency, which is expressly described in the zoom window in Figure 5.14 (b). The 

values of the fault frequency for three fault cases are not exactly the same due to the 

manufacturing error and speed control, so that fault frequency has a minor shift when 

the bearing has a large fault. 
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Figure 5.14 Spectra of bearings with outer race faults: (a) before envelope, and (b) envelope 

spectra 

The second compression step is to use a sparse representation based CS method to 

compress further the data of the signals. The envelope spectra are converted into the 

sparse signals by the proposed adaptive sparse method defined in Equation (5-9). The 

sparsity of the four cases of health, large, medium and small faults are 36, 14, 18 and 

22, respectively, as shown in Table 5.5. When the defect size is small, the fault 

characteristics are easily submerged by noise, which is not conducive to the fault feature 

extraction. Therefore, the sparsity increases as the size of the fault decrease. On the 

other hand, the sparsity determines the number of observations, which means the 

bearing with a small defect or early fault requires more data to detect. After the second 

compression step, the number of observations and compression ratios for these four 

cases are listed in Table 5.5.  

Moreover, the original envelope spectra and the sparse representations of envelope 

signals recovered by the OMP method are compared with the results depicted in Figure 

5.15. It is obvious that the vibration amplitude of healthy is much smaller than others 

with faults. Also, there is random noise without any outer race fault frequency. 

However, the outer race fault features, including the fault frequency and its harmonics, 

can effectively and efficiently state that the bearing has the outer race fault. Furthermore, 

according to the magnitudes of the fault features, the defect size can be apparently 

distinguished. For the reconstructed sparse representations of the envelope spectra, they 

have minor losses compared with the original ones. But they have an outstanding ability 

to eliminate noise. 
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Figure 5.15 Original and reconstructed envelope spectra of bearings: (a) healthy, (b) large 

outer race fault, (c) medium outer race fault, and (d) small outer race fault 

Besides, the compressed signals with CS have a characteristic that they can be 

reconstructed with a tiny loss or even without loss if the signal is sparse enough. Figure 

5.16 describes the reconstruction effect of the envelope signals compared with the 

original ones. The envelope signal of the healthy bearing is not sparse so that its 

reconstructed envelope timewave has the smaller magnitudes than the original one. But 

the faulty cases have excellent reconstruction results, especially for the bearing with a 

large outer race fault, which can be evaluated with the performance indicators. 

 

Figure 5.16 Original and reconstructed envelope signals of bearings: (a) healthy, (b) large 

outer race fault, (c) medium outer race fault, and (d) small outer race fault 
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Table 5.5 described some primary indicators of evaluating the performance of the 

proposed two-step compression method for bearings with outer race faults. As with the 

processing of the simulated signal, the envelope spectra are sparse after the first 

compression step. The sparsity 𝐾 becomes larger as the fault characteristics decrease. 

The number of observation points has the same trend as the sparsity. 𝐶𝑅 in the first 

compression step is primarily related to the selected band bandwidth. It is closely 

related to the sparsity of the compressed signal. The values of 𝐶𝑅  are these two 

compression steps and two steps combined for these four different cases are 

comprehensively compared in Table 5.5. 𝐶𝑅 can reach more than 5,000 for the signal 

of the bearing with a large fault because of the apparent fault characteristics. Although 

𝑅𝑀𝑆𝐸 is used to evaluate the difference between the original and reconstructed signals, 

the large 𝑅𝑀𝑆𝐸 value does not indicate that the reconstruction effect is poor since the 

signal amplitude of the bearing with a larger fault is much larger than the smaller ones. 

In contract, 𝑃𝑅𝐷  is a better indicator because it describes the distortion of the 

reconstructed signal relative to the original one. However, since the proposed algorithm 

has a good noise reduction effect, the distortion of the reconstructed signal has not a 

strong relationship with the defect size. 

The proposed performance evaluation indicator, 𝐹-𝑆𝑁𝑅, aims to measure the strength 

of the effective fault features compared to the undesired signals. As shown in Figure 

5.17, the blue points are the selected fault features and the red points are the remaining 

undesired signals. In terms of the 𝐹-𝑆𝑁𝑅  values, the faulty bearing signals have 

apparent fault features. Additionally, the 𝐹-𝑆𝑁𝑅 values decreases as the size of the 

defect reduces. Moreover, the reconstructed envelope spectra have much more 

pronounced fault features compared with the original ones, which explains that the 

proposed compression method has noticeable capability of noise reduction. 

Table 5.5 Main indicator values for outer race faults 

Indicators 
Defect Size 

Healthy Large Medium Small 

𝐾 36 14 18 22 

𝑀 189 85 106 125 

𝐶𝑅 

Step 1 32 32 32 32 

Step 2 79.37 176.47 141.51 120.00 

2 Steps 2539.7 5647.1 4528.3 3840.0 

𝑅𝑀𝑆𝐸 (m/s2) 0.62 41.59 16.30 6.20 

𝑃𝑅𝐷 (%) 94.01 50.32 46.87 36.64 

Original envelope 

spectrum 
- 35.61 33.92 31.96 
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Indicators 
Defect Size 

Healthy Large Medium Small 

𝐹-𝑆𝑁𝑅 

(dB) 

Reconstructed 

envelope spectrum 
- +Inf 52.89 48.81 

To sum up, it is demonstrated that the proposed two-step compression method based 

on the sparse representation has significant ability to compress a large amount of data 

with 𝐶𝑅 of up to thousands of times. Additionally, the proposed method can eliminate 

noise to preserve the fault characteristics within the bearing signals from different 

defect cases. Furthermore, the newly developed performance indicator, 𝐹-𝑆𝑁𝑅, is more 

conducive to measuring the effectiveness of the signal for fault diagnosis. 

 
(a) (b) (c) 

Figure 5.17 Fault feature selection for envelope spectra of bearings with outer race faults: (a) 

large, (b) medium, and (c) small 

5.4.2.2 Ball Bearings with Inner Race Fault 

In order to prove the wide application of the proposed method, another series of tests 

on the bearings with inner race faults were performed in this research. Figure 5.18 (a) 

illustrates the time waveforms and spectra of four different cases. The amplitude of the 

vibration signal is positively related to the size of the bearing fault. The spectra of these 

cases are displayed in Figure 5.18 (b) and the energy mainly focused in the frequency 

band of [2000, 4000] Hz which is rich of the fault information. 
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Figure 5.18 Original signals of bearings with inner race faults: (a) time waveforms, and (b) 

spectra 

To reduce the amount used for the classification, only the frequency of [2000 Hz, 3000 

Hz] was shifted to a lower band of [0 Hz 1000 Hz] with the sampling rate reduced to 

3000 Hz by the analytic function. The shifted spectra and envelope spectra are 

illustrated in Figure 5.19 (a) and (b), respectively. The inner race fault frequency is 

apparent in the enlarged box. Their frequency values are not exactly the same because 

of manufacturing errors and rotating speed fluctuation. In addition, the rotating 

frequency and its harmonics, as well as the sidebands of the fault frequency are evident 

in the envelope spectra. 
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Figure 5.19 Spectra of bearings with inner race faults: (a) before envelope, and (b) envelope 

spectra 

As described in the previous subsection, the second compression step is based on the 

sparse representation of envelope spectra. The sparsity of these four cases is determined 

as 35, 26, 28 and 42 as listed in Table 5.6 respectively according to the proposed 

adaptive sparse method expressed in Equation (5 9). The sparsity of signals will 

determine the number of observations in the second compression step, which will be 

shown with the compression ratios together in Table 5.6. The original envelope spectra 

and their recovered sparse representations by the OMP approach are displayed in Figure 

5.20. It is manifest that both the original envelope spectra and the reconstructed sparse 

representation effectively explain the fault type of the bearing is the inner race fault, 

but the amplitude of the fault frequency cannot indicate the severity of the fault because 

of the selection of the frequency band. However, the reconstructed signals have only 

minor losses but less noise due to the noise elimination function of CS. 

Furthermore, the envelope waveforms are recovered by the measurement matrix. The 

original and reconstructed envelope waveforms of these four cases are illustrated in 

Figure 5.21 with the blue and red lines, respectively. For the healthy case, the signal is 

not sparse because it is rich in noise, and a part of the noise is eliminated with CS, 

which leads to a significant difference between the original envelope waveform and the 

reconstructed one. But the faulty cases have much more excellent reconstruction results, 

especially for the bearing with a large outer race fault, which can be evaluated with the 

performance indicators as listed in Table 5.6. 
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Figure 5.20 Original and reconstructed envelope spectra of bearings: (a) healthy, (b) large 

inner race fault, (c) medium inner race fault, and (b) small inner race fault 

 

Figure 5.21 Original and reconstructed envelope signals of bearings: (a) healthy, (b) with a 

large fault, (c) with a medium fault, and (d) with a small fault 

From the results shown in Table 5.6, it is noticeable that the 𝐶𝑅 of the inner race fault 

bearing signal is smaller than that of the outer race fault one which is caused by the low 

sparsity of the complex inner race fault signal. It is pronounced that both 𝑅𝑀𝑆𝐸 and 

𝑃𝑅𝐷  are not sensitive enough to evaluate the severity of the fault, but they can 
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distinguish the healthy and faulty bearings. In contrast, 𝐹-𝑆𝑁𝑅 can help distinguish the 

severity of the fault with a minor difference of the reconstructed envelope spectrum 

because of the low noise level. 

Table 5.6 Main indicator values for inner race faults 

Indicators 
Defect Size 

Healthy Large Medium Small 

𝐾 35 26 28 42 

𝑀 185 144 153 215 

𝐶𝑅 

Step 1 32 32 32 32 

Step 2 81.08 104.17 98.04 69.77 

2 Steps 2594.6 3333.3 3137.3 2232.6 

𝑅𝑀𝑆𝐸 (m/s2) 0.62 13.05 5.47 4.94 

𝑃𝑅𝐷 (%) 94.01 55.38 67.95 58.24 

𝐹-𝑆𝑁𝑅 

(dB) 

Original envelope 

spectrum 
- 24.31 25.06 23.63 

Reconstructed 

envelope spectrum 
- 35.41 34.14 33.56 

To calculate 𝐹-𝑆𝑁𝑅, the blue is the selected fault features, and the red dots represent 

the remaining signals that are not relating to the fault characteristics defined in Equation 

(5-14). The value of 𝐹-𝑆𝑁𝑅  for reconstructed envelope spectrum is larger than the 

original one, which introduces that the fault characteristics of the reconstructed signal 

are more obvious, and the compression method has the denoising function, especially 

when the fault is severe. 
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(a) (b) (c) 

Figure 5.22 Fault feature selection for envelope spectra of bearings with inner race faults: (a) 

large, (b) medium, and (c) small 

Although the compression ratio and reconstruction performance of the inner race fault 

bearing is not as good as the outer race fault one, the proposed approach compresses 

the original signal up to thousands of times and the fault can be determined to be bearing 

inner race fault by the sparse representation of the compressed signal, which provides 

a potential application to dramatically reduce the data volume in the field of wireless 

rotating machine CM. 

5.5 Summary 

A two-step adaptive compression method based on frequency shift and CS is proposed 

to reduce the size of datasets for fault diagnosis of ball bearings, which can be achieved 

at the acquisition end to significantly save the transmission bandwidth, storage space, 

and power consumption.  

Besides, the original envelope signal can be reconstructed with much less noise to 

approximatively display the timewave of the faults. Moreover, an adaptive sparse signal 

method is investigated according to the fault mechanism of ball bearings. Furthermore, 

a new developed reconstruction performance evaluation indicator is defined following 

the effectiveness of fault characteristics on fault detection. 

Both simulation and experimental results demonstrate that the defects on the ball 

bearing outer race and inner race can be accurately and efficiently detected with a very 

small amount of data (less than 200 data points) transferred and stored with the 

compression ratio of up to thousands of times. In conclusion, this chapter provides a 
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theoretical basis for wireless sensor nodes to further realize the online condition 

monitoring of rotating machines in real time in future. 
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 FEATURE EXTRACTION BASED 

COMPRESSION OF 2D SIGNALS IN FAULT 

DIAGNOSIS OF RECIPROCATING COMPRESSORS 

 

 

2D thermal images contain a wealth of information relating to machine conditions. 

However, the transmission and storage of substantial images are less efficient and more 

cost-intense than 1D signals. This chapter and the next chapter will focus on 2D signal 

compression in intelligent fault diagnosis. 

This chapter employs the dense SIFT to extract the features from the 2D infrared 

thermal images. To reduce the dimensionality of the massive feature sets, the sparse 

coding including dictionary learning and sparse representation were applied. Then, the 

sparse features are smartly classified by SVM to achieve effective diagnosis of various 

compressor faults. 
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6.1 Introduction 

Temperature is an effective indicator to monitor the condition of a machine because 

any change of the system will cause fluctuations in temperature. Usually, a 

thermocouple can be used to measure the temperature at a location of the system. 

However, the single point temperature is not reliable and stable because it is easily 

affected by the environment. It will result in non-uniform temperature distribution on 

the surface of the housing of machines if they work in an abnormal condition. IRT is a 

non-contact and non-invasive NDT method that can conveniently and accurately record 

changes in the temperature field distribution of surfaces of machines when the parts of 

the running machine are defective [167]. 

Reciprocating compressors change the cylinder volume cycle and achieve air 

pressurization and delivery through the reciprocating motion of the piston in the 

cylinder [168]. Figure 6.1 illustrates the schematic diagram of a two-stage reciprocating 

compressor. They are widely used in petroleum pipelines, chemical plants, refineries, 

new energy, food and other industries because of their wide application pressure range, 

high compression efficiency and strong adaptability. 

 

Figure 6.1 Schematic diagram of a two-stage reciprocating compressor 

The compression structure of the reciprocating compressor is very important, consisting 

of cylinders, piston components, intake and discharge valves and other components as 

shown in Figure 6.2. In addition, it describes how the two-stage reciprocating 

compressor works. With the help of parts such as cylinders, pistons and valves, the 

compression process of a reciprocating compressor can be divided into four processes 

of compression, discharge, expansion and suction. 
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Figure 6.2 Internal compression structure of a two-stage reciprocating compressor 

The relationship between pressure and volume in a cylinder during operation is a cyclic 

process as shown in Figure 6.3. From point A to point B, as the piston moves up, the 

volume of the cylinder gradually shrinks which means the air begins to be compressed. 

The air in the cylinder cannot be returned to the inlet pipe because the intake valve is 

closed. The air pressure of the outlet pipe is higher than that inside the cylinder so that 

the air in the cylinder cannot flow out from the discharge valve. As the volume of the 

cylinder shrinks, the air pressure continuously increases. When the pressure rises to the 

value of point B, the pressure of the compressed air rises to be higher than that of the 

air in the outlet pipe. The discharge valve opens, and the compressed air is discharged 

into the outlet pipe until the piston moves to the top dead centre, i.e. point C. Then, the 

piston starts moving to the down. As the piston moves downward, the volume of the 

cylinder increases, the inside pressure drops, and the gas remaining in the cylinder 

expands continuously. After the pressure in the cylinder is reduced to less than the 

pressure in the inlet pipe, i.e. point D, the intake valve opens and the gas enters the 

cylinder until the piston moves to the bottom dead centre which is represented with 

point A. Then, the piston begins to move up again and repeat the previously mentioned 

process. The piston continuously reciprocates in the cylinder to allow the cylinder to 

suction and discharge the air. 
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Figure 6.3 Relationship between pressure and volume in a cylinder during working 

Although a reciprocating compressor has a wide pressure range, high efficiency and 

maintainability, some faults, like intercooler leakage, valve leakage, air filter blockage, 

asymmetrical stator winding of the motor, etc., will crucially affect its efficiency and 

even cause serious explosion accidents due to its complicated structure [168]. Hence, 

condition monitoring and fault diagnosis of reciprocating compressors are essential in 

industrial applications. Many efforts have been made by researchers with temperature, 

pressure, instantaneous angular speed, vibration and acoustic signals in these decades. 

For example, Tran et al. [168] investigated a fault diagnosis method of reciprocating 

compressor valves with Teager-Kaiser energy operator based on three signals of 

pressure, vibration and acoustic signals. Elhaj et al. [169] simulated multiple operation 

conditions of a two-stage reciprocating compressor with the numerical simulation and 

found that both the instantaneous angular speed fluctuation and pressure waveform are 

sensitive to its fault detection. Yang et al. [170] achieved reliable and flexible condition 

classification of a small reciprocating compressor with the methods of SVM and 

artificial neural network, etc. based on the noise and vibration signals. The results 

demonstrated that SVM and learning vector quantisation (LVQ) have highly accurate 

classification of reciprocating compressor faults. Haba et al. [171], [172] and Ogbulafor 

et al. [173] developed MSB based and wavelet transform based methods to effectively 

and efficiently detect different faults of the two-stage reciprocating compressor, 

respectively. Feng et al. [174], [175] detect the leakage faults of the two-stage 

reciprocating compressor with the on-rotor MEMS accelerometers based on the 

vibration signals. However, the sensors installed to collect these signals should be 

contacted with the surface of the reciprocating compressors or even invade the inside 

of the compressor, which will damage the structure of the compressor. Moreover, the 

noise of the reciprocating compressor is extremely large which is easy to affect the 

extraction of the fault signatures.  

According to the ideal gas flow, the relationship between the temperature, pressure and 

volume of gas in a confined space is expressed as 𝑃𝑉 = 𝑛𝑅𝑇, where 𝑃, 𝑉 and 𝑇 are the 
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pressure, volume and absolute temperature; 𝑛 is the number of moles of gas and 𝑅 is 

the ideal gas constant [176]. Therefore, the change of the air pressure and volume in 

the cylinder will inevitably lead to a change in temperature, resulting in the change of 

the temperature distribution of the surface of the reciprocating compressor because of 

the thermal conduction. The infrared thermography technique has sufficient ability to 

capture the change of the temperature distribution field of the reciprocating compressor 

surface so that it has been used to monitor the condition of compressors [177], [178]. 

But thermal images need to be stored for a long time to compare with the previous state, 

which consumes a lot of storage space. In this chapter, an infrared thermal camera FLIR 

ONE Pro is used to capture the thermal videos during the operation of the reciprocating 

compressor. The dense SIFT features are extracted from the recorded thermal videos 

and compressed as the sparse representations of different conditions for fault 

classification. 

6.2 Compression Method 

6.2.1 Dense SIFT Descriptor 

The SIFT, known as one of the most robust methods for feature extraction in image 

processing, was proposed and improved by David G. Lowe [179] in 1999. It describes 

the image local features and remains invariant to image rotation, scaling, translation 

and brightness variations in scale space, which demonstrates that these changes will not 

substantially affect the extracted features. As a result, it leads to wide applications on 

object recognition and classification. The process of obtaining SIFT descriptors is 

briefly introduced as follows [180], [181]. 

The scale space 𝐿(𝑥, 𝑦, 𝜎) of an input image 𝐼(𝑥, 𝑦) is created by convoluting with a 

Gaussian kernel function 𝐺(𝑥, 𝑦, 𝜎) as shown in Equation (6-1). 

 𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦) (6-1) 

where, 𝜎 is the scale space factor reflecting the degree of image blur and the Gaussian 

filter is as defined in Equation (6-2). 

 𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−

(𝑥2+𝑦2)

2𝜎2  (6-2) 

Then, points of interest regarded as keypoints are identified as the local extrema of the 

Difference of Gaussians (DoG), denoted by 𝐷(𝑥, 𝑦, 𝜎) and stated in Equation (6-3). 

 𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎) − 𝐿(𝑥, 𝑦, 𝑘𝑗𝜎) (6-3) 

where 𝑘𝑖𝜎 and 𝑘𝑗𝜎 represent the variable scales. In order to select the main points, the 

obtained keypoints require to be further reduced by curve fitting the DoG function to 

remove the points with low contrast and unstable edges. The magnitude 𝑚(𝑥, 𝑦) and 

orientation 𝜃(𝑥, 𝑦) of each main point 𝐿(𝑥, 𝑦) can be calculated by means of gradients 

of its neighbouring pixels according to Equations (6-4) and (6-5), respectively. 
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 𝑚(𝑥, 𝑦) = √[𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦)]2 + [𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1)]2 (6-4) 

 𝜃(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑎𝑛
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
 (6-5) 

The main orientation of the feature point is determined by the peak of the orientation 

histograms taking the orientation 𝜃(𝑥, 𝑦)  as the horizontal coordinate and gradient 

magnitude as the vertical coordinate. As a result, each SIFT feature point is represented 

by location, scale and orientation, also shown with (𝑥, 𝑦, 𝜎, 𝜃). There are 4 × 4 = 16 

histograms in each patch, and each one has with 8 bins. Therefore, a 128-dimensional 

vector is formed as the SIFT descriptor. 

However, the SIFT descriptor is apparently effective and reliable for areas with clearly 

detectable and distinguishing texture features. For the platter regions, dense SIFT 

provides robust and sufficient feature measurements through selecting intensive 

keypoints with a sliding window to calculate the dense SIFT descriptors instead of 

extracting from scale-space extrema, which was proposed by Liu et al. [182]. In this 

study, an image is divided into patches with the size of 16 × 16 pixels. As shown in 

Figure 6.4, each patch contains 16 blocks with the size of 4×4 pixels and each block 

has gradients of 8 orientations so that a 128-dimensional dense SIFT feature descriptor 

can be obtained to represent this patch. Furthermore, an image 𝑋𝑖 with 𝑚 patches can 

be represented with a matrix 𝑌𝑖 = [𝑦𝑖
(1), 𝑦𝑖

(2), . . . , 𝑦𝑖
(𝑚)] ∈ 𝑅128×𝑚 which consists of 

𝑚 dense SIFT descriptor vectors 𝑦𝑖. 

 

Figure 6.4 128-dimensional dense SIFT descriptor 

6.2.2 Sparse Coding 

In order to reduce the dimension of the features, an unsupervised learning method, well 

known as sparse coding or sparse dictionary learning, was applied in large-scale visual 

recognition [183]. It includes two processes: dictionary learning and sparse 

representation. Dictionary learning is a dimensionality reduction representation of 

massive data sets or information compression. Moreover, it attempts to learn the basic 

features from the samples to effectively explain structures and patterns hidden in the 

data sets, especially the over-complete dictionaries. The sparse representation uses a 

small number of learned dictionary atoms and non-zero coefficients to represent more 
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information, which not only saves storage space but also speeds up the calculation. As 

a result, the sparse coding enables the automatic selection of features and broadly 

applied in blind source separation, audio signal processing, image feature extraction, 

pattern recognition and so on. 

Assumed that a video 𝑿 has 𝑁 frames and it can be expressed as 𝑿 = {𝑋1, 𝑋2, ⋯ , 𝑋𝑁} 

and represented with the extracted dense SIFT features as 𝒀 = {𝑌1, 𝑌2, ⋯ , 𝑌𝑁}. 𝐾 dense 

SIFT descriptors are randomly selected from 𝒀 for the training process, i.e., dictionary 

learning to obtain a set of bases [𝜙1, 𝜙2,⋯] to represent 𝒀 by minimizing the Equation 

(6-6). 

 min
Φ,𝛼(𝑘)

∑ {‖𝑦(𝑘) − Φ𝛼(𝑘)‖
2

+ 𝜆|𝛼(𝑘)|}𝐾
𝑘=1  (6-6) 

where Φ is the array of 𝜙𝑘 and 𝛼(𝑘) is the weight of 𝜙𝑘. Φ and 𝛼(𝑘) are calculated by 

iterative calculation to convergence. In this study, the number of the elements for the 

trained dictionary is set to 2048, so that the dimension of Φ is 128 × 2048. 

Given a new image, a sparse vector 𝜶 is obtained by solving the Equation (6-6) with 

the fixed trained dictionary Φ. The process of obtaining a sparse representation 𝐴𝑖 =

[𝑎𝑖
(1), 𝑎𝑖

(2), . . . , 𝑎𝑖
(𝐾)] ∈ 𝑅2048×𝐾  of the input image is called coding. 

6.2.3 Support Vector Machine 

In 1995, Corinna and Vladimir proposed a nonlinear SVM model [184], [185], which 

is a traditional and effective supervised learning model used for solving small samples, 

nonlinear and high dimensional data classification and recognition analysis. The 

training dataset is designed as (𝑋𝑖, 𝑐𝑖), 𝑖 = 1,2, . . . , 𝑁 , where 𝑋𝑖  is an input image 

represented with the sparse feature representation 𝐴𝑖 and 𝑐𝑖 ∈ 𝐶 = {1,2, . . . , 𝑀} is the 

classification labels. Equation (6-7) shows the model training principle of SVM. 

 min
W,𝑏,𝜉

(
1

2
‖𝑤𝑚‖2 + 𝐶 ∑ 𝜉𝑖

𝑁
𝑖=1 )  𝑠. 𝑡. 𝑓(𝑐𝑖)(𝑤𝑚𝑎𝑖 + 𝑏𝑚) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 (6-7) 

where 𝑓(𝑐𝑖) = {
1, 𝑐𝑖 = 𝑚

−1, 𝑜𝑡ℎ𝑒𝑟𝑠
 and 𝜉 is a threshold. 

Some new samples as the inputs are tested with the trained model to estimate their class 

predictions. The assessment criteria of the predicted classification, called 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 

can be given by 

 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (6-8) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 represent the number of true positives, true negatives, false 

positives and false negatives in the prediction results, respectively. The fault 

classification method is implemented with SVM based on the dense SIFT features and 

corresponding sparse representations, whose flow chart is clearly shown in Figure 6.5. 
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Figure 6.5 Flow chart of the proposed fault classification method 

6.3 Experiments 

6.3.1 Experimental Setup 

6.3.1.1 Test Facilities 

To validate the compression method proposed in the previous subsection, some 

experiments were carried out on a two-stage and single action V-shaped Broom Wade 

TS9 reciprocating compressor with the structure shown in Figure 6.6. The compressor 

is driven by a three-phase motor via the transmission belt. The air enters the first stage 

cylinder through the air filter, and the compressed air goes into the second stage 

cylinder to be further compressed and then enters into the tank. The specification of the 

reciprocating compressor is listed in Table 6.1. 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

140 

 

 

Figure 6.6 Structure of the two-stage reciprocating compressor test rig 

Table 6.1 Specification of the two-stage reciprocating compressor 

Parameters Values 

Electric Motor 
Speed 1420 rpm 

Power 2.5/3 kW 

Piston 

Diameter 

First Stage 93.6 mm 

Second Stage 55.6 mm 

Max. Working Pressure 1.38 MPa (200 psi) 

Piston Stroke 76 mm 

Crankshaft Speed 420-440 rpm 

A thermal imaging infrared camera, called FLIR ONE Pro, was used in this experiment 

because it has improved temperature measurement accuracy and better visual details. 

Moreover, it has an adjustable connector to fit with a variety of handheld devices. 

Besides, its size is very small which is very portable. The specification of the FLIR 

ONE Pro is detailed in Table 6.2. In this experiment, it was fixed on the tripod at a 

distance of 93 cm from the V-shaped corner between the first and second stage 

cylinders to capture the temperature filed distribution of this two-stage reciprocating 

compressor surface in the top view.  

Table 6.2 Parameters of the FLIR ONE Pro 

Parameters Values 

Thermal Pixel Size 12 μm 

Thermal Resolution 19,200 pixels (160×120 pixels) 
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Visual Resolution 1440×1080 pixels (W×H) 

Thermal Sensitivity 70 mK 

Accuracy ±3°C or ±5% 

Spectral Range 8-14 μm 

Object Temperature Range -20 °C to 400 °C 

HFOV / VFOV 50° ±1° / 43° ±1° 

Frame Rate 8.7 Hz 

Focus Fixed 15 cm – infinity 

6.3.1.2 Defect Seeding 

To simulated failures commonly occur in the two-stage reciprocating compressor, some 

defects were seeded or simulated artificially in different parts of the compressor. The 

first fault is air filter blockage (AFB), which was performed through sealing a quarter 

of the air filter inlet holes as shown in Figure 6.7 (a). The occurrence of this failure will 

seriously affect the amount of inlet air. The next two faults are forming asymmetrical 

stator windings (ASW) through adding a phase winding resistance with different 

resistance values. The ASW faults will make the motor work in an unstable state. Figure 

6.7 (b) displays the external resistor bank consisting of seven resistors, five resistance 

values of 0.1 Ω and another two of 0.5 Ω. These two sets of fault simulation are 

achieved by connecting the resistance values of 1 Ω (0.1×5+0.5=1 Ω) and 1 Ω 

(0.1×5+0.5×2=1.5 Ω) to a phase of motor power supply, respectively. The third one is 

the discharge valve leakage (DVL) in the second stage simulated with a 2 mm diameter 

hole drilled on the discharge valve as illustrated in Figure 6.7 (c). The second stage 

discharge pressure and volumetric efficiency will be low if the discharge valve is faulty 

and remains open during operation. The last one is the intercooler leakage (ICL), which 

was simulated by loosing the screw nut with two circles, but the leakage is very small 

because of the seal function of the PTFE tape. 

 

Figure 6.7 Simulated defects of the reciprocating compressor: (a) AFB, (b) ASW, (c) DVL 

and (d) ICL 



INVESTIGATION OF DATA COMPRESSION METHODS FOR INTELLIGENT MACHINE CONDITION MONITORING 

 

142 

 

6.3.1.3 Test Procedure 

The reciprocating compressor was operated to constantly compress air from the 

pressure in the tank of 0 psi to 120 psi (i.e. 0.83 MPa). The first test was implemented 

in the normal working condition of the reciprocating compressor, which is a healthy 

case and can be regarded as the baseline relative to other faulty cases (denoted by BL). 

The other five cases including AFB, ASW with 1 Ω (denoted by ASW100) and ASW 

with 1.5 Ω (denoted by ASW150), DVL and ICL were also performed on consecutive 

days with different ambient temperatures as shown in Table 6.3. The time taken for 

each test is listed in Table 6.3, which is slightly different from the actual time required 

for the pressure to rise from 0 to 120 psi. Only the DVL case took a longer time to finish 

which may be due to the big leak hole on the discharge valve. During the operation of 

the compressor, the thermal camera recorded the temperature field distribution of the 

focusing area. 

Table 6.3 Experimental parameters and dataset grouping for training and testing 

Labels 
Running 

Period (H:M:S) 

Ambient 

Temperature (°C) 
Frames 

Training 

Group 

Testing 

Group 

BL 1 00:10:14 23.8 3293 

Randomly 

select 1600 

frames 

Select the 

remaining 

1600 frames 

AFB 2 00:10:12 24.1 3411 

ASW100 3 00:10:15 23.3 3829 

ASW150 4 00:10:11 23.7 3822 

DVL 5 00:10:31 23.2 3487 

ICL 6 00:10:12 23.7 3425 

Note: 1. BL: baseline (healthy case); 2. AFB: air filter blockage; 3. ASW100: asymmetrical 

stator winding with 1.0 Ω; 4. ASW150: asymmetrical stator winding with 1.5 Ω; 5. DVL: 

discharge valve leakage; 6. ICL: intercooler leakage. 

However, a one-meter extension cable was added to connect the infrared thermal 

camera with the mobile phone for the convenient recording operation. The frame rates 

of the recorded videos are lower than the specified 8.7 Hz which may be limited by the 

performance of the extension cable. Additionally, the length of the recordings for 

different cases varies. Therefore, different frames of videos were recorded for these six 

cases. In order to facilitate processing, 3200 images are randomly selected for each case 

with half of the randomly selection used to train and another half to test. The specific 

dataset grouping is list in Table 6.3. 

6.3.2 Results and Discussion 

To clearly observe the temperature field distribution of the compressor surface from the 

thermal images, a photo was taken from the top view with the natural light to exhibits 

areas of interest as shown in Figure 6.8, which is the area of the thermal imaging video 

taken. The position of the camera remained unchanged during the process of all 

experiments to minimise the impact of changes in the focusing area on the classification 
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results. Deng et al. [186] in our research group have demonstrated that the changes of 

position have very little effect on the classification results with the CNN method. 

Moreover, the dense SIFT descriptor has the ability to maintain invariant to rotation, 

scaling, translation and brightness variations of images, which states that these changes 

will not affect the extracted features. 

 
Figure 6.8 A sample photo taken from the top view 

6.3.2.1 Visualization analysis 

The last captured image was selected to state the temperature field distribution for each 

case as illustrated in Figure 6.9. Figures (a) to (f) express six different cases of BL, 

AFB, ASW100, ASW150, DVL and ICL, respectively. The dust and debris are 

inevitable in the factory. When the compressor operates for a long time, it is 

unescapable to accumulate a large amount of dust, debris or oil to clog the inlet of the 

air filter and reduce air inflow speed. A clogged air filter will induce pressure drop in 

the first cylinder which may result in the temperature decrease and compressor output 

reduced by more than 2%. Asymmetrical stator winding is a common stator wingding 

failure in motors. When the fault occurs in the early stage, the motor can continue to 

run with the imbalanced current and low output power leading to more heat generated 

on the motor. However, long-term operation under the condition with the ASW fault 

will cause motor breakdown and even irreversible damage. The third failure commonly 

occurred in the reciprocating compressor is the discharge valve leakage, which may be 

induced by the corrosive contaminants, improper lubrication, severe fatigue, spring 

failure, etc. It will result in low discharge pressure and volumetric efficiency. Moreover, 

the discharge temperature will be higher because some air in the tank will slip back into 

the cylinder from the leaked discharge valve. An intercooler exists between two stages 

for a two-stage reciprocating compressor. Its leakage caused by corrosion or poor 

sealing will reduce the air volume, which results in pressure reduction and temperature 

decrease in the second stage cylinder. All these different types of faults will cause 

changes in the pressure and temperature in the compressor, and the temperature field 
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distribution of the compressor wall will also gradually change with the thermal 

conduction. The last one of the 3200 images randomly selected from the captured 

thermal videos was chosen for each case to express the thermal field distribution as 

shown in Figure 6.9. Figure (e) states that the reciprocating compressor with the DVL 

fault generates much more heat than other faults. However, the other five cases are 

difficult to distinguish. For further analysis, the image resolution is compressed from 

1440×1080 pixels to 160×120 pixels (same to the thermal resolution of the camera) 

with the cubic interpolation. Simultaneously, the values of several points are marked in 

the resized grayscale images. Unfortunately, different fault types cannot be definitely 

identified from neither the RGB images nor corresponding grayscale images. Therefore, 

the intelligent method will be applied to extract features to distinguish different types 

of failures. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.9 Selected images for six different cases: (a) BL, (b) AFB, (c) ASW100, (d) 

ASW150, (e) DVL and (f) ICL 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.10 Examples of the resized grayscale image under the different conditions: (a) BL, 

(b) AFB, (c) ASW100, (d) ASW150, (e) DVL and (f) ICL 

6.3.2.2 Intelligent analysis 

After the previous preprocessing with the grayscale transform and resize, the data 

amount of each image has been reduced from 1440×1080×3 to 160×120. These are the 

common and basic compression methods in image processing, but the computational 

complexity is acceptable for conventional computers instead of using GUIs. 

Unfortunately, it is impossible to observe features from both the original and 

compressed images to distinguish the healthy case and the other five faulty cases. 

Therefore, the 128-dimensional dense SIFT features in the previous subsection are 

extracted from the compressed grayscale thermal images and sparsely represented 

based on sparse coding to implement the feature extraction and compression, as well as 

the fault type classification. 
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In the process of extracting dense SIFT features, a rotationally symmetric Gaussian 

lowpass filter with the size of 5×5, together with its horizontal and vertical gradients 

are shown in Figure 6.11. They are applied to obtain the numerical gradient of the 

resized grayscale images, respectively. The filtered results of an image for the BL case 

are illustrated in Figure 6.12. The horizontal and vertical gradients represent the 

directional gradients in the x and y directions separately. Based on these two directional 

gradients, the gradient magnitude and direction are calculated and displayed in the 

second row of Figure 6.12. 

 

Figure 6.11 2D rotationally symmetric Gaussian lowpass filter and its gradients 

 

Figure 6.12 Filtered vertical and horizontal vertical and horizontal Gaussian filters 
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All these figures preserve unambiguous edge information. The 128-dimensional dense 

SIFT features are generated by calculating the preserved information in 8 different 

orientations for 16 blocks as described in Figure 6.4. In order to clearly observe the 

extracted SIFT features, these features of the original scale grayscale images are 

rearranged and reconstructed according to the corresponding positions of the patches 

and original images for these six different cases as shown in Figure 6.13. The feature 

size of each image is 6030×128. To visualize the extracted features with 2D images, 

the representative vector with the largest amplitude is selected from 8 different 

orientations as the grey value for each 4×4 block. Therefore, the displayed images look 

like sharpened effects. If the mean values are utilized instead of the maximum values, 

the effect will be smooth but the outline will not be obvious. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.13 Extracted dense SIFT features from original images under the different 

conditions: (a) BL, (b) AFB, (c) ASW100, (d) ASW150, (e) DVL and (f) ICL 
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Actually, the resized images are applied to extract the dense SIFT features for further 

analysis. The resized image can be divided into 70 patches of 16×16 without overlap, 

the size of the extracted features of each image is 70×128. As described previously, the 

maximum vector of 8 orientations is chose as the representation of each block to 

approximately observe the extracted features in Figure 6.14. The compressor contour 

is faintly visible, but the extracted edge information is very blurred. Even the graphics 

of adjacent patches cannot be perfectly connected. Fortunately, SVM as a generalized 

linear classifier can classify data in a binary way based on supervised learning. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6.14 Extracted dense SIFT features from resized images under the different conditions: 

(a) BL, (b) AFB, (c) ASW100, (d) ASW150, (e) DVL and (f) ICL 

It is manifest that the extracted features are a massive dataset which can be compressed 

to reduce the dimension and accelerate calculation with the dictionary learning and 
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sparse coding. The size of the learned dictionary is 128×2048. To improve the accuracy 

of training, images at different scales forming a multi-resolution image pyramid is 

provided to the machine, so that the machine can percept the objects at different scales. 

In this study, the three-layer pyramid image feature sets are input to obtain the sparse 

representations, half of which will be applied to classify various types of faults with 

unsupervised SVM method and another half for evaluating the performance of the 

extracted and sparse features. 

 

Figure 6.15 Confusion matrix of the fault classification accuracy for testing results 

The fault classification accuracy of thermal images for six different cases using SVM 

is shown with a confusion matrix in Figure 6.15. The x and y axes represent the real and 

predicted fault types, respectively. For example, the probability of AFB being correctly 

judged is 99.99%, and the probability of being misjudged as ASW100 is 0.01%. The 

classification accuracy of each case is displayed with diagonal values. It is significantly 

apparent that the dense SIFT features extracted from thermal images have sufficient 

information for further classification of six different cases based on sparse coding for 

the reciprocating compressor. The probability of the highest classification error is 

0.14%. 

6.4 Summary 

This chapter presents an effective method to diagnose the various types of faults in 

reciprocating compressor by thermal imaging analysis. The differences in temperature 

distributions presented by thermal images explain the changes in heat generation and 

heat conduction caused by the air compression and component friction. Thermal 

imaging features extracted by dense SIFT can be represented as a significantly sparse 

matrix with the sparse coding. The compressed image features with fewer dimensions 

can lead to efficient fault diagnoses by the SVM algorithm. The proposed compression 
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method can achieve an effective and efficient classification with an accuracy more than 

99.86% for six different cases of the two-stage reciprocating compressor. 
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 COMPRESSIVE SENSING BASED 

COMPRESSION OF 2D SIGNALS FOR FAULT 

DIAGNOSIS OF GEARBOXES 

 

 

As an essential part used for power transmission in many industrial applications, the 

gearboxes are vulnerable to various types of faults due to the long-time and heavy-duty 

operations. The faults occurred can cause the alteration of heat characteristics 

including heat sources, heat transfer paths and temperature field distribution. Thus, 

temperature information measured on gearbox housing can be a promising technique 

to monitor the gearboxes. 

A high dimensional temperature signal captured by thermal imaging remotely, 

revealing heat distribution of an object, has the capability to extract more sufficient 

and accurate signatures for diagnosing the gearbox failures than the single point 

temperature measurement. However, the 2D images occupy a large transmission 

bandwidth and storage space, especially for wireless transmission. As a result, they are 

desired to be compressed whilst reserving meaningful features for fault diagnosis. This 

chapter investigates an intelligent CS-based CNN method on 2D images for the fault 

and severity classification of gearboxes. 
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7.1 Introduction 

Helical gearboxes are widely used for the power, speed and motion transmissions in 

industrial machinery [187], [188], such as wind turbines, ships, vehicles, trains and so 

on. Considering the relative motion of mating gears and bearings inside gearboxes, 

sufficient and accurate lubrication is critically necessary for gearboxes to maintain the 

smooth operation and guarantee their long service life. However, in the harsh working 

environments, oil loss due to leakage and evaporation is inevitable, especially the 

applications in the heavy-duty machinery. The loss of lubricant, also known as starved 

lubrication in the gearboxes leads to severe friction or even wear among the mating 

components which will cause an abnormal rise in the temperature of the mating surface 

[189]. Furthermore, the gearbox may suffer various types of fatal failures such as tooth 

surface wear or tooth breakage due to insufficient lubrication, incorrect assembly or 

overloads etc. [190], [191]. Broken teeth will produce the increased impulse, vibration 

and large noise and seriously influence other teeth, which shortens the service life of 

the gears, especially operating with high speed and heavy load [192]. Additionally, 

viscosity is an important measurement to evaluate lubricant viscidity. For high-speed 

operation and overloaded machinery, the lubricant oil with low viscosity is normally 

used for the gear lubrication because it can create and maintain a lubrication film with 

a proper thickness between two moving metal surfaces [193]. Its degradation and 

improper use will affect the production and lubrication of the oil film resulting in gear 

wear in a long-term operation of the machine. It is noticeable that various faults of the 

gearbox will have an important impact on its life and lead to significant economic losses. 

Therefore, it is significantly essential to monitor the condition of a gearbox and make 

fault diagnosis of gears with insufficient lubrication, oil degradation or tooth breakage. 

To diagnose various faults in a gearbox, some researchers have investigated different 

methods based on the vibration, temperature, current and voltage, acoustic emission 

and sound signals in recent years [30], [194]–[196]. In 2004, Banks et al. [194] 

preliminarily gave an indicator to detect lubricant shortage in a closed splash lubricated 

system based on the vibration characteristics of the front and rear differentials extracted 

from the frequency band ranging from 15 kHz to 24 kHz. Lee et al. [195] compared the 

typical vibration with current signals on the detection of the gearbox lubrication. With 

the optimized classification model, the detection accuracy of gearbox lubrication levels 

has reached 96% by adopting the current signals. Some researchers [30], [196], [197] 

at our research centre investigated the effects of gearbox lubricant shortage with the oil 

temperature, vibration response, motor current and voltage. Features extracted from 

these signals are effective to indicate the oil shortage in a two-stage helical gearbox. 

Marques et al. [193], [198]–[200] investigated the power loss model for each 

component and concluded that lubricants with the same viscosity grade may have 

different power loss due to the base lubricant type and additives. Some researchers 

[201]–[204] and Vuuren et al. [202] achieved online estimation of lubricant viscosity 

of gearboxes with current and voltage signals. Hamel et al. [205] examined the 
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influence of oil film thickness on helical gear spall fault detection with acoustic 

emission signals and demonstrated that the lubricating conditions will seriously affect 

or even prevent the defect detection with acoustic emission signals. Sun et al. [206] 

investigated the influence of viscosity and overlap ratios on vibration characteristics of 

helical gears and found that low lubricant viscosity will cause a higher amplitude of 

vibration. For the tooth breakage fault detection, many researchers have built dynamic 

models to study the friction mechanism of the gear teeth and the effects of lubrication 

and broken teeth of the system and validated the with experiments [207]–[209]. 

However, the cost of transducers is expensive. Moreover, the installation of the 

transducers is complicated and inconvenient, or even impossible under harsh working 

environment, especially measure the oil temperature of gearboxes with thermocouples. 

Additionally, the measurement of oil or housing temperature is a single-point 

temperature measurement which has low stability and reliability for fault diagnosis of 

gearboxes operating under complicated conditions, such as variable loads. In contrast, 

a 2D thermal video revealing the temperature field distribution of the gearbox housing 

can provide more valuable information to achieve an accurate fault diagnosis and 

classification of machinery. Moreover, the temperature measurement based on thermal 

imaging has the advantages of non-contact, non-intrusive, high reliability and stability, 

which can benefit a robust condition monitoring. Touret et al. [210] made a review to 

introduce most of the researches on gearbox defect detection with the contact and non-

contact (e.g. thermography) temperature sensors and stated that temperature has 

obvious potential to instead of vibration or acoustic on machine condition monitoring. 

Janssens et al. [211] have successfully classified eight different fault conditions of 

bearings based on features of standard deviation, the Gini coefficient and the Moment 

of Light extracted from thermal images to achieve an accuracy of 88.25%. 

With the development of artificial intelligence, smart condition monitoring of machines 

has attracted more and more attention in the industry [114]. For example, Janssens et 

al. [212] successfully detected the bearing faults and predicted oil-level based on 

infrared thermal images with CNN. Li et al. [213] developed an IRT-CNN method to 

remotely monitor the condition of gearboxes online with infrared thermal images. 

However, it can be seen that the thermography technique is not widely used in the 

condition monitoring of gearboxes at present, which is probably because the 2D 

imaging signals have higher requirements on transmission bandwidth and storage space. 

In addition, the computational complexity of the CNN is particularly high, and the size 

of the captured 2D images is too large to slow down the calculation speed, which will 

affect the potential possibilities of intelligent online condition monitoring. Therefore, it 

is necessary to compress 2D images before regarding it as the input layer of the CNN. 

Compressive sensing as an algorithm that can fundamentally and effectively reduce the 

sampling frequency has been introduced in detail in the previous overview. Lu et al. 

[214] proposed a novel approach to achieve physics based compressive sensing with 
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fewer sensors and limited collected data, which was applied in manufacturing process 

monitoring with less costs and high efficiency. 

In this research, CS will be applied for the 2D thermal image compression and the 

compressed images will be the input layer of the CNN to distinguish different faults 

and their severity of a two-stage helical gearboxes. 

7.2 Compression Method 

7.2.1 Convolutional Neural Network 

Convolutional neural networks have been developed in recent years and have attracted 

widespread attention as an efficient identification method to recognise 2D graphics with 

characteristics of displacement, scaling and other forms of distortion invariance. CNN 

has become one of the research hotspots in many scientific fields because it avoids the 

complicated pre-processing of images and directly uses the original ones as inputs. It is 

different from other neural networks, CNN continuously extracts features from local to 

global through various filters to implement object recognition. 

A typical CNN consists of an input layer, a hidden layer and an output layer as 

illustrated in Figure 7.1. Generally, 2D (grayscale images) or 3D (colour images) 

images can be processed as an input layer, and the out layer will generate classification 

labels according to the logic functions or softmax functions. The hidden layer is 

composed of one or multiple convolutional layers, pooling layers and fully connected 

layers, which will be introduced as follows. 

 

Figure 7.1 Structure of a CNN example 

(1) Convolutional layer 

The purpose of the convolution is to extract features from the input image. It can learn 

the characteristics of the image from a small piece of the input image and preserve the 

spatial relationship between pixels. The filter, a small matrix, is one of the most 

important parts in CNN. The convolution feature matrix can be produced by sliding the 

filter over the image and calculating the dot product. Different filters can detect 

different features, such as edges, curves and so on, from the same image. It means that 

the more filters are used, the more features are extracted. It is well known that 
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convolution features are determined by three parameters: depth, stride and zero-

padding. The depth corresponds to the number of convolution filters; the stride is the 

number of pixels per sliding filter matrix; the zero-padding refers to padding at the edge 

of the input image matrix with zero values so that the edges of the input image matrix 

can be filtered. Equation (7-1) expresses the convolution result of the 𝑖-th filter kernel 

and the 𝑗-th local region in layer 𝑙. 

 𝑦𝑖
𝑙+1(𝑗) = 𝑊𝑖

𝑙 ∗ 𝑥𝑙(𝑗) + 𝑏𝑖
𝑙 (7-1) 

where the notation ∗ is the function of the dot product; 𝑊𝑖
𝑙 and 𝑏𝑖

𝑙 represent the weights 

and bias of the 𝑖-th filter kernel in layer  𝑙; 𝑥𝑙(𝑗) denotes the 𝑗-th local region in layer 𝑙; 

𝑦𝑖
𝑙+1(𝑗) is the convolution result of 𝑖-th filter kernel and the 𝑗-th local region in layer 𝑙 

and will be the input of layer 𝑙 + 1 after rectification. 

A nonlinear activation function called rectified linear unit (ReLU) is used to maintain 

the nonlinear properties of the extracted convolution characteristics after convolution 

in the convolutional layer as described in Equation (7-2). 

 𝑧𝑖
𝑙+1(𝑗) = max (0, 𝑦𝑖

𝑙+1(𝑗)) (7-2) 

where 𝑦𝑖
𝑙+1(𝑗)is the convolution results; 𝑧𝑖

𝑙+1(𝑗) is the rectified convolution results and 

is also the final output of this convolutional layer. Other nonlinear functions, such as 

hyperbolic tangent or Sigmoid, can also implement nonlinear transformation of features, 

but ReLU is better in most cases because of its low computational complexity, fast 

training speed and more robustness to various disturbances. Figure 7.2 illustrates the 

calculation process of the convolutional layer. In this example, the size of the zero 

padding is set to 1, the filter size is 3×3 and the stride is set to 2. It can be seen that W0 

and W1 are two filters which means the depth is 2 here. The bias of these two 

corresponding filters are 0 and 1, respectively. The convolution results are rectified with 

ReLU function to get the output matrix. Therefore, the output matrix with the size of 

3×3×2 will be the input of next layer for this example. 
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Figure 7.2 An example of the convolutional layer 
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(2) Pooling layer 

To effectively reduce the computational complexity, another efficient tool in CNN is 

pooling. Pooling is a downsampling or subsampling process, which only preserves 

important information and reduces pixel information to reduce the dimension of the 

feature map. There are several common methods to perform pooling process, such as 

maximization, averaging, summing and so on. In general, max pooling is the most 

common and effective method. It retains the maximum value for each sub-region which 

means keeping the best match result for this area because the larger the value, the better 

the filter and input image match. Hence, the addition of the pooling layer can greatly 

reduce the cost of the computation and ensure the validity of the extracted features. 

 𝑞𝑖
𝑙+1(𝑗) = max

(𝑗−1)𝑤+1≤𝑡≤𝑗𝑤
( 𝑝𝑖

𝑙(𝑡)) (7-3) 

where 𝑝𝑖
𝑙(𝑡) is the value of the 𝑡-th neuron, (𝑗 − 1)𝑤 + 1 ≤ 𝑡 ≤ 𝑗𝑤, in the 𝑖-th frame 

of layer 𝑙; 𝑤 represents the width of the pooling region and 𝑞𝑖
𝑙+1(𝑗) denotes the value 

of the neuron in layer 𝑙 + 1. An example of max polling with the filter size of 2×2 and 

the stride of 2 is depicted in Figure 7.3. 

1 0 1 5 0 2

0 1 2 0 0 1

4 0 4 1 2 0

7 0 1 2 6 1

0 2 1 3 2 0

2 0 3 0 5 1

Max pooling 51

47 6

2 3 5

2

Layer l

Layer l+1

 

Figure 7.3 An example of the polling layer 

(3) Fully connected layer 

The convolutional layers and the pooling layers extract local features of the object, and 

the fully connected layer is to reassemble the obtained local features into a global 

feature through the weight matrix. The weight matrix is multiplied with the extracted 

local features to map the N features into K real values. The function softmax normalizes 

these K real values to K probabilities with the sum of 1. The output values can be 

calculated as 

 𝑢𝑗 = 𝑠𝑗 ∙ 𝑣 + 𝑏𝑗 = 𝑠𝑗1 ∙ 𝑣1 + 𝑠𝑗2 ∙ 𝑣2 + ⋯ 𝑠𝑗𝑁 ∙ 𝑣𝑁 + 𝑏𝑗 (7-4) 

where 𝑠𝑗 is the weight of the 𝑗-th category feature; 𝑣 and 𝑢𝑗  are the input and output 

values, respectively; 𝑏𝑗 is the bias. The output probabilities ℎ�̂� can be expressed as 

 ℎ�̂� = softmax(𝑢𝑗) =
𝑒

𝑢𝑗

∑ 𝑒𝑢𝑘𝐾
𝑘=1

 (7-5) 
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The output probability is the result of the intelligent classification of the CNN, e.g. the 

final result of the output layer. 

The CNN, as an intelligent classification network, has good fault tolerance, parallel 

processing capabilities and self-learning abilities. It is especially suitable for image 

processing, such as 2D and 3D images with motion, scaling and other forms of 

distortion invariance, to automatically extract features from the images. It extracts 

features through training data instead of manual extraction. Local filters can be shared 

in CNN to reduce the number of network parameters and the network complexity. This 

feature makes CNN much closer to the real biological neural network and a very 

popular intelligent classification tool. 

7.2.2 Proposed CS-based CNN 

Although the CNN avoids complex pre-processing of images, the original images are 

too large to slow down the calculation speed because the captured images are redundant 

and compressible, such as background. Therefore, the captured thermal images can be 

compressed with CS before entering the input layer. In future, a CS-based infrared 

thermal camera has the potential to be developed and applied according to the principle 

of single-pixel compressive digital camera designed by the researchers at the Rice 

University. 
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Figure 7.4 Flow chart of the proposed CS-based CNN method 

Figure 7.4 gives a detailed and comprehensive depiction of the flow chart of the 

proposed CS-based CNN algorithm for the fault classification of gearboxes with 2D 

thermal images. The process can be detailed as the following steps: 
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Step 1: convert the captured thermal images from RGB to grayscale images to reduce 

the dimension of the images from 3D to 2D and label them according to different cases; 

Step 2: calculate the histogram equalization of each grayscale image to enhance 

contrast and strengthen the edge information of the image; 

Step 3: divide the equalized images into blocks with the size of 36×36 and further 

compress the blocks to 4×4 by CS, so that the compression ratio is 81 calculated based 

on Equation (5-11); 

Step 4: assemble all compressed blocks for each image to reconstruct a compressed 

image based on original image size and the division rules; 

Step 5: train a CNN with the parameters listed in Table 7.1 and use part of the 

reconstructed compressed grayscale 2D images to form the input layer; 

Step 6: validate the trained CNN with the rest of the compressed images and classify 

different fault types to generate the classification accuracy. 

Table 7.1 Detailed parameters of the applied CNN layers 

Layer Name Filter Size Filter Number Stride 

1 Input layer (160 ×120 pixels)    

2 
Convolutional layer+Batch 

normalization+ReLU 
3×3 8 [1, 1] 

3 Pooling layer 2×2  [2, 2] 

4 
Convolutional layer+Batch 

normalization +ReLU 
3×3 16 [1, 1] 

5 Pooling layer 2×2  [2, 2] 

6 
Convolutional layer+Batch 

normalization +ReLU 
3×3 32 [1, 1] 

7 Fully connected layer    

8 
Output layer (Softmax 

layer+Classification layer) 
   

 

7.3 Experiments 

7.3.1 Test Facilities 

In order to validate the availability of the proposed intelligent CS-based CNN method 

to detect and diagnose different faults in a gearbox, a series of experiments were carried 

out on a two-stage helical gearbox test rig. Figure 7.5 illustrates the schematic diagram 

of the test rig system, which is mainly comprised of a 15 kW induction motor with the 

delta connection, a DC load generator, two helical gearboxes installed back-to-back and 

a sensorless variable speed drive control system for determining the speed and load of 

the test rig. A thermal imaging infrared camera, FLIR ONE Pro with the key 
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specifications shown in Table 6.2, was placed in front of the gearbox 1 (abbreviated as 

GB1) at a distance of 25cm from the gearbox housing surface. As a comparison, the oil 

temperature of the gearbox was measured by a K-type thermocouple installed as shown 

in Figure 7.5. The data was collected by the data acquisition system YE6232B and a 

computer. Table 7.2 lists the specifications of the most test facilities applied in this test. 

 

Figure 7.5 Two-stage helical gearbox test rig: (a) schematic diagram and (b) actual test rig 

Table 7.2 Specifications of the test facilities 

Facilities Parameters Values 

AC Motor 

(Brook 

Crompton) 

Motor Type T-DA160LA 

Frequency 50 Hz 

Voltage 280-415 Δ/660-720 Y (V) 

Current 29.63-27.13/17.06-15.64 (A) 

Power 15 kW 

Rated Speed 1460 rpm 

Gearbox  

(Radicon 

Company) 

Model No. M07223.6BRC-1 

Ratio 3.678/1 

Oil Type EP 320 

Oil Volume 2600 mL 

DAQ YE6232B 

Channels 16 

A/D Bits 24 

Input Mode V/IEPE 
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IEPE Power Supply 4 mA/+24 VDC 

Signal Input Range ≤±10 VP 

Signal Frequency Range DC-30 kHz 

Sample Rate Max. 96 kHz/CH, parallel 

K-type 

Thermocouple 

Maximum Temperature +1100 °C 

Probe Diameter/Length 3 mm/150 mm 

Probe Material Stainless steel 

7.3.2 Fault Simulation 

(1) Oil shortage 

In the harsh working environments, oil loss due to leakage and evaporation is inevitable, 

especially the applications in the heavy-duty machinery. Therefore, the gearbox fault 

of oil shortage was simulated with the oil level referenced in [30]. The standard oil 

quantity of this gearbox is 2600 mL recommended by the manufacturer and this case is 

regarded as the healthy condition or baseline, denoted as BL-2600mL in Figure 7.6. 

Then, 600 mL oil was taken out from GB1, which is the first faulty case of the oil 

shortage and denoted as OS-2000mL. Moreover, the second faulty case of the oil 

shortage was simulated by further removing 500 mL oil to make the quantity to 1500mL, 

denoted as OS-1500mL. The oil level and gear immersion states for each case are 

separately illustrated from the inside, axial and side views in Figure 7.6, which shows 

that the input gear and output gear are less lubricated as the oil levels are getting lower 

as the oil is removed. The lubricant used in this study is the MILLGEAR 320 EP with 

the typical characteristics listed in Table 7.3. 

 

Figure 7.6 Schematic diagram of lubricant levels: (a) inside view, (b) axial view, and (c) side 

view 

(2) Oil degradation 

Generally, there are several reasons leading to low oil viscosity. The first one is adding 

a lower viscosity fluid than the recommended requirement, i.e. improper use of the 

lubricant. The second one is accidentally mixed with non-lubricants like solvents and 

diesel fuel into the lubricant. The third one is the loss or shearing down of the viscosity-
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index improver which is a well-known additive. When the lubricant operates at an 

extreme high environment, the high temperature causes a decrease in viscosity. 

Therefore, the viscosity of the lubricant will decrease as the oil age increases, which is 

a process of oil degradation. As a result, the lubricant with low viscosity, MILLGEAR 

100 EP, was used to simulate the oil degradation in this test. Both the specifications of 

MILLGEAR 320 EP and MILLGEAR 100 EP are introduced and compared in Table 

7.3. 

Table 7.3 Specifications of MILLGEAR 320 EP and MILLGEAR 100 EP 

MILLGEAR EP 320 100 

Specific Gravity @ 15°C 0.901 0.885 

Kinematic Viscosity @ 100°C/cSt 23.5 10.9 

Kinematic Viscosity @ 40°C/cSt 320 100 

Viscosity Index 92 93 

Pour Point (°C) -9 -9 

Flash Point (°C) 200 200 

(3) Tooth breakage 

Gear tooth breakage is caused by overload, fatigue or chemical attack. Gears work in 

pairs with the drive gear connected to the power source and the driven gear meshed 

with the drive gear. In this study, 50% and 100% of the tooth face were artificially 

removed from two driven gears in the width direction, respectively, which is depicted 

in Figure 7.7. 

 

Figure 7.7 Tooth breakage fault simulation: (a) healthy pair, (b) 50% tooth breakage, and (c) 

100% tooth breakage 

7.3.3 Test Procedure 

According to the description of the fault simulation, it is obvious that six different cases 

should be carried out with the two-stage helical gearbox test rig: the healthy case with 

2600 mL MILLGEAR 320 EP lubricant and the healthy gears (denoted as BL for the 
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result display), two oil shortage cases (denoted as OS2000 and OS1500), a low-

viscosity case (written as VIS100) and two tooth breakage cases (marked as TB050 and 

TB100). All these tests were performed at a constant speed (the full speed of the driving 

motor, 1475 rpm) and four different loads (0%, 30%, 70% and 100% load of the DC 

motor). The experimental operation process for each case is explained as follows. 

Step 1: warm up the test rig with 75% of the full speed and 80% load, and observe the 

oil temperature of GB1 measured by the K-type thermocouple until the temperature 

reaches 32 °C (the room temperature was about 21 °C); 

Step 2: set 100% of the full speed and 0% load, run 20 minutes and begin to collect the 

oil temperature and record the temperature filed distribution of the GB1 house with the 

thermal video for 4 minutes. One minute after the recording, the operation will be 

changed to 100% of the full speed and 30% load; 

Step 3: repeat Step 2 with the entire process taking 25 minutes in total and record the 

data during this period. Then, repeat operation and recording of the other two sets of 

loads. 

The time it takes to run a case is 100 minutes plus the warm-up time period for each 

case as shown in Figure 7.8. All cases were performed based on this timeline recording. 

Warm up

80% load 0% load 30% load 70% load 100% load

0 Time

(mins)

20 25 45 50 70 75 95 100

100% speed75% speed

Data recording  

Figure 7.8 Timeline recording of the experimental process 

Table 7.4 Dataset grouping for CNN training and testing 

Labels 
Training Group Testing Group 

Speed Load Speed Load 

BL 

100% 
0% (800 frames), 

100% (800 frames) 
100% 

30% (800 

frames), 70% 

(800 frames) 

OS2000 

OS1500 

VIS100 

TB050 

TB100 

Since the camera storage speed is less than 8.7 frames/s and the frame rate is not 

constant for every case, the first 800 frames are selected as the training or testing dataset 

for each set (24 sets, 6 cases×4 loads). Table 7.4 lists the 24 sets of data divided into 

the training and the testing groups for the CNN. 
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7.3.4 Results and Discussion 

To illustrate the superiority of thermal imaging based CM, the results will be delivered 

and discussed in terms of oil temperature of GB1 and the temperature filed distribution 

of the GB1 housing surface. 

7.3.4.1 Oil Temperature based CM 

The oil temperature of GB1 was measured and observed in real time to monitor the 

condition of the machine running. The variation in oil temperature may preliminarily 

indicate the gearbox failure. Figure 7.9 depicts the average oil temperature in GB1 for 

different cases, including BL, OS2000, OS1500, VIS100, TB050 and TB100 under 

various loads. It is apparent that the oil temperature has an increasing trend with the 

rise of the load. Meanwhile, the temperature has a significant decrease when the 

quantity of the lubricant gradually reduces, and the viscosity of the lubricant is lower 

than the recommended one. The temperature drop of the broken tooth fault is not 

obvious, especially for the case of TB100, the temperature cannot be distinguished from 

the case of BL. The case of TB050 has a little clear difference in the upward trend 

compared with the case of BL. 

 

Figure 7.9 Oil temperatures of the GB1 for different cases under various loads 

However, the oil temperature, as 1D information, can only be used to approximately 

indicate the variation either in loads or different severity of the failure. When a gearbox 

is operated under variable loads with failure, it is difficult to determine the cause of the 

variation in oil temperature by this 1D temperature array, such as oil temperature or 

housing temperature. As a mature technology, thermal imaging has been considered in 

the field of machine condition monitoring by capturing temperature filed distribution 

of objects. The next subsection will display and discuss the results and effects of oil 

shortage, oil degradation and tooth breakage in the gearbox detected with the 

temperature field distribution of the gearbox housing surface. 
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7.3.4.2 Temperature Field Distribution based CM 

(1) RGB images 

In order to visually observe the temperature field distribution, the last image is selected 

from each video recorded under variable loads and various oil levels as shown in Figure 

7.11 and Figure 7.12, respectively. Figure 7.10 depicts the surface topography of the 

GB1 house as a comparison of captured thermal images. It is noted that the recorded 

images are flipped for the actual position. 

 

Figure 7.10 Surface topography of the GB1 house 

 

Figure 7.11 Images for BL under different loads: (a) 0%, (b) 30%, (c) 70%, and (d) 100% 

For the case with the standard oil level in GB1, i.e. BL, four images divided from the 

recorded videos for four different loads of 0%, 30%, 70% and 100% are shown in 

Figure 7.11 (a) to (d), respectively. The oil level recommended by the manufacturer is 
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marked with the line in each figure. The temperature field distributions of these four 

different loads looks nearly same, only subtle differences exhibits as observed in the 

blue boxes. The high-temperature areas mainly concentrate in the upper middle part of 

the gearbox, where the second-stage gears locate. The temperature rises as load 

increases, which is consistent with the previous results made by the oil temperature. 

Additionally, the hottest place does not change a lot, but the high-temperature region 

spread more and more along with the increasing loads. However, these differences in 

the thermal images provide useful information to differentiate different loads. 

 

Figure 7.12 Images for different oil level under 100% loads: (a) BL (b) OS2000, and (c) 

OS1500 

Figure 7.12 depicts the thermal images of the tested gearbox operating under three 

different cases with different oil levels (the corresponding oil level is marked with lines) 

with 100% load. It can be clearly noticed that the high-temperature area shifts from the 

upper to the lower of the gearbox housing. Furthermore, the heat produced by the 

friction of components also conducted along the shaft when the lubricant particularly 

starves, so the temperature of the shaft and bearing connecting with the GB2 is also 

very high. In addition, the highest temperature under a starved lubrication condition 

shown in the thermal imaging is lower than that under the normal oil level. Figure 7.13 

displays other three cases compared with BL, but it is difficult to visualize the 

differences except the highest temperature of the tooth breakage cases. 
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Figure 7.13 Images for different cases under 100% loads: (a) BL, (b) VIS100, (c) TB050, and 

(d) TB100 

 

Figure 7.14 Images for VIS100 under different loads: (a) 0%, (b) 30%, (c) 70%, and (d) 100% 
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Figure 7.15 Images for TB050 under different loads: (a) 0%, (b) 30%, (c) 70%, and (d) 100% 

 

Figure 7.16 Images for TB100 under different loads: (a) 0%, (b) 30%, (c) 70%, and (d) 100% 

Four images selected from VIS100, TB050 and TB100 cases under different loads are 

illustrated in Figure 7.14 to Figure 7.16, respectively. All these three cases have similar 
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trend. The highest temperature in this shooting area rises as the load increases. In the 

meantime, the high-temperature area extends and changes slightly, but it is not easy to 

detect and compare with human observation. Moreover, the captured colour images 

have three channels of R, G and B with the size of 1080×1440 (height×width), which 

means they needs a big storage space and will result in complex computations. 

Therefore, it is necessary to significantly reduce the size of the images before inputting 

into the CNN. 

(2) Equalized grayscale images 

The first compression step is to reduce the number of channels. All selected images for 

different cases are converted into grayscale images from RGB images to reduce the 

channel number from 3 to 2. The images can be represented with 2D matrices instead 

of three-dimensional matrices. In order to enhance contrast in images especially the 

edge information, a well-known image processing technique, histogram equalization, 

was applied in this study. The equalized grayscale images for six different cases are 

selected and shown in Figure 7.17. It is apparent that the high-temperature areas of the 

cases of OS2000 and OS1500 in Figure 7.17 (b) and (c) have a significantly obvious 

downward shift as the oil level gradually decreases. Because the oil absorbs a lot of 

heat generated by friction so that the oil temperature rises. In addition, the temperature 

at the location of the bearing that connects the shaft to GB2 also rises due to the heavy 

load the insufficient lubrication under 100% load. The case using low-viscosity 

lubricants to simulate oil degradation, the high-temperature area is concentrated in the 

position of the secondary gears in the gearbox. When the viscosity of the lubricant is 

low, the thickness of the formed oil file is too thin to perform good lubrication, resulting 

in an increase of the heat generated by the friction of the tooth surfaces. Comparing the 

contents in the blue box of Figure 7.17 (a) and (d), this low viscosity case, VIS100, can 

also be distinguished from the case of BL. For the tooth breakage cases, their 

temperature field distributions have no much differences from the case of BL. Only the 

temperature field distributions at the position of the first stage gears, i.e. faulty gears, 

are slightly expanded as shown in the red rectangles of Figure 7.17 (a), (e) and (f). 

   
(a) (b) (c) 
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(d) (e) (f) 

Figure 7.17 Equalized grayscale images for different cases under 100% loads: (a) BL, (b) 

OS2000, (c) OS1500, (d) VIS100, (e) TB050, and (f) TB100 

  
(a) (b) 

  
(c) (d) 

Figure 7.18 Equalized grayscale images for OS2000 under different loads: (a) 0%, (b) 30%, 

(c) 70%, and (d) 100% 

Figure 7.18 illustrates the equalized grayscale images for the case of OS2000 under 

four different loads. When the load is light, the temperature field distribution is very 

similar to the case of OS1500, but the high-temperature area is a little big and the 

temperature at the bearing position is lower. As the load increases, the high-temperature 

area gradually expands and the boundary is much clearer. As a result, two situations 

with one light load and one heavy load as a group for one case are used for training the 

CNN in this study. But before training, the size of the images should be further reduced 

with the CS method. 

(3) CS based images 

CS will work well because there is some redundant and unhelpful information in the 

images, such as background. The second compression step is to apply CS to achieve 

random sampling so that the original image has the potential to be reconstructed with 
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high accuracy. As the flow chart described in Figure 7.4, the equalized grayscale images 

with the size of 1080×1440 pixels are divided into 1200 small blocks with the size of 

36×36 pixels. Each block is compressed to 4×4 pixels with CS. Then, the compressed 

blocks are reassembled based on the division rule. The size of the reassembled image 

will be compressed to 120×160 pixels with the compression ratio of 81. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7.19 CS based images for different cases under 100% loads: (a) BL, (b) OS2000, (c) 

OS1500, (d) VIS100, (e) TB050, and (f) TB100 

  
(a) (b) 

  
(c) (d) 

Figure 7.20 CS based images for OS2000 under different loads: (a) 0%, (b) 30%, (c) 70%, 

and (d) 100% 

Figure 7.19 and Figure 7.20 display the CS based images for different cases under 100% 

load and OS2000 under different loads, respectively. Since the edge information of the 

original images are very clear, it is possible to roughly observe the change of the edge 

region for different cases and loads after random sampling. However, the background 
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information is all nearly black now. This phenomenon indicates that the effective 

information for fault diagnosis is preserved during the compression process, while the 

amount of data used for fault detection is compression by a large compression ratio 

(compress 3×81 times with two compression steps in total). These CS based images 

will be the input of the CNN. In the CNN, the features will be extracted and trained to 

obtain a net for the fault classification. 

(4) Intelligent CNN classification 

It has been discussed that the thermal images provide valuable information extracted 

from the 2D temperature field distribution to distinguish different loads for various 

cases from Figure 7.11 to Figure 7.20. Some cases can be clearly detected with 

visualization based on the changes in temperature field distribution. But sometimes it 

is affected by the variable load. Therefore, it is necessary to use an intelligent 

classification method to detect various types of faults instead of observation. In this 

study, all images are divided into two groups as listed in Table 7.4: the training group 

and the testing group. The training process acts in terms of the layers with parameters 

as shown in Table 7.1. The obtained characteristics with the convolution filters in three 

convolutional layers are displayed in Figure 7.21 to Figure 7.23, respectively. These 

images in the first convolutional layer mostly contain edge and brightness features as 

shown in Figure 7.21. Some more complex features are constructed in the latter two 

convolutional layers as illustrated in Figure 7.22 and Figure 7.23. Each image 

represents the result of convolution of a convolution filter with the input image. These 

convolution filters extract features of various cases from different angles and brightness. 

 

Figure 7.21 Features of the first convolutional layer 
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Figure 7.22 Features of the second convolutional layer 

 

Figure 7.23 Features of the third convolutional layer 

Only one fully connected layer is used in this network. The fully connected layer is set 

towards the end of the trained CNN and before the softmax function application. It 

combines the features learned in the previous layers in a high-level to get more accurate 

features to represent various cases different from other cases. This layer is the only and 

final fully connected layer and the images generated in this layer correspond to six 

different cases: BL, OS2000, OS1500, VIS100, TB050 and TB100 as shown in Figure 
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7.24, respectively. Although the features constructed in the fully connected layer are 

not clearly observed, the difference in outline and edge information is obvious. 

 

Figure 7.24 Features of the fully connected layer 

The network training process is monitored as shown in Figure 7.25. The top figure 

describes the relationship between classification accuracy and the number of iterations. 

The light blue solid line and the black dotted line represent the training and validation 

results, respectively. The blue solid line draws the smoothed training process. The 

bottom graph illustrates the relationship between loss and the number of iterations in 

the training process. The cross entropy loss is the loss function used in the final 

classification layer which is expressed in Equation (7-6). 

 𝑙𝑜𝑠𝑠 = − ∑ ∑ 𝑡𝑖𝑗ln(𝑦𝑖𝑗)
𝑄
𝑗=1

𝑃
𝑖=1  (7-6) 

where 𝑃 and 𝑄 are the number of samples and classes, respectively; 𝑡𝑖𝑗 is the indicator 

that the 𝑖th sample belongs the 𝑗th class; 𝑦𝑖𝑗 is the result of the softmax function in this 

study, i.e. the probability that the 𝑖th input of the network is associated with the 𝑗th 

class. 
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Figure 7.25 CNN training process 

It is manifest that the trend of accuracy changes in inversely proportional to the trend 

of loss. In the training process, the accuracy tends to be stable after 20 iterations 

indicating that this process has converged. The validation accuracy is up to 99.95%. 
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Figure 7.26 Confusion matrix of the fault classification accuracy for testing results 

Two loads for each case are applied to train the network, and another two are used to 

test the trained network to prevent overfitting. The classification accuracy result of the 

test is displayed with a confusion matrix in Figure 7.26. The x-coordinate and y-

coordinate respectively represent the actual labels and predicted labels of the images, 

which are the input images to test the effectiveness of the trained network. It can be 

seen that the cases of BL, OS2000 and VIS100 can be accurately recognised in this 

study. The case of OS1500 is correctly identified with the probability of 99.81% and as 

OS2000 with the identification error of 0.1875%. The probability that TB050 and 

TB100 are recognised each other is only 0.0625% because the same type of fault with 

different severity results in similar thermal field distribution. 

In this study, the image resolution is compressed from 1440×1080 pixels to 160×120 

pixels with the CS method. However, the gearbox fault information is preserved in the 

process of compression. It is evident that the CS based thermal images can be used for 

classification in a variety of cases under variable loads with high accuracy. In addition, 

verification with variable loads not only prevents overfitting, but also effectively 

demonstrates the robustness of this CS-based CNN classification method to ambient 

changes. 

7.4 Summary 

This chapter presents an effective CS based compression method to diagnose the 

gearbox faults (lubricant starvation, oil degradation and tooth breakage) using thermal 

imaging analysis. The difference in temperature field distribution presented by thermal 

images explains the changes in heat generation and heat conduction from the mating 

components to the gearbox housing. Moreover, it is more reliable and robust using a 

2D thermal imaging signal to detect the various gearbox faults than adopting a 1D 

temperature signal. The input thermal images are compressed from 1440×1080×3 
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(RGB) to 160×120 (grayscale) with a compression ratio of 243. The compressed images 

based CNN lead to effective and efficient fault diagnosis. The intelligent method upon 

CS achieves a highly accurate classification with the probability of more than 99.81%. 

Finally, CS has the potential to be implemented in the thermal cameras to randomly 

sample the thermal field distribution of the objects. The thermal camera can be installed 

to a drone or robot and the captured compressed thermal images can be uploaded to the 

cloud platform for analysis and backup during the inspection. 
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 CONCLUSIONS AND FUTURE WORKS 

 

 

This chapter summarizes the achievements of the objectives and draws comprehensive 

conclusions of this research on data compression approaches applied for 1D and 2D 

signals in the intelligent machine condition monitoring. Moreover, the contributions to 

knowledge are also presented. Finally, some meaningful suggestions for future 

research efforts on data compression usage in CM systems are proposed based on the 

research outcomes in this thesis. 
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8.1 Review of Objectives and Achievements 

This research aims to investigate the effective and efficient data compression 

algorithms mainly applied to 1D and 2D signals for intelligent fault diagnosis of 

machinery, which have potentials to be implemented in hardware to reduce the data 

volume for intelligent CM. The main objectives listed to achieve this purpose in Section 

1.4 are all fulfilled and summarized as follows. 

Objective 1: Review the popular advanced literature of data compression algorithms 

especially applied in the field of machine CM. Divide these compression techniques 

into the traditional post-acquisition compression and advanced pre-acquisition 

compression methods for further verification of application in CM. 

Achievement 1: The data compression algorithms including traditional uniform 

sampling and advanced non-uniform sampling methods at both data acquisition and 

receiving ends for machine CM are reviewed in Section 2.1.1 and Section 2.1.2, 

respectively. Their advantages and disadvantages are discussed. In particular, as an 

advanced compression method, CS shows the potential to implement sampling with a 

lower rate than the Nyquist-Shannon sampling theorem at the acquisition end. The 

overview of CS applications delivers its superiority in a wireless real-time machine CM 

system compared with other traditional compression methods. 

Objective 2: Build a wireless sensor node with MEMS sensors to collect 1D 

characteristic signals and analyse the acquired signals to extract features based on 

compressed statistics for the remote condition monitoring in real time. 

Achievement 2: In Chapter 3, both the wired and wireless vibration sensing systems 

are successfully designed with MEMS modules based on the statistics of 1D vibration 

signals. The main purpose of the wired sensor node is to assist the design of the wireless 

sensing system. Both of them achieve a sampling rate of 3200 Hz. A data acquisition 

GUI and an Android APP are designed with MATLAB and Android Studio, 

respectively, to monitor the wired and wireless transmitted data. 

Objective 3: Verify the availability and effectiveness of the developed intelligent WSN 

node with compression function by experimental studies. 

Achievement 3: To verify the availability and effectiveness of the designed sensing 

system, the sensor calibration is performed in Section 3.2.3 first with a shaker test. The 

calibration results show that the ADXL345 has an error of about 2.4% in the frequency 

domain due to the accuracy of the on-chip clock system. The wired sensing system is 

also tested with raw vibration signals of the domestic piping system and used to monitor 

the condition and save data with the designed MATLAB GUI. Furthermore, in Section 

3.3, it is verified that the designed wireless sensing system is effective and efficient to 

monitor the leakage of the domestic piping system and its size with RMS values of 

vibration signals remotely in real time in the lab. Besides, it saves power consumption 

of the sensor node because the amount of data transmitted is greatly reduced with an 
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effective statistical compression method. As a result, the developed intelligent WSN 

node with compression function is demonstrated. 

Objective 4: Investigate the dimension reduction based compression methods to save 

storage space for 1D diagnostic signals of CM and simultaneously distinguish the fault 

types with the compressed features. 

Achievement 4: A dimension reduction based compression method for the fault 

diagnosis of tapered roller bearings is proposed in Chapter 4. The RPs are generated to 

display the periodic texture information by the defined threshold 𝜀 from the phase space 

trajectory formed by the time delay and the embedding dimension. Then, twelve RQA 

indicators are extracted as features from the 2D RPs which are the dimension reduction 

results of phase space trajectories of vibration signals. The PCA method is applied to 

reduce the dimension and the redundancy of the extracted indicating features for the 

classification of different fault types. The effectiveness of this algorithm has been 

evaluated with the vibration signals of the tapered roller bearings with the outer race 

fault and the inner race fault respectively. 

Objective 5: Propose sparse representation based compression algorithms like 

compressive sensing for 1D diagnostic signals with a large compression ratio which has 

the potential to be implemented in the hardware for the pre-acquisition compression. 

Achievement 5: In Chapter 5, a two-step adaptive compression method based on 

frequency shift and CS is proposed to reduce the data volume used for fault diagnosis 

and noise elimination of ball bearings, which has the potential to be achieved at the 

acquisition end to directly save the power consumption, transmission bandwidth and 

storage space. Both the numerical and experimental results demonstrate that the defects 

on the ball bearing outer race and inner race can be accurately and efficiently detected 

with a very small amount of 1D vibration data transmitted and stored with the 

compression ratio of up to thousands of times. This method provides a theoretical basis 

for wireless sensor nodes to further realize the online CM of rotating machines in real 

time in future. 

Objective 6: Develop the compression method according to extracting features from 

2D thermal images for fault diagnosis. 

Achievement 6: Chapter 6 presents an effective compression method to diagnose the 

various types of faults in the reciprocating compressor by compressed thermal images. 

The features extracted from captured thermal images by dense SIFT can be represented 

as a sparse matrix with sparse coding. The compressed features with less dimension 

will lead to efficient fault diagnosis by the classification with SVM which achieves an 

accuracy of more than 99.86% for six different cases of the two-stage reciprocating 

compressor tested in the lab. 

Objective 7: Exploit compressive sensing with an intelligent classification method on 

2D thermal images captured by monitoring the condition of machines to differentiate 
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various types of faults. The combined method has the potential to reduce the cost of 

data collection, transmission and storage. 

Achievement 7: Chapter 7 states an effective CS based compression method to 

diagnose the gearbox lubricant starvation, oil degradation and tooth breakage faults 

with 2D thermal images which represent temperature field distribution of the gearbox 

surface. The converted grayscale images are compressed from the size of 1440×1080 

to 160×120 with CS based on the divided blocks. The CS-based compressed and 

assembled images are as the input of the CNN to achieve a highly accurate classification 

with the probability of more than 99.81%. Besides, it can be concluded by comparison 

that using a 2D thermal imaging signal for fault diagnosis is much more reliable and 

robust than a 1D temperature signal. 

8.2 Conclusions 

According to the investigations and discussion made in the aforementioned chapters, 

this research about data compression in machine CM can be summarized with the 

following key conclusions: 

Conclusion 1: The extensive literature review expresses the importance and necessity 

of investigating data compression methods based on statistics, dimension reduction, 

sparse representation and feature extraction in the intelligent machine CM filed. 

Conclusion 2: A cost-effective wireless CM system is successfully designed based on 

the statistical characteristics of the system vibration responses. Its effectiveness was 

examined and evaluated by a domestic piping system. Simultaneously, it is 

demonstrated that the middle of the long straight pipe is a good position to install the 

accelerometer for CM because it is easily prone to the pipe resonance by the small and 

random excitations from the water flow. 

Conclusion 3: The healthy and faulty bearings can be successfully classified with the 

compressed features through the proposed dimension reduction compression method. 

Although the clearance between the components of the tapered roller bearing affects 

the results of the fault diagnosis, the compressed features can help determine whether 

the bearing clearance is normal or not to avoid misjudging the severity of bearing 

defects. 

Conclusion 4: A two-step adaptive compression method based on frequency shift and 

CS is investigated to reduce the dataset size for diagnosis of ball bearing faults. Its 

effectiveness is verified with both simulation and experimental results that only very 

few data can detect the defects on ball bearings via fault frequencies 

Conclusion 5: For 2D thermal images captured from different cases of a two-stage 

reciprocating compressor, the dense SIFT features are extracted and represented as a 

sparse matrix with the sparse coding. The compressed image leads to effective fault 

classification with SVM, which achieves an accuracy of more than 99.86% for six 

different cases of the reciprocating compressor. 
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Conclusion 6: The 2D thermal images are compressed with CS to reduce the feature 

size of the input layer of the CNN to speed up fault type classification of gearboxes. 

The trained CNN achieved a highly accurate classification with the probability of more 

than 99.81% using the compressed thermal images. 

8.3 Contributions to Knowledge 

The works on data compression for machine CM performed in this research have been 

introduced and discussed in previous chapters. The contributions of these works to 

knowledge are summarized as follows. 

Contribution 1: This research reviews and summarizes both the traditional and the 

advanced data compression methods used for pre-transmission and post-transmission 

of data in the field of machine CM. This has not been studied in the previous research 

and even data compression has not attracted widespread attention in machine CM. It 

paves the way to significantly efficient CM techniques under large quantities of 

measurements. 

Contribution 2: A wireless CM system with cost-effective MEMS accelerometers was 

designed to detect leakage in water piping systems, and statistics based data 

compression approach was proposed for reducing data transmission load. The 

investigation in prototyping the leak detector denotes that data compression via 

waveform statistics can be effective and efficient in CM. 

Contribution 3: Two novel methods for compressing 1D vibration signal are 

developed to distinguish various bearing faults efficiently.  

▪ A dimension reduction compression method based on PCA is proposed to 

reduce the dimension of the RQA indicators. The compressed features retain the 

periodic fault information and lead to the successful detection and diagnosis of 

bearing faults. 

▪ A two-step adaptive compression method based on frequency shift and CS is 

developed to compress and then reconstruct envelope signals with high SNR. 

The developed compression strategy achieves efficient diagnosis of rolling 

element bearing faults.  

Contribution 4: Another two novel approaches for compressing 2D thermal images 

are developed to intelligently monitor the machine conditions.  

▪ The dense SIFT features are extracted from the 2D thermal images of a two-

stage reciprocating compressor and represented as a sparse matrix with the 

sparse coding. The compressed features with fewer dimensions lead to effective 

fault classification with SVM. 

▪ The advanced CS method is applied to the pre-processed 2D thermal images 

captured from the gearbox. The compressed images are used as the input of the 

CNN to classify six different fault types, which speeds up the calculation of the 

CNN while does not affect the classification accuracy.  
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8.4 Future Work 

Recommendation 1: Optimize the proposed compression algorithm by exploring 

effective signal denoising, adaptive optimal frequency band selection and signal sparse 

representation methods to improve the efficiency of data compression for better 

performance of machine CM. 

Recommendation 2: Improve the designed wireless sensing system through 

integrating other types of sensors, like temperature, and trying other wireless 

transmission ways, like Wi-Fi. Then consider uploading the states and raw data to the 

cloud platform for sharing to realize remote and real-time CM of machinery. 

Recommendation 3: Investigate energy harvesting techniques to provide power to the 

wireless sensor nodes and hence achieve maintenance-free machine condition 

monitoring systems [114]. Simultaneously, optimize the working condition of the 

wireless sensor nodes to reduce the node energy consumption through reducing the 

amount of data transmitted, organising communication between multiple nodes and 

considering intermittent data collection. 

Recommendation 4: Implement the proposed data compression algorithms on the 

wireless sensor nodes, especially the CS based method for 1D signals. The CS on 

hardware at the acquisition end can break through the conventional Nyquist sampling 

theory, which can significantly reduce the data collected but allow reconstructing the 

original signals with high accuracy. 

Recommendation 5: Attempt to apply the CS theory to thermal imaging device based 

on the single-pixel compressive digital camera and CS based MRI equipment. If the CS 

based infrared thermal camera can be developed, it will have wide applications, 

especially in the field of machine CM, which can be installed on a drone or robot and 

the captured compressed thermal images can be uploaded to the cloud platform for 

analysis and backup during the inspection in future. 
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