
University of Huddersfield Repository

Nwako, Judith

Innovation of a design method (MoIST) that incorporates non-traditional 'soft' systems science into
traditional 'hard' information systems design

Original Citation

Nwako, Judith (2007) Innovation of a design method (MoIST) that incorporates non-traditional
'soft' systems science into traditional 'hard' information systems design. Doctoral thesis, University
of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/352/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

INNOVATION OF A DESIGN METHOD (MoIST) THAT INCORPORATES NON-
TRADITIONAL ‘SOFT’ SYSTEMS SCIENCE INTO TRADITIONAL ‘HARD’

INFORMATION SYSTEMS DESIGN

JUDITH A. NWAKO

A thesis submitted to the University of Huddersfield in partial fulfilment of the
requirements for the degree of Doctor of Philosophy

The University of Huddersfield

July 2007

 2

Acknowledgments

To my beloved husband Sekao Nwako – You are an amazing gift, an exceptionally

excellent man and the best husband.

To my wonderful parents Leon and Grace Hopkins and my siblings Ava, Sonya &

Kevin and all my aunts, uncles and cousins – Thank you for always loving,

encouraging and believing in me.

To my pastors Dr Ramson & Linda Mumba and Dr Jerome & Ruth Anekwe –

By a prophet he brought them out and by a prophet he preserved them.

To Dr Ian Pichford & Carol Doyle – Research Office and to Dr David Hall, Dr Steve

Wade, Dr Steve Littlewood & Dr Stephen Catterall – School of Computing &

Engineering. Thank you so very much.

This is the Lord’s doing and it is marvellous in our eyes and to God be all the thanks

and all the glory!!

 3

Abstract
The research explores ways of making the information systems development process

more effective. The thesis documents an original design method. This is the method

of incorporating Systems thinking into Information Systems Design (MoIST). The

thesis demonstrates that MoIST improves information systems design and adds to

the effective arsenal of methods that already exist.

The Computer Science literature has identified some weaknesses in the software

development methodologies. These weaknesses include premature design decisions

taken before major requirements are known. Another is the dearth of options for

applying Systems Science and information systems design techniques in a UML-

based context. It was found that these weaknesses sometimes resulted in software

failures. These findings have been confirmed in the empirical and the evaluation

portion of the research.

The essence of the thesis is that appropriate software development strategies may

be chosen at various points in a project. The choice of strategy is based upon the

value of particular factors. These factors include confidence in requirements,

development environment structuredness, user types and developer types.

In order to achieve the research aims, the MoIST is utilised to preserve the

methodological strengths of the hard systems engineering paradigm. It

simultaneously attempts to minimise its weaknesses by combining it with a systems

science approach called Soft Systems Methodology (SSM). The research

incorporates this non-traditional ‘soft’ Systems Thinking into traditional ‘hard’

Information Systems Design. The two main contributions of the thesis are the

transformation of SSM conceptual models into UML use case diagrams and activity

diagrams. Another is the creation of MoIST Project Option Selection Tool (MoPros).

This MoIST method has been tested empirically by utilising it in a complex,

unstructured setting in a School of Computing and Engineering. Based on the

theoretical and practical work conducted, it is concluded that the MoIST method is

effective in several ways. It provides coherence and structure to complex software

projects and can help to facilitate decisions about improvement strategies. It also

successfully incorporates the results of SSM analysis into requirement specification

 4

based on the UML. The MoIST method is offered as a viable option to add to the

existing development alternatives for successful software development.

Table of Contents

Acknowledgements…………………………………………………………………2

Abstract………………………………………………………………………………3

List of Figures and Tables………………………………………………………….4

Chapter 1: Introduction
 1.1: Introduction……………………………………………………..…..9

 1.2 Background to Thesis……………………………………………..13

 1.3 Deficiencies in Requirements Analysis Methods...…………….17

 1.4 The Nature of the Thesis Solution……………………………….21

 1.5 Research Overview……………………………………………….24

 1.6 Conclusion…………………………………………………………27

 1.7 Thesis Chapter Summary………………………………………..28

Chapter 2: Soft Systems Methodology (SSM)
2.1 Introduction…………………………………………………………30

2.2 Justification for the importance of SSM in this research………31

2.3 Origins and Development of SSM……………………………….34

2.4 Emergence of Systems Thinking………………………………...36

2.5 A timeline of SSM.…………………………………………………37

2.6 Case Study…………………………………………………………43

2.7 Analyses 1, 2 and 3….…………………………………………….47

2.8 Limitations of SSM…………………………………………………62

2.9 Related Soft Methods……………………………………………...64

2.10 Conclusion…………………………………………………………..66

Chapter 3: Unified Modelling Language (UML)

3.1 Introduction………………………………………………………….67

3.2 History of the Unified Modelling Language (UML)………………68

3.3 Overview of the UML……………………………………………….69

3.4 Case Study Illustration……………………………………………..73

3.5 UML Benefits and Goals……………………………………………82

3.6 Conclusion……………………………………………………………83

 5

Chapter 4: Successful integration of Systems Thinking into Information
Systems Development

4.1 Introduction…………………………………………………………..84

4.2 Problems with Existing IS Methods………………….……………85

4.3 Justification for Combining Systems Thinking with IS…………..87

4.4 Previous Related Work……………………………………………..89

4.5 Real Life Examples of successful integration…………………..104

4.6 Conclusion………………………………………………………….106

Chapter 5: Method of integrating Systems Thinking within Information
systems design (MoIST)

5.1 Introduction…………………………………………………….….107

5.2 The MoIST Method……………………………………………….109

5.3 UML and the MoIST Method…………………….…….……….110

5.4 The MoIST Model…………………………………………………112

5.5 Process MoIST (ProMoIST)……………………………………...115

5.6 Project Options A,B and C………………………………………..119

5.7 MetricsMoIST Evaluator System………………………………....130

5.8 Limitations of the MoIST Method……..…………………………..135

5.9 Conclusion…………………………………………………………..136

Chapter 6: Empirical Phase of Research
6.1 Introduction………………………………………………………….137

6.2 Area of Application………………………………………………….137

6.3 Previous Related Action Research………………………………..139

6.4 Empirical Study – Analysis…………….………………..……........142

6.5 Empirical Study – From Analysis to Design………………………156

6.6 Empirical Study – From Design to Evaluation using Metrics

MoIST…………………………………………………………………164

6.7 Empirical Study – From Evaluation to Implementation…………..167

6.8 Empirical Study – From Implementation to User Testing………..178

6.9 Conclusion…………………..………………………………………..184

Chapter 7: Case Study- Postgraduate Project Process
7.1 Introduction……………………………………………………………185

7.2 Problem Situation…………………………………………………….191

 6

7.3 Proposed Solution……………………………………………………210

7.4 From Analysis to Design………....…………………………………211

7.5 Conclusion……………………………………………………...........218

Chapter 8: Conclusions and Future Work
8.1 Introduction……………………………………………………..........219

8.2 Research Solution……………………………………………………219

8.3 Critical Appraisal of the Research ..……………………………….220

8.4 Future Work…………………………………………………………..221

8.5 Research Artefacts…………………………………………………..222

8.6 Conclusion……………………………………………………………222

Bibliography……..…………………………………………………………….. ……224

 7

LIST OF FIGURES AND TABLES

Figure 1 Requirements Engineering Process….…………………………16

Figure 2.1 Original seven stages of SSM…………………………………....31

Figure 2.2 Cybulski’s Model of the Requirement’s Engineering Process…31

Figure 2.3 SSM,s Social, Political and Cultural Analysis……………………40

Figure 2.4 Checkland’s POM Model…………………………………………..46

Figure 2.5 Sarkar’s Stakeholder/Domain Analysis…………………………..48

Figure 2.6 Rich Picture of Teaching and Learning Process........................53

Figure 2.7 Checkland’s Rich Picture………………………………………….54

Figure 2.8 Root Definition and CATWOE…………………………………….55

Figure 2.9 Conceptual Model of Teaching and Learning Process…………56

Figure 2.10 Conceptual Model from Checkland, 1990………………………..57

Figure 2.11 SSM as a Learning Cycle…………………………………………..60

Figure 2.12 Vicker’s Appreciative and Learning System………………………64

Figure 3.1 Use Cases for Module Registration………………………………..73

Figure 3.2 Use Case Model……………………………………………………..74

Figure 3.3 Use Case Model adapted from Schmuller………………………..75

Figure 3.4 Figure illustrating the ‘include’ Label……………………………...76

Figure 3.5 Illustration of the ‘extend’ Label……………………………………76

Figure 3.6 Class Diagram……………………………………………………….79

Figure 3.7 Sequence Diagram………………………………………………….80

Figure 3.8 Sequence Diagram showing how the system allows for errors…81

Figure 4.1 COT Framework……………………………………………………...96

Figure 4.2 BASE Method…………………………………………………………99

Figure 5.1 MoIST Model…………………….………………..…………………113

Figure 5.2 ProcessMoIST Procedures…………………………………………118

Figure 6.1 Rich Picture of Academic Skills Support Process………………..149

Figure 6.2 Conceptual Model of Academic Support Process………………..152

Figure 6.3 Specific Conceptual Model of Academic Support………………..153

Figure 6.4 MoIST Method……………………………………..………………..156

Figure 6.5 Chosen Option B within the MoIST Method………………………158

Figure 6.6 Conceptual Model derived from finding out stage………………..159

Figure 6.7 Priorities 1, 2 and 3…………………………………………………..159

Figure 6.8 Activity in the Option B of the MoIST Method……..………………160

Figure 6.9 Actors for low-level activities………………………………………..160

 8

Figure 6.10 UML Use Case Model……………………………………………….161

Figure 6.11 Class Diagram………………………………………………………..162

Figure 6.12 QSEE screenshot……..……………………………………………..163

Figure 6.13 CASE Tool screenshot………………………………………………163

Figure 6.14 Question Tools website screenshot………………………………..168

Figure 6.15-6.23

 QT Editor Screenshots………………………………………………169

Figure 6.24 Screenshots of Comma Separated Format results………………181

Figure 6.25 MetricsMoIST Model…………………………………………………182

Figure 7.1 MoIST Model………………………………………………………….188

Figure 7.2 Rich Picture of Postgraduate Project Situation…………………...196

Figure 7.3 Conceptual Model of the Postgraduate Project…………………..198

Figure 7.4 Conceptual Model of proposed tracking system for PPSS………205

Figure 7.5 Another Conceptual Model for Postgraduate Project…………….206

Figure 7.6 Revised Nested Conceptual Model for the proposed system……207

Figure 7.7 MoIST Method………..……………………………………………….211

Table 1.1 Summary Data on Software Project Abandonment………………..19

Table 1.2 Strategic information systems exemplars…………………………...21

Table 2.1 Newspaper pass rates statistics……………………………………..45

Table 2.2 Analyses 1, 2 and 3……………………………………………..…….49

Table 2.3 Analysis two results………….………………………………………..51

Table 2.4 Root Definition of Teaching and Learning…………………………..55

Table 2.5 The Five E’s…………………………………………….…….………..58

Table 2.6 Comparison Phase……………………………………….……………59

Table 2.7 Differences between SSM and Structured Methods……………….66

Table 4.1 Tabulation of attempts to combine methods………………………..90

Table 4.2 SSM’s extended predicate path ……………………………………..94

Table 4.3 Three views of Mile’s expansion of Conceptual Model……………95

Table 5.1 Option A of the MoIST…..…………………………………………..144

Table 6.1 Analysis of the Intervention…...…………………………………….123

Table 6.2 Analysis 2…………………………………………………………......123

Table 6.3 Root Definition of Academic Skills Support Process……………..150

Table 6.4 CATWOE elements of a Root Definition…………………………..150

Table 6.5 CATWOE of Academic Skills Support Process…………………..151

Table 6.6 Comparison Phase of Academic Support…………………………154

 9

Table 6.7 MoIST Project Option Selector……………………………………..157

Table 6.8 Specification sample of Hardware platform used for ACcSys…..168

Table 6.9 School of Computing’s Induction Timetable………………………179

Table 6.10 Modelling Metrics for UML…………………………………………..184

Table 6.11 System Evaluation criteria and characteristics……………………184

Table 7.1 MoIST Project Option Selector……………………………………..189

Table 7.2 Analysis of the Intervention………………………………………....193

Table 7.3 Analysis 2…………………………………………………………......195

Table 7.4 Root Definition of Postgraduate Process…………………………..197

Table 7.5 Comparison Phase of the Postgraduate Project Process………..201

Table 7.6 Proposed changes to the Postgraduate Project Process………...203

Table 7.7 Root Definition of Expanded Postgraduate Project Process……..204

Table 7.8 Comparison Phase for amplified Postgraduate Process………….209

 10

Chapter 1

1.1 Introduction

In many nations of the world today, news of instability and many disasters are

shocking happenings being reported across the globe. Economic reverses,

terrorism and fear seem to have become the order of the day. In stark contrast to

such negativity, the astoundingly positive technological progression of our day

would have boggled the minds of our forefathers. They would not have believed it

then even if they were told (Newsweek, 27th January, 2005).

As a microcosm of global changes, some universities in the United Kingdom (UK)

have been experiencing radical changes and “shake-ups”. This has led to the

rethinking of some of the teaching and learning strategies currently employed in

these universities (Wend, 2004). In the area where I lived and conducted my

research – the north of England – schools and departments within universities

have been similarly affected. Having spent three (3) years in my particular

School of Computing and Engineering has afforded me a unique perspective on

the organization. This has led to a greater familiarity with its attendant virtues

and unstructured complexities. This vantage point is not easily gained by most

external consultants, developers or methodologists. Being an insider provided me

with multiple advantages and benefits. These included a more comprehensive

understanding of the real functioning of the organization and made the

organization’s cultural ethos more transparent. This made it possible to effect a

more successful and relevant intervention in the organization as I was in the

midst of the action research being carried out. One lesson I learnt from this

research is the value of staying very close to the phenomenon one is studying,

rather than doing scholarly work at arm’s length (Sankaran, 2001). Some of the

difficulties experienced by universities are the result of the changing times we live

in. This is exacerbated by national governmental guidelines, international,

educational, political and cultural dynamics.

In recent years the UK government has indicated that Widening Participation in

higher education is among its highest priorities.

On the 22nd of January 2003 the Secretary of State for Education and skills,

Charles Clarke, announced publication of the white paper “The future of Higher

 11

Education” which sets out the government’s plans for radical reform and

investment in universities. Participation in Higher Education will equip people to

operate productively within the global knowledge economy. It also offers social

benefits, including better health, lower crime and a more tolerant and inclusive

society. It aims to ensure that all those with the potential to benefit from Higher

Education have the opportunity to do so, whatever their background and

whenever they need it (http://www. hefce.ac.uk).

Ambitious targets have now been set for universities. This is to ensure that the

advantages of a university education are available to as wide a constituency as

possible. The government seeks to rapidly increase the number of students from

traditionally underrepresented social and ethnic groups. The government stated

its intention of aiming for a 50% participation rate in higher education (DFes,

2003). This has left universities debating whether to lower established standards

to ensure high recruitment levels or whether to spare no cost in getting students

up to the requisite academic level (May and Bousted, 2004). In the midst of these

governmental strategies, retention of students is at an all-time low (Webb and

Hill, 2003). Several educational reforms have been recommended that affect

secondary, further and higher education. These include the 14-19 Tomlinson’s

Report done by Mike Tomlinson on the state of secondary education in England,

the Dearing Report, the National Curriculum reform among others (DFes, 2003).

During my time of research at the University, the School of Computing and

Engineering experienced some major changes. Several years ago, the popularity

of Computing as a seemingly lucrative career choice attracted many new

students. Subsequently there was a great rise in the student numbers. This

resulted in new staff members being employed to meet the demand. Within a

matter of years, retention of students dropped to approximately fifty percent

(50%). This meant that there was a dip in the financial viability of the school.

Consequently, approximately fifty percent (50%) of staff were made redundant.

This was not an isolated incident which was peculiar to one university, it is a

reflection of happenings in the wider society and is replicated in universities all

over the UK (Education Guardian, 19/10/2004).

Universities have been left by governments to be largely self funded. Their

financial viability and existence depends largely on their valued clients – the

students. Recruitment and Admissions are areas that universities are attempting

http://www/

 12

to streamline in order to become more efficient. As Professor Stephanie

Haywood, the Head of Engineering at the University of Hull, UK said,

‘we all feel the squeeze these days. Our student numbers are good but our per

capita grant is decreasing year on year in real terms, so if we want to maintain

the size of the department, the pressure is on to bring in new income’

(Education Guardian, October 19, 2004. page 20)

It is a common practice today for policy makers in organizations to attempt to

regulate this kind of problematic situation by economic means and by

mechanisation using Information Technology. This regulation is exercised at the

expense of other types of regulations. These are namely social, emotional,

political and cultural aspects of organizations. These are as important to

organizations as economic factors; yet these are largely ignored in most modern

organizations. Organizations generally and in this specific case, universities, are

expected to function as businesses (Mirijamdotter, 1998). This is usually the

prevailing modus operandi of technocrats in organizations. As problems occur,

the perception is usually that there is not enough time to ‘waste’ thinking about

the problem and structuring or formulating a solution. Instead, an immediate

technological solution is sometimes proposed. This is the bias towards hard

systems engineering solutions. This is not inherently incorrect or illogical. The

problem though is that these hard systems solutions have limitations and

therefore do not always address the root problem (Ulrich, 2003). This

mechanistic view has generated criticism from some quarters of mainstream

Computer Science. It has subsequently led to the development of new fields such

as Systems Thinking, SSM, Business Process Modelling and Critical Systems

Thinking among others (Checkland, 2000, 1998, 1981, Ulrich, 2003).

The School of Computing and Engineering and its areas with potential for

streamlining has been the focussed area of this research. In order to make some

sections of the school more efficient, ‘hard’ software systems such as Blackboard

v 6 - a Virtual Learning Environment and Attendance Monitoring Software were

introduced to help bolster the retention levels. To date, these hard solutions,

whilst effective in their own right; seem not to have prevented the continual drop

 13

in student rates. Logically, this suggests then, the possible existence of other

solutions or more accurately phrased – additional solutions to hard systems.

Soft and hard methodologies cover different parts of the life cycle, particularly

when there is uncertainty about the goals or strategy of the organization as a

whole. A hard approach will be more appropriate once any initial uncertainties

and ambiguities have been resolved (insofar as this is possible), since the

emphasis then shifts to a specific project with relatively clear goals and

boundaries… in certain situations, hard and soft methodologies can complement

each other, and can be used together to help overcome some of the perennial

difficulties in systems development (Bennett et al, 2002 p 568)

This research shows that a valid solution lies in the utilisation of Soft Systems

Methodology (SSM). The novel Method of incorporating Systems Thinking into

Information Systems design (MoIST), developed in this research has been

applied in the School of Computing and Engineering. This application of MoIST

has been made to two (2) major functional areas. These are the Academic Skills

Support Process and the Postgraduate Project Process. It is within this context

that this thesis has been evaluated empirically.

1.2 Background to thesis
In the earlier years of software development, it was usually understood by IT

practitioners that the phases of the Software Development Life Cycle generally

led from analysis of user need, to requirements capture, to systems design, to

implementation. Times however have changed and the software industry and its

methods and practices have changed right along with it in sometimes radical and

unpredictable ways (Henderson-Sellers and Unhelkar, 2000). As the software

industry hurtles forward into emerging technologies in an increasingly complex

market place, there is an urgent need. This need is for a flexible method that can

function within a ‘process environment’ and can be tailored. This would be a

customized method that would enable the software development process to be

tailored to precisely fit the individual organization’s development environment

(Henderson-Sellers and Unhelkar, 2000).

 14

The SDLC represents a sequence of stages in which the output of each stage

becomes the input for the next. This cycle has been the bedrock of the software

development process over the years since its inception (Centre for Technology in

Government, 2005).

The SDLC’s workings involve cycling through the phases of analysis, design,

implementation, testing, deployment and maintenance. Over the years many

amendments have been made to this sequence and the format; but the re-worked

methods usually adhere basically to the tried and tested traditional software

development life cycle. These include the reality that real projects rarely follow the

sequential flow of analysis through to design and eventual maintenance. At the

beginning of most projects, there is usually often a great deal of uncertainty about

requirements and goals. It is therefore difficult for customers to identify these criteria

on a detailed level. An effective software development method must deal with this

natural uncertainty in an efficient manner. A software development project generally

goes through the software development process more than once. The architecture is

not always excellent and easy to use. The implementation design is not always

sound. The realisation is not always fixable as testing proceeds. Mistakes might not

be all in the realisation. Consequently their repair is not always smoothly

interspersed with component and system testing. Generally one does not build a

whole system all at once. Additionally, developing a system can be a long

painstaking process that does not yield a working version of the system until late in

the process (Centre for Technology in Government, 2005).

Times have changed. Software projects have gotten progressively larger as clients

have become more technically savvy and knowledgeable (Online Software

Development Magazine, http://www.sdmagazine.com, 2005). The dawning of the

information age has empowered the typical computer science lay person to

understand concepts that would have daunted others only a few years ago. Client

expectations have dramatically increased over the years. This means that there is

almost an abnormal demand for software product delivery in less time than formerly

requested. This demand has spawned a proliferation of other noted methods

(Henderson-Sellers et al, 2000).

The software industry still tries to meet client demands. Consequently year by year

there have been numerous instances and reports of software failures. These failures

have now become a badge of dishonour for software development as an industry

http://www.sdmagazine.com/

 15

(Neumann, 1995; Ewusi-Mensah, 1997;Ewusi-Mensah, 2003). Many attempts have

been made to ensure that the discipline of developing software is made more

precise. The label of ‘software engineering’ was even coined to somehow convey

the idea of the traditional engineering discipline with all its precision and super

accuracy (Wilson, B, 1990). This change did not have the intended effect as it has

been seen that software development is different from traditional engineering.

Traditional engineering assumes that the problem is known while with software

engineering, the problem to be solved has to first be discovered. In traditional

engineering, the requirements are already clear and well known before the project

starts. The client knows exactly what is wrong and as the requirements are well

known, the engineering principles are then applied usually to a successful

conclusion. In contrast, the requirements for software engineering are usually not

known and must be discovered before any engineering principles can be successfully

applied (Neumann, 1995).

Studies have revealed that the scope, complexity, and pervasiveness of computer-

based and controlled systems continue to increase dramatically (Pullum, 2001). The

consequences of these systems failing can range from the mildly annoying to

catastrophic, with serious injury occurring or lives lost, human-made and natural

systems destroyed, security breached, businesses failed, or opportunities lost.

Software faults may be traced to incorrect requirements where the software matches

the requirements, but the behaviour specified in the requirements is not appropriate

(Pullum, 2001). This means therefore that the main focus for improvement must of

necessity be focussed around those analysis and design phases of software

development.

1.2.2 Thesis Aim
The thesis seeks to establish a stronger link between the requirements analysis and

the design phases of the software development life cycle. This is achieved by

extending and strengthening the requirements analysis phase using the Method of

incorporating Systems Thinking into Information Systems design (MoIST, chapter 5).

The MoIST method uses Soft Systems Methodology (SSM) to facilitate a

comprehensive examination of the situation before it is modelled (Checkland, 1981,

Checkland and Scholes, 1990).

 16

MoIST joins the company of software development methods already being

successfully used. These include ETHICS, BASE and BOOST (Mumford, 1993,

2000, 2003, Bustard, 2001, Dobbins, 1999). Each of these methods has its own way

of meeting the needs of a variety of problem facets within the software development

spectrum. MoIST’s unique assertion is that if a particular software project matches

the criteria stipulated in (see MoIST’s Project Option Selector template, chapter 5)

then, the MoIST could help to alleviate many of the eventual software difficulties

encountered and increase the chances of a successful software product. This would

utilise the generic principles of problem/stakeholder domain analysis and

analyst/requirements engineers’ domain analysis.

1.3 Deficiencies in existing requirements analysis methods
Effective software development should centre around establishing what the software

system is intended to do. Solutions lie in the area of identifying ways of verifying

what the system should do, what the client wants the system to do and what the

system should do based on the developer’s expertise (Si Alhir, 2003). When used

alone in the requirements elicitation process, hard systems engineering models can

encourage early design decisions before opportunities for improvement have been

agreed (CCTA, 1993). Conversely, Soft Systems Methodology (SSM) used on its

own in the requirements elicitation phase may lack some of the detailed information

required by programmers. The literature clearly demonstrates that there are many

advantages and some disadvantages in combining soft systems science with hard

systems engineering. (for a more detailed review, see chapter 4). The research

focuses mainly on the advantages of this amalgamation. It demonstrates ways of

integrating techniques from SSM (Soft Systems Methodology into the requirements

elicitation stage of a software system development method based on the Unified

Modelling Language (UML) (Siau and Halpin, 2001; Booch et al, 1998; Fowler and

Scott, 2000; Maciaszek, 2001, Si Alhir, 2003).

Use case analyses bring out very little of what goes on within a business, but they
contain much more operational, logical detail than equivalent SSM models. This can
help the analyst to better understand each activity. Through multiple perspectives,
SSM promotes a truly thorough examination of why a business exists and hence
helps to more fully identify critical logical decisions. By linking some of these softer
approaches to the UML, it is then easier for the software practitioner to select a
particular course of action in coming to terms with the problem. (Donaldson and
Jenkins, 2001)

 17

The deficiencies in the requirements analysis process has led to many documented

software failures that will be discussed below (Abdel-Hamid and Madnick, 1990).

1.3.1 Resultant software failures
A project that fails to meet a customer’s need, no matter how technically

sophisticated or perfect it is, is destined to fail (Remenyi, D, 1999). One of the most

consistent features of information systems development over the years has been its

many failures (Ewusi-Mensah, 2003). These failures have ranged from complex, real

time and life critical software systems to less sophisticated information systems.

Examples include the London Stock Exchange Taurus System which cost

approximately £480 million (Drummond, 1996; Willcocks and Graeser, 2001). This

system was never completed or delivered. The verdict was an inadequate match

between the needs of the users and the proposed systems solutions (Willcocks and

Graesar 2001). Information Systems failures generally occur because goals and

requirements are poorly defined.

These failures of conceptualisation involve either a misunderstanding of the clients’
needs and requirements or a misunderstanding of technology. (Remenyi, D, 1999).

There is usually a failure to manage people and results in communication

breakdown. Information systems projects in general continue to fail at an

unacceptable rate (Abdel-Hamid and Madnick, 1990, Myers, 1994). Over the years

much research has gone into finding more efficient means of building software

systems and of ensuring that they are satisfactorily completed to the users’

specifications. Methodologies for software have been developed and amalgamated

over the years in order to aid in the production of successful computer systems.

Despite this gargantuan effort, intensive research in the past has generated too little

understanding of how to avoid failures in systems development initiatives (Mitev,

1996, Rosenwein, 1997). From the growing incidence of failed projects, (see table

1.1) it can be concluded that advances in technologies are not sufficient to save

systems projects. Instead, they remain susceptible to failure until it is understood how

technological, organizational, and institutional changes are interwoven in the systems

and how systems developers should accordingly state and manage requirements for

such systems Abdel-Hamid and Madnick, 1990; Myers,1994; Drummond 1996; Mitev

1996; Rosenwein,1997, Dittrich, Floyd and Klischewski,2002.

 18

 Type of abandonment

Published study Total
(%)

Substantial
(%)

Partial
(%)

Standish Group (1995,
1998)[*]

31
(28)[*]

52.7 (46)[*] Not
available

KPMG (Cole 1995) 10 28 24

OASIG (1996) 40 25 80

Ewusi-Mensah and
Przasnyski (1994)

44 16 9

[*]Reported in Whiting 1998

Table 1.1: Summary data on software project abandonment, Ewusi-Mensah, K,
2003, Chapter 1

1Estimations on IT expenditure in the UK public sector for 2003/2004 alone have set

it at greater than £12.4 billion. The projected sum for overall IT spending in the UK is

deemed to be £22.6 billion. Despite these staggering figures, the majority of

software development projects repeatedly fail to deliver crucial benefits in a timely

fashion and fail to meet cost and specification targets (Report of the Royal Academy

of Engineering and British Computer Society, 2003). Some of the notable ones are

examined here.

Examples of Software failures
On Thursday, June 3, 2004, Thousands of airline passengers were left stranded

when the UK’s National Air Traffic Control computer system run by a thirty year old

software crashed. Overnight testing of an upgrade of the flight data processing

system precipitated the disaster. The software is not due to be replaced until 2010.

The new National Air Traffic Operations Centre was slated to open in 1996. It

opened in 2002, five years late at a cost of £623 million, twice its original cost. The

plan is to spend £1 billion upgrading the system over the next eight years (BBC

News, July, 8, 2004, Computer Weekly, June 8, 2004, The Independent, June 4,

2004).

1 Report of the Royal Academy of Engineering and British Computer Society, April 2003

http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ch01tablefnt01#ch01tablefnt01

 19

In 1999, Highmark, a US health insurance company contracted KPMG Consulting to

develop an electronic billing and accounts receivable system (Ewusi-Mensah, 2003).

The completion date was slated to be 2002. Two years later with the project only 20

percent completed, KPMG requested $8 million in addition to $12 million already paid

to them. Highmark refused and sued KPMG.

The Libra IT system for magistrates’ courts was commissioned in 1998. £184 million

was paid out initially. Things came to a halt in 2002. The deal was revived in 2002

at a cost of more than £318 million. The total system development time jumped to

8.5 years. In 2003, Libra was labelled as ‘one of the worst IT projects ever seen’ by

the chairman of the Public Accounts Committee (Report of the Royal Academy of

Engineering, 2003).

Hershey Foods hired four (4) different consulting firms to work with its IS department

in 1996. This was to work on the Enterprise Resource Planning Systems. In 1999,

the implementation was three (3) months behind schedule. The decision was taken

to condense the implementation time from the estimated four (4) years to thirty (30)

months. This caused chaos. Hershey Foods took a year to fix all errors and return

to some semblance of operational normalcy. If it were a smaller company with less

resources, it might have never recovered, but might have been bankrupt (Ewusi-

Mensah, 2003).

The National Health Service (NHS) Direct2 is among the strategic information

systems exemplars and beckons as a beacon of hope (see table 1.2). NHS Direct’s

mandate is to provide up to date health information. Another part of its mandate is to

dispense advice to the populace of England and Wales via a telephone line and

online facilities. Development began in 1997. The implementation timeframe for the

telephone helpline was 2000. This was achieved in 2000. The target time for the

online facilities to go live was set for 1999. This was successfully done in 1999.

Success was attributed to effective use of piloting and wide ranging consultation of

key stakeholders within the constraints of the tight schedule.

Ariane 5 had her maiden flight on June 4, 1996. This flight ended with the launcher

exploding owing to a series of software failures.

2 Report of Royal Academy of Engineering , 2003

 20

The London Ambulance Systems failed twice in 1992. This was attributed to

several software engineering failures. Specifically project management defects were

cited as contributory factors. The monetary cost of the failure was relatively small at

£9 million. The human cost however was much higher. This was because it was

thought that many persons perished who would not have if ambulances had been on

the scene in a more timely manner.

For Therac 25, between 1985 and 1987 persons suffered serious radiation

overdoses. This was caused by software-related malfunctions of the Therac-25

radiation therapy machine. An important core cause was a lack of quality assurance.

This led to an overcomplex, inadequately tested, under documented system being

developed. Additionally there was failure to take corrective action.

In the Denver Baggage handling system fiasco, the system overran the planned

schedule significantly. This prevented the airport from opening on time. The system

had major software viruses and cost almost an additional $200 million more to

ensure that it worked.

Taurus was a projected automated transaction settlement system for the London

Stock Exchange. The project was cancelled in 1993 after being worked on for more

than five (5) years. The project cost was approximately £75 million. The eventual

cost to customers was estimated at £450 million. The credibility of the London Stock

Exchange suffered immensely as a result.

The software failures point to the need to rethink the way software development is

currently done. There are many reasons given for all of the above software failures.

The root cause of all the failures however were linked to a poor understanding of the

problem domain in each situation. There are many other factors that impact the

software development process that need to be examined before the design and

implementation occur. The view of software as a purely objective product that is

created devoid of context is somewhat misleading. Context be it organizational,

cultural, managerial or technological shapes the software development process and

the final product created (Ewusi-Mensah, 2003).

 21

1.4 The nature of the thesis solution
The search for the perfect, most efficient way of growing software and of software

development has been refined and experimented with. Yet in spite of this, huge

software developments continue to fail often and at great cost to taxpayers and

corporations. (see table 1.1) A proliferation of methods and methodologies abound

which purport to offer the cure for all software development ills (Henderson-Sellers et

al, 2000). There has been enough evidence however to prove that there is no one

set way of approaching software development. Many factors affect the

appropriateness of a methodology, including the type of project (large, small, routine

or mission critical), application domain (real-time, safety critical, user centred, highly

interactive, distributed or batch mode) and nature of information systems

development organization (Bennett et al, 2002, p 567). Each development project

has its own unique set of heuristics and problems and its own set of unpredictable

team members. What the software development industry needs then is not so much

a perfect method for developing software; but an increase in the number of proven

methodologies that work. (Report of the Royal Academy of Engineering and British

Computer Society, 2003). These would add to the toolkit of developers and enable

them to more closely match methods more closely to the characteristics of their

projects. That there is still a demand for other software methods and tools is

confirmed by a recent study.

Further developments in methods and tools to support the design and delivery of IT
projects could help to raise success rates.

 (Royal Academy of Engineering and British Computer Society, RAE & BCS 2003)

This research demonstrates how Soft Systems Methodology (SSM), a problem

structuring methodology is integrated with a method based on the Unified Modelling

Language (UML), an object oriented notation and graphical language. This results in

an amalgamation of hard systems thinking and soft systems thinking. This fusion

could possibly help to minimise many of the documented software system disasters

and could utilise time, money and machine resources more efficiently. The Unified

Modelling Language (UML) is relatively new and is filled with multiple possibilities for

research. It is gaining much support as it is backed by the Object Management

Group (OMG). The UML has become a leader worldwide and forms the basis of most

modern software development Computer Aided Software Engineering (CASE) tools

(Henderson-Sellers et al, 2000).

 22

SSM focuses on human activity systems while UML use case models assume use of

technology. The combined use of the SSM and UML-based methods yields a more

balanced approach. Like SSM, Use Case Modelling is concerned with describing

system behaviour. In SSM, the ‘system’ is that of human activity at a level of

abstraction above implementation. Use Case Analysis was developed initially for

people using computing systems; it can also be applied to the business process.

The Office of Government Commerce lists lack of effective engagement with

stakeholders as one common cause of project failure (RAE and BCS Report, 2003).

This research offers MoIST as one such means of assuring successful systems.

MoIST offers three (3) development options that are able to fit several categories of

information systems. This offers the developer and the client more flexibility and

options in choosing the methodology most suited to the nature of their project. This

should guarantee more success in project development. One of the major

references on the quality of the systems development is the approach adopted. If the

approach used is not appropriate for a particular type of application then it may limit

the quality of the system being produced (Bennett et al, 2002). This means that

there is a tendency to attempt to solve unstructured Information Systems problems

by means of experimental and empirical research methods. The scientific method is

still being used to try to find solutions to issues that are multi-faceted in their

complexity (Bennett et al, 2002, p 57). There is therefore the need for a more

relevant and unconventional approach. The alarming failure rate of Information

Systems developments should at least have alerted Information Systems

practitioners to the fact that hard systems engineering on its own does not seem to

be working and applying the scientific paradigm to social organizational situations

have failed (Checkland and Holwell, 1998). There must be an additional solution that

can work in tandem with the hard systems engineering solutions to achieve

increased success in a holistic manner.

MoIST has not been developed for every software development project. It is a

method that can be maximally used for software projects where not much is known

about the application domain, where the issues are somewhat unclear and systems

thinking needs to be utilised.

Systems thinking of all the applied disciplines has demonstrated the greatest
potential for linking theory and practice. Systems research is in advance of
organisation theory in intervening in problem situations. It is ahead of operational
research and management consultancy in its ability to think through implications at

 23

the theoretical level and improve practice as a result. For applied disciplines, it can
rectify any deficiency in their theoretical foundations. It also enhances its systems
development and capabilities and enables systems to be built with the most
important component in mind – the users.

Jackson, 1997

1.5 Research Overview
1.5.1 Development Concerns

 there is a need for effective means of integrating systems thinking into

information systems design

 premature design decisions are being taken in the software development

process before major requirements are known and opportunities for

improvement have been agreed.

 An alternate means of more fully exploring the relationship between SSM,

and existing information systems design techniques is needed.

 Options for software developers who wish to apply SSM and information

systems design techniques in the context of UML are limited.

 There is a plethora of methods that involve detailed planning too early on in

the software process which sometimes results in software that is difficult to

change.

 There are many system design artefacts that clarify how the system retrieves

and processes data. These however do not usually stipulate how to capture

human activities and business processes.

 Stakeholder discussions based on class and sequence diagrams as

communication tools are difficult to understand for clients not familiar with

UML notation.

 Human factors are not appropriately integrated and factored into some

methodologies used in the existing software development process.

 24

1.5.2 Goal of research project
To design a method that integrates systems thinking, namely SSM into information

systems design, using UML notation.

The application of Soft Systems Methodology integrated with a Unified Modelling

language-based method is useful in software development for separating the ‘what’

in what changes are needed?, from the ‘how’ in how can requirements be met using

information systems? This results in the requirements elicitation process being more

accurate and efficient thereby increasing the success rate of software development

projects.

 To redress premature consideration of system structure by using SSM within

information systems design to identify and clarify the purpose of the system

and the tasks needed for the achievement of those purposes.

 To develop a method that incorporates the results of SSM analysis into

requirements specifications based on the UML.

 To encourage well structured and coherent debate about complex situations

of software projects in order to decide on improvement strategies

 To emphasize designing systems supported by the information system

instead of wrongly prioritizing designing the information system.

 To incorporate the human factor into the software development process.

1.5.2.1 Research Question 1
Is there a link between SSM and UML given their inherently different

natures?

1.5.2.2 Research Question 2
Given that there is a link, how beneficial is that link to the software

development process. In other words, what value does the link add to the existing

software process?

 25

1.5.3 Research contributions to existing work

This research has made significant and original contributions to the particular field of

learning within which the thesis subject falls. Of these contributions some are

general while some are local in scope.

General research contributions of the MoIST

 A method that explains the value to the software development process of a

viable linkage between SSM and UML.

 A method that endeavours to more appropriately integrate the human factor

into the existing software development process.

 An alternative method that provides a more wholistic exploration of the

relationship between SSM and existing information systems design

techniques.

 A method that integrates systems thinking into information systems design.

 A method that stipulates how to capture human activities and business

processes instead of merely clarifying how the system retrieves and

processes data.

 A method that minimizes the level of detail of the planning in the initial

software process in order to achieve software that can be more easily

changed along the software development cycle or path.

 A method that incorporates the results of SSM analysis into requirements

specification based on the UML.

 A method that emphasizes designing systems supported by the information

system instead of wrongly prioritizing designing the information system.

 26

 A method that encourages well structured and coherent debate about

complex situations inherent in software projects in order to decide on

improvement strategies.

 A method that incorporates the human factor in a greater measure into the

software development process.

 An alternative and additional method that incorporates the results of SSM

analysis into requirements specifications based on the UML.

Local research contributions of the MoIST

 A novel means has been developed to integrate requirements analysis and

design techniques from SSM into information systems design using the

MoIST method

 An improved user requirement definition for certain types of software

development projects

 A major intervention in the Academic Support Process in the School of

Computing and Engineering using the MoIST method

 An electronic system ‘ACcSys’ that allows ‘at risk’ students to be quickly

identified and assigned to the relevant personnel and resources.

 Design of ACcSys instruction documentation for Pathway and Module

Leaders

 Development of a solution to the retention problem that resulted in

redundancies in the School of Computing and Engineering

 Seamless merging of a developed electronic system as an interface to an

existing electronic system within the university at minimal or no extra cost.

 An electronic system that is portable and is capable of being easily and

successfully used by other departments within the university.

 27

 An electronic system that can be utilised to solve problems of a similar nature

in other universities.

 A system that can be used to facilitate the Personal Development Planning

(PDP) mandate of the university.

 Creative work, namely a designed and implemented electronic system which

forms a significant part of the intellectual enquiry. This original creative work

was undertaken and invented as part of the registered research programme.

This creative work is clearly presented in relation to the thesis and is set in its

relevant theoretical and design context.

1.6 Conclusion
The thesis describes the problem to be solved and explains the methodology for

solving it (see chapter 5). Related work is identified and discussed to show how the

problem has been addressed before (see chapter 4). The shortcomings of existing

work in the area are highlighted (see chapter 5). MoIST is then explained in terms of

how it differs from other approaches and methods (see chapter 5).

The thesis supports the validity of the stated claim is valid through a presentation of

references to prior work within both the soft systems thinking field and the hard

systems engineering field. It further shows how previous work has influenced the

new claim. Action research is then used to provide support for the claim. This is

done by taking real life complex situations, applying the MoIST method and providing

a major intervention and immense benefits at minimal cost. This action research is

sufficiently documented, so that it may be reproduced by interested practitioners in

related areas. Insight is then given into how the claim can be further used or

extended in future work.

Traditionally software development has always focussed on deriving a definition of

information system requirements. This usually results in information systems which

are technically sound, but usually do not provide a large measure of satisfaction to

the humans who use them (Mumford, E, 1995, 2003).

The methodology for this thesis makes a claim. This is that hard systems engineering

by itself cannot claim to be the sum total of software development. The research

states an important claim for an extension in the cultural vocabulary of technology.

Here the cultural vocabulary of technology refers to the way in which technology

 28

dictates a subset of usages, methods and approaches that have no bearing on or

relation to human concerns (Maeda, 2002). This thesis asserts and justifies

throughout its pages that only by ‘enculturing’ technology can we see an

improvement in the success rate of software development products. Instead of

concentrating on the technology alone, it is more beneficial to evaluate the

interrelationships between the capabilities of the technology, the tasks being

performed and the users of the technology (Maeda, 2002).

 29

Chapter 2 - Soft Systems Methodology (SSM)

Thousands of engineers can design bridges, calculate strains and stresses, and

draw up specifications for machines, but the great engineer is the man who can

tell whether the bridge or the machine should be built at all; asking why, where it

should be built and when.

Eugene G Grace, Former Chairman – Bethlehem Steel Corp (1916-1957)

2.1. Introduction

In this information age, clients’ increased knowledge base has led to greater

expectations from software developers. The software industry still tries to meet

clients’ demands. Consequently there have been many instances of software

failures. Software faults may be traced to incorrect requirements. This is where the

software matches the requirements but the behaviour recommended in the

requirements specifications document is not appropriate (Pullum, 2001). There is a

need to establish a stronger link between the requirements analysis and the design

phases of the software development life cycle. Soft Systems Methodology (SSM)

has been identified as one means of achieving that stronger link.

Soft Systems Methodology (SSM) was pioneered by Dr. Peter Checkland at the

Lancaster University Management School, United Kingdom. SSM seeks to represent

unstructured situations with the primary goal being to understand the situation as it

really is. After understanding is gained, the methodologist or the owner is then

empowered to make an intervention. This should result in some improvement to the

previous situation.

‘In [SSM] a number of notional systems of purposeful activity which might be
‘relevant’ to the problem situation are defined, modelled and compared with the
perceived problem situation in order to articulate a debate …..’’. SSM facilitates
learning about an environment. It is not primarily geared towards achieving
objectives. While not discounting the importance of achievement of objectives; SSM
sets a chain of enquiry into motion in order to better perceive clearly, the nuances of
a complex situation. As learning occurs over time, purposeful action may then be
taken to improve the situation. (Checkland and Scholes, 1990, p.18).

 30

Fig 2.1: Original 7 stages of SSM devised by Checkland, 1981

2.2 Justification for the importance of SSM in this research

SSM is utilised as a means for resolving problems. It is used to extend the scope of

feasibility study activities beyond those supported by hard systems engineering.

SSM aids understanding of the many simultaneous views of an organization’s goals.

This facilitates potential interfaces to a system. It also allows factors affecting system

implementation to be comprehensively investigated (see figs 2.1 and 2.2).

Traditionally software engineers tend to use class diagrams and UML artefacts such

as use cases in the requirements elicitation stage to try to explain their understanding

of the problem to the client users and to get feedback. This is usually unproductive as

experience has shown that the technical level of these artefacts serves as a barrier

and deterrent to user understanding. Systems engineering is excellent at dealing

with technically defined situations. It however fails dismally in coping with the

complexities of human affairs including management situations (Checkland &

Scholes, 1999).

 31

The soft systems approach provides the means for the analyst to discuss the

situation in the users’ own terms (CCTA, 1993). In Soft Systems Methodology

(SSM) it is advocated that an information system should not be developed until the

utilising system has been modelled. In other words it is unwise to build an

information system until you have modelled the system that uses it. Soft Systems

Methodology is a cyclic learning system which uses models of human activity

systems to explore with the actors in a real world problem situation and their

readiness to decide upon purposeful action which accommodates different actors’

perceptions, judgements and values. Additionally, SSM is a methodology used to

make sense of unstructured situations in real world organizations. (Checkland 1981,

p. 98).

SSM is in essence action research. “This means that an action is taken and then

evaluated. Action researchers contend that a complex social process can be studied

best by introducing changes into that process and observing the effects of these

changes.” The approach used by organizational consultants must also introduce

change, but in this case, the theoretical development and the rigorous empirical

foundation are prerequisite elements of the activity (Baskerville, 1999, p25). This

involves some action being taken. This triggers a resultant consequence that leads

to learning of some sort occurring. This learning can then be applied to similar

situations to increase the eventual learning.

It is sometimes not possible to define requirements accurately ahead of time. This is

because the situation is new or the system being employed is highly innovative. The

utilising system or the information system environment may change in reaction to the

system being developed, thus initiating a changed set of requirements (Checkland

and Scholes, 1990). In SSM, one is dealing with human beings. One therefore

does not only need observation or design of human activity. What one primarily

needs is decoding of this human activity. This answers the questions of what does it

mean? And what does human behaviour mean? SSM also assumes that human

beings should be free to choose their own futures. The ethos of SSM says that SSM

is supposed to help by encouraging debate. There is no trick formula to working out

what people mean. They have to be first engaged in debate (Checkland and Holwell,

1998).

 32

The classical software development life cycle follows the progression of analysis,

design, testing, coding. This cycle has been generally successful, but is limited in that

systems are being developed that are not necessarily relevant to the needs of the

clients. These systems are good systems, but not relevant systems (Checkland,

1981). This research applies SSM techniques to determine what the relevant

systems are, before any development starts. This ensures a higher probability that

clients are given systems that they need. SSM techniques look at the political and

cultural ethos of an organisation and generate conceptual models of how the

organisation really functions. This helps to determine the relevant systems; before

one even gets to the analysis stage. The software development cycle then

progresses as per usual to design and testing/coding stages.

The evolution of the soft systems methodology is somewhat independent of

computer customers. It is a general problem structuring approach that may be used

as a precursor to traditional information systems development. As the changing

needs of computer customers and organisations have required more involvement in

the development process; this has caused the SSM to be increasingly applied to

information systems development. SSM is a reaction against the hard system view.

This hard system view stipulates that anyone can see or engineer a hard system and

perceive its minuses, faults and plusses. It is powered by observation and

construction. This view does not always hold true as organizations increase in

complexity and unstructuredness .

What is SSM?
SSM is a cyclic learning system which uses models of human activity systems to

explore with the actors in a real-world problem situation their perceptions of that

situation and their readiness to decide upon purposeful action which accommodates

different actors’ perceptions, judgements and values (Checkland 1984, p 98)

Checkland initially tried to use systems engineering as the framework for addressing

ill-structured problems. This did not work very well as the systems engineering

paradigm is different from systems thinking. Systems Engineering is a ‘how-oriented’

activity; it answers the question. How can this need be met? ‘What’ the need is has

already been defined (Checkland & Scholes, 1990, p 17). This difficulty in using

systems engineering gave rise to SSM. The whole core of SSM revolves around the

following. There is a problem situation in the ‘real-world’. An analysis then carried out

of what exists at present in the problem situation. This is done by using a rich

 33

picture, spray diagram or mindmaps, whatever depicts and captures the situation in

the most accurate and understandable way. A definition of the relevant systems then

follows. Here at this stage a root definition, RD of a system relevant to the problem is

created.

It is highly recommended that there should be several RDs. In creating or

constructing the RDs , it was made clear that at stage 5 [comparison between real

world and the conceptual model], it is difficult to avoid seeing the RD and its model

as normative, if there is only one definition and one model (Checkland, 1981 p. 208).

The way to avoid this is to entertain several root definitions, best of all including

incompatible ones and to make models based on more than one of them. The next

stage is a conceptualisation of ‘formal systems’ to carry out the functions described in

the ‘root definition’. This means that the root definition is here subsequently modelled

by a set of minimum necessary activities shaped in terms of the ‘formal systems or

conceptual model’. Comparison between the rich picture representation and the

conceptual model follows. There is then a definition of a range of possible changes

that could positively intervene in the real world problem. A selection of a desired,

agreed-to-be-feasible change. Design of the agreed change follows and ultimately

implementation of the agreed change.

Phases of SSM
SSM in its most basic form has four (4) distinct stages. The first involves the

existence of a real-world situation of concern. Someone is concerned enough to

initiate a finding out or an investigation stage. The first stage is therefore the finding

out stage and the artefact produced at this stage is usually the rich picture.

The second involves constructing models of relevant human activity systems (HAS)

or holons. These HAS or holons are then named and modelled and should not bear

too much resemblance to the real world situation identified in the first stage. With

SSM, firstly a rich picture of the current environment is drawn. This rich picture is

uncoloured or unbiased by systems terminologies, secondly, ways of using systems

ideas in problem situations are then developed based on that view. Thirdly, there is

modification of both the systems outlook and the ways of using the systems ideas as

experience is gained, as mistakes are made and as lessons are learned. There is

then reflection on the interactions between systems thinking and systems practice in

order to draw conclusions which will allow future theory to benefit from practice and

future practice from theory. There are four techniques usually used in this stage. The

Root definition (RD), the CATWOE, PQR (see below) and conceptual models (CM) of

 34

Human Activity Systems (HAS). The root definition is a brief formulated statement

that best describes the system and tells what the system will or should do. CATWOE

is a mnemonic used to ensure the well-formedness of each root definition.

Fig 2.3 Social, political & cultural analysis, Checkland et al, 1998

Phase 1 – Rich Picture
It is possible to begin the process at any phase. However it is the relationship

connection between the phases as opposed to their order that is crucial. SSM

usually begins in phase 1. Here an exploration of a real-world situation of concern is

initiated. This is usually because someone perceives a situation as problematic and

desires to fix it in some way. The purpose of this exploration is usually to provide a

more accurate comprehension of the situation. It is also to identify pertinent issues

that need to be addressed. The Phase 1 findings are usually summarised in a rich

picture, Checkland and Scholes, 1990.

 35

The process of gathering information, appreciating the situation and then identifying

relevant issues adhered to certain guidelines. These were to look for ‘elements of

slow to change structure’ and ‘elements of continuously changing process’. These

elements have in later versions of SSM been developed and replaced with the

guideline to explore the situation through analysis of the intervention – Analysis One,

social system analysis – Analysis Two and political system analysis – Analysis

Three, Checkland and Scholes, 1990, p 47).

Phase 2 – Conceptual Models of Human Activity Systems
From the rich picture, relevant issues for improving the problem situation are selected

and modelled. These relevant models of purposeful activity are intellectual devices

used to stimulate and structure the debate about the situation being studied. They

are also used to focus on concepts of pure purposeful activity from a certain

perspective Kareborn, 2000). That is why they are referred to as conceptual models

of ‘human activity systems’, Checkland and Scholes, 1999). Human activity systems

comprise all activities that are carried out by human beings.

In order to form a whole, these activities are linked by some principle of coherence or

some unifying purpose or mission. These conceptual models should not be accounts

of the real world, or Utopian designs, but should be considered as epistemological

devices that help to structure a debate, Kareborn, 2000).

Phase 3 – Comparison
In this phase, the human activity systems are compared with actual perceptions of

the situation. Through the comparison and the debate it creates, fresh insights are

gleaned. This allows for accommodations between different interests and

perspectives. These accommodations must be both feasible and desirable. They

usually result in actions that can improve the situation.

Phase 4 – Action to improve the situation
These actions to improve the situation are the start of Phase 4. After the

implementation of an agreed change to improve a situation, the original problem

situation is either resolved or is transformed into a new situation of concern. If

changes cannot be agreed upon, a more extended examination of relevant systems

might be needed.

 36

The four (4) phases described above represent the systems thinking part or the

modelling phase of SSM. The main function of the modelling phase is to highlight

different perspectives of the problem situation and to structure the thinking about the

situation. To achieve this, four (4) precise techniques have been developed. These

include Root Definition (RD), CATWOE, PQR and Conceptual Models of Human

Activity Systems (HAS).

SSM techniques
1. Root Definition

Root definition means naming a system of purposeful activity in a succinct statement.

The official guidelines for a well-formulated root definition is that it should contain the

elements of the mnemonic word CATWOE or PQR, Checkland, 1999).

2. PQR

 PQR refers to the statement ‘Do P by Q in order to contribute to the achievement of

R’. PQR also answers the three questions: What to do (P); How to do it (Q); and

Why do it (R)? (Checkland, 1999).

3. CATWOE stands for:

Customers - the beneficiaries or victims of the system;

Actors - persons who perform the transformation process;

Transformation - an input-output process by which some entity is

changed to a new form of that same entity;

Weltanschaung - a worldview which makes the transformation

meaningful;

Owners - the persons who can stop the transformation;

Environmental constraints - elements which affect the system, but which cannot be

controlled.

 37

2.6 Case Study : A Study of the learning and teaching strategy delivered to
Business Computing Students: Towards determining the most effective
approach

The case study below is used to illustrate an example of how SSM is actually used in

an unstructured, complex, real life organizational situation. It demonstrates the

typical SSM stages and was conducted at the School of Computing and Engineering.

2.6.1 Introduction
Students of differing faces and places contend with a multiplicity of issues at various

times. In recent times, the challenges they face seem to have intensified and they

appear to need more effective teaching and learning solutions tailored to their

specific needs. This study seeks to explore and expose the issues and then to

make valuable recommendations. The academic programme in most universities is

divided into manageable units called modules. The learning and teaching strategy is

usually based around the construction and delivery of these module entities. A

module may be defined as a related logical sequence of instructions that is executed

by a facilitator for the benefit of learners with the aim that the learners should totally

master instructions, be able to replicate them and apply them in novel situations.

People learn differently and teaching has to be deliberately structured in order to get

the desired learning outcomes. All students are individuals who assimilate new

information in different ways. One student may feel more comfortable reading

information, another may be more practical in orientation, yet another may feel

perfectly at ease doing both. Teachers need to determine students’ expectations and

experiences and tailor subsequent classes to take these into consideration. This

helps to manage the learning and teaching process in such a way that the student is

not disadvantaged. Some teachers believe that learning is the student’s

responsibility while others believe that they are responsible to ensure student

learning. Whatever camp the teacher falls into, there must be ways of ensuring that

the student learning experience is maximized.

 38

2.6.2 Background
Traditionally students in Higher Education followed the Oxbridge model.

Stereotypically they were intellectually advanced and financially secure.

Consequently there was not much need for them to have part-time jobs.

In the last ten years a new specie of students has emerged from the ashes and

difficulties associated with Higher Education. These are ‘commuter students’. They

can be further classified as semi-distance learners. By definition, these students

stand in stark contrast to the traditional Oxbridge model. They live at home with their

parents and not on halls of residence. They average one hour of daily commute to

get to classes. Higher Education now comes at a greater cost so they work at part-

time jobs while being full-time students. Most are privy to computer access at home.

The phenomenon of new universities has birthed these ‘commuter students’. The

government’s mandate of Higher Education and widening participation has ensured

that more students get access to a university education, but at a cost to the

education system and to the students themselves. With the rise of the ‘commuter

student’ has come the fall of retention rates when compared with rates of past years,

retention levels are still falling at an appalling rate. The ‘recruit more’ and ‘retain

more’ goals are now increasingly being perceived as mutually exclusive. Therein lies

the challenge. There is therefore the need to retain a greater number of students

without compromising the academic standards. There needs to be a way of enabling

learning and delivering teaching to new millennial students with all the attendant

problems. The pressing demand is for high retention levels to be maintained without

diminishing academic rigour.

HOW THE PASS RATE HAS CHANGED
Top 10 subjects Overall Pass Rate

 Pupils 1993 2003

English 78,746 84.3 98.4

General Studies 58,430 72 90

Maths 55,917 82.4 94.4

Biology 51,716 77.4 92.6

History 42,018 83 97.7

Psychology 41,949 76.8 94

Art and Design 38,314 90.5 96.6

Chemistry 36,110 79.9 95.1

Geography 35,749 81 97.9

Business Studies 33,133 80.1 96.4

 39

Table 2.1: Pass Rates cited from a daily newspaper – Friday, August 15, 2003

There is another type of student in the education arena. This student relishes the

opportunity for distance learning education. This is fast becoming ubiquitous and

distance education is a thing of the present and future. Yet another category of

student is the experienced professional who for a variety of reasons, did not pursue

formal university education. Pressed with corporate, family and personal

responsibilities, the desire and dream for Higher Education seem a distant dream;

but the hope for attaining that dream still burns brightly.

One of the six key objectives of a learning and teaching strategy is ‘to support the

continuing development of high quality, responsive teaching, learning and

assessment that recognises the diversity of learners, the appropriate use of learning

technologies and the dispersed nature of the university (Dearing report, Higher

Education in the Learning Society NCIHE, 1997).

These are only three (3) of several categories of learners whom the learning and

teaching strategy have to be configured for. The commuter students who now have

to fund themselves, the students for whom distance education is more beneficial and

the working executives who desire to pursue Higher Education; but are currently

constrained by other factors. This study uses SSM to explore the issues involved

and make recommendations as to the best way forward.

Methodology of the Research
Soft Systems Methodology (SSM) was the vehicle used to facilitate this study. SSM

was pioneered by Professor Peter Checkland at Lancaster University. SSM allows

for the study of an environment in order to extract pertinent factors from that

environment so learning of the environment can occur. This learning then can

precipitate relevant change in an organisational environment.

 40

Fig 2.4: POM Model of SSM

The POM model within SSM is comprised of seven (7) elements. It was developed

to try to make sense of the information systems field, Checkland and Holwell, 1998.

Element one consists of the people as individuals and group members. Element two

is a data rich world perceived through assumptions. Element three is where meaning

is created inter-subjectively. This feeds into Element four which embodies the

attributes of meanings based on information and knowledge. Element five

accommodates conflicting interests and element six is the purposeful action taken.

Element seven represents information systems that support organisational members.

The POM model represents organisational information and communication

processes, sense making and processes of creating shared meaning in a never

ending learning process (Holst et al, 2004).

The finding out process is vital and integral to SSM. This is where the client’s desires

are captured from the methodologist’s perspective. When a complex situation in an

organization is presented, the person doing the investigations brings to bear on the

finding out certain competencies and skills which are personal and unique. These

competencies and skills influence the quality of the output of the investigation. In

order to better appreciate the problem context and achieve better information

gathering; the methodologist should pay attention to ‘elements of slow to change

structure’ and ‘elements of continuously changing process (Checkland, 1981). He

 41

further suggested that one should see how the elements all worked together in the

situation climate. In however, this suggestion was revamped in favour of Analyses

One, Two and Three (Checkland and Scholes, 1990). SSM provides a flexibility in

the information gathering devices. Some methodologists find it easier to work with

rich pictures, some with mind maps.

2.7 Analyses 1, 2 and 3
SSM has innovated another approach to the “finding out” process in a problem

situation. This approach uses three related analyses. The first is referred to as

Analysis One. This is the Analysis of the intervention. This looks at the existing

situation and establishes who in the situation is in the role of ‘client’. The client is the

one who causes the intervention to take place. The role of the would-be-problem –

solver is also established. This is the person who conducts the study. This person

compiles a list of potential problem owners. This activity is related to the concept of

stakeholder analysis in requirements engineering (Sharp et al, 1999, Smith, 2000).

Figure 2.5: Stakeholder/Domain Analysis, Sarkar, P, 2002

Analysis Two examines the cultural aspect of the situation. It sees the situation as a

social system and seeks to discover the social roles present in the situation, the

norms of behaviour that are expected to be displayed by those in the social roles and

establishes the values that determines the measure of whether or not a role holder’s

performance is considered good or bad.

 42

Analysis Three addresses the political aspect of the situation. It examines the

disposition and the nature of power and authority displayed in the situation. It looks

at what commodities of power are present in the situation. It also seeks to identify

how the commodities are obtained, used, preserved and passed on.

Analyses used in the ‘Finding out stage’

Analysis of the Intervention – Analysis 1

• Who is the Client?

• Who is the problem solver?

• Who are the problem-owners?

Social System Analysis – Analysis 2

• Role Analysis

• Norms Analysis

• Values Analysis

Political System Analysis – Analysis 3

• Identifying possible conflicting interests and personality clashes

• Interests resolvable by accommodation

• Differences of interest resolved by use of power

Table 2.2: Analyses 1, 2 and 3

Case Study demonstration of Analyses 1, 2 and 3

Analysis 1 – Analysis of the Intervention

Client – Module Leader

Problem-Solver – Soft System Methodologist

Problem-Owners – School of Computing, Module Leader

 43

Analysis 2 – Social System Analysis

Roles Behavioural Norms Values
Student Aims to maximise their potential by

gaining the knowledge, attitudes and

skills needed to meet the requirements of

work and society

Attending required classes

and tutorials GOOD
Getting assistance when

needed GOOD

Dropping out after the first

semester BAD

Lecturer Teach students in such a way that

learning takes place and the goals of the

module syllabus are met

Use innovative ways of

teaching to enhance

student learning GOOD

Provides and point to high

quality support resources

for student

GOOD
Disseminate course

content without adequate

explanation BAD

Module Leader Coordinate all the resources and

personnel relevant to a module to ensure

that it functions smoothly

Liaise with support tutor

And provide necessary

materials in advance

GOOD

Examines and amends

module to consistently

upgrade module quality

GOOD
Disregards students

concerns and feedback

BAD

Undergraduate
pathway leader

Oversees the smooth running of all

modules in the undergraduate pathway

Communicates effectively

with all module leaders

GOOD

Has no future plans to

improve and upgrade

current pathway BAD

MSc pathway
leader

Facilitates the efficient running of the

MSc pathway

Knows what the current

industry needs are for the

pathway GOOD
Has no idea of how the

modules are being taught

 44

BAD

Distance learning
coordinator

Provides innovative ways of student

learning through the use of distance

learning materials

Has experience in how

distance education works

in practice GOOD
Installing outdated modes

of distance learning BAD

Table 2.3: Analysis 2

Analysis 3 – Political System Analysis
Disposition of power
The stakeholders detailed above represent different parts of the learning and

teaching spectrum. Consequently there is no stringent or ordered hierarchical

structure represented there. One thing they all have in common is authority and

influence over the student. In both the undergraduate and MSc streams, a pathway

leader oversees a module leader. Both functions incorporate the lecturer role. Any

conflict or communication breakdown would be more likely to happen between those

two roles. The distance learning coordinator is an autonomous position and usually

indirectly relates to the other lecturers’ responsibilities.

Nature of Power
The power reflected here is the power to improve or retard the learning and teaching

process in the school. The manner of execution of the responsibilities is paramount in

ensuring that student learning is enhanced and effective which ultimately achieves

the corporate mission of the university. Any improprieties in carrying out the

functions above could result in even lower retention rates and recruitment levels of

students as the bad news spreads.

 45

Rich Pictures
Rich pictures are used in SSM to capture the essence of the situation under study.

Political, social and cultural realities are captured in a pictorial or diagrammatic form.

This enables the methodologist and the stakeholders to see the whole picture at a

glance. It enables them to understand the various forces at work in their particular

situation and see it through another’s eyes. This increases their objectivity and helps

them to more accurately see with the SSM methodologist what the next step needs

to be. The rich picture usually represents the methodologist’s perspective on the

problem and gives their viewpoint. The thought processes required to develop the

rich picture give rise to deep understanding of the situation and provoke thoughts

about relevant human activity systems which lead to conceptual model building

(CCTA, 1993, p36). One does not need to be a Picasso or Michelango to be able to

give an accurate depiction of happenings and events and relationships in a project

situation. Stick persons and cartoon like characters will suffice. SSM encourages the

analyst to broaden the initial concern of study away from the detail of the intended

information system and towards the situation in which the information system is

expected to provide useful support. The first task is to describe the situation (CCTA,

1993, p34).

Fig 2.6: Rich Picture of Teaching & Learning Process (created by Hopkins,
2004)

 46

The process of creating rich pictures is not very standardised. There is no one set

way to draw or terminology or jargon for this. The depth of its richness is usually left

up to the methodologist. The process of creating rich pictures also serves to tease

out the concerns of the people in the problem situation. These soft facts include the

sorts of things that the people involved in the situation are worried about, conflicts,

politics and other concerns (Avison et al, 1990, p45). It has been the experience of

this researcher that the initial effort of starting to draw a rich picture was somewhat

challenging. The question was always where to start. The challenge is greater for

those methodologists who do not perceive themselves to be artistically inclined.

Relief and comfort came from several directions. The first was the realisation that

there is no one correct rich picture. It is subject to the methodologist’s interpretation

and therein lies its acceptance. Research has shown that anyone with a ‘normal’

brain ie (not genetically or physically damaged) can learn to draw to good art school

level. The reason so many people assume they are incapable of creating images is

that, instead of understanding that the brain always succeeds through continued

experimentation, they mistake initial failure for fundamental incapacity and as its true

measure of their talent. They therefore leave to wither and die a mental skill which

could have flourished naturally, (Buzan, 2000).

Figure 2.7: Rich Picture, Checkland, 1990

How to start drawing rich pictures
1. write down all the known stakeholders

2. think about who interacts with whom or what

3. start by drawing the main interaction in the centre of the page

4. use a key to denote the meaning of symbols

 47

Selecting Relevant Systems
Relevant systems in SSM are called root definitions (RDs). As one expert put it

‘systems thought to be relevant to that deeper exploration of the problem situation

which will lead to action to improve it’. Originally, it was thought very important to get

the correct relevant system. The passage of time has however softened that view

and now it is not thought to be incorrect to formulate as many relevant systems or

root definitions as needed. The most relevant one can then be selected.

Figure 2.8: Root definition and CATWOE, Checkland, 1990

Root definitions used to be formulated without a specific standard or template. Work

done by Smyth and Checkland in 1976 saw the birth of the CATWOE which was a

mnemonic for the new standard by which all relevant systems should be measured

and drawn up against. Relevant Systems are therefore constructed as root

definitions done in accordance with the CATWOE. Relevant systems are usually

divided into ‘primary task definitions’. The most important part of a root definition is

the transformation ‘T’. Here some input is transformed or changed into some output.

This poses one of the most challenging bits in the root definition formulation. The

mistake that everyone usually makes is to state the resources needed for

transformation as the input.

 48

Case Study Example

 ‘to provide innovative approaches to student learning by developing new teaching

methods to complement those already in place, providing students with IT,

information management and other study skills, enhancing student employability and

career skills and by extending the learning opportunities in the workplace in order to

provide a better match to the needs of the changing student profile, be more

responsive to change and encourage increased participation in HE by students from

non-traditional backgrounds.’

Table 2.4: Root Definition of Teaching and Learning

Formulation of root definitions is one of the main activities of SSM. A root definition

is a precise description of the emergent properties of a system. A root definition

should explicitly contain the CATWOE elements. These six (6) elements,

Customers, Actors, Transformation, Weltanschauung, Owner and Environment are

closely connected to the idea of human activity systems (HAS), (Mathiasen et al,

1994).

Conceptualising data

Fig 2.9: Conceptual Model of Teaching and Learning Process

 49

Case Study illustration of Conceptual Model
IN SSM, a conceptual model contains the minimal set of related (human) activities

needed to carry out the transformation described in the corresponding root definition.

A system is thought of as being adaptive, therefore monitoring and controlling

activities are built into each model. Subsequently, the conceptual model must be

defensible against the root definition and the root definition against the conceptual

model, (Mathiasen et al, 1994).

The conceptual models give life to the activities of the relevant systems expressed as

the Root Definition. These activities of the systems are verbs that are assembled

together according to logical dependencies. In other words, their linkage is provided

by some cohesive factor or common purpose. These models should be neither

accounts of the real world, nor utopian designs, but rather epistemological devices

which help to structure a debate (Bergvall-Kareborn, 2002).

Fig 2.10: Conceptual Model, Checkland, 1990
Conceptual models built at stage four (4) of the methodology are neither descriptions

of actual human activity systems nor accounts of such systems which ought to exist.

 50

Their purpose is only to generate a high quality discussion with concerned

participants in the problem situation, (Checkland, 1981, p 236)

Monitoring and Control
Monitoring and control in conceptual modelling seeks to find answers to the question,

‘How could this system fail? This monitoring and control mechanism evaluates the

activity system’s performance against 3 and sometimes 5 measures of performance.

These are known as the 3 or (5) Es

E1 Efficacy

does the means work? Are the activities accomplishing the transformation T

E2 Efficiency

Are minimum resources used; could the transformation be accomplished with less resources?

E3 Effectiveness

Is the right thing being done; does the transformation help to attain the long-term goals

related to the Owner’s expectations

E4 Ethics

Is the transformation a morally correct thing to do?

E5 Elegance

Is the transformation aesthetically pleasing?

Table 2.5: Measures of Effectiveness – the 5 Es

Case Study illustration of CATWOE
C – Customer Students

A - Actor Distance Learning Coord, Pathway leader, Module leader

T - Transformation ineffective teaching and learning strategy -> relevant and more

effective teaching and learning methods and strategies

W – Weltanschauung universities are faced with many external and internal

challenges that have implications for their strategies for

teaching, learning and assessment

O – Owner school of computing, university

E – Environment financial and suitable personnel resource constraints

 51

Case Study Illustration of Comparison Phase

Conceptual Reality
Provide innovative
approaches to student
learning

There is effort being expended by the university to provide

innovative approaches to learning. The academic skills unit

has been trying to help students overcome handicaps in

various learning areas. There is also the personal tutor

system

Develop new teaching
methods

The Blackboard v 6 intranet is being utilised by lecturers and

students to make learning and teaching more effective.

Distance learning courses are being developed in the school

by the coordinator

Equip students with IT, Info
Mgnt. and study skills

There are programming support classes in the school and

study skills support is available from the academic skills tutor

Enhance student
employability and career
skills

The status quo for this has not changed, but there are plans

afoot to promote personal development planning (PDP) and

encourage students to keep personal progress files. This is

thought to increase employability at the end of the academic

programme

Extend the learning
opportunities to
professionals in the
workplace

Currently such opportunity is not formally in place. With the

advent of the distance learning modules, this can change

Encourage increased
participation in HE by
students from non-
traditional backgrounds

Widening participation of 50% of the populace has been

mandated by the government. One effort is the running of

an induction day called Quick Start for students with

conditional offers from FE colleges to encourage their

retention in the programme.

Table 2.6: Comparison Phase

Implementing Change
The models of human activity systems are compared with the actual situation.

Consequently this comparison generates debates and fresh insights are revealed.

This can then lead to satisfactory accommodations between the differing viewpoints.

These accommodations must be systemically feasible and culturally desirable.

 52

Figure 2.11: SSM as a Learning Cycle, Checkland and Scholes, 1990.

Defining change
This SSM study brought to light quite a number of issues. Not all of them will be

addressed, given the scope of the project and the time factor of the research. The

changes defined below were the ones thought to be implementable given the

constraints.

Change 1
In order to be motivated to learn, students have to be interested in their work. One of

the best ways to motivate is to provide a variety of activities. One way to do this is to

utilise the existing Blackboard version 6 (BB6) in the School of Computing and

Engineering. Blackboard has facilities for generating relevant subject quizzes and

automated marking. This could be done after each unit is administered. It offers

spreadsheet view of students’ performances on these quizzes and the module leader

can more effectively monitor how each student is grasping the material presented.

Change 2
The distance learning coordinator has developed a software that enables students to

learn at their own pace without being physically present at the university campus.

The proposed change is that the software can be used to develop one or more

existing for the MSc programme. This will enable the core areas for business

computing and information systems students to be made available in distance

learning format

 53

Change 3
To offer the above created distance module or modules to professionals in the

workplace who are not able because of various constraints to physically attend

classes at the university

2.8 Limitations of SSM
SSM with all its enumerated virtues above is not without its detractors. Some of its

perceived limitations especially as it relates to information systems development are

highlighted below.

• Critical Systems Thinking philosophy (CST) criticises SSM for its

interpretivism. CST’s critique towards SSM points to the lack of “objective”

standards for the interpretations’. CST says that the critical results of SSM

rests on persons and groups in the real world situations participating openly

and in a shared spirit (Bergvall-Kareborn, B, 2002, p 474). The concern

however is that this is not a perfect world and the balance of power in

organizations is not equally distributed. This could corrupt the very method

used to determine relevant systems as it is the results from the group

participation that is used in the recommendations for software development.

‘the kind of open, participative debate which is essential for the success of

Soft systems approach, and is the only justification for the results obtained, is

impossible to obtain in problem situations where there is fundamental conflict

between interest groups which have access to unequal power resources

(Jackson, 1991).

• From a learning perspective, it is a weakness that the rich picture is not

consistent with the conceptual model. For example, the ethical and aesthetic

criteria for measuring the performance of the conceptual models are nowhere

to be found in the rich picture. Hence two new aspects of evaluation which

were not considered in analyzing the problem situation are suddenly

introduced to the conceptual model.

• SSM is interpretivistic and lacks ‘objective’ standards for the interpretation

 54

• SSM has a limited domain of application, a regulative character, and a

tendency to retain status quo owing to its subjectivist approach to social

science, its interpretative assumptions, and because the approach did not

attempt to ensure the conditions for ‘genuine’ debate

• The kind of open, participative debate which is essential for the success of

the SSM approach, and is the only justification for the results obtained is

impossible to obtain in problem situations where there is a fundamental

conflict between interest groups which have access to unequal power

resources. (Jackson, 1991, p 133)

• SSM is seen as subjective and pluralistic. This is its main strength. Ironically

this main strength has been the characteristic of SSM that has been most

criticised.

• SSM has a tendency to result in regulatory, rather than radical, agendas for

change.

• The epistemological meaning underlying concepts and ideas within SSM may

prove difficult to grasp for persons not familiar with the interpretative tradition.

2.9 Related Soft Methods
In order to redress the deficiencies of traditional organisational models, other process

based modelling approaches have arisen in addition to SSM. These include Vickers

appreciative system, Beer’s Viable Systems model, Business Process Reengineering

and Participative System Design.

 55

2.9.1 Vickers Appreciative System

Fig 2.12: Appreciative and learning system, Checkland and Casar, 1986

In 1963 after retiring, Vickers had more time on his hand to try to gain a broader

understanding of more than forty (40) years of professional experience by

seeking an understanding of human affairs in general and organisational life in

particular.

Vickers ideas were depicted diagrammatically by (Checkland and Casar, 1986).

The model starts with Vickers two –stranded rope which is an interacting flux of

events and ideas. This flux is interpreted, valued and judged according to

standards created by previous experiences. Observing ‘what is’ and comparing

it with the standard, is known as appreciation. Vickers aimed to understand

social and organisational processes. He showed how information and

communication processes lead to change of our appreciative settings, which

leads to the basis of our decisions (Holst et al, 2004)

2.9.2 Beer’s Viable Systems Model (VSM)
VSM demonstrates central processes and information flows to and from its

management system. It shows functions necessary for an organisation to be viable.

One criticism of VSM is that it insufficiently represents modern organisations due to

its hierarchical structure. This results in the information flow becoming vertical and

more controlling (Holst et al, 2004).

 56

2.9.3 Business Process Reengineering (BPR)
BPR advocates radical change in organisational processes (Hammer and Champy,

1995). Proponents of BPR insist that implementing the proposed ideas will enact

revolutionary organisational improvements. Detractors however say that the top

down approach of BPR results in a high failure rate. It is also claimed that it

downplays the role of people and knowledge within the organisation (Holst et al,

2004, Galliers, 1997).

2.9.4 Mumford’s Participative Systems Design
One of the main aims of the ETHICS method is to achieve a better balance between

technology and people. Traditionally, economic and technical objectives have

dominated the thinking of those designing new systems. The specifications for new

systems have tended to be more skewed towards technical efficiency objectives and

very rarely with human needs and interests (Mumford, 1995).

Differences between SSM and structured
methods

SSM structured methods
subjective (interpretive) philosophy objective philosophy

systems + sociological theory base computer science + systems theory

flexible methodology rigid method

organisational problem- solving focus data, process, database, technical focus

creative/intuitive scientifically analytical

analyst is facilitator analyst is expert

participative analyst dominated

organisational learning outcomes computer design outcomes

several ambiguous outcomes one ‘correct‘ solution

Table 2.7 - Table adapted from Rose, J, http://www.cs.auc.dk/~jeremy/resources

http://www.cs.auc.dk/~jeremy/resources

 57

2.10 Software Development Method Building in General
In order to fully appreciate the merits and demerits of SSM, it is vital to examine other

software method building work in general. This helps to put SSM, UML based,

MoIST and all other methods in the research into their proper context. Examining

general software methods also gives a more balanced perspective and

understanding of each respective method. This is important for understanding the

role MoIST and other methods play in the software development process as a whole.

A method is defined as a procedure, a systematic way of doing anything according

to a regular plan or as the mode of a procedure of accomplishing something,

(Grossett, 2000). A methodology on the other hand is the philosophical analysis of

method and procedure or the method and procedure used by a science or discipline.

There have been keen debates and some contentions as to the distinction between

method and methodology. In this section, general software development methods

are examined. A brief history of methods is presented and the varying methods, their

contributions and their drawbacks are contrasted and compared.

Methodology may be defined as the logos of methods or principles of methods used

to achieve a process. Another definition is a set of principles which have to be

adapted in use to a particular situation. (Bennett et al , 2002, p 57) assert that ‘a

methodology consists of an approach to software development, a set of techniques

and notations that support the approach, a life cycle model to structure the

development process and a unifying set of procedures and philosophy’.

Appropriate use of methods in a software development project results in a more

accurate project and a more balanced research. (Bennett et al 2002, p 556), stated

that ‘in practice, methodologies vary widely in philosophy, in completeness of

definition or documentation, in coverage of the life cycle, and even in the type of

application to which they are best suited’. The method and the methodology of any

process, project or endeavour could be argued to be the most vital and crucial

component to that endeavour. The methodology provides the framework of

justification for the process.

A methodological framework exposes the similarities and differences between

methods. A more mature perspective is not which method is best; but when is a

method the best. The method and the methodology utilised must first be chosen with

great and deliberate care to minimise wasted work and fruitlessness. This is

 58

reinforced by (Bennett et al 2002, p 567), who wrote that ‘many factors affect the

appropriateness of a methodology, including type of project (large, small, routine or

mission critical), application domain (real time, safety critical, user centred, highly

interactive) and nature of the Information Systems development organization’.

One of the major influences on the quality of the systems developed is the software

development method adopted. If the approach used is not appropriate for a

particular type of application then it may limit the quality of the system being

produced, (Bennett et al, 2002, p57).

Software Methodologies can be grouped into soft and hard methodologies and

further into sub-grouped into structured methodology and object oriented

methodology. ‘The object-oriented approach provides a mechanism for mapping from

real-world problems to abstractions from which software can be developed

effectively. (Bennett et al, 2002, p57) continued to assert that object orientation

provides conceptual structures that help to deal with modelling complex information

systems.

As information systems requirements are becoming increasingly complex, the use of

an object-oriented approach is more necessary. It is a sensible strategy to transform

the development of a large, complex system into the development of a set of less

complicated sub-systems. Object orientation also aims to provide a mechanism to

support the reuse of program code, design and analysis models’.

We will begin with the distinction between soft and hard methodologies. Soft and

hard approaches to software development are not to be perceived as competing

methods. The soft approach complements the hard approach. It allows a broader

view of systems development. As (Flynn,1998 p 325) advocates, it is concerned with

what may be broadly termed the environmental effects of information system. That

is, it is concerned with the relationship between such systems and social, economic,

legal and psychological aspects of the environment.

(Bennett et al, 2002, p 568) asserts that ‘soft and hard methodologies cover different

parts of the life cycle. In this view, a soft methodology is more useful in the earlier

stages of the life cycle, particularly when there is uncertainty about the goals or

strategy of the organization as a whole. A hard approach will be more appropriate

 59

once any initial uncertainties and ambiguities have been resolved, since the

emphasis then shifts to a specific project with relatively clear goals and boundaries.’

There are two very critical problems currently remaining in software development that

the hard, scientific approach has not solved. One is that the current methods used in

developing the systems persistently solve the wrong problem. The other is that the

current development methods used neglect the wider organizational context (Flynn,

1998 p 333).

The soft approach deals with these problems and addresses them. (Dobson &

Strens, 1994) asserted that, a hard approach assumes that the problem to be solved

is logically based and has a solution in a computer system, thus limiting the range of

problems that can be addressed to those that possess a mathematical or logical

solution. Another assumption is that the computer-based solution may be placed in

the organization without taking account of the social and psychological context within

which the system will interact. As (Bennett, 2002, p556), said ‘in practice,

methodologies vary widely in philosophy, in completeness of definition or

documentation, in coverage of the life cycle, and even in the type of applications to

which they are best suited’.

The software development method used is vital to the success of the whole venture

and its use has to be judged according to the problem to be solved.

Methodology can be tested only in conjunction with a problem to which it is applied

as asserted by (Checkland, 1981, p242). We must take, not methodology, but

methodology plus problem and ask, not about the methodology, but about the

problem. Was the problem solved?

 60

Hard Methods

These hard methods or approaches can be further subdivided into structured

methods and object oriented methods. Structured methods include the following.

Structured Systems Analysis

(Bell et al, 1992) said that ‘methodologies based on the structured systems analysis

method tend to focus on information movement and analyses. This analysis is broken

down in terms of flows, processes, files, sinks and sources. Possibly one of the best

examples we have of this approach is the seven-step model designed by (DeMarco.

The seven step model is:

1. building a current physical model
2. building a current logical model from the physical model
3. building a logical model of the system to be built consisting of data flow

diagrams, a data dictionary, and process specifications
4. creating a family of new physical models
5. producing cost and schedule estimates for each model
6. selecting one model
7. packaging the specification

Linear Sequential

This is sometimes called the ‘classic life cycle’ or the ‘waterfall model’. Pressman,

1997 p 33 said the linear sequential model suggests a systematic, sequential

approach to software development that begins at the system level and progresses

through analysis, design, coding, testing, and maintenance’

The linear sequential model has the following:

 61

Figure 1: Basic Software Development Life Cycle
Software Requirements Analysis
This involves the gathering of the requirements of the user. It is initiated when the

developer tries to acquire an understanding of the problem domain. Several

techniques are used in this requirements elicitation stage and it calls for effective

communication between developer and user.

Design
The design process translates requirements into a representation of the software that

can be assessed for quality before code generation begins. Like requirements, the

design is documented and becomes part of the software configuration, (Pressman,

1997 p 34).

Code generation
The design is then transformed from a higher level of abstraction to a more low level

machine readable format

Testing
This exposes the code’s inherent errors. Testing is usually carried out in a piecemeal

fashion going from functional area to module and area prior to testing it as an

integrated and whole unit.

Maintenance
This involves adding value to the finished product over the course of its life by

patching and amending to increase its overall smooth working and efficiency.

Criticisms of the linear sequential model
The linear sequential model is one of the best known and most popular model for

software development. There are however some flaws that have been sighted by

users of this classical model. In a real life environment, it is difficult for the software

project activities to proceed in a strictly linear manner. The sequential model is not

flexible enough to accommodate any contingencies or eventualities. The nature of

software development lends itself more to unfolding in iterative fashion. There is

some measure of iteration involved, though in an indirect way. Requirements are not

usually all garnered at the beginning of the software development. This is because

the requirements are not always very clear at the beginning of the software

 62

development project and users are prone to changing their minds or not knowing

what they want. One of the drawbacks of the linear sequential model is that it needs

all the requirements explicitly at the beginning of the project before it proceeds and

there is no mechanism to take more requirements on board as and when they arise.

Owing to the linear nature of the model, it takes a very long time for a product to be

seen. If there is a major flaw in the product, this could prove fatal to the project as

everything would have to start from the beginning again. Not a very efficient way of

doing things. In addition, the development team is usually assigned interdependent

tasks and if one team member has to wait on another; the wait time may exceed time

spent being productive. Despite all the discussed flaws, the linear sequential model

holds a significant position in the annals of software development and is still widely

used in software engineering.

Prototyping Model

Prototyping allows the user to see a mock up version or a replica of the software

system before it is finished. It can be done using tools like Netbeans and Visual

Basic. Just the externals of the system are simulated, but the core is missing. This

enables the user to have some idea of what the system will look like before it is

finished. The prototype can be thought of as the initial system that can serve as the

inspiration and motivator for the project before it is thrown away.

Rapid Application Development (RAD) Model

Rapid Application Development (RAD) is a high speed adaptation of the linear

sequential model in which rapid development is achieved by using a component-

based construction approach. If requirements are well understood and project scope

is constrained, the RAD process enables a development team to create a ‘fully

functional system’ within a very short time periods (for example, 60 to 90 days)

(Pressman, 1997 p 37).

Criticisms of Rapid Application Development (RAD)
If the appropriate number of persons are not present on a RAD team, the likelihood

of failure is great. It also needs clients and team members who are committed to

very fast paced development and who understand the common vision. Not every

software development project is suitable for RAD. (Pressman 1997, p38) said, if a

system is not properly modularized, building the components necessary for RAD will

be problematic.

 63

Incremental Model
This model is a combination of linear sequential model and prototyping. It could be

thought of as systems development in a modularised way. The entire product is sub-

divided into smaller portions of the products or increments of the whole product.

Linear sequential model is used to deliver and develop each increment. It is useful

when the staff complement is not large and therefore delivering the sub-products on

time is more manageable. Each increment is prototyped and shown to the client until

the whole product is finished.

The Spiral model
This model utilises the strengths of both the linear sequential and the prototyping

model. It provides the potential for rapid development of incremental versions of the

software. (Pressman, 1997 p42). This evolutionary process model was originated by

Barry Boehm.

The Spiral Model is split into several framework activities called task regions. There

are on average 3 to 6 task regions. These include customer communication,

planning, risk analysis, engineering, construction and release and customer

evaluation.

Object-Oriented Analysis and Design Development Processes based upon the
UML

A software development process describes how to develop, operate and support one

or more software systems. There are several software development processes in the

industry, prior and current ones. These include the object-oriented software process

(OOSP), the Unified Process, the Microsoft Solutions Framework (MSF), the OPEN

Process, eXtreme Programming and Catalysis.

Rational Unified Process (RUP)
Rational Unified Process (RUP) is a system development process produced by IBM

Rational. This process is serial in the large and iterative in the small, delivering

incremental releases over time, while following proven best practices. RUP is

comprised of four phases: Inception, Elaboration, Construction and Transition.

 64

These phases execute sequentially. The project jobs are grouped into logical

activities called disciplines. The disciplines are performed iteratively throughout the

four phases

 Rational Unified Process diagram

 “RUP was never intended to be a silver bullet that organizations should apply as is.

IBM Rational clearly advocates that organizations customize it to create a process

that is specific to meet their particular needs”, (Ambler, S, 2002)

Unified Software Development Process (USDP)
USDP is an industry standard generic software development process. It is the

iterative and incremental software engineering process for the UML. It has to be

customised for use in each development project. USDP is the use-case and risk-

driven, iterative and incremental and architecture software engineering process for

the UML. USDP has four (4) phases. These are inception, elaboration, construction

and transition. Each phase may have one or more iterations. Each iteration has five

iteration workflows. They are requirements, analysis, design, implementation, test.

Iterations are indispensable to the USDP. Each iteration includes planning, analysis

and design, integration and test, internal or external release. These iterations are

http://en.wikipedia.org/wiki/Image:RationalUnifiedProcess.png
http://en.wikipedia.org/wiki/Image:RationalUnifiedProcess.png

 65

organised into phases and contain workflows. A sequence of iterations result in a

final product release. According to Ambler, 2001, p 443, the Unified Process has

several strengths. First it is based on sound software engineering principles such as

taking an iterative, requirements-driven, and architecture based approach to

development. Second, it provides several mechanisms, such as a working prototype

at the end of each iteration and the go/no-go decision point at the end of each phase,

which adds management visibility into the development process’.

eXtreme Programming

Beck, 2000, p xv advocates that ‘XP is a lightweight methodology for small-to-

medium-sized teams developing software in face of vague or rapidly changing

requirements’.

As outlined in Beck, 2002, p xvii, ‘XP is distinguished from other methodologies by

• its early, concrete, and continuing feedback

• its incremental planning approach

• its ability to flexibly schedule the implementation of functionality

• its reliance on automated tests written by programmers to monitor the

progress of development

• its reliance on oral communication, tests, and source code to communicate

system structure and intent’.

The Microsoft Solutions Framework (MSF)

As defined by (Ambler, 2001, p 448), ‘MSF is a collection of processes, principles

and practices that helps organizations be more effective in their creation and use of

technology to solve their business problems. MSF does this by providing rigorous

guidance that is flexible enough to be adapted to meet the needs of the project and

the organization. Originally based on best practices within Microsoft product

development and IT organizations, MSF was created in 1994 and developed into

standardized training courses to promote consistency and effectiveness within the

Microsoft Consulting Services’.

 66

The OPEN Process
The OPEN process as described in (Ambler, 2001, p 449), is ‘a comprehensive

software process. The OPEN Process is aimed at organizations using object and

component technology…Also similar to the Unified Process, OPEN was initially

created by the merger of earlier methods: MOSES, SOMA, Firesmith, Synthesis,

BON, and OOram. The OPEN Process supports the UML notation, and any other

OO notation to document the work products the OPEN Process produces’.

Criticism of the fusion or unification approach to methods
(Bouzeghoub et al, 1997, p 101-102), highlights the fact that ‘a study of the object-

oriented world, covering the market and the literature, reveals the existence of a

large number of methodologies…..none of the existing methods covers the whole of

the project life cycle. Consequently, users are always forced to complete the method

in some ad hoc fashion, or to achieve their aims by combining several

methods…there are things to be said…..against this tendency to fuse or unify

methods…..the fusion or unification approach tends to encourage belief in the

existence of a single methodology that will deal with every type of problem when the

reality is more complex, and it is more likely that different types of method are better

adapted to different types of problems’.

The fusion approach to methods is examined more comprehensively in Chapter 4.

Having gained a better understanding of method building in general, the next section

highlights additional ‘soft’ approaches to software development that currently exist.

Alternative Soft Approaches to Systems Analysis and Design methodologies

General systems theory
(Bell et al, 1992, p 186) said that ‘ this [GST] is a troublesome theoretical perspective

to put into practical application, indeed it is not really intended for practical systems

analysis: General Systems Theory is too generalised for information systems

definition’

 67

Client Led Design
This approach promotes the user directed initiative where the users are in charge of

the development process

Critical Systems Thinking (CST)
(Bergvall-Kareborn, B, 2002, p 473-474) wrote that ‘Critical Systems Thinking as

defined mainly by scholars at Hull University..evolved out of a critique of traditional

management science for being positivistic and out of a critique of SSM for its

interpretivistic stance….In order to manage situations characterized by conflicting

interest groups and get a more democratic approach, CST suggests a philosophy

which rests on three “commitments”. These are commitments to critique, to

emancipation and to pluralism’.

Multi-Modal Methodology (MMM)
According to (Bergvall-Kareborn, 2002), ‘MMM is rather new to the field of systems

thinking…MMM criticizes the narrowly focused, technological determinism used by

the hard systems approaches in dealing with human problems, as well as the soft

approaches where the assumption about reality is based on chaos and complexity.

Instead MMM…suggests that there is order within complexity’.

Multiview
Uses soft systems as its prior stage before advocating the other stages of software

development. It uses a contingency approach where skills of developers and the

problem situation are examined before deciding how to proceed with development.

Participative Systems Design
This approach was pioneered by Enid Mumford who argued for a socio-technical

approach. She proposed the ETHICS method where the users were major drivers of

the development process. QuickETHICS is also popularly used as front end to the

process

Criticisms of Soft Approaches

1. They only cover a small part of the life cycle

2. They require more resources

 68

3. Participation may not improve system quality

4. They have not been tested sufficiently in practice

5. Concepts like usability are hard to operationalize

6. Quality problem is not really addressed

7. Impact of new technology on old requirements

Gap in the literature
Avison et al, 1990, p 268 disclose that ‘the Multiview methodology is in a continuing

state of development….all information systems development methodologies have

limitations…We expect the methodology to improve in the future. This research

builds on the work done in Multiview methodologies and as the authors have

disclosed, there is room for improvement.

2.11 Conclusion
SSM was chosen as the soft method of choice for several reasons. One was for its

proven efficacy. As the case studies in this chapter showed, SSM has been used

effectively in many cases in conjunction with other methods to develop successful

systems. Another reason was that the attributes of SSM such as its ease of use and

flexibility made it easy to combine with the UML based method. The outcome of any

use of the SSM methodology will be a new problem situation. This is so as the

methodology itself is an ongoing learning system whose task is really never done

because learning can never truly be complete (Checkland, 1981, p 237). The

effectiveness of the SSM becomes greater when combined with another

methodology. Methodological Pluralism or multi-methodology, whatever name it

goes by is here to stay. It is finding its niche. As it evolves into a more stable

discipline with firm theoretical and philosophical underpinnings, it is still being used to

ensure radical benefits and advantages in the software development arena. This is

explored in more detail in Chapter 4. In this research the SSM method is combined

with a development process based on the Unified Modelling Language (UML). This

produces the resultant MoIST method. The UML consolidates a set of core modelling

concepts that are generally accepted and used in conjunction with many current

methods. These methods include RUP and USDP. The UML provides users with a

ready-to-use, expressive visual modelling language. This can then be used to

develop and exchange meaningful models.

 69

Chapter 3- Unified Modelling Language (UML)

3.1 Introduction
Whereas Soft Systems Methodology represents unstructured situations, the Unified

Modelling Language represents the ‘harder’ information systems paradigm. One of

SSM’s primary goals is to more accurately understand an unstructured environment

as it really is. The results of this more clearly understood situation is then fed into the

UML based development process. This helps to further define the existing situation

and clarify solutions. At this point of the process this is where the UML’s applicability

is recognised and comes in.

The UML notation is ideal as a follow on from the use of SSM. This is because the

characters represented within the rich picture and subsequent conceptual models

find a related progression in the UML’s use cases with its own characters and then

class, sequence and other diagrams. This provides some measure or degree of

cohesion and logical flow from architecture by SSM to implementation and realisation

through UML. Soft and hard methodologies cover different parts of the life cycle. In

this view, a soft methodology is more useful in the earlier stages of the life cycle,

particularly when there is uncertainty about the goals or strategy of the organization

as a whole. A hard approach will be more appropriate once any initial uncertainties

and ambiguities have been resolved; insofar as this is possible, since the emphasis

then shifts to a specific project with relatively clear goals and boundaries (Bennett et

al, 2002, p568).

3.2 History of the UML
Prior to the UML, there was no clear leading modelling language. Users had to
choose from among many similar modelling languages with minor differences in
overall expressive power. Most of the modelling languages shared a set of
commonly accepted concepts that are expressed slightly differently in various
languages. Users longed for the industry to adopt one, or a very few, broadly
supported modelling languages suitable for general-purpose usage.

(OMG, 2003)

 70

The UML had its beginnings in the late 1980s (Booch et al, 1998).3 The UML was

originally conceived by Rational Software and three of the most prominent

methodologists in the information systems/technology industry: Grady Booch, James

Rumbaugh, and Ivar Jacobson. It represents the evolutionary unification of their

experience with other industry engineering best practices. Faced with new object-

oriented programming languages and increasingly complex applications,

methodologists began to experiment with alternative approaches to analysis and

design. The number of OO methods increased from fewer than 10 to more than 50

between 1989 and 1994. Many users of these methods had trouble finding a

modelling language that met their needs completely, thus fuelling the so-called

methods wars. As users learned from experience, new generations of these

methods began to appear, a few clearly prominent, most notably Booch, Jacobson’s

Object Oriented Software Engineering (OOSE), and Rumbaugh’s Object Modelling

Technique (OMT).

The UML effort started officially in October 1994, when Rumbaugh joined Booch and

OMT methods. The version 0.8 draft of the Unified Method (as it was then called)

was released in October 1995. Jacobson then joined Rational and the scope of the

UML project was expanded to incorporate OOSE. This resulted in the release of the

UML version 0.9 documents in June 1996. The general software engineering

community was invited to give feedback to the UML effort.

The three of us started the UML effort at Rational and were its original chief
methodologists, but the final product was a team effort among many UML partners
under the sponsorship of the OMG. All partners came with their own perspectives,
areas of concern and areas of interest. This diversity of views strengthened the final
result. We expect that OMG’s ownership of the UML standard and the public’s free
access to it will ensure the widespread use and advancement of UML technology
over the coming years.

(The three amigos, OMG, March 2003)

In September 1997, the OMG officially adopted its first methodology standard, the

Unified Modelling Language. Twenty one companies participated in the momentous

effort to create a single, standardized analysis and design notation and

metamethodology. In the subsequent years, the UML standard has successfully

3 Booch, G, Rumbaugh, J, and Jacobson, I. The Unified Modelling Language User Guide. Addison
Wesley, Reading, Mass., 1999.

 71

unified the previously highly fragmented object-oriented analysis and design industry.

The OMG in an unprecedented move successfully drew the community together to

agree a single, worldwide standard. This achieved even higher consensus than

OMG’s successful CORBA systems integration platform standard (Henderson-Sellers

et al, 2000).

Many software organizations saw the UML as strategic to their businesses. A UML

consortium was formed. This had several organizations willing to dedicate resources

to work towards a strong and complete definition. A semantics task force was

formed to integrate the UML with other standardization efforts. A revised version of

the UML 1.1 was offered to the OMG for standardization. This version was accepted

by the OMG. UML 1.1 was adopted by the OMG. Maintenance of the UML was then

taken over by the OMG Revision Task Force (RFT). In June 1999, the RTF released

UML 1.3.

The major UML 2.0 revision has improved the UML’s semantics of extension by

profiles. The Systems Modelling Language (SysML) is a domain-specific modelling

language. It is used for systems engineering and is defined as a UML 2.0 profile

UML is a general-purpose modelling language that has a standardized graphical

notation. This notation is utilised in the generation of an abstract model of a system.

This model is a UML model. One of the characteristics of the UML is its

extendability. For this profiles and stereotype are used to achieve customization.

UML frees software developers to focus more on design and architecture. UML does

this by creating an industry standard graphic notation. The notation represents

common concepts such as classes, components, aggregation, behaviours and

generalization.

The OMG’s official definition of the UML is the UML meta-model. This is a Meta-

Object Facility meta-model (MOF). The UML meta-model and UML models including

all MOF-based specification may be serialized.

The UML has become part of the mainstream of software development, enabling

various stakeholders, to gain control of their systems architecture, and to manage

complexity.

 72

The UML represents the culmination of best practices in practical object-oriented

modelling. The UML is the product of several years of hard work that were focussed

on bringing about a unification of the methods most used around the world, the

adoption of good ideas from many quarters of the industry, and above all, a

concentrated effort to make things simple (OMG, 2003).

3.4 Overview of the UML
The Unified Modelling Language (UML) is a graphical notational language. The UML

is used to visualize, specify, construct and document the artefacts of a software

intensive system. It is a software standard that is owned by the Object Management

Group (OMG). UML is a public domain modelling language that is available to

anyone and everyone who wishes to follow a disciplined and standard approach to

modelling systems and applications (Henderson-Sellers et al, 2000).

The UML has become part of the mainstream of software development, enabling

various stakeholders, to gain control of their systems architecture, and to manage

complexity.

The UML represents the culmination of best practices in practical object-oriented

modelling. The UML is the product of several years of hard work that were focussed

on bringing about a unification of the methods most used around the world, the

adoption of good ideas from many quarters of the industry, and above all, a

concentrated effort. The UML functions as the means for expressing and

communicating knowledge. The UML brings together the industry’s best practices

regarding how we understand the world around us and how we represent and

communicate that understanding. It has four distinguishing characteristics in

comparison to other modelling languages: It is general-purpose, broadly applicable,

tool-supported, and industry standardized.

Among its other benefits, is the market share held by industry and tool vendors

supporting it, widespread use of the methods founded by its creators, and its

adoption by the OMG will make the UML a pivotal force in today’s businesses.

(OMG, 2003).

 73

Diagrams of the UML
The UML provides mechanisms for organizing and classifying knowledge regarding a

given context or situation in which the problem resides and in which the solution must

be implemented. Such knowledge is captured in a model consisting of various

modelling elements, and it is represented through distinct but interconnected sets of

diagrams. The model itself captures the knowledge, and the diagrams represent the

knowledge in a communicable form. A model is an abstract representation of a

specification, a design or a system, from a particular point of view. It is often

represented visually by one or more diagrams. It aims to express the essentials of

some aspect of the process without giving unnecessary details. Its purpose is to

enable people involved in the development to think about and discuss problems

without getting sidetracked. Modelling is simply a form of abstraction that facilitates

both problem understanding and problem resolution (Selic, B 1999)4. A model

captures only the significant features of a system and hides or ignores lower-level

detail. The simplified yet relatively accurate view of reality presented by a model is

much easier to comprehend than the actual system. The choice of what to model

has an enormous effect on the understanding of the problem and the shape of the

solution. When deciding how to model something, determining the correct

abstraction and detail is critical to providing something that will be of benefit to the

users of the model.

The UML 2 consists of 13 distinct, but interconnected diagrams through which to

present a given body of knowledge. These include use cases, class, sequence, and

activity diagrams. Use cases and activity diagrams will be explored in more detail

here. This is because they have greater relevance to this particular research.

Activity Diagrams
The activity diagrams are special cases of state diagrams that capture activities or

actions of elements. They describe knowledge regarding the behavioural

characteristics of the involved elements and the dynamic interactions or

collaborations among them. The activity diagrams help us to understand how

different entities behave and interact in order to realize their objectives.

4 Turning Clockwise: Using UML in the Real-Time Domain – Selic, B

 74

UML Activity Diagrams are typically used for modelling the logic captured by a single

use case usage scenario. Although UML activity diagrams could potentially model

the internal logic of a complex operation it would be far better to simply rewrite the

operation so that it is simple enough that you don’t require an activity diagram. In

many ways UML activity diagrams are the object-oriented equivalent of flow charts

and data flow diagrams (DFDs) from structured development.

Fig 2:1 Example of an Activity Diagram for a use case to distribute schedules

Each of the diagrams discussed above captures a different set of concerns and

aspects regarding the subject, and each modelling element represents some

concept, construct, or element of knowledge regarding the subject. These diagrams,

with the modelling elements they use, describe the content of the communication

among the individuals involved in the problem-solving process. Together all the

diagrams holistically form an integrated window to the body of knowledge that is

applied and gained through the process. It is the sharing and reapplying of this

knowledge (and artefacts representing its fragments) that enables an organization to

capitalize on the benefits of applying the UML. Together, these diagrams establish a

coherent body of knowledge regarding the business, the problem/solution, and the

problem-solving process by addressing and reconciling the concerns of the various

stakeholders. This coherence will be shown later in the research and is essentially

that there is some element or measure of relatedness among syntactic components

such as use cases and activity diagrams.

 75

Basic Activity Diagram notation

• Initial node. The filled in circle is the starting point of the diagram. An initial

node isn’t required although it does make it significantly easier to read the

diagram.

• Activity final node. The filled circle with a border is the ending point. An

activity diagram can have zero or more activity final nodes.

• Activity. The rounded rectangles represent activities that occur. An activity

may be physical or electronic.

• Flow/edge. The arrows on the diagram.

• Fork. A black bar with one flow going into it and several leaving it. This

denotes the beginning of parallel activity.

• Join. A black bar with several flows entering it and one leaving it. All flows

going into the join must reach it before processing may continue. This

denotes the end of parallel processing.

• Condition. Text on a flow, defining a guard which must evaluate to true in

order to traverse the node.

• Decision. A diamond with one flow entering and several leaving. The flows

leaving include conditions.

• Merge. A diamond with several flows entering and one leaving. The

implication is that one or more incoming flows must reach this point until

processing continues, based on any guards on the outgoing flow.

• Partition. These are also called swimlanes, indicating who/what is performing

the activities.

• Sub-activity indicator. The rake in the bottom corner of an activity indicates

that the activity is described by a more finely detailed activity diagram.

• Flow final. The circle with the X through it. This indicates that the process

stops at this point.

• Note. A standard UML note that indicates extra information needed.

Stakeholders usually find them easier to understand.

General Guidelines for drawing activity diagrams

1. Place the start point in the top left-hand corner. A start point is modelled with

a filled in circle. Every UML Activity Diagram should have a starting point.

2. Always include an ending point. An ending point is modelled with a filled in

circle with a border around it.

 76

2. Activities

An activity, also known as an activity state, on a UML Activity diagram typically

represents the invocation of an operation, a step in a business process, or an entire

business process.

1. Question “Black Hole” Activities. A black hole activity is one that has

transitions into it but none out, typically indicating that you have either missed

one or more transitions.

2. Question “Miracle” Activities. A miracle activity is one that has transitions out

of it but none into it, something that should be true only of start points.

3. Decision Points

A decision point is modelled as a diamond on a UML Activity diagram. Decision

Points Should Reflect the Previous Activity. The guards on leaving the decision point

also help to describe the decision point.

4. Guards

A guard is a condition that must be true in order to traverse a transition.

1. Each Transition Leaving a Decision Point Must Have a Guard

2. Guards Should Not Overlap.

3. Guards on Decision Points Must Form a Complete Set.

4. Exit Transition Guards and Activity Invariants Must Form a Complete Set. An

activity invariant is a condition that is always true when your system is

processing an activity.

5. Apply a [Otherwise] Guard for “Fall Through” Logic.

6. Guards Are Optional. It is very common for a transition to not include a guard,

even when an activity includes several exit transitions.

 77

5. Parallel Activities

It is possible to show that activities can occur in parallel using two parallel bars. The

first bar is called a fork. It has one transition entering it and two or more transitions

leaving it. The second bar is a join, with two or more transitions entering it and only

one leaving it.

1. A Fork Should Have a Corresponding Join. In general, for every start (fork)

there is an end (join).

2. Forks Have One Entry Transition.

3. Joins Have One Exit Transition

6. Swimlane Guidelines

A swimlane is a way to group activities performed by the same actor on an activity

diagram or to group activities in a single thread.

The activity diagram shows the steps of a computation. Each step is a state of doing

something. For that reason, the execution steps are called activity states. The flow

of control from one activity state to the next is called a transition (Maciaszek, 2001).

Activity diagrams can have other uses in system development apart from modelling

use cases (Fowler and Scott, 2000). They can also be used to understand a

business process at a high level of abstraction.

Use-cases
The use-case view describes knowledge regarding the needs and requirements of

the various stakeholders. This view is depicted by use-case diagrams. “A use-case

diagram captures relationships among various entities and their roles,

responsibilities, and objectives within the environment. This view functions as the

primary motivating force for the whole problem solving process and provides

validation criteria for the resulting solution.” A use case is a sequence of events that

achieves a measurable result for an actor or it is an example of how someone or

something uses the system (Jacobson, 1995).

Use cases document the behaviour of the system from the users’ points of view. By

‘user’ in this case we mean anything external to the system being developed which

 78

interacts with the system. A user might be a person, another information system or a

hardware device. Use case modelling helps with three of the most difficult aspects of

system development:

• Capturing requirements

• Planning iterations of development

• Validating systems

Student

Student Records
B ill ing Syst em

Regist er for Modules

Request Provisional Class List Module Leader

Val idate User

M aintain Modu le Catalogue Pathway
Administrat or

<<extend>>

<<ex tend>>

<<extend>>

Figure 3.1: Use cases for Module registration

History of use cases
Use cases were first introduced by Ivar Jacobson in the early 1990s as a

development from the earlier idea of scenarios. These scenarios have evolved into

what are now known as use cases. A use case diagram is comparatively easy to

understand intuitively, even without knowing the notation. This is an important

strength, since the use case model can sensibly be discussed with a client who need

not be familiar with UML.

 79

Fig 3.2: Use case model to frame a picture, Chesney and Fletcher, 2000

A use case model consists of three (3) main components. These are actors, use

cases and relationships. A use case model is created at the beginning of systems

development to capture system requirements.

An actor initiates a use case, and an actor (possibly the initiator, but not necessarily)

receives something of value from the use case. The graphic representation is

straightforward. An ellipse represents a use case, a stick figure represents an actor.

The initiating actor is on the left of the use case, and the receiving actor is on the

right. The actor’s name appears just below the actor. The name of the use case

appears either inside the ellipse or just below it. An association line connects an

actor to the use case, and represents communication between the actor and the use

case. The association line is solid, like the line that connects associated classes. The

actors, use cases, and interconnecting lines make up a use case model,(Schmuller,

1999).

Figure 3.3: Use case model, Schuller, 2004

http://library.books24x7.com/book/id_414/viewer.asp?bkid=414&image_src=http://images.books24x7.com/bookimages/id_414/&image_id=63&previd=IMG_63
http://library.books24x7.com/book/id_414/viewer.asp?bkid=414&image_src=http://images.books24x7.com/bookimages/id_414/&image_id=63&previd=IMG_63

 80

Actors:
An actor, usually shown as a stick person, represents a kind of user of the system

(by user we mean anything external to the system that interacts with it.

Use Cases:
An individual use case, shown as a named oval, represents a kind of task, which has

to be done with support from the system under development. The UML standard

calls this a ‘coherent unit of functionality’. Of course the use case diagram shows

only a small part of the information we need. Each use case is described in detail,

usually in text. The use case diagram can be seen as a concise summary of the

information contained in all the descriptions of the use cases

Relationships:
This describes or depicts the way that use cases relate to each other. They provide

a link between actors and use cases. Actors use use cases and use cases

can use other use cases. Relationships are depicted as lines sometimes with

arrows. A relationship speaks of a two (2) way communication and the arrow

direction is an indication of the interaction initiator.

A use case can use another use case. If you have a piece of well-defined

functionality, it makes sense to re-use this wherever possible. Also, sometimes a use

case gets too big to manage sensibly and it makes sense to break this down into

smaller use cases. There are two ways use cases can relate. The first is where a use

case "includes" another use case. In this case the second use case is always

invoked as part of the execution of the first. This is drawn with an arrow pointing to

the use case that is included, with the label <<include>> tagged to the line. So the

following diagram shows that we always include provision of the module timetable as

part of the task of enrolling a student on a module (Wade et al, 2002).

Provide Enrolm ent Ins tructionsObtain Modul e Tim etable

<<incl ude>>

Figure 3.4: Illustration of the ‘Include’ Label

 81

Sometimes a use case is only called occasionally from another use case. This will

often be to support an alternative path or an exception. We draw this with an arrow

pointing the other way where the arrow points to the calling use case. Thus the

following diagram says that it is sometimes (but not always) necessary to extend the

process of enrolling a student by chasing up their previous qualifications.

Provide Enrolment InstructionsProvide Examination Resul ts

<<extend>><<extend>>

Fig 3.5: Illustration of the ‘extend’ Label

Justification for using UML in the research
The whole aim of the research is to make software development easier and more in

line with what the client needs. SSM is already user focussed and as expounded in

Chapter two it offers a greater chance of satisfying client requirements and therefore

a more substantial chance of a successful system. The other aspect to making

software development more accurate and successful involves the use of the UML.

The big advantage that use cases have over other requirement models is that it is an

excellent tool for communication between developers and users. This is as it is

written in the user’s language and requires little or no knowledge of a modelling

notation to understand (Chesney and Fletcher, 2000). The advantage of Use Cases

in the research is further highlighted in Chapter 6 – the intervention chapter. There it

is seen that the communication between SSM methodologist/developer and client

was achieved satisfactorily. In the event that this had not been the case, a second

option would have been to utilise the use cases developed in applying the MoIST

method to the situation to further enhance the client understanding of the research

findings. The client in this research – the academic support tutor – represented

management. Additional research has shown that management who are also end

users of the system can also get involved in systems development. This is as the

use case model would be created by the problem domain experts – the

management. They would be guided by the software developers. This is usually

more accurate and could be used by developers as a starting point for analysis.

Other end users would be involved in validating the models and this would mean that

 82

users would be less likely to resist the new system as they would have been involved

in its development (Chesney et al, 2000, Sauer, C, 1994).

Limitations of with use cases
1. Focussing on use cases may encourage developers to lose sight of the

architecture of the system and of the static object structure, in the rush

somehow to deliver the use cases which are required in the current

iteration.

2. There is a danger of mistaking design for requirements. More generally,

requirements by use cases may encourage developers to think too

operationally: users are likely to describe the use case as a very concrete

sequence of interactions with the system which is one way, not the only

way of achieving their goal. It is important that developers distinguish

between requirements and candidate design.

3. There is danger of missing requirements if too much reliance is `put on

the suggested process of finding the actors and then finding the use

cases that each actor needs. Not all requirements emerge this way. This

danger can be lessened by doing use case analysis and conceptual class

modelling in parallel.

3.5 UML Benefits and goals

• Provides users with a ready-to-use, expressive visual modelling language to

develop and exchange meaningful models. The UML consolidates a set of

core modelling concepts that are generally accepted across many current

methods and modelling tools.

• Furnishes extensibility and specialization mechanisms to extend the core

concepts. Though the core concepts cannot be changed by the users, UML

allows the users some leeway. Users are allowed to build models using core

concepts without using extension mechanisms for most normal applications.

 83

They can also add new concepts and notations for issues not covered by the

core.

• UML is an expressive language. It is therefore possible to express important

aspects of the design and meaningfully to reflect changes in the design,

which are made during the development as changes in the models.

• UML is supported by suitable tools, so that the developer’s efforts can be

spent on work that requires their skills, not on routine work.

• When new people join the project, it is an advantage if they already know the

modelling language instead of having to learn it then.

• To do component-based design, one has to be able to read the descriptions

of components. The more easily and quickly this can be done, the cheaper it

is to consider a component. The more widely used the modelling language,

the greater the chance that it is the same one, the component writer will

choose to use.

Limitations of the UML

• The UML has become a necessary part of most software activities.

Nevertheless it is not sufficient. Insufficiencies of the UML arise from the fact

that it is a pure modelling language, nothing more. It contains no elements of

process that would guide software development from ‘start’ to ‘finish’. Being

only a modelling language, it also does not take responsibility for other issues

such as data issues and project management issues. What is needed is a

customisable process where the process could be tailored to fit the precise

needs of each organization.

• There is an unclear semantic description of the UML syntax.

• There is a risk of circular definition with the UML. This means that the target

language is not rich enough to define itself and can ultimately lead to

repetition.

 84

3.5 Conclusion

The Unified Modelling Language (UML) paradigm is here to stay. Over several years

it has grown from being a feature of a relatively obscure graphical notational

language to become a general, universally accepted technique that offers a uniform

approach to software development from analysis through to coding (Bustard et al,

1994).

 85

Chapter 4- Successful Integration of Systems Thinking into IS development

It is currently beyond the scope of use cases to help with the important analysis of
how and where information technology could improve on an existing process
(Butler, 1998)

4.1 Introduction
The UML has been introduced as a diagram-based language for describing designs.

“Diagrams are how we naturally think about systems” (Buzan and Buzan, 2000). “It

is inconceivable that a single diagram could capture everything about a design. That

is indeed not desirable, as we will be interested in different aspects of the design at

varying times” (Steven & Pooley, 2000). Integrating systems thinking into information

systems development helps to give a more comprehensive and balanced view or

picture of the problem and its solution.

Now, more than ever, planning and managing in the real world is beset by change

and uncertainty. Knowledge is incomplete, values are in dispute, decisions of others

are often unpredictable. Sheathed in opaque technicalities, inflexible and over-

ambitious, the highly mathematical methods of analysing problem situations are no

longer considered acceptable. In their place a coherent alternative paradigm has

emerged. This is a range of methodologies which aim not to produce 'optimal'

solutions but to facilitate an enriched decision-making process. ‘Low-tech'

transparent and participatory, these methods assist in the formulation and

reformulation of problem solving in an uncertain world (Rosenhead et al, 2001).

One of the main challenges of undertaking IS design is the need to find some means

of moving from methods of inquiry suited to sense making in social situations, to

methods suited to organizing knowledge into a suitable format for the construction of

a logical specification for any supporting technology (Champion and Stowell, 2002).

Many methods and approaches have been innovated over many years. There is

however no magic formula for getting the most accurate requirements specification

whilst simultaneously considering all the socio- technical factor then churning out the

logical blueprint for a system. There is need for balance. Soft Systems Methodology

(SSM) is neither by design nor intent an official software development technique. Its

use over the years has proven quite effective in providing structure to unstructured

situations.

 86

There have been many writings about work done in SSM by several authors. These

authors have advocated the use of SSM in the software development process

(Checkland, 1981, Checkland and Scholes, 1990; Wilson, 1990; Checkland and

Holwell,1998). Others have taken this work a step further by writing about how to link

SSM with information systems development (Miles, 1988; Stowell, 1985; Miles, 1992;

Checkland, 1988; Mingers, 1988; Checkland and Scholes, 1990; Mansell, 1990;

Prior, 1992; Stowell et al, 1990; Doyle and Wood, 1991; Jayaratna, 1994; Sawyer,

1991; Miles, 1992; Savage and Mingers, 1996; Stowell, 1995). Much energy has

been exerted in the past to link SSM with SSADM and its resultant DFD diagrams in

the structured design process (CCTA, 1993). Not too much extensive work has been

done with linking SSM to the Unified Modelling language (UML) paradigm. However,

exceptions to that are (Savage and Mingers, 1996, Bustard and Lundy, 1996).

This research has been influenced by the foundational work that they have done and

has resulted in a novel method called MoIST. This thesis linkage is between Soft

System Methodology (SSM) and Unified Modelling Language (UML) via the MoIST

Method. This discussion is approached cautiously because the literature on the

subject is wide ranging and there is no single coherent view of what should constitute

best practice. This section provides a historical timeline of how the linkage attempts

have fared over the years. It also documents the innovators behind them. It looks at

some uses of SSM in information systems development, SSM and Structured Design

methods, SSM and Object oriented (OO) methods. It also examines several of the

limitations of SSM in information systems development.

4.2 Problems with existing IS methods
Traditional approaches to system design have been defined as ‘product oriented’.

This meant that the software product was perceived as being ‘fixed’ and well

understood. This led to the product requirements being stated way in advance of

design and implementation. Information strategy formation is no longer seen as the

sole remit of senior management. There is now the clamour for employee

involvement as even with the right conditions, the learning process will continue after

the technical implementation of an information system, since results concerning use

can never be fully predicted during system design (Walsham, 1993).

Usually computerised information systems follow the approach of analysis of

information requirements, construction and implementation of a system. This fixed

 87

approach has been to the exclusion of systems thinking. It could be said that the

field of information systems has neglected systems thinking as an underpinning to

both its theoretical and practical concerns (Checkland, 1988). This may be because

the managers feel that introducing an information system into an organization raises

more social issues than technical ones and its employees are the ones who would

have to make the effort to adjust to this new modus operandi. The reactions and the

complexity of the social issues vary according to ‘how’ the process of developing and

introducing the clients to the information system was done.

Organisations used to be perceived as functional, sterile and non-emotive

environments where one just got on with the job at hand. Nowadays, organizations

are increasingly questioning their purpose and processes. Boundaries between them

have become increasingly fuzzy and vague. The management thinking has now

changed to reflect the societal facet of an organisation as a place of conflicts, varying

affiliations and emotions (Lai, 2000). This paradigm shift in organisational thinking

has heralded the need for a change in the way information systems are designed for

organisations. This ‘process’ oriented approach encourages and champions the

inclusion in software development of human activities, communication and learning.

The requirements are therefore not predetermined and rigid; but more emergent in

nature. This allows the users to input their unique needs to mould the functionality of

the software product to fit their particular organizational ethos. It is no longer

possible to start with the notion that it is necessary to create or computerize an

information system. Information system development has to be seen as a

continuous process which is led by the human activity system in the organization

which the information system will serve (Lai, 2000; Checkland and Holwell, 1993).

 88

4.3 Justification for combining Systems Thinking with IS
No method or methodology in any discipline is able to offer a complete view of the

complexities facing organizations. Each may offer a snapshot that provides insights

that are useful for reflection and action. Using two or more methodologies in the

same intervention is likely to produce a richer picture for seeing and understanding

the complex web of relationships and interconnectivities which is likely to lead to

better decision taking by managers and team members in software development

projects (Mingers et al, 1997).

This research advocates the practice of combining the SSM and UML methodologies

in the life span of an intervention. This practice is also referred to in some circles as

methodological pluralism or multi-paradigm intervention and research. It refers to the

whole area of utilizing a plurality of methodologies or techniques within the practice of

taking action in problematic situations (Mingers, 1997).

The practice of mixing methodologies opens up a large set of options and

combinations and permutations. These include methodologies combined in the

same interventions and single paradigm combination. The latter combines methods

of only the soft or only the hard domain in one intervention. This is in contrast to

multi-paradigmic combining. Here mixing is supported across paradigmic domains.

Where the methodologies are all from within the same paradigm there is little

philosophical difficulty, it is just a question of the most effective way of fitting the

methodologies or techniques together. When they are from different paradigms,

however, the situation is much more complex (Mingers, 1997).

The practice of mixing methods is at present a fledgling concept gaining more

respectability as the years go by. It has been much criticised by the purists among

the methodologists who do not believe in what they call hybrid methodology. Despite

its naysayers, it has been used successfully in numerous interventions over many

years (Lai, 2000, Ormerod, 1995). It is vitally important though for the proper

development of the discipline that the theory that envelops the practice be explicit

and sound. There must be in depth consideration of the philosophical and theoretic

facets of multimethodology, since the practice of combining methods is in regular use

(Mingers, 1997). This is because without an explicit theoretical underpinning to their

work neither consultants, nor academics and their students, can learn from

“pluralistic practice (Jackson, 1997).

 89

In reviewing the literature and while considering this area of the research, I was

reminded of how the SSM developed under (Checkland, 1981, 1990). Checkland

attempted to solve real world problems with systems engineering methodology. On

discovering the futility of doing this and ‘stumbling’ upon the systemic way, he set

about buttressing the novel but growing practice with philosophical and theoretical

underpinnings. This led to the seminal work of (Checkland, 1981) and over twenty-

five (25) years later, SSM is growing in popularity and its boundaries being expanded

by converted practitioners (Mingers, 1997). If one may be allowed to predict

happenings within research, I predict a similar future for the practice of combining

methods in software development. I expect greater results from using this practice,

because unlike how SSM developed, there is a plethora of existing examples that

have now become the foundation that theorists and software developers can build on

and emulate.

4.4 Previous Related Work done in the area of Systems Thinking and IS

Development

The concept and practice of integrating systems thinking into information systems

development is not a new frontier. To combine two epistemologically diverse

methodologies sounds impossible to some (Butler, 1998). The thesis however

shows that this is not the case as for years many practitioners have attempted this

and have had varying degrees of success. Notable ones include (Checkland and

Griffin, 1970; Miles, 1988, 1992; Avison and Wood-Harper, 1990; Checkland and

Scholes, 1990; Galliers, 1992; Checkland and Holwell, 1998; Bustard et al, 1996,

Savage and Mingers, 1996, Lai, 2000, Champion and Stowell, 2002, Mingers, 2001).

This section starts with a tabulation of various practitioner efforts. It then goes on to

examine methods derived to link SSM to Object orientation and SSM to Structured

design methods.

 90

Authors Comments
Mingers 2001 Efforts to ‘front end’ SSM onto structured design methods and to embed

IS methods within SSM, with SSM guiding the whole project

Doyle and Wood

1991

Show problems that arise from integration because of the different and

conflicting epistemologies embodied in SSM and IS methodologies

Avison and

Wood-Harper

1990

Represents the longest running attempt to bring together hard and soft

approaches to IS development

Watson and

Wood-Harper

1995

A more recent perspective on the Multiview approach. This differs from the

original multiview perspective done with Avison in 1990. It says that

multiview is simply a metaphor for the process of defining an information

system.

Ormerod 1995 Uses multimethodology in the development of an information systems

strategy for Sainsbury’s supermarkets. It used cognitive mapping, SSM

and strategic choice in the various phases

Mingers and

Brocklesby 1996

Encourages multimethodology as a means of provision of great flexibility

in an intervention.

Table 4.1: Tabulation of some of the previous attempts to combine methods

Method

Methodologist Proximity to MoIST

(Close or Not Close)

BASE Bustard, He and Wilkie Close to MoIST

BOOST Dobbin and Bustard Close to MoIST

CCTA’s (SSM + SSADM) CCTA Close to MoIST

Client-Led Design Stowell and West Not Close to MoIST

Contingency Framework Davis Close to MoIST

COT Framework Approach Checkland Not Close to MoIST

DSDM Martin Not Close to MoIST

ETHICS Mumford Not Close to MoIST

Gap Navigation Stowell and Champion Not Close to MoIST

Grafting vs. Embedding Miles Not Close to MoIST

ISD Framework Lai Close to MoIST

Multiview Avison and Wood-Harper Close to MoIST

RACE Bustard and Lundy Close to MoIST

RAD Martin Not Close to moist

Zachman’s Framework Zachman Not Close to MoIST

Table 4.2: Classification of Multi-methods in terms of their proximity to MoIST

 91

Linking SSM to OO Methods
Most of the work done in extending SSM to information systems design has been

with structured design methods. Linking SSM to OO is a relatively new area.

Nevertheless, advances are being made as OO increases in popularity in the

software development field.

Lai’s ISD Framework - 2000
Here a framework which incorporates elements of systems science and object

oriented methodology is formulated. This framework links SSM and Martin-Odells’s

object oriented analysis (OOA). Here the modelling techniques of OOA are

embedded within SSM. This is somewhat related to R K Miles’ grafting vs

embedding approach (Miles, 1988, 1991). Lai advocates the use of systems science

and object orientation together in order to increase the effectiveness of organizational

requirements analysis for IS development. Lai defines 6 types of gaps that analyse IS

failure. They are the cognition, comprehension, expression, delivery, utility and

expectation-perception gaps. The products of SSM are used to define a plumb-line

for the work done in the modelling phase of OOA. The OOA products are then

evaluated via a review process. This is an achievable approach and its success is

established by application in a governmental Labour Division in Hong Kong, (Lai,

2000).

MoIST versus ISD Framework

MoIST and ISD Framework have the same goal of linking SSM with a ‘hard’ method.

Each however utilises differing techniques to achieve its goal. The main potential

problem with the ISD Framework is that Martin-Odell’s OOA has now been

subsumed by a UML –based method. OOA is no longer used as much as UML-

based techniques. MoIST intends to address this potential problem by using a UML-

based method in lieu of OOA. This will serve the purpose of making the linking

method more relevant and commercially feasible.

Requirements Acquisition and Controlled Evolution (RACE) – Bustard and
Lundy, 1996.
The RACE method describes an integration between formal modelling in LOTOS and

the use of less formal descriptions of behaviour in soft systems activity models.

RACE was developed at the University of Ulster with David Bustard as a pivotal

 92

project team member. The method integrates process-oriented formal modelling with

activity modelling in soft systems analysis. The overall aim is to improve the

requirements engineering process. RACE was constructed around SSM. SSM

develops activity models. This modelling provides some sort of linkage with process

modelling which describes the behaviour of the system. It involves SSM elements

such as root definitions, conceptual modelling and defines its own interaction models.

These interaction models are an attempted enhancement of the conceptual model.

This is in order to more precisely define the input and output of each activity. Bustard

and Lundy, 1996 argue that for this stage, an optional formal modelling technique is

appropriate here. This is to facilitate consistency checks. The interaction models act

as a bridge between conceptual models and DFDs or object models. They also

support formal process oriented models. Formal modelling is achieved using a

process oriented formal description language known as LOTOS.

MoIST versus RACE
Both the MoIST and RACE methods have a generally similar overall aim. This aim is

to improve the requirements engineering process. Each of these methods however

use varying approaches to achieving this aim.

RACE uses a formal modelling description language – LOTOS to define its

generated interaction models. One drawback of this approach is that LOTOS is not

well known in commercial software development environments. This has the

consequence of significantly diminishing the usability and portability of the RACE

method. RACE appears to be quite a good and workable method. However it still

needs to do more work on using a linkage medium that developers will be more

familiar with other than the formal modelling description language - LOTOS.

MOIST proposes to rectify the RACE method linkage problem by using UML-based

techniques to provide the linkage with SSM instead of LOTOS. Software developers

are more familiar with UML-based techniques than LOTOS and UML is more widely

used commercially. This helps to ensure that it is more likely to be selected as a

development method.

Business and Computing Support coEvolution (BASE) Method – Bustard, He
and Wilkie – 2000.
BASE is a co-evolutionary framework for linked business and computing change.

The motivation for this work was a desire to improve software engineering practice.

 93

This was especially in the area of managing system requirements, Bustard et al,

2000.

BASE is goal oriented and goal driven. The BASE method is underpinned by an

underlying coevolutionary change process. See fig below.

BASE co-evolutionary change process

The figure above describes the basic evolutionary change process in high level
terminology. The co-evolutionary plan is created initially. This then acts as a guide
to subsequent incremental changes. Each change is planned and reviewed. This
may prompt adjustments to the co-evolutionary plan. Occasionally following the
review, it may be recognized that the nature of the business or its computing support
need to change substantially. This then prompts the creation of a completely new
evolutionary plan. An example of where such a major adjustment might be required
is in organizations switching to e-commerce as main model of customer interaction.

(Bustard, et al, 2000).

The first step in the Basic co-evolutionary change process is to ‘Develop a co-

evolutionary change plan’. This step is elaborated as four stages of activity.

I. Understand the situation of concern

II. Define the target system. This is the vision for the organization, in business

and supporting IT terms. See fig 4.3.

III. Define the initial system. This is a description of the current way of working.

IV. Develop recommendations for change.

http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig03%5F0%2Ejpg&image_id=58&previd=IMG_58&titlelabel=Figure+14%2E3%3A+&title=Basic+coevolutionary+change+process%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig02%5F0%2Ejpg&image_id=57&previd=IMG_57&titlelabel=Figure+14%2E2%3A+&title=Coevolutionary+change+framework%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig03%5F0%2Ejpg&image_id=58&previd=IMG_58&titlelabel=Figure+14%2E3%3A+&title=Basic+coevolutionary+change+process%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig02%5F0%2Ejpg&image_id=57&previd=IMG_57&titlelabel=Figure+14%2E2%3A+&title=Coevolutionary+change+framework%2E

 94

Fig 4.3 : Co-evolutionary change framework

The diagram in fig 4.3 describes the BASE framework model for change. Each

business-computing support pair explains the state of the organization’s point in its

evolution. An organizational change may involve an adjustment to the business, its

computing support or both. Each change is expected to retain or improve the

business-IT alignment. The overall description if a co-evolutionary development

plan, modelling how an organization might evolve towards a defined target state,

through a sequence of several intermediate states (Bustard et al, 2000).

MoIST versus BASE
The BASE method bears some similarity to the MoIST method used in this research

as they both define methods to link SSM to ‘hard’ information systems development.

This aim however is achieved in different ways by each method.

The first significant variation is that the core architecture of MoIST and RACE

methods and the means by which linkage is provided between SSM and hard

systems development are dissimilar. BASE offers only one core option of achieving

this linkage. The problem with this is that it does not necessarily provide software

developers with the flexibility needed to maximise successful development. MoIST

intends to address the problem and rectify it by providing analysis and development

options depending on the assessed characteristics of each I S project. MoIST’s

multiple option method offers flexibility and choice to the developer that could help

maximize opportunities for a successful project.

Yet another variation between MoIST and RACE is that each uses a different ‘SSM

culture’. There are two major proponents of SSM. These are the initiator of the

culture Peter Checkland and his less known colleague Brian Wilson. (Checkland,

1981, 1990, Wilson, 2002 Bustard, 2000). MoIST is primarily influenced by

Checkland’s variation of SSM while BASE is particularly influenced by Wilson’s

approach to SSM. One potential problem with RACE’s use of Wilson’s “brand” of

SSM is that not as many SSM methodologists are as familiar with the Wilson brand

of SSM. Checkland’s SSM on the other hand is more ubiquitous. (Checkland, 1981

etc etc, Wilson, 1981, 2002). This means that the RACE method could possibly be

more utilised if the Checkland brand of SSM were used. MoIST intends to rectify this

omission by utilising the Checkland brand of SSM that SSM methodologists are more

familiar with globally. This should help in some way to optimise the instances of its

use because of its ubiquity.

 95

Business Object-Oriented Specification Technique – BOOST – Dobbin,
Bustard, 1997
The main aim of BOOST is to integrate the business and computing analysis phases

so that it is possible to move smoothly between them. This was one of the concerns

that (Miles, 1992) had when he debated the merits of grafting versus embedding. It is

assumed here that the BOOST technique offers one solution to the problem.

(Stowell, 2002) did not quite agree that grafting or embedding posed an adequate

solution. He offered an alternative known as ‘navigating’ instead of grafting or

embedding. The technique offers one means of linking SSM and OOA, specifically to

Shlaer-Mellor OOSA. Business analysis in BOOST is defined as a four-step process.

Most of the analysis is standard SSM. Step three however is not an SSM activity.

1. Investigate problem situation

2. build activity models

3. refine activity models

4. make recommendations for change

The next stage of the BOOST technique produces Object Information models. This

is a five stage development process. This process produces information models

from interaction models. Transformation rules help to simplify the process. The five

stages are:

1. Extract base objects

2. Extract base relationships

3. Identify additional relationships between base objects

4. Define the relationships between base objects

5. Refine the information model

MoIST versus BOOST
BOOST has been developed as an approach to linking successive phases of

development. This technique allows for the products of one phase to be built directly

on those of the preceding phase. This implies that an underlying linkage exists

between the product sets, so that a change to one highlights or generates changes in

the other.

One drawback to BOOST is that it offers one set way of linking the ‘soft’ phase to the

‘hard system’ phase. MoIST intends to rectify this drawback by offering a framework

with three (3) different options that provide more flexibility to the developer. This can

help the software development team to more accurately choose the development

option suited to the software project.

 96

Linking SSM to Structured Design Methods
(Stowell, 1995) was among the first persons to highlight the idea of linking SSM to

existing structured design methods. He proposed that an agreed conceptual model

could be expanded into a detailed data specification using a data flow diagram (DFD)

(Stowell, 1995). Many other notable persons in the field have also had invaluable

achievements in the area. Among these are (Avison and Wood-Harper, 1990) with

Multiview and (Miles, 1988, 1992), who stirred up the grafting versus embedding

debate. Work done includes Dynamic Systems Development (DSDM). This extends

the RAD formally introduced by James Martin, 1991, (Avison and Fitzgerald, 1995)

and Client led design by (Stowell and West, 1994).

Navigating the gap between action and a serving system: Champion, Stowell-
2002
The authors are critical of attempts to form a bridge between systems thinking and

hard systems engineering. Instead they propose to navigate certain gaps in the

development process. This starts from the moment of inquiry within the

organizational setting through to travelling to producing the artefacts for the logical

development of the system. They highlight the distinction made by (Checkland and

Scholes, 1990) about an information system being one that serves purposeful action.

One criticism of prior attempts to move from conceptual models to logical design

using data-flow diagrams (DFDs) was the abrupt change from conceptualising action

to conceptualising data (Stowell, 2000, Mingers, 1995, Doyle and Wood, 1991). The

method proposes to employ intellectual devices within the navigational phase. These

are intended to maintain the sense of coherence from the ideas for action through to

the serving activities. The concept of ‘navigating’ the gap is a means of creating a

route from ideas for action to the requirements for an information system to serve the

action (Champion et al, 2002).

Zachman Framework Integrating Business Process Models with UML Systems
Models - 2001
This framework proposes UML as a means of modelling Business Processes. The

problem that emerges with this that UML is originally oriented towards representing

OO concepts. It therefore must be vastly extended in order to accommodate

business modelling. As an OO system description notation, the UML is generally

used to describe implementation views. It is also argued that using UML to describe

the text oriented contextual and the conceptual view takes UML out of its existing

domain and requires a mapping of the existing symbol to different concepts. The

 97

alternative offered is to use a different notation for the higher levels process

descriptions and use UML for the logical, physical and implementation views.

‘Soft’ Systems thinking and information systems: a framework for client-led
design. Stowell and West - 1994
Here Stowell and West make a case for the use of client-led design as an answer to

improving the efficiency of the traditional software development process.

Client led design is described as being a process where the client is handed the

analysis tools and made responsible for finding out the problems and difficulties and

bottlenecks in his or her own organisation. The Computing analyst acts as a guide to

the whole process. The thinking here is that the client is most au fait with his own

situation and is already intimately involved. This is a departure from the existing

status quo where the analyst is the one with all the answers and expertise and

spends days finding out and gleaning information. Stowell and West in order to

facilitate the client led design provide a framework for the analyst relegated to ‘guide’

to follow. SSM is touted as the methodology of choice for the client to use in the

finding out process. The authors insist that for SSM to be successful, it must be used

as if the only intent were to find out and not to find out with the express aim of

formulating a technical specification that will lead to implementation. They say it

works better when their focus is solely on finding out. Stowell et al compare their

client led design method to similar existing work done in the same field involving

clients namely (Mumford, Mansell et al, 1990). They claim however that the

identifying unique factor in theirs is that these approaches are undermined by the

primary desire to fulfil a technological outcome.

This allows the ‘client’ or ‘user’ to have a greater control over the identification,

specification and development of their information systems’. The traditional roles of

Computer Systems Analyst (CSA) has been broadened by the authors to be

Information Systems Analyst (ISA). Those who are most able to identify and discuss

the implications of the information system are those who are one way or another,

involved in its operation.

Miles’ grafting versus embedding approach -1988, 1992
Conversations, ideas, debates and counter debates abound as to the efficacy of

linking soft systems thinking with ‘hard’ information systems. Many theories have

been put forward and many interventions have been made using some of these

combined ideas. Nevertheless the area still has its proponents and detractors and

 98

the great debate carries on. Some wonder if it is advisable or wise to transform a

SSM conceptual model into a more hard systems oriented or more familiar DFD.

(Miles, 1992) identifies the use of two techniques that he labels grafting and

embedding. According to Miles, these two techniques are used when combining

hard and soft systems paradigms. The grafting technique applies SSM to the

problem and the outcomes and activities from the SSM are fed into the IS paradigm

or they are grafted onto the hard systems engineering model. This technique while

good is limited in its effectiveness by its lack of differentiation as evidenced in its

failure to draw a clear distinction between object and information system as outlined

by (Miles, 1992). This means that using the data model derived as output from SSM

and using it as a front end to an object model type in the information systems domain

could lead to conflict between model types. Another drawback to grafting is that

usually once the process moves from analysis using SSM to design in the systems

engineering domain. SSM is usually no longer utilised. In grafting, information

systems utilises SSM concepts and products or deliverables.

Embedding on the other hand may be defined as a technique that incorporates into

SSM the IS methodology or incorporates the information system hard systems

domain into the Systems thinking or soft domain. Information system modelling

demands both process and data analysis techniques but the conventional form of

SSM is process oriented. Therefore for the embedding approach to succeed, it must

incorporate into the methodological framework a means of modelling the data

structure of an information system (Miles, 1992). SSM as it currently stands is

process oriented. Information system models are data oriented. Information system

modelling requires both process and data analysis techniques. For the embedding

approach to succeed, it must incorporate into the methodological framework a means

of modelling the data structure of an information system. Miles acknowledges this

and accomplishes this by extending what he calls “SSM’s predication path” beyond

the relevant systems and conceptual modelling stages.

Stage Predication Focus Outcome
3 What is the system? Root Definition

4 What does the system have to do in order to be what it is? Conceptual Activity

model

4’ What are the information flows that will enable the system to

do what it has to do?

Conceptual Flow

Model

4’ What are the entity types? Conceptual Data

Model

 99

Table 4.2: SSM’s extended predication path table, adapted from Miles, 1992

The above table shows the extension to SSM. It renames the original conceptual

model as conceptual activity model. There is then an intermediary ‘conceptual flow

model’ and finally the generation or construction of the conceptual data model.

Information systems require both process and data analysis and design techniques.

SSM is process oriented in nature. Miles proposed an SSM and ISD linkage in an

earlier paper. (Miles, 1988). This stirred up many views and counter views. Miles

expands and explains in a bit more detail on what his earlier, much debated

approach was about. The grafting technique front ends the process oriented model

type from SSM directly onto the data oriented IS. Miles is not in favour of this

method as he argues that this would be a clash of model types (Miles, 1992). This

view is supported by (Doyle and Wood, 1991). In the grafting approach, once the

SSM part of it is completed, no more SSM would be carried out. The Miles

embedding approach on the other hand encourages SSM to be continued throughout

the entire software development process if needed. Here Miles emphasizes that it is

not merely a matter of applying SSM in its currently existing form to the IS process.

Consequently Miles proposes an approach that seeks to model the data structure of

an information system. He poses a solution to extend SSM to include Checkland’s

conceptual models seen from three (3) different views (Checkland, 1981). The

original conceptual model is now called ‘conceptual activity model’. The information

flows to the system are known as conceptual flow model. The entity type that

supports the information flows are then defined and becomes the conceptual model.

Checkland Miles (expands Checkland’s conceptual model)

Original conceptual model Conceptual Activity model

 Conceptual Flow model

 Conceptual Data model

Table 4.3: Three views of Miles’ expansion of Checkland’s Conceptual model

 100

The whole aim of the embedding approach is to find some sort of data model to

complement the process oriented SSM. Miles’ aim is to have data oriented link to the

data oriented hard systems engineering in order to avoid the clash of subjectivism

and objectivism. The MoIST method builds on the embedding approach by facilitating

a more seamless meeting of soft systems and hard systems. This is achieved by

linking the Human activities in each conceptual model to the relevant activity

diagrams in UML.

CCTA – 1993
This method provides a linkage between SSM and SSADM. The aim is to show how

SSM can make better use of SSADM resources in problem definition, save time in

subsequent requirements analysis and specification, and lead towards the

development of applications which more fully satisfy business needs (CCTA, 1993).

In the resultant method, SSM is used to formulate Business System Options and

SSADM to analyse current procedures and examine options for technical feasibility.

The SSM used here is influenced by Wilson’s approach to SSM especially in the

usage of the Maltese cross. SSM is carried out first by doing the following:

1. rich picture building for initial scene setting

2. ensure business requirements and constraints are identified and retained

during requirements definition

3. identification of information categories and production of information activity

tables for a detailed understanding of the total information needs

4. identify scope and key activities for use in a Data Flow Model (DFD)

5. ensure all major interface points are identified

6. Maltese cross development and analysis for comparing required and existing

information processing procedures and forming recommendations.

7. assess which aspects of the current situation require more detailed study.

The SSADM portion of the linkage is used for

1. requirements definition

2. analysing existing procedures

3. defining data requirements

4. data flow modelling and logical data modelling for definition of required

functionality and data.

 101

MoIST versus CCTA 1993
Separate logical models of system activities are developed and validated to gain

a more comprehensive insight into the business area under study. Activities from

individual models are combined to form a single model which can accommodate

the various perceptions. Options for the design and implementation of an

effective, efficient system to meet the requirements of the organisation may then

be formulated. MoIST and the CCTA framework have a similar goal of linking the

‘soft’ computing paradigm namely SSM to the ‘hard systems’ paradigm. This is

an effective method. The main deficiency is that SSADM is no longer the ‘hard

systems’ method of choice for software developers in industry. MoIST proposes

a solution to this drawback by the use of a link to a UML based context instead of

SSADM. Another drawback was CCTA’s use of Brian Wilson’s brand of SSM

which is not as widely known as Checkland’s brand of SSM. MoIST’s solution to

this is to use the Checkland SSM instead in order to promote wider use of the

method.

Checkland’s COT Framework approach - 1993
Iterations of the process of SSM produce models which are widely agreed to be

relevant in a company situation, then such consensus activity models can be

converted into information flow models and the more traditional methods of

information system design can be initiated. This provides the transition from the

activity focussed SSM into the information – focussed outcome (Checkland, 1981).

This means that the traditional ‘project approach’ to systems development embodied

in and epitomised by hard systems engineering can now allow for a more holistic

“process approach” where organizational flows, tasks and processes are taken into

consideration. As with all problems of information provision, the first stages are

nothing at all to do with data, hardware or software. They concern perceptions and

politics, the interpretations of their world by the organizations in question (Checkland,

1988). Activity models offer a coherent basis for defining information related

activities. These activity models are transformed into information flow models by

asking about the information required, its form, the information source, the frequency

required and the information generated. Usually at this stage, it is an appropriate

time to discuss potential computer architectures. There is a general problem with

introducing IT support within organizations in a coherent manner in order to carry out

the purposeful activity of the organisation. The solution to this lies in conceptually

 102

linking three domains ie conceptual, organisational and technology in what they refer

to as a ‘COT’ framework (Checkland et al, 1993).

Figure 4.1: COT Framework, Checkland et al 1993

The technology domain T and the organization domain O stipulate and explore how

Information technology can be more effectively utilised and introduced within the

organization. The problem that usually arises when only these two domains are

considered is that there is no explicit or coherent thought about how the two can flow

harmoniously. This is where the conceptualization domain C comes in.

Domains T and O are thus connected by domain C. It is referred to as the domain of

explicit organised thinking about O and T where coherent thinking about O’s nature

and structure and IT support is carried out.

Domain C is perceived by the authors to be the crucial domain. As declared ‘neglect

of C as a conscious, organised, explicit activity is what leads to a premature leap

from general statements of purpose to specific discussion of particular IT solutions’.

SSM is touted as one of the ways of executing domain C.

Dynamic Systems Development Method (DSDM) - 1991
DSDM is an extension of the Rapid Application Development (RAD). RAD was first

formally presented by James Martin in 1991, (Avison et al, 1995). RAD evolved in

Organization O
- what structure?
- What roles?
- What organizational,

development
strategy? Conceptualization C

- what organizational
purposes and position?

- What activities?
- What support is relevant

to the activities in this
setting? Technology T

- what IT?
- How provide it?
- How manage it?
- How update it?

 103

the 1990s out of the need for faster systems development than the traditional

methodologies offered. RAD is an iterative, incremental approach. It compresses

the traditional software development phases into shorter iterative cycles. It involves

a small team of developers who work to tight deadlines to speed up the development

process. In 1994 a consortium was formed to develop a framework that combined

the best facets of existing methodologies with the development experience of RAD

over the years. In 1994, a DSDM consortium was formed to establish nine (9)

fundamental principles of RAD if it is to be used within the public domain. These

principles retain the essence of the original features. It is additionally extended to

address some of the evolving management, cultural and human issues that impact

heavily on systems development environments that inform the debate. (Berger,

Beynon-Davies, Cleary, 2004).

Multiview
Multiview originated as a response to traditional IS development methods that had

strong roots in engineering discipline and technical rationality. (Vidgen, 2002).

Multiview is structured in three tiers: general framework, local methodology and

methods/techniques (collectively these constitute Multiview. Multiview now has two

official versions. Avison and Fitzgerald’s observation was that mid 90s onward saw

the ‘era’ of methodology assessment. The original Multiview I – 1990 is a five (5)

stage methodology. It incorporates SSM, ETHICS and other structured (hard)

approaches pick the right ones for the problem situation. Multiview II – 1998 is more

of a framework. This requires ‘mediation’ amongst four (4) components:

organisational analysis, socio-technical analysis and design, information modelling

and technical design and construction.

MoIST versus Multiview
MoIST and Multiview approaches bear some measure of similarities. This in terms of

linking ‘soft’ and ‘hard’ paradigms. Multiview however incorporates ETHICS as well

as SSM in order to link to SSADM. One drawback of Multiview is that though it

works, there is no detailed step by step instruction as to how to traverse from SSM

and ETHICS into the hard paradigm. MoIST intends to rectify this deficiency by

providing a step by step instruction as to how to link both the ‘hard’ and ‘soft’

paradigms.

 104

ETHICS
The ETHICS (Effective Technical and Human Implementation of Computer-based

Systems) was developed by Dr Enid Mumford as a guide to user involvement in

system design. The ETHICS method is intended as a guide to achieve a better

balance between technology and people in the design of systems. (Mumford and

Weir, 1979). In particular, the method advocates user involvement and participation

throughout the design stage to produce a ‘sociotechnical system’ which will benefit

both the business and the working environment of the users.

ETHICS is a method to help a design group (made up of management, users and

technical experts) diagnose and formulate the problem, set objectives and develop

alternatives, and take other appropriate actions right through to implementation and

evaluation of the new system. Throughout development, emphasis is placed on both

the human or social and the technical aspects of the system. Users develop social

alternatives to improve job satisfaction.

Davis’ Contingency Framework
The Contingency framework is useful for determining the situation in which it is best

to use a particular method or approach. The framework is based on two variables,

both concerned with different aspects of uncertainty inherent in the situation. These

variables are requirements uncertainty and process uncertainty. The variables may

be combined to give four types of organizational situations. We may use this to

assist in determining the method most suited to the situation to produce an

information system.

Davis(1982) describes how a multidimensional set of factors concerning the

uncertainty of the desired system, type of users and type of designers may be

evaluated and used to select the most appropriate requirements determination

strategy.

MoIST versus Davis’ Contingency Framework
MoIST has been influenced by the Contingency Framework in that the framework us

useful in determining in which situation it is best to use a particular method. It

examines two variables. These are requirements uncertainty and process

uncertainty and determines which of the four options is best to use. The problem

however is that once the option is selected, the contingency framework does not

 105

specify how to achieve the desired result. MoIST however is very different in that it

has two separate variables and three different options for software environment

comparison. MoIST seeks to provide a solution for this potential drawback by

detailing in a step-by-step manner exactly what is to be done to achieve each of the

options chosen. MoIST will show how to achieve the suggested link from SSM to a

hard systems paradigm. This is different from the contingency framework whch only

suggests the linkage and not detail how to actually do the linking.

4.5 Real Life examples of Successful integration of Systems Thinking with
IS paradigm

One of the motivations for developing a theoretical basis for combining

methodologies was the fact that this was already happening in practice. A survey into

the practical usage of SSM unexpectedly found that a wide range of methods were

being routinely combined with SSM (Munro et al, 2002). The same tendency was

noted among practitioners and they too see it as a justification for the need to look

more closely at the whole context of combining methods (Mingers and Brocklesby,

1996).

Systems science combined with Object orientation were used together to increase

the effectiveness of organizational requirements analysis for IS development. This

was applied in a real-world case at the Labour Department (LD) of Hong Kong. A

requirements specification was generated at the end of the project and delivered to

the LD for subsequent design and construction of technological-based information

systems (Lai 2000). SSM was used to provide learning in the situation that existed in

the LD. It showed how the LD functioned amidst labour issues such as record high

unemployment, closure of business operations and changes in legal standards.

From an understanding of the situation, relevant systems of purposeful activities

were formulated. An integrated framework method was then applied to the SSM

findings. This led to the determination of information needs to support the defined

purposeful activities. The outcomes here were then used to consider the data and

technology that could yield the required information. At the end the

intervention was an improved user requirements definition. This formed the basis of a

successfully implemented system.

 106

Yet another successful intervention that used combined methodologies was applied

at Sainsburys. Sainsbury’s is a leading UK food and grocery retailer. They are also

owner of Shaw’s and part owner of Giant Food in the USA. They have a profit of

more than $1 billion and a turnover of about $15 billion. Sainsbury’s was searching

for ways to sustain its perceived technology lead into the 1990s. It also sought to

maintain its outstanding record of yearly profit growth. In response to this challenge,

a task force was formed to plan for the future. To support the strategy development

process, intensive use of ‘soft’ OR and other systems methods were used. These

included Soft Systems Methodology, cognitive mapping and strategic choice. It is

believed to be the first time that these non-traditional approaches have been used

together in one exercise for commercial purposes. The strategy that resulted from

this process was implemented in 1995. Tangible and intangible benefits have begun

to accrue such as cash flow savings, fewer stock losses and improved customer

service. Tangible benefits include: a 5% increase in availability; a 10% reduction in

stocks and 105 fewer losses from a branch stock control and ordering system;

30,000 additional stocking units from a new system for range control and depot stock

reductions from a new purchase order system (Ormerod, 1995).

Benefits of combining Systems Thinking with Object Orientation
Real world problems are highly complex and multidimensional. Different paradigms

focus attention on different aspects of the situation so the practice of combining

methods provides the facility to deal effectively with the richness of the real world.

Another significant advantage is that an intervention is not usually a single, discrete

event, but goes through several phases. Methodologies tend to be more useful in

some phase than others, so it is usually more effective to combine the methods in

order to maximise its efficiency at every phase. This will help to achieve a more

comprehensive level of success.

Limitations of combining SS with IS
The main challenge in combining SSM and Object Orientation is linking research

methods together across different research paradigms (Mingers, 1997). At the

philosophical level the issue of paradigm incommensurability exists. The attempt to

provide guidelines for actually combining methods in practice has been fraught with

difficulties. The alternative is for software practitioners who combine methods in

 107

development to learn to live with and manage a degree of paradigm incompatibility

(Jackson, 1997).

Other limitations exist at a cultural and psychological level. The cultural level is

limited by the extent to which combining methods of diverse paradigms can be

facilitated within organizations. The psychological challenge is the ease with which it

is possible for a practitioner to move unhindered from one paradigm to another.

4.6 Conclusion
The list of successful linkages between Systems science and information systems

development documented in this research is certainly not exhaustive. The concern in

the systems community is that soft and hard systems approaches do not easily mix.

If an SSM front end is grafted onto a hard systems development process there are

three issues. If the same people do both the soft and hard phase can they do justice

to both paradigms? The questions continue as the successes and failures occur.

The limitations to mixing methods lie in the competence of the consultant and the

participants rather than in the methods themselves (Mingers, 1997).

The particular method used for linking Systems Science and information systems is

the Method of incorporating systems thinking into information systems design

(MoIST). The MoIST is an amalgamation of the SSM and UML based method or

process.

 108

Chapter 5- Method of incorporating Systems Thinking into Information
Systems design (MoIST)

‘Methods are extremely important. They are prescriptive routes through the jungle. Follow a
method that someone else has defined successfully, and you are less likely to be eaten by a
tiger or to get lost in the undergrowth.’ (Lunn, 2003, p 427)

5.1 Introduction
One of the benefits of integrating systems thinking in information systems

development is the increased flexibility it provides. It pulls together two diverse

paradigms. Their combined strengths provide a synergistic versatility and flexibility

required for the unique nuances and facets encountered in software development.

Existing approaches to Requirements Engineering based on traditional Software

Development models tend to emphasise technical knowledge, and are based largely

on notations and prescribed processes (Checkland and Holwell, 1998, p xiii).

Problem-solving needs a rich background of knowledge and intuition to operate

effectively. Breadth of experience is also necessary so that similarities and

differences with past strategies are used to deal with new situations (Bubenko,

1995).

Traditional methods of requirements determination assume that requirements can be
successfully obtained with no knowledge of the organization. However this
assumption may produce a poor quality system, as methods address the wrong
problem by ignoring organizational knowledge that is part of the requirements. It is
assumed that the user knows best, and that the developer does not need expert
domain knowledge. But it is becoming clearer that knowledge of this type does help
in determining requirements (Flynn, 1998, p 141).

Companies have come to recognize that traditional software development practices

are inadequate from both a technical perspective and a business perspective. This is

causing companies to reengineer their software development or acquisition

processes (Jacobson, 2000, p 4). The requirements process is arguably the most

important process within systems development as studies have shown that the

majority of errors are made here. There is increasing attention being paid to social

rather than to technical factors in the process (Flynn, 1998). For software developers

there is a widening gap between the degree of flexibility and creativity needed to

adapt to a changing world and the capacity to do so. They view the difficulties as

attributed to individuals or groups not willing to engage in effective and efficient

 109

processes of innovative design (Thomas et al, 2002). Developers typically fail to

spend sufficient time in the early stages of design: problem finding and problem

formulation. Subsequently they often then bring critical judgment into play too early

in the idea generation phase of problem solving (Flynn, 1998).

The essence of this research is the design of the MoIST method for integrating

systems thinking into information systems design of the entire software development

process, but in particular the requirements elicitation phase. This integration ensures

a greater incidence of project development being completed successfully and in a

timely manner (Bustard, D, Kawalek, P, Norris, M, 2000, chap 13).

A method is a way of doing things and methodology is the study of ways of doing

things (Lunn, 2003, p 427). Additionally, a method is a planned procedure by which

a specified goal is approached step by step, not to be confused with methodology,

which is the science of methods (Jacobson et al, 1992, p 30). A basic requirement of

a good method is that it simplifies the development of systems that have the software

architecture it is meant for (Jacobson, 2000, p 44). The combination of these two

epistemologies in the new method formation simplifies the process as it allows both

strengths to be maximised and weaknesses minimised (Bustard et al, 2000).

5.2 The MoIST Method

Is there any method that is not based on another method? My early object-oriented
design method developed in 1967 was heavily based on a design method (at least
ten years old at that time) used within Ericsson to design telecommunication
systems. You can take any other method and you will find similar relationships to
earlier works. One of the most popular methods, OMT, is probably an even better
example of a method based on methods. The uniqueness of that method is how it
has been composed of other people’s work. To further develop methods based on
other methods is most natural and that will continue to happen (Jacobson, 2000, p
165).

MoIST stands for Method of Integrating Systems Thinking within Information Systems

design. It is a method that has been developed out of research on various IS

methods and modelling approaches (Davis, G, 1982, Avison and Wood-Harper,

1990, CCTA, 1993, Bustard, 1997). It also combines the social and human factors of

SSM with the more technical UML-based method. MoIST has been influenced by the

Contingency Framework of (Davis, G.B., 1982). It is also influenced by the work done

 110

by the government centre for information systems (CCTA, 1993) in combining SSM

and SSADM and by Multiview Method by (Avison and and Wood-Harper, 1990).

The contingency framework of (Davis, 1982) prescribes a soft or hard approach for

each software development project based on the level of uncertainty about what

process to use and the level of uncertainty about what the requirements for the

project are. Davis’s framework describes how a multidimensional set of factors

concerning the uncertainty of the desired system, type of users and type of designers

may be evaluated and used to select the most appropriate requirements

determination strategy(Davis, 1982). Multiview combines new methods with a soft

approach by adding new stages and the required iterations (Wood-Harper, 1985) and

the CCTA documentation shows the phases of SSADM and the possibilities for

extension (CCTA, 1993).

Bodies of work related to MoIST and that combine SSM with UML already exist

(Bustard et al, 1996). MoIST’s major area of uniqueness lies in the juxtaposition of

its three (3) development options and their level of replicability in organizational IT

projects. MoIST also complements the existing body of related work and adds to the

arsenal of successful software development methods; as it facilitates projects that

match its specific characteristics (see chapter 5).

Creativity has been described as a balance of convergent and divergent thinking

appropriate to the situation. This balance is essential in undertaking software

development, which may be considered as a class of creative problem solving

(Nickerson, 1999). The MoIST method combines discipline and creativity. Discipline

and creativity are the odd couple of software development – the discipline imposed

by methodology, for example, forms a frame for the opportunistic creativity of design.

This provides a base that enables software developers to both create and engineer

the systems they build: to be adaptable to the changing environment that is inevitable

in the software development discipline (Glass, 1995).

 111

5.3 The UML and the MoIST Method

The Unified Modelling Language (UML) advocates the innovation of new methods

like MoIST. It provides extensibility mechanisms so that future modelling approaches

can be grown on top of the UML (OMG, 2003).

As the strategic value of software increases for many companies, the industry looks
for techniques to improve quality and reduce cost and time-to market. One
commonly underused technique in the software industry is modelling. Developing
models for a software system prior to its construction or renovation is as essential as
having a blueprint for a building. Software system models help in the comprehension
of such systems in their entirety. There are many factors of a project’s success, but
one essential factor is having a modelling standard. The UML must and can support
various methods and processes of building models. The UML can also support
multiple development methods without excessive difficulty (OMG, 2003).

This research does not assume that an information system will necessarily be the

best solution to an apparent problem. It promotes the establishment primarily of the

key aspects of organizational structure. This is then blended together with such

influencing factors as environmental characteristics, technology and task.

Organizational outcomes will usually depend on negotiation between the different key

actors - organizational participants, as there will always be different solutions to

problems or short-term versus long-term views (Hirscheim et al, 1995).

Software development has been described as a ‘craft’. The negative connotations of

this label include an inability to consistently guarantee a quality product, fit for the

purpose for which it was developed, produced on time and within budget (Standish,

1995). A study of over 8,000 projects (Armarego et al, 2002, Standish, 1995)

reported 16.2% of software was successful, 52.7% were over budget, time and had

fewer features and 31.1% of projects were cancelled. These rates do not significantly

differ from those reported in the 1970s and 1980s. Many of the shortfalls may be

traced to deficiencies in formulating a description of the system to be developed

(Mann, 1996).

Deciding on which systems should be built remains problematic and is an analytic

challenge ill-served by current methodologies. Such theoretical limitations become

more pronounced when we recognise that these methodologies hardly begin to

address potential research issues in organizations, for example privacy and data

integrity (Winter et al, 1995).

 112

This MoIST method attempts to redress these deficiencies. It gives developers the

opportunity to choose the best option within the method. They are enabled to assess

the characteristics of their project and determine the best way of development. This

increases the likelihood of success. All good methods support object modelling

(Jacobson, 2000, p60).

One of the benefits of the MoIST Method is its flexibility. It integrates two diverse; but

flexible methods. This increases the total flexibility of the integrated method. This

versatility and flexibility is needed for software development as there are various

nuances and unique facets of each project that might not fit exactly into every option

in the method. No project is likely to follow the UML to the letter. Rather, the aim is

to select out the parts of the process that are relevant to the current project and

organisation (Lunn, 2003, p 429)

The MoIST method suggests heuristic solutions to problems that are known to be

hard to characterize. Having several project options within a method is integral to

most research domains (Jacobson, 2000). The MoIST Method is designed for both

users and developers to work together to maximise their strengths in order to

improve the requirements elicitation process. The success or failure of the

requirements elicitation process usually determines the outcome of the entire

software development project (Flynn, 1998). Requirements are not objective,

unchangeable artefacts, available at the start of the process, to be “captured” like

butterflies. Instead, they are emergent and are social constructions resulting from

interactions involving users and developers in the process (Dobson and Strens,

1994).

 113

5.4 The MoIST Model
The MoIST model is an integral part of the MoIST method. The MoIST method

combines elements of the MoIST model, ProcessMoIST, MoIST Project Selector

Tool, the MoIST Project options and MetricsMoIST.

The MoIST method caters to development projects with differing degrees of

structuredness. This is in terms of the levels of development of the MoIST method’s

core determinant variables. These are the requirements certainty and the

development environment of each project.

The structuredness of the software development environment relates to the degree

of knowledge we have about the problem to be solved. Therefore when

requirements are not clear, we have a lower degree of knowledge about the problem

domain. The degree of knowledge consequently dictates the structuredness of the

environment which in turn influences the project option chosen.

The MoIST model has been developed to flexibly use one or more project options

within the project lifecycle. The degree of structuredness catered for by the MoIST

method range from very unstructured – Option A, fairly unstructured – Option B to

very structured – Option C. In order to more fully redress the software development

weaknesses identified in the research (pg 2 and Chap 1), MoIST tends towards

providing a viable development route for unstructured development environments.

In order to more accurately test MoIST’s assertions, the most suitable case studies

were from unstructured environments. Consequently in the research, there is no

case study that explores the Option C pathway. The provision of Option C has been

made however for any possible clients who still desire to utilise MoIST as a solution

even though requirements certainty and the structuredness of their development

environment might be very high.

Overview of MoIST Project Options A, B and C
Project Option A
MoIST is designed to always begin at project option A. In option A, the entire project

is preceded by a comprehensive SSM study. Comprehensive here means starting

with rich pictures and ending with a Conceptual Primary Task Model. This facilitates

a thorough exploration of the project and its characteristics. It also enables the

development of conceptual activities that might be needed for more advanced

design. After project option A is completed, a project status appraisal is conducted

using the MoIST project selection tool. This is a very important phase in the MoIST

 114

process. The findings of the SSM study will determine whether or not it is feasible to

continue with information systems design or whether a more relevant solution lies in

a non-information systems alternative. If the findings point to discontinuing systems

design, then a feasible alternative is pursued. This decision is quite acceptable and

the MoIST method would have effectively prevented the needless waste of resources

on progressing to a more advanced design. If the SSM findings show that it is viable

to continue along the information systems design route, then an appropriate project

option is chosen using the MoIST project option selector tool. The MoIST project

option selector tool determines whether or not the development environment is

currently structured or unstructured. The resultant degree of structuredness

determines whether Option B or option C is chosen. If the environment is still

considered to be unstructured, project option B is chosen. On the other hand, if the

environment is considered to be very structured, project option C is chosen.

Project Option B
Option B facilitates the transition of the software project from the SSM study to the

UML-based phase. This involves the derivation of conceptual models from each root

definition, determination of selected activities as candidates for IT support and

mapping of required services onto objects. If the environment is now considered to

be structured, project option C is chosen.

Project Option C
In project option C, the transition is made from SSM Conceptual activities to UML-

based activity diagrams. Project option C is chosen when the development

environment is very highly structured. It is also used when the requirements are very

well understood and can be applied in their current state as they are. Not many

software engineering projects fit the above criteria, therefore it is not expected that

MoIST’s option C will be a popular option chosen for development. This is because

most software projects are being developed in an unstructured environment. Based

on the literature review in Chapter 1, it was seen that software projects are increasing

in complexity and unstructuredness and that a greater understanding of human-

social factors in Computing is needed to aid successful development. MoIST tends

towards projects that are unstructured. Nevertheless, in order to accommodate any

structured project that would want to utilise MoIST, Option C is offered as a route to

 115

successful development. Project C is in essence a hard systems option that provides

a link to using MoIST for any possible project that might have a very structured

environment where requirements are fully known.

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

Figure 5.1: The MoIST Model

Based on studies of the different characteristics of the methods and their respective
approaches, one possible conclusion is that methods have developed to suit different
situations. For example, some methods, such as SSADM and participative systems
design, assume that a current system always exists, which can be used as a basis

 116

for analysis and design of new systems. Other methods, like the Checkland
methodology, do not make this assumption (Flynn, D, 1998, p 351).

The MoIST method describes how a multidimensional set of factors concerning the

uncertainty of the desired system, type of users and type of developers may be

evaluated and used to select the most appropriate requirements determination

strategy. MoIST shows how the specific software development project fits onto a

planning grid which houses the MoIST method with its three (3) options.

The MoIST method is based on two variables, both concerned with different aspects

of uncertainty inherent in the situation. These are requirements certainty and the

nature of the development environment. This shows how the specific software

development project fits onto a planning grid which houses the MoIST method with

its three (3) options. A limitation of the simplified model above (see fig 5.1) is that

there is a tendency for the status of the two variables to rely heavily on the

judgement of the project manager. This can be mitigated by involving more

stakeholders in the initial evaluation process.

Requirements Certainty: - This is the extent to which the requirements are known

and fixed. The level of requirements uncertainty is ascertained by checking for

certain characteristics in the project. This will determine whether requirements

uncertainty is low or fixed. Low requirements uncertainty characteristics include

conflicting interests among stakeholders and/or developers, likely organisational

changes, the proposed system is contentious or where the proposed system crosses

functional or organisational boundaries. The presence of one or more of the

stipulated characteristics in a project makes it a likely candidate for ‘low requirements

certainty’ status. For the requirements certainty level to be deemed ‘high’ the

requirements should be very clear, with no ambiguity and all parties should agree.

Development Environment: - This is the predictor of the structuredness or

unstructuredness of the software development environment. The level of

structuredness or unstructuredness is ascertained by the general characteristics of

the project. For example, developers not being able to agree will give the

environment, ‘unstructured’ status. The environment being relatively contention free

will give the project ‘structured’ status. The status is determined by the project

management team.

 117

These two variables may be combined to give three (3) types of organizational

situations (see fig 5.1). This is used to facilitate determination of the option in the

MoIST method most suited to the development situation. Where requirements

certainty is low and development environment is structured or unstructured, the entire

UML phase needs to be preceded by SSM. A project may have as it characteristics,

requirements certainty being high and the development environment unstructured.

Using the MoIST method means that UML-based method’s initial stage is enhanced

with SSM. SSM’s conceptual activities can be linked to UML’s activity diagrams

when there is high requirements certainty, a structured development environment

and the requirements are very clear to more than 90% of the development team. This

option might be rarely used as unstructured project requirements are not usually that

clear. Also linking conceptual activities to activity diagrams means bypassing use

cases. This linkage lends itself to less accuracy than linking conceptual activities to

use cases. This option was not explored in this research with a case study, but might

act as a catalyst for other researchers as methods are inspired by and built on

existing methods. (Jacobson, 2000). The characteristics of the project merely serve

as a guideline. Owing to the variegated nature of most software projects, the

developer is free to use the characteristics as a guideline to see which option the

project slots into

5.5 Process MoIST (ProMoIST)

The presence of a well-defined and well-managed process is often a key
discriminator between hyperproductive projects and unsuccessful ones. The UML is
intentionally process independent and defining a standard process is not a goal of
the UML or OMG. UML encourages various organizations to use the same UML
diagram types in the context of different processes. The UML recognizes the
importance of process. The reliance upon heroic programming is not a sustainable
business practice. Processes by their very nature must be tailored to the
organization, culture and problem domain at hand. (OMG, 2003).

Process MoIST is a well defined Process Framework that undergirds the MoIST

method. The order inherent in Process MoIST enables the advancement of the

project in an orderly and as stable a manner as is possible. Process MoIST lends

structure to unstructured I S Development projects. It provides linear and iterative

progression of a project from analysis/elicitation to design, implementation and

evaluation. Whilst Process MoIST does not actually carry out implementation; its

 118

effects on implementation are indirect. This is because it facilitates the successful

analysis and design which can more easily extrapolate to successful implementation.

5.5.1 MoIST’s Project Option Selection Tool (MoPros)

 25 points 25 points 25 points 25 points

Project
Options

Users Developers’
skillsets

Organizational
environment

General
characteristics

A

Users are a bit
unsettled as they
are experiencing
organizational
changes

Requirements
known at this
point are
relatively clear
to 80% of the
development
team

Development
environment
unstructured

Proposed system is
to replace or
enhance an
existing system

B

Users uncertain
about the need
for the proposed
system or users
opposed to the
proposed system

Developers not
able to agree
about
requirements

Development
environment has
pockets of
structured and
unstructuredness.

Conflicting interests
and the proposed
system might cross
functional borders

C Users open to
the new system

Requirements
known at this
information are
very clear to
90% of the
development
team

Development
environment is
quite structured

Environment is
relatively
contention free

Fig 2: MoIST’s Project Option Selection Tool (MoPros)

 MoIST Project Option Selection tool is a pre-defined template of the general

characteristics of the average software development project. These

characteristics are delineated into related project options. These

characteristics were selected as the core characteristics after examining other

IS project management literature (CCTA, 1993, Flynn, 1998, Davis, 1982,

Avison and Wood-Harper, 1990). The MoPros presents three (3) project

options. Each option defines its own user types, developers’ skillsets,

organizational environment and general characteristics. The project team

manager is responsible for facilitating the selection of the most appropriate

project option at any given point in the MoIST process. The selection of

another individual project option B or C within the Process MoIST framework

is dependent on assessment of the problem domain, implementation

 119

technology and team skills sub-options within each project. The current

project characteristics are then matched using the Project Option Selection

Tool. A maximum of twenty-five (25) points are allocated to each sub-option.

The project option with the highest total points or percentage score is

automatically deemed to be the most appropriate project option. The scoring

process works with the project team meeting to provide consensus on the

scores. Each team member is given a copy of the MoPros template with the

maximum score. As they discuss each option, each member is required to

allocate a score out of 25 for each section. The scores for each option are

averaged and the project option with the highest percentage determines the

option path taken. In the event that the project manager feels that the scoring

decision is inaccurate, the manager has the autonomy to take a managerial

decision to change this score. This is because ultimately the responsibility for

the success of the projects lies with the project manager.

There is no limit to the number of times that the MoIST Project option selection tool

may be used within the duration of the project lifecycle. As progress is made, the

project status is subject to change. If the project status changes, the current project

characteristics can be reappraised. This reappraisal is done using the MoIST project

Option Selection Tool. Status changes may become more evident as project

deliverables are achieved. The selection tool is then used to choose a more

appropriate option that reflects the project’s updated status. One practical example

of this happened during this research. Initially one project option was chosen using

the MoIST project Selection Tool. The project activities were subsequently carried

out. Over time, the successful outcomes of doing the activities precipitated the need

for a new appraisal. The project was re-examined in the light of new developments.

The MoIST project selection tool was used and a more suitable project option was

then chosen (see Chap 6).

There is a distinct advantage in enabling the MoIST Project Selection tool use to be

iterative within a project lifecycle. This is because it acts as a monitoring and

corrective mechanism. This helps to ensure the integrity and accuracy of the MoIST

method. This in turn ensures that the integrity and rate of advancement of the

development project is not compromised.

 120

How Process MoIST works
Process MoIST is an architecture-centric, SSM-UML driven, iterative and incremental

process framework.

1. It provides guidance as to the order of a project team’s activities

2. It directs the tasks of individual developers and the entire team

3. It evaluates the Project and assesses its perceived characteristics. This is

done against the characteristics set out in the MoIST Project Option Selection

Tool template.

4. It specifies what I S artefacts should be developed

5. It produces a statement of work that describes the system

6. It offers criteria for monitoring and measuring a project’s products and

activities.

 121

Fig 5.2: Process MoIST Procedures

 122

5.6 The MoIST project options A, B and C are shown in more detail below.

MoIST Project Option A

Precede UML with SSM

Status: Requirements Certainty (Low) + Development Environment

(Unstructured or Structured)

MoIST Option A’s Activities

1. Requirements for computer-based information system
2. construct rich picture
3. develop relevant issue-based and primary task root definitions and

conceptual models
4. derive consensus primary task model and information categories
5. formulate the recommendations for information system design

This option allows for the organization and domain to be studied and modelled. The

results of this SSM Analysis can be fed directly into the initial phase of the UML. In

this option, depending on the expertise of the SSM methodologist, they can start with

any step thought necessary. They can begin with rich picture construction or

conceptual models.

After finishing this design phase, the resultant artefacts are then evaluated using

MetricsMoIST Evaluator System.

 123

MoIST Project Option A’s Construction framework

Option ID Activity Label Construction Procedure
A1 Gather the known

requirements
1. Conduct informal interviews with

stakeholders. This helps to observe the area
under study in the context of the whole
organisation.

2. Formulate and administer questionnaires.

This considers multiple perceptions and
recognise that some may conflict

3. Identify and assess the business

requirements, organizational and cultural
ethos and the financial and technical risks.

A2 Construct Rich Picture 1. Capture, describe and express the problem

situation diagrammatically. The rich picture is
unique to the analyst as it is the analyst’s
perception of the problem (see chap 2)

2. Ask questions such as, what roles or people

have relationships with the situation
described? And what organisational issues
are there within the situation?

3. Illustrate all elements of the problem without

being overly detailed.

4. Use meaningful symbols to represent relevant

components of the situation and arrows to
illustrate relationships.

A3 Develop primary task
and issue based root
definitions

1. Consider two (2) types of root definitions
(RD). There are those related to the primary
task of an organisation and those related to
issues within the situation. (see chap 2)

2. Structure the root definitions according to

CATWOE (see chap 2).
A4 Develop conceptual

models
1. Derive conceptual models from the primary

task root definition (RD). This defines what a
system would have to do to be the system
described in the RD.

2. Use verbs to describe the logically linked
activities that satisfy the RD

A5 Derive consensus
primary task model
(CPTM)

1. Construct the CPTM from elementary primary
task model

2. Assess the feasibility of each activity within

each primary task model and assemble those
acceptable to the stakeholders

A6 Derive information
categories

1. Take each activity in the CPTM.

2. Derive the broad, distinct groups of

information needed to support the activity
along with the information categories
generated by doing the activity.

A7 Make

recommendations and
1. Produce a feasibility report to document

decisions as to whether and how further work

 124

then select Option ID
A7.1 or A7.2 or A7.3

should proceed

A7.1 Use MoIST Project
Option Tool selector to
decide between option
A or B

1. Use Option Tool selector to determine the
current status of the project (see chap 5-
MoIST method)

A7.2 Choose an alternative
solution.

1. Proceed in a different direction from that first
envisaged

A7.3 Suspend or cancel
project

1. Suspend or cancel project as not deemed
feasible

Retained/
Modified/
Dropped

Option
ID

Skillset Deliverables Monitoring Active
status

Supervisor

A1 SSM Stakeholder
requirements

Scheduled
stakeholder
feedback
meetings

Retained

A2 SSM Rich Picture MetricsMoIST
A3 SSM Root Definitions (RD) MetricsMoIST retained
A4 SSM Conceptual Models MetricsMoIST +

CATWOE
retained

A5 SSM Consensus Primary
Task Model (CPTM)

MetricsMoIST retained

A6 SSM Information
Categories

MetricsMoIST retained

A7 SSM Recommendations of
solution

MetricsMoIST retained

Timeline for MoIST project option A

 (Min Hours) (Max. hours) (Hours)

 (max+error)

Activities Completion
time

Completion
time

Error/Feedback &
Correction Time

Total time
(hours)

A1 20 25 7 32
A2 5 7 3 10
A3 12 13 4 17
A4 13 15 4 19
A5 6 7 2 9
A6 8 9 4 13
A7 6 8 3 11

 125

Gantt Chart for Project option A

MoIST Project Option B

Identifying and defining use cases from conceptual activities.
Status: Requirements Certainty (High) + Development Environment

(Unstructured)

MoIST Option B’s Activities

B1. Derive conceptual primary task model (CPTM).

B2. Select and prioritise Conceptual model activities.

B3. Determine which activities require further decomposition.

B4. Determine which of the selected activities are candidates for IT support.

B5. Identify actors.

B6. Develop high-level use cases.

B7. Develop multi-level use cases.

B8. Identify high-level objects.

B9. Map required high level services onto objects.

B10. Continue design.

A
1

A2 A3 A4 A3 A7 A6 A5

 126

MoIST Project Option B’s Construction framework

Option ID Activity Label Construction Procedure
B1 Derive Conceptual

Primary Task Model
(CPTM)

1. Derive each conceptual model from the root
definition

2. The model should define what a system

would have to do to conform to the root
definition

3. Identify the logically linked activities that

would have to take place to satisfy the root
definition.

B2 Select and prioritise
Conceptual model
activities

1. Identify and place each activity into either
high-level or low-level categories.

2. High-level activities are those which have the

potential to be decomposed into more specific
activities.

3. Low-Level activities are those which can be

used immediately without further
decomposition.

B3 Determine which
activities require further
decomposition

1. Choose the high-level conceptual activities
already selected. (see B2).

2. These activities may require further

decomposition of some specific activities for
which use of IT is currently vague or unclear.

B4 Determine which of the
selected activities are
candidates for IT
support

1. Select the low-level conceptual activities
which require no further decomposition.
These can be used immediately.

B5 Identify Actors 1. Identify the functional roles (person or
system) associated with each low level
activity

B6 Develop high-level Use
Cases

1. Let each identified low-level activity serve as
the name of the use case

2. Involve the relevant actors and domain

experts when writing up these high level use
cases

B7 Develop multi-level use
cases

1. Decompose the high-level use cases to an
appropriate number of levels

2. Continue to involve the relevant actors and

domain experts in order to derive and validate
the use cases

B8 Identify high-level
objects

1. Identify the objects from the use cases by
extracting the nouns

2. Remove duplicate objects

3. Form associations between the objects to

show their relationships
B9 Map required high-

level services onto
objects

1. Determine the high-level services from the
SSM conceptual Model Information
Requirements

2. Map the services onto the objects

 127

Retained/
Modified/
Dropped

Option
ID

Skillset Deliverables Monitoring Active
status

Supervisor

B1 SSM Conceptual
activities linked into
CPTM

CATWOE to
ensure
conceptual
activity integrity

Retained

B2 SSM + UML Conceptual
activities prioritised
and placed into
either low-level or
high-level
categories

1. Further
decompo
sition to
be done
= high-
level.

2. No further

decompo
sition
possible
= low-
level.

B3 SSM+UML Candidates (if any)
appropriate for IT
support

MetricsMoIST retained

B4 UML List of UML actors MetricsMoIST retained
B5 UML High-level use

cases that further
decomposed

Noun extraction
process

retained

B6 UML Multi-level use
cases

MetricsMoIST retained

B7 UML High-level objects
that can be further
decomposed

MetricsMoIST retained

B8 UML High-level services
mapped to objects

MetricsMoIST retained

B9 To be
determined
by project
team

Continuation of
UML design
activities

MetricsMoIST Retained

 128

Timeline for MoIST project option B

(Min Hours) (Max. hours) (Hours)

(max+error)

Activities Completion
time

Completion
time

Error/Feedback &
Correction Time

Total time
(hours)

B1 2 5 2 7
B2 1 4 3 7
B3 1 3 2 5
B4 2 3 1 4
B5 2 4 2 6
B6 2 5 1 6
B7 1 4 3 7
B8 2 3 2 5
B9 3 5 1 6

Gantt Chart for Project option B

Graph showing Project option B Activities vs. Total Completion Time

MoIST Project Option C

Link SSM’s conceptual activities directly to UML’s activity diagrams
Status:Requirements Certainty (High) + Development Environment (Structured)

MoIST Option C’s Activities

C1. Derive the Conceptual Primary Task Model (CPTM)

C2. Identify conceptual activities that are candidates for IT support

C3. Identify the nouns from conceptual activities

C4. Link conceptual activities directly to the UML activity diagrams

This method delivers a relatively simple solution by direct transition. It is quick to

apply and requires no further investigation into the business domain as the resultant

activity diagram model is based solely upon the CPTM and supporting root

definitions. Every process needs to be evaluated and ProMoIST is no exception. The

B
1

B
2

B
3

B
4

B
5

B
4

B
7

B
8

B
6

B
9

 129

MetricsMoIST Evaluator System developed in this research is used to determine the

efficacy of the design artefacts developed in the research.

MoIST Project Option C’s Construction framework

Option ID Activity Label Construction Procedure
C1 Derive Conceptual

Primary Task Model
(CPTM)

1. Derive each conceptual model from the root
definition

2. The model should define what a system

would have to do to conform to the root
definition

3. Identify the logically linked activities that

would have to take place to satisfy the root
definition.

C2 Identify conceptual
activities that are
candidates for IT
support.

1. Identify and select the activities within the
CPTM that have the potential to be
investigated for possible IT support.

2. Look for the conceptual activities that most

closely match the key areas gleaned from the
SSM study and that matches the client’s
needs.

C3 Identify nouns from

Conceptual activities.
1. Select each activity in turn and identify the

nouns in the CPTM activity bubbles.

2. Use the nouns selected in (1.) above to be the

candidate activities for linkage to the UML
activity diagrams.

3. Examine the list of nouns and remove any

duplicates or any nouns which represent the
same entity.

C4 Link conceptual
activities directly to the
UML activity diagrams.

1. Determine the logical dependencies and
information requirements of each conceptual
activity within the CPTM.

2. Form the relevant associations between the

UML activity diagrams to form an initial
linkage.

3. Use the initial linkages to form subsequent

linkages that will accelerate the design
process.

 130

Retained/
Modified/
Dropped

Option
ID

Skillset Deliverables Monitoring Active
status

Supervisor

C1 SSM Conceptual activities
linked into CPTM

CATWOE to
ensure
conceptual
activity integrity

Retained

C2 SSM +
UML

Conceptual activities
that qualify for IT
support

CATWOE +
MetricsMoIST

retained

C3 SSM+UML Nouns derived from
conceptual activities

CATWOE +
MetricsMoIST

retained

C4 SSM +
UML

Linkages and
associations between
conceptual activities
& UML activity
diagrams

CATWOE +
MetricsMoIST

retained

Timeline for MoIST project option C

 (Min Hours) (Max. hours) (Hours)

 (max+error)

Activities Completion
time

Completion
time

Error/Feedback &
Correction Time

Total time
(hours)

C1 2 5 2 7
C2 1 4 3 7
C3 3 6 3 9
C4 5 8 4 12

Gantt Chart for Project option C

Graph showing Project option C Activities vs. Total Completion Time

C
1

C2 C3 C4

 131

5.7 MetricsMoIST Evaluator System

Metrics have been applied and misapplied to software systems for decades. Ideally,
metrics provide a measure of quality and the location of defects in a system. A metric
is a measurement used to estimate some characteristics of the system that are
difficult to measure or compute directly. The application of metrics in a blind
simplistic manner is unlikely to yield any benefit. However, metrics can provide
information to improve the actual quality of the system under development. Metrics
are guidelines, so it makes no sense to rigidly adhere to them. It makes more sense
to use them to identify potential ‘hot spots’ or areas of potential concern (Douglass,
B, 2004).

Existing established metrics such as Nielsen’s heuristics are not adequate enough to

comprehensively analyse and judge the effectiveness of the design artefacts

developed during this research. MetricMoIST is the resultant tool developed in this

research to more accurately evaluate the artefacts. MetricsMoIST uses Checkland’s

5 E’s to evaluate the SSM component.

SSM’s Five Es Performance Indicators for Decision Criteria

Since SSM is an integral part of the MoIST method, it is vital that its process integrity

be evaluated. Checkland’s SSM already has an inherent evaluation/check and

balance system. This is known as the five (5) E’s. These 5 E’s are:

• efficacy (will it work at all?)

• efficiency (will it work with minimum resources?)

• effectiveness (does it contribute to the enterprise?)

• ethics (is it sound morally?)

• elegance (is it beautiful?)

The loose "process of engagement model" recognises the importance of related

management and support activities. Root definitions, rich pictures and "idealised"

solutions need to be in sufficient detail to enable practicalities and implementation

issues to be evaluated. Resource demands and performance measures need to be

articulated. However a complete specification is unlikely as the "ideal" is unlikely to

be fully implemented - as it stands. Identifying implementation steps is the next

phase.

 132

 [SSM’s 5 E’s]

SSM Product Efficacy
20%

Efficiency
20%

Effectiveness
20%

Ethics
20%

Elegance
20%

Total
100%

Rich Picture
Root Definition
Conceptual
Model

Consensus
Primary Task
model -CPTM

 133

5.8

Li
mit
ati
on

s
an

d
cha
llen
ges

of
the
MoI
ST
me

SSM Product Criteria YE
S

NO Somewhat

RICH PICTURE Rich picture describes the

business situation under review

 Presents a comprehensive view

of the situation without being

cluttered with too much detail

 Relationships, including

conflicts, between components

are described

 Roles of the people involved are

indicated

 Organisational issues are noted
ROOT
DEFINITION

The definition is well formulated

and stands up to CATWOE

analysis

 The definition contains only one

transformation

CONCEPTUAL
MODEL

Activities included in the model

relate to words used in the root

definition from which it is

derived

 The description of an activity

begins with a verb

 Monitor and control activities are

included

 There are activities to acquire

and deploy resources

 The activities and their logical

dependencies form a coherent

set

CONSENSUS
PRIMARY TASK
MODEL

Activities included in the model

relate to words used in the root

definition of the test model

 The description of an activity

begins with a verb

 The activities are described at

the same level of detail

 The activities and their logical

dependencies form a coherent

set

 Activities to resolve conflicts

have been included

 134

thod & proposed solutions

One challenge lay in the fact that SSM models are fairly conventional without much

room for deviation. On the other hand there is a plethora of UML models to choose

from. Careful thought has to be made as to the selection of the method to be

involved in the linkage (Dobbins, 1997). The key was to build SSM Conceptual

models and generate information models from them in order to pass them to the UML

Model. With the utilisation of the MoIST Method, a number of different models were

generated. It was critical that consistency of each of these models was maintained.

The nature of MoIST method dictates that each preceding phase acts as a

foundation for the subsequent stage and feeds its output into it. This meant that any

change in one model affected the other. These changes were usually easily seen

and traced to ensure monitoring and control of the process. Consequently a change

in the transformed models affected the UML model. This was one way of

amalgamating the principles of hard and soft methods without epistemological

damage to either (Doyle et al 1993). It is vital to seek to unite and amalgamate the

best aspects of existing methods (Wood and Doyle 1989). MoIST is one such

method that accomplished this successfully (see chapter 6).

5.9 Conclusion
Development of information systems in organizations will increasingly require
solutions to problems of a wider nature than those traditionally addressed. This
reflects the increasing penetration of information systems into the less routine areas
of the organization. The breadth of knowledge of the systems designer is thus likely
to grow. An emphasis will be on theory for guiding the particular type of development
method to be used in a given situation. This is based on a more analytical approach
to the organizational situation. Methods will have phases concerned with social
and psychological factors in the problem situation, in conjunction with the more
traditional phases characteristic of the hard approach (Flynn, 1998).

The MoIST method had to be applied in a real, live environment to determine its

effectiveness. This empirical setting highlighted exactly how the MoIST worked

under real conditions.

 135

Chapter 6- Empirical Study

The problem is always to identify the problem. Too many people rush to solutions,
and as a result they end up solving the wrong problem. How do you avoid that? By
asking probing questions in an effort to expose the real issues; by challenging all of
your assumptions and by collecting information even after you think you have
identified the issue.

(John C Maxwell – Thinking for a Change, 2003)

6.1 Introduction
This description of my empirical work includes the area of application for this action

research case study. The presented problem and the particular project domain

studied are examined. Previous relevant experience is highlighted and shown to be

of major benefit to this research. This chapter shows how the MoIST method was

successfully used to implement a workable electronic system(ACcSys). Since the

MoIST method is configured to be used most usually for development projects of an

unstructured nature, SSM is used as the major ‘finding out’ mechanism in the

preliminary investigation. SSM is also the model employed for the identification of

issues, data collection in interviews and subsequent modelling and design are

described. In the more specific data collection, the developed MoIST method is

 136

progressively applied to the SSM findings. This is the design phase where the SSM’s

Conceptual Activities were linked to UML’s Use Case models. Implementation of the

system developed out of the MoIST’s method application is also shown. A summary

of the data in the light of the overall findings and implementation and user testing and

evaluation are provided.

6.2. Area of Application
The Empirical Study concerned the School of Computing and Engineering at the

University of Huddersfield. Huddersfield is an old textile mill town located in

Yorkshire, in the North of England. Its population is approximately 500,000.

Huddersfield itself nestles in the Pennine Hills and has a broad manufacturing and

service base. The town is well known for its musical traditions and the world-famous

Choral Society. The University of Huddersfield is a dynamic and expanding institution

in a thriving West Yorkshire town. It has a friendly reputation, an excellent graduate

employment record and offers a high level of student support. The University attracts

students from all parts of the United Kingdom and over 60 countries world wide.

There are currently over 17,000 students enrolled. Nearly 5,500 are full-time

undergraduates. Over 3,500 are studying on full-time 'sandwich' courses with a

year's work-placement in industry or commerce. There are almost 4,000 part-time

undergraduates, 2,000 part-time postgraduates and over 800 full-time postgraduate

students.

The University is organised into seven Schools: These are Applied Sciences,

Education and Professional Development, Music and Humanities, Computing and

Engineering, Huddersfield University Business School (HUBS), Design Technology,

Human and Health Sciences. The School of Computing and Engineering is one of

the seven Schools in the University. It has over 2000 full and part-time students on its

own courses and teaches several thousand students in other Schools on service

teaching contracts. The School has nearly 100 academic staff and in excess of 70

administrative and technical staff. There are three academic departments.

Computing and Mathematical Sciences, Multimedia and Information Systems and

Engineering and Technology.

In 2002, whilst conducting this research, there was a merger of the department of

Computing with the department of Engineering. This amalgamation resulted in the

School of Engineering and Computing. This merger had significant technological,

 137

social and political implications. This change provided an even richer environment

for the research findings to be tested and flourish.

Over the past twenty (20) years, the demographics of Huddersfield have changed to

reflect a more multi-cultural persona. Huddersfield and Kirklees are the main feeder

and ‘catchment’ areas for recruitment and admission at the University of

Huddersfield. The new demographics influence the student expectations. For the

university to better serve this student/client and to maintain its viability, the university

teaching and learning practices have to reflect the changing characteristics of its

students. These are some of the cultural and political factors that influenced this

research.

6.3 Previous related action Research experience
Prior to conducting this research, I personally experienced the merging of two (2)

university academic departments. Though this research was conducted in a

different geographical setting, there was a general feeling of familiarity with the

problem domain. This experience was as a lecturer in the School of Computing

and Information Technology (SCIT) at the University of Technology, Jamaica. In

1997, the Department of Computing became the School of Computing and

Information Technology (SCIT) and the Department of Engineering became the

School of Engineering. These were then merged to become the Faculty of

Engineering and Computing. This previous experience further cemented and

solidified my competence base in the problem domain. I completed a

Postgraduate Programme in Education (PG.Dip.). My Postgraduate research

thesis addressed the problem of student aptitude for Computing subjects. Action

research was carried out within the problem area. The major solution included

the development of a new set of criteria for formal admission of Computing

students to the School of Computing and IT. This research was requested by the

School Administration who applied the recommendations. Subsequent research

showed that the students were improving (Hopkins 1999). Doing an M.Sc. in

Software Engineering and later M.Phil. level research at Bradford university also

helped to hone and provide the confidence and competence needed to undertake

PhD research at the University of Huddersfield.

Over the years of this research, informal and spontaneous conversations with faculty,

administrative employees and students have proved very fruitful. These

 138

conversations could be considered informal interviews for the purpose of the

research. The diversity of people’s philosophies and belief systems has influenced

the successful outcomes of this research. It is always a privilege to be immersed in

an organizational culture where ideas and changes incessantly flow and transpire all

around and within to challenge and extend the boundaries of good thinking. The

result in this research was beneficial change.

6.3.1 The General Problem Statement
The government has now mandated that fifty (50) % of the population must be given

access to Higher education, (http://www.hefce.ac.uk). This means that persons who

formerly might not have been considered worthy candidates for higher education will

now be given the opportunity to pursue the same. This phenomenon has contributed

to the problem of low retention that many universities and schools now face, (May

and Bousted, 2004). Recent research has shown that low student retention and

student withdrawal are primarily a result of unmet expectations and lack of student

support. Discussions highlighted the importance of building peer support through

academic and social activities. Data showed that students living in university

accommodation had more peer contact and were significantly better retained than

those who were not (May and Bousted, 2004).

Computing departments in the newer universities – post 1992 - developed a problem

in the last ten years that has worsened. This is evidenced by the need for universities

to employ staff to provide additional and in some cases remedial support for

students. The problem is multi- faceted as there are issues of admission, retention

and recruitment among others. The main problem is that students from non-

traditional academic backgrounds tend to need help with a variety of study related

issues in higher education (Sambell and Hubbard, 2004). There is a drive to

examine not only ways in which students can be encouraged to continue their

education to higher education level, but also that they are retained once there (May

and Bousted, 2004).

Academic skills support policy is new in higher education as it was formerly

perceived that there was no need for it. It was usually seen and expected in further

education (FE). With the advent of the widening participation agenda, this support is

 139

now vital for higher education (HE), (May and Bousted, 2004). Students at risk of

non-completion or failure include mature students and students whose access is

through non-traditional means. Compared to other undergraduates, these students

have relatively weaker academic background skills and multiple problems, (Sanbell

and Hubbard, 2004). These complexities have led to the employment of academic

skills tutors in universities. The academic skills tutors primarily help students

strengthen research, time management and study skills. They also provide

diagnostic advice and support for specific learning disabilities. The majority of the

current crop of students over the last ten years has entered university with poor study

skills and many other learning difficulties. Some have exhibited low motivation and

lack of basic study techniques and time management. Evidence of this is inherent or

implied in the recruitment of additional staff, namely the academic skills tutors.

The University has recognised the need to deal with the pressing recruitment and

retention issues. In order to address and correct the problem, academic skills tutors

were appointed. The academic support project has been operational for one half of

the stipulated timeframe. It was thought to be an opportune time to evaluate the

support programme and its effectiveness. The challenge for the organisation is how

to increase recruitment levels and maintain retention whilst simultaneously

conforming to quality assurance standards.

6.3.2 Description of how the current system works
The Academic Support tutor helps students with a number of study skills. These are

namely literacy skills, referencing, examination techniques, report writing and time

management. The Academic Skills Unit developed a paper based questionnaire

(see appendix). This was used as a diagnostic tool for identifying students at risk of

non-completion or failure. The questionnaire was disseminated to all new students at

induction. The questionnaire responses were graded optically and the resultant

grades categorised into three bands. Students whose grades fell in the lower band

were contacted for further discussion and possible support. An Individual Learning

Profile (ILP) was generated from the responses from each student and passed onto

Pathway Leaders. This helped to identify students who were potentially at high risk of

failure or non-completion. It also made the academic support process more of a

school effort and not just the responsibility of the academic skills tutor. The first set

of questionnaires was completed and the evaluation and administrative processes

were carried out to ascertain the students who need extra-curricular support.

 140

6.4 Empirical Study – Phase 1 – Analysis - Finding Out
Application of MoIST in the development of ACcSys
This phase represents the Analysis and ‘finding out’ phase of the research. It acts as

the bridge between ‘soft’ Systems Science and ‘hard’ information systems design

and implementation. The software development method used here is the method of

integrating Systems thinking into Information Systems (MoIST). This MoIST Method

combines the social and human factors of Soft Systems Methodology (SSM) with the

technical framework method of the Unified Modelling Language (UML). It builds on

the foundational work of (Davis, GB, 1982) and his Contingency Framework along

with Multiview Method by (Avison and Wood-Harper,1990) and (CCTA,1993). The

MoIST Method is designed to be specific to the combination of the SSM and UML

methods. It is comprised of three (3) information systems development options.

These are Options A, B and C. Option A precedes UML with SSM activities. Option

B links SSM’s Conceptual Activities to UML’s Use Cases and Option C links SSM’s

Conceptual activities directly to UML’s activity diagrams.

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

 141

6.4.1 Using MoIST Project Option Selector Tool (MoPros) to select the best
project option
The characteristics of the project were analysed using the MoIST Project Option

Selector Tool in order to make the most informed decision. The points awarded are

at the discretion of the project manager or could be through the development group

consensus. It was found that the characteristics of the Academic Support Project

were:

• Changes to business processes in the organization

• There is need for additional electronic solutions to alleviate the problem

• Organizational changes are likely

• The proposed system is to replace or enhance an existing system

• Development environment is unstructured

• Requirements are not relatively clear from the outset.

MoIST’s Project Option Selection Tool (MoPros)
 max. 25 points max. 25 points max. 25 points
 max. 25 points

Project
Options

Types of
users

Developers’
skillsets

Organizational
environment

General
characteristics

Total

A

Users are a bit
unsettled as
they are
experiencing
organizational
changes
20 points

Requirements
at this point
are not
relatively clear
to the
development
team
25 points

Development
environment
unstructured

25 points

Proposed system
is to replace or
enhance an
existing system

25 points

95

B

Users
uncertain
about the
need for the
proposed
system while
others are
more willing to
be associated
with it.
10 points

Requirements
known at this
point are
relatively clear
to 80% of the
development
team
0 points

Development
environment has
pockets of
structured and
unstructuredness.

15 points

Conflicting
interests and the
proposed system
might cross
functional borders

0 points

25

C Users open to
the new
system

Requirements
known at this
information
are very clear

Development
environment is
quite structured

Environment is
relatively
contention free

25

 142

0 points

to 90% of the
development
team
0 points

0 points

25 points

Table 2: MoIST’s Project Option Selection Tool (MoPros)

Using the MoIST Project Option Selector tool, it was found that the project

requirements most closely matched project option A. Option A was chosen.

Options B and C were not chosen at this point as they were not the best fit at this

preliminary stage of the project. Given the project situation and its

characteristics; the requirements were not specific enough to be directly linked to

UML’s Use Cases or UML’s Activity diagrams.

MoIST Project Option A -Precede UML with SSM
Status: Requirements Certainty (Low) + Development Environment

(Unstructured or Structured)

MoIST Option A’s Activities

6. Requirements for computer-based information system
7. construct rich picture
8. develop relevant issue-based and primary task root definitions and conceptual

models
9. derive consensus primary task model and information categories
10. formulate the recommendations for information system design

6.4.2 Mode of data gathering and interview data
 The major client of the empirical study was the Academic Skills tutor of the School of

Computing and Engineering. Interviews were arranged that afforded a variety of

perspectives on the Academic Skills Support process.

 143

After the interviews, SSM artefacts were constructed and subsequently showed to

the client for feedback and amendments. At this point in the research, there was no

idea for an electronic system. There was just the interest of learning about the

situation and desiring to find ways to improve it from a research point of view. Initially

learning in that area seemed to be exhausted and all the data was documented and

stored away for future reference. That particular problem area was left and SSM

studies were conducted in other areas of the school.

Several months later, the academic skills support tutors of the university were having

one of their fortnightly meetings. They met to evaluate their effectiveness in their

jobs. It was generally felt that they were doing well, but that an electronic

intervention would help them increase effectiveness in identifying and supporting

students at risk of non-completion of programmes. This led to invitations being

extended to attend the next fortnightly meeting of the academic skills tutors. A formal

presentation of the research was done of the perspective gained from doing an SSM

analysis of the academic skills process in the school of Computing. Feedback was

then provided by the other academic school tutors as to whether or not this

perspective of their work was accurate. The presentation eventually became an

interactive SSM session where some of the SSM artefacts were redefined as the

dialogue expanded. The artefacts were subsequently amended to reflect this

second, more comprehensive SSM view of the problem area.

6.4.3 Analysis using SSM
This describes the phase of the research where four (4) modelling activities were

carried out. An overview of Soft Systems methodology was given. This formed the

basis of the modelling carried out. It began with participatory soft systems modelling.

This is where the clients were engaged in discussions to determine how the process

worked. They provided the feedback necessary to the accuracy of the models. Non-

participatory soft systems modelling was also done. This involved constructing the

SSM artefacts and models after the sessions.

Soft Systems Methodology (SSM)
Soft Systems Methodology(SSM) was pioneered by Professor Peter Checkland

(Checkland, 1981) at the University of Lancaster, UK. SSM seeks to represent

unstructured situations with the primary goal being to understand the situation as it

 144

really is. After understanding is gained, the methodologist or the owner is then

empowered to make an intervention. This usually results in some improvement to the

previous situation. Soft Systems Methodology (SSM) is used to learn more about the

situation and to help to formulate solutions. SSM advocates cyclic learning of

unstructured situations. SSM in its most basic form has several distinct stages. The

first involves three different analyses of the existing situation. Analysis one deals

with the intervention into the situation. Analysis two looks at the problem scenario

as a social system. This is in terms of the behavioural norms and values that

measure role performances as good or bad. Analysis three examines the politics

and power distribution in the organization.

SSM Analysis Models

Analysis one gives a snapshot view of the major players in the study. It provides a

succinct analysis of the situation being studied in the hope of making an effective and

relevant intervention.

Analysis 1 – Analysis of the Intervention
Client Academic Skills Tutor

Problem Solver Soft Systems Methodologist

Problem Owners Academic Skills Unit, University

Table 6.1: Analysis of the Intervention

Analysis two provides an overview of the social configuration of the problem

domain. It delineates the roles of the key players. It also examines the behavioural

norms of the role holders and highlights the values that determine satisfactory role

performance of each player.

Analysis 2 – Social System Analysis

Roles Behaviour norms Values
Academic Skills Tutor Helps students improve study

skills
Delivery of academic
learning support in the school
- GOOD

Student Learner enrolled at the
university

Students not at accepted
university standard - BAD

Pathway Leaders Administrate university
modules

Liaise with skills tutor -
GOOD

 145

Table 6.2: Analysis two

Analysis three examines and exposes any political undercurrents not explicitly

defined in the problem domain. It summarises the analysis and details the disposition

of power. That is who wields real power in the situation and therefore can make or

break any system developed. It also examines the nature of the power described.

Analysis 3 – Political Systems Analysis
Disposition of Power
The Academic Skills tutor within the School of Computing had no formal supervisor

or peer within the school. This provided reasonable autonomy to carry out support

duties without necessarily having to wait for internal consensus.

Nature of Power
In the Academic Skills Unit, each school has its particular tutor. Among the tutors,

nevertheless a hierarchy exists. Friendly professionalism seemed the existing

atmosphere. Duties are allocated according to strengths and tutors seem to work

together as a reasonably cohesive unit. The tutors meet every fortnight to discuss

issues, strategies and problems. They work in conjunction with the disability office,

library and the international office to achieve their aims. The possibility of power play

in these external collaborations was not established.

After the analyses have been completed, a finding out or an investigation stage was

then initiated. The artefact produced at this stage was the Rich Picture

SSM Rich Picture
The Rich Picture provides a snapshot of the entire situation as seen from the

methodologist’s perspective. It is a very effective modelling tool as it offers beneficial

and ease of interaction with the client. It enables the methodologist to quickly get a

more accurate view of the situation.

 146

Fig 6.1: Rich Picture - Academic Skills Support (created by Hopkins, 2002)

The next stage involved constructing models of relevant human activity systems.

These systems are then named and modelled and should not bear too much

resemblance to the real world situation identified in the first stage. The Root
Definition is subsequently formulated.

SSM Root Definition
The Root Definition is a brief textual statement that best describes the system and

tells what the system will or should do. It acts as a sort of quasi-mission statement for

the system.

A university learning and teaching innovation unit owned and professionally staffed

system which, in the areas of academic skills technology, analyses and evaluates the

academic competence of students, in order to identify students with problems at an

early stage and to make proposals to the university learning innovation unit for re-

 147

skilling and improving existing competence to enhance student passes within the

resource limitations of the learning and teaching innovation unit.

Table 6.3: Root Definition of Academic Skills Support Process

CATWOE Model

Table 6.4: CATWOE elements of a root definition, Lai, 2000

CATWOE is a mnemonic used to ensure the ‘well-formedness’ of each root
definition. CATWOE represents Customer, Actor, Transformation,

Weltanschauung(loosely translated as worldview), Owner and Environmental

constraints. These represent the problem situation as perceived by the

methodologist.

C Customer Student, Academic skills tutor

A Actor Academic skills tutor, lecturer

T Transformation Students in need of academic support students better

equipped academically

W Weltanschauung As many students as need it ought to have access to

academic support to be able to successfully handle the

given curriculum

O Owner Academic skills unit, University

E Environmental
constraints

Financial constraints for academic support programme

‘at risk’ students who do not want to participate in the

support process

Table 6.5: CATWOE of academic support process

 148

After the CATWOE had been applied to the Root definition, a Conceptual Model
(CM) was derived.

SSM Conceptual Model
A Conceptual Model (CM) was derived from the root definition. This conceptual

model provides activities that represent what was expressed in the root definition. A

conceptual model could therefore be considered as an instantiation of a root

definition. Here the conceptual model represents a transformation where the goal is

to increase the number of successful students and reduce the number of students at

risk of failure or non-completion.

 149

Figure 6.2: Conceptual Model of Academic Skills Support Process

 150

The Conceptual model derived above offered a more high level view of the system.

In order to get a lower level and more detailed picture, another conceptual model was

constructed.

ILP forms to be
collected by
academic skills

forms delivered
to tutors
responsible for

ILPs completed

part 1 - retained
by/sent to
designated

distribution to
personal tutors

part 2 - retained
by/sent to
academic support
tutor (AST)

part 2 - sent by AST
to ILP administrator
for processing

ILP results
distributed

designated
tutors

international
office forwarded
information

Disability office
forwarded
information

academic skills
tutors (AST)

AST invites students
indicated as 'at risk'
to make
appointments

Figure 6.3: Specific Conceptual model of existing Academic Support Process

 151

SSM Comparison Models

In this next stage, the rich picture derived in the first stage was then compared with

the derived conceptual models and the tabular model below was constructed.

Conceptual Reality
Investigate relevant solutions to

the problem

This is being done to a reasonable extent

Appreciate constraining

elements

Some constraining elements have been identified and are

being addressed

Decide criteria for determining

students at risk of non-

completion

No formal criteria have been put forward by the academic

skills unit

Evaluate current academic

situation and failure rate

The evaluation process is ongoing

Decide activities to increase

number of successful students

Some strategies to increase the success rate have

already been implemented. For example the

questionnaire as a diagnostic tool

Perform activities The decided activities are currently being performed or

are being fine tuned

Monitor activities 1-6 Monitoring is undertaken by the academic skills unit

coordinators

Take control action This can be improved

Define performance measures Some have already been defined and as more becomes

know, the definitions are extended

Table 6.6: Comparison Phase of Academic Skills Support Process

The findings were used to take action to improve the problem situation. The

proposed changes are based on comparison between the conceptual model and the

reality of the situation.

Defining Change
The proposed change is based on comparison between the conceptual model and

the reality of the situation. It is thought to be systemically desirable and culturally

feasible (Checkland, 1981). The solution to the highlighted problem lies in finding a

 152

way to speed up the ILP administration process to ‘catch’ the ‘at risk’ students before

they fall through the cracks.

An electronic means of linking student to pathway leader must of necessity be a part

of the solution. An overall solution was therefore needed to make the process more

efficient and thereby more effective. In true SSM style, this move was not

wholeheartedly embraced by all the stakeholders as it was not feasible for every

department. This was because most tutors thought that the majority of their new

students would not be confident in using a computer at that stage and it might

possible hinder the whole process instead of advancing it. Subsequently only the

Schools of Computing and Engineering and Business expressed interest in this

online administration of the ILP questionnaire.

6.5 Empirical Study Phase 2 – from Analysis to Design
This phase represents the design phase of the electronic system. Here the SSM

outcomes are mapped to UML. The MoIST Project Option Selector tool is again

used to evaluate the project and select the next most suitable project option.

 153

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

Figure 6.4: The MoIST Method

6.5.1 Using MoIst’s Project Option Selector Tool to get the best project option

After the SSM findings, the characteristics of the project were again analysed using

the MoPros Selector Tool in order to make the most informed decision for this stage

of the development process. The points are awarded at the discretion of the project

manager or by general consensus with the development team. It was found that the

characteristics of the development project thus far were:

• Users uncertain about the need for the proposed system

• Development environment has some existing pockets of structure and

unstructuredness

 154

MoIST’s Project Option Selection Tool (MoPros)
 max. 25 points max. 25 points max. 25 points
 max. 25 points

Project
Options

Types of
users

Developers’
skillsets

Organizational
environment

General
characteristics

Total

A

Users are a bit
unsettled as
they are
experiencing
organizational
changes
0 points

Requirements
at this point
are not
relatively clear
to the
development
team
0 points

Development
environment
unstructured

10 points

Proposed system
is to replace or
enhance an
existing system

10 points

20

B

Users
uncertain
about the
need for the
proposed
system while
others are
more willing to
be associated
with it
20 points

Requirements
known at this
point are
relatively clear
to 80% of the
development
team.
22 points

Development
environment has
pockets of
structure and
unstructuredness.

19 points

Conflicting
interests and the
proposed system
might cross
functional borders

0 points

61

C Users open to
the new
system

10 points

Requirements
known at this
information
are very clear
to 90% of the
development
team
0 points

Development
environment is
quite structured

10 points

Environment is
relatively
contention free

18 points

38

Table 6.7: MoIST’s Project Option Selection Tool (MoPros)

Using the MoIST Project Option Selector Tool, it was found that the project

requirements most closely matched project option B. Option B was chosen

since Option A’s activities were already completed within the SSM study

conducted. Option C was not used as the developer thought that given the

project situation and its characteristics; the requirements were not specific

enough to be directly linked to UML’s activity diagrams.

 155

Option B: Enhance inception stage with SSM by deriving use cases from
activities within the conceptual model.
Status: Requirements Certainty (High) + Development Environment

(Unstructured)

MoIST Option B’s Activities

B1. Derive conceptual primary task model (CPTM).
B2. Select and prioritise Conceptual model activities.
B3. Determine which activities require further decomposition.
B4. Determine which of the selected activities are candidates for IT support.
B5. Identify actors.
B6. Develop high-level use cases.
B7. Develop multi-level use cases.
B8. Identify high-level objects.
B9. Map required high level services onto objects.
B10. Continue design.

Fig 6.4.1 Application of Option B within the MoIST method

1. Derive conceptual primary task model

Figure 6.4.2: Conceptual model was derived from the SSM finding out stage.

Investigate
relevant
solutions to
problem

Appreciate
constraining
elements eg. Students
need support but
reluctant to receive it

Decide criteria for
determining
students at risk of
non-completion

Evaluate current
academic
situation &
failure rate

decide
activities
to identify
at risk
students &

perform
activities

Monitor
activities 1
to 6

Take
control
action

Define
performance
measures

 156

2. Select and prioritise Conceptual model activities to be investigated for

possible IT support

Priority 1

Priority 2

Priority 3

Figure 6.4.3: Priorities 1,2 and 3

3. Identify scope or scale of OOA by determining which of the selected low-level

activities are likely candidates for IT support. Also determine which may

require further decomposition of some specific activities for which responsible

use of IT is unclear

Figure 6.4.5: Activity in Option B of the MoIST Method

The selected low-level activity above is the most likely candidate activity for IT

support

4. Identify actors for each of the low-level activities.

Evaluate current
academic situation and
failure rate

Decide criteria for
determining students at
risk of non-completion

Decide activities to identify
at risk students and increase
success rates

Decide activities to identify
at risk students and increase
success rates

 157

Figure 6.4.6: Actors for Low-Level Activities

5. Develop top level use cases. Let each identified low level activity serve as

the name of a use case. Involve the relevant actors and /or domain experts

when writing up these top level use cases.

Actors

+ 1st year Student + Academic Support Tutor (AST)
+ Pathway leader

+ existing database system + electronic system to be developed

 158

UML Use Case Model

+ student

+ identify self on the system with unique login

+ select ILP questionnaire

+ complete electronic ILP

+ submit answered questions

+ Electronic ILP

+ process student answers

+ Pathway Leader
+ export results to database system

+ database

+ send reports to disability office, International office and to HUBS

+ send ILP Profile to Academic Support Tutor

Figure 6.4.7: UML Use Case Model

6. Identify high level objects. Identify the objects from the use cases and develop

class diagrams and association are made between the objects to express their

relationships.

 159

+ Pthway Leader

+ first year Student

+ ILP

+ appointment for support

+ Academic tutor

+ <<access>>

Figure 6.4.8: Class Diagram

CASE Tool used in Design phase
QSEE Superlite was the CASE tool used in this research. It is a generic modelling

environment that supports a large number of applications. It was designed by QSEE

Technologies Ltd – 2001-2004. QSEE multi-CASE is a collection of sub-tools

designed to aid in the analysis and design of software systems. The tool allows a

user to combine over a dozen analysis and design approaches to help identify and

solve software related problems. Some of the models created using the software

include Rich Pictures, Conceptual models, flowcharts, UML models, state transition

diagrams, data flow diagrams, entity relationship diagrams and structure charts.

 160

Fig 6.5: screenshot of CASE tool

This tool was the most ideal one for this research as it facilitated the creation of

relevant models from both the Soft systems and hard systems paradigms pertinent to

the research.

Fig 6.5.1:screenshot of conceptual model created during the research using QSEE

Superlite

 161

After Option B of the MoIST method was applied to the SSM results. This marked

the end of the design phase. The design artefacts were then evaluated below using

the Metrics MoIST evaluator system developed during the research.

6.6: Empirical Study Phase 3- from Design to Evaluation (using
MetricsMoIST)
MetricsMoIST is a heuristic tool developed as part of this research. It uses

Checkland’s 5 E’s to evaluate the SSM component.

(1) Checkland’s 5 E’s
These were used to evaluate the integrity of the results of the SSM study conducted

in the first part of the empirical research. Each ‘E’ was scored on a scale of one (1) to

ten (10).

• efficacy (will it work at all?)
• efficiency (will it work with minimum resources?)
• effectiveness (does it contribute to the enterprise?)
• ethics (is it sound morally?)
• elegance (is it beautiful?)

(a) Efficacy. This measured whether or not the ACsSys worked at all. It gained

full measure here as it was used in a real, live situation and it worked well and

produced the desired results – 9/10

(b) Efficiency. This measured whether ACcSys would work with minimum

resources. It worked with Question Tools software loaded onto shared

network resources. The development project did not have very many team

members and it produced a workable electronic system. - 9.5/10

(c) Effectiveness: This measured the level of ACcSys’s contribution to the

School of Computing and Engineering. It made quite a substantial

contribution as it produced turnaround in one (1) day what took several

months using the previous paper based system. – 8/10

 162

(d) Ethics: This measured the moral soundness of ACcSys. Ethics may be

defined as acting fairly and in accordance with existing regulations and

policies. ACcSys did not violate or break any established ethical code. - 8/10

(e) Elegance: this examined the measure of beauty in ACcSys. This is a very

subjective criterion. There is room for improvement in this aspect as the

software had predefined templates that did not allow extra room for creativity

and innovativeness in its aesthetic design. -5/10

Overall evaluation of initial Performance Criteria and System characteristics

Performance Criteria Evaluation of successful performance

of initial criteria

Electronic implementation of paper based version

of Individual Learning Profile (ILP)

The paper based version of the ILP was

successfully converted to an electronic

format that was user friendly and

retained the scores for purposes of

further analysis and data manipulation.

Implementation to be done before or during the

first 2 weeks of academic term

The implementation was completed in

time for its live run during induction week.

The fast implementation time was due to

the user friendliness of the software used

ILP scoring outcomes processed electronically The software used to implement the ILP

electronically had an inbuilt mechanism

to retain and process the scores

electronically

Three lists of students identified: 1. those

declaring a learning difficulty/disability. 2. Those

home and students from EEC countries requiring

additional English language support. 3. Those

students not home or EEC requiring additional

English Language support.

This identification was carried out by the

back-end system already in existence.

The results were sent in comma

separated format (CSV) to the back-end

system. The data was then manipulated

to generate the lists.

 163

System

characteristics

Comments

Timeframe A complete system was expected to be up and running by the 3rd

week in September 2004

Staff the academic skills tutor and existing lecturers have been trained to

use the system

Budget Development costs were not expected to exceed

The MoIST method is a ‘design’ method. Its purpose is to reinforce the breadth and

depth of the analysis to ensure that the right design goals are met. This research

however was so successful that after the MoIST method was comprehensively

applied and evaluated, it was found that there was a case for provision and

implementation of an electronic solution. This solution ACcSys was the front end for

an existing electronic system devised by a staff member in another school. After the

development of ACcsys, work was done to achieve a seamless interface between the

two systems. This was successfully done. The steps involved in implementation are

detailed below.

6.7: Empirical Study Phase 4 – from Evaluation to Implementation
6.7.1 Exploration of several implementation solutions
Meetings were held with the university academic skills tutors and with the Head of

tutors to discuss the desired electronic intervention. One initial idea was for a

tracking system each academic skills tutor would be able to access at any given point

in time. This would enable the tutor to see if a student had ‘dropped out’ of the

academic system or if they had been retained. Work was started on this. Later yet

another idea emerged for a Web Tracking System. This was to be modelled on the

existing on-line School of Computing and Engineering web interface. The early plan

was that this would draw on existing student data from the current Applicant &

Student Information System (ASIS) used by the entire university.

While this was being explored, other meetings were held with the Computing

Academic Skills Tutor. These meetings highlighted existing problems within the

current academic skills process. The Academic Skills stakeholder requested

specifications for a system that would enable academic skills tutors’ to execute their

professional duties more efficiently. The core of these duties was essentially to

diagnose, identify and provide support for students at risk of non-completion of

 164

academic programmes. This request changed the dynamics of the system being

worked on somewhat. The client later decided that the need to track at risk students

was secondary to the need for an electronic diagnostic tool where the outcomes

could be scored automatically. That was somewhat disappointing as work had

already been started on a prototype of the tracking system. That was however the

nature of systems analysis and design. Work was nevertheless started on a system

that would achieve what the client wanted. This meant that the existing paper based

ILP questionnaire would be transformed into an electronic format. There was

another meeting of the university skills support tutors. Most tutors with the exception

of two (2), decided that an electronic ILP would not be suitable for their academic

schools. One unanimous reason cited was that students might be turned off from the

technology and this would defeat the essential purpose of the ILP. This purpose is to

determine students’ level of academic competence using specified determinants.

Schools of Computing and Huddersfield Business school were the only two (2) that

expressed an interest. A formal commissioning was then given by the clients, the

computing academic skills tutors.

6.7.2 Commissioning of the electronic system by the client
This commissioning was given to develop the agreed electronic system by the client.

Further to previous discussions and conversations, a project management meeting

was held with all the relevant personnel in the academic support process. From that

project meeting, it was decided that the administration of the ILP would not proceed

electronically as a collective entity. If individual schools wished to proceed with

piloting a prototype, then they were free to do so. Consequently School of

Computing and Engineering and Huddersfield University Business School expressed

their interest in the development of a prototype electronic version of the ILP in their

respective Schools. This was to be piloted from September 2004. Those schools

which decided on continuing the paper based administration of the ILP questionnaire

had a meeting in which the form was updated and upgraded to reflect a more modern

format.

The electronic version was required to meet the following specifications as detailed

by the client:

• On-line completion of the form with a paper-based version also available.

The point at which students would complete, and in what manner, would have

to be determined, but would need to take place before or during the first two

 165

weeks of term, at the latest. On the paper-based version this is currently

undertaken at pathway induction meetings

• Scoring outcomes processed electronically

• The student details/scoring outcomes automatically linked to those of both

pathway leader and first year tutor

• Students declaring a learning difficulty/disability, those requiring additional

English language support and scoring outcomes with two or more sections

less than 15 identified, together with details of individual students, passed to

both pathway leader and first year tutor

• Three lists of students identified: 1. Those declaring a learning

difficulty/disability. 2. Those home and students from EEC countries requiring

additional English Language Support. 3. Those students not Home or EEC

requiring additional English Language support.

At the end of the research the above specifications describe the features of the new

system to be developed and forms the criteria by which the new system will be

judged to be successful.

6.7.3 Further exploration of several implementation solutions
The thinking, experimenting and exploring the best way to achieve the desired

electronic system began again in earnest. At first, Blackboard version 6 seemed to

be the tool of choice to facilitate the clients’ specification. It was eventually decided

that Blackboard version 6 did not have the pertinent characteristics needed to

produce the expected system. Question Tools software was then considered as a

more viable option. Question Tools (QT) is a new computerised assessment tool

which was installed in the School of Computing and Engineering during 2003-2004.

In depth analysis of Question Tools revealed that it had a greater percentage of the

functionality needed to provide an electronic version of the ILP. It possessed the

capability to produce data in a form acceptable as input to the analysis database. It

also facilitated the provision of reports in a parallel format as the ones in the last

academic year. The electronic ILP was subsequently developed using Question

Tools software. Bottlenecks in the process were dealt with. The electronic ILP was

 166

now ready for induction of new students. It was way ahead of the finish date required

by the client.

ACcSys – Introduction
ACcSys is an electronic system that facilitates the retrieval, storage and analysis of

student data. This data is analysed by the system and sorts the students into

designated categories. This information is then used as a diagnostic tool to identify

students who are ‘at risk’ of not completing their registered programme. The ACcSys

helps to quickly identify those students who need help in specific areas and allows

that help to be provided on time. Consequently this also helps to improve student

retention.

ACcSys platforms
ACcSys will run on a wide variety of hardware platforms. A typical system would be

an Intel processor based server running a mixture of MS thin clients and Nec

terminals. This is preferred as it offers a very stable platform that is reliable.

Uptimes greater than 300 days are the norm. It is also efficient, very scaleable and

portable and most importantly is not susceptible to viral attack owing to the VShield

software set up.

Web Enabled
ACcSys works very well with simple web browsers. As well as working with Explorer

and Netscape, it can also be used with the new generation of embedded web

browsers. This allows users access on the move with a mobile phone and a PDA.

Specifications sample of actual platform used for successful live ACcSys run

Make Proc Speed Memory HD(Gb) Graphics Sound CD/DVD

NEC P4 2.8 512 80 GeForce FX

52000 AGP

128Mb DDR

On board RW

combo

Stone P4 2.2 512 80 On board Sound

blaster live

5.1

RW

combo

Table 6.8

 167

Design of ACcSys electronic system using Question Tools
Question Tools (QT) is an integrated suite of products that facilitates the creation of

online lessons, exercises, surveys, tests and exams. It automatically collects and

analyses results.

Fig 6.14 Screenshot of Question Tools Website

The Question Tools Editor was used to derive the ACcSys. The ACcSys Electronic

Individual Learning Profile (ILP) is used to get all students details in one central

repository. This makes it easier to manipulate, access, sort and report on the

common data. It is therefore excellent for ease of use and access. The ACcSys has

59 screens in total. Part one allows for entry of student details. Part 2 of the ILP

itself is composed of 8 sections. These are ‘Speaking and Listening’, ‘Reading and

Researching’, ‘Writing’, ‘Language’, ‘Disability/Special need’, ‘Time Management’,

‘Numeracy skills’ and ‘Information Technology skills’(see appendix for all the ACcSys

screens).

 168

Fig 6.15 This is the QT editor with New Question option dialog box

 169

Fig 6.16 This is the first screen that the student sees with the title ‘Individual

Learning Profile’

Fig 6.17 Instructions screen for user navigation through the electronic ILP profile

 170

Fig 6.18 Main menu makes the system more user friendly and organised for the

user to follow

 171

Fig 6.19 Welcome screen explains the purpose of the system and attempts to relax

the user

Fig 6.20 Student details screen allows for entry of relevant student data

 172

Fig 6.21 Further details screen tests their writing abilities as it is free form writing in

sentences

Fig 6.22 First question in the ‘Speaking & listening’ section.

 173

Fig 6.23 End screen of ILP providing some motivation and encouragement for the

users

 174

Instruction Sheet

iACcSys Individual Learning Profile Electronic System

 Open Internet Explorer

 Set all computers in the designated lab to the URL http://aspley:8090

 Each student should login with the assigned username and password details

 After login they will see buttons to the left and a blank area to the right of the

screen. It will say ‘status: Logged on’

 Use mouse to click on and select the ‘Show all Tests’ button on the left

http://aspley:8090/

 175

 There will now be a choice of tests

 Go to the one called ‘ILP Trial 2’

 Use mouse to click on and select the ‘start’ button to the right.

 The Electronic ILP questionnaire will appear

 Follow the instructions and do the test

 Use the ‘Next’ and ‘Back’ navigation buttons or slider to go forwards or

backwards

 Select only one (1) answer for each page.

 To change an answer to a question, simply select the desired answer.

 Click on the ‘Finish’ button once answers are completed

 Click ‘Ok’ if finished or ‘Cancel’ if not finished

 Ignore the results on the page that comes next. These are not the true results
and will not be used.

 Click the ‘Close’ button

 Use mouse to click the ‘Log off’ button. Click ‘OK’

 Results are stored and will be retrieved later by authorised personnel

 176

6.8 Empirical Study Phase 5 – From Implementation to Testing
User testing is of vital importance to the development process and the quality of the

final product. This testing should occur throughout the life of the design and

development process. A focus group is selected. These are a group of randomly

selected people who represent the target audience. This selection is extremely

necessary as it can save hundreds of production hours later on. The designers are

the ones who make the structural and user interface decisions. As they become more

intimately involved with the project, it very easy for them to lose objectivity and not

see obvious flaws. That is why user testing brings a fresh and more accurate and

balanced perspective to the whole design and development process. They help to

determine whether the product is understandable to a mass audience.

6.8.1 User Testing I
A group of new students earmarked for entry to the university in September 2004

were used to test the system. These were 70 students on a 4 weeks Mathematics

bridging course at the university. The aim of the course is to correct math

deficiencies and bring the students up to a suitable level of competence in

mathematics. They were an ideal test group for the research as they provided the

profile of students who will officially use the system in September.

Eight (8) students participated in the first testing session. The participants were

asked to complete the ILP questionnaire electronically. The results were exported in

comma separated value (CSV) format to a MySQL database and the relevant values

and lists were extracted and generated by PHP code. They enabled us to see how

the system worked, to evaluate it and to eradicate bottlenecks for smoother working.

The following heuristics were designed to test the electronic system. User

friendliness of the system, quality of the interface, colour scheme appropriateness,

error handling, navigatability. An evaluation questionnaire was designed and each

student who tested the system was asked to evaluate the system on the criteria

given and to give general feedback on how it could be improved. They were not

given major instructions as to how it worked.

 177

6.8.2 First Evaluation Questionnaire for the ILP Electronic System
Question one:
Was the system easy to use?

Yes[7] No[0] it was not too easy or difficult[1]

Question 2
How user friendly was it?

Very[7] Not very[0] horrible to navigate[1]

Question three
Was the colour scheme appropriate?

It was okay[7] too bright[1] too pale[0] should be changed[0]

Question four
How were the questions?

Sensible[8] silly[0] need reworking[0]

Question five
Could you go from one page to another easily?

Yes[7] No[1] I got stuck[0]

Question six
Did you understand what to do when using the system?

Yes[6] No[0] Sometimes[2]

Question seven
Was the font size okay?

Just right[7] Too large[1] too small[0]

How could the entire system be improved?

• It does not need many changes

• Make the navigation system better and use better colours

The suggestions were then implemented before the next testing session.

 178

6.8.3: User Testing II
A presentation was scheduled for senior lecturers and Heads of departments from

both the Schools of Computing and Engineering. Five (5) senior lecturers were

represented from the major departments of both schools. The aim of the presentation

was to demonstrate the electronic system and ensure their competency in the same.

This was to conform to the new format where each pathway leader was responsible

for his or her set of students and therefore would administer the electronic ILP. The

benefits were many. It would break up the mammoth task of administering the

electronic ILP into manageable portions as delegation occurred. It will help the

academic support tutor to more closely focus on the task at hand which was to

provide the actual support to students, instead of spending months on administration

of paper based results. The pathway leaders would also have a head start on the

educational level of their students and could tailor their courses accordingly.

6.8.4 Second evaluation

• The main corrections were syntactic and semantic in nature

• One complaint centred around the selection and feedback feature as there

was no feedback on the button selected and there was no automatic

advancing to the next question.

• One comment was that it was a very good system and that it is more than

they had expected so quickly and the important thing is that it works and will

make a difference in the academic support process

• One question asked was if students could print off their own copies in order to

monitor their own progress and keep it in their Personal Development

Portfolio (PDP) files

The first comment is easily amendable, but the second weakness is central to QT

and is therefore not easily done immediately. The benefit to students’ Personal

Development portfolio (PDP) is an indirect, but very important one. The ACcSys

was not intended to be used for that purpose, but it has proved to be an

additional benefit that will help the academic schools that use it. The PDP is

being championed by senior management to help students make a more

successful and smoother transition from academia to the workplace.

 179

6.8.5 Live Run of the ACcSYs Electronic ILP during Induction Week
For induction week, the ACcSys ILP faced its biggest test. The students were

timetabled to maximise the optimal lab facilities. They were divided into pathways

and pathway leaders were assigned to man the session.

Date Student ID Code Pathway
21st Sept, 2004 Sc024 – sc063 Computer Games Programming
22nd Sept, 2004 Sc064 – sc084 HND BIT
22nd Sept, 2004 Sc086 – sc100 Electrical and Electronic Engineering
23rd Sept, 2004 Sc101 - Sc191 Music and Technology Engineering
24th Sept, 2004 Sc192 – sc231 Computing and Mathematics

Table 6.7: School Induction Timetable

6.8.6 Problems encountered in ACcSys’s maiden run

The first problem surfaced. Some of the pathway leaders invited to be trained in

operating ACcSys, were not able to come to the training session, owing to prior

commitments. Available personnel were deployed to alleviate this. Another problem

was that the central student details that should have been provided for prior

uploading to the system could not be provided by university central registry as

student registration was still in progress. Dummy passwords were then generated for

all the Computing and Engineering students. The other glitch came when students

who had their ID cards could not log in to the main system as it was still officially

registration week. Consequently, their student numbers were still being processed by

registry. To solve that problem temporary logins were assigned to each student. This

led to yet another problem as the traffic proved too much for the temporary logins to

handle. This was solved by administering the diagnostic tests using smaller batches

of students.

Another problem cropped up with the server where the Question Tools based ILP

resided. Owing to the traffic overload, accessing QT proved difficult at times.

Eventually this was solved by a script being written to get the server started again.

Operations improved as the induction week progressed. One recommendation for

future administration of the ACcSys is to wait till the university’s official registration

week is over. This would eliminate most of the bottlenecks experienced in the first

live run, as student data would be fully processed and available.

The students completed the questions electronically. The results were then

automatically calculated by the system. At the end of induction week, the results

 180

were generated into comma-separated text and exported to the already existing

MySQL database. PHP code was run to extract the pertinent details and reports were

generated. In less than one and a half hours after exporting the results to the back

end database system, the reports were ready. What took more than four (4) months

to accomplish in the previous academic year happened in less than two hours. The

reports were available for viewing. The reports were disseminated to some lecturers

that same day and the subsequent academic day. The academic schools who opted

not to take the electronic ILP route still had not processed their data. They were still

in the paper based format waiting to be processed. The ACcSys system works and

works very well. It solves a grave problem and enables the Academic skills tutor to

get down to the raison d’etre of identifying and supporting ‘at risk’ students.

Fig 6.24 Screenshot of comma separated format (csv) data generated by the
ACcSys

 181

6.8.7 Results of Using the MoIST Method
One of the major benefits that resulted from using the MoIST method in the

Academic Support Process was an improved user requirements definition. This was

vital to the successful implementation of the system. The effectiveness of the MoIST

method was mainly evaluated against the criterion of whether or not, there had been

an effective intervention. Significant lessons were gained from the experience of

using the MoIST method in the academic support process.

6.9 Conclusion
The outcomes of the intervention in the academic skills support development effort

clearly demonstrates that synergy occurs when different methodologies from different

disciplines are employed in information systems development (Xu, 1995). An IS

project concerns an interplay of human, organization and technical factors which are

not easily separated (Walsham et al, 1988). SSM and OOA are viewed not as self-

contained methodologies to IS development, but as approaches which can work

together. A complementary application of both methodologies would assist systems

developers in minimising the many failure cases of I S (Lai, 2000).

MoIST’s effectiveness is shown in the empirical data above. To further prove its

usefulness and relevance, it is also shown when it is used in a separate environment.

This situation is in the postgraduate project process of the School of Computing and

Engineering.

 182

Chapter 7. Study of the Postgraduate Project Process in the School of
Computing and Engineering

7.1 Introduction
The research empirical data showcased here provides evidence that MoIST is

effective in a real world situation. To further underline its efficacy. MoIST will be

used in yet another real world context. This is in the Postgraduate Project Process in

the School of Computing and Engineering.

The postgraduate students of the school of Computing and Engineering do the major

work on their projects when taught classes have officially ended. This usually runs

from end of May to end of August of an academic year. The entire postgraduate

process involves many team players. Even though the MSc students have a vital

role to play, there are many behind the scenes persons who work assiduously to

ensure that the entire process flows smoothly.

7.2 Description of current system
To do an excellent postgraduate project is quite an involved process. It is not merely

about developing a system to solve problems or to enhance the operations in an

application area. It consists of a more in-depth process. ‘Academic projects should

provide evidence of a much deeper understanding of what you are doing. They

require some form of justification and contextualisation. You are not expected to do

merely what you are told to do, but you are expected to develop your own thoughts,

arguments, ideas and concepts. You are expected to question things and look at

things in new ways and from new angles (Dawson, 2000, p1).

There are currently 4 pathways of the taught MSc postgraduate programme offered

in the School of Computing. They are Internet Application and Development. There

is also MSc in Software Development, MSc in Information Systems and MSc in

Interactive Multimedia. The MSc Internet Application Development is geared towards

persons who wish to make internet development a career. The MSc software

development targets those who desire to be designers and programmers. The MSc

Information Systems attracts those who are interested in Systems Analysis and

Management. The MSc Interactive Multimedia is for persons who want to work in

cutting edge multimedia environments. With the exception of Interactive Multimedia,

the first semester for the four pathways offers the same modules. Specialisation

occurs in the second semester.

 183

There is a fulltime and a part-time mode. The fulltime mode is for one academic year

in duration and the part-time mode for two years. The majority of students

successfully complete all modules of the two semesters of their MSc Stream. If

students fail any of the taught modules in their pathway, they have the option to go

on the individualised pathway, retake any module they failed and continue with the

project on a part-time basis. Each MSc is considered a pathway and is assigned a

pathway leader. The major stakeholders in the postgraduate project process are the

pathway leaders, several academic supervisors who have direct and one to one

contact with the project students, the project tutor and there is also a postgraduate

scheme administrator responsible for managing student details. These project

stakeholders meet at the end of every academic year as a Pathway Assessment

Board. Here external examiners are called in to inspect procedures and results and

award degrees.

The MSc student completes two 15 week semesters of taught modules. On

successful completion of all modules, the student is ready to start the project. The

student information is passed to the postgraduate scheme administrator by the

Pathway Leader. This ensures that the student is registered and is ‘live’ on the

system. This information is vital to the registry and finance departments. It is

imperative that they know which students are enrolled at any given time. After

enrolment, the student then has access to the intranet (currently Blackboard version

6). They go to the projects module and retrieve information about past projects and

supervisors and try to match them with their interests. Students generally are

required to identify and delineate a project and obtain agreement with stakeholders.

Specifically they find external clients and contact the relevant academic supervisor to

ascertain their availability and willingness to supervise them. The students

subsequently meet with the Project Tutor who disseminates further relevant

information and tries to ensure that students know what is expected of them.

Meetings with external clients are arranged. Terms of reference need to be

completed and handed in to the office before the project will be deemed to have

officially started. Arrangements are then made with the appointed academic

supervisor for regular meetings. The student is expected to plan, manage and

execute the project using skills gained in taught pathway sessions. The academic

supervisor’s role is to advise the students on the project from an academic

standpoint. In a more strategic sense, the supervisor helps the research students

develop into individuals who think and behave as academic researchers in their field

of study.

 184

7.3 Application of MoIST to the Postgraduate Project Process

Empirical Study Phase 1 – Analysis and ‘finding out’

This phase explores the process involved in doing postgraduate MSc projects in the

School of Computing and Engineering. The MoIST method was applied to the

situation. The relevant data were gathered, collated, analysed and the outcomes

mapped to the design phase.

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

Fig 7.1 MoIST model

7.3.1 Using MoIST Project Option Selector Tool to select the best project
option
The characteristics of the project were analysed using the MoIST Project Option

Selector Tool in order to make the most informed decision. The characteristics of the

Postgraduate Project Process Project were:

• Organizational changes are likely

• The proposed system is to enhance an existing system

• Development environment is unstructured

• Requirements are not relatively clear from the outset.

 185

MoIST’s Project Option Selection Tool (MoPros)
 max. 25 points max. 25 points max. 25 points
 max. 25 points

Project
Options

Types of
users

Developers’
skillsets

Organizational
environment

General
characteristics

Total

A

Users are a bit
unsettled as
they are
experiencing
organizational
changes
15 points

Requirements
at this point
are not
relatively clear
to the
development
team
15 points

Development
environment
unstructured

20 points

Proposed system
is to replace or
enhance an
existing system

25 points

75

B

Users
uncertain
about the
need for the
proposed
system while
others are
more willing to
be associated
with it.
15 points

Requirements
known at this
point are
relatively clear
to 80% of the
development
team
5 points

Development
environment has
pockets of
structured and
unstructuredness.

10 points

Conflicting
interests and the
proposed system
might cross
functional borders

4 points

34

C Users open to
the new
system

0 points

Requirements
known at this
information
are very clear
to 90% of the
development
team
0 points

Development
environment is
quite structured

0 points

Environment is
relatively
contention free

20 points

20

Table 7.1: MoIST’s Project Option Selection Tool (MoPros)

Using the MoIST Project Option Selector tool, it was found that the project

requirements most closely matched project option A, so Option A was chosen.

 186

MoIST Project Option A -Precede UML with SSM
Status: Requirements Certainty (Low) + Development Environment

(Unstructured or Structured)

MoIST Option A’s Activities

11. Requirements for computer-based information system
12. construct rich picture
13. develop relevant issue-based and primary task root definitions and conceptual

models
14. derive consensus primary task model and information categories
15. formulate the recommendations for information system design

7.3.2 Mode of data gathering and interview data
Three categories of relevant stakeholders in the Postgraduate Process were

interviewed. These were Project Tutor, Postgraduate Scheme Administrator and

students. While the research was in progress, a new project tutor and a new

Postgraduate Scheme Administrator were appointed. These two new persons were

subsequently interviewed. This was no inconvenience to the research, but a

welcome addition. It added to the depth and accuracy of the research as it provided

more opinions and ideas and opinions from the same vantage point. Students from

both the part-time and full-time mode were also interviewed.

Some interviews were recorded on audio tape and some were handwritten on

notepad; but all were transcribed to increase the accuracy of the opinions recorded.

Soft Systems Methodology (SSM) was then applied. Usually in SSM it is

recommended that the Soft Systems methodologist should organize a meeting of the

stakeholders in order to agree a primary task model. SSM however is flexible and it

was thought not necessary to hold such a meeting at this point.

Soft Systems Methodology (SSM) is a study made popular by Professor Peter

Checkland formerly of Lancaster University. It is a methodology that seeks to

encourage learning and bring understanding and change to unstructured situations in

organizations. It purports to unearth the problems and recommend change when

there seems to be a maze of unresolved issues. It uses constructs called human

activity systems to model and represent the situation to bring more clarity. Relevant

systems or activities are then deduced from the models and compared with the real

 187

world. It is thought to be then easier to see and implement changes that are

systemically desirable and culturally feasible in the context of each particular

organization. SSM consists of several phases. The first is the finding out phase

where a rich picture is constructed. This depicts in diagrammatic and pictorial form,

the methodologist’s view of the actual goings on within the organization. Any

conflicts, hidden agenda and power plays are noted and recorded. This is what

depicts the reality of the situation.

Analyses 1, 2 and 3 are then conducted. Analysis is done of the intervention into the

situation, analysis is done of the social construction of the organization and looks at

the social roles, behavioural norms of the role holders and values that measure role

performances of the parties concerned as to whether they are good or bad. Analysis

is also done of the balance of power in the organisation and how it is preserved,

grabbed or passed on. Relevant systems or definite categories of activities are

identified. For each of these systems or categories, succinct definitions called Root

Definitions are summarised. These root definitions are evaluated according to the

CATWOE template which has the textual formulae of ‘a system to do X by means of

Y’. Activities are then deduced from the root definition and are arranged in some

logical order to form conceptual models. These models are abstract and do not

represent the reality of the organisation. In order to see where change is needed, the

disparity between the abstract conceptual models and the stark reality of the rich

picture are contrasted. Areas that need change are then more easily thrown into

relief and stand out. These become the recommended change areas. Once these

change areas are systemically desirable and culturally feasible to the people in the

organization, it can be accepted. SSM is quite flexible and depending on the nature

of the project, some of the phases can be left out or done in varying order. There is

no definite cut off point for SSM for it is a learning system. Its end is subject to the

will of the methodologist and to other pressing environmental constraints.

 188

7.4 Problem Situation
Interviewing the various stakeholders shed light on difficulties present in the current

postgraduate project support system. One major problem that students face is that

external project clients sometimes change the project ‘goalposts’ after terms have

been agreed. This is sometimes due to not having enough finances to execute what

they really wanted from the project. At other times, it is because the company might

have been taken over by a larger concern. Yet another issue that needs to be

addressed is the fact that computer science students need better dissertation writing

up skills. Students struggle with referencing and research methods skills. Some

students have no idea how to start the project. It was thought that MSc Software

Development students tended to do better as it is mandated that they create a

software product in order to secure at minimum, a pass in their academic

programme. MSc Information Systems students on the other hand need more

methodologically based arguments in order to write up their dissertation. They also

need greater analytical skills to give their projects more credence. MSc Interactive

Multimedia students tend to do very well. Of the 19 students who did projects for

Interactive Multimedia in 2002, only 3 did not graduate. The research noted that

Interactive Multimedia is the only pathway that does group projects. This raised

some questions as to whether this factor had any bearing on the grades being

produced. It is beyond the scope of this particular research paper, but will be noted

for future work. The Postgraduate Scheme Administrator currently uses the Student

Programme Route Database (SPR). This is not able to address all of the issues

concerning postgraduate projects, so a shared database that is specific to projects

and that gives timely reminders would be useful. Another identified issue was that

the external examiners need to know exactly how the marks were arrived at.

Sometimes registry or finance departments would contact the computing

administrative office to ascertain student’s current status and to see whether or not

they should be billed for an academic year. The students also need to enrol if they

go beyond specified finish date as they need to be ‘live’ on the systems so grades

can be entered and the computing and intranet resources made available to them.

The administrator always has to get current student information from a module tutor

and also has to query students’ start and expected completion date. If there is no

module tutor available, this results in bottlenecks in both registry’s and finance’s

efficiency. This is bad for business. In a climate where inefficiency spells loss of

money, this state of events is untenable.

 189

Additional Issues

• dedicated monitoring of part-time MSc students is needed. Students transfer

or are transferred to part-time mode for varying reasons. They have 15

months to complete the project. It is increasingly becoming a problem that

they are failing to submit on time or on an even larger scale, failing to submit

their projects at all.

• The very short time for doing full-time project work is only 2 months and

students have to exercise very good time management skills. This means

that it is imperative that the project management team ensures that the

support and control systems are very good.

• Students need to learn how to manage their relationships with their clients

Application of MoIST option ‘A’ using SSM
These are the analyses done on the basis of the interview and observation data

gathered.

Analysis One - Analysis of the intervention in the situation
Clients
(Who caused the study

To take place)

MSc students, project tutor

Would-be problem solvers
(who conducts the study)

SSM Methodologist, project tutor

Problem Owners
(client + people with an interest in the situation)

MSc student, client, supervisor
Project management team

Table 7.2: Analysis of the Intervention of the Postgraduate Project Process

Analysis Two
This looks at the problem situation as a social system and helps to determine cultural

feasibility of any changes to be recommended. It examines the social roles that are

significant in the situation, the behavioural norms of the role holders and the values

that measure role performance as good and bad.

 190

Social
Roles

Behavioural Norms of Role
holders

Values that measure role
performances as good or
bad

Student Identifies and delineates a project and

obtains agreement with stakeholders.

Plans, manages and executes project

using skills gained in taught pathway

sessions

Registers for projects module

and identifies projects in which

interested. Accepts clients and

projects. GOOD

Submits and delivers project and

dissertation to university

examiners. GOOD

Not maintaining regular work

pattern and not being honest

when reporting progress. BAD

Academic

Supervisor

Advises students on the project from an

academic standpoint. Helps to clarify

references and act as a sounding board

for ideas.

Reads students’ work well in

advance. GOOD

Being available when needed.

GOOD

Being unfriendly, closed and

unsupportive BAD

External

client

Project proposals submitted by potential

client

Invite student for discussion &

interview GOOD

Provide feedback to student &

project tutor on project quality

GOOD
Changes initial terms of project

agreement midway through

project BAD

Postgraduate

Scheme

administrator

At start and end of project responsible for

accurate input of student details &

grades into database

Ensures that students are

registered in order to gain

intranet access. GOOD
Sits on pathway assessment

board meetings. GOOD
Inaccurate input of student data

BAD

Project Tutor Oversees all project aspects of all MSc

pathways

Allocates academic supervisor to

student GOOD

Arbitrate disputes GOOD

Not available to define and vet

submitted proposals BAD

 191

Pathway

Leader

Monitors overall progress of students on

the pathway

Liaises with project tutor and

supervisors GOOD
Does not have a handle on what

is happening with students in the

pathway BAD

Table 7.3: Analysis 2 of the Postgraduate Project Process

Analysis three
Examines the politics and power distribution in the organization

Disposition of Power
Three players in the postgraduate project process hold the most power and these are

firstly the MSc Student, secondly the Client and thirdly the Academic Supervisor.

The student is the one who has to do the work. In a sense, a less than ideal client or

supervisor should not prevent a student from achieving the research goal at hand.

The client was second in the power stakes because they are the key to the research

problem which is the fulcrum on which the entire research project is based. The

academic supervisor’s expertise in the research area and ability to supervise and

relate well to students is also a major factor in the research process.

Nature of Power
The Project Tutor and Pathway Leader are not line management roles, so there is

not that sense of hierarchy or of ‘lording it over each other’. Instead there is the

sense of team effort to ensure that the postgraduate project process should result in

successful research projects.

The external client, whilst outside of the organisation can ruin a student’s chances if

for instance, they change the terms of agreement almost at the end of a project. That

is vicarious power and it is quite detrimental if the client does not exercise it prudently

and reasonably. The academic supervisor within the organisation has the power to

demean, demoralise and demotivate a student. If there are personality clashes, this

can adversely affect the success of the student research project.

The postgraduate scheme administrator if inefficient can cause serious bottlenecks in

the system. If incorrect grades are entered and sent to the pathway assessment

board, this has serious repercussions for the student, if they are not proactive

enough to investigate. Efficiency and support in this role is quite important to

coordinating the overall efforts of the entire postgraduate project management team

and is quite a key area.

 192

Rich picture

Figure 7.2: Rich picture of Postgraduate Project Situation.

Formulating Root Definitions(RDs)

Primary task based Root Definitions (related to basic set of tasks)

“a system to do a planned research project acceptable to a university by means of

literature search, submission of project proposal and application of relevant research

methods to solve a suitable research problem in order to achieve a Masters degree”

Table 7.3: Root Definition of Postgraduate Process

 193

CATWOE analysis
 mnemonic which helps guide and ensure the well-formedness of root definitions

C Customer MSc Student

A Actor Project Management team, MSc student

T Transformation research problem -- problem solved

W Weltanschauung It is important to follow a scheduled process to achieve

a masters degree

O Owner School postgraduate project management team

E Environment university requirements, academic supervisor

Issue based Root Definitions
 “a system to provide understanding on how to write a good proposal by examining

guidelines and past examples, in order to develop a manageable research project”

“a system to provide peer support by maintaining regular contact with other MSc

students in order to maximise group learning”

“a system to provide effective support from supervisors, by managing the

student/supervisor relationship in order to achieve maximum benefit”

Primary Task Conceptual Model
Owing to the flexibility of SSM, it was not thought necessary to show the client the

conceptual model before coming to a decision.

 194

Figure 7.3: Conceptual Model of Postgraduate Project Process

 195

Measures of Performance
These are criteria used to evaluate the correctness of the conceptual model. They

are popularly known as the 3 E’s. In actuality they are really five measures of

performance

Effectiveness
Does the planned research project increase the likelihood of achieving the Masters

degree?

Efficacy
Will doing literature search, submitting project proposal and applying research

methods make the masters degree achievable?

Efficiency
If the resources expended in achieving the research problem solved was not

detrimental cost to life, family and health, it is worthwhile being expended for that

aim. Financial resources can always be recouped and achieving the MSc can be

perceived as an investment in a better future.

 196

Comparison Phase

Conceptual Reality Implications
1.

understand

university

requirements

There is extensive literature

on the intranet, library and in

hard copy format. The

academic skills unit are

compiling a definitive

university reference

handbook.

Students need to utilise the available

resources and ask for help if in doubt

2.

Select a suitable

research problem

Some students are not certain

what research problem to

choose. There is no formal list

of past research projects and

related supervisors and no list

of current research areas and

supervisors.

There is past research projects

repository facility for undergraduates

called POD, but there also need to be

one for postgraduates. Some

information on project areas and

supervisors does exist on the intranet,

but the need exists for a more formal

compilation.

Prepare and

submit a

successful project

proposal

There is reasonably adequate

provision for this with MSc

students. Resources are

available on the internet and

actual old copies may be had

from academic supervisors

A template for well structured proposal

could be made available to students

5.

Choose Research

methods

This area needs some help.

Students especially non-social

science students are not

formally taught research

methods.

There needs to be some concerted

effort made to teach students research

methods and how to conduct academic

research to help them in the writing up

stage

6.

Retrieve and

comprehend

relevant academic

literature

There are more than

adequate resources for

garnering relevant literature

area.

Students however usually need help

with the techniques of writing a

literature review. They need assistance

to determine what to let stay in and

what to leave out. The supervisor’s

assistance is crucial in this

4.

Plan research

project

This involves time

management and the onus is

on the student to do a Gantt

chart and plan milestones

carefully and on the

supervisor to ensure that this

Some sort of technique or other help in

this area can be provided by

supervisors for students

 197

is being adhered to

7.

Do research

project

All the above mentioned areas

are vital to the actual doing of

the research projects

If change is applied to these areas, the

doing of the research project will be

less difficult

8,9, 10 Monitoring

and Control of

system to do a

research project

Any monitoring and control of

student projects done is left to

the discretion of the individual

supervisor. There is no

standard monitoring and

control process in place

There needs to be some sort of system

in place to check student progress and

to support the administration of the

entire projects process

Table 7.4: Comparison Phase of the Postgraduate Project Process

Defining changes
The changes proposed below are derived from a comparison of the conceptual

model with the problem situation and are perceived to fulfil the twin criteria of

‘systemically desirable’ and ‘culturally feasible’ put forward by Checkland(1981),

Checkland & Scholes(1990) who said, ‘they are systemically desirable if these

relevant systems are perceived to be truly relevant’.

These changes require no extensive resources to implement and will be welcomed

within the school. This therefore qualifies the defined changes as culturally feasible.

Checkland’s justification for this criteria is that regular ‘hard’ systems engineering

does not usually check whether a system will fit into the context of an organization.

Consequently once the engineered product is technically sound, it is automatically

assumed by the developers to be ‘systemically feasible’ with scant regard for how the

people that drive the politics, that is the users will receive it in their everyday work

mode. SSM seeks to take the users in an organization and their cultural context into

consideration, before recommending changes. If SSM proposes a change that will

be systemically sound, but culturally infeasible, it is automatically scrapped and

another alternative sought.

 198

Conceptual
Activity

Proposed Change

1.

understand

university

requirements

6.

retrieve and

comprehend

relevant academic

literature

Run a short intensive course in how to do research in

computing. This could consist of two project seminars run at

the beginning and midway through the project. Topics could

involve ‘writing references the university way’, doing a literature

review. Students could ask questions and get immediate

feedback.

4.
Plan research

project

Provide a detailed project life cycle complete with suggested

durations and milestones to help the MSc student better plan

the research projects. This will also give the supervisor a

template for progress monitoring

7.
do research project

Organize peer support by assigning students on the same

pathway to small groups. They could meet at least twice

during the project and utilise the intranet for discussion at

agreed times when necessary. This would be especially useful

for part-time MSc students as it provides accountability and

indirect monitoring of their research project progress

8, 9, 10
Monitoring and

control activities

In order to monitor the system of doing a research project. The

monitoring and control activities 8 -10 will be expanded to

become a system. This monitoring system will track the

progress of the students’ research project and will provide

support to the process. The monitoring system is therefore a

tracking system of sorts.

8, 9, 10
Monitoring and

control activities

Construct a standardized feedback form for supervisors. This

could be modelled on the existing undergraduate feedback

forms in the Open Learning Centre. This would provide a

recorded history of marks and enable external examiners to

more clearly and accurately see how marks and grades are

arrived at.

 199

Table 7.5: Proposed Changes to the Postgraduate Project Process

Expanding the Original Conceptual Model
The monitoring and control activities 8, 9 and 10 of the postgraduate project process

will be expanded. This will have a tracking function and will monitor whether the

research process is being carried out according to the measures of performance

defined.

A relevant system or root definition will be formulated for this monitoring and control

system and will become a subsystem to the main research project system. This

tracking subsystem will also have its own monitoring and control activities.

Root Definitions for expanded monitoring and control system
Primary task based Root Definitions (related to basic set of tasks)

‘a system owned and operated by the Postgraduate Project Management team of

the School of Computing to monitor and track the progress and performance
of postgraduate project students in order to ascertain the current status of

students at any given point in time; alerting the project management team if

necessary to the need for timely execution of control action in the event of

potential hindrances, bottlenecks or threats that could lead to a drop in student

performance thereby ultimately improving the quality of dissertations submitted

and increasing the number of successful postgraduate project students’

Table 7.6: Root Definition of expanded Postgraduate Project Process

 200

CATWOE

C – Customer postgraduate scheme administrator, MSc project
 management team, students

A – Actor MSc project management team – project tutor,

administrator, pathway leaders, supervisors

T – Transformation no means of monitoring students-> means of

monitoring students

W – Weltanschauung monitoring the students’ research projects help to

increase the number of successful students

O – owner School of Computing postgraduate project team

E – Environment resources, university requirements

Tracking System Conceptual Model

 201

Figure 7.5: Conceptual Model of proposed tracking system for PPSS

This tracking system above provides monitoring and control functions for the original

conceptual model. This gives rise to a nested conceptual model as shown below.

Amplified Conceptual Model

 202

'How to do a
research project'

system

Postgraduate
Project Tracking

System

define
measures

 of
performance

monitor
activities

take
control
action

Figure 7.4: Another Conceptual Model for Postgraduate Project Process

 203

Figure 7.6: Revised nested conceptual model for the proposed system
This nested conceptual model is a unique occurrence. It is not one which the

researcher has encountered in the existing SSM literature [refs]. This nested

conceptual model depicts two (2) tiers of monitoring and control. It is literally two

conceptual models. One is embedded within the other. The inner tier performs a

dual role as both conceptual model and as a monitoring and control mechanism for

the topmost conceptual model. The inner conceptual model then has its own

monitoring and control mechanism. This would suggest that the duality of monitoring

and control lends itself to a more efficient system in practice. This was not tested as

the project went from analysis to design.

 204

Measures of Performance
Effectiveness
Is this the right thing to be doing?

Does the monitoring and tracking improve the quality of dissertations and the number

of successful projects?

Efficacy
Does the means work?

Does the monitoring and tracking work?

Efficiency
Is there minimum resource use?

There is minimum resource use because great advantages and benefits will be

gained and there will be no need for expensive capital outlay. The resources needed

are already present at the university and the tracking system will work in conjunction

with the CAMS database. This is the University’s Credit Accumulation and

Management System (CAMS) within which all courses operate.

Comparison Phase
Conceptual Reality

Ascertain current

status of student

This status includes whether the student is fulltime or part-time

among other things. Currently the postgrad. Admin has these details

on the CAMS database. No other project management team member

has electronic access. At the moment they pass hard copies of

student details between each other

Update student

details

The pathway leaders and project tutors have to pass this info to the

postgraduate administrator who then does the update. They have no

means to carry out this update themselves.

query student status This query is done verbally by the project tutor or pathway leader and

given to the postgraduate admin who then checks status. Sometimes

registry or finance need to know a students status, if this is not on the

system, the postgrad admin has to get this information from the

project tutor or pathway leader.

Generate report of

student status

this is done by the CAMS system used by the postgraduate

admininistrator

Send periodical

reminders of student

status

No reminders of student status are sent at all. Any information is

given at request of the relevant parties

 205

Contact student for

talk if necessary

This is done when students seem not to be doing well; but there is no

prompting from the system when students have not handed in

requested items. There are too many students for pathway leaders to

effectively track students without help

monitor student’s

progress and

performance

This is done by the supervisor, but not in a formal way

Define performance

standard & progress

evaluation criteria

Performance standard is already defined; but there is no formal

progress evaluation criteria. This is left to the experience of the

project management team

Take control action in

the event of a drop in

performance

This is done when supervisors recognise that students are not

performing. They are written to and called in for discussion to see

what can be done.

Table 7.7: Comparison phase for amplified Postgraduate Projects

Defining Changes
This proposed change is deemed ‘systemically desirable’ and ‘culturally feasible’

according to the criteria for defined changes stipulated by Checkland(1981) and

Checkland and Scholes(1990). It has been derived from a comparison of the

conceptual model with the reality of actual happenings in the School of Computing.

7.3 Proposed solution
A ‘PostgradTrack’ System that will enable the project management team to more

effectively support the postgraduate project process. This system will enable them to

know the current status of each postgraduate project student at any given point in

time. This status could be defined in terms of various states. These could be active,

suspended, terms of reference completed or pending. Fields could include also

fulltime or part-time status, start and expected completion dates, supervisor, pathway

leader, external client and a memo field for logging meetings with supervisors.

Reminders of students’ status could be sent out periodically. Recommendations are

that it could be every three months for part-time students and on a monthly basis for

fulltime students. This would assist in the elimination of data redundancy and

improve the accuracy and uniformity of source data. System rights would be given to

the project tutor, Postgraduate Scheme Administrator, pathway leaders and

academic supervisors. This should help to achieve clearer communication between

administration and academic project staff.

 206

7.4 Empirical Study Phase 2 – from Analysis to Design
This phase represents the design phase of the electronic system. Here the SSM
outcomes are mapped to UML. The MoIST Project Option Selector Tool is again
used to evaluate the project and select the most suitable project option.

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

Figure 7.7: MoIST Method

7.7.3 Using MoIst’s Project Option Selector Tool to get the best project option

• After the SSM findings, the characteristics of the Postgraduate Process

Project were again analysed using the MoPros Selector Tool in order to

make the most informed decision for this stage of the development process

 207

MoIST’s Project Option Selection Tool (MoPros)
 25 points 25 points 25 points 25 points

Project
Options

Types of
users

Developers’
skillsets

Organizational
environment

General
characteristics

Total

A

Users are a bit
unsettled as
they are
experiencing
organizational
changes
0 points

Requirements
at this point
are not
relatively clear
to the
development
team
0 points

Development
environment
unstructured

15 points

Proposed system
is to replace or
enhance an
existing system

10 points

25

B

Users
uncertain
about the
need for the
proposed
system while
others are
more willing to
be associated
with it
20 points

Requirements
known at this
point are
relatively clear
to 80% of the
development
team.
18 points

Development
environment has
pockets of
structure and
unstructuredness.

20 points

Conflicting
interests and the
proposed system
might cross
functional borders

0 points

58

C Users open to
the new
system

10 points

Requirements
known at this
information
are very clear
to 90% of the
development
team
0 points

Development
environment is
quite structured

10 points

Environment is
relatively
contention free

8 points

28

Table 7.5: MoIST’s Project Option Selection Tool (MoPros)

Using the MoIST Project Option Selector Tool, it was found that the project

requirements most closely matched project option B. Option B was chosen

since Option A’s activities were already completed within the SSM study

conducted.

 208

6.74 Option B: Enhance inception stage with SSM by deriving use cases
from activities within the conceptual model.
Status: Requirements Certainty (High) + Development Environment

(Unstructured)

MoIST Option B’s Activities

B1. Derive conceptual primary task model (CPTM).
B2. Select and prioritise Conceptual model activities.
B3. Determine which activities require further decomposition.
B4. Determine which of the selected activities are candidates for IT support.
B5. Identify actors.
B6. Develop high-level use cases.
B7. Develop multi-level use cases.
B8. Identify high-level objects.
B9. Map required high level services onto objects.
B10. Continue design.

7.7.5 Application of Option B within the MoIST method

6. Derive conceptual primary task model

 209

Figure 7.8: Conceptual model was derived from the SSM finding out stage.

7. Select and prioritise Conceptual model activities to be investigated for

possible IT support

Priority 1

Priority 2

Priority 3

Ascertain current status
of student

Update student details

Query student status

 210

Figure 7.7: Priorities 1, 2 and 3

8. Identify scope or scale of OOA by determining which of the selected low-level

activities are likely candidates for IT support. Also determine which may

require further decomposition of some specific activities for which responsible

use of IT is unclear

Figure 7.8: Activity in Option B of the MoIST Method

The selected low-level activities above are the most likely candidate activities for IT

support

9. Identify actors for each of the low-level activities.

Update student details

Query student status

Ascertain current status
of student

 211

Figure 6.9: Actors for Low-Level Activities

Actors

+ MSc Student + Academic Supervisor
+ Pathway leader

+ existing CAMS database system + Postgraduate Scheme Administrator

 212

Mapping SSM Human Activities to Use Cases for expanded conceptual model

• Ascertain current status of student
 Search database for student based on an index for example surname

 Click on appropriate search result

 Retrieve appropriate status details

• Update student details
 Retrieve relevant student details

 Amend existing details

• Query student status
 Perform query

• Generate report of student’s status
 Display report on screen

 Select print option

• Send periodical reminders of student status
 Acknowledge system alert

 Email pathway leader and academic supervisor

• Contact student for talk if necessary
 Email student

• Monitor student’s progress and performance
 Send email if deadlines are not met

 Send email if student gets below 50%

• Define performance standard and progress evaluation criteria
 Display the required grades and expectations on intranet

• Take control action in the event of a drop in performance
 Email student for drop in talk

 213

7.5 Conclusion
The MoIST method was shown to be workable in yet another context. The research

project time did not allow for implementation of the system. The analysis and design

work has been completed and documented. This can be used for future work on the

system and will expedite development time.

The MoIST has again been shown to be effective in another real-world context. It

can be safely concluded that the MoIST is an effective method.

 214

Chapter 8 Conclusions and Future Research

8.1 Problem Introduction
The findings presented show that MoIST works in a different context. The next logical

step is to summarize the findings and to point the direction for future research.

The major aim throughout the research has been to argue the necessity for human

aspects to be reincorporated into hard systems engineering design. This is

increasingly being neglected in most organizations involved in systems development

(Mirijamdotter, 1998). This has resulted in innumerable software failures and

tragedies that have impeded the success level of software development projects

(Ewusi-Mensah, 2001).

8.2 Research Solution
The thesis argument started out by highlighting the fact that traditional hard systems

engineering had a relatively good success rate. It then looked at how increasingly

clients were not pleased by the resultant systems delivered to them. This delivery

was more often than not eventually – say several years later – or not at all. This then

led to the argument for a way of inculcating a systems thinking component within the

traditional software development cycle. This would enable systems to be constructed

more in accordance with the specification of the client. Chapters 2 to 6 of this thesis

expounded on how the limitation of hard systems engineering was overcome by

amalgamating SSM with the UML.

The combination of both the SSM and UML was looked at in chapters 4 and 5. It

was merged into a new design method for integrating systems thinking with

information systems design (MoIST). The MoIST method was applied in an

academic organizational setting. This was at the University of Huddersfield,

specifically the School of Computing and Engineering. The context was to examine

the existing Academic Support Process in the University and ameliorate any

problematic conditions discovered. The MoIST method was successfully applied and

a major intervention was made which validated the action research carried out. This

intervention made a radically improved difference in the existing system and was well

received. An evaluation was then made of the MoIST’s effectiveness in the situation.

This was in terms of the electronic system’s success, usability quotient and level of

improvement to the former process. The conclusions gleaned from the research are

summarised below.

 215

8.3 Critical Appraisal of the Research
A critical appraisal of software development approaches and methods in general and

this research in particular has been conducted. The findings indicate that though

software technocrats and developers prefer the hard systems development

approach, it has many problems. Firstly when used alone in the requirements

elicitation phase, hard systems engineering models can encourage early design

decisions before opportunities for improvement have been agreed. Also, SSM when

used on its own in the requirements elicitation stage may lack some of the detailed

information required by programmers. The most consistent and reliable feature of

software development over the years have been its many failures. The appraisal

covers select parts of the research including the MetricsMoIST Evaluator, Project

MoIST’s scales, activity diagrams, elaboration of use cases and lessons learnt from

the two enactments of the MoIST method.

The MetricsMoIST Evaluator utilises Checkland’s 5 E’s Performance Indicator to

assess the SSM artefacts produced by the MoIST. The Checkland’s 5 E’s may also

be used to evaluate any resultant system produced from using MoIST.

Originally the MetricsMoIST Evaluator included metrics to evaluate both the SSM and

UML components. However, objective feedback concerning the choice of metrics

brought about the realisation that the UML metrics used, gave superficial or at best

minimal evaluation. Using the lesson learnt from this, the UML metrics were then

excluded leaving the Checkland’s 5 E’s component. The Checkland’s 5 E’s provide a

loose guideline by which to measure the validity of the SSM artefacts produced. This

will work more effectively for the method as the SSM component is still the unknown

quantity for software development in general. This means that the SSM component

is in need of more evaluation than the UML component for which a plethora of UML

metrics currently exist. These include SDMetrics which is an object oriented design

measurement tool for the UML and Fast&&Serious which is a UML based metric for

effort estimation.

MoIST’s scales were used in the MoIST’s Project Option Selector Tool (MoPros) and

the MetricsMoIST Evaluator using Chekland’s 5 E’s Performance Indicator. For the

Selector tool (MoPros), a maximum of twenty-five (25) points are allocated to each

of the four (4) sub-opions within each project option. For the MetricsMoIST

evaluator, a maximum of twenty (20) points were allocated to each of the five (5) sub-

 216

options. The weightings of twenty-five (25) and twenty (20) were chosen to help

simplify and aid the scoring process by always yielding a percentage score. A

percentage score was deemed to be easier for the project team to establish

consensus on the individual scores of team-members. Expert feedback on the

MoIST scales indicated that the scales could be rendered more appropriate.

Consequently, though the MoIST project scales are the de facto recommended

weightings, there is an alternative. The alternative recommendation is that project

managers are free to use whatever weightings they deem to better facilitate a more

successful scoring process. This applies to both the Selector Tool (MoPros) and

MetricsMoist domains.

Two enactments of the MoIST method were undertaken for the research. The first

was an exploration of an Academic Skills Process and the second was an exploration

of a Postgraduate Project Process. Similar lessons were gleaned from both

enactments of the method. One concerned the elaboration of use cases. The

elaboration of use cases by relevant actors and domain experts was originally

intended to be mandatory. In doing the research however, it proved to be an optional

activity as the relevant actors were not engaged in the process of elaboration the use

cases. This was done because the domain expert did not require help from the

actors at that particular point in the intervention. The recommendation of the

research is therefore for project managers or domain experts to evaluate each

project on its own merit and decide whether or not there is a need to involve the

relevant actors in the use case elaboration.

Another lesson learned concerned activity diagrams. In the UML-based artefact tool-

kit that contains use-cases, sequence diagrams and activity diagrams, activity

diagrams seem not to be as utilised as the other UML-based artefacts. This was

seen in this research with the MoIST method. The two (2) case studies utilised

Project Options A and B which had use-cases and sequence diagrams. Neither of

the case studies tended towards Option C which utilised activity diagrams. This

result suggests that for any possible future refinement or version of the MoIST

method, Option C might be less relevant. Based on expert feedback, it could also

potentially be omitted. In this research, it only served as a ‘control’ of sorts in the

research experiment as Option C is more geared towards hard systems development

where most of the requirements are known and the environment is structured. This

might not always fit with most software development environments today as most

software projects are unstructured in nature. Conversely, project options A and B are

geared towards unstructured software development environments. This suggests a

 217

plausible explanation concerning why both unstructured case studies utilised options

A and B instead of C.

In the classification of the multi-methods in Chapter four, some methods were

reviewed in terms of their proximity to the MoIST method. The methods deemed

close to MoIST included the ISD Framework, RACE, Davis’s Contingency framework,

Multiview, RACE, BOOST and CCTA.

RACE needed to further tighten the linkage between the interaction models and

formal models description language. MoIST rectified the RACE method linkage

weakness by using a UML-based development environment to provide the linkage

with SSM instead of LOTOS. This is significant as UML is more widely used

commercially and more developers are familiar with it than LOTOS. The Davis’s

contingency framework examines several variables and determines which of its four

options is best to use. The drawback with the framework it that it determines very

well what option to use, but does not go on to say how the developer should follow

the option to achieve the desired result. MoIST however rectifies this omission by

detailing in a step by step manner exactly what to do to achieve each of the options

chosen. The significance of this rectification is that it makes the software process

clearer and makes it easier for the developers to follow the method. One of

Multiview’s drawbacks is that it uses ETHICS in its method structure. The

significance here is that ETHICS though a popular method is no longer widely used

in many commercial software environments. MoIST redresses this drawback by not

using ETHICS in the soft to hard systems linkage, but by using the more current and

ubiquitous UML-based linkage instead. One weakness of Lai’s ISD framework is that

it uses Martin-Odell’s Object Oriented Analysis (OOA). This OOA however no longer

provides the validity needed for current projects. This is because OOA has been

subsumed into UML. MoIST rectifies this potential problem by utilising a UML-based

context in which to link SSM. This is important as it potentially increases the chances

of the method being utilised as UML is more widely used currently than OOA. BASE

and BOOST only offer one core option for achieving the soft to hard linkage. This is

significant as it does not necessarily provide software developers with the flexibility

needed to maximize successful software development. MoIST rectifies this by

providing more than one analysis and development options depending on the

assessed characteristics of each software project. One of the problems with the

CCTA approach is that SSADM is used for the ‘hard systems’ paradigm. This is

significant as SSADM is no longer considered to be ‘cutting edge’ in its remit. MoIST

 218

redresses this by using a UML-based context which is perceived as more relevant

and current in the ‘hard systems’ domain of the software industry.

Hard systems engineering has from its inception played a vital role in the software

industry. This by itself is insufficient to stem the rising tide of failures and incomplete

systems. The MoIST method provides the requisite extension to make the software

development process more effective. This is done in several ways. It allows for the

combination of two strong approaches that promote a unified strength and subsumes

each others deficiencies and limitations. It also alleviates criticisms levelled at the

hard systems engineering approach. MoIST provided a firmer design structure for

complex, unstructured situations. It additionally offers the potential for designing

systems that will be more successful and pleasing to the clients. A major benefit

gained from application of the MoIST method is an improved user definition for

certain types of development project. This is an important prerequisite to successful

implementation.

8.4 Further Work
In this research, SSM is shown to be a plausible basis for applying systems thinking

and integrating it with a UML-based software development method. The MoIST

method supports software developers and users in going from a complex,

problematic organizational situation to the design of a new computer application

suitably relevant to the situation. MoIST combines a set of viable options and

methods into a coherent framework.

In summary, the new understanding of systems thinking integrated into information

systems design suggests

• Complexity in any organisational or commercial setting can be reduced by

utilising SSM and its activity modelling techniques.

• Design explanation can be used to provide the project manager and systems

developer with the rationale behind the dynamics of the complexity in the

requirements model.

The research findings are based on action research carried out using SSM. The

current directions for future research are outlined as follows:

 219

• Consolidating theory The MoIST method model will be linked to related

studies in order to build sound theoretical bases for the model. Further

investigation will be done of the MoIST model.

• Further developing the new understanding There is a need to study the

dynamics of both essential and incidental complexity in relation to networks of

different cognitive design activities described in the literature. This study will

develop a sound theoretical foundation for our understanding of the

requirements modelling process.

• Testing the MoIST model and evaluating the new approach to using
design explanation. This model was identified from analysing qualitative

data. However quantitative measurements are needed to confirm and

strengthen the model. The model will be tested through quantitative empirical

studies. A quantitative measurement of complexity to test the qualitative

explanation will be conducted.

8.5 Research products or artefacts

• MoIST method

• ProcessMoIST

• MoIST Process Selector Tool

• ACcSys Electronic ILP System

• SSM artefacts including Conceptual models and overall results

8.6 Conclusion

The combination of SSM with a UML-based development method has already begun

to produce academic research output and products that are making a solid difference

in the world of software development.

The research produced two (2) comprehensive SSM studies. Some PhD theses that

were read during the course of the research focused solely on the SSM study.

(Kareborn,2002 and Mirijamdotter,1998). This research however went further and

 220

produced a design method called MoIST. MoIST was used to link the results from

one of its SSM studies to a UML-based method. Though the research was originally

intended to end at the design of MoIST, it eventually proceeded to the subsequent

design, implementation, deployment and testing of an electronic system called

ACcSys.

The research is timely and fits in well with attempts by other researchers to address

limitations of hard systems engineering approach and more specifically the UML.

 221

Appendix

During the research several real-life SSM case studies were conducted. These were

for learning purposes mainly and also with the hope that some would lead to major

results. For the sake of space, not all could be included in the final written research

document. The two SSM case studies expounded in chapters six and seven

established that the MoIST method works. Both unstructured case studies

demonstrated how options A and B worked in two separate real-life situations, but

neither of them showed how option C works.

 In order to demonstrate option C, this real-life SSM case study of the recruitment

process below was used. It was really conducted according to Checkland’s SSM

guidelines up to conceptual model level. From that point on, the demonstration of

how to go from conceptual modelling directly to activity diagramming is a ‘made-up

demo’ for Option C. (this means that the last part was not done under research

conditions).

A Study of the Recruitment Process in the School of Computing and

Engineering

Introduction
Changing times and circumstances and political and social nuances have dictated

the rise and the fall in the student admission levels at universities.

Over the last few years the levels seem to have fallen much more than they have

risen. There is an intensive campaign on to attract more students to universities.

Recruitment officers and admission offices are standard in most universities.

International recruitment of students has become big business. Many universities

have established marketing and publicity programmes overseas.

Background
The Department of Computing and the Department of Engineering were recently

merged into one unit as the School of Computing and Engineering. A dean of school

was appointed to head the unit. This incumbent was selected from the department of

engineering. Much effort has been expended to make the school flow as a seamless

unified whole. Over time though, the integration is appearing to not be as water tight

as was originally intended.

 222

An admissions office was formed to coordinate admissions efforts for the school. A

school admissions officer was also appointed by the dean. This appointee formerly

co-ordinated the admissions function in the Engineering department. The

admissions officer position however has no mandate over the school admissions

office as it is not a line management role. This means that the admissions officer

cannot exert any influence over the daily running of the admissions office. It is

probably significant that the admissions officer is in one physical location and the

school admissions office in another. Investigation has shown that the two former

departments had diametrically opposite modes of conducting the admissions

process. We could call them ‘the computing model of recruitment’ vs ‘the

engineering model of recruitment’. The current admissions officer is still in favour of

the engineering way of doing things while computing still maintains their admissions

status quo. To this point there has been no official agreement between Computing

and Engineering in this matter. It is quite telling that the admissions officer has

initiated a name change of his function title from admissions coordinator to

recruitment coordinator. He now sees them as two different functions. He sees his

role as Recruitment Coordinator in the school as persuading students to come to the

university in addition to increasing the recruitment levels in the school.

Methodology of the Research
The recruitment coordinator was interviewed to gain perspective on the recruitment

process. Quite a comprehensive overview of how the process operates was given.

This report will be followed by a subsequent one which will reflect the views of a

wider cross-section of stakeholders of the recruitment process.

Soft Systems Methodology (SSM) is the methodology of choice in this study as it

allows for exploration and understanding of the various issues involved in the school

recruitment. It facilitates learning of the situation and enables a clearer view of the

issues to be dealt with.

Soft Systems Methodology has been used with much success in many organizations

to unravel complex is sues and bring structure to seemingly unstructured situations.

It involves the stakeholders in the organization in the discovery process and enables

them to own and proactively be the agents of change in their own organizations. Any

changes that are to be made are usually more readily accepted and it has also been

known to boost the morale of the human resource in an organization. SSM was

made formulated and made popular by Professor Peter Checkland of Lancaster

University.

 223

Analysis of 2002 -2003 Academic year recruitment figures
(taken from report by Recruitment Coordinator)

Applications for computing courses in general have fallen. This is a national trend.

This is currently happening probably as traditional universities widen participation to

conform to the government’s mandate and possibly because of bad positioning in the

league tables owing to misleading statistics on completion rates

Medium to long term strategies need to be in place to attract students to apply in the

first place. There seems to be little that admissions tutors can do in the short term to

help with this

The ‘local college’ figures reflect a growing trend then it is clearly critical that students

from the local catchment area of West Yorkshire are attracted and retained.

The mainstay courses still attract large numbers of students, though the reduction in

applications is being felt in some of the IS and Computing courses.

June 2003 Applications numbers and conversion figures

 Applications Conversion rate

New Media (including Games Programming) 592 (+235) 33.45

New Media (excluding Games Programming) 300 (-23) 33.33

Information Systems 516 (-110) 29.26

Computing 601 (+8) 29.28

this shows that there has been a fall in both the Information Systems and New

Media(excl Games programming) applications.

 224

Comparison of admissions afternoon visits with accepted offers

 Visits Offers Conversion

Information Systems & Computing 202 330 163%

New Media 228 198 87%

Analysis 1- Analysis of the intervention in the situation

Clients
(Who caused the study to

take place)

Dean of the School of Computing and Engineering,

Recruitment Coordinator

Would-be problem solvers
(who conducts the study)

Soft Systems Methodologist

Problem Owners
(client + people with an

interest in the situation

School of Computing and Engineering, recruitment

coordinator, admission administrators

 225

Analysis 2 - Social System Analysis

Social Roles Behavioural Norms Values that measure role
performances as good or bad

Recruitment

Coordinator

Organises all recruitment activities

for the school and exists to

persuade students to come to

study at the university and to

increase the flagging recruitment

levels

Analyses past computing

course admissions data in

order to spot trends and be

able to predict the future

admissions patterns GOOD

Able to effectively influence the

way recruitment is carried out in

the merged school of

computing and engineering

GOOD
Does not have a

comprehensive grasp of

recruitment issues in the school

BAD

Admissions

Office Staff

Carry out all administrative duties

for the school’s admissions

Ensures that marketing and

publicity documents are sent

out well in advance GOOD

Liaises well with relevant

departments to help ensure top

admissions rates GOOD

Not in touch with what students

are looking for in university

schools and produce out dated

and not trendy materials. BAD

Dean Head of the school of Computing

and Engineering

Has comprehensive knowledge

of what goes on in the school

and makes sound decisions

based on that knowledge

GOOD

Able to lead the school in a

manner that enables it to be

 226

competitive with other

computing departments in other

universities GOOD

 Out of touch with industry

trends in computing and

engineering BAD

Department

heads

Oversee the running of all areas of

their department

Coordinate all the staff under

their jurisdiction efficiently

GOOD
Make unsound decisions that

retard their department’s

growth BAD

Analysis three – examines the politics and power distribution in the
organization

Disposition and Nature of Power
The main stakeholders in this process are the dean, the recruitment coordinator, the

department heads and the admissions office staff. The dean wields the greatest

authority here and has the clout to hire and fire and generally make any judgement

call. The recruitment coordinator reports to the dean and was hired on the

recommendation of the dean. The department heads report to the dean and the

admissions office staff report to the department heads; not the former admissions

coordinator. In effect therefore any changes that the recruitment coordinator sees fit

to implement cannot be fully implemented without the agreement of the department

heads. This could potentially lead to disagreement on how recruitment is carried out

in the school as a whole. As it stands, it seems that the schools recruitment

coordinator has a working jurisdiction over the engineering section of the school and

none or not much over the computing section of the school. In the interest of the

weltanschauung of the recruitment process, there needs to be agreement on a

common recruitment modus operandi across the school. This will better enable the

goal of maximising and increasing recruitment levels to be achieved.

 227

C1- Derive Conceptual Primary Task Model

Formulating Root Definitions
Root Definition 1
“a system to standardise the way recruitment is carried out in the computing and

engineering section of the school by establishing agreement on a common

recruitment mode in order to make the recruitment process more effective and

efficient”

Root Definition 2 - the chosen RD

“a system to improve the recruitment level in the School of Computing and

Engineering by eliminating hindrances and bottlenecks to efficiency in recruitment in

order to achieve highest recruitment levels possible”

CATWOE Analysis

C – Customer – Recruitment Coordinator, Dean

A – Actor - Recruitment Coordinator, Admissions Office Staff

T – Transformation – Recruitment levels low -- recruitment levels raised

W – Weltanschauung – acceptable recruitment levels are important for the
successful future of the school and university

O – Owner – Dean

E – Environment – School and university recruitment policy

 228

Conceptual Model

 229

Comparison Phase

Conceptual Reality
Ascertain existing recruitment

levels

This is currently being done by the recruitment

coordinator on a monthly basis

Contrast existing recruitment

data with historical data and

analyse

The recruitment coordinator performs this task and

generates a monthly report by email

Collaborate and choose the

most appropriate action plan

to raise recruitment levels

There needs to be an increased level of

collaboration in order to find the most effective way

of improving recruitment

Implement action plan for

recruitment

Actions to improve recruitment are currently being

taken, but getting the benefit of a variety of

competencies could drastically improve the process

of recruitment

Defining Changes
Change 1
There is a need for improved efficiency in the way that recruitment levels are

ascertained. This is in order to more quickly take advantage of the data and use it

increase existing levels whilst cutting out inefficiencies.

Change 2
There could be increased collaboration among staff involved in the recruitment

process. Such a collaboration would take advantage of each person’s expertise and

would result in a better way forward. Monthly meetings could be held with the

department heads of the school, both computing and engineering to arrive at a

common consensus and a more effective recruitment drive. Each course team could

own the recruitment for their course. This would involve periodic meetings to see

what is the best way to attract students. This would give the recruitment improvement

drive the benefit of a wider cross- section of person’s ideas.

 230

C2 – Identify conceptual activities that are candidates for IT support

No Selected conceptual activities

1 Ascertain existing recruitment levels

2 Contrast existing recruitment data with historical data and analyse

4 Implement action plan for recruitment

C2.2 – Look for conceptual activities that most closely match key areas
gleaned from the study and the clients’ needs

1 Ascertain existing recruitment levels

C3 – Identify nouns from conceptual activities

Existing, recruitment levels

 231

C4 – link conceptual activities directly to the UML activity diagrams

No. Conceptual activity statement Activity state

1 The conceptual activity begins when the recruitment

coordinator decides to ascertain existing recruitment

levels by choosing the Continue function when the

recruitment level details are displayed on the screen.

Display Current

recruitment level; Get

Recruitment request

2 The system requests that the recruitment coordinator

enter the recruitment details, including: number of

visits, number of offers, conversion figures, number of

applications, conversion rates and any comments.

Display Recruitment

Form

3 The recruitment coordinator chooses the visits and

offers functions to arrive at the accurate recruitment

details.

Get Recruitment

Details

4 The system stores the recruitment details in the

database.

Store New

Recruitment Details

5 The system emails to the Recruitment Coordinator the

recruitment details.

Email Recruitment

Details.

 232

Fig 1 - Activity Diagram for Ascertaining Existing Recruitment Level

 233

Display Recruitment Level is the initial activity state. The recursive transition on the

state recognizes the fact that the display is continuously refreshed until the next

transition fires (to Get Recruitment Level Request). This may be interpreted as the

recognition of this state to be an activity, not an action. When in the state Display

Recruitment Form, the timeout condition finishes the execution of the activity model.

Alternatively, the state Get Recruitment Details is activated. If the recruitment details

are incomplete, the system again enters the state Display Recruitment Form.

Otherwise the system gets into the state Store new Recruitment details followed by

the state Email Recruitment Details (the final state).

 234

Bibliography

Ackoff, RL, 1998, A Systemic View of Transformational Leadership, Systemic
Practice and Action Research, Vol. 11, No. 1, 1998

Abdel-Hamid, T. K., and S. E. Madnick. 1990. The Elusive Silver Lining: How We Fail
to Learn from Software Development Failures. Sloan Management Review 32(1): 39-
48.

Ambler, S.W. (2002) Agile Modeling: Effective Practices for Extreme Programming
and the Unified Process. John Wiley & Sons

Ambler, S, 2001, The Object Primer – The Application Developer’s Guide to Object
Orientation and the UML, 2nd Ed, Cambridge University Press

Archer, R and Bowker, P, 1995, BPR Consulting: an evaluation of the methods
employed, Business Process Re-engineering & Management Journal, Vol. 1, No. 2,
pp. 28-46

Armarego, J, 1999, Educating Requirements Engineers in Australia: A Critical Study,
http://eng.murdoch.edu.au/~jocelyn/papers/phd_proposal.doc

Armarego, J and Clarke, S, 2002, Preparing Students for the future: learning creative
software development – setting the stage
http://eng.murdoch.edu.au/~jocelyn/papers/armarego.herdsa.pdf

Avison, D.E., Baskerville, R. and Myers, M.D, 2001 "Controlling action research
projects," Information Technology & People (14:1), 2001, pp. 28-45

Avison, D and Fitzgerald, G, 1995, Information Ssytems Development:
Methodologies, techniques and Tools, (2nd ed) McGraw-Hill, London

Avison, D.E. and Wood-Harper A.T. (1990) Multiview: An exploration in Information
Systems Development., McGraw-Hill, Maidenhead.

Barton, J, Emery, M, Flood,RL, Selsky, JW and Wolstenholme, E, 2004, A Maturing
of Systems thinking? Evidence from three perspectives, Systemic Practice and
Action Research, Vol.17, No.1, February 2004

Baskerville, R., and Myers, M.D.2004, "Special Issue on Action Research in
Information Systems: Making IS Research Relevant to Practice-Foreword," MIS
Quarterly (28:3) 2004, pp 329-335.

Baskerville, R. and Pries-Heje, J. 1999, "Grounded action research: a method for
understanding IT in practice," Accounting, Management and Information
Technologies (9:1), 1999, pp. 1-23.

Baskerville, R.L. and Wood-Harper, A.T. 1998, "Diversity in information systems
action research methods," European Journal of Information Systems (7), 1998, pp.
90-107.

http://eng.murdoch.edu.au/~jocelyn/papers/phd_proposal.doc
http://eng.murdoch.edu.au/~jocelyn/papers/armarego.herdsa.pdf

 235

Baskerville, R.L. and Wood-Harper, A.T.1996, "A Critical Perspective on Action
Research as a Method for Information Systems Research," Journal of Information
Technology (11), 1996, pp. 235-246.

Batra, D and Marakas, GM.,1995, Conceptual data modelling in theory and practice.
European Journal of Information Systems. 4, 185-193

BBC News, July 8, 2004
news.bbc.co.uk/1/hi/uk/3876507.stm

Beck, K., Extreme Programming Explained – Embrace Change. Reading, M.A.:
Addison-Wesley. 2000

Bell, S and Wood-Harper, T (2003), How To setup Information Systems: A non-
specialist’s guide to the Multiview Approach, Earthscan Publications Ltd.

Bell, S., and Wood-Harper, A.T., 1992, Rapid Information Systems Development,
McGraw-Hill, Maidenhead, 1992.

Bennett, S., McRobb, S. and Farmer, R., Object-Oriented Systems Analysis and
Design, (2nd Ed.), McGraw-Hill, Maidenhead, 2002.

Bennett, S, Skelton and Lunn, K, 2001, Schaum’s Outline of UML, McGraw-Hill

Bennett, P, Ackermann, F, Eden,C and Williams, T, 1997, Analysing Litigation and
Negotiation: Using a Combined Methodology , Multimethodology:The Theory and
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill,
A, Wiley & Sons

Bergvall-Kareborn, B, Mirijamdotter, A and Basden, A, 2004, Basic Principles of SSM
Modelling: An Examination of CATWOE from a Soft Perspective, Systemic Practice
and Action Research, Vol. 17, No. 2, April, 2004

Bergvall-Kareborn, B, 2002, Qualifying Function in SSM Modelling – A Case Study,
Systemic Practice and Action Research, Vol. 15, No. 4, August 2002

Bergvall-Kareborn, B., 2002, A Multi-Modal Approach to Soft Systems Methodology,
Doctoral dissertation, Department of Business Administration and Social Science,
Lulea University of Technology, 2002.

Boggs, W and Boggs, M, Mastering UML with Rational Rose, Sybex, 2002(electronic
version)

Booch, G., 1998, Best of Booch – Designing Strategies for Object Technology,
Cambridge University Press, 1998.

Booch, G., 1994, Object Oriented Analysis and Design with Applications (2nd Ed.),
Menlo Park, CA: Benjamin/Cummings, 1994.

Booch, G, Rumbaugh, J and Jacobson, I, 1998, The Unified Modelling Language
User Guide, Addison-Wesley Professional

 236

Bouzeghoub, M, Gardarin, G,Valduriez, 1997, Object Technology:Concepts and
Methods, International Thomson Computer Press

Bowl, M, 2003, Non-traditional Entrants to Higher Education: They Talk About People
Like Me, Trentham Books.

Brocklesby, J,1997, Becoming Multimethodology Literate: An Assessment of the
Cognitive difficulties of working across paradigms, Multimethodology:The Theory and
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill,
A, Wiley & Sons

Brooks, Frederick, Jnr, 1995, The Mythical Man-Month: Essays on Software
Engineering, 20th Anniversary Edition, Addison-Wesley Professional.

Brown-Syed, C., 1993, Soft, Appreciative, and General Systems: Idealism in Action,
Third Canadian Conference on Foundations and Applications of General Science
Theory, Ryerson Polytechnic University, Toronto, Ontario, Canada, 1993

Bruegge, B & Dutoit, 2000, A, Object-Oriented Software Engineering – Conquering
Complex and Changing Systems, Prentice Hall, New Jersey, 2000.

Bryant, A, 1996, Introduction and Overview -The Projects of Methods Integration,
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A &
Semmens (Eds), Electronic Workshops in Computing, Springer

Bubenko, J. (1995). Challenges in Requirements Engineering: keynote address.
Paper presented at the RE'95:
Second IEEE International Symposium on Requirements Engineering, York (UK).

Bustard, DW, Holcombe, M and Sommerville, I, 2004, BoF: New Directions in UK
Software Engineering Research, Proceedings of the 26th International Conference on
Software Engineering (ICSE’04), IEEE

Bustard, DW, He, Z and Wilkie, FG, Linking Soft Systems and Use-case Modelling
through Scenarios, Interacting with Computers, Vol. 13, No.1, Elsevier, October
2000, pp. 97-110

Bustard D.W., Kawalek, P and Norris, M.T. (Eds.), 2000, Systems Modelling for
Business Process Improvement, Artech House, May 2000.

Bustard, DW, He, Z and Wilkie, FG, 1999, Soft Systems and Use-Case Modelling:
Mutually Supportive or Mutually Exclusive?, Proceedings of the 32nd Hawaii
International Conference on System Sciences (HICSS-32), Maui, Hawai (CDROM),
IEEE, January 1999, 8 pages.

Bustard, D. W., Dobbin, T. J., and Carey, B. N., 1996, “Integrating Soft Systems and
Object-Oriented Analysis”, IEEE International Conference on Requirements
Engineering, Colorado Springs, Colorado, April, 1996, pp. 52-59

 237

Bustard, D. W. and Lundy, P.J., 1996, Integrating Process Modelling and Soft
Systems Analysis, Methods Integration Workshop, Leeds, March 1996

Bustard, D, 1994, Progress towards RACE: A ‘Soft-centred’ Requirements Definition
Method, Software Quality and Productivity, 1994, pages 29-36.

Buzan, T., Buzan, B. (2000), The Mind Map Book, Millennium edition, London: BBC
Worldwide

Cantor, M., 1998, Object-Oriented Project Management with UML, John Wiley &
Sons, Canada, 1998.

Cao, G, Clarke,S and Lehaney, B, 2004, The Need for a Systemic approach to
Change Management - A Case Study, Systemic Practice and Action Research, Vol
17, No.2, April 2004

Carroll, J M and Swatman, P A (1999) Opportunism in the Requirements Engineering
process School of Management Information Systems Working Paper 1999/02,
Deakin University, Australia

Carroll, J., (Ed.), 1995, Scenario-Based Design: Envisioning Work and Technology in
System Development, New York: John Wiley, 1995.

CCTA, 1993, Applying Soft Systems Methodology to an SSADM Feasibility Study.
HMSO, Crown Copyright, 1993. London

Champion, D and Stowell, FA, 2003, Validating Action Research Field Studies:
PEArL, Systemic Practice and Action Research, Vol 16. No.1, February 2003

Champion, D and Stowell, F, 2002, Navigating the Gap Between Action and a
Serving Information System, Information Systems Frontiers 4:3, 273-284, 2002,
Kluwer Academic Publishers

Champion, D and Stowell, FA, 2001, PEArL: a systems approach to demonstrating
authenticity in information systems design, Journal of Information Technology,
Routledge, Vol 16, Number 1, March, 1, 2001, pp 3-12

Checkland, P, 2000, The Emergent Properties of SSM in Use: A Symposium by
Reflective Practitioners, Systemic Practice and Action Research, Vol. 13, No. 6, 2000

Checkland, P interviewed by Mark Winter, Human Resource Development
International, 3(3), pp. 411-417

Checkland, PB and Scholes, J, 1999, Soft Systems Methodology in Action with a
Thirty Years Retrospective on SSM, John Wiley, Chichester

Checkland, P.,1997, unpublished presentation given at Systems for sustainability:
People, Organisations and Environments, 5th International Conference of the United
Kingdom Systems Society, Milton Keynes: The Open University, July 1997.

Checkland, PB and Holwell, S, 1998, Information, Systems and Information Systems:
Making Sense of the field, John Wiley & Sons, Chichester

 238

Checkland, P and Holwell, S, 1998, Action Research: its nature and validity,
Systemic Practice and Action Research, 11(1), pp. 9-21

Checkland, PB.,1981, Systems Thinking, Systems Practice, John Wiley, Chichester

Checkland, PB and Holwell, S, 1993, Information management and organizational
processes: an approach through soft systems methodology, Journal of Information
Systems, 3, 1-15

Checkland, PB., and Scholes, J, 1990, Soft Systems Methodology in Action, John
Wiley, Chichester

Checkland, P., 1991 "From framework through experience to learning: the essential
nature of action research," in Information Systems Research: Contemporary
Approaches and Emergent Traditions, H-E. Nissen, H.K. Klein, R.A. Hirschheim
(eds.), North-Holland, Amsterdam, 1991, pp. 397-403.

Checkland PB, 1988, Information systems and systems thinking: time to unite?
International Journal of Information Management, 8: 239-248

Checkland, P and Casar, A, 1986. Vickers’ Concept of an Appreciative System: A
Systemic Account. Journal of Applied Systems Analysis 13:3-17

Chesney, T and Fletcher, H, 2000, Process Differentiation and Information Systems
Development, Proceedings of the 33rd Hawaii International Conference on System
Sciences.

Coad, P and Yourdon, E, 1990, Object Oriented Analysis, Yourdon, Englewood
Cliffs, NJ.

Cockburn, A. ,2002, Agile Software Development. Addison Wesley Professional

Cockburn A., 2001,Writing Effective use cases. Addison Wesley, 2001.

Cockburn, A,1999, Characterizing People as Non-Linear, First-Order Components in
Software Development(Technical Report to be submitted for external publication)

Cockburn A., 1997, Structuring use cases with Goals. Journal of Object Oriented
Programming. Sep-Oct and Nov – Dec. SIGS Publications, 1997.

Computer Weekly, June 8, 2004
www.computerweekly.com/Article131375.htm

Cooke, J, 1996, Methods Integration: Time for Reflection (and Reorientation?),
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A &
Semmens (Eds), Electronic Workshops in Computing, Springer

Cropley, D, Yue, Y and Cook, S, 2003 On identifying a Methodology for Land C2
Architecture Development, Land Warfare Conference, Adelaide, October 2003.

http://www.computerweekly.com/Article131375.htm

 239

Cybulski, J. L., Nguyen, L., Thanasankit, T., and Lichtenstein, S., 2003,
Understanding problem solving in requirements engineering, Burwood,
Australia: School of Information Systems, Deakin University.

Damian, D, Zowghi, D, Vaidyanathasamy, L and Pal, Y, 2004, An Industrial Case
study of immediate benefits of Requirements Engineering Process improvement at
the Australian Centre for Unisys Software, Empirical Software Engineering, 9, 45-75,
Kluwer Academic Publishers, Netherlands

Davis, GB, 1982, Strategies for Information Requirements Determination, IBM
Systems Journal, Vol. 21, No. 2, pp. 4-30

Dawson, C, 2000, The Essence of Computing Projects: a student’s guide, Prentice
Hall

De Bono, E., 2000, Six Thinking Hats, Penguin.

DFes, 2003, The Future of Higher Education, White paper.
http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-
HigherEducation.pdf

Dick, B. and Swepson, P., Appropriate validity and its attainment within action
research:an illustration using soft systems methodology [online].1994.
Available at http://www.scu.edu.au/schools/gcm/ar/arp/sofsys2.html

Dobbin, TJ and Bustard, DW, 1994, Combining Soft Ssytems Methodology and
Object-Oriented Analysis: The search for a Good fit, Proceedings of the 2nd
Information Systems Methodologies Conference, Edinburgh, August 1994

Dobson, J and Strens, R,1994, Organisational requirements definition for information
technology systems, in Proceedings of the first International Conference on
Requirements Engineering, 18-22 April, Colorado Springs, Colorado, IEEE Computer
Society Press, Los Alamitos CA, 158 -65

Doyle, K.G., Wood, J.R.G. and Wood-Harper, A.T. Soft systems and systems
engineering: on the use of conceptual models in information system development. J
of Info Systems, 1993 3, 187-198

Doyle, K and Wood, RJ, 1991, Systems thinking, systems practice, dangerous
liaisons. Systemist, Vol. 13, No.1, pp. 28-30

Dittrich, Y, Floyd, C and Klischewski, R(Eds): Social Thinking – Software Practice.
MIT Press, 2002

Downs, D and Lunn, K., 2002, Analysis and Design for Process Support Systems
using Goal-oriented Business Process Modelling, Workshop on Goal-Oriented
Business Process Modeling (GBPM'02), Toronto (Canada), May 27- 28, 2002,

D’Souza, DF and Wills, AC, 1998, Objects, Components and Frameworks with UML:
The Catalysis Approach, Addison Wesley, Harlow

Drummond, H., 1996, The Politics of Risk: Trials and Tribulations of the Taurus
Project. Journal of Information Technology 11: 347-357.

http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-HigherEducation.pdf
http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-HigherEducation.pdf
http://www.scu.edu.au/schools/gcm/ar/arp/sofsys2.html

 240

Eliens, A, 2000, Principles of Object-Oriented Software Development, 2nd Ed.,
Addison-Wesley

Ewusi-Mensah, K, 1997, Critical issues in abandoned information systems
development projects. Communications of the ACM, 40(7): 74-80.

Ewusi-Mensah, K., 2003, Software Development Project Failures: Anatomy of
abandoned projects, MIT Press

Ewusi-Mensah, K, 1997, Critical issues in abandoned information systems
development projects. Communications of the ACM, 40(7): 74-80

Ferrari, FM, Fares, CB and Martinelli, DP, 2002, The Systemic Approach of SSM:
The Case of a Brazilian Company, Systemic Practice and Action Research, Vol 15,
No. 1, February 2002

Flick U., 1999, An Introduction to Qualitative Research, SAGE Publications, London,
1999.

Flood, R.L.,(2000). A Brief Review of Peter B. Checkland’s Contribution to Systemic
Thinking. Syst. Pract. 13(6), 723-731

Flood, RL, 1999, Knowing of the Unknowable, Systemic practice and Action
Research, Vol. 12, No. 3, 1999

Flood, R and Romm, N, 1997, From Metatheory to Multimethodology,
Multimethodology:The Theory and Practice of combining management sciences
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons

Flood, RL and Jackson, MC, 1991, Creative Problem Solving: Total Systems
Intervention.

Floyd, C, 1987, Outline of a paradigm change in software engineering. 191-210 in G
Bjerknes et al. (Eds.) Computers and Democracy. Avebury:Aldershot.

Flynn, D., 1998, Information Systems Requirements: Determination and Analysis,
(2nd Ed.), Maidenhead:McGraw-Hill, 1998.

Fowler, M., 2003, UML Distilled: A Brief Guide to the Standard Object Modelling
Language (3rd Ed.), Addison-Wesley Professional

Fowler, M. and Scott, K., 2000, UML Distilled(2nd Ed.). Reading, M.A.: Addison-
Wesley. 2000

Fowler, M. and Scott, K, 2000, UML Distilled: A Brief Guide to the Standard Object
Modelling Language (2nd Ed.), Addison-Wesley Professional.

Fuenmayor, R, 2000, A Brief Crack of Light? Systemic Practice and Action Research
(13) 6

 241

Galliers, R D, 1997. Against Obliteration – Reducing risk in business process
change. In steps to the Future – Fresh thinking on the management of IT-based
organisational transformation, edited by Sauer, C., Yetton, P. w. AND Associates, a.
San Francisco:Jossey-Bass Publisher.

Galliers, RD, 1992, Soft Systems, Scenarios, and the Planning and Development of
Information Systems, Systemist, Vol 14, No. 3, pp. 146-59

Galliers, R.D and Land, F.F, 1987 Choosing Appropriate Information Systems
Research Methodologies, Communications of the ACM. 30(11), 900-902.

Geddes & Grossett, English Dictionary, 1999.

Gharajedaghi, J., 1999, Systems Thinking: Managing Chaos and Complexity: A
platform for Designing Business Architecture.Butterworth-Heinemann,1999.
 Gill, A, 1997, Managing a Virtual Organization, Multimethodology:The Theory and
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill,
A, Wiley & Sons

Glass, R. L., 1995, A theory about software's practice (Editor's Corner). Journal of
Systems and Software, 28, 187-188.

Gold, J, 2001, Storying Systems: Managing Everyday Flux Using Mode 2 Soft
Systems Methodology, Systemic Practice and Action Research, Vol 14, No. 5,
October 2001

Graham, I, 1998, Requirements Engineering and Rapid Development, Addison
Wesley, London

Hammer, M and Champy, J. 1995. Reengineering the corporation: a manifesto for
business revolution. Rev. ed. London: Brealey.

Hansson, T, 2003, Learning by Action Research: A Policy for School development,
Systemic Practice and Action Research, Vol. 16, No.1, February 2003

Hawryszkiewycz, I, 2001, Introduction to Systems Analysis and Design, 5th Ed.,
Prentice Hall

Henderson-Sellers, B and Unhelkar, B, 2000, OPEN modelling with UML, ACM
Press, Addison-Wesley

Hindle, T., Checkland, P., Mumford, M. and Worthington, D. "Developing a
Methodology for Multidisciplinary Action Research: A Case Study," Journal of the
Operational Research Society (46:4), 1995, pp. 453-464

Hirscheim, R, Klein, HK and Lyytinen, K, 1995, Information Systems Development
and Data Modelling:Conceptual and Philosophical Foundations, Cambridge
University Press, Cambridge

Holst, M, Mirijamdotter, A, Bergvall-Kareborn, B, Oskarsson, H. 2004. Information
and Communication Technology in Dynamic Organisations., IRIS27, 2004

Holwell, S, 2000. Soft Systems Methodology:Other Voices. Syst Pract. 13(6), 773-
797

 242

Holwell, S,1997, Soft Systems Methodology and its role in Information Systems.
Doctoral Thesis, Lancaster University, Lancaster.

Hopkins, J, 1999, Does the Aptitude Test offered by the School of Computing predict
Students’ Performance in that Programme? Postgraduate Diploma in Education
(PGDip) thesis, University of Technology, Jamaica

Hopkins, J., Providing a semantic model of the Unified Modelling Language 1.3 by
establishing a semantic description of the existing syntactic standard, M.Sc.
dissertation, 2001.

Hopkins, J and Wade, S, 2004, A Study of the Postgraduate Project Process in a
School of Computing. Proceedings of the 7th IASTED International Conference on
Computers and Advanced Technology in Education. August 16-18, Kauai, Hawaii,
USA. (presented)

Hopkins, J and Wade, S, A Successful Intervention in the Academic Learning
Support Process in a School of Computing through the utilisation of Soft Systems
Methodology (SSM), Journal of Advanced Technology, Vol., No., pp:, September 30,
2004, IADAT Publishers. ISSN 1698-1073

Hopkins, J and Wade, S, Major Improvements to the Academic Learning support
process in a School of Computing through the utilisation of Soft Systems
Methodology (SSM), Proceedings of the International Association for the
Development of Advancement in Technology conference on Education (IADAT-
e2004), July 7 – 9, 2004, Bilbao, Spain (presented)

Hult, M. and Lennung, S.A., 1980, Towards a Definition of Action Research: A Note
and Bibliography, Journal of Management Studies, May 1980, pp. 241-250

Jackson, MC, 2003, Systems Thinking: Creative Holism for managers, Wiley Europe

Jackson, MC, 2000, Notes and Insights – Checkland, Peter Bernard (1930-),
Systems Research and Behavioural Science, Syst. Res. 17, S3-S10 (2000)

Jackson, MC, 2000, Systems Approaches to Management, Kluwer/Plenum, New
York.

Jackson, M C, 1997, Pluralism in Systems Thinking and Practice,
Multimethodology:The Theory and Practice of combining management sciences
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons

Jackson, MC, 1991, Systems Methodology for the Management Sciences, Plenum,
New York, NY.

Jackson, M.C., 1991, The Origins and Nature of Critical Systems Thinking. Systems
Practice. 4, 131-149.,.

Jackson, MC, Flood, RL, Mansell, GJ, and Probert, SVE (Eds.), 1991, Systems
Thinking in Europe, Plenum.

 243

Jacobson, I., 2000, The Road to the Unified Software Development Process,
Cambridge University Press & SIGS Books, 2000.

Jacobson, I., Booch, G. and Rumbaugh, J., 1999, The Unified Software Development
Process. Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P. and Overgaard, G.,1992, Object-
oriented Software Engineering: a use case driven approach, Addison-Wesley,
Reading, Mass.

Jacobson, I, 1995. “Use Cases in Large Scale Systems”, Report on Object Analysis
and Design, 1995 1(6), pp. 9-12.

Jacobson, I, 1995, The Object Advantage

Jayaratna, N., Understanding and Evaluating Methodologies; NIMSAD: A Systemic
Framework, Maidenhead:McGraw-Hill, 1994.

Keys, P. and Roberts, M., Information Systems Development and Soft Systems
Thinking: towards and improved methodology. In Systems Thinking in Europe,
Plenum, London. 1991.

Kock, NF, Jr., McQueen, RJ and Scott, JL, 1997, Can Action Research be made
more rigorous in a positivist sense? The contribution of an Iterative Approach,
Journal of Systems and information Technology, V.1, No. 1, pp. 1-24

Kom, J, 1999, Qualitative modelling of information systems. In Synergy Matters:
Proceedings of the Sixth International Conference of the UKSS, Castell, AM,
Gregory, AJ, Kindle, GA, James, ME and Ragsdell, G (eds), Plenum, New York, pp.
571-6.

Kotonya, G. and Sommerville, I., 1998 Requirements
Engineering: processes and techniques, John Wiley.

Krutchen, P., 2000. The Rational Unified Process – An Introduction. 2nd Edition.
Addison-Wesley.

Lane, C and Galvin, K, 1999 Methods for Transitioning from Soft Systems
Methodology (SSM) Models to Object Oriented Analysis (OOA), developed to
support the Army Operational Architecture (AOA) and an Example of its Application,
Command and Control Research and Technology Symposium, U.S. Naval War
College, Rhode Island – June 29 – July 1, 1999.

Lang, N, 1993. Shlaer-Mellor Object Oriented Analysis Rules, A Sigsoft Software
Engineering notes Vol 18 no. 1, Jan 1993.

Larman, C. Applying UML and Patterns. An Introduction to Object Oriented Analysis
and Design and the Unified Process. Prentice-Hall PTR. 2nd Edition 2001

Larsson, NO and Malmsjo, A, 1998, A Model for Design of Human Activity Systems,
Systemic Practice and Action Research, Vol. 11. No 4, 1998

Leon, A., 2000, SDLC – A Guide to Software Configuration Management, Artech
House

 244

Lewis, P, 1994, Information Systems Development, Pitman, London.

Lewis, P.,1993, Linking of Soft Systems Methodology with data-focussed information
systems development. Journal of Information Systems 3 (3) 169-86. 1993;

Liang, Y, West, D and Stowell, FA, 1998, An interpretivist approcach to IS definition
using object modelling, Information Systems Journal, 8, 163-80

Lorenz, M. and Kidd, J., 1994, Object-Oriented Software Metrics: A Practical Guide,
Englewood Cliffs, NJ: Prentice-Hall, 1994.

Lunn, K, 2003, Software Development with UML, Palgrave, MacMillan

Maciaszek, L, 2001, Requirements Analysis and Systems Design: Developing
Information Systems with UML, Addison Wesley

Mann, J., 1996. The Role of Project Escalation in Explaining Runaway Information
Systems Development Projects: A Field Study. Georgia State University.

Mansell, G, 1991, Action Research in information systems development, Journal of
Information Systems (1), 1991, pp. 29-40

Mathiassen, L, 2002, Collaborative Practice Research, Information Technology and
People (14:4), 2002, pp. 321-345.

Mathiassen, L, Munk-Madsen, A, Nielsen, P and Stage, J, 2000, Object-Oriented
Analysis and design, Marko Publishing ApS, Aalborg.

Mathiassen, L and Nielsen, PA, 2000, Interaction and transformation in Soft Systems
methodology, Systems Research and Behavioural Science, Vol. 17, pp. 243-53

Mathiassen, L, Munk-Madsen, A, Nielsen, P.A and Stage, J, 1994, Combining two
approaches to Object Oriented Analysis, Proceedings of the International
Symposium on Object-Oriented Methodologies and Systems, September 21-22,
1994, pages 158-170

May, S and Bousted, M, 2004. Investigation of Student Retention through an
Analysis of the First Year Experience of Students at Kingston University: Widening
Participation and Lifelong Learning, The Journal of the Institute for Access Studies
and The European Access Network, Vol 6, No 2. ISSN 1466-6529, August 2004

Maxwell, J 2003, Thinking For a Change: 11 Ways Highly successful people
approach life and work, Warner Books Inc, NY

Melao, M. and Pidd, M., 2000 A conceptual framework for understanding business
processes and business process modelling, Information Systems Journal 10, 105-
129, 2000.

Midgley, G, 2003, Science as Systemic Intervention: Some Implications of Systems
Thinking and Complexity for the Philosophy of Science, Systemic Practice and Action
Research, Vol 16, No.2, April 2003

 245

Miles, R, 1992, Combining hard and soft systems practice:grafting and embedding
revisited, Systemist, Vol. 14, No. 2, pp. 62-6

Miles, R., 1988, Combining “hard” and “soft” systems practice: grafting or
embedding? Journal of Applied Systems Analysis 15 pp 55-60.

Mingers, J. 2001, "Combining IS Research Methods: Towards a Pluralist
Methodology," Information Systems Research (12:3), 2001, pp. 240-259

Mingers, J., 2000, An idea ahead of its Time: The History and Development of Soft
Systems Methodology. Systemic Practice and Action Research, Vol 13, No. 6,
2000;

Mingers, J, 1997, Multi-paradigm Multimethodology. MultiMethodology. Mingers J.
and Gill, A., Eds. Chichester, John Wiley & Sons:1-20

Mingers, J., and Brocklesby, J, 1996,. Multimethodology: Towards A Framework For
Critical Pluralism. Systemist, Vol.18, Number 3, August 1996,101-131.

Mingers, J, 1995, Using soft systems methodology in the design of information
systems. In Information Suystems Provision: The Contribution of Soft Wystems
Methodology, Stowell, FA, (ed.), McGraw-Hill, London, pp. 18-50

Miles, R., Combining “hard” and “soft” systems practice: grafting and embedding
revisited. Systemist 14 (2) 62-66. 1992;

Mingers, J., 1988, Comparing conceptual models and data flow diagrams. The
Computer Journal 31 (4) 376-379. 1988;

Mingers, J and Gill, A (eds), 1997, Multimethodology:Towards Theory and Practice
and Mixing Methodologies

Mirijamdotter, A. 1998. A Multi-Modal System Extension to Soft Systems
Methodology. Doctoral Thesis, Department of Informatics and Systems Science,
Lulea Technical University, Sweden, Lulea.

Mitev, N. N. 1996. More Than a Failure? The Computerized Reservation Systems at
French Railways. Information Technology and People 9(4): 8-19
Muller, P-A., Instant UML, Birmingham:Wrox Press, 1997.

Munro, I and Mingers J., 2002, The use of multimethodology in practice – results of a
survey of practitioners, Journal of the Operational Research Society, 2002, 53, 369-
378.

Mumford, E. 1995. Effective Systems Design and Requirements Analysis: The
ETHICS Approach. MACMILLAN Press Ltd.

Mumford, E, 1983, Designing Human Systems for New Technology: The ETHICS
Method, Manchester Business School, Manchester.

 246

Munson, J.C., 2003, Software Engineering Measurement, Auerbach Publications

Myers, M.D. and Avison, D.E. (eds.), 2002. Qualitative Research in Information
Systems: A Reader, Sage Publications, London, 2002.

Myers, MD, 1994, Dialectical hermeneutics: a theoretical framework for the
implementation of information systems. Information Systems Journal, 5, 51-70

Myers, M. D. 1994. A Disaster for Everyone to See: An Interpretive Analysis of a
Failed IS Project. Accounting, Management, and Information Technologies 4(4):
185–201.

NCIHE, 1997 Higher Education in the Learning Society: Report of the national
committee, The National Committee of Inquiry into Higher Education.
Recommendation 40

Neumann, P.G., 1995, Computer Related Risks, Reading, MA: Addison-Wesley

Nielsen, J, 2005 Ten Usability Heuristics,
http://www.useit.com/papers/heuristic/heuristic_list.html 10/02/2005

Nguyen, L and Swatman, P A, 1999 Essential and incidental complexity in
requirements models School of Management Information Systems Working Paper
1999/15, Deakin University, Australia

Nickerson, R. S., 1999. Enhancing creativity. In R. E. Sternberg (Ed.), Handbook of
Creativity (pp. 392-430). Cambridge (UK): Cambridge University Press.

Ormerod, R, 1995. Putting Soft OR Methods to Work:Information Systems Strategy
Development at Sainsbury’s, Journal of the Operational Research Society, March 1,
1995., Vol 46, Number 3, pages 277-293

Ormerod, R, 1995, The Role of methodologies in systems strategy development:
reflections on experience, in Stowell, FA, (Ed.), Information Systems Provision: The
Contribution of SSM, McGraw-Hill, Maidenhead

Patching, D., 1990, Practical Soft Systems Analysis, Pitman
Pidd, M (ed), 2004 Systems Modelling: Theory and Practice, John Wiley & Sons,
Hoboken, N.J.

Pidd, M., 1996 Tools for Thinking: Modelling in Management Science, Wiley.

Pollice, G., 2001, Using the Rational Unified Process for Small Projects: Expanding
Upon eXtreme Programming, Rational Software Corporation, 2001 (at
www.rational.com)

Pooley, R and Stevens, P, 1999, Using UML: Software Engineering with Objects and
Components, Addison-Wesley, Harlow

Pressman, RS, 1997, Software Engineering: A Practitioner’s Approach, McGraw-Hill,
London

http://www.useit.com/papers/heuristic/heuristic_list.html

 247

Pressman, R.S, adapted by Ince, D,1997 4th ed, Software Engineering: A
Practitioner’s Approach, European Adaptation by Ince, D, Mc-Graw-Hill

Prior, R., Linking SSM and IS development, 1992. Systemist 14 (3) 128-132. 1992

Pullum, L, 2001, Software Fault Tolerance techniques and Implementation, Artech
House

Remenyi, D and Brown, A, 2002, The Make or Break Issues in IT Management: A
Guide to 21st Century Effectiveness, Butterworth Heinemann

Rose, J, 2002, Interaction, transformation and information systems development – an
extended application of Soft Systems Methodology, Information Technology &
People, Vol. 15, No. 3, pp. 242-268, Emerald Group Publishing Limited.

Rose, J and Lewis, P, 2001, Structuration theory, action research, and information
systems development, paper presented at the IFIP WG 8.2, Boise, ID

Rose, J, 2000, Information Systems Development as action research – Soft Systems
methodology and structuration theory, PhD thesis, November 2002, Lancaster
University, Lancaster

Rose, J, 1997, Soft Ssytems Methodology as a social science research tool, Systems
Research and Behavioural Science, Vol. 14, No. 4, pp. 249-58

Rosenhead, J.V. and Mingers, J. ,2001 Rational Analysis for a Problematic World
Revisited:Problem Structuring Methods for Complexity, Uncertainty and Conflict, (2nd
Edition), Wiley, Chichester

Rosenwein, M. 1997. The Optimization Engine That Couldn't. OR/MS Today 24(4):
26-29
Sambell, K and Hubbard, A, 2004. The Role of Formative ‘Low-stakes’ Assessment
in Supporting Non-Traditional Students’ Retention and Progression in Higher
Education: Student Perspectives, Widening Participation and Lifelong Learning, The
Journal of the Institute for Access Studies and The European Access Network, Vol
6, No 2, August 2004

Sankaran, S, 2001, Methodology for an organisational action research thesis, Action
Research International refereed on-line journal

Sarkar, P and Cybulski, J, Aligning System requirements with stakeholder concerns,
2002

Sau-Ling Lai, L, 2000, An Integration of Systems Science Methods and Object-
Oriented Analysis for Determining Organizational Requirements, Systems Research
and Behavioural Science, 17, 205-228

Sauer, C., Why Information Systems Fail, a case study approach, Waller, Henley,
1994.

Savage, A and Mingers, J, 1996, A framework for linking soft systems
methodology(SSM) and Jackson system development QSD), Information Systems
Journal, 6, 109-29

 248

Sawyer, K, 1992, A contribution towards the debate on linking SSM to IS, Systemist,
14(3), 199-201

Sawyer, K, 1991, Linking SSM to DFDs: the two epistemological differences,
Systemist, Vol. 14, No. 3, pp. 76-80

Schmuller, J., SAMS Teach Yourself UML in 24 Hours (2nd ed.), Sams Publishing,
2002.

Selic, B, 1999, Turning Clockwise:Using UML in the Real-Time Domain,
Communications of the ACM, Vol 42, Issue 10, October 1999, pages 46-54

Senge, P, 1990, The Fifth Discipline, Random House:London

Senge, P, The Fifth Discipline: the Art & Practice of the Learning Organization,
Random House Business Books, 1990.

Sharp, H, Finkelstein, A, 1999, Stakeholder identification in the Requirements
Engineering Process. Proc. Database and Expert Systems Applications(DEXA 99),
Florence, Italy, IEEE Computer Society Press

Skyrme, D J,1997,Multimethodologies-the Knowledge Perspective,
Multimethodology:The Theory and Practice of combining management sciences
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons

Si Alhir, S, 2003, Learning UML, O’Reilly & Associates, Inc

Si Alhir, S, 1998, UML in a Nutshell. O’Reily & Associates, Inc., CA

Siau, K and Halpin, T., 2001, Unified Modelling Language: Systems Analysis, Design
and Development Issues, Idea Group Publishing

Smith, L W, 2000, Project clarity through stakeholder analysis: CROSSTALK: the
Journal of Defense Software Engineering: 4 -9.

Smyth, D.S., and Checkland, P.B.,1976, Using a systems approach: the structure of
root definitions. Journal of Applied Systems Analysis, 5(1), 75-83

Snoeck, M, Poelmans,S and Dedene, G, 2001, A layered Software Specification
Architecture, Lecture Notes in Computer Science 1920, in Laendler, AHF, Liddle,SW
and Storey, VC, ed., ER2000, 19th International Conference on Conceptual
Modelling, Salt Lake City, UTAH, USA, October 2000.

Sommerville, I, 2000, Software Engineering, 6th ed., Addison-Wesley, Reading, MA

Sommerville, I and Sawyer, P, 1997, Requirements Engineering: A Good Practice
Guide, John Wiley & Sons, Chichester

Spear, R, The Dark Side of the Moon – Unilluminated Dimensions of Systems
Practice, Systemic Practice and Action Research, Vol 14, No. 16, December, 2001

Standish. (1995). Most Programming Projects Are Late. West Yarmouth (MA):
Standish Group.

 249

Stephens P. and Pooley R. Using UML-Software Engineering with Objects and
Components, Addison Wesley, London, 1999.

Stowell, FA, 2000, Modelling IS requirements for complex systems. In Systems
Modelling for Business Improvement, Bustard, DW, Kawalek, P and Morris, MT
(eds), Artech House, pp. 171-86

Stowell, FA and Champion, D, 2000, Interpretivist modelling for information system
definition. In Systems Engineering for Business process Change, Henderson, P (ed),
Springer, pp. 106-16

Stowell, FA, West, D and Stansfield, M, 1997, Action Research as a framework for IS
research. In Information Systems:An Emerging Discipline?, Mingers, J and Stowell,
FA (eds), McGraw-Hill, London.

Stowell, FA. and West, D. (1994) Client-Led Design:A Systemic Approach to
Information Systems Definition, McGraw-Hill, Maidenhead

Stowell, F and West, D, 1994, Soft Systems Thinking and information systems: A
framework for client-led design., Information Systems Journal, 4, 117-127

Stowell, I. (ed.) (1995), Information Systems provision: The provision of Soft Systems
Methodology – London:McGraw-Hill

Susman,GI and Evered, RD, 1978, An assessment of the scientific merits of action
research, Administrative Science Quarterly, Vol. 23, pp. 582-603

Taylor, MJ, Moynihan and Wood-Harper, AT, 1998, Soft Systems Methodology and
Systems Maintenance, Systemic Practice and Action Research, Vol. 11, No. 4, 1998

The Independent, June 4, 2004
http://millenium-debate.org/ind4june042.htm

Thomas, J. C., Lee, A., & Danis, C. (2002). Enhancing creative design via software
tools. Communications of the ACM, 45(10), 112-115.

Torlak, G, 2001, Reflections on Multimethodology: Maximizing Flexibility,
Responsiveness, and Sustainability in Multimethodology Interventions Through a
theoretically and practically improved version of Total Systems Intervention (TSI),
Ssytemic Practice and Action Research, Vol. 14, No. 3, 2001

Tsouvalis, C and Checkland P, 1996, Reflecting on SSM: the dividing line between
‘real world’ and ‘systems thinking world’, Systems Research, 13(1), pp. 35-45

Ulrich, W, 2003, Beyond Methodology Choice: Critical Systems Thinking as Critically
Systemic Discourse, Journal of the Operational Research Society, April 2003, Vol 54.
no 4, pp 325 -342(18)

UMISD, 1998, Unified Mechanism for Information Systems Definition

Varey, R.J, Wood-Harper, T and Wood, B., 2002, A theoretical review of
management and information systems using a critical communications theory.
Journal of Information Technology, 2002, 17, 229-239

http://millenium-debate.org/ind4june042.htm

 250

Wade, S, 2004. An Approach to Integrating Soft Systems Methodology and Object
Oriented Software Development, UKAIS

Wade S and Hopkins J, A Framework for Incorporating Systems Thinking into Object
Oriented Design. Published in refereed proceedings of The 14th International
Conference on Advanced Information System Engineering, Toronto, 2002,

Wade, S; Mansell, G and Hopkins J (2002): Integrating Systems Thinking and Object
Oriented Design. OT2002 (held at Oxford University).

Walker, A, Spink, M and Vlissidis, P (1996), The Application of Structured
Analysis/Formal Design Method to a Case Study from the Nuclear Industry
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A &
Semmens (Eds), Electronic Workshops in Computing, Springer

Walsham, G, 1995, Interpretive case studies in IS research: nature and method,
European Journal of Information Systems, 4, 74-81

Walsham, G, 1993, Reading the Organization:metaphors and information
management, Journal of Information Systems, 3, 33-46

Walsham, G, Symons, V and Warma, T,1988, Information systems as social
systems: implications for developing countries. Information Technology for
Development 3(3), 189-204.

Wang, Y and Bryant, A, 2002, Process-Based Software Engineering: Building the
Infrastructures, Annals of Software Engineering, 14, 9-37, Kluwer Academic
Publishers, Netherlands

Warmer J and Kleppe A, The Object Constraint Language:Precise Modelling with
UML, Addison Wesley Longman, 1998.

Warmington, A, 1980 Action Research:Its Method and its Implications. Journal of
Applied Systems Analysis. 7, 23-39.

Warren, L, 2003, toward Critical Intervention in Small and Medium – Sized
Enterprises: A Case Study, 2003, Systemic Practice and Action Research, Vol 16,
No. 3, June 2003

Webb, M and Hill, M, 2003, The Institution Gets its Act Together: linking learning and
teaching and widening participation strategies to improve completion rates, Widening
Participation and Lifelong Learning, The Journal of the Institute for Access Studies
and The European Access Network, Vol 5, no 3, December 2003

Weisfeld, M, 2002, The Object-Oriented Thought Process: The Authoritative Solution,
SAMS Publishing

Wend, P, 2004, Improving Student Success through a Joined-Up Institutional
Approach, Widening Participation and Lifelong Learning, The Journal of the Institute
for Access Studies and The European Access Network, Vol 6, No 2, August 2004

 251

West, D, 1995, The appreciative inquiry method: a systemic approach to information
systems requirements analysis. In Information System Provision: The Contribution of
Soft Systems Methodology, Stowell, FA (ed), McGraw-Hill, London, pp. 140-58

Willocks, L and Graeser, V, 2001, Delivering IT and E-Business Value, Butterworth
Heinemann

Wilson, B, 2001 Soft Systems Methodology: Conceptual model building and it s
contribution, Wiley Publishers

Wilson, B., 1990, Systems: Concepts, Methodologies, and Applications, 2nd Edition,
John Wiley & Sons, New York, 1990

Winter, MC, Brown, DH and Checkland, PB, 1995, A role for soft systems
methodology in information systems development, European Journal of Information
Systems, Vol. 4, pp. 130-142

Wood-Harper, A.T. "Viewpoint: Action Research," Journal of Information Systems (2),
1992, pp.235-236.

Wood-Harper, A.T. "Research Methods in Information Systems: Using Action
Research," in Research Methods in Information Systems, E. Mumford, R.A.
Hirschheim, G. Fitzgerald and A.T. Wood-Harper (eds.), North-Holland, Amsterdam,
1985.

Xu, L.D, 1995, Systems Thinking for Information Systems development. Systems
Practice 8(6), 577-589.
Zachman, JA, 1987, A framework for information systems architecture, IBM Journal
26(3), 1987, 276-292

Zhao, J, 2004, Robust Object Oriented Systems Analysis
http://consulting.dthomas.co.uk

URLs
http://www.hefce.ac.uk
http://plw.media.mit.edu/people/maeda/designmsthesis.pdf, Maeda, John, 2002
http://www.ctg.albany.edu/publications-19/01/2005 - Centre for Technology in
Government
http://www.sdmagazine.com, 2005

http://consulting.dthomas.co.uk/
http://www.hefce.ac.uk/
http://plw.media.mit.edu/people/maeda/designmsthesis.pdf
http://www.ctg.albany.edu/publications-19/01/2005
http://www.sdmagazine.com/

 252

	1.5.2.2 Research Question 2
	2.1. Introduction
	These hard methods or approaches can be further subdivided into structured methods and object oriented methods. Structured methods include the following.
	Structured Systems Analysis
	
	Chapter 3- Unified Modelling Language (UML)
	2. Activities
	3. Decision Points
	4. Guards
	5. Parallel Activities
	6. Swimlane Guidelines
	
	Chapter 5- Method of incorporating Systems Thinking into Information Systems design (MoIST)
	SSM’s Five Es Performance Indicators for Decision Criteria
	5.8 Limitations and challenges of the MoIST method & proposed solutions
	
	Fig 6.4.1 Application of Option B within the MoIST method
	Figure 6.4.2: Conceptual model was derived from the SSM finding out stage.
	7.7.5 Application of Option B within the MoIST method
	Figure 7.8: Conceptual model was derived from the SSM finding out stage.
	8.5 Research products or artefacts
	8.6 Conclusion
	Bibliography

