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Abstract 
The research explores ways of making the information systems development process 

more effective.  The thesis documents an original design method.  This is the method 

of incorporating Systems thinking into Information Systems Design (MoIST).  The 

thesis demonstrates that MoIST improves information systems design and adds to 

the effective arsenal of methods that already exist. 

 

The Computer Science literature has identified some weaknesses in the software 

development methodologies. These weaknesses include premature design decisions 

taken before major requirements are known.  Another is the dearth of options for 

applying Systems Science and information systems design techniques in a UML-

based context.  It was found that these weaknesses sometimes resulted in software 

failures.  These findings have been confirmed in the empirical and the evaluation 

portion of the research.   

 

The essence of the thesis is that appropriate software development strategies may 

be chosen at various points in a project. The choice of strategy is based upon the 

value of particular factors.  These factors include confidence in requirements, 

development environment structuredness, user types and developer types.   

 

In order to achieve the research aims, the MoIST is utilised to preserve the 

methodological strengths of the hard systems engineering paradigm.  It 

simultaneously attempts to minimise its weaknesses by combining it with a systems 

science approach called Soft Systems Methodology (SSM).  The research 

incorporates this non-traditional ‘soft’ Systems Thinking into traditional ‘hard’ 

Information Systems Design.  The two main contributions of the thesis are the 

transformation of SSM conceptual models into UML use case diagrams and activity 

diagrams.  Another is the creation of MoIST Project Option Selection Tool (MoPros). 

 

This MoIST method has been tested empirically by utilising it in a complex, 

unstructured setting in a School of Computing and Engineering.  Based on the 

theoretical and practical work conducted, it is concluded that the MoIST method is 

effective in several ways.  It provides coherence and structure to complex software 

projects and can help to facilitate decisions about improvement strategies. It also 

successfully incorporates the results of SSM analysis into requirement specification 
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based on the UML.  The MoIST method is offered as a viable option to add to the 

existing development alternatives for successful software development. 
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Chapter 1 

 
1.1  Introduction 

 

In many nations of the world today, news of instability and many disasters are 

shocking happenings being reported across the globe.  Economic reverses, 

terrorism and fear seem to have become the order of the day. In stark contrast to 

such negativity, the astoundingly positive technological progression of our day 

would have boggled the minds of our forefathers. They would not have believed it 

then even if they were told (Newsweek, 27th January, 2005). 

 

As a microcosm of global changes, some universities in the United Kingdom (UK) 

have been experiencing radical changes and “shake-ups”.  This has led to the 

rethinking of some of the teaching and learning strategies currently employed in 

these universities (Wend, 2004).  In the area where I lived and conducted my 

research – the north of England – schools and departments within universities 

have been similarly affected.  Having spent three (3) years in my particular 

School of Computing and Engineering has afforded me a unique perspective on 

the organization.  This has led to a greater familiarity with its attendant virtues 

and unstructured complexities. This vantage point is not easily gained by most 

external consultants, developers or methodologists. Being an insider provided me 

with multiple advantages and benefits.  These included a more comprehensive 

understanding of the real functioning of the organization and made the 

organization’s cultural ethos more transparent.  This made it possible to effect a 

more successful and relevant intervention in the organization as I was in the 

midst of the action research being carried out. One lesson I learnt from this 

research is the value of staying very close to the phenomenon one is studying, 

rather than doing scholarly work at arm’s length (Sankaran, 2001).  Some of the 

difficulties experienced by universities are the result of the changing times we live 

in.  This is exacerbated by national governmental guidelines, international, 

educational, political and cultural dynamics. 

 

In recent years the UK government has indicated that Widening Participation in 

higher education is among its highest priorities.   

 

On the 22nd of January 2003 the Secretary of State for Education and skills, 

Charles Clarke, announced publication of the white paper “The future of Higher 
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Education” which sets out the government’s plans for radical reform and 

investment in universities.  Participation in Higher Education will equip people to 

operate productively within the global knowledge economy.  It also offers social 

benefits, including better health, lower crime and a more tolerant and inclusive 

society. It aims to ensure that all those with the potential to benefit from Higher 

Education have the opportunity to do so, whatever their background and 

whenever they need it  (http://www. hefce.ac.uk). 

 

 

Ambitious targets have now been set for universities.  This is to ensure that the 

advantages of a university education are available to as wide a constituency as 

possible. The government seeks to rapidly increase the number of students from 

traditionally underrepresented social and ethnic groups.  The government stated 

its intention of aiming for a 50% participation rate in higher education (DFes, 

2003).  This has left universities debating whether to lower established standards 

to ensure high recruitment levels or whether to spare no cost in getting students 

up to the requisite academic level (May and Bousted, 2004). In the midst of these 

governmental strategies, retention of students is at an all-time low (Webb and 

Hill, 2003).  Several educational reforms have been recommended that affect 

secondary, further and higher education. These include the 14-19 Tomlinson’s 

Report done by Mike Tomlinson on the state of secondary education in England, 

the Dearing Report, the National Curriculum reform among others (DFes, 2003).  

 

During my time of research at the University, the School of Computing and 

Engineering experienced some major changes.  Several years ago, the popularity 

of Computing as a seemingly lucrative career choice attracted many new 

students.  Subsequently there was a great rise in the student numbers.  This 

resulted in new staff members being employed to meet the demand.  Within a 

matter of years, retention of students dropped to approximately fifty percent 

(50%).  This meant that there was a dip in the financial viability of the school.  

Consequently, approximately fifty percent (50%) of staff were made redundant.  

This was not an isolated incident which was peculiar to one university, it is a 

reflection of happenings in the wider society and is replicated in universities all 

over the UK  (Education Guardian, 19/10/2004).   

Universities have been left by governments to be largely self funded. Their 

financial viability and existence depends largely on their valued clients – the 

students.  Recruitment and Admissions are areas that universities are attempting 

http://www/
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to streamline in order to become more efficient. As Professor Stephanie 

Haywood, the Head of Engineering at the University of Hull, UK said, 

 

‘we all feel the squeeze these days.  Our student numbers are good but our per 

capita grant is decreasing year on year in real terms, so if we want to maintain 

the size of the department, the pressure is on to bring in new income’ 

 

(Education Guardian, October 19, 2004. page 20) 

 

 

It is a common practice today for policy makers in organizations to attempt to 

regulate this kind of problematic situation by economic means and by 

mechanisation using Information Technology.  This regulation is exercised at the 

expense of other types of regulations.  These are namely social, emotional, 

political and cultural aspects of organizations.  These are as important to 

organizations as economic factors;  yet these are largely ignored in most modern 

organizations.  Organizations generally and in this specific case, universities, are 

expected to function as businesses (Mirijamdotter, 1998).  This is usually the 

prevailing modus operandi of technocrats in organizations.  As problems occur, 

the perception is usually that there is not enough time to ‘waste’ thinking about 

the problem and structuring or formulating a solution.  Instead, an immediate 

technological solution is sometimes proposed. This is the bias towards hard 

systems engineering solutions.  This is not inherently incorrect or illogical.  The 

problem though is that these hard systems solutions have limitations and 

therefore do not always address the root problem (Ulrich, 2003).  This 

mechanistic view has generated criticism from some quarters of mainstream 

Computer Science. It has subsequently led to the development of new fields such 

as Systems Thinking, SSM, Business Process Modelling and Critical Systems 

Thinking among others (Checkland, 2000, 1998, 1981, Ulrich, 2003). 

 

The School of Computing and Engineering and its areas with potential for 

streamlining has been the focussed area of this research. In order to make some 

sections of the school more efficient, ‘hard’ software systems such as Blackboard 

v 6 - a Virtual Learning Environment and Attendance Monitoring Software were 

introduced to help bolster the retention levels.  To date, these hard solutions, 

whilst effective in their own right; seem not to have prevented the continual drop 
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in student rates.  Logically, this suggests then, the possible existence of other 

solutions or more accurately phrased – additional solutions to hard systems.   

 

Soft and hard methodologies cover different parts of the life cycle, particularly 

when there is uncertainty about the goals or strategy of the organization as a 

whole.  A hard approach will be more appropriate once any initial uncertainties 

and ambiguities have been resolved (insofar as this is possible), since the 

emphasis then shifts to a specific project with relatively clear goals and 

boundaries… in certain situations, hard and soft methodologies can complement 

each other, and can be used together to help overcome some of the perennial 

difficulties in systems development (Bennett et al, 2002 p 568) 

 

This research shows that a valid solution lies in the utilisation of Soft Systems 

Methodology (SSM). The novel Method of incorporating Systems Thinking into 

Information Systems design (MoIST), developed in this research has been 

applied in the School of Computing and Engineering.  This application of MoIST 

has been made to two (2) major functional areas. These are the Academic Skills 

Support Process and the Postgraduate Project Process.  It is within this context 

that this thesis has been evaluated empirically. 

 

 

 

 

1.2  Background to thesis 
In the earlier years of software development, it was usually understood by IT 

practitioners that the phases of the Software Development Life Cycle generally 

led from analysis of user need, to requirements capture, to systems design, to 

implementation.  Times however have changed and the software industry and its 

methods and practices have changed right along with it in sometimes radical and 

unpredictable ways (Henderson-Sellers and Unhelkar, 2000).  As the software 

industry hurtles forward into emerging technologies in an increasingly complex 

market place, there is an urgent need.  This need is for a flexible method that can 

function within a ‘process environment’ and can be tailored.  This would be a 

customized method that would enable the software development process to be 

tailored to precisely fit the individual organization’s development environment 

(Henderson-Sellers and Unhelkar, 2000). 
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The SDLC represents a sequence of stages in which the output of each stage 

becomes the input for the next.  This cycle has been the bedrock of the software 

development process over the years since its inception (Centre for Technology in 

Government, 2005). 

 

The SDLC’s workings involve cycling through the phases of analysis, design, 

implementation, testing, deployment and maintenance.  Over the years many 

amendments have been made to this sequence and the format; but the re-worked 

methods usually adhere basically to the tried and tested traditional software 

development life cycle. These include the reality that real projects rarely follow the 

sequential flow of analysis through to design and eventual maintenance.  At the 

beginning of most projects, there is usually often a great deal of uncertainty about 

requirements and goals.  It is therefore difficult for customers to identify these criteria 

on a detailed level. An effective software development method must deal with this 

natural uncertainty in an efficient manner.  A software development project generally 

goes through the software development process more than once.  The architecture is 

not always excellent and easy to use.  The implementation design is not always 

sound.  The realisation is not always fixable as testing proceeds.  Mistakes might not 

be all in the realisation.  Consequently their repair is not always smoothly 

interspersed with component and system testing.  Generally one does not build a 

whole system all at once.  Additionally, developing a system can be a long 

painstaking process that does not yield a working version of the system until late in 

the process (Centre for Technology in Government, 2005).  

 

Times have changed.  Software projects have gotten progressively larger as clients 

have become more technically savvy and knowledgeable (Online Software 

Development Magazine, http://www.sdmagazine.com, 2005).  The dawning of the 

information age has empowered the typical computer science lay person to 

understand concepts that would have daunted others only a few years ago.  Client 

expectations have dramatically increased over the years. This means that there is 

almost an abnormal demand for software product delivery in less time than formerly 

requested.  This demand has spawned a proliferation of other noted methods 

(Henderson-Sellers et al, 2000). 

 

The software industry still tries to meet client demands.  Consequently year by year 

there have been numerous instances and reports of software failures.  These failures 

have now become a badge of dishonour for software development as an industry 

http://www.sdmagazine.com/
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(Neumann, 1995; Ewusi-Mensah, 1997;Ewusi-Mensah, 2003).  Many attempts have 

been made to ensure that the discipline of developing software is made more 

precise.  The label of ‘software engineering’ was even coined to somehow convey 

the idea of the traditional engineering discipline with all its precision and super 

accuracy (Wilson, B, 1990).  This change did not have the intended effect as it has 

been seen that software development is different from traditional engineering.  

Traditional engineering assumes that the problem is known while with software 

engineering, the problem to be solved has to first be discovered.  In traditional 

engineering, the requirements are already clear and well known before the project 

starts.  The client knows exactly what is wrong and as the requirements are well 

known, the engineering principles are then applied usually to a successful 

conclusion.  In contrast, the requirements for software engineering are usually not 

known and must be discovered before any engineering principles can be successfully 

applied (Neumann, 1995). 

 

Studies have revealed that the scope, complexity, and pervasiveness of computer-

based and controlled systems continue to increase dramatically (Pullum, 2001). The 

consequences of these systems failing can range from the mildly annoying to 

catastrophic, with serious injury occurring or lives lost, human-made and natural 

systems destroyed, security breached, businesses failed, or opportunities lost. 

Software faults may be traced to incorrect requirements where the software matches 

the requirements, but the behaviour specified in the requirements is not appropriate 

(Pullum, 2001).  This means therefore that the main focus for improvement must of 

necessity be focussed around those analysis and design phases of software 

development. 

 

 

1.2.2 Thesis Aim 
The thesis seeks to establish a stronger link between the requirements analysis and 

the design phases of the software development life cycle.  This is achieved by 

extending and strengthening the requirements analysis phase using the Method of 

incorporating Systems Thinking into Information Systems design (MoIST, chapter 5).  

The MoIST method uses Soft Systems Methodology (SSM) to facilitate a 

comprehensive examination of the situation before it is modelled (Checkland, 1981, 

Checkland and Scholes, 1990).   
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MoIST joins the company of software development methods already being 

successfully used.  These include ETHICS, BASE and BOOST (Mumford, 1993, 

2000, 2003, Bustard, 2001, Dobbins, 1999).  Each of these methods has its own way 

of meeting the needs of a variety of problem facets within the software development 

spectrum.  MoIST’s unique assertion is that if a particular software project matches 

the criteria stipulated in  (see MoIST’s Project Option Selector template, chapter 5) 

then, the MoIST could help to alleviate many of the eventual software difficulties 

encountered and increase the chances of a successful software product.  This would 

utilise the generic principles of problem/stakeholder domain analysis and 

analyst/requirements engineers’ domain analysis.   

 

1.3   Deficiencies in existing requirements analysis methods 
Effective software development should centre around establishing what the software 

system is intended to do.  Solutions lie in the area of identifying ways of verifying 

what the system should do, what the client wants the system to do and what the 

system should do based on the developer’s expertise (Si Alhir, 2003).  When used 

alone in the requirements elicitation process, hard systems engineering models can 

encourage early design decisions before opportunities for improvement have been 

agreed (CCTA, 1993).  Conversely, Soft Systems Methodology (SSM) used on its 

own in the requirements elicitation phase may lack some of the detailed information 

required by programmers.  The literature clearly demonstrates that there are many 

advantages and some disadvantages in combining soft systems science with hard 

systems engineering. (for a more detailed review, see chapter 4).  The research 

focuses mainly on the advantages of this amalgamation.  It demonstrates ways of 

integrating techniques from SSM (Soft Systems Methodology into the requirements 

elicitation stage of a software system development method based on the Unified 

Modelling Language (UML) (Siau and Halpin, 2001; Booch et al, 1998; Fowler and 

Scott, 2000; Maciaszek, 2001, Si Alhir, 2003).   

 

Use case analyses bring out very little of what goes on within a business, but they 
contain much more operational, logical detail than equivalent SSM models.  This can 
help the analyst to better understand each activity.  Through multiple perspectives, 
SSM promotes a truly thorough examination of why a business exists and hence 
helps to more fully identify critical logical decisions.  By linking some of these softer 
approaches to the UML, it is then easier for the software practitioner to select a 
particular course of action in coming to terms with the problem. (Donaldson and 
Jenkins, 2001) 
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The deficiencies in the requirements analysis process has led to many documented 

software failures that will be discussed below (Abdel-Hamid and Madnick, 1990). 

 

 

1.3.1  Resultant software failures 
A project that fails to meet a customer’s need, no matter how technically 

sophisticated or perfect it is, is destined to fail (Remenyi, D, 1999).  One of the most 

consistent  features of information systems development over the years has been its 

many failures (Ewusi-Mensah, 2003).  These failures have ranged from complex, real 

time and life critical software systems to less sophisticated information systems.  

Examples include the London Stock Exchange Taurus System which cost 

approximately £480 million (Drummond, 1996; Willcocks and Graeser, 2001).  This 

system was never completed or delivered.  The verdict was an inadequate match 

between the needs of the users and the proposed systems solutions (Willcocks and 

Graesar 2001).  Information Systems failures generally occur because goals and 

requirements are poorly defined.    

 

These failures of conceptualisation involve either a misunderstanding of the clients’ 
needs and requirements or a misunderstanding of technology.  (Remenyi, D, 1999).  
 

There is usually a failure to manage people and results in communication 

breakdown.  Information systems projects in general continue to fail at an 

unacceptable rate (Abdel-Hamid and Madnick, 1990, Myers, 1994). Over the years 

much research has gone into finding more efficient means of building software 

systems and of ensuring that they are satisfactorily completed to the users’ 

specifications. Methodologies for software have been developed and amalgamated 

over the years in order to aid in the production of successful computer systems.  

Despite this gargantuan effort, intensive research in the past has generated too little 

understanding of how to avoid failures in systems development initiatives (Mitev, 

1996, Rosenwein, 1997). From the growing incidence of failed projects, (see table 

1.1) it can be concluded that advances in technologies are not sufficient to save 

systems projects. Instead, they remain susceptible to failure until it is understood how 

technological, organizational, and institutional changes are interwoven in the systems 

and how systems developers should accordingly state and manage requirements for 

such systems Abdel-Hamid and Madnick, 1990; Myers,1994; Drummond 1996; Mitev 

1996; Rosenwein,1997, Dittrich, Floyd and Klischewski,2002. 
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  Type of abandonment 

Published study Total 
(%) 

Substantial 
(%) 

Partial 
(%) 

Standish Group (1995, 
1998)[*]  

31 
(28)[*]  

52.7 (46)[*]  Not 
available 

KPMG (Cole 1995) 10 28 24 

OASIG (1996) 40 25 80 

Ewusi-Mensah and 
Przasnyski (1994) 

44 16 9 

[*]Reported in Whiting 1998 

Table 1.1: Summary data on software project abandonment, Ewusi-Mensah, K, 
2003, Chapter 1 
 
1Estimations on IT expenditure in the UK public sector for 2003/2004 alone have set 

it at greater than £12.4 billion.  The projected sum for overall IT spending in the UK is 

deemed to be £22.6 billion.  Despite these staggering figures, the majority of 

software development projects repeatedly fail to deliver crucial benefits in a timely 

fashion and fail to meet cost and specification targets (Report of the Royal Academy 

of Engineering and British Computer Society, 2003). Some of the notable ones are 

examined here.   

 

Examples of Software failures 
On Thursday, June 3, 2004, Thousands of airline passengers were left stranded 

when the UK’s National Air Traffic Control computer system run by a thirty year old 

software crashed.  Overnight testing of an upgrade of the flight data processing 

system precipitated the disaster.  The software is not due to be replaced until 2010.   

The new National Air Traffic Operations Centre was slated to open in 1996.  It 

opened in 2002, five years late at a cost of £623 million, twice its original cost.  The 

plan is to spend £1 billion upgrading the system over the next eight years (BBC 

News, July, 8, 2004, Computer Weekly, June 8, 2004, The Independent, June 4, 

2004).   

  

                                                 
1 Report of the Royal Academy of Engineering and British Computer Society, April 2003 

http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ftn.ch01tablefnt01#ftn.ch01tablefnt01
http://library.books24x7.com/book/id_7007/viewer.asp?bookid=7007&chunkid=977152788&previd=IMG_1#ch01tablefnt01#ch01tablefnt01
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In 1999, Highmark, a US health insurance company contracted KPMG Consulting to 

develop an electronic billing and accounts receivable system (Ewusi-Mensah, 2003).  

The completion date was slated to be 2002.  Two years later with the project only 20 

percent completed, KPMG requested $8 million in addition to $12 million already paid 

to them.  Highmark refused and sued KPMG.  

 

The Libra IT system for magistrates’ courts was commissioned in 1998.  £184 million 

was paid out initially.  Things came to a halt in 2002.  The deal was revived in 2002 

at a cost of more than £318 million.  The total system development time jumped to 

8.5 years.  In 2003, Libra was labelled as ‘one of the worst IT projects ever seen’ by 

the chairman of the Public Accounts Committee (Report of the Royal Academy of 

Engineering, 2003). 

 

Hershey Foods hired four (4) different consulting firms to work with its IS department 

in 1996.  This was to work on the Enterprise Resource Planning Systems.  In 1999, 

the implementation was three (3) months behind schedule.  The decision was taken 

to condense the implementation time from the estimated four (4) years to thirty (30) 

months.  This caused chaos.  Hershey Foods took a year to fix all errors and return 

to some semblance of operational normalcy.  If it were a smaller company with less 

resources, it might have never recovered, but might have been bankrupt (Ewusi-

Mensah, 2003). 

 

The National Health Service (NHS) Direct2 is among the strategic information 

systems exemplars and beckons as a beacon of hope (see table 1.2).  NHS Direct’s 

mandate is to provide up to date health information.  Another part of its mandate is to 

dispense advice to the populace of England and Wales via a telephone line and 

online facilities.  Development began in 1997.  The implementation timeframe for the 

telephone helpline was 2000.  This was achieved in 2000.  The target time for the 

online facilities to go live was set for 1999.  This was successfully done in 1999.  

Success was attributed to effective use of piloting and wide ranging consultation of 

key stakeholders within the constraints of the tight schedule. 

 

Ariane 5 had her maiden flight on June 4, 1996.  This flight ended with the launcher  

exploding owing to a series of software failures. 

 

                                                 
2 Report of Royal Academy of Engineering , 2003 
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The London Ambulance Systems failed twice in 1992.   This was attributed to 

several software engineering failures.  Specifically project management defects were 

cited as contributory factors.  The monetary cost of the failure was relatively small at 

£9 million.  The human cost however was much higher.  This was because it was 

thought that many persons perished who would not have if ambulances had been on 

the scene in a more timely manner. 

 

For Therac 25, between 1985 and 1987 persons suffered serious radiation 

overdoses.  This was caused by software-related malfunctions of the Therac-25 

radiation therapy machine.  An important core cause was a lack of quality assurance.  

This led to an overcomplex, inadequately tested, under documented system being 

developed.  Additionally there was failure to take corrective action. 

 

In the Denver Baggage handling system fiasco, the system overran the planned 

schedule significantly.  This prevented the airport from opening on time.  The system 

had major software viruses and cost almost an additional $200 million more to 

ensure that it worked. 

 

Taurus was a projected automated transaction settlement system for the London 

Stock Exchange.  The project was cancelled in 1993 after being worked on for more 

than five (5) years.  The project cost was approximately £75 million.  The eventual 

cost to customers was estimated at £450 million.  The credibility of the London Stock 

Exchange suffered immensely as a result. 

 

The software failures point to the need to rethink the way software development is 

currently done.  There are many reasons given for all of the above software failures.  

The root cause of all the failures however were linked to a poor understanding of the 

problem domain in each situation.  There are many other factors that impact the 

software development process that need to be examined before the design and 

implementation occur.  The view of software as a purely objective product that is 

created devoid of context is somewhat misleading.  Context be it organizational, 

cultural, managerial or technological shapes the software development process and 

the final product created (Ewusi-Mensah, 2003). 
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1.4  The nature of the thesis solution 
The search for the perfect, most efficient way of growing software and of software 

development has been refined and experimented with. Yet in spite of this, huge 

software developments continue to fail often and at great cost to taxpayers and 

corporations. (see table 1.1) A proliferation of methods and methodologies abound 

which purport to offer the cure for all software development ills (Henderson-Sellers et 

al, 2000).  There has been enough evidence however to prove that there is no one 

set way of approaching software development.  Many factors affect the 

appropriateness of a methodology, including the type of project (large, small, routine 

or mission critical), application domain (real-time, safety critical, user centred, highly 

interactive, distributed or batch mode) and nature of information systems 

development organization (Bennett et al, 2002, p 567).  Each development project 

has its own unique set of heuristics and problems and its own set of unpredictable 

team members.  What the software development industry needs then is not so much 

a perfect method for developing software; but an increase in the number of proven 

methodologies that work. (Report of the Royal Academy of Engineering and British 

Computer Society, 2003). These would add to the toolkit of developers and enable 

them to more closely match methods more closely to the characteristics of their 

projects.  That there is still a demand for other software methods and tools is 

confirmed by a recent study. 

 

Further developments in methods and tools to support the design and delivery of IT 
projects could help to raise success rates. 
 
 (Royal Academy of Engineering and British Computer Society, RAE & BCS 2003) 
 

This research demonstrates how Soft Systems Methodology (SSM), a problem 

structuring methodology is integrated with  a method based on the Unified Modelling 

Language (UML), an object oriented notation and graphical language. This results in 

an amalgamation of hard systems thinking and soft systems thinking. This fusion 

could possibly help to minimise many of the documented software system disasters 

and could utilise time, money and machine resources more efficiently.  The Unified 

Modelling Language (UML) is relatively new and is filled with multiple possibilities for 

research.  It is gaining much support as it is backed by the Object Management 

Group (OMG). The UML has become a leader worldwide and forms the basis of most 

modern software development Computer Aided Software Engineering (CASE) tools 

(Henderson-Sellers et al, 2000). 
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SSM focuses on human activity systems while UML use case models assume use of 

technology.  The combined use of the SSM and UML-based methods yields a more 

balanced approach.  Like SSM, Use Case Modelling is concerned with describing 

system behaviour.  In SSM, the ‘system’ is that of human activity at a level of 

abstraction above implementation.  Use Case Analysis was developed initially for 

people using computing systems; it can also be applied to the business process.   

 
The Office of Government Commerce lists lack of effective engagement with 

stakeholders as one common cause of project failure (RAE and BCS Report, 2003).  

This research offers MoIST as one such means of assuring successful systems.  

MoIST offers three (3) development options that are able to fit several categories of 

information systems. This offers the developer and the client more flexibility and 

options in choosing the methodology most suited to the nature of their project.  This 

should guarantee more success in project development.  One of the major 

references on the quality of the systems development is the approach adopted.  If the 

approach used is not appropriate for a particular type of application then it may limit 

the quality of the system being produced (Bennett et al, 2002).  This means that 

there is a tendency to attempt to solve unstructured Information Systems problems 

by means of experimental and empirical research methods.  The scientific method is 

still being used to try to find solutions to issues that are multi-faceted in their 

complexity (Bennett et al, 2002, p 57).  There is therefore the need for a more 

relevant and unconventional approach.  The alarming failure rate of Information 

Systems developments should at least have alerted Information Systems 

practitioners to the fact that hard systems engineering on its own does not seem to 

be working and applying the scientific paradigm to social organizational situations 

have failed (Checkland and Holwell, 1998).  There must be an additional solution that 

can work in tandem with the hard systems engineering solutions to achieve 

increased success in a holistic manner.   

 

MoIST has not been developed for every software development project.  It is a 

method that can be maximally used for software projects where not much is known 

about the application domain, where the issues are somewhat unclear and systems 

thinking needs to be utilised. 

 

Systems thinking of all the applied disciplines has demonstrated the greatest 
potential for linking theory and practice.  Systems research is in advance of 
organisation theory in intervening in problem situations.  It is ahead of operational 
research and management consultancy in its ability to think through implications at 
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the theoretical level and improve practice as a result.  For applied disciplines, it can 
rectify any deficiency in their theoretical foundations.  It also enhances its systems 
development and capabilities and enables systems to be built with the most 
important component in mind – the users. 
 
Jackson, 1997 
 
 

 
1.5  Research Overview 
1.5.1  Development Concerns 

 

 there is a need for effective means of integrating systems thinking into 

information systems design 

 

 premature design decisions are being taken in the software development 

process before major requirements are known and opportunities for 

improvement have been agreed. 

 

 An alternate means of more fully exploring the relationship between SSM, 

and existing information systems design techniques is needed. 

 

 Options for software developers who wish to apply SSM and information 

systems design techniques in the context of UML are limited. 

 

 There is a plethora of methods that involve detailed planning too early on in 

the software process which sometimes results in software that is difficult to 

change. 

 

 There are many system design artefacts that clarify how the system retrieves 

and processes data.  These however do not usually stipulate how to capture 

human activities and business processes. 

 

 Stakeholder discussions based on class and sequence diagrams as 

communication tools are difficult to understand for clients not familiar with 

UML notation. 

 

 Human factors are not appropriately integrated and factored into some 

methodologies used in the existing software development process. 
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1.5.2  Goal of research project 
To design a method that integrates systems thinking, namely SSM into information 

systems design, using UML notation.   

 

The application of Soft Systems Methodology integrated with a Unified Modelling 

language-based method is useful in software development for separating the ‘what’ 

in what changes are needed?, from the ‘how’ in how can requirements be met using 

information systems? This results in the requirements elicitation process being more 

accurate and efficient thereby increasing the success rate of software development 

projects. 

 

 To redress premature consideration of system structure by using SSM within 

information systems design to identify and clarify the purpose of the system 

and the tasks needed for the achievement of those purposes. 

 

 To develop a method that incorporates the results of SSM analysis into 

requirements specifications based on the UML. 

 

 To encourage well structured and coherent debate about complex situations 

of software projects in order to decide on improvement strategies 

 

 To emphasize designing systems supported by the information system 

instead of wrongly prioritizing designing the information system. 

 

 To incorporate the human factor into the software development process. 

 
 
1.5.2.1 Research Question 1 
Is there a link between SSM and UML given their inherently different 

natures? 

1.5.2.2 Research Question 2 
Given that there is a link, how beneficial is that link to the software 

development process. In other words, what value does the link add to the existing 

software process? 
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1.5.3  Research contributions to existing work 
 

This research has made significant and original contributions to the particular field of 

learning within which the thesis subject falls.  Of these contributions some are 

general while some are local in scope.  

 

General research contributions of the MoIST  

 

 A method that explains the value to the software development process of a 

viable linkage between SSM and UML. 

 

 A method that endeavours to more appropriately integrate the human factor 

into the existing software development process. 

 

 An alternative method that provides a more wholistic exploration of the 

relationship between SSM and existing information systems design 

techniques. 

 

 A method that integrates systems thinking into information systems design. 

 

 A method that stipulates how to capture human activities and business 

processes instead of merely clarifying how the system retrieves and 

processes data. 

 

 A method that minimizes the level of detail of the planning in the initial 

software process in order to achieve software that can be more easily 

changed along the software development cycle or path. 

 

 A method that incorporates the results of SSM analysis into requirements 

specification based on the UML. 

 

 A method that emphasizes designing systems supported by the information 

system instead of wrongly prioritizing designing the information system. 
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 A method that encourages well structured and coherent debate about 

complex situations inherent in software projects in order to decide on 

improvement strategies. 

 

 A method that incorporates the human factor in a greater measure into the 

software development process. 

 

 An alternative and additional method that incorporates the results of SSM 

analysis into requirements specifications based on the UML. 

 

Local research contributions of the MoIST  

 

 A novel means has been developed to integrate requirements analysis and 

design techniques from SSM into information systems design using the 

MoIST method 

 

 An improved user requirement definition for certain types of software 

development projects 

 

 A major intervention in the Academic Support Process in the School of 

Computing and Engineering using the MoIST method 

 

 An electronic system ‘ACcSys’ that allows ‘at risk’ students to be quickly 

identified and assigned to the relevant personnel and resources. 

 

 Design of ACcSys instruction documentation for Pathway and Module 

Leaders 

 

 Development of a solution to the retention problem that resulted in 

redundancies in the School of Computing and Engineering 

 

 Seamless merging of a developed electronic system as an interface to an 

existing electronic system within the university at minimal or no extra cost. 

 

 An electronic system that is portable and is capable of being easily and 

successfully used by other departments within the university. 
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 An electronic system that can be utilised to solve problems of a similar nature 

in other universities. 

 

 A system that can be used to facilitate the Personal Development Planning 

(PDP) mandate of the university. 

 

 Creative work, namely a designed and implemented electronic system which 

forms a significant part of the intellectual enquiry. This original creative work 

was undertaken and invented as part of the registered research programme.  

This creative work is clearly presented in relation to the thesis and is set in its 

relevant theoretical and design context. 

 
 
1.6 Conclusion 
The thesis describes the problem to be solved and explains the methodology for 

solving it (see chapter 5).  Related work is identified and discussed to show how the 

problem has been addressed before (see chapter 4).  The shortcomings of existing 

work in the area are highlighted (see chapter 5).  MoIST is then explained in terms of 

how it differs from other approaches and methods (see chapter 5). 

The thesis supports the validity of the stated claim is valid through a presentation of 

references to prior work within both the soft systems thinking field and the hard 

systems engineering field.  It further shows how previous work has influenced the 

new claim.  Action research is then used to provide support for the claim.  This is 

done by taking real life complex situations, applying the MoIST method and providing 

a major intervention and immense benefits at minimal cost.  This action research is 

sufficiently documented, so that it may be reproduced by interested practitioners in 

related areas.  Insight is then given into how the claim can be further used or 

extended in future work. 

 

Traditionally software development has always focussed on deriving a definition of 

information system requirements.  This usually results in information systems which 

are technically sound, but usually do not provide a large measure of satisfaction to 

the humans who use them (Mumford, E, 1995, 2003). 

The methodology for this thesis makes a claim. This is that hard systems engineering 

by itself cannot claim to be the sum total of software development.  The research 

states an important claim for an extension in the cultural vocabulary of technology. 

Here the cultural vocabulary of technology refers to the way in which technology 
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dictates a subset of usages, methods and approaches that have no bearing on or 

relation to human concerns (Maeda, 2002).  This thesis asserts and justifies 

throughout its pages that only by ‘enculturing’ technology can we see an 

improvement in the success rate of software development products.  Instead of 

concentrating on the technology alone, it is more beneficial to evaluate the 

interrelationships between the capabilities of the technology, the tasks being 

performed and the users of the technology (Maeda, 2002).   
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Chapter 2 -   Soft Systems Methodology (SSM) 

 

Thousands of engineers can design bridges, calculate strains and stresses, and 

draw up specifications for machines, but the great engineer is the man who can 

tell whether the bridge or the machine should be built at all; asking why, where it 

should be built and when.   

Eugene G Grace, Former Chairman – Bethlehem Steel Corp (1916-1957) 

 

2.1.  Introduction  

In this information age, clients’ increased knowledge base has led to greater 

expectations from software developers.  The software industry still tries to meet 

clients’ demands.  Consequently there have been many instances of software 

failures.  Software faults may be traced to incorrect requirements.  This is where the 

software matches the requirements but the behaviour recommended in the 

requirements specifications document is not appropriate (Pullum, 2001).  There is a 

need to establish a stronger link between the requirements analysis and the design 

phases of the software development life cycle.  Soft Systems Methodology (SSM) 

has been identified as one means of achieving that stronger link. 

 

Soft Systems Methodology (SSM) was pioneered by Dr. Peter Checkland at the 

Lancaster University Management School, United Kingdom.  SSM seeks to represent 

unstructured situations with the primary goal being to understand the situation as it 

really is.  After understanding is gained, the methodologist or the owner is then 

empowered to make an intervention. This should result in some improvement to the 

previous situation.   

 

‘In [SSM] a number of notional systems of purposeful activity which might be 
‘relevant’ to the problem situation are defined, modelled and compared with the 
perceived problem situation in order to articulate a debate …..’’. SSM facilitates 
learning about an environment.  It is not primarily geared towards achieving 
objectives.  While not discounting the importance of achievement of objectives; SSM 
sets a chain of enquiry into motion in order to better perceive clearly, the nuances of 
a complex situation.  As learning occurs over time, purposeful action may then be 
taken to improve the situation. (Checkland and Scholes, 1990, p.18).   
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Fig 2.1: Original 7 stages of SSM devised by Checkland, 1981 
 
2.2 Justification for the importance of SSM in this research 
 

SSM is utilised as a means for resolving problems.  It is used to extend the scope of 

feasibility study activities beyond those supported by hard systems engineering.  

SSM aids understanding of the many simultaneous views of an organization’s goals.  

This facilitates potential interfaces to a system.  It also allows factors affecting system 

implementation to be comprehensively investigated (see figs 2.1 and 2.2). 

 

Traditionally software engineers tend to use class diagrams and UML artefacts such 

as use cases in the requirements elicitation stage to try to explain their understanding 

of the problem to the client users and to get feedback. This is usually unproductive as 

experience has shown that the technical level of these artefacts serves as a barrier 

and deterrent to user understanding.  Systems engineering is excellent at dealing 

with technically defined situations.  It however fails dismally in coping with the 

complexities of human affairs including management situations (Checkland & 

Scholes, 1999).  
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The soft systems approach provides the means for the analyst to discuss the 

situation in the users’ own terms (CCTA, 1993).   In Soft Systems Methodology 

(SSM) it is advocated that an information system should not be developed until the 

utilising system has been modelled.  In other words it is unwise to build an 

information system until you have modelled the system that uses it.   Soft Systems 

Methodology is a cyclic learning system which uses models of human activity 

systems to explore with the actors in a real world problem situation and their 

readiness to decide upon purposeful action which accommodates different actors’ 

perceptions, judgements and values.  Additionally, SSM is a methodology used to 

make sense of unstructured situations in real world organizations.  (Checkland 1981, 

p. 98). 

 

SSM is in essence action research. “This means that an action is taken and then 

evaluated.  Action researchers contend that a complex social process can be studied 

best by introducing changes into that process and observing the effects of these 

changes.” The approach used by organizational consultants must also introduce 

change, but in this case, the theoretical development and the rigorous empirical 

foundation are prerequisite elements of the activity (Baskerville, 1999, p25).  This 

involves some action being taken.  This triggers a resultant consequence that leads 

to learning of some sort occurring.  This learning can then be applied to similar 

situations to increase the eventual learning.  

 

 

It is sometimes not possible to define requirements accurately ahead of time.  This is 

because the situation is new or the system being employed is highly innovative.  The 

utilising system or the information system environment may change in reaction to the 

system being developed, thus initiating a changed set of requirements (Checkland 

and Scholes, 1990).   In SSM, one is dealing with human beings.  One therefore 

does not only need observation or design of human activity. What one primarily 

needs is decoding of this human activity. This answers the questions of what does it 

mean? And what does human behaviour mean?  SSM also assumes that human 

beings should be free to choose their own futures.  The ethos of SSM says that SSM 

is supposed to help by encouraging debate.  There is no trick formula to working out 

what people mean.  They have to be first engaged in debate (Checkland and Holwell, 

1998). 
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The classical software development life cycle follows the progression of analysis, 

design, testing, coding. This cycle has been generally successful, but is limited in that 

systems are being developed that are not necessarily relevant to the needs of the 

clients. These systems are good systems, but not relevant systems (Checkland, 

1981). This research applies SSM techniques to determine what the relevant 

systems are, before any development starts. This ensures a higher probability that 

clients are given systems that they need.   SSM techniques look at the political and 

cultural ethos of an organisation and generate conceptual models of how the 

organisation really functions. This helps to determine the relevant systems; before 

one even gets to the analysis stage. The software development cycle then 

progresses as per usual to design and testing/coding stages.   

The evolution of the soft systems methodology is somewhat independent of 

computer customers.  It is a general problem structuring approach that may be used 

as a precursor to traditional information systems development. As the changing 

needs of computer customers and organisations have required more involvement in 

the development process; this has caused the SSM to be increasingly applied to 

information systems development.  SSM is a reaction against the hard system view. 

This hard system view stipulates that anyone can see or engineer a hard system and 

perceive its minuses, faults and plusses. It is powered by observation and 

construction.  This view does not always hold true as organizations increase in 

complexity and unstructuredness .  

 

 

What is SSM? 
SSM is a cyclic learning system which uses models of human activity systems to 

explore with the actors in a real-world problem situation their perceptions of that 

situation and their readiness to decide upon purposeful action which accommodates 

different actors’ perceptions, judgements and values (Checkland 1984, p 98) 

 

Checkland initially tried to use systems engineering as the framework for addressing 

ill-structured problems. This did not work very well as the systems engineering 

paradigm is different from systems thinking.  Systems Engineering is a ‘how-oriented’ 

activity; it answers the question. How can this need be met? ‘What’ the need is has 

already been defined (Checkland & Scholes, 1990, p 17).  This difficulty in using 

systems engineering gave rise to SSM.  The whole core of SSM revolves around the 

following. There is a problem situation in the ‘real-world’. An analysis then carried out 

of what exists at present in the problem situation.  This is done by using a rich 
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picture, spray diagram or mindmaps, whatever depicts and captures the situation in 

the most accurate and understandable way.  A definition of the relevant systems then 

follows.  Here at this stage a root definition, RD of a system relevant to the problem is 

created.   

It is highly recommended that there should be several RDs.  In creating or 

constructing the RDs , it was made clear that at stage 5 [comparison between real 

world and the conceptual model], it is difficult to avoid seeing the RD and its model 

as normative, if there is only one definition and one model (Checkland, 1981 p. 208).  

The way to avoid this is to entertain several root definitions, best of all including 

incompatible ones and to make models based on more than one of them.  The next 

stage is a conceptualisation of ‘formal systems’ to carry out the functions described in 

the ‘root definition’. This means that the root definition is here subsequently modelled 

by a set of minimum necessary activities shaped in terms of the ‘formal systems or 

conceptual model’.  Comparison between the rich picture representation and the 

conceptual model follows.  There is then a definition of a range of possible changes 

that could positively intervene in the real world problem.  A selection of a desired, 

agreed-to-be-feasible change. Design of the agreed change follows and ultimately 

implementation of the agreed change. 

 

 

Phases of SSM 
SSM in its most basic form has four (4) distinct stages.   The first involves the 

existence of a real-world situation of concern.  Someone is concerned enough to 

initiate a finding out or an investigation stage.  The first stage is therefore the finding 

out stage and the artefact produced at this stage is usually the rich picture.   

The second involves constructing models of relevant human activity systems (HAS) 

or holons. These HAS or holons are then named and modelled and should not bear 

too much resemblance to the real world situation identified in the first stage.   With 

SSM, firstly a rich picture of the current environment is drawn. This rich picture is 

uncoloured or unbiased by systems terminologies, secondly, ways of using systems 

ideas in problem situations are then developed based on that view. Thirdly, there is 

modification of both the systems outlook and the ways of using the systems ideas as 

experience is gained, as mistakes are made and as lessons are learned.  There is 

then reflection on the interactions between systems thinking and systems practice in 

order to draw conclusions which will allow future theory to benefit from practice and 

future practice from theory.  There are four techniques usually used in this stage. The 

Root definition (RD), the CATWOE, PQR (see below) and conceptual models (CM) of 
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Human Activity Systems (HAS).  The root definition is a brief formulated statement 

that best describes the system and tells what the system will or should do. CATWOE 

is a mnemonic used to ensure the well-formedness of each root definition. 

 

 
Fig 2.3  Social, political & cultural analysis, Checkland et al, 1998 

 
 
Phase 1 – Rich Picture 
It is possible to begin the process at any phase.  However it is the relationship 

connection between the phases as opposed to their order that is crucial.  SSM 

usually begins in phase 1.  Here an exploration of a real-world situation of concern is 

initiated.  This is usually because someone perceives a situation as problematic and 

desires to fix it in some way.  The purpose of this exploration is usually to provide a 

more accurate comprehension of the situation.  It is also to identify pertinent issues 

that need to be addressed.  The Phase 1 findings are usually summarised in a rich 

picture, Checkland and Scholes, 1990.   
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The process of gathering information, appreciating the situation and then identifying 

relevant issues adhered to certain guidelines.  These were to look for ‘elements of 

slow to change structure’ and ‘elements of continuously changing process’.  These 

elements have in later versions of SSM been developed and replaced with the 

guideline to explore the situation through analysis of the intervention – Analysis One, 

social system analysis – Analysis Two and political system analysis – Analysis 

Three, Checkland and Scholes, 1990, p 47). 

 
Phase 2 – Conceptual Models of Human Activity Systems 
From the rich picture, relevant issues for improving the problem situation are selected 

and modelled.  These relevant models of purposeful activity are intellectual devices 

used to stimulate and structure the debate about the situation being studied. They 

are also used to focus on concepts of pure purposeful activity from a certain 

perspective  Kareborn, 2000).  That is why they are referred to as conceptual models 

of ‘human activity systems’, Checkland and Scholes, 1999).  Human activity systems 

comprise all activities  that are carried out by human beings.   

 

In order to form a whole, these activities are linked by some principle of coherence or 

some unifying purpose or mission.  These conceptual models should not be accounts 

of the real world, or Utopian designs, but should be considered as epistemological 

devices that help to structure a debate, Kareborn, 2000). 

 

Phase 3 – Comparison 
In this phase, the human activity systems are compared with actual perceptions of 

the situation.  Through the comparison and the debate it creates, fresh insights are 

gleaned.  This allows for accommodations between different interests and 

perspectives.  These accommodations must be both feasible and desirable.  They 

usually result in actions that can improve the situation. 

 
 
Phase 4 – Action to improve the situation 
These actions to improve the situation are the start of Phase 4.  After the 

implementation of an agreed change to improve a situation, the original problem 

situation is either resolved or is transformed into a new situation of concern.  If 

changes cannot be agreed upon, a more extended examination of relevant systems 

might be needed. 
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The four (4) phases described above represent the systems thinking part or the 

modelling phase of SSM.  The main function of the modelling phase is to highlight 

different perspectives of the problem situation and to structure the thinking about the 

situation. To achieve this, four (4) precise techniques have been developed.  These 

include Root Definition (RD), CATWOE, PQR and Conceptual Models of Human 

Activity Systems (HAS). 

 

SSM techniques 
1. Root Definition 

Root definition means naming a system of purposeful activity in a succinct statement.  

The official guidelines for a well-formulated root definition is that it should contain the 

elements of the mnemonic word CATWOE or PQR, Checkland, 1999).  

 

2. PQR 

 PQR refers to the statement ‘Do P by Q in order to contribute to the achievement of 

R’.  PQR also answers the three questions: What to do (P); How to do it (Q); and 

Why do it (R)? (Checkland, 1999). 

 

3. CATWOE stands for: 

Customers -    the beneficiaries or victims of the system; 

 

Actors -    persons who perform the transformation process; 

 

Transformation -  an input-output process by which some entity is 

changed to a new form of that same entity; 

 

Weltanschaung -  a worldview which makes the transformation 

meaningful; 

 

Owners -  the persons who can stop the transformation; 

 

Environmental constraints - elements which affect the system, but which cannot be 

controlled. 
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2.6 Case Study : A Study of the learning and teaching strategy delivered to 
Business Computing Students: Towards determining the most effective 
approach 
 

The case study below is used to illustrate an example of how SSM is actually used in 

an unstructured, complex, real life organizational situation.  It demonstrates the 

typical SSM stages and was conducted at the School of Computing and Engineering.  

 
2.6.1 Introduction 
Students of differing faces and places contend with a multiplicity of issues at various 

times.  In recent times, the challenges they face seem to have intensified and they 

appear to need more effective teaching and learning solutions tailored to their 

specific needs.   This study seeks to explore and expose the issues and then to 

make valuable recommendations.   The academic programme in most universities is 

divided into manageable units called modules.  The learning and teaching strategy is 

usually based around the construction and delivery of these module entities.  A 

module may be defined as a related logical sequence of instructions that is executed 

by a facilitator for the benefit of learners with the aim that the learners should totally 

master instructions, be able to replicate them and apply them in novel situations.   

People learn differently and teaching has to be deliberately structured in order to get 

the desired learning outcomes.  All students are individuals who assimilate new 

information in different ways.  One student may feel more comfortable reading 

information, another may be more practical in orientation, yet another may feel 

perfectly at ease doing both.  Teachers need to determine students’ expectations and 

experiences and tailor subsequent classes to take these into consideration.  This 

helps to manage the learning and teaching process in such a way that the student is 

not disadvantaged.  Some teachers believe that learning is the student’s 

responsibility while others believe that they are responsible to ensure student 

learning. Whatever camp the teacher falls into, there must be ways of ensuring that 

the student learning experience is maximized.  
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2.6.2 Background 
Traditionally students in Higher Education followed the Oxbridge model.  

Stereotypically they were intellectually advanced and financially secure.  

Consequently there was not much need for them to have part-time jobs.   

In the last ten years a new specie of students has emerged from the ashes and 

difficulties associated with Higher Education.  These are ‘commuter students’. They 

can be further classified as semi-distance learners.  By definition, these students 

stand in stark contrast to the traditional Oxbridge model.  They live at home with their 

parents and not on halls of residence. They average one hour of daily commute to 

get to classes.  Higher Education now comes at a greater cost so they work at part-

time jobs while being full-time students.  Most are privy to computer access at home.  

The phenomenon of new universities has birthed these ‘commuter students’.  The 

government’s mandate of Higher Education and widening participation has ensured 

that more students get access to a university education, but at a cost to the 

education system and to the students themselves.  With the rise of the ‘commuter 

student’ has come the fall of retention rates when compared with rates of past years, 

retention levels are still falling at an appalling rate.  The ‘recruit more’ and ‘retain 

more’ goals are now increasingly being perceived as mutually exclusive.  Therein lies 

the challenge.  There is therefore the need to retain a greater number of students 

without compromising the academic standards.  There needs to be a way of enabling 

learning and delivering teaching to new millennial students with all the attendant 

problems.  The pressing demand is for high retention levels to be maintained without 

diminishing academic rigour. 

 

HOW THE PASS RATE HAS CHANGED 
Top 10 subjects     Overall Pass Rate 

 Pupils 1993 2003

English 78,746 84.3 98.4 

General Studies 58,430 72 90 

Maths 55,917 82.4 94.4 

Biology 51,716 77.4 92.6 

History 42,018 83 97.7 

Psychology 41,949 76.8 94 

Art and Design 38,314 90.5 96.6 

Chemistry 36,110 79.9 95.1 

Geography 35,749 81 97.9 

Business Studies 33,133 80.1 96.4 
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Table 2.1: Pass Rates cited from a daily newspaper – Friday, August 15, 2003  
 

There is another type of student in the education arena.  This student relishes the 

opportunity for distance learning education.  This is fast becoming ubiquitous and 

distance education is a thing of the present and future.  Yet another category of 

student is the experienced professional who for a variety of reasons, did not pursue 

formal university education.  Pressed with corporate, family and personal 

responsibilities, the desire and dream for Higher Education seem a distant dream; 

but the hope for attaining that dream still burns brightly. 

One of the six key objectives of a learning and teaching strategy is ‘to support the 

continuing development of high quality, responsive teaching, learning and 

assessment that recognises the diversity of learners, the appropriate use of learning 

technologies and the dispersed nature of the university (Dearing report, Higher 

Education in the Learning Society NCIHE, 1997). 

These are only three (3) of several categories of learners whom the learning and 

teaching strategy have to be configured for.  The commuter students who now have 

to fund themselves, the students for whom distance education is more beneficial and 

the working executives who desire to pursue Higher Education; but are currently 

constrained by other factors.  This study uses SSM to explore the issues involved 

and make recommendations as to the best way forward. 

 

 
 
Methodology of the Research 
Soft Systems Methodology (SSM) was the vehicle used to facilitate this study.  SSM 

was pioneered by Professor Peter Checkland at Lancaster University.  SSM allows 

for the study of an environment in order to extract pertinent factors from that 

environment so learning of the environment can occur.  This learning then can 

precipitate relevant change in an organisational environment. 
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Fig 2.4:  POM Model of SSM 

 

The POM model within SSM is comprised of seven (7) elements.  It was developed 

to try to make sense of the information systems field, Checkland and Holwell, 1998.  

Element one consists of the people as individuals and group members.  Element two 

is a data rich world perceived through assumptions.  Element three is where meaning 

is created inter-subjectively. This feeds into Element four which embodies the 

attributes of meanings based on information and knowledge.  Element five 

accommodates conflicting interests and element six is the purposeful action taken. 

Element seven represents information systems that support organisational members.  

The POM model represents organisational information and communication 

processes, sense making and processes of creating shared meaning in a never 

ending learning process (Holst et al, 2004). 

 
 
The finding out process is vital and integral to SSM. This is where the client’s desires 

are captured from the methodologist’s perspective.   When a complex situation in an 

organization is presented, the person doing the investigations brings to bear on the 

finding out certain competencies and skills which are personal and unique.  These 

competencies and skills influence the quality of the output of the investigation.  In 

order to better appreciate the problem context and achieve better information 

gathering; the methodologist should pay attention to ‘elements of slow to change 

structure’ and ‘elements of continuously changing process (Checkland, 1981).  He 
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further suggested that one should see how the elements all worked together in the 

situation climate.  In however, this suggestion was revamped in favour of Analyses 

One, Two and Three (Checkland and Scholes, 1990).  SSM provides a flexibility in 

the information gathering devices.  Some methodologists find it easier to work with 

rich pictures, some with mind maps.  

 
2.7 Analyses 1, 2 and 3 
SSM has innovated another approach to the “finding out” process in a problem 

situation.  This approach uses three related analyses.  The first is referred to as 

Analysis One. This is the Analysis of the intervention.  This looks at the existing 

situation and establishes who in the situation is in the role of ‘client’. The client is the 

one who causes the intervention to take place.  The role of the would-be-problem –

solver is also established. This is the person who conducts the study. This person 

compiles a list of potential problem owners.  This activity is related to the concept of 

stakeholder analysis in requirements engineering (Sharp et al, 1999, Smith, 2000). 

 

 

 
Figure 2.5: Stakeholder/Domain Analysis, Sarkar, P, 2002 
 

Analysis Two examines the cultural aspect of the situation.  It sees the situation as a 

social system and seeks to discover the social roles present in the situation, the 

norms of behaviour that are expected to be displayed by those in the social roles and 

establishes the values that determines the measure of whether or not a role holder’s 

performance is considered good or bad. 
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Analysis Three addresses the political aspect of the situation.  It examines the 

disposition and the nature of power and authority displayed in the situation.  It looks 

at what commodities of power are present in the situation.  It also seeks to identify 

how the commodities are obtained, used, preserved and passed on. 

 

 

Analyses used in the ‘Finding out stage’ 

Analysis of the Intervention – Analysis 1 

• Who is the Client? 

• Who is the problem solver? 

• Who are the problem-owners? 

 
Social System Analysis – Analysis 2 

• Role Analysis 

• Norms Analysis 

• Values Analysis 

 

Political System Analysis – Analysis 3 

• Identifying possible conflicting interests and personality clashes 

• Interests resolvable by accommodation 

• Differences of interest resolved by use of power 

 
Table 2.2: Analyses 1, 2 and 3 
 
 
Case Study demonstration of Analyses 1, 2 and 3 
 
Analysis 1 – Analysis of the Intervention 
 

Client – Module Leader 

Problem-Solver – Soft System Methodologist  

Problem-Owners – School of Computing, Module Leader 
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Analysis 2 – Social System Analysis 

Roles Behavioural Norms Values 
Student Aims to maximise their potential by 

gaining the knowledge, attitudes and 

skills needed to meet the requirements of 

work and society 

Attending required classes 

and tutorials GOOD 
Getting assistance when 

needed  GOOD 

Dropping out after the first 

semester  BAD 

Lecturer Teach students in such a way that 

learning takes place and the goals of the 

module syllabus are met 

Use innovative ways of 

teaching to enhance 

student learning GOOD 

Provides and point to high 

quality support resources 

for student  

GOOD 
Disseminate course 

content without adequate 

explanation  BAD 

Module Leader Coordinate all the resources and 

personnel relevant to a module to ensure 

that it functions smoothly 

Liaise with support tutor 

And provide necessary 

materials in advance 

GOOD 

Examines and amends 

module to consistently 

upgrade module quality 

GOOD 
Disregards students 

concerns and feedback 

BAD 

Undergraduate 
pathway leader 

Oversees the smooth running of all 

modules in the undergraduate pathway 

Communicates effectively 

with all module leaders 

GOOD 

Has no future plans to 

improve and upgrade 

current pathway BAD 

MSc pathway 
leader 

Facilitates the efficient running of the 

MSc pathway 

Knows what the current 

industry needs are for the 

pathway  GOOD 
Has no idea of how the 

modules are being taught 
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BAD 

Distance learning 
coordinator 

Provides innovative ways of student 

learning through the use of distance 

learning materials 

Has experience in how 

distance education works 

in practice  GOOD 
Installing outdated modes 

of distance learning BAD 

 

Table 2.3: Analysis 2 
 
Analysis 3 – Political System Analysis 
Disposition of power 
The stakeholders detailed above represent different parts of the learning and 

teaching spectrum.  Consequently there is no stringent or ordered hierarchical 

structure represented there.  One thing they all have in common is authority and 

influence over the student.  In both the undergraduate and MSc streams, a pathway 

leader oversees a module leader.  Both functions incorporate the lecturer role.  Any 

conflict or communication breakdown would be more likely to happen between those 

two roles. The distance learning coordinator is an autonomous position and usually 

indirectly relates to the other lecturers’ responsibilities. 

 

 

 

 

 
Nature of Power 
The power reflected here is the power to improve or retard the learning and teaching 

process in the school. The manner of execution of the responsibilities is paramount in 

ensuring that student learning is enhanced and effective which ultimately achieves 

the corporate mission of the university.  Any improprieties in carrying out the 

functions above could result in even lower retention rates and recruitment levels of 

students as the bad news spreads. 
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Rich Pictures 
Rich pictures are used in SSM to capture the essence of the situation under study.  

Political, social and cultural realities are captured in a pictorial or diagrammatic form.  

This enables the methodologist and the stakeholders to see the whole picture at a 

glance.  It enables them to understand the various forces at work in their particular 

situation and see it through another’s eyes.  This increases their objectivity and helps 

them to more accurately see with the SSM methodologist what the next step needs 

to be.   The rich picture usually represents the methodologist’s perspective on the 

problem and gives their viewpoint. The thought processes required to develop the 

rich picture give rise to deep understanding of the situation and provoke thoughts 

about relevant human activity systems which lead to conceptual model building 

(CCTA, 1993, p36).  One does not need to be a Picasso or Michelango to be able to 

give an accurate depiction of happenings and events and relationships in a project 

situation. Stick persons and cartoon like characters will suffice.  SSM encourages the 

analyst to broaden the initial concern of study away from the detail of the intended 

information system and towards the situation in which the information system is 

expected to provide useful support.  The first task is to describe the situation (CCTA, 

1993, p34).   

 

 
Fig 2.6: Rich Picture of Teaching & Learning Process (created by Hopkins, 
2004) 
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The process of creating rich pictures is not very standardised. There is no one set 

way to draw or terminology or jargon for this. The depth of its richness is usually left 

up to the methodologist.  The process of creating rich pictures also serves to tease 

out the concerns of the people in the problem situation. These soft facts include the 

sorts of things that the people involved in the situation are worried about, conflicts, 

politics and other concerns (Avison et al, 1990, p45).   It has been the experience of 

this researcher that the initial effort of starting to draw a rich picture was somewhat 

challenging.  The question was always where to start.  The challenge is greater for 

those methodologists who do not perceive themselves to be artistically inclined.  

Relief and comfort came from several directions.   The first was the realisation that 

there is no one correct rich picture. It is subject to the methodologist’s interpretation 

and therein lies its acceptance.  Research has shown that anyone with a ‘normal’ 

brain ie (not genetically or physically damaged) can learn to draw to good art school 

level. The reason so many people assume they are incapable of creating images is 

that, instead of understanding that the brain always succeeds through continued 

experimentation, they mistake initial failure for fundamental incapacity and as its true 

measure of their talent. They therefore leave to wither and die a mental skill which 

could have flourished naturally, (Buzan, 2000). 

 

 
 
Figure 2.7: Rich Picture, Checkland, 1990 
 

How to start drawing rich pictures 
1. write down all the known stakeholders 

2. think about who interacts with whom or what 

3. start by drawing the main interaction in the centre of the page 

4. use a key to denote the meaning of symbols 
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Selecting Relevant Systems 
Relevant systems in SSM are called root definitions (RDs).  As one expert put it 

‘systems thought to be relevant to that deeper exploration of the problem situation 

which will lead to action to improve it’.  Originally, it was thought very important to get 

the correct relevant system.  The passage of time has however softened that view 

and now it is not thought to be incorrect to formulate as many relevant systems or 

root definitions as needed. The most relevant one can then be selected. 

 
Figure 2.8:  Root definition and CATWOE, Checkland, 1990 
 

Root definitions used to be formulated without a specific standard or template.  Work 

done by Smyth and Checkland in 1976 saw the birth of the CATWOE which was a 

mnemonic for the new standard by which all relevant systems should be measured 

and drawn up against.  Relevant Systems are therefore constructed as root 

definitions done in accordance with the CATWOE.  Relevant systems are usually 

divided into ‘primary task definitions’. The most important part of a root definition is 

the transformation ‘T’.  Here some input is transformed or changed into some output.  

This poses one of the most challenging bits in the root definition formulation.  The 

mistake that everyone usually makes is to state the resources needed for 

transformation as the input. 
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Case Study Example 

 ‘to provide innovative approaches to student learning by developing new teaching 

methods to complement those already in place, providing students with IT, 

information management and other study skills, enhancing student employability and 

career skills and by extending the learning opportunities in the workplace in order to 

provide a better match to the needs of the changing student profile, be more 

responsive to change and encourage increased participation in HE by students from 

non-traditional backgrounds.’ 

 
Table 2.4:  Root Definition of Teaching and Learning 
 
Formulation of root definitions is one of the main activities of SSM.  A root definition 

is a precise description of the emergent properties of a system.  A root definition 

should explicitly contain the CATWOE elements.  These six (6) elements, 

Customers, Actors, Transformation, Weltanschauung, Owner and Environment are 

closely connected to the idea of human activity systems (HAS), (Mathiasen et al, 

1994). 

 

Conceptualising data 

 
 
Fig 2.9: Conceptual Model of Teaching and Learning Process 
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Case Study illustration of Conceptual Model 
IN SSM, a conceptual model contains the minimal set of related (human) activities 

needed to carry out the transformation described in the corresponding root definition.  

A system is thought of as being adaptive, therefore monitoring and controlling 

activities are built into each model.  Subsequently, the conceptual model must be 

defensible against the root definition and the root definition against the conceptual 

model, (Mathiasen et al, 1994). 

The conceptual models give life to the activities of the relevant systems expressed as 

the Root Definition.  These activities of the systems are verbs that are assembled 

together according to logical dependencies.  In other words, their linkage is provided 

by some cohesive factor or common purpose.  These models should be neither 

accounts of the real world, nor utopian designs, but rather epistemological devices 

which help to structure a debate (Bergvall-Kareborn, 2002). 

 

 
 

Fig 2.10: Conceptual Model, Checkland, 1990 
Conceptual models built at stage four (4) of the methodology  are neither descriptions 

of actual human activity systems nor accounts of such systems which ought to exist.  
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Their purpose is only to generate a high quality discussion with concerned 

participants in the problem situation, (Checkland, 1981, p 236) 

 
Monitoring and Control 
Monitoring and control in conceptual modelling seeks to find answers to the question, 

‘How could this system fail? This monitoring and control mechanism evaluates the 

activity system’s performance against 3 and sometimes 5 measures of performance.  

These are known as the 3 or (5) Es  

 

 

 

 

E1   Efficacy    

does the means work? Are the activities accomplishing the transformation T 

E2   Efficiency 

Are minimum resources used; could the transformation be accomplished with less resources? 

E3   Effectiveness 

Is the right thing being done; does the transformation help to attain the long-term goals 

related to the Owner’s expectations 

E4   Ethics 

Is the transformation a morally correct thing to do? 

E5    Elegance 

Is the transformation aesthetically pleasing? 

 

Table 2.5: Measures of Effectiveness – the 5 Es 
 

Case Study illustration of CATWOE 
C – Customer  Students    

A  - Actor  Distance Learning Coord, Pathway leader, Module leader 

T -  Transformation ineffective teaching and learning strategy -> relevant and more 

effective teaching and learning methods and strategies 

W – Weltanschauung universities are faced with many external and internal 

challenges that have implications for their strategies for 

teaching, learning and assessment 

O – Owner  school of computing, university 

E – Environment financial and suitable personnel resource constraints 
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Case Study Illustration of Comparison Phase 
 

Conceptual Reality 
Provide innovative 
approaches to student 
learning 

There is effort being expended by the university to provide 

innovative approaches to learning.  The academic skills unit 

has been trying to help students overcome handicaps in 

various learning areas.  There is also the personal tutor 

system 

Develop new teaching 
methods 

The Blackboard v 6 intranet is being utilised by lecturers and 

students to make learning and teaching more effective.  

Distance learning courses are being developed in the school 

by the coordinator 

Equip students with IT, Info 
Mgnt. and study skills 

There are programming support classes in the school and 

study skills support is available from the academic skills tutor 

Enhance student 
employability and career 
skills 

The status quo for this has not changed, but there are plans 

afoot to promote personal development planning (PDP) and 

encourage students to keep personal progress files. This is 

thought to increase employability at the end of the academic 

programme 

Extend the learning 
opportunities to 
professionals in the 
workplace 

Currently such opportunity is not formally in place. With the 

advent of the distance learning modules, this can change 

Encourage increased 
participation in HE by 
students from non-
traditional backgrounds 

Widening participation of 50% of the populace has been 

mandated by the government.  One effort is the running of 

an induction day called Quick Start for students with 

conditional offers from FE colleges to encourage their 

retention in the programme. 

 

Table 2.6: Comparison Phase 
 
Implementing Change 
The models of human activity systems are compared with the actual situation. 

Consequently this comparison generates debates and fresh insights are revealed.  

This can then lead to satisfactory accommodations between the differing viewpoints.  

These accommodations must be systemically feasible and culturally desirable. 
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Figure 2.11: SSM as a Learning Cycle, Checkland and Scholes, 1990. 
 
Defining change 
This SSM study brought to light quite a number of issues.  Not all of them will be 

addressed, given the scope of the project and the time factor of the research.  The 

changes defined below were the ones thought to be implementable given the 

constraints. 

 

Change 1 
In order to be motivated to learn, students have to be interested in their work.  One of 

the best ways to motivate is to provide a variety of activities.  One way to do this is to 

utilise the existing Blackboard version 6 (BB6) in the School of Computing and 

Engineering.  Blackboard has facilities for generating relevant subject quizzes and 

automated marking.  This could be done after each unit is administered.  It offers 

spreadsheet view of students’ performances on these quizzes and the module leader 

can more effectively monitor how each student is grasping the material presented. 

 
Change 2 
The distance learning coordinator has developed a software that enables students to 

learn at their own pace without being physically present at the university campus. 

The proposed change is that the software can be used to develop one or more 

existing for the MSc programme. This will enable the core areas for business 

computing and information systems students to be made available in distance 

learning format 
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Change 3 
To offer the above created distance module or modules to professionals in the 

workplace who are not able because of various constraints to physically attend 

classes at the university 

 

 

 

2.8 Limitations of SSM 
SSM with all its enumerated virtues above is not without its detractors.  Some of its 

perceived limitations especially as it relates to information systems development are 

highlighted below. 

 

• Critical Systems Thinking philosophy (CST) criticises SSM for its 

interpretivism.  CST’s critique towards SSM points to the lack of “objective” 

standards for the interpretations’.  CST says that the critical results of SSM 

rests on persons and groups in the real world situations participating openly 

and in a shared spirit (Bergvall-Kareborn, B, 2002, p 474). The concern 

however is that this is not a perfect world and the balance of power in 

organizations is not equally distributed. This could corrupt the very method 

used to determine relevant systems as it is the results from the group 

participation that is used in the recommendations for software development.  

‘the kind of open, participative debate which is essential for the success of 

Soft systems approach, and is the only justification for the results obtained, is 

impossible to obtain in problem situations where there is fundamental conflict 

between interest groups which have access to unequal power resources 

(Jackson, 1991). 

 
 

• From a learning perspective, it is a weakness that the rich picture is not 

consistent with the conceptual model.  For example, the ethical and aesthetic 

criteria for measuring the performance of the conceptual models are nowhere 

to be found in the rich picture.  Hence two new aspects of evaluation which 

were not considered in analyzing the problem situation are suddenly 

introduced to the conceptual model. 

 

• SSM is interpretivistic and lacks ‘objective’ standards for the interpretation 
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• SSM has a limited domain of application, a regulative character, and a 

tendency to retain status quo owing to its subjectivist approach to social 

science, its interpretative assumptions, and because the approach did not 

attempt to ensure the conditions for ‘genuine’ debate 

 

• The kind of open, participative debate which is essential for the success of 

the SSM approach, and is the only justification for the results obtained is 

impossible to obtain in problem situations where there is a fundamental 

conflict between interest groups which have access to unequal power 

resources. (Jackson, 1991, p 133) 

 

• SSM is seen as subjective and pluralistic.  This is its main strength. Ironically 

this main strength has been the characteristic of SSM that has been most 

criticised. 

 

• SSM has a tendency to result in regulatory, rather than radical, agendas for 

change. 

 

• The epistemological meaning underlying concepts and ideas within SSM may 

prove difficult to grasp for persons not familiar with the interpretative tradition. 

 

 

2.9 Related Soft Methods 
In order to redress the deficiencies of traditional organisational models, other process 

based modelling approaches have arisen in addition to SSM. These include Vickers 

appreciative system, Beer’s Viable Systems model, Business Process Reengineering 

and Participative System Design. 
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2.9.1 Vickers Appreciative System 
 

 

 

 
Fig 2.12: Appreciative and learning system, Checkland and Casar, 1986 
 

In 1963 after retiring, Vickers had more time on his hand to try to gain a broader 

understanding of more than forty (40) years of professional experience by 

seeking an understanding of human affairs in general and organisational life in 

particular. 

Vickers ideas were depicted diagrammatically by (Checkland and Casar, 1986).  

The model starts with Vickers two –stranded rope which is an interacting flux of 

events and ideas.  This flux is interpreted, valued and judged according to 

standards created by previous experiences.   Observing ‘what is’ and comparing 

it with the standard, is known as appreciation.  Vickers aimed to understand 

social and organisational processes.  He showed how information and 

communication processes lead to change of our appreciative settings, which 

leads to the basis of our decisions (Holst et al, 2004) 

 

 

2.9.2 Beer’s Viable Systems Model (VSM) 
VSM demonstrates central processes and information flows to and from its 

management system.  It shows functions necessary for an organisation to be viable.  

One criticism of VSM  is that it insufficiently represents modern organisations due to 

its hierarchical structure.  This results in the information flow becoming vertical and 

more controlling (Holst et al, 2004).   
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2.9.3 Business Process Reengineering (BPR) 
BPR advocates radical change in organisational processes (Hammer and Champy, 

1995).  Proponents of BPR insist that implementing the proposed ideas will enact 

revolutionary organisational improvements.  Detractors however say that the top 

down approach of BPR results in a high failure rate. It is also claimed that it 

downplays the role of people and knowledge within the organisation (Holst et al, 

2004, Galliers, 1997). 

 

 

 

2.9.4 Mumford’s Participative Systems Design 
One of the main aims of the ETHICS method is to achieve a better balance between 

technology and people.  Traditionally, economic and technical objectives have 

dominated the thinking of those designing new systems.  The specifications for new 

systems have tended to be more skewed towards technical efficiency objectives and 

very rarely with human needs and interests (Mumford, 1995). 

 

Differences between SSM and structured 
methods

SSM structured methods
subjective (interpretive) philosophy objective philosophy

systems + sociological theory base computer science + systems theory

flexible methodology rigid method

organisational problem- solving focus data, process, database, technical focus

creative/intuitive scientifically analytical

analyst is facilitator analyst is expert

participative analyst dominated

organisational learning outcomes computer design outcomes

several ambiguous outcomes one ‘correct‘ solution

 
 

Table 2.7 - Table adapted from Rose, J, http://www.cs.auc.dk/~jeremy/resources 

 
 
 
 

http://www.cs.auc.dk/~jeremy/resources
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2.10 Software Development Method Building in General 
In order to fully appreciate the merits and demerits of SSM, it is vital to examine other 

software method building work in general.  This helps to put SSM, UML based, 

MoIST and all other methods in the research into their proper context.  Examining 

general software methods also gives a more balanced perspective and 

understanding of each respective method.  This is important for understanding the 

role MoIST and other methods play in the software development process as a whole. 

 

A method is defined as a procedure, a systematic way of doing anything according 

to a regular plan or as the mode of a procedure of accomplishing something, 

(Grossett, 2000).  A methodology on the other hand is the philosophical analysis of 

method and procedure or the method and procedure used by a science or discipline.  

There have been keen debates and some contentions as to the distinction between 

method and methodology.  In this section, general software development methods 

are examined.  A brief history of methods is presented and the varying methods, their 

contributions and their drawbacks are contrasted and compared.   

 

Methodology may be defined as the logos of methods or principles of methods used 

to achieve a process.  Another definition is a set of principles which have to be 

adapted in use to a particular situation.  (Bennett et al , 2002, p 57) assert that ‘a 

methodology consists of an approach to software development, a set of techniques 

and notations that support the approach, a life cycle model to structure the 

development process and a unifying set of procedures and philosophy’. 

 

Appropriate use of methods in a software development project results in a more 

accurate project and a more balanced research.  (Bennett et al 2002, p 556), stated 

that ‘in practice, methodologies vary widely in philosophy, in completeness of 

definition or documentation, in coverage of the life cycle, and even in the type of 

application to which they are best suited’. The method and the methodology of any 

process, project or endeavour could be argued to be the most vital and crucial 

component to that endeavour.  The methodology provides the framework of 

justification for the process.   

 

A methodological framework exposes the similarities and differences between 

methods.  A more mature perspective is not which method is best; but when is a 

method the best.  The method and the methodology utilised must first be chosen with 

great and deliberate care to minimise wasted work and fruitlessness.   This is 
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reinforced by (Bennett et al 2002, p 567), who wrote that ‘many factors affect the 

appropriateness of a methodology, including type of project (large, small, routine or 

mission critical), application domain (real time, safety critical, user centred, highly 

interactive) and nature of the Information Systems development organization’. 

 

One of the major influences on the quality of the systems developed is the software 

development method adopted.  If the approach used is not appropriate for a 

particular type of application then it may limit the quality of the system being 

produced, (Bennett et al, 2002, p57). 

 

Software Methodologies can be grouped into soft and hard methodologies and 

further into sub-grouped into structured methodology and object oriented 

methodology. ‘The object-oriented approach provides a mechanism for mapping from 

real-world problems to abstractions from which software can be developed 

effectively.  (Bennett et al, 2002, p57) continued to assert that object orientation 

provides conceptual structures that help to deal with modelling complex information 

systems.   

 

As information systems requirements are becoming increasingly complex, the use of 

an object-oriented approach is more necessary.  It is a sensible strategy to transform 

the development of a large, complex system into the development of a set of less 

complicated sub-systems.  Object orientation also aims to provide a mechanism to 

support the reuse of program code, design and analysis models’. 

 

We will begin with the distinction between soft and hard methodologies.  Soft and 

hard approaches to software development are not to be perceived as competing 

methods.  The soft approach complements the hard approach. It allows a broader 

view of systems development.  As (Flynn,1998 p 325) advocates, it is concerned with 

what may be broadly termed the environmental effects of information system.  That 

is, it is concerned with the relationship between such systems and social, economic, 

legal and psychological aspects of the environment.   

 

(Bennett et al, 2002, p 568) asserts that ‘soft and hard methodologies cover different 

parts of the life cycle.  In this view, a soft methodology is more useful in the earlier 

stages of the life cycle, particularly when there is uncertainty about the goals or 

strategy of the organization as a whole.  A hard approach will be more appropriate 
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once any initial uncertainties and ambiguities have been resolved, since the 

emphasis then shifts to a specific project with relatively clear goals and boundaries.’ 

 

There are two very critical problems currently remaining in software development that 

the hard, scientific approach has not solved.  One is that the current methods used in 

developing the systems persistently solve the wrong problem.  The other is that the 

current development methods used neglect the wider organizational context (Flynn, 

1998 p 333). 

 

The soft approach deals with these problems and addresses them.  (Dobson & 

Strens, 1994) asserted that, a hard approach assumes that the problem to be solved 

is logically based and has a solution in a computer system, thus limiting the range of 

problems that can be addressed to those that possess a mathematical or logical 

solution.  Another assumption is that the computer-based solution may be placed in 

the organization without taking account of the social and psychological context within 

which the system will interact.  As (Bennett, 2002, p556), said ‘in practice, 

methodologies vary widely in philosophy, in completeness of definition or 

documentation, in coverage of the life cycle, and even in the type of applications to 

which they are best suited’. 

 

The software development method used is vital to the success of the whole venture 

and its use has to be judged according to the problem to be solved.  

Methodology can be tested only in conjunction with a problem to which it is applied 

as asserted by (Checkland, 1981, p242).  We must take, not methodology, but 

methodology plus problem and ask, not about the methodology, but about the 

problem.  Was the problem solved? 
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Hard Methods 

These hard methods or approaches can be further subdivided into structured 

methods and object oriented methods. Structured methods include the following. 

Structured Systems Analysis 

(Bell et al, 1992) said that ‘methodologies based on the structured systems analysis 

method tend to focus on information movement and analyses. This analysis is broken 

down in terms of flows, processes, files, sinks and sources.  Possibly one of the best 

examples we have of this approach is the seven-step model designed by (DeMarco. 

The seven step model is: 

1. building a current physical model 
2. building a current logical model from the physical model 
3. building a logical model of the system to be built consisting of data flow 

diagrams, a data dictionary, and process specifications 
4. creating a family of new physical models 
5. producing cost and schedule estimates for each model 
6. selecting one model 
7. packaging the specification 

 
 
Linear Sequential  
 

This is sometimes called the ‘classic life cycle’ or the ‘waterfall model’. Pressman, 

1997 p 33 said the linear sequential model suggests a systematic, sequential 

approach to software development that begins at the system level and progresses 

through analysis, design, coding, testing, and maintenance’ 

The linear sequential model has the following: 
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Figure 1: Basic Software Development Life Cycle 
Software Requirements Analysis 
This involves the gathering of the requirements of the user. It is initiated when the 

developer tries to acquire an understanding of the problem domain. Several 

techniques are used in this requirements elicitation stage and it calls for effective 

communication between developer and user. 

 

Design 
The design process translates requirements into a representation of the software that 

can be assessed for quality before code generation begins.  Like requirements, the 

design is documented and becomes part of the software configuration, (Pressman, 

1997 p 34). 

 

Code generation 
The design is then transformed from a higher level of abstraction to a more low level 

machine readable format 

 

Testing 
This exposes the code’s inherent errors.  Testing is usually carried out in a piecemeal 

fashion going from functional area to module and area prior to testing it as an 

integrated and whole unit. 

 

Maintenance 
This involves adding value to the finished product over the course of its life by 

patching and amending to increase its overall smooth working and efficiency. 

 

Criticisms of the linear sequential model 
The linear sequential model is one of the best known and most popular model for 

software development.  There are however some flaws that have been sighted by 

users of this classical model.  In a real life environment, it is difficult for the software 

project activities to proceed in a strictly linear manner. The sequential model is not 

flexible enough to accommodate any contingencies or eventualities.  The nature of 

software development lends itself more to unfolding in iterative fashion. There is 

some measure of iteration involved, though in an indirect way.  Requirements are not 

usually all garnered at the beginning of the software development.  This is because 

the requirements are not always very clear at the beginning of the software 
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development project and users are prone to changing their minds or not knowing 

what they want. One of the drawbacks of the linear sequential model is that it needs 

all the requirements explicitly at the beginning of the project before it proceeds and 

there is no mechanism to take more requirements on board as and when they arise.  

Owing to the linear nature of the model, it takes a very long time for a product to be 

seen. If there is a major flaw in the product, this could prove fatal to the project as 

everything would have to start from the beginning again. Not a very efficient way of 

doing things.  In addition, the development team is usually assigned interdependent 

tasks and if one team member has to wait on another; the wait time may exceed time 

spent being productive.  Despite all the discussed flaws, the linear sequential model 

holds a significant position in the annals of software development and is still widely 

used in software engineering. 

 

Prototyping Model 
 
Prototyping allows the user to see a mock up version or a replica of the software 

system before it is finished.  It can be done using tools like Netbeans and Visual 

Basic.  Just the externals of the system are simulated, but the core is missing.  This 

enables the user to have some idea of what the system will look like before it is 

finished.  The prototype can be thought of as the initial system that can serve as the 

inspiration and motivator for the project before it is thrown away. 

 
Rapid Application Development (RAD) Model 
 
Rapid Application Development (RAD) is a high speed adaptation of the linear 

sequential model in which rapid development is achieved by using a component-

based construction approach.  If requirements are well understood and project scope 

is constrained, the RAD process enables a development team to create a ‘fully 

functional system’ within a very short time periods (for example, 60 to 90 days) 

(Pressman, 1997 p 37). 

 
Criticisms of Rapid Application Development (RAD) 
If the appropriate number of persons are not present on a RAD team, the likelihood 

of failure is great.  It also needs clients and team members who are committed to 

very fast paced development and who understand the common vision.  Not every 

software development project is suitable for RAD. (Pressman 1997, p38) said, if a 

system is not properly modularized, building the components necessary for RAD will 

be problematic. 
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Incremental Model 
This model is a combination of linear sequential model and prototyping.  It could be 

thought of as systems development in a modularised way.  The entire product is sub-

divided into smaller portions of the products or increments of the whole product.  

Linear sequential model is used to deliver and develop each increment. It is useful 

when the staff complement is not large and therefore delivering the sub-products on 

time is more manageable.  Each increment is prototyped and shown to the client until 

the whole product is finished. 

 

 

The Spiral model 
This model utilises the strengths of both the linear sequential and the prototyping 

model.  It provides the potential for rapid development of incremental versions of the 

software. (Pressman, 1997 p42).  This evolutionary process model was originated by 

Barry Boehm. 

The Spiral Model is split into several framework activities called task regions.  There 

are on average 3 to 6 task regions.  These include customer communication, 

planning, risk analysis, engineering, construction and release and customer 

evaluation. 

 

 

Object-Oriented Analysis and Design Development Processes based upon the 
UML 

A software development process describes how to develop, operate and support one 

or more software systems.  There are several software development processes in the 

industry, prior and current ones.  These include the object-oriented software process 

(OOSP), the Unified Process, the Microsoft Solutions Framework (MSF), the OPEN 

Process, eXtreme Programming and Catalysis. 

Rational Unified Process (RUP) 
Rational Unified Process (RUP) is a system development process produced by IBM 

Rational.  This process is serial in the large and iterative in the small, delivering 

incremental releases over time, while following proven best practices.  RUP is 

comprised of four phases: Inception, Elaboration, Construction and Transition.  
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These phases execute sequentially.  The project jobs are grouped into logical 

activities called disciplines.  The disciplines are performed iteratively throughout the 

four phases 

 

 

 
 Rational Unified Process diagram 

 

 “RUP was never intended to be a silver bullet that organizations should apply as is.  

IBM Rational clearly advocates that organizations customize it to create a process 

that is specific to meet their particular needs”, (Ambler, S, 2002) 

 

 

 

Unified Software Development Process (USDP) 
USDP is an industry standard generic software development process.  It is the 

iterative and incremental software engineering process for the UML.  It has to be 

customised for use in each development project.  USDP is the use-case and risk-

driven, iterative and incremental and architecture software engineering process for 

the UML.  USDP has four (4) phases.  These are inception, elaboration, construction 

and transition.  Each phase may have one or more iterations.  Each iteration has five 

iteration workflows.  They are requirements, analysis, design, implementation, test. 

Iterations are indispensable to the USDP.  Each iteration includes planning, analysis 

and design, integration and test, internal or external release.  These iterations are 

http://en.wikipedia.org/wiki/Image:RationalUnifiedProcess.png
http://en.wikipedia.org/wiki/Image:RationalUnifiedProcess.png
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organised into phases and contain workflows.  A sequence of iterations result in a 

final product release.  According to Ambler, 2001, p 443, the Unified Process has 

several strengths.  First it is based on sound software engineering principles such as 

taking an iterative, requirements-driven, and architecture based approach to 

development. Second, it provides several mechanisms, such as a working prototype 

at the end of each iteration and the go/no-go decision point at the end of each phase, 

which adds management visibility into the development process’. 

eXtreme Programming   

Beck, 2000, p xv advocates that ‘XP is a lightweight methodology for small-to-

medium-sized teams developing software in face of vague or rapidly changing 

requirements’. 

As outlined in Beck, 2002, p xvii, ‘XP is distinguished from other methodologies by 

• its early, concrete, and continuing feedback 

• its incremental planning approach 

• its ability to flexibly schedule the implementation of functionality 

• its reliance on automated tests written by programmers to monitor the 

progress of development 

• its reliance on oral communication, tests, and source code to communicate 

system structure and intent’. 

The Microsoft Solutions Framework (MSF) 
 
As defined by (Ambler, 2001, p 448), ‘MSF is a collection of processes, principles 

and practices that helps organizations be more effective in their creation and use of 

technology to solve their business problems. MSF does this by providing rigorous 

guidance that is flexible enough to be adapted to meet the needs of the project and 

the organization.  Originally based on best practices within Microsoft product 

development and IT organizations, MSF was created in 1994 and developed into 

standardized training courses to promote consistency and effectiveness within the 

Microsoft Consulting Services’. 
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The OPEN Process 
The OPEN process as described in (Ambler, 2001, p 449), is ‘a comprehensive 

software process.  The OPEN Process is aimed at organizations using object and 

component technology…Also similar to the Unified Process, OPEN was initially 

created by the merger of earlier methods: MOSES, SOMA, Firesmith, Synthesis, 

BON, and OOram.  The OPEN Process supports the UML notation, and any other 

OO notation to document the work products the OPEN Process produces’. 

 

 

Criticism of the fusion or unification approach to methods 
(Bouzeghoub et al, 1997, p 101-102), highlights the fact that ‘a study of the object-

oriented world, covering the market and the literature, reveals the existence of a 

large number of methodologies…..none of the existing methods covers the whole of 

the project life cycle.  Consequently, users are always forced to complete the method 

in some ad hoc fashion, or to achieve their aims by combining several 

methods…there are things to be said…..against this tendency to fuse or unify 

methods…..the fusion or unification approach tends to encourage belief in the 

existence of a single methodology that will deal with every type of problem when the 

reality is more complex, and it is more likely that different types of method are better 

adapted to different types of problems’. 

 

The fusion approach to methods is examined more comprehensively in Chapter 4.  

Having gained a better understanding of method building in general, the next section 

highlights additional ‘soft’ approaches to software development that currently exist. 

 

 

 
 
 
Alternative Soft Approaches to Systems Analysis and Design methodologies 
 
General systems theory 
(Bell et al, 1992, p 186) said that ‘ this [GST] is a troublesome theoretical perspective 

to put into practical application, indeed it is not really intended for practical systems 

analysis: General Systems Theory is too generalised for information systems 

definition’ 
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Client Led Design 
This approach promotes the user directed initiative where the users are in charge of 

the development process 

 

Critical Systems Thinking (CST) 
(Bergvall-Kareborn, B, 2002, p 473-474) wrote that ‘Critical Systems Thinking as 

defined mainly by scholars at Hull University..evolved out of a critique of traditional 

management science for being positivistic and out of a critique of SSM for its 

interpretivistic stance….In order to manage situations characterized by conflicting 

interest groups and get a more democratic approach, CST suggests a philosophy 

which rests on three “commitments”. These are commitments to critique, to 

emancipation and to pluralism’. 

 

Multi-Modal Methodology (MMM) 
According to (Bergvall-Kareborn, 2002), ‘MMM is rather new to the field of systems 

thinking…MMM criticizes the narrowly focused, technological determinism used by 

the hard systems approaches in dealing with human problems, as well as the soft 

approaches where the assumption about reality is based on chaos and complexity.  

Instead MMM…suggests that there is order within complexity’. 

 

 
Multiview 
Uses soft systems as its prior stage before advocating the other stages of software 

development. It uses a contingency approach where skills of developers and the 

problem situation are examined before deciding how to proceed with development. 

 

Participative Systems Design 
This approach was pioneered by Enid Mumford who argued for a socio-technical 

approach.  She proposed the ETHICS method where the users were major drivers of 

the development process. QuickETHICS is also popularly used as front end to the 

process 

 

 
 
Criticisms of Soft Approaches 

1. They only cover a small part of the life cycle 

2. They require more resources 
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3. Participation may not improve system quality 

4. They have not been tested sufficiently in practice 

5. Concepts like usability are hard to operationalize 

6. Quality problem is not really addressed 

7. Impact of new technology on old requirements 

 

 

Gap in the literature 
Avison et al, 1990, p 268 disclose that ‘the Multiview methodology is in a continuing 

state of development….all information systems development methodologies have 

limitations…We expect the methodology to improve in the future.  This research 

builds on the work done in Multiview methodologies and as the authors have 

disclosed, there is room for improvement. 

 
2.11 Conclusion 
SSM was chosen as the soft method of choice for several reasons.  One was for its 

proven efficacy. As the case studies in this chapter showed, SSM has been used 

effectively in many cases in conjunction with other methods to develop successful 

systems.  Another reason was that the attributes of SSM such as its ease of use and 

flexibility made it easy to combine with the UML based method.  The outcome of any 

use of the SSM methodology will be a new problem situation.  This is so as the 

methodology itself is an ongoing learning system whose task is really never done 

because learning can never truly be complete (Checkland, 1981, p 237).  The 

effectiveness of the SSM becomes greater when combined with another 

methodology.  Methodological Pluralism or multi-methodology, whatever name it 

goes by is here to stay.  It is finding its niche. As it evolves into a more stable 

discipline with firm theoretical and philosophical underpinnings, it is still being used to 

ensure radical benefits and advantages in the software development arena. This is 

explored in more detail in Chapter 4.  In this research the SSM method is combined 

with a development process based on the Unified Modelling Language (UML). This 

produces the resultant MoIST method. The UML consolidates a set of core modelling 

concepts that are generally accepted and used in conjunction with many current 

methods.  These methods include RUP and USDP.  The UML provides users with a 

ready-to-use, expressive visual modelling language.  This can then be used to 

develop and exchange meaningful models.   
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Chapter 3-   Unified Modelling Language (UML)   

3.1 Introduction 
Whereas Soft Systems Methodology represents unstructured situations, the Unified 

Modelling Language represents the ‘harder’ information systems paradigm.  One of 

SSM’s primary goals is to more accurately understand an unstructured environment 

as it really is.  The results of this more clearly understood situation is then fed into the 

UML based development process.  This helps to further define the existing situation 

and clarify solutions.  At this point of the process this is where the UML’s applicability 

is recognised and comes in. 

 

The UML notation is ideal as a follow on from the use of SSM. This is because the 

characters represented within the rich picture and subsequent conceptual models 

find a related progression in the UML’s use cases with its own characters and then 

class, sequence and other diagrams. This provides some measure or degree of 

cohesion and logical flow from architecture by SSM to implementation and realisation 

through UML.  Soft and hard methodologies cover different parts of the life cycle. In 

this view, a soft methodology is more useful in the earlier stages of the life cycle, 

particularly when there is uncertainty about the goals or strategy of the organization 

as a whole.  A hard approach will be more appropriate once any initial uncertainties 

and ambiguities have been resolved; insofar as this is possible, since the emphasis 

then shifts to a specific project with relatively clear goals and boundaries (Bennett et 

al, 2002, p568). 

 

3.2 History of the UML 
Prior to the UML, there was no clear leading modelling language.  Users had to 
choose from among many similar modelling languages with minor differences in 
overall expressive power.  Most of the modelling languages shared a set of 
commonly accepted concepts that are expressed slightly differently in various 
languages.  Users longed for the industry to adopt one, or a very few, broadly 
supported modelling languages suitable for general-purpose usage. 
 
(OMG, 2003) 
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The UML had its beginnings in the late 1980s (Booch et al, 1998).3  The UML was 

originally conceived by Rational Software and three of the most prominent 

methodologists in the information systems/technology industry: Grady Booch, James 

Rumbaugh, and Ivar Jacobson.  It represents the evolutionary unification of their 

experience with other industry engineering best practices.  Faced with new object-

oriented programming languages and increasingly complex applications, 

methodologists began to experiment with alternative approaches to analysis and 

design.  The number of OO methods increased from fewer than 10 to more than 50 

between 1989 and 1994.  Many users of these methods had trouble finding a 

modelling language that met their needs completely, thus fuelling the so-called 

methods wars.  As users learned from experience, new generations of these 

methods began to appear, a few clearly prominent, most notably Booch, Jacobson’s 

Object Oriented Software Engineering (OOSE), and Rumbaugh’s Object Modelling 

Technique (OMT). 

 

The UML effort started officially in October 1994, when Rumbaugh joined Booch and 

OMT methods. The version 0.8 draft of the Unified Method (as it was then called) 

was released in October 1995.  Jacobson then joined Rational and the scope of the 

UML project was expanded to incorporate OOSE.  This resulted in the release of the 

UML version 0.9 documents in June 1996.  The general software engineering 

community was invited to give feedback to the UML effort. 

 

The three of us started the UML effort at Rational and were its original chief 
methodologists, but the final product was a team effort among many UML partners 
under the sponsorship of the OMG.  All partners came with their own perspectives, 
areas of concern and areas of interest.  This diversity of views strengthened the final 
result.  We expect that OMG’s ownership of the UML standard and the public’s free 
access to it will ensure the widespread use and advancement of UML technology 
over the coming years. 
 
(The three amigos, OMG, March 2003) 

 

 

In September 1997, the OMG officially adopted its first methodology standard, the 

Unified Modelling Language.  Twenty one companies participated in the momentous 

effort to create a single, standardized analysis and design notation and 

metamethodology.  In the subsequent years, the UML standard has successfully 

                                                 
3 Booch, G, Rumbaugh, J, and Jacobson, I.  The Unified Modelling Language User Guide.  Addison 
Wesley, Reading, Mass., 1999. 
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unified the previously highly fragmented object-oriented analysis and design industry.  

The OMG in an unprecedented move successfully drew the community together to 

agree a single, worldwide standard.  This achieved even higher consensus than 

OMG’s successful CORBA systems integration platform standard (Henderson-Sellers 

et al, 2000). 

 

Many software organizations saw the UML as strategic to their businesses.  A UML 

consortium was formed.  This had several organizations willing to dedicate resources 

to work towards a strong and complete definition.  A semantics task force was 

formed to integrate the UML with other standardization efforts.  A revised version of 

the UML 1.1 was offered to the OMG for standardization. This version was accepted 

by the OMG.  UML 1.1 was adopted by the OMG.  Maintenance of the UML was then 

taken over by the OMG Revision Task Force (RFT).  In June 1999, the RTF released 

UML 1.3. 

 

The major UML 2.0 revision has improved the UML’s semantics of extension by 

profiles.  The Systems Modelling Language (SysML) is a domain-specific modelling 

language.  It is used for systems engineering and is defined as a UML 2.0 profile 

 

UML is a general-purpose modelling language that has a standardized graphical 

notation.  This notation is utilised in the generation of an abstract model of a system.  

This model is a UML model.  One of the characteristics of the UML is its 

extendability.  For this profiles and stereotype are used to achieve customization.   

 

UML frees software developers to focus more on design and architecture.  UML does 

this by creating an industry standard graphic notation.  The notation represents 

common concepts such as classes, components, aggregation, behaviours and 

generalization. 

 

The OMG’s official definition of the UML is the UML meta-model.  This is a Meta-

Object Facility meta-model (MOF).  The UML meta-model and UML models including 

all MOF-based specification may be serialized. 

 

 

The UML has become part of the mainstream of software development, enabling 

various stakeholders, to gain control of their systems architecture, and to manage 

complexity. 
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The UML represents the culmination of best practices in practical object-oriented 

modelling.  The UML is the product of several years of hard work that were focussed 

on bringing about a unification of the methods most used around the world, the 

adoption of good ideas from many quarters of the industry, and above all, a 

concentrated effort to make things simple (OMG, 2003). 

 

 

3.4 Overview of the UML 
The Unified Modelling Language (UML) is a graphical notational language.  The UML 

is used to visualize, specify, construct and document the artefacts of a software 

intensive system.  It is a software standard that is owned by the Object Management 

Group (OMG).  UML is a public domain modelling language that is available to 

anyone and everyone who wishes to follow a disciplined and standard approach to 

modelling systems and applications (Henderson-Sellers et al, 2000). 

The UML has become part of the mainstream of software development, enabling 

various stakeholders, to gain control of their systems architecture, and to manage 

complexity. 

 

The UML represents the culmination of best practices in practical object-oriented 

modelling.  The UML is the product of several years of hard work that were focussed 

on bringing about a unification of the methods most used around the world, the 

adoption of good ideas from many quarters of the industry, and above all, a 

concentrated effort. The UML functions as the means for expressing and 

communicating knowledge.  The UML brings together the industry’s best practices 

regarding how we understand the world around us and how we represent and 

communicate that understanding. It has four distinguishing characteristics in 

comparison to other modelling languages: It is general-purpose, broadly applicable, 

tool-supported, and industry standardized. 

Among its other benefits, is the market share held by industry and tool vendors 

supporting it, widespread use of the methods founded by its creators, and its 

adoption by the OMG will make the UML a pivotal force in today’s businesses.  

(OMG, 2003). 
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Diagrams of the UML 
The UML provides mechanisms for organizing and classifying knowledge regarding a 

given context or situation in which the problem resides and in which the solution must 

be implemented. Such knowledge is captured in a model consisting of various 

modelling elements, and it is represented through distinct but interconnected sets of 

diagrams.  The model itself captures the knowledge, and the diagrams represent the 

knowledge in a communicable form.  A model is an abstract representation of a 

specification, a design or a system, from a particular point of view. It is often 

represented visually by one or more diagrams. It aims to express the essentials of 

some aspect of the process without giving unnecessary details.  Its purpose is to 

enable people involved in the development to think about and discuss problems 

without getting sidetracked.  Modelling is simply a form of abstraction that facilitates 

both problem understanding and problem resolution (Selic, B 1999)4.  A model 

captures only the significant features of a system and hides or ignores lower-level 

detail. The simplified yet relatively accurate view of reality presented by a model is 

much easier to comprehend than the actual system.  The choice of what to model 

has an enormous effect on the understanding of the problem and the shape of the 

solution.  When deciding how to model something, determining the correct 

abstraction and detail is critical to providing something that will be of benefit to the 

users of the model. 

 

The UML 2 consists of 13 distinct, but interconnected diagrams through which to 

present a given body of knowledge.  These include use cases, class, sequence, and 

activity diagrams.  Use cases and activity diagrams will be explored in more detail  

here.  This is because they have greater relevance to this particular research. 

 
 

Activity Diagrams  
The activity diagrams are special cases of state diagrams that capture activities or 

actions of elements.  They describe knowledge regarding the behavioural 

characteristics of the involved elements and the dynamic interactions or 

collaborations among them.  The activity diagrams help us to understand how 

different entities behave and interact in order to realize their objectives. 

 

                                                 
4 Turning Clockwise: Using UML in the Real-Time Domain – Selic, B 
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UML Activity Diagrams are typically used for modelling the logic captured by a single 

use case usage scenario.  Although UML activity diagrams could potentially model 

the internal logic of a complex operation it would be far better to simply rewrite the 

operation so that it is simple enough that you don’t require an activity diagram. In 

many ways UML activity diagrams are the object-oriented equivalent of flow charts 

and data flow diagrams (DFDs) from structured development. 

 

 
 

 

Fig 2:1  Example of an Activity Diagram for a use case to distribute schedules 

 

Each of the diagrams discussed above captures a different set of concerns and 

aspects regarding the subject, and each modelling element represents some 

concept, construct, or element of knowledge regarding the subject.  These diagrams, 

with the modelling elements they use, describe the content of the communication 

among the individuals involved in the problem-solving process. Together all the 

diagrams holistically form an integrated window to the body of knowledge that is 

applied and gained through the process. It is the sharing and reapplying of this 

knowledge (and artefacts representing its fragments) that enables an organization to 

capitalize on the benefits of applying the UML.  Together, these diagrams establish a 

coherent body of knowledge regarding the business, the problem/solution, and the 

problem-solving process by addressing and reconciling the concerns of the various 

stakeholders.  This coherence will be shown later in the research and is essentially 

that there is some element or measure of relatedness among syntactic components 

such as use cases and activity diagrams.   
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Basic Activity Diagram notation  

• Initial node. The filled in circle is the starting point of the diagram.  An initial 

node isn’t required although it does make it significantly easier to read the 

diagram.  

• Activity final node. The filled circle with a border is the ending point.  An 

activity diagram can have zero or more activity final nodes.  

• Activity.   The rounded rectangles represent activities that occur. An activity 

may be physical or electronic.  

• Flow/edge.  The arrows on the diagram.     

• Fork.  A black bar with one flow going into it and several leaving it.  This 

denotes the beginning of parallel activity.  

• Join.  A black bar with several flows entering it and one leaving it.  All flows 

going into the join must reach it before processing may continue.  This 

denotes the end of parallel processing.  

• Condition.  Text on a flow, defining a guard which must evaluate to true in 

order to traverse the node.  

• Decision. A diamond with one flow entering and several leaving.  The flows 

leaving include conditions.   

• Merge.  A diamond with several flows entering and one leaving.  The 

implication is that one or more incoming flows must reach this point until 

processing continues, based on any guards on the outgoing flow.  

• Partition. These are also called swimlanes, indicating who/what is performing 

the activities.  

• Sub-activity indicator.  The rake in the bottom corner of an activity indicates 

that the activity is described by a more finely detailed activity diagram.   

• Flow final.  The circle with the X through it.  This indicates that the process 

stops at this point.   

• Note. A standard UML note that indicates extra information needed.   

Stakeholders usually find them easier to understand.  

General Guidelines for drawing activity diagrams 

1. Place the start point in the top left-hand corner.  A start point is modelled with 

a filled in circle.  Every UML Activity Diagram should have a starting point.   

2. Always include an ending point.  An ending point is modelled with a filled in 

circle with a border around it. 
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2.        Activities 

An activity, also known as an activity state, on a UML Activity diagram typically 

represents the invocation of an operation, a step in a business process, or an entire 

business process. 

1. Question “Black Hole” Activities.  A black hole activity is one that has 

transitions into it but none out, typically indicating that you have either missed 

one or more transitions.   

2. Question “Miracle” Activities.  A miracle activity is one that has transitions out 

of it but none into it, something that should be true only of start points.   

   

3.        Decision Points 

A decision point is modelled as a diamond on a UML Activity diagram.  Decision 

Points Should Reflect the Previous Activity.  The guards on leaving the decision point 

also help to describe the decision point.  

 

4.        Guards 

A guard is a condition that must be true in order to traverse a transition. 

1. Each Transition Leaving a Decision Point Must Have a Guard  

2. Guards Should Not Overlap.   

3. Guards on Decision Points Must Form a Complete Set.   

4. Exit Transition Guards and Activity Invariants Must Form a Complete Set.  An 

activity invariant is a condition that is always true when your system is 

processing an activity.   

5. Apply a [Otherwise] Guard for “Fall Through” Logic.  

6. Guards Are Optional. It is very common for a transition to not include a guard, 

even when an activity includes several exit transitions.     
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5.        Parallel Activities 

It is possible to show that activities can occur in parallel using two parallel bars.  The 

first bar is called a fork.  It has one transition entering it and two or more transitions 

leaving it.  The second bar is a join, with two or more transitions entering it and only 

one leaving it.   

1. A Fork Should Have a Corresponding Join.  In general, for every start (fork) 

there is an end (join).   

2. Forks Have One Entry Transition.   

3. Joins Have One Exit Transition  

6.        Swimlane Guidelines 

A swimlane is a way to group activities performed by the same actor on an activity 

diagram or to group activities in a single thread.   

 

The activity diagram shows the steps of a computation.  Each step is a state of doing 

something.  For that reason, the execution steps are called activity states.  The flow 

of control from one activity state to the next is called a transition (Maciaszek, 2001). 

Activity diagrams can have other uses in system development apart from modelling 

use cases (Fowler and Scott, 2000).  They can also be used to understand a 

business process at a high level of abstraction.   

 

 

 

Use-cases 
The use-case view describes knowledge regarding the needs and requirements of 

the various stakeholders.  This view is depicted by use-case diagrams.  “A use-case 

diagram captures relationships among various entities and their roles, 

responsibilities, and objectives within the environment.  This view functions as the 

primary motivating force for the whole problem solving process and provides 

validation criteria for the resulting solution.”  A use case is a sequence of events that 

achieves a measurable result for an actor or it is an example of how someone or 

something uses the system (Jacobson, 1995). 

Use cases document the behaviour of the system from the users’ points of view.  By 

‘user’ in this case we mean anything external to the system being developed which 
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interacts with the system.  A user might be a person, another information system or a 

hardware device.  Use case modelling helps with three of the most difficult aspects of 

system development: 

• Capturing requirements 

• Planning iterations of development 

• Validating systems 

 

Student

Student Records 
B ill ing Syst em

Regist er for Modules

Request Provisional Class List Module Leader

Val idate User

M aintain Modu le Catalogue Pathway 
Administrat or

<<extend>>

<<ex tend>>

<<extend>>

 
Figure 3.1: Use cases for Module registration 
 
 
History of use cases 
Use cases were first introduced by Ivar Jacobson in the early 1990s as a 

development from the earlier idea of scenarios.  These scenarios have evolved into 

what are now known as use cases.  A use case diagram is comparatively easy to 

understand intuitively, even without knowing the notation.  This is an important 

strength, since the use case model can sensibly be discussed with a client who need 

not be familiar with UML. 
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Fig 3.2: Use case model to frame a picture, Chesney and Fletcher, 2000 
 

 

A use case model consists of three (3) main components.  These are actors, use 

cases and relationships.  A use case model is created at the beginning of systems 

development to capture system requirements. 

An actor initiates a use case, and an actor (possibly the initiator, but not necessarily) 

receives something of value from the use case. The graphic representation is 

straightforward. An ellipse represents a use case, a stick figure represents an actor. 

The initiating actor is on the left of the use case, and the receiving actor is on the 

right. The actor’s name appears just below the actor. The name of the use case 

appears either inside the ellipse or just below it. An association line connects an 

actor to the use case, and represents communication between the actor and the use 

case. The association line is solid, like the line that connects associated classes. The 

actors, use cases, and interconnecting lines make up a use case model,(Schmuller, 

1999). 

 

 

 
Figure 3.3: Use case model, Schuller, 2004 
 

http://library.books24x7.com/book/id_414/viewer.asp?bkid=414&image_src=http://images.books24x7.com/bookimages/id_414/&image_id=63&previd=IMG_63
http://library.books24x7.com/book/id_414/viewer.asp?bkid=414&image_src=http://images.books24x7.com/bookimages/id_414/&image_id=63&previd=IMG_63
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Actors: 
An actor, usually shown as a stick person, represents a kind of user of the system 

(by user we mean anything external to the system that interacts with it. 

 

Use Cases: 
An individual use case, shown as a named oval, represents a kind of task, which has 

to be done with support from the system under development.  The UML standard 

calls this a ‘coherent unit of functionality’.  Of course the use case diagram shows 

only a small part of the information we need.  Each use case is described in detail, 

usually in text.  The use case diagram can be seen as a concise summary of the 

information contained in all the descriptions of the use cases 

 

Relationships: 
This describes or depicts the way that use cases relate to each other.  They provide 

a link between actors and use cases.  Actors use use cases and  use cases 

can use other use cases.  Relationships are depicted as lines sometimes with 

arrows.  A relationship speaks of a two (2) way communication and the arrow 

direction is an indication of the interaction initiator. 

 

A use case can use another use case. If you have a piece of well-defined 

functionality, it makes sense to re-use this wherever possible. Also, sometimes a use 

case gets too big to manage sensibly and it makes sense to break this down into 

smaller use cases. There are two ways use cases can relate. The first is where a use 

case "includes" another use case. In this case the second use case is always 

invoked as part of the execution of the first. This is drawn with an arrow pointing to 

the use case that is included, with the label <<include>> tagged to the line. So the 

following diagram shows that we always include provision of the module timetable as 

part of the task of enrolling a student on a module (Wade et al, 2002). 

 

 

Provide Enrolm ent Ins tructionsObtain Modul e Tim etable

<<incl ude>>

 
Figure 3.4: Illustration of the ‘Include’ Label 
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Sometimes a use case is only called occasionally from another use case. This will 

often be to support an alternative path or an exception. We draw this with an arrow 

pointing the other way where the arrow points to the calling use case. Thus the 

following diagram says that it is sometimes (but not always) necessary to extend the 

process of enrolling a student by chasing up their previous qualifications. 

 

 

Provide Enrolment InstructionsProvide Examination Resul ts

<<extend>><<extend>>

 
Fig 3.5: Illustration of the ‘extend’ Label 
 
 
Justification for using UML in the research 
The whole aim of the research is to make software development easier and more in 

line with what the client needs. SSM is already user focussed and as expounded in 

Chapter two it offers a greater chance of satisfying client requirements and therefore 

a more substantial chance of a successful system.  The other aspect to making 

software development more accurate and successful involves the use of the UML.  

The big advantage that use cases have over other requirement models is that it is an 

excellent tool for communication between developers and users.  This is as it is 

written in the user’s language and requires little or no knowledge of a modelling 

notation to understand (Chesney and Fletcher, 2000). The advantage of Use Cases 

in the research is further highlighted in Chapter 6 – the intervention chapter. There it 

is seen that the communication between SSM methodologist/developer and client 

was achieved satisfactorily.  In the event that this had not been the case, a second 

option would have been to utilise the use cases developed in applying the MoIST 

method to the situation to further enhance the client understanding of the research 

findings. The client in this research – the academic support tutor – represented 

management. Additional research has shown that management who are also end 

users of the system can also get involved in systems development.  This is as the 

use case model would be created by the problem domain experts – the 

management.  They would be guided by the software developers. This is usually 

more accurate and could be used by developers as a starting point for analysis.  

Other end users would be involved in validating the models and this would mean that 
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users would be less likely to resist the new system as they would have been involved 

in its development (Chesney et al, 2000, Sauer, C, 1994). 

 

Limitations of with use cases 
1. Focussing on use cases may encourage developers to lose sight of the 

architecture of the system and of the static object structure, in the rush 

somehow to deliver the use cases which are required in the current 

iteration. 

 

2. There is a danger of mistaking design for requirements.  More generally, 

requirements by use cases may encourage developers to think too 

operationally: users are likely to describe the use case as a very concrete 

sequence of interactions with the system which is one way, not the only 

way of achieving their goal.  It is important that developers distinguish 

between requirements and candidate design. 

 

3. There is danger of missing requirements if too much reliance is `put on 

the suggested process of finding the actors and then finding the use 

cases that each actor needs.  Not all requirements emerge this way.  This 

danger can be lessened by doing use case analysis and conceptual class 

modelling in parallel. 

 

 

 

 

3.5 UML Benefits and goals 
 

• Provides users with a ready-to-use, expressive visual modelling language to 

develop and exchange meaningful models.  The UML consolidates a set of 

core modelling concepts that are generally accepted across many current 

methods and modelling tools. 

 

• Furnishes extensibility and specialization mechanisms to extend the core 

concepts.  Though the core concepts cannot be changed by the users, UML 

allows the users some leeway.  Users are allowed to build models using core 

concepts without using extension mechanisms for most normal applications.  
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They can also add new concepts and notations for issues not covered by the 

core. 

 

• UML is an expressive language.  It is therefore possible to express important 

aspects of the design and meaningfully to reflect changes in the design, 

which are made during the development as changes in the models. 

 

• UML is supported by suitable tools, so that the developer’s efforts can be 

spent on work that requires their skills, not on routine work. 

 

• When new people join the project, it is an advantage if they already know the 

modelling language instead of having to learn it then. 

 

• To do component-based design, one has to be able to read the descriptions 

of components.  The more easily and quickly this can be done, the cheaper it 

is to consider a component.  The more widely used the modelling language, 

the greater the chance that it is the same one, the component writer will 

choose to use. 

 

 

Limitations of the UML 

• The UML has become a necessary part of most software activities.  

Nevertheless it is not sufficient.  Insufficiencies of the UML arise from the fact 

that it is a pure modelling language, nothing more.  It contains no elements of 

process that would guide software development from ‘start’ to ‘finish’.  Being 

only a modelling language, it also does not take responsibility for other issues 

such as data issues and project management issues.  What is needed is a 

customisable process where the process could be tailored to fit the precise 

needs of each organization. 

 

• There is an unclear semantic description of the UML syntax. 

 

• There is a risk of circular definition with the UML.  This means that the target 

language is not rich enough to define itself and can ultimately lead to 

repetition. 
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3.5 Conclusion 
 

The Unified Modelling Language (UML) paradigm is here to stay.  Over several years 

it has grown from being a feature of a relatively obscure graphical notational 

language to become a general, universally accepted technique that offers a uniform 

approach to software development from analysis through to coding (Bustard et al, 

1994). 
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Chapter  4- Successful Integration of Systems Thinking into IS development 
 
It is currently beyond the scope of use cases to help with the important analysis of 
how and where information technology could improve on an existing process 
(Butler, 1998) 
 

 

4.1 Introduction 
The UML has been introduced as a diagram-based language for describing designs.  

“Diagrams are how we naturally think about systems” (Buzan and Buzan, 2000).  “It 

is inconceivable that a single diagram could capture everything about a design.  That 

is indeed not desirable, as we will be interested in different aspects of the design at 

varying times” (Steven & Pooley, 2000).  Integrating systems thinking into information 

systems development helps to give a more comprehensive and balanced view or 

picture of the problem and its solution. 

 

Now, more than ever, planning and managing in the real world is beset by change 

and uncertainty. Knowledge is incomplete, values are in dispute, decisions of others 

are often unpredictable. Sheathed in opaque technicalities, inflexible and over-

ambitious, the highly mathematical methods of analysing problem situations are no 

longer considered acceptable. In their place a coherent alternative paradigm has 

emerged.  This is a range of methodologies which aim not to produce 'optimal' 

solutions but to facilitate an enriched decision-making process. ‘Low-tech' 

transparent and participatory, these methods assist in the formulation and 

reformulation of problem solving in an uncertain world (Rosenhead et al, 2001). 

 

One of the main challenges  of undertaking IS design is the need to find some means 

of moving from methods of inquiry suited to sense making in social situations, to 

methods suited to organizing knowledge into a suitable format for the construction of 

a logical specification for any supporting technology (Champion and Stowell, 2002).  

Many methods and approaches have been innovated over many years.  There is 

however no magic formula for getting the most accurate requirements specification 

whilst simultaneously considering all the socio- technical factor then churning out the 

logical blueprint for a system. There is need for balance.  Soft Systems Methodology 

(SSM) is neither by design nor intent an official software development technique.  Its 

use over the years has proven quite effective in providing structure to unstructured 

situations.  
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There have been many writings about work done in SSM by several authors.  These 

authors have advocated the use of SSM in the software development process 

(Checkland, 1981, Checkland and Scholes, 1990; Wilson, 1990; Checkland and 

Holwell,1998).  Others have taken this work a step further by writing about how to link 

SSM with information systems development (Miles, 1988; Stowell, 1985; Miles, 1992; 

Checkland, 1988; Mingers, 1988; Checkland and Scholes, 1990; Mansell, 1990; 

Prior, 1992; Stowell et al, 1990; Doyle and Wood, 1991; Jayaratna, 1994; Sawyer, 

1991; Miles, 1992; Savage and Mingers, 1996; Stowell, 1995).  Much energy has 

been exerted in the past to link SSM with SSADM and its resultant DFD diagrams in 

the structured design process (CCTA, 1993).  Not too much extensive work has been 

done with linking SSM to the Unified Modelling language (UML) paradigm.  However, 

exceptions to that are (Savage and Mingers, 1996, Bustard and Lundy, 1996).   

 

This research has been influenced by the foundational work that they have done and 

has resulted in a novel method called MoIST.  This thesis linkage is between Soft 

System Methodology (SSM) and Unified Modelling Language (UML) via the MoIST 

Method.  This discussion is approached cautiously because the literature on the 

subject is wide ranging and there is no single coherent view of what should constitute 

best practice.  This section provides a historical timeline of how the linkage attempts 

have fared over the years.  It also documents the innovators behind them.  It looks at 

some uses of SSM in information systems development, SSM and Structured Design 

methods, SSM and Object oriented (OO) methods.  It also examines several of the 

limitations of SSM in information systems development. 

 

 

4.2 Problems with existing IS methods 
Traditional approaches to system design have been defined as ‘product oriented’.  

This meant that the software product was perceived as being ‘fixed’ and well 

understood.  This led to the product requirements being stated way in advance of 

design and implementation.  Information strategy formation is no longer seen as the 

sole remit of senior management.  There is now the clamour for employee 

involvement as even with the right conditions, the learning process will continue after 

the technical implementation of an information system, since results concerning use 

can never be fully predicted during system design (Walsham, 1993). 

 

Usually computerised information systems follow the approach of analysis of 

information requirements, construction and implementation of a system.  This fixed 
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approach has been to the exclusion of systems thinking.  It could be said that the 

field of information systems has neglected systems thinking as an underpinning to 

both its theoretical and practical concerns (Checkland, 1988).  This may be because 

the managers feel that introducing an information system into an organization raises 

more social issues than technical ones and its employees are the ones who would 

have to make the effort to adjust to this new modus operandi.  The reactions and the 

complexity of the social issues vary according to ‘how’ the process of developing and 

introducing the clients to the information system was done.    

 

Organisations used to be perceived as functional, sterile and non-emotive 

environments where one just got on with the job at hand.  Nowadays, organizations 

are increasingly questioning their purpose and processes.  Boundaries between them 

have become increasingly fuzzy and vague. The management thinking has now 

changed to reflect the societal facet of an organisation as a place of conflicts, varying 

affiliations and emotions (Lai, 2000).  This paradigm shift in organisational thinking 

has heralded the need for a change in the way information systems are designed for 

organisations.  This ‘process’ oriented approach encourages and champions the 

inclusion in software development of human activities, communication and learning.  

The requirements are therefore not predetermined and rigid; but more emergent in 

nature.  This allows the users to input their unique needs to mould the functionality of 

the software product to fit their particular organizational ethos.   It is no longer 

possible to start with the notion that it is necessary to create or computerize an 

information system.  Information system development has to be seen as a 

continuous process which is led by the human activity system in the organization 

which the information system will serve (Lai, 2000; Checkland and Holwell, 1993).   
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4.3 Justification for combining Systems Thinking with IS  
No method or methodology in any discipline is able to offer a complete view of the 

complexities facing organizations. Each may offer a snapshot that provides insights 

that are useful for reflection and action. Using two or more methodologies in the 

same intervention is likely to produce a richer picture for seeing and understanding 

the complex web of relationships and interconnectivities which is likely to lead to 

better decision taking by managers and team members in software development 

projects (Mingers et al, 1997).  

 

This research advocates the practice of combining the SSM and UML methodologies 

in the life span of an intervention.  This practice is also referred to in some circles as 

methodological pluralism or multi-paradigm intervention and research.  It refers to the 

whole area of utilizing a plurality of methodologies or techniques within the practice of 

taking action in problematic situations (Mingers, 1997). 

 

The practice of mixing methodologies opens up a large set of options and 

combinations and permutations.  These include methodologies combined in the 

same interventions and single paradigm combination. The latter combines methods 

of only the soft or only the hard domain in one intervention. This is in contrast to 

multi-paradigmic combining.  Here mixing is supported across paradigmic domains.  

Where the methodologies are all from within the same paradigm there is little 

philosophical difficulty, it is just a question of the most effective way of fitting the 

methodologies or techniques together.  When they are from different paradigms, 

however, the situation is much more complex (Mingers, 1997). 

 

The practice of mixing methods is at present a fledgling concept gaining more 

respectability as the years go by. It has been much criticised by the purists among 

the methodologists who do not believe in what they call hybrid methodology. Despite 

its naysayers, it has been used successfully in numerous interventions over many 

years (Lai, 2000, Ormerod, 1995).  It is vitally important though for the proper 

development of the discipline that the theory that envelops the practice be explicit 

and sound. There must be in depth consideration of the philosophical and theoretic 

facets of multimethodology, since the practice of combining methods is in regular use 

(Mingers, 1997).  This is because without an explicit theoretical underpinning to their 

work neither consultants, nor academics and their students, can learn from 

“pluralistic practice (Jackson, 1997). 
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In reviewing the literature and while considering this area of the research, I was 

reminded of how the SSM developed under (Checkland, 1981, 1990).  Checkland 

attempted to solve real world problems with systems engineering methodology. On 

discovering the futility of doing this and ‘stumbling’ upon the systemic way, he set 

about buttressing the novel but growing practice with philosophical and theoretical 

underpinnings. This led to the seminal work of (Checkland, 1981) and over twenty-

five (25) years later, SSM is growing in popularity and its boundaries being expanded 

by converted practitioners (Mingers, 1997).  If one may be allowed to predict 

happenings within research, I predict a similar future for the practice of combining 

methods in software development.  I expect greater results from using this practice, 

because unlike how SSM developed, there is a plethora of existing examples that 

have now become the foundation that theorists and software developers can build on 

and emulate. 

 

 
 
 
 
 
 
 
4.4 Previous Related Work done in the area of Systems Thinking and IS 

Development 
 
The concept and practice of integrating systems thinking into information systems 

development is not a new frontier.  To combine two epistemologically diverse 

methodologies sounds impossible to some (Butler, 1998).  The thesis however 

shows that this is not the case as for years many practitioners have attempted this 

and have had varying degrees of success.  Notable ones include (Checkland and 

Griffin, 1970; Miles, 1988, 1992; Avison and Wood-Harper, 1990; Checkland and 

Scholes, 1990; Galliers, 1992; Checkland and Holwell, 1998;  Bustard et al, 1996, 

Savage and Mingers, 1996, Lai, 2000, Champion and Stowell, 2002, Mingers, 2001).   

 

This section starts with a tabulation of various practitioner efforts.  It then goes on to 

examine methods derived to link SSM to Object orientation and SSM to Structured 

design methods. 
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Authors Comments 
Mingers 2001 Efforts to ‘front end’ SSM onto structured design methods and to embed 

IS methods within SSM, with SSM guiding the whole project 

Doyle and Wood 

1991 

Show problems that arise from integration because of the different  and 

conflicting epistemologies embodied in SSM and IS methodologies 

Avison and 

Wood-Harper 

1990 

Represents the longest running attempt to bring together hard and soft 

approaches to IS development 

Watson and 

Wood-Harper 

1995 

A more recent perspective on the Multiview approach. This differs from the 

original multiview perspective done with Avison in 1990.  It says that 

multiview is simply a metaphor for the process of defining an information 

system. 

Ormerod 1995 Uses multimethodology in the development of an information systems 

strategy for Sainsbury’s supermarkets. It used cognitive mapping, SSM 

and strategic choice in the various phases 

Mingers and 

Brocklesby 1996 

Encourages multimethodology as a means of provision of great flexibility 

in an intervention. 

 

Table 4.1: Tabulation of some of the previous attempts to combine methods 
 

Method 

 

Methodologist Proximity to MoIST 

(Close or Not Close) 

BASE Bustard, He and Wilkie Close to MoIST 

BOOST Dobbin and Bustard Close to MoIST 

CCTA’s (SSM + SSADM) CCTA Close to MoIST 

Client-Led Design Stowell and West Not Close to MoIST 

Contingency Framework Davis Close to MoIST 

COT Framework Approach Checkland Not Close to MoIST 

DSDM Martin Not Close to MoIST 

ETHICS Mumford Not Close to MoIST 

Gap Navigation Stowell and Champion Not Close to MoIST 

Grafting vs. Embedding Miles Not Close to MoIST 

ISD Framework Lai Close to MoIST 

Multiview Avison and Wood-Harper Close to MoIST 

RACE Bustard and Lundy Close to MoIST 

RAD Martin Not Close to moist 

Zachman’s Framework Zachman Not Close to MoIST 

 
Table 4.2: Classification of Multi-methods in terms of their proximity to MoIST 
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Linking SSM to OO Methods 
Most of the work done in extending SSM to information systems design has been 

with structured design methods.  Linking SSM to OO is a relatively new area.  

Nevertheless, advances are being made as OO increases in popularity in the 

software development field.   

 
Lai’s ISD Framework - 2000 
Here a framework which incorporates elements of systems science and object 

oriented methodology is formulated.  This framework links SSM and Martin-Odells’s 

object oriented analysis (OOA). Here the modelling techniques of OOA are 

embedded within SSM.  This is somewhat related to R K Miles’ grafting vs 

embedding approach (Miles, 1988, 1991).  Lai advocates the use of systems science 

and object orientation together in order to increase the effectiveness of organizational 

requirements analysis for IS development. Lai defines 6 types of gaps that analyse IS 

failure.  They are the cognition, comprehension, expression, delivery, utility and 

expectation-perception gaps.  The products of SSM are used to define a plumb-line 

for the work done in the modelling phase of OOA. The OOA products are then 

evaluated via a review process.  This is an achievable approach and its success is 

established by application in a governmental Labour Division in Hong Kong, (Lai, 

2000). 

 
MoIST versus ISD Framework 

MoIST and ISD Framework have the same goal of linking SSM  with a ‘hard’ method.  

Each however utilises differing techniques to achieve its goal.  The main potential 

problem with the ISD Framework is that Martin-Odell’s OOA has now been 

subsumed by a UML –based method.  OOA is no longer used as much as UML-

based techniques.  MoIST intends to address this potential problem by using a UML-

based method in lieu of OOA.  This will serve the purpose of making the linking 

method more relevant and commercially feasible. 

 
 
 
Requirements Acquisition and Controlled Evolution (RACE) – Bustard and 
Lundy, 1996. 
The RACE method describes an integration between formal modelling in LOTOS and 

the use of less formal descriptions of behaviour in soft systems activity models.  

RACE was developed at the University of Ulster with David Bustard as a pivotal 
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project team member.  The method integrates process-oriented formal modelling with 

activity modelling in soft systems analysis.  The overall aim is to improve the 

requirements engineering process.  RACE was constructed around SSM.  SSM 

develops activity models.  This modelling provides some sort of linkage with process 

modelling which describes the behaviour of the system.  It involves SSM elements 

such as root definitions, conceptual modelling and defines its own interaction models. 

These interaction models are an attempted enhancement of the conceptual model. 

This is in order to more precisely define the input and output of each activity.  Bustard 

and Lundy, 1996 argue that for this stage, an optional formal modelling technique is 

appropriate here.  This is to facilitate consistency checks. The interaction models act 

as a bridge between conceptual models and DFDs or object models.  They also 

support formal process oriented models.  Formal modelling is achieved using a 

process oriented formal description language known as LOTOS.  

 

MoIST versus RACE 
Both the MoIST and RACE methods have a generally similar overall aim.  This aim is 

to improve the requirements engineering process.  Each of these methods however 

use varying approaches to achieving this aim. 

RACE uses a formal modelling description language – LOTOS to define its 

generated interaction models.  One drawback of this approach is that LOTOS is not 

well known in commercial software development environments. This has the 

consequence of significantly diminishing the usability and portability of the RACE 

method. RACE appears to be quite a good and workable method.  However it still 

needs to do more work on using a linkage medium that developers will be more 

familiar with other than the formal modelling description language - LOTOS.   

MOIST proposes to rectify the RACE method linkage problem by using UML-based 

techniques to provide the linkage with SSM instead of LOTOS.  Software developers 

are more familiar with UML-based techniques than LOTOS and UML is more widely 

used commercially.  This helps to ensure that it is more likely to be selected as a 

development method.    

 

 

 
Business and Computing Support coEvolution (BASE) Method – Bustard, He 
and Wilkie – 2000. 
BASE is a co-evolutionary framework for linked business and computing change.  

The motivation for this work was a desire to improve software engineering practice.  
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This was especially in the area of managing system requirements, Bustard et al, 

2000.  

 

BASE is goal oriented and goal driven.  The BASE method is underpinned by an 

underlying coevolutionary change process. See fig below.    

 

 
BASE co-evolutionary change process 

 

The figure above describes the basic evolutionary change process in high level 
terminology.  The co-evolutionary plan is created initially.  This then acts as a guide 
to subsequent incremental changes.  Each change is planned and reviewed.  This 
may prompt adjustments to the co-evolutionary plan.  Occasionally following the 
review, it may be recognized that the nature of the business or its computing support 
need to change substantially.  This then prompts the creation of a completely new 
evolutionary plan.  An example of where such a major adjustment might be required 
is in organizations switching to e-commerce as main model of customer interaction. 
 
(Bustard, et al, 2000). 
 

The first step in the Basic co-evolutionary change process is to ‘Develop a co-

evolutionary change plan’.  This step is elaborated as four stages of activity. 

I. Understand the situation of concern 

II. Define the target system.  This is the vision for the organization, in business 

and supporting IT terms. See fig 4.3. 

III. Define the initial system. This is a description of the current way of working. 

IV. Develop recommendations for change. 

 

 

http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig03%5F0%2Ejpg&image_id=58&previd=IMG_58&titlelabel=Figure+14%2E3%3A+&title=Basic+coevolutionary+change+process%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig02%5F0%2Ejpg&image_id=57&previd=IMG_57&titlelabel=Figure+14%2E2%3A+&title=Coevolutionary+change+framework%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig03%5F0%2Ejpg&image_id=58&previd=IMG_58&titlelabel=Figure+14%2E3%3A+&title=Basic+coevolutionary+change+process%2E
http://library.books24x7.com/viewer.asp?bkid=1100&image_src=http://images.books24x7.com/bookimages/id_1100/14fig02%5F0%2Ejpg&image_id=57&previd=IMG_57&titlelabel=Figure+14%2E2%3A+&title=Coevolutionary+change+framework%2E
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Fig 4.3 :  Co-evolutionary change framework 

 
The diagram in fig 4.3 describes the BASE framework model for change.  Each 

business-computing support pair explains the state of the organization’s point in its 

evolution.  An organizational change may involve an adjustment to the business, its 

computing support or both.  Each change is expected to retain or improve the 

business-IT alignment.  The overall description if a co-evolutionary development 

plan, modelling how an organization might evolve towards a defined target state, 

through a sequence of several intermediate states (Bustard et al, 2000). 

 
MoIST versus BASE 
The BASE method bears some similarity to the MoIST method used in this research 

as they both define methods to link SSM to ‘hard’ information systems development. 

This aim however is achieved in different ways by each method.   

The first significant variation is that the core architecture of MoIST and RACE 

methods and the means by which linkage is provided between SSM and hard 

systems development are dissimilar.  BASE offers only one core option of achieving 

this linkage.  The problem with this is that it does not necessarily provide software 

developers with the flexibility needed to maximise successful development.  MoIST 

intends to address the problem and rectify it by providing analysis and development 

options depending on the assessed characteristics of each I S project.  MoIST’s 

multiple option method offers flexibility and choice to the developer that could help 

maximize opportunities for a successful project. 

Yet another variation between MoIST and RACE is that each uses a different ‘SSM 

culture’.  There are two major proponents of SSM.  These are the initiator of the 

culture Peter Checkland and his less known colleague Brian Wilson. (Checkland, 

1981, 1990, Wilson, 2002 Bustard, 2000).  MoIST is primarily influenced by 

Checkland’s variation of SSM while BASE is particularly influenced by Wilson’s 

approach to SSM.   One potential problem with RACE’s use of Wilson’s “brand” of 

SSM is that not as many SSM methodologists are as familiar with the Wilson brand 

of SSM.  Checkland’s SSM on the other hand is more ubiquitous. (Checkland, 1981 

etc etc, Wilson, 1981, 2002).  This means that the RACE method could possibly be 

more utilised if the Checkland brand of SSM were used.  MoIST intends to rectify this 

omission by utilising the Checkland brand of SSM that SSM methodologists are more 

familiar with globally.  This should help in some way to optimise the instances of its 

use because of its ubiquity. 
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Business Object-Oriented Specification Technique – BOOST – Dobbin, 
Bustard, 1997 
The main aim of BOOST is to integrate the business and computing analysis phases 

so that it is possible to move smoothly between them. This was one of the concerns 

that (Miles, 1992) had when he debated the merits of grafting versus embedding. It is 

assumed here that the BOOST technique offers one solution to the problem. 

(Stowell, 2002) did not quite agree that grafting or embedding posed an adequate 

solution.  He offered an alternative known as ‘navigating’ instead of grafting or 

embedding. The technique offers one means of linking SSM and OOA, specifically to 

Shlaer-Mellor OOSA.  Business analysis in BOOST is defined as a four-step process.  

Most of the analysis is standard SSM. Step three however is not an SSM activity. 

1. Investigate problem situation 

2. build activity models 

3. refine activity models 

4. make recommendations for change 

 

The next stage of the BOOST technique produces Object Information models.  This 

is a five stage development process.  This process produces information models 

from interaction models.  Transformation rules help to simplify the process. The five 

stages are: 

1. Extract base objects 

2. Extract base relationships 

3. Identify additional relationships between base objects 

4. Define the relationships between base objects 

5. Refine the information model 

 

MoIST versus BOOST 
BOOST has been developed as an approach to linking successive phases of 

development.  This technique allows for the products of one phase to be built directly 

on those of the preceding phase. This implies that an underlying linkage exists 

between the product sets, so that a change to one highlights or generates changes in 

the other.   

One drawback to BOOST is that it offers one set way of linking the ‘soft’ phase to the 

‘hard system’ phase.  MoIST intends to rectify this drawback by offering a framework 

with three (3) different options that provide more flexibility to the developer.  This can 

help the software development team to more accurately choose the development 

option suited to the software project. 
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Linking SSM to Structured Design Methods 
(Stowell, 1995) was among the first persons to highlight the idea of linking SSM to 

existing structured design methods.  He proposed that an agreed conceptual model 

could be expanded into a detailed data specification using a data flow diagram (DFD) 

(Stowell, 1995).  Many other notable persons in the field have also had invaluable 

achievements in the area.  Among these are (Avison and Wood-Harper, 1990) with 

Multiview and (Miles, 1988, 1992), who stirred up the grafting versus embedding 

debate.  Work done includes Dynamic Systems Development (DSDM).  This extends 

the RAD formally introduced by James Martin, 1991, (Avison and Fitzgerald, 1995) 

and Client led design by (Stowell and West, 1994). 

 

Navigating the gap between action and a serving system: Champion, Stowell-
2002 
The authors are critical of attempts to form a bridge between systems thinking and 

hard systems engineering. Instead they propose to navigate certain gaps in the 

development process.  This starts from the moment of inquiry within the 

organizational setting through to travelling to producing the artefacts for the logical 

development of the system.   They highlight the distinction made by (Checkland and 

Scholes, 1990) about an information system being one that serves purposeful action.  

One criticism of prior attempts to move from conceptual models to logical design 

using data-flow diagrams (DFDs) was the abrupt change from conceptualising action 

to conceptualising data (Stowell, 2000, Mingers, 1995, Doyle and Wood, 1991).  The 

method proposes to employ intellectual devices within the navigational phase.  These 

are intended to maintain the sense of coherence from the ideas for action through to 

the serving activities.  The concept of ‘navigating’ the gap is a means of creating a 

route from ideas for action to the requirements for an information system to serve the 

action (Champion et al, 2002). 

 
Zachman Framework Integrating Business Process Models with UML Systems 
Models - 2001 
This framework proposes UML as a means of modelling Business Processes. The 

problem that emerges with this that UML is originally oriented towards representing 

OO concepts.  It therefore must be vastly extended in order to accommodate 

business modelling.  As an OO system description notation, the UML is generally 

used to describe implementation views.  It is also argued that using UML to describe 

the text oriented contextual and the conceptual view takes UML out of its existing 

domain and requires a mapping of the existing symbol to different concepts.  The 
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alternative offered is to use a different notation for the higher levels process 

descriptions and use UML for the logical, physical and implementation views. 

 
‘Soft’ Systems thinking and information systems: a framework for client-led 
design.  Stowell and West - 1994        
Here Stowell and West make a case for the use of client-led design as an answer to 

improving the efficiency of the traditional software development process. 

Client led design is described as being a process where the client is handed the 

analysis tools and made responsible for finding out the problems and difficulties and 

bottlenecks in his or her own organisation.  The Computing analyst acts as a guide to 

the whole process.  The thinking here is that the client is most au fait with his own 

situation and is already intimately involved.  This is a departure from the existing 

status quo where the analyst is the one with all the answers and expertise and 

spends days finding out and gleaning information.  Stowell and West in order to 

facilitate the client led design provide a framework for the analyst relegated to ‘guide’ 

to follow.  SSM is touted as the methodology of choice for the client to use in the 

finding out process.  The authors insist that for SSM to be successful, it must be used 

as if the only intent were to find out and not to find out with the express aim of 

formulating a technical specification that will lead to implementation.  They say it 

works better when their focus is solely on finding out.  Stowell et al compare their 

client led design method to similar existing work done in the same field involving 

clients namely (Mumford, Mansell et al, 1990).  They claim however that the 

identifying unique factor in theirs is that these approaches are undermined by the 

primary desire to fulfil a technological outcome. 

 

This allows the ‘client’ or ‘user’ to have a greater control over the identification, 

specification and development of their information systems’.  The traditional roles of 

Computer Systems Analyst (CSA) has been broadened by the authors to be 

Information Systems Analyst (ISA).  Those who are most able to identify and discuss 

the implications of the information system are those who are one way or another, 

involved in its operation. 

 
Miles’ grafting versus embedding approach -1988, 1992 
Conversations, ideas, debates and counter debates abound as to the efficacy of 

linking soft systems thinking with ‘hard’ information systems.  Many theories have 

been put forward and many interventions have been made using some of these 

combined ideas.  Nevertheless the area still has its proponents and detractors and 
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the great debate carries on.  Some wonder if it is advisable or wise to transform a 

SSM conceptual model into a more hard systems oriented or more familiar DFD.  

(Miles, 1992) identifies the use of two techniques that he labels grafting and 

embedding.  According to Miles, these two techniques are used when combining 

hard and soft systems paradigms.  The grafting technique applies SSM to the 

problem and the outcomes and activities from the SSM are fed into the IS paradigm 

or they are grafted onto the hard systems engineering model.  This technique while 

good is limited in its effectiveness by its lack of differentiation as evidenced in its 

failure to draw a clear distinction between object and information system as outlined 

by (Miles, 1992).  This means that using the data model derived as output from SSM 

and using it as a front end to an object model type in the information systems domain 

could lead to conflict between model types.  Another drawback to grafting is that 

usually once the process moves from analysis using SSM to design in the systems 

engineering domain.  SSM is usually no longer utilised.  In grafting, information 

systems utilises SSM concepts and products or deliverables.   

 

Embedding on the other hand may be defined as a technique that incorporates into 

SSM the IS methodology or incorporates the information system hard systems 

domain into the Systems thinking or soft domain. Information system modelling 

demands both process and data analysis techniques but the conventional form of 

SSM is process oriented. Therefore for the embedding approach to succeed, it must 

incorporate into the methodological framework a means of modelling the data 

structure of an information system (Miles, 1992).  SSM as it currently stands is 

process oriented.  Information system models are data oriented.  Information system 

modelling requires both process and data analysis techniques. For the embedding 

approach to succeed, it must incorporate into the methodological framework a means 

of modelling the data structure of an information system.  Miles acknowledges this 

and accomplishes this by extending what he calls “SSM’s predication path” beyond 

the relevant systems and conceptual modelling stages. 

Stage Predication Focus Outcome 
3 What is the system? Root Definition 

4 What does the system have to do in order to be what it is? Conceptual Activity 

model 

4’ What are the information flows that will enable the system to 

do what it has to do? 

Conceptual Flow 

Model 

4’ What are the entity types? Conceptual Data 

Model 
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Table 4.2: SSM’s extended predication path table, adapted from Miles, 1992 
 

The above table shows the extension to SSM.  It renames the original conceptual 

model as conceptual activity model.  There is then an intermediary ‘conceptual flow 

model’ and finally the generation or construction of the conceptual data model. 

 

 

Information systems require both process and data analysis and design techniques.  

SSM is process oriented in nature.  Miles proposed an SSM and ISD linkage in an 

earlier paper.  (Miles, 1988).  This stirred up many views and counter views.  Miles 

expands and explains in a bit more detail on what his earlier, much debated 

approach was about.  The grafting technique front ends the process oriented model 

type from SSM directly onto the data oriented IS.  Miles is not in favour of this 

method as he argues that this would be a clash of model types (Miles, 1992).  This 

view is supported by (Doyle and Wood, 1991). In the grafting approach, once the 

SSM part of it is completed, no more SSM would be carried out.  The Miles 

embedding approach on the other hand encourages SSM to be continued throughout 

the entire software development process if needed. Here Miles emphasizes that it is 

not merely a matter of applying SSM in its currently existing form to the IS process.  

Consequently Miles proposes an approach that seeks to model the data structure of 

an information system.  He poses a solution to extend SSM to include Checkland’s 

conceptual models seen from three (3) different views (Checkland, 1981).  The 

original conceptual model is now called ‘conceptual activity model’.  The information 

flows to the system are known as conceptual flow model.  The entity type that 

supports the information flows are then defined and becomes the conceptual model. 

 

 

 

Checkland Miles (expands Checkland’s conceptual model) 

Original conceptual model Conceptual Activity model 

 Conceptual Flow model 

 Conceptual Data model 

 
Table 4.3: Three views of Miles’ expansion of Checkland’s Conceptual model 
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The whole aim of the embedding approach is to find some sort of data model to 

complement the process oriented SSM. Miles’ aim is to have data oriented link to the 

data oriented hard systems engineering in order to avoid the clash of subjectivism 

and objectivism. The MoIST method builds on the embedding approach by facilitating 

a more seamless meeting of soft systems and hard systems.  This is achieved by 

linking the Human activities in each conceptual model to the relevant activity 

diagrams in UML. 

 

CCTA – 1993 
This method provides a linkage between SSM and SSADM.  The aim is to show how 

SSM can make better use of SSADM resources in problem definition, save time in 

subsequent requirements analysis and specification, and lead towards the 

development of applications which more fully satisfy business needs (CCTA, 1993). 

 

In the resultant method, SSM is used to formulate Business System Options and 

SSADM to analyse current procedures and examine options for technical feasibility. 

The SSM used here is influenced by Wilson’s approach to SSM especially in the 

usage of the Maltese cross.  SSM is carried out first by doing the following: 

1. rich picture building for initial scene setting 

2. ensure business requirements and constraints are identified and retained 

during requirements definition 

3. identification of information categories and production of information activity 

tables for a detailed understanding of the total information needs 

4. identify scope and key activities for use in a Data Flow Model (DFD) 

5. ensure all major interface points are identified 

6. Maltese cross development and analysis for comparing required and existing 

information processing procedures and forming recommendations. 

7. assess which aspects of the current situation require more detailed study. 

 

The SSADM portion of the linkage is used for 

1. requirements definition 

2. analysing existing procedures 

3. defining data requirements 

4. data flow modelling and logical data modelling for definition of required 

functionality and data. 
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MoIST versus CCTA 1993 
Separate logical models of system activities are developed and validated to gain 

a more comprehensive insight into the business area under study.  Activities from 

individual models are combined to form a single model which can accommodate 

the various perceptions. Options for the design and implementation of an 

effective, efficient system to meet the requirements of the organisation may then 

be formulated.  MoIST and the CCTA framework have a similar goal of linking the 

‘soft’ computing paradigm namely SSM to the ‘hard systems’ paradigm.  This is 

an effective method.  The main deficiency is that SSADM is no longer the ‘hard 

systems’ method of choice for software developers in industry.  MoIST proposes 

a solution to this drawback by the use of a link to a UML based context instead of 

SSADM.   Another drawback was CCTA’s use of Brian Wilson’s brand of SSM 

which is not as widely known as Checkland’s brand of SSM.  MoIST’s solution to 

this is to use the Checkland SSM instead in order to promote wider use of the 

method. 

 

 

 
Checkland’s COT Framework approach - 1993 
Iterations of the process of SSM produce models which are widely agreed to be 

relevant in a company situation, then such consensus activity models can be 

converted into information flow models and the more traditional methods of 

information system design can be initiated.  This provides the transition from the 

activity focussed SSM into the information – focussed outcome (Checkland, 1981).  

This means that the traditional ‘project approach’ to systems development embodied 

in and epitomised by hard systems engineering can now allow for a more holistic 

“process approach” where organizational flows, tasks and processes are taken into 

consideration.  As with all problems of information provision, the first stages are 

nothing at all to do with data, hardware or software.  They concern perceptions and 

politics, the interpretations of their world by the organizations in question (Checkland, 

1988).  Activity models offer a coherent basis for defining information related 

activities.  These activity models are transformed into information flow models by 

asking about the information required, its form, the information source, the frequency 

required and the information generated.  Usually at this stage, it is an appropriate 

time to discuss potential computer architectures.  There is a general problem with 

introducing IT support within organizations in a coherent manner in order to carry out 

the purposeful activity of the organisation.   The solution to this lies in conceptually 
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linking three domains ie conceptual, organisational and technology in what they refer 

to as a ‘COT’ framework (Checkland et al, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: COT Framework, Checkland et al 1993 
 

 

The technology domain T and the organization domain O stipulate and explore how 

Information technology can be more effectively utilised and introduced within the 

organization.  The problem that usually arises when only these two domains are 

considered is that there is no explicit or coherent thought about how the two can flow 

harmoniously.  This is where the conceptualization domain C comes in. 

Domains T and O are thus connected by domain C.  It is referred to as the domain of 

explicit organised thinking about O and T where coherent thinking about O’s nature 

and structure and IT support is carried out. 

Domain C is perceived by the authors to be the crucial domain. As declared ‘neglect 

of C as a conscious, organised, explicit activity is what leads to a premature leap 

from general statements of purpose to specific discussion of particular IT solutions’.  

SSM is touted as one of the ways of executing domain C. 

 
 
Dynamic Systems Development Method (DSDM) - 1991 
DSDM is an extension of the Rapid Application Development (RAD).  RAD was first 

formally presented by James Martin in 1991, (Avison et al, 1995).  RAD evolved in 

Organization O 
- what structure? 
- What roles? 
- What organizational, 

development 
strategy? Conceptualization C 

- what organizational 
purposes and position? 

- What activities? 
- What support is relevant 

to the activities in this 
setting? Technology T 

- what IT? 
- How provide it? 
- How manage it? 
- How update it? 
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the 1990s out of the need for faster systems development than the traditional 

methodologies offered.  RAD is an iterative, incremental approach.  It compresses 

the traditional software development phases into shorter iterative cycles.  It involves 

a small team of developers who work to tight deadlines to speed up the development 

process.  In 1994 a consortium was formed to develop a framework that combined 

the best facets of existing methodologies with the development experience of RAD 

over the years.  In 1994, a DSDM consortium was formed to establish nine (9) 

fundamental principles of RAD if it is to be used within the public domain.  These 

principles retain the essence of the original features.  It is additionally extended to 

address some of the evolving management, cultural and human issues that impact 

heavily on systems development environments that inform the debate. (Berger, 

Beynon-Davies, Cleary, 2004). 

 

Multiview 
Multiview originated as a response to traditional IS development methods that had 

strong roots in engineering discipline and technical rationality. (Vidgen, 2002).  

Multiview is structured in three tiers: general framework, local methodology and 

methods/techniques (collectively these constitute Multiview.  Multiview now has two 

official versions.  Avison and Fitzgerald’s observation was that mid 90s onward saw 

the ‘era’ of methodology assessment.  The original Multiview I – 1990 is a five (5) 

stage methodology.  It incorporates SSM, ETHICS and other structured (hard) 

approaches pick the right ones for the problem situation.  Multiview II – 1998 is more 

of a framework.  This requires ‘mediation’ amongst four (4) components: 

organisational analysis, socio-technical analysis and design, information modelling 

and technical design and construction. 

 

MoIST versus Multiview 
MoIST and Multiview approaches bear some measure of similarities.  This in terms of 

linking ‘soft’ and ‘hard’ paradigms.  Multiview however incorporates ETHICS as well 

as SSM in order to link to SSADM.  One drawback of Multiview is that though it 

works, there is no detailed step by step instruction as to how to traverse from SSM 

and ETHICS into the hard paradigm.  MoIST intends to rectify this deficiency by 

providing a step by step instruction as to how to link both the ‘hard’ and ‘soft’ 

paradigms. 
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ETHICS 
The ETHICS (Effective Technical and Human Implementation of Computer-based 

Systems) was developed by Dr Enid Mumford as a guide to user involvement in 

system design.  The ETHICS method is intended as a guide to achieve a better 

balance between technology and people in the design of systems.  (Mumford and 

Weir, 1979).  In particular, the method advocates user involvement and participation 

throughout the design stage to produce a ‘sociotechnical system’ which will benefit 

both the business and the working environment of the users. 

 

ETHICS is a method to help a design group (made up of management, users and 

technical experts) diagnose and formulate the problem, set objectives and develop 

alternatives, and take other appropriate actions right through to implementation and 

evaluation of the new system.  Throughout development, emphasis is placed on both 

the human or social and the technical aspects of the system.  Users develop social 

alternatives to improve job satisfaction. 

 

 

 

Davis’ Contingency Framework 
The Contingency framework is useful for determining the situation in which it is best 

to use a particular method or approach.  The framework is based on two variables, 

both concerned with different aspects of uncertainty inherent in the situation.  These 

variables are requirements uncertainty and process uncertainty.  The variables may 

be combined to give four types of organizational situations.  We may use this to 

assist in determining the method most suited to the situation to produce an 

information system.   

Davis(1982) describes how a multidimensional set of factors concerning the 

uncertainty of the desired system, type of users and type of designers may be 

evaluated and used to select the most appropriate requirements determination 

strategy. 

 

MoIST versus Davis’ Contingency Framework 
MoIST has been influenced by the Contingency Framework in that the framework us 

useful in determining in which situation it is best to use a particular method.  It 

examines two variables.  These are requirements uncertainty and process 

uncertainty and determines which of the four options is best to use.  The problem 

however is that once the option is selected, the contingency framework does not 
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specify how to achieve the desired result.  MoIST however is very different in that it 

has two separate variables and three different options for software environment 

comparison.  MoIST seeks to provide a solution for this potential drawback by 

detailing in a step-by-step manner exactly what is to be done to achieve each of the 

options chosen.  MoIST will show how to achieve the suggested link from SSM to a 

hard systems paradigm.  This is different from the contingency framework whch only 

suggests the linkage and not detail how to actually do the linking. 

 

 

4.5 Real Life examples of Successful integration of Systems Thinking with  
IS paradigm 
 

One of the motivations for developing a theoretical basis for combining 

methodologies was the fact that this was already happening in practice. A survey into 

the practical usage of SSM unexpectedly found that a wide range of methods were 

being routinely combined with SSM (Munro et al, 2002).  The same tendency was 

noted among practitioners and they too see it as a justification for the need to look 

more closely at the whole context of combining methods (Mingers and Brocklesby, 

1996). 

 

Systems science combined with Object orientation were used together to increase 

the effectiveness of organizational requirements analysis for IS development.  This 

was applied in a real-world case at the Labour Department (LD) of Hong Kong.  A 

requirements specification was generated at the end of the project and delivered to 

the LD for subsequent design and construction of technological-based information 

systems (Lai 2000). SSM was used to provide learning in the situation that existed in 

the LD.  It showed how the LD functioned amidst labour issues such as record high 

unemployment, closure of business operations and changes in legal standards.  

From an understanding of the situation, relevant systems of purposeful activities 

were formulated.  An integrated framework method was then applied to the SSM 

findings. This led to the determination of information needs to support the defined 

purposeful activities.  The outcomes here were then used to consider the data and 

technology that could yield the required information.  At the end the                              

intervention was an improved user requirements definition. This formed the basis of a 

successfully implemented system. 
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Yet another successful intervention that used combined methodologies was applied 

at Sainsburys.  Sainsbury’s is a leading UK food and grocery retailer.  They are also 

owner of Shaw’s and part owner of Giant Food in the USA.  They have a profit of 

more than $1 billion and a turnover of about $15 billion.  Sainsbury’s was searching 

for ways to sustain its perceived technology lead into the 1990s.  It also sought to 

maintain its outstanding record of yearly profit growth.  In response to this challenge, 

a task force was formed to plan for the future.  To support the strategy development 

process, intensive use of ‘soft’ OR and other systems methods were used.  These 

included Soft Systems Methodology, cognitive mapping and strategic choice.  It is 

believed to be the first time that these non-traditional approaches have been used 

together in one exercise for commercial purposes.  The strategy that resulted from 

this process was implemented in 1995.  Tangible and intangible benefits have begun 

to accrue such as cash flow savings, fewer stock losses and improved customer 

service.  Tangible benefits include: a 5% increase in availability; a 10% reduction in 

stocks and 105 fewer losses from a branch stock control and ordering system; 

30,000 additional stocking units from a new system for range control and depot stock 

reductions from a new purchase order system (Ormerod, 1995). 

 

 

Benefits of combining Systems Thinking with Object Orientation  
Real world problems are highly complex and multidimensional.  Different paradigms 

focus attention on different aspects of the situation so the practice of combining 

methods provides the facility to deal effectively with the richness of the real world.  

Another significant advantage is that an intervention is not usually a single, discrete 

event, but goes through several phases. Methodologies tend to be more useful in 

some phase than others, so it is usually more effective to combine the methods in 

order to maximise its efficiency at every phase.  This will help to achieve a more 

comprehensive level of success. 

 

 
Limitations of combining SS with IS 
The main challenge in combining SSM and Object Orientation is linking research 

methods together across different research paradigms (Mingers, 1997).  At the 

philosophical level the issue of paradigm incommensurability exists.  The attempt to 

provide guidelines for actually combining methods in practice has been fraught with 

difficulties.  The alternative is for software practitioners who combine methods in 
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development to learn to live with and manage a degree of paradigm incompatibility 

(Jackson, 1997).   

 

Other limitations exist at a cultural and psychological level.  The cultural level is 

limited by the extent to which combining methods of diverse paradigms can be 

facilitated within organizations.  The psychological challenge is the ease with which it 

is possible for a practitioner to move unhindered from one paradigm to another. 

 

 

 

 

4.6 Conclusion 
The list of successful linkages between Systems science and information systems 

development documented in this research is certainly not exhaustive.  The concern in 

the systems community is that soft and hard systems approaches do not easily mix.  

If an SSM front end is grafted onto a hard systems development process there are 

three issues.  If the same people do both the soft and hard phase can they do justice 

to both paradigms? The questions continue as the successes and failures occur.  

The limitations to mixing methods lie in the competence of the consultant and the 

participants rather than in the methods themselves (Mingers, 1997). 

 

The particular method used for linking Systems Science and information systems is 

the Method of incorporating systems thinking into information systems design 

(MoIST).  The MoIST is an amalgamation of the SSM and UML based method or 

process. 
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Chapter  5- Method of incorporating Systems Thinking into Information 
Systems design (MoIST) 

 
‘Methods are extremely important.  They are prescriptive routes through the jungle.  Follow a 
method that someone else has defined successfully, and you are less likely to be eaten by a 
tiger or to get lost in the undergrowth.’ (Lunn, 2003, p 427) 
 
 
5.1 Introduction 
One of the benefits of integrating systems thinking in information systems 

development is the increased flexibility it provides.  It pulls together two diverse 

paradigms.  Their combined strengths provide a synergistic versatility and flexibility 

required for the unique nuances and facets encountered in software development. 

 

Existing approaches to Requirements Engineering based on traditional Software 

Development models tend to emphasise technical knowledge, and are based largely 

on notations and prescribed processes (Checkland and Holwell, 1998, p xiii).  

Problem-solving needs a rich background of knowledge and intuition to operate 

effectively.  Breadth of experience is also necessary so that similarities and 

differences with past strategies are used to deal with new situations (Bubenko, 

1995). 

 

Traditional methods of requirements determination assume that requirements can be 
successfully obtained with no knowledge of the organization.  However this 
assumption may produce a poor quality system, as methods address the wrong 
problem by ignoring organizational knowledge that is part of the requirements.  It is 
assumed that the user knows best, and that the developer does not need expert 
domain knowledge.  But it is becoming clearer that knowledge of this type does help 
in determining requirements (Flynn, 1998, p 141). 
 

Companies have come to recognize that traditional software development practices 

are inadequate from both a technical perspective and a business perspective.  This is 

causing companies to reengineer their software development or acquisition 

processes (Jacobson, 2000, p 4).  The requirements process is arguably the most 

important process within systems development as studies have shown that the 

majority of errors are made here.  There is increasing attention being paid to social 

rather than to technical factors in the process (Flynn, 1998).  For software developers 

there is a widening gap between the degree of flexibility and creativity needed to 

adapt to a changing world and the capacity to do so. They view the difficulties as 

attributed to individuals or groups not willing to engage in effective and efficient 
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processes of innovative design (Thomas et al, 2002).  Developers typically fail to 

spend sufficient time in the early stages of design: problem finding and problem 

formulation.  Subsequently they often then bring critical judgment into play too early 

in the idea generation phase of problem solving (Flynn, 1998).    

 

The essence of this research is the design of the MoIST method for integrating 

systems thinking into information systems design of the entire software development 

process, but in particular the requirements elicitation phase. This integration ensures 

a greater incidence of project development being completed successfully and in a 

timely manner (Bustard, D, Kawalek, P, Norris, M, 2000, chap 13).   

 

A method is a way of doing things and methodology is the study of ways of doing 

things (Lunn, 2003, p 427).   Additionally, a method is a planned procedure by which 

a specified goal is approached step by step, not to be confused with methodology, 

which is the science of methods (Jacobson et al, 1992, p 30).  A basic requirement of 

a good method is that it simplifies the development of systems that have the software 

architecture it is meant for (Jacobson, 2000, p 44).  The combination of these two 

epistemologies in the new method formation simplifies the process as it allows both 

strengths to be maximised and weaknesses minimised (Bustard et al, 2000).  

 

5.2 The MoIST Method 
 

Is there any method that is not based on another method?  My early object-oriented 
design method developed in 1967 was heavily based on a design method (at least 
ten years old at that time) used within Ericsson to design telecommunication 
systems.  You can take any other method and you will find similar relationships to 
earlier works.  One of the most popular methods, OMT, is probably an even better 
example of a method based on methods.  The uniqueness of that method is how it 
has been composed of other people’s work.  To further develop methods based on 
other methods is most natural and that will continue to happen (Jacobson, 2000, p 
165). 
 

 

MoIST stands for Method of Integrating Systems Thinking within Information Systems 

design.  It is a method that has been developed out of research on various IS 

methods and modelling approaches (Davis, G, 1982, Avison and Wood-Harper, 

1990, CCTA, 1993, Bustard, 1997).  It also combines the social and human factors of 

SSM with the more technical UML-based method.  MoIST has been influenced by the 

Contingency Framework of (Davis, G.B., 1982). It is also influenced by the work done 
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by the government centre for information systems (CCTA, 1993) in combining SSM 

and SSADM and by Multiview Method by (Avison and and Wood-Harper, 1990).     

The contingency framework of (Davis, 1982) prescribes a soft or hard approach for 

each software development project based on the level of uncertainty about what 

process to use and the level of uncertainty about what the requirements for the 

project are.  Davis’s framework describes how a multidimensional set of factors 

concerning the uncertainty of the desired system, type of users and type of designers 

may be evaluated and used to select the most appropriate requirements 

determination strategy(Davis, 1982).  Multiview combines new methods with a soft 

approach by adding new stages and the required iterations (Wood-Harper, 1985) and 

the CCTA documentation shows the phases of SSADM and the possibilities for 

extension (CCTA, 1993).  

 

Bodies of work related to MoIST and that combine SSM with UML already exist 

(Bustard et al, 1996).  MoIST’s major area of uniqueness lies in the juxtaposition of 

its three (3) development options and their level of replicability in organizational IT 

projects.  MoIST also complements the existing body of related work and adds to the 

arsenal of successful software development methods; as it facilitates projects that 

match its specific characteristics (see chapter 5). 

 

Creativity has been described as a balance of convergent and divergent thinking 

appropriate to the situation. This balance is essential in undertaking software 

development, which may be considered as a class of creative problem solving 

(Nickerson, 1999).  The MoIST method combines discipline and creativity.  Discipline 

and creativity are the odd couple of software development – the discipline imposed 

by methodology, for example, forms a frame for the opportunistic creativity of design. 

This provides a base that enables software developers to both create and engineer 

the systems they build: to be adaptable to the changing environment that is inevitable 

in the software development discipline (Glass, 1995). 
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5.3 The UML and the MoIST Method 
 
The Unified Modelling Language (UML) advocates the innovation of new methods 

like MoIST.  It provides extensibility mechanisms so that future modelling approaches 

can be grown on top of the UML (OMG, 2003). 

 
As the strategic value of software increases for many companies, the industry looks 
for techniques to improve quality and reduce cost and time-to market.  One 
commonly underused technique in the software industry is modelling.  Developing 
models for a software system prior to its construction or renovation is as essential as 
having a blueprint for a building.  Software system models help in the comprehension 
of such systems in their entirety.  There are many factors of a project’s success, but 
one essential factor is having a modelling standard.  The UML must and can support 
various methods and processes of building models.  The UML can also support 
multiple development methods without excessive difficulty (OMG, 2003). 
 

This research does not assume that an information system will necessarily be the 

best solution to an apparent problem.  It promotes the establishment primarily of the 

key aspects of organizational structure.  This is then blended together with such 

influencing factors as environmental characteristics, technology and task.  

Organizational outcomes will usually depend on negotiation between the different key 

actors - organizational participants, as there will always be different solutions to 

problems or short-term versus long-term views (Hirscheim et al, 1995). 

 

Software development has been described as a ‘craft’. The negative connotations of 

this label include an inability to consistently guarantee a quality product, fit for the 

purpose for which it was developed, produced on time and within budget (Standish, 

1995). A study of over 8,000 projects (Armarego et al, 2002, Standish, 1995) 

reported 16.2% of software was successful, 52.7% were over budget, time and had 

fewer features and 31.1% of projects were cancelled. These rates do not significantly 

differ from those reported in the 1970s and 1980s.  Many of the shortfalls may be 

traced to deficiencies in formulating a description of the system to be developed 

(Mann, 1996).    

Deciding on which systems should be built remains problematic and is an analytic 

challenge ill-served by current methodologies.  Such theoretical limitations become 

more pronounced when we recognise that these methodologies hardly begin to 

address potential research issues in organizations, for example privacy and data 

integrity (Winter et al, 1995).  
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This MoIST method attempts to redress these deficiencies.  It gives developers the 

opportunity to choose the best option within the method. They are enabled to assess 

the characteristics of their project and determine the best way of development.  This 

increases the likelihood of success.  All good methods support object modelling 

(Jacobson, 2000, p60). 

 

One of the benefits of the MoIST Method is its flexibility.  It integrates two diverse; but 

flexible methods.  This increases the total flexibility of the integrated method.  This 

versatility and flexibility is needed for software development as there are various 

nuances and unique facets of each project that might not fit exactly into every option 

in the method.  No project is likely to follow the UML to the letter.  Rather, the aim is 

to select out the parts of the process that are relevant to the current project and 

organisation (Lunn, 2003, p 429) 

 

The MoIST method suggests heuristic solutions to problems that are known to be 

hard to characterize.   Having several project options within a method is integral to 

most research domains (Jacobson, 2000).  The MoIST Method is designed for both 

users and developers to work together to maximise their strengths in order to 

improve the requirements elicitation process.  The success or failure of the 

requirements elicitation process usually determines the outcome of the entire 

software development project (Flynn, 1998). Requirements are not objective, 

unchangeable artefacts, available at the start of the process, to be “captured” like 

butterflies.  Instead, they are emergent and are social constructions resulting from 

interactions involving users and developers in the process (Dobson and Strens, 

1994). 
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5.4 The MoIST Model 
The MoIST model is an integral part of the MoIST method.  The MoIST method 

combines elements of the MoIST model, ProcessMoIST, MoIST Project Selector 

Tool, the MoIST Project options and MetricsMoIST.   

The MoIST method caters to development projects with differing degrees of 

structuredness. This is in terms of the levels of development of the MoIST method’s 

core determinant variables.  These are the requirements certainty and the 

development environment of each project.   

 

The structuredness of the software development environment relates to the degree 

of knowledge we have about the problem to be solved.  Therefore when 

requirements are not clear, we have a lower degree of knowledge about the problem 

domain.  The degree of knowledge consequently dictates the structuredness of the 

environment which in turn influences the project option chosen. 

 

The MoIST model has been developed to flexibly use one or more project options 

within the project lifecycle.  The degree of structuredness catered for by the MoIST 

method range from very unstructured – Option A, fairly unstructured – Option B to 

very structured – Option C.  In order to more fully redress the software development 

weaknesses identified in the research (pg 2 and Chap 1), MoIST tends towards 

providing a viable development route for unstructured development environments.  

In order to more accurately test MoIST’s assertions, the most suitable case studies 

were from unstructured environments.  Consequently in the research, there is no 

case study that explores the Option C pathway.  The provision of Option C has been 

made however for any possible clients who still desire to utilise MoIST as a solution 

even though requirements certainty and the structuredness of their development 

environment might be very high. 

 

Overview of MoIST Project Options A, B and C 
Project Option A 
MoIST is designed to always begin at project option A.  In option A, the entire project 

is preceded by a comprehensive SSM study. Comprehensive here means starting 

with rich pictures and ending with a Conceptual Primary Task Model.  This facilitates 

a thorough exploration of the project and its characteristics.  It also enables the 

development of conceptual activities that might be needed for more advanced 

design.  After project option A is completed, a project status appraisal is conducted 

using the MoIST project selection tool.  This is a very important phase in the MoIST 
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process. The findings of the SSM study will determine whether or not it is feasible to 

continue with information systems design or whether a more relevant solution lies in 

a non-information systems alternative.  If the findings point to discontinuing systems 

design, then a feasible alternative is pursued.  This decision is quite acceptable and 

the MoIST method would have effectively prevented the needless waste of resources 

on progressing to a more advanced design.   If the SSM findings show that it is viable 

to continue along the information systems design route, then an appropriate project 

option is chosen using the MoIST project option selector tool.  The MoIST project 

option selector tool determines whether or not the development environment is 

currently structured or unstructured. The resultant degree of structuredness 

determines whether Option B or option C is chosen. If the environment is still 

considered to be unstructured, project option B is chosen.  On the other hand, if the 

environment is considered to be very structured, project option C is chosen.  

 

Project Option B 
Option B facilitates the transition of the software project from the SSM study to the 

UML-based phase.  This involves the derivation of conceptual models from each root 

definition, determination of selected activities as candidates for IT support and 

mapping of required services onto objects. If the environment is now considered to 

be structured, project option C is chosen.   

 

 

 

 

Project Option C 
In project option C, the transition is made from SSM Conceptual activities to UML-

based activity diagrams. Project option C is chosen when the development 

environment is very highly structured.  It is also used when the requirements are very 

well understood and can be applied in their current state as they are.  Not many 

software engineering projects fit the above criteria, therefore it is not expected that 

MoIST’s option C will be a popular option chosen for development. This is because 

most software projects are being developed in an unstructured environment.  Based 

on the literature review in Chapter 1, it was seen that software projects are increasing 

in complexity and unstructuredness and that a greater understanding of human-

social factors in Computing is needed to aid successful development.  MoIST tends 

towards projects that are unstructured.  Nevertheless, in order to accommodate any 

structured project that would want to utilise MoIST, Option C is offered as a route to 
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successful development.  Project C is in essence a hard systems option that provides 

a link to using MoIST for any possible project that might have a very structured 

environment where requirements are fully known. 
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Figure 5.1:  The MoIST Model 
 
Based on studies of the different characteristics of the methods and their respective 
approaches, one possible conclusion is that methods have developed to suit different 
situations.  For example, some methods, such as SSADM and participative systems 
design, assume that a current system always exists, which can be used as a basis 
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for analysis and design of new systems.  Other methods, like the Checkland 
methodology, do not make this assumption (Flynn, D, 1998, p 351). 
 
The MoIST method describes how a multidimensional set of factors concerning the 

uncertainty of the desired system, type of users and type of developers may be 

evaluated and used to select the most appropriate requirements determination 

strategy.   MoIST shows how the specific software development project fits onto a 

planning grid which houses the MoIST method with its three (3) options.  

 

The MoIST method is based on two variables, both concerned with different aspects 

of uncertainty inherent in the situation. These are requirements certainty and the 

nature of the development environment.  This shows how the specific software 

development project fits onto a planning grid which houses the MoIST method with 

its three (3) options.  A limitation of the simplified model above (see fig 5.1) is that 

there is a tendency for the status of the two variables to rely heavily on the 

judgement of the project manager. This can be mitigated by involving more 

stakeholders in the initial evaluation process. 

 

Requirements Certainty: - This is the extent to which the requirements are known 

and fixed.   The level of requirements uncertainty is ascertained by checking for 

certain characteristics in the project.  This will determine whether requirements 

uncertainty is low or fixed.  Low requirements uncertainty characteristics include 

conflicting interests among stakeholders and/or developers, likely organisational 

changes, the proposed system is contentious or where the proposed system crosses 

functional or organisational boundaries.  The presence of one or more of the 

stipulated characteristics in a project makes it a likely candidate for ‘low requirements 

certainty’ status.  For the requirements certainty level to be deemed ‘high’ the 

requirements should be very clear, with no ambiguity and all parties should agree. 

 

Development Environment: - This is the predictor of the structuredness or 

unstructuredness of the software development environment.  The level of 

structuredness or unstructuredness is ascertained by the general characteristics of 

the project.  For example, developers not being able to agree will give the 

environment, ‘unstructured’ status.  The environment being relatively contention free 

will give the project ‘structured’ status.  The status is determined by the project 

management team. 
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These two variables may be combined to give three (3) types of organizational 

situations (see fig 5.1).  This is used to facilitate determination of the option in the 

MoIST method most suited to the development situation.  Where requirements 

certainty is low and development environment is structured or unstructured, the entire 

UML phase needs to be preceded by SSM.  A project may have as it characteristics, 

requirements certainty being high and the development environment unstructured. 

Using the MoIST method means that UML-based method’s initial stage is enhanced 

with SSM.  SSM’s conceptual activities can be linked to UML’s activity diagrams 

when there is high requirements certainty, a structured development environment 

and the requirements are very clear to more than 90% of the development team. This 

option might be rarely used as unstructured project requirements are not usually that 

clear. Also linking conceptual activities to activity diagrams means bypassing use 

cases.  This linkage lends itself to less accuracy than linking conceptual activities to 

use cases.  This option was not explored in this research with a case study, but might 

act as a catalyst for other researchers as methods are inspired by and built on 

existing methods. (Jacobson, 2000).    The characteristics of the project merely serve 

as a guideline.  Owing to the variegated nature of most software projects, the 

developer is free to use the characteristics as a guideline to see which option the 

project slots into 

 

 

5.5 Process MoIST (ProMoIST) 
 
The presence of a well-defined and well-managed process is often a key 
discriminator between hyperproductive projects and unsuccessful ones.  The UML is 
intentionally process independent and defining a standard process is not a goal of 
the UML or OMG.  UML encourages various organizations to use the same UML 
diagram types in the context of different processes.  The UML recognizes the 
importance of process.  The reliance upon heroic programming is not a sustainable 
business practice.  Processes by their very nature must be tailored to the 
organization, culture and problem domain at hand. (OMG, 2003).   
 

 

Process MoIST is a well defined Process Framework that undergirds the MoIST 

method.  The order inherent in Process MoIST enables the advancement of the 

project in an orderly and as stable a manner as is possible.  Process MoIST lends 

structure to unstructured I S Development projects.  It provides linear and iterative 

progression of a project from analysis/elicitation to design, implementation and 

evaluation.  Whilst Process MoIST does not actually carry out implementation; its 
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effects on implementation are indirect.  This is because it facilitates the successful 

analysis and design which can more easily extrapolate to successful implementation. 

 
 
 
 

5.5.1 MoIST’s Project Option Selection Tool (MoPros) 
     

     25 points  25 points  25 points  25 points 

Project 
Options 

Users Developers’ 
skillsets 

Organizational 
environment 

General 
characteristics 

A 
 

Users are a bit 
unsettled as they 
are experiencing 
organizational 
changes  

Requirements 
known at this 
point are 
relatively clear 
to 80% of the 
development 
team  

Development 
environment 
unstructured  

Proposed system is 
to replace or 
enhance an 
existing system 

 
B 

Users uncertain 
about the need 
for the proposed 
system or users 
opposed to the 
proposed system 

Developers not 
able to agree 
about 
requirements   

Development 
environment has 
pockets of 
structured and 
unstructuredness.  

Conflicting interests 
and the proposed 
system might cross 
functional borders 

C Users open to 
the new system  

Requirements 
known at this 
information are 
very clear to 
90% of the 
development 
team  

Development 
environment is 
quite structured  

Environment is 
relatively 
contention free 

Fig 2: MoIST’s Project Option Selection Tool (MoPros) 

 

 MoIST Project Option Selection tool is a pre-defined template of the general 

characteristics of the average software development project.  These 

characteristics are delineated into related project options.  These 

characteristics were selected as the core characteristics after examining other 

IS project management literature (CCTA, 1993, Flynn, 1998, Davis, 1982, 

Avison and Wood-Harper, 1990).  The MoPros presents three (3) project 

options.  Each option defines its own user types, developers’ skillsets, 

organizational environment and general characteristics.  The project team 

manager is responsible for facilitating the selection of the most appropriate 

project option at any given point in the MoIST process.   The selection of 

another individual project option B or C within the Process MoIST framework 

is dependent on assessment of the problem domain, implementation 
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technology and team skills sub-options within each project. The current 

project characteristics are then matched using the Project Option Selection 

Tool.  A maximum of twenty-five (25) points are allocated to each sub-option. 

The project option with the highest total points or percentage score is 

automatically deemed to be the most appropriate project option.  The scoring 

process works with the project team meeting to provide consensus on the 

scores.  Each team member is given a copy of the MoPros template with the 

maximum score.  As they discuss each option, each member is required to 

allocate a score out of 25 for each section.  The scores for each option are 

averaged and the project option with the highest percentage determines the 

option path taken.  In the event that the project manager feels that the scoring 

decision is inaccurate, the manager has the autonomy to take a managerial 

decision to change this score.  This is because ultimately the responsibility for 

the success of the projects lies with the project manager. 

 

There is no limit to the number of times that the MoIST Project option selection tool 

may be used within the duration of the project lifecycle.  As progress is made, the 

project status is subject to change.  If the project status changes, the current project 

characteristics can be reappraised.  This reappraisal is done using the MoIST project 

Option Selection Tool.  Status changes may become more evident as project 

deliverables are achieved.  The selection tool is then used to choose a more 

appropriate option that reflects the project’s updated status.  One practical example 

of this happened during this research.  Initially one project option was chosen using 

the MoIST project Selection Tool.  The project activities were subsequently carried 

out.  Over time, the successful outcomes of doing the activities precipitated the need 

for a new appraisal.  The project was re-examined in the light of new developments.  

The MoIST project selection tool was used and a more suitable project option was 

then chosen (see Chap 6). 

 

There is a distinct advantage in enabling the MoIST Project Selection tool use to be 

iterative within a project lifecycle.  This is because it acts as a monitoring and 

corrective mechanism. This helps to ensure the integrity and accuracy of the MoIST 

method.  This in turn ensures that the integrity and rate of advancement of the 

development project is not compromised. 
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How Process MoIST works 
Process MoIST is an architecture-centric, SSM-UML driven, iterative and incremental 

process framework. 

1. It provides guidance as to the order of a project team’s activities 

2. It directs the tasks of individual developers and the entire team 

3. It evaluates the Project and assesses its perceived characteristics.  This is 

done against the characteristics set out in the MoIST Project Option Selection 

Tool template. 

4. It specifies what I S artefacts should be developed 

5. It produces a statement of work that describes the system 

6. It offers criteria for monitoring and measuring a project’s products and 

activities. 
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Fig 5.2: Process MoIST Procedures 
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5.6 The MoIST project options A, B and C are shown in more detail below. 

 
MoIST Project Option A 
 
Precede UML with SSM 
            
Status: Requirements Certainty (Low) + Development Environment 

(Unstructured or Structured) 

 

MoIST Option A’s Activities 
 
 

1. Requirements for computer-based information system 
2. construct rich picture 
3. develop relevant issue-based and primary task root definitions and 

conceptual models 
4. derive consensus primary task model and information categories 
5. formulate the recommendations for information system design 

 
 
This option allows for the organization and domain to be studied and modelled.  The 

results of this SSM Analysis can be fed directly into the initial phase of the UML.  In 

this option, depending on the expertise of the SSM methodologist, they can start with 

any step thought necessary. They can begin with rich picture construction or 

conceptual models.   

 

After finishing this design phase, the resultant artefacts are then evaluated using 

MetricsMoIST Evaluator System. 
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MoIST Project Option A’s Construction framework 

Option ID Activity Label Construction Procedure 
A1 Gather the known 

requirements 
1. Conduct informal interviews with 

stakeholders. This helps to observe the area 
under study in the context of the whole 
organisation. 

 
2. Formulate and administer questionnaires.  

This considers multiple perceptions and 
recognise that some may conflict 

 
3. Identify and assess the business 

requirements, organizational and cultural 
ethos and the financial and technical risks. 

 
A2 Construct Rich Picture 1. Capture, describe and express the problem 

situation diagrammatically.  The rich picture is 
unique to the analyst as it is the analyst’s 
perception of the problem (see chap 2) 

 
2. Ask questions such as, what roles or people 

have relationships with the situation 
described? And what organisational issues 
are there within the situation? 

 
3. Illustrate all elements of the problem without 

being overly detailed. 
 
4. Use meaningful symbols to represent relevant 

components of the situation and arrows to 
illustrate relationships. 

A3 Develop primary task 
and issue based root 
definitions 

1. Consider two (2) types of root definitions 
(RD).  There are those related to the primary 
task of an organisation and those related to 
issues within the situation.  (see chap 2) 

 
2. Structure the root definitions according to 

CATWOE (see chap 2). 
A4 Develop conceptual 

models  
1. Derive conceptual models from the primary 

task root definition (RD).  This defines what a 
system would have to do to be the system 
described in the RD. 

2. Use verbs to describe the logically linked 
activities that satisfy the RD 

A5 Derive consensus 
primary task model 
(CPTM) 

1. Construct the CPTM from elementary primary 
task model 

 
2. Assess the feasibility of each activity within 

each primary task model and assemble those 
acceptable to the stakeholders 

A6 Derive information 
categories 

1. Take each activity in the CPTM.   
 
2. Derive the broad, distinct groups of 

information needed to support the activity 
along with the information categories 
generated by doing the activity. 

 
A7 Make 

recommendations and 
1. Produce a feasibility report to document 

decisions as to whether and how further work 
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then select Option ID 
A7.1 or A7.2 or A7.3 

should proceed 
 

A7.1 Use MoIST Project 
Option Tool selector to 
decide between option 
A or B 

1. Use Option Tool selector to determine the 
current status of the project (see chap 5-
MoIST method) 

 
 

A7.2 Choose an alternative 
solution. 

1. Proceed in a different direction from that first 
envisaged 

 
 

A7.3 Suspend or cancel 
project 

1. Suspend or cancel project as not deemed 
feasible 

 
 
 
 

Retained/  
Modified/  
Dropped 

Option 
ID 

Skillset Deliverables Monitoring Active 
status 

Supervisor

A1 SSM Stakeholder 
requirements 

Scheduled 
stakeholder 
feedback 
meetings 

Retained  

A2 SSM  Rich Picture MetricsMoIST   
A3 SSM Root Definitions (RD) MetricsMoIST retained  
A4 SSM Conceptual Models MetricsMoIST + 

CATWOE 
retained  

A5 SSM Consensus Primary 
Task Model (CPTM) 

MetricsMoIST retained  

A6 SSM Information 
Categories 

MetricsMoIST retained  

A7 SSM Recommendations of 
solution 

MetricsMoIST retained  

 
 
Timeline for MoIST project option A 

  (Min Hours) (Max. hours)  (Hours)  

 (max+error) 

Activities Completion 
time 

Completion 
time 

Error/Feedback & 
Correction Time 

Total time 
(hours) 

A1 20 25 7 32 
A2 5 7 3 10 
A3 12 13 4 17 
A4 13 15 4 19 
A5 6 7 2 9 
A6 8 9 4 13 
A7 6 8 3 11 
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Gantt Chart for Project option A 
 

 
 

 

 

 

 
MoIST Project Option B 

          
Identifying and defining use cases from conceptual activities. 
Status: Requirements Certainty (High) + Development Environment 

(Unstructured) 

MoIST Option B’s Activities 

B1.  Derive conceptual primary task model (CPTM). 

B2.  Select and prioritise Conceptual model activities.  

B3.  Determine which activities require further decomposition.  

B4. Determine which of the selected activities are candidates for IT support.   

B5.  Identify actors.  

B6.  Develop high-level use cases.   

B7.  Develop multi-level use cases.   

B8.  Identify high-level objects.   

B9.  Map required high level services onto objects.   

B10.  Continue design.  

 

 

 

 

 

 

 

 

 

 

 

 

A
1 

A2 A3 A4 A3 A7 A6 A5 
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MoIST Project Option B’s Construction framework 

Option ID Activity Label Construction Procedure 
B1 Derive Conceptual 

Primary Task Model 
(CPTM) 

1. Derive each conceptual model from the root 
definition 

 
2. The model should define what a system 

would have to do to conform to the root 
definition 

 
3. Identify the logically linked activities that 

would have to take place to satisfy the root 
definition.  

B2 Select and prioritise 
Conceptual model 
activities 

1. Identify and place each activity into either 
high-level or low-level categories. 

 
2. High-level activities are those which have the 

potential to be decomposed into more specific 
activities. 

 
3. Low-Level activities are those which can be 

used immediately without further 
decomposition. 

B3 Determine which 
activities require further 
decomposition 

1. Choose the high-level conceptual activities 
already selected. (see B2). 

 
2. These activities may require further 

decomposition of some specific activities for 
which use of IT is currently vague or unclear. 

B4 Determine which of the 
selected activities are 
candidates for IT 
support 

1. Select the low-level conceptual activities 
which require no further decomposition.  
These can be used immediately. 

B5 Identify Actors 1. Identify the functional roles (person or 
system) associated with each low level 
activity 

B6 Develop high-level Use 
Cases 

1. Let each identified low-level activity serve as 
the name of the use case 

 
2. Involve the relevant actors and domain 

experts when writing up these high level use 
cases 

B7 Develop multi-level use 
cases 

1. Decompose the high-level use cases to an 
appropriate number of levels 

 
2. Continue to involve the relevant actors and 

domain experts in order to derive and validate 
the use cases 

B8 Identify high-level 
objects 

1. Identify the objects from the use cases by 
extracting the nouns 

 
2. Remove duplicate objects 
 
3. Form associations between the objects to 

show their relationships 
B9 Map required high-

level services onto 
objects 

1. Determine the high-level services from the 
SSM conceptual Model Information 
Requirements 

 
2. Map the services onto the objects 



 127

 

Retained/  
Modified/  
Dropped 

Option 
ID 

Skillset Deliverables Monitoring Active 
status 

Supervisor

B1 SSM Conceptual 
activities linked into 
CPTM 

CATWOE to 
ensure 
conceptual 
activity integrity 

Retained  

B2 SSM + UML Conceptual 
activities prioritised 
and placed into 
either low-level or 
high-level 
categories 

1. Further 
decompo
sition to 
be done 
= high-
level. 

 
2. No further 

decompo
sition 
possible 
= low-
level. 

  

B3 SSM+UML Candidates (if any) 
appropriate for IT 
support 

MetricsMoIST retained  

B4 UML List of UML actors MetricsMoIST retained  
B5 UML High-level use 

cases that further 
decomposed 

Noun extraction 
process 

retained  

B6 UML Multi-level use 
cases 

MetricsMoIST retained  

B7 UML High-level objects 
that can be further 
decomposed 

MetricsMoIST retained  

B8 UML High-level services 
mapped to objects 

MetricsMoIST retained  

B9  To be 
determined 
by project 
team 

Continuation of 
UML design 
activities 

MetricsMoIST Retained  
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Timeline for MoIST project option B 

(Min Hours) (Max. hours)  (Hours)     

(max+error) 

Activities Completion 
time 

Completion 
time 

Error/Feedback & 
Correction Time 

Total time 
(hours) 

B1 2 5 2 7 
B2 1 4 3 7 
B3 1 3 2 5 
B4 2 3 1 4 
B5 2 4 2 6 
B6 2 5 1 6 
B7 1 4 3 7 
B8 2 3 2 5 
B9  3 5 1 6 
 

 
 
Gantt Chart for Project option B 
 

 
 

 

Graph showing Project option B Activities vs. Total Completion Time 

 

 

MoIST Project Option C 
           

Link SSM’s conceptual activities directly to UML’s activity diagrams 
Status:Requirements Certainty (High) + Development Environment (Structured) 

MoIST Option C’s Activities 
 

C1.  Derive the Conceptual Primary Task Model (CPTM) 

C2. Identify conceptual activities that are candidates for IT support 

C3.  Identify the nouns from conceptual activities 

C4.  Link conceptual activities directly to the UML activity diagrams 

 

This method delivers a relatively simple solution by direct transition.  It is quick to 

apply and requires no further investigation into the business domain as the resultant 

activity diagram model is based solely upon the CPTM and supporting root 

definitions. Every process needs to be evaluated and ProMoIST is no exception. The 

B
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B
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MetricsMoIST Evaluator System developed in this research is used to determine the 

efficacy of the design artefacts developed in the research. 

 

 

MoIST Project Option C’s Construction framework 
 

Option ID Activity Label Construction Procedure 
C1 Derive Conceptual 

Primary Task Model 
(CPTM) 

1. Derive each conceptual model from the root 
definition 

 
2. The model should define what a system 

would have to do to conform to the root 
definition 

 
3. Identify the logically linked activities that 

would have to take place to satisfy the root 
definition.  

C2 Identify conceptual  
activities that are 
candidates for IT 
support. 

1. Identify and select the activities within the 
CPTM that have the potential to be 
investigated for possible IT support. 

 
2. Look for the conceptual activities that most 

closely match the key areas gleaned from the 
SSM study and that matches the client’s 
needs. 

 
C3 Identify nouns from 

Conceptual activities. 
1. Select each activity in turn and identify the 

nouns in the CPTM activity bubbles. 
 
2. Use the nouns selected in (1.) above to be the 

candidate activities for linkage to the UML 
activity diagrams. 

 
3. Examine the list of nouns and remove any 

duplicates or any nouns which represent the 
same entity. 

C4 Link conceptual 
activities directly to the 
UML activity diagrams. 

1. Determine the logical dependencies and 
information requirements of each conceptual 
activity within the CPTM. 

 
2. Form the relevant associations between the 

UML activity diagrams to form an initial 
linkage. 

 
 
3. Use the initial linkages to form subsequent 

linkages that will accelerate the design 
process. 
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Retained/  
Modified/  
Dropped 

Option 
ID 

Skillset Deliverables Monitoring Active 
status 

Supervisor

C1 SSM Conceptual activities 
linked into CPTM 

CATWOE to 
ensure 
conceptual 
activity integrity 

Retained  

C2 SSM + 
UML 

Conceptual activities 
that qualify for IT 
support 

CATWOE + 
MetricsMoIST 

retained  

C3 SSM+UML Nouns derived from 
conceptual activities 

CATWOE + 
MetricsMoIST 

retained  

C4 SSM + 
UML 

Linkages and 
associations between 
conceptual activities 
& UML activity 
diagrams 

CATWOE + 
MetricsMoIST 

retained  

 

 

Timeline for MoIST project option C 

  (Min Hours) (Max. hours)  (Hours)  

 (max+error) 

Activities Completion 
time 

Completion 
time 

Error/Feedback & 
Correction Time 

Total time 
(hours) 

C1 2 5 2 7 
C2 1 4 3 7 
C3 3 6 3 9 
C4 5 8 4 12 
 

 

Gantt Chart for Project option C 
 

 
 

 

Graph showing Project option C Activities vs. Total Completion Time 

 

 

 

 

 

 

C
1 

C2 C3 C4 
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5.7 MetricsMoIST Evaluator System 
 

Metrics have been applied and misapplied to software systems for decades.  Ideally, 
metrics provide a measure of quality and the location of defects in a system. A metric 
is a measurement used to estimate some characteristics of the system that are 
difficult to measure or compute directly.  The application of metrics in a blind 
simplistic manner is unlikely to yield any benefit. However, metrics can provide 
information to improve the actual quality of the system under development. Metrics 
are guidelines, so it makes no sense to rigidly adhere to them.  It makes more sense 
to use them to identify potential ‘hot spots’ or areas of potential concern (Douglass, 
B, 2004). 
 

 

Existing established metrics such as Nielsen’s heuristics are not adequate enough to 

comprehensively analyse and judge the effectiveness of the design artefacts 

developed during this research.  MetricMoIST is the resultant tool developed in this 

research to more accurately evaluate the artefacts.  MetricsMoIST uses Checkland’s 

5 E’s to evaluate the SSM component. 

 

 

 

SSM’s Five Es Performance Indicators for Decision Criteria 

Since SSM is an integral part of the MoIST method, it is vital that its process integrity 

be evaluated.  Checkland’s SSM already has an inherent evaluation/check and 

balance system. This is known as the five (5) E’s.  These 5 E’s are: 

• efficacy (will it work at all?)  

• efficiency (will it work with minimum resources?)  

• effectiveness (does it contribute to the enterprise?)  

• ethics (is it sound morally?)  

• elegance (is it beautiful?)  

The loose "process of engagement model" recognises the importance of related 

management and support activities. Root definitions, rich pictures and "idealised" 

solutions need to be in sufficient detail to enable practicalities and implementation 

issues to be evaluated. Resource demands and performance measures need to be 

articulated. However a complete specification is unlikely as the "ideal" is unlikely to 

be fully implemented - as it stands. Identifying implementation steps is the next 

phase.  
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   [   SSM’s 5 E’s    ] 

SSM Product Efficacy 
20% 

Efficiency
20% 

Effectiveness
20% 

Ethics
20% 

Elegance 
20% 

Total 
100%

Rich Picture       
Root Definition       
Conceptual 
Model 

      

Consensus 
Primary Task 
model -CPTM 
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5.8
 

Li
mit
ati
on

s 
an

d 
cha
llen
ges 

of 
the 
MoI
ST 
me

SSM Product Criteria YE
S 

NO Somewhat 

RICH PICTURE Rich picture describes the 

business situation under review 

   

 Presents a comprehensive view 

of the situation without being 

cluttered with too much detail 

   

 Relationships, including 

conflicts, between components 

are described 

   

 Roles of the people involved are 

indicated 
   

 Organisational issues are noted    
ROOT 
DEFINITION 

The definition is well formulated 

and stands up to CATWOE 

analysis 

   

 The definition contains only one 

transformation 

   

CONCEPTUAL 
MODEL 

Activities included in the model 

relate to words used in the root 

definition from which it is 

derived 

   

 The description of an activity 

begins with a verb 

   

 Monitor and control activities are 

included 

   

 There are activities to acquire 

and deploy resources 

   

 The activities and their logical 

dependencies form a coherent 

set 

   
 
 

CONSENSUS 
PRIMARY TASK 
MODEL 

Activities included in the model 

relate to words used in the root 

definition of the test model 

   

 The description of an activity 

begins with a verb 

   

 The activities are described at 

the same level of detail 

   

 The activities and their logical 

dependencies form a coherent 

set 

   

 Activities to resolve conflicts 

have been included 
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thod & proposed solutions 

One challenge lay in the fact that SSM models are fairly conventional without much 

room for deviation.  On the other hand there is a plethora of UML models to choose 

from.  Careful thought has to be made as to the selection of the method to be 

involved in the linkage (Dobbins, 1997).  The key was to build SSM Conceptual 

models and generate information models from them in order to pass them to the UML 

Model.  With the utilisation of the MoIST Method, a number of different models were 

generated.  It was critical that consistency of each of these models was maintained.  

The nature of MoIST method dictates that each preceding phase acts as a 

foundation for the subsequent stage and feeds its output into it.  This meant that any 

change in one model affected the other.  These changes were usually easily seen 

and traced to ensure monitoring and control of the process.  Consequently a change 

in the transformed models affected the UML model.  This was one way of 

amalgamating the principles of hard and soft methods without epistemological 

damage to either (Doyle et al 1993).  It is vital to seek to unite and amalgamate the 

best aspects of existing methods (Wood and Doyle 1989).  MoIST is one such 

method that accomplished this successfully (see chapter 6). 

5.9 Conclusion 
Development of information systems in organizations will increasingly require 
solutions to problems of a wider nature than those traditionally addressed.  This 
reflects the increasing penetration of information systems into the less routine areas 
of the organization.  The breadth of knowledge of the systems designer is thus likely 
to grow.  An emphasis will be on theory for guiding the particular type of development 
method to be used in a given situation.  This is based on a more analytical approach 
to the organizational situation.  Methods will have phases concerned with social 
and psychological factors in the problem situation, in conjunction with the more 
traditional phases characteristic of the hard approach (Flynn, 1998). 
             

 

The MoIST method had to be applied in a real, live environment to determine its 

effectiveness.  This empirical setting highlighted exactly how the MoIST worked 

under real conditions. 
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Chapter 6-     Empirical Study  
 
The problem is always to identify the problem.  Too many people rush to solutions, 
and as a result they end up solving the wrong problem.  How do you avoid that? By 
asking probing questions in an effort to expose the real issues; by challenging all of 
your assumptions and by collecting information even after you think you have 
identified the issue. 

(John C Maxwell – Thinking for a Change, 2003) 
 
 
 
6.1 Introduction 
This description of my empirical work includes the area of application for this action 

research case study.  The presented problem and the particular project domain 

studied are examined.  Previous relevant experience is highlighted and shown to be 

of major benefit to this research.  This chapter shows how the MoIST method was 

successfully used to implement a workable electronic system(ACcSys).  Since the 

MoIST method is configured to be used most usually for development projects of an 

unstructured nature, SSM is used as the major ‘finding out’ mechanism in the 

preliminary investigation.  SSM is also the model employed for the identification of 

issues, data collection in interviews and subsequent modelling and design are 

described.  In the more specific data collection, the developed MoIST method is 
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progressively applied to the SSM findings. This is the design phase where the SSM’s 

Conceptual Activities were linked to UML’s Use Case models.  Implementation of the 

system developed out of the MoIST’s method application is also shown. A summary 

of the data in the light of the overall findings and implementation and user testing and 

evaluation are provided. 

 

6.2. Area of Application 
The Empirical Study concerned the School of Computing and Engineering at the 

University of Huddersfield.  Huddersfield is an old textile mill town located in 

Yorkshire, in the North of England.  Its population is approximately 500,000.  

Huddersfield itself nestles in the Pennine Hills and has a broad manufacturing and 

service base. The town is well known for its musical traditions and the world-famous 

Choral Society. The University of Huddersfield is a dynamic and expanding institution 

in a thriving West Yorkshire town. It has a friendly reputation, an excellent graduate 

employment record and offers a high level of student support. The University attracts 

students from all parts of the United Kingdom and over 60 countries world wide. 

There are currently over 17,000 students enrolled. Nearly 5,500 are full-time 

undergraduates.  Over 3,500 are studying on full-time 'sandwich' courses with a 

year's work-placement in industry or commerce. There are almost 4,000 part-time 

undergraduates, 2,000 part-time postgraduates and over 800 full-time postgraduate 

students. 

 

The University is organised into seven Schools: These are Applied Sciences, 

Education and Professional Development, Music and Humanities, Computing and 

Engineering, Huddersfield University Business School (HUBS), Design Technology, 

Human and Health Sciences.   The School of Computing and Engineering is one of 

the seven Schools in the University. It has over 2000 full and part-time students on its 

own courses and teaches several thousand students in other Schools on service 

teaching contracts. The School has nearly 100 academic staff and in excess of 70 

administrative and technical staff.  There are three academic departments.  

Computing and Mathematical Sciences, Multimedia and Information Systems and 

Engineering and Technology. 

 

In 2002, whilst conducting this research, there was a merger of the department of 

Computing with the department of Engineering.  This amalgamation resulted in the 

School of Engineering and Computing.  This merger had significant technological, 
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social and political implications.  This change provided an even richer environment 

for the research findings to be tested and flourish. 

 

Over the past twenty (20) years, the demographics of Huddersfield have changed to 

reflect a more multi-cultural persona.  Huddersfield and Kirklees are the main feeder 

and ‘catchment’ areas for recruitment and admission at the University of 

Huddersfield.  The new demographics influence the student expectations.  For the 

university to better serve this student/client and to maintain its viability, the university 

teaching and learning practices have to reflect the changing characteristics of its 

students.  These are some of the cultural and political factors that influenced this 

research.   

 

 

6.3 Previous related action Research experience 
Prior to conducting this research, I personally experienced the merging of two (2) 

university academic departments.  Though this research was conducted in a 

different geographical setting, there was a general feeling of familiarity with the 

problem domain.  This experience was as a lecturer in the School of Computing 

and Information Technology (SCIT) at the University of Technology, Jamaica.  In 

1997, the Department of Computing became the School of Computing and 

Information Technology (SCIT) and the Department of Engineering became the 

School of Engineering.  These were then merged to become the Faculty of 

Engineering and Computing.  This previous experience further cemented and 

solidified my competence base in the problem domain.  I completed a 

Postgraduate Programme in Education (PG.Dip.).  My Postgraduate research 

thesis addressed the problem of student aptitude for Computing subjects.  Action 

research was carried out within the problem area.  The major solution included 

the development of a new set of criteria for formal admission of Computing 

students to the School of Computing and IT.  This research was requested by the 

School Administration who applied the recommendations.  Subsequent research 

showed that the students were improving (Hopkins 1999).  Doing an M.Sc. in 

Software Engineering and later M.Phil. level research at Bradford university also 

helped to hone and provide the confidence and competence needed to undertake 

PhD research at the University of Huddersfield. 

 

Over the years of this research, informal and spontaneous conversations with faculty, 

administrative employees and students have proved very fruitful.  These 
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conversations could be considered informal interviews for the purpose of the 

research.  The diversity of people’s philosophies and belief systems has influenced 

the successful outcomes of this research. It is always a privilege to be immersed in 

an organizational culture where ideas and changes incessantly flow and transpire all 

around and within to challenge and extend the boundaries of good thinking.  The 

result in this research was beneficial change. 

 

 

 

 

6.3.1 The General Problem Statement 
The government has now mandated that fifty (50) % of the population must be given 

access to Higher education, (http://www.hefce.ac.uk). This means that persons who 

formerly might not have been considered worthy candidates for higher education will 

now be given the opportunity to pursue the same.  This phenomenon has contributed 

to the problem of low retention that many universities and schools now face, (May 

and Bousted, 2004).  Recent research has shown that low student retention and 

student withdrawal are primarily a result of unmet expectations and lack of student 

support. Discussions highlighted the importance of building peer support through 

academic and social activities. Data showed that students living in university 

accommodation had more peer contact and were significantly better retained than 

those who were not (May and Bousted, 2004). 

 

Computing departments in the newer universities – post 1992 - developed a problem 

in the last ten years that has worsened. This is evidenced by the need for universities 

to employ staff to provide additional and in some cases remedial support for 

students.  The problem is multi- faceted as there are issues of admission, retention 

and recruitment among others. The main problem is that students from non-

traditional academic backgrounds tend to need help with a variety of study related 

issues in higher education (Sambell and Hubbard, 2004).  There is a drive to 

examine not only ways in which students can be encouraged to continue their 

education to higher education level, but also that they are retained once there (May 

and Bousted, 2004).   

 

Academic skills support policy is new in higher education as it was formerly 

perceived that there was no need for it.  It was usually seen and expected in further 

education (FE).  With the advent of the widening participation agenda, this support is 
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now vital for higher education (HE), (May and Bousted, 2004).  Students at risk of 

non-completion or failure include mature students and students whose access is 

through non-traditional means.  Compared to other undergraduates, these students 

have relatively weaker academic background skills and multiple problems, (Sanbell 

and Hubbard, 2004). These complexities have led to the employment of academic 

skills tutors in universities.  The academic skills tutors primarily help students 

strengthen research, time management and study skills.  They also provide 

diagnostic advice and support for specific learning disabilities.  The majority of the 

current crop of students over the last ten years has entered university with poor study 

skills and many other learning difficulties.  Some have exhibited low motivation and 

lack of basic study techniques and time management.  Evidence of this is inherent or 

implied in the recruitment of additional staff, namely the academic skills tutors. 

 

The University has recognised the need to deal with the pressing recruitment and 

retention issues. In order to address and correct the problem, academic skills tutors 

were appointed.  The academic support project has been operational for one half of 

the stipulated timeframe.  It was thought to be an opportune time to evaluate the 

support programme and its effectiveness.  The challenge for the organisation is how 

to increase recruitment levels and maintain retention whilst simultaneously 

conforming to quality assurance standards.  

 
6.3.2 Description of how the current system works 
The Academic Support tutor helps students with a number of study skills.  These are 

namely literacy skills, referencing, examination techniques, report writing and time 

management.  The Academic Skills Unit developed a paper based questionnaire 

(see appendix). This was used as a diagnostic tool for identifying students at risk of 

non-completion or failure.  The questionnaire was disseminated to all new students at 

induction.  The questionnaire responses were graded optically and the resultant 

grades categorised into three bands.  Students whose grades fell in the lower band 

were contacted for further discussion and possible support.  An Individual Learning 

Profile (ILP) was generated from the responses from each student and passed onto 

Pathway Leaders. This helped to identify students who were potentially at high risk of 

failure or non-completion.  It also made the academic support process more of a 

school effort and not just the responsibility of the academic skills tutor.  The first set 

of questionnaires was completed and the evaluation and administrative processes 

were carried out to ascertain the students who need extra-curricular support.   
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6.4 Empirical Study – Phase 1 – Analysis - Finding Out  
Application of MoIST in the development of ACcSys 
This phase represents the Analysis and ‘finding out’ phase of the research. It acts as 

the bridge between ‘soft’ Systems Science and ‘hard’ information systems design 

and implementation.  The software development method used here is the method of 

integrating Systems thinking into Information Systems (MoIST). This MoIST Method 

combines the social and human factors of Soft Systems Methodology (SSM) with the 

technical framework method of the Unified Modelling Language (UML). It builds on 

the foundational work of (Davis, GB, 1982) and his Contingency Framework along 

with Multiview Method by (Avison and Wood-Harper,1990) and (CCTA,1993).  The 

MoIST Method is designed to be specific to the combination of the SSM and UML 

methods.  It is comprised of three (3) information systems development options. 

These are Options A, B and C.  Option A precedes UML with SSM activities.  Option 

B links SSM’s Conceptual Activities to UML’s Use Cases and Option C links SSM’s 

Conceptual activities directly to UML’s activity diagrams.  

 

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment
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6.4.1 Using MoIST Project Option Selector Tool (MoPros) to select the best 
project option 
The characteristics of the project were analysed using the MoIST Project Option 

Selector Tool in order to make the most informed decision.  The points awarded are 

at the discretion of the project manager or could be through the development group 

consensus.  It was found that the characteristics of the Academic Support Project 

were: 

• Changes to business processes in the organization 

• There is need for additional electronic solutions to alleviate the problem 

• Organizational changes are likely 

• The proposed system is to replace or enhance an existing system 

• Development environment is unstructured 

• Requirements are not relatively clear from the outset. 

 

 
 

MoIST’s Project Option Selection Tool (MoPros) 
  max. 25 points max. 25 points  max. 25 points
  max. 25 points 

Project 
Options 

Types of  
users 

Developers’ 
skillsets 

Organizational 
environment 

General 
characteristics 

Total

A 
 

Users are a bit 
unsettled as 
they are 
experiencing 
organizational 
changes  
20 points 

Requirements 
at this point 
are not 
relatively clear 
to the 
development 
team  
25 points 

Development 
environment 
unstructured  
 
 
25 points 

Proposed system 
is to replace or 
enhance an 
existing system 
 
25 points 

95 

 
B 

Users 
uncertain 
about the 
need for the 
proposed 
system while 
others are 
more willing to 
be associated  
with it. 
10 points 

Requirements 
known at this 
point are 
relatively clear 
to 80% of the 
development 
team  
0 points  

Development 
environment has 
pockets of 
structured and 
unstructuredness. 
 
 
15 points  

Conflicting 
interests and the 
proposed system 
might cross 
functional borders 
 
 
0 points 

25  

C Users open to 
the new 
system  
 

Requirements 
known at this 
information 
are very clear 

Development 
environment is 
quite structured  
 

Environment is 
relatively 
contention free 
 

25 
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0 points 

to 90% of the 
development 
team  
0 points 

 
 
 
0 points 

 
 
 
25 points 

Table 2: MoIST’s Project Option Selection Tool (MoPros) 

 

Using the MoIST Project Option Selector tool, it was found that the project 

requirements most closely matched project option A.  Option A was chosen. 

Options B and C were not chosen at this point as they were not the best fit at this 

preliminary stage of the project.  Given the project situation and its 

characteristics; the requirements were not specific enough to be directly linked to 

UML’s Use Cases or UML’s Activity diagrams.   

 
 
 
 
 
 
 
MoIST Project Option A -Precede UML with SSM 
Status: Requirements Certainty (Low) + Development Environment 

(Unstructured or Structured) 

MoIST Option A’s Activities 
 
 

6. Requirements for computer-based information system 
7. construct rich picture 
8. develop relevant issue-based and primary task root definitions and conceptual 

models 
9. derive consensus primary task model and information categories 
10. formulate the recommendations for information system design 

 

 

6.4.2 Mode of  data gathering and interview data 
 The major client of the empirical study was the Academic Skills tutor of the School of 

Computing and Engineering.  Interviews were arranged that afforded a variety of 

perspectives on the Academic Skills Support process.   
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After the interviews, SSM artefacts were constructed and subsequently showed to 

the client for feedback and amendments.  At this point in the research, there was no 

idea for an electronic system.  There was just the interest of learning about the 

situation and desiring to find ways to improve it from a research point of view.  Initially 

learning in that area seemed to be exhausted and all the data was documented and 

stored away for future reference.  That particular problem area was left and SSM 

studies were conducted in other areas of the school.   

 

Several months later, the academic skills support tutors of the university were having 

one of their fortnightly meetings.  They met to evaluate their effectiveness in their 

jobs.  It was generally felt that they were doing well, but that an electronic 

intervention would help them increase effectiveness in identifying and supporting 

students at risk of non-completion of programmes.  This led to invitations being 

extended to attend the next fortnightly meeting of the academic skills tutors.  A formal 

presentation of the research was done of the perspective gained from doing an SSM 

analysis of the academic skills process in the school of Computing. Feedback was 

then provided by the other academic school tutors as to whether or not this 

perspective of their work was accurate. The presentation eventually became an 

interactive SSM session where some of the SSM artefacts were redefined as the 

dialogue expanded.  The artefacts were subsequently amended to reflect this 

second, more comprehensive SSM view of the problem area.   

 

 

6.4.3 Analysis using SSM 
This describes the phase of the research where four (4) modelling activities were 

carried out.  An overview of Soft Systems methodology was given.  This formed the 

basis of the modelling carried out. It began with participatory soft systems modelling. 

This is where the clients were engaged in discussions to determine how the process 

worked. They provided the feedback necessary to the accuracy of the models.  Non-

participatory soft systems modelling was also done. This involved constructing the 

SSM artefacts and models after the sessions.  

 

 

Soft Systems Methodology (SSM)  
Soft Systems Methodology(SSM) was pioneered by Professor Peter Checkland 

(Checkland, 1981) at the University of Lancaster, UK.  SSM seeks to represent 

unstructured situations with the primary goal being to understand the situation as it 
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really is.  After understanding is gained, the methodologist or the owner is then 

empowered to make an intervention. This usually results in some improvement to the 

previous situation.  Soft Systems Methodology (SSM) is used to learn more about the 

situation and to help to formulate solutions.  SSM advocates cyclic learning of 

unstructured situations. SSM in its most basic form has several distinct stages.  The 

first involves three different analyses of the existing situation. Analysis one deals 

with the intervention into the situation.  Analysis two looks at the problem scenario 

as a social system.  This is in terms of the behavioural norms and values that 

measure role performances as good or bad. Analysis three examines the politics 

and power distribution in the organization.   

 
 
SSM Analysis Models  
 
Analysis one gives a snapshot view of the major players in the study.  It provides a 

succinct analysis of the situation being studied in the hope of making an effective and 

relevant intervention. 

 
Analysis 1 – Analysis of the Intervention 
Client Academic Skills Tutor 

Problem Solver Soft Systems Methodologist 

Problem Owners Academic Skills Unit, University 

 

Table 6.1: Analysis of the Intervention 
 

Analysis two provides an overview of the social configuration of the problem 

domain.  It delineates the roles of the key players. It also examines the behavioural 

norms of the role holders and highlights the values that determine satisfactory role 

performance of each player. 

 
 
Analysis 2 – Social System Analysis 

Roles Behaviour norms  Values  
Academic Skills Tutor Helps students improve study 

skills 
Delivery of academic 
learning support in the school 
- GOOD 

Student Learner enrolled at the 
university 

Students not at accepted 
university standard - BAD 

Pathway Leaders Administrate university 
modules 

Liaise with skills tutor - 
GOOD 
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Table 6.2: Analysis two 
 

Analysis three examines and exposes any political undercurrents not explicitly 

defined in the problem domain. It summarises the analysis and details the disposition 

of power. That is who wields real power in the situation and therefore can make or 

break any system developed. It also examines the nature of the power described. 

 
 
Analysis 3 – Political Systems Analysis 
Disposition of Power 
The Academic Skills tutor within the School of Computing had no formal supervisor 

or peer within the school.  This provided reasonable autonomy to carry out support 

duties without necessarily having to wait for internal consensus. 

 

Nature of Power 
In the Academic Skills Unit, each school has its particular tutor. Among the tutors, 

nevertheless a hierarchy exists.  Friendly professionalism seemed the existing 

atmosphere. Duties are allocated according to strengths and tutors seem to work 

together as a reasonably cohesive unit.  The tutors meet every fortnight to discuss 

issues, strategies and problems.  They work in conjunction with the disability office, 

library and the international office to achieve their aims.  The possibility of power play 

in these external collaborations was not established. 

After the analyses have been completed, a finding out or an investigation stage was 

then initiated.  The artefact produced at this stage was the Rich Picture 

 
 
SSM Rich Picture 
The Rich Picture provides a snapshot of the entire situation as seen from the 

methodologist’s perspective.  It is a very effective modelling tool as it offers beneficial 

and ease of interaction with the client. It enables the methodologist to quickly get a 

more accurate view of the situation. 
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Fig 6.1: Rich Picture - Academic Skills Support (created by Hopkins, 2002) 
 

The next stage involved constructing models of relevant human activity systems. 

These systems are then named and modelled and should not bear too much 

resemblance to the real world situation identified in the first stage.  The Root 
Definition is subsequently formulated.  
 
 
SSM Root Definition 
The Root Definition is a brief textual statement that best describes the system and 

tells what the system will or should do. It acts as a sort of quasi-mission statement for 

the system. 

 
 
 

A university learning and teaching innovation unit owned and professionally staffed 

system which, in the areas of academic skills technology, analyses and evaluates the 

academic competence of students, in order to identify students with problems at an 

early stage and to make proposals to the university learning innovation unit for re-
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skilling and improving existing competence to enhance student passes within the 

resource limitations of the learning and teaching innovation unit. 

 
Table 6.3: Root Definition of Academic Skills Support Process  
 
 
CATWOE Model 

 
 
Table 6.4: CATWOE elements of a root definition, Lai, 2000 
 
CATWOE is a mnemonic used to ensure the ‘well-formedness’ of each root 
definition. CATWOE represents Customer, Actor, Transformation, 

Weltanschauung(loosely translated as worldview), Owner and Environmental 

constraints. These represent the problem situation as perceived by the 

methodologist. 

C Customer Student, Academic skills tutor 

A Actor Academic skills tutor, lecturer 

T Transformation Students in need of academic support  students better 

equipped academically 

W Weltanschauung As many students as need it ought to have access to 

academic support to be able to successfully handle the 

given curriculum 

O Owner Academic skills unit, University 

E Environmental 
constraints 

Financial constraints for academic support programme 

‘at risk’ students who do not want to participate in the 

support process 

 

Table 6.5: CATWOE of academic support process  
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After the CATWOE had been applied to the Root definition, a Conceptual Model 
(CM) was derived. 

 
 
SSM Conceptual Model 
A Conceptual Model (CM) was derived from the root definition.  This conceptual 

model provides activities that represent what was expressed in the root definition. A 

conceptual model could therefore be considered as an instantiation of a root 

definition.  Here the conceptual model represents a transformation where the goal is 

to increase the number of successful students and reduce the number of students at 

risk of failure or non-completion. 
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Figure 6.2: Conceptual Model of Academic Skills Support Process  
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The Conceptual model derived above offered a more high level view of the system.  

In order to get a lower level and more detailed picture, another conceptual model was 

constructed. 

 

ILP forms to be 
collected by 
academic skills 

forms delivered 
to tutors 
responsible for 

ILPs completed

part 1 - retained 
by/sent to 
designated 

distribution to 
personal tutors

part 2 - retained 
by/sent to 
academic support 
tutor (AST)

part 2 - sent by AST
to ILP administrator 
for processing

ILP results 
distributed

designated 
tutors

international 
office forwarded 
information

Disability office 
forwarded 
information

academic skills 
tutors (AST)

AST invites students 
indicated as 'at risk' 
to make 
appointments

 
 
 
Figure 6.3:  Specific Conceptual model of existing Academic Support Process 
 
 
 
 
 



 151

SSM Comparison Models 
 

In this next stage, the rich picture derived in the first stage was then compared with 

the derived conceptual models and the tabular model below was constructed.   

 

Conceptual  Reality 
Investigate relevant solutions to 

the problem 

This is being done to a reasonable extent 

Appreciate constraining 

elements  

Some constraining elements have been identified and are 

being addressed 

Decide criteria for determining 

students at risk of non-

completion 

No formal criteria have been put forward by the academic 

skills unit 

Evaluate current academic 

situation and failure rate 

The evaluation process is ongoing 

Decide activities to increase 

number of successful students 

Some strategies to increase the success rate have 

already been implemented. For example the 

questionnaire as a diagnostic tool 

Perform activities The decided activities are currently being performed or 

are being fine tuned 

Monitor activities 1-6 Monitoring is undertaken by the academic skills unit 

coordinators 

Take control action This can be improved 

Define performance measures Some have already been defined and as more becomes 

know, the definitions are extended 

 

Table 6.6: Comparison Phase of Academic Skills Support Process  
 
The findings were used to take action to improve the problem situation.  The 

proposed changes are based on comparison between the conceptual model and the 

reality of the situation.  

 

 
Defining Change 
The proposed change is based on comparison between the conceptual model and 

the reality of the situation.  It is thought to be systemically desirable and culturally 

feasible (Checkland, 1981).  The solution to the highlighted problem lies in finding a 
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way to speed up the ILP administration process to ‘catch’ the ‘at risk’ students before 

they fall through the cracks.   

 

An electronic means of linking student to pathway leader must of necessity be a part 

of the solution.  An overall solution was therefore needed to make the process more 

efficient and thereby more effective. In true SSM style, this move was not 

wholeheartedly embraced by all the stakeholders as it was not feasible for every 

department.  This was because most tutors thought that the majority of their new 

students would not be confident in using a computer at that stage and it might 

possible hinder the whole process instead of advancing it. Subsequently only the 

Schools of Computing and Engineering and Business expressed interest in this 

online administration of the ILP questionnaire.   

 
 
6.5  Empirical Study Phase 2 – from Analysis to Design  
This phase represents the design phase of the electronic system. Here the SSM 

outcomes are mapped to UML.  The MoIST Project Option Selector tool is again 

used to evaluate the project and select the next most suitable project option.  
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B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

 
Figure 6.4: The MoIST Method 
 

 

6.5.1 Using MoIst’s Project Option Selector Tool to get the best project option 
 
After the SSM findings, the characteristics of the project were again analysed using 

the MoPros Selector Tool in order to make the most informed decision for this stage 

of the development process.  The points are awarded at the discretion of the project 

manager or by general consensus with the development team.  It was found that the 

characteristics of the development project thus far were: 

• Users uncertain about the need for the proposed system 

• Development environment has some existing pockets of structure and 

unstructuredness 
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MoIST’s Project Option Selection Tool (MoPros) 
  max. 25 points max. 25 points  max. 25 points
  max. 25 points 

Project 
Options 

Types of  
users 

Developers’ 
skillsets 

Organizational 
environment 

General 
characteristics 

Total

A 
 

Users are a bit 
unsettled as 
they are 
experiencing 
organizational 
changes   
0 points 

Requirements 
at this point 
are not 
relatively clear 
to the 
development 
team  
0 points 

Development 
environment 
unstructured  
 
 
10 points 

Proposed system 
is to replace or 
enhance an 
existing system 
 
10 points 

20 

 
B 

Users 
uncertain 
about the 
need for the 
proposed 
system while 
others are 
more willing to 
be associated 
with it 
20 points 

Requirements 
known at this 
point are 
relatively clear 
to 80% of the 
development 
team.  
22 points  

Development 
environment has 
pockets of 
structure and 
unstructuredness. 
 
 
19 points 

Conflicting 
interests and the 
proposed system 
might cross 
functional borders 
 
 
0 points 

61 

C Users open to 
the new 
system  
 
 
 
 
 
10 points 

Requirements 
known at this 
information 
are very clear 
to 90% of the 
development 
team  
0 points 

Development 
environment is 
quite structured  
 
 
 
 
10 points 

Environment is 
relatively 
contention free 
 
 
 
 
18 points 

38 

Table 6.7: MoIST’s Project Option Selection Tool (MoPros) 

 

 
 
Using the MoIST Project Option Selector Tool, it was found that the project 

requirements most closely matched project option B.  Option B was chosen 

since Option A’s activities were already completed within the SSM study 

conducted. Option C was not used as the developer thought that given the 

project situation and its characteristics; the requirements were not specific 

enough to be directly linked to UML’s activity diagrams.   
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Option B: Enhance inception stage with SSM by deriving use cases from 
activities within the conceptual model. 
Status: Requirements Certainty (High) + Development Environment 

(Unstructured) 

MoIST Option B’s Activities 

B1.  Derive conceptual primary task model (CPTM). 
B2.  Select and prioritise Conceptual model activities.  
B3.  Determine which activities require further decomposition.  
B4.  Determine which of the selected activities are candidates for IT support.   
B5.  Identify actors.  
B6.  Develop high-level use cases.   
B7.  Develop multi-level use cases.   
B8.  Identify high-level objects.   
B9.  Map required high level services onto objects.   
B10.  Continue design.  

 

Fig 6.4.1 Application of Option B within the MoIST method 

 
1. Derive conceptual primary task model 

 

Figure 6.4.2: Conceptual model was derived from the SSM finding out stage.  

 

Investigate 
relevant 
solutions to 
problem 

Appreciate 
constraining 
elements eg. Students 
need support but 
reluctant to receive it 

Decide criteria for 
determining 
students at risk of 
non-completion 

Evaluate current 
academic 
situation & 
failure rate 

decide 
activities 
to identify 
at risk 
students & 

perform 
activities 

Monitor 
activities 1 
to 6 

Take 
control 
action 

Define 
performance 
measures 
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2. Select and prioritise Conceptual model activities to be investigated for 

possible IT support 

 
 
Priority 1   
 
 
 
 
Priority 2   
 
 
Priority 3   
 
 
 
Figure 6.4.3: Priorities 1,2 and 3 
 
 

3. Identify scope or scale of OOA by determining which of the selected low-level 

activities are likely candidates for IT support.  Also determine which may 

require further decomposition of some specific activities for which responsible 

use of IT is unclear 

                              

 

 

 
 
 
Figure 6.4.5: Activity in Option B of the MoIST Method 
 

 

The selected low-level activity above is the most likely candidate activity for IT 

support 

 
 

4. Identify actors for each of the low-level activities. 

Evaluate current 
academic situation and 
failure rate 

Decide criteria for 
determining students at 
risk of non-completion 

Decide activities to identify 
at risk students and increase 
success rates 

Decide activities to identify 
at risk students and increase 
success rates 
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Figure 6.4.6: Actors for Low-Level Activities 
 

5. Develop top level use cases.  Let each identified low level activity serve as 

the name of a use case.  Involve the relevant actors and /or domain experts 

when writing up these top level use cases. 

 

Actors

+ 1st year Student + Academic Support Tutor (AST)
+ Pathway leader

+ existing database system + electronic system to be developed
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UML Use Case Model

+ student

+ identify self on the system with unique login

+ select ILP questionnaire

+ complete electronic ILP

+ submit answered questions

+ Electronic ILP

+ process student answers

+ Pathway Leader
+ export results to database system

+ database

+ send reports to disability office, International office and to HUBS

+ send ILP Profile to Academic Support Tutor

 
 
 
Figure 6.4.7: UML Use Case Model 
 
6. Identify high level objects.  Identify the objects from the use cases and develop 

class diagrams and association are made between the objects to express their 

relationships. 
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+ Pthway Leader

+ first year Student

+ ILP

+ appointment for support

+ Academic tutor

+ <<access>>

 
 
Figure 6.4.8: Class Diagram 
 
CASE Tool used in Design phase 
QSEE Superlite was the CASE tool used in this research. It is a generic modelling 

environment that supports a large number of applications. It was designed by QSEE 

Technologies Ltd – 2001-2004.  QSEE multi-CASE is a collection of sub-tools 

designed to aid in the analysis and design of software systems.  The tool allows a 

user to combine over a dozen analysis and design approaches to help identify and 

solve software related problems.  Some of the models created using the software 

include Rich Pictures, Conceptual models, flowcharts, UML models, state transition 

diagrams, data flow diagrams, entity relationship diagrams and structure charts. 
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Fig 6.5: screenshot of CASE tool 

 

This tool was the most ideal one for this research as it facilitated the creation of 

relevant models from both the Soft systems and hard systems paradigms pertinent to 

the research. 

 
Fig 6.5.1:screenshot of conceptual model created during the research using QSEE 

Superlite 
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After Option B of the MoIST method was applied to the SSM results.  This marked 

the end of the design phase. The design artefacts were then evaluated below using 

the Metrics MoIST evaluator system developed during the research. 

 

 
 
6.6: Empirical Study Phase 3- from Design to Evaluation (using 
MetricsMoIST) 
MetricsMoIST is a heuristic tool developed as part of this research.  It uses 

Checkland’s 5 E’s to evaluate the SSM component. 

 

  

(1) Checkland’s 5 E’s 
These were used to evaluate the integrity of the results of the SSM study conducted 

in the first part of the empirical research. Each ‘E’ was scored on a scale of one (1) to 

ten (10). 

• efficacy (will it work at all?)  
• efficiency (will it work with minimum resources?)  
• effectiveness (does it contribute to the enterprise?)  
• ethics (is it sound morally?)  
• elegance (is it beautiful?)  

(a) Efficacy. This measured whether or not the ACsSys worked at all. It gained 

full measure here as it was used in a real, live situation and it worked well and 

produced the desired results – 9/10 

 

 

(b) Efficiency.  This measured whether ACcSys would work with minimum 

resources.  It worked with Question Tools software loaded onto shared 

network resources. The development project did not have very many team 

members and it produced a workable electronic system. - 9.5/10 

 

(c) Effectiveness: This measured the level of ACcSys’s contribution to the 

School of Computing and Engineering. It made quite a substantial 

contribution as it produced turnaround in one (1) day what took several 

months using the previous paper based system. – 8/10 
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(d)  Ethics: This measured the moral soundness of ACcSys. Ethics may be 

defined as acting fairly and in accordance with existing regulations and 

policies. ACcSys did not violate or break any established ethical code. - 8/10 

 

(e) Elegance: this examined the measure of beauty in ACcSys. This is a very 

subjective criterion. There is room for improvement in this aspect as the 

software had predefined templates that did not allow extra room for creativity 

and innovativeness in its aesthetic design. -5/10 

 

 

 

 

 

 

 

Overall evaluation of initial Performance Criteria and System characteristics 

Performance Criteria Evaluation of successful performance 

of initial criteria 

Electronic implementation of paper based version 

of Individual Learning Profile (ILP) 

The paper based version of the ILP was 

successfully converted to an electronic 

format that was user friendly and 

retained the scores for purposes of 

further analysis and data manipulation. 

Implementation to be done before or during the 

first 2 weeks of academic term 

The implementation was completed in 

time for its live run during induction week. 

The fast implementation time was due to 

the user friendliness of the software used 

ILP scoring outcomes processed electronically The software used to implement the ILP 

electronically had an inbuilt mechanism 

to retain and process the scores 

electronically 

Three lists of students identified: 1. those 

declaring a learning difficulty/disability. 2. Those 

home and students from EEC countries requiring 

additional English language support. 3. Those 

students not home or EEC requiring additional 

English Language support. 

This identification was carried out by the 

back-end system already in existence. 

The results were sent in comma 

separated format (CSV) to the back-end 

system.  The data was then manipulated 

to generate the lists. 
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System 

characteristics 

Comments 

Timeframe A complete system was expected to be up and running by the 3rd 

week in September 2004 

Staff the academic skills tutor and existing lecturers have been trained to 

use the system 

Budget  Development costs were not expected to exceed  

 

The MoIST method is a ‘design’ method.  Its purpose is to reinforce the breadth and 

depth of the analysis to ensure that the right design goals are met.  This research 

however was so successful that after the MoIST method was comprehensively 

applied and evaluated, it was found that there was a case for provision and 

implementation of an electronic solution.  This solution ACcSys was the front end for 

an existing electronic system devised by a staff member in another school. After the 

development of ACcsys, work was done to achieve a seamless interface between the 

two systems.  This was successfully done. The steps involved in implementation are 

detailed below. 

 

 

6.7: Empirical Study Phase 4 – from Evaluation to Implementation 
6.7.1 Exploration of several implementation solutions 
Meetings were held with the university academic skills tutors and with the Head of 

tutors to discuss the desired electronic intervention.  One initial idea was for a 

tracking system each academic skills tutor would be able to access at any given point 

in time.  This would enable the tutor to see if a student had ‘dropped out’ of the 

academic system or if they had been retained.  Work was started on this.  Later yet 

another idea emerged for a Web Tracking System. This was to be modelled on the 

existing on-line School of Computing and Engineering web interface.  The early plan 

was that this would draw on existing student data from the current Applicant & 

Student Information System (ASIS) used by the entire university.   

 

While this was being explored, other meetings were held with the Computing 

Academic Skills Tutor.  These meetings highlighted existing problems within the 

current academic skills process.  The Academic Skills stakeholder requested 

specifications for a system that would enable academic skills tutors’ to execute their 

professional duties more efficiently.  The core of these duties was essentially to 

diagnose, identify and provide support for students at risk of non-completion of 
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academic programmes.  This request changed the dynamics of the system being 

worked on somewhat.  The client later decided that the need to track at risk students 

was secondary to the need for an electronic diagnostic tool where the outcomes 

could be scored automatically.  That was somewhat disappointing as work had 

already been started on a prototype of the tracking system.  That was however the 

nature of systems analysis and design.  Work was nevertheless started on a system 

that would achieve what the client wanted.  This meant that the existing paper based 

ILP questionnaire would be transformed into an electronic format.  There was 

another meeting of the university skills support tutors.  Most tutors with the exception 

of two (2), decided that an electronic ILP would not be suitable for their academic 

schools. One unanimous reason cited was that students might be turned off from the 

technology and this would defeat the essential purpose of the ILP.  This purpose is to 

determine students’ level of academic competence using specified determinants.   

Schools of Computing and Huddersfield Business school were the only two (2) that 

expressed an interest.  A formal commissioning was then given by the clients, the 

computing academic skills tutors.  

 
6.7.2 Commissioning of the electronic system by the client  
This commissioning was given to develop the agreed electronic system by the client. 

Further to previous discussions and conversations, a project management meeting 

was held with all the relevant personnel in the academic support process. From that 

project meeting, it was decided that the administration of the ILP would not proceed 

electronically as a collective entity. If individual schools wished to proceed with 

piloting a prototype, then they were free to do so.  Consequently School of 

Computing and Engineering and Huddersfield University Business School expressed 

their interest in the development of a prototype electronic version of the ILP in their 

respective Schools.  This was to be piloted from September 2004. Those schools 

which decided on continuing the paper based administration of the ILP questionnaire 

had a meeting in which the form was updated and upgraded to reflect a more modern 

format. 

The electronic version was required to meet the following specifications as detailed 

by the client: 

 

• On-line completion of the form with a paper-based version also available.  

The point at which students would complete, and in what manner, would have 

to be determined, but would need to take place before or during the first two 
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weeks of term, at the latest.  On the paper-based version this is currently 

undertaken at pathway induction meetings 

 

• Scoring outcomes processed electronically 

 

• The student details/scoring outcomes automatically linked to those of both 

pathway leader and first year tutor 

 

• Students declaring a learning difficulty/disability, those requiring additional 

English language support and scoring outcomes with two or more sections 

less than 15 identified, together with details of individual students, passed to 

both pathway leader and first year tutor 

 

• Three lists of students identified: 1. Those declaring a learning 

difficulty/disability. 2. Those home and students from EEC countries requiring 

additional English Language Support. 3. Those students not Home or EEC 

requiring additional English Language support. 

 

At the end of the research the above specifications describe the features of the new 

system to be developed and forms the criteria by which the new system will be 

judged to be successful. 

 
6.7.3 Further exploration of several implementation solutions 
The thinking, experimenting and exploring the best way to achieve the desired 

electronic system began again in earnest.  At first, Blackboard version 6 seemed to 

be the tool of choice to facilitate the clients’ specification.  It was eventually decided 

that Blackboard version 6 did not have the pertinent characteristics needed to 

produce the expected system.  Question Tools software was then considered as a 

more viable option.  Question Tools (QT) is a new computerised assessment tool 

which was installed in the School of Computing and Engineering during 2003-2004.  

In depth analysis of Question Tools revealed that it had a greater percentage of the 

functionality needed to provide an electronic version of the ILP.  It possessed the 

capability to produce data in a form acceptable as input to the analysis database.  It 

also facilitated the provision of reports in a parallel format as the ones in the last 

academic year.  The electronic ILP was subsequently developed using Question 

Tools software.  Bottlenecks in the process were dealt with. The electronic ILP was 
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now ready for induction of new students. It was way ahead of the finish date required 

by the client. 

 
ACcSys – Introduction 
ACcSys is an electronic system that facilitates the retrieval, storage and analysis of 

student data.  This data is analysed by the system and sorts the students into 

designated categories. This information is then used as a diagnostic tool to identify 

students who are ‘at risk’ of not completing their registered programme.  The ACcSys 

helps to quickly identify those students who need help in specific areas and allows 

that help to be provided on time.  Consequently this also helps to improve student 

retention. 

 

ACcSys platforms 
ACcSys will run on a wide variety of hardware platforms.  A typical system would be 

an Intel processor based server running a mixture of MS thin clients and Nec 

terminals.  This is preferred as it offers a very stable platform that is reliable.  

Uptimes greater than 300 days are the norm. It is also efficient, very scaleable and 

portable and most importantly is not susceptible to viral attack owing to the VShield 

software set up.  

 

Web Enabled 
ACcSys works very well with simple web browsers.  As well as working with Explorer 

and Netscape, it can also be used with the new generation of embedded web 

browsers. This allows users access on the move with a mobile phone and a PDA. 

 
 
 
 
Specifications sample of actual platform used for successful live ACcSys run 

Make Proc Speed Memory HD(Gb) Graphics Sound CD/DVD 

NEC P4 2.8 512 80 GeForce FX 

52000 AGP 

128Mb DDR 

On board RW 

combo 

Stone P4 2.2 512 80 On board Sound 

blaster live 

5.1 

RW 

combo 

Table 6.8 



 167

 

 

Design of ACcSys electronic system using Question Tools 
Question Tools (QT) is an integrated suite of products that facilitates the creation of 

online lessons, exercises, surveys, tests and exams.  It automatically collects and 

analyses results. 

 
Fig  6.14  Screenshot of Question Tools Website 

 

The Question Tools Editor was used to derive the ACcSys. The ACcSys Electronic 

Individual Learning Profile (ILP) is used to get all students details in one central 

repository.  This makes it easier to manipulate, access, sort and report on the 

common data.  It is therefore excellent for ease of use and access.  The ACcSys has 

59 screens in total.  Part one allows for entry of student details.  Part 2 of the ILP 

itself is composed of 8 sections.  These are ‘Speaking and Listening’, ‘Reading and 

Researching’, ‘Writing’, ‘Language’, ‘Disability/Special need’, ‘Time Management’, 

‘Numeracy skills’ and ‘Information Technology skills’(see appendix for all the ACcSys 

screens). 

 

 



 168

 
Fig 6.15   This is the QT editor with New Question option dialog box 
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Fig 6.16   This is the first screen that the student sees with the title ‘Individual 

Learning Profile’ 

 

 
Fig 6.17    Instructions screen for user navigation through the electronic ILP  profile 
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Fig 6.18    Main menu makes the system more user friendly and organised for the 

user to follow 
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Fig 6.19   Welcome screen explains the purpose of the system and attempts to relax 

the user 

 

 
Fig 6.20    Student details screen allows for entry of relevant student data 
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Fig 6.21    Further details screen tests their writing abilities as it is free form writing in 

sentences 

 
Fig 6.22    First question in the ‘Speaking & listening’ section. 
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Fig 6.23   End screen of ILP providing some motivation and encouragement for the 

users 
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Instruction Sheet 

iACcSys Individual Learning Profile Electronic System 
 

 Open Internet Explorer 
 

 
 
 

 Set all computers in the designated lab to the URL http://aspley:8090  
 

 
 

 
 Each student should login with the assigned username and password details 

 
 After login they will see buttons to the left and a blank area to the right of the 

screen.  It will say ‘status: Logged on’ 
 

 Use mouse to click on and  select the ‘Show all Tests’ button on the left 
 

http://aspley:8090/
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 There will now be a choice of  tests 

 
 Go to the one called ‘ILP Trial 2’  

 
 Use mouse to click on and select the ‘start’ button to the right.   

 
 The Electronic ILP questionnaire will appear 

 
 Follow the instructions and do the test 

 
 Use the ‘Next’ and ‘Back’ navigation buttons or slider to go forwards or 

backwards 
 

 Select only one (1) answer for each page.   
 

 To change an answer to a question, simply select the desired answer. 
 

 Click on the ‘Finish’ button once answers are completed 
 

 Click ‘Ok’ if finished or ‘Cancel’ if not finished 
 

 Ignore the results on the page that comes next. These are not the true results 
and will not be used. 

 
 Click the ‘Close’ button 

 
 Use mouse to click the ‘Log off’ button.  Click ‘OK’ 

 
 Results are stored and will be retrieved later by authorised personnel 

 
 
 
 



 176

6.8 Empirical Study Phase 5 – From Implementation to Testing 
User testing is of vital importance to the development process and the quality of the 

final product. This testing should occur throughout the life of the design and 

development process.  A focus group is selected. These are a group of randomly 

selected people who represent the target audience. This selection is extremely 

necessary as it can save hundreds of production hours later on. The designers are 

the ones who make the structural and user interface decisions. As they become more 

intimately involved with the project, it very easy for them to lose objectivity and not 

see obvious flaws. That is why user testing brings a fresh and more accurate and 

balanced perspective to the whole design and development process. They help to 

determine whether the product is understandable to a mass audience.   

 
 
 
6.8.1 User Testing I 
A group of new students earmarked for entry to the university in September 2004 

were used to test the system. These were 70 students on a 4 weeks Mathematics 

bridging course at the university. The aim of the course is to correct math 

deficiencies and bring the students up to a suitable level of competence in 

mathematics.  They were an ideal test group for the research as they provided the 

profile of students who will officially use the system in September.  

 

Eight (8) students participated in the first testing session.  The participants were 

asked to complete the ILP questionnaire electronically. The results were exported in 

comma separated value (CSV) format to a MySQL database and the relevant values 

and lists were extracted and generated by PHP code. They enabled us to see how 

the system worked, to evaluate it and to eradicate bottlenecks for smoother working.   

The following heuristics were designed to test the electronic system. User 

friendliness of the system, quality of the interface, colour scheme appropriateness, 

error handling, navigatability.  An evaluation questionnaire was designed and each 

student who tested the system was asked to evaluate the system on the criteria 

given and to give general feedback on how it could be improved. They were not 

given major instructions as to how it worked. 
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6.8.2 First Evaluation Questionnaire for the ILP Electronic System 
Question one:  
Was the system easy to use? 

Yes[7]   No[0]  it was not too easy or difficult[1] 

 

Question 2 
How user friendly was it? 

Very[7]  Not very[0] horrible to navigate[1] 

 

Question three 
Was the colour scheme appropriate? 

It was okay[7]  too bright[1]  too pale[0] should be changed[0] 

 

Question four 
How were the questions? 

Sensible[8]  silly[0]  need reworking[0] 

 

Question five 
Could you go from one page to another easily? 

Yes[7]   No[1]  I got stuck[0] 

Question six 
Did you understand what to do when using the system? 

Yes[6]   No[0]  Sometimes[2] 

 

Question seven 
Was the font size okay? 

Just right[7]  Too large[1]  too small[0] 

 

How could the entire system be improved? 

• It does not need many changes 

• Make the navigation system better and use better colours 

 

The suggestions were then implemented before the next testing session. 
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6.8.3: User Testing II 
A presentation was scheduled for senior lecturers and Heads of departments from 

both the Schools of Computing and Engineering.  Five (5) senior lecturers were 

represented from the major departments of both schools. The aim of the presentation 

was to demonstrate the electronic system and ensure their competency in the same.  

This was to conform to the new format where each pathway leader was responsible 

for his or her set of students and therefore would administer the electronic ILP. The 

benefits were many. It would break up the mammoth task of administering the 

electronic ILP into manageable portions as delegation occurred.  It will help the 

academic support tutor to more closely focus on the task at hand which was to 

provide the actual support to students, instead of spending months on administration 

of paper based results. The pathway leaders would also have a head start on the 

educational level of their students and could tailor their courses accordingly. 

 

6.8.4 Second evaluation 

• The main corrections were syntactic and semantic in nature 

• One complaint centred around the selection and feedback feature as there 

was no feedback on the button selected and there was no automatic 

advancing to the next question. 

• One comment was that it was a very good system and that it is more than 

they had expected so quickly and the important thing is that it works and will 

make a difference in the academic support process 

• One question asked was if students could print off their own copies in order to 

monitor their own progress and keep it in their Personal Development 

Portfolio (PDP) files 

 

The first comment is easily amendable, but the second weakness is central to QT 

and is therefore not easily done immediately.  The benefit to students’ Personal 

Development portfolio (PDP) is an indirect, but very important one. The ACcSys 

was not intended to be used for that purpose, but it has proved to be an 

additional benefit that will help the academic schools that use it. The PDP is 

being championed by senior management to help students make a more 

successful and smoother transition from academia to the workplace. 
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6.8.5 Live Run  of the ACcSYs Electronic ILP during Induction Week 
For induction week, the ACcSys ILP faced its biggest test.  The students were 

timetabled to maximise the optimal lab facilities. They were divided into pathways 

and pathway leaders were assigned to man the session.  

 
Date Student ID Code Pathway 
21st Sept, 2004 Sc024 – sc063 Computer Games Programming 
22nd Sept, 2004 Sc064 – sc084 HND BIT 
22nd Sept, 2004 Sc086 – sc100 Electrical and Electronic Engineering 
23rd Sept, 2004 Sc101 - Sc191 Music and Technology Engineering 
24th Sept, 2004 Sc192 – sc231 Computing and Mathematics 
 
Table 6.7: School Induction Timetable 
 
 
 
 
6.8.6 Problems encountered in ACcSys’s maiden run 

The first problem surfaced. Some of the pathway leaders invited to be trained in 

operating ACcSys, were not able to come to the training session, owing to prior 

commitments.  Available personnel were deployed to alleviate this.  Another problem 

was that the central student details that should have been provided for prior 

uploading to the system could not be provided by university central registry as 

student registration was still in progress.  Dummy passwords were then generated for 

all the Computing and Engineering students. The other glitch came when students 

who had their ID cards could not log in to the main system as it was still officially 

registration week. Consequently, their student numbers were still being processed by 

registry.  To solve that problem temporary logins were assigned to each student. This 

led to yet another problem as the traffic proved too much for the temporary logins to 

handle.  This was solved by administering the diagnostic tests using smaller batches 

of students. 

Another problem cropped up with the server where the Question Tools based ILP 

resided. Owing to the traffic overload, accessing QT proved difficult at times.  

Eventually this was solved by a script being written to get the server started again. 

Operations improved as the induction week progressed. One recommendation for 

future administration of the ACcSys is to wait till the university’s official registration 

week is over. This would eliminate most of the bottlenecks experienced in the first 

live run, as student data would be fully processed and available. 

 

The students completed the questions electronically. The results were then 

automatically calculated by the system.  At the end of induction week, the results 
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were generated into comma-separated text and exported to the already existing 

MySQL database. PHP code was run to extract the pertinent details and reports were 

generated.  In less than one and a half hours after exporting the results to the back 

end database system, the reports were ready.  What took more than four (4) months 

to accomplish in the previous academic year happened in less than two hours. The 

reports were available for viewing.  The reports were disseminated to some lecturers 

that same day and the subsequent academic day.  The academic schools who opted 

not to take the electronic ILP route still had not processed their data. They were still 

in the paper based format waiting to be processed.  The ACcSys system works and 

works very well. It solves a grave problem and enables the Academic skills tutor to 

get down to the raison d’etre of identifying and supporting ‘at risk’ students. 

 
Fig 6.24  Screenshot of comma separated format (csv) data generated by the 
ACcSys 
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6.8.7 Results of Using the MoIST Method 
One of the major benefits that resulted from using the MoIST method in the 

Academic Support Process was an improved user requirements definition.  This was 

vital to the successful implementation of the system.  The effectiveness of the MoIST 

method was mainly evaluated against the criterion of whether or not, there had been 

an effective intervention.  Significant lessons were gained from the experience of 

using the MoIST method in the academic support process.  

 

 

 

6.9 Conclusion 
The outcomes of the intervention in the academic skills support development effort 

clearly demonstrates that synergy occurs when different methodologies from different 

disciplines are employed in information systems development (Xu, 1995). An IS 

project concerns an interplay of human, organization and technical factors which are 

not easily separated (Walsham et al, 1988).  SSM and OOA are viewed not as self-

contained methodologies to IS development, but as approaches which can work 

together.  A complementary application of both methodologies would assist systems 

developers in minimising the many failure cases of I S (Lai, 2000). 

 
MoIST’s effectiveness is shown in the empirical data above.  To further prove its 

usefulness and relevance, it is also shown when it is used in a separate environment.  

This situation is in the postgraduate project process of the School of Computing and 

Engineering. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 182

Chapter 7. Study of the Postgraduate Project Process in the School of 
Computing and Engineering   

 
 
7.1 Introduction 
The research empirical data showcased here provides evidence that MoIST is 

effective in a real world situation.  To further underline its efficacy.  MoIST will be 

used in yet another real world context.  This is in the Postgraduate Project Process in 

the School of Computing and Engineering. 

 

The postgraduate students of the school of Computing and Engineering do the major 

work on their projects when taught classes have officially ended.  This usually runs 

from end of May to end of August of an academic year.  The entire postgraduate 

process involves many team players.  Even though the MSc students have a vital 

role to play, there are many behind the scenes persons who work assiduously to 

ensure that the entire process flows smoothly.   

 

7.2 Description of current system 
To do an excellent postgraduate project is quite an involved process.  It is not merely 

about developing a system to solve problems or to enhance the operations in an 

application area.  It consists of a more in-depth process.  ‘Academic projects should 

provide evidence of a much deeper understanding of what you are doing. They 

require some form of justification and contextualisation.  You are not expected to do 

merely what you are told to do, but you are expected to develop your own thoughts, 

arguments, ideas and concepts.  You are expected to question things and look at 

things in new ways and from new angles (Dawson, 2000, p1). 

There are currently 4 pathways of the taught MSc postgraduate programme offered 

in the School of Computing. They are Internet Application and Development.  There 

is also MSc in Software Development, MSc in Information Systems and MSc in 

Interactive Multimedia.  The MSc Internet Application Development is geared towards 

persons who wish to make internet development a career.  The MSc software 

development targets those who desire to be designers and programmers.  The MSc 

Information Systems attracts those who are interested in Systems Analysis and 

Management. The MSc Interactive Multimedia is for persons who want to work in 

cutting edge multimedia environments.  With the exception of Interactive Multimedia, 

the first semester for the four pathways offers the same modules.  Specialisation 

occurs in the second semester. 
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There is a fulltime and a part-time mode.  The fulltime mode is for one academic year 

in duration and the part-time mode for two years.  The majority of students 

successfully complete all modules of the two semesters of their MSc Stream.  If 

students fail any of the taught modules in their pathway, they have the option to go 

on the individualised pathway, retake any module they failed and continue with the 

project on a part-time basis.  Each MSc is considered a pathway and is assigned a 

pathway leader.  The major stakeholders in the postgraduate project process are the 

pathway leaders, several academic supervisors who have direct and one to one 

contact with the project students, the project tutor and there is also a postgraduate 

scheme administrator responsible for managing student details.  These project 

stakeholders meet at the end of every academic year as a Pathway Assessment 

Board. Here external examiners are called in to inspect procedures and results and 

award degrees. 

The MSc student completes two 15 week semesters of taught modules.  On 

successful completion of all modules, the student is ready to start the project.  The 

student information is passed to the postgraduate scheme administrator by the 

Pathway Leader.  This ensures that the student is registered and is ‘live’ on the 

system. This information is vital to the registry and finance departments.  It is 

imperative that they know which students are enrolled at any given time.  After 

enrolment, the student then has access to the intranet (currently Blackboard version 

6).  They go to the projects module and retrieve information about past projects and 

supervisors and try to match them with their interests.  Students generally are 

required to identify and delineate a project and obtain agreement with stakeholders.  

Specifically they find external clients and contact the relevant academic supervisor to 

ascertain their availability and willingness to supervise them.  The students 

subsequently meet with the Project Tutor who disseminates further relevant 

information and tries to ensure that students know what is expected of them.  

Meetings with external clients are arranged.  Terms of reference need to be 

completed and handed in to the office before the project will be deemed to have 

officially started.  Arrangements are then made with the appointed academic 

supervisor for regular meetings.  The student is expected to plan, manage and 

execute the project using skills gained in taught pathway sessions.  The academic 

supervisor’s role is to advise the students on the project from an academic 

standpoint.  In a more strategic sense, the supervisor helps the research students 

develop into individuals who think and behave as academic researchers in their field 

of study. 
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7.3 Application of MoIST to the Postgraduate Project Process 
 

Empirical Study Phase 1 – Analysis and ‘finding out’ 

This phase explores the process involved in doing postgraduate MSc projects in the 

School of Computing and Engineering.  The MoIST method was applied to the 

situation.  The relevant data were gathered, collated, analysed and the outcomes 

mapped to the design phase. 

 

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

 

Fig 7.1 MoIST model 

 

7.3.1 Using MoIST Project Option Selector Tool to select the best project 
option 
The characteristics of the project were analysed using the MoIST Project Option 

Selector Tool in order to make the most informed decision.  The characteristics of the 

Postgraduate Project Process Project were: 

• Organizational changes are likely 

• The proposed system is to enhance an existing system 

• Development environment is unstructured 

• Requirements are not relatively clear from the outset. 
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MoIST’s Project Option Selection Tool (MoPros) 
  max. 25 points max. 25 points  max. 25 points
  max. 25 points 

Project 
Options 

Types of  
users 

Developers’ 
skillsets 

Organizational 
environment 

General 
characteristics 

Total

A 
 

Users are a bit 
unsettled as 
they are 
experiencing 
organizational 
changes  
15 points 

Requirements 
at this point 
are not 
relatively clear 
to the 
development 
team  
15 points 

Development 
environment 
unstructured  
 
 
20 points 

Proposed system 
is to replace or 
enhance an 
existing system 
 
25 points 

75 

 
B 

Users 
uncertain 
about the 
need for the 
proposed 
system while 
others are 
more willing to 
be associated  
with it. 
15 points 

Requirements 
known at this 
point are 
relatively clear 
to 80% of the 
development 
team  
5 points  

Development 
environment has 
pockets of 
structured and 
unstructuredness. 
 
 
10 points  

Conflicting 
interests and the 
proposed system 
might cross 
functional borders 
 
 
4 points 

34  

C Users open to 
the new 
system  
 
 
 
 
 
0 points 

Requirements 
known at this 
information 
are very clear 
to 90% of the 
development 
team  
0 points 

Development 
environment is 
quite structured  
 
 
 
 
0 points 

Environment is 
relatively 
contention free 
 
 
 
 
20 points 

20 

Table 7.1: MoIST’s Project Option Selection Tool (MoPros) 

 

Using the MoIST Project Option Selector tool, it was found that the project 

requirements most closely matched project option A, so Option A was chosen.  
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MoIST Project Option A -Precede UML with SSM 
Status: Requirements Certainty (Low) + Development Environment 

(Unstructured or Structured) 

MoIST Option A’s Activities 
 
 

11. Requirements for computer-based information system 
12. construct rich picture 
13. develop relevant issue-based and primary task root definitions and conceptual 

models 
14. derive consensus primary task model and information categories 
15. formulate the recommendations for information system design 

 

 

   

7.3.2  Mode of  data gathering and interview data 
Three categories of relevant stakeholders in the Postgraduate Process were 

interviewed.  These were Project Tutor, Postgraduate Scheme Administrator and 

students.  While the research was in progress, a new project tutor and a new 

Postgraduate Scheme Administrator were appointed.  These two new persons were 

subsequently interviewed.    This was no inconvenience to the research, but a 

welcome addition.  It added to the depth and accuracy of the research as it provided 

more opinions and ideas and opinions from the same vantage point.  Students from 

both the part-time and full-time mode were also interviewed. 

Some interviews were recorded on audio tape and some were handwritten on 

notepad; but all were transcribed to increase the accuracy of the opinions recorded.  

Soft Systems Methodology (SSM) was then applied.  Usually in SSM it is 

recommended that the Soft Systems methodologist should organize a meeting of the 

stakeholders in order to agree a primary task model.  SSM however is flexible and it 

was thought not necessary to hold such a meeting at this point. 

Soft Systems Methodology (SSM) is a study made popular by Professor Peter 

Checkland formerly of Lancaster University.  It is a methodology that seeks to 

encourage learning and bring understanding and change to unstructured situations in 

organizations.  It purports to unearth the problems and recommend change when 

there seems to be a maze of unresolved issues.  It uses constructs called human 

activity systems to model and represent the situation to bring more clarity.  Relevant 

systems or activities are then deduced from the models and compared with the real 
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world. It is thought to be then easier to see and implement changes that are 

systemically desirable and culturally feasible in the context of each particular 

organization.  SSM consists of several phases.  The first is the finding out phase 

where a rich picture is constructed.  This depicts in diagrammatic and pictorial form, 

the methodologist’s view of the actual goings on within the organization. Any 

conflicts, hidden agenda and power plays are noted and recorded. This is what 

depicts the reality of the situation.   

 

Analyses 1, 2 and 3 are then conducted. Analysis is done of the intervention into the 

situation, analysis is done of the social construction of the organization and looks at 

the social roles, behavioural norms of the role holders and values that measure role 

performances of the parties concerned as to whether they are good or bad. Analysis 

is also done of the balance of power in the organisation and how it is preserved, 

grabbed or passed on.  Relevant systems or definite categories of activities are 

identified.  For each of these systems or categories, succinct definitions called Root 

Definitions are summarised. These root definitions are evaluated according to the 

CATWOE template  which has the textual formulae of  ‘a system to do X by means of 

Y’. Activities are then deduced from the root definition and are arranged in some 

logical order to form conceptual models. These models are abstract and do not 

represent the reality of the organisation.  In order to see where change is needed, the 

disparity between the abstract conceptual models and the stark reality of the rich 

picture are contrasted.  Areas that need change are then more easily thrown into 

relief and stand out.  These become the recommended change areas.  Once these 

change areas are systemically desirable and culturally feasible to the people in the 

organization, it can be accepted. SSM is quite flexible and depending on the nature 

of the project, some of the phases can be left out or done in varying order.  There is 

no definite cut off point for SSM for it is a learning system.  Its end is subject to the 

will of the methodologist and to other pressing environmental constraints. 
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7.4 Problem Situation 
Interviewing the various stakeholders shed light on difficulties present in the current 

postgraduate project support system.  One major problem that students face is that  

external project clients sometimes change the project ‘goalposts’ after terms have 

been agreed.  This is sometimes due to not having enough finances to execute what 

they really wanted from the project.  At other times, it is because the company might 

have been taken over by a larger concern.  Yet another issue that needs to be 

addressed is the fact that computer science students need better dissertation writing 

up skills. Students struggle with referencing and research methods skills.  Some 

students have no idea how to start the project. It was thought that MSc Software 

Development students tended to do better as it is mandated that they create a 

software product in order to secure at minimum, a pass in their academic 

programme.  MSc Information Systems students on the other hand need more 

methodologically based arguments in order to write up their dissertation.  They also 

need greater analytical skills to give their projects more credence.  MSc Interactive 

Multimedia students tend to do very well.  Of the 19 students who did projects for 

Interactive Multimedia in 2002, only 3 did not graduate.  The research noted that 

Interactive Multimedia is the only pathway that does group projects.  This raised 

some questions as to whether this factor had any bearing on the grades being 

produced.  It is beyond the scope of this particular research paper, but will be noted 

for future work. The Postgraduate Scheme Administrator currently uses the Student 

Programme Route Database (SPR). This is not able to address all of the issues 

concerning postgraduate projects, so a shared database that is specific to projects 

and that gives timely reminders would be useful.  Another identified issue was that 

the external examiners need to know exactly how the marks were arrived at.  

Sometimes registry or finance departments would contact the computing 

administrative office to ascertain student’s current status and to see whether or not 

they should be billed for an academic year.  The students also need to enrol if they 

go beyond specified finish date as they need to be ‘live’ on the systems so grades 

can be entered and the computing and intranet resources made available to them.  

The administrator always has to get current student information from a module tutor 

and also has to query students’ start and expected completion date.  If there is no 

module tutor available, this results in bottlenecks in both registry’s and finance’s 

efficiency.  This is bad for business. In a climate where inefficiency spells loss of 

money, this state of events is untenable. 
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Additional Issues 

• dedicated monitoring of part-time MSc students is needed.  Students transfer 

or are transferred to part-time mode for varying reasons. They have 15 

months to complete the project. It is increasingly becoming a problem that 

they are failing to submit on time or on an even larger scale, failing to submit 

their projects at all. 

• The very short time for doing full-time project work is only 2 months and 

students have to exercise very good time management skills.  This means 

that it is imperative that the project management team ensures that the 

support and control systems are very good. 

• Students need to learn how to manage their relationships with their clients 

 
Application of MoIST option ‘A’ using SSM  
These are the analyses done on the basis of the interview and observation data 

gathered. 

 

Analysis One   - Analysis of the intervention in the situation 
Clients 
(Who caused the study 

To take place) 

MSc students, project tutor 

Would-be problem solvers 
(who conducts the study) 

SSM Methodologist, project tutor 

Problem Owners 
(client + people with an interest in the situation)

MSc student, client, supervisor 
Project management team 

 
Table 7.2: Analysis of the Intervention of the Postgraduate Project Process 
 
 
 
 
 
 
Analysis Two 
This looks at the problem situation as a social system and helps to determine cultural 

feasibility of any changes to be recommended.  It examines the social roles that are 

significant in the situation, the behavioural norms of the role holders and the values 

that measure role performance as good and bad. 
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Social 
Roles 

Behavioural Norms of Role 
holders 

Values that measure role 
performances as good or 
bad 

Student Identifies and delineates a project and 

obtains agreement with stakeholders. 

Plans, manages and executes project 

using skills gained in taught pathway 

sessions 

Registers for projects module 

and identifies projects in which 

interested. Accepts clients and 

projects.  GOOD 

Submits and delivers project and 

dissertation to university 

examiners.  GOOD 

Not maintaining regular work 

pattern and not being honest 

when reporting progress.   BAD 

Academic 

Supervisor 

Advises students on the project from an 

academic standpoint. Helps to clarify 

references and act as a sounding board 

for ideas. 

Reads students’ work well in 

advance.   GOOD 

Being available when needed.  

GOOD 

Being unfriendly, closed and 

unsupportive   BAD 

External  

client 

Project proposals submitted by potential 

client 

Invite student for discussion & 

interview   GOOD 

Provide feedback to student & 

project tutor on project quality 

GOOD 
Changes initial terms of project 

agreement midway through 

project   BAD 

Postgraduate 

Scheme 

administrator 

At start and end of project responsible for 

accurate input of student details & 

grades into database 

Ensures that students are 

registered in order to gain 

intranet access.   GOOD 
Sits on pathway assessment 

board meetings.   GOOD 
Inaccurate input of student data  

BAD 

Project Tutor Oversees all project aspects of all MSc 

pathways 

Allocates academic supervisor to 

student  GOOD 

Arbitrate disputes  GOOD 

Not available to define and vet 

submitted proposals   BAD 
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Pathway 

Leader 

Monitors overall progress of students on 

the pathway 

Liaises with project tutor and 

supervisors  GOOD 
Does not have a handle on what 

is happening with students in the 

pathway  BAD 

 

Table 7.3: Analysis 2 of the Postgraduate Project Process 
 
Analysis three 
Examines the politics and power distribution in the organization 

Disposition of Power 
Three players in the postgraduate project process hold the most power and these are 

firstly the MSc Student, secondly the Client and thirdly the Academic Supervisor.  

The student is the one who has to do the work.  In a sense, a less than ideal client or 

supervisor should not prevent a student from achieving the research goal at hand. 

The client was second in the power stakes because they are the key to the research 

problem which is the fulcrum on which the entire research project is based.  The 

academic supervisor’s expertise in the research area and ability to supervise and 

relate well to students is also a major factor in the research process. 

 
Nature of Power 
The Project Tutor and Pathway Leader are not line management roles, so there is 

not that sense of hierarchy or of ‘lording it over each other’.  Instead there is the 

sense of team effort to ensure that the postgraduate project process should result in 

successful research projects. 

The external client, whilst outside of the organisation can ruin a student’s chances if 

for instance, they change the terms of agreement almost at the end of a project. That 

is vicarious power and it is quite detrimental if the client does not exercise it prudently 

and reasonably.  The academic supervisor within the organisation has the power to 

demean, demoralise and demotivate a student.  If there are personality clashes, this 

can adversely affect the success of the student research project. 

The postgraduate scheme administrator if inefficient can cause serious bottlenecks in 

the system.  If incorrect grades are entered and sent to the pathway assessment 

board, this has serious repercussions for the student, if they are not proactive 

enough to investigate. Efficiency and support in this role is quite important to 

coordinating the overall efforts of the entire postgraduate project management team 

and is quite a key area. 
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Rich picture 
 

 
 
Figure 7.2: Rich picture of Postgraduate Project Situation. 
 
 
Formulating Root Definitions(RDs) 
 
Primary task based Root Definitions (related to basic set of tasks) 

“a system to do a planned research project acceptable to a university by means of 

literature search, submission of project proposal and application of relevant research 

methods to solve a suitable research problem in order to achieve a Masters degree” 

 
Table 7.3: Root Definition of Postgraduate Process 
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CATWOE analysis  
 mnemonic which helps guide and ensure the well-formedness of root definitions 

 
C Customer  MSc Student 

A Actor   Project Management team, MSc student 

T Transformation research problem --  problem solved 

W Weltanschauung It is important to follow a scheduled process to achieve 

a masters degree 

O Owner   School postgraduate project management team 

E Environment  university requirements, academic supervisor 

 

Issue based Root Definitions 
 “a system to provide understanding on how to write a good proposal by examining 

guidelines and past examples, in order to develop a manageable research project” 

 

“a system to provide peer support by maintaining regular contact with other MSc 

students in order to maximise group learning” 

 

“a system to provide effective support from supervisors, by managing the 

student/supervisor relationship in order to achieve maximum benefit” 

 
 
Primary Task Conceptual Model 
Owing to the flexibility of SSM, it was not thought necessary to show the client the 

conceptual model before coming to a decision. 
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Figure 7.3: Conceptual Model of Postgraduate Project Process 
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Measures of Performance 
These are criteria used to evaluate the correctness of the conceptual model.  They 

are popularly known as the 3 E’s.  In actuality they are really five measures of 

performance 

 
Effectiveness 
Does the planned research project increase the likelihood of achieving the Masters 

degree? 

 

Efficacy 
Will doing literature search, submitting project proposal and applying research 

methods make the masters degree achievable? 

 

Efficiency 
If the resources expended in achieving the research problem solved was not  

detrimental cost to life, family and health, it is worthwhile being expended for that 

aim.  Financial resources can always be recouped and achieving the MSc can be 

perceived as an investment in a better future. 
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Comparison Phase 

Conceptual Reality Implications 
1. 

understand 

university 

requirements 

There is extensive literature 

on the intranet, library and in 

hard copy format. The 

academic skills unit are 

compiling a definitive 

university reference 

handbook. 

Students need to utilise the available 

resources and ask for help if in doubt 

2.  

Select a suitable 

research problem 

Some students are not certain 

what research problem to 

choose. There is no formal list 

of past research projects and 

related supervisors and no list 

of current research areas and 

supervisors.   

There is past research projects 

repository facility for undergraduates 

called POD, but there also need to be 

one for postgraduates.  Some 

information on project areas and 

supervisors does exist on the intranet, 

but the need exists for a more formal 

compilation. 

Prepare and 

submit a 

successful project 

proposal 

There is reasonably adequate 

provision for this with MSc 

students.  Resources are 

available on the internet and 

actual old copies may be had 

from academic supervisors 

A template for well structured proposal 

could be made available to students 

5. 

Choose Research 

methods 

This area needs some help.  

Students especially non-social 

science students are not 

formally taught research 

methods.   

There needs to be some concerted 

effort made to teach students research 

methods and how to conduct academic 

research to help them in the writing up 

stage 

6. 

Retrieve and 

comprehend 

relevant academic 

literature 

There are more than 

adequate resources for 

garnering relevant literature 

area. 

Students however usually need help 

with the techniques of writing a 

literature review. They need assistance 

to determine what to let stay in and 

what to leave out. The supervisor’s 

assistance is crucial in this 

4. 

Plan research 

project 

This involves time 

management and the onus is 

on the student to do a Gantt 

chart and plan milestones 

carefully and on the 

supervisor to ensure that this 

Some sort of technique or other help in 

this area can be provided by 

supervisors for students 
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is being adhered to 

7. 

Do research 

project 

All the above mentioned areas 

are vital to the actual doing of 

the research projects 

If change is applied to these areas, the 

doing of the research project will be 

less difficult 

8,9, 10 Monitoring 

and Control of 

system to do a 

research project 

Any monitoring and control of 

student projects done is left to 

the discretion of the individual 

supervisor. There is no 

standard monitoring and 

control process in place 

There needs to be some sort of system 

in place to check student progress and 

to support the administration of the 

entire projects process 

 
Table 7.4: Comparison Phase of the Postgraduate Project Process 
 
Defining changes 
The changes proposed below are derived from a comparison of the conceptual 

model with the problem situation and are perceived to fulfil the twin criteria of 

‘systemically desirable’ and ‘culturally feasible’ put forward by Checkland(1981), 

Checkland & Scholes(1990) who said, ‘they are systemically desirable if these 

relevant systems are perceived to be truly relevant’.   

These changes require no extensive resources to implement and will be welcomed 

within the school.  This therefore qualifies the defined changes as culturally feasible.  

Checkland’s justification for this criteria is that regular ‘hard’ systems engineering 

does not usually check whether a system will fit into the context of an organization.  

Consequently once the engineered product is technically sound, it is automatically 

assumed by the developers to be ‘systemically feasible’ with scant regard for how the 

people that drive the politics, that is the users will receive it in their everyday work 

mode.  SSM seeks to take the users in an organization and their cultural context into 

consideration, before recommending changes.  If SSM proposes a change that will 

be systemically sound, but culturally infeasible, it is automatically scrapped and 

another alternative sought. 
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Conceptual 
Activity 

Proposed Change 

1. 

understand 

university 

requirements 

6. 

retrieve and 

comprehend 

relevant academic 

literature 

Run a short intensive course in how to do research in 

computing. This could consist of two project seminars run at 

the beginning and midway through the project. Topics could 

involve ‘writing references the university way’, doing a literature 

review.  Students could ask questions and get immediate 

feedback. 

4. 
Plan research 

project 

 

Provide a detailed project life cycle complete with suggested 

durations and milestones to help the MSc student better plan 

the research projects.  This will also give the supervisor a 

template for progress monitoring 

 

7. 
do research project 

Organize peer support by assigning students on the same 

pathway to small groups.  They could meet at least twice 

during the project and utilise the intranet for discussion at 

agreed times when necessary.  This would be especially useful 

for part-time MSc students as it provides accountability and 

indirect monitoring of their research project progress 

 

8, 9, 10 
Monitoring and 

control activities 

In order to monitor the system of doing a research project. The 

monitoring and control activities 8 -10 will be expanded to 

become a system.  This monitoring system will track the 

progress of the students’ research project and will provide 

support to the process.  The monitoring system is therefore a 

tracking system of sorts. 

8, 9, 10 
Monitoring and 

control activities 

Construct a standardized feedback form for supervisors.  This 

could be modelled on the existing undergraduate feedback 

forms in the Open Learning Centre.  This would provide a 

recorded history of marks and enable external examiners to 

more clearly and accurately see how marks and grades are 

arrived at. 
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Table 7.5: Proposed Changes to the Postgraduate Project Process 
 
Expanding the Original Conceptual Model 
The monitoring and control activities 8, 9 and 10 of the postgraduate project process 

will be expanded.  This will have a tracking function and will monitor whether the 

research process is being carried out according to the measures of performance 

defined. 

 

A relevant system or root definition will be formulated for this monitoring and control 

system and will become a subsystem to the main research project system.  This 

tracking subsystem will also have its own monitoring and control activities. 

 

 

 

 

 

 

Root Definitions for expanded monitoring and control system 
Primary task based Root Definitions (related to basic set of tasks) 

 

‘a system owned and operated by the Postgraduate Project Management team of 

the School of Computing to monitor and track  the progress and performance 
of postgraduate project students in order to ascertain the current status of 

students at any given point in time; alerting the project management team if 

necessary to the need for timely execution of control action in the event of 

potential hindrances, bottlenecks or threats that could lead to a drop in student 

performance thereby ultimately improving the quality of dissertations submitted 

and increasing the number of successful postgraduate project students’ 

 

Table 7.6: Root Definition of expanded Postgraduate Project Process 
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CATWOE 
 
C – Customer  postgraduate scheme administrator, MSc project 
    management team, students 
 
A – Actor MSc project management team – project tutor, 

administrator, pathway leaders, supervisors 
 
T – Transformation no means of monitoring students-> means of 

monitoring students 
 
W – Weltanschauung monitoring the students’ research projects help to 

increase the number of successful students  
 
O – owner   School of Computing postgraduate project team 
 
E – Environment  resources, university requirements 

 

 

Tracking System Conceptual Model 
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Figure 7.5: Conceptual Model of proposed tracking system for PPSS 
 
This tracking system above provides monitoring and control functions for the original 

conceptual model.  This gives rise to a nested conceptual model as shown below. 

Amplified Conceptual Model 
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'How to do a
research project'

system

Postgraduate
Project Tracking

System

define
measures

 of
performance

monitor
activities

take
control
action

 
 
Figure 7.4: Another Conceptual Model for Postgraduate Project Process 
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Figure 7.6: Revised nested conceptual model for the proposed system 
This nested conceptual model is a unique occurrence.  It is not one which the 

researcher has encountered in the existing SSM literature [refs].  This nested 

conceptual model depicts two (2) tiers of monitoring and control.  It is literally two 

conceptual models. One is embedded within the other.  The inner tier performs a 

dual role as both conceptual model and as a monitoring and control mechanism for 

the topmost conceptual model.  The inner conceptual model then has its own 

monitoring and control mechanism.  This would suggest that the duality of monitoring 

and control lends itself to a more efficient system in practice.  This was not tested as 

the project went from analysis to design. 
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Measures of Performance 
Effectiveness 
Is this the right thing to be doing? 

Does the monitoring and tracking improve the quality of dissertations and the number 

of successful projects? 

 

Efficacy 
Does the means work? 

Does the monitoring and tracking work? 

 

Efficiency 
Is there minimum resource use? 

There is minimum resource use because great advantages and benefits will be 

gained and there will be no need for expensive capital outlay. The resources needed 

are already present at the university and the tracking system will work in conjunction 

with the CAMS database.  This is the University’s Credit Accumulation and 

Management System (CAMS) within which all courses operate. 

 
Comparison Phase 
Conceptual Reality 

Ascertain current 

status of student 

This status includes whether the student is fulltime or part-time 

among other things. Currently the postgrad. Admin has these details 

on the CAMS database.  No other project management team member 

has electronic access. At the moment they pass hard copies of 

student details between each other 

Update student 

details 

The pathway leaders and project tutors have to pass this info to the 

postgraduate administrator who then does the update. They have no 

means to carry out this update themselves. 

query student status This query is done verbally by the project tutor or pathway leader and 

given to the postgraduate admin who then checks status. Sometimes 

registry or finance need to know a students status, if this is not on the 

system, the postgrad admin has to get this information from the 

project tutor or pathway leader. 

Generate report of 

student status 

this is done by the CAMS system used by the postgraduate 

admininistrator 

Send periodical 

reminders of student 

status 

No reminders of student status are sent at all. Any information is 

given at request of the relevant parties 
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Contact student for 

talk if necessary 

This is done when students seem not to be doing well; but there is no 

prompting from the system when students have not handed in 

requested items. There are too many students for pathway leaders to 

effectively track students without help 

monitor student’s 

progress and 

performance 

This is done by the supervisor, but not in a formal way 

Define performance 

standard & progress 

evaluation criteria 

Performance standard is already defined; but there is no formal 

progress evaluation criteria. This is left to the experience of the 

project management team 

Take control action in 

the event of a drop in 

performance 

This is done when supervisors recognise that students are not 

performing. They are written to and called in for discussion to see 

what can be done. 

 

Table 7.7: Comparison phase for amplified Postgraduate Projects 
 
Defining Changes 
This proposed change is deemed ‘systemically desirable’ and ‘culturally feasible’ 

according to the criteria for defined changes stipulated by Checkland(1981) and 

Checkland and Scholes(1990). It has been derived from a comparison of the 

conceptual model with the reality of actual happenings in the School of Computing. 

 
7.3 Proposed solution 
A ‘PostgradTrack’ System that will enable the project management team to more 

effectively support the postgraduate project process. This system will enable them to 

know the current status of each postgraduate project student at any given point in 

time. This status could be defined in terms of various states. These could be active, 

suspended, terms of reference completed or pending.  Fields could include also 

fulltime or part-time status, start and expected completion dates, supervisor, pathway 

leader, external client and a memo field for logging meetings with supervisors.   

 

Reminders of students’ status could be sent out periodically. Recommendations are 

that it could be every three months for part-time students and on a monthly basis for 

fulltime students.  This would assist in the elimination of data redundancy and 

improve the accuracy and uniformity of source data. System rights would be given to 

the project tutor, Postgraduate Scheme Administrator, pathway leaders and 

academic supervisors.  This should help to achieve clearer communication between 

administration and academic project staff. 



 206

7.4 Empirical Study Phase 2 – from Analysis to Design  
This phase represents the design phase of the electronic system.  Here the SSM 
outcomes are mapped to UML.  The MoIST Project Option Selector Tool is again 
used to evaluate the project and select the most suitable project option. 
 

B

Link SSM's Conceptual
activities to UML's Use

Cases

C

Link SSM's
Conceptual

activities directly to
UML's activity

diagrams

A

Precede UML with SSM

LOW

Requirements
Certainty

HIGH

UNSTRUCTURED STRUCTURED

Development
Environment

 
Figure 7.7: MoIST Method 
 
 
 
 
 
 
7.7.3 Using MoIst’s Project Option Selector Tool to get the best project option 

• After the SSM findings, the characteristics of the Postgraduate Process 

Project were again analysed using the MoPros Selector Tool in order to 

make the most informed decision for this stage of the development process 
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MoIST’s Project Option Selection Tool (MoPros) 
   25 points  25 points  25 points   25 points 

Project 
Options 

Types of  
users 

Developers’ 
skillsets 

Organizational 
environment 

General 
characteristics 

Total

A 
 

Users are a bit 
unsettled as 
they are 
experiencing 
organizational 
changes   
0 points 

Requirements 
at this point 
are not 
relatively clear 
to the 
development 
team  
0 points 

Development 
environment 
unstructured  
 
 
15 points 

Proposed system 
is to replace or 
enhance an 
existing system 
 
10 points 

25 

 
B 

Users 
uncertain 
about the 
need for the 
proposed 
system while 
others are 
more willing to 
be associated 
with it 
20 points 

Requirements 
known at this 
point are 
relatively clear 
to 80% of the 
development 
team.  
18 points  

Development 
environment has 
pockets of 
structure and 
unstructuredness. 
 
 
20 points 

Conflicting 
interests and the 
proposed system 
might cross 
functional borders 
 
 
0 points 

58 

C Users open to 
the new 
system  
 
 
 
 
 
10 points 

Requirements 
known at this 
information 
are very clear 
to 90% of the 
development 
team  
0 points 

Development 
environment is 
quite structured  
 
 
 
 
10 points 

Environment is 
relatively 
contention free 
 
 
 
 
8 points 

28 

Table 7.5: MoIST’s Project Option Selection Tool (MoPros) 

 

 
 
Using the MoIST Project Option Selector Tool, it was found that the project 

requirements most closely matched project option B.  Option B was chosen 

since Option A’s activities were already completed within the SSM study 

conducted.  
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6.74 Option B: Enhance inception stage with SSM by deriving use cases 
from activities within the conceptual model. 
Status: Requirements Certainty (High) + Development Environment 

(Unstructured) 

MoIST Option B’s Activities 

B1.  Derive conceptual primary task model (CPTM). 
B2.  Select and prioritise Conceptual model activities.  
B3.  Determine which activities require further decomposition.  
B4.  Determine which of the selected activities are candidates for IT support.   
B5.  Identify actors.  
B6.  Develop high-level use cases.   
B7.  Develop multi-level use cases.   
B8.  Identify high-level objects.   
B9.  Map required high level services onto objects.   
B10.  Continue design.  

7.7.5 Application of Option B within the MoIST method 

 
6. Derive conceptual primary task model 
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Figure 7.8: Conceptual model was derived from the SSM finding out stage.  

 

7. Select and prioritise Conceptual model activities to be investigated for 

possible IT support 

 
 
Priority 1   
 
 
 
Priority 2   
 
Priority 3   
 
 

Ascertain current status 
of student 

Update student details 

Query student status 
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Figure 7.7: Priorities 1, 2 and 3 
 
 

8. Identify scope or scale of OOA by determining which of the selected low-level 

activities are likely candidates for IT support.  Also determine which may 

require further decomposition of some specific activities for which responsible 

use of IT is unclear 

                              

 

 

 
 
 
Figure 7.8: Activity in Option B of the MoIST Method 
 

 

 

 

 

 

 

The selected low-level activities above are the most likely candidate activities for IT 

support 

 
 
 
 

9. Identify actors for each of the low-level activities. 

Update student details 

Query student status   

Ascertain current status 
of student 
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Figure 6.9: Actors for Low-Level Activities 
 
 
 
 
 
 
 

 

 

 

 
 
 

 

 

 
 
 
 
 
 
 
 
 
 

Actors

+ MSc Student + Academic Supervisor
+ Pathway leader

+ existing CAMS database system + Postgraduate Scheme Administrator
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Mapping SSM Human Activities to Use Cases for expanded conceptual model 

• Ascertain current status of student 
 Search database for student based on an index for example surname  

 Click on appropriate search result 

  Retrieve appropriate status details 

 

• Update student details 
 Retrieve relevant student details 

 Amend existing details 

 

• Query student status 
 Perform query  

 

• Generate report of student’s status 
 Display report on screen 

 Select print option 

 

• Send periodical reminders of student status 
 Acknowledge system alert 

 Email pathway leader and academic supervisor 

 

• Contact student for talk if necessary 
 Email student 

 

• Monitor student’s progress and performance 
 Send email if deadlines are not met 

 Send email if student gets below 50% 

 

• Define performance standard and progress evaluation criteria 
 Display the required grades and expectations on intranet 

• Take control action in the event of a drop in performance 
 Email student for drop in talk 
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7.5 Conclusion 
The MoIST method was shown to be workable in yet another context. The research 

project time did not allow for implementation of the system.  The analysis and design 

work has been completed and documented.  This can be used for future work on the 

system and will expedite development time. 

The MoIST has again been shown to be effective in another real-world context.  It 

can be safely concluded that the MoIST is an effective method. 
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Chapter 8 Conclusions and Future Research 
 
8.1 Problem Introduction 
The findings presented show that MoIST works in a different context. The next logical 

step is to summarize the findings and to point the direction for future research. 

 

The major aim throughout the research has been to argue the necessity for human 

aspects to be reincorporated into hard systems engineering design.  This is 

increasingly being neglected in most organizations involved in systems development 

(Mirijamdotter, 1998).  This has resulted in innumerable software failures and 

tragedies that have impeded the success level of software development projects 

(Ewusi-Mensah, 2001). 

 

8.2 Research Solution 
The thesis argument started out by highlighting the fact that traditional hard systems 

engineering had a relatively good success rate.  It then looked at how increasingly 

clients were not pleased by the resultant systems delivered to them.  This delivery 

was more often than not eventually – say several years later – or not at all.  This then 

led to the argument for a way of inculcating a systems thinking component within the 

traditional software development cycle.  This would enable systems to be constructed 

more in accordance with the specification of the client.  Chapters 2 to 6 of this thesis 

expounded on how the limitation of hard systems engineering was overcome by 

amalgamating SSM with the UML.  

 

The combination of both the SSM and UML was looked at in chapters 4 and 5.  It 

was merged into a new design method for integrating systems thinking with 

information systems design (MoIST).  The MoIST method was applied in an 

academic organizational setting.  This was at the University of Huddersfield, 

specifically the School of Computing and Engineering.  The context was to examine 

the existing Academic Support Process in the University and ameliorate any 

problematic conditions discovered.  The MoIST method was successfully applied and 

a major intervention was made which validated the action research carried out. This 

intervention made a radically improved difference in the existing system and was well 

received.  An evaluation was then made of the MoIST’s effectiveness in the situation.  

This was in terms of the electronic system’s success, usability quotient and level of 

improvement to the former process.  The conclusions gleaned from the research are 

summarised below. 



 215

 

8.3 Critical Appraisal of the Research   
A critical appraisal of software development approaches and methods in general and  

this research in particular has been conducted.  The findings indicate that though 

software technocrats and developers prefer the hard systems development 

approach, it has many problems.  Firstly when used alone in the requirements 

elicitation phase, hard systems engineering models can encourage early design 

decisions before opportunities for improvement have been agreed.  Also, SSM when 

used on its own in the requirements elicitation stage may lack some of the detailed 

information required by programmers.  The most consistent and reliable feature of 

software development over the years have been its many failures.  The appraisal 

covers select parts of the research including the MetricsMoIST Evaluator, Project 

MoIST’s scales, activity diagrams, elaboration of use cases and lessons learnt from 

the two enactments of the MoIST method. 

 

The MetricsMoIST Evaluator utilises Checkland’s 5 E’s Performance Indicator to 

assess the SSM artefacts produced by the MoIST.  The Checkland’s 5 E’s may also 

be used to evaluate any resultant system produced from using MoIST. 

 

Originally the MetricsMoIST Evaluator included metrics to evaluate both the SSM and 

UML components.  However, objective feedback concerning the choice of metrics 

brought about the realisation that the UML metrics used, gave superficial or at best 

minimal evaluation.  Using the lesson learnt from this, the UML metrics were then 

excluded leaving the Checkland’s 5 E’s component.  The Checkland’s 5 E’s provide a 

loose guideline by which to measure the validity of the SSM artefacts produced.  This 

will work more effectively for the method as the SSM component is still the unknown 

quantity for software development in general.  This means that the SSM component 

is in need of more evaluation than the UML component for which a plethora of UML 

metrics currently exist.  These include SDMetrics which is an object oriented design 

measurement tool for the UML and Fast&&Serious which is a UML based metric for 

effort estimation. 

 

MoIST’s scales were used in the MoIST’s Project Option Selector Tool (MoPros) and 

the MetricsMoIST Evaluator using Chekland’s 5 E’s Performance Indicator.  For the 

Selector tool (MoPros),  a maximum of twenty-five (25) points are allocated to each 

of the four (4) sub-opions within each project option.  For the MetricsMoIST 

evaluator, a maximum of twenty (20) points were allocated to each of the five (5) sub-
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options.  The weightings of twenty-five (25) and twenty (20) were chosen to help 

simplify and aid the scoring process by always yielding a percentage score.  A 

percentage score was deemed to be easier for the project team to establish 

consensus on the individual scores of team-members.  Expert feedback on the 

MoIST scales indicated that the scales could be rendered more appropriate.  

Consequently, though the MoIST project scales are the de facto recommended 

weightings, there is an alternative.  The alternative recommendation is that project 

managers are free to use whatever weightings they deem to better facilitate a more 

successful scoring process.  This applies to both the Selector Tool (MoPros) and 

MetricsMoist domains. 

 

Two enactments of the MoIST method were undertaken for the research.  The first 

was an exploration of an Academic Skills Process and the second was an exploration 

of a Postgraduate Project Process.  Similar lessons were gleaned from both 

enactments of the method.  One concerned the elaboration of use cases.  The 

elaboration of use cases by relevant actors and domain experts was originally 

intended to be mandatory.  In doing the research however, it proved to be an optional 

activity as the relevant actors were not engaged in the process of elaboration the use 

cases.  This was done because the domain expert did not require help from the 

actors at that particular point in the intervention.  The recommendation of the 

research is therefore for project managers or domain experts to evaluate each 

project on its own merit and decide whether or not there is a need to involve the 

relevant actors in the use case elaboration. 

Another lesson learned concerned activity diagrams.  In the UML-based artefact tool-

kit that contains use-cases, sequence diagrams and activity diagrams, activity 

diagrams seem not to be as utilised as the other UML-based artefacts.  This was 

seen in this research with the MoIST method. The two (2) case studies utilised 

Project Options A and B which had use-cases and sequence diagrams.  Neither of 

the case studies tended towards Option C which utilised activity diagrams.  This 

result suggests that for any possible future refinement or version of the MoIST 

method, Option C might be less relevant.  Based on expert feedback, it could also 

potentially be omitted.  In this research, it only served as a ‘control’ of sorts in the 

research experiment as Option C is more geared towards hard systems development 

where most of the requirements are known and the environment is structured.  This 

might not always fit with most software development environments today as most 

software projects are unstructured in nature.  Conversely, project options A and B are 

geared towards unstructured software development environments.  This suggests a 
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plausible explanation concerning why both unstructured case studies utilised options 

A and B instead of C. 
 
In the classification of the multi-methods in Chapter four, some methods were 

reviewed in terms of their proximity to the MoIST method.  The methods deemed 

close to MoIST included the ISD Framework, RACE, Davis’s Contingency framework, 

Multiview, RACE, BOOST and CCTA. 

RACE needed to further tighten the linkage between the interaction models and 

formal models description language. MoIST rectified the RACE method linkage 

weakness by using a UML-based development environment to provide the linkage  

with SSM instead of LOTOS.  This is significant as UML is more widely used 

commercially and more developers are familiar with it than LOTOS.  The Davis’s 

contingency framework examines several variables and determines which of its four 

options is best to use.  The drawback with the framework it that it determines very 

well what option to use, but does not go on to say how the developer should follow 

the option to achieve the desired result.  MoIST however rectifies this omission by 

detailing in a step by step manner exactly what to do to achieve each of the options 

chosen.  The significance of this rectification is that it makes the software process 

clearer and makes it easier for the developers to follow the method.  One of  

Multiview’s drawbacks is that it uses ETHICS in its method structure.  The 

significance here is that ETHICS though a popular method is no longer widely used 

in many commercial software environments.  MoIST redresses this drawback by not 

using ETHICS in the soft to hard systems linkage, but by using the more current and 

ubiquitous UML-based linkage instead.  One weakness of Lai’s ISD framework is that 

it uses Martin-Odell’s Object Oriented Analysis (OOA).  This OOA however no longer 

provides the validity needed for current projects.  This is because OOA has been 

subsumed into UML.  MoIST rectifies this potential problem by utilising a UML-based 

context in which to link SSM.  This is important as it potentially increases the chances 

of the method being utilised as UML is more widely used currently than OOA.  BASE 

and BOOST only offer one core option for achieving the soft to hard linkage.  This is 

significant as it does not necessarily provide software developers with the flexibility 

needed to maximize successful software development.  MoIST rectifies this by 

providing more than one analysis and development options depending on the 

assessed characteristics of each software project.  One of the problems with the 

CCTA approach is that SSADM is used for the ‘hard systems’ paradigm.  This is 

significant as SSADM is no longer considered to be ‘cutting edge’ in its remit.  MoIST 
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redresses this by using a UML-based context which is perceived as more relevant 

and current in the ‘hard systems’ domain of the software industry. 

 
Hard systems engineering has from its inception played a vital role in the software 

industry.  This by itself is insufficient to stem the rising tide of failures and incomplete 

systems.  The MoIST method provides the requisite extension to make the software 

development process more effective.  This is done in several ways.  It allows for the 

combination of two strong approaches that promote a unified strength and subsumes 

each others deficiencies and limitations.   It also alleviates criticisms levelled at the 

hard systems engineering approach.  MoIST provided a firmer design structure for 

complex, unstructured situations.  It additionally offers the potential for designing 

systems that will be more successful and pleasing to the clients.  A major benefit 

gained from application of the MoIST method is an improved user definition for 

certain types of development project.  This is an important prerequisite to successful 

implementation. 

 
 
 
8.4 Further Work 
In this research, SSM is shown to be a plausible basis for applying systems thinking 

and integrating it with a UML-based software development method.  The MoIST 

method supports software developers and users in going from a complex, 

problematic organizational situation to the design of a new computer application 

suitably relevant to the situation.  MoIST combines a set of viable options and 

methods into a coherent framework. 

 

In summary, the new understanding of systems thinking integrated into information 

systems design suggests 

• Complexity in any organisational or commercial setting can be reduced by 

utilising SSM and its activity modelling techniques. 

• Design explanation can be used to provide the project manager and systems 

developer with the rationale behind the dynamics of the complexity in the 

requirements model. 

 

 

The research findings are based on action research carried out using SSM.  The 

current directions for future research  are outlined as follows: 
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• Consolidating theory  The MoIST method model will be linked to related 

studies in order to build sound theoretical bases for the model.  Further 

investigation will be done of the MoIST model. 

 

• Further developing the new understanding  There is a need to study the 

dynamics of both essential and incidental complexity in relation to networks of 

different cognitive design activities described in the literature.  This study will 

develop a sound theoretical foundation for our understanding of the 

requirements modelling process. 

 

• Testing the MoIST model and evaluating the new approach to using 
design explanation.  This model was identified from analysing qualitative 

data.  However quantitative measurements are needed to confirm and 

strengthen the model.  The model will be tested through quantitative empirical 

studies. A quantitative measurement of complexity to test the qualitative 

explanation will be conducted. 

 

8.5 Research products or artefacts 

• MoIST method 

• ProcessMoIST 

• MoIST Process Selector Tool 

• ACcSys Electronic ILP System 

• SSM artefacts including Conceptual models and overall results 

 
 
 
 

8.6 Conclusion 

The combination of SSM with a UML-based development method has already begun 

to produce academic research output and products that are making a solid difference 

in the world of software development.  

 

The research produced two (2) comprehensive SSM studies.  Some PhD theses that 

were read during the course of the research focused solely on the SSM study. 

(Kareborn,2002 and Mirijamdotter,1998).  This research however went further and 
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produced a design method called MoIST.  MoIST was used to link the results from 

one of its SSM studies to a UML-based method.  Though the research was originally 

intended to end at the design of MoIST, it eventually proceeded to the subsequent 

design, implementation, deployment and testing of an electronic system called 

ACcSys.   

 

The research is timely and fits in well with attempts by other researchers to address 

limitations of hard systems engineering approach and more specifically the UML.  
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Appendix 

During the research several real-life SSM case studies were conducted.  These were 

for learning purposes mainly and also with the hope that some would lead to major 

results.  For the sake of space, not all could be included in the final written research 

document.  The two SSM case studies expounded in chapters six and seven 

established that the MoIST method works.  Both unstructured case studies 

demonstrated how options A and B worked in two separate real-life situations, but  

neither of them showed how option C works.  

 

 In order to demonstrate option C, this real-life SSM case study of the recruitment 

process below was used.  It was really conducted according to Checkland’s SSM 

guidelines up to conceptual model level.  From that point on, the demonstration of 

how to go from conceptual modelling directly to activity diagramming is a ‘made-up 

demo’ for Option C. (this means that the last part was not done under research 

conditions). 

 
A Study of the Recruitment Process in the School of Computing and 

Engineering 
 

Introduction 
Changing times and circumstances and political and social nuances have dictated 

the rise and the fall in the student admission levels at universities. 

Over the last few years the levels seem to have fallen much more than they have 

risen.  There is an intensive campaign on to attract more students to universities.  

Recruitment officers and admission offices are standard in most universities.  

International recruitment of students has become big business.  Many universities 

have established marketing and publicity programmes overseas. 

 

Background 
The Department of Computing and the Department of Engineering were recently 

merged into one unit as the School of Computing and Engineering.  A dean of school 

was appointed to head the unit.  This incumbent was selected from the department of 

engineering.  Much effort has been expended to make the school flow as a seamless 

unified whole.  Over time though, the integration is appearing to not be as water tight 

as was originally intended. 
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An admissions office was formed to coordinate admissions efforts for the school.  A 

school admissions officer was also appointed by the dean.  This appointee formerly 

co-ordinated the admissions function in the Engineering department.  The 

admissions officer position however has no mandate over the school admissions 

office as it is not a line management role.  This means that the admissions officer 

cannot exert any influence over the daily running of the admissions office.  It is 

probably significant that the admissions officer is in one physical location and the 

school admissions office in another.  Investigation has shown that the two former 

departments had diametrically opposite modes of conducting the admissions 

process.  We could call them ‘the computing model of recruitment’ vs ‘the 

engineering model of recruitment’.  The current admissions officer is still in favour of 

the engineering way of doing things while computing still maintains their admissions 

status quo.  To this point there has been no official agreement between Computing 

and Engineering in this matter.  It is quite telling that the admissions officer has 

initiated a name change of his function title from admissions coordinator to 

recruitment coordinator.  He now sees them as two different functions.  He sees his 

role as Recruitment Coordinator in the school as persuading students to come to the 

university in addition to increasing the recruitment levels in the school. 

 
Methodology of the Research 
The recruitment coordinator was interviewed to gain perspective on the recruitment 

process.  Quite a comprehensive overview of how the process operates was given. 

This report will be followed by a subsequent one which will reflect the views of a 

wider cross-section of stakeholders of the recruitment process. 

 

Soft Systems Methodology (SSM) is the methodology of choice in this study as it 

allows for exploration and understanding of the various issues involved in the school 

recruitment.  It facilitates learning of the situation and enables a clearer view of the 

issues to be dealt with. 

Soft Systems Methodology has been used with much success in many organizations 

to unravel complex is sues and bring structure to seemingly unstructured situations.  

It involves the stakeholders in the organization in the discovery process and enables 

them to own and proactively be the agents of change in their own organizations. Any 

changes that are to be made are usually more readily accepted and it has also been 

known to boost the morale of the human resource in an organization.  SSM was 

made formulated and made popular by Professor Peter Checkland of Lancaster 

University. 
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Analysis of 2002 -2003 Academic year recruitment figures 
(taken from report by Recruitment Coordinator) 
 

Applications for computing courses in general have fallen.  This is a national trend. 

This is currently happening probably as traditional universities widen participation to 

conform to the government’s mandate and possibly because of bad positioning in the 

league tables owing to misleading statistics on completion rates 

Medium to long term strategies need to be in place to attract students to apply in the 

first place.  There seems to be little that admissions tutors can do in the short term to 

help with this 

The ‘local college’ figures reflect a growing trend then it is clearly critical that students 

from the local catchment area of West Yorkshire are attracted and retained. 

The mainstay courses still attract large numbers of students, though the reduction in 

applications is being felt in some of the IS and Computing courses. 

 

 

June 2003 Applications numbers and conversion figures 
 

 Applications Conversion rate 

New Media (including Games Programming) 592 (+235) 33.45 

New Media (excluding Games Programming) 300 (-23) 33.33 

Information Systems 516 (-110) 29.26 

Computing 601 (+8) 29.28 

 

this shows that there has been a fall in both the Information Systems and New 

Media(excl Games programming) applications. 
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Comparison of admissions afternoon visits with accepted offers 
 

 Visits Offers Conversion

Information Systems & Computing 202 330 163% 

New Media 228 198 87% 

 

 
 
Analysis 1- Analysis of the intervention in the situation 
 

Clients 
(Who caused the study to 

take place) 

Dean of the School of Computing and Engineering, 

Recruitment Coordinator 

Would-be problem solvers 
(who conducts the study) 

Soft Systems Methodologist  

Problem Owners 
(client + people with an 

interest in the situation 

School of Computing and Engineering, recruitment 

coordinator, admission administrators 
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Analysis 2 - Social System Analysis 
 

Social Roles Behavioural Norms Values that measure role 
performances as good or bad 

Recruitment 

Coordinator 

Organises all recruitment activities 

for the school and exists to 

persuade students to come to 

study at the university and to 

increase the flagging recruitment 

levels 

Analyses past computing 

course admissions data in 

order to spot trends and be 

able to predict the future 

admissions patterns GOOD 

Able to effectively influence the 

way recruitment is carried out in 

the merged school of 

computing and engineering 

GOOD 
Does not have a 

comprehensive grasp of 

recruitment issues in the school 

BAD 
 

Admissions 

Office Staff 

Carry out all administrative duties 

for the school’s admissions 

Ensures that marketing and 

publicity documents are sent 

out well in advance  GOOD 

Liaises well with relevant 

departments to help ensure top 

admissions rates  GOOD 

Not in touch with what students 

are looking for in university 

schools and produce out dated 

and not trendy materials.  BAD 

Dean Head of the school of Computing 

and Engineering 

Has comprehensive knowledge 

of what goes on in the school 

and makes sound decisions 

based on that knowledge 

GOOD 

Able to lead the school in a 

manner that enables it to be 
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competitive with other 

computing departments in other 

universities  GOOD 

 Out of touch with industry 

trends in computing and 

engineering  BAD 

Department 

heads 

Oversee the running of all areas of 

their department 

Coordinate all the staff under 

their jurisdiction efficiently 

GOOD 
Make unsound decisions that 

retard their department’s 

growth  BAD  

 

 

 

Analysis three – examines the politics and power distribution in the 
organization 
 
Disposition and Nature of Power 
The main stakeholders in this process are the dean, the recruitment coordinator, the 

department heads and the admissions office staff. The dean wields the greatest 

authority here and has the clout to hire and fire and generally make any judgement 

call.  The recruitment coordinator reports to the dean and was hired on the 

recommendation of the dean.  The department heads report to the dean and the 

admissions office staff report to the department heads; not the former admissions 

coordinator.  In effect therefore any changes that the recruitment coordinator sees fit 

to implement cannot be fully implemented without the agreement of the department 

heads.  This could potentially lead to disagreement on how recruitment is carried out 

in the school as a whole.  As it stands, it seems that the schools recruitment 

coordinator has a working jurisdiction over the engineering section of the school and 

none or not much over the computing section of the school.  In the interest of the 

weltanschauung of the recruitment process, there needs to be agreement on a 

common recruitment modus operandi across the school.   This will better enable the 

goal of maximising and increasing recruitment levels to be achieved. 
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C1- Derive Conceptual Primary Task Model 
 

 

Formulating Root Definitions 
Root Definition 1 
“a system to standardise the way recruitment is carried out in the computing and 

engineering section of the school by establishing agreement on a common 

recruitment mode in order to make the recruitment process more effective and 

efficient” 

 

Root Definition 2  - the chosen RD 

“a system to improve the recruitment level in the School of Computing and 

Engineering by eliminating hindrances and bottlenecks to efficiency in recruitment in 

order to achieve highest recruitment levels possible” 

 
 
CATWOE Analysis 
 
C – Customer –                 Recruitment Coordinator, Dean 
 
A – Actor -                         Recruitment Coordinator, Admissions Office Staff 
 
T – Transformation –        Recruitment levels low --  recruitment levels raised 
 
W – Weltanschauung –     acceptable recruitment levels are important for the         
successful future of the school and university 
 
O – Owner –                        Dean 
 
E – Environment –              School and university recruitment policy 
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Conceptual Model 
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Comparison Phase 
 
Conceptual Reality 
Ascertain existing recruitment 

levels 

This is currently being done by the recruitment 

coordinator on a monthly basis 

Contrast existing recruitment 

data with historical data and 

analyse 

The recruitment coordinator performs this task and 

generates a monthly report by email 

Collaborate and choose the 

most appropriate action plan 

to raise recruitment levels 

There needs to be an increased level of 

collaboration in order to find the most effective way 

of improving recruitment 

Implement action plan for 

recruitment 

Actions to improve recruitment are currently being 

taken, but getting the benefit of a variety of 

competencies could drastically improve the process 

of recruitment 

 
 
 

Defining Changes 
Change 1 
There is a need for improved efficiency in the way that recruitment levels are 

ascertained.  This is in order to more quickly take advantage of the data and use it 

increase existing levels whilst cutting out inefficiencies. 

 

Change 2 
There could be increased collaboration among staff involved in the recruitment 

process.  Such a collaboration would take advantage of each person’s expertise and 

would result in a better way forward.  Monthly meetings could be held with the 

department heads of the school, both computing and engineering to arrive at a 

common consensus and a more effective recruitment drive.  Each course team could 

own the recruitment for their course. This would involve periodic meetings to see 

what is the best way to attract students. This would give the recruitment improvement 

drive the benefit of  a wider cross- section of person’s ideas. 

 

 

 

 

 



 230

C2 – Identify conceptual activities that are candidates for IT support 
 

 

No Selected conceptual activities 

1 Ascertain existing recruitment levels 

2 Contrast existing recruitment data with historical data and analyse 

4 Implement action plan for recruitment 

 

 

C2.2 – Look for conceptual activities that most closely match key areas 
gleaned from the study and the clients’ needs 
 

1 Ascertain existing recruitment levels

 
 
C3 – Identify nouns from conceptual activities 

 

Existing, recruitment levels 
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C4 – link conceptual activities directly to the UML activity diagrams 

 

No. Conceptual activity statement Activity state 

1 The conceptual activity begins when the recruitment 

coordinator decides to ascertain existing recruitment 

levels by choosing the Continue function when the 

recruitment level details are displayed on the screen. 

Display Current 

recruitment level;  Get 

Recruitment request 

2 The system requests that the recruitment coordinator 

enter the recruitment details, including: number of 

visits, number of offers, conversion figures, number of 

applications, conversion rates and any comments. 

Display Recruitment 

Form 

3 The recruitment coordinator chooses the visits and 

offers functions to arrive at the accurate recruitment 

details. 

Get Recruitment 

Details 

4 The system stores the recruitment details in the 

database.  

Store New 

Recruitment Details 

5 The system emails to the Recruitment Coordinator the 

recruitment details. 

Email Recruitment 

Details. 
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Fig 1 - Activity Diagram for Ascertaining Existing Recruitment Level 
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Display Recruitment Level is the initial activity state.  The recursive transition on the 

state recognizes the fact that the display is continuously refreshed until the next 

transition fires (to Get Recruitment Level Request).  This may be interpreted as the 

recognition of this state to be an activity, not an action.  When in the state Display 

Recruitment Form, the timeout condition finishes the execution of the activity model.   

Alternatively, the state Get Recruitment Details is activated.  If the recruitment details 

are incomplete, the system again enters the state Display Recruitment Form.  

Otherwise the system gets into the state Store new Recruitment details followed by 

the state Email Recruitment Details (the final state). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 234

Bibliography 
 
 
Ackoff, RL, 1998, A Systemic View of Transformational Leadership, Systemic 
Practice and Action Research, Vol. 11, No. 1, 1998 
 
Abdel-Hamid, T. K., and S. E. Madnick. 1990. The Elusive Silver Lining: How We Fail 
to Learn from Software Development Failures. Sloan Management Review 32(1): 39-
48. 
 
Ambler, S.W. (2002) Agile Modeling: Effective Practices for Extreme Programming 
and the Unified Process. John Wiley & Sons 
 
Ambler, S, 2001, The Object Primer – The Application Developer’s Guide to Object 
Orientation and the UML, 2nd Ed, Cambridge University Press 
 
Archer, R and Bowker, P, 1995, BPR Consulting: an evaluation of the methods 
employed, Business Process Re-engineering & Management Journal, Vol. 1, No. 2, 
pp. 28-46 
 
Armarego, J, 1999, Educating Requirements Engineers in Australia: A Critical Study,  
http://eng.murdoch.edu.au/~jocelyn/papers/phd_proposal.doc 
 
Armarego, J and Clarke, S, 2002, Preparing Students for the future: learning creative 
software development – setting the stage 
http://eng.murdoch.edu.au/~jocelyn/papers/armarego.herdsa.pdf 
 
Avison, D.E., Baskerville, R. and Myers, M.D, 2001 "Controlling action research 
projects," Information Technology & People (14:1), 2001, pp. 28-45 
 
Avison, D and Fitzgerald, G, 1995, Information Ssytems Development: 
Methodologies, techniques and Tools, (2nd ed) McGraw-Hill, London 
 
Avison, D.E. and Wood-Harper A.T. (1990) Multiview: An exploration in Information 
Systems Development., McGraw-Hill, Maidenhead. 
 
Barton, J, Emery, M, Flood,RL, Selsky, JW and Wolstenholme, E, 2004, A Maturing 
of Systems thinking? Evidence from three perspectives, Systemic Practice and 
Action Research, Vol.17, No.1, February 2004 
 
Baskerville, R., and Myers, M.D.2004, "Special Issue on Action Research in 
Information Systems: Making IS Research Relevant to Practice-Foreword," MIS 
Quarterly (28:3) 2004, pp 329-335. 
 
Baskerville, R. and Pries-Heje, J. 1999, "Grounded action research: a method for 
understanding IT in practice," Accounting, Management and Information 
Technologies (9:1), 1999, pp. 1-23. 
 
Baskerville, R.L. and Wood-Harper, A.T. 1998,  "Diversity in information systems 
action research methods," European Journal of Information Systems (7), 1998, pp. 
90-107. 
 
 

http://eng.murdoch.edu.au/~jocelyn/papers/phd_proposal.doc
http://eng.murdoch.edu.au/~jocelyn/papers/armarego.herdsa.pdf


 235

Baskerville, R.L. and Wood-Harper, A.T.1996,  "A Critical Perspective on Action 
Research as a Method for Information Systems Research," Journal of Information 
Technology (11), 1996, pp. 235-246. 
 
Batra, D and Marakas, GM.,1995, Conceptual data modelling in theory and practice. 
European Journal of Information Systems. 4, 185-193 
 
 
BBC News, July 8, 2004 
news.bbc.co.uk/1/hi/uk/3876507.stm 
 
Beck, K., Extreme Programming Explained – Embrace Change. Reading, M.A.: 
Addison-Wesley. 2000 
 
Bell, S and Wood-Harper, T (2003), How To setup Information Systems: A non-
specialist’s guide to the Multiview Approach, Earthscan Publications Ltd. 
 
Bell, S., and Wood-Harper, A.T., 1992, Rapid Information Systems Development, 
McGraw-Hill, Maidenhead, 1992. 
 
Bennett, S., McRobb, S. and Farmer, R., Object-Oriented Systems Analysis and 
Design, (2nd Ed.), McGraw-Hill, Maidenhead, 2002. 
 
Bennett, S, Skelton and Lunn, K, 2001, Schaum’s Outline of UML, McGraw-Hill 
 
Bennett, P, Ackermann, F, Eden,C and Williams, T, 1997, Analysing Litigation and 
Negotiation: Using a Combined Methodology , Multimethodology:The Theory and 
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill, 
A, Wiley & Sons 
 
Bergvall-Kareborn, B, Mirijamdotter, A and Basden, A, 2004, Basic Principles of SSM 
Modelling: An Examination of CATWOE from a Soft Perspective, Systemic Practice 
and Action Research, Vol. 17, No. 2, April, 2004 
 
Bergvall-Kareborn, B, 2002, Qualifying Function in SSM Modelling – A Case Study, 
Systemic Practice and Action Research, Vol. 15, No. 4, August 2002 
 
Bergvall-Kareborn, B., 2002, A Multi-Modal Approach to Soft Systems Methodology, 
Doctoral dissertation, Department of Business Administration and Social Science, 
Lulea University of Technology, 2002. 
 
Boggs, W and Boggs, M, Mastering UML with Rational Rose, Sybex, 2002(electronic 
version) 
 
Booch, G., 1998, Best of Booch – Designing Strategies for Object Technology, 
Cambridge University Press, 1998. 
 
Booch, G., 1994, Object Oriented Analysis and Design with Applications (2nd Ed.), 
Menlo Park, CA: Benjamin/Cummings, 1994. 
 
 
Booch, G, Rumbaugh, J and Jacobson, I, 1998, The Unified Modelling  Language 
User Guide, Addison-Wesley Professional 
 



 236

Bouzeghoub, M, Gardarin, G,Valduriez, 1997, Object Technology:Concepts and 
Methods, International Thomson Computer Press 
 
 
Bowl, M, 2003, Non-traditional Entrants to Higher Education: They Talk About People 
Like Me, Trentham Books. 
 
Brocklesby, J,1997, Becoming Multimethodology Literate: An Assessment of the 
Cognitive difficulties of working across paradigms, Multimethodology:The Theory and 
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill, 
A, Wiley & Sons 
 
 
Brooks, Frederick, Jnr, 1995, The Mythical Man-Month: Essays on Software 
Engineering, 20th Anniversary Edition, Addison-Wesley Professional. 
 
Brown-Syed, C., 1993, Soft, Appreciative, and General Systems: Idealism in Action, 
Third Canadian Conference on Foundations and Applications of General Science 
Theory, Ryerson Polytechnic University, Toronto, Ontario, Canada, 1993 
 
Bruegge, B & Dutoit, 2000, A, Object-Oriented Software Engineering – Conquering 
Complex and Changing Systems, Prentice Hall, New Jersey, 2000. 
 
Bryant, A, 1996, Introduction and Overview -The Projects of Methods Integration, 
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A & 
Semmens (Eds), Electronic Workshops in Computing, Springer 
 
Bubenko, J. (1995). Challenges in Requirements Engineering: keynote address. 
Paper presented at the RE'95: 
Second IEEE International Symposium on Requirements Engineering, York (UK). 
 
 
Bustard, DW, Holcombe, M and Sommerville, I, 2004, BoF: New Directions in UK 
Software Engineering Research, Proceedings of the 26th International Conference on 
Software Engineering (ICSE’04), IEEE 
 
Bustard, DW, He, Z and Wilkie, FG, Linking Soft Systems and Use-case Modelling 
through Scenarios, Interacting with Computers, Vol. 13, No.1, Elsevier, October 
2000, pp. 97-110 
 
 
Bustard D.W., Kawalek, P and Norris, M.T. (Eds.), 2000, Systems Modelling for 
Business Process Improvement, Artech House, May 2000. 
 
Bustard, DW, He, Z and Wilkie, FG, 1999, Soft Systems and Use-Case Modelling: 
Mutually Supportive or Mutually Exclusive?, Proceedings of the 32nd Hawaii 
International Conference on System Sciences (HICSS-32), Maui, Hawai (CDROM), 
IEEE, January 1999, 8 pages. 
 
Bustard, D. W., Dobbin, T. J., and Carey, B. N., 1996, “Integrating Soft Systems and 
Object-Oriented Analysis”, IEEE International Conference on Requirements 
Engineering, Colorado Springs, Colorado, April, 1996, pp. 52-59 
 
 



 237

Bustard, D. W. and Lundy, P.J., 1996, Integrating Process Modelling and Soft 
Systems Analysis, Methods Integration Workshop, Leeds, March 1996 
 
Bustard, D, 1994, Progress towards RACE: A ‘Soft-centred’ Requirements Definition 
Method, Software Quality and Productivity, 1994, pages 29-36. 
 
Buzan, T., Buzan, B. (2000), The Mind Map Book, Millennium edition, London: BBC 
Worldwide 
 
Cantor, M., 1998, Object-Oriented Project Management with UML, John Wiley & 
Sons, Canada, 1998. 
 
Cao, G, Clarke,S and Lehaney, B, 2004, The Need for a Systemic approach to 
Change Management -  A Case Study, Systemic Practice and Action Research, Vol 
17, No.2, April 2004 
 
Carroll, J M and Swatman, P A (1999) Opportunism in the Requirements Engineering 
process School of Management Information Systems Working Paper 1999/02, 
Deakin University, Australia 
 
Carroll, J., (Ed.), 1995, Scenario-Based Design: Envisioning Work and Technology in 
System Development, New York: John Wiley, 1995. 
 
 
CCTA, 1993, Applying Soft Systems Methodology to an SSADM Feasibility Study. 
HMSO, Crown Copyright, 1993. London 
 
Champion, D and Stowell, FA, 2003, Validating Action Research Field Studies: 
PEArL, Systemic Practice and Action Research, Vol 16. No.1, February 2003 
 
Champion, D and Stowell, F, 2002, Navigating the Gap Between Action and a 
Serving Information System, Information Systems Frontiers 4:3, 273-284, 2002, 
Kluwer Academic Publishers 
 
Champion, D and Stowell, FA, 2001, PEArL: a systems approach to demonstrating 
authenticity in information systems design, Journal of Information Technology, 
Routledge, Vol 16, Number 1, March, 1, 2001, pp 3-12 
 
Checkland, P, 2000, The Emergent Properties of SSM in Use: A Symposium by 
Reflective Practitioners, Systemic Practice and Action Research, Vol. 13, No. 6, 2000 
 
Checkland, P interviewed by Mark Winter, Human Resource Development 
International, 3(3), pp. 411-417 
 
Checkland, PB and Scholes, J, 1999, Soft Systems Methodology in Action with a 
Thirty Years Retrospective on SSM, John Wiley, Chichester 
 
Checkland, P.,1997, unpublished presentation given at Systems for sustainability: 
People, Organisations and Environments, 5th International Conference of the United 
Kingdom Systems Society, Milton Keynes: The Open University, July 1997. 
 
Checkland, PB and Holwell, S, 1998, Information, Systems and Information Systems: 
Making Sense of the field, John Wiley & Sons, Chichester 
 



 238

Checkland, P and Holwell, S, 1998, Action Research: its nature and validity, 
Systemic Practice and Action Research, 11(1), pp. 9-21 
 
Checkland, PB.,1981, Systems Thinking, Systems Practice, John Wiley, Chichester 
 
Checkland, PB and Holwell, S, 1993, Information management and organizational 
processes: an approach through soft systems methodology, Journal of Information 
Systems, 3, 1-15 
 
Checkland, PB., and Scholes, J, 1990, Soft Systems Methodology in Action, John 
Wiley, Chichester 
 
Checkland, P., 1991 "From framework through experience to learning: the essential 
nature of action research," in Information Systems Research: Contemporary 
Approaches and Emergent Traditions, H-E. Nissen, H.K. Klein, R.A. Hirschheim 
(eds.), North-Holland, Amsterdam, 1991, pp. 397-403. 
 
Checkland PB, 1988, Information systems and systems thinking: time to unite? 
International Journal of Information Management, 8: 239-248 
 
Checkland, P and Casar, A, 1986. Vickers’ Concept of an Appreciative System: A 
Systemic Account.  Journal of Applied Systems Analysis 13:3-17 
 
 
Chesney, T and Fletcher, H, 2000, Process Differentiation and Information Systems 
Development, Proceedings of the 33rd Hawaii International Conference on System 
Sciences. 
 
Coad, P and Yourdon, E, 1990, Object Oriented Analysis, Yourdon, Englewood 
Cliffs, NJ. 
 
Cockburn, A. ,2002,  Agile Software Development. Addison Wesley Professional 
 
Cockburn A., 2001,Writing Effective use cases. Addison Wesley, 2001. 
 
 
Cockburn, A,1999, Characterizing People as Non-Linear, First-Order Components in 
Software Development(Technical Report to be submitted for external publication) 
 
 
Cockburn A., 1997, Structuring use cases with Goals. Journal of Object Oriented 
Programming. Sep-Oct and Nov – Dec. SIGS Publications, 1997. 
 
 
 
Computer Weekly, June 8, 2004 
www.computerweekly.com/Article131375.htm 
 
Cooke, J, 1996, Methods Integration: Time for Reflection (and Reorientation?), 
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A & 
Semmens (Eds), Electronic Workshops in Computing, Springer 
 
Cropley, D, Yue, Y and Cook, S, 2003 On identifying a Methodology for Land C2 
Architecture Development, Land Warfare Conference, Adelaide, October 2003. 
 

http://www.computerweekly.com/Article131375.htm


 239

Cybulski, J. L., Nguyen, L., Thanasankit, T., and Lichtenstein, S., 2003, 
Understanding problem solving in requirements engineering, Burwood, 
Australia: School of Information Systems, Deakin University. 
 
Damian, D, Zowghi, D, Vaidyanathasamy, L and Pal, Y, 2004, An Industrial Case 
study of immediate benefits of Requirements Engineering Process improvement at 
the Australian Centre for Unisys Software, Empirical Software Engineering, 9, 45-75, 
Kluwer Academic Publishers, Netherlands 
 
Davis, GB, 1982, Strategies for Information Requirements Determination, IBM 
Systems Journal, Vol. 21, No. 2, pp. 4-30 
 
 
Dawson, C, 2000, The Essence of Computing Projects: a student’s guide, Prentice 
Hall 
 
De Bono, E., 2000, Six Thinking Hats, Penguin. 
 
DFes, 2003, The Future of Higher Education, White paper. 
http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-
HigherEducation.pdf 
 
Dick, B. and Swepson, P., Appropriate validity and its attainment within action 
research:an illustration using soft systems methodology [online].1994. 
Available at http://www.scu.edu.au/schools/gcm/ar/arp/sofsys2.html 
 
 
Dobbin, TJ and Bustard, DW, 1994, Combining Soft Ssytems Methodology and 
Object-Oriented Analysis: The search for a Good fit, Proceedings of the 2nd 
Information Systems Methodologies Conference, Edinburgh, August 1994 
 
Dobson, J and Strens, R,1994, Organisational requirements definition for information 
technology systems, in Proceedings of the first International Conference on 
Requirements Engineering, 18-22 April, Colorado Springs, Colorado, IEEE Computer 
Society Press, Los Alamitos CA, 158 -65 
 
Doyle, K.G., Wood, J.R.G. and Wood-Harper, A.T. Soft systems and systems 
engineering: on the use of conceptual models in information system development. J 
of Info Systems, 1993 3, 187-198 
 
Doyle, K and Wood, RJ, 1991, Systems thinking, systems practice, dangerous 
liaisons.  Systemist, Vol. 13, No.1, pp. 28-30 
 
Dittrich, Y, Floyd, C and Klischewski, R(Eds): Social Thinking – Software Practice. 
MIT Press, 2002 
 
Downs, D and Lunn, K., 2002, Analysis and Design for Process Support Systems 
using Goal-oriented Business Process Modelling, Workshop on Goal-Oriented 
Business Process Modeling (GBPM'02), Toronto (Canada), May 27- 28, 2002, 
 
D’Souza, DF and Wills, AC, 1998, Objects, Components and Frameworks with UML: 
The Catalysis Approach, Addison Wesley, Harlow 
 
Drummond, H., 1996, The Politics of Risk: Trials and Tribulations of the Taurus 
Project. Journal of Information Technology 11: 347-357.  

http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-HigherEducation.pdf
http://www.dfes.gov.uk/hegateway/strategy/hestrategy/pdfs/DfES-HigherEducation.pdf
http://www.scu.edu.au/schools/gcm/ar/arp/sofsys2.html


 240

 
Eliens, A, 2000, Principles of Object-Oriented Software Development, 2nd Ed., 
Addison-Wesley 
 
Ewusi-Mensah, K, 1997, Critical issues in abandoned information systems 
development projects.  Communications of the ACM, 40(7): 74-80. 
 
Ewusi-Mensah, K., 2003, Software Development Project Failures: Anatomy of 
abandoned projects, MIT Press 
 
Ewusi-Mensah, K, 1997, Critical issues in abandoned information systems 
development projects.  Communications of the ACM, 40(7): 74-80 
 
Ferrari, FM, Fares, CB and Martinelli, DP, 2002, The Systemic Approach of SSM: 
The Case of a Brazilian Company, Systemic Practice and Action Research, Vol 15, 
No. 1, February 2002 
 
Flick U., 1999, An Introduction to Qualitative Research, SAGE Publications, London, 
1999. 
 
Flood, R.L.,(2000). A Brief Review of Peter B. Checkland’s Contribution to Systemic 
Thinking. Syst. Pract. 13(6), 723-731 
 
 
Flood, RL, 1999, Knowing of the Unknowable, Systemic practice and Action 
Research, Vol. 12, No. 3, 1999 
 
Flood, R and Romm, N, 1997, From Metatheory to Multimethodology, 
Multimethodology:The Theory and Practice of combining management sciences 
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons 
 
 
Flood, RL and Jackson, MC, 1991, Creative Problem Solving: Total Systems 
Intervention. 
 
Floyd, C, 1987, Outline of a paradigm change in software engineering. 191-210 in G 
Bjerknes et al.  (Eds.) Computers and Democracy.  Avebury:Aldershot. 
 
Flynn, D., 1998, Information Systems Requirements: Determination and Analysis, 
(2nd Ed.), Maidenhead:McGraw-Hill, 1998. 
 
 
Fowler, M., 2003, UML Distilled: A Brief Guide to the Standard Object Modelling 
Language (3rd Ed.), Addison-Wesley Professional 
 
Fowler, M. and Scott, K., 2000, UML Distilled(2nd Ed.). Reading, M.A.: Addison-
Wesley. 2000 
 
Fowler, M. and Scott, K, 2000, UML Distilled: A Brief Guide to the Standard Object 
Modelling Language (2nd Ed.), Addison-Wesley Professional. 
 
Fuenmayor, R, 2000, A Brief Crack of Light? Systemic Practice and Action Research 
(13) 6 
 
 



 241

Galliers, R D, 1997. Against Obliteration – Reducing risk in business process 
change. In steps to the Future – Fresh thinking on the management of IT-based 
organisational transformation, edited by Sauer, C., Yetton, P. w. AND Associates, a. 
San Francisco:Jossey-Bass Publisher. 
 
Galliers, RD, 1992, Soft Systems, Scenarios, and the Planning and Development of 
Information Systems, Systemist, Vol 14, No. 3, pp. 146-59 
 
Galliers, R.D and Land, F.F, 1987 Choosing Appropriate Information Systems 
Research Methodologies, Communications of the ACM. 30(11), 900-902. 
 
Geddes & Grossett, English Dictionary, 1999. 
 
Gharajedaghi, J., 1999, Systems Thinking: Managing Chaos and Complexity: A 
platform for Designing Business Architecture.Butterworth-Heinemann,1999. 
 Gill, A, 1997, Managing a Virtual Organization, Multimethodology:The Theory and 
Practice of combining management sciences Methodologies. Eds Mingers, J and Gill, 
A, Wiley & Sons 
 
Glass, R. L., 1995, A theory about software's practice (Editor's Corner). Journal of 
Systems and Software, 28, 187-188. 
 
Gold, J, 2001, Storying Systems: Managing Everyday Flux Using Mode 2 Soft 
Systems Methodology, Systemic Practice and Action Research, Vol 14, No. 5, 
October 2001 
 
Graham, I, 1998, Requirements Engineering and Rapid Development, Addison 
Wesley, London 
 
Hammer, M and Champy, J. 1995. Reengineering the corporation: a manifesto for 
business revolution.  Rev. ed. London: Brealey. 
 
Hansson, T, 2003, Learning by Action Research: A Policy for School development, 
Systemic Practice and Action Research, Vol. 16, No.1, February 2003 
 
Hawryszkiewycz, I, 2001, Introduction to Systems Analysis and Design, 5th Ed., 
Prentice Hall 
 
Henderson-Sellers, B and Unhelkar, B, 2000, OPEN modelling with UML, ACM 
Press, Addison-Wesley 
 
 
Hindle, T., Checkland, P., Mumford, M. and Worthington, D. "Developing a 
Methodology for Multidisciplinary Action Research: A Case Study," Journal of the 
Operational Research Society (46:4), 1995, pp. 453-464 
 
Hirscheim, R, Klein, HK and Lyytinen, K, 1995, Information Systems Development 
and Data Modelling:Conceptual and Philosophical Foundations, Cambridge 
University Press, Cambridge 
 
Holst, M, Mirijamdotter, A, Bergvall-Kareborn, B, Oskarsson, H. 2004. Information 
and Communication Technology in Dynamic Organisations., IRIS27, 2004 
 
Holwell, S, 2000. Soft Systems Methodology:Other Voices. Syst Pract. 13(6), 773-
797 



 242

 
Holwell, S,1997, Soft Systems Methodology and its role in Information Systems. 
Doctoral Thesis, Lancaster University, Lancaster. 
 
 
Hopkins, J, 1999, Does the Aptitude Test offered by the School of Computing predict 
Students’ Performance in that Programme? Postgraduate Diploma in Education 
(PGDip) thesis, University of Technology, Jamaica 
 
Hopkins, J., Providing a semantic model of the Unified Modelling Language 1.3 by 
establishing a semantic description of the existing syntactic standard, M.Sc. 
dissertation, 2001. 
 
Hopkins, J and Wade, S, 2004, A Study of the Postgraduate Project Process in a 
School of Computing. Proceedings of the 7th IASTED International Conference on 
Computers and Advanced Technology in Education. August 16-18, Kauai, Hawaii, 
USA. (presented) 
 
Hopkins, J and Wade, S, A Successful Intervention in the Academic Learning 
Support Process in a School of Computing through the utilisation of Soft Systems 
Methodology (SSM), Journal of Advanced Technology, Vol., No., pp:, September 30, 
2004, IADAT Publishers. ISSN 1698-1073 
 
Hopkins, J and Wade, S, Major Improvements to the Academic Learning support 
process in a School of Computing through the utilisation of Soft Systems 
Methodology (SSM), Proceedings of the International Association for the 
Development of Advancement in Technology conference on Education (IADAT-
e2004), July 7 – 9, 2004, Bilbao, Spain (presented) 
 
Hult, M. and Lennung, S.A., 1980, Towards a Definition of Action Research: A Note 
and Bibliography, Journal of Management Studies, May 1980, pp. 241-250 
 
Jackson, MC, 2003, Systems Thinking: Creative Holism for managers, Wiley Europe 
 
Jackson, MC, 2000, Notes and Insights – Checkland, Peter Bernard (1930-), 
Systems Research and Behavioural Science, Syst. Res. 17, S3-S10 (2000) 
 
Jackson, MC, 2000, Systems Approaches to Management, Kluwer/Plenum, New 
York. 
 
Jackson, M C, 1997, Pluralism in Systems Thinking and Practice, 
Multimethodology:The Theory and Practice of combining management sciences 
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons 
 
 
Jackson, MC, 1991, Systems Methodology for the Management Sciences, Plenum, 
New York, NY. 
 
Jackson, M.C., 1991, The Origins and Nature of Critical Systems Thinking. Systems 
Practice. 4, 131-149.,. 
 
Jackson, MC, Flood, RL, Mansell, GJ, and Probert, SVE (Eds.), 1991, Systems 
Thinking in Europe, Plenum. 
 



 243

Jacobson, I., 2000, The Road to the Unified Software Development Process, 
Cambridge University Press & SIGS Books, 2000. 
 
Jacobson, I., Booch, G. and Rumbaugh, J., 1999, The Unified Software Development 
Process. Addison-Wesley. 
 
Jacobson, I., Christerson,  M.,  Jonsson,  P.  and  Overgaard, G.,1992, Object-
oriented  Software  Engineering:  a  use  case driven  approach,  Addison-Wesley,  
Reading,  Mass. 
 
Jacobson, I, 1995. “Use Cases in Large Scale Systems”,  Report on Object Analysis 
and Design, 1995 1(6), pp. 9-12. 
 
Jacobson, I, 1995, The Object Advantage 
 
Jayaratna, N., Understanding and Evaluating Methodologies; NIMSAD: A Systemic 
Framework, Maidenhead:McGraw-Hill, 1994. 
 
Keys, P. and Roberts, M., Information Systems Development and Soft Systems 
Thinking: towards and improved methodology. In Systems Thinking in Europe, 
Plenum, London. 1991.  
 
Kock, NF, Jr., McQueen, RJ and Scott, JL, 1997, Can Action Research be made 
more rigorous in a positivist sense? The contribution of an Iterative Approach, 
Journal of Systems and information Technology, V.1, No. 1, pp. 1-24 
 
Kom, J, 1999, Qualitative modelling of information systems.  In Synergy Matters: 
Proceedings of the Sixth International Conference of the UKSS, Castell, AM, 
Gregory, AJ, Kindle, GA, James, ME and Ragsdell, G (eds), Plenum, New York, pp. 
571-6. 
 
Kotonya,  G.  and  Sommerville, I.,  1998  Requirements 
Engineering:  processes  and  techniques,  John  Wiley. 
 
Krutchen, P., 2000. The Rational Unified Process – An Introduction. 2nd Edition. 
Addison-Wesley. 
 
Lane, C and Galvin, K, 1999 Methods for Transitioning from Soft Systems 
Methodology (SSM) Models to Object Oriented Analysis (OOA), developed to 
support the Army Operational Architecture (AOA) and an Example of its Application, 
Command and Control Research and Technology Symposium, U.S. Naval War 
College, Rhode Island – June 29 – July 1, 1999.  
 
Lang, N, 1993. Shlaer-Mellor Object Oriented Analysis Rules, A Sigsoft Software 
Engineering notes Vol 18 no. 1, Jan 1993. 
 
Larman, C. Applying UML and Patterns. An Introduction to Object Oriented Analysis 
and Design and the Unified Process.  Prentice-Hall PTR. 2nd Edition 2001 
 
Larsson, NO and Malmsjo, A, 1998, A Model for Design of Human Activity Systems, 
Systemic Practice and Action Research, Vol. 11. No 4, 1998 
 
Leon, A., 2000, SDLC – A Guide to Software Configuration Management, Artech 
House 
 



 244

Lewis, P, 1994, Information Systems Development, Pitman, London. 
 
Lewis, P.,1993, Linking of Soft Systems Methodology with data-focussed information 
systems development. Journal of Information Systems 3 (3) 169-86. 1993;  
 
 
Liang, Y, West, D and Stowell, FA, 1998, An interpretivist approcach to IS definition 
using object modelling, Information Systems Journal, 8, 163-80 
 
Lorenz, M. and Kidd, J., 1994, Object-Oriented Software Metrics: A Practical Guide, 
Englewood Cliffs, NJ: Prentice-Hall, 1994. 
 
Lunn, K, 2003, Software Development with UML, Palgrave, MacMillan 
 
Maciaszek, L, 2001, Requirements Analysis and Systems Design: Developing 
Information Systems with UML, Addison Wesley 
 
Mann, J., 1996. The Role of Project Escalation in Explaining Runaway Information 
Systems Development Projects: A Field Study. Georgia State University. 
 
Mansell, G, 1991, Action Research in information systems development, Journal of 
Information Systems (1), 1991, pp. 29-40 
 
Mathiassen, L, 2002, Collaborative Practice Research, Information Technology and 
People (14:4), 2002, pp. 321-345. 
 
 
Mathiassen, L, Munk-Madsen, A, Nielsen, P and Stage, J, 2000, Object-Oriented 
Analysis and design, Marko Publishing ApS, Aalborg. 
 
Mathiassen, L and Nielsen, PA, 2000, Interaction and transformation in Soft Systems 
methodology, Systems Research and Behavioural Science, Vol. 17, pp. 243-53 
 
Mathiassen, L, Munk-Madsen, A, Nielsen, P.A and Stage, J, 1994, Combining two 
approaches to Object Oriented Analysis, Proceedings of the International 
Symposium on Object-Oriented Methodologies and Systems, September 21-22, 
1994, pages 158-170 
 
May, S and Bousted, M, 2004. Investigation of Student Retention through an 
Analysis of the First Year Experience of Students at Kingston University: Widening 
Participation and Lifelong Learning, The Journal of the Institute for Access Studies 
and The European Access Network, Vol 6, No 2. ISSN 1466-6529, August 2004 
 
Maxwell, J 2003, Thinking For a Change: 11 Ways Highly successful people 
approach life and work, Warner Books Inc, NY 
 
Melao, M. and Pidd, M., 2000 A conceptual framework for understanding business 
processes and business process modelling, Information Systems Journal 10, 105-
129, 2000. 
 
 
Midgley, G, 2003, Science as Systemic Intervention: Some Implications of Systems 
Thinking and Complexity for the Philosophy of Science, Systemic Practice and Action 
Research, Vol 16, No.2, April 2003 
 



 245

Miles, R, 1992, Combining hard and soft systems practice:grafting and embedding 
revisited, Systemist, Vol. 14, No. 2, pp. 62-6 
 
Miles, R., 1988, Combining “hard” and “soft” systems practice: grafting or 
embedding? Journal of Applied Systems Analysis  15  pp 55-60. 
 
 
Mingers, J. 2001, "Combining IS Research Methods: Towards a Pluralist 
Methodology," Information Systems Research (12:3), 2001, pp. 240-259 
 
Mingers, J., 2000, An idea ahead of its Time: The History and Development of Soft 
Systems   Methodology. Systemic Practice and Action Research, Vol 13, No. 6, 
2000; 
 
Mingers, J, 1997,  Multi-paradigm Multimethodology. MultiMethodology. Mingers J. 
and Gill, A., Eds. Chichester, John Wiley & Sons:1-20 
 
 
Mingers, J., and Brocklesby, J, 1996,. Multimethodology: Towards A Framework For 
Critical Pluralism. Systemist, Vol.18, Number 3, August 1996,101-131. 
 
Mingers, J, 1995, Using soft systems methodology in the design of information 
systems.  In Information Suystems Provision: The Contribution of Soft Wystems 
Methodology, Stowell, FA, (ed.), McGraw-Hill, London, pp. 18-50 
 
Miles, R., Combining “hard” and “soft” systems practice: grafting and embedding 
revisited. Systemist 14 (2) 62-66. 1992;  
 
Mingers, J., 1988, Comparing conceptual models and data flow diagrams. The 
Computer Journal 31 (4) 376-379. 1988; 
 
 
Mingers, J and Gill, A (eds), 1997, Multimethodology:Towards Theory and Practice 
and Mixing Methodologies 
 
 
Mirijamdotter, A. 1998. A Multi-Modal System Extension to Soft Systems 
Methodology. Doctoral Thesis, Department of Informatics and Systems Science, 
Lulea Technical University, Sweden, Lulea. 
 
Mitev, N. N. 1996. More Than a Failure? The Computerized Reservation Systems at 
French Railways. Information Technology and People 9(4): 8-19 
Muller, P-A., Instant UML, Birmingham:Wrox Press, 1997. 
 
 
Munro, I and Mingers J., 2002, The use of multimethodology in practice – results of a 
survey of practitioners, Journal of the Operational Research Society, 2002, 53, 369-
378. 
 
 
Mumford, E. 1995. Effective Systems Design and Requirements Analysis: The 
ETHICS Approach. MACMILLAN Press Ltd. 
 
Mumford, E, 1983, Designing Human Systems for New Technology: The ETHICS 
Method, Manchester Business School, Manchester. 



 246

 
Munson, J.C., 2003, Software Engineering Measurement, Auerbach Publications 
 
Myers, M.D. and Avison, D.E. (eds.), 2002. Qualitative Research in Information 
Systems: A Reader, Sage Publications, London, 2002. 
 
Myers, MD, 1994, Dialectical hermeneutics: a theoretical framework for the 
implementation of information systems.  Information Systems Journal, 5, 51-70 
 
Myers, M. D. 1994. A Disaster for Everyone to See: An Interpretive Analysis of a 
Failed IS Project. Accounting, Management, and Information Technologies 4(4): 
185–201. 
 
NCIHE, 1997 Higher Education in the Learning Society: Report of the national 
committee, The National Committee of Inquiry into Higher Education. 
Recommendation 40 
 
Neumann, P.G., 1995, Computer Related Risks, Reading, MA: Addison-Wesley 
 
Nielsen, J, 2005 Ten Usability Heuristics, 
http://www.useit.com/papers/heuristic/heuristic_list.html 10/02/2005 
 
Nguyen, L and Swatman, P A, 1999 Essential and incidental complexity in 
requirements models School of Management Information Systems Working Paper 
1999/15, Deakin University, Australia 
 
Nickerson, R. S., 1999. Enhancing creativity. In R. E. Sternberg (Ed.), Handbook of 
Creativity (pp. 392-430).  Cambridge (UK): Cambridge University Press. 
 
 
Ormerod, R, 1995. Putting Soft OR Methods to Work:Information Systems Strategy 
Development at Sainsbury’s, Journal of the Operational Research Society, March 1, 
1995., Vol 46, Number 3, pages 277-293 
 
Ormerod, R, 1995, The Role of methodologies in systems strategy development: 
reflections on experience, in Stowell, FA, (Ed.), Information Systems Provision: The 
Contribution of SSM, McGraw-Hill, Maidenhead 
 
Patching, D., 1990, Practical Soft Systems Analysis, Pitman 
Pidd, M (ed), 2004 Systems Modelling: Theory and Practice, John Wiley & Sons, 
Hoboken, N.J. 
 
Pidd, M., 1996 Tools for Thinking: Modelling in Management Science, Wiley. 
 
Pollice, G., 2001, Using the Rational Unified Process for Small Projects: Expanding 
Upon eXtreme Programming, Rational Software Corporation, 2001 (at 
www.rational.com) 
 
 
Pooley, R and Stevens, P, 1999, Using UML: Software Engineering with Objects and 
Components, Addison-Wesley, Harlow 
 
Pressman, RS, 1997, Software Engineering: A Practitioner’s Approach, McGraw-Hill, 
London 
 

http://www.useit.com/papers/heuristic/heuristic_list.html


 247

Pressman, R.S, adapted by Ince, D,1997 4th ed, Software Engineering: A 
Practitioner’s Approach, European Adaptation by Ince, D, Mc-Graw-Hill 
 
Prior, R., Linking SSM and IS development, 1992. Systemist 14 (3) 128-132. 1992 
 
Pullum, L, 2001, Software Fault Tolerance techniques and Implementation, Artech 
House 
 
Remenyi, D and Brown, A, 2002,  The Make or Break Issues in IT Management: A 
Guide to 21st Century Effectiveness, Butterworth Heinemann 
 
Rose, J, 2002, Interaction, transformation and information systems development – an 
extended application of Soft Systems Methodology, Information Technology & 
People, Vol. 15, No. 3, pp. 242-268, Emerald Group Publishing Limited. 
 
Rose, J and Lewis, P, 2001, Structuration theory, action research, and information 
systems development, paper presented at the IFIP WG 8.2, Boise, ID 
 
Rose, J, 2000, Information Systems Development as action research – Soft Systems 
methodology and structuration theory, PhD thesis, November 2002, Lancaster 
University, Lancaster 
 
Rose, J, 1997, Soft Ssytems Methodology as a social science research tool, Systems 
Research and Behavioural Science, Vol. 14, No. 4, pp. 249-58 
 
Rosenhead, J.V. and Mingers, J. ,2001 Rational Analysis for a Problematic World 
Revisited:Problem Structuring Methods for Complexity, Uncertainty and Conflict, (2nd 
Edition), Wiley, Chichester 
 
Rosenwein, M. 1997. The Optimization Engine That Couldn't. OR/MS Today 24(4): 
26-29 
Sambell, K and Hubbard, A, 2004. The Role of Formative ‘Low-stakes’ Assessment 
in Supporting Non-Traditional Students’ Retention and Progression in Higher 
Education: Student Perspectives, Widening Participation and Lifelong Learning, The 
Journal of the Institute for Access Studies and The European Access Network,  Vol 
6, No 2, August 2004 
 
Sankaran, S, 2001, Methodology for an organisational action research thesis, Action 
Research International refereed on-line journal 
 
Sarkar, P and Cybulski, J, Aligning System requirements with stakeholder concerns, 
2002 
 
Sau-Ling Lai, L, 2000, An Integration of Systems Science Methods and Object-
Oriented Analysis for Determining Organizational Requirements, Systems Research 
and Behavioural Science, 17, 205-228 
 
Sauer, C., Why Information Systems Fail, a case study approach, Waller, Henley, 
1994. 
 
Savage, A and Mingers, J, 1996, A framework for linking soft systems 
methodology(SSM) and Jackson system development QSD), Information Systems 
Journal, 6, 109-29 
 



 248

Sawyer, K, 1992, A contribution towards the debate on linking SSM to IS, Systemist, 
14(3), 199-201 
 
Sawyer, K, 1991, Linking SSM to DFDs: the two epistemological differences, 
Systemist, Vol. 14, No. 3, pp. 76-80 
 
Schmuller, J., SAMS Teach Yourself UML in 24 Hours (2nd ed.), Sams Publishing, 
2002. 
 
 
Selic, B, 1999, Turning Clockwise:Using UML in the Real-Time Domain, 
Communications of the ACM, Vol 42, Issue 10, October 1999, pages 46-54 
 
Senge, P, 1990, The Fifth Discipline, Random House:London 
 
Senge, P, The Fifth Discipline: the Art & Practice of the Learning Organization, 
Random House Business Books, 1990. 
 
Sharp, H, Finkelstein, A, 1999, Stakeholder identification in the Requirements 
Engineering Process. Proc. Database and Expert Systems Applications(DEXA 99), 
Florence, Italy, IEEE Computer Society Press 
 
Skyrme, D J,1997,Multimethodologies-the Knowledge Perspective, 
Multimethodology:The Theory and Practice of combining management sciences 
Methodologies. Eds Mingers, J and Gill, A, Wiley & Sons 
 
 
Si Alhir, S, 2003, Learning UML, O’Reilly & Associates, Inc 
 
Si Alhir, S, 1998, UML in a Nutshell. O’Reily & Associates, Inc., CA 
 
Siau, K and Halpin, T., 2001, Unified Modelling Language: Systems Analysis, Design 
and Development Issues, Idea Group Publishing 
 
Smith, L W, 2000, Project clarity through stakeholder analysis: CROSSTALK: the 
Journal of Defense Software Engineering: 4 -9. 
 
Smyth, D.S., and Checkland, P.B.,1976, Using a systems approach: the structure of 
root definitions. Journal of Applied Systems Analysis, 5(1), 75-83 
 
Snoeck, M, Poelmans,S and Dedene, G, 2001, A layered Software Specification 
Architecture,  Lecture Notes in Computer Science 1920, in Laendler, AHF, Liddle,SW 
and Storey, VC, ed., ER2000, 19th International Conference on Conceptual 
Modelling, Salt Lake City, UTAH, USA, October 2000. 
 
Sommerville, I, 2000, Software Engineering, 6th ed., Addison-Wesley, Reading, MA 
 
Sommerville, I and Sawyer, P, 1997, Requirements Engineering: A Good Practice 
Guide, John Wiley & Sons, Chichester 
 
Spear, R, The Dark Side of the Moon – Unilluminated Dimensions of Systems 
Practice, Systemic Practice and Action Research, Vol 14, No. 16, December, 2001 
 
Standish. (1995). Most Programming Projects Are Late. West Yarmouth (MA): 
Standish Group. 



 249

 
Stephens P. and Pooley R. Using UML-Software Engineering with Objects and 
Components, Addison Wesley, London, 1999. 
 
Stowell, FA, 2000, Modelling IS requirements for complex systems.  In Systems 
Modelling for Business Improvement, Bustard, DW, Kawalek, P and Morris, MT 
(eds), Artech House, pp. 171-86 
 
Stowell, FA and Champion, D, 2000, Interpretivist modelling for information system 
definition.  In Systems Engineering for Business process Change, Henderson, P (ed), 
Springer, pp. 106-16 
 
Stowell, FA, West, D and Stansfield, M, 1997, Action Research as a framework for IS 
research.  In Information Systems:An Emerging Discipline?, Mingers, J and Stowell, 
FA (eds), McGraw-Hill, London. 
 
Stowell, FA. and West, D. (1994) Client-Led Design:A Systemic Approach to 
Information Systems Definition, McGraw-Hill, Maidenhead 
 
Stowell, F and West, D, 1994, Soft Systems Thinking and information systems: A 
framework for client-led design., Information Systems Journal, 4, 117-127 
 
Stowell, I. (ed.) (1995), Information Systems provision: The provision of Soft Systems 
Methodology – London:McGraw-Hill 
 
Susman,GI and Evered, RD, 1978, An assessment of the scientific merits of action 
research, Administrative Science Quarterly, Vol. 23, pp. 582-603 
 
Taylor, MJ, Moynihan and Wood-Harper, AT, 1998, Soft Systems Methodology and 
Systems Maintenance, Systemic Practice and Action Research, Vol. 11, No. 4, 1998 
 
The Independent, June 4, 2004 
http://millenium-debate.org/ind4june042.htm 
 
Thomas, J. C., Lee, A., & Danis, C. (2002). Enhancing creative design via software 
tools. Communications of the ACM, 45(10), 112-115. 
 
Torlak, G, 2001, Reflections on Multimethodology: Maximizing Flexibility, 
Responsiveness, and Sustainability in Multimethodology Interventions Through a 
theoretically and practically improved version of Total Systems Intervention (TSI), 
Ssytemic Practice and Action Research, Vol. 14, No. 3, 2001 
 
Tsouvalis, C and Checkland P, 1996, Reflecting on SSM: the dividing line between 
‘real world’ and ‘systems thinking world’, Systems Research, 13(1), pp. 35-45 
 
Ulrich, W, 2003, Beyond Methodology Choice: Critical Systems Thinking as Critically 
Systemic Discourse, Journal of the Operational Research Society, April 2003, Vol 54. 
no 4, pp 325 -342(18) 
 
UMISD, 1998, Unified Mechanism for Information Systems Definition 
 
Varey, R.J, Wood-Harper, T and Wood, B., 2002,  A theoretical review of 
management and information systems using a critical communications theory. 
Journal of Information Technology, 2002, 17, 229-239 
 

http://millenium-debate.org/ind4june042.htm


 250

 
Wade, S, 2004. An Approach to Integrating Soft Systems Methodology and Object 
Oriented Software Development, UKAIS 
 
Wade S and Hopkins J, A Framework for Incorporating Systems Thinking into Object 
Oriented Design.  Published in refereed proceedings of The 14th International 
Conference on Advanced Information System Engineering, Toronto, 2002,  
 
Wade, S; Mansell, G and Hopkins J (2002): Integrating Systems Thinking and Object 
Oriented Design.  OT2002 (held at Oxford University).  
 
Walker, A, Spink, M and Vlissidis, P (1996), The Application of Structured 
Analysis/Formal Design Method to a Case Study from the Nuclear Industry 
Proceedings of the Methods Integration Workshop, Leeds, 25-26 March, Bryant, A & 
Semmens (Eds), Electronic Workshops in Computing, Springer 
 
 
Walsham, G, 1995, Interpretive case studies in IS research: nature and method, 
European Journal of Information Systems, 4, 74-81 
 
Walsham, G, 1993, Reading the Organization:metaphors and information 
management, Journal of Information Systems, 3, 33-46 
 
 
Walsham, G, Symons, V and Warma, T,1988, Information systems as social 
systems: implications for developing countries.  Information Technology for 
Development 3(3), 189-204. 
 
Wang, Y and Bryant, A, 2002, Process-Based Software Engineering: Building the 
Infrastructures, Annals of Software Engineering, 14, 9-37, Kluwer Academic 
Publishers, Netherlands 
 
Warmer J and Kleppe A, The Object Constraint Language:Precise Modelling with 
UML, Addison Wesley Longman, 1998. 
 
 
Warmington, A, 1980 Action Research:Its Method and its Implications.  Journal of 
Applied Systems Analysis. 7, 23-39. 
 
Warren, L, 2003, toward Critical Intervention in Small and Medium – Sized 
Enterprises: A Case Study, 2003, Systemic Practice and Action Research, Vol 16, 
No. 3, June 2003 
 
Webb, M and Hill, M, 2003, The Institution Gets its Act Together: linking learning and 
teaching and widening participation strategies to improve completion rates, Widening 
Participation and Lifelong Learning, The Journal of the Institute for Access Studies 
and The European Access Network,  Vol 5, no 3, December 2003 
 
Weisfeld, M, 2002, The Object-Oriented Thought Process: The Authoritative Solution, 
SAMS Publishing 
 
Wend, P, 2004, Improving Student Success through a Joined-Up Institutional 
Approach,  Widening Participation and Lifelong Learning, The Journal of the Institute 
for Access Studies and The European Access Network,  Vol 6, No 2, August 2004 
 



 251

West, D, 1995, The appreciative inquiry method: a systemic approach to information 
systems requirements analysis. In Information System Provision: The Contribution of 
Soft Systems Methodology, Stowell, FA (ed), McGraw-Hill, London, pp. 140-58 
 
Willocks, L and Graeser, V, 2001, Delivering IT and E-Business Value, Butterworth 
Heinemann 
 
Wilson, B, 2001 Soft Systems Methodology: Conceptual model building and it s 
contribution, Wiley Publishers 
 
Wilson, B., 1990, Systems: Concepts, Methodologies, and Applications, 2nd Edition, 
John Wiley & Sons, New York, 1990 
 
Winter, MC, Brown, DH and Checkland, PB, 1995, A role for soft systems 
methodology in information systems development, European Journal of Information 
Systems, Vol. 4, pp. 130-142 
 
Wood-Harper, A.T. "Viewpoint: Action Research," Journal of Information Systems (2), 
1992, pp.235-236. 
 
Wood-Harper, A.T. "Research Methods in Information Systems: Using Action 
Research," in Research Methods in Information Systems, E. Mumford, R.A. 
Hirschheim, G. Fitzgerald and A.T. Wood-Harper (eds.), North-Holland, Amsterdam, 
1985. 
 
 
Xu, L.D, 1995, Systems Thinking for Information Systems development.  Systems 
Practice 8(6), 577-589. 
Zachman, JA, 1987, A framework for information systems architecture, IBM Journal 
26(3), 1987, 276-292 
 
Zhao, J, 2004, Robust Object Oriented Systems Analysis 
http://consulting.dthomas.co.uk 
 
URLs 
http://www.hefce.ac.uk 
http://plw.media.mit.edu/people/maeda/designmsthesis.pdf, Maeda, John, 2002 
http://www.ctg.albany.edu/publications-19/01/2005 - Centre for Technology in 
Government 
http://www.sdmagazine.com, 2005 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

http://consulting.dthomas.co.uk/
http://www.hefce.ac.uk/
http://plw.media.mit.edu/people/maeda/designmsthesis.pdf
http://www.ctg.albany.edu/publications-19/01/2005
http://www.sdmagazine.com/


 252

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 
 
 
 


	1.5.2.2 Research Question 2 
	2.1.  Introduction  
	These hard methods or approaches can be further subdivided into structured methods and object oriented methods. Structured methods include the following. 
	Structured Systems Analysis 
	  
	Chapter 3-   Unified Modelling Language (UML)   
	2.        Activities 
	3.        Decision Points 
	4.        Guards 
	5.        Parallel Activities 
	6.        Swimlane Guidelines 
	 
	Chapter  5- Method of incorporating Systems Thinking into Information Systems design (MoIST) 
	SSM’s Five Es Performance Indicators for Decision Criteria 
	5.8 Limitations and challenges of the MoIST method & proposed solutions 
	 
	Fig 6.4.1 Application of Option B within the MoIST method 
	Figure 6.4.2: Conceptual model was derived from the SSM finding out stage.  
	7.7.5 Application of Option B within the MoIST method 
	Figure 7.8: Conceptual model was derived from the SSM finding out stage.  
	8.5 Research products or artefacts 
	8.6 Conclusion 
	Bibliography 


