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Abstract

This thesis consists of three main chapters. Its first and second chapters are concerned

with univariate distributions modelling of financial data, while the third chapter has more

applied and pragmatic financial scope of the Value-at-Risk estimations. First chapter targets

developing new parametric distribution models for financial applications and suggests six of

such models on the basis of Student’s t distribution. Second chapter shifts to the field

of nonparametric statistics for financial data in the time series estimations context and

is concerned with selection of parameters for estimation of densities and distributions of

financial returns with dynamic kernel methods. It compares performances of the dynamic

kernel estimators under the parameters chosen by maximum likelihood and several least-

squares routines. Third chapter, enriched with results from the previous substantive part,

aims to position performance of the dynamic kernel estimator for distributions of financial

returns within relevant group of methods for Value-at-Risk modelling and forecasting. Main

chapters of this thesis are preceded by the preface section to summarize main motivations

behind, provide overarching theme of the thesis, encompass some of its limitations and future

research paths, which may follow from the conducted work, while main contributions of each

chapter are also covered in the section concluding this work.
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Preface

This thesis consists of three chapters united under the broad banner of financial economics.

It contributes to the field of financial economics by expanding our knowledge of how, among

many other approaches at our disposal, we can model financial data. Events of the financial

crisis, the collapse of Lehman Brothers in particular, matched the first semester of my

academic journey as an undergraduate student in economics and motivated me for this work.

Embrechts & Hofert (2014) looking back to the several financial and economic crises, highlight

the emergence of a new and mostly applied research field of Quantitative Risk Management

(QRM). QRM encompasses subjects in mathematics, statistics, finance and economics, leads

to the specific regulatory practices and serves to enhance our understanding, awareness

and hopefully, preparedness for the future negative economic and financial outcomes. For

financial disciplines, Embrechts & Hofert (2014) note that the Value-at-Risk and Expected

Shortfall are among the key numerical foundations of our risk relevant practices. However,

due to its relative simplicity, when compared to the Expected Shortfall, Value-at-Risk is

a more common quantification tool in the extensive relevant literature as conscientiously

summarized by Nieto & Ruiz (2016). Abad et al. (2014) in another detailed Value-at-Risk

study point out the importance of the distributional speicifications behind the data when
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quantifying risks, whether in the time varying context as thoroughly discussed in Andersen

et al. (2006) or in the time invariant context as in Gencay & Selcuk (2004). In fact, these

models, forming our assumptions behind the data, are often so key that QRM research results

and analysis by the one group of researchers may be pushed further by another, if sets of their

distributions are different. For example, Corlu & Corlu’s (2015) exchange rates associated

risks analysis is deepened further by the same financial data investigation of Nadarajah et al.

(2015) just by considering more elaborated distribution models. On the other hand, research

efforts to enhance some distributions with more modelling power and flexibility may lead to

more complex functional forms as in Papastathopoulos & Tawn (2013b) and later argued to

replicate properties and abilities of the models with less complex mathematical expressions as

in Nadarajah et al. (2013). The list of such representative examples is by no means complete,

but should be sufficient to highlight the importance of distribution choices, when we model

financial data to quantify risks or have other relevant estimation tasks. It also highlights

the empirical nature of the QRM research, where our knowledge and understanding of the

financial data often progresses through the “trial and error” documented experiments and

later academic debate.

Parametric distribution models are abundant and although there are some commonly used

ones listed in the works of Abad et al. (2014) and Nieto & Ruiz (2016), researchers have

not given up exploring new and alternative forms to be applied for modelling financial data.

For example, Nadarajah (2012) offers a list consisting of the sixteen models designed to

extend the functional form of the Gaussian distribution by “plugging” other distributions

into this model. On the other hand, Afuecheta et al. (2018) focus on a flexible, very common

and natural extension to the Gaussian distribution, Student’s t distribution. Afuecheta et al.

2
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(2018) following the methodological path of Nadarajah (2012) for the Student’s t distribution

model provide new combined models, but yield a notably smaller list of distributions than

Nadarajah (2012). Their list consists of three models. Afuecheta et al. (2018) also provide

general expressions to help interested researchers expanding their portfolio of distribution

models and their small-scaled empirical experiment supports considering these models for

applications to financial data.

The first chapter of this thesis looks into new distributions and contributes to the list of

already existing methods by combining half normal, Fréchet, Lomax, Burr, inverse gamma

and generalized gamma models with the functional form of the Student’s t distribution

similar to Afuecheta et al. (2018). It provides necessary expressions for modelling financial

data and conducts a small empirical test of these models. Embrechts & Hofert (2014) tracing

QRM research origins, point out a fundamental work of McNeil et al. (2005), which in turn,

recommends Generalized Hyperbolic distribution for applied tasks in financial economics

among other models. Modelling power of Generalized Hyperbolic distribution in financial

applications is rarely outperformed due to its flexible functional form, allowing it to incorporate

many of the observed empirical properties of financial data and several distributions as

special cases. Therefore, it is often a pragmatic benchmark for positioning new models

for financial data within relevant research or applied contexts. From the small applied

experiment conducted in the first chapter, outlined distribution models demonstrate a good

potential, when compared to the well-established Generalized Hyperbolic distribution, to be

considered in further more expansive data or list of models investigations with more applied

scope than in Chapter 1.

Empirical comparisons for models in Chapter 1 are performed using a set of the log-likelihood

3
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based evaluation criteria of Akaike (1974), Schwarz et al. (1978), Hannan & Quinn (1979),

Bozdogan (1987) and Hurvich & Tsai (1989). Though, it is found that at least one of the

outlined distribution models is able to outperform Generalized Hyperbolic distribution, it

is noteworthy pointing out that only one model achieves this consistently in the samples

considered. That is Student’s t generalized gamma model, a generalization encompassing all

three models supplied by Afuecheta et al. (2018) and likely benefiting from the functionality

offered by its number of parameters in the adopted estimations setting. On the one hand,

obtained results once again confirm the validity of McNeil et al.’s (2005) suggestion on the

Generalized Hyperbolic model consideration, but on the other hand, these findigs may be a

demonstration that outlined models with fewer number of parameters, may require expansion

of their functinality to achieve better modelling outcomes more consistently. For example in

future investigations, these models may allow accounting for, often observed in the financial

data, assymetry as in Fernández & Steel (1998). Furthermore, similar to the Student’s t

gamma mixture model in Afuecheta et al. (2016) these models, alongside some of the others

listed in Afuecheta et al. (2018), can be applied in the time series framework of GARCH

models for Value-at-Risk forecasting. Also as in applications of Wichitaksorn et al. (2015) for

similar distributions, investment decisions upon the parsimonious CAPM models’ output, as

listed in Gregoriou (2018) among others, where residuals are specified with the distributions

provided in this chapter could be considered in the future investigations.

Chapter 2 of this thesis also looks into distributions modelling of financial returns, but

focuses on the nonparametric techniques for financial data. Nonparametric estimators are

well-known in the time invariant estimation contexts and unlike parametric specifications,

may be argued as notably less often in the time evolving financial applications. For example,

4
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Nieto & Ruiz (2016) in their all-inclusive review devote a small discussion on the time

evolving nonparameteric methods in the form of the several quantile regressions only, avoiding

empirical examples of such methods due to their computational “heaviness” and complexity.

Alternatively, Harvey & Oryshchenko (2012) show that nonparametric methods may not

necessarily be restricted to the quantile regressions and can be used to estimate the entire

time evolving density and distribution of financial data. Though Harvey & Oryshchenko’s

(2012) ideas may be similar to those employed to drive the quantile regression processes,

the approach is more appropriate to be regarded as the most nonparametric version of the

well-known special case Integrated GARCH model for volatility estimations or simply as

the fully nonparametric version of RiskMetrics
TM

by J.P. Morgan (1996). Similar to Nieto

& Ruiz (2016), Harvey & Oryshchenko (2012) recognize computational demands of the

nonparametric methods and employ maximum likelihood to reduce overall computational

burden using this type of estimators. Conducted empirical work and tests in this chapter

provide evidence that methods as in Harvey & Oryshchenko (2012) are indeed valid and

should be attractive for financial applications, however, computational short-cut of employing

maximum likelihood is less preferable than other pragmatic alternatives considered in this

part of the thesis. Presented ideas for estimations may be also similar to those employed in

the nonparametric quantile regression contexts, but unlike Harvey & Oryshchenko (2012),

this chapter contributes by arguing for nonparmetric estimations with least-squares routines.

Empirical comparisons for the sets of parameters obtained in Chapter 2 using different

techniques for estimations are performed using Kolmogorov-Smirnov and Cramer-Von Mises

tests as well as Berkowitz (2001) compound forecasts evaluation criteria. It is found that

least-squares based estimation techniques lead to parameters allowing estimators as in Harvey
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& Oryshchenko (2012) to accurately forecast notably more in-sample evaluations than with

parameters chosen by maximum likelihood. These findings remain unchanged if each financial

series in the data set is adjusted for the volatility bursts by the ad-hoc ARMA-GARCH

model specification. Also, given maximum likelihood’s perk of the faster computations, it is

found that rearranging Harvey & Oryshchenko’s (2012) estimators to accommodate binned

financial data may lead to the same computational time and better forecasts than with

parameters by maximum likelihood. Based on the binned estimators, dynamic adaptive

estimations are also considered and although these forecasts accuracy may be less appealing

given obtained results and higher number of parameters involved, there may be valuable

insights for further research with these bandwidths empirical experiments. For example, from

the conducted work with parameters, it may be worthwhile combining kernels methods with

parametric models for the tails as in MacDonald et al. (2011), but in the dynamic context of

exponentially declining weights as in Harvey & Oryshchenko (2012). For such estimations,

ad hoc adaptive strategy computations as in Chapter 2, suggest that least-squares may be

rearranged to pick up parameters optimal for the body domains of densities and distributions

of financial data, areas estimated nonparametrically by the dynamic kernel estimators in

the semiparametric settings. Yet, given satisfactory diagnostic output for the financial

data as obtained in this chapter for the parameters chosen with least-squares routines,

these estimators are valid in the semiparametric contexts of bivariate copula QRM research

agenda as described in Patton (2012, 2013) or higher copula dimensions modelling as in

Nikoloulopoulos et al. (2012).

Chapters 1 and 2 of this work are empiric in their nature, similar to other QRM research,

but may be too formal for the applied finance practitioners’ discussion. Nieto & Ruiz (2016)

6



Financial Returns’ Distributions Modelling Artur Semeyutin

outline that applied research questions are often narrowed down to the very pragmatic

approximations of the “correct frequency of the losses” when holding financial assets, where

losses are usually a financial asset returns’ exceedances of the Value-at-Risk estimates at

the predefined confidence level. Moreover, Nieto & Ruiz (2016) point out that for such

estimations, nonparametric estimators avoid any misspecification of the assumptions behind

the data formed by the parametric distribution models, as in Chapter 1 for example, and

thus, should be appealing for the applied QRM research. Therefore, given Harvey &

Oryshchenko’s (2012) kernel estimator performance under the parameters obtained with

least-squares routines, Chapter 3 conducts a small-scaled financial experiment to make

applied comparisons of the Harvey & Oryshchenko’s (2012) type nonparametric estimators

with some of the direct and most up-to-date parametric competing methods presented in

Lucas & Zhang (2016).

Empirical comparisons for the small Value-at-Risk estimation results in Chapter 3 are

performed using applied tests of Kupiec (1995) and Christoffersen (1998) at some of the

most common risk confidence levels as in Cheng & Hung (2011) among others. Obtained

results do not provide an ultimate specification for the applied use under the weighting

scheme as in Harvey & Oryshchenko (2012) and Lucas & Zhang (2016), however they

demonstrate a modest and most importantly stable performance of the kernel estimator

as in Harvey & Oryshchenko (2012) under the diligent choice of parameters. From the

obtained results functionality of the kernels demonstrate notable gains over the simplified

empirical time evolving distribution specification of the financial data, performs consistently

well, when compared to other methods in the pool, at the lower risk confidence levels

and is slightly inferior to the parametric specifications at the highest risk level. Moreover,

7
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given that at the highest Value-at-Risk confidence level, best out-of-sample performance is

provided by the parsimonious parametric specification known for yielding “conservative” risk

strategies, it may be valid arguing kernel method as in Harvey & Oryshchenko (2012) as a

standard benchmark for assessing validity of the new methods for Value-at-Risk estimations

in the relevant financial studies rather than, often employed, original RiskMetrics
TM

or more

technically elaborated approaches under the same weighting scheme. Apart from modest

and stable results, the approach posses endemic flexibility of the nonparametric methods and

has arguably straightforward functional form, however, may still require techniques for faster

computation of the appropriate parameters. This may be worthwhile addressing in the future

studies. For now, if computational time for rolling daily re-estimations of the Value-at-Risk

forecasts is considered burdensome, such parameters re-estimations may be less often as

argued by Ardia & Hoogerheide (2014). Also, in-sample results in Chapters 2 and 3 indicate

a good fit of the Harvey & Oryshchenko’s (2012) estimators for financial assets time-evolving

dependence investigations with the nonparameteric methods by Busetti & Harvey (2010),

Harvey (2010) and Bücher et al. (2015), since estimations for such “in-sample exceedances

count based” evaluations with the least-squares routines discussed in Chapter 2 are notably

less time consuming.

Most of the conducted work in Chapters 1, 2 and 3 limitations may be unpacked from the

future research paths outlined above. However, it is worthwhile emphasizing the largest

obstacle encountered while working on this thesis. This consists of two components: initial

intellectual capacity/knowledge of and time allowed to contribute to the chosen niche in

the broad discipline of modern economics. Roughly, this thesis was first influenced by the

collapse of Lehman Brothers, known and highlighted conservative pragamatism of practioners

8
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by Pérignon et al. (2008) and arguments of Embrechts & Hofert (2014) on the importance of

risk modelling and the growing role of copula models for the task of minimizing “Lehman”

precedents in the future. Therefore among abundant academic literature on applications of

copula models in finance, this thesis was initialized with the parsimonious copula approach

of Harvey (2010), which in turn, is explicitly linked to the work of Harvey & Oryshchenko

(2012). This may explain the subjective component, if any, in locating the second chapter

at the center of this work.

Analytical and critical assessment of the ideas expressed in Harvey & Oryshchenko (2012) as

well as their replication supplied a necessary skills-set required for thorough understanding

of the extensive technical material as presented by Nieto & Ruiz (2016) among others.

Accumulated knowledge and related experiments lead to the second chapter, while growing

interest in the approximations of data generating processes of financial returns lead to the

developing parametric models in the first chapter. On the other hand, given complexity of

the models presented in Chapter 1 and relative inconsistency of their majority, though in

a small-scaled empirical experiment, in overcoming already existing models1 third chapter

took a turn towards more pragmatic research objectives. Applied results from Chapter

3 demonstrate that in QRM more elaborated approaches do not necessariluy imply better

modelling outcomes. This may shape the view that in the modern abundancy of the methods

for risk modelling, it is worthwhile performing more large scale empirical investigations with

relatively simple and uncomplicated research targets similar to P. R. Hansen & Lunde (2005),

Ardia & Hoogerheide (2014), Liu et al. (2015) and Ardia, Bluteau, et al. (2018) among others.

1Note that from McNeil et al. (2005) Generalized Hyperbolic distribution encompasses several popular
distribution models in finance such as Normal Inverse Gaussian and generalized Student’s t model of Aas &
Haff (2006) for example.

9



Financial Returns’ Distributions Modelling Artur Semeyutin

This general conclusion does not necessesarily diminish the value of attempts in suggesting

more elaborate or new and innovative approaches for risk modelling, but highlights that it

may be worthwhile to begin collecting empirical facts on the various methods in practice of

the data comprehesive (larger-scale) investigations. Such large scale empirical stress tests

should have explicit empirical findings and allow to effectively summarize obtained methods’

performance results. Similar had been implemented for empirical properties of financial

returns by Cont (2001) among others and could be a prominent milestone to facilitate

efficiency of further QRM research. Unfortunately, similar research path suggestions may

come at the later stages of a long academic journey, after initial knowledge of the studied

discipline is substantially upgraded with both documented and undocumented empirical

experiments.
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Chapter 1

Models for financial returns based on

the Student’s t distribution

1.1 Introduction and motivation

Student’s t distribution of Gosset (1908) is the most common and parsimonious parametric

choice for estimations in economics, insurance and finance (e.g. Abad et al. (2014); Nieto

& Ruiz (2016)). It not only allows parametrizing leptokurtic features of financial data, but

also can serve a foundation to accomodate other data properties (e.g. such as volatility

clustering) as summarized for financial returns by Pagan (1996) and Cont (2001). Some

notable modifications to its functional form are provided by B. E. Hansen (1994), Fernández

& Steel (1998), Theodossiou (1998), Jones & Faddy (2003), Sahu et al. (2003), Bauwens &

Laurent (2005), Aas & Haff (2006), Zhu & Galbraith (2010) and Papastathopoulos & Tawn

(2013a) and are widely applied beyond the Bayesian finite and infinite variance (e.g. Tucker

(1992)), Markov regime switching means, variance and mixing weights (e.g. Perez-Quiros &
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Timmermann (2001)) as well as multivariate stochastic volatility (e.g. Wang et al. (2011))

models. A detailed review of the various Stundent’s t modifications/generalizations for broad

financial and other applied tasks is provided in R. Li & Nadarajah (2017), but the list is still

by no means complete.

One of the Student’s t popular generalizations, often recommended for risk quantification

in finance (e.g. as in McNeil et al. (2005)), is Generalized Hyperbolic (GHYP) distribution.

GHYP distribution model offers a flexible functional form allowing data asymmetry, is

classified as a normal mean-variance mixture distribution and has Student’s t as one of

its special cases. Other normal mean-variance distributions are also widespread and not

uncommon. For example, mixing of this type can be traced back to Press (1967) and

Praetz (1972) and is followed by Andrews & Mallows (1974), Barndorff-Nielsen (1977),

Barndorff-Nielsen et al. (1982), Kon (1984), West (1987), Madan & Seneta (1990), Madan

et al. (1998), Tjetjep & Seneta (2006), Luciano & Semeraro (2010), Geweke & Amisano

(2010) and Nadarajah (2012) among others. Typically, these compound models capture

heterogeneous characteristics of financial data by randomizing one of the parameters of a

“parent” distribution with the functional form of an appropriate “mixing” distribution (e.g.

McDonald & Butler (1987); Hoogerheide et al. (2007); Ardia et al. (2009a,b)).

Unlike previous compositions and similar to Gencay & Selcuk (2004) among other researchers

in finance, Afuecheta et al. (2018) focus on the leptokurtic empirical properties of financial

data, take a step further in the compound distribution modelling and suggest a Student’s

t mean-variance distributions family. Moreover, Afuecheta et al. (2018) outline mixtures of

the Student’s t with exponential, Weibull and gamma distributions, conduct a small applied

experiment and provide empirical evidence on the ability of these models to demonstrate
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better estimation outcomes than some normal mean-variance distribution mixtures. Therefore,

this chapter targets to expand upon mixtures family of Afuecheta et al. (2018) and follows an

illustrative example of Nadarajah (2012) for the set of normal mean-variance compositions.

In particular, this chapter offers six new composition models, where financial returns are

assumed to follow the Student’s t distribution conditional on the randomized variance/

volatility by the: one parameter half normal, two parameter Fréchet, two parameter Lomax,

two parameter Burr III, two parameter inverse gamma and three parameter generalized

gamma distributions. For each new compound model following the guidelines of Afuecheta

et al. (2018), its Probability Density Function (PDF), Cumulative Distribution Function

(CDF), log-likelihood and basic properties/characteristics functions are provided. Moreover,

Student’s t generalized gamma mixture model provided in this chapter is a special contribution

encompassing all three distributions previously supplied in Afuecheta et al. (2018) as its

special cases.

Though the main aim of this chapter is portfolio of Student’s t based models expansion, some

basic applications are also conducted. Applications are performed over the financial returns

for stock indices, energy commodities and cryptocurrencies. Estimations are performed

using maximum likelihood (MLE) and for the samples considered, comparisons are made

using a common set of the log-likelihood based evaluation criteria. It is found that at

least one of the proposed models performs better than the GHYP distribution under the

selected criteria framework and considered models may be worthwhile investigating in the

more data inclusive investigations of the larger scale or studying their properties in more

detail. Some Quantile-Quantile (Q-Q) and Probability Integral Transforms - Probability

Integral Transforms (P-P) plots are also provided to deepen the log-likelihood based criteria
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analysis and lay down the directions for future research and investigations.

The chapter is organized as follows: Section 1.2 and corresponding subsections outline the

general compound model development as in Afuecheta et al. (2018) as well as provides

derivations and formulations for the proposed models, Section 1.3 describes data, conducts

some exploratory analysis linked to the proposed models and outlines evaluation criteria,

Section 1.4 provides and analyses estimation results as well as supplies estimated parameters

for the best performing models and finally, Section 1.5 concludes and summarises the chapter.

1.2 Compound model development

From Nadarajah (2012), consider that X ∼ N(0, σ2), where X is the true data generating

process (DGP) of a continuous random variable, is normally distributed with zero mean and

variance described by some density function g(σ2) always satisfying σ2 > 0, then X can be

outlined by the below mean-variance density composition

fX(x) =

∫ ∞
0

φ(x | σ2) g(σ) dσ2, (1.1)

where

φ(x) =
1√
2π

exp

(
−x

2

2

)
.

Now, PDF and CDF for the original Student’s t distribution, given the degrees of freedom,

ν, always satisfying ν > 0 and x ∈ R are given by

f(x) = K(ν)

(
1 +

x2

ν

)− 1+ν
2
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and

F (x) =
1

2
+ xΓ

(
ν + 1

2

)
2F1

(
1
2
, ν+1

2
; 3

2
;−x2

ν

)
√
πνΓ

(
ν
2

) ,

respectively, where

Γ(z) =

∫ ∞
0

tz−1 exp(−t)dt

denotes the gamma function,

pFq (a1, . . . , ap; b1, . . . , bq; z) =
∞∑
j=0

(a1)j (a2)j · · · (ap)j
(b1)j (b2)j · · · (bq)j

zj

j!

generalized hypergeometric function, (a)k = a(a + 1) · · · (a + k − 1) ascending factorial and

K(ν) = Γ ((ν + 1)/2) /{
√
πνΓ (ν/2)}. Provided that n < ν all moments of order n exist.

In particular, E(X) = 0 for ν > 1, V ar(X) = ν/(ν − 2) for ν > 2 and the tail behaviour

characterized by f(x) ' cx−ν−1, jointly allowing PDF of the Student’s t distribution offer

fatter/bigger tails than that of the normal distribution as pointed by Blattberg & Gonedes

(1974) among others.

Considering the σ2 conditional PDF of the Student’s t of the below form

f
(
x | σ2

)
=

Γ
(
ν+1

2

)
√
νπσ2Γ

(
ν
2

) (1 +
x2

2σ2

)− ν+1
2

,
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Afuecheta et al. (2018) proceed rewriting (1.1) as

fX(x) =

∫ ∞
0

Γ
(
ν+1

2

)
√
νπσ2Γ

(
ν
2

) (1 +
x2

νσ2

)− ν+1
2

g
(
σ2
)
dσ2

or for convenience by setting σ2 = τ as

fX(x) =
Γ
(
ν+1

2

)
√
νπΓ

(
ν
2

) ∫ ∞
0

1√
τ

(
1 +

x2

ντ

)− ν+1
2

g(τ)dτ

=
ν
ν
2 Γ
(
ν+1

2

)
xν+1
√
πΓ
(
ν
2

) ∫ ∞
0

τ
ν
2

(
1 +

ντ

x2

)− ν+1
2
g(τ)dτ (1.2)

and essentially bringing the tails of the Student’s t into equation of the standard compound

setting as in Nadarajah (2012). Further, by making use of the below series expansion

(1 + z)−a =
∞∑
k=0

(
−a
k

)
zk,

(1.2) is then can be rewritten as

fX(x) =
ν
ν
2 Γ
(
ν+1

2

)
xν+1
√
πΓ
(
ν
2

) ∞∑
k=0

(
−ν+1

2

k

)
νk

x2k

∫ ∞
0

τ k+ ν
2 g(τ)dτ

=
ν
ν
2 Γ
(
ν+1

2

)
xν+1
√
πΓ
(
ν
2

) ∞∑
k=0

(
ν + 1

2

)
k

(−ν)k

k!x2k

∫ ∞
0

τ k+ ν
2 g(τ)dτ, (1.3)

providing a general form of the Student’s t based compound PDF. For (1.3), the corresponding

general CDF form can be also outlined. From Afuecheta et al. (2018) that is,

FX(x) =
1

2
+

xΓ
(
ν+1

2

)
√
πνΓ

(
ν
2

) ∫ ∞
0

1√
τ

2F1

(
1

2
,
ν + 1

2
;
3

2
;−x

2

τν

)
g(τ)dτ
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or, by utilizing the below series expansion

2F1 (a, b; c; z) =
Γ(b− a)Γ(c)(−z)−a

Γ(b)Γ(c− a)

∞∑
k=0

(a)k(a− c+ 1)kz
−k

k! (a− b+ 1)k

+
Γ(a− b)Γ(c)(−z)−b

Γ(a)Γ(c− b)

∞∑
k=0

(b)k(b− c+ 1)kz
−k

k! (b− a+ 1)k
,

rewritten to

FX(x) =
1

2
−
ν
ν
2
−1Γ
(
ν+1

2

)
xν
√
πΓ
(
ν
2

) ∞∑
k=0

(
1+ν

2

)
k

(
ν
2

)
k

k!
(
1 + ν

2

)
k

(
x2

ν

)−k ∫ ∞
0

τ k+ ν
2 g(τ)dτ. (1.4)

Next, provided that 0 < k < ν, the general form of the kth moment of X Afuecheta et al.

(2018) express with

E
(
Xk
)

= E
[
E
(
Xk | τ

)]
=

[∫ ∞
0

τ
k
2 g(τ)dτ

]
1 + (−1)k

2
√
πΓ
(
ν
2

)Γ

(
k + 1

2

)
Γ

(
ν − k

2

)
ν
k
2 . (1.5)

For the general form of the characteristic function of X Afuecheta et al. (2018) obtain

E [exp(itX)] = E {E [exp(itX) | τ ]} =

[∫ ∞
0

K ν
2

(√
ντ | t |

)
τ
ν
4 g(τ)dτ

]
(
√
ν | t |)

ν
2

2
ν
2
−1Γ

(
ν
2

) ,
where i =

√
−1 and Kν(·) denotes the modified Bessel function of the third kind defined by

Kn(z) =
xnΓ(1/2)

2nΓ(n+ 1/2)

∫ ∞
1

exp(−zt)
(
t2 − 1

)n−1/2
dt,
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and by making use of the below series expansion

Kν (z) =
πcsc(πν)

2

[
∞∑
k=0

z2k−ν

22k−νk! Γ(k − ν + 1)
−
∞∑
k=0

z2k+ν

22k+νk! Γ(k + ν + 1)

]

further rewrite it to

E [exp(itX)] =
(
√
ν | t |)−

ν
4 csc

(
πν
2

)
Γ
(
ν
2

) ∞∑
k=0

(
√
ν | t |)k

22kk! Γ
(
k − ν

2
+ 1
) [∫ ∞

0

τ kg(τ)dτ

]

−
(
√
ν | t |)

3ν
4 csc

(
πν
2

)
2νΓ

(
ν
2

) ∞∑
k=0

(
√
ν | t |)k

22kk! Γ
(
k + ν

2
+ 1
) [∫ ∞

0

τ k+ ν
2 g(τ)dτ

]

=
(
√
ν | t |)−

ν
4 csc

(
πν
2

)
Γ
(
ν
2

)
Γ
(
1− ν

2

) ∞∑
k=0

(
√
ν | t |)k

22kk!
(
1− ν

2

)
k

[∫ ∞
0

τ kg(τ)dτ

]

−
(
√
ν | t |)

3ν
4 csc

(
πν
2

)
2νΓ

(
ν
2

)
Γ
(
1 + ν

2

) ∞∑
k=0

(
√
ν | t |)k

22kk!
(
ν
2

+ 1
)
k

[∫ ∞
0

τ k+ ν
2 g(τ)dτ

]
. (1.6)

Finally, for functions in (1.3), (1.4), (1.5) and (1.6), choosing appropriate functional form of

g(·) closed form expressions for PDF, CDF, the kth moment and characteristic functions

of new compound models for financial returns can be obtained. The choice of g(·) is

abundant and may not be limited to the parametric forms provided in Afuecheta et al. (2018).

Alternatively if g(·) takes form of a degenerate distribution, functions in (1.3), (1.4), (1.5) and

(1.6) shall yield Student’s t distribution of Gosset (1908) functions as follows from Afuecheta

et al. (2018). Further, the half normal, Fréchet, Lomax and Burr distributions, previously

listed in Nadarajah (2012) for the normal mean-variance compositions, but not covered in

Afuecheta et al. (2018), as well as inverse and generalized gamma functional forms of the

mixing distributions are used to expand the overall portfolio of the Student’s t composition

models for financial returns. Functional forms and some additional descriptions on the g(·)
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models considered, can be found in Nadarajah (2012) for the half normal, Fréchet, Lomax

and Burr, and in Kilber & Kotz (2003) for the inverse and generalized gamma distributions

respectively.

1.2.1 One parameter half normal

For one parameter half normal, functional form of g is given by

g(τ) =
2√
2πθ

exp

(
− τ 2

2θ2

)
,

for τ > 0 and θ > 0. The half normal distribution is a form of the common normal

distribution with zero mean and scale parameter θ bounded from below at zero. Its

applications cut across production processes (e.g. Meeusen & van Den Broeck (1977); Chou

& Liu (1998)), life data analysis (e.g. Lawless (2003); Cooray & Ananda (2008)), genetics

(e.g. Dobzhansky & Wright (1947)) and other biological science applictions (e.g. Bland &
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Altman (1999)). Here, for the one parameter half normal distribution it is obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

τ η
2√
2πθ

exp

(
− τ 2

2θ2

)
dτ,

=
2√
2πθ

∫ ∞
0

τ ηexp

(
− τ 2

2θ2

)
dτ,

u =
τ 2

2θ2
;

τ 2 = 2uθ2;

τ =
√

2uθ2;

du

dτ
= τ/θ2;

dτ =
θ2du

τ
=

θ2du√
2uθ2

;∫ ∞
0

τ ηg(τ)dτ =
2√
2πθ

∫ ∞
0

(
√

2uθ2)ηexp(−u)
θ2

√
2uθ2

du,

=
2 · 2η/2θη√

2πθ

∫ ∞
0

uη/2exp(−u)
θ2

√
2uθ2

du,

=
2η/2+1θηθ2θ−12−1/2

√
2πθ

∫ ∞
0

uη/2u−1/2exp(−u)du,

=
2η/2+1/2−1/2θη√

π

∫ ∞
0

uη/2−1/2+1−1exp(−u)du. (1.7)

Note that (1.7) contains the Euler integral of the second kind, which can be approximated

by the gamma function;

Γ(Z) =

∫ ∞
0

xz−1exp(−x)dx,

providing that ∫ ∞
0

u( η+1
2

)−1exp(−u)du = Γ

(
η + 1

2

)
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and yielding ∫ ∞
0

τ ηg(τ)dτ =

[
√

2θ]ηΓ

(
η + 1

2

)
√
π

.

Now, from (1.3) η = k + ν
2
; hence,

∫ ∞
0

τ ηg(τ)dτ =

[
√

2θ]k[
√

2θ]
ν
2 Γ

(
k + ν

2
+ 1

2

)
√
π

=

[
√

2θ]k[
√

2θ]
ν
2 Γ

(
2k + ν + 2

4

)
√
π

,

while the closed form expression for Student’s t half normal mixture PDF is then given by

fX(x) =
[
√

2θν]
ν
2 Γ
(
ν+1

2

)
xν+1πΓ

(
ν
2

) ∞∑
k=0

(
ν + 1

2

)
k

[−
√

2θν]kΓk
k!x2k

, (1.8)

where Γk = Γ

(
2k + ν + 2

4

)
. Likewise, from (1.4), (1.5) and (1.6) the closed form expressions

for Student’s t half normal mixture CDF

FX(x) =
1

2
−

[
√

2θν]
ν
2 Γ
(
ν+1

2

)
νxνπΓ

(
ν
2

) ∞∑
k=0

(
1+ν

2

)
k

(
ν
2

)
k

k!
(
1 + ν

2

)
k

(
x2

ν

)−k
[
√

2θ]kΓk,

moments

E
(
Xk
)

= E
[
E
(
Xk | τ

)]
= Γ

(
k + 2

4

)
1 + (−1)k

2πΓ
(
ν
2

) Γ

(
k + 1

2

)
Γ

(
ν − k

2

)
[
√

2θν]
k
2 ,
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and characteristic function

E [exp(itX)] =
(
√
ν | t |)−

ν
4 csc

(
πν
2

)
√
πΓ
(
ν
2

)
Γ
(
1− ν

2

) ∞∑
k=0

(√
2θ
√
ν | t |

)k
22kk!

(
1− ν

2

)
k

Γ

(
k + 1

2

)

−
θ
ν
2 (
√
ν | t |)

3ν
4 csc

(
πν
2

)
√
πΓ
(
ν
2

)
Γ
(
1 + ν

2

) ∞∑
k=0

(√
2νθ | t |

)k
Γk

22kk!
(
ν
2

+ 1
)
k

,

are derived. Further, at the estimation stage, all financial returns in the composed data set

are location adjusted and therefore all further log-likelihood functions are given in accordance

with their forms used in computations. For location variant of (1.8) that is

logL (µ, ν, θ) =
nν

2
log[
√

2θν] + n log Γ

(
ν + 1

2

)
− n log Γ

(ν
2

)
− n log π

+
n∑
i=1

log

[
∞∑
k=0

(
−1

2
− ν

2

k

)
Γ
(

2k+ν+2
4

)
[
√

2θν]k

(xi − µ)2k

]

− (ν + 1)
n∑
i=1

log(xi − µ). (1.9)

1.2.2 Two parameter Fréchet

For two parameter Fréchet, functional form of g is given by

g(τ) =
αβα exp

[
−
(
β
τ

)α]
τα+1

,

for τ > 0, α > 0 and β > 0. The latter two parameters can be classified as shape and

location parameters of the Fréchet distribution. This distribution is skewed to the right, has

a unique mode, and is also known as the inverse Weibull distribution. It is also a special

case of the generalized extreme value distribution (GEV), which in turn, is widely used for
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the “tail risks” characterization in insurance and financial applications (e.g. McNeil et al.

(2005)). Here, for the two parameter Fréchet distribution it is obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

αβατ ηexp(−[β/τ ]α)

τα+1
dτ,

= αβα
∫ ∞

0

τ ηexp(−[β/τ ]α)

τα+1
dτ ;

u = (β/τ)α;

u1/α = β/τ ;

τ = βu−1/α;

du

dτ
=

α(β/τ)α

τ
= αβατ−α−1;

dτ =
du

αβατ−α−1
;∫ ∞

0

τ ηg(τ)dτ = αβα
∫ ∞

0

βη(u−1/α)ηexp(−u)

βα+1(u−1/α)α+1

βα+1(u−1/α)α+1

αβα
du;

= βη
∫ ∞

0

u−η/α+1−1exp(−u)du;

= βηΓ(1− η/α),

allowing to derive from (1.3), (1.4), (1.5) and (1.6) the closed form expressions for Stundet’s

t Fréchet mixture PDF

fX(x) =
[βν]

ν
2 Γ
(
ν+1

2

)
xν+1
√
πΓ
(
ν
2

) ∞∑
k=0

(
ν + 1

2

)
k

(−βν)kΓk
k!x2k

, (1.10)

CDF

FX(x) =
1

2
−

[βν]
ν
2 Γ
(
ν+1

2

)
νxν
√
πΓ
(
ν
2

) ∞∑
k=0

(
1+ν

2

)
k

(
ν
2

)
k

k!
(
1 + ν

2

)
k

(
x2

ν

)−k
βkΓk,
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moments

E
(
Xk
)

= E
[
E
(
Xk | τ

)]
= Γ

(
1− k

2α

)
1 + (−1)k

2
√
πΓ
(
ν
2

)Γ

(
k + 1

2

)
Γ

(
ν − k

2

)
[βν]

k
2 ,

and characteristic function

E [exp(itX)] =
(
√
ν | t |)−

ν
4 csc

(
πν
2

)
Γ
(
ν
2

)
Γ
(
1− ν

2

) ∞∑
k=0

(β
√
ν | t |)k

22kk!
(
1− ν

2

)
k

[
Γ

(
1− k

α

)]

−
β
ν
2 (
√
ν | t |)

3ν
4 csc

(
πν
2

)
2νΓ

(
ν
2

)
Γ
(
1 + ν

2

) ∞∑
k=0

(β
√
ν | t |)k Γk

22kk!
(
ν
2
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where Γk = Γ
(
1− k

α
− ν

2α

)
. For the location adjusted variant of (1.10) the log-likelihood

function is then given by

logL (µ, ν, β, α) =
nν

2
log βν + n log Γ

(
ν + 1

2

)
− n log Γ

(ν
2

)
− n

2
log π

+
n∑
i=1

log

[
∞∑
k=0

(
−1

2
− ν
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k

)
Γ
(
1− k

α
− ν

2α

)
[βν]k

(xi − µ)2k
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− (ν + 1)
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log(xi − µ). (1.11)

1.2.3 Two parameter Lomax

For two parameters Lomax, functional form of g is given by

g(τ) =
αβα

(β + τ)α+1
,
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for τ > 0, β > 0 and α > 0. The latter two parameters can also be classified as scale and

shape parameters of the Lomax distribution. This PDF has a unique mode at zero and is

typically used for characterizing business failures. Lomax distribution is also known as type

II Pareto distribution and is a special case of the generalized Pareto distribution (GPD). GPD

is commonly utilized in risk management applications and typically serves as an alternative

to the GEV distribution (e.g. McNeil et al. (2005)). Overall, Lomax distribution belongs

to the Pareto distribution family and is extensively used for lifetime data analysis alongside

other applications (e.g. Benckert & Jung (1974); Revankar et al. (1974); Arnold (1983); Hogg

& Klugman (1983); Nair & Hitha (1990)). Here, for the two parameter Lomax distribution

it is first obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

αβατ η

(β + τ)α+1
dτ,

= αβα
∫ ∞

0

τ η

(β + τ)α+1
dτ,

= αβα
∫ ∞

0

τ η+1−1

[β(1 + 1
β
τ)]α+1

dτ,

= αβα−α−1

∫ ∞
0

τ η+1−1

(1 + 1
β
τ)α+1

dτ. (1.12)

Second, from Gradshteyn & Ryzhik (2014) it can be shown that

∫ ∞
0

xz−1

(1 + bx)v
= b−zB(z, v − z). (1.13)

25



Financial Returns’ Distributions Modelling Artur Semeyutin

Therefore, for z = η + 1, b = 1/β and v = z + 1 with (1.13) it can be demonstrated that

(1.12) takes the following form and further simplified to:

∫ ∞
0

τ ηg(τ)dτ = αβα−α−1[1/β]−η−1B(η + 1, α + 1− η − 1),

= αβ−1βη+1B(η + 1, α− η),

= αβηB(η + 1, α− η),

= αβη
Γ(η + 1)Γ(α− η)

Γ(η + 1 + α− η)
,

= αβη
Γ(η + 1)Γ(α− η)

Γ(1 + α)
,

= αβη
Γ(η + 1)Γ(α− η)

Γ(α)α
,

= βη
Γ(η + 1)Γ(α− η)

Γ(α)
,

allowing to derive from (1.3), (1.4), (1.5) and (1.6) the closed form expressions for Student’s

t Lomax mixture PDF

fX(x) =
[βν]
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, (1.14)
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and characteristic function
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For the location variant of (1.14) the log-likelihood function is then given by

logL (µ, ν, β, α) =
nν

2
log βν + n log Γ

(
ν + 1

2

)
− n log Γ

(ν
2

)
− n log Γ(α)− n

2
log π

+
n∑
i=1

log

[
∞∑
k=0

(
−1

2
− ν

2
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)
Γ
(
α− k − ν

2

)
Γ
(
1 + k + ν

2

)
[βν]k

(xi − µ)2k

]

− (ν + 1)
n∑
i=1

log(xi − µ). (1.15)

1.2.4 Two parameter Burr III distribution

For two parameter Burr, functional form of g is given by

g(τ) =
cλτ c−1

(τ c + 1)λ+1
,

for τ > 0, c > 0 and λ > 0. The later two parameters are both commonly referred

to as the shape parameters of the Burr III (Burr) distribution. This PDF has a unique

mode and moderately skewed to the right. The Burr distribution is often used in reliability

analysis, forestry and meteorology among other applications. Here, for the two parameter
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Burr distribution it is first obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

τ η
cλτ c−1

(τ c + 1)λ+1
dτ,

= cλ

∫ ∞
0

τ ητ c−1

(τ c + 1)λ+1
dτ ;

u = τ c;

u1/c = τ ;

du

dτ
= cτ c−1;

dτ =
du

cτ c−1
;∫ ∞

0

τ ηg(τ)dτ = cλ

∫ ∞
0

(u1/c)ητ c−1

(u+ 1)λ+1cτ c−1
du,

= λ

∫ ∞
0

uη/c+1−1

(u+ 1)λ+1
du. (1.16)

Now, from Beals & Wong (2010) it can be shown that

B(a, b) =

∫ ∞
0

ua
(

1

1 + u

)a+b
du

u
. (1.17)

With (1.17) it can be demonstrated that (1.16) is decomposed and further simplified to

∫ ∞
0

τ ηg(τ)dτ = λB(η/c+ 1, λ+ 1− [η/c+ 1]),

= λB(η/c+ 1, λ− η/c),

= λ
Γ(η/c+ 1)Γ(λ− η/c)
Γ(η/c+ 1 + λ− η/c)

,

= λ
Γ(η/c+ 1)Γ(λ− η/c)

Γ(λ)λ
,

=
Γ(η/c+ 1)Γ(λ− η/c)

Γ(λ)
, (1.18)
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allowing to derive from (1.3), (1.4), (1.5) and (1.6) the closed form expressions for Student’s

t Burr mixture PDF
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where Γk = Γ
(
1 + k

c
+ ν

2c

)
Γ
(
λ− k

c
− ν

2c

)
. For the location adjusted variant of (1.19) the

log-likelihood function is then given by

logL (µ, ν, c, λ) =
nν

2
log ν + n log Γ
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ν + 1
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)
− n log Γ

(ν
2

)
− n log Γ(λ)− n

2
log π

+
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i=1

log
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− (ν + 1)
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i=1

log(xi − µ). (1.20)

1.2.5 Two parameter inverse gamma

For two parameter inverse gamma, functional form of g is given by

g(τ) =
βατ−α−1 exp

(
−β
τ

)
Γ(α)

,

for τ > 0, α > 0 and β > 0. The latter two parameters are commonly known as shape and

scale parameters of the inverse gamma distribution. This PDF has a unique mode defined

by τ = β/(α+1) and is moderately skewed to the right. It is used in modelling a wide range

of physical phenomena in climatology, survival analysis as well as option pricing in finance

(e.g. Bouchaud & Potters (2003)). Here, for the two parameter inverse gamma distribution
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it is obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

βατ ητ−α−1exp(−β/τ)

Γ(α)
dτ,

=
βα

Γ(α)

∫ ∞
0

τ ητ−α−1exp(−β/τ)dτ,

=
βα

Γ(α)

∫ ∞
0

τ η−α−1exp(−β/τ)dτ ;

S = β/τ ;

τ = β/S;

dτ/dS = −βS−2;

dτ = −βS−2dS;∫ ∞
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τ ηg(τ)dτ =
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(−)
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∫ ∞
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=
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Γ (α− η) ,

allowing to derive from (1.3), (1.4), (1.5) and (1.6) the closed form expressions for Student’s

t inverse gamma mixture PDF
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For the location adjusted variant of (1.21) the log-likelihood function is then given by

logL (µ, ν, β, α) =
nν

2
log βν + n log Γ

(
ν + 1

2
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− n log Γ

(ν
2
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− n log Γ(α)− n
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log π
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− (ν + 1)
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log(xi − µ). (1.22)

1.2.6 Three parameter generalized gamma

For three parameter generalized gamma, functional form of g is given by

g(τ) =

λταλ−1 exp

[
−
(
τ
β

)λ]
Γ(α)βαλ

,

for τ > 0, β > 0, λ > 0 and α > 0. Its scale, first and second shape parameters are described

by β, λ and α respectively. This PDF has a unique mode and is skewed to the right. The
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generalized gamma distribution has extensive applications in hydrology, biology, economics

and finance (e.g. Madan & Seneta (1990); Tjetjep & Seneta (2006)). It encompasses a

number of other distributions often used in survival analysis. For instance, if λ = α = 1

then the generalized gamma distribution takes the form of the exponential distribution,

when λ = 1 the generalized gamma distribution is identical to the gamma distribution, and

if α = 1 the generalized gamma is identical to the Weilbull distribution. Here, for the three

parameter generalized gamma distribution it is obtained

∫ ∞
0

τ ηg(τ)dτ =

∫ ∞
0

τ η
λταλ−1exp
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dτ,
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∫ ∞
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du
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=
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τ
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τdu
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;∫ ∞
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.
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allowing to derive from (1.3), (1.4), (1.5) and (1.6) the closed form expressions for Student’s

t generalized gamma mixture PDF
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For the location adjusted variant of (1.23) the log-likelihood function is then given by

logL (µ, ν, β, α, λ) =
nν

2
log βν + n log Γ
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− n log Γ

(ν
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− n log Γ(α)− n
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log π
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log(xi − µ). (1.24)
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1.3 Data

To investigate empirical performance and validity of the suggested models a data set consisting

of the six financial series has been constructed. Composed data set includes the daily

log-returns for two financial stock indices, two fuel commodities prices and two crypto-

currencies exchange rates. Stock indices are Standard & Poor’s 500 (S&P500) and Dow

Jones Industrial Average (DJI) for the period starting on the 28th of April 2003 and ending

on the 15th of June 2018 as provided by Bloomberg. Fuel commodities are spot prices for the

Los Angeles Ultra-Low-Sulfur Diesel (Diesel) and Mont Belvieu, Texas Propane (Propane)

in USDs per gallon for the period beginning on the 2nd of January 1997 and ending on the

15th of June 2018 as provided by the United States Energy Information Administration.

Cryptocurrencies are Bitcoin (BTC) for the period starting on the 18th of July 2010 and

ending on the 16th of June 2018 and Litecoin (LTC) for the period beginning on the 24th of

October 2013 and ending on the 16th of June 2018. Both cryptocurrencies are denominated

in USD with their sample sizes representing their entire life cycle on the moment of the data

download from Kraken cryptocurrencies exchange database. Since this chapter is partially

motivated by the heavy tail potential of the parent distribution in the compound models

considered, alongside some very common stock indices (S&P500 and DJI) the target was to

include some financial series with notable tail (excess kurtosis) characteristics (e.g. Propane

and LTC). In general, Diesel and Propane series are not uncommon in the energy relevant

investigations as in Laporta et al. (2018), while BTC and LTC are usually present in the

cryptocurrencies context as in Chan et al. (2017) among others. Therefore, this forms

a small and representative data set consisting of stock indices, energy commodities and
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Statistics S&P500 DJI Diesel Propane BTC LTC

n 3811 3811 5388 5388 2890 1696
Minimum -0.09469 -0.08201 -0.22716 -0.49913 -0.49152 -0.93452

Q1 -0.03903 -0.00388 -0.01149 -0.01025 -0.01273 -0.02003
Median 0.00069 0.00053 0.00000 0.00000 0.00141 0.00000
Mean 0.00029 0.00028 0.00019 0.00009 0.00386 0.00204

Q3 0.00526 0.00507 0.01139 0.01121 0.02276 0.01810
Maximum 0.10957 0.10508 0.26826 0.19979 0.42457 0.89035
Skewness -0.37707 -0.15289 0.10768 -2.02435 -0.34656 0.63046
Kurtosis 15.2352 14.59654 13.8692 45.13415 14.70389 36.08584

SD 0.01146 0.01064 0.02336 0.02572 0.05840 0.07981
Variance 0.00013 0.00011 0.00054 0.00066 0.00341 0.00637
Range 0.20426 0.18708 0.49542 0.69892 0.91611 1.82488
IQR 0.00916 0.00895 0.02288 0.02146 0.03550 0.03814

Table 1.1: Summary descriptive statistics for the daily log-returns of S&P500, DJI, Diesel,
Propane, BTC and LTC.

cryptocurrencies for empirical investigations.

For the above discussed financial series, log-returns have been computed with

Ri,t = log

(
Pi,t
Pi,t−1

)
,

where Ri,t is the return on the index/commodity i for the period t, Pi,t is the closing

rate/price of the index/commodity at the end of period t and Pi,t−1 is the price of the

index/commodity at the end of the period t− 1. Obtained log-returns and their histogram

density evaluations are illustrated in Figure 1.1. Some of their characteristics are described

in Table 1.1 including: minimum, first quartile (Q1), median, mean, third quartile (Q3),

maximum, skewness, kurtosis, standard deviation (SD), variance, range and inter quartile

range (IQR).
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Figure 1.1: Time series plots for the daily log-returns of S&P500, DJI, Diesel, Propane, BTC and LTC with their histogram
based density evaluations.
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From Table 1.1 the highest range is obsevred for the cryptocurrencies returns, then for

commodities and is the smallest for stock indices. From Figure 1.1 sharp market corrections

for Diesel and Propane in the early 2000s can be articulated by the changes in fundamentals

of hydrocarbons, while lack of the clearly defined fundamentals best explains the highest

range for the cryptocurrencies. Stock indices highest turbulence is arguably attributed to

the events associated with the financial crisis and their, relatively other returns in Table 1.1,

low range may be explained by the composite nature of the indices themselves. The highest

kurtosis values are depicted by the Propane and LTC series. Kurtosis values for S&P500,

DJI, Deisel and BTC are notably excess normal and have similar value to each other. Diesel

and LTC are the only two positively skewed series. Overall, inspecting histograms in Figure

1.1 it may be noted that participating returns are mostly positioned around zero and are

arguably symmetric (apart from Propane returns). Next, from the time series plots of

returns it can be observed that periods of high turbulence are typically followed by the

periods of low turbulence and vice versa. This can be often expected for financial returns

and is commonly known as volatility clustering (e.g. Mandelbrot (1963); Pagan (1996); Cont

(2001)). Therefore, for volatility, as measured by the standard deviation for non-overlapping

window of the 50 observations for log-returns, Figure 1.2 is produced. It may be noted that

all histograms of the standard deviation in Figure 1.2 are unimodal and exhibit gradual decay

over the horizontal axis, suggesting overall appropriateness of the choice for the functional

forms of g(·) in Section 1.2. Moreover, using parameters obtained by MLE, the best fitting

g(·) forms from the pool described in Section 1.2 are illustrated alongside every histogram of

the computed standard deviations. For simplicity, the best performing g(·) model is chosen

on the basis of the lowest value for the negative log-likelihood function for each volatility
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Figure 1.2: Histogram densities of the non-overlapping window standard deviations for the
specified daily log-returns.

measure. Each fitted PDF seems capturing volatility histograms well, though it is interesting

highlighting that volatility for stock indices is the best described by the Fréchet PDF, for

fuel commodities by the inverse gamma PDF and for cryptocurrencies by the generalized

gamma PDF, overall pointing out that in the general financial setting “one model fits all”

may not always be an optimal strategy.

Finally, after conducting some preliminary data analysis and roughly rationalizing new

models for financial returns provision, for compound distributions in Section 1.2, empirical

performance evaluations and estimations are performed using unknown parameters obtained

with MLE. That formally is: for observations x1, x2, · · · , xn from DGPX, optimal parameters
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of the estimated models are the values maximizing the likelihood

L (Θ) =
n∏
i=1

f (xi; Θ) ,

or by exploiting the logarithmic properties to simplify estimations, maximizing the log-likelihood

logL (Θ) =
n∑
i=1

log (xi; Θ) ,

where Θ = (θ1 · · · θk)
′

is the parameter vector that specifies the distribution density of X,

f(·). Consequently, the optimal estimates for Θ are Θ̂ =
(
θ̂1, θ̂2, . . . , θ̂k

)′

. Since considered

distributions are not nested, discrimination among them is performed using the following

standard criteria:

• the Akaike information criterion (AIC) due to Akaike (1974), defined by

AIC = 2k − 2 logL(Θ̂);

• the Bayesian information criterion (BIC) due to Schwarz et al. (1978), defined by

BIC = k log n− 2 logL(Θ̂);

• the corrected Akaike information criterion (AICc) due to Hurvich & Tsai (1989),

defined by

AICc = AIC +
2k(k + 1)

n− k − 1
;
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• the Hannan-Quinn criterion (HQC) due to Hannan & Quinn (1979), defined by

HQC = −2 logL(Θ̂) + 2k log log n;

• the consistent Akaike information criterion (CAIC) due to Bozdogan (1987), defined

by

CAIC = −2 logL(Θ̂) + k (log n+ 1) .

More extensive discussions on these commonly used criteria are provided by Burnham &

Anderson (2004) and Fang (2011). Roughly, for all participating models given particular data

sample, the smallest computed criteria values outline the best performing model. Models in

Section 1.2 compete against GHYP distribution as provided by the ghyp package of Luethi &

Breymann (2016). This specification matches GHYP model outlined in McNeil et al. (2005).

Function values and criteria for GHYP distribution are computed for the parameters obtained

with MLE as provided by the fit.ghypuv command of the ghyp package.

1.4 Some estimation results and discussion

The log-likelihood and values for the five models selection criteria (AIC, BIC, AICc, HQC

and CAIC) for all participating distributions are provided in Table 1.2. From Table 1.2,

for stock indices returns, it can be observed that the main competitors are GHYP and

generalized gamma mixture distributions, though performance of the inverse gamma may
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Returns Mixing distribution − logL(·) AIC BIC CAIC AICc HQC

S&P500

Half normal -12241.35 -24476.70 -24457.96 -24454.96 -24476.69 -24470.04
Frechet -12326.20 -24644.40 -24619.41 -24615.41 -24644.39 -24635.52
Lomax -12123.29 -24238.58 -24213.60 -24209.60 -24238.57 -24229.70
Burr -11662.53 -23317.06 -23292.08 -23288.08 -23317.05 -23308.19
Inverse gamma -12331.33 -24654.66 -24629.67 -24625.67 -24654.65 -24645.78
Gen. gamma -12336.21 -24662.42 -24631.20 -24626.20 -24662.41 -24651.33
GHYP -12334.85 -24659.70 -24628.47 -24623.47 -24659.68 -24648.60

DJI

Half normal -12440.16 -24874.32 -24855.59 -24852.59 -24874.32 -24867.67
Frechet -12526.14 -25044.27 -25019.29 -25015.29 -25044.26 -25035.40
Lomax -12276.93 -24545.86 -24520.88 -24516.88 -24545.85 -24536.98
Burr -12179.49 -24350.98 -24326.00 -24322.00 -24350.97 -24342.11
Inverse gamma -12530.78 -25053.56 -25028.58 -25024.58 -25053.55 -25044.68
Gen. gamma -12536.95 -25063.89 -25032.67 -25027.67 -25063.88 -25052.80
GHYP -12533.64 -25057.28 -25026.05 -25021.05 -25057.26 -25046.18

Diesel

Half normal -14163.66 -28321.33 -28301.55 -28298.55 -28321.32 -28314.42
Frechet -13147.06 -26286.11 -26259.74 -26255.74 -26286.10 -26276.90
Lomax -13769.83 -27531.65 -27505.29 -27501.29 -27531.65 -27522.45
Burr -9656.51 -19305.02 -19278.65 -19274.65 -19305.01 -19295.81
Inverse gamma -13149.67 -26291.34 -26264.97 -26260.97 -26291.33 -26282.14
Gen. gamma -18401.46 -36792.91 -36759.95 -36754.95 -36792.90 -36781.40
GHYP -13145.98 -26281.96 -26249.00 -26244.00 -26281.95 -26270.45

Propane

Half normal -14343.46 -28680.91 -28661.14 -28658.14 -28680.91 -28674.01
Frechet -13172.12 -26336.23 -26309.87 -26305.87 -26336.23 -26327.03
Lomax -14071.09 -28134.18 -28107.81 -28103.81 -28134.17 -28124.97
Burr -18170.40 -36332.80 -36306.43 -36302.43 -36332.79 -36323.59
Inverse gamma -13180.95 -26353.91 -26327.54 -26323.54 -26353.90 -26344.70
Gen. gamma -17550.68 -35091.36 -35058.40 -35053.40 -35091.35 -35079.85
GHYP -15338.40 -30666.80 -30633.84 -30628.84 -30666.79 -30655.29

BTC

Half normal -5358.07 -10710.14 -10692.23 -10689.23 -10710.13 -10703.69
Frechet -5037.48 -10066.96 -10043.09 -10039.09 -10066.95 -10058.36
Lomax -5326.56 -10645.12 -10621.24 -10617.24 -10645.11 -10636.51
Burr -5341.80 -10675.61 -10651.73 -10647.73 -10675.60 -10667.00
Inverse gamma -5049.81 -10091.62 -10067.74 -10063.74 -10091.61 -10083.02
Gen. gamma -6328.61 -12647.22 -12617.37 -12612.37 -12647.20 -12636.46
GHYP -5246.81 -10483.62 -10453.77 -10448.77 -10483.60 -10472.86

LTC

Half normal -2945.52 -5885.05 -5868.74 -5865.74 -5885.03 -5879.01
Frechet -2707.95 -5407.89 -5386.15 -5382.15 -5407.87 -5399.84
Lomax -2938.51 -5869.02 -5847.27 -5843.27 -5868.99 -5860.97
Burr -2916.45 -5824.90 -5803.16 -5799.16 -5824.88 -5816.85
Inverse gamma -2714.11 -5420.23 -5398.49 -5394.49 -5420.21 -5412.18
Gen. gamma -4047.36 -8084.72 -8057.54 -8052.54 -8084.68 -8074.65
GHYP -2722.79 -5435.58 -5408.40 -5403.40 -5435.54 -5425.51

Table 1.2: Log-likelihood values and the AIC, BIC, CAIC, AICc and HQC criteria for the
six proposed models and GHYP distribution.
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be also worth highlighting. In the current setting, generalized gamma mixture has five

parameters, the same as the GHYP distribution, and likely benefits from the flexibility offered

by its extra parameter to beat the inverse gamma composition and yield the best performing

model for both stock indices among proposed compositions in Section 1.2. Moving over to

fuel commodities in Table 1.2 an interesting trend may be observed in the best performing

models. For diesel: Fréchet, inverse gamma, Lomax, half normal and generalized gamma

mixtures outperform GHYP as per all evaluation criteria considered. It is also noteworthy

highlighting that the half normal, three parameter mixture, is the “first runner up” behind

the best performing five parameter generalized gamma compound distribution. For propane,

Burr distribution takes the lead leaving both the generalized gamma and GHYP behind. For

both cryptocurrencies the best performing model is generalized gamma with Lomax, Burr

and half normal for BTC and with Burr, Lomax and half normal for LTC performing better

than the GHYP distribution. Again, it is wroth highlighting remarkable performance of the

half normal compound model given its low number of parameters in the setting. Therefore, it

can be observed that portfolio of the proposed distribution models may be viable for different

application subjects, since apart from the stock indices, fuels and cryptocurrencies log-returns

applications provide good perspectives for the most of the Student’s t parametrizations here,

when compared to the GHYP distribution. Finally, for the best fitting models from Table

1.2 estimated parameters are provided in Table 1.3. Q-Q and P-P plots for these parameters

are provided in Figures 1.3 and 1.4 respectively.

Analysing Q-Q plots in Figure 1.3, quantiles fit provided by the best performing models is

overall satisfactory. Both estimated tail quantiles for diesel, propane and BTC lie on the

vector of the sample quantiles suggesting accurate quantile approximations. LTC quantile
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Returns Estimated parameters

S&P500 µ̂ = 0.00072 ν̂ = 3.75036 λ̂ = 1.68896 α̂ = 1.69071 β̂ = 0.00564

DJI µ̂ = 0.00056 ν̂ = 3.58858 λ̂ = 6.52243 α̂ = 0.31171 β̂ = 0.01012

Diesel µ̂ = −0.171 · 107 ν̂ = 11.26778 λ̂ = 1.41116 α̂ = 0.70864 β̂ = 0.03025

Propane µ̂ = −0.319 · 107 ν̂ = 99.9901 λ̂ = 49.04078 ĉ = 1.00003 -

BTC µ̂ = −0.499 · 108 ν̂ = 10.11002 λ̂ = 0.89034 α̂ = 1.12321 β̂ = 0.03133

LTC µ̂ = −0.109 · 107 ν̂ = 10.55378 λ̂ = 1.07568 α̂ = 0.92964 β̂ = 0.04607

Table 1.3: Estimated parameters for the best fitting distribution models as per results in
Table 1.2.

Figure 1.3: Q-Q plots for the best fitting distribution models.
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Figure 1.4: P-P plots of the best fitting distribution models.

45



Financial Returns’ Distributions Modelling Artur Semeyutin

estimates for the lower tail are overall close to matching the vector of sample quantiles, while

for the upper tail quantile estimates are rather “conservative” and deviate from the vector

of observed sample quantiles. S&P500 and DJI quantile outlook is very similar to each other

and is arguably adequate with small deviations from sample quantiles observed in the tails.

However, there some “curvature” may be noted in the centres of the Q-Q plots for diesel,

propane, BTC and LTC. This may be an indication that centres of the distributions for these

returns are not captured adequately. Indeed, Figure 1.4 confirms this. For all four, it is clear

that estimates of the centres are far from satisfactory. Returning to the histogram density

evaluations in Figure 1.1 it may be spoted that all four series are arguably more dense

towards the centre than nonparametric evaluations for S&P500 and DJI. Given that the

P-P evaluations for S&P500 and DJI are notably uniform for both tails and body domains

it may be rationalized that there is not enough flexibility in the centres of the compound

models offered to the series of diesel, propane, BTC and LTC. To overcome this, it may be

worthwhile introducing functionality of asymmetry in the parent distribution or considering

any other functional forms allowing more contrast in the characteristics of the tails and body

domains for the returns under investigation. It also may be worth introducing time-variation

in the parameters of the proposed distributions using appropriate autoregression dynamics.

It is interesting highlighting that, though the GHYP distribution allows for asymmetries and

has several distributions as its special cases (e.g. as shown by Aas & Haff (2006)), it provides

inferior results for these four returns in Table 1.2. Therefore, it is likely that optimal P-P

projections for both body and tail domains may be achieved by the certain nonparametric

(e.g. as in Sain & Scott (1996)) or semiparametric compositions only (e.g. as MacDonald et

al. (2011)) in the time invariant context as here.
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1.5 Concluding remarks

In this chapter, based on the scale mixing of the Student’s t distribution and following the

guidelines developed by Afuecheta et al. (2018) six new compound distribution models were

developed. PDF, CDF, moments and characteristic functions for every suggested model

alongside some empirical applications to the small set of financial data were provided. From

the results obtained, considered compositions demonstrate a good potential for both future

applied financial investigations and further functional developments of the discussed models.

From the P-P and Q-Q plots provided it is worthwhile introducing functionality of assymetry

to enhance modelling power of the considered models. It may be also worth considering the

functional form of the Laplace distribution for compositions of new, but similar models. This

should lead to more parsimonious closed form expressions for calculations than for the models

considered here, allow introducing skewness for asymmetric parametrizations and keep the

heavy tails property in the parent distribution. Though, Laplace based mixing may be less

innovative than the Student’s t models here, portfolio of these combined distribution models

is still underdeveloped and largely limited to the gamma and beta distributions mixing in the

relevant applications (e.g. Wichitaksorn et al. (2015); L. Chen et al. (2018)). For example,

Laplace combination with the generalized gamma distribution has been suggested since Choy

& Chan (2008), but its closed forms for estimations are yet to be derived and reported. Given

early performance of the Student’s t generalized gamma mixture, its Laplace alternative may

be attractive due to the smaller set of parameters under the scaling and functional power of

the generalized gamma distribution.

Less burdensome introduction of asymmetry to the proposed distribution models may be
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implemented using approach of the inverse scale factors as in Fernández & Steel (1998). On

the other hand, more applied investigations may be interested in including proposed models

in the Value-at-Risk forecasting investigations under the autoregressive time series context

of GARCH models. Apart from the Student’s t gamma combined distribution model (e.g.

Afuecheta et al. (2016)), such investigations for the similar and models provided here are

yet to be conducted. Time series framework of the Generalized Autoregressive Score (GAS)

models of Creal et al. (2013) and Harvey (2013) may be also appropriate for the applied

Value-at-Risk forecasting studies. GAS allows relatively straightforward introduction of the

time-varying dynamics for any desired parameter of the distribution models, but closed form

recursions for such estimations may be more challenging to provide.

Time series context extensions may also allow considering these distribution models in the

multivariate fully parametric copula applications as discussed in Nikoloulopoulos et al. (2012)

and Patton (2012, 2013), though more “traditional” extensions for the multivariate analysis

of financial data as discussed in Kotz & Nadarajah (2004) may be also worth investigating

in the future. Future studies may be also more inclusive and make relevant comparisons

to the wider pool of the popular distribution models in finance as well as go beyond the

likelihood based comparisons here. May be it is worth comparing relatively good performing

half normal and inverse gamma combined distributions with models governed by the same

number of parameters to thoroughly realize these distributions modelling potential.
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Chapter 2

On the choice of parameters for

dynamic kernel density and

distribution estimation of financial

returns

2.1 Introduction and motivation

Harvey & Oryshchenko (2012) formalize dynamic kernel PDF and CDF estimators for time

series data employing exponentially declining weights. Exponential weights are well-known

and widely applied, see for example comprehesive overviews of Gardner (1985) and Gardner

(2006) for this weighting family in general, while nonparametric estimators in combination

with exponentially declining weights are considered by Yu & Jones (1998), Gijbels et al.

49



Financial Returns’ Distributions Modelling Artur Semeyutin

(1999), S. X. Chen & Tang (2005), Taylor (2007), Bessa et al. (2012), Zhang et al. (2014),

Taylor & Jeon (2015) and Arora & Taylor (2016) among others. However, Harvey &

Oryshchenko (2012) are the first to provide a thorough discussion focused on the dynamic

kernel estimators for the time-varying PDF, CDF and quantile modelling with weighting

schemes derived from volatility modelling (e.g. as thoroughtly discussed in Andersen et al.

(2006)) dedicating their empirical applications to the exponential weights. Attractiveness of

Harvey & Oryshchenko’s (2012) nonparametric approach, for example over its alternative,

nonparametric quantile regression as in Taylor (2007), is driven by the fact that it allows

for a full set of time-varying quantiles to be tracked simultaneously either for exploratory

dependence (e.g. as in Busetti & Harvey (2010), Harvey (2010) and Bücher et al. (2015))

or risk exposure modelling (e.g. if considered as a variant of the well-known J.P. Morgan’s

(1996) RiskMetrics
TM

methodology for Value-at-Risk estimation) without compromising the

fact that these quantiles may cross.1 This prominent empirical property may be less crucial

for the risk modelling context, however for the dependence modelling, dynamic estimators

as in Harvey & Oryshchenko (2012) can be a more useful tool in the semiparametric copula

frameworks (e.g. see comprehensive copula discussions by Patton (2012, 2013)) among other

applications.

Overall, methods described in Harvey & Oryshchenko (2012) seem to be extending common

perks of the nonparametric methods to the time series data context, have some of their

properties broadly discussed by Robinson (1983), Wu et al. (2010) and Aı̈t-Sahalia & Park

(2016) with some empirical attempts traced back to Hall & Patil (1994) and should be

1For quantile regressions Gouriéroux & Jasiak (2008) show that quantiles may cross on the example of the
widespread Conditional Autoregressive VAR, CAViaR, model of Engle & Manganelli (2004). Harvey (2010)
and Harvey & Oryshchenko (2012) argue that their quantile algorithms, based on the empirical estimations
of PDFs and CDFs, insure that this does not happen.
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appealing for practical use in the context of financial returns, but Harvey & Oryshchenko’s

(2012) computational short-cut of employing MLE motivates, often essential, choice of the

parameters dilemma for the nonparametric specifications of the DGP. To specify, MLE in

nonparametric estimations has a strong reputation of providing parameters often leading to

unsatisfactory or suboptimal estimation outcomes, see wide-ranging discussions in Schuster

& Gregory (1981), Chow et al. (1983), Hall (1987a,b) and Q. Li & Racine (2007) among

others. MLE pitfalls motivate this chapter to focus on its rigorous, yet parsimonious and

simple alternative routine of least-squares estimations (LSE).

LSE is also common in the general exponential weights context (e.g. Hyndman et al.

(2008)) and unlike MLE can be rewritten for parameters optimal for PDF and CDF in

the nonparametric estimations context (e.g. Q. Li & Racine (2007)). It, however, comes at

the cost of more demanding and often longer running estimations than MLE, especially in

the time series context, when following the guidelines of Harvey & Oryshchenko (2012), LSE

function “blocks” in the recursive optimizations get heavier with every iteration. Therefore,

this chapter first outlines LSE for the nonparametric estimators enhaced with exponential

weights as used in applications of Harvey & Oryshchenko (2012) both in the form of PDF

and CDF. Second, realizing the high computational demands of LSE and aiming to simplify

this burden, this chapter next describes simplifications using binned estimators similar to the

traditional estimators as in Hall (1982), Scott & Sheather (1985) and Hall & Wand (1996),

but enhanced to accommodate exponentially declining weights both for PDF and CDF

LSE optimizations. Third, given binned estimators for exponential weights this chapters

considers, perhaps the most basic, dynamic adaptive/varying bandwidths estimators similar

to those described in Sain & Scott (1996) and Scott (2015), but on the basis of binned
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estimators with exponentially declining weights. Fourth, for a small data set of financial

returns, consisting of ten daily series of different length, under the composite density forecast

evaluation criteria as in Berkowitz (2001), this chapter demonstrates that all parameters

chosen with LSE, both for the full-scale estimators as in Harvey & Oryshchenko’s (2012)

and their binned computational simplifications and bandwidth variation based adaptations,

provide appropriate estimations for the most of the series without corrections for location/

scale as previously achieved in Harvey & Oryshchenko (2012) for parameters obtained with

MLE. Fifth, it is pointed out that even after GARCH pre-filtering for location and scale,

MLE struggles suggesting good combinations of the parameters as per evaluation criteria

chosen in this chapter. Overall, similar to the investigation of Q. Li & Racine (2008), but for

the dynamic nonparameteric context as in Harvey & Oryshchenko (2012), it is empirically

shown that the parameters optimal either for PDF or CDF should lead to the good estimation

outcomes using LSE routine and, most importantly, that Harvey & Oryshchenko’s (2012)

estimators are in fact viable for financial returns applications as long as their parameters for

estimations are chosen accordingly.

This chapter does not go beyond the weighting schemes used in applications of Harvey &

Oryshchenko (2012), but following their work it continues to Section 2.2 by introducing

kernel estimators in the recursive forms for the time series data context. Then it proceeds

to Section 2.3 by describing related, but different quantile mining approaches that briefly

outline how approaches similar to Harvey & Oryshchenko (2012) stand-out from the similar

techniques available prior to their work. Next, Section 2.4 describes considered approaches to

parameters estimation. Section 2.5 provides chosen criteria/tests for evaluation of different

parameters choices provided by LSE variations and MLE. Section 2.6 describes data set of
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financial returns used to obtain empirical findings for the selected parameters. Section 2.7

conducts diagnostics and describes obtained empirical results. Finally, Section 2.8 concludes

this chapter and outlines some further research paths.

2.2 Dynamic kernel density and distribution estimation

Time-varying PDF of financial returns can be estimated using a kernel (KDE) and an

appropriate weighting scheme used for volatility modelling as in Andersen et al. (2006)

among others. That is,

f̂t(x) =
1

h

t∑
i=1

K

(
x− xi
h

)
wt,i for i = 1, ..., t and t = 1, ..., T, (2.1)

where K(·) is a kernel in the form of PDF as provided in Silverman (1986), Wand & Jones

(1995), Q. Li & Racine (2007) and Tsybakov (2009) among others, h is a PDF optimal

bandwidth parameter and x ∈ R as in Chapter 1. Similarly, dynamic CDF of financial returns

can be estimated using an appropriate kernel functional form (KCDE) and the weighting

scheme as in (2.1) or by integrating obtained PDF estimate with (2.1). That is,

F̂t(x) =
t∑
i=1

W

(
x− xi
β

)
wt,i for i = 1, ..., t and t = 1, ..., T, (2.2)

where W (·) is a kernel in the form of CDF and β is the CDF optimal bandwidth parameter

as described in Q. Li & Racine (2007). wt,i in (2.1) and (2.2) may be some non-negative

weights always satisfying
∑t

i=1wt,i = 1 and strategically allocating more weight to recent

observations. To achieve this and obtain one step ahead time conditional nonparametric PDF
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forecasts, Harvey & Oryshchenko (2012) employ recursive format of the simple exponential

weights as described in Gardner (1985) among others. The forecast is outlined by

f̂t+1|t(x) = ω · f̂t|t−1(x) +
1− ω
h
·K
(
x− xt
h

)
, (2.3)

where ω is the “learning rate” or more formally, parameter governing the dynamics of

exponential weights. By recursive substitution from (2.3) it can be shown that

f̂t+1|t = ω

[
ω · f̂t−1|t−2 +

1− ω
h
·K
(
x− xt−1

h

)]
+

1− ω
h
·K
(
x− xt
h

)
,

= ω2 · f̂t−1|t−2(x) + ω1 · 1− ω
h
·K
(
x− xt−1

h

)
+ ω0 · 1− ω

h
·K
(
x− xt
h

)
,

= ωıf̂t−ı(x) +

[
(1− ω)

t∑
i=ı

ωt−i

]
·K
(
x− xi
h

)
h−1; (2.4)

hence for estimators in (2.1) and (2.2) wt,i(ω) = (1 − ω) · ωt−i as given in Andersen et al.

(2006) can be employed for estimations. However, Harvey & Oryshchenko (2012) suggest

relying on

wt,i(ω) =


1− ω
1− ωt

· ωt−i if ω ∈ (0, 1),

1/t if ω = 1.

(2.5)

Weights in (2.5) are identical to weights used in Andersen et al. (2006) and obtained by

recursive substitution in (2.4) as t −→ ∞ if ω ∈ (0, 1) and simply take the form of equally

weighted expanding window if ω = 1. Figure 2.1 provides illustrations of the weights from

(2.5) for different ω values. Since this weighting scheme employs information only up to t,

following Harvey (1990), it is further referred to as the weighting scheme for exponential

filtering. Dynamic KCDE in (2.2) in the form of the one step ahead forecast of the time
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Figure 2.1: Exponentially declining weights for (a) filtering at a time t = T = 1000 and (b)
smoothing at a time t = 500; T = 1000 for different values of ω.

conditional CDF is then given by

F̂t+1|t(x) = ω · F̂t|t−1(x) + (1− ω) ·W
(
x− xt
β

)
. (2.6)

Following Gardner (1985) forecasts in (2.3) and (2.6) can be also rewritten in the error

correction form. That is,

f̂t+1|t(x) = ω · f̂t|t−1(x) + (1− ω) · et(x), (2.7)

where et(x) = h−1 ·K
(
x− xt
h

)
− f̂t|t−1(x), for PDF and

F̂t+1|t(x) = ω · F̂t|t−1(x) + (1− ω) ·Et(x), (2.8)
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where Et(x) = W

(
x− xt
β

)
− F̂t|t−1(x), for CDF respectively. Further recursive upgrades

may include a “stable” form to offer a slightly different dynamics. To be specific, following

variance targeting scheme as in Kristensen & Linton (2004), Shephard & Sheppard (2010)

and Francq et al. (2011) among others, “stable” PDF forecasts are given by

f̂t+1|t(x) = (1− ω∗ − ω) · f̄(x) +
ω∗

h
K

(
x− xt
h

)
+ ω · f̂t|t−1(x) (2.9)

and “stable” CDF forecasts are respectively outlined by

F̂t+1|t(x) = (1− ω∗ − ω) · F̄ (x) + ω∗ ·W
(
x− xt
β

)
+ ω · F̂t|t−1(x), (2.10)

where f̄(x) in (2.9) is the unconditional nonparametric PDF estimate and F̄ (x) in (2.10) is

the unconditional nonparameteric CDF estimate at the time T respectively. Recursions in

(2.9) and (2.10) are stable with ω∗ adjusting to account for unconditional PDF and CDF

estimates if ω∗ + ω < 1 and reverse to the recursions of the simple exponential form in (2.3)

and (2.6) if ω∗ + ω = 1.

A two-sided exponentially smoothed conditional PDF (f̂t|T (x)) and CDF (F̂t|T (x)) estimates

may also be constructed. To illustrate, an algorithm may be designed storing f̂t|t−1(x) and

F̂t|t−1(x) estimates from recursions (2.3) and (2.6) and then calculating backward recursions

rt−1(x) = ω

[
rt(x) + h−1K

(
x− xt
h

)
− f̂t|t−1(x)

]
; t = T, . . . , 2
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for PDF and

Rt−1(x) = ω

[
Rt(x) +W

(
x− xt
β

)
− F̂t|t−1(x)

]
; t = T, . . . , 2

for CDF, where rT = 0 and RT = 0 insuring that estimates at the time t = T are identical

with (2.3) and (2.6). Finally, a forward recursion

f̂t|T (x) = ω · f̂t|t−1(x) + (1− ω) ·
[
rt(x) + h−1K

(
x− xt
h

)]
; t = 1, . . . , T (2.11)

outlines a two-sided conditional PDF estimate, while

F̂t|T (x) = ω · F̂t|t−1(x) + (1− ω) ·
[
Rt(x) +W

(
x− xt
β

)]
; t = 1, . . . , T (2.12)

outlines a two-sided conditional CDF estimate. All of the above recursions may require a

suitable initialization procedures (e.g. if the entire conditional PDF and CDF estimates

at each time t are necessary). For (2.11) and (2.12) f̂1|T (x) =

[
r1(x) + h−1K

(
x− x1

h

)]
and F̂1|T (x) =

[
R1(x) +W

(
x− x1

β

)]
while for (2.3), (2.6), (2.7) and (2.8) f̂1|0(x) = 0

and F̂1|0(x) = 0 may be appropriate respectively. Most importantly, weights used in

computations are constrained to sum to unity. Computation algorithms should also run over

some predefined grid range [xmin;xmax] ∈ R and store matrices of et(x), Et(x) or rt(x), Rt(x)

depending on their recursive forms. Estimations may be simplified by precomputing weights

for time t such that t = m + 1, . . . , T , where m is some number of observations initializing

the procedure, with algorithms as in Koopman & Harvey (2003) among others and plugging

them into the estimators given in (2.1) and (2.2). To accommodate precomputed two-sided
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exponential weights, simple rearrangement of (2.1) provides

f̂t|T (x) =
1

h

T∑
i=1

K

(
x− xi
h

)
wt,T,i(ω) for i = 1, ..., t and t = 1, ..., T, (2.13)

for PDF estimate and similar rearrangement of (2.2) produces

F̂t|T (x) =
T∑
i=1

W

(
x− xi
β

)
wt,T,i(ω) for i = 1, ..., t and t = 1, ..., T, (2.14)

for CDF estimate. In a large sample two-sided exponential weights can be given by

wt,i(ω) =


1− ω

1 + ω − ωt − ωT−t+1
· ω|t−i| if ω ∈ (0, 1),

1/T if ω = 1,

(2.15)

where identical to the weights in (2.5) ω is the parameter governing weights’ dynamics. From

Harvey (1990) such weighting scheme may be referred to as exponential smoothing, since it

employs information on time T , commonly the entire sample at hand. Also note that the

weights in (2.15) for the middle of a large sample may take a reduced form of
1− ω
1 + ω

· ω|t−i|

and are illustrated in Figure 2.1 for different values of ω.

Dynamic kernel estimators may be also allowed to have varying bandwidths parameters

similar to adaptive forms as first defined by Breiman et al. (1977). For weights in (2.5)

dynamic adaptive KDE (AKDE) is given by

f̂t(x) =
t∑
i=1

K

(
x− xi
hi

)
wt,i(ω) · h−1

i (2.16)
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and for weights in (2.15) it is

f̂t|T (x) =
T∑
i=1

K

(
x− xi
hi

)
wt,T,i(ω) · h−1

i . (2.17)

Similarly, adaptive KCDE (AKCDE) for (2.5) is given by

F̂t(x) =
t∑
i=1

W

(
x− xi
βi

)
wt,i(ω) (2.18)

and for (2.15) by

F̂t|T (x) =
T∑
i=1

W

(
x− xi
βi

)
wt,T,i(ω) (2.19)

respectively. Recursive form of (2.16) for the one step ahead PDF forecasts is then

f̂t+1|t(x) = ω · f̂t|t−1(x) +
1− ω
ht
·K
(
x− xt
ht

)
(2.20)

and of (2.18) for the one step ahead CDF forecasts respectively is

F̂t+1|t(x) = ω · F̂t|t−1(x) + (1− ω) ·W
(
x− xt
βt

)
. (2.21)

Note that bandwidths ht and βt in the above recursions alter with each observation at

the estimation time t. This also allows imposing assumptions on the DGPs of bandwidths,

allocating them a specific time-varying structure (e.g. from Silverman’s (1986) rule-of-thumb,

bandwidths can be approximated with a scale/volatility parameter, hence a time-varying

dynamics as discussesd in Lucas & Zhang (2016) among others may be adopted for evolving
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bandwidths), and developing data and time depended plug-in bandwidths choice similar to

Altman & Leger (1995) respectively. Next, error correction form of (2.20) is then simply

f̂t+1|t(x) = ω · f̂t|t−1(x) + (1− ω) · et(x), (2.22)

where et(x) = ht ·K
(
x− xt
ht

)
− f̂t|t−1(x), and of (2.21)

F̂t+1|t(x) = ω · F̂t|t−1(x) + (1− ω) ·Et(x), (2.23)

where Et(x) = W

(
x− xt
βt

)
− F̂t|t−1. “Stable” form PDF forecast for (2.16) is consequently

specified as

f̂t+1|t(x) = (1− ω∗ − ω) · f̄(x) +
ω∗

ht
K

(
x− xt
ht

)
+ ω · f̂t|t−1(x), (2.24)

where f̄(x) is now can be given by the unconditional PDF estimate as described in Abramson

(1982) for example, and CDF forecast for (2.18) is then

f̂t+1|t(x) = (1− ω∗ − ω) · F̄ (x) + ω∗ ·W
(
x− xt
βt

)
+ ω · F̂t|t−1(x). (2.25)

Recursion for (2.17) can be constructed upon f̂t|t−1(x) output from (2.20) by first computing

rt−1 = ω

[
rt(x) + h−1

t K

(
x− xt
ht

)
− f̂t|t−1(x)

]
; t = T, · · · , 2,
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where rT = 0, and is given by

f̂t|T (x) = ω · f̂t|t−1(x) + (1− ω) ·
[
rt(x) + h−1

t K

(
x− xt
ht

)]
; t = 1, · · · , T. (2.26)

Similarly for (2.19) recursive form is produced calculating

Rt−1 = ω

[
Rt(x) +W

(
x− xt
βt

)
− F̂t|t−1(x)

]
; t = T, · · · , 2,

where RT = 0, and plugging it in to

F̂t|T (x) = ω · F̂t|t−1(x) + (1− ω) ·
[
Rt(x) +W

(
x− xt
βt

)]
; t = 1, · · · , T. (2.27)

If financial returns need to be accounted for trends, seasonality or serial correlation, Harvey

& Oryshchenko (2012) suggest overcoming imperfections in the above discussed recursive

estimators and their weighting schemes respectively, using parameteric pre-filtering for location

and/or scale. This pragmatic suggestion formally transforms h−1K(·), h−1
t K(·) and W (·)

(e.g. in (2.3), (2.16), (2.6) and (2.18) respectively) to

(hσ̂t|t−1)−1K

(
x− (xt − ŷt|t−1)

hσ̂t|t−1

)
= (hσ̂t|t−1)−1K

(
x− xt + ŷt|t−1

hσ̂t|t−1

)
;

W

(
x− (xt − ŷt|t−1)

βσ̂t|t−1

)
= W

(
x− xt + ŷt|t−1

βσ̂t|t−1

)
;

(htσ̂t|t−1)−1K

(
x− (xt − ŷt|t−1)

htσ̂t|t−1

)
= (htσ̂t|t−1)−1K

(
x− xt + ŷt|t−1

htσ̂t|t−1

)
;

W

(
x− (xt − ŷt|t−1)

βtσ̂t|t−1

)
= W

(
x− xt + ŷt|t−1

βtσ̂t|t−1

)
,
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where ŷt|t−1 GARCH/GAS conditional location/mean equation and σ̂t|t−1 GARCH/GAS

conditional location/variance equation outputs. These rough adjustments may be regarded

as necessary location and scale corrections, though the target here: is to attempt providing

accurate forecasts without pre-filtering.

2.3 Time-varying quantiles

2.3.1 Mining quantiles from time-varying kernel CDF estimate

Time-varying CDF estimate may be useful for obtaining time-varying quantiles. From

Nadaraya (1964) for dynamic nonparametric estimators it directly follows that

F̂t|t−1(x) = τ

and consequently dynamic τ -quantile may be obtained by solving

F̂−1
t|t−1(τ) = ξ̂t|t−1(τ),

where F̂t|t−1(x) is obtained with the appropriate nonparametric estimators in Section 2.2.

Harvey (2010) and Harvey & Oryshchenko (2012) suggest simplifying quantile extraction by

employing linear interpolation between

ξlow = maxi(ξi : F̂t(ξi) ≤ τ) and ξhigh = mini(ξi : F̂t(ξi) ≥ τ)
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and then using this point for initialization of optimization for the quantile of interest at a

time t. Obviously, to implement this, CDF estimate for each t on a fine grid is necessary. In

this work, numerical algorithm is designed to store CDF estimates for each t at the grid of at

least 10 000 points. For such grid scale, interpolation and then numerical solution may not

be even necessary. In fact, either ξlow = maxi(ξi : F̂t(ξi) ≤ τ) or ξhigh = mini(ξi : F̂t(ξi) ≥ τ)

is typically sufficient and is not very different from the final solution of the τ -quantile.

2.3.2 Nonparametric quantile regression

Yu & Jones (1998) show that quantiles can be modelled directly by the means of the

nonparameteric quantile regression, which in its simplest form can be given by

F̂t(x) =

∑
tKh(y − yi) ∗ I{xi<x}∑

tKh(y − yi)
, (2.28)

where Kh(y − yi) is a conventional PDF kernel function exploited as a weighting function

for observations and I{xi<x} is an indicator function taking the value of 1 if xi observation

is less than estimation point x as described in Taylor (2007). Estimator in (2.28) can take

more elaborate form of the double kernel quantile estimator outlined by

F̂t(x) =

∑
tKh(y − yi) ∗W [(x− xi)β−1]∑

tKh(y − yi)
, (2.29)

combining kernels for PDF and CDF estimation to approximate kernel weighted (from the

PDF component) and quantiles (from the CDF component) respectively. Gijbels et al. (1999)

provides proofs and specific technical conditions to obtain a set of weights for exponential
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filtering from
∑

tKh(y − yi) estimator; however from and similar to Taylor (2007), this can

be briefly described by first setting y = t and yi = i components of the
∑

tKh(y − yi)

weighting estimator. If K(·) is a one-sided exponential kernel allocating weights on data

to the left of the location t Taylor (2007) points out that Kh(y − yi) = ωt−i or for more

elaborate form of the exponential weights obtained by the recursive substitution in (2.4)

Kh(y − yi) = (1− ω)ωt−i and redefines (2.28) as

F̂t(x) =

∑
t(1− ω)ωt−i ∗ I{xi<x}∑

t(1− ω)ωt−i
(2.30)

and consequently redefines the estimator in (2.29) as

F̂t(x) =

∑
t(1− ω)ωt−i ∗W [(x− xi)β−1]∑

t(1− ω)ωt−i
(2.31)

for the large samples of financial returns. This also allows rewriting (2.30) and (2.31) in the

recursive formats of

F̂t(x) = ω · F̂t−1(x) + (1− ω) · I{xt<x}

and

F̂t(x) = ω · F̂t−1(x) + (1− ω) ·W
(
x− xt
β

)

respectively. With minor misuse of notation, the latter is essentially identical to the estimator

in (2.6), however approach to estimations is different. Right-hand side of (2.30) and (2.31) is

usually solved iteratively for different values of x until the estimation target of F̂t(x) = τ is

achieved with specific technical estimation details described in Gijbels et al. (1999), Taylor
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(2007) and Taylor & Jeon (2015) among others. This allows modelling each quantile with

individual ω parameter, providing different quantiles with different dynamics (e.g. as also

empirically identified in Taylor (2007)) and differentiates approaches discussed in Section

2.2 from other direct time-varying quantile modelling tools (e.g. as in Engle & Manganelli

(2004) and De Rossi & Harvey (2009) among others).

2.4 Unknown parameters estimation

2.4.1 Maximum likelihood

For exponential filtering, Harvey & Oryshchenko (2012) suggest maximizing a log-likelihood

function in the predictive recursive form given by

lf (ω, h) =
1

T −m

T−1∑
t=m

log[f̂t+1|t(xt+1)]

=
1

T −m

T−1∑
t=m

log

[
1

h

t∑
i=1

K

(
xt+1 − xi

h

)
wt,i(ω)

]
, (2.32)

where m is the number of observations initializing the estimation procedure and wt,i(ω)

are one-sided exponential weights. There is no firm theoretical foundation on the value

of m, but following Markovich’s (2008) guidelines for estimations in the weekly dependent

data enviroment, such as financial returns described in Cont (2001), good estimations with

recursive kernels may be data demanding. Therefore, Harvey & Oryshchenko (2012) follow

the recommended minimum by Markovich (2008) and set m = 100 in their applied examples.

Further, in this thesis for dynamic nonparametric estimators, m = 250 unless stated otherwise.
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This choice of m approximately equates to one year of trading data for daily financial returns

once holidays and weekends are excluded.

For exponential smoothing, Harvey & Oryshchenko (2012) obtain unknown parameters by

maximizing a modified log-likelihood cross-validation (CV) criterion given by

ls(ω, h) =
1

T

T∑
t=1

log[f̂−t|T (xt)]

=
1

T

T∑
t=1

log

[
1

h

T∑
i=1, i 6=t

K

(
xt − xi
h

)
wt,T,i(ω)

]
, (2.33)

where wt,T,i(ω) are two-sided exponential weights.

2.4.2 Least-squares

From the LSE routines derived in Q. Li & Racine’s (2007), but for the context of the

exponentially weighted time-series data, it can be shown that

EX [f̂t+1(X)] =

∫
f̂t+1|t(x)ft+1(x)dx

and 2

EX [f̂t(X)] =

∫
f̂t|T (x)ft(x)dx,

where EX denotes expectations with respect to the true DGP X and not with respect to the

time-series observations {xi}ti=1 and {xi}Ti=1
i 6=t

allocated to estimate f̂(·) respectively. Similar to

likelihoods in (2.32) and (2.33) of Harvey & Oryshchenko (2012) and standard LSE practises

described in Q. Li & Racine (2007), expectations over the DGP can be fulfilled by replacing

2
∫∞
−∞ =

∫
unless stated otherwise.
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EX with appropriately chosen exponentially weighted sample average. When estimations

target is exponential filtering, expectations are given by

EX [f̂t+1(X)] ≈ 1

h

t∑
i=1

K

(
xt+1 − xi

h

)
wt,i(ω), (2.34)

and when estimations target is exponential smoothing, expectations are outlined by

EX [f̂t(X)] ≈ 1

h

T∑
i=1,i 6=t

K

(
xt − xi
h

)
wt,T,i(ω) (2.35)

respectively. Equation in (2.34) approximates DGP with respect to the predictive observation

xt+1 using exponentially weighted observations up to t and weighting scheme for exponential

filtering. On the other hand, for (2.35) there are less information restrictions and thus,

equation in (2.35) constitutes a different expectation, which is fulfilled by the exponentially

smoothing PDF with respect to the omitted xt observation. The latter is an explicit

modification of the common leave-one-out estimator as in Q. Li & Racine (2007) designed to

accommodate two-sided exponential weights. Forming expectations set by (2.34) and (2.35),

it is relatively straightforward to provide least-squares loss functions for unknown parameters

estimation.

LSE for filtering in the form of PDF begins with

lsf (ω, h) =
1

T −m

T−1∑
t=m

∫ [
ft+1(x)− f̂t+1|t(x)

]2

dx, (2.36)
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where the main difference from (2.32) is that the objective is minimization of the squared

integrated distance between estimated and true PDFs. (2.36) decomposes to

lsf (ω, h) =
1

T −m

T−1∑
t=m

[∫
ft+1(x)2dx− 2

∫
ft+1(x)f̂t+1|t(x)dx+

∫
f̂t+1|t(x)2dx

]
,

where the first squared integrand is irrelevant for optimization and can be omitted providing

lsf (ω, h) =
1

T −m

T−1∑
t=m

[∫
f̂t+1|t(x)2dx− 2

∫
ft+1(x)f̂t+1|t(x)dx

]
. (2.37)

In (2.37) with (2.1) the first squared integrand is straightforward, while double integrated

cross product of the true PDF and its estimate now follow from (2.34) providing

lsf (ω, h) =
1

T −m

T−1∑
t=m

[
1

h2

t∑
j=1

t∑
i=1

∫
K

(
x− xi
h

)
wt,i(ω)K

(
x− xj
h

)
wt,j(ω)dx

−2

h

t∑
i=1

K

(
xt+1 − xi

h

)
wt,i(ω)

]

or with a twofold convolution kernel

lsf (ω, h) =
1

T −m

T−1∑
t=m

[
1

h

t∑
j=1

(
t∑
i=1

K̄

(
xj − xi
h

)
wt,i(ω)

)
wt,j(ω)

−2

h

t∑
i=1

K

(
xt+1 − xi

h

)
wt,i(ω)

]
, (2.38)

where wt,i(ω) are one-sided exponential weights, m is the constant initializing the procedure

as in (2.32) and K̄ (·) is a twofold convolution kernel. LSE for smoothing in the form of PDF
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requires decomposition steps relying on (2.35) and is similar to (2.33) respectively. That is,

lss(ω, h) =
1

T

T∑
t=1

∫ [
ft(x)− f̂−t|T (x)

]2

dx,

=
1

T

T∑
t=1

[∫
ft(x)2dx− 2

∫
ft(x)f̂t|T (x)dx+

∫
f̂t|T (x)2dx

]
;

=
1

T

T∑
t=1

[∫
f̂t|T (x)2dx− 2

∫
ft(x)f̂t|T (x)dx

]
;

=
1

T

T∑
t=1

[
1

h2

T∑
j=1

T∑
i=1

∫
K

(
x− xi
h

)
wt,T,i(ω)K

(
x− xj
h

)
wt,T,j(ω)dx

−2

h

T∑
i=1, i 6=t

K

(
xt − xi
h

)
wt,T,i(ω)

]
;

=
1

T

T∑
t=1

[
1

h

T∑
j=1

(
T∑
i=1

K̄

(
xj − xi
h

)
wt,T,i(ω)

)
wt,T,j(ω)

−2

h

T∑
i=1,i 6=t

K

(
xt − xi
h

)
wt,T,i(ω)

]
. (2.39)

Rewriting (2.36) for CDF provides

LSf (ω, β) =
1

T −m

T−1∑
t=m

∫ [
Ft+1(x)− F̂t+1|t(x)

]2

dx,

which for the approximation of the DGP as in Bowman et al. (1998) and for CDF estimate

outlined by (2.2) is given by

LSf (ω, β) =
1

T −m

T−1∑
t=m

∫ [
I{xt+1<x} −

t∑
i=1

W

(
x− xi
β

)
wt,i(ω)

]2

dx, (2.40)
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where I{xt+1<x} is already familiar indicator function taking the value of 1 if predictive

observation xt+1 is less than estimation point x. Although approximation of the DGP as

in Bowman et al. (1998) provides a wide ground for (2.40) to be modified for the entire

range of recursive estimators in Section 2.2 and “stable” form in (2.10) in particular, aims of

this work do not go beyond the weighting schemes used in empirical applications of Harvey

& Oryshchenko (2012). Therefore, all loss function expressions’ style matches the original

work.

LSE for smoothing for CDF is then provided by

LSs(ω, β) =
1

T

T∑
t=1

∫ [
Ft(x)− F̂t|T (x)

]2

dx,

=
1

T

T∑
t=1

∫ [
I{xt<x} −

T∑
i=1, i 6=t

W

(
x− xi
β

)
wt,T,i(ω)

]2

dx. (2.41)

For all parameters estimation functions a choice of the kernel functional form is necessary. For

stationary or close to being stationary data as the most of financial returns (e.g. Cont (2001))

with dynamic kernel estimators, selection of the kernel functional form is less crucial than

the choice of the bandwidth parameter (e.g. Robinson (1983)) similar to the “static” kernel

estimators (e.g. Wand & Jones (1995)). A pragmatic and popular choice is Gaussian kernel.

From Q. Li & Racine (2007), its PDF form is given by K(x) =
1√
2π
e(−x2/2), its convolution

form by
∫
K(y)K(x− y)dy = K̄(x) =

1√
4π
e(−x2/4) and finally, its CDF form is outlined by

W (x) =
1√
2π

∫ x
−∞ e

(−z2/2)dz respectively. Technically, convolution (e.g. as in (2.37)) for LSE

squared integrand with Gaussian kernel is derived under the data independence assumptions,

but Hart & Vieu (1990) experiments for the LSE efficiency under the dependent data, indicate
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that LSE seems to have an ability of tolerating moderate dependence levels in the data under

investigation (e.g. below 0.5 in the absolute values as given by the autocorrelation functions

(ACFs)). Therefore in Section 2.6, to meet prior estimation formalities before the empirical

comparisons of MLE and its LSE alternatives, alongside some descriptive statistics, ACFs

for the raw log-returns of the data under investigation are also provided.

In all further nonparametric computations Gaussian kernels are employed unless stated

otherwise. Unbounded support of the Gaussian kernels theoretically insures that the density

is not zero at any estimation point and potentially benefits estimations with MLE, however,

problem of the different tail decay factors for DGP and employed kernel, remains unresolved

for such estimations. To be specific, Hall (1987b) points out that if the DGP exhibit tails

decay slower than is specified by the kernel functional form, MLE offers h → ∞. It is

worthwhile highlighting that ussually for filtering estimations are performed under some

information restrictions and therefore, sudden market corrections may be more problematic

for MLE for such estimations than under the CV conditions discussed in Hall (1987b).

2.4.3 Dynamic binned estimators and least-squares

Unlike MLE, LSE typically demands more computing power to perform identification of

the optimal unknowns, since it has more components to evalute in each iteration. Problem

of faster evaluation with LSE for parameters optimization in indepedent and identically

distributed (i.i.d.) data framework mainly remains for the multivariate data settings (e.g.

Sain (2002)), however recursive forms for the time series data, where size of the estimation

blocks’ increase with every iteration, bring the problem of the time efficient estimations
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to the univariate time series setting. Binned estimators are well-known to provide good

evaluations of the parameters and reduce computational burden in the i.i.d. univariate set

up (e.g. Scott & Sheather (1985), Wand & Jones (1995) and Hall & Wand (1996) among

others) and can also be rewritten to accommodate weighting schemes appropriate for the

time series modelling and obtain dynamic expression forms.

For weights in (2.5) a dynamic binned KDE (BKDE) for exponential filtering can be expressed

as

ḟt+1|t(x) =
1

h

a∑
s=1

K

(
x− cs
h

)
ẇt,s(ω), (2.42)

where ẇt,s(ω) =
∑t

i=1 I{xi∈Bs} · wt,i(ω), which essentially is a total dynamic weights count

function for observations in each bin Bs up to the estimation time t for the total number of

non-empty bins a with bin centres cs. Employing a similar strategy but weights in (2.15) a

dynamic BKDE for exponential smoothing of PDF is then can be given by

ḟt|T (x) =
1

h

a∑
s=1

K

(
x− cs
h

)
ẇt,T,s(ω), (2.43)

where ẇt,T,s(ω) =
∑T

i=1 I{xi∈Bs} · wt,T,i(ω). Now, for dynamic binned KCDE (BKCDE), for

exponential filtering of CDF, it is obtained

Ḟt+1|t(x) =
a∑

s=1

W

(
x− cs
β

)
ẇt,s(ω) (2.44)

and for exponential smoothing respectively

Ḟt|T (x) =
a∑

s=1

W

(
x− cs
β

)
ẇt,T,s(ω). (2.45)
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Estimators in (2.42), (2.43), (2.44) and (2.45) can also be transformed to provide bandwidths

for dynamic adaptive PDF and CDF estimation, as outlined in Section 2.2, mimicking the

approach of Sain & Scott (1996) and Hazelton (2003) for i.i.d. framework and yielding

hi = hs(xi ∈ Bs) and βi = βs(xi ∈ Bs) for the dynamic adaptive estimations respectively.

For exponential filtering of PDF that is,

f̃t+1|t(x) =
a∑

s=1

K

(
x− cs
hs

)
ẇt,s(ω) · h−1

s , (2.46)

for exponential smoothing of PDF

f̃t|T (x) =
a∑

s=1

K

(
x− cs
hs

)
ẇt,T,s(ω) · h−1

s , (2.47)

for exponential filtering of CDF

F̃t+1|t(x) =
a∑

s=1

W

(
x− cs
βs

)
ẇt,s(ω) (2.48)

and finally, for exponential smoothing of CDF

F̃t|T (x) =
a∑

s=1

W

(
x− cs
βs

)
ẇt,T,s(ω). (2.49)

All of the binned time conditional PDF and CDF expressions can also be rewritten in the

recursive format as in Section 2.2 for the full-scale estimators, however, the main target of

the binned estimators is to achieve less time consuming, hopefully accurate evaluations, with

LSE and vary the bandwidth parameter over the range of returns within their functionality.
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Therefore, for clearness and simplicity reasons, only estimators which are actually used for

computations are provided.

To achieve outlined estimation targets with binned estimators, a binning strategy can be

decisive. There is sufficiently known on binning details and strategies for i.i.d. estimation

framework (e.g. Hall & Wand (1996)), however specific binning guidelines for the time series

recursive estimations are yet to be reported. Hypothetically, time series framework implies

that bins and their respective bin centres should be time-varying for exponential filtering.

That is: Bt,s and ct,s, which can be defined on the basis of the parsimonious quantile based

binning recommendation of Hazelton (2003) among others, but for the time-varying quantiles

specifications to match information assumptions behind the dynamic estimations. To be

more specific, time-varying histograms as provided in Harvey (2010), or any other approach

to dynamic quantiles from Section 2.3, can be used to provide dynamic bins and their bin

centres for estimations. This can be viewed as a necessary dynamic pilot estimation to

perform binned related evaluations. While this might be justified for the dynamic adaptive

estimations, it may be more problematic to explain an additional layer of complexity, if the

estimation aim is to merely speed up unknown parameters estimation with LSE.3 Though

keeping bins constant is less ground breaking, it is simple and may provide relative stability

at the estimation stage. For the constant bins specifications, binned estimators’ dynamics are

driven only by the time-varying bin weights, therefore, the key challenge for not evolving bins

may be approximation of the parameters governing the dynamics of the weighting scheme.

On the other hand, for exponential smoothing, constant bins do not violate information

3Dynamic bins should require a matrix of dynamic quantiles from the pilot estimate upon which
vectors/matrices, depending on the computation algorithm design, of dynamic bin centres and bin weights
to be computed.
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assumptions and parameters obtained with this type of binned estimators may be exploited

for filtering. This is the most appropriate when the dynamic kernel estimators serve an

exploratory purpose, as it ussually is for this division of statistical/econometrics methods in

general, and also discussed by Harvey & Oryshchenko (2012), though not in the context of

dynamic binned estimators.

As for the dynamic adaptive estimations, it may be also interesting pre-computing weights

for the ω parameter obtained by other methods to speed up estimations. Present chapter

does not alter weighting schemes used in Harvey & Oryshchenko’s (2012) applications and

though, higher flexibility in the bandwidth parameters through adaptive estimations should

hypothetically improve overall density and distributions specifications, it cannot go beyond

the forecasts evaluation characteristics dependent on the weighting scheme as discussed in

the next section. ω obtained with MLE may be of a particular interest, since estimation

performance of the exponential learning rate and bandwidth by MLE can be separated.

However, for the binned reliant bandwidths variation strategy, it may be more informative

also experimenting with the ω parameter obtained for the binned simplifications as in (2.42),

(2.43), (2.44) and (2.45).

Now, keeping bin specifications less burdensome, LSE for the time series estimations can

be rearranged for faster evaluations and for multiple bandwidths provision with previously

outlined dynamic binned estimators for PDF and CDF. First, rewriting (2.36) for (2.42)
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provides

ls
b
f (ω, h) =

1

T −m

T−1∑
t=m

∫ [
ft+1(x)− ḟt+1|t(x)

]2

dx,

=
1

T −m

T−1∑
t=m

[∫
ft+1(x)2dx− 2

∫
ft+1(x)ḟt+1|t(x)dx+

∫
ḟt+1|t(x)2dx

]
,

=
1

T −m

T−1∑
t=m

[∫
ḟt+1|t(x)2dx− 2

∫
ft+1(x)ḟt+1|t(x)dx

]
,

=
1

T −m

T−1∑
t=m

[
1

h2

a∑
s=1

a∑
q=1

∫
K

(
x− cs
h

)
ẇt,s(ω)K

(
x− cq
h

)
ẇt,q(ω)dx

−2

h

a∑
s=1

K

(
xt+1 − cs

h

)
ẇt,s(ω)

]
,

=
1

T −m

T−1∑
t=m

[
1

h

a∑
s=1

(
a∑

q=1

K̄

(
cs − cq
h

)
ẇt,q(ω)

)
ẇt,s(ω)

−2

h

a∑
s=1

K

(
xt+1 − cs

h

)
ẇt,s(ω)

]
, (2.50)

where ẇt,s(ω) is the one-sided non-empty bins exponential weights count function as in (2.42),

m is the constant initializing the procedure and K̄ (·) is a convolution kernel similar to the
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full-scale LSE for PDF loss function in (2.38). Then, (2.39) with (2.43) is now outlined by

ls
b
s(ω, h) =

1

T

T∑
t=1

∫ [
ft(x)− ḟ−t|T (x)

]2

dx,

=
1

T

T∑
t=1

[∫
ft(x)2dx− 2

∫
ft(x)ḟ−t|T (x)dx+

∫
ḟ−t|T (x)2dx

]
,

=
1

T

T∑
t=1

[∫
ḟ−t|T (x)2dx− 2

∫
ft(x)ḟ−t|T (x)dx

]
,

=
1

T

T∑
t=1

[
1

h2

a∑
s=1

a∑
q=1

∫
K

(
x− cs
h

)
ẇt,T,s(ω)K

(
x− cq
h

)
ẇt,T,q(ω)dx

−2

h

a∑
s=1

K

(
xt − cs
h

)
ẇt,T,s(ω)

]
,

=
1

T

T∑
t=1

[
1

h

a∑
s=1

(
a∑

q=1

K̄

(
cs − cq
h

)
ẇt,T,q(ω)

)
ẇt,T,s(ω)

−2

h

a∑
s=1

K

(
xt − cs
h

)
ẇ∗t,T,s(ω)

]
, (2.51)

where ẇ∗t,T,s(ω) =
∑t

i=1
t6=i

I{xi∈Bs}wt,T,i(ω). Consequently, rewriting (2.40) for (2.44) provides

LSbf (ω, β) =
1

T −m

T−1∑
t=m

∫ [
Ft+1(x)− Ḟt+1|t(x)

]2

, (2.52)

=
1

T −m

T−1∑
t=m

∫ [
I{xt+1<x} −

a∑
s=1

W

(
x− cs
β

)
ẇt,s(ω)

]2

(2.53)

and (2.41) for (2.45) is rearranged to

LSbs(ω, β) =
1

T

T∑
t=1

∫ [
Ft(x)− Ḟ−t|T (x)

]2

, (2.54)

=
1

T

T∑
t=1

∫ [
I{xt<x} −

a∑
s=1

W

(
x− cs
β

)
ẇ∗t,T,s(ω)

]2

. (2.55)
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Finally, rewriting (2.36) for (2.46) provides

ls
a
f (ω, hs) =

1

T −m

T−1∑
t=m

∫ [
ft+1(x)− f̃t+1|t(x)

]2

dx,

=
1

T −m

T−1∑
t=m

[∫
ft+1(x)2dx− 2

∫
ft+1(x)f̃t+1|t(x)dx+

∫
f̃t+1|t(x)2dx

]
,

=
1

T −m

T−1∑
t=m

[∫
f̃t+1|t(x)2dx− 2

∫
ft+1(x)f̃t+1|t(x)dx

]
,

=
1

T −m

T−1∑
t=m

[
a∑

s=1

a∑
q=1

∫
K

(
x− cs
hs

)
ẇt,s(ω)h−1

s ·K
(
x− cq
hq

)
ẇt,q(ω)h−1

q dx

−2
a∑

s=1

K

(
xt+1 − cs

hs

)
ẇt,s(ω)h−1

s

]
,

=
1

T −m

T−1∑
t=m

[
a∑

s=1

(
a∑

q=1

K̄

(
cs − cq
hq

)
ẇt,q(ω)

)
ẇt,s(ω)h−1

s

−2
a∑

s=1

K

(
xt+1 − cs

hs

)
ẇt,s(ω)h−1

s

]
. (2.56)
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Likewise, (2.39) for (2.47) is

ls
a
s(ω, hs) =

1

T

T∑
t=1

∫ [
ft(x)− f̃−t|T (x)

]2

dx,

=
1

T

T∑
t=1

[∫
ft(x)2dx− 2

∫
ft(x)f̃−t|T (x)dx+

∫
f̃−t|T (x)2dx

]
,

=
1

T

T∑
t=1

[∫
f̃−t|T (x)2dx− 2

∫
ft(x)f̃−t|T (x)dx

]
,

=
1

T

T∑
t=1

[
a∑

s=1

a∑
q=1

∫
K

(
x− cs
hs

)
ẇt,T,s(ω)h−1

s ·K
(
x− cq
hq

)
ẇt,T,q(ω)h−1

q dx

−2
a∑

s=1

K

(
xt − cs
hs

)
ẇt,T,s(ω)h−1

s

]
,

=
1

T

T∑
t=1

[
a∑

s=1

(
a∑

q=1

K̄

(
cs − cq
hq

)
ẇt,T,q(ω)

)
ẇt,T,s(ω)h−1

s

−2
a∑

s=1

K

(
xt − cs
hs

)
ẇ∗t,T,s(ω)h−1

s

]
, (2.57)

while (2.41) for (2.48)

LSaf (ω, βs) =
1

T −m

T−1∑
t=m

∫ [
Ft+1(x)− F̃t+1|t(x)

]2

, (2.58)

=
1

T −m

T−1∑
t=m

∫ [
I{xt+1<x} −

a∑
s=1

W

(
x− cs
βs

)
ẇt,s(ω)

]2

(2.59)

and (2.41) for (2.49)

LSas(ω, βs) =
1

T

T∑
t=1

∫ [
Ft(x)− F̃−t|T (x)

]2

, (2.60)

=
1

T

T∑
t=1

∫ [
I{xt<x} −

a∑
s=1

W

(
x− cs
βs

)
ẇ∗t,T,s(ω)

]2

. (2.61)
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2.5 Forecasts evaluation criteria

Diebold et al. (1998) point out that good PDF forecasts are described by the independently

and uniformly distributed Probability Integral Transforms (PITs). PITs for such forecasts

evaluations can be obtained with

F̂t|t−1(xt) =
T∑
t=m

[
t−1∑
i=1

W

(
xt − xi
β

)
wt,i(ω)

]
, (2.62)

if the density forecasts are performed with (2.1) and

F̂t|t−1(xt) =
T∑
t=m

[
t−1∑
i=1

W

(
xt − xi
βi

)
wt,i(ω)

]
, (2.63)

if the forecasts are obtained with (2.16) and evaluations are restricted for exponential filtering

as in Harvey & Oryshchenko (2012). It is worthwhile pointing out that both time-varying

quantiles and PITs are CDF optimal outputs. Therefore, parameters optimal for CDF may

have higher preference in the further discussion than the estimated parameters optimal for

PDF.

Uniformity of the PITs, obtained by (2.62) or by (2.63), can be then assessed with Kolmogorov-

Smirnov (K-S) and/or Cramer-von Mises (CvM) nonparametric tests. To specify, K-S test

quantifies departures from the uniformity with

K − Sd = sup|F̃k(β, ω)− Uk|, (2.64)
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where Uk denotes the true uniform CDF at some grid estimation point k and F̃k(β, ω) is

empirical CDF (eCDF) estimate of the PITs at k with sup indicating maximum value of the

absolute distances between PITs eCDF and the expected true uniform CDF. On the other

hand, CvM test has the same components as in (2.64), but quantifies departures from the

uniformity differently. That is,

CvMd =
∑
k

[
F̃k(β, ω)− Uk

]2

. (2.65)

Patton (2013) highlights that for both (2.64) and (2.65) asymptotic properties are well-known

and thus, their respective p-values (K − Sp and CvMp) are often available within relevant

computing software enviroments. K − Sp and CvMp values are likelihoods to observe a

sample of the same size with the same maximum absolute for K-S and total squared for

CvM distances from the target distribution. Hence roughly, the higher are the K − Sp or

CvMp, the greater are the chances that PITs are uniformly distributed. Patton (2013) sets

PITs uniformity decision cut-off points for both tests at the 5% significance levels. Diebold et

al. (1998), however, argue that K-S and CvM tests on thier own are not sufficient for forecasts

evaluations, since they only evaluate uniformity of the PITs and neglect their independence

property. Diebold et al. (1998) then proceed suggesting an “expert judgement” based visual

assesment criteria, which has been quantified into a convinient likelihood ratio (LR) test by

Berkowitz (2001).

If PITs are transformed with Φ−1
(
F̂t|t−1(xt)

)
, where Φ−1(·) is the inverse CDF of the

standard normal, they may be expected to be independent and normally distributed with

µ = 0, ρ = 0 and σ2 = 0 for zt − µ = ρ(zt−1 − µ) + εt, where zt = Φ−1
(
F̂t|t−1(xt)

)
. The test
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for PITs normality and independence is then formally defined as

LRd = −2(logL(0, 1, 0)− logL(µ̂, σ̂2, ρ̂)) (2.66)

and is expected to be χ2(3) distributed with the rejection threshold set up at the 5%

significance level similar to the K-S and CvM tests. Further statistic computed with (2.64),

(2.65) and (2.66) is used to evaluate forecasts for the data described in the next section.

Also note that further evaluations with (2.62) and (2.63) are also made for the PDF by MLE

and LSE optimal parameters, but following notation and estimators convergence formalities,

they are provided in this form. Generally, such practice is not uncommon, see Q. Li & Racine

(2008) for example, and is actually used in Harvey & Oryshchenko (2012).

2.6 Data

2.6.1 Data and descriptive statistics

To survey performance of parameters provided by the estimation approaches described

in Section 2.4 a data set consisting of ten daily logarithmic financial returns has been

constructed. It includes log-returns for stock index prices, commodities and currency exchange

rates obtained such as:

xι,t = log

(
Pι,t
Pι,t−1

)
· 100,
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Date Returns T MIN MAX Mean St.d. Skew. Kurt. LB(12) LB(12)2 JB AH(12)

30.03.01-31.08.17 BRENT 4172 -19.89 18.13 0.019 2.23 -0.09 8.59 0.07 ≈ 0.00 ≈ 0.00 ≈ 0.00
30.03.01-31.08.17 NOK/USD 4136 -5.92 4.42 -0.003 0.77 0.11 5.89 0.47 ≈ 0.00 ≈ 0.00 ≈ 0.00
30.03.01-31.08.17 RUB/USD 4080 -12.86 10.94 0.017 0.83 0.76 41.62 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00
28.03.13-27.03.18 GBP/USD 1303 -8.39 3.001 -0.005 0.58 -2.26 36.89 0.85 ≈ 0.00 ≈ 0.00 ≈ 0.00
10.12.98-28.06.02 NASDAQ 890 -10.16 13.25 -0.036 2.47 0.16 4.73 0.06 ≈ 0.00 ≈ 0.00 ≈ 0.00
03.01.06-01.03.10 S&P 500 1045 -9.46 10.95 -0.012 1.64 -0.22 11.35 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00
03.01.06-01.03.10 FTSE 100 1052 -9.26 9.38 0.004 1.52 -0.09 6.92 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00
01.09.88-28.02.92 NIKKEI 225 857 -6.82 12.43 -0.02 1.40 0.50 12.34 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00
01.01.10-30.01.15 GOLD/USD 1325 -9.51 3.98 0.011 1.10 -0.84 9.04 0.96 ≈ 0.00 ≈ 0.00 ≈ 0.00
28.03.13-27.03.18 BTC/USD 1301 -60.1 51.70 0.349 6.14 -0.62 25.79 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00

Table 2.1: Descriptive statistics for the specified returns series, where T denotes sample size,
MIN minimum value, MAX maximum value, St.d. standard deviation, Skew. skewness,
Kurt. kurtosis, LB(12) and LB(12)2 the Ljung-Box probabilities for no serial correlation
of order 12 in returns level, xt and squared demeaned returns, (xt − x̄)2 respectively, JB
the Jarque-Bera probabilities for normality and AH(12) the Lagrange Multiplier test for
autoregressive conditional heteroscedasticity probabilities of order 12 for no autocorrelation,
normality and homoscedasticity.

where ι indexes the financial time series price/exchange rate and corresponding returns on the

trading day t.4 Obtained log-returns are described in Table 2.1 and are illustrated in Figure

2.2. There were no specific guidelines adopted for composition of this data set. However, a

crucial criteria for inclusion was: to obtain log-returns which cover at least one commonly

recognized event causing or directly connected to the financial turbulence and posses common

characteristics for log-returns as consolidated by Cont (2001). Therefore, composed data

set consists of returns of different length, ranging from medium to large sample sizes, and

covers such events as “BREXIT” referendum outcome correction for GBP/USD exchange

rate, “Dot-com” bubble collapse for NASDAQ composite index, cryptocurrencies “hype” for

BTC/USD, Japanese “asset price” bubble collapse for NIKKEI225 and unfulfilled “quantitative

easing” expectations correction for GOLD/USD, while S&P500 and FTSE100 exemplify,

usually very representative in financial research, financial crisis associated volatility. Specific

4Further all log-returns for computations are obtained using this expression unless stated otherwise. In
Chapter 1, log-returns are not scaled by 100, merely to insure that all evaluated likelihoods have negative
values and are convenient for the log-likelihood based model comparisons.
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dates and time-periods for the obtained log-returns are provided in Table 2.1 and/or could

be found on the time series plots of these observations in Figure 2.2.

Considered samples of the larger size are also interesting for estimations and comparisons.

For example, obtained BRENT log-returns cover volatility in the hydrocarbon markets over

the periods of both substantial price increases and meltdowns linked to the financial crisis

events and concerns on the oil market oversupplies. Therefore, inclusion of NOK/USD and

RUB/USD may be also interesting from the applied research perspective of the currencies

of oil exporting countries. For example, despite sharp oil market corrections, considered

NOK/USD returns depict the lowest kurtosis value among series reported in Table 2.1. On

the other hand, RUB/USD depicts the highest kurtosis value. It is interesting to investigate

how considered methods for parameters estimation perform for each of these series, since

NOK/USD can be concluded to be relatively light-tailed, BRENT moderate-tailed and

RUB/USD heavy-tailed respectively. Oil and oil exporting countries contagion researchers

may also be interested for considering these series for investigation, since central banks

of these two countries had opposite monetary policy responses for the oil market lows in

the late 2015 - early 2016 in addition to the contrasting characteristics of these series and

BRENT log-returns. Therefore, considered time series are interesting not only from an

applied econometric perspective, but also from an economy policy perspective.

To sum up, returns under investigation can be described as non-normal, heavy-tailed, with

evident volatility clustering and should be fruitful for empirical investigation of the unknown

parameters’ role in estimations with the dynamic kernel methods. Sharp market corrections

that are linked to the events briefly described above are not hard to visually distinguish on

the corresponding time series plots for these returns in Figure 2.2, while their ACFs plots
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Figure 2.2: Time series plots for the daily log-returns of BRENT, NOK/USD, RUB/USD, GBP/USD, NASDAQ, SP500,
FTSE100, NIKKEI225, GOLD/USD and BTC/USD with their autocorrelation functions.
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parameters BRENT NOK/USD RUB/USD GBP/USD NASDAQ S&P 500 FTSE 100 NIKKEI 225 GOLD/USD BTC/USD

θ0 0.0382 −0.0156 0.0033 0.0028 0.0656 0.0709∗∗∗ 0.0624∗∗∗ 0.0709∗∗ 0.0443∗∗ 0.2529
θ1 0.8371∗∗∗ 0.7430∗ − −0.887∗∗∗ −0.670 0.6994∗∗∗ 0.6445∗∗∗ −0.404∗∗ −0.295 0.9735∗∗∗

θ2 −0.8227∗∗∗ −0.7541∗∗∗ 0.0694∗∗∗ 0.8700∗∗∗ 0.7028 −0.786∗∗∗ −0.7154∗∗∗ 0.5017∗∗∗ 0.2444 −0.957∗∗∗

α0 0.0119∗∗∗ 0.0032∗∗∗ 0.00003 0.0016 0.1595∗∗ 0.0087∗∗ 0.0177∗∗ 0.0177∗∗ 0.0148∗∗ 0.6869
α1 0.0391∗∗∗ 0.0336∗∗∗ 0.1055∗∗∗ 0.0369∗∗∗ 0.0857∗∗∗ 0.0909∗∗∗ 0.1176∗∗∗ 0.1561∗∗∗ 0.0428∗∗∗ 0.2106∗∗∗

α2 0.9593∗∗∗ 0.9609∗∗∗ 0.8935∗∗∗ 0.9586∗∗∗ 0.8873∗∗∗ 0.9080∗∗∗ 0.8794∗∗∗ 0.8428∗∗∗ 0.9481∗∗∗ 0.7884∗∗∗

ν 7.1556 9.7599 5.6439 5.1013 29.97 5.6279 9.5503 7.5402 4.0332 3.0516

Table 2.2: ARMA & GARCH pre-filtering parameters for the specified series. ∗, ∗∗ and ∗∗∗

indicate statistical significance at the 10%, 5% and 1% levels.

illustrate that these series are weekly dependent and could be expected to have a small-scaled

impact on the parameters estimated with LSE routines from Section 2.4. All data on

the currency rates were obtained from the central bank’s databases of the corresponding

countries, all other stock indices and exchange rates were supplied by Bloomberg.

2.6.2 Estimated parameters

Parameters optimizing loss functions described in Section 2.4 are estimated over two sets

of returns illustrated in Figure 2.2. The first set includes raw returns, while the second set

encompasses these returns after ARMA (1,1) & GARCH (1,1) pre-filtering similar to Harvey

& Oryshchenko (2012). The ARMA & GARCH setting employed can be broadly outlined

by

yt = θ0 + θ1yt−1 + θ2εt−1 + εt,

σ2
t = α0 + α1ε

2
t−1 + α2σ

2
t−1;√

ν

σ2
t (ν − 2)

· εt ∼ i.i.d. tν

and is performed using rugarch package of Ghalanos (2018). Note that the above setting

did not converge for RUB/USD series and therefore ARMA (1,0) & GARCH (1,1) under
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# Returns LSE PDF - filtering LSE PDF - smoothing MLE - filtering MLE - smoothing LSE CDF - filtering LSE CDF smoothing

1 BRENT h = 0.5418, ω = 0.9868 h = 0.3780, ω = 0.9919 h = 0.9835, ω = 0.9785 h = 0.9675, ω = 0.9620 β = 0.4261, ω = 0.9841 β = 0.4289, ω = 0.9788
2 NOK/USD h = 0.2582, ω = 0.9837 h = 0.1913, ω = 0.9908 h = 0.3528, ω = 0.9847 h = 0.2929, ω = 0.9813 β = 0.1879, ω = 0.9866 β = 0.1312, ω = 0.9829
3 RUB/USD h = 0.0681, ω = 0.9769 h = 0.0655, ω = 0.9873 h = 0.3359, ω = 0.9845 h = 0.2439, ω = 0.9620 β = 0.0586, ω = 0.9703 β = 0.0552, ω = 0.9452
4 GBP/USD h = 0.1435, ω = 0.9855 h = 0.1236, ω = 0.9836 h = 0.4761, ω = 0.9999 h = 0.3811, ω = 0.9769 β = 0.1249, ω = 0.9896 β = 0.0695, ω = 0.9882
5 NASDAQ h = 1.0241, ω = 0.9656 h = 0.7807, ω = 0.9660 h = 1.2796, ω = 0.9690 h = 1.0535, ω = 0.9474 β = 0.8237, ω = 0.9757 β = 0.5143, ω = 0.9707
6 S&P 500 h = 0.3026, ω = 0.9799 h = 0.1586, ω = 0.9836 h = 0.8356, ω = 0.9565 h = 0.3671, ω = 0.9669 β = 0.3664, ω = 0.9708 β = 0.1751, ω = 0.9715
7 FTSE 100 h = 0.4734, ω = 0.9799 h = 0.3168, ω = 0.9752 h = 0.7989, ω = 0.9569 h = 0.4640, ω = 0.9578 β = 0.2611, ω = 0.9726 β = 0.2445, ω = 0.9675
8 NIKKEI 225 h = 0.4379, ω = 0.9591 h = 0.2654, ω = 0.9594 h = 0.9755, ω = 0.9266 h = 0.6991, ω = 0.9176 β = 0.4513, ω = 0.9562 β = 0.2283, ω = 0.9444
9 GOLD h = 0.2846, ω = 0.9775 h = 0.2246, ω = 0.9777 h = 0.5688, ω = 0.9783 h = 0.5291, ω = 0.9731 β = 0.2402, ω = 0.9811 β = 0.1640, ω = 0.9785
10 BTC/USD h = 0.6260, ω = 0.9773 h = 0.6118, ω = 0.9634 h = 0.8913, ω = 0.9921 h = 1.2381, ω = 0.9891 β = 0.6112, ω = 0.9748 β = 0.6659, ω = 0.9257

11 †BRENT h = 0.0984, ω = 0.9994 h = 0.1372, ω = 0.9986 h = 0.3051, ω = 0.9942 h = 0.3575, ω = 0.9985 β = 0.0811, ω = 0.9990 β = 0.1087, ω = 0.9986
12 †NOK/USD h = 0.2344, ω = 0.9985 h = 0.1542, ω = 0.9985 h = 0.3857, ω = 1 h = 0.3044, ω = 0.9982 β = 0.1639, ω = 0.9985 β = 0.1014, ω = 0.9854
13 †RUB/USD h = 0.0870, ω = 0.9969 h = 0.0571, ω = 0.9968 h = 0.5902, ω = 1 h = 0.5407, ω = 0.9962 β = 0.1894, ω = 0.9934 β = 0.1012, ω = 0.9834
14 †GBP/USD h = 0.2536, ω = 1 h = 0.2347, ω = 0.9969 h = 0.6768, ω = 1 h = 0.6427, ω = 0.9947 β = 0.1984, ω = 1 β = 0.1514, ω = 0.9958
15 †NASDAQ h = 0.3907, ω = 0.9937 h = 0.3735, ω = 0.9844 h = 0.3389, ω = 0.9968 h = 0.2975, ω = 0.9931 β = 0.2799, ω = 0.9919 β = 0.1986, ω = 0.9911
16 †S&P 500 h = 0.2269, ω = 1 h = 0.1783, ω = 0.9963 h = 0.5913, ω = 1 h = 0.4944, ω = 0.9934 β = 0.321, ω = 1 β = 0.1507, ω = 0.9925
17 †FTSE 100 h = 0.3459, ω = 1 h = 0.2548, ω = 0.9951 h = 0.4315, ω = 1 h = 0.3135, ω = 0.9943 β = 0.3277, ω = 1 β = 0.1511, ω = 0.9949
18 †NIKKEI 225 h = 0.3604, ω = 0.9968 h = 0.2451, ω = 0.9899 h = 0.4992, ω = 1 h = 0.3361, ω = 0.9941 β = 0.3378, ω = 0.997 β = 0.1509, ω = 0.9939
19 †GOLD h = 0.2, ω = 0.9941 h = 0.1758, ω = 0.9935 h = 0.3757, ω = 0.9983 h = 0.3366, ω = 0.9957 β = 0.1289, ω = 0.9962 β = 0.1499, ω = 0.9958
20 †BTC/USD h = 0.1933, ω = 0.9884 h = 0.1613, ω = 0.9852 h = 0.2808, ω = 0.9969 h = 0.3124, ω = 0.9954 β = 0.1584, ω = 0.9909 β = 0.1133, ω = 0.9845

Table 2.3: Filtering and smoothing unknown parameters for the specified returns series estimated with MLE, full-scale LSE for
PDF and CDF loss functions; † denotes estimated parameters for ARMA & GARCH filtered data.
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# Returns binned LSE PDF-filtering binned LSE PDF-smoothing binned LSE CDF-filtering binned LSE CDF-smoothing

1 BRENT h = 0.6252, ω = 0.9865 h = 0.5693, ω = 0.9913 β = 0.4246, ω = 0.9874 β = 0.3534, ω = 0.9883
2 NOK/USD h = 0.2610, ω = 0.9851 h = 0.2178, ω = 0.9914 β = 0.1635, ω = 0.9887 β = 0.1310, ω = 0.9881
3 RUB/USD h = 0.0694, ω = 0.9833 h = 0.0614, ω = 0.9851 β = 0.0797, ω = 0.9875 β = 0.0587, ω = 0.9896
4 GBP/USD h = 0.1462, ω = 0.9866 h = 0.1331, ω = 0.9894 β = 0.1135, ω = 0.9925 β = 0.0819, ω = 0.9908
5 NASDAQ h = 1.0022, ω = 0.9672 h = 0.7036, ω = 0.9853 β = 0.7559, ω = 0.9782 β = 0.3815, ω = 0.9801
6 S&P 500 h = 0.4222, ω = 0.9808 h = 0.3304, ω = 0.9868 β = 0.3664, ω = 0.9725 β = 0.2191, ω = 0.9796
7 FTSE 100 h = 0.5271, ω = 0.9834 h = 0.3725, ω = 0.9884 β = 0.3957, ω = 0.9811 β = 0.2242, ω = 0.9817
8 NIKKEI 225 h = 0.4604, ω = 0.9629 h = 0.3229, ω = 0.9821 β = 0.4081, ω = 0.9625 β = 0.2024, ω = 0.9749
9 GOLD h = 0.3135, ω = 0.9755 h = 0.2739, ω = 0.9857 β = 0.2158, ω = 0.9826 β = 0.1674, ω = 0.9845
10 BTC/USD h = 0.8676, ω = 0.9734 h = 0.8771, ω = 0.9784 β = 0.6903, ω = 0.9767 β = 0.6179, ω = 0.9690

11 †BRENT h = 0.2667, ω = 0.9987 h = 0.2563, ω = 0.9990 β = 0.1578, ω = 0.9988 β = 0.1557, ω = 0.9985
12 †NOK/USD h = 0.2801, ω = 0.9988 h = 0.2791, ω = 0.9988 β = 0.1660, ω = 0.9991 β = 0.1115, ω = 0.9983
13 †RUB/USD h = 0.2089, ω = 0.9965 h = 0.1974, ω = 0.9956 β = 0.1873, ω = 0.9965 β = 0.1129, ω = 0.9938
14 †GBP/USD h = 0.2544, ω = 1 h = 0.2478, ω = 0.9974 β = 0.1863, ω = 1 β = 0.1563, ω = 0.9959
15 †NASDAQ h = 0.4146, ω = 0.9914 h = 0.3501, ω = 0.9956 β = 0.2599, ω = 0.9925 β = 0.1969, ω = 0.9924
16 †S&P 500 h = 0.2779, ω = 1 h = 0.2611, ω = 0.9964 β = 0.2634, ω = 1 β = 0.1686, ω = 0.9931
17 †FTSE 100 h = 0.3903, ω = 1 h = 0.3408, ω = 0.9966 β = 0.2847, ω = 1 β = 0.1759, ω = 0.9950
18 †NIKKEI 225 h = 0.3901, ω = 0.9987 h = 0.3039, ω = 0.9952 β = 0.3064, ω = 0.9974 β = 0.1615, ω = 0.9937
19 †GOLD h = 0.2531, ω = 0.9928 h = 0.2336, ω = 0.9965 β = 0.1641, ω = 0.9961 β = 0.1499, ω = 0.9960
20 †BTC/USD h = 0.2283, ω = 0.9866 h = 0.2179, ω = 0.9892 β = 0.1628, ω = 0.9912 β = 0.1401, ω = 0.9906

Table 2.4: Binned filtering and smoothing unknown parameters for the specified returns
series estimated with LSE for PDF and CDF loss functions; † denotes estimated parameters
for ARMA & GARCH filtered data.
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BRENT NOK/USD RUB/USD GBP/USD NASDAQ S&P500 FTSE100 NIKKEI225 GOLD/USD BTC/USD
ω′ 0.9785 0.9847 0.9845 0.9999 0.9690 0.9565 0.9569 0.9266 0.9783 0.9921

β′1 0.4607 0.1336 0.1357 0.1093 0.4091 0.3790 0.3441 0.3562 0.2491 1.2210
β′2 0.3224 0.1115 0.0732 0.0771 0.5626 0.3701 0.2965 0.3265 0.1618 0.5093
β′3 0.2486 0.1067 0.0341 0.0736 0.6965 0.2066 0.2883 0.2779 0.1399 0.3424
β′4 0.2362 0.1009 0.0283 0.0710 0.4222 0.2480 0.2759 0.3094 0.1467 0.3403
β′5 0.2989 0.1131 0.0751 0.0788 0.7339 0.2225 0.2253 0.2424 0.2048 0.6459
β′6 0.4062 0.1517 0.1524 0.1144 0.5411 0.3054 0.2867 0.3824 0.2102 1.1843

ω′ 0.9865 0.9851 0.9833 0.9866 0.9672 0.9808 0.9834 0.9629 0.9755 0.9734

β′1 0.4541 0.1358 0.1272 0.1093 0.4419 0.3579 0.3288 0.3457 0.2634 1.2210
β′2 0.3105 0.1142 0.0675 0.0771 0.6118 0.3533 0.2856 0.3213 0.1807 0.5093
β′3 0.2373 0.1104 0.0334 0.0735 0.7190 0.2127 0.2905 0.2713 0.1520 0.3424
β′4 0.2266 0.1043 0.0271 0.0710 0.4326 0.2401 0.2691 0.3181 0.1599 0.3403
β′5 0.2884 0.1160 0.0705 0.0788 0.7511 0.2113 0.2233 0.2369 0.2165 0.6459
β′6 0.4002 0.1538 0.1431 0.1144 0.5535 0.2881 0.2667 0.3714 0.2191 1.1843

ω′ 0.9874 0.9887 0.9875 0.9925 0.9782 0.9725 0.9811 0.9625 0.9826 0.9767
β′1 0.4491 0.1313 0.1265 0.1090 0.3988 0.3741 0.3290 0.3422 0.2446 1.2209
β′2 0.3053 0.1070 0.0680 0.0771 0.5478 0.3623 0.2748 0.3199 0.1564 0.5093
β′3 0.2334 0.1013 0.0339 0.0738 0.6850 0.2041 0.2971 0.2404 0.1363 0.3423
β′4 0.2231 0.0957 0.0280 0.0712 0.4208 0.2446 0.2856 0.3223 0.1427 0.3402
β′5 0.2847 0.1093 0.0727 0.0787 0.7211 0.2186 0.2197 0.2357 0.2014 0.6458
β′6 0.3947 0.1491 0.1424 0.1171 0.5381 0.3029 0.2707 0.3697 0.2082 1.1842

ω′ 0.9841 0.9866 0.9703 0.9896 0.9757 0.9708 0.9726 0.9562 0.9811 0.9748

β′1 0.4607 0.1336 0.1357 0.1093 0.4091 0.3790 0.3441 0.3562 0.2491 1.2210
β′2 0.3224 0.1115 0.0732 0.0771 0.5626 0.3701 0.2965 0.3265 0.1618 0.5093
β′3 0.2486 0.1067 0.0341 0.0736 0.6965 0.2066 0.2883 0.2779 0.1399 0.3424
β′4 0.2362 0.1009 0.0283 0.0710 0.4222 0.2480 0.2759 0.3094 0.1467 0.3403
β′5 0.2989 0.1131 0.0751 0.0788 0.7339 0.2225 0.2253 0.2424 0.2048 0.6459
β′6 0.4062 0.1517 0.1524 0.1144 0.5411 0.3054 0.2867 0.3824 0.2102 1.1843

ω8 0.9883 0.9881 0.9896 0.9908 0.9801 0.9796 0.9817 0.9749 0.9835 0.9690

β81 0.4105 0.1232 0.1196 0.1041 0.3877 0.3081 0.2712 0.2679 0.2329 1.0926
β82 0.2631 0.0901 0.0615 0.0601 0.3894 0.1527 0.1656 0.1371 0.1271 0.4101
β83 0.2072 0.0771 0.0304 0.0504 0.3147 0.0981 0.1325 0.0938 0.0998 0.2490
β84 0.2003 0.0776 0.0234 0.0487 0.2653 0.0816 0.1339 0.1099 0.0951 0.2678
β85 0.2576 0.0965 0.0593 0.0639 0.2931 0.1338 0.1379 0.1122 0.1443 0.5507
β86 0.3701 0.1402 0.1341 0.1042 0.3845 0.2604 0.2401 0.2538 0.1709 1.1169

ω8 0.9788 0.9829 0.9452 0.9882 0.9707 0.9715 0.9675 0.9444 0.9785 0.9257

β81 0.4327 0.1271 0.1330 0.1061 0.4165 0.3254 0.2929 0.3035 0.2430 1.2731
β82 0.2907 0.0960 0.0726 0.0625 0.4448 0.1671 0.1928 0.1798 0.1394 0.5657
β83 0.2316 0.0844 0.0334 0.0525 0.3798 0.1103 0.1590 0.1301 0.1110 0.3450
β84 0.2222 0.0851 0.0269 0.0513 0.3181 0.0920 0.1629 0.1512 0.1048 0.3567
β85 0.2833 0.1035 0.0709 0.0666 0.3386 0.1486 0.1594 0.1399 0.1537 0.7136
β86 0.3875 0.1445 0.1486 0.1064 0.4135 0.2742 0.2605 0.2996 0.1778 1.2585

Table 2.5: Adaptive bandwidths for the specified returns series, where ′ denotes parameters
for filtering and 8 parameters for smoothing. Note that the bandwidths are obtained for the
weights precomputed for ω, from top to bottom: by MLE, binned LSE PDF, binned LSE
CDF, LSE CDF for filtering and binned LSE CDF and LSE CDF for smoothing.
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symmetric Student’s t distribution filter was used for this sample. The latter specification

is identical to what is used in Harvey & Oryshchenko (2012). Estimated parameters used

for pre-filtering are provided in Table 2.2. It is worthwhile highlighting that Harvey &

Oryshchenko (2012) select their ARMA & GARCH specification under the formal likelihood

based evaluation criteria framework similar to the one used in Chapter 1, but here the

choice of the ARMA & GARCH specification is ad hoc. This has straightforward and

applied motivation. First, considered dynamic estimators are foremost hypothesised to

achieve accurate in-sample PITs forecasts without pre-filtering at least in some of the raw

returns series. Second, if they fail achieving that, they are expected to pick up any remaining

time-variation after rough pre-filtering of the series to empirically support their potential for

further financial applications.

Estimated parameters for raw and filtered returns with different estimation methods are

reported in Tables 2.3, 2.4 and 2.5. All binning procedures used to obtain adaptive and fixed

estimators’ parameters are based on the sample quantiles as is instructed and commonly

used for spline fitting in Harrell (2010) and also applied in the kernel density estimation

context by Hazelton (2003).

Following simple linear binning as in Hall & Wand (1996), for the dynamic binned fixed

bandwidth estimators 15 “static” bins with 15 bin centres for each sample were employed.

For the sample quantile ξs(τ), these bins and bin centres are outlined by the intervals in

[min(xι)− 0.01; ξs(0.015, 0.03, 0.05, 0.15, · · · , 0.85, 0.95, 0.97, 0.985); max(xι) + 0.01]. For

adaptive estimations, the same linear binning was used, but samples were binned over

the intervals in [min(xι)− 0.01; ξs(0.1, 0.23, 0.37, 0.5, 0.67, 0.76, 0.9); max(xι) + 0.01] and

bandwidths were computed only for the bins in [ξs(0.1, 0.23, 0.37, 0.5, 0.67, 0.76, 0.9)] . This
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suggests 6 bandwidths for each sample with bandwidths for [min(xι)− 0.01; ξs(0.1)) and

(ξs(0.9); max(xι) + 0.01] being the same as the bandwidths for [ξs(0.1), ξs(0.23)) and

(ξs(0.76), ξs(0.9)] respectively. All adaptive bandwidths are obtained with LSE loss functions

optimal for CDF, where weights are precomputed using ω parameters for dynamic binned and

full-scale estimators in LSE optimizations as well as those ω parameters obtained with MLE.

Since the weighting scheme remains unchanged in all estimations, pre-computing weights is

justified by more time-efficient applied adaptive experiments. Such estimation still keeps its

distinctive feature of varying the bandwidth parameter over the range of returns and also

reserves time for experimenting with different values of ω. This also points out that the main

gains, when evaluating PITs for adaptive estimations, could be expected in their uniformity

characteristics outlined by the K-S and CvM tests output. On the other hand, the fixed

bandwidth dynamic binned estimators may be expected not only to provide parameters

similar to those delivered by the full-scale estimators under the LSE routine, and therefore

match the diagnostic evaluations for the full-scale estimators in the LSE experiments, but

also reduce their computational burden.

First, reviewing Table 2.3, it may be observed that optimal bandwidth parameters offered

for the LSE for PDF, MLE and LSE for CDF are notably different in value for every returns

series without pre-filtering, while exponential “learning rates” offered by these methods are

typically similar in value. LSE for CDF usually offers the smallest value of the bandwidth

parameter, then follows its PDF counterpart, while MLE is observed suggesting the highest

bandwidths. After pre-filtering the pattern of the parameter values is similar, but can be

argued as less explicit. MLE is still observed mainly offering the highest bandwidths and

LSE for CDF offering the smallest values of this parameter after pre-filtering. Now, from
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Table 2.4 it may be noted that the binned estimators deliver parameters which are arguably

comparable in value to the parameters reported for the full-scale estimators they simplify

in the LSE routines, though binned LSE for CDF parameters are typically closer to what is

reported for its full-scale alternative. Differences in the parameters may be commanded by

the “one binning fits all” computational strategy and therefore, it may also be hypothesised

that individual and perhaprs more intensive approach to binning of each sample may lead to

the parameters closer to the full-scale estimations. It is, however, worthwhile reporting that

function evaluation time for the LSE for PDF under the chosen binning rule and the number

of bins is comparable and is very close (hardly differentiable) to the function evaluation time

for MLE routine, if both estimations are scripted and run in R. Given what is observed

for the obtained parameters, this can be considered as a satisfactory result for speeding up

LSE optimization for PDF. For LSE optimization for CDF, the necessity of integrating the

loss function over the grid of estimation points leads to the “a priori” longer evaluations,

though simple integration algorithms as “Simpson’s” procedure within pracma package of

Borchers (2018) seem to help speeding up estimations for CDF optimal parameters. Also,

it is important noting that, though under quite basic non-evolving binning, dynamic binned

estimators seem to be able of picking up the exponential learning rate parameter relatively

well. However, a fair evaluation of the parameters by the binned estimators shall be

conducted in the next section under the selected K-S, CvM and Berkowitz’s (2001) criteria.

Noting that LSE for CDF has a tendency of being less sensitive to the number of bins

used for evaluations, dynamic adaptive estimations were restricted to the experiments with

CDF optimal computaions for more stable evaluations of the bandwidths. The bandwidths

strategy for the tails is experimental and motivated by faster evaluations, since it is typically
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expected (e.g. see Sain & Scott (1996)) that a good approximation of the bandwidths for the

tails may require more extensive and carefull binning, resulting in a notably higher number of

parameters, which may be less rationalized for one dimensional data estimations. Moreover,

under the simple non-evolving binning as here, extensive binning in the tails may imply

empty bins at some initial iterations, which are typically avoided by Sain & Scott (1996)

and Hazelton (2003) in the previous applied examples. LSE estimations have a history of

experiments when observations are omitted in optimizations (e.g. see Feluch & Koronacki

(1992); Stute (1992)), while here however, all observations are used, but not all bandwidths

are computed and employed. After all, computed bandwidths are body domains oriented and

such bandwidths experiment should be very attractive for future dynamic semiparametric

models, where bandwidths may be preferred being restricted from approximating the tails

defined by the weighted Hill’s (1975) tail index estimator. That formally is: if zt represents

x1,t ≤, · · · ,≤ xi,t for i = 1, · · · , t and t = 1, · · · , T as previously defined in this chapter, then

rewriting Hill’s (1975) estimator, defined by

Θ̂Hill =
κ∑κ

j=1 log zt−κ+j − κ log zt−κ
,

where κ outlines the total number of observations dedicated to the tail approximation, for

the exponentially weighted with (2.5) ordered observations provides

Θ̂ω
Hill =

∑κ
j=1wt−κ+j (ω)∑κ

j=1 wt−κ+j (ω) [log zt−κ+j − log zt−κ]

for approximation of the simple parametric Pareto type tail described in Kilber & Kotz

93



Financial Returns’ Distributions Modelling Artur Semeyutin

(2003) among others. Note that the above outlines the upper/right Pareto tail and for the

lower/left Pareto tail it is necessary considering returns multiplied by minus one, though

there are investigations where absolute values of returns are considered for regular Hill’s

(1975) tail estimations (e.g. Dupuis et al. (2014)). It must also be highlighted that niether

applications of the weighted Hill’s (1975) estimator to financial data, nor its combination with

the exponential weights have been defined on the date of producing this work and though,

quantiles are common thresholds for the tail initializtion points (e.g. Gencay & Selcuk

(2004); Chavez-Demoulin et al. (2014)), a formal discussion outlining that the obtained

time-varying PDFs always integrate to one and thus, are always true densities (e.g. see

Markovich (2008)) as well as considerations of the known sensitivities of the regular tail

estimator and any potential negative estimation consequences due to that as discussed in

Hill (2010), Embrechts et al. (2013) and Hill (2015) are taken into account before applications.

Extreme value theory and semiparametric methods as in MacDonald et al. (2011), but for

the dynamic, exponentially weights setting as here, are beyond the scope of this work and

are left out for future investigations.

Overall, bandwidths reported for the adaptive strategy match the expected pattern for the

heavy-tailed financial data as described by Markovich (2008) and Scott (2015). From Table

2.5 it can be observed that typically higher bandwidths are allocated closer to the tails,

where observations are sparse, and smaller bandwidths are allocated closer to the center,

where observations are abundant, with the notable exception for the bandwidth allocations

for exponential filtering of the considered NASDAQ series. This can be articulated by the

non-evolving bins used for estimations, which may not always reflect the time-variation in

data effectively. Time-variation in such bins is strictly driven by the chosen exponential
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learning rate parameter, while bin edges and their centres reflect the entire sample at hand

and may not always approximate/represent data falling into the bins well at some iterations.

In the fixed bandwidth estimations, such binning imperfections are averaged out into a single

bandwidth parameter, while in the Cross-Validation for the exponential smoothing, there are

less restrictions and simple non-evolving bins reflect the data, note that also time-conditional

and exponentially weighted, at all iterations proportionately, yielding expected pattern for

the parameters in Table 2.5. Therefore, it may be also worthwhile employing exponential

smoothing parameters in the exponential filtering applications, since Cross-Validation is a

generally accepted computational compromise in the time series nonparametric applications

(e.g. Harvey & Oryshchenko (2012); Taylor & Jeon (2015)). Most importantly the loss

functions of this type for the LSE routine are available, provided in Section 2.4.3, seem

delivering expected vectors of the bandwidths and are notably different from what is provided

by MLE. Though, all further evaluations are restricted to the exponential filtering parameters

following Harvey & Oryshchenko (2012), all adaptive parameters are still valuable and

informative, allowing thorough investigation of the LSE bandwidth allocation procedure,

confirming its satisfactory modest reaction to outliers as well as pointing out that for

NASDAQ series the bandwidth variation may not be even necessary, as there are no notable

changes in the per bin optimal bandwidths identified.

2.7 Diagnostics output and discussion

All in-sample forecast evaluations are provided in Tables 2.6, 2.7 and 2.8. First, from the

diagnostic output provided in Table 2.6 it is explicit that LSE for CDF provides overall the
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LSE PDF MLE LSE CDF
# Returns K − Sd K − Sp CvMd CvMp LRd LRp K − Sd K − Sp CvMd CvMp LRd LRp K − Sd K − Sp CvMd CvMp LRd LRp

1 BRENT 0.0233 0.0281 0.6142 0.0206 2.1900 0.5339 0.0443 0.0000 3.1694 0.0000 57.7727 0.0000 0.0178 0.1651 0.3120 0.1251 1.6163 0.6557
2 NOK/USD 0.0194 0.1085 0.5297 0.0335 7.1148 0.0683 0.0316 0.0009 1.7247 0.0001 44.9830 0.0000 0.0140 0.4307 0.1553 0.3739 2.1934 0.5332
3 RUB/USD 0.0243 0.0215 0.6019 0.0221 30.6972 0.0000 0.0891 0.0000 15.9535 0.0000 294.5671 0.0000 0.0212 0.0631 0.4512 0.0531 53.8257 0.0000
4 GBP/USD 0.0178 0.8922 0.0645 0.7858 3.3947 0.3347 0.0824 0.0000 3.0255 0.0000 68.6819 0.0000 0.0162 0.9442 0.0371 0.9477 3.8881 0.2738
5 NASDAQ 0.0401 0.2549 0.1787 0.3128 0.5752 0.9021 0.0494 0.0874 0.3347 0.1082 5.5962 0.1330 0.0307 0.5817 0.1154 0.5145 0.8539 0.8365
6 S&P 500 0.0224 0.8200 0.0540 0.8520 30.2058 0.0000 0.0694 0.0009 1.3027 0.0005 34.9723 0.0000 0.0303 0.4564 0.1094 0.5409 24.7393 0.0000
7 FTSE 100 0.0289 0.5151 0.0821 0.6801 9.3721 0.0247 0.0573 0.0102 0.7678 0.0087 20.0786 0.0002 0.0191 0.9319 0.0441 0.9112 27.5035 0.0000
8 NIKKEI 225 0.0335 0.5039 0.1315 0.4514 13.2020 0.0042 0.0754 0.0020 1.3014 0.0005 16.7355 0.0008 0.0319 0.5673 0.1413 0.4173 12.8009 0.0051
9 GOLD/USD 0.0206 0.7506 0.1022 0.5744 2.6624 0.4466 0.0521 0.0058 1.2315 0.0007 15.2172 0.0016 0.0169 0.9183 0.0568 0.8341 3.7648 0.2880
10 BTC/USD 0.0290 0.3382 0.1609 0.3582 4.3831 0.2230 0.0430 0.0406 0.4424 0.0559 2.7624 0.4297 0.0286 0.3553 0.1494 0.3914 5.9063 0.1163

11 †BRENT 0.0177 0.1692 0.2531 0.1844 1.5100 0.6800 0.0202 0.0809 0.5290 0.0336 5.1859 0.1587 0.0149 0.3446 0.1649 0.3472 0.8867 0.8286
12 †NOK/USD 0.0144 0.3982 0.2037 0.2605 1.9522 0.5824 0.0295 0.0023 1.0989 0.0014 29.7748 0.0000 0.0127 0.5572 0.1191 0.4992 0.6944 0.8745
13 †RUB/USD 0.0104 0.8056 0.0890 0.6415 6.4206 0.0928 0.0391 0.0000 2.2931 0.0000 75.5268 0.0000 0.0113 0.7118 0.0785 0.7007 4.7126 0.1941
14 †GBP/USD 0.0230 0.6334 0.1012 0.5792 0.7165 0.8693 0.0718 0.0000 1.8893 0.0000 46.1361 0.0000 0.0188 0.8524 0.0775 0.7066 1.1620 0.7621
15 †NASDAQ 0.0412 0.2275 0.2742 0.1601 4.3581 0.2253 0.0445 0.1571 0.4331 0.0592 3.6784 0.2984 0.0304 0.5958 0.1693 0.3359 1.2531 0.7403
16 †S&P 500 0.0272 0.5959 0.1196 0.4971 2.8326 0.4182 0.0483 0.0488 0.7011 0.0126 13.8634 0.0031 0.0326 0.3661 0.1219 0.4880 1.4325 0.6979
17 †FTSE 100 0.0221 0.8257 0.0461 0.8997 0.2248 0.9735 0.0310 0.4213 0.1115 0.5313 2.2530 0.5216 0.0204 0.8909 0.0397 0.9346 0.1858 0.9798
18 †NIKKEI 225 0.0464 0.1452 0.1970 0.2733 1.4922 0.6841 0.0614 0.0204 0.5302 0.0334 5.1429 0.1616 0.0465 0.1436 0.1988 0.2699 1.9352 0.5860
19 †GOLD/USD 0.0300 0.2857 0.1529 0.3809 3.1701 0.3661 0.0564 0.0021 0.9174 0.0038 10.1915 0.0170 0.0340 0.1666 0.2204 0.2313 5.7729 0.1232
20 †BTC/USD 0.0207 0.7602 0.0836 0.6715 3.7965 0.2843 0.0456 0.0254 0.4409 0.0565 8.1782 0.0425 0.0179 0.8908 0.0507 0.8722 3.7895 0.2851

Table 2.6: Diagnostic output for parameters reported in Table 2.3. K − Sd, K − Sd, CvMd, CvMp, LRd and LRp denote
Kolmogorov-Smirnov, Cramer-von Mises and Berkowitz tests’ distances and corresponding p-values, while tests’ statistic
exceeding 5% significance threshold is highlighted in grey respectively.
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binned LSE PDF binned LSE CDF
# Returns K − Sd K − Sp CvMd CvMp LRd LRp K − Sd K − Sp CvMd CvMp LRd LRp

1 BRENT 0.0265 0.0080 0.9061 0.0041 6.3049 0.0977 0.0180 0.1559 0.3367 0.1069 0.8236 0.8438
2 NOK/USD 0.0195 0.1038 0.5602 0.0281 8.1734 0.0426 0.0121 0.6179 0.0930 0.6203 2.3553 0.5020
3 RUB/USD 0.0227 0.0382 0.5747 0.0259 24.2755 0.0000 0.0251 0.0163 0.7039 0.0125 19.1349 0.0003
4 GBP/USD 0.0198 0.8030 0.0707 0.7471 3.0654 0.3817 0.0152 0.9680 0.0286 0.9806 4.6363 0.2004
5 NASDAQ 0.0392 0.2781 0.1701 0.3337 0.4938 0.9203 0.0300 0.6094 0.1025 0.5730 1.4859 0.6855
6 S&P 500 0.0340 0.3171 0.1485 0.3943 21.8548 0.0001 0.0303 0.4584 0.1075 0.5497 24.6007 0.0000
7 FTSE 100 0.0312 0.4160 0.1219 0.4881 8.2791 0.0406 0.0231 0.7828 0.0406 0.9303 12.8325 0.0050
8 NIKKEI 225 0.0351 0.4409 0.1467 0.3998 10.5487 0.0144 0.0325 0.5412 0.1119 0.5300 14.9636 0.0018
9 GOLD/USD 0.0239 0.5698 0.1464 0.4007 1.7859 0.6180 0.0158 0.9506 0.0404 0.9314 4.1936 0.2413
10 BTC/USD 0.0372 0.1082 0.3282 0.1128 2.9118 0.4054 0.0304 0.2871 0.1937 0.2801 3.8329 0.2801

11 †BRENT 0.0215 0.0530 0.4942 0.0412 7.5218 0.0570 0.0170 0.2057 0.2188 0.2339 1.2793 0.7341
12 †NOK/USD 0.0171 0.2037 0.3465 0.1005 5.4342 0.1426 0.0171 0.2062 0.2022 0.2633 1.4222 0.7003
13 †RUB/USD 0.0136 0.4747 0.1047 0.5625 3.4145 0.3320 0.0128 0.5580 0.0810 0.6863 3.7823 0.2860
14 †GBP/USD 0.0231 0.6299 0.1017 0.5765 0.7138 0.8700 0.0179 0.8881 0.0754 0.7192 1.3087 0.7271
15 †NASDAQ 0.0410 0.2309 0.2361 0.2072 4.9364 0.1765 0.0295 0.6320 0.1797 0.3106 1.2403 0.7434
16 †S&P 500 0.0302 0.4630 0.1119 0.5296 1.9034 0.5927 0.0293 0.5035 0.1122 0.5284 2.1362 0.5446
17 †FTSE 100 0.0265 0.6235 0.0720 0.7395 0.8707 0.8325 0.0165 0.9808 0.0329 0.9660 0.5545 0.9068
18 †NIKKEI 225 0.0530 0.0656 0.3222 0.1172 2.4390 0.4864 0.0471 0.1351 0.2158 0.2388 2.8964 0.4079
19 †GOLD/USD 0.0345 0.1539 0.1824 0.3043 2.4106 0.4917 0.0355 0.1334 0.2293 0.2173 4.3398 0.2270
20 †BTC/USD 0.0273 0.4142 0.1533 0.3798 3.5861 0.3098 0.0190 0.8402 0.0550 0.8456 3.7223 0.2930

Table 2.7: Diagnostic output for parameters reported in Table 2.4. K − Sd, K − Sd,
CvMd, CvMp, LRd and LRp denote Kolmogorov-Smirnov, Cramer-von Mises and Berkowitz
tests’ distances and corresponding p-values, while tests’ statistic exceeding 5% significance
threshold is highlighted in grey respectively.

ω as per MLE ω as per LSE CDF
# Returns K − Sd K − Sp CvMd CvMp LRd LRp K − Sd K − Sp CvMd CvMp LRd LRp

1 BRENT 0.0128 0.5438 0.0792 0.6964 10.9686 0.0119 0.0112 0.7093 0.0854 0.6614 4.3208 0.2288
2 NOK/USD 0.0079 0.9693 0.0248 0.9900 9.9893 0.0187 0.0074 0.9833 0.0243 0.9911 7.7350 0.0518
3 RUB/USD 0.0119 0.6546 0.0690 0.7578 24.1977 0.0000 0.0107 0.7748 0.0600 0.8140 31.3471 0.0000
4 GBP/USD 0.0470 0.0189 0.5456 0.0305 28.3862 0.0000 0.0159 0.9531 0.0329 0.9658 6.3839 0.0944
5 NASDAQ 0.0271 0.7340 0.0775 0.7069 10.7047 0.0134 0.0256 0.7961 0.0772 0.7082 8.3789 0.0388
6 S&P 500 0.0237 0.7611 0.0701 0.7513 34.2816 0.0000 0.0228 0.8016 0.0571 0.8323 30.3964 0.0000
7 FTSE 100 0.0261 0.6455 0.0691 0.7572 31.7502 0.0000 0.0225 0.8113 0.0539 0.8525 22.8836 0.0000
8 NIKKEI 225 0.0300 0.6459 0.0892 0.6407 39.7170 0.0000 0.0314 0.5859 0.0779 0.7043 26.2552 0.0000
9 GOLD/USD 0.0129 0.9939 0.0171 0.9990 7.9772 0.0465 0.0112 0.9993 0.0149 0.9996 6.2971 0.0980
10 BTC/USD 0.0361 0.1280 0.1829 0.3032 1.2473 0.7417 0.0198 0.8061 0.0948 0.6108 5.8338 0.1200

ω as per binned LSE PDF ω as per binned LSE CDF
# Returns K − Sd K − Sp CvMd CvMp LRd LRp K − Sd K − Sp CvMd CvMp LRd LRp

1 BRENT 0.0121 0.6104 0.0880 0.6471 2.7359 0.4342 0.0122 0.6018 0.0893 0.6397 2.2836 0.5157
2 NOK/USD 0.0073 0.9864 0.0245 0.9906 9.0776 0.0283 0.0084 0.9470 0.0248 0.9899 5.9622 0.1135
3 RUB/USD 0.0110 0.7392 0.0575 0.8300 26.4875 0.0000 0.0124 0.5944 0.0735 0.7304 27.1667 0.0000
4 GBP/USD 0.0145 0.9793 0.0272 0.9845 7.2138 0.0654 0.0197 0.8086 0.0474 0.8921 6.2671 0.0993
5 NASDAQ 0.0291 0.6487 0.0808 0.6872 10.8568 0.0125 0.0264 0.7633 0.0758 0.7166 7.8522 0.0492
6 S&P 500 0.0183 0.9518 0.0504 0.8738 31.6466 0.0000 0.0205 0.8930 0.0554 0.8431 30.5157 0.0000
7 FTSE 100 0.0176 0.9655 0.0452 0.9051 21.0887 0.0001 0.0174 0.9686 0.0442 0.9105 21.0832 0.0001
8 NIKKEI 225 0.0306 0.6207 0.0768 0.7106 24.0430 0.0000 0.0271 0.7620 0.0716 0.7417 24.8138 0.0000
9 GOLD/USD 0.0129 0.9937 0.0164 0.9992 8.8647 0.0311 0.0112 0.9992 0.0152 0.9996 5.7021 0.1270
10 BTC/USD 0.0199 0.7976 0.0926 0.6225 6.6021 0.0857 0.0207 0.7606 0.0983 0.5936 4.8930 0.1798

Table 2.8: Diagnostic output for parameters reported in Table 2.5. K − Sd, K − Sd,
CvMd, CvMp, LRd and LRp denote Kolmogorov-Smirnov, Cramer-von Mises and Berkowitz
tests’ distances and corresponding p-values, while tests’ statistic exceeding 5% significance
threshold is highlighted in grey respectively.
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best choice of parameters for estimations in the considered samples without pre-filtering.

PITs for all of these samples are uniform as reported by the K-S and CvM outputs, but

are likely not always independent as reported by Berkowitz’s (2001) compound evaluation

criteria. Such output may be an indication that LSE for CDF suggests a good choice of the

bandwidth parameter, but weighting under exponential filtering may not always be sufficient

for the considered financial returns or simply the choice of the exponential learning rate is

not always ideal. Without pre-filtering, LSE for PDF also performs well, but it fails insuring

uniformity of the PITs for two samples less than the LSE for CDF. Accurate evaluations

ratio under Berkowitz’s (2001) test is the same for both LSE for PDF and CDF choice of

parameters. Unfortunately, MLE, if compared to its direct PDF optimal LSE competitor,

delivers quite unsatisfactory results. Uniform PITs under both K-S and CvM tests are

obtained only for one sample, however a strong outlook under Berkowitz’s (2001) test for

BTC/USD suggests that the compound ratio of correct evaluations may be admitted at the

two out of ten level. Poor PITs uniformity characteristics points out the poor choice of the

bandwidth by the MLE routine.

Moving to the pre-filtered returns both LSE based approaches demonstrate a very strong

diagnostic output, picking up both uniformity and independence properties of the PITs.

After employed parametric pre-filtering, it may be argued that there is a little variation left

in the series, as can be noted from the exponential learning rate parameters in Table 2.3

for example, and therefore, the choice of the bandwidth becomes more important than the

choice of the learning rate for accurate evaluations. As it is observed from the results without

pre-filtering, LSE based estimations do not exhibit difficulties choosing the appropriate

bandwidth and after some additional help from the corrections for scale and location they
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seem accomplishing this task comfortably. MLE, however, still struggles providing a good

evaluation outlook. Strong PITs uniformity characteristics are provided only for two series

now, while Berkowitz’s (2001) criteria suggest only four correct evaluations. The output

is still notably inferior to what is provided for all LSE parameters discussed so far even

without pre-filtering. It may be advocated that with MLE, an appropriate and thorough

choice of the filtering specification, insuring absence of outliers in innovations, should be

adopted to achieve accurate evaluations, however from the applied viewpoint, this may not

always be very well justified given the results reported in Table 2.7 for binned computational

simplifications using LSE.

Comparing diagnostic output for the dynamic binned estimators, evaluations by the CDF

optimal parameters again provide the most appealing outlook. Without pre-filtering number

of correct evaluations for Berkowitz’s (2001) test is the same as for the full-scale CDF optimal

optimizations, but PITs for RUB/USD are no longer uniform. On the other hand, for the

binned LSE for PDF estimations, PITs with confirmed uniformity characteristics match

its full-scale estimations alternative, but under Berkowitz’s (2001) evaluation NOK/USD

forecast is no longer accurate. After ARMA & GARCH filter, LSE binned outlook is overall

strong and very similar to the full-scale PDF and CDF estimations with an exception for the

BRENT series, where uniformity of the PITs is not confirmed by the CvM test for binned

LSE for PDF. Anyway, given quite experimental and simplified approach to binning, very

motivated by achieving computational time comparable to the MLE routine, gains for the

binned LSE for PDF estimations over MLE are notable and easy to argue with the achieved

applied results, though it is hard to deny the role of binning and higher sensitivity of the

PDF optimal estimations to this procedure.
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If binned estimators are employed to vary the bandwidth parameter for adaptive estimations,

typically a good outlook in the PITs uniformity characteristics may be achieved as shown for

computed distances for K-S and CvM tests in Table 2.5. However, losses in the Berkowitz’s

(2001) distances are also notable, suggesting an overall mixed performance of the adopted

variable bandwidth adaptive strategy, especially considering additional effort it requires for

estimations. From the conducted experiments for the different values of the exponential

learning rates, it can be concluded that the adaptive estimations as here, are more sensitive

to abrupt changes in the series and to the good choice of the parameter governing the weights’

dynamics. It is, however, worth highlighting that the MLE based ω yields the worst results

for PITs independence, diminishing value of this estimation procedure further. LSE seems to

yield improvements upon this routine, providing a better combination of the bandwidths than

with MLE previously, but since the weights are dictated by the MLE optimal parameters,

the notable losses in the PITs independence point out additional problems when choosing

parameters with MLE. On the other hand, reviewing output for weights as per LSE for CDF

ω parameter, it can be noted that the NASDAQ evaluation does not path independence

assessment, unlike for the simple binned and full-scale LSE previous evaluations. This

outcome is well matched by the preliminary analysis of the parameters conducted for this

sample in the preceding section. Time evolving bins, more careful and sample oriented

binning, or simply parameters optimal for the CV procedure may provide uniform and

independent evaluations for this sample.
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2.8 Concluding remarks

This chapter empirically demonstrated that exponentially weighted kernel estimators as

in Harvey & Oryshchenko (2012) are valid for forecasting the densities and distributions

of financial returns. Previously, to achieve accurate and appropriate in-sample forecast

evaluations with these estimators, Harvey & Oryshchenko (2012) had to correct for scale

and location applying an ARMA & GARCH filter. Here, it is found that such pre-filtering

may not be even necessary, if parameters are chosen by credible techniques for unknown

parameters estimation. In this chapter, it is achieved with LSE functions modified to

incorporate exponentially declining weights enhanced kernel estimators. Moreover, from the

small conducted experiment, it can also be reported that MLE may remain unable providing

an appropriate combination of parameters for dynamic kernel estimations after pre-filtering.

If estimation samples are large and computing power is limited, obtained results suggest that

reducing computational burden with dynamic binned estimators and employing accordingly

modified LSE loss functions can be among valid estimation strategies. Empirically, these

estimators appear to have an ability of picking up both the bandwidth and parameter

governing the dynamics of exponential weights, though binning strategies may be additional

and important component of the accurate forecasting. Here, perhaps the most elementary

approach to the time series binning has been adopted to deliver relatively satisfactory to

and more time efficient results than the full-scale LSE estimations. Future research may

adopt less empirically oriented agenda on the binning type estimators discussed in this

chapter. For example, it may be interesting investigating in more detail how number of

bins employed in estimations impacts “time efficiency - estimation accuracy” trade-off in
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the time series conditions as here. Since there can be more problematic financial series

than those considered in this chapter, it may also be worthwhile considering time evolving

bins and estimation benefits from their characteristics. On the other hand, exploiting the

cross-validation approaches with the two-sided exponential weights, as provided in this

chapter for dynamic binned estimators, could also be considered a valid pragmatic suggestion.

Most importantly, binned estimators based evaluations remain time efficient and parsimonious

for applied use.

Binned estimators may also serve a foundation for dynamic adaptive estimations. In this

chapter, the ad hoc approach to such bandwidth variation strategies has been adopted. It

demonstrated to provide improvements in the PITs uniformity characteristics, but gains in

the dependency component of the evaluation criteria for these pseudo-observations appeared

to be smaller. Exponential weights enhaced estimators as in Harvey & Oryshchenko (2012)

seem to fit slowly evolving series well, but adaptive strategies as here, may be more sensitive

to volatility bursts in financial data. Therefore, it may be worthwhile exploring other

weighting schemes to accurately forecast faster evolving series or alternative strategies for

bandwidths variations.

This chapter does not go beyond DGP assumptions free methods and thus, approaches with

a reference to some parametric distributions as in Sheather & Jones (1991), Altman & Leger

(1995) or Polansky & Baker (2000) may also be worth modifying to accomodate exponentially

weighted kernel estimators. This may lead to more time-efficient estimations and more

inclusive reviews of the approaches to parameters estimations for Harvey & Oryshchenko’s

(2012) estimators than here. Overall, obtained results demonstrate empirical evidence

for applications of these estimators within semiparametric or nonparameteric multivariate
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copula frameworks. On the other hand, for univariate Valua-at-Risk applied experiments,

it may be poorly justified comparing these estimators with the full-scale GAS models of

Creal et al. (2013) and Harvey (2013), but it is interesting considering kernel methods for

exponential filtering alongside similar methods under the GAS framework of Lucas & Zhang

(2016). This is addressed in the next chapter of this thesis.
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Chapter 3

A RiskMetrics competition for the

dynamic kernel density estimator

3.1 Introduction and motivation

J.P. Morgan’s (1996) RiskMetrics
TM

is the most recognized and basic benchmark model in

financial research for Value-at-Risk (VAR) estimation (e.g. Wilhelmsson (2009); Boucher

et al. (2014); Danielsson et al. (2016); Nieto & Ruiz (2016)). Its original form of the

exponentially weighted (EWMA) conditional variance for Gaussian distributed financial

returns has been criticised (e.g. Guermat & Harris (2002)), but its intrinsic simplicity

and pragmatism still attract practitioners (e.g. Zumbach (2007)) as well as academics (e.g.

Gerlach et al. (2013); Lucas & Zhang (2016)) to introduce necessary upgrades and keep it

valid for applied financial practices such as VAR estimations (e.g. Pafka & Kondor (2001);

Taylor (2007); McMillan & Kambouroudis (2009); Boucher et al. (2014)). Therefore, present

chapter aims to review some of the up-to-date EWMA VAR methods, which fall into the

104



Financial Returns’ Distributions Modelling Artur Semeyutin

same category as the original RiskMetrics
TM

to question whether this weighting scheme can

be still valid for risk measurement under the basic VAR testing statistic and, perharps similar

to the work of P. R. Hansen & Lunde (2005) for GARCH (1,1) model, also questions whether

parsimonious variations of RiskMetrics, including its nonparametric versions as in Chapter

2 for example, can outperform or be equally effective as more technically involved methods.

The choice for the most advanced EWMA VAR benchmark scheme here falls on the Student’s

t Generalized Autoregressive Score (GAS) version of Lucas & Zhang (2016). This belongs to

the group of approaches which have been gaining popularity within the GAS time-varying

framework of Creal et al. (2013) and Harvey (2013). The approach of Lucas & Zhang

(2016) allows exponential decay type dynamics in the tails of returns distribution, offers

leptokurtic properties, falling in line with up-to-date regulatory demands (see Rossignolo et

al. (2012, 2013); Danielsson et al. (2016) for an interesting discussion on the models allowing

heavy tails, Basel accords’ capital requirements and VAR), and can incorporate dynamic

skewness parametrisation for assymetry modelling if necessesary. The latter feature may be

less justified practically, given its restriction to the exponential weighting and overall rising

level of complexity, which is higher than or comparable to the full-scale and more flexible

GAS models (see Ardia, Boudt, & Catania (2018) and the closed form expressions of some

full-scale GAS models therein as well as Ardia et al.’s (2016) notes on the practical pitfalls for

using assymetric GAS parametrizations for VAR modelling). Roughly, this chapter supports

the view that RiskMetrics type VAR models must be parsimonious and easy to implement,

since the more technically involved this scheme becomes, the less reasonable it is to restrict

one’s portfolio of methods to the exponential decay weighting given the wide availability

of other effective methods (e.g. see Laporta et al. (2018) for a recent full-scale GAS based
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VAR performance competition under the less restricted portfolio of methods or Nieto &

Ruiz (2016) for a comprehensive review of VAR methods in general). RiskMetrics type

models may be very useful to compare new or existing advanced methods to, but they may

not always be relied upon for risk quantification. Therefore, this chapter also hopes that

obtained empirical output may be helpful to identify a good benchmark model in the form

a very simple and widely familiar weighting scheme for future studies.

Further in this chapter t-GAS RiskMetrics is compared to its parsimonious, but heavy tails

“friendly”, “robust” Laplace alternative introduced in Guermat & Harris (2002) under the

GAS (L-GAS) parametrization of Lucas & Zhang (2016), to the kernel (kCDF) nonparamtric

EWMA VAR presented in Harvey & Oryshchenko (2012), Harvey (2013) and throughtly

discussed in Chapter 2 as well as to, perhaps the most parsimonious, nonparametric alternative

in the form of the dynamic empirical Cumulative Distribution Function (eCDF). Non-

parametric RiskMetrics variations are naturally free from distributional assumptions, account

for asymmetries and have arguably simpler closed functional forms than the t-GAS RiskMetrics

of Lucas & Zhang (2016), however they may struggle the most when approximating high

quantiles for VAR evaluations (e.g. Jones & Signorini (1997); Markovich (2008)).

Originall RiskMetrics
TM

, t-GAS and L-GAS RiskMetrics as well as two of their nonparametric

alternatives are set to compete over the daily Brazil, Russia, India, China, Turkey and South

Africa (BRICTS) - USD exchange rates returns and the returns data set used in Chapter 2

under the commonly used VAR estimation criteria of Kupiec (1995) and Christoffersen (1998)

over the VAR confidence levels as in applied work of Cheng & Hung (2011) among others.

There are several interesting findings from the conducted analysis: first, for the 99% VAR

confidence level, it is identified that for the BRICTS in-sample and out-of-sample settings
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L-GAS RiskMetrics provides the best VAR projections, followed by the estimations for

kCDF, t-GAS and eCDF variations respectively. Though, the t-GAS RiskMetrics performs

worse than some of its parsimonious alternatives in the BRICTS settings, it provides the

strongest outlook for the slightly more expansive data set from Chapter 2. For this data

set, the second best VAR estimations are again provided by the kCDF RiskMetrics of

Harvey & Oryshchenko (2012) with eCDF alongside L-GAS demonstrating a similar VAR

accuracy ratio and sharing the third best performing approach position. RiskMetrics
TM

mostly performs the worst in the considered data and testing settings. Secondly, obtained

findings can be considered valuable for the nonparametric class of estimators used in the

RiskMetrics competition. The kCDF and eCDF EWMA VAR type estimators have been

succesfully applied in electricity/power generation time series modelling (e.g. Taylor & Jeon

(2015); Arora & Taylor (2016)), but have yet to be acknowledged by finance practitioners for

financial returns applications. From the obtained results kCDF RiskMetrics appears to be

very comfortable at the 95% and lower VAR confidence level and its performance is slightly

inferior to the parametric heavy tail RiskMetrics specifications at the 99% risk level. The

method has a good potential as a benchmark for other VAR competitions due to its relative

simplicity and flexibility, properties which are endemic to the nonparametric estimators in

general.

Obtained results also suggest that more complex methods do not necessesarily “a priori”

imply better estimation outcomes in practice and such results are often reflected in the

pragmatism of the most finance practicioners according to Pérignon & Smith (2010). It is

important to highlight that the test statistic employed here focuses on the frequency of the

losses and not on their magnitude or associated capital opportunity costs. Different data,
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backtesting or methods may provide a different as well as better outlook and perspectives

on the VAR estimations than the results for RiskMetrics variations here. Moreover, obtained

good L-GAS results for the BRICTS settings may very well be an example of the “conservative

strategy compensating imperfections in the forecasting scheme” case. This, on the other

hand, does not necessesary imply that such strategies are not valid for practical use. For

example, Pérignon et al. (2008) point out that the six largest commeracial banks in Canada

prefer to overestimate their exposure to avoid additional financial penalties (see McAleer

(2009); McAleer et al. (2013) for examples of the number of violations and capital penalties

under Basel II and III standards). Therefore, mostly aiming to provide an interesting

discussion within the methods of RiskMetrics
TM

relevance, this chapter is organized as

follows: Section 3.2 introduces employed RiksMetrics variations, Section 3.3 provides VAR

evaluation criteria, Section 3.4 describes the data, Section 3.5 reports some of the estimated

parameters for VAR evaluations, Section 3.6 discusses the results of the VAR projections

and Section 3.7 summarizes the discussion.

3.2 RiskMetrics, GAS and nonparametric approaches

For the PDF in

f(xt | Ft−1; ft, θ) =
1√

2πσ2
t

e
−
x2
t

2σ2
t , (3.1)

where Ft−1 is the information set available at time t− 1, ft and θ are vectors of time-varying

and static parameters respectively; setting ft = σ2
t produces J.P. Morgan’s (1996) RiskMetrics

TM

which parametrizes volatility as the weighted sum of the past squared observations given by
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the following recursive form

σ2
t+1 = ω · σ2

t + (1− ω) · x2
t , 0 < ω < 1; (3.2)

equivalently expressed through appropriate steps of the recursive substitution similar to

estimators as in Chapter 2 with

σ2
t+1 = (1− ω)

t∑
i=1

ωix2
t−i (3.3)

or by

σ2
t+1 =

1− ω
1− ωt

t∑
i=1

ωix2
t−i (3.4)

which insures that weights always sum to 1 over i = 1, · · · , t and is a zero intercept special

case of Bollerslev’s (1986) Integrated GARCH (1,1) (IGARCH) model. The more general

form of the IGARCH model for conditional volatility under DGP assumption as in (3.1) is

σ2
t+1 = c+ A · x2

t +B · σ2
t = c+ A · (x2

t − σ2
t ) + (A+B) · σ2

t (3.5)

and the special case outlined in (3.2) occurs when c = 0, B = ω and A = 1 − B with c +

A+B = 1 (see Nelson (1990) and Bollerslev et al. (1994) for specific conditions and details).

Also note that error correction form similar to kernel estimators described in Chapter 2 is

outlined on the right-hand side of the IGARCH volatility parametrization in (3.5).

For the Gaussian PDF in (3.1) and under the GAS time-varying parameters framework
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outlined by

ft+1 = c+ A · st +B · ft, (3.6)

where st = St ·
∂Lt
∂ft

for St = S(ft,Ft−1; θ) and Lt = log f(xt|Ft−1; ft, θ) with Lt(·) denoting

the logarithm of the conditional PDF as in (3.1) and St(·) a scaling function, which as in

Lucas & Zhang (2016) is the inverse diagonal of the Fisher information matrix (see Creal et

al. (2013); Harvey (2013) for more details or other scaling options), setting c = 0 and B = 1

Creal et al. (2013) show that the Integrated GAS (IGAS) reduces to

ft+1 = ft + A · st (3.7)

and is identical to the IGARCH in (3.5) if A = 1− ω.

For the Student’s t PDF described by

f(xt | Ft−1; ft, θ) =

Γ

(
νt + 1

2

)
Γ
(νt

2

)√
(νt − 2)πσ2

t

(
1 +

x2
t

(νt − 2)σ2
t

)−νt + 1

2
, (3.8)

where Γ(·) denotes a gamma function as in Chapter 1, and with σ2
t = f1,t and νt = 2+exp(f2,t)

Lucas & Zhang (2016) provide closed form recursions for the t-GAS form of RiskMetrics.

The recursions are outlined by

f1,t+1 = f1,t + Aσ2
t
· (1 + 3ν−1

t ) ·
(

νt + 1

νt − 2 + x2
t/f1,t

· x2
t − f1,t

)
(3.9)
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for σ2
t+1 and 1

f2,t+1 = f2,t − Aνt ·
2

νt − 2
·
(
γ′′
(
νt + 1

2

)
− γ′′

(νt
2

)
+

2(νt + 4)(νt − 3)

(νt + 1)(νt + 3)(νt − 2)2

)−1

·
(
γ′
(
νt + 1

2

)
−

γ′
(νt

2

)
− 1

νt − 2
− log

(
1 +

x2
t

(νt − 2)f1,t

)
+

νt + 1

νt − 2
· x2

t

(νt − 2)f1,t + x2
t

)
, (3.10)

where γ′(·) and γ′′(·) are the first and second order derivatives of γ(·) = log Γ(·), for νt+1

under Aι > 0 restriction for both (3.9) and (3.10). Although Lucas & Zhang (2016) show that

setting ω = A · (1+3ν−1
t ) in (3.9) provides a recursive form similar to (3.2), the recursions in

(3.9) and (3.10) are notably more involved at the implementation stage than the standard

RiskMetrics
TM

specification. However, they allow for the modelling of time-variation in the

tails of financial returns within the functionality of the popular Student’s t distribution.

An alternative parsimonious parametric choice, which also allows for heavy tails, though

with more restrictions in the tails’ shape, can be found in Laplace distribution. Its PDF for

estimations is given by

f(xt | Ft−1; ft, θ) =
1√
2σt

e
−

√
2|xt|
σt , (3.11)

while its IGAS dynamics are specified as

f3,t+1 = c+ 2A ·
√

2|xt|σt + (B − 2A) · f3,t, (3.12)

1Note that Gaussian and Student’s t PDFs used here have minor notation and parametrization differences
from the forms previously given in Chapter 1.
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which under c = 0, A =
1− ω

2
and B = 1 takes the “robust” form of Guermat & Harris

(2002), given by

σ2
t+1 = ω · σ2

t + (1− ω) ·
√

2|xt|σt, (3.13)

as shown by Lucas & Zhang (2016) for L-GAS RiskMetrics parametrization. Even more

pragmatic, but still a valid strategy, under RiskMetrics type weightings, may result from

removing any particular form of distributional parametrzizations as in Harvey & Oryshchenko

(2012) for dynamic kernel CDF estimator with weights for exponential filtering. From

Chapter 2 and for the notation format adopted here, it is given by the recursion

F1,t+1(x) = ω · F1,t(x) + (1− ω) ·W
(
x− xt
β

)
. (3.14)

The recursion in (3.14) can be equivalently expressed as

F1,t+1(x) = (1− ω)
t∑
i=1

W

(
x− xi
β

)
ωi (3.15)

or as

F1,t+1(x) =
1− ω
1− ωt

t∑
i=1

W

(
x− xi
β

)
ωi. (3.16)

The latter form insures non-negative weights summing to unity at all estimation stages and

is the particular form used in all of the kernel affiliated computations considered further.

Next, if the nonparametric setting offered by (3.16) is still regarded as overly complex, it can

be simplified to the dynamic empirical CDF approach driven by the below already familiar
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recursion

F2,t+1(x) = ω · F2,t(x) + (1− ω) · I{xt≤x}, (3.17)

where I{·} is an indicator function taking a value of 1 if the condition in the parenthesis is

satisfied, (3.17) can be equivalently rewritten as

F2,t+1(x) = (1− ω)
t∑
i=1

I{xi≤x}ω
i, (3.18)

and therefore takes the below form for computations

F2,t+1(x) =
1− ω
1− ωt

t∑
i=1

I{xi≤x}ω
i. (3.19)

For (3.17), (3.18) and (3.19) as covered in Section 2.3.2, similar forms are shown by Taylor

(2007) in the form of the nonparametric quantile regression. Similar, to the kernel approach

of Harvey & Oryshchenko (2012), dynamic eCDF and the empirical approach utilised in

Taylor (2007) should be identical. However since in practice, quantile regressions may offer

different dynamics for different quantiles, while here and as in Harvey & Oryshchenko (2012),

exponentially declining weights are used to drive the dynamics of the entire time-varying

eCDF. Estimated time-varying eCDF is then used for time-varying quantile extraction.

Hence, as noted in Harvey (2010), quantiles should not cross. Direct evaluation of the

dynamic quantiles with both parametric and nonparametric quantile regressions are beyond

the scope of this thesis.
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3.3 Framework for RiskMetrics competition

For simplicity, let VAR be outlined as

VARι,t+1,α = Ω−1
ι,t+1(1− α),

where Ω−1 is the inverse CDF of (3.1), (3.8), (3.11), (3.16) or (3.19) for the risk confidence

level α ∈ (0, 1). For the nonparametric versions of EWMA VAR the quantile algorithm

described in Harvey & Oryshchenko (2012) and Section 2.3.1 is employed.

Now, for the number of VAR violations, N =
∑T

t=1 It with It denoting an indicator function

taking a value of 1 everytime there is a larger loss than the VAR projection for the period

of trading days T , Kupiec (1995) suggests employing the following statistic

LRucd(α) = 2

(
log

[(
N

T

)N
·
(

1− N

T

)T−N]
− log

[
(1− α)T−N · αN

])
. (3.20)

The statistic assumes that
N

T
= 1−α under a χ2(1) distribution for T →∞ and is commonly

known as the unconditional coverage LR test. Broadly, the statistic quantifies how well the

VAR failure rate matches expectations. Christoffersen (1998) suggests a more inclusive

procedure outlined by using

LRccd(α) = LRucd(α)− LRind(α), (3.21)
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where LRucd is the unconditional coverage in (3.20) and LRind is independence LR test

outlined by

LRind(α) = 2
(
log
[
πT0000 π

T01
01 π

T10
10 π

T11
11

]
− log

[
(1− α)T01+T11 · αT00+T10

])
, (3.22)

where πij = P (It = j | It−1 = i) =
Tij

Ti0 + Ti1
for the first-order Markov chain transition

matrix

∇ =

π00 π01

π10 π11


with Tij accounting for transition times from states i and j for i, j ∈ {0, 1}. Since LRind ∼

χ2(1) for T →∞ the complete conditional coverage LR test in (3.21) follows χ2(2) for T →

∞. Essentially, the statistic in (3.22) tests the serial independence of VAR violations against

a Markov first order dependence hypothesis, which in combination with (3.20) provides a

joint test of independence and conditional coverage in (3.21).

3.4 Data

Applications of the outlined RiskMetrics variations are performed for the daily log-returns

described in Tables 2.1 and 3.1. The first group is a data set from Chapter 2 used to

demonstrate that nonparametric estimators as in Harvey & Oryshchenko (2012) can provide

accurate density evaluations under the compound Berkowitz’s (2001) criteria if the parameters

are chosen accordingly. Since Nieto & Ruiz (2016) point out that accurate density forecasts

are too formal for practical use and that this chapter is partially dedicated to investigating the

fitness of the dynamic nonparametric methods for more common and generally applied tasks,
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one of the targets here is to support previous findings with the results for more pragmatic

evaluation techniques and make comparisons to other up-to-date relevant methods in the

literature.

Though, using parametric tail evalution criteria, Lucas & Zhang (2016), similar to what

is outlined for kCDF RiskMetrics with nonparametric criteria in Chapter 2 by the general

uniformity of the PITs, show that t-GAS RiskMetrics can correctly outline tail domains of

financial returns. Therefore, in-sample first data group VAR comparisons of the dynamic

kCDF method with its most technically advanced alternative on the date of estimations,

should be of a particular value for the estimator of Harvey & Oryshchenko (2012) and its

general potential future use in financial applications, since applied investigations for this

type of estimator is scarce and still in the initial stages.

The second data group in Table 3.1 consists of the log-returns for BRICTS currencies

exchange rates against USD for the period from 18.08.2010 to 14.09.2018. This yields a

slightly more than 8 years of trading data observations for these currencies. Data for this

group has been obtained from the daily spot exchange rates as reported by Bloomberg and

is illustrated in Figure 3.1. Note that small differences in the sample length for each series in

this group are explained by the differences in country specific trading calendars. Motivation

for composing the BRICTS data group is based on the desire to obtain a group of the financial

series demonstrating turbulence at the moment of producing this part of the thesis and insure

an up-to-date empirical and valid investigation of the considered methods. For example,

since the beginning of 2018: CNY experienced devaluations against USD on the agenda of

the emerging trade barriers, RUB devalued against USD, though under “bullish” sentiment in

the oil markets, on the agenda of sanctions, while INR, BRL and ZAR devaluations towards
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Training Returns T MIN MAX Mean St.d. Skew. Kurt. LB(12) LB(12)2 JB AH(12)

18.08.10-15.01.16 BRL/USD 1356 -4.89 5.97 -0.061 0.95 0.03 5.71 0.02 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.08.10-15.01.16 RUB/USD 1363 -17.01 17.35 -0.069 1.21 -0.24 66.32 0.13 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.08.10-15.01.16 INR/USD 1310 -3.93 3.32 -0.028 0.53 -0.25 8.96 0.25 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.08.10-15.01.16 CNY/USD 1341 -1.83 0.61 0.002 0.13 -2.36 36.23 0.03 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.08.10-15.01.16 TRY/USD 1413 -3.35 3.16 -0.05 0.68 -0.29 4.65 0.87 0.02 ≈ 0.00 ≈ 0.00
18.08.10-15.01.16 ZAR/USD 1413 -6.44 5.08 -0.059 0.91 -0.29 6.07 0.61 ≈ 0.00 ≈ 0.00 ≈ 0.00

Testing Returns T MIN MAX Mean St.d. Skew. Kurt. LB(12) LB(12)2 JB AH(12)

18.01.16-14.09.18 BRL/USD 668 -7.11 5.13 0.005 1.02 -0.31 8.22 0.03 ≈ 0.00 ≈ 0.00 0.07
18.01.16-14.09.18 RUB/USD 672 -4.19 5.76 0.023 0.94 0.10 6.81 0.04 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.01.16-14.09.18 INR/USD 644 -1.58 1.19 -0.006 0.29 -0.49 5.08 0.81 0.63 ≈ 0.00 0.72
18.01.16-14.09.18 CNY/USD 652 -0.83 1.19 -0.007 0.24 0.29 5.63 0.91 ≈ 0.00 ≈ 0.00 0.02
18.01.16-14.09.18 TRY/USD 695 -14.74 8.07 -0.101 1.20 -2.51 40.31 ≈ 0.00 ≈ 0.00 ≈ 0.00 ≈ 0.00
18.01.16-14.09.18 ZAR/USD 694 -4.91 3.18 0.020 1.12 -0.34 3.98 0.42 0.01 ≈ 0.00 0.09

Table 3.1: Descriptive statistics for the specified returns series, where T is the sample size, MIN is the minimum value, MAX is
the maximum value, St.d. is standard deviation, Skew. is skewness, Kurt. is kurtosis, LB(12) and LB(12)2 are the Ljung-Box
probabilities for no serial correlation of order 12 in returns level, xt and squared demeaned returns, (xt − x̄)2 respectively,
JB are the Jarque-Bera probabilities for normality and AH(12) are the Lagrange Multiplier test for autoregressive conditional
heteroscedasticity probabilities of order 12 for no autocorrelation, normality and homoscedasticity.
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Figure 3.1: BRICTS log-returns series and their t-GAS RM σ̂2
t for the parameters in Table 3.2. Testing sample log-returns and

their σ̂2
t are highlighted in red.
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USD were likely due to the international capital outflow from the emerging markets to the

USA on the attractive “quantitative tightening” policy yields and finally, TRY devaluation

against USD could be explained by “liberal” monetary policy rates and emerging trade

barriers. In fact, Turkey may be argued to be one of the key factors underpinning emerging

markets volatility in August-September 2018 and therefore the cut-off point for the BRICTS

sample is set on the 14.09.2018, which is the end of the trading week for Turkish monetary

policy adjustment and start of the relatively calm sentiment in the emerging markets in

September 2018.

The choice of the backtesting procedure for the second data group is conventional and

straightforward. BRICTS data is split into two sub-samples: training (in-sample) and testing

(out-of-sample) parts. The data is partitioned on the 18.01.2016 producing 5+ years of the

data for training and 2+ years of trading data for testing. The training data part is used to

obtain parameters for estimations which are then used for VAR estimations in the testing

part of the BRICTS data. For the daily out-of-sample VAR projections a rolling window

of 1000 observations parameter updating backtests similar to Laporta et al. (2018) is also

performed. Both backtesting frameworks for the out-of-samples evaluations are common and

are also employed in Lucas & Zhang (2016) for introducing t and other GAS RiskMetrics

specifications as well as validating their appropriateness and should aid analytical discussion

of the obtained results.
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3.5 Estimated parameters

To estimate parameters for VAR evaluations of financial returns, described in Tables 2.1 and

3.1, MLE is utilized as outlined in Creal et al. (2013),

Υ = arg max
ft,θ

t∑
i=1

log f(xt | Ft−1; ft, θ) (3.23)

for (3.1), (3.8) and (3.11), while recursive version of the Bowman et al.’s (1998) LSE

Λ =
1

T −m

T−1∑
t=m

∫ ∞
−∞

[
I{xt+1≤x} − Fι,t+1(x)

]2
dx (3.24)

is used for (3.16) and (3.19), since results in Chapter 2 indicate its superiority over MLE, as

was originally suggested in Harvey & Oryshchenko (2012). Estimated parameters for all of

the methods described in Section 3.2 are provided in Table 3.2. Since for the nonparmetric

methods m = 250, all VAR evaluations for log-returns as in Table 2.1 and for BRICTS

training sub-samples, are performed excluding the initial 250 observations. These observations

are used in the estimation of unknown parameters for all methods, but are excluded from

VAR in-sample evaluations.

For the rolling window VAR projections of the nonparametric methods estimations are

simplified with the rolling window parameters obtained for RiskMetrics
TM

. For the kCDF

RiskMetricks the bandwidth parameter is then approximated as follows

β = 0.93 ·min (σs; IQRs/1.34) ·
(

1

1− ω

)−1/3

, (3.25)
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Returns eCDF RM kCDF RM RM
TM

L-GAS RM t−GAS RM †

BRENT ω = 0.9864 β = 0.4261; ω = 0.9841 ω = 0.9566 Aσ2
t

= 0.0371 Aσ2
t

= 0.0371 - ν = 7.7383
NOK/USD ω = 0.9886 β = 0.1879; ω = 0.9866 ω = 0.9688 Aσ2

t
= 0.0329 Aσ2

t
= 0.0332 Aνt = 0.0008 ν = 13.8645

RUB/USD ω = 0.9716 β = 0.0586; ω = 0.9703 ω = 0.9399 Aσ2
t

= 0.0683 Aσ2
t

= 0.0718 Aνt = 0.0148 ν = 2.0426
GBP/USD ω = 0.9906 β = 0.1249; ω = 0.9896 ω = 0.9398 Aσ2

t
= 0.0373 Aσ2

t
= 0.0335 - ν = 5.1987

NASDAQ ω = 0.9811 β = 0.8237; ω = 0.9757 ω = 0.9337 Aσ2
t

= 0.0560 Aσ2
t

= 0.0635 - ν = 22.5702
SP500 ω = 0.9731 β = 0.3664; ω = 0.9708 ω = 0.9317 Aσ2

t
= 0.0640 Aσ2

t
= 0.0676 Aνt = 0.0047 ν = 3.7728

FTSE100 ω = 0.9800 β = 0.2611; ω = 0.9726 ω = 0.9079 Aσ2
t

= 0.0793 Aσ2
t

= 0.0869 - ν = 10.1051
NIKKEI225 ω = 0.9639 β = 0.4513; ω = 0.9562 ω = 0.8804 Aσ2

t
= 0.0943 Aσ2

t
= 0.0997 - ν = 7.3343

GOLD ω = 0.9847 β = 0.2402; ω = 0.9811 ω = 0.9559 Aσ2
t

= 0.0423 Aσ2
t

= 0.0421 - ν = 4.1925
BTC/USD ω = 0.9774 β = 0.6112; ω = 0.9748 ω = 0.9035 Aσ2

t
= 0.1018 Aσ2

t
= 0.0465 Aνt = 0.1021 ν = 3.4921

BRL/USD ω = 0.9795 β = 0.2389; ω = 0.9765 ω = 0.9213 Aσ2
t

= 0.0696 Aσ2
t

= 0.0743 Aνt = 0.0026 ν = 9.5772
RUB/USD ω = 0.9632 β = 0.2319; ω = 0.9569 ω = 0.9194 Aσ2

t
= 0.0721 Aσ2

t
= 0.0727 - ν = 5.3637

INR/USD ω = 0.9838 β = 0.1130; ω = 0.9794 ω = 0.9422 Aσ2
t

= 0.0544 Aσ2
t

= 0.0514 - ν = 5.5282
CNY/USD ω = 0.9665 β = 0.0206; ω = 0.9631 ω = 0.9939 Aσ2

t
= 0.0224 Aσ2

t
= 0.0701 Aνt = 0.0335 ν = 3.0226

TRY/USD ω = 0.9869 β = 0.1561; ω = 0.9844 ω = 0.9541 Aσ2
t

= 0.0481 Aσ2
t

= 0.0498 Aνt = 0.0017 ν = 14.6825
ZAR/USD ω = 0.9927 β = 0.2244; ω = 0.9906 ω = 0.9543 Aσ2

t
= 0.0401 Aσ2

t
= 0.0435 - ν = 10.0561

Table 3.2: RM estimated parameters for the specified returns series. † for t-GAS RM with Aνt > 0, ν is the estimated
initialization point for the d.f. dynamics.
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parameters for (3.25) may be worthwhile investigating in the greater detail in the future.

3.6 Competition results and discussion

Output for all test statistics of the VAR projections for the corresponding samples are

provided in Tables 3.3 and 3.4. For tests, the decision significance rule is set at the standard

5% level and obtained values exceeding this threshold are not differentiated among each

other. The statistics of Christoffersen (1998) is preffered over Kupiec’s (1995) test output,

though in fruther interpretations the actual over expected exceedances (AE) ratio is also

considered important and essentially serves as a simplified version of Kupiec’s (1995) statistic.

Further discussion mainly focuses on the common 99% and 95% risk confidence levels similar

to Laporta et al. (2018), but also provides results for the 90% level to check the nonparametric

estimators ability of picking up evolving quantiles more into the “body” domain of financial

returns and thus their potential appropriateness for studies interested in their broader range

(e.g. as in Reboredo & Ugolini (2016)). Illustration of differing types quantile dynamics

provided by the different variations of RiskMetrics is exemplified on the BRENT log-returns

in Figure 3.2. From Figure 3.2, differences in the quantiles evolution are most visually

distinguished at the 99% level. It is easy to see that dynamic eCDF quantiles for this

risk confidence level are the least smooth with little time variation at certain periods of

estimation. This may be expected from the functional form of the dynamic eCDF in (3.17),

(3.18) and (3.19) or from what is generally known of its static version (e.g. Markovich (2008)).

Enhancing the capabilities of eCDF with kernels in the form of CDF adds smoothness in

the evolution of the nonparametric quantiles, but the changes are arguably slower than
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those for the parametric quantiles. Faster time adjustments in the parametric quantiles

may be explained by the differences in the estimated parameters between nonparametric

and parametric methods reported in Table 3.2 and discussed in the previous section as

well as by the “robustifying volatility responses” of GAS models. For example, Lucas &

Zhang (2016), similar to Creal et al. (2013) and Harvey (2013), argue that under the GAS

framework, the closer the latest available observation is to the tail domain of the Student’s

t distribution, the sharper should be the response in the projected volatility estimate and

quantiles respectively. If the observation is closer to the middle, it should have a smaller

impact on the respective projections. On the other hand, for the illustrated parametric

quantiles in Figure 3.2, the events of the financial crisis and associated turbulence in the

oil markets highlight the most notable differences in the estimates based on the Laplace

and Student’s t distributions. Laplace quantiles are higher in absolute values, and are more

conservative, than the estimated quantiles for the Student’s t distribution. In fact, Laplace

quantiles may be argued to be visually closer to the values of the financial crisis quantiles

for the kernel method than that of the Student’s t distribution in Figure 3.2.
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Figure 3.2: eCDF, kCDF, L-GAS and t-GAS RM lower tail time-varying quantiles for BRENT log-returns.
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eCDF RM kCDF RM RM
TM

L-GAS RM t-GAS RM
VARα Returns LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE

0.99

BRENT 0.1945 0.6592 1.1041 0.5758 1.0709 0.0012 0.9718 0.7849 0.6754 0.9944 14.2743 0.0002 14.9307 0.0006 1.6569 7.9661 0.0048 8.2375 0.0163 0.5863 2.2777 0.1312 2.4898 0.2880 1.2490
NOK/USD 3.4881 0.0618 3.6339 0.1625 1.3124 0.0335 0.8549 0.6490 0.7229 1.0293 4.0510 0.0441 4.1716 0.1242 1.3378 25.7196 0.0000 25.7939 0.0000 0.3087 0.0004 0.9833 0.7912 0.6733 1.0033
RUB/USD 20.0839 0.0000 20.4890 0.0000 1.8016 8.8417 0.0029 9.9340 0.0070 1.5144 17.7411 0.0000 17.7686 0.0001 1.7489 0.3481 0.5552 6.8314 0.0329 1.0963 2.2918 0.1301 4.3843 0.1117 1.2529
GBP/USD 0.5446 0.4605 0.8699 0.6473 1.2346 0.0209 0.8851 0.2534 0.8810 1.0446 9.5844 0.0020 10.5233 0.0052 2.0873 0.5399 0.4625 2.6328 0.2681 1.2334 1.0401 0.3078 2.8734 0.2377 1.3283
NASDAQ 0.0551 0.8144 0.2102 0.9002 1.0938 0.0258 0.8724 0.1395 0.9326 0.9375 1.0566 0.3040 1.1069 0.5750 0.6240 4.1917 0.0406 4.2043 0.1222 0.3120 1.0566 0.3040 1.1069 0.5750 0.6240
SP500 11.1640 0.0008 12.0957 0.0024 2.3899 2.7187 0.0992 3.1515 0.2069 1.6352 21.2227 0.0000 21.3229 0.0000 3.0151 0.0002 0.9886 0.1628 0.9218 1.0050 2.7058 0.1000 3.1381 0.2082 1.6332
FTSE100 3.6845 0.0549 4.1826 0.1235 1.7456 3.6845 0.0549 4.1826 0.1235 1.7456 18.7499 0.0000 20.1083 0.0000 2.8643 0.1139 0.7357 0.3182 0.8529 1.1208 7.6626 0.0056 8.4750 0.0144 2.1171
NIKKEI225 15.5109 0.0001 18.1142 0.0001 2.9654 6.0216 0.0141 6.5916 0.0370 2.1417 11.2871 0.0008 12.1535 0.0023 2.6316 0.8175 0.3659 0.8706 0.6471 0.6579 3.2439 0.0717 4.9909 0.0825 1.8092
GOLD 0.4459 0.5043 7.4895 0.0236 1.2093 0.4459 0.5043 7.4895 0.0236 1.2093 21.3388 0.0000 22.7661 0.0000 2.6952 0.4417 0.5063 2.5702 0.2766 1.2082 2.2419 0.1343 3.6634 0.1601 1.4870
BTC/USD 1.0602 0.3032 1.4386 0.4871 1.3321 0.5541 0.4566 0.8801 0.6440 1.2369 16.3218 0.0001 18.2957 0.0001 2.4715 6.8247 0.0090 10.5002 0.0052 1.9011 0.6647 0.4149 4.6161 0.0995 0.7605

0.95

BRENT 1.0147 0.3138 1.7182 0.4236 1.0709 0.0065 0.9357 0.0168 0.9916 0.9944 3.9880 0.0458 6.9835 0.0304 1.1420 0.0183 0.8924 4.6077 0.0999 1.0094 7.6381 0.0057 12.0266 0.0024 1.1981
NOK/USD 0.5019 0.4787 1.3330 0.5135 1.0499 3.6204 0.0571 3.9088 0.1417 0.8698 3.6341 0.0566 4.5508 0.1028 0.8696 23.6162 0.0000 25.4523 0.0000 0.6792 0.9870 0.3205 1.8366 0.3992 0.9313
RUB/USD 0.9802 0.3221 3.2627 0.1957 1.0705 0.0014 0.9704 3.0144 0.2215 0.9974 0.0132 0.9084 2.1818 0.3359 0.9919 0.8840 0.3471 10.3352 0.0057 0.9345 2.9118 0.0879 18.8482 0.0001 1.1224
GBP/USD 0.5548 0.4564 0.7654 0.6820 1.1016 0.1089 0.7414 0.1148 0.9442 1.0446 0.5441 0.4607 0.5576 0.7567 1.1006 0.1480 0.7004 0.3171 0.8534 0.9488 1.0208 0.3123 1.0808 0.5825 1.1385
NASDAQ 0.5068 0.4765 0.5072 0.7760 1.1250 1.2618 0.2613 1.9986 0.3681 0.8125 1.9308 0.1647 2.0520 0.3584 1.2480 1.7602 0.1846 1.7608 0.4146 0.7800 2.4267 0.1193 2.6108 0.2711 1.2793
SP500 1.6952 0.1929 2.0470 0.3593 1.2075 0.9868 0.3205 1.1895 0.5517 1.1572 8.5448 0.0035 12.7749 0.0017 1.4824 5.4889 0.0191 8.7397 0.0127 1.3819 12.1869 0.0005 13.2572 0.0013 1.5829
FTSE100 0.0211 0.8845 1.5724 0.4556 1.0224 0.0211 0.8845 0.4056 0.8165 1.0224 2.3678 0.1239 2.6316 0.2683 1.2453 0.5945 0.4407 1.4317 0.4888 1.1208 5.2092 0.0225 5.2248 0.0734 1.3699
NIKKEI225 4.2263 0.0398 7.2475 0.0267 1.3839 0.0928 0.7606 5.0919 0.0784 1.0544 7.3315 0.0068 12.6281 0.0018 1.5132 1.4149 0.2342 4.3465 0.1138 1.2171 6.4720 0.0110 10.2097 0.0061 1.4803
GOLD 0.3452 0.5568 0.3516 0.8388 1.0791 0.0979 0.7544 0.4566 0.7959 1.0419 1.2567 0.2623 1.3665 0.5050 1.1524 0.5136 0.4736 0.5337 0.7658 1.0967 5.2828 0.0215 5.3059 0.0704 1.3197
BTC/USD 0.0040 0.9493 3.5082 0.1731 1.0086 0.0418 0.8381 5.2739 0.0716 1.0276 0.0032 0.9549 0.6467 0.7237 1.0076 2.0413 0.1531 3.3244 0.1897 1.1977 1.0503 0.3054 2.8728 0.2378 1.1407

0.9

BRENT 0.4597 0.4977 3.9398 0.1395 1.0326 0.4256 0.5141 2.5315 0.2820 0.9689 0.0082 0.9280 4.4806 0.1064 1.0043 5.7223 0.0168 9.2945 0.0096 1.1165 7.8575 0.0051 9.9284 0.0070 1.1369
NOK/USD 0.6703 0.4129 5.2508 0.0724 1.0396 1.1153 0.2909 5.7967 0.0551 0.9496 1.7779 0.1824 5.6929 0.0580 0.9365 0.2710 0.6027 8.7285 0.0127 0.9750 0.5006 0.4792 7.4935 0.0236 1.0342
RUB/USD 1.5082 0.2194 10.0378 0.0066 1.0601 0.4217 0.5161 6.5723 0.0374 0.9687 4.3408 0.0372 8.6024 0.0136 0.9005 2.5352 0.1113 8.0136 0.0182 1.0780 10.9590 0.0009 20.9771 0.0000 1.1642
GBP/USD 0.1430 0.7053 0.3333 0.8465 1.0351 0.1160 0.7334 0.2166 0.8974 0.9687 0.1230 0.7258 0.6519 0.7218 0.9677 0.0707 0.7903 0.1643 0.9212 1.0247 1.3747 0.2410 1.4740 0.4785 1.1101
NASDAQ 0.4244 0.5148 0.4592 0.7949 1.0781 0.0701 0.7912 0.0701 0.9655 0.9688 6.9417 0.0084 7.0003 0.0302 1.3261 8.9772 0.0027 8.9783 0.0112 1.3729 11.2498 0.0008 11.2502 0.0036 1.4197
SP500 3.1810 0.0745 5.6066 0.0606 1.1950 0.1690 0.6810 1.2973 0.5227 1.0440 2.0544 0.1518 6.6072 0.0368 1.1558 6.4914 0.0108 10.7818 0.0046 1.2814 7.6550 0.0057 12.5771 0.0019 1.3065
FTSE100 2.1705 0.1407 2.1753 0.3370 1.1596 0.0200 0.8874 0.7400 0.6907 0.9850 0.6064 0.4361 0.9190 0.6316 1.0834 2.4761 0.1156 2.5861 0.2744 1.1706 3.2307 0.0723 3.2594 0.1960 1.1955
NIKKEI225 4.0006 0.0455 7.6571 0.0217 1.2521 0.0307 0.8608 3.6746 0.1592 1.0214 2.1778 0.1400 9.2919 0.0096 1.1842 1.8141 0.1780 11.4713 0.0032 1.1678 2.9994 0.0833 10.7651 0.0046 1.2171
GOLD 0.1254 0.7232 4.2109 0.1218 1.0326 0.0650 0.7987 1.5980 0.4498 0.9767 1.1959 0.2741 1.8503 0.3965 0.9015 0.2967 0.5859 1.2596 0.5327 1.0502 1.7898 0.1810 3.4530 0.1779 1.1245
BTC/USD 0.2504 0.6168 0.8809 0.6438 1.0466 0.0380 0.8455 3.7792 0.1511 1.0181 1.9134 0.1666 3.0992 0.2123 0.8745 0.4793 0.4887 1.4073 0.4948 1.0646 0.7985 0.3716 2.0542 0.3581 1.0837

Table 3.3: VAR estimation results for the specified methods and VAR levels for data set used in Chapter 2, where LRucp and
LRccp denote p-values for Kupiec (1995) and Christoffersen (1998) statistics, AE is actual over expected exceedances ratio,
while statistic exceeding 5% significance threshold is highlighted in grey.
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First, the VAR estimation results in Table 3.3 are discussed and analysed. At the 99%

level the poor performance of RiskMetrics
TM

is the most notable result, then with observed

improvements, follow the eCDF and L-GAS results, which, in turn, are slightly outperformed

by the kCDF RiskMetrics. The leading position is taken by the t-GAS RiskMetrics. Going to

the 95% level the outlook most notably changes for RiskMetrics
TM

. For this level RiskMetrics
TM

results are, in fact, more satisfactory than that of its t-GAS alternative, but results for L-GAS

parameterization are also worth highlighting. Mainly due to the initial expectation that if the

Laplace specification works well that would be at the 99% level domains due to the greater

shape adaptability characteristics of the Student’s t distribution (or also see previous results

of Gerlach et al. (2013) or Lucas & Zhang (2016)). Most likely different decays in speed of the

distributions’ tails and body domains (e.g. Cont (2001); Markovich (2008)) are observed for

these groups of returns. This may be quite problematic when capturing with a specific tail

oriented parametrization, even for in-sample VAR evaluations as here. On the other hand,

the functionality of the nonparametric methods are data driven and as long as the estimation

domains possess enough information in the observed data, these estimators should perform

well under good choices of parameters as empirically shown by the density forecasts in the

previous chapter and well outlined by the good results at the 95% level in Table 3.3. Though,

the 95% confidence level still interests researchers a lot (e.g. Ji et al. (2018) among others

for a recent application at this particular level) nonparametric in-sample results for this and

90% levels together, in particular what is observed for the AE ratio at these levels, add more

empirical evidence for applications of these methods in the full-scale nonparametric changing

dependence testing frameworks. For example, the obtained quantiles may be directly used

in applications similar to Harvey (2010) or pseudo-observations may be obtained with these
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estimators specifically without parametric pre-filtering for the tail dependency tests as in

Bücher et al. (2015) given that the diagnotic output for the obtained pseudo-observations is

satisfactory (e.g. using Berkowitz’s (2001) criteria). It is also interesting to note that the

kCDF results even at the 99% level are in-line with the previous density forecasts, though

noted as not very practical by Nieto & Ruiz (2016), and accuracy ratio for this estimator

in Chapter 2 indicating the robustness of both the choice of parameters and adopted LSE

approach to parameters estimation in general.

The results presented in Table 3.4 allow providing a discussion more focused on VAR than the

above, since the setting is more appropriate. Reviewing the 99% level results for in-sample

evaluations a different outlook on the best performing specification is observed. L-GAS

comfortably outperforms its technically more elaborate Student’s t alternative. In fact the

t-GAS performance is not very encouraging and is comparable to the most parsimonious

eCDF specification. The kCDF RiskMetrics again takes the “first runner-up” position for

this level of in-sample evaluations, while RikMetrics
TM

performs the worst. Given a good

pool of in-sample evaluations it can be now noted that Laplace based estimations tend to

overestimating risk exposure when compared to the other methods considered. On the basis

of its slowly evolving quantile, kCDF may be expected to be the second most conservative

method, but this is not consistently observed in obtained results at the 99% level when

compared to the t-GAS estimation results. This reflects an intermittent vulnerability of

the strictly data driven approach and benefits of the parametric assumptions in the tails.

Moving to the 95% and 90% levels the dominance of the nonparametric estimators is difficult

to debate, though results for the Laplace based specification for the 95% level may be again

worth highlighting.
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eCDF RM - training kCDF RM - training RM - training L-GAS RM - training t-GAS RM - training
VARα Returns LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE LRucd LRucp LRccd LRccp AE

0.99

BRL/USD 5.8891 0.0152 6.6265 0.0364 1.8083 5.8891 0.0152 6.6265 0.0364 1.8083 7.1222 0.0076 7.9351 0.0189 1.8970 0.4177 0.5181 0.5653 0.7538 0.8130 1.2685 0.2601 1.6809 0.4315 1.3550
RUB/USD 14.5811 0.0001 23.8295 0.0000 2.3360 4.6385 0.0313 13.4424 0.0012 1.7071 22.0437 0.0000 29.1850 0.0000 2.6930 0.0018 0.9663 0.2214 0.8952 0.9874 4.6242 0.0315 13.4330 0.0012 1.7056
INR/USD 1.6344 0.2011 3.2433 0.1976 1.4151 1.0007 0.3171 2.8435 0.2413 1.3208 26.0942 0.0000 29.5420 0.0000 2.9218 2.3930 0.1219 7.7430 0.0208 1.5080 9.4308 0.0021 16.2713 0.0003 2.0735
CNY/USD 7.4179 0.0065 8.2431 0.0162 1.9248 6.1388 0.0132 6.8865 0.0320 1.8332 11.7969 0.0006 27.1777 0.0000 2.1978 2.0877 0.1485 7.5422 0.0230 1.4652 4.9466 0.0261 19.1065 0.0001 1.7399
TRY/USD 0.0118 0.9136 0.2622 0.8771 1.0318 0.0118 0.9136 0.2622 0.8771 1.0318 10.1462 0.0014 11.1576 0.0038 2.0619 1.2914 0.2558 1.4022 0.4960 0.6873 3.0084 0.0828 3.5744 0.1674 1.5464
ZAR/USD 0.9037 0.3418 7.0935 0.0288 1.2898 0.1570 0.6919 2.4208 0.2981 1.1178 16.6678 0.0000 16.8126 0.0002 2.4055 0.2451 0.6206 0.4185 0.8112 0.8591 10.1462 0.0014 10.5641 0.0051 2.0619

0.95

BRL/USD 1.6997 0.1923 1.7088 0.4255 1.1754 0.0545 0.8154 0.0558 0.9725 1.0307 4.8355 0.0279 5.9913 0.0500 1.3008 0.1065 0.7442 0.1939 0.9076 0.9575 6.6412 0.0100 7.3947 0.0248 1.3550
RUB/USD 1.9172 0.1662 12.4587 0.0020 1.1860 0.0342 0.8533 2.8793 0.2370 1.0243 3.1173 0.0775 6.2680 0.0435 1.2388 1.2448 0.2645 2.6570 0.2649 1.1490 11.4843 0.0007 17.2132 0.0002 1.4722
INR/USD 0.6908 0.4059 6.3404 0.0420 1.1132 0.1756 0.6751 4.7907 0.0911 1.0566 7.1043 0.0077 7.9778 0.0185 1.3761 4.6300 0.0314 5.1615 0.0757 1.3007 13.4430 0.0002 17.2762 0.0002 1.5269
CNY/USD 0.7745 0.3788 4.1248 0.1271 1.1182 0.1142 0.7354 1.4054 0.4952 1.0449 1.8851 0.1698 18.5740 0.0001 0.8242 0.8739 0.3499 19.1428 0.0001 0.8791 1.2989 0.2544 7.9082 0.0192 1.1538
TRY/USD 0.0130 0.9092 0.0130 0.9935 1.0146 0.7088 0.3998 0.7615 0.6833 0.8942 8.4247 0.0037 9.0305 0.0109 1.3918 0.8072 0.3690 0.9378 0.6257 1.1168 9.1407 0.0025 9.8426 0.0073 1.4089
ZAR/USD 1.3544 0.2445 1.3654 0.5052 1.1522 0.2629 0.6081 0.4415 0.8019 1.0662 2.7776 0.0956 2.8075 0.2457 1.2199 0.0115 0.9145 0.3550 0.8374 1.0137 5.2490 0.0220 5.5143 0.0635 1.3058

0.9

BRL/USD 2.2907 0.1302 2.3027 0.3162 1.1392 0.0684 0.7937 0.3029 0.8594 0.9765 9.1107 0.0025 11.3548 0.0034 1.2827 13.4341 0.0002 13.9857 0.0009 1.3460 18.5177 0.0000 18.7582 0.0001 1.4092
RUB/USD 3.6876 0.0548 18.8223 0.0001 1.1770 0.0169 0.8965 8.1658 0.0169 0.9883 3.6480 0.0561 20.7965 0.0000 1.1759 10.3847 0.0013 26.2572 0.0000 1.3016 14.9357 0.0001 31.8286 0.0000 1.3645
INR/USD 0.0417 0.8382 2.6887 0.2607 1.0189 0.0951 0.7577 1.8665 0.3933 0.9717 0.6397 0.4238 3.9487 0.1388 1.0745 5.1747 0.0229 7.4401 0.0242 1.2158 10.4323 0.0012 12.9261 0.0016 1.3101
CNY/USD 0.3490 0.5547 7.3203 0.0257 1.0541 0.2687 0.6042 7.0547 0.0294 0.9533 22.9155 0.0000 42.3085 0.0000 0.5952 3.1631 0.0753 31.8829 0.0000 0.8425 0.2314 0.6305 16.9502 0.0002 1.0440
TRY/USD 0.0047 0.9455 0.0698 0.9657 1.0060 0.0047 0.9455 0.0698 0.9657 1.0060 5.4494 0.0196 5.5285 0.0630 1.2113 8.8561 0.0029 8.8801 0.0118 1.2715 9.4055 0.0022 9.4545 0.0089 1.2801
ZAR/USD 3.1936 0.0739 3.6618 0.1603 1.1608 0.0009 0.9766 0.6472 0.7235 0.9974 2.2366 0.1348 2.3021 0.3163 1.1340 7.8040 0.0052 7.8491 0.0198 1.2543 11.7559 0.0006 11.7559 0.0028 1.3144

eCDF RM - testing kCDF RM - testing RM - testing L-GAS RM - testing t-GAS RM - testing

0.99

BRL/USD 0.7341 0.3916 0.9803 0.6125 1.3473 0.0724 0.7879 0.1813 0.9133 0.8982 1.4460 0.2292 3.6934 0.1578 1.4970 1.2683 0.2601 1.3165 0.5178 0.5988 0.4675 0.4942 0.5430 0.7622 0.7485
RUB/USD 6.0711 0.0137 21.8283 0.0000 2.0833 3.3977 0.0653 15.0989 0.0005 1.7857 1.4061 0.2357 15.5673 0.0004 1.4881 0.4879 0.4848 5.5440 0.0625 0.7440 0.0808 0.7762 12.1091 0.0023 0.8929
INR/USD 1.7010 0.1922 3.8844 0.1434 1.5528 0.9148 0.3388 3.4895 0.1747 1.3975 10.1460 0.0014 10.9627 0.0042 2.4845 0.9148 0.3388 1.1704 0.5570 1.3975 1.7010 0.1922 2.0170 0.3648 1.5528
CNY/USD 5.0472 0.0247 6.3523 0.0417 1.9939 5.0472 0.0247 6.3523 0.0417 1.9939 48.6454 0.0000 50.0166 0.0000 4.7546 30.7743 0.0000 36.9296 0.0000 3.8344 103.2521 0.0000 114.5631 0.0000 7.0552
TRY/USD 12.3371 0.0004 19.2126 0.0001 2.5899 8.7027 0.0032 12.5591 0.0019 2.3022 90.3313 0.0000 101.0310 0.0000 6.3309 23.3280 0.0000 40.3412 0.0000 3.3094 54.9357 0.0000 70.0998 0.0000 4.8921
ZAR/USD 2.0371 0.1535 8.7983 0.0123 1.5850 0.0005 0.9818 0.1434 0.9308 1.0086 16.4671 0.0000 26.4105 0.0000 2.8818 2.0371 0.1535 4.0070 0.1349 1.5850 14.3642 0.0002 25.1330 0.0000 2.7378

0.95

BRL/USD 0.9400 0.3323 1.1757 0.5555 1.1677 0.0795 0.7780 0.7817 0.6765 1.0479 1.8621 0.1724 1.8623 0.3941 0.7784 5.5513 0.0185 5.7127 0.0575 0.6287 0.3767 0.5394 0.4848 0.7847 0.8982
RUB/USD 0.0113 0.9152 8.5830 0.0137 0.9821 0.6937 0.4049 8.4298 0.0148 0.8631 9.1086 0.0025 26.0415 0.0000 0.5357 7.8681 0.0050 24.2109 0.0000 0.5655 9.1086 0.0025 26.0415 0.0000 0.5357
INR/USD 0.1041 0.7470 0.8654 0.6488 1.0559 0.9331 0.3341 1.5310 0.4651 0.8385 7.1381 0.0075 7.7313 0.0209 1.4907 0.7202 0.3961 2.2337 0.3273 1.1491 14.1508 0.0002 16.5163 0.0003 1.7081
CNY/USD 0.3616 0.5476 0.3616 0.8346 1.1043 0.3616 0.5476 0.3616 0.8346 1.1043 26.6349 0.0000 27.1051 0.0000 1.9939 31.2494 0.0000 32.5930 0.0000 2.0859 133.8295 0.0000 145.1031 0.0000 3.4969
TRY/USD 4.1137 0.0425 8.2222 0.0164 1.3525 4.1137 0.0425 10.3642 0.0056 1.3525 27.9662 0.0000 45.3287 0.0000 1.9856 3.4953 0.0615 31.2340 0.0000 1.3237 39.0807 0.0000 55.7513 0.0000 2.1871
ZAR/USD 1.1406 0.2855 3.5876 0.1663 1.1816 0.0507 0.8219 4.2334 0.1204 1.0375 2.4274 0.1192 7.7932 0.0203 1.2680 0.3209 0.5711 6.0913 0.0476 1.0951 1.9485 0.1627 7.7848 0.0204 1.2392

0.9

BRL/USD 0.0797 0.7777 0.3157 0.8540 1.0329 0.5746 0.4484 0.6124 0.7362 0.9132 3.3848 0.0658 3.5507 0.1694 0.7934 1.3420 0.2467 1.5493 0.4609 0.8683 0.3917 0.5314 2.3404 0.3103 0.9281
RUB/USD 0.0007 0.9795 1.9382 0.3794 0.9970 0.4578 0.4987 3.9320 0.1400 0.9226 16.4610 0.0000 27.8519 0.0000 0.5655 11.9554 0.0005 27.4229 0.0000 0.6250 15.2542 0.0001 25.9110 0.0000 0.5804
INR/USD 0.0438 0.8341 0.0531 0.9738 1.0248 0.5162 0.4725 1.0409 0.5943 0.9161 2.2079 0.1373 2.7611 0.2514 1.1801 4.9633 0.0259 5.2523 0.0724 1.2733 8.0312 0.0046 8.5724 0.0138 1.3509
CNY/USD 3.9816 0.0460 5.0181 0.0813 1.2423 3.5072 0.0611 4.7445 0.0933 1.2270 13.4590 0.0002 16.0381 0.0003 1.4571 31.4287 0.0000 37.0024 0.0000 1.7178 91.2746 0.0000 97.1334 0.0000 2.2853
TRY/USD 3.1731 0.0749 8.3775 0.0152 1.2086 2.3759 0.1232 5.7180 0.0573 1.1799 8.7424 0.0031 26.9650 0.0000 1.3525 0.8720 0.3504 31.3853 0.0000 1.1079 18.6604 0.0000 44.7524 0.0000 1.5252
ZAR/USD 0.1071 0.7435 3.0957 0.2127 1.0375 0.0316 0.8590 1.8559 0.3954 0.9798 0.0932 0.7602 5.1536 0.0760 0.9654 0.3323 0.5643 5.5983 0.0609 1.0663 0.4905 0.4837 5.3254 0.0698 1.0807

eCDF RM - roll testing kCDF RM - roll testing RM - roll testing L-GAS RM - roll testing t-GAS RM - roll testing

0.99

BRL/USD 19.7793 0.0000 19.9407 0.0000 3.1437 1.4460 0.2292 3.6934 0.1578 1.4970 0.7341 0.3916 0.9803 0.6125 1.3473 2.5774 0.1084 2.6045 0.2719 0.4491 1.2683 0.2601 1.3165 0.5178 0.5988
RUB/USD 19.6050 0.0000 24.5998 0.0000 3.1250 3.3977 0.0653 3.8347 0.1470 1.7857 9.3301 0.0023 10.0705 0.0065 2.3810 0.0808 0.7762 4.3586 0.1131 0.8929 0.7063 0.4007 3.3577 0.1866 1.3393
INR/USD 8.3611 0.0038 9.0777 0.0107 2.3292 5.2107 0.0224 5.7472 0.0565 2.0186 8.3611 0.0038 9.2203 0.0100 2.3292 0.3544 0.5516 0.5560 0.7573 1.2422 6.7128 0.0096 7.7711 0.0205 2.1739
CNY/USD 1.6130 0.2041 1.9250 0.3819 1.5337 1.6130 0.2041 1.9250 0.3819 1.5337 20.4925 0.0000 22.3567 0.0000 3.2209 0.0430 0.8357 0.1547 0.9256 0.9202 2.4016 0.1212 2.4294 0.2968 0.4601
TRY/USD 18.6317 0.0000 23.7950 0.0000 3.0216 8.7027 0.0032 12.5591 0.0019 2.3022 25.8130 0.0000 27.1133 0.0000 3.4532 5.5813 0.0182 6.7521 0.0342 2.0144 10.4596 0.0012 18.0008 0.0001 2.4460
ZAR/USD 12.3695 0.0004 13.3296 0.0013 2.5937 4.2524 0.0392 4.7495 0.0930 1.8732 3.0599 0.0802 3.4828 0.1753 1.7291 1.4845 0.2231 1.5309 0.4651 0.5764 1.1993 0.2735 1.4922 0.4742 1.4409

0.95

BRL/USD 1.2948 0.2552 1.4542 0.4833 1.1976 0.0795 0.7780 0.7817 0.6765 1.0479 0.2080 0.6483 0.7684 0.6810 1.0778 0.3767 0.5394 0.4848 0.7847 0.8982 0.9400 0.3323 1.1757 0.5555 1.1677
RUB/USD 5.7681 0.0163 6.5887 0.0371 1.4286 1.0390 0.3081 1.0667 0.5866 0.8333 0.1765 0.6744 2.2629 0.3226 1.0714 1.4588 0.2271 10.1683 0.0062 0.8036 0.0606 0.8055 7.1163 0.0285 1.0417
INR/USD 2.3388 0.1262 2.5163 0.2842 1.2733 0.0208 0.8854 0.0793 0.9611 1.0248 1.0423 0.3073 2.3323 0.3116 1.1801 0.0013 0.9711 2.9558 0.2281 0.9938 7.1381 0.0075 7.1930 0.0274 1.4907
CNY/USD 13.5523 0.0002 13.5837 0.0011 1.6871 14.6918 0.0001 14.7000 0.0006 1.7178 0.8960 0.3438 2.2353 0.3270 1.1656 0.0117 0.9139 1.1710 0.5568 0.9816 0.0624 0.8027 0.0929 0.9546 1.0429
TRY/USD 1.9233 0.1655 2.5951 0.2732 1.2374 1.1215 0.2896 2.1138 0.3475 1.1799 10.6344 0.0011 12.2763 0.0022 1.5827 7.8733 0.0050 10.2940 0.0058 1.4964 16.0180 0.0001 20.4309 0.0000 1.7266
ZAR/USD 0.8139 0.3670 3.5641 0.1683 1.1527 0.0027 0.9584 2.3859 0.3033 1.0086 1.5192 0.2177 5.5424 0.0626 1.2104 0.0891 0.7654 5.6020 0.0608 0.9510 1.9485 0.1627 5.5939 0.0610 1.2392

0.9

BRL/USD 0.8362 0.3605 4.0649 0.1310 1.1078 1.3420 0.2467 1.6174 0.4454 0.8683 0.0007 0.9794 0.5933 0.7433 1.0030 1.3541 0.2446 1.7811 0.4104 1.1377 5.1178 0.0237 6.1622 0.0459 1.2725
RUB/USD 5.9883 0.0144 6.1489 0.0462 1.2946 0.4578 0.4987 0.4857 0.7844 0.9226 0.2972 0.5856 0.5732 0.7508 0.9375 0.0007 0.9795 1.9382 0.3794 0.9970 0.7427 0.3888 1.3051 0.5207 1.1012
INR/USD 1.2287 0.2677 2.0982 0.3502 1.1335 0.2200 0.6390 0.2264 0.8930 1.0559 1.5247 0.2169 1.5593 0.4586 1.1491 4.4324 0.0353 4.4377 0.1087 1.2578 6.7224 0.0095 6.9081 0.0316 1.3199
CNY/USD 20.0504 0.0000 20.0531 0.0000 1.5644 20.0504 0.0000 20.0531 0.0000 1.5644 1.2703 0.2597 1.2840 0.5262 1.1350 0.2420 0.6228 0.3207 0.8518 1.0583 0.1319 0.7164 0.7250 0.6959 1.0429
TRY/USD 2.7608 0.0966 3.2933 0.1927 1.1942 0.6576 0.4174 2.5166 0.2841 1.0935 1.1156 0.2909 4.6178 0.0994 1.1223 5.0904 0.0241 7.6073 0.0223 1.2662 6.8026 0.0091 8.5115 0.0142 1.3094
ZAR/USD 0.4905 0.4837 1.6785 0.4320 1.0807 0.0026 0.9596 0.7594 0.6841 0.9942 0.8963 0.3438 1.7240 0.4223 1.1095 0.8963 0.3438 3.5111 0.1728 1.1095 1.7233 0.1893 3.5177 0.1722 1.1527

Table 3.4: VAR estimation results for the specified methods and VAR levels for BRICTS training, testing and roll testing data
sets.
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For the testing period with no parameter updating estimation strategy in Table 3.4 the

outlook for the best performing models is very similar to the in-sample BRICTS evaluations.

Again, Laplace distribution captures the 99% level better than all other models. It is then

followed by the kCDF EWMA performance. eCDF and t-GAS RiskMetrics accuracy ratios

are similar again, while RiskMetrics
TM

performance is still the worst. It is worth pointing out

that none of the specifications capture Turkish Lira out-of-sample volatility at the 99% level

with quite worrying levels for the number of exceedances ratio for every method. The lowest

exceedances are depicted for the kCDF. This may be explained by the strategy of keeping

parameters unchanged within the out-of-sample evaluations. Since the parameters are fixed,

growing excess volatility, which is not observed in the in-sample part, may be captured

better by the more data reliant methods such as the kCDF based RiskMetrics. Also for

this setting additional gains are realized by the kernel functional form over the eCDF based

estimations with the exceedances ratio are becoming more notable. At the 95% level, it can

be observed that nonparametric estimators are again claiming more accurate evaluations,

however, estimations for Turkey are still not adequately captured. L-GAS is the closest to

claiming accurate evaluation of Turkish currency risk at the 95% risk level, but it struggles in

providing independent exceedances as can be concluded from the gap between Kupiec (1995)

and Christoffersen (1998) reported LR distances for this sample. From the observed distances

for Turkey, nonparameteric estimators seem to be dealing with the repeating exceedances

better than the L-GAS, but fail to meet the 5% significance threshold level for the overall

number of expected violations. At the 90% level nonparametric estimators provide the most

satisfactory results, generally supporting previously stated argument for these estimators

appropriateness for the nonparametric dependence tests, but now under a more relaxed
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choice of parameters.

For the recursive parameters, updated with the last 1000 observations preceding each out-

of-sample observation, in Table 3.4 the most notable VAR estimation gains can be noted

by the parametric specifications. L-GAS, though still being the most conservative, provides

the highest number of acceptable evaluations. RiskMetrics
TM

also improves its previous

performance by achieving now two acceptable evaluations. t-GAS picks up its far from

the best previous BRICTS performances with four correct VAR specifications. However,

nonparametric estimators, for the parameters based on the RiskMetrics
TM

estimations, provide

a mixed performance. eCDF EWMA performs the worst, providing only one correct specification,

while kCDF clearly demonstrates improvement upon the number of accurate RiskMetrics
TM

VAR evaluations. Moreover, kCDF has a higher number of acceptable conditional coverage

statistics than the t-GAS RiskMetrics, but most of the reported AE ratios are alarmingly

higher than one and are typically higher than those for the fixed parameters in out-of-sample

evaluations for this specification. In comparing output for both of the nonparametric

approaches the benefit of the additional smoothing from the kernel functional form can

now be argued to be clear. Also, for the “effective sample size” RiskMetrics
TM

choice of

parameters and from the conditional coverage statistic, kernel smoothing prevents repeated

violations occurring, but at the same time seems lacking information in the tails and therefore

permits higher number of violations in general. This likely occurs due to the faster “learning

rates” of the window RiskMetrics
TM

estimations. Though this interpration is obtained

exploring reported unconditional coverage, conditional coverage and AE ratio results for the

nonparametric methods, Taylor (2007) also reports similar conclusions experimenting with

the exponential weighting nonparametric quantile regressions. Generally, similar to Taylor
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(2007), it can be observed that for the adequate high quantile approximation, nonparametric

methods require more information contained in, though old, but rare and thus still valuable,

tail observations. Given relatively good results for these methods reported in Table 3.4 for

the 90% and 95% levels and similar to Taylor (2007), it is observed that for these domains,

observations are more often, and thus, there should be sufficient information under the faster

discounting of older observations for adequate estimations. This also explains,the previously

noted, higher values for the parameter governing the dynamics of the nonparametric methods

in Table 3.2.

Overall, for the two out-of-sample BRICTS settings it is identified that the TRY/USD

associated risks quantification is the most problematic for all methods in the pool. Certainly

this series may be linked to the events which are “too uncertain” for any technical risk

quantification tool to model, but it may also serve as an indication for the insufficiency of

RiskMetrics weighting for similar risk exposure problems. It does not cancel out the other

satisfactory results achieved for the L-GAS specification at the 99% and 95% levels as well

as other good performances of the t-GAS and kCDF RiskMetrics variations, suggesting that

RiskMetrics scheme may well be a valid benchmark to make comparisons with. From the

observed success of Laplace distribution in the emerging markets samples a valid suggestion

for this data may be a full-scale GAS specification under the Generalized Student’s t

distribution as in Harvey & Lange (2017). This specification allows the Generalized Error

Distribution as its special case and therefore can take the forms of and close to the well

performing Laplace distribution if necessary. This GAS parametrization is too technical

for the parsimonious scope of this chapter, but it should address the observed Laplace

conservatism concerns in VAR estimations, which in turn, is a likely factor for its success here.
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Moreover, RiskMetrics tradition assumes zero mean of returns for simplicity of estimation

and accounting for simple time-variation in the location/mean parameter may help achieving

accurate risk projections for the discussed Turkish out-of-sample volatility.

3.7 Concluding remarks

In this chapter a small-scale stress-test for the up-to-date EWMA VAR type models was

conducted. Firstly, from the obtained results it can be observed that parsimonious exponential

decay type weighting may be still valid for VAR estimations, serving as a simple, yet

competitive scheme for comparision with other more involved methods, however distributional

specifications behind the estimation remain important. Considering the VAR estimation

statistic output for all of the data samples and settings it may be problematic to pick up an

ultimate RiskMetrics specification, since for the more narrow test setting but slightly more

expansive data set used in Chapter 2 at the 99% confidence level t-GAS RiskMetrics provides

the most accurate evaluations, while for the same level and under more involved backtesting

procedure of the BRICTS data, L-GAS evaluations seem to be the most solid and overall

appealing. Secondly, comparing all considered models’ performance for each data set and

test setting it is valuable to highlight the modest results for the kernel based RiskMetrics

approach. Due to its nonparametric flexibility and parsimonious nature, as well as given

obtained moderate results, this approach can be suggested as “the first threshold to pass”

for other relevant methods in comprehesive and inclusive discussions as in Boucher et al.

(2014) or for more explicintly linked to the financial regulation investigations as in McAleer

et al. (2013) than RiskMetrics choices employed there or may be even than some of the more
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involved methods as in Lucas & Zhang (2016).

Generally this chapter aimed to avoid giving a specific and ultimate recommendation for

such delicate field as risk modelling, however from the results obtained and if the RiskMetrics

scheme is among the models for consideration, a valid strategy may be adopting Laplace and

kernel specification for the 99% and 95% risk confidence levels respectively. The Laplace form

may lead to higher capital reservations, but this can be viewed as the modelling scheme’s

simplicity costs. On the other hand, kernel specification may be less comfortable at the higher

confidence levels due to the lack of the data in these domains, but at the 95% threshold, it

seems benefiting from its data driven functionality providing arguably consistent and good

results.

Overall, this chapter unpacks the main practical limitation of the kernel EWMA VAR

scheme. The approach is sensitive to the optimal combination of parameters, which for

the daily rolling forecasts, can theoretically be identified using robust and simple recursive

least squares appoach, but is poorly justified from the applied perspective even for the

computional time with the binned estimators as in Chapter 2. Here, time efficiency is

acheived with the ad hoc procedure which references to the RiskMetrics
TM

parameters.

This certainly simplified estimation as well as demonstrated that the kernel functional form

is able to provide an additional “cushion” for improvement over the dynamic eCDF and

RiskMetrics
TM

results, but obtained number of violations was not attractive for the risk

modelling context. Therefore, future research may look into the fast but robust settings of

the parameters estimation for this method in more detail. For now, in the upcoming VAR

studies involving dynamic kernel approach, it may be worthwhile to perform parameter

updating less often, since for example, Ardia & Hoogerheide (2014) argue that results for
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quarterly parameters updating should be close or equally identicall to the daily updates used

here. As for the contexts beyond VAR applications, obtained results can serve as additional

evidence for these dynamic nonparameteric methods validity for the fully nonparametric

changing dependence tests and explorations similar to Busetti & Harvey (2010) and Harvey

(2010) and for the full-scale dynamic distribution/density semiparametric estimations similar

to the MacDonald et al. (2011) for the independent and identically distributed modelling

framework.
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Chapter 4

Conclusions and further work

4.1 Concluding summary

This thesis contributes to the field of financial economics by: considering six new parametric

distribution models for financial returns on the basis of the Student’s t distribution in

Chapter 1; evaluating, analysing and comparing in-sample forecasting performance of the

nonparametric methods for financial returns’ distributions modelling in the time series

context of the exponentially declining weights under the maximum likelihood and several

least-squares routines for estimation of the unknown parameters in Chapter 2; and empirically

testing a forecasting ability of the Value-at-Risk measure by the methods falling in the

parsimonious “exponential weighted moving average” modelling category in Chapter 3.

Chapter 1 extends portfolio of distributions models which can be utilized to model financial

data in the relevant applied tasks in finance and economics. Models in Chapter 1 are

fitted to the data set of daily financial returns for stock indices, energy commodities and

cryptocurrencies and challenge Generalized Hyperbolic distribution as in McNeil et al. (2005)
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among others. Empirical results based on the log-likelihood criteria analysis suggest overall

appropriateness of the distribution models developed in the first chapter, when compared to

the Generalized Hyperbolic model. For the models yielding the best likelihood criteria output

for each individual sample in the considered data set basic quantiles and Probability Integral

Transformations plots are provided and analysed. From the conducted empirical analysis it

follows that best performing distribution models fit financial returns in the data set relatively

well, though there is evidence that these models still, similar to other parametric distribution

models in general, may struggle approximating domains in the center of financial returns.

Chapter 2 investigates in-sample forecasting performance of the exponentially weighted

kernel estimators for density and distributions of financial returns under different choices

of estimation parameters. It challenges suggestion of Harvey & Oryshchenko (2012) for

employing maximum-likelihood for estimation of the unknown parameters for nonparametric

density forecasts. Chapter 2 advocates for the computationally more conservative than

maximum likelihood, least-square routines, which can be also re-written to accommodate

dynamic binned kernel estimators for faster optimizations or varying bandwidths over the

range of financial returns. Parameters for the estimation techniques in Chapter 2 are obtained

for daily financial returns of stock indices, commodities, currencies and cryptocurrencies

exchange rates. Empirical results based on the nonparametric and likelihood ratio tests

suggest that parameters by least-squares estimations lead to notably more accurate in-sample

forecasts than estimations relying on the parameters chosen by maximum likelihood, including

binned variations with similar evaluation time as for maximum likelihood, though considered

adaptive strategy may struggle with fast evolving series of financial returns.

Chapter 3 positions kernel based exponential weighted moving average technique within
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the group of relevant methods for Value-at-Risk estimations. Value-at-Risk techniques in

Chapter 3 are fitted to the data set of daily financial returns of stock indices, commodities,

currencies and cryptocurrencies exchange rates. Time evolving nonparametric estimators

in Chapter 3 challenge approaches presented in Lucas & Zhang (2016). Empirical results

based on the likelihood ratio tests for in-sample and out-of-sample estimations suggest a

notably modest and stable performance of the kernel technique under the diligent choice of

parameters, when compared to other competing methods. It provides estimation gains over

its simplified empirical alternative and is found to be a good competitor to the considered

parametric models, including the domains in the tails of financial returns, though in-sample

estimation gains over the empirical approach may be smaller, while out-of-sample estimations

may be still computationally demanding and therefore less appealing than its parametric

alternatives for applied tasks.

4.2 Suggestions for further work

There are several directions to expand work conducted in Chapters 1, 2 and 3. On the

one hand, portfolio of distributions in Chapter 1 may be expanded to fully match the list

of compound distributions provided in Nadarajah (2012). On the other hand, models in

Chapter 1 may be more intriguing to test in the time-series GARCH and GAS contexts for

Value-at-Risk and/or Expected Shortfall forecasting experiments similar to the competition

conducted in Chapter 3 for the dynamic nonparametric estimator as in Harvey & Oryshchenko

(2012). In addition, it may be valuable introducing asymmetry to the compound distribution

models in Chapter 1 to achieve better modelling outcomes. Asymmetric extensions may be
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then also considered in the time-series context and included in the empiric Value-at-Risk

testing.

Chapter 2 can be extended by considering methods for automatic choice of the bandwidth

parameters. Similar to the least-squares techniques, approaches provided in Sheather &

Jones (1991), Altman & Leger (1995) and Polansky & Baker (2000) can be modified to

accommodate exponentially weighted kernel density and distribution estimators with a

reference to the parametric models driven by the similar exponential weights outlined in

Lucas & Zhang (2016). For example, a robust Laplace scheme of Guermat & Harris (2002)

may be adopted for approximation of the DGP to vary the bandwidths parameter over

the range of financial returns and provide more time-effective estimations than with the

least-squares routines and binned estimators in Chapter 2. This research extension path

shall make estimators in Harvey & Oryshchenko (2012) more attractive for practitioners

given that automatic approaches deliver robust parameters for estimations. An alternative

extension can combine parametric Extreme-Value-Theory tails of Zhao et al. (2018) with

estimators in Harvey & Oryshchenko (2012). Model of Zhao et al. (2018) may be modified

to match the dynamics of exponential weights and yield a mixed frequency (e.g. intra-day

and daily frequencies combination) semiparametric model for financial returns. On the other

hand, estimators in Harvey & Oryshchenko (2012) may accommodate weights commonly

used for intra-day financial data as in Mixed Data Sampling models of Gorgi et al. (2019)

among others to yield a semiparametric density and distribution model for intra-day data.

This also highlights the potential of further empirical applications to the financial data of

different frequencies and alternative weighting schemes for Harvey & Oryshchenko’s (2012)

estimators.
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Chapter 3 can be extended by considering a wider pool of the competing models for Value-at-

Risk forecasting. There is a set of parametric and nonparametric quantile regressions driven

by the exponential weights as in Taylor (2007) and Laporta et al. (2018) among others

to be considered in the further work. In addition, Expected Shortfall estimations and

forecasting with the list of approaches from Chapter 3 may be worthwhile considering as

well as more elaborate and inclusive testing for Value-at-Risk forecasting accuracy can be

adopted in future studies. For example, Model Confidence Set inclusive testing procedure of

P. R. Hansen et al. (2011) is a good candidate for consideration. High-frequency data

contexts are also research stimulating and given satisfactory backtesting results further

high-frequency risk spillover investigations can be conducted to upgrade daily frequency

risk spillover investigations of Corsi et al. (2018) and Peng et al. (2018) among others.

139



Appendix A

PDF and CDF functions in Chapter 1 may take more elegant forms for estimations with

special hypergeometric functions. For example, from Prudnikov et al. (1986), PDF in (1.14)

can be given by

f(x) =
αν[βν]
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Expressions in (1.21) and (1.22) may be more straightforward at the implementation stage

within R computing enviroment under the hypergeo package functionality of Hankin (2016).

PDFs in (4.1) and(4.2) lead to the following log-likelihoods

logL(ν, α, β) = n log(αν) +
nν

2
log(νβ) + n log Γ
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2
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for estimations respectively.
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Appendix B

Here, Chapter 2 raw and ARMA & GARCH filtered log-returns PITs histograms density

evaluations for different sets of parameters reported in Tables 2.3, 2.4 and 2.5 are provided.

Figures below allow visually assessing uniformity characteristics of the obtained PITs. Plots

allowing assessment of the PITs’ dependency characteristics are available upon request.
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Figure 5.1: Chapter 2 log-returns data set histograms of PITs for parameters by LSE for PDF. * indicates PITs for ARMA
& GARCH filtered returns. Lines parallel to the horizontal axis show +/− 2 standard deviations confidence interval for PITs
uniformity; +/−2

√
(κ− 1)T−1, where κ = 50 and is the number of bins used in histogram density evaluation as per Diebold et

al. (1998).
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Figure 5.2: Chapter 2 log-returns data set histograms of PITs for parameters by MLE.
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Figure 5.3: Chapter 2 log-returns data set histograms of PITs for parameters by LSE for CDF.
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Figure 5.4: Chapter 2 log-returns data set histograms of PITs for parameters by binned LSE for PDF.
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Figure 5.5: Chapter 2 log-returns data set histograms of PITs for parameters by binned LSE for CDF.
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Figure 5.6: Chapter 2 log-returns data set adaptive histograms of PITs for MLE and binned LSE for CDF ω parameters.
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Figure 5.7: Chapter 2 log-returns data set adaptive histograms of PITs for binned and full-scale LSE for CDF ω parameters.
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