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A Clustering Approach for Autism based Autistic Trait Classification  

Machine learning (ML) techniques can be utilized by physicians, clinicians, as well as other 

users, to discover Autism Spectrum Disorder (ASD) symptoms based on historical cases 

and controls to enhance autism screening efficiency and accuracy. The aim of this study is 

to improve the performance of detecting ASD traits by reducing data dimensionality and 

eliminating redundancy in the autism dataset. To achieve this, a new semi-supervised ML 

framework approach called Clustering-based Autistic Trait Classification (CATC) is 

proposed that uses a clustering technique and validation of the classifiers is done by 

classification techniques. The proposed method identifies potential autism cases based on 

their similarity traits as opposed to a scoring function used by many ASD screening tools. 

Empirical results on different datasets involving children, adolescents, and adults were 

verified and compared to other common machine learning classification techniques. The 

results showed that CATC offers classifiers with higher predictive accuracy, sensitivity, and 

specificity rates than those of other intelligent classification approaches such as Artificial 

Neural Network (ANN), Random Forest, and Random Trees, and Rule Induction. These 

classifiers are useful as they are exploited by diagnosticians and other stakeholders involved 

in ASD screening. 

Keywords: Autism Diagnosis; Classification; Clustering; Machine Learning; OMCOKE; 

Predictive Models 

1: Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that contributes to the 

delay of social and communication behaviors of individuals.8,10. Typically, ASD diagnosis is 

done by clinicians in a clinical set up using observable behavioral indicators in a process 

referred to as clinical judgment (CJ). 37, 45. The official diagnosis process of ASD involves 

multiple examinations, which in turn cause the waiting time for patients to be lengthy40. For 

instance, the waiting time for an ASD diagnosis in the UK averages over 3 years16. Therefore, it 

is vital that the administration time needed for both screening and diagnosis be reduced to cater 

for the growing number of ASD patients.25, 27  

 Autism screening is a fundamental step that addresses whether individuals exhibit 
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potential autistic traits related to communication, social or repeated behaviour. 1 This step is 

crucial as the individual and the concerned family become aware of the possibility of ASD traits 

early and hence can search for the needed formal assessments.  There are many ASD screening 

tools developed by researchers such as Autism Spectrum Quotient (AQ) and Childhood Autism 

Rating Scale (CARS). 6, 7, 24, 38 Most of these screening methods have been developed using 

existing clinical autism diagnosis methods and are represented as questionnaires in which each 

question is associated with a few possible answers in a multiple-choice fashion. The 

questionnaires used contain measurable indicators (variables/questions) that address 

communication, behavior and social skills, of individuals. For example, the Child Behavior 

Checklist (CBCL) screening method contains more than 100 questions,2 and the AQ method 

contains 50 questions 7. These make the process of screening lengthy besides inaccessible as 

most existing screening methods normally do not exist in simply accessible platforms such as 

mobile. 40, 41  

 Most of the existing autism screening methods utilize scoring functions that compute a 

final score based on the answers given by users undergoing the screening (caregivers, parents, 

medical staff, teachers or even the adult patients).  To be specific, the screening methods take 

the answers given in the questionnaire as an input for the scoring function, which in turn 

processes the input and computes a final score to reflect whether the individual is associated 

with ASD traits. For instance, in AQ method, a cut-off score of larger than 32 is an indication of 

autistic traits.4, 7 Therefore, the final decision of having ASD traits lay solely on the score 

calculated by the function. This function in most cases just sums up the behavioural indicators’ 

answers and does not attempt to seek for correlations among these indicators and the target class 

(ASD traits). 

 To address these shortcomings, there is a need for intelligent methods that can replace 

the scoring function and improve the efficiency of the screening. Since ASD screening involves 
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forecasting whether individuals have the possibility of ASD traits based on a predefined 

characterized variable then this issue be a predictive analysis problem in ML. The screening of 

ASD traits can be considered a classification problem in which historical data that have been 

already classified with and without ASD traits is utilized as an input to construct a classification 

system. This system is then used to guess whether a new individual exhibits any autistic traits. 

ML can be utilized for ASD screening to improve the classification of the screening and to 

reduce the process of the screening time. More importantly, ML may provide models that can 

contain useful information about ASD traits to the diagnosticians especially the correlation 

among behavioral indicators and how they relate to ASD screening. ML techniques use artificial 

intelligence and statistics to create intelligent models by discovering hidden patterns in data, so 

users can improve decisions. 41   

 There have been recent attempts to adopt ML techniques in autism screening and 

diagnosis, i.e. 1, 9, 11, 15, 25, 37, 40. These studies focused primarily on improving time, accuracy, and 

reducing the dimensionality of the dataset by pinpointing influential autistic symptoms. Thabtah 

et al.,41 proposed a new feature selection method called Variable Analysis (Va) to determine the 

most influential features related to ASD based on datasets related to adults, adolescents, and 

children. The authors were able to minimize the number of features to 5-7 based on predictive 

analysis and filter methods. Abbas et al., 1 used Random Forest to improve the diagnosis process 

of autism and Levy et al., 25 compared 17 different classification-based ML algorithms to seek 

improvements on the diagnosis performance of autism for children.  

 In this paper, we propose a new semi-supervised learning method called Clustering 

based Autistic Trait Classification (CATC), to improve the accuracy of the autism screening 

problem. The utilization of clustering and classification together as a semi-supervised learning is 

rare in autism screening research. Unlike existing methods that primarily focused on the 

classification phase of cases and controls, we intend to utilize clustering with classification to 
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validate instances in the training dataset prior to constructing the classification systems. CATC 

integrates unsupervised learning in the pre-processing phase with supervised learning in the 

classifiers construction phase. By integrating clustering with classification, there is a potential 

for improving the resulting classification systems by detecting ASD traits more accurately. With 

the CATC technique, the predictive model performance can be enhanced by answering the 

following research questions; 

 (1) Can the algorithm identify only the relevant features during the pre-processing phase 

of the dataset and clustering them in the training phase for the classification algorithm?  

 (2) Can data dimensionality be reduced by eliminating features redundancy? 

 Our proposed semi-supervised technique and nature of the algorithm can;  

 a) wrap those traits that may appear in multiple clusters and identify them as stronger or 

more significant features for the classification algorithms. By clustering the data first, we will 

identify relevant features that can be used in the ASD learning phase. Clustering can wrap those 

traits that may appear in multiple clusters and identify them as stronger or more significant 

features for the classification algorithms. 

 b) considers the hard cases to be classified (cases that exhibit few autistic symptoms). 

These cases may exhibit some autistic traits but may not be qualified to be on the spectrum. 

These cases often cause large false positives and false negatives, which deteriorate the 

performance of the classification algorithm. Thus, by having clustering at the pre-processing 

phase will enhance the predictability of the classification algorithm and improve the classifier 

accuracy, sensitivity, specificity, and error rates among others.   

 The rest of the paper is structured as follows: section 2 reviews the literature around 

machine learning in ASD research. Section 3 discusses some of the evaluation measures used in 
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the predictive models for ASD dataset. Section 4 outlines the experimental preparations and 

settings including a description of the datasets used and the pre-processing of the data. Section 5 

provides the results and analysis and a comprehensive comparison of different ML techniques 

including CATC. Lastly, we provide a conclusion in section 6. 

2: Literature Review 

 Crane, et. al.17, highlighted some of challenges for a timely and adequate ASD diagnosis 

including the inadequate of the tools used to aid screening of ASD. Early and accurate diagnosis 

is beneficial as it can lead to early intervention and educational advice to parents with ASD 

children on what approaches to pursue going forward 23. Early detection can assist parents with 

ASD children cope with parental stress that accompany ASD diagnosis which tend to lead to 

diminished behavioural interventions19.  Thus, it is imperative that technology-enabled tools 

with predictive capabilities be employed to enhance ASD screening. For these reasons, many 

researchers use ML classification algorithms to predict ASD screening and diagnosis, i.e. in 9, 11, 

12, 15, 21, 30, 31, 32, 39, 40, 44, 46, 47.  

Thabtah et al., 41 improved the efficiency of the screening process by reducing the 

number of items in the self-assessment screening tool called AQ-10, 3. The authors proposed a 

new feature selection ranking method called variable analysis (VA) that would derive small yet 

effective autistic traits. The authors used different datasets of adult, adolescent, and child in their 

study and compared their algorithm performance measures with other classification tools 

RIPPER and C4.5 18, 35. The results analysis showed that VA selected influential features for the 

three datasets (6, 8, and 8 respectively) without compromising on the specificity, sensitivity, and 

prediction accuracies measurements.   

Similarly, Thabtah and Peebles42 devised a new machine learning method called Rules-

Machine Learning that detected autistic traits and offered users knowledge based rules that 

could be used by specialists to understand the logic behind such classification.  
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In a separate experiment, Thabtah, et al. 43 proposed a new ML framework that uses 

information gain (IG) and chi-square (CHI) testing to pinpoint a few influential features in the 

screening phase of ASD.  The authors then use logistic regression algorithms to predict the 

accuracy on the results of their model. The results of their study indicated some of the strong 

(mainly communication and social behaviour) features that were commonly identified by IG and 

CHI to be influential in the ASD screening. The study, however, was only conducted on adult 

and adolescent datasets and did not focus on children and toddlers. 

Abbas et al., 1 conducted a clinical study of 162 at-risk children that had received a 

clinical diagnosis. They collected their dataset by splitting their screening process into two parts. 

The first part is answered by the parent about the child based on the Autism Diagnostic 

Interview-Revised [ADI-R] 28 that have 93 multi-part questions. The second part is a video 

screener used by parents based on the Autism Diagnostic Observation Schedule [ADOS] 27. The 

authors applied their datasets to Random Forests classifiers. They later combined the 

questionnaire and video screeners using regularized logistic regression. They then compared 

their results with some of the non-machine learning screening tools such as the modified 

checklist for autism in toddlers (MCHAT) and CCBL. Their results suggest that combining the 

video and questionnaire into a single assessment boosted the sensitivity and specificity rates and 

overall performance of the study sample. 

A study by Levi et al., 25 utilized 2 ADOS modules; one for children with phrased speech 

(Module 2) and the other for children with verbal fluency (Module 3) to build sparse models that 

were used to train about 17 classifiers from 5 different classifier families (linear regressions, 

nearest neighbor models, general linear models, support vector machines, and tree-based 

classifiers) for autism screening and diagnosis. The module 2 dataset consisted of 1389 cases 

where 1319 were considered as ASD and only 70 as No-ASD. Module 3 dataset had 3143 cases 

with 2870 considered as ASD and 273 No-ASD. The study was applied on. The authors aimed 
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at showing reduced subsets of features with their best parameters that can be used in the 

classifiers to predict ASD and No-ASD cases. They concluded that SVM and logistic regression 

performed best with ROC of 93% and 92% respectively and logistic regression and Lasso 

performed best on module 3 with a ROC of 93%. 

In their study of how some frequency-specific brain indices can be used in the early 

detection of ASD, Chen, et al., 15 used a limited data set from the Autism Brain Imaging Data 

Exchange database (ABIDE) of 240 with 112 with ASD and 128 with No-ASD. They conducted 

the experiment by looking at the brain functional connectivity as the frequency bands which 

were considered as the feature attributes of the dataset. The researchers used the support vector 

machine algorithm and could predict the ASD diagnosis with a classification accuracy of 79%. 

Duda, et al., 21 did an experimental comparison of six classification algorithms on a real 

dataset consisting of 2900 cases with 65 features. The authors first pre-processed the data by 

removing any instances with more than four missing values. They applied logistic regression 

models, Random forests, support vector machine, C4.5 among other classification algorithms. 

They concluded that function based algorithms such as regression models performed better with 

high classification accuracy compared to the decision tree based algorithms such as Random 

Forest. 

Others such as Pratap, et al., 32 and Pratap & Kanimozhiselvi 33 use multiple supervised 

and unsupervised machine learning algorithms such as Naïve Bayes, self-organization feature 

map (SOM), learning vector quantization (LVQ), artificial neural network (ANN), K-means and 

fuzzy c-means to test how machine learning methods can be used in the assessment of autism 

diagnosis. These two studies used a limited dataset of only 100 cases of children and were able 

to show that using unsupervised learning such as clustering improved the accuracy of the ASD 

based on the childhood autism rating scale (CARS) diagnostic tool. This study is limited in size 
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does not measure the improvement of other key classification metrics and have yet to be verified 

in other works.   

Al-Diaba l4 used fuzzy rule-based technique to extract rules that can be used to predict 

autistic traits. The model learns the IF-THEN rules based on the different variables and applying 

the fuzzy unordered rule induction algorithm derive features that can be used to predict ASD for 

children in the screening phase. The authors compared their algorithm to that of JRip, RIDOR, 

and PRISM i.e. all rule based classification algorithms since they generate If-Then rules. This 

study is also limited in size as it only considered data for children without testing with other 

datasets. 

A more recent review by Thabtah, 39 analysed some of the cons associated with ASD 

classification studies conducted earlier. The authors instigated that earlier studies had pitfalls in 

their datasets that were limited in size and had several missing values and imbalances. The 

author also pointed out that while the studies showed promising results, none were embedded in 

a screening tool. 

Allison, et al., 3 study was aimed at reducing the AQ and Q-CHAT method screening 

tests by determining the highest ranked items based on DI measure scores. The authors were 

able to prove that only ten items can be used for screening first level ASD traits. These ten items 

were adopted in a later study by Thabtah, et al., 40 to build Adult, Adolescent, and Child datasets 

based on the AQ screening tool. These new datasets are used in the experiments in our paper. 

Our study considers key classification evaluation measures. We evaluate and compare 

the results to highlight the significance of integrating clustering algorithms and specifically 

Multi-Cluster Overlapping K-Means Extension (OMCOKE) 5 in the pre-processing phase of the 

screening data. Clustering of the dataset adds the following value to the classification process; 

(a) Reduces data dimensionality by eliminating redundancy. 
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(b) Identifies relevant and strong features that were only used in the supervised learning 

models. These features may have been cases that exhibited some autistic traits but not qualified 

to be on the spectrum hence causing large false positives and false negatives. 

The following section discusses the proposed clustering based autistic trait classification 

technique. 

3: The Proposed Clustering based Autistic Trait Classification (CATC) 

 In this section, we discuss the proposed CATC method based on the architecture shown 

in Figure 1 below. Three data sets (adult, adolescent, and child) are collected via a mobile 

screening app called ASDTest 37, 38. The data is then cleaned for our experimentations and is ran 

through an unsupervised machine learning clustering algorithm. The result of this process is 

used as our initial model that is loaded to a classifier for the predictive phase. The performance 

of the classifier is then tested and evaluated for better accuracy, sensitivity, and specificity rates. 

Further details for each of the steps are outlined in the subsections that follow. 
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Figure 1. CATC-based methodology 

3.1: Data Collection 

 Initially, data is collected using a mobile screening tool called ASDTests 37, 38. This tool 

contains questionnaires based on the Q-CHAT 10, AQ-10 Child, AQ-10 Adolescent, and AQ-10 

Adult screening methods by Allison, et. al., 3. The child, adolescent and adult datasets that have 

been collected contain instances for individuals between 4-11 years old, 12-16 years old and 

above 16 years respectively. These datasets have been disseminated recently at the University of 

California Irvine data repository 26 by Thabtah et al., 40.  

 During the screening process using the ASDTests mobile application, a user answers the 

screening questions and a value is calculated based on the answers they enter with a score 

between 0 and 10. The attribute Class (attribute number 23 in table 2 below) is assigned a YES 

or a NO based on the score of the answers entered. A score of 6 and above based on 3 indicates 
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that the individual has some ASD traits and the class label is labeled as YES. Otherwise, the 

class is given a value of NO. 

 The size of the datasets varies between the three groups. The adult dataset has the highest 

number of instances followed by the child and adolescent. Table 1 and Figure 2 below 

summarizes the dataset based on the number of instances and the history of the users with 

regards to having a family member previously diagnosed with ASD. 

Table 1. Statistics of used Datasets 

Dataset Instances Family History of ASD                   

  Yes No 

Adolescent 248 44 204 

Adult 1118 183 935 

Child 509 86 423 

 

 

Figure 2. Statistics of used Datasets 

Ethical Considerations 

 The data is published and made public 25 by its prospective author Thabtah et al., 40. The 

authors of the datasets had obtained ethical approval from the University of Huddersfield, 

Huddersfield, UK. 
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3.2: The initial Dataset and Data Transformation 

 The initial datasets are of multivariable nature with categorical, continuous and binary 

attributes that contain a total of 23 features (see Table 2).  

The ASDTest mobile application assigns a “1” if the respondent to any of the questions is 

“slightly agree” or “definitely agree”, otherwise a zero “0” is allocated for questions 1, 5, 8, and 

10 in the AQ-10 Adolescent, questions 1, 5, 7, and 10 in the AQ-10 Child, and questions 1, 7, 8, 

and 10 in the AQ-10 Adult. A “slightly disagree” or “definitely disagree” had a score of “1” on 

all remaining questions. 

 We modified the dataset to include only 18 attributes by removing features marked 16-

22 in Table 2 below in the three datasets. The said features are general questions regarding the 

user and the app. We deem these features to have no direct significance and hence have been 

discarded a priori to the learning phase. The “Screening Score” (Feature #19 in Table 2) has 

been removed to avoid any possibility of model overfitting since this feature indicates whether 

individuals have autistic traits based on the scoring function in the AQ-Child 10, AQ-Adult 10 

and AQ-Adolescent 10 methods. The screening features (A1 to A10 in Table 2) have been 

transformed by mapping its original values in the screening method to Boolean values 1/0 for 

the sake of simplicity. 

Table 2. Feature Attributes 

# Feature  Type 

1 A1  Binary (0, 1) 

2 A2  Binary (0, 1) 

3 A3  Binary (0, 1) 

4 A4  Binary (0, 1) 

5 A5  Binary (0, 1) 

6 A6  Binary (0, 1) 

7 A7  Binary (0, 1) 

8 A8  Binary (0, 1) 

9 A9  Binary (0, 1) 

10 A10  Binary (0, 1) 

11 Age Integer 

12 Gender  String  

13 Ethnicity String 

14 Born with jaundice Boolean  (yes or no) 

15 Family member with PDD Boolean  (yes or no) 
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16 Country of residence  String 

17 Used the screening app before  Boolean  (yes or no) 

18 Why_are_you_taken_the_screening String 

19 Screening Score  Integer  

20 Screening Method Type  Integer (0,1,2,3) 

21 Language  String 

22 Who is completing the test String  

23 Class  String  

 

The AQ-10 screening questionnaire is used by the University of Cambridge autism research 

center as a referral guide. A sample of the adult questionnaire is provided in Table 3 below. 

Table 3. AQ-10 Adult Questionnaire 

# Question  

1 I often notice small sounds when others do not 

2 I usually concentrate more on the whole picture, rather than the small 

details 

3 I find it easy to do more than one thing at once 

4 If there is an interruption, I can switch back to what I was doing very 

quickly  

5 I find it easy to ‘read between the lines’ when someone is talking to me 

6 I know how to tell if someone listening to me is getting bored 

7 When I’m reading a story I find it difficult to work out the characters’ 

intentions  

8 I like to collect information about categories of things (e.g. types of car, 

types of bird, types of train, types of plant etc)   

9 I find it easy to work out what someone is thinking or feeling just by 

looking at their face 

10 I find it difficult to work out people’s intentions 

3.3: Clustering Phase 

 The datasets are pre-processed by applying an unsupervised machine learning clustering 

method. We employ the OMCOKE algorithm which groups all items into two clusters. The 

process is summarized in Figure 3. 
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Figure 3. Clustering phase Pseudocode in CATC method  

 The OMCOKE clustering technique assigns instances to either cluster1 or cluster2 based 

on their attribute similarities. The OMCOKE algorithm is based on K-means where initial k 

clusters are selected at random and data points are assigned to each cluster using distance to 

the centroids. The centroids are recomputed and the process is repeated until there is no 

movement or change in the assignment of data points to their closest centroid. The OMOCKE 

Input: Dataset with N number of attributes 

Output: Reduced dataset with N+1 number of attributes 

 

Given a test dataset, the pre-processing works as follow: 

 

1.  Apply Unsupervised ML Clustering (OMCOKE) filter to the dataset 

2.  A new “Cluster” attribute is appended on the dataset with each instance on the   

     dataset assigned to either cluster1 or cluster2 

3.  Repeat 

4.  rename cluster1 as YES and cluster2 as NO 

5.  compare attribute “Cluster” with attribute “Class” 

6.  If Cluster Matches Class 

7.   Keep instance 

8.  Else 

9.   Prune instance 

10.  End if 

11.  Until all instances in the dataset are exhausted 
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algorithm takes into consideration outlier or noise data in the dataset and separates these points 

to an outlier cluster built on the fly. Algorithm 1 below summarizes the OMCOKE clustering. 

 

3.4: Clustering Phase 

 The datasets contain a Boolean attribute named “Class” that has a value of YES/NO 

based on a score. This attribute Class is used to assess whether the user has been screened to 

have ASD or not and is used in the supervised learning algorithm for their predictions. At the 

end of step 2 in the CATC pre-processing phase above, we create a new attributed "Cluster" that 

Input: Number of clusters k, a set of a data vector 

Output: membership assignment 

 

Given a dataset, the algorithm works as follow: 

 

1.  Select k random points as initial cluster centers (centroid Ck) 

2.    Repeat For each xi Ck 

3. Centroid Ck  dist(centroid Ck )        // Re-compute and update the centroids 

4.  If (dist (xi, centroid Ck) ≤ averdist)    

5.  Cluster   xi      //Assign each data point to its closest centroid based on Euclidean 

distance 

6.  Else  

7.   If (dist (xi, centroid Ck) ≥ maxdist * maxdistThreshold)   

       // data point greater than calculated threshold 

8.    Outlier_Cluster   xi                     // data point assigned to outlier cluster 

9.  Else 

10.    Cluster  xi  // otherwise assigned to closest centroid 

11.    End if 

12.   End if 

13.     Until        //convergence criteria are met and no change on each cluster 

  

Algorithm 1 Unsupervised ML technique based on OMCOKE 
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is appended at the end of the dataset file. Each item is assigned to either cluster1 or cluster2 

based on their attribute similarities. These assignments are then compared to the attribute Class 

to see if they match. Where there is a match we keep that instance, otherwise we discard it and 

remove it from the dataset. 

 The new reduced clustering based autistic dataset only has instances that the clustering 

algorithm deems to have been accurately labeled during the unsupervised screening process. 

Key features of applying CATC process includes: 

(1) Grouping the data items into two clusters based on their strong attributes.  The 

clustering algorithm has assisted in identifying relevant and strong features that were 

only used in the supervised learning models. 

(2) Reduce data dimensionality by eliminating redundancy. By clustering the significant 

features and comparing them to the class score, we toss out any insignificant or 

redundant items. 

 We adopt the clustering based autistic traits dataset which has been efficiently 

streamlined and enhanced to be used in the learning phase in the machine learning process. For 

example, assume the following simple dataset represented in figure 4 below as our original data. 

 

 

 

 

 

  Figure 4. Sample dataset   Figure 5. Clustered dataset 

The clustering algorithm groups the data based on its strong attributes which are identified in C2 

(red) and C3 (blue) clusters and the data anomaly is labeled as an outlier and discarded for use in 

the supervised learning model as indicated in the example on figure 5. 
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3.5: Classification Phase 

 Finally, we adopt any classification algorithm for our predictive phase. Classification 

algorithms are generally divided into a two-step process where the dataset is divided into 

training data and testing data. A model is developed in the training phase by analyzing the 

attributes of the training data. Class labels are built based on the rule techniques that are applied 

in the training dataset. This training data is further employed in the testing phase where the 

classifier is used to examine the accuracy of the models derived.  

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Classification Phase 
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Different classification algorithms (RIPPER17, PART21, Random Forest13, Random Trees19, and 

Artificial Neural Networks45) have been utilized to measure the performance of the proposed 

framework (CATC).   

 All empirical tests were conducted on WEKA version 3.8.2. WEKA stands for Waikato 

Environment for Knowledge Analysis and is an open source tool based on the Java platform that 

contains implementations for different ML methods including filtering, classification, clustering, 

evaluation, and visualisation among others. To build the CATC framework, we employed the 

OMCOKE algorithm built by Baadel, et al. 5 embedded in WEKA.   

 We then validate and evaluate the test dataset for better accuracy, sensitivity and 

specificity rates in order to test the performance of the clustering phase (See section 4.1 for 

further details). 

4: Experimental Settings and Empirical Results 

4.1: Experimental Settings 

 Our experiments are conducted on real-life ASD screening datasets to measure the 

effectiveness of the enhanced screening data used to identify and predict diagnosis. The three 

datasets of adult, adolescence, and child have a wide diversity in their ethnicity, language, and 

age group and are all in the application domain of the study, hence making it suitable for use as 

benchmarks.    

 We describe some common predictive model evaluation criteria such as accuracy, 

sensitivity, specificity, one-error, harmonic mean a.k.a. F1, and other related measures such as 

false positive (FP), false negative (FN), true positive (TP), and true negative (TN). 

 All experiments have been run on an Intel Core i7 computer with a 3.4 GHz processor 
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and 8.0 GB RAM running on a 64-bit Windows 10 Operating System. We utilized a number of 

evaluation measures to show the benefits and negatives of the proposed algorithm when 

compared with other classification algorithms in ML. Precisely, the below measures have been 

used to evaluate the CATC integration in supervised learning: 

       (1) 

      (2) 

     (3) 

      (4) 

      (5)  

 Evaluation of a supervised learning model is a very critical process to assess the 

performance of the models derived. For ML predictive models, a matrix called the error table, or 

the confusion matrix, has been adopted. The confusion matrix is typically used to evaluate the 

performance of predictive models with respect to the different measures that are primarily 

related to the performance of the models. This is summarized in the confusion matrix in table 4 

below. 

Table 4. Confusion matrix 

 Predicted Class 

Actual Class ASD No ASD 

ASD TP FN 

No ASD FP TN 
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Equations 1 through 5 (above) are used as evaluation metrics in determining the ML 

prediction performance. The Sensitivity ratio (equation 4.1) is a measure of all cases that have 

been identified correctly to have ASD in the overall test cases i.e. the true positive rate, whereas 

the Specificity ratio (equation 4.2) is a measure of all cases that have been identified correctly as 

a No ASD in the overall test cases i.e. the true negative rate. The Accuracy ratio measures the 

overall classification prediction that has been correctly identified as ASD and No ASD in all test 

cases (i.e. the confidence level of the classification), whereas the One error is the opposite of 

Accuracy and denotes the number of misclassified instances on the test dataset.  

We conduct the experimentation twice for each dataset.  

Different classification algorithms have been utilized to measure the true performance of 

the proposed framework (CATC). Particularly, we adopted RIPPER17, PART21, Random 

Forest13, Random Trees19, and Artificial Neural Network [ANN]45 algorithms to process the 

considered autism datasets with and without clustering. Thus two type of experiments have been 

conducted per dataset as follows: 

Experiment (1): We first load the original datasets (adult, adolescent, child) without any 

clustering. Then we run the classification algorithms (RIPPER, PART, Random Forest, Random 

Trees, and Artificial Neural Network [ANN]) using their default settings and record their output 

results.  

Experiment (2): CATC processed dataset in which the clustering is applied and all 

default settings of OMCOKE are maintained except the number of k clusters is changed from 

the default 3 to k = 2. Once this data has been pre-processed, then it is run using the 

classification algorithms above.  

A tenfold cross-validation testing method on all the classifiers has been deployed in all 

experiments. This means that the dataset is partitioned into ten subsets where nine data subsets 

are used for the training phase and one subset for the prediction phase. The process is then 
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repeated 10 times. This will reduce overfitting and ensure a fair evaluation of the derived 

classifiers. 

4.2: Results and Analysis 

The experiments were conducted for the three datasets i.e. adult, adolescent, and child. The 

tables and the figures below show side by side comparison of the machine learning classifiers 

performance with/out CATC integration.  The column CATC is marked as “No” when CATC 

was not applied to the dataset, otherwise a “Yes” is indicated. Table 5 compares the overall 

classification prediction i.e. accuracy rate for ML classifiers, noting a significant improvement 

when CATC is applied before the classification procedure.   

Table 5: Accuracy Rates of the Classifiers 

Dataset Classifier CATC 

Clustering 

Adult Adolescent Child 

Accuracy RIPPER No 0.942 0.807 0.878 

Yes 0.969 0.944 0.936 

PART No 0.962 0.879 0.916 

Yes 0.970 0.917 0.971 

Random 

Forest 

No 0.972 0.911 0.951 

Yes 0.975 0.963 0.975 

Random 

Tree 

No 0.924 0.863 0.874 

Yes 0.979 0.946 0.961 

ANN No 0.970 0.992 0.970 

Yes 0.980 0.978 0.980 

 

 Table 5 shows the accuracy rate of the models derived by the ML methods on the adult, 

adolescent, and child datasets. In all cases, the accuracy of the classifier has been improved by 

the ML method when CATC was applied prior training phase. In particular, RIPPER has seen an 

increase in the accuracy rate by 2.7%, 13.7% and 5.8% for the adult, adolescent, and child 
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datasets respectively when CATC was applied on these datasets. In addition, PART predictive 

accuracy has improved by 0.8%, 3.8% and 5.5% on the three datasets respectively when CATC  

was applied. Similarly, Random Forest and Random Tree classifiers when integrated with 

CATC have improved (0.3%, 5.2%, and 2.4%) and (5.4%, 8.3%, and 8.7%) respectively. No 

significant change is noted in the ANN method. The significant improvement in the accuracy 

can be attributed to the fact that having clustering in the pre-processing phase of the dataset was 

able to reduce data dimensionality by eliminating redundancy in the dataset.  This shows overall 

better accuracy and lower error rates for all datasets including those that have large numbers of 

instances, i.e. adult dataset, and those with a lower number of instances, i.e. the adolescent 

dataset. 

 The accuracy rate alone may not be the best measure of performance because even with 

a 95% accuracy rate we might simply be predicting majority class correctly. Our focus, 

however, should be the other 5% minority class who might have been screened and diagnosed 

with autism. Thus, a good predictor of the model performance would be the true positive rate 

(sensitivity) and the true negative rate (specificity).  

 Figure 7 below shows the specificity and sensitivity results of the three datasets by the 

classifiers with and without CATC. The figure clearly reveals that when CATC was utilized 

prior to learning the sensitivity and specificity rates of the ML have improved on all datasets. 

For example, in RIPPER algorithm case, there is a modest sensitivity rate improvement on the 

adult and child datasets (2.9% and 2.8% respectively) and a 6.8% on the adolescent dataset, 

when CATC was applied. In addition, PART classifier's sensitivity rate went up by 0.9%, 6.9% 

and 7.5% on the adult, adolescent, and child respectively, when CATC was integrated. 

Similarly, when CATC was applied, Random Forest and Random Trees classifiers observed 

(1.8%, 11.1%, and 5.2%) and (5.3%, 8.1%, and 14.5%) increase in the sensitivity rates 

respectively. There is only a minuscule change in the ANN classifier. 
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Figure 7. Sensitivity & Specificity Rates of the Classifiers 

 Here we note that clustering the datasets identified and grouped similar cases that would 

have otherwise been difficult to be classified correctly. Cases that may have exhibited some 

autistic traits but not qualified to be on the spectrum due to overlapping features of No ASD 

with ASD cases. These cases tend to confuse the learning algorithm in the classification process 

hence causing large false positives and false negatives. By considering the overlaps and 

clustering them based on the similarity of their attributes, this issue is resolved and the 

performance of the classification algorithms is dramatically improved as shown in Figure 7 and 

Table 4. 

 The specificity rates as shown in Figure 7 has seen an improvement of 2.2%, 0.8%, 4.7% 

and 12% for the adult dataset on the classifiers RIPPER, PART, Random Forest, and Random 

Tree respectively when CATC was applied. On the adolescent dataset, when CATC was applied, 

the percentage increment of the RIPPER, PART, Random Forest, and Random Tree classifiers 
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are 21.2%, 0.5%, 2.4%, and 11.5% respectively. Similarly, the performance of the classifiers 

went up by 2.7%, 3.5%, 4.7%, and 10.1% respectively on the child dataset. 

 To further understand the sensitivity and specificity rates, we investigated the confusion 

matrix results produced by the classifiers. Of all the three datasets, the adult dataset had the 

overall highest number of incorrectly classified instances by the RIPPER, PART, Random 

Forest, and Random Tree classifiers, whereas, the adolescent dataset had the least.  Random 

Tree had the highest number of incorrectly classified instances (85) followed by RIPPER (65), 

PART (43), and Random Forest (31) in the adult dataset.  Specifically, Random Tree predicted 

43 instances with ASD traits that shouldn’t have been classified resulting in the lowest 

specificity rate among the classifiers. On the other hand, Random Forest had the lowest number 

of false negatives with only 17 instances. CATC improved the classifiers by reducing the 

number of incorrectly classified instances to 21, 20, 0 and 1 for RIPPER, PART, Random 

Forest, and Random Tree respectively. In the adolescent dataset, CATC significantly reduced 

the incorrectly classified instances by the classifiers RIPPER, PART, Random Forest, and 

Random Tree from 48 to 10, 30 to 15, 22 to 4, and 34 to 7 respectively. Thus, CATC classifiers 

showed improvement in both sensitivity and specificity rates across the board compared with all 

classifiers. 

 With respect to the imbalance in the adult dataset due to the class variable, we included 

the F1 metric also known as the harmonic mean that not only takes into consideration the 

precision but also the sensitivity (equation 3.5 above). The F1 measure for the classifiers is 

shown to have increased by 12.3%, 0.9%, 2.8%, and 7.4% for RIPPER, PART, Random Forest, 

and Random Tree respectively when CATC was utilized (See Figure 8). 
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Figure 8. Harmonic mean on the classifiers 

 The Receiver Operating Characteristic (ROC) is an evaluation measure that contrasts the 

true positives and false positives of the machine learning model. The measure contrasts how the 

number of correctly classified true positives with the number of incorrectly classified negative 

values.  Figure 9 summarizes the ROC values of the classifiers and an improvement across the 

board in the ROC Area rates when CATC is applied. While the improvement rates were decent 

in the adult dataset, it was slightly significant in the smaller dataset such as the Adolescent 

dataset. The ROC Area rate was up by 12.3%, 1.0%, 1.6%, and 9.8% on RIPPER, PART, 

Random Forest, Random Tree classifiers respectively, when CATC was utilized prior to 

learning. 

 

Figure 9. ROC Area of the classifiers 

 

We also note that the number of rules generated while running the three datasets on RIPPER and 

PART decrease when CATC is applied as shown in figure 10 (below). 
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Figure 10. # of Rules Generated in PART and RIPPER classifiers 

 This can be attributed to the fact that redundant rules have been removed in the building 

of the classifier due to the pre-processing of the dataset and clustering them based on their 

strong attributes. Thus, the pre-processing with clustering algorithm have assisted in identifying 

relevant and strong features that were only used in the supervised learning models. This is useful 

for diagnosticians as fewer rules could mean a reduced amount of time needed in the screening 

of autism patients. 

5: Conclusion 

The utilization of clustering and classification together as a semi-supervised learning is rare in 

autism screening research. In this paper, we proposed a method that utilizes both clustering and 

classification in autism screening, a first that we are aware of. We used a screening app available 

on both Android and iOS mobile users and accessible easily online by the users. By introducing 

clustering a priori to classification we were able to add value to existing research in four folds; 

(1) We were able to reduce data dimensionality by eliminating redundancy in the dataset.  

(2) Cases that may have exhibited some autistic traits but not qualified to be on the 

spectrum due to overlapping features which caused large false positives and false 

negatives were resolved. 
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(3) Our method did not rely on the scoring function feature popularly used in other 

research to determine autistic traits in the screening phase but rather used unsupervised 

ML clustering algorithm to identify features based on their similarity measures.  

(4) Clustering the data before application in the learning phase streamlined the data 

based on only strong features resulting in reduced number of rules generated by the 

classifiers.  

 There were a few limitations in this study. The data used was limited to what was 

collected using the mobile app. The datasets were limited in size and the adult dataset was 

slightly imbalanced. The study could have benefited with larger balanced datasets.  Also, 

instances related to toddlers are rare and hard to obtain and were not included in this study. 

 In conclusion, the paper shows employing CATC in the screening phase significantly 

improved the performance of the classifiers in all measures and especially the accuracy and 

sensitivity rates. CATC improved the classifiers by reducing the number of incorrectly classified 

instances and improved on the sensitivity and specificity rates on the classifiers. We also saw a 

significant reduction on the rules generated by PART. These contributions provide important 

implications in social science, thus making a substantial positive difference in the prediction of 

the ASD diagnosis class. The proposed model is useful since they are exploited by 

diagnosticians and other stakeholders involved in ASD screening besides highlighting the most 

influential features. The methods used in our study can easily be adopted and applied to other 

clinical science application domain such as screening for dementia. Our future work will be to 

build a mobile screening app that will embed our clustering algorithm to assist clinicians in the 

diagnosis process of ASD in a clinical setting by considering wider options of diagnosis 

methods. Deep learning applications have a structure of algorithms inspired by the biological 

neural networks of the human brains in the form of artificial neural networks. Some of the ASD 
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traits involving facial recognition and behaviour are extremely difficult to detect and the study 

would benefit from data analytics deep learning algorithms.  
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