
University of Huddersfield Repository

Ighoroje, Lamogha

Hybrid Automated Machine Learning System for Big Data

Original Citation

Ighoroje, Lamogha (2018) Hybrid Automated Machine Learning System for Big Data. Doctoral
thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/35048/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

HYBRID AUTOMATED MACHINE LEARNING SYSTEM

FOR BIG DATA

By: Lamogha Ighoroje

School of Computing and Engineering

University of Huddersfield

A thesis submitted to the University of Huddersfield in partial fulfilment

of the requirements for the degree of Doctor of Philosophy.

September 30th, 2018

Copyright statement

i. The author of this thesis (including any appendices and/or

schedules to this thesis) owns any copyright in it (the

“Copyright”) and s/he has given The University of

Huddersfield the right to use such copyright for any

administrative, promotional, educational and/or teaching

purposes.

ii. Copies of this thesis, either in full or in extracts, may

be made only in accordance with the regulations of the

University Library. Details of these regulations may be

obtained from the Librarian. This page must form part of

any such copies made.

iii. The ownership of any patents, designs, trademarks and any

and all other intellectual property rights except for the

Copyright (the “Intellectual Property Rights”) and any

reproductions of copyright works, for example graphs and

tables (“Reproductions”), which may be described in this

thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property Rights and

Reproductions cannot and must not be made available for

use without the prior written permission of the owner(s)

of the relevant Intellectual Property Rights and/or

Reproductions

Acknowledgements

I acknowledge God Almighty for making it possible for me to

undergo this research.

I will like to take the opportunity to acknowledge and thank my

supervisory team, led by Prof. Joan Lu for giving me the

opportunity to undergo this PhD research, and develop my

research skills and interests in big data machine learning.

Finally, and most importantly I am very grateful to my parents

Prof. Mrs Ahbor D.A. Ighoroje and Engr. Mr Richard Ighoroje, who

supported my studies financially and morally at every stage. I

also appreciate my husband Raymond Chiazor for his love and

encouragements and all my family and friends for their immense

support throughout my research years at the University.

Abstract
A lot of machine learning (ML) models and algorithms exist and in

designing classification systems, it is often a challenge looking

for and selecting the best performing ML algorithm(s) to use for

a dataset in a short period of time. Often, one must learn thor-

oughly about the data set structure and content, decide whether to

use a supervised, semi-supervised or an unsupervised learning

strategy, and then investigate, select or design via trial and

error a classification or clustering algorithm that would work

most accurately for that specific dataset. This can be quite a

time consuming and tedious process. Additionally, a classification

algorithm may not perform very well with a dataset as compared to

using a clustering algorithm. Meta-learning (learning to learn)

and automatic ML (autoML) are data mining-based formalisms for

modelling evolving conventional ML functions and toolkit systems.

The concept of modelling a decision tree-based combination of both

formalisms as a Hybrid-AutoML toolkit extends that of traditional

complex autoML systems.

In hybrid-autoML, single or multiple predictive models are built

by combining a three-layered decision learning architecture for

automatic learning mode and model selection, by engaging formal-

isms for selecting from a variety of supervised or unsupervised

ML algorithms and generic meta information obtained from varying

multi-datasets. The work presented in this thesis aims to study,

conceptualize, design and develop this hybrid-autoML toolkit. By

extending in the simplest form, some existing methodologies for

the model training aspect of autoML systems. The theoretical and

experimental development focuses on the extension of autoWeka

and use of existing meta-learning, algorithm selection and deci-

sion tree concepts. It addresses the issue of efficient ML mode

(supervised or unsupervised) and model selection for varying

multi-datasets, learning methods representations of practical

alternative use cases and structuring of layered decision ML un-

folding, and algorithms for constructing the unfolding. The im-

plementation aims to develop tools for hybrid-autoML based model

visualization or evaluation, use case simulations and analysis

on single or multi varying datasets. An open source tool called

hybrid-autoML has been developed to support these functionali-

ties. Hybrid-autoML provides a user-friendly graphical interface

that facilitates single or multi varying datasets entry, sup-

ports automatic learning mode or strategy selection, automatic

model selection on single or multi-varying datasets, supports

predictive testing, and allows the automatic visualization and

use of a set of analytical tools for model evaluation. It is

highly extensible and saves a lot of time.

Table of Contents
1 Introduction .. - 1 -

1.1 Background - 1 -

1.2 Research Focus and Values - 3 -

1.3 Aims and Contributions - 4 -

1.4 Outline of the Thesis - 6 -

1.5 List of Publications - 6 -

Summary .. - 7 -

2 Literature Review - 8 -

Introduction ... - 8 -

2.1 Big Data Machine Learning - 8 -

2.1.1 Big Data Classification Related works .. - 9 -

2.2 Classification and Clustering - 12 -

2.2.1 Data Classification & Regression ... - 12 -

2.2.2 Data Clustering .. - 13 -

2.2.3 Classification Methods ... - 14 -

2.3 Testing the Performance of Classification Algorithms . -

21 -

2.3.1 Hold-Out Method Validation method: ... - 21 -

2.3.2 Cross Validation method: ... - 21 -

2.3.3 Bootstrap method: .. - 21 -

2.3.4 Confusion Matrix: ... - 22 -

2.3.5 Discrete Classifier Evaluation Measures ... - 22 -

2.3.6 Integrity of the model: .. - 26 -

2.3.7 Simplicity .. - 26 -

2.3.8 Run time ... - 26 -

2.3.9 Reliability .. - 26 -

2.3.10 Storage Requirements ... - 26 -

2.4 Classification Tools - 26 -

2.5 The Algorithm Selection Problem - 28 -

2.6 Meta-Learning - 29 -

2.7 Automated Machine Learning (AutoML) - 31 -

2.7.1 Starting High ... - 31 -

2.7.2 Exhaustive Searching .. - 32 -

2.7.3 AutoML Related Works .. - 32 -

Summary ... - 35 -

3 Methodology .. - 36 -

Introduction .. - 36 -

3.1 Methods ... - 37 -

3.1.1 Reviewing Literatures .. - 37 -

3.1.2 Mini Survey .. - 38 -

3.1.3 Hypothesis and Assumptions .. - 38 -

3.2 Preliminary Experiments - 38 -

3.2.1 Experiment Materials .. - 39 -

3.2.2 Big Data .. - 40 -

3.2.3 Experimental Setup .. - 42 -

3.2.4 Preliminary Experiment Results .. - 50 -

3.2.5 Size Effect experiment on an example classification problem .. - 58 -

3.3 Machine Learning Algorithms Considered - 59 -

3.3.1 Feature Selection and Filtering ... - 60 -

3.3.2 Supervised Classifiers ... - 60 -

3.3.3 Unsupervised Classifiers .. - 63 -

3.3.4 Evaluation Measures ... - 64 -

3.4 Problem Identification Through Experiments - 64 -

3.5 Knowledge Gained from Experiments - 65 -

Summary ... - 67 -

4 Hybrid-AutoML System - 68 -

Introduction .. - 68 -

4.1 System Requirements - 68 -

4.2 The Model Design - 68 -

4.2.1 Design Goals and Aims .. - 68 -

4.2.2 Model Architecture .. - 70 -

4.2.3 Model Components ... - 71 -

4.2.4 Model Characteristics .. - 71 -

4.3 The Model Algorithms - 73 -

4.3.1 Decision (meta) Learning Algorithm .. - 73 -

4.3.2 AutoProbClass Unsupervised Algorithm .. - 73 -

4.4 Design Materials - 75 -

4.4.1 Weka API ... - 75 -

4.4.2 NetBeans IDE ... - 75 -

4.4.3 Program .. - 76 -

4.5 Testing and Evaluation of System Model - 76 -

4.5.1 Case Study 1 ... - 76 -

4.5.2 Case Study 2 ... - 77 -

Summary ... - 78 -

5 Results and Discussion - 79 -

Introduction .. - 79 -

5.1 Evaluation of Use Cases. - 79 -

5.1.1 Use Case 1 (Small Unlabeled Dataset) ... - 79 -

5.1.2 Use Case 2 (Larger Unlabeled Dataset) ... - 82 -

5.1.3 Use Case 3 (Large Labelled Train Data with Smaller Test Data) .. - 83 -

5.1.4 Use Case 4 (Small Labelled Train Data with Large Test Data) ... - 85 -

5.1.5 Use Case 5 (Location with Multi-Varying Data sets) ... - 87 -

5.2 Comparison of the Hybrid autoML with AutoWeka ... - 95 -

Summary ... - 97 -

6 Conclusion and Further Work 98

6.1 Conclusion .. 98

6.2 Future Work .. 100

Appendix 1 ... 101

Appendix 2 ... 102

Appendix 3 ... 103

Appendix 4 ... 105

Appendix 5 ... 107

Appendix 6 ... 108

Appendix 7 ... 114

List of Figures
FIGURE 2.1: A SIMPLE DECISION TREE THAT REPRESENTS RESPONSES TO DIRECT MAILING (ROKACH & MAIMON, 2010). .. - 16 -
FIGURE 2.2: THE ROC SPACE AND PLOTS OF THE TWO PREDICTION CASES ABOVE... - 25 -
FIGURE 3.1: WEKA EXPLORER ‘CLASSIFIER’ TAB. .. - 42 -
FIGURE 3.2: OUTPUT RESULT WINDOW DISPLAY FOR A ‘CLASSIFIER’ IN WEKA. .. - 43 -
FIGURE 3.3: EXAMPLE OF A SINGLE SUPERVISED LEARNING KNOWLEDGE FLOW SETUP IN WEKA. ... - 44 -
FIGURE 3.4: UNSUPERVISED LEARNING KNOWLEDGE FLOW SETUP IN WEKA. .. - 45 -
FIGURE 3.5: KNOWLEDGE FLOW SETUP FOR TESTING SEVERAL CLASSIFICATION ALGORITHMS ON A GIVEN DATASET IN PARALLEL. ... - 46 -
FIGURE 3.6: EXPERIMENTER SETUP FOR TESTING SEVERAL CLASSIFICATION ALGORITHMS ON VARIOUS DATASETS. ... - 47 -
FIGURE 3.7: DATASET VIEW IN TABULAR FORMAT FROM THE EXPERIMENTER .. - 48 -
FIGURE 3.8: POSSIBLE ERRORS FACED WHEN RUNNING THE EXPERIMENTER ON SEVERAL DATASETS AND ALGORITHMS - 49 -
FIGURE 3.9: AREA UNDER ROC (AUC) ... - 51 -
FIGURE 3.10: F-MEASURE FOR EACH DATASET AGAINST SEVERAL CLASSIFICATION ALGORITHMS ... - 52 -
FIGURE 3.11: MEAN ABSOLUTE ERROR (MAE) 0-1 .. - 54 -
FIGURE 3.12: MEAN ABSOLUTE ERROR (MAE) FOR CPU AND CPU.WITH.VENDOR DATASETS .. - 54 -
FIGURE 3.13: CORRELATION COEFFICIENT 0-1 (CPU AND CPU.WITH.VENDOR DATASETS) .. - 56 -
FIGURE 3.14: SIZE EFFECT ON ACCURACY (%) .. - 58 -
FIGURE 4.1: THREE LAYERED DECISION ARCHITECTURE FOR THE HYBRID AUTO MACHINE LEARNING SYSTEM PROPOSED AFTER EXPERIMENTS. ... -

70 -
FIGURE 4.2: SIMPLE GUI INTERFACE FOR THE IMPLEMENTATION OF THE HYBRID AUTO CLASSIFICATION SYSTEM. .. - 77 -
FIGURE 4.3: DETAILS OF THE CONTACT-LENSES-TEST DATASET USED. ... - 78 -
FIGURE 5.1: SHOWS A DATA SUMMARY ON UPLOAD OF THE SMALL UNLABELLED DATASET (SOY-TEST). .. - 80 -
FIGURE 5.2: SHOWS THAT AN UNSUPERVISED ML MODE WAS SELECTED AUTOMATICALLY AND A CLUSTERING MODEL CONSTRUCTED BY

ENGAGING AUTOPROB CLUSTERING FUNCTION ON THE SOY-TEST DATASET. THIS MODEL AUTOMATICALLY RESULTED IN SIX CLUSTER

BEEN IDENTIFIED IN UNDER 0.03 SECONDS. ... - 81 -
FIGURE 5.3: SHOWS AN UNSUPERVISED ML MODE USING THE EM CLUSTERING ALGORITHM WAS AUTOMATICALLY CHOSEN AS THE BEST TO

USE FOR THIS GIVEN TASK. TWO CLUSTERS WHERE DERIVED AND THE EM MODEL BUILT IN 3.21 SECONDS. - 82 -
FIGURE 5.4: THE ROC CURVE OBTAINED AFTER A MODEL WAS BUILT AND TESTED USING THE GISETTE DATA SET. - 83 -
FIGURE 5.5: SHOWS THE EVALUATION RESULT OBTAINED FROM USING THE HYBRID AUTOML SYSTEM ON THE 'GISETTE' DATA SET. ... - 84 -
FIGURE 5.6: ROC CURVE OBTAINED FROM TRAINING THE MODEL ON THE GIVEN TRAIN DATA SET. ... - 85 -
FIGURE 5.7: EVALUATION METRICS OBTAINED FROM USING A SMALL TRAINED DATA SET AND LARGE TEST SET IN USECASE4. - 86 -
FIGURE 5.8: A FILE DIRECTORY SUPPLIED AS THE LOCATION CONTAINING THE VARYING DATA SETS TO BE SUPPLIED IN ONE RUN. IT

SHOWS A TOTAL OF 8 DATASETS THAT WE USE TO TEST THIS USER SCENARIO. ... - 87 -
FIGURE 5.9: ROC CURVED OBTAINED FOR FIVE OUT OF THE 8 MULTI-VARYING DATA SETS IN OUR DATA LOCATION. .. - 88 -
FIGURE 5.10: SHOWS THE EVALUATION FOR THE 'BREAST CANCER' DATA SET AND NAIVE BAYES AUTOMATICALLY CHOSEN FOR IT AS THE CLASSIFIER. - 89 -
FIGURE 5.11: SHOWS THAT RANDOM FOREST WAS CHOSEN FOR THE 'IRIS' DATASET. ... - 90 -
FIGURE 5.12: EVALUATION RESULTS SHOWN FOR THE 'LABOUR' DATA SET. ... - 91 -
FIGURE 5.13: EVALUATION RESULT FOR THE 'RESULTS' DATA SET. ... - 92 -
FIGURE 5.14: EVALUATION RESULTS FOR THE 'REUTERSCORNTRAIN' DATA SET. .. - 93 -
FIGURE 5.15: EVALUATION RESULTS SHOWING THAT RANDOM FOREST CLASSIFIER ISAUTOMATICALLY USED TO BUILD THE MODEL FOR THE 'SAMSUNG-GALAXY-GEAR' DATA

SET. .. - 94 -
FIGURE 6.1: SHOWS DATA FROM THE SURVEY CARRIED OUT, THAT DATA SCIENCE PROFESSIONALS ARE WELL AWARE OF DATA

CLASSIFICATION AS A GOOD MANAGEMENT TECHNIQUE... 105
FIGURE 6.2: SURVEY RESULTS, SHOWING DATA SCIENCE PROFESSIONALS THOUGHTS ON WHETHER BIG DATA CLASSIFICATION MEASURES IN

PLACE, EFFECTIVELY IMPROVES SECURITY. .. 105
FIGURE 6.3: SURVEY RESULTS ON THE USE OF BIG DATA CLASSIFICATION TOOLS BY SEVERAL DATA SCIENCE PROFESSIONALS. 106
FIGURE 6.4: 10-FOLDS ANALYSES OF THE AREA UNDER THE CURVE PERFORMANCE MEASURE. ... 109
FIGURE 6.5: 10 FOLDS F-MEASURE EVALUATION .. 110
FIGURE 6.6: 10 FOLDS MAE EVALUATION ... 111
FIGURE 6.7: 10 FOLDS MAE EVALUATED MEASURES FOR CPU AND CPU.WITH.VENDOR DATASETS. .. 112
FIGURE 6.8: 10 FOLDS % ACCURACY... 113
FIGURE 6.9: 10 FOLDS CORRELATION COEFFICIENT OF CPU AND CPU.WITH.VENDOR .. 113
FIGURE 6.10: WEKA GUI WHEN INITIALLY LAUNCHED. ... 114
FIGURE 6.11: THE WEKA EXPLORER GUI... 115
FIGURE 6.12: THE WEKA EXPERIMENTER GUI .. 116
FIGURE 6.13: THE WEKA KNOWLEDGE FLOW GUI .. 117

List of Tables
TABLE 2.1: A COMPARISON OF SOME TOOLS USED FOR DATA MINING EXPERIMENTATIONS. ... - 28 -
TABLE 2.2: A SUMMARY OF CURRENT STATE-OF-THE-ART AUTOML SYSTEMS .. - 35 -
TABLE 3.1: A LIST OF DATASETS USED FOR PRELIMINARY EXPERIMENTS, TAKEN AS A SUBSET FROM THE FULL LIST OF DATASETS USED

IN THIS RESEARCH. ... - 41 -
TABLE 3.2: AREA UNDER THE CURVE (AUC) ... - 50 -
TABLE 3.3: F-MEASURE FOR DATASETS PER ALGORITHM. .. - 52 -
TABLE 3.4: TABLE OF THE MEAN ABSOLUTE ERROR (MAE) FOR THE VARIOUS DATASETS. .. - 53 -
TABLE 3.5: ACCURACY IN % AND CORRELATION COEFFICIENTS FOR CPU AND CPU.WITH.VENDOR DATASETS ... - 55 -
TABLE 3.6: COMBINATION OF EVALUATION MEASURES ON EACH DATASET TO EFFECTIVELY EVALUATE PERFORMANCE OF EACH ALGORITHM ON

DIFFERENT ALGORITHMS, IN ORDER TO UNDERSTAND THE PATTERNS. .. - 57 -
TABLE 3.7: THE EFFECT OF THE TRAIN AND TEST SIZES ON A NAÏVE BAYES CLASSIFIER (% ACCURACY). .. - 58 -
TABLE 3.8: THE FOLLOWING ALGORITHMS FROM WEKA WHERE USED IN THE EXPERIMENTS CARRIED OUT. ... - 59 -
TABLE 4.1: HYPOTHETICAL EXAMPLE CASE STUDY OF A MULTI-CLASS LABELS UNSUPERVISED ALGORITHM. .. - 72 -
TABLE 5.1: COMPARING AUTOWEKA AND THE HYBRID AUTOML DESIGNED IN THIS THESIS. .. - 96 -
TABLE 6.1: A TABLE SUMMARY OF DATASETS USED IN THIS RESEARCH. ... 107
TABLE 6.2: AREA UNDER CURVE USING 10-FOLDS CROSS VALIDATION ... 108
TABLE 6.3: 10-FOLDS F-MEASURE EVALUATION ON THE DATASETS. .. 110
TABLE 6.4: 10 FOLDS MEAN ABSOLUTE ERROR MEASURES... 111
TABLE 6.5: 10 FOLDS ACCURACY MEASURES. IN TERMS OF THE NUMBER OF CORRECTLY CLASSIFIED INSTANCES. .. 112

- 1 -

Chapter 1

1 Introduction
This chapter provides some background information, highlights into

the motivations and problems resolved in this thesis and then

discusses the aims and contributions of this thesis.

1.1 Background

Over the past decades, there has been an explosion in the volume,

variety and velocity of data. Offering effective solutions as a

resolution of some major problems this explosion brings has become

ever more important. One of such solutions is big data machine

learning (ML) classification or clustering. However, with the solu-

tions offered we become faced with several problems that include but

not limited to the following:

1. Varying domains: A classifier trained using a labelled dataset

may not be suitable for another dataset.

2. Traditional methods cannot efficiently accommodate the large

varieties of class types found in a dynamically growing dataset.

This often leads to inaccurate classification results.

3. Traditional methods are not suitable for present day multiple

learning or multi-varying data tasks (Suthaharan, 2014).

Data classification is a data mining process of allocating data

into one or more categories. The original and traditional concepts

of classification involves a process of allocating pre-labelled data

input into their relevant category, deriving a classification

function and then applying this function to correctly predict the

class/category of un-labelled data input.

One of the most basic ways for organizations to determine the

relative importance of the data they possess is through data

classification. An interview of three chief information security

officers (CISOs), from different organizations (Microsoft, Royal

Bank of Scotland and dell incorporations) by Microsoft trustworthy

computing in (Computing, 2014), confirms the relative importance of

data classification in today’s information security scenery.

The data many organizations must deal with in recent years is

referred to as big data; hence it is important to reason data

classification in terms of big data. Big data is a term usually

defined in terms of Volume, Variety and Velocity (3 Vs). Definitions

and discussions on big data can be found in (Chen, Mao, & Liu, 2014;

Fan & Bifet, 2013; Mahmood & Afzal, 2013; Small, 2013). There are

numerous benefits of big data, which have been discussed over the

years in different literatures, some of them include: increased

- 2 -

efficiency, better and improved services in different sectors e.g.

healthcare, e-commerce, etc.

In the literatures, the classification problem is mostly

communicated as follows. Given a set of class labels (Charu C.

Aggarwal) and a random variable input X under consideration,

determine correctly which label should be assigned to a new

unlabelled instance of X (Charu C Aggarwal, 2014b). Clustering

differs from classification in that it uses similarities between

feature variables to perform separation into groups without prior

understanding of the group’s structure (i.e. it uses unlabelled

dataset) (Jain, Murty et al. 1999, Aggarwal and Reddy 2013, Jacques

and Preda 2014). While for classification, the separation is done

based on training dataset that translates information concerning the

construction of the clusters (i.e. it uses labelled data) (Sokal

1974, Aggarwal 2014, Fabrico 2014). Classification is regularly

denoted as supervised learning whereas clustering is often denoted

as unsupervised Learning. Classification of big data has several ad-

vantages and benefits, some of which can be seen in Appendix 1.

There are several conventional tools for data classification, and

one of such tools is waikato environment for knowledge analysis

(Weka) (Hall, Frank et al. 2009). It is a data-mining tool designed

mainly for research purposes. It contains a lot of support that

allows for data mining tasks easily and can help assist in the

development of new ML schemes or systems. The Weka API (application

programming interface) provides various methods and function to help

us build customisable ML systems.

ML is the field under which data classification resides. There is

also no doubt that in data science, ML plays a very key and vital

role in building smart and intelligent solutions using big data.

From building an understanding of the most widely used ML schemes

and algorithms, it has been observed that there are a lot of ML

algorithms out there, and a model trained on one dataset might not

be useful on another dataset. Also, data scientists spend an awful

amount of time searching and selecting the best ML algorithm to use

for a given data problem, which in turn brings about the need and

growth in the automated ML (autoML) field. The autoML field is a

fast-growing ML area, designed to automate tasks of data

preparation, pre-processing, and model training to ease the tasks of

both intermediate and experts in the field.

Although there are a lot of traditional data classifiers or

clusterers, classification techniques and tools that can be used to

achieve data classification, a majority still lack in their ability

to effectively address the major challenges of big data on the fly.

For example, some are not very effective in handling heterogeneous

multi-datasets, or for handling large data streams. Secondly, some

of the traditional classification methods are not flexible and

scalable enough to handle large datasets or changes for which they

- 3 -

were not trained to handle. A highly acceptable classification

method or tool should be able to address the three major challenges

of big data, should be flexible enough to adapt to changes within

the organization. Lastly, another limitation of many classification

systems, is the time and tedious process spent in finding the best

ML algorithm to use on multi-varying datasets in a timely fashion.

In ML, the decision about what learning algorithm to use, has been

incorporated into the meta-learning (Learning to learn) research.

Meta-learning has proven to have a major correlation with classifi-

cation tasks. This connection is because as a researcher designing a

classification system, one must empirically and analytically study

existing algorithms (tons of algorithms exists) and in some cases

even make use of some base concepts or hypothesis while designing

the systems.

1.2 Research Focus and Values

In effectively designing a classification system the first step af-

ter defining what the achievable goal is, usually entails the pro-

cess of deciding what ML approach or model to select. Although some

autoML systems (e.g. autoWeka and auto-sklearn) discussed in section

2.7.3 of this thesis, are efficient in their own ways for model

selection, some limitations they still have include:

a) Auto Learning mode as well as model selection: Not considering
and using more generic information and knowledge about various

learning schemes (supervised, unsupervised or semi supervised)

and algorithms (e.g. what happens if for a given scenario only

a small amount of labelled training data instances is available?)

to automatically decide on the mode or model algorithm to use

of any given dataset.

b) Complexity of the various autoML systems, caused mainly by

focussing heavily on the problem of hyper parameter search and

selection.

c) Supplying multi-varying datasets: Inability to supply multiple
datasets from different domains and sources at once to the tool

for processing. This is mainly since because the systems are

complex and consider not just the algorithm space but also the

hyper parameter space and other parameters such as resource

budget, etc. they need to consider only one dataset at a time.

These limitations listed above, form part of the problems and

motivations for undergoing this research. The importance of study-

ing, understanding, designing, conceptualizing, and analyzing vari-

ous ML algorithms to develop autoML systems for big data is well-ac-

cepted in many application areas. The concept of meta-learning with

hybrid autoML can play an important role with regards to the repre-

sentations of such a system. However, there is a scarcity of re-

search on the assessment of the practical usefulness of the new rep-

resentations for automatic mode as well as model selection on single

or multi-varying datasets. To achieve such an assessment, effective

- 4 -

formal support including the use of more generic knowledge about

various ML methods and formal verification are required, and appro-

priate tools facilitating the automatic selection and analysis of an

appropriate algorithm for big data ML tasks are necessary.

The contributions in this thesis helps create a simple and less

time-consuming hybrid-autoML system, which is beneficial in the sub

field of autoML, and the data science and ML research community at

large.

1.3 Aims and Contributions

Our research hypothesis is that the hybrid big data autoML model de-

signed in this thesis, supported by an appropriate toolkit can de-

liver an effective approach to automatically determine the best ML

mode and model that can yield the best accuracy, given a heterogene-

ously large dataset, limited resources (i.e. limited time) and

knowledge about various ML methods. To validate this hypothesis, a

generic methodology involving both theory and practical research is

employed. The main aims of the study are as follows:

Aim-1, Theory: To provide a formal foundation for hybrid autoML con-

cepts, involving the extension of current formalization and

proofs of several results concerning model selection which

hence govern the correct use, manipulation and analysis of var-

ious types of autoML abstraction.

Aim-2, Toolkit: To develop a platform for uploading single or multi-

varying datasets and provide automatic decision learning on the

ML mode to use, dedicated auto ML model selection, training,

prediction and analysis for all the datasets on the fly.

Aim-3, Evaluation: To assess the utility of hybrid-autoML models on

practical use-cases faced by experts in the field.

With regards to Aim-1, we propose several additional properties of

basic autoML structure incorporating meta-learning. We provide new

learning execution semantics for varying multi dataset variants, and

we design algorithmic functions for automatic clustering (an ‘auto-

Prob’ function), automatic classification model selection (a generic

rule based ‘model selection’ function) and the simulation of conven-

tional ML for multi datasets. We extend the existing basic autoML

model concept for Auto-Weka (Kotthoff, Thornton, Hoos, Hutter, &

Leyton-Brown, 2017) to formally support alternative representations

of a given behavior based on some ideas in meta-learning research

and in auto-sklearn (Feurer et al., 2015).

- 5 -

The new structure allows one to model multiple alternative scenarios

that can occur in practice. We also extend basic meta-learning algo-

rithms to support new generic knowledge representations. We formally

describe how the hybrid autoML model saves time in the first in-

stance for any user of the toolkit, by pointing them to what ML al-

gorithm they can start exploring.

We present a novel automatic clustering selection algorithm, that

can take a decision to choose between existing clustering algorithms

in Weka or use an autoProb clustering function designed based on

varying distance/similarity measures e.g. Euclidean distance. We in-

vestigate the unfolding of a less complex solution that isn’t

primarily focused on considering the set of the hyper parameter

space, but simply on using general knowledge about different

learning schemes and more generic features of the data to learn and

automatically build models on various datasets from different domain

sources. Such an unfolding contains a representation of all the pos-

sible running processes. We provide an algorithm for the construc-

tion of the unfolding.

In pursuit of Aim-2, we develop ‘Hybrid-autoML’, which is an open

source tool for automatic learning mode, model selection, and model

analysis. The tool is implemented as a Java based application or

command line (CLI) platform which provides a flexible and extensible

framework for the development and analysis of simple conventional

auto ML for multi-datasets. Hybrid-autoML provides a user-friendly

graphical interface that facilitates single or multi-datasets entry,

supports visual simulation of various ML scenarios (e.g. presence of

large labelled training data with little unlabeled test data, small

unlabeled data with no specific training dataset, large unlabeled

data with no training data, etc.), facilitates predictions, and in-

tegrates a set of analysis tools from Weka application programming

interface (API). More specifically, for automatic model learning we

implement the essential functionalities for their creation and visu-

alization on multi-datasets, as well as facilities for their simula-

tion, error analysis, performance verification and evaluation. We im-

plement rule-based algorithms for visualizing dataset properties,

choosing target features for model build consistency and estimating

missing data information.

With regards to Aim-3, we apply ‘Hybrid-AutoML’ to five different

practical ML scenarios related to big datasets to assess the practi-

cality of the model.

- 6 -

1.4 Outline of the Thesis

The rest of the thesis is organized as follows.

Chapter 2 presents a detailed literature review on big data machine

learning, classification and clustering principles and tools

(e.g. Weka) in the ML research community and presents detailed

discussions on the algorithm selection problem and how meta-

learning formalism can be used to help resolve the algorithm

selection problem. Finally, it presents discussions on autoML

and a comparison of some of the current state of the art autoML

related works and tools.

Chapter 3 defines all methods used in this thesis and presents a de-

tailed discussion of all pre-design experimentations including

the setup, algorithms considered, problems identified, and

knowledge gained during the experiments. The identified prob-

lems and knowledge gained in this chapter, served as the basis

for the design and modelling in the next chapter.

Chapter 4 describes the Hybrid-AutoML system’s design, architecture,

components, and characteristics, and presents the theory and

algorithms for Hybrid-AutoML based unfolding. It also outlines

the design framework and describes additional tools that have

been added or used for the models verification, simulation and

analysis.

Chapter 5 discusses the results obtained and analyzed from using the

Hybrid-AutoML toolkit on five different practical use cases.

Chapter 6 summarizes and concludes the work and proposes directions

for further work.

1.5 List of Publications

Portions of the work within this thesis have been documented in the

following publications:

Conferences/Workshops

1. Ighoroje, L., Lu, J., & Xu, Q. (2016). Hybrid classifica-

tion system design using a decision learning approach and

three-layered structure - A Meta learning paradigm in Data Min-

ing. In J. Gołuchowski, M. Pańkowska, C. Barry, M. Lang, H.

Linger, & C. Schneider (Eds.), Information Systems Development:

Complexity in Information Systems Development (ISD2016 Proceed-

ings). Katowice, Poland: University of Economics in Katowice.

ISBN: 978-83-7875-307-0.

- 7 -

Summary

We have provided in this section some background introduction into

designing big data classification system, shown what the values and

research focus in this thesis are, discussed the aims and

contributions made in this thesis, and provided an outline for the

rest of this thesis. More specifically shown is that, in designing

highly efficient and robust big data classification systems, the

algorithm selection problem and the time data scientists spend in

building ML models can be greatly reduced by engaging the sub fields

of autoML and meta-learning. In addressing the limitations of some

state of the art autoML systems discussed in the next chapter, this

research thesis considers the following contributions:

1. An algorithmic function for automatic learning mode selection.

2. An algorithmic function for automatic clustering model

selection, with a new added function into the mix of available

Weka clusterers called autoProbClass for class clustering, using

euclidean distance estimation.

3. A toolkit that supports authomatic ML model selection on single

or varying multi-datasets, depending on the user scenario. Using

a less complex solution that isn’t primarily focused on

considering the set of the hyper parameter space, but simply on

using general knowledge about different learning schemes and

more generic features of the data to learn and automatically

build models on various datasets from different domain sources.

4. Saves model build time for multi-datasets ML tasks.

5. Is highly extensible and flexible.

In the next chapter, we provide more detailed discussions on ML and

autoML concepts, methods, techniques and tools from state-of-the-art

literature reviews.

- 8 -

Chapter 2

2 Literature Review

Introduction

This Chapter provides discussions on what is already known in the

area of this research. Touching particularly on the key concepts,

theories, and factors and how they are relevant to this research.

Some inconsistencies, limitations and problem in existing

literatures are discussed. Discussions on why some of these

limitations and inconsistencies occur, how the knowledge relates to

this research, as well as issues still yet to study effectively is

carried out. Finally, it sets the basis for what contributions this

research makes and who will benefit from such a study.

2.1 Big Data Machine Learning

Data science is a science used to tackle big data and comprises of

data cleansing, preparation and data analysis. Big data is a term

usually discussed in terms of Volume, Variety and Velocity (3 Vs).

Definitions and discussions on big data can be found in (Chen, Mao,

& Liu, 2014; Fan & Bifet, 2013; Mahmood & Afzal, 2013; Small, 2013).

There are numerous benefits of big data, which have been discussed

over the years in different literatures, some of which include:

increased efficiency, better and improved services in different

sectors e.g. healthcare, e-commerce, security etc. Datasets from

multiple sources are gathered and then machine learning, predictive

analytics and sentiment analysis are used to extract vital

information from the collected datasets. The field of data science

acts as an umbrella under which data mining, data analytics, machine

learning and various other related subject areas are included.

Machine Learning (ML) as one of the subject areas in the field of

data science is described as the act of applying algorithms to data,

in order to learn from it and then predict future trends in any

topic or domain area such as the health domain. It focuses mainly on

the application of algorithms and statistics to the data as opposed

to data science which is the term used when referring to the whole

data processing practise. Machine Learning comprises supervised

learning (data classification) and unsupervised learning (data

clustering) schemes. The characteristic of big data brings about new

challenges and opportunities for classification algorithms, giving

rise to a new era of classification algorithms that will be able to

address and handle the challenges of velocity, variety and volume

that comes with big data. One of which is proposed in this research

thesis.

- 9 -

2.1.1 Big Data Classification Related works

The challenges that big data characteristics bring have led to new

trends of classification algorithms to help address the challenges

for effective data classification of big data. A lot of literatures

are available on classification algorithms which is useful for big

data classification. However, this section will focus on discussions

of literatures that employ classification algorithms to address the

velocity, variety & volume challenges of big data. Secondly,

discussions on literatures that employ auto classification

algorithms are carried out. Finally, Literatures that use semi-

supervised classification techniques are discussed.

To address the velocity challenge of big data, ‘online streaming

classification algorithms’ are being proposed and developed, while

for addressing the challenges of variety, ‘heterogeneous machine

learning’ or ‘multi-view classification for data heterogeneity’

algorithms are designed. For addressing the challenges of volume,

much efforts are being made to scale up existing classification

algorithms. Some algorithms however address either one or two of

these challenges. Nevertheless, it is seemingly difficult to see an

evolving, automatic, semi-supervised, hybrid probabilistic big data

classification algorithm that can address the three challenges at

the same time and in a simple and effective manner, like the one

being proposed in this thesis.

A survey of stream classification algorithms is conferred in (Charu

C Aggarwal, 2014c). In 2005, the authors in (Law & Zaniolo, 2005),

proposed an adaptive nearest neighbour classification algorithm

(ANNCAD) for data streams.

In more recent times however, (Bertini & Zhao, 2013) present a

graph-based algorithm to discourse the problem of moderately

labelled streaming data. Their algorithm extends a semi-supervised

K-associated optimal graph algorithm (KAOGSS) and a purity measure

transductive algorithm (PMTLA), which is also a graph-based model.

The accuracy and processing time of the algorithms extended, where

tested with real and artificial streams of data and the results

compared. This differs from the proposed algorithm in this research

in the sense that the proposed algorithm in this thesis incorporates

concepts from an unsupervised probabilistic Bayesian classification

method called autoClass (Cheeseman, Self, Kelly, & Stutz, 1996) and

concepts from supervised rule-based methods.

Another interesting work is presented in (Sheikholesalmi, Mardani,

& Giannakis, 2014), for the classification of streaming incomplete

big data sets. A systematic model suitable for streaming big data,

which makes use of the core low-dimensionality of feature vectors to

design an SVM classifier that can handle relevant feature misses, is

discussed. It is developed on the instinct that errors can be added

using the core low-dimensionality of feature vectors, likewise the

- 10 -

basic comparisons amongst data instances of similar class.

Stochastic alternating minimization is used to design an online

solution that renders the proposed approach operative for big scale

dataset with probably numerous features. Computational challenges

where mitigated by developing a first order ‘stochastic sub-gradient

descent (SGD)’ structure for classifier update. However, their

proposed design is quite a complex classifier for online streaming

data.

The identification stage of the two stage, real time fault

detection and identification system proposed in (Costa, Angelov, &

Guedes, 2015) shows promising applicability to on-line streaming

uses. The first stage in their approach is the fault detection,

which is founded on the notion of the density in the data space for

detection and measure of abnormalities. The second stage is the

identification/classification, which is founded on a self-evolving

fuzzy rule based (FRB) classifier system called the ‘AutoClass’. It

is a fully unsupervised rule-based classifier, where the learning

phase starts from scratch with no need for pre-specified parameters

(e.g. the fuzzy rules or the number of classes). The number of

classes grows on its own with new class labels added automatically

when there is a detection of considerable abnormalities. The

autoClass can easily evolve an existing initial rule base. The

autoClass works with the concept of data clouds and the structure

follows the idea of an AnYa FRB (Angelov & Yager, 2012) classifier.

A ‘zone of influence’ user definition is the starting point of the

autoClass Algorithm. The rule base is completely empty at the start

(i.e. there is no predefined rule, class label, number of steps,

etc.), it is only after construing the first data instance, a data

cloud class nc is created and a corresponding class label classl

added (this completes the first inference rule). For subsequent

iterations, autoClass works with the existing FRB, updating the

current rules and adding new ones when needed. New classes are

formed over time and a certain number of closely related

abnormalities are grouped together to create a new cloud class. The

autoClass classifier developed by the authors is similar in a way to

the one designed in this research thesis in the sense that it is an

autonomous and self-evolving classifier, where a new class is

created if one doesn’t already exist for an incoming dataset.

However, the one described in the literature is a fully unsupervised

fuzzy rule-based classifier that depends on a previous fault

detection stage that uses the concept of density (Recursive Density

Estimation) in the data space to determine all possible faults (this

concept of density used is not the same as probability density

function). Secondly, the autoClass algorithm begins with a

definition of an initial ‘Zone of influence’ by the user. Lastly,

even though the autoClass classifier looks promising for resolving

the velocity (i.e. online streaming capability) and volume (i.e. it

is scalable) challenges of big data, it does not fully address or

provide suggestions for resolving the variety challenges also

brought about by big data. However, the classification system

- 11 -

developed in this thesis is a system that combines both supervised

and un-supervised learning models, employing also the concept of

evolving and automatic classification, as well as a hybrid

classification method that combines various traditional

classification algorithms such as Naive Bayes (Probabilistic) and

Rule-based technique, which will help address the challenges of

velocity, variety and volume that big data classification is faced

with.

A similar fuzzy rule-based classification system to handle

imbalanced big data is proposed in (Krawczyk, Stefanowski, &

Wozniak, 2015), the authors aimed to get a system that is capable of

handling imbalanced big data with good accuracy and no increase in

the run time. They make use of the MapReduce Framework to deal with

big data as well as considered the implementation of cost-sensitive

learning. However, their intentions, the algorithms did not pass the

scalability test for use with big data and the overall performance

was poor.

Another similar evolving rule base classifier as described in

(Costa et al., 2015) is the parsimonious classifier (pClass)

proposed in (Pratama, Anavatti, Joo, & Lughofer, 2015). It applies a

fully unsupervised method to drive its learning engine from scratch

and can be easily used with online streaming instances.

In (Tekin & van der Schaar, 2013), the authors introduced a

distributed online learning framework for the classification of big

data from different data sources. The data is treated by a set of

heterogeneous distributed classifiers. The classifiers operate in a

discrete time setting where various events such as: a data stream

with a specific context arriving to each classifier, each classifier

makes use of its own classification function or other classifiers to

create a label, etc. The authors assume the creation of a binary

label. Probabilistic classifiers such as the naive Bayes classifier

were among the set of classifiers used. However, the results of

their experiments from running two different simulations on network

security data failed to pass performance test based on classifier’s

accuracy.

In (Achcar et al., 2009), a system (AutoClass@IJM) for Bayesian

classification of varying data in biology is developed. This system

was made with a web interface to AutoClass, a prevailing

unsupervised Bayesian classification scheme (Cheeseman et al., 1996)

that forms part of the basic idea employed in this research. The

AutoClas@IJM however, required a lot of human efforts e.g.

preparation of the input data, sending the data files, providing an

email address where the URL to the results is sent. It is also not

very scalable to use with very large data sets, due to the return

time involved.

- 12 -

A similar consideration of AutoClass is seen in (Pizzuti & Talia,

2003), where a parallel version of autoClass algorithm (P-AutoClass)

is performed on distributed memory multi-computers. The algorithm

divides the classification task among the processors of a parallel

machine. This method of parallelization is meant to increase the

speed at which classification results are obtained. P-autoClass is

also intended for scalability in mining large data sets. Both a

theoretical and experimental performance model of the algorithm is

carried out. Which the authors use to prove that parallel processing

of a classification process (especially if performed on multiple

processors) speeds up the classification task. Therefore, making

parallel implementation of classification or clustering algorithms

very attractive when dealing with big data.

2.2 Classification and Clustering

Machine Learning algorithms can be divided into mainly two broad

categories, namely classification and clustering. These are

discussed in the following sections below.

2.2.1 Data Classification & Regression

Data classification (sometimes referred to as supervised learning)

is a data mining process of allocating data into one or more

categories. Traditional concepts of classification involve a

process deriving a classification model from pre-labelled data

instances and then applying this model to correctly predict the

class label of un-labelled data instances in each dataset. Regres-

sion on the other hand, is data classification that focuses on pre-

dicting a quantity as opposed to a class label. A data instance can

be classified into one of two or more classes. When two classes are

involved it is often referred to as binary classification model,

while when there are more than two classes it is referred to as

multi-class classification. We refer to a classification model which

has several classes assigned to a data instance as multi labelled.

Some traditional classification methods are not flexible & scalable

enough to handle large datasets or changes for which they were not

previously trained to handle. Also, data scientists and machine

learning experts tend to spend a huge amount of time deciding on

which machine learning scheme and algorithm to select for a given

dataset. Which is due to an enormous amount of supervised classifi-

cation algorithms and a lack of more generic and robust automated

machine learning systems in place to help them achieve this goal.

Traditional data classification algorithms normally comprise of two

phases:

2.2.1.1 Training phase:

This is where a model is constructed from the pre-labelled training

instances. However, there are some classification methods where the

- 13 -

training phase may be replaced with a pre-processing phase instead.

For example: nearest neighbour classifiers (Yunck, 1976), auto

classifiers (Cheeseman et al., 1996) etc. It has been observed from

state of the art ML systems, that to obtain good classification

results often requires a large labelled training dataset, which is

not always available to the users.

2.2.1.2 Testing phase:

In this phase, the function derived from the Training Phase is

applied to a new unlabelled data instance, and a label (in a

classifier) or quantity (in a regressor) is generated for that

instance. However, it is important to note that the classification

process itself usually comprises of more phases. For example, the

classification process may usually start with a data mining task

such as feature/attribute selection (which may consist of a pre-

processing or filtering phase to remove irrelevant features and

ensure that the data is in the right format needed).

A classification algorithm outcome may be represented for a test

instance in either two ways:

- A Discrete label.

- A Numerical score which can be changed to a discrete label.

2.2.2 Data Clustering

Clustering differs from classification in that it uses similarities

between feature variables to perform separation into groups without

prior understanding of the group structure (i.e. it uses unlabelled

data) (Aggarwal & Reddy, 2013; Jacques & Preda, 2014; A. Jain,

Murty, & Flynn, 1999). While for classification, the separation is

done based on a training data set that translates information about

the structure of the groups (i.e. it uses labelled data) (Charu C.

Aggarwal, 2014; Fabrico, 2014; Sokal, 1974). Clustering is referred

to as unsupervised Learning. In recent decades however, a hybrid

category emerged with the attention of the masses, which is referred

to as the semi-supervised learning (Sinha, 2014). It is a

combination of both the supervised and unsupervised methods thus

allowing the use of both labelled and unlabelled data for learning

the class label of a new data input. It is a very promising method

to use when dealing with the classification of big data, because it

can handle the classification process effectively with only a small

number of labelled instances and a large set of unlabelled instances

(which is usually the case with big data). Semi-supervised method

helps bridge the cost overhead limitation (having to label a large

set of data, can be very costly) of the pre-labelling process in

supervised methods, and the limitation of the unknown (which

increases the error rate) in the unsupervised methods.

- 14 -

The usefulness of class labels e.g. intrusion activity may be

represented as a class label (supervised event detection),

multimedia data analysis, biological data analysis, medical disease

diagnosis, etc. are numerous.

Broad categories of data classification include:

- Technique-centred e.g. probabilistic, decision trees, rule-

based method, neural networks, nearest neighbour, Support Vector

Machine (SVM) methods, etc.

- Data-type centred e.g. text, multimedia, metadata, time series,

sensor data, discrete sequence, network data, big data etc.

Different data types may require the design of different methods,

with each been quite different. This research thesis is based mainly

on the classification of big data type but the classification model

designed will be scalable enough to apply on other data-types.

Discussions on big data can be found in (Akerkar, 2013; Chen et al.,

2014; Fan & Bifet, 2013; Suthaharan, 2014; Tankard, 2012).

- Classification Analysis Variations: e.g. semi-supervised

learning, transfer learning, active learning, etc. Semi-supervised

analysis variation is considered in this research.

2.2.3 Classification Methods

Before most classification methods are applied to a dataset, a

method known as feature selection is often used. Data classification

methods often used include:

- Decision trees

- Rule-based methods

- Probabilistic methods

- SVM methods

- Instance-based methods

- Neural networks

These methods along with the feature selection method will be

discussed briefly below.

2.2.3.1 Feature Selection

Feature selection is a method which is usually the first phase of

almost all classification tasks. It is critical to use the correct

features during the training phase as this will help improve the

classification results. However, the use of many features tends to

decrease performance of the system. The two most general supervised

feature selection methods include: - Filter models (here the

technique is independent of the classification algorithm) and

Wrapper models (here the process of selecting features is inserted

into a classification algorithm and made profound to the

classification algorithm, this tactic distinguishes the fact that

diverse algorithms may work well with diverse features). When using

- 15 -

Filter models, we must be able to measure the significance of a

feature to the classification method with some form of evaluation

measure. Other feature selection methods include the unsupervised

feature selection method (no class label involved), semi-supervised

method (which makes use of both labelled and unlabelled data to

estimate feature relevance). Feature selection could be done from

either flat features, streaming features or structured features.

More details on feature selection methods, algorithms and

applications is found in (Charu C. Aggarwal, 2014; Alelyani, Tang, &

Liu, 2013; Forman, 2003; Haralick et al., 1973; A. K. Jain & Waller,

1978; Kwak & Choi, 2002; T. Li et al., 2004; Huiqing Liu, Li, &

Wong, 2002; Huan Liu & Motoda, 1998; Huan Liu & Yu, 2005; Mladeni'c

& Grobelnik, 1998; Pal & Foody, 2010; Peng, Long, & Ding, 2005;

Punch III et al., 1993; Tang, Alelyani, & Liu, 2014; Zhao & Liu,

2007)

2.2.3.2 Decision Tree Method

It has a tree-like separation of the data and the various

separations at the leaf level are related to the different classes.

Separation at each level is done using a split criterion. Either

univariate split (when a condition is placed on a single attribute)

or Multivariate split (when a condition is placed on multiple

attributes) technique can be used. A basic decision tree example is

seen in Figure 2.1 below. It shows a scenario which aims to

determine the response of prospective customers to direct mailing.

The circles represent the internal/decision nodes (labelled with the

test attribute) and the triangles represent the leaf node/class

label. Moving down the tree progressively from the root to a leaf

allows instances to be classified accordingly and predictions made.

The split criterion is usually applied on each internal node to

determine what the output node is (which could be another internal

node or a leaf node (which is usually a class)).

- 16 -

Figure 2.1: A simple decision tree that represents responses to direct mailing (Rokach &

Maimon, 2010).

Decision tree methods are popular and provide human readable rules,

but it is important to keep the tree and splits simple enough to

ensure that both the understanding of and stability of the tree does

not suffer. More details on the decision tree method and algorithms

are discussed in (Charu C. Aggarwal, 2014; Esposito, Malerba,

Semeraro, & Kay, 1997; Lin, Yan, Yan, & Nan, 2008; Murthy, 1998;

Nielsen, Rumí, & Salmerón, 2009; J. Ross Quinlan, 1986; Vens,

Struyf, Schietgat, Džeroski, & Blockeel, 2008). Two very popular

decision tree algorithms are the classification and regression trees

(CART) (Breiman, Friedman, Stone, & Olshen, 1984; Loh, 2011) & the

C4.5 algorithm (J Ross Quinlan, 2014). A decision tree growth is

exponential to the number of attributes and distinct values per

attribute. Hence for large data sets, it has been a difficult

problem finding a practical, globally optimal decision tree

solution. Some methods such as pruning of a decision tree to reduce

the complexity and attributes have been proposed in many literatures

such as (Esposito et al., 1997). However, the pruning method limits

the accuracy of the classifier at the expense of reducing

complexity. Also, the fact that a split criterion is required at

each internal node of a decision tree (which has to match the

training set appropriately to ensure high accuracy) means that the

practicability of applying a split criterion used for a particular

data set on another would be a complex and costly task. This also

implies therefore that one would require various split criterions or

various tree classifiers incorporated together to achieve accurate

classification of big data (which will increase the complexity of

the model as well as increase the run time). Asides the limitation

of having a split criterion at each internal node and the challenge

- 17 -

of growing a decision tree without making it too complex, another

identified problem with decision trees is that in order to avoid

inaccuracies it is hard predicting when to stop the tree growth. In

cases where there is a tendency for many classes, unnecessarily

large trees may result. Many standard decision tree algorithms such

as the CART (Breiman et al., 1984) are deterministic in nature (i.e.

if given the same input information, the same output information is

produced with only one pre-determined outcome considered), as

opposed to the non-deterministic characteristic of the approach

proposed in this thesis (i.e. where more than one possible outcome

is considered even if give the same input information). Another

limitation is that to decide the succeeding split, decision tree

induction (i.e. building a decision tree automatically from a given

data set) will need to compare all potential splits. Most standard

decision tree algorithms are mainly supervised learning methods

where it is compulsory to have a set of pre-labelled training data

sets from which the tree can be built, and the accuracy is highly

dependent on the amount of labelled test instances available. Having

a large set of pre-labelled training instances is not the case in

the real world, as the process is quite a costly one.

2.2.3.3 Rule-Based Method

Are methods like the decision tree method but differs in the sense

that it allows overlaps (i.e. there is no strict hierarchical

separation) to create a very robust training model. Some path in a

decision tree may be understood as a rule which allocates a test

instance to a specific label. For example, from the decision tree in

Figure 2.1 above, the rule “if a customer’s age is greater than 30,

then the customer will not respond to the mail” can be deduced from

one of the paths. Rule-based methods have the advantage of being

simple, easy to explain and understand, can be easily improved by

addition of more rules, etc. Logic forms (e.g. IF-THEN statements)

can be used to represent the rules which human beings can easily

understand. They can be seen as more general models than decision

tree models. For rule-based methods, a set of rules is extracted

from the training data in the training phase. Then in the testing

phase, the rules which are important to the test instance are

determined and the final output is based on a mixture of the class

values anticipated by the various rules. Resolution methods should

be designed as well, in order to resolve possible rule conflicts on

a test instance. For example, a method of prioritizing the rules is

a good resolution strategy to avoid conflicts. More in-depth

discussions on rule based methods are seen in (Charu C. Aggarwal,

2014; Angelov & Yager, 2012; M. Jain et al., 2013; X.-L. Li & Liu;

Nosofsky & Little, 2010; Pratama et al., 2015; Tung, 2009). Two

well-known rule-based classification techniques is the rule

induction and association rule-based classification. In rule

- 18 -

induction algorithms, a small set of rules is developed straight

from the data. Two fundamental rule induction algorithms in the

literature are the CN2 Induction Algorithm (Clark & Niblett, 1989)

and RIPPER (Cohen, 1995). In the CN2 algorithm, each rule is learnt

without assigning a class for each iteration. While in the RIPPER

algorithm, all the rules pertaining to a class is learnt first

before the all the rules of the following class is learnt. RIPPER

has been employed mainly for classification of text. To achieve high

accuracy, majority of the traditional rule induction algorithms e.g.

CN2, RIPPER, etc. frequently contain a lot of conditions, thus

making the rules unnecessarily long and hard to work with.

Association rule classification proposed in (Ma, 1998) and in (Zhang

& Zhang, 2002). It can help in detecting association rules from huge

amount of data. Class association rules (CARs) as proposed in (Ma,

1998) is an example. It is required that the output of a CAR be a

class label. Rule induction models identify only a subset of the

rules needed for classification while classification based on

association rule mining detects all the rules in the data. The rule-

based methods on their own are quite slow and the rules could be

sometimes misleading if proper care is not taken. This is because

often the rules in the rule list are dependent of each other. A

limitation of using only rule-based method for big data

classification is that the quality of a rule may vary between data

instances, therefore limiting the accuracy of the results. Also, we

will be faced with the challenge of wasting meaningful time in

generating a long rule list (as generated from rule-based induction

methods) instead of just having basic generalized rules that can be

applied on all instances. Or we will be faced with the challenge of

detecting all the rules present (as observed with CARs). Though

detecting all the association rules of big data will help improve

the classification of an input instance correctly, it may however

involve a high run time.

2.2.3.4 Probabilistic Methods

These are very common and fundamental amongst data classification

methods. They make use of statistical interpretation to find the

best class for a given sample. Probabilistic classification

algorithms will often output an equivalent posterior probability

𝑝(C|𝑥) for each of the possible classes a test instance may belong to
(Charu C. Aggarwal, 2014).

Posterior probability: conditional probability obtained after

considering precise features of the test case.

Prior probability: probability distribution of training records

that belongs to each specific class.

The two basic ways that the posterior class probability is

estimated:

- 19 -

- Through defining the class conditional probabilities 𝑝(x|𝐶) for

each class (C), after which the prior class probability 𝑝(𝐶) is
then inferred and Bayes theorem used to determine 𝑝(C|𝑥).

- By modelling the joint distribution 𝑝(𝑥, 𝐶) directly and then

normalizing it to obtain the 𝑝(C|𝑥).

We have both generative probabilistic models (where the joint

distribution of inputs and outputs are modelled implicitly or

explicitly) and discriminative probabilistic models (where a

discriminative mapping function (equation (2.0)) is learnt and used

to model the posterior probabilities directly). A comparison of both

generative and discriminative models is discussed in (Jordan, 2002).

Examples of the probabilistic generative model for classification is

the ‘Naïve Bayes Classifier’ (Murphy, 2006) and the ‘Hidden Markov

Model’(Blunsom, 2004; Rabiner, 1989).

 𝑓(𝑥) = 𝑝(𝐶|𝑥) (2.0)

Simplification of the Bayes model is what leads to the Naive Bayes

hypothesis (John & Langley, 1995). It is not only simple and fast

but also commonly applicable. Its aim is to create a rule that will

permit assigning imminent instances to a class with an assumption of

attributes independence after establishing probabilities (Triguero,

García, & Herrera, 2013). Examples of popular probabilistic

discriminative model is the ‘Logistic regression’ model and the

‘Conditional Random Fields’ model.

Logistic Regression model is formally defined as:

 𝑃 (𝑌(𝑇) = 𝑖(𝑋) =
1

1 + 𝑒−𝜃𝑇𝑋
) (2.1)

- (Charu C. Aggarwal, 2014; W. Liu, Liu, Tao, Wang, & Lu, 2015;

Tortajada et al., 2015),
- Where θ is the parameters vector to be measured.

A diversity of other probabilistic models are also known in

literature, e.g. probabilistic graphical models (Koller & Friedman,

2009), and conditional random fields (Lafferty, McCallum, & Pereira,

2001). More on probabilistic methods is discussed in (Bishop, 2006)

and (Alsallakh, Hanbury, Hauser, Miksch, & Rauber, 2014; Azar & El-

Said, 2013; Bankert, 1994; Iounousse et al., 2015; Lu et al., 2010;

Lukasiewicz, 2008; Maravall, De Lope, & Fuentes, 2013; Murphy, 2012;

Nielsen et al., 2009). Some common advantages of the probabilistic

models observed in the literature include:

- 20 -

- The fact that each class’s associated probability can easily

qualify as a value of confidence of the input instance belonging

a class.

- They can be easily and successfully incorporated into larger

machine learning tasks while partially or totally avoiding the

problem of error propagation.

Some limitations of traditional probabilistic model are:

- Majority of the models are deterministic in nature and do not

consider other choices such as being able to adjust to change in

the middle of model build.

- They are mainly for supervised learning where there is a high

dependency on pre-labelled data instances at the

learning/training phase. Although, to be adaptable for

unsupervised classification or semi-supervised classification,

they need enhancement and optimization.

- On their own they cannot effectively handle at the same time all

three challenges (i.e. volume, variety and velocity) that big

data brings. However, combining them with other methods (e.g.

decision trees, SVM, etc.) and techniques to achieve a relatively

high classification performance of big data is useful.

These limitations and many more are part of the reasons that

researchers are constantly studying and experimenting on ways to

build or enhance these traditional classification methods to handle

evolving real-world situations effectively.

2.2.3.5 SVM Method

This classification method may be well-thought-out as a single

level decision tree with a very carefully selected multivariate

split condition (Charu C. Aggarwal, 2014). It uses linear conditions

to separate the classes from one another as much as possible (Cortes

& Vapnik, 1995; L. Li, 2015). Kernel methods (using similarity

measures between two objects) are used for general non-linear SVM

learning methods (Schölkopf & Smola, 2002). One important criterion

for SVM is to achieve maximum margin separation of the hyper planes.

An advantage of the kernel methods is its ability to be extended to

random data types and its quality of generalization (Leiva-Murillo

et al., 2013). A downside to SVM method is that if the numbers of

attributes are much more than the numbers of samples, SVM methods

are likely to perform poorly. Also, they are slow and do not

directly make available probability estimations. The probability

estimates are calculated using cross-validation techniques which in

practice are quite expensive. A method to optimize the speed of SVM

classifiers has been proposed in literatures such as (Fischetti,

2015). But the authors in a bid to optimize the SVM method with

Gaussian Kernel, for it to run faster further created a NP hard

complex problem. A method to map the SVM outputs into probabilities

- 21 -

is also discussed in (Platt, 1999). A survey on SVM methods and

applications is observed in (Wang & Pardalos, 2015) while a

comparison of SVM methods against other classification and

regression methods is seen in (Meyer, Leisch, & Hornik, 2003). SVM

libraries (Chang & Lin, 2011) are also available for users to easily

apply SVM method in their application. Another limitation of the SVM

method is that it is designed mainly to be applied for a two-class

situation, hence to use it for multi-class scenarios; one would have

to apply reduction algorithms to reduce the multi-class model into

numerous binary problems. This would likely increase the complexity

of the model and the run time.

2.3 Testing the Performance of Classification Algorithms

The performance of most classification algorithms is usually

determined by a number of parameters or measures such as: accuracy

of the output, the integrity of the model, the run time of the

model, simplicity in terms of computational cost, etc. The most

fundamentally common one being accuracy of the results. There are

various methods that have being designed over the years for

evaluating the performance of classification systems. Validation

methods are usually chosen, after which the classification model is

built and then evaluation measures are used to describe how properly

the classification performed with regards to other existing models.

Some methods for accuracy validation of a classification process

include:

2.3.1 Hold-Out Method Validation method:

A statistical method that requires the data is split into two

segments (one for training the classifier and one for testing the

classifier). The training data set is usually larger than the test

data set. A disadvantage of this method is that the test is

performed on a smaller portion of the data, thus increasing the

tendency for false accuracy measurements (Charu C. Aggarwal, 2014).

2.3.2 Cross Validation method:

To address the problems of the hold out method, a more logical

approach to the hold out method eventually got developed. It is

known as the cross validation method (Refaeilzadeh, Tang, & Liu,

2009), which involves the data being split equally and the hold-out

evaluation method is performed two times by using the training data

set from the first iteration as the test data set in the second

iteration and vice versa. The simple form of the cross validation is

the k-fold cross validation.

2.3.3 Bootstrap method:

Creates bootstrap dataset by sampling with replacement the original

dataset. This bootstrap data set is what is then used to build the

- 22 -

classification model which is then applied to the original data used

as the test set. The optimistic ensuing presentation of the

bootstrap method is improved by applying a factor 0.632 in (Efron &

Tibshirani, 1997). A study and comparison of the cross validation

method and the bootstrap evaluation method is observed in (Kohavi,

1995). A more detailed explanation of the bootstrap method is given

in (Efron & Tibshirani, 1994).

2.3.4 Confusion Matrix:

Since the resulting output of a discrete classifier (e.g. K-nearest

neighbours) is usually an actual class label for each situation and

that of a probabilistic classifier (e.g. Bayes classifier) is

usually a probability function of belonging to a class, it is

important to differ between the evaluation methods used for each.

However, a more general evaluation measure might be applicable in a

situation where the resulting output of a discrete classifier is

transformed into a weighted function or when the output of a

probability classifier is related to a label.

For discrete classifiers, a confusion matrix is usually used for

evaluating accuracy measurements.

Some terminologies derived from a confusion matrix include:

- True positive (tp): correctly classified positive instances e.g.

sensitive information correctly classified as sensitive.

- False positive (fp): falsely classified positive instances e.g.

insensitive information being classified as sensitive.

- True negative (tn): correctly classified negative instances e.g.

insensitive information being classified as insensitive.

- False negative (fn): falsely classified negative instances which

are expected as positive e.g. sensitive information being

classified as insensitive. This is a situation that we don’t want

to happen.

2.3.5 Discrete Classifier Evaluation Measures

Additional well-known evaluation metrics are only defined for

binary classifiers but also easy to use for multi class problems.

They include the following.

2.3.5.1 Classification accuracy (acc)

Accuracy equals the ratio of correctly classified instances OR can

be expressed as the summation of the diagonal features in the

confusion matrix. A common measure that gives an idea of the overall

performance of the classifier, represented as:

𝑎𝑐𝑐 =

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛

(2.1)

- 23 -

2.3.5.2 Mean Absolute Error (MAE)

Mean absolute error is finding the absolute errors of the dataset

by calculating the absolute difference between each observed versus

predicted value, find the sum of the differences and then divide

that value by the number of errors. Lower values of the MAE are

better when analysing the performance and comparing the performance

of different classification models. It is represented mathematically

as:

𝑀𝐴𝐸 =

1

𝑛
 ∑|𝑋𝑜 − 𝑋𝑝|

(2.2)

Where n = errors count, 𝑋𝑜 = the observed value and 𝑋𝑝 = the

predicted value.

2.3.5.3 Recall

It is also known as the sensitivity or true positive rate. It

compares the number of true positives with the actual number of

truly positive cases. It answers the question of “how many relevant

items are selected?” Represented mathematically as:

𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑛

(2.3)

2.3.5.4 Precision

It compares the number of the true positives with the number of

predicted positive cases. It answers the question of “how many

selected items are relevant?”

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑡𝑝

𝑡𝑝 + 𝑓𝑝

(2.4)

2.3.5.5 Specificity

Also known as true negative rate. It compares the correctly

classified negative cases with the total number of truly negative

cases and represented as follows:

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑡𝑛

𝑓𝑝 + 𝑡𝑛

(2.5)

2.3.5.6 Fall-out

- 24 -

This is also known as the false positive rate, and is represented

mainly as follows:

 𝐹𝑎𝑙𝑙𝑂𝑢𝑡 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (2.6)

2.3.5.7 F-Score

F-score (or F-measure) can be used to test the performance of a

statistical system. It is often referred to as the harmonic mean of

precision and sensitivity, and is based on the precision and recall

expressed as:

𝐹𝑆𝑐𝑜𝑟𝑒 = 2 · (

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
)

(2.7)

Another evaluation measure that can address multi-class problems is

discussed in (Ben-David, 2008). It is a measure that compensates for

classification that may be due to chance and is based on Cohen’s

Kappa function. The authors greatly recommend using sensitivity

evaluation measures with weighted kappa in situations when the cost

of having an error is unknown.

2.3.5.8 Receiver operating characteristics (ROC)

For probabilistic classifiers, the most significant evaluation

measures are correlated to the receiver operating characteristics

(ROC) analysis (Majnik & Bosnic, 2013). ROC curves are wonderful

tools for picturing and analysing the performance of classifiers.

They have the advantage of being independent of the class

distribution. ROC analysis technique places classifiers in the ROC

space. The ROC space is derived by plotting a graph with the true

positive rate (tpr) on the vertical (y) axis and the false positive

rate (fpr) on the horizontal (x) axis of a graph.

For example: consider 2 different classifier outputs (classifier’s

A & B) below from 50 positive and 50 negative instances.

𝐴 →
𝑡𝑝 = 32 𝑓𝑝 = 14

𝑓𝑛 = 18 𝑡𝑛 = 36
 with its tpr = 0.32 & fpr = 0.14.

𝐵 →
𝑡𝑝 = 12 𝑓𝑝 = 44

𝑓𝑛 = 38 𝑡𝑛 = 6
 with tpr = 0.12 & fpr = 0.44

- 25 -

Figure 2.2: The ROC space and plots of the two prediction cases above.

From the ROC space as seen in Figure 2.2, we say classifier A

performs better than classifier B according to the ROC analysis

methodology because it has a higher true positive rate value than B.

However, probabilistic classifiers require a threshold to signify

the final choice for each class (Charu C. Aggarwal, 2014).

Evaluating a large dataset requires more efficient algorithms like

the algorithm 24.1 shown in (Charu C. Aggarwal, 2014). Area under

the curve (AUC) is a measure that often uses a single value to

assess the performance of a classifier. It is the area between a ROC

curve and the y axis. In more practical scenarios ROC curves usually

expose more information than AUC single value. However, the

advantage of using ROC curves in performance analysis. A

disadvantage is that it does not measure the complete performance of

the classifier but more or less gives us the relative probability

ranks. Therefore, the need for effective probabilistic classifier

evaluation methods arises. This could be in the form of useful

modifications and extensions performed on the ROC methods. There are

ROC analysis extensions in literatures e.g. one that is extended for

a three class situation is discussed in (Mossman, 1999). Another

example of a more recent approach that designed a graphical

visualization of the performance of multi-class situations, is seen

in (Hassan, Ramamohanarao, Karmakar, Hossain, & Bailey, 2010).

Computational cost is another issue to consider when designing

multi-class ROC evaluation measures.

B

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.14 0.44

ROC Space

fpr

tpr

Better

worse

Perfect classification

- 26 -

Other measures of the performance of a classifier are discussed as

follows:

2.3.6 Integrity of the model:

Answers the questions “how soundly constructed is the

classification algorithm?” or “how stable is the model?” or “what is

the consistency in the classifier?”

2.3.7 Simplicity

The simplicity of a model, shows “how easy it is to understand the

model?” or “how uncomplicated the design of the model is?”

2.3.8 Run time

The classification model run time, could be discussed from two

different viewpoints. It could be viewed in terms of “the time taken

to build or train the model” and the “time taken to test the model

with new instances”. When building a classifier for big data, run

time is important to consider, because it is important to build a

high performing classifier in the best time possible. Time

measurements during training and testing phases of a classification

model will give a more practical evaluation of the run time and not

just theoretical.

2.3.9 Reliability

The reliability of a ML model evaluates “how consistent it is in

producing the same results, over and over again?”. An example of how

one can estimate the reliability of a classification algorithm is

discussed in (Gurov, 2013).

2.3.10 Storage Requirements

Another measure as discussed in (Charu C. Aggarwal, 2014), is to

consider the storage requirements of the model.

In comparing classifiers, statistical tests are essential to verify

that indeed a new classifier outperforms other existing classifiers.

There is the parametric and non-parametric statistical test,

pairwise or multiple comparison tests (description is seen in (Charu

C. Aggarwal, 2014)), transductive or inductive tests (as carried out

in (Triguero et al., 2013)). In (Triguero et al., 2013), an

experimental study in semi supervised classification is carried out

using the KEEL (Knowledge Extraction based on Evolutionary Learning)

software tool (Alcalá et al., 2010).

2.4 Classification Tools

There are severaldata mining tools that incorporate both data

classification and clustering algorithms. However, this thesis

considers and discusses a few open source tools/applications,

- 27 -

written in Java programming language, supports all operating system

platforms and permits the use with big data. These include:

- Waikato Environment for Knowledge Analysis (WEKA) (Hall et al.,

2009): Open Source tool that was first designed in 1993 at the

University of Waikato in New Zealand. Supports many data mining

tasks such as: feature selection, pre-processing/filtering,

classification, clustering, regression and visualization. It only

deals with flat files in ARFF format, even though various formats

of file can be imported. Provides access to SQL databases. Has

four interfaces: The Explorer, Experimenter, Knowledge Flow &

Simple Command line interface. The Explorer is the main interface

with tabs: Pre-process, Classify, Cluster, Association Rules,

Attribute Selection & Data Visualization tabs. Weka also allows

the installation of extension packages, and data can be imported

from ARFF, CSV, C4.5, binary, etc. file formats, or it can be

read from a URL or SQL database. It has some in built file

converters, for example to convert from a csv file format to the

arff file format.

- Apache Mahout (Ingersoll, 2009; Owen, Anil, Dunning, & Friedman,

2011): Open source project of Apache Software Foundation. It has

some scalable machine learning algorithms. But it does not really

focus on many data mining tasks. However, it primarily focuses

on collaborative filtering, classification and clustering. It

isimplemented in the Apache Hadoop platform and has a math

environment to help rethink the scalability of the machine

learning algorithms built with it.

- Apache Scalable Advanced Massive Online Analysis (SAMOA)

(Francisci Morales & Bifet, 2015): Is an open source project of

Apache Software Foundation. It is a platform for mining big data

streams. It is still at its early stages. It is a distributed

Streaming Machine Learning framework that contains a programming

abstraction for distributed streaming ML algorithms.

- Massive Online Analysis (MOA) (Bifet, Holmes, Kirkby, &

Pfahringer, 2010): Is an open source tool, specific for data

stream mining with concept drift (unforeseen changes over time,

in the quantity to be predicted) and supports bi-directional

interaction with Weka. It includes a collection of ML algorithms

e.g. classification, regression, clustering, etc. It includes

evaluation tools. It can be extended with new mining algorithms,

evaluation measures or stream generators. Has one interface with

5 tabs e.g. Classification, Regression, Clustering, Outliers &

Concept drift. It has a Command Line Interface as well. It is the

most popular data stream mining software.

- KEEL (Alcalá et al., 2010): Open Source tool used for various

Knowledge discovery tasks. It pays special attention to the

implementation of solutions based on data mining techniques e.g.

classification, clustering, etc. It can be extended with new

algorithms. Has pre-processing methods incorporated.

- 28 -

A comparison and contrast of the various tools are shown in Table

2.1 below. The representation of what each column stands for in the

table is shown below the table.

Table 2.1: A comparison of some tools used for data mining

experimentations.

Tool Link A B C D E F G H I J K L M N O P Q

WEKA http://www.cs.wai-
kato.ac.nz/ml/Weka/

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Mahout http://ma-
hout.apache.org/

✓   ✓ ✓  ✓     ✓ ✓ ✓   

SAMOA https://samoa.incuba-
tor.apache.org/

✓   ✓ ✓  ✓     ✓ ✓    

MOA http://moa.cms.wai-
kato.ac.nz/

✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓ 

KEEL http://www.keel.es/ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ 

A =Open Source, B=Easy Setup and Install, C=Has a Graphical User Interface (GUI) plus the API,

D=Used with Big Data, E=Has a Collection of Pre-processing techniques such as filtering, etc.

F=Over 100 classification and 50 clustering algorithm, G=Various Evaluation metrics present,

H=Visualize results, I=Identify statistical dependencies between groups of attributes, J=Search

and Evaluation method for attribute selection, K=Useful Educational and Research purposes/com-

munities, L=Algorithms are applied directly onto a dataset or called from your own code, M=Re-

quires user to Identify and select appropriate algorithm for each dataset or collection of datasets,

N=Can be run on Apache Spark, which increases the speed up to 10 times more, O=Easy imple-

mentation and Extension capability, P=Allows a complete analysis of new proposed algorithm in

comparison to existing ones, Q=Graphical visualisations of the dataset. ✓ = Yes and  = No.

2.5 The Algorithm Selection Problem

Making the right decision about the best learning algorithm(s) to

use in designing a classification system is a time consuming,

tedious and costly process. In machine learning, the decision about

what learning method (supervised learning/classifier OR unsupervised

learning/clusterer) has been incorporated into the meta-learning

(Learning to learn) research. Meta-learning has proven to have a

major correlation with classification tasks.

An interesting fact observed in the design of an effective

classification system is that, there is a major distinct connection

between the meta-learning paradigm and data mining classification.

This connection is because while designing a classification system,

one must empirically & analytically study existing algorithms (tons

of algorithms exists) and in some cases even make use of some base

concepts or hypothesis. When designing the classification system,

the process of deciding what machine learning approach (supervised

and unsupervised) to be used in next after defining the goal. There

are many trends and knowledge shown over the years about supervised

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/

- 29 -

and unsupervised machine learning, which can be formally harnessed

in reducing the time spent in taking such decisions.

This research proposes a hybrid classification system architecture

that comprises of three different layers. The second layer which is

a decision learning level, automates the decision-making process on

what learning method to adopt at any point in time, given a

heterogeneously large stream of data sets. This decision-making

process is a Meta-learning (learning to learn) process. The Weka

(Waikato Environment for Knowledge Analysis) [10] tool is used in

this research for the experimental study. It is a data-mining tool

designed mainly for research purposes and widely accepted in the

data mining community. It contains a lot of tools that allows for

performing data mining tasks easily and can help assist in the

development of new machine learning schemes.

An earlier formal abstraction where the algorithm selection problem

is considered is discussed in (Rice, 1975). The author aims to an-

swer the question: “what algorithm is best to use in a particular

scenario?” by formalizing four criteria (the problem space P, the

feature space F, the algorithm spaces A & the performance space Y)

and five main steps as a possible solution for the algorithm selec-

tion problem. It turns out from observations by the author that se-

lection mapping echoes as a single most important part of the algo-

rithm selection problem solution.

Later on in (Aha, 1992), the term ‘meta-learning’ is coined. In the

paper, the author discusses ways in which we can draw more general

conclusions from the results of machine learning experiments, to

give us a set of rules that unfolds situations in which certain al-

gorithms significantly outdo others based on some needful measures.

However similar some concepts are, the meta-learning hypothesis dis-

cussed in this research thesis distinguishes from the above study in

the sense that it considers case studies involving both supervised

and unsupervised learning and not only supervised learners. The set

of Meta rules derived in this paper is as a result of empirical

studies carried out to determine situations in which using a super-

vised learning algorithm might be more beneficial than using an un-

supervised algorithm.

The field of Meta-learning and Automated Machine Learning (AutoML)

have become very useful tools in solving the algorithm selection

problem. This two fields are discussed in the following two sections

below.

2.6 Meta-Learning

There are varying views of meta-learning in literatures. In

(Vilalta & Drissi, 2002), the authors provide a survey of different

meta-learning views with regards to machine learning. The authors

also discuss their own viewpoint of meta-learning from the point of

- 30 -

constructing self-adaptive leaners, which gathers its Meta knowledge

by analyzing the whole instance and updates the knowledge base ac-

cording to the characteristics of individual instances. They however

point out an important fact, which states that despite the varying

views on meta-learning, a constant question: “how can knowledge

about learning be exploited to improve the performance of learning

algorithms?” remains unchanged. The process of learning to learn in-

volves studying ways to improve learning by discovering, mining, and

taking advantage of the invariant transformations across multiple

domains. Invariant transformations gives a more general understand-

ing of the nature of patterns across domains (Vilalta & Drissi,

2002).

We can see also in (Smith-Miles, 2009) a unified framework that is

used for analyzing various research developments that aims to tackle

the algorithm selection problem as a general learning problem across

different domains.

Some literatures refer to meta-learning algorithms as one in which

learning improves in each iterative run of a base classifier. In

some, it is referred to as the process of putting together a set of

characteristics or meta-features specific to a domain and with re-

spect to the classifier’s performance. For example, in (Cruz,

Sabourin, Cavalcanti, & Ren, 2015), the authors use meta-learning to

propose a novel dynamic ensemble selection framework, where five

sets of meta-features capturing different properties of the base

learner is proposed for classifier selection. Their classification

selection rule is learned by a meta-classifier making use of the

training data. Which then enables an induced set of rules by using a

meta-learner to observe what conditions makes a learning algorithm

perform better than others. This is limited as the meta-learner used

for this analysis is related to only specific domain characteristics

and not characteristics that can cut across domains.

Another example of a most recent meta-learning approach is the en-

semble classifier system for classifying multimedia big data de-

signed in (Y. Yan, Zhu, Shyu, & Chen, 2016). In their approach, the

authors integrate the outputs of different classifiers using their

confusion matrices to arrange a set of judgers in a hierarchical

structured decision model.

However, in this research, a meta-learning concept is used to ena-

ble the decision learning process. The meta-learning phase of this

research uses more general knowledge about supervised and unsuper-

vised machine learning algorithms to create some hypothesis that is

then applied in an experiment and based on the performance results

of the experiments a set of decision rules are drawn.

- 31 -

2.7 Automated Machine Learning (AutoML)

As previously stated, some learning algorithms may not be very

effective for handling heterogeneous datasets for which they were

not previously trained to handle in an automatic, effective and

timely manner. There is the need to know how we can improve the

automatic build of models using more general knowledge and

information about a given dataset. The field of automated machine

learning, also known as AutoML, is a fast-growing machine learning

approach, designed to automate tasks of data preparation, pre-

processing, and model training to ease the tasks of both

intermediate and experts in the field. The autoML problem is

formally defined for example in (Feurer, 2015) as:

Formal Definition: For i = 1, … , n + m, let xi ∈ ℝd signify a feature

vector and yi ∈ Y the corresponding target value. Given a training
dataset Ɗtrain = {(x1, y1), … , (xn, yn) } and the feature vectors xn+1, … , xn+m of

a test dataset Ɗtest = {(xn+ 1, yn+ 1), … , (xn+m, yn+m) } taken from the
corresponding data distribution, given a budget resource ℬ (for
example, computational resources such as the CPU/memory usage and/or

the clock time which in practice is equal to the user’s time spent)

and a loss function ℒ (. , .), the autoML problem is to automatically
produce a set of test dataset predictions ẏn+1, … , ẏn+m. The loss of a

solution ẏn+1, … , ẏn+m to the autoML problem is specified by:

1

m
 ∑ n

j=1

m

 ℒ (ẏ
n+j

 , y
n+j

) (2.8)

According to (Datarobot & Triffacta), the former U.S. chief data

scientist says that data cleaning takes up about eighty percent of

the tasks in any data science project while Forrester records that

“massive machine learning automation is the future in data science”.

This research focuses on improving the model training aspect of

AutoML without having to spend time in the data preparation stage.

This in turn will allow for a less time consuming, tedious and a

costly process when building highly efficient machine learning

models for big data mining.

There are many strategies one can adopt in the field of automated

machine learning, two to consider is Starting High and Exhaustive

Searching.

2.7.1 Starting High

Starting High is a machine learning method that is sophisticated

and known to perform well on a range of predictive model problems,

such as when random forest or gradient boosting isselected. Then the

model is evaluated on the given problem and the results used as an

approximate top-end benchmark, then the simplest model that achieves

similar performance is found. The “Start High” approach is fast and

- 32 -

can help you define the bounds of model skill to expect on the

problem and find a simple (e.g. Naïve Bayes or Occam’s Razor) model

that can achieve similar results. It can also help you find out

whether the problem is solvable/predictable fast, which is important

because not all problems are predictable.

2.7.2 Exhaustive Searching

Evaluate all the machine learning methods that you can think of on

the problem and select the method that achieves the best performance

relative to the baseline. The “Exhaustive Search” is slow and is

really intended for long-running projects where model skill is more

important than almost any other concern. This is a common approach

that current commercial enterprises such as 'Datarobot' and 'Rapid

Miner' try to adopt for their AutoML products.

2.7.3 AutoML Related Works

(Sparks et al., 2015) present a system called TUPAQ designed to

automate the process of training predictive models. They address the

challenges of using fixed hyper parameter configurations, by

achieving high quality model building via a wider search amongst the

hyper parameter configuration space of Machine learning algorithms.

TUPAQ takes advantage of the logical and physical optimizations for

the purpose of large-scale model searching. They focus precisely on

the supervised learning setting. They consider a small number of

model families (linear Support Vector Machines, Logistic regression

trained via gradient descent, and nonlinear SVMs that uses random

features) with several hyper parameters, under the assumptions that

in reality, only a small proportion of general-purpose classifiers

are used in practice. The authors compare a baseline approach with

the TUPAQ approach to solving the model search problem. The baseline

model search approach compared with TUPAQ is the conventional model

search approach using sequential grid search. Where the input is the

labelled data, model space and budget, while the output is the best

model. The models are trained at grid points generated on the hyper

parameter space, resulting in several models being trained on one

dataset. The budget which refers to the total number of models to

train on a dataset is specified. Distinctively, TUPAQ includes batch

size as an input, and allows for the possibility of using training

history as an input. The TUPAQ architecture is made up of several

components which includes the driver (in charge of providing the

model search space and budget), the planner (passes the driver’s

information to the tuner and the tuner’s configurations to the

executor), the hyper parameter tuner (generates new model

configurations to use) and the executor (for the actual training of

models on the dataset and gives back the planner an appropriate

execution strategy). TUPAQ design space makes use of four

optimizations strategy namely: cost-based execution strategy (a

model search space and budget are considered), advanced hyper

parameter tuning (using training history as input for the hyper

- 33 -

parameter tuning process), bandit resource allocation (via runtime

inspections to generate on-fly decisions) and batching (to train

multiple models simultaneously). They evaluate each design space

strategy of TUPAQ on five UCI machine learning repository datasets

individually, and then evaluated a combination of all the strategies

together on two datasets with different learning goals. Significant

improvement of the model searching process using the bandit

allocation and batching strategies was observed on one of the

datasets. Also, significant reduction in the search time and test

error is seen with the optimisation strategies used by TUPAQ as

compared with the common baseline un-optimized grid search method.

The authors of TUPAQ explore in depths the effect of batching in a

distributed setting and present an application of this method to the

model search problem, while ensuring an optimization of the parallel

execution of algorithms. The estimator in their design however needs

more input from the developer of an algorithm and focuses on

predicting a reasonable cluster size for a given ML model.

In (Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown, 2017), Auto-

Weka has been designed to help users of Weka to search through all

available learning algorithms and hyper parameter settings in Weka

that reduces the loss due to cross validation. They achieve this by

using a Bayesian optimization (highly parametric) approach to find a

strong instance for the dataset given. How Auto-Weka identifies the

classifier that performs best on a given dataset is by using SMAC

(Sequential Model-based Algorithm Configuration). The user is asked

to provide only one dataset at a time to process, a memory bound

(there is a default of 1GB) as well as an overall learning time

budget (the default is 15 minutes). Auto-Weka as it stands can only

run the auto search on one dataset at a time and the authors advice

that for auto-Weka to select the best learning scheme the user

should set a minimum of 24hours. This means that to find the best

learning scheme automatically for 5 different data sets, one will

spend 1hour 15mins (using the default) or 120 hours/ 5 days (going

by the advice of the authors) just to search for the algorithm

suggestion to use. Which is still a very time-consuming process. The

decision-making layer of hybrid system designed in this paper

employs the use of more general characteristics of the dataset and

more general knowledge learnt/known about the different learning

schemes to choose faster the most ideal learning scheme, without

needing to set any time budget or initial parameters (i.e. it is not

a highly parametric system because it relies on less parameter space

searching). This is a first step to making sure that parameter

optimizations (which might improve performance), is done using the

parameter set of only the selected scheme (as opposed to having a

set containing all possible parameter settings of the various

schemes available in Weka). Which means that learning time will be

greatly improved overall.

(Feurer et al., 2015) describe an autoML system ‘auto-sklearn’

which uses the same type of optimizer (i.e. Bayesian optimization)

- 34 -

as auto-Weka, includes however a smaller model and hyper parameter

space than auto-Weka (they consider classifiers and pre-processors

implemented in scikit-learn ML framework that are of high

performance). Auto-sklearn uses additional meta-learning methods and

ensemble building in its design. The results of the meta-learning

method are used as a kick starter for the complex optimisation

challenge of searching the hyper parameter space of a complete ML

system. While their ensemble building acts as a post optimization

method, where models trained during the Bayesian optimization search

are built into an ensemble. However, promising auto-sklearn appears

to be over autoWeka, and like the approach of meta-learning in this

paper to aid auto machine learning, auto-sklearn is quite a complex

system because of its use of Bayesian optimization, pre-processors,

meta-learning and ensemble building. It also does not tackle semi-

supervised or unsupervised problems. While in this paper, we design

a non-complex system that searches for the best learning method

tackling classification, regression, semi supervised and

unsupervised problem areas.

Rapid Miner, a commercial data science platform introduced an

additional auto model function to enhance automatic modelling which

is completely transparent to the user (ROY, 2018). Their auto model

function supports several learning algorithms and trains models

using several learning algorithms, then ranks and mentions to the

user the most suitable models they can choose from. However, there

is a lot of user engagement involved to achieve the process of

selecting the best model, and the user can only supply one dataset

at a time as compared to the design in this research thesis.

2.7.3.1 Summary

Table 2.2 below provides a summary of the current state of the art

autoML systems from the literatures discussed above.

The following is referred to in Table 2.2,

A: Supports input and automatic processing of multiple datasets at

the same time.

B: Selects Learning setting automatically.

C: Selects appropriate model.

D: Use Fixed hyper parameter Configurations.

- 35 -

Table 2.2: A summary of current state-of-the-art autoML systems

Summary

From the literatures we have been able to understand and discuss

big data ML, then we build an understanding of the most widely used

ML methods (supervised learning/classification and unsupervised

learning/clustering), performance evaluators and statistics commonly

used in testing the performance of ML algorithms. We also discuss

and compare some well-known classification tools in the ML research

community. From building an understanding of the most widely used ML

schemes and algorithms, it has been observed that there are a lot of

ML algorithms out there and a model trained on one dataset might not

be useful on another dataset, that data scientists spend an awful

amount of time searching and selecting the best ML algorithm to use

for a given data problem, which in turn brings about the need and

growth in the autoML research field. We observed from the state of

the arts and literature study in the field that the algorithm

selection problem and reduction of the time data scientist spend in

building ML models can be greatly reduced by engaging the sub fields

of autoML and meta-learning. Lastly, we have carried out some

background study and comparison into some of the autoML systems out

there in the research community and commercially. The next chapter

discusses the methodology and pre design experimentations used in

the design of an hybrid-autoML system.

System Reference Aim Method A B C D

Auto-SkLearn 4 Extend Auto-Weka

Highly Parametric ML

Framework with

Bayesian Optimization,

meta-learning step, auto

ensemble construction No No Yes No

AutoWeka 2

Automatic ML algorithm

selection & Hyperparameter

optimization

Bayesian Optimization &

SMAC No No Yes No

DataRobot 6

Automatic data processing,

model selction and Scoring

algorithm

Supervised ML model or

ensemble selection,

Model building

transparency, Exhaustive

search of model space No No Yes (Shows rankings) No

RapidMiner 5

Automated Modelling for

advanced analytical use

cases.

Human friendly user

interface, Several

different supervised

algorithms, Exhaustive

search of model space,

Model Transparency No No

Yes (shows several

suggestions) No

TuPAQ 3

Automatic ML at

Scale/Supervised model

search

Batching, Advanced

Hyperparameter tuning,

sequential grid search,

Bandit resource

allocation No No Yes No

- 36 -

Chapter 3

3 Methodology

Introduction

This research uses a mixture of several research methods, briefly

described as follows:

Pure Research: based on the summary themes of (Baban et al., 2009)

in (Hassani, 2017). This methodology aims to enable us to discover

new knowledge without expecting an instant mark on the present state

of things in the field.

Exploratory research: aims at discovering useful information in the

field, which previous information cannot be found in order to de-

velop reflective hypothesis.

Descriptive research: aims at explaining what the situation and

characteristics of a problem is, as a benefit for another or other

research areas.

Experimental methodology: experiments help us test the accuracy of

concepts/theories and hypothesis. In computer science, it is often

used to analyse behaviours and performance, in many different fields

such as automating theorem proving, machine learning, etc. There is

often the need to also use some tools or methods (e.g. statistical

analysis) in conjunction with the experimental method. Doing that

will help in proving and backing up the legibility of the work de-

veloped and whether the hypothesis is supported. It is important

that all experiments are reproducible by clearly explaining the

steps carried out during the experiments and tools/resources used

for the experimentation.

Theoretical Methodology: this is a methodology related based on

mathematics and logic. Ideas can be an existence of conceptual and

formal models e.g. data models and algorithms. Since this methodol-

ogy is based on logic and mathematics, some ways in which it deals

with problems is through iterations, initiations and recursions. De-

veloping theories is important to build ideas, reason about pro-

grams, improve logic and semantics in order to prove accuracy of the

concept and formal models. Theoretical methodology through dedicated

designs and algorithm analysis help us unravel improved solutions

(e.g. improved performance solutions). However beneficial this

method is, it still requires other methods that can help prove effi-

ciency of new models/theories designed. For example, in the machine

learning field if a new classifier is to be designed, often the de-

veloper using mathematical of theoretical methodologies will require

a proof of model efficiency by consuming one or more previous tech-

niques. Since this approach is based on mathematics there is a limi-

tation that the mathematical abstractions used in a proof maybe too

abstract/generic that it ignores completely some serious issues that

need to be considered in the actual system implementation.

- 37 -

Systems Design Methodology: a methodology consisting mainly of five

stages namely, ‘design of concept’, ‘system architecture construc-

tion’, ‘prototype building’, ‘product development’ and ‘technology

transfer’. This research work performs the first three up to proto-

type building. Prototype building helps us have a proof of concept

for feasibility demonstration. However, the aim is to later go fur-

ther into the product development stage, once this research work has

received due evaluation and acceptance in the wider research commu-

nity.

The reasons/benefits of using this multimethod logical approach is

highlighted as follows:

- It helps to tackle the research area properly,

- It reveals in a better manner, the characteristics of the re-

search.

- It allows the research to be conducted in a very effective and

orderly manner.

This chapter gives a detailed and logically ordered plan of the

approach, techniques, procedures and steps followed to achieve the

research aims and objectives.

3.1 Methods

A list of the steps carried out in this research is summarised as

follows:

1. Theoretical studies.
2. A mini data classification survey.
3. Analysing some key limitations from the state-of-the-art big data

classification and auto ML systems.

4. Preliminary Hypothesis and Experimentations.
5. Evaluation and Analysis of the pre-experimental results.
6. Gained knowledge from the pre-experimental results.
7. Design and modelling of the hybrid autoML system using the

knowledge gained.

8. Programming of this system using java object-oriented programming.
9. Testing the designed hybrid autoML system model to proof it works.

10. Evaluation and analysis of the results from the test and

comparison with other autoML systems discussed in the literature.

3.1.1 Reviewing Literatures

As a basis of this research, knowledge about big data, machine

learning, data classification, clustering algorithms, autoML

systems, meta-learning, their applications in the field etc. is

developed through the study of journals, articles, books, etc. The

aim of which was to build, nurture & improve our knowledge and

understanding of what is current (including limitations) in the

field of data mining and machine leaning. Information gained from

- 38 -

undergoing this is discussed in Chapter 2 and across this research

thesis.

3.1.2 Mini Survey

Using an online survey tool called Qualtrics, in 2015 a mini survey

is designed to determine the knowledge, importance and application

of big data classification and classification tools amongst data

science professionals. It helped to determine further and justify

the relevance of big data classification in the field. A link to the

survey was distributed to former work colleagues of mine who are

data scientist, posted on researchgate and linkedIn (both online

platforms for professionals in the field). The raw questions asked

can be located in Appendix 1. The results from the survey shows that

the majority (85%) of those who hear about big data also hear about

data classification. It also showed that about 41% of the

participants agreed big data classification has many application

areas including improving security measures of a system through

advanced prediction of threats. On the use of big data

classification tools, the majority (38%) said that they don’t use

any big data classification tool.

3.1.3 Hypothesis and Assumptions

Hypothesis 1: if given a large labelled train data set Ɗ𝒕𝒓𝒂𝒊𝒏 and a

corresponding test data set 𝓓𝒕𝒆𝒔𝒕 on which some prediction is to be
made. The size ratio of the training data to the test data will

affect the accuracy of the model built upon any given algorithm.

Hypothesis 2: A supervised learner will be more appropriate than an

unsupervised learner. Given a data set Ɗ, with an already existing
large set of pre-labelled training data Ɗ𝒕𝒓𝒂𝒊𝒏 and a test set

𝓓𝒕𝒆𝒔𝒕 which is relatively smaller in size than Ɗ𝑡𝑟𝑎𝑖𝑛, and based on

general knowledge gained about supervised learners performing well

in the presence of a larger pre-labelled Ɗ𝒕𝒓𝒂𝒊𝒏.

Hypothesis 3: If Hypothesis 2 is true, and a supervised ML algo-

rithm is more desirable to be selected than an unsupervised ML algo-

rithm, then we assume that general information about the instances

and attributes of the dataset such as the size of the training data,

the number of attributes, the types of attributes found, the class

attribute type, etc. will influence the choice of selecting the best

supervised learning algorithm to use on a dataset.

Hypothesis 4: An unsupervised self-evolving learner will be more

appropriate than a supervised learner. Given a data set Ɗ, without
pre-labelled training data instances and the knowledge that

unsupervised learners are best used when no pre-labelled training

dataset exists.

3.2 Preliminary Experiments

- 39 -

Pre-experimentation has been done to tests some hypothesis and

assumptions made from studying the state-of-the-art literature in

the data mining and machine learning field. These experiments were

aimed at proving or disproving some knowledge and limitations gained

from the background study which this project aimed to design a

system model to help overcome some of the limitations identified.

3.2.1 Experiment Materials

In undergoing research experiments, all essential materials need to

be determined and organised. Materials here and in most computer

science project refers to the software tools, technologies,

programming language and data used for the project. There is usually

more than one software tool or programming language that can be used

to achieve one’s aim when it comes to building software solutions.

It is important to highlight the aims and reasons for using the

tools and programming language chosen. The following sections under

this ‘Materials’ section aims to highlight and give more details

into what was used for this research.

The reasons it was used is because, 1) it an open source data-

mining tool designed mainly for research purposes and widely

accepted in the data mining community, 2) it is java based and java

is a familiar object oriented programming language used for

developing scalable commercial or research systems and services, 3)

It contains a lot of functionalities for performing data mining

tasks easily and can help assist in the development and testing of

new machine learning algorithms and systems 4) it has both a simple

Graphical User Interface (GUI) and an API that helps to build

standard customisable machine learning applications in any way

desired. Information comparing Weka with some other tools in the

field is discussed in section 2.4.

The Weka GUI is used for all pre-experiments in this research while

the Weka API is used for implementation of the model Designed after

the pre experiments.

When Weka is downloaded and launched, appendix 7 shows a

representation of the GUI and other related tabs of the GUI for

Weka.

- 40 -

3.2.2 Big Data

A variety of datasets collected from the UCI machine learning (Dua

& Karra Taniskidou, 2017) & KDnuggets data repository, as well as

from the Weka tool data and auto-Weka (Lars, Chris, Frank, Holger, &

Kevin, 2017) repositories is used. Weka has a special format for its

dataset, called the ‘Attribute Relation File Format (. ARFF)’. Which

is an ASCII text file describing a list of instances that share a

set of attributes. Weka however, provides through its GUI the

ability to load ‘.CSV’ files and manually select other file loaders.

However, using the Weka API allows us easily work with a variety of

datasets such as ‘.CSV’, ‘.TXT’, ‘.XML’, ‘. JSON’, etc. Or even by

accessing databases directly using JDBC.

For the experimentation and implementation tests of the system modelled

in this research, a variety of datasets in different formats, collected

from the various sources, were collected and placed in a ‘data’

directory with sub directories within it. A total of about thirty-five

different datasets were used. A full list of the various datasets can

be found in Appendix 3. Although for simplicity, we will be discussing

the experiments in this section using just a few of the datasets. Doing

this, will help drive the clarity of the knowledge learnt from the

experiments.

- 41 -

Table 3.1: A list of datasets used for preliminary experiments, taken

as a subset from the full list of datasets used in this research.

Dataset # Instances #Attributes Class attribute

type

Missing Values

contact-lenses 24 All nominal (5) Nominal No

cpu 209 All numeric (7) Numeric No

cpu.with.vendor 209 1 Nominal, 7

Numeric

Numeric No

credit-g 1000 14 Nominal, 7

Numeric

Nominal No

diabetes 768 8 Numeric, 1

Nominal

Nominal No

glass 214 9 Numeic, 1

Nominal

Nominal No

ionosphere 351 34 numeric, 1

Nominal

Nominal No

iris.2D 150 2 Numeric , 1

Nominal

Nominal No

labor 57 9 nom, 8 numeric Nominal Yes (2%)

reutersCorn-train 1554 String Nominal No

segment-challenge 1500 19 Numerical, 1

Nominal

Nominal No

soybean 683 36 Nominal Nominal Yes (<1%)

supermarket 4627 217 nominal Nominal Up tp 77%

unbalanced 856 32 numerical, 1

Nominal

Nominal No

vote 435 17 nominal Nominal Yes (3%)

weather.nominal 14 5 nominal Nominal No

weather.numeric 14 2 Numeric, 3

Nominal

Nominal No

Dexter 420 20001 Numeric Numeric No

- 42 -

3.2.3 Experimental Setup

All preliminary experiments were conducted using both the Weka

explorer, knowledge flow and experimenter GUIs. Performed to:

1. Prove or disprove the hypothesis made in previous section 3.1.3
to determine what general factors about a dataset will make a

particular machine learning algorithm more suitable than another.

2. Determine the resulting performances of supervised and unsuper-
vised algorithms present in Weka and what factors or character-

istics of the data influenced their performance.

3. To identify limitations and knowledge in selecting the best

algorithm for building a machine learning model.

All the supervised and unsupervised algorithms listed in the exper-

iment materials section (section 3.3) were tested multiple times on

the different datasets.

Setup as follows when need be:

Figure 3.1: Weka explorer ‘Classifier’ tab.

When Weka ‘Explorer’ is launched, we are presented with its GUI’s

‘preprocess’ tab by default. Which we can then toggle between the

- 43 -

other explorer options such as the ‘classify’ and ‘cluster’ tab us-

ing the tool bar above (as seen in the Figure 3.1 above). There are

varying tests options that can and were used during the experiments.

For example, the number of folds can be played with by adjusting the

‘Cross-validation’ option in the test options window. When the model

builds and testing has been performed, the results are displayed in

the classifier output window as follows:

Figure 3.2: Output Result window display for a ‘classifier’ in Weka.

- 44 -

Figure 3.3: Example of a single supervised Learning knowledge flow setup in Weka.

In the experiment seen in Figure 3.3 above, the selected dataset is

loaded in by configuring the ‘ArffLoader’. The ‘ClassAssigner’ de-

termines what the class label in the dataset is. A ‘Cross Validation

FoldMaker’ and a ‘Train Test SplitMaker’ where used interchangeably

to split the dataset into training and test sets. Several supervised

algorithms were used during different runs of the experiment instead

of just a ‘NaiveBayes’ classifier alone.

The ‘Cross Validation FoldMaker’ allows cross validation evaluation

to be carried out on the dataset. Clicking on it in the knowledge

flow setup will allow the number of k-folds to be set. The number of

folds chosen has been experimentally proven to have an effect on the

performance results of the classifier, by varying the number of

folds in the experiment. After several fold variations, it was

discovered that three and ten folds are more relevant. Hence, only

the results for the three and ten folds’ experiments are recorded.

ArffLoader

ClassAssigner
CrossVali-

dation

FoldMaker

Naïve

Bayes

Classifier

Perfor-

manceEvaluator

Text

Viewer

Dataset

- 45 -

Figure 3.4: Unsupervised Learning knowledge flow setup in Weka.

ArffLoader

TrainTest

SplitMaker

EM

Clusterer

Perfor-

manceEvalu-

ator

TextViewer

- 46 -

Figure 3.5: Knowledge flow setup for testing several classification algorithms on a given

dataset in parallel.

As earlier stated in previous sections, when using Weka’s Knowledge

flow GUI, we can set multiple classifiers in the process flow. The

setup in Figure 3.5 above shows an example of such a scenario. Right

clicking on the ‘ARFFLoader’ (which is the input) in the flow above

enables us load up the dataset under consideration. After which, we

can then configure and pass this dataset onto the different

classifiers through the various perspectives in the setup, and then

run the setup. By default, the last attribute index in the dataset

is taken as the class index. But this was varied easily by right

clicking and using the configuration settings of the ‘ClassAssigner’

in the setup. The ‘ClassValuePicker’ was used to specify what class

BatchClassifier

BatchClassifier

Test set

Training set

Test set

Training set

Test set

Training set

Test set

Training set

Test set

Training set

Test set

Training set

Test set

Training set

BatchClassifier

Threshold data

Threshold data

Threshold data

Threshold data

Threshold data

Threshold data

Threshold data

Class

assigner Class

value

picker

Cross

valida-

tion fold

master

Random forest Classifier perfor-

mance evaluator

Classifier perfor-

mance evaluator

- 47 -

label needs to be determined. The ‘CrossValidationFoldMaker’ was

used to configure k-Folds Cross-Validation analysis. By default, 10

folds is set, but this was also tweaked during various runs of the

experiment using the configuration settings of the cross-validation

fold maker. The number of classifiers to evaluate on a given dataset

can be increased easily in the setup. When the setup is run, if a

classifier in the setup is unsuitable for that particular dataset,

an error is logged and the analysis interrupted. An advantage of

using this setup during the initial implementation tests, is that we

are able to visualize and analyse the performance of the different

classifiers by plotting their ROC curves on a single graph. A

disadvantage of using just the knowledge flow, is that you can only

experiment on one dataset at a time. This is where using the

‘Experimenter’ setup in the Weka GUI is useful.

The experimenter setup is as follows:

Figure 3.6: Experimenter setup for testing several classification algorithms on various

datasets.

- 48 -

In Figure 3.6 is an example of how the Weka GUI Experimenter was

used in part of the preliminary experiments. When using the

Experimenter, you can add several datasets and several algorithms

all at once, to analyse different performance evaluation metrics

such as the accuracy and F-measure. When the Experimenter is

launched, using the ‘New’ button at the top right corner, allows the

new datasets and algorithms we intend to analyse to be added. The

dataset/datasets to be analysed appears in the ‘Datasets’ window,

while the algorithms to be analysed appear in the ‘Algorithms’

window. We then use the ‘Run’ tab at the top of the experimenter

window to run the experiments, after which we use the ‘Analyse’ tab

at the top to view different evaluation metrics we desire to use in

evaluating our algorithms against the different datasets.

Figure 3.7: Dataset view in tabular format from the Experimenter

An advantage of using the Experimenter in this experiment stage is

that we are able to get a view of the dataset as seen in Figure 3.7,

via clicking on any of the dataset in the ‘Datasets’ view as seen in

Figure 3.6. From this, we can easily see for example, the attribute

- 49 -

type of our class, or how many numeric and how many nominal type

attribute we have in the dataset. This way, we can determine the

influence of this, when we are analysing the performances of our

supervised classifiers. However, using the experimenter to run tests

on several datasets at once, can give us several error messages such

as is displayed in Figure 3.8 below.

Figure 3.8: Possible errors faced when running the experimenter on

several datasets and algorithms

From Figure 3.8 above, the last error that says ‘Class attribute is

not nominal’ is as a result of the experimenter trying to run a

classification algorithm that can only work when the class attribute

is nominal. Although we can tell there is an error, it is hard to

tell which of the data inputs caused this. The user, will then have

to go back and spend time working out which dataset must have caused

the error (i.e. in a case of multiple datasets to multiple

algorithms. This limitation forms a part of the motivation for this

- 50 -

research in question. This kind of error was resolved by running the

experiments in parts, investigating and harnessing general knowledge

about the various datasets and their effects on the choice and

performances of the various classification algorithm. Doing this and

then afterwards writing Java codes using the Weka API to implement

the findings, eliminates such errors as we shall be discussing

shortly in the results section of the next chapter. The experimenter

also provides us the ability to save the results into a CSV file for

further analysis.

3.2.4 Preliminary Experiment Results

When evaluating the performance of various algorithms, it is

assumed that we can combine a number of known measures for success,

to correctly help and point us to choosing the best algorithm for

any specific dataset. Doing this, helps us to gain more confidence

in the choice we make as regarding what algorithm performed better

for a particular dataset. Hence, allowing us to easily find out if

another dataset with similar general features (e.g. class attribute

type, number of nominal to number of numeric attributes, the size,

etc.), will also choose the same ML algorithm as its best.

Using 3 Folds Cross Validation, the following evaluation measures

where gathered on various datasets listed in this paper. Due to not

much significantly improved results of using 10 folds, the results

from the 10 folds’ cross validation can be found in Appendix 4.

Table 3.2: Area Under the Curve (AUC)
Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero

R

J48 RF

contact-lenses 0.93 0.50 - 0.85 - 0.88 0.50 0.50 0.82 0.84

cpu - - - - - - - - - -

cpu.with.vendor - - - - - - - - - -

credit-g 0.78 0.49 0.66 0.67 - 0.75 0.50 0.50 0.66 0.76

diabetes 0.82 0.50 0.72 0.74 - 0.83 0.50 0.50 0.74 0.82

glass 0.70 0.74 - 0.81 - 0.85 0.49 0.49 0.75 0.92

ionosphere 0.93 0.83 0.82 0.88 - 0.94 0.50 0.50 0.88 0.97

iris.2D 1.00 1.00 - 1.00 - 1.00 0.49 0.49 0.98 1.00

labor 0.98 0.87 0.86 0.96 - 0.88 0.47 0.47 0.73 0.94

reutersCorn-test - - - - - - 0.50 0.50 - -

reutersCorn-

train

- - - - - - 0.50 0.50 - -

segment-

challenge

1.00 0.72 - 1.00 - 1.00 0.50 0.50 1.00 1.00

soybean 1.00 1.00 - 1.00 - 0.98 0.50 0.50 0.97 1.00

supermarket 0.50 0.50 0.50 0.50 - 0.50 0.50 0.50 0.50 0.50

unbalanced 0.59 0.50 0.50 0.65 - 0.65 0.50 0.50 0.50 0.70

vote 0.97 0.95 0.95 0.98 - 0.99 0.50 0.50 0.98 0.99

weather.nominal 0.82 0.50 0.63 0.78 - 0.76 - 0.43 0.67 0.84

weather.numeric 0.80 0.50 0.53 0.69 - 0.70 - 0.43 0.63 0.64

- 51 -

Table 3.2 above, shows the area under the ROC curve, estimated for

the various algorithms per dataset. Where a ‘- ‘is observed means

that the supervised algorithm, was unsuitable for that dataset.

While a ‘None’ observation means that no ROC curve is produced given

when that algorithm was used on that dataset.

Figure 3.9: Area Under ROC (AUC)

From Figure 3.9 above, it is expected that the AUC for choosing the

best performing algorithm given a dataset, should be the figure

closest to 1.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

AUC

AUC NB AUC LibSVM AUC SGD AUC DeepLearning4J AUC LR

AUC Bagging AUC Stacking AUC Zero R AUC J48 AUC RF

- 52 -

Table 3.3: F-Measure for datasets per algorithm.

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF

contact-lenses 0.83 0.77 - 0.83 - 0.50 0.77 1.00 0.89 0.83

cpu - - - - - - - - - -

cpu.with.vendor - - - - - - - - - -

credit-g 0.83 0.82 0.84 0.77 - 0.81 0.82 0.82 0.80 0.84

diabetes 0.82 0.79 0.83 0.76 - 0.82 0.79 0.79 0.79 0.82

glass 0.23 0.64 - 0.64 - 0.70 0.52 0.52 0.67 0.78

ionosphere 0.86 0.88 0.90 0.81 - 0.93 0.78 0.78 0.93 0.95

iris.2D 1.00 1.00 - 1.00 - 1.00 0.32 0.32 0.98 1.00

labor 0.96 0.84 0.89 0.84 - 0.86 0.79 0.79 0.84 0.90

reutersCorn-

test

- - - - - - 0.98 0.98 - -

reutersCorn-

train

- - - - - - 0.99 0.99 - -

segment-

challenge

0.96 0.61 - 0.98 - 0.99 0.27 0.27 0.99 1.00

soybean 1.00 1.00 - 1.00 - 0.81 0.24 0.24 0.90 1.00

supermarket 0.78 0.53 0.78 0.35 - 0.78 0.78 0.78 0.78 0.78

unbalanced 0.96 0.99 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99

vote 0.92 0.96 0.96 0.96 - 0.96 0.76 0.76 0.97 0.98

weather.nominal 0.84 0.78 0.71 0.75 - 0.82 - 0.78 0.67 0.78

weather.numeric 0.82 0.78 0.67 0.78 - 0.78 - 0.78 0.76 0.78

Table 3.3 above, gives us the F-measure estimated for each dataset

per algorithm.

Figure 3.10: F-Measure for each dataset against several classification algorithms

0.00

0.20

0.40

0.60

0.80

1.00

1.20

F-Measure

F-MEASURE NB F-MEASURE LibSVM F-MEASURE SGD F-MEASURE DeepLearning4J

F-MEASURE LR F-MEASURE Bagging F-MEASURE Stacking F-MEASURE Zero R

F-MEASURE J48 F-MEASURE RF

- 53 -

From Figure 3.10 above, it is expected that an F-Measure score

closer to 1 is more desirable for any given dataset.

Table 3.4: Table of the Mean Absolute Error (MAE) for the various

datasets.

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF

contact-lenses 0.24 0.25 - 0.18 - 0.31 0.37 0.37 0.15 0.22

cpu - - - 206.27 43.79 35.73 96.35 96.36 - 26.97

cpu.with.vendor - - - 196.48 35.40 29.67 87.64 87.64 - 14.74

credit-g 0.30 0.31 0.25 0.33 - 0.34 0.42 0.42 0.34 0.35

diabetes 0.28 0.35 0.23 0.33 - 0.31 0.45 0.45 0.31 0.31

glass 0.16 0.10 - 0.13 - 0.12 0.21 0.21 0.10 0.10

ionosphere 0.17 0.08 0.14 0.13 - 0.14 0.46 0.46 0.10 0.14

iris.2D 0.03 0.03 - 0.05 - 0.05 0.45 0.49 0.06 0.03

labor 0.08 0.11 0.14 0.12 - 0.28 0.46 0.46 0.31 0.23

reutersCorn-

test

- - - - - - 0.08 0.08 - -

reutersCorn-

train

- - - - - - 0.06 0.06 - -

segment-

challenge

0.06 0.15 - 0.03 - 0.03 0.24 0.24 0.02 0.02

soybean 0.01 0.01 - 0.01 - 0.03 0.10 0.10 0.02 0.03

supermarket 0.46 0.64 0.36 0.48 - 0.46 0.46 0.46 0.46 0.46

unbalanced 0.09 0.01 0.01 0.02 - 0.03 0.03 0.03 0.03 0.03

vote 0.10 0.05 0.04 0.05 - 0.07 0.47 0.47 0.06 0.07

weather.nominal 0.37 0.36 0.36 0.32 - 0.40 - 0.47 0.37 0.33

weather.numeric 0.38 0.36 0.43 0.32 - 0.42 - 0.47 0.40 0.40

- 54 -

Figure 3.11: Mean Absolute Error (MAE) 0-1

Figure 3.12: Mean Absolute Error (MAE) for Cpu and Cpu.with.vendor Datasets

Figure 3.11 and Figure 3.12 are graphs derived from using the

figures in the above Table 3.4. Figure 3.12 shows the plots of the

MAE for the Cpu and Cpu.with.vendor datasets. Since the variance of

the values in these dataset makes them different from other

datasets, their mean absolute error range also differs. Hence, the

need to plot this separately from the MAE for the other datasets. It

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

MAE 0-1

MAE NB MAE LibSVM MAE SGD MAE DeepLearning4J

MAE LR MAE Bagging MAE Stacking MAE Zero R

MAE J48 MAE RF

0.00

50.00

100.00

150.00

200.00

250.00

DeepLearning4J LR Bagging Stacking Zero R J48 RF

MAE 10-100

cpu - - - cpu.with.vendor - - -

- 55 -

is expected that the MAE closest to 0 is more desirable for any of

the given datasets.

Table 3.5: Accuracy in % and Correlation Coefficients for Cpu and

CPu.With.Vendor datasets

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF

contact-lenses 83.33 62.50 - 75.00 - 70.83 62.50 62.50 87.50 79.17

cpu - - - -0.11 0.89 0.88 -0.11 -0.11 - 0.95

cpu.with.vendor - - - -0.11 0.93 0.90 -0.11 -0.11 - 0.97

credit-g 75.00 69.00 75.30 67.40 - 72.10 70.00 70.00 70.50 75.50

diabetes 75.91 65.10 76.95 68.36 - 76.17 65.10 65.10 73.31 75.39

glass 44.39 64.02 - 57.01 - 71.50 35.51 35.51 67.76 78.04

ionosphere 83.48 92.02 86.33 86.61 - 91.17 64.10 64.10 90.88 93.45

iris.2D 96.00 96.00 - 94.67 - 96.00 32.00 32.00 93.33 97.33

labor 94.74 89.47 85.96 89.47 - 80.70 64.91 64.91 77.19 85.96

reutersCorn-

test

- - - - - - 96.03 96.03 - -

reutersCorn-

train

- - - - - - 97.10 97.10 - -

segment-

challenge

81.00 48.13 - 90.20 - 95.87 15.73 15.73 95.13 97.33

soybean 92.39 86.82 - 92.39 - 81.70 13.47 13.47 89.75 91.95

supermarket 63.71 36.29 63.71 54.59 - 63.71 63.71 63.71 63.71 63.71

unbalanced 92.52 98.60 98.60 98.13 - 98.60 98.60 98.60 98.60 98.60

vote 90.57 95.17 95.63 95.40 - 95.40 61.38 61.38 96.09 97.01

weather.nominal 78.57 64.29 64.29 71.43 - 71.43 - 64.29 64.29 71.43

weather.numeric 78.57 64.29 57.14 71.43 - 64.29 - 64.29 64.29 71.43

In Table 3.5 above, the values which are displayed on a scale of 0-

100 describes the accuracy of the models in terms of the correctly

classified data instances of the dataset. While values in the range

of 0-1 (i.e. values for Cpu and Cpu.With.Vendor datasets) represents

the correlation coefficients. Since the variance of the values in

the ‘Cpu’ and ‘Cpu.With.Vendor’ datasets make them different from

other datasets, they do not return any measure for the percentage of

accurately classified instances. However, they return a correlation

coefficient which gives us an estimate of how closely related the

estimated value (predicted using the model built from a particular

algorithm) is from the real value. Correlation Coefficient ranges

from 0-1 with 1 meaning that the estimated value is the same as the

real value. An accuracy of 100% means that the estimated values are

100% correct. Hence, it can be assumed that using the correlation

coefficient in the absence of an accuracy measure to compare the

accuracy of different algorithms on a dataset is possible. This is

the reason why Table 3.5 displays both. There was however a need to

plot this separately on two different plots because of the scale

differences.

The graphs plotted in Figure 3. and Figure 3.13 below is used to

represent the data from Table 3.5.

- 56 -

Figure 3.13: Shows the accuracy in percentage (0-100%) of various classification models

on a variety of datasets.

From Figure 3.13 above, it is expected that the Accuracy closest to

100% is more desirable for any given dataset.

Figure 3.13: Correlation Coefficient 0-1 (Cpu and Cpu.With.Vendor Datasets)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

Accuracy (0-100%)

ACCURACY % NB ACCURACY % LibSVM ACCURACY % SGD

ACCURACY % DeepLearning4J ACCURACY % LR ACCURACY % Bagging

ACCURACY % Stacking ACCURACY % Zero R ACCURACY % J48

ACCURACY % RF

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

DeepLearning4J LR Bagging Stacking Zero R J48 RF

Correlation Coefficient

cpu - - - cpu.with.vendor - - -

- 57 -

From Figure 3.13 above, it is expected that the Correlation

Coefficient closest to 1 or -1 (in an inverse correlation), is more

desirable for the given datasets.

Table 3.6: Combination of Evaluation Measures on each dataset to

effectively evaluate performance of each algorithm on different

algorithms, in order to understand the patterns.

Dataset AUC F-Measure MAE Accuracy Overall

contact-lenses NB ZeroR J48 J48 J48

cpu - - RF RF RF

cpu.with.vendor - - RF RF RF

credit-g NB RF/SGD SGD RF/SGD SGD

diabetes Bag SGD SGD SGD SGD

glass RF RF LibSVM/J48/RF RF RF

ionosphere RF RF LibSVM RF RF

iris.2D NB/LibSVM/DL4J/Bag/RF NB/LibSVM/DL4J/Bag/RF LibSVM/RF RF RF

labor NB NB NB NB NB

reutersCorn-

test

ZR/Stack ZR/Stack ZR/Stack ZR/Stack ZR/Stack

reutersCorn-

train

ZR/Stack ZR/Stack ZR/Stack ZR/Stack ZR/Stack

segment-

challenge

RF/Bag & NB/J48/DL4J RF/J48/Bag J48 RF RF/J48

soybean NB/LibSVM/DL4J/RF NB/LibSVM/DL4J/RF NB/LibSVM/DL4J NB/DL4J NB

supermarket Any Any Except libSVM/DL4J SGD Any Except

libSVM/DL4J

SGD

unbalanced RF Any Except NB LibSVM/SGD Any Except

NB/DL4J

RF/SGD

vote RF/Bag RF SGD RF RF

weather.nominal RF NB DL4J NB NB

weather.numeric NB NB DL4J NB NB

In Table 3.6, a multiple of evaluation measures are combined to

determine the overall most desirable algorithm for each given

dataset. The overall most desirable algorithm for each dataset is

assumed to be the one that occurred more as the best when the

different evaluation measures are considered separately. For

example, the AUC analysis showed that the NB model was the best for

the ‘contact-lenses’ dataset, while the F-measure, MAE and Accuracy

analysis showed the J48 as the best. Combining these, and given the

fact that the difference shown in the AUC for the J48 was not so

significantly smaller than that of the NB, it is concluded that the

J48 algorithm is overall the most desirable amongst the others for

the ’contact-lenses’ dataset.

- 58 -

3.2.5 Size Effect experiment on an example classification
problem

In a given scenario, where a training set and a separate test set

are provided independently of each other. We can determine what the

size influence of both datasets will have on the performance of a ML

algorithm. For example, considering the Soybean and Soy test

datasets, we check to see what changing the size of each will have

on the performance (accuracy) of a Naïve Bayes classification

algorithm. From doing this, the following results were obtained.

Table 3.7: The effect of the Train and Test Sizes on a Naïve Bayes Classifier (% Accuracy).

Size Comparison NB (%

Accuracy)

TRAIN > TEST 100

TRAIN < TEST 15.959

TRAIN = TEST 93.7042

Figure 3.14: Size Effect on Accuracy (%)

From Figure 3.14 above, we can clearly observe that when the

training dataset supplied is relatively larger (at least in a ratio

of 1:25 for example) than the test dataset supplied, the Naïve Bayes

ML algorithm gave us a 100 % performance as opposed to if it was

smaller than the test dataset. On the other hand, using a train

dataset that is equal to a test dataset gives a high performance,

but this may not be the best performance that the algorithm can

achieve. This simple experiment performed several times with varying

dataset and varying algorithms one after the other, gave the same

observations which showed that the size of the training data

0 20 40 60 80 100 120

TRAIN > TEST

TRAIN < TEST

TRAIN = TEST

Accuracy % NB

- 59 -

supplied matters a lot when building supervised machine learning

models. Thus proving hypothesis 1 from section 3.1.3 to be true.

3.3 Machine Learning Algorithms Considered

Table 3.8: The following algorithms from Weka where used in the experiments carried

out.
Algorithms considered Category in Weka

AdaBoostM1 * Meta

AttributeSelectedClassifier * (With BestFirst &

J48)

Meta

AttributeSelectedClassifier * (With BestFirst &

NB)

Meta

AttributeSelectedClassifier * (With BestFirst &

RF)

Meta

AttributeSelectedClassifier * (With BestFirst &

ZeroR)

Meta

AttributeSelectedClassifier * (With GreedyStep-

Wise & J48)

Meta

Bagging * Meta

DeepLearning4J Deep Learner based on NN

J48 (c4.5 Decision tree) learners (trees)

Kstar learner (Lazy)

LibSVM learners

Linear Regression learners (functions)

Locally weigthed learning (LWL) * Meta

MultiClassClassifier*(With J48) Meta

MultiClassClassifier*(With NB) Meta

MultiClassClassifier*(With RF) Meta

MultiClassClassifier*(With SGD) Meta

MultiLayerPerception learner (functions)

NaiveBayes learners (bayes)

RandomForest learners (trees)

RandomSubspace * Meta

REPTree learner (trees)

SGD learners (functions)

Stacking + Ensemble

ZeroR learners (rules)

Canopy Clusterer

Cobweb Clusterer

Expectation Maximization (EM) Clusterer

FarthestFirst Clusterer

MakeDensityBasedClusterer Clusterer (wrapping a simpleKMeans by default)

SimpleKMeans Clusterer

BestFirst AttributeSelectionMethods

Greedy Stepwise AttributeSelectionMethods

Remove UseLess Filtering algorithm

The reason for using and considering these algorithms in the

initial experiments, assumes that they are very popular in the data

mining research community. It was decided that at least a minimum of

two algorithms from the very common categories of data

classification algorithms from the literature review section in this

research thesis (Section 2.2.3) is taken into consideration.

- 60 -

3.3.1 Feature Selection and Filtering

• Best First: It is a search method used for selecting features by

examining the feature subsets space by greedy hill climbing

amplified with a backtracking ability. Setting the number of

consecutive non-improving nodes permitted controls the level of

backtracking done. Best first (Kohavi & Sommerfield, 1995) may

start with the empty set of features and search forward or start

with the full set of features and search backward, or begin at

any point and search in both directions (by seeing all possible

single feature additions and deletions at a specified point). It

is chosen and experimentally used with the attribute selected

classifier in Weka to create a variation of the classifier.

• Greedy Stepwise: Greedy stepwise (Caruana & Freitag, 1994)makes

a greedy forward or backward search through the feature subsets

space. Might begin with no/all features or from a random point

in the space. Stops when the addition/deletion of any remaining

features results in a decrease in evaluation. Can also produce a

ranked list of features by traversing the space from one side to

the other and recording the order that features are selected. It

is chosen and experimentally used with the attribute selected

classifier in Weka to create a variation of the classifier.

• Remove Useless: a method in Weka for filtering out attributes

that vary too much or do not vary at all (Hall et al., 2009).

3.3.2 Supervised Classifiers

• AdaBoostM1: It is a classification algorithm (Freund & Schapire,

1996) for boosting a nominal class classifier using the Adaboost

M1 method. A ‘nominal class’ classifier simply refers to a feature

label that is a non-quantitative value lacking any numerical

significance e.g. ‘male’, ‘female’ etc. Only nominal class

problems can be tackled. Often dramatically improves performance,

but sometimes over fits. Over fitting in machine learning is when

the details of a training dataset are overly learnt by a model

that it affects its performance on new test data.

• Attribute Selected Classifier: The dimensionality of training and

test data is minimized by feature selection before being passed

on to a classifier (Shafi, Hassan, Arshaq, Khan, & Shamail, 2008).

• Bagging/Bootstrap Aggregation: It is a technique of applying

bootstrap replicates method to a machine learning algorithm of

high variance such as classification and regression trees

(Breiman, 1996). It helps to reduce such variance in the base

learning algorithm. It is an ensemble meta algorithm, that

generates multiple versions of a predictor and uses that to obtain

an aggregated predictor. There is a random partitioning of the

data into subsets to minimize the variance when building the

various sub models in parallel, it then uses a weighted average

function to combine the single models.

- 61 -

• Deep Learning for Java (Dl4j): It can be downloaded and installed

in Weka for classification through Weka’s ‘package manager’ found

in the ‘Tools’ tab of the Weka GUI. Dl4j is a current state of

the art in the artificial intelligence (AI) field in which machine

learning plays an important part. It is designed based on Neural

networks, and allows you create deep neural nets from various

shallow nets (e.g. recurrent nets, convolutional nets, etc.) when

needed in a distributed environment that uses Spark and Hadoop

in addition to distributed CPUs or GPUs.

• J48: This is a decision tree supervised ML algorithm. Decision

tree methods have a tree like separation of the data. There are

usually internal/decision nodes (labelled with the attributes of

the dataset) and leaf node/class labels. Separation at each level

is done using a split criterion. The split criterion is usually

applied on each internal node to determine what the output node

is (which could be another internal node or a leaf node (which

is usually a class label). Decision tree methods are popular and

provide human readable rules (Murthy, 1998). Two very popular

decision tree algorithms are the classification and regression

trees (CART) (Breiman et al., 1984; Loh, 2011) & the C4.5

algorithm (J. Ross Quinlan, 1986; J Ross Quinlan, 2014). In Weka,

the J48 is used to generate a pruned or unpruned C4.5 decision

tree.

• KStar: KStar (Cleary & Trigg, 1995) is an instance-based

classifier. The class of a test instance is based upon the class

of those training instances like it, as determined by some

similarity function. It differs from other instance-based

learners in that it uses an entropy-based distance function.

• Lib Support Vector Machine (LibSVM): LibSVM is an integrated tool

for support vector machine classifications, regression and

distribution estimation. It can be downloaded and installed in

Weka for classification through Weka’s ‘package manager’ found

in the ‘Tools’ tab of the Weka GUI.

• Linear Regression (LR): LR is an algorithm that models the

relationship between the variables of the dataset using a linear

prediction function (Weisberg, 2005). It is the first type of

regression analysis that has been studied and used widely in

practice (X. Yan & Su, 2009).

• Locally Weighted Learning (LWL): LWL makes use of an instance-

based algorithm to allocate instance weights which are then used

by a specified weighted instances Handler. It can perform

classification e.g. using naive Bayes (Frank, Hall, & Pfahringer,

2002) or regression (e.g. using linear regression).

• Multi Class Classifier: This is a meta classifier for handling

multi class datasets with two class classifiers. It can also apply

error modifying output codes for improved accuracy.

• MultiLayer Perception: A classifier that uses backpropagation to

learn a multi-layer perceptron to classify instances. The network

can be made by hand or fixed by means of a simple heuristic. The

- 62 -

network parameters can also be supervised and changed during

training time. The nodes in this network are all sigmoid (except

for when the class is numeric, in which case the output nodes

become non-threshold linear units).

• Naïve Bayes (NB): This is a generative probabilistic

classification algorithm. It uses the Naïve Bayes hypothesis by

(John & Langley, 1995), which is a simplification of the Bayes

model. They are very simple, fast and commonly used amongst data

classification methods (Murphy, 2006). They make use of

statistical interpretation to find the best class for a given

sample. Probabilistic classification algorithms will often output

an equivalent posterior probability p(C│x) for each of the

possible classes a test instance may belong to (Charu C. Aggarwal,

2014).

▪ Posterior probability = conditional probability

obtained after taking into account precise features of

the test case.

▪ Prior probability = probability distribution of

training records that belongs to each specific class.

The two basic ways that the posterior class probability is

estimated:

▪ Through defining the class conditional probabilities

p(x│C) for each class (C), after which the prior class

probability p(C) is then inferred and Bayes theorem

used to determine p(C│x).

▪ By modelling the joint distribution p(x,C) directly and

then normalizing it to obtain the p(C│x).

• Random forest (RF): It is a combination of various decision trees

that uses the bagging method. Each tree in the forest depends on

the values of a random vector with similar distribution sampled

independently (Breiman, 2001).

• Random Subspace: (Barandiaran, 1998) A decision tree based

classifier that maintains highest accuracy on training dataset

and improves on generalization accuracy as it develops in

difficulty. The classifier contains multiple trees constructed

steadily by pseudo randomly choosing subsets of components of the

feature vector (i.e. trees constructed in randomly chosen

subspaces).

• REPTree: A fast decision tree learner creates a decision or

regression tree with information gain or variance and trims it

using reduced-error pruning with back fitting. It only sorts

values for numeric features once. Omitted values are handled by

splitting the resulting instances into fragments.

• Stochastic Gradient Descent (SGD): In Weka, this is an

implementation of the stochastic gradient descent function, used

to learn different linear models e.g. binary class SVM, binary

class logistic regression, squared loss, Huber loss and epsilon-

insensitive loss linear regression. It replaces globally every

missing value and does a transformation of nominal attributes to

- 63 -

binary ones. It also normalizes all attributes, so the output

coefficients are based on the normalized data. For numeric class

attributes, the squared, Huber or epsilon-incentive loss function

must be used (Hall et al., 2009).

• Stacking: This is also a meta algorithm where the original

training data is partitioned into various subsets to build average

performing models on each subset, then combine the models using

a blending technique and a logistic regression function, to

minimize both the variance as well as increase the accuracy of

predictions (Wolpert, 1992).

• Zero Rules (ZeroR): This is a rule-based classification algorithm.

It relies on the target variable and ignores the other

features/predictors. It predicts the majority of class in the

train dataset (Aher & Lobo, 2012). Although it does not have any

predictability power, ZeroR is useful as a baseline performance

benchmark for other classification methods. It works by building

a frequency table for the target class variable and select its

most frequent value.

3.3.3 Unsupervised Classifiers

• Expectation Maximization (EM) clustering algorithm: This is a simple

expectation maximization algorithm (Moon, 1996), for determining

the maximum likelihood estimates through iterations. There is an

alternation between two steps (the step where the expectation of

the log likelihood is computed, and the step for computing

parameters that maximizes the expected log-likelihood found in the

first step (Sharma, Bajpai, & Litoriya, 2012). Using this algorithm

will group the dataset instances into various clusters. EM assigns

a probability distribution to each instance, which indicates the

probability of it belonging to each of the clusters. In Weka, EM

can decide how many clusters to create by cross validation or you

may specify beforehand how many clusters to generate. The cross

validation for determining the number of clusters is performed by

first setting the number of clusters to 1, then the training set is

split randomly into 10 folds, then EM is performed 10 times using

the 10 folds the usual cross validation way, then the log-likelihood

is averaged over all the different results, finally if the log-

likelihood has increased the number of clusters is increased by 1

and a new iteration of the steps is repeated again.

• Canopy: A clustering algorithm in Weka that requires just one pass

over the dataset. It can be run in either batch or incremental mode.

However, the results are not as good when its used incrementally

because the minimum or maximum of each numeric feature is not

determined in advance (McCallum, Nigam, & Ungar, 2000).

• Cobweb: Algorithm that implements the cobweb and classit clustering

algorithms. It mostly compares the best host, new leaf adding, merge

of the two best hosts and splitting of then a split of the best host

when deciding where to cluster a new instance (Fisher, 1987; Gennari,

Langley, & Fisher, 1989).

- 64 -

• Farthest First: It is used as a fast simple approximate clusterer

that enables the dataset to learn of discover something for itself.

Based usually on the Farthest First algorithm which is first

discussed in (Hochbaum & Shmoys, 1985).

3.3.4 Evaluation Measures

Cross Validation: This is one of the model evaluation techniques

used in this research. Hold-Out Validation method is a statistical

method that requires the dataset to be split into two segments (one

for training the classifier and one for testing the classifier). The

training data set is usually larger than the test data set. A

disadvantage of this method is that the test is performed on a

smaller portion of the data, thus increasing the tendency for false

accuracy measurements (Charu C. Aggarwal, 2014). To address the

problems of the hold out method, a more logical approach to the hold

out method was developed. It is known as the cross validation method

(Refaeilzadeh et al., 2009). It involves the data being split

equally and the hold-out evaluation method is performed two times by

using the training data set from the first iteration as the test

data set in the second iteration and vice versa. The simple form of

the cross validation is the k-fold cross validation.

Supplying a test set: Another model evaluation method used in this

research. As opposed to using the k-fold cross validation method to

analyse the models built, the method of supplying a separate test

dataset is provided as an option to the user of the system. Also

carried out some performance evaluation using: accuracy of the

correctly classified instances as discussed in equation (2.1), recall

from equation (2.3), precision from equation (2.4), specificity from

equation (2.5), fall-out from equation (2.6) and the f-score (or f-

measure) expressed in equation (2.7).

Correlation Coefficient: This tells us how much the true value of

interest and the predicted value are related. Its value is usually

between -1 and 1, with 0 meaning there is no relationship at all. This

Statistical function is only displayed and used as an evaluation

measure when reporting numeric class predictions.

 Mean absolute error from equation (2.2): As the average distance

the model predictions are from the actual data points. The predictions

below data points are not treated as negative distances. This

evaluation method is reported for both nominal or numeric predictions.

The Root Mean Square Error, Relative Absolute Error and Root Relative

squared error, are also general estimates that are displayed and can

be used to compare the true values to their predicted values.

3.4 Problem Identification Through Experiments

When running the experiments on the different datasets using Weka,

the following problems were encountered and identified:

- 65 -

1. A classifier trained using a labelled dataset was not necessarily
suitable for the next dataset. Which means that it is therefore

important, that one of the aims of this research which is ‘to

help us automatically select the best machine learning method and

algorithm to use on a particular dataset by implementing and

transferring knowledge’ will help us resolve this problem.

2. Despite the advantages of the experimenter and knowledge flow in
Weka. During the pre experimentations carried out in section 3.2

issues/errors were often encountered when automatically trying

to apply several algorithms to multiple datasets from different

sources while will cause the model building process to fail. Which

we do not want to happen when we have data from various sources

requiring classification or clustering.

3. To avoid the problem in 2 above, the user has to manually spend
a lot of time analysing the dataset and available algorithms,

then perform multiple trial and error experiments on one dataset

at a time. This problem is resolved by this research, through the

building of a hybrid automatic machine learning system that does

not require any time wastage on trial and error but can assist

the user to pass in multiple datasets and then automatically

determine which algorithm is best to use on that dataset.

4. Traditional tools such as Weka are not suitable for present day
multiple learning tasks. The experimenter which was the closest

to use for running multiple algorithms on multiple datasets at

the same time, did not provide a way to use a clustering algorithm.

So, assuming one of our datasets is an unlabelled dataset, then

the process also automatically fails. The system modelled in this

research thesis aims to eliminate this problem by providing an

automatic decision on what learning method to adopt depending on

meta information learned e.g. by answering the question ‘is the

data labelled or unlabelled?’ at the decision node.

3.5 Knowledge Gained from Experiments

Some observations made from the results of performing these

preliminary experiments include:

- If a set of class labels exists already and can be specified for

all training instances, then supervised learning is preferred.

- For any supervised classification algorithm to perform their best,

it is important to first and foremost ensure that the size of the

labelled train dataset is larger than the test dataset (it is

assumed in this paper, based on the experiments performed that

this should be around a ratio of 1:25).

- When the number of test instances to be classified is small,

Increasing the number of folds increases the accuracy of random

forest with nominal data (only by a non-significant difference

though if the train data set is large).

- 66 -

- Increasing the number of folds from 3 to 10 increases accuracy

of random forest with numeric data (only by a little due to a

larger train dataset size used).

- Increasing the number of folds from 3 to 10 increase accuracy of

random forest with mixed data (only by a little due to a larger

train dataset size used).

- For random forest, when the total number of instances is really

small e.g. 24 or 30, its best to use 3 folds. Increasing its

number of folds only reduces its performance in such cases.

- We cannot use Naïve Bayes for numeric dataset, and it is very

important to train the autoML system designed with these

limitations by default.

- Increasing folds from 3 to 10 for NB will improve the accuracy

(only a little but the time taken to build the model is much

faster than RF) for a large train dataset.

- For Naive Bayes, it is best to use 3 folds if the dataset for

training is really small.

- Unsupervised learning is preferable if no pre-existing class

label exists,

- Unsupervised learning is preferable if the training set is way

smaller than the sample set to be tested.

- When the class attribute type is ‘numeric’, use the RF algorithm.

- When the class attribute is ‘nominal’, and all other attributes

are nominal and the total number of attributes are less than 10,

and the number of instances are less than 50 with missing values

<1% in total, then use the J48.

- When the class attribute type is ‘nominal’, but the other

attributes contain ‘String’ type attributes, then use the ZeroR

or Stacking algorithm.

- When the class attribute type is ‘nominal’, but we have at least

half as many numeric attributes as there are nominal (i.e. the

ratio of numeric to nominal is close to the scale of 1:2), then

use the RF algorithm.

- When the class attribute is ‘nominal’, and the total number of

attributes are less than 10 with all other attributes as ‘numeric’,

and there are no missing values, and the total number of instances

are greater than 500, then using the SGD algorithm is favourable.

- When the class attribute type is ‘nominal’, and the total number

of instances are less than 500, and we have more or all other

attributes as ‘numeric’, then use the RF.

- When the class attribute type is ‘nominal’, and the number of

numeric attributes to nominal attributes are not any close to a

ratio of 1 to 2, then use the NB algorithm.

- When the class attribute type is ‘nominal’, and the total number

of instances is greater than 500, and the total number of

attributes is greater than 10, and we have more numeric attributes

than nominal, then use RF.

- When the class attribute type is ‘nominal’, and the total number

of instances is greater than 500, and the total number of

- 67 -

attributes is greater than 10, and all other attribute types are

nominal, and the missing values are not up to 1% (i.e. they are

<1%), then we can use NB.

- When the class attribute type is ‘nominal’, and the total number

of attributes is greater than 100, and the total number of

instances are greater than 1000, and the number of missing values

are > 50%, then we can choose to use the SGD.

- Last but not the least, when the class attribute type is ‘nominal’,

and the total number of attributes are greater than 10, and all

nominal, with missing values > 1% present in the dataset, then

we use the RF.

The conclusions derived from these experiments allows us to easily

describe the decision learning (learning to learn) process of the

auto ML system proposed as a set of Rules. Below in the following

subsection, we will be discussing the Meta learning algorithm

designed to this effect. As well as provide us with more details

about the auto Machine Learning (autoML) system modelled in this

research and from the observations listed above.

Summary

This chapter describes and discusses a combination of research

methodologies e.g. experimental, theoretical and systems design used

in this thesis. Therefore, allowing us to eliminate as much as

possible every limitation that can be encountered with the

individual methods themselves. For example, experimental research

methodology has a limitation because the experiments are performed

mainly in a controlled environment and might not reflect properly

some practices performed ‘in the wild’. But combining this with some

survey and prototype (system’s) design, reduced such limitations.

The knowledge gained from carrying out preliminary experimentation

is used in the next following chapter to design and model the

hybrid-autoML system.

- 68 -

Chapter 4

4 Hybrid-AutoML System

Introduction

This research models a hybrid classification system architecture

comprising of three different layers. The second layer which is a

decision learning level, automates the decision-making process on

what learning method to adopt at any point in time, given a

heterogeneously large input of data sets. The decision-making

process is a Meta-learning (learning to learn) process. This

research thesis presents a hybrid decision learning concept that

uses more general knowledge about supervised and unsupervised

machine learning algorithms and some meta features of the data.

Based on the performance results of the preliminary experiments in

section 3.2.4, a set of decision rules are drawn to enable the

decision learning process, which further helped in achieving

automatic classification of big data. Also, a self-evolving auto

unsupervised classification algorithm which is suitable to use

automatically in the absence of large labelled datasets is designed

and developed in this Section.

4.1 System Requirements

1. The system is a tool for the classification of big data

automatically, by invoking either a supervised machine learning

algorithm, unsupervised machine learning algorithm or semi-

supervised learning algorithm, depending on the existing state

of the data set and the scenario.

2. The system accepts as input data of varying types and from

different domains.

3. System check is performed to determine if some knowledge about

the data set is known.

4. If some pre-labelled training data is present, the system

invokes a probabilistic semi-supervised machine learning

algorithm.

5. If no pre-labelled data instance is present, the system invokes

an unsupervised machine learning algorithm.

6. The system outputs the corresponding class labels and the

probability of an instance belonging to its particular class.

4.2 The Model Design

4.2.1 Design Goals and Aims

1. A meta-learning rule-based design that defines a structure for

automatically determining whether to invoke a supervised

learning algorithm or an unsupervised learning algorithm. One

that can be used effectively for achieving automatic pre-

- 69 -

processing and model selection of the best machine-learning

algorithm for any given dataset.

2. The design of a self-evolving unsupervised clustering algorithm

(determining the classes from scratch without any labeled

instances). It will allow for effective clustering when

required (i.e. depending on what was automatically learned from

your data based on the meta-learning phase). Lastly, it should

allow for a re-grouping of the classes to avoid having a large

dataset of classes.

3. Scalability in terms of the system handling an increasing

amount of heterogeneous datasets and data categories. The

system input can be datasets from various domains and fields.

4. Achieves classification at a desired speed. It should be able

to Achieve classification of the various datasets at a desired

speed, making use of some generalization rules and knowledge

of supervised and unsupervised algorithms to select

automatically the best machine learning algorithm to use in

building the model.

5. The model built from automatically selecting the best

supervised machine learning algorithm, can be used to make

predictions on new instances. While the unsupervised clustering

algorithm can be used in identification of anomalies/intrusion

if applied or used in an Intrusion Identification System.

6. Flexibility and adaptability. Ensure a high level of

flexibility and adaptability of the system to ensure that the

learning-to-learn process can improve to enhance an even better

performance.

- 70 -

4.2.2 Model Architecture

Figure 4.1: Three Layered Decision architecture for the hybrid auto

machine learning system proposed after experiments.

- 71 -

4.2.3 Model Components

Layer 1 (Input / Pre-processing Layer): Since big data is a

collection of heterogeneous data which makes it difficult to analyse

(Doug, 2001), this layer ensures that an inflow of such a data set

is pre-processed appropriately. The pre-processing phase will

involve dividing the vast source of data into domain specific

sources of knowledge, next a check through the contents and

attributes of the data is done to determine if any knowledge or

information about its content is present. Having this layer will

assist in the process of preventing vagueness in the heterogeneous

data. This layer provides layer 2 the reasoning about classifying

data using either a supervised classifier or and unsupervised

classifier.

Layer 2 (Strategic Learning Decision Layer): At this layer, the

decision on which learning method to invoke is made. The main aim of

this layer is automatic classification using the most effective

learning method to achieve a high level of accuracy at a fast speed.

The hypothesis used in this layer for making a decision is based on

some general characteristics and knowledge about supervised and

unsupervised machine learning. For example, characteristics such as

the existence of pre-existing labelled set for training or not, the

size of the pre-labelled training set (under the assumption that the

size is relative to the number of instances in a particular

dataset), existence of a test set which is a subset of the training

set, etc.

Layer 3 (Output / Optional Cluster Formation Layer): This is the

output layer. In this layer, an evaluation of the different models

built for the different dataset is made. This layer also acts as an

optional layer for scalability through a technique of clustering the

class labels using a similarity estimate. It is also a layer where

the relationships of class labels can be properly secured.

Activities like securing the relationships between class labels can

be performed in this layer. For example, imagine a scenario in which

the amount of resulting class labels becomes very large. The

question now becomes: ‘how can we effectively manage a large and

increasing set of class labels?’ At this layer, a good technique to

effectively manage a large and self-evolving set of class labels is

considered. This technique considers the formation of

clusters/groups for the class labels by making use of a similarity

or distance measurement. The resulting output from this layer will

be a set of cluster labels (similar to the class labels, but for

representing some knowledge about the clusters).

4.2.4 Model Characteristics

Meta-learning / automatic learning architecture: where supervised and

unsupervised classification algorithms will be combined together and

depending on certain characteristics knowledge of the data set under

- 72 -

consideration, one of the algorithm is invoked automatically to give

more accurate classes. This reduces significantly the time spent in

deciding the best classification algorithm to use for a particular

data set and the high cost of learning realistically accurate

classifiers is overcome.

Multi Class-label type classification: a new unsupervised algorithm

is developed in this research, which can be used successfully in second

layer of the classification system. The algorithm allows an instance

of a dataset to have multiple class labels based on sensitivity levels

(e.g. sensitive level l1, l2, etc.) assigned to each attribute per

instance, rather than assigning one class label to the data instance

as a whole (see illustration of this in Table 4.1 below).

Table 4.1: Hypothetical example case study of a multi-class labels unsupervised algo-

rithm.

Bank

ID

LName FName D.o.B

1 10a Flora Catch 29.09.83

2 20s Robin Thomson 05.10.75

3 3b Martha Woods 04.7.60

Class L1 L3 L2 L1

From Table 4.1, there are 4 attribute features and 3 instances of

the dataset. Every bank ID and D.o.B. is given a sensitivity class

label l1, (where l1 is assumed to be the most sensitive class), every

instance of the Fname is given the label l2 and the Lname is given a

label l3. From this, it is observed that each instance in the data set

may have one or more class labels.

1. Meta-Classification: this simply means a process of classifying

the classes.

2. Multilevel type structure classification.
3. Auto-Class functionality: the beneficial features of Auto-Class

includes: 1) its ability to determine the number of classes

automatically, 2) it permits the blend of discrete and real valued

data, 3) it can handle missing values effectively.

4. Classification Methods to be used: Probabilistic and Rule based
methods will be employed.

5. Output: the intended output per instance will be a numerical score
that can be converted to a discrete label.

- 73 -

4.3 The Model Algorithms

4.3.1 Decision (meta) Learning Algorithm

Input: An inflow collection of either labeled (Dl) datasets or un-

labeled (Du) datasets or both from heterogeneous data sources and a

collection of fully unlabeled heterogeneous dataset (D). Also, a set

of IF → THEN rules defined from experimental knowledge obtained

about supervised and unsupervised learning, that helps in the deci-

sion-making process.

Output: A decision that invokes either a supervised classification

algorithm or an unsupervised classification algorithm.

a. IF training labeled set exists then check the size of the

labeled set.

b. IF size of the training set > than the test set, THEN invoke
a supervised learning method.

c. IF no training set exists, THEN use an unsupervised algorithm.
d. IF the size of the training set < or = test set, use an

unsupervised algorithm.

e. IF no labeled instances exist, use an unsupervised algorithm.
f. Output new decision by automatically invoking a learning

algorithm that is the best fit for that dataset.

4.3.2 AutoProbClass Unsupervised Algorithm

An autoProbClass unsupervised algorithm: A self-evolving multi-la-

bel fuzzy unsupervised algorithm called the ‘autoProbClass’ is de-

signed in this layer. The autoProbClass algorithm combines two simi-

larity/distance measurement. The first similarity measurement is an

instance identifier (based on its attribute weighted value) similar-

ity fraction measurement and the second is the Euclidean distance

measurement. Euclidean distance measurement is a very popular dis-

tance (or similarity) function in the field, were one object de-

scribes not one distance but also the data model in which the dis-

tances between objects of that model can be calculated.

Input: Unlabeled or partly labeled datasets.

• IF the first instance in the dataset is read,

o An instance identifier Ĩ is created.

 Ĩ += 𝑉𝑖 where 𝑖 < 𝑛𝑎

(4.1)

• The instance identifier Ĩ is a string.

• 𝑉𝑖 = the value of a data instance 𝑖

• 𝑛𝑎 = the number of attributes for the given instance.

- 74 -

• Instance.value(i) is a method via the WekaAPI that will return

an instance’s attribute value in internal format.

• For example if we have an instance [young,myope,no,re-

duced,none] from our contact lenses dataset which has the fol-

lowing attributes:

• @attribute age {young, pre-presbyopic, presby-

opic}

• @attribute spectacle-prescrip {myope, hypermetrope}

• @attribute astigmatism {no, yes}

• @attribute tear-prod-rate {reduced, normal}

• @attribute contact-lenses {soft, hard, none}

• Then the identifier Ĩ for that instance will be ‘00002’ and an-

other instance [young,hypermetrope,yes,normal,soft] will have

an identifier of ‘01110’. It uses index points per instance,

per attribute value.

o A new class is created and is added to a Dense Instance list

called ‘cloud’.

o Then a label ‘ClassK’ is created and the label is added to

a list of all Class labels. Where K is a counter set for

keeping track of the number of class labels created.

• IF it is not the first instance been read, then

o An instance identifier is created for that new instance.

o The new instance is then compared with the previous in-

stance/instances in the ‘cloud’ list, using their instance

identifiers. The method to compare the Instances does the

following:

▪ IF the instanceOldIdentifier.value(i) is the same as

the instanceNewIdentifier.value(i), then a true score

sum is accumulated.

▪ ELSE IF the instanceOldIdentifier.value(i) is NOT the

same as the instanceNewIdentifier.value(i), then a

false score accumulated.

▪ Then a dissimilarity measure is calculated as follows:

 𝐷 = 100(𝐹
𝑛⁄)% (4.2)

o Where D = dissimilarity, F= false score and n = total num-

ber of attributes.

▪ While the similarity measure is denoted as: 𝑆 = 1 − 𝐷.
▪ It is assumed that for a new instance to be like an old

instance, then the dissimilarity measure should be

small (for example, we have assumed a score of less

than 20%). This assumption can be changed to an even

smaller value, to further ensure that the dissimilarity

between the two instances is small enough to help in

- 75 -

deciding whether they will belong to the same cluster

or not.

▪ IF the dissimilarity measure is high, then ‘false’ is

added to a ‘howCloseList’ (which is a list containing

the closeness comparison of the instances), ELSE ‘true’

is added to the list. When a ‘true’ is recorded in the

‘howCloseList’, then the percentage of similarity meas-

ure is also recorded in a ‘simPercent’ list at that

same index point a ‘true’ was recorded in the ‘howClose-

List’. Where a ‘false’ was recorded, we record a float-

ing-point value of 0.0 in the ‘simPercent’ list (this

just means we are not interested in the similarity

measure if the instances are not in the first place at

all similar).

▪ The ‘Euclidean Distance’ is also estimated between the

newly read instance and the old instance/instances in

the ‘cloud’ list.

• After the compareInstancesTest() has been performed, we get the

class label value for the previous instance that is the closest

to the new instance, by using the index of the maximum value in

the ‘simPercent’ list.

• IF the maximum value is ‘0.0’ in the ‘simPercent’ list, then it

is assumed that the new instance was in no way like the previous

instances. Hence, we create a new class for it and a corresponding

new Class label. ELSE we assign the new instance into the same

cluster as the closest previous instance to it, as well as assign

the corresponding class label to it.

4.4 Design Materials

4.4.1 Weka API

As stated in previous chapters, the Wekatool when downloaded comes

with an application programming Interface (API), this API which

could be a ‘.jar’ file source packaged with Weka is added in as a

library path of the project’s implementation in my development

environment. The API provides several methods and functions of the

Weka tool which is used in a flexible manner to implement the system

model. Some functions provided via the API includes: a function for

calculating the ‘Euclidean distance’ between two data points, a

function for performing cross validation tests, another for plotting

and visualising results via ROC curves, etc.

4.4.2 NetBeans IDE

Netbeans Integrated Development Environment (IDE) was used to

implement a Java based application of the model designed. IDEs

provide a controlled environment for developing or implementing

software designs. The choice was made to use Netbeans IDE because it

is a very popular tool when building or implementing java based

application and it is easy and friendly to use.

- 76 -

4.4.3 Program

The programming language of choice for the implementation of this

research is the Java Programming Language. Some reasons for using

Java is because, it is a very familiar programming language, it has

a very big user support community, it is efficient in building

scalable, flexible software solutions and lastly, Weka is java based

and came readily with an API to help aide customisable

implementations.

4.5 Testing and Evaluation of System Model

Several case studies and scenarios have been created to guide in

the testing and evaluation of the implemented prototype of the

system. They are as follows:

4.5.1 Case Study 1

The hybrid automatic classification rule-based algorithm is

implemented in this stage, validated and tested using some datasets

not used initially in the preliminary experiments. The rule-based

algorithm was written as a result of the fact that, from the

preliminary experiments, it was determined that general knowledge

about the data set e.g. the size of the training set, the class

attribute type, the number of nominals versus numeric attribute,

etc. definitely influences the choice of the algorithm to be

selected. Implementation of the algorithm and the knowledge gained

from preliminary experiments, were written in Java codes using the

Weka API, to determine if the rules remain valid whenever it is

applied to any other datasets not initially used. The set of rules

implemented are derived using the result observations from the

preliminary experiments. The datasets used in this stage are the:

‘breast-cancer’, ‘iris’, ‘soy-test’, ‘reuters Grain-train’ &

‘results’. They were all placed together in the same file path, and

using the system designed only the main file path was supplied.

Doing this helped us to determine two things as proposed in this

paper and in hypothesis 1, which includes:

1. When provided with a heterogeneous multi data source, can we

automatically take decisions on what mode or model to build for

each dataset by using some more general knowledge about machine

learning and each dataset?

2. If a decision to use supervised machine learning is made, how
then can we build in a timely manner the best model per dataset

using the rule based decision-making algorithm described in this

research thesis?

- 77 -

Figure 4.2: Simple GUI interface for the Implementation of the Hybrid Auto Classification System.

Figure 4.2 shows the simple GUI implemented for the system model

designed in this paper. Using this system, the user can use the

‘TrainDataset’ button to choose a file directory containing all the

datasets to build the individual models for. Or they can supply a

single train dataset and a test set using the ‘TestDataset’ button.

If we supply a single training Dataset, we have the option to set

what the Class index in the dataset is (if this exists and is

known). Without setting the class index for it, it will be assumed

that it is an unlabelled dataset and going by the design

architecture proposed in this paper, when the ‘Model Build Proceed’

button is clicked, the ‘autoProbClassifier’ (Unsupervised ML

algorithm) is automatically used in that scenario. If a file

directory path (containing several datasets) is selected instead,

then the last attribute in the dataset is automatically selected as

the class attribute for labelled datasets, and clicking the ‘Model

Build Proceed’ button in that scenario will automatically build the

most suitable Supervised classification model for each dataset in

the directory, by using general knowledge of that dataset and the

set of rules derived after the preliminary experiments had been

carried out. The results from this stage is discussed in chapter 5.

This case study is to show that hybrid-autoML can allow for the

automatic mode and model selection on multiple-varying datasets at

the same time. Therefore proving our aims from section 1.3 has been

achieved.

4.5.2 Case Study 2

This is the stage of implementing an alternative ‘autoProb’

function designed in this thesis. In this given scenario a single

- 78 -

dataset file is supplied using the ‘Train Dataset’ file chooser and

the user does not select a class index. If the class Index is not

chosen, when a single dataset is supplied, we assume that the

training data supplied is unlabelled, hence the decision to use the

‘autoProb’ self-evolving or any other unsupervised algorithm is

made. Results for this scenario is discussed in section 5 and proves

if our aims 1 and 2 from section 1.3 have been achieved.

For simplicity, we describe the testing of autoProbClassifier’s

implementation using the ‘contact-lenses-test’ dataset (listed in

the full datasets list table in Appendix 5).

Figure 4.3: Details of the contact-lenses-test dataset used.

Summary

We presented the system requirements, design materials, model algo-

rithms and model design which encompasses the design goals, archi-

tecture (a three-layered architecture), components and characteris-

tics of the ‘Hybrid-AutoML’ toolkit developed in this thesis for au-

tomatic mode and model selection on single or multi-varying da-

tasets. In the next chapter we evaluate the results obtained from

the design implementations.

- 79 -

Chapter 5

5 Results and Discussion

Introduction

Use cases describe specific situations in which a product or

service could potentially be used. They are used mainly during the

analysis phase of a project to identify systems functionality. It is

made up of a set of possible sequences of interactions between a

system and users within an environment and related to a goal or

goals of the system. The use case should contain all system

activities that have significance to the users within a given

system.

In this chapter, we use a set of use cases to evaluate how the

hybrid autoML system is used to achieve the goals set out in the

aims and objectives of this thesis. We map each use case to our aims

and contributions as outlined in section 1.3 of this research

thesis. A performance comparison is also made between autoWeka and

the hybrid autoML system on 33 datasets. The comparison is carried

out based on three main evaluation metrics such as, the percentage

accuracy (or correlation coefficient where applicable), the mean

absolute error (MAE) and the time (in seconds) spent building the

model on training data. From using the use cases and comparison

analysis, it is observed that the aims and objectives of this

research thesis has been met fully. Also, the performance comparison

shows that the hybrid autoML system performs relatively close to or

better than autoWeka on most of the datasets used. Overall, an

interesting fact is that the hybrid autoML system fully outperforms

autoWeka with regards to the time spent on building models or

finding the best algorithms in the first instance.

5.1 Evaluation of Use Cases.

The following use cases can be used to replicate some of the

scenarios used in evaluating the prototyped implementations for our

hybrid autoML system.

5.1.1 Use Case 1 (Small Unlabeled Dataset)

We supply the hybrid system with a small unlabelled dataset. For

this use case, we use the ‘soy-test’ dataset. This data contains

thirty-six attributes and twenty-six unlabelled data instances. The

aim of this use case is to show that in such a scenario, the hybrid

autoML system will automatically choose an unsupervised clustering

algorithm. It is expected that since it is a small unlabelled

dataset, the ‘AutoProbClass’ algorithm described in section 4.3.2 is

automatically selected. Hence, proving that the contribution of this

research thesis to aid the automatic selection of an unsupervised ML

algorithm e.g. the ‘AutoProbClass’ when supplied with an unlabelled

dataset has been achieved. Figure 5.1 shows the data summary for the

‘soy-test’ dataset used in this first user scenario.

- 80 -

Figure 5.1: Shows a data summary on upload of the small unlabelled dataset (soy-test).

After the upload of the dataset and clicking of the ‘Model Build

Proceed’ button, the system automatically assumes an un-labelled

dataset. This occurs when the class index is not set using the

‘Class index’ dropdown menu and when the target class is an unknown

variable for each instance within the dataset.

- 81 -

Figure 5.2: shows that an unsupervised ML mode was selected

automatically and a clustering model constructed by engaging autoProb

clustering function on the soy-test dataset. This model automatically

resulted in six cluster been identified in under 0.03 seconds.

From Figure 5.2 above, we can see that in about 0.03 seconds the

system automatically chooses a clustering algorithm for the given

task. The algorithm modelled uses the ‘AutoProbClass’ function

designed in this thesis to create six clusters for the given

dataset. Finally, we observe from the figure that the aim of this

use case showing the contribution of the hybrid autoML system

providing a function for automatic selection of a learning scheme,

as well as an ‘AutoProbClass’ function for clustering a small

unlabelled dataset has been achieved.

- 82 -

5.1.2 Use Case 2 (Larger Unlabeled Dataset)

We supply a larger unlabelled dataset. For this use case, an

unlabelled ‘german-credit’ dataset is used. This dataset contains

twenty-one attribute variables and seven hundred data instances. The

aim of this use case is to further describe and explain how we have

implemented and achieved the objective set out in this thesis to

have a function for automatically selecting a learning scheme or

model, given a large unlabelled dataset. It is expected from this

use case and given the hybrid system’s function for model selection,

that an unsupervised algorithm e.g. the EM algorithm will be

automatically selected. After uploading the dataset and clicking on

the ‘Model Build Proceed’ button, the system automatically assumes

an un-labelled dataset, same as in use case 1. The hybrid autoML

system, goes further to automatically choose a clustering algorithm

for the given task as described below.

Figure 5.3: shows an unsupervised ML mode using the EM clustering

algorithm was automatically chosen as the best to use for this given

task. Two clusters where derived and the EM model built in 3.21 seconds.

- 83 -

Hence, it can be said that an unsupervised algorithm is more

appropriate to use in the absence of a large pre-labelled training

set. It has also been observed that using general knowledge about a

dataset such as the size of the training set compared with the test

set, the class attribute type, the number of numeric in comparison

to number of nominal attributes, etc. turned into a rule based

algorithm, allows for this automatic mode and model selection.

5.1.3 Use Case 3 (Large Labelled Train Data with Smaller
Test Data)

We have a large labelled dataset and some smaller test dataset. For

this use case, we supply the system the ‘gissette’ train and test

datasets. The training dataset contains 4900 instances and 5001

attribute variables, while the test dataset contains 2100 instances

and 5001 attribute variables. The last attribute in each dataset

represents the target class attribute (which is selected using the

‘class index’ selector of the system, after uploading both

datasets). The aim of this use case is to show that in a given

scenario where a user has a large labelled dataset and some smaller

test set, then it is expected that the hybrid autoML system uses

it’s rule based algorithm to decide on selecting a supervised

learning algorithm. It is also expected that the most appropriate

supervised algorithm is selected automatically and in a small amount

of time, from a pool of various supervised ML algorithms implemented

into the hybrid autoML function for model selection. The following

figures and discussions below describes the evaluation of the hybrid

autoML system in this user scenario.

Figure 5.4: The ROC curve obtained after a model was built and tested

using the gisette data set.

- 84 -

Figure 5.5: Shows the evaluation result obtained from using the hybrid

autoML system on the 'gisette' data set.

From Figure 5.5 above, we can see that the hybrid system by

following the rule base algorithm designed in this research thesis,

automatically uses the random forest to build a model for our given

dataset. It is also observed from Figure 5.5 some evaluation

metrics, which measures to what extent the system performs in this

instance. For example, the time taken to build the model was 30.8

seconds with an accuracy of 96.52% and MAE of 0.17. The area under

the ROC (AUC) as displayed just above the chosen classifier used is

0.99 (as shown in Figure 5.4). A value closer to 1 for the AUC,

represents a high performing classifier, while a value closer to 0

represents a poorly performed classifier. From Figure 5.5 above, we

- 85 -

can see that the classifier automatically used by our hybrid system

performed highly in this use case.

While showing the use of general knowledge about a dataset such as

the size of the training set compared with the test set, etc. we

proved that a supervised algorithm is more appropriate to use than

an unsupervised algorithm in the presence of large pre-labelled

training set, and turning this into a rule based algorithm, allows

for automatic mode and model selection in such a scenario.

5.1.4 Use Case 4 (Small Labelled Train Data with Large
Test Data)

The user only has a small labelled training dataset and large test

dataset which they supply to our hybrid autoML system. In this

example, we use a labelled version of the ‘soy-test’ dataset (from

use Case 1) as our training dataset and an unlabelled ‘soybean’

dataset (containing 683 data instances and 36 attribute variables).

The aim of this use case is to prove that the hybrid function for

automatic model selection is effective enough to show that using a

supervised model in such a scenario is not as effective when a user

only has a small labelled training dataset as opposed to a large

dataset for training. The ideal is to extend the hybrid autoML

system designed in this thesis to include the automatic model

selection of a semi-supervised classifier if faced with these types

of conditions. The following figures and discussions below provide

an evaluation of the results obtained after carrying out this use

case in the hybrid system.

Figure 5.6: ROC curve obtained from training the model on the given

train data set.

- 86 -

Figure 5.7: Evaluation metrics obtained from using a small trained

data set and large test set in useCase4.

From the following ROC curve above in Figure 5.6, we observed that

the AUC when building our training model was 0.91 (a value closer to

1 than to 0). This AUC indicates a high performing classifier model,

however when combined with other evaluation metrics as shown in

Figure 5.7 above, it is observed that a Naïve Bayes model built on

the small training dataset and tested on the larger test dataset had

a very low accuracy. The reason for this is that, ideally in this

scenario, a semi-supervised algorithm should be the right choice.

However, the hybrid autoML rule-based algorithm was designed and

constructed based on a variety of supervised and unsupervised

algorithms supplied by WEKA. WEKA via it’s API currently lacks an

easy way of using semi-supervised algorithms.

- 87 -

5.1.5 Use Case 5 (Location with Multi-Varying Data sets)

We supply a location containing multi-varying domain datasets. This

use case aims to prove that the hybrid autoML system designed in

this thesis can allow for the automatic model selections for

multiple varying datasets in one go as clearly set out to achieve in

the aims and objectives. This proves the contribution of the hybrid

system been able to handle multiple multi-domain datasets on the

fly, while distinctively building and choosing the most appropriate

model per dataset. It is expected that this is achieved in a lesser

time than if the user was to supply one dataset at a time (which is

a common major limitation of other auto ML systems such as

autoWeka). The following figures and discussions below in this

subsection, describes the datasets and the evaluation results from

executing this use case.

Figure 5.8: A file directory supplied as the location containing the

varying data sets to be supplied in one run. It shows a total of 8

datasets that we use to test this user scenario.

- 88 -

Figure 5.9: ROC curved obtained for five out of the 8 multi-varying

data sets in our data location.

- 89 -

Figure 5.10: Shows the evaluation for the 'breast cancer' data set

and Naive Bayes automatically chosen for it as the classifier.

- 90 -

Figure 5.11: Shows that Random forest was chosen for the 'iris'

dataset.

Figure 5.11 above, also shows the evaluation results for the chosen

random forest model on this data set.

- 91 -

Figure 5.12: Evaluation results shown for the 'labour' data set.

Figure 5.12 above, also shows that the Naive Bayes classifier was

selected for this data set, and that it had an accuracy performance

of up to a 100%.

- 92 -

Figure 5.13: Evaluation result for the 'Results' data set.

From figure 5.13 above, it is shown that Random Forest was the

classifier of choice used based on the rule-based algorithm designed

in this thesis.

- 93 -

Figure 5.14: Evaluation results for the 'ReutersCornTrain' data set.

Figure 5.14 above, shows that the zeroR classifier was automatically

chosen on the ’ReutersCorn training’ data set.

- 94 -

Figure 5.15: Evaluation results showing that Random Forest

classifier isautomatically used to build the model for the 'Samsung-

Galaxy-Gear' data set.

Figure 5.10 to Figure 5.15 above, shows various ML models been

built automatically for the various datasets in our data location.

These algorithms were chosen automatically by making use of both the

functions for model selection and the function for handling multi

datasets in one experimental run designed in this thesis. The

highest time spent on any of the model built is 11.71 seconds. From

executing this use case 5, we can conclude that using more general

knowledge about a dataset such as the size of the training set

compared with the test set, the class attribute type, the number of

numeric in comparison to number of nominal attributes, etc. as a

rule based functional algorithm, allows for the automatic ML mode

- 95 -

and algorithmic model selection on multi-varying dataset as

expected.

5.2 Comparison of the Hybrid autoML with AutoWeka

In the following section, we present and evaluate the performance

of the hybrid system with autoWeka (a state-of-the-art auto ML

system). We base this comparison on multiple evaluation metrics

mainly % accuracy, mean absolute error (MAE) the time in seconds.

The aim of which is to prove that the hybrid system performs

relatively better than autoWeka.

- 96 -

Table 5.1: Comparing autoWeka and the Hybrid autoML designed in this

thesis.

In Table 5.1 above, we can see the performance the hybrid autoML

system designed in this thesis has in comparison to autoWeka. Three

main metrics of evaluation are used here. They include the accuracy

measured in percentage, the mean absolute errors (MAE) and the time

in seconds. Data sets which have a numerical class attribute e.g.

cpu dataset mainly generated a correlation coefficient on a scale of

0-1, which we then convert into a percentage score value to match up

with the scale across other datasets for measuring accuracy (%). The

bold numbers in the table shows where the hybrid autoML system

ACCURACY (%) ACCURACY(%) MAE MAE TIME (secs) TIME (secs)

Dataset Chosen (by AutoWeka) AutoWeka Chosen(by Hybrid) Hybrid Model AutoWeka Hybrid Model AutoWeka Hybrid Model

contact-lenses DecisionTable 70.83 J48* 87.50 0.27 0.10 762.28 0.14

cpu AdditiveRegression 93.53 RandomForest 91.80 31.72 31.10 765.88 0.3

cpu.with.vendor MultiLayer Perceptron 99.96 RandomForest 98.91 4.99 12.24 769.69 0.27

credit-g RandomForest 70.30 RandomForest* 73.57 0.35 0.34 769.37 0.36

diabetes Logistics 75.65 SGD* 78.13 0.29 0.22 863.28 0.09

glass Lazy.IBK 76.17 RandomForest* 81.69 0.11 0.10 769.82 0.32

ionosphere SMO 92.59 RandomForest* 94.87 0.12 0.14 758.77 0.14

iris.2D AdaBoostM1 92.67 RandomForest* 96.00 0.07 0.04 762.11 0.03

labor SMO 85.96 NaiveBayes* 100.00 0.18 0.01 756.39 0

reutersCorn-train Cannot handle - ZeroR* 97.88 - 0.05 - 0

segment-challenge RandomSubspace 97.27 RandomForest* 98.00 0.01 0.02 839.05 0.42

soybean LWL 92.53 NaiveBayes* 93.39 0.02 0.01 1187.38 0.01

supermarket DecisionTable 76.94 SGD 64.53 0.32 0.35 778.03 2.00

unbalanced SMO 98.60 RandomForest 98.60 0.03 0.03 781.57 0.13

vote RandomForest 95.63 NaiveBayes 93.10 0.08 0.07 761.3 0

weather.nominal SMO 64.29 J48 50.00 0.36 0.50 765.9 0.00

weather.numeric IBk 85.71 NaiveBayes 75.00 0.17 0.38 758.67 0.00

Dorothea DecisionStump 93.29 RandomForest 88.81 0.12 0.16 74450.82 60.93

Yeast IBk 59.10 AutoWEKA engaged* 100.00 0.10 0.04 759.63 762.25

Amazon NaiveBayes 57.90 RandomForest 20.29 0.02 0.04 1107.2 18.7

Secom Bagging 93.89 RandomForest* 95.07 0.12 0.11 770.18 1.24

Semeion Logistics 100.00 RandomForest 93.55 0.00 0.09 988.31 0.84

Car AttributeSelected 100.00 NaiveBayes 85.36 0.00 0.12 885.25 0.01

Madelon lazy.IBk 100.00 RandomForest 61.88 0.01 0.48 770.4 1.63

KR-VS-KP Tress.LMT 99.91 NaiveBayes 87.53 0.09 0.22 774.35 0.01

Abalone Logistics 28.90 RandomForest 23.51 0.06 0.06 837.43 2.48

Wine Quality Ibk 100.00 RandomForest 65.09 0.04 0.09 770.42 1.64

Waveform SimpleLogistics 87.86 RandomForest 85.59 0.13 0.20 865.09 1.87

Gisette RandomForest 99.57 RandomForest 95.71 0.03 0.17 1602.26 11.46

Convex RandomForest 55.30 RandomForest* 73.03 0.48 0.39 822.3 14.78

Cifar-10-small RandomForest 99.19 RandomForest 86.02 0.06 0.16 4376 45.51

Mnist Basic RandomForest 99.83 RandomForest* 99.89 0.02 0.06 1139.34 15.42

Shuttle RandomForest 99.87 AutoWEKA engaged 99.86 0.00 0.00 844.25 924.66

- 97 -

performed better or relatively close enough to that of autoWeka. A

star beside the classifier chosen by the hybrid model in the column

‘chosen (by hybrid)’ describes those datasets for which the hybrid

model in this thesis outperformed autoWeka. This involved 14 out of

the 33 datasets in the table having a higher performance in the

hybrid-autoML system. 10 out of the 33 datasets performed relatively

close to how autoWeka performed but with an advantage of been

carried out in a lesser time than autoWeka. Which means that, for

all target users of the system, the time spent in getting an idea of

what algorithms to consider in the first instance is greatly reduced

by using the hybrid autoML system designed in this thesis. Lastly,

an important fact to add is that for using the autoWeka, each

dataset had to be loaded in one after the other. While with the

hybrid-autoML tool, the user only needs to supply a location for all

the various datasets in question. Hence, reducing the effort and

time of the user.

Summary

In this chapter, we use a set of five different use cases and

comparison analysis, to evaluate the performance unfolding of

hybrid-autoML system and how it is used to achieve the goals set out

in this thesis. Use case 1 shows the ability of the hybrid autoML

system to select automatically an unsupervised learning strategy

i.e. the ‘autoProbClass’ function given a small unlabelled dataset.

While use case 2 shows unsupervised mode with a readily available EM

clustering was selected automatically on a large unlabelled dataset.

Use cases 3 to 4, shows that the system knows when to automatically

use a supervised learning mode to select the most appropriate

algorithm in the shortest time possible, on single or multi-varying

dataset. All use cases thus proves that the system’s function for

mode and model selection (whether supervised or unsupervised) is

effective and timely. Use case 5 establishes the fact that the

system can effectively handle the supply of multiple datasets of

varying types and from varying domains at a go. However, maintaining

the integrity of using only the most suitable ML model per dataset.

All of which means that the aims and objectives set out to be

achieved by the modelling and design of the hybrid-autoML system has

been effectively met. Lastly, a comparison of the system with

autoWeka shows that in 24 out of 33 datasets, the hybrid system

performs relatively better than autoWeka and in a way shorter time

than autoWeka.

98

Chapter 6

6 Conclusion and Further Work

6.1 Conclusion

In this thesis, we have presented a toolkit for automatic

machine learning (ML) mode and model selection on single or

multi-varying datasets.

In Chapter 1, the basic concept of big data ML, ML tools, the

algorithm selection problem, the meta-learning (learning-to-

learn) paradigm and automated machine learning (autoML) was

discussed. We discussed that although some hybrid autoML systems

exists, e.g. autoWeka and auto-Sklearn, they do not consider

knowledge known about mode selection but focus mainly on the

supervised learning space for model selection. Some on one hand

do not determine the importance and influence that knowledge of

data sets meta features have over the choice of selecting the

best ML mode and model automatically. Lastly, none of the known

autoML system allows for automatic mode and model selection on

multi-varying datasets at the same time. However, the hybrid-

autoML system and functions designed in this thesis eliminates

all that by taking them into consideration appropriately.

Chapter 2 provides more details and discussions from the

literatures, that show the link between big data classification

or clustering, the Meta learning paradigm, and how generic

knowledge obtained about a dataset or about supervised and

unsupervised learning, can be used to design a set of functions

for automatic ML mode selection and model building on single or

multi-varying datasets.

In Chapter 3, we show and discuss some preliminary

experimentations carried out in this thesis, using Weka (a well

known data mining tool in the research community). The purpose

of the pre experiments carried out, was to prove, properly

identify and define the problems identified from previous

discussions of literatures reviewed in chapter 2. The knowledge

gained from this pre experiments helped define the rules for the

hybrid-autoML system’s model and design. The rule based

functions modelled, takes into account the execution semantics

for automatic ML mode and model selection.

Chapter 4 reported on the implementation details of the hybrid-

autoML, visualisations, simulations and analysis. More

specifically, we discussed and showed the design architecture

(design consisting of three layers), components, testing

strategy and materials of hybrid-autoML, and provided the

relevant algorithms.

99

The toolkit named hybrid-autoML is an open source project that

can be retrieved from github and easily used or extended.

Hybrid-autoML provides a simple graphical user interface that

facilitates automated ML mode and models selection,

visualisation or evaluation and prediction capabilities.

Then in Chapter 5, we addressed the unfolding of hybrid-autoML

by evaluating its performance using 5 practical use cases and

well known statistical and non-statistical measures. Based on

the performance results of the experiments, a variety of

observations are made. For example, use case 1 in section 5.1.1

shows an unsupervised mode and a simple and lightweight autoProb

clustering function desgined in this thesis is chosen

authomatically,for building a model on a small unlabelled

dataset. While use case 2 in section 5.1.2 shows an unsupervised

ML mode with a readily available EM clustering algorithm

selected automatically for building a model on a larger

unlabeled dataset. Use cases 3 and 5 from sections 5.1.3 and

5.1.5, proves that the hybrid-autoML tool knows when to

automatically use a supervised ML mode to build an appropriate

model on multi-varying datasets in the shortest time possible as

compared to conventional autoWeka.

In conclusion, the various use cases have proved that the aims

and contributions of this thesis to conceptualise, design, and

develop a scalable and flexible toolkit for automatic big data

ML mode and model selection, on single or multi-varying datasets

has been achieved. A major benefit of the hybrid-autoML toolkit

is that it reduces the time data scientists and researchers in

the field spend, searching through the algorithm selections and

hyper parameter space. This advantage was discussed in section

5.2 where we compared the hybrid-autoML tool with autoWeka on

about 35 datasets using measures such as: accuracy, mean

absolute error (MAE) and time.

100

6.2 Future Work

• Expanding the rule based function for model selection to

accommodate more practical use case scenarios and algorithms,

to further improve the automatic decision learning process.

• Expand the rules to accomodate better automatic data

cleansing strategies before the automatic mode and model

selection is performed.

• Considering the challenges of big data, incorporate some big

data processing methods such as parallel processing to

further optimize the process.

• The hybrid-autoML system improvement. This can be achieved by

including the hyper parameter space options for some

algorithms, then implement this in the system to determine

any improvements made.

• Perform new experiments in a less controlled environment by

using an observational study methodology to analyse how users

interact with the system on different big dataset.

• Improve and commercialise the functionalities and

capabilities of the system.

101

Appendices

Appendix 1

Classification of big data has several advantages and benefits,

all of which includes:

1. It allows management of big data in a way that reflects
organizational values.

2. It allows big data integrity management.
3. For big data management optimization.
4. Helps in determining easily what data should be distributed,

how it should be distributed and to whom it should be shared

with?

5. Which data needs to be kept where and who should have access
to the data.

6. Better performance optimization.
7. Ease of use of information.
8. Better use of resources which may improve the revenue

generation of the infrastructure.

9. Provide improved security measures and policies.
10. Can be applied in different domains and scenarios e.g.

in the health sector (Austin, Tu, Ho, Levy, & Lee, 2013; Azar

& El-Said, 2013; Hu, Palreddy, & Tompkins, 1997; Strauss,

Bartko, & Carpenter, 1973; Tortajada, Robles, & García-Gómez,

2015), geoscience (Angus Webb et al., 2007; Baum, Tovinkere,

Titlow, & Welch, 1997; Iounousse, Er-Raki, El Motassadeq, &

Chehouani, 2015; Leiva-Murillo, Gomez-Chova, & Camps-Valls,

2013), social network analysis, Document and text

classification & filtering (Mladeni'c & Grobelnik, 1998; Zhu,

Ghahramani, & Lafferty, 2003), multimedia data analysis

(Bankert, 1994; Haralick, Shanmugam, & Dinstein, 1973),

biological data analysis (Achcar, Camadro, & Mestivier, 2009;

T. Li, Zhang, & Ogihara, 2004), language processing (Bird,

Klein, & Loper, 2009), face recognition systems (Pavani et

al., 2012), etc.

102

Appendix 2

To achieve the aims set out above, the following objectives

where achieved at different stages of this thesis:

1. Studied, designed, conceptualised and developed high

performing ML models on the fly in the best time possible

and given limited resources (e.g. time, CPU power, etc.).

2. Used more general knowledge about ML methods (e.g.

supervised, unsupervised & semi-supervised learning), as

well as general knowledge about input datasets (e.g. size,

class type, presence of labelled training data, absence of

labelled training data, etc.) to automatically help in the

decision making process.

3. Experimented extensively with Weka to determine the general

knowledge and ideas that can be used.

4. Designed a three layered decision tree-based hybrid autoML

model.

5. Designed and implemented a prototype of a Meta learning

(learning to learn) algorithm for automatically deciding

whether to invoke a supervised learning or an unsupervised

learning algorithm.

6. Studied, designed, conceptualised and developed a robust

self-evolving unsupervised function that allows for the

derivation of clusters from scratch without having to train

the model using labelled train dataset. Since the number

of cluster labels is not restricted, the algorithm allows

for automatic re-grouping of the clusters based on

similarity and distance measurements between the clusters.

103

Appendix 3

Mini Survey Questions on the importance of Big Data

Classification in practice. The questions can be found using

this link

https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfo

vETMBT?Q_JFE=qdg

However, the actual survey itself has since been closed and

results analysed.

Q1. Big Data is often defined based on three properties:

Volume, Variety and Velocity (known as the 3 Vs).

Have you heard of the term Big Data before now?

Yes

No

Q2. Data classification is the process of allocating data into

one or more categories (see an example in the image below.

Have you heard of Data Classification before now?

Yes

No

Q3. Is classification of big data in real time a good

management technique?

Yes

No

Not Sure

https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfovETMBT?Q_JFE=qdg
https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfovETMBT?Q_JFE=qdg

104

Q4. Do you think classifying big data will help improve data

security measures in place?

Definitely yes

Probably yes

Probably not

Definitely not

Q5. Have you or the organization you work for used Big Data

Classification tools before?

Yes

No

Not Sure

Q6. How do you utilize big data? (you can select more than one

option)

• Manage big data

• Analyse big data

• Query big data

• Create big data

• Optimize big data

• Financial trading

• Understanding and targeting customers

• Optimizing business processes

• Personal quantification and Performance optimization

• Other

Q7. What is your job role?

Q8. Comments

105

Appendix 4

Results from the mini survey

Out of 85% of the participants, who had previously heard about

big data and 85% who had heard about data classification before?

The majority thought classification of big data is a good

management technique.

Figure 6.1: shows data from the survey carried out, that data

science professionals are well aware of data classification as a

good management technique.

In terms of whether they think big data classification will

help improve security measures in place, the majority agreed

that it definitely will while about 41% said it ‘probably will’.

Meaning for them, there was a high level of uncertainty.

Figure 6.2: Survey results, showing data science professionals

thoughts on whether big data classification measures in place,

effectively improves security.

106

On the use of big data classification tools and if it has been

used by them or the organization they work for, the majority

said no, while many were not sure and just a few actually had.

Figure 6.3: Survey results on the use of big data classification tools

by several data science professionals.

107

Appendix 5

Lists of most datasets used throughout this project. Subsets of

this list, are referred to at different points within the main

content area.

Table 6.1: A table summary of datasets used in this research.

Dataset # Instances #Attributes Class attribute

type

Missing Values

contact-lenses 24 All nominal (5) Nominal No

cpu 209 All numeric (7) Numeric No

cpu.with.vendor 209 1 Nominal, 7

Numeric

Numeric No

credit-g 1000 14 Nominal, 7

Numeric

Nominal No

diabetes 768 8 Numeric, 1

Nominal

Nominal No

glass 214 9 Numeic, 1

Nominal

Nominal No

ionosphere 351 34 numeric, 1

Nominal

Nominal No

iris.2D 150 2 Numeric , 1

Nominal

Nominal No

labor 57 9 nom, 8 numeric Nominal Yes (2%)

reutersCorn-train 1554 String Nominal No

segment-challenge 1500 19 Numerical, 1

Nominal

Nominal No

soybean 683 36 Nominal Nominal Yes (<1%)

soytest 26 36 Nominal Nominal No

supermarket 4627 217 nominal Nominal Up tp 77%

unbalanced 856 32 numerical, 1

Nominal

Nominal No

vote 435 17 nominal Nominal Yes (3%)

weather.nominal 14 5 nominal Nominal No

weather.numeric 14 2 Numeric, 3

Nominal

Nominal No

Dexter 420 20001 Numeric Numeric No

Dorothea 805 100000 Numeric Numeric No

Yeast 1039 8 Numeric, 1

Nominal

nominal No

Amazon 1050 10001 numeric Nominal No

Secom 1097 591 nominal Nominal Yes (5%)

Semeion 1116 256 numeric 1

nominal

Nominal No

Car 1209 7 nominal Nominal No

Madelon 1820 500 numeric 1

nominal

Nominal No

KR-VS-KP 2238 37 nominal nominal No

Abalone 2923 2 nominal, 7

numeric

nominal No

Wine Quality 3429 11 numeric, 1

nominal

Nominal No

Waveform 3500 40 numeric, 1

nominal

Nominal No

Gisette 4900 5000 numeric 1

nominal

Nominal No

Convex 8000 784 numeric, 1

nominal

Nominal No

Cifar-10-small 10000 3072 numeric, 1

nominal

Nominal No

Mnist Basic 12000 784 numeric, 1

nominal

Nominal No

Shuttle 43500 9 numeric, 1

nominal

Nominal No

KDD09-Appentency 35000 192 numeric 39

nominal

Nominal Yes(99%)

Cifar-10 50000 3072 numeric 1

nominal

Nominal No

108

Appendix 6

Table 6.2: Area Under Curve using 10-folds cross validation

AUC

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero

R

J48 RF

contact-lenses 0.95 0.50 - 0.82 - 0.91 0.22 0.22 0.95 0.86

cpu - - - - - - - - - -

cpu.with.vendor - - - - - - - - - -

credit-g 0.79 0.49 0.69 0.69 - 0.76 0.50 0.50 0.64 0.79

diabetes 0.82 0.50 0.73 0.77 - 0.81 0.50 0.50 0.75 0.89

glass 0.72 0.80 - 0.80 - 0.85 0.47 0.47 0.77 0.93

ionosphere 0.94 0.91 0.84 0.87 - 0.95 0.49 0.49 0.89 0.98

iris.2D 1.00 1.00 - 1.00 - 1.00 0.50 0.50 0.99 1.00

labor 0.97 0.91 0.90 0.97 - 0.86 0.47 0.47 0.70 0.94

reutersCorn-

test

- - - - - - 0.45 0.45 - -

reutersCorn-

train

- - - - - - 0.47 0.47 - -

segment-

challenge

1.00 0.76 - 1.00 - 1.00 0.49 0.49 1.00 1.00

soybean 0.99 1.00 - 1.00 - 0.99 0.49 0.49 1.00 1.00

supermarket 0.50 0.50 0.50 0.50 - 0.50 0.50 0.50 0.50 0.50

unbalanced 0.56 0.50 0.50 0.70 - 0.52 0.43 0.43 0.43 0.72

vote 0.97 0.96 0.97 0.98 - 0.98 0.49 0.49 0.97 0.99

weather.nominal 0.58 0.50 0.69 0.69 - 0.31 0.18 0.18 0.63 0.53

weather.numeric 0.44 0.50 0.49 0.53 - 0.19 0.48 0.18 0.79 0.44

109

Figure 6.4: 10-folds Analyses of the Area Under the Curve performance measure.

110

Table 6.3: 10-folds F-Measure evaluation on the datasets.

F-MEASURE

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero

R

J48 RF

contact-lenses 0.77 0.77 - 0.73 - 0.71 0.77 0.77 0.86 0.80

cpu - - - - - - - - - -

cpu.with.vendor - - - - - - - - - -

credit-g 0.83 0.81 0.83 0.77 - 0.83 0.82 0.82 0.80 0.85

diabetes 0.82 0.79 0.84 0.79 - 0.82 0.79 0.79 0.80 0.82

glass 0.25 0.72 - 0.56 - 0.70 0.52 0.52 0.64 0.81

ionosphere 0.78 0.90 0.81 0.79 - 0.93 0.78 0.78 0.94 0.95

iris.2D 1.00 1.00 - 1.00 - 1.00 0.50 0.50 0.99 1.00

labor 0.92 0.90 0.93 0.91 - 0.88 0.79 0.79 0.79 0.92

reutersCorn-

test

- - - - - - 0.98 0.98 - -

reutersCorn-

train

- - - - - - 0.99 0.99 - -

segment-

challenge

0.96 0.68 - 0.98 - 0.99 0.27 0.27 0.99 1.00

soybean 0.89 1.00 - 1.00 - 0.85 0.24 0.24 0.92 0.92

supermarket 0.78 0.30 0.78 0.78 - 0.78 0.78 0.78 0.78 0.78

unbalanced 0.95 0.99 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99

vote 0.92 0.96 0.97 0.96 - 0.96 0.76 0.76 0.97 0.97

weather.nominal 0.70 0.78 0.78 0.78 - 0.60 0.78 0.78 0.59 0.80

weather.numeric 0.76 0.78 0.70 0.74 - 0.67 0.78 0.78 0.74 0.74

Figure 6.5: 10 Folds F-Measure Evaluation

0.00

0.20

0.40

0.60

0.80

1.00

1.20

F-Measure

F-MEASURE NB F-MEASURE LibSVM F-MEASURE SGD

F-MEASURE DeepLearning4J F-MEASURE LR F-MEASURE Bagging

F-MEASURE Stacking F-MEASURE Zero R F-MEASURE J48

F-MEASURE RF

111

Table 6.4: 10 Folds Mean Absolute Error Measures

MAE

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero

R

J48 RF

contact-lenses 0.25 0.25 - 0.20 - 0.31 0.38 0.38 0.15 0.23

cpu - - - 205.56 41.09 34.04 96.24 96.24 - 25.61

cpu.with.vendor - - - 196.13 36.97 25.28 87.66 87.66 - 13.69

credit-g 0.29 0.31 0.25 0.32 - 0.33 0.42 0.42 0.35 0.34

diabetes 0.28 0.35 0.22 0.30 - 0.32 0.45 0.45 0.32 0.31

glass 0.15 0.09 - 0.14 - 0.12 0.21 0.21 0.10 0.10

ionosphere 0.17 0.07 0.13 0.15 - 0.14 0.46 0.46 0.09 0.13

iris.2D 0.03 0.02 - 0.04 - 0.05 0.44 0.44 0.04 0.04

labor 0.10 0.07 0.09 0.07 - 0.30 0.46 0.46 0.32 0.32

reutersCorn-

test

- - - - - - 0.08 0.08 - -

reutersCorn-

train

- - - - - - 0.06 0.06 - -

segment-

challenge

0.06 0.13 - 0.02 - 0.02 0.24 0.24 0.01 0.02

soybean 0.01 0.01 - 0.01 - 0.03 0.10 0.10 0.01 0.02

supermarket 0.46 0.58 0.36 0.46 - 0.46 0.46 0.46 0.46 0.46

unbalanced 0.11 0.01 0.01 0.02 - 0.03 0.03 0.03 0.03 0.03

vote 0.10 0.04 0.03 0.06 - 0.07 0.47 0.47 0.06 0.07

weather.nominal 0.44 0.36 0.29 0.31 - 0.52 0.48 0.48 0.42 0.44

weather.numeric 0.46 0.36 0.43 0.39 - 0.53 0.48 0.48 0.29 0.47

Figure 6.6: 10 folds MAE evaluation

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

MAE 0-1

MAE NB MAE LibSVM MAE SGD MAE DeepLearning4J

MAE LR MAE Bagging MAE Stacking MAE Zero R

MAE J48 MAE RF

112

Figure 6.7: 10 folds MAE evaluated measures for cpu and cpu.with.vendor datasets.

Table 6.5: 10 folds Accuracy measures. In terms of the number of correctly classi-

fied instances.

Dataset NB LibSV

M

SGD DL4J LR Baggin

g

Stacki

ng

Zero

R

J48 RF

contact-

lenses

70.8

3

62.50 - 66.6

7

- 58.33 62.50 62.5

0

83.3

3

70.8

3

cpu - - - -

0.12

0.9

0

0.90 -0.15 -

0.15

- 0.95 Correlati

on coef

cpu.with.vend

or

- - - -

0.12

0.9

3

0.92 -0.14 -

0.14

- 0.97 Correlati

on coef

credit-g 75.4

0

68.70 75.5

0

67.9

0

- 74.70 70.00 70.0

0

70.5

0

76.4

0

diabetes 76.3

0

65.10 77.9

9

72.9

2

- 75.78 65.10 65.1

0

73.8

3

75.7

8

glass 0.15 68.69 - 56.0

7

- 72.43 35.51 35.5

1

66.8

2

79.9

1

ionosphere 82.6

2

93.45 87.4

6

85.4

7

- 91.17 64.10 64.1

0

91.4

5

92.8

8

iris.2D 96.0

0

96.67 - 95.3

3

- 95.33 33.33 33.3

3

96.0

0

94.0

0

labor 89.4

7

92.98 91.2

3

92.9

8

- 84.21 64.91 64.9

1

73.6

8

89.4

7

reutersCorn-

test

- - - - - - 96.03 96.0

3

- -

reutersCorn-

train

- - - - - - 97.10 97.1

0

- -

segment-

challenge

81.0

7

55.40 - 93.4

0

- 95.87 15.73 15.7

3

95.7

3

97.8

7

soybean 92.9

7

88.73 - 92.8

3

- 85.65 13.47 13.4

7

91.5

1

92.9

7

supermarket 63.7

1

41.78 63.7

1

63.7

1

- 63.71 63.71 63.7

1

63.7

1

63.7

1

unbalanced 90.7

7

98.60 98.6

0

97.9

0

- 98.60 98.60 98.6

0

98.6

0

98.4

8

vote 90.1

1

95.63 96.7

8

94.4

8

- 95.63 61.38 61.3

8

96.3

2

96.0

9

0.00

50.00

100.00

150.00

200.00

250.00

MAE 10-100

cpu - - - cpu.with.vendor - - -

113

weather.nomin

al

57.1

4

64.29 71.4

3

71.4

3

- 42.86 64.29 64.2

9

50.0

0

71.4

3

weather.numer

ic

64.2

9

64.29 57.1

4

64.2

9

- 50.00 64.29 64.2

9

64.2

9

64.2

9

Figure 6.8: 10 folds % Accuracy

Figure 6.9: 10 folds Correlation Coefficient of cpu and cpu.with.vendor

0.00
20.00
40.00
60.00
80.00

100.00
120.00

Accuracy (%)

ACCURACY % NB ACCURACY % LibSVM ACCURACY % SGD

ACCURACY % DeepLearning4J ACCURACY % LR ACCURACY % Bagging

ACCURACY % Stacking ACCURACY % Zero R ACCURACY % J48

ACCURACY % RF

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

DeepLearning4J LR Bagging Stacking Zero R J48 RF

Correlation Coef

cpu - - - cpu.with.vendor - - -

114

Appendix 7

Weka GUI

Figure 6.10: Weka GUI when initially launched.

 The Explorer

Clicking on the ‘Explorer’ tab after launching the Weka GUI,

launches the Weka explorer.

115

Figure 6.11: The Weka Explorer GUI

The Explorer lets you pre-process, visualize, classifier and

cluster a dataset. It provides the options to load the dataset

from a file, url, database or generate data. Once the data is

loaded, the explorer will give a brief summary and visualization

of the data such as the attributes listed, the name, number of

attributes, etc. The pre-processing of the data using the Weka

explorer can be achieved by applying one of the many filters it

provides and applying this to the data. For more visualization

tasks, the ‘Visualize’ tab of the explorer can be used. After

pre-processing of the loaded data, the ‘Classify’ and ‘Cluster’

tabs of the explorer will supply a varying list of

classification and clustering algorithms that the user can

choose from for their given problem. One limitation of using the

Weka explorer is the fact that the user has to process and

experiment on one dataset & one algorithm at a time.

116

 The Experimenter

Clicking on the ‘Experimenter’ tab after launching the Weka

GUI, launches the Weka experimenter.

Figure 6.12: The Weka Experimenter GUI

The Weka experimenter enables us to test on a trial and error

basis several techniques and parameters, analyse the results to

determine the most suitable technique and parameters to use. It

automates this trial and error experiments for the user by

allowing the user queue up multiple machine learning algorithms

to run on multiple data sets, and allows for the collection of

the statistical comparison of their performance against each

other. Although, the experimenter eliminates to a great degree

the limitations of using the explorer it is limited by the fact

that if one of the algorithms in the queue is unsuitable for one

of the datasets in the queue (because of the meta-features of

the dataset for example), then the experiment will fail without

the user knowing of identifying why it failed. This limitation

can be overcome by an automated machine learning system that

takes into account the meta information of the dataset and

knowledge of the algorithm to automatically choose and use the

suitable ones for the experiment while skipping over the

117

unsuitable ones. This way the user gets the experiments

completed successfully to the end.

 The Knowledge Flow GUI

Clicking on the ‘Knowledge Flow’ tab after launching the Weka

GUI, launches the Weka knowledge flow.

Figure 6.13: The Weka Knowledge Flow GUI

The Weka Knowledge flow gives an alternative way for using Weka

in a work flow type way. It allows you build and visualise the

data as flowing through from input to output phases. Just like

the ‘explorer’, it allows you perform data mining tasks on one

dataset at a time and like the ‘experimenter’ it can allow you

run multiple algorithms on the dataset at the same time. It is

sometimes more efficient than the experimenter because, it

allows performing tasks on the dataset an instance at a time

without the need to load the whole set in memory. Although, this

is not advisable under normal circumstances because it can bring

about new problems such as more time used in building a model,

due to the fact that the dataset will be read one instance at a

time. Also, if the experiment is interrupted because of one of

the algorithms in the flow, then it gives a proper log to the

user of which algorithm failed exactly with reasons for failure.

The user can easily adjust the flow by simply removing that

algorithm from the flow and run the experiments again. The

limitation however of the ‘knowledge flow’ is the same

limitation with the ‘explorer’, whereby the user can only

experiment on one dataset at a time from one data source.

118

Bibliography

Achcar, F., Camadro, J.-M., & Mestivier, D. (2009). AutoClass@ IJM: a powerful tool for Bayesian
classification of heterogeneous data in biology. Nucleic acids research, gkp430.

Aggarwal, C. C. (2014). Data Classification : Algorithms and Applications. Hoboken: Chapman
and Hall/CRC.

Aggarwal, C. C. (2014a). Instance-Based Learning: A Survey. Data Classification: Algorithms and
Applications, 157.

Aggarwal, C. C. (2014b). An Introduction to Data Classification. Data Classification: Algorithms
and Applications, 1.

Aggarwal, C. C. (2014c). A Survey of Stream Classification Algorithms. Data Classification:
Algorithms and Applications, 245.

Aggarwal, C. C., & Reddy, C. K. (2013). Data Clustering : Algorithms and Applications (Vol. 31).
Hoboken: Chapman and Hall/CRC.

Aha, D. W. (1992). Generalizing from case studies: A case study. Paper presented at the Proc. of
the 9th International Conference on Machine Learning.

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine
learning, 6(1), 37-66.

Aher, S. B., & Lobo, L. (2012). Comparative study of classification algorithms. International
Journal of Information Technology, 5(2), 239-243.

Akerkar, R. (2013). Big Data Computing. Hoboken: CRC Press.

Alcalá, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., & Herrera, F. (2010).

Keel data-mining software tool: Data set repository, integration of algorithms and experimental
analysis framework. Journal of Multiple-Valued Logic and Soft Computing, 17(2-3), 255-287.

Alelyani, S., Tang, J., & Liu, H. (2013). Feature Selection for Clustering: A Review. Data
Clustering: Algorithms and Applications, 29.

Alsallakh, B., Hanbury, A., Hauser, H., Miksch, S., & Rauber, A. (2014). Visual Methods for
Analyzing Probabilistic Classification Data. IEEE Transactions on Visualization and Computer
Graphics, 20(12), 1703-1712. doi:10.1109/TVCG.2014.2346660

Angelov, P., & Yager, R. (2012). A new type of simplified fuzzy rule-based system. International
Journal of General Systems, 41(2), 163-185.

Angus Webb, J., Bond, N. R., Wealands, S. R., Mac Nally, R., Quinn, G. P., Vesk, P. A., & Grace,
M. R. (2007). Bayesian clustering with AutoClass explicitly recognises uncertainties in landscape
classification. Ecography, 30(4), 526-536.

Austin, P. C., Tu, J. V., Ho, J. E., Levy, D., & Lee, D. S. (2013). Using methods from the data-
mining and machine-learning literature for disease classification and prediction: a case study
examining classification of heart failure subtypes. Journal of clinical epidemiology, 66(4), 398-
407.

Azar, A. T., & El-Said, S. A. (2013). Probabilistic neural network for breast cancer classification.
Neural Computing and Applications, 23(6), 1737-1751. doi:10.1007/s00521-012-1134-8

Baban, S. M., Mohammed, P., Baberstock, P., Sankat, C., Boyd, W., Laukner, B., . . . Baban, S.
M. (2009). The Journey from Pondering to Publishing: University of the West Indies Press.

119

Bankert, R. L. (1994). Cloud classification of AVHRR imagery in maritime regions using a
probabilistic neural network. Journal of Applied Meteorology, 33(8), 909-918.

Barandiaran, I. (1998). The random subspace method for constructing decision forests. IEEE
transactions on pattern analysis and machine intelligence, 20(8).

Baum, B. A., Tovinkere, V., Titlow, J., & Welch, R. M. (1997). Automated cloud classification of
global AVHRR data using a fuzzy logic approach. Journal of Applied Meteorology, 36(11), 1519-
1540.

Ben-David, A. (2008). Comparison of classification accuracy using Cohen’s Weighted Kappa.
Expert Systems with Applications, 34(2), 825-832.

Bertini, J. R., & Zhao, L. (2013, 2013). A Comparison of Two Purity-Based Algorithms When
Applied to Semi-supervised Streaming Data Classification. Paper presented at the BRICS
Congress on Computational Intelligence and 11th Brazilian Congress on Computational
Intelligence.

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive Online Analysis. J. Mach.
Learn. Res., 11, 1601-1604.

Bird, S., Klein, E., & Loper, E. (2009). Categorizing and Tagging words & Learning to Classify
Text Natural language processing with Python: " O'Reilly Media, Inc.".

Bishop, C. M. (2006). Pattern recognition and machine learning: springer.

Blunsom, P. (2004). Hidden markov models. Lecture notes, 15, 18-19.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression
trees: CRC press.

Bremner, D., Demaine, E., Erickson, J., Iacono, J., Langerman, S., Morin, P., & Toussaint, G.
(2005). Output-sensitive algorithms for computing nearest-neighbour decision boundaries.
Discrete & Computational Geometry, 33(4), 593-604.

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Cheeseman, P., Self, M., Kelly, J., & Stutz, J. (1996). Bayesian Classification: AutoClass.

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile Networks and Applications, 19(2),
171-209.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine learning, 3(4), 261-283.

Cleary, J. G., & Trigg, L. E. (1995). K*: An instance-based learner using an entropic distance
measure Machine Learning Proceedings 1995 (pp. 108-114): Elsevier.

Cohen, W. W. (1995). Fast effective rule induction. Paper presented at the Proceedings of the
twelfth international conference on machine learning.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.

Costa, B. S. J., Angelov, P. P., & Guedes, L. A. (2015). Fully unsupervised fault detection and
identification based on recursive density estimation and self-evolving cloud-based classifier.
Neurocomputing, 150, 289-303.

120

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE
Transactions on, 13(1), 21-27.

Cruz, R. M., Sabourin, R., Cavalcanti, G. D., & Ren, T. I. (2015). META-DES: A dynamic ensemble
selection framework using meta-learning. Pattern recognition, 48(5), 1925-1935.

Datarobot, & Triffacta. The 8 Core Activities For Automated Data Preparation & Machine Learning:
Trifacta & Datarobot. Retrieved from https://www.datarobot.com/resource/trifacta-8-core-
activities-automated-data-preparation-machine-learning/.

Doug, L. (2001). Data Management: Controlling Data Volume, Velocity, and Variety: Application
Delivery Strategies”, META Group (currently with Gartner).

Dua, D., & Karra Taniskidou, E. (2017). UCI Machine Learning Repository.
https://archive.ics.uci.edu/ml/datasets.html

Efron, B., & Tibshirani, R. (1997). Improvements on cross-validation: the 632+ bootstrap
method. Journal of the American Statistical Association, 92(438), 548-560.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap: CRC press.

Esposito, F., Malerba, D., Semeraro, G., & Kay, J. (1997). A comparative analysis of methods for
pruning decision trees. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 19(5),
476-491.

Fabrico, L. (2014). Data Mining Classification.

Fan, W., & Bifet, A. (2013). Mining big data: current status, and forecast to the future. ACM
SIGKDD Explorations Newsletter, 14(2), 1-5.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., & Hutter, F. (2015). Efficient
and robust automated machine learning. Paper presented at the Advances in Neural Information
processing systems.

Fischetti, M. (2015). Fast training of Support Vector Machines with Gaussian kernel. Discrete
Optimization.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering. Machine
learning, 2(2), 139-172.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text
classification. The Journal of machine learning research, 3, 1289-1305.

Francisci Morales, D. G., & Bifet, A. (2015). SAMOA: Scalable Advanced Massive Online Analysis.
Journal of Machine Learning Research, 16(Jan), 149-153.

Frank, E., Hall, M., & Pfahringer, B. (2002). Locally weighted naive bayes. Paper presented at the
Proceedings of the Nineteenth conference on Uncertainty in Artificial Intelligence.

Freund, Y., & Schapire, R. E. (1996). Experiments with a new boosting algorithm. Paper presented

at the Icml.

Gennari, J. H., Langley, P., & Fisher, D. (1989). Models of incremental concept formation. Artificial
Intelligence, 40(1-3), 11-61.

Gurov, S. I. (2013). Estimation of the reliability of a classification algorithm as based on a new
information model. Computational Mathematics and Mathematical Physics, 53(5), 640-646.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The WEKA
data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10-18.

https://www.datarobot.com/resource/trifacta-8-core-activities-automated-data-preparation-machine-learning/
https://www.datarobot.com/resource/trifacta-8-core-activities-automated-data-preparation-machine-learning/
https://archive.ics.uci.edu/ml/datasets.html

121

Haralick, R. M., Shanmugam, K., & Dinstein, I. H. (1973). Textural features for image
classification. Systems, Man and Cybernetics, IEEE Transactions on(6), 610-621.

Hassan, M. R., Ramamohanarao, K., Karmakar, C., Hossain, M. M., & Bailey, J. (2010). A novel
scalable multi-class ROC for effective visualization and computation Advances in Knowledge
Discovery and Data Mining (pp. 107-120): Springer.

Hassani, H. (2017). Research methods in computer science: The challenges and issues. arXiv
preprint arXiv:1703.04080.

Hochbaum, D. S., & Shmoys, D. B. (1985). A best possible heuristic for the k-center problem.
Mathematics of operations research, 10(2), 180-184.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the national academy of sciences, 79(8), 2554-2558.

Hu, Y. H., Palreddy, S., & Tompkins, W. J. (1997). A patient-adaptable ECG beat classifier using
a mixture of experts approach. Biomedical Engineering, IEEE Transactions on, 44(9), 891-900.

Ingersoll, G. (2009). Introducing apache mahout. Scalable, commercial friendly machine learning
for building intelligent applications. IBM.

Iounousse, J., Er-Raki, S., El Motassadeq, A., & Chehouani, H. (2015). Using an unsupervised
approach of Probabilistic Neural Network (PNN) for land use classification from multitemporal
satellite images. Applied Soft Computing, 30, 1-13.

Jacques, J., & Preda, C. (2014). Functional data clustering: a survey. Advances in Data Analysis
and Classification, 8(3), 231-255. doi:10.1007/s11634-013-0158-y

Jain, A., Murty, M., & Flynn, P. (1999). Data clustering: a review. ACM Computing Surveys
(CSUR), 31(3), 264-323. doi:10.1145/331499.331504

Jain, A. K., & Waller, W. G. (1978). On the optimal number of features in the classification of
multivariate Gaussian data. Pattern recognition, 10(5), 365-374.

Jain, M., Dua, P., & Lukiw, W. (2013). Data adaptive rule-based classification system for
Alzheimer classification. J Comput Sci Syst Biol, 6, 291-297.

John, G. H., & Langley, P. (1995). Estimating continuous distributions in Bayesian classifiers.
Paper presented at the Proceedings of the Eleventh conference on Uncertainty in artificial
intelligence.

Jordan, A. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression
and naive bayes. Advances in Neural Information processing systems, 14, 841.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model
selection. Paper presented at the Ijcai.

Koller, D., & Friedman, N. (2009). Probabilistic graphical models: principles and techniques: MIT

press.

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2017). Auto-WEKA 2.0:
Automatic model selection and hyperparameter optimization in WEKA. The Journal of machine
learning research, 18(1), 826-830.

Krawczyk, B., Stefanowski, J., & Wozniak, M. (2015). Data stream classification and big data
analytics. Neurocomputing, 150, 238-239. doi:10.1016/j.neucom.2014.10.025

Kwak, N., & Choi, C.-H. (2002). Input feature selection for classification problems. Neural
Networks, IEEE Transactions on, 13(1), 143-159.

122

Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic models
for segmenting and labeling sequence data.

Lars, K., Chris, T., Frank, H., Holger, H., & Kevin, L.-B. (2017). Auto-WEKA Sample Datasets.
http://www.cs.ubc.ca/labs/beta/Projects/autoWeka/datasets/

Law, Y.-N., & Zaniolo, C. (2005). An adaptive nearest neighbor classification algorithm for data
streams Knowledge Discovery in Databases: PKDD 2005 (pp. 108-120): Springer.

Leiva-Murillo, J. M., Gomez-Chova, L., & Camps-Valls, G. (2013). Multitask Remote Sensing Data
Classification. IEEE Transactions on Geoscience and Remote Sensing, 51(1), 151-161.
doi:10.1109/TGRS.2012.2200043

Li, L. (2015). Support Vector Machines Selected Applications of Convex Optimization (pp. 17-52):
Springer.

Li, T., Zhang, C., & Ogihara, M. (2004). A comparative study of feature selection and multiclass
classification methods for tissue classification based on gene expression. Bioinformatics, 20(15),
2429-2437.

Li, X.-L., & Liu, B. Rule-based Classification.

Lin, Z., Yan, C., Yan, L., & Nan, L. (2008, 19-21 Dec. 2008). Application of Data Mining
Classification Algorithms in Customer Membership Card Classification Model. Paper presented at
the Information Management, Innovation Management and Industrial Engineering, 2008. ICIII
'08. International Conference on.

Liu, H., Li, J., & Wong, L. (2002). A comparative study on feature selection and classification
methods using gene expression profiles and proteomic patterns. Genome informatics, 13, 51-60.

Liu, H., & Motoda, H. (1998). Feature selection for knowledge discovery and data mining:
Springer Science & Business Media.

Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and
clustering. Knowledge and Data Engineering, IEEE Transactions on, 17(4), 491-502.

Liu, W., Liu, H., Tao, D., Wang, Y., & Lu, K. (2015). Manifold regularized kernel logistic regression
for web image annotation. Neurocomputing.

Loh, W. Y. (2011). Classification and regression trees. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery, 1(1), 14-23.

Lu, N., Mabu, S., Mabu, S., Li, W., Hirasawa, K., & Hirasawa, K. (2010, 2010). Hybrid rule mining
based on fuzzy GNP and probabilistic classification for intrusion detection. Paper presented at the
SICE Annual Conference.

Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial Intelligence, 172(6),
852-883. doi:10.1016/j.artint.2007.10.017

Ma, B. L. W. H. Y. (1998). Integrating classification and association rule mining. Paper presented
at the Proceedings of the fourth international conference on knowledge discovery and data
mining.

Mahmood, T., & Afzal, U. (2013). Security Analytics: Big Data Analytics for cybersecurity: A
review of trends, techniques and tools. Paper presented at the 2013 2nd National Conference on
Information Assurance (NCIA).

Majnik, M., & Bosnic, Z. (2013). ROC analysis of classifiers in machine learning: A survey.
Intelligent Data Analysis, 17(3), 531-558.

http://www.cs.ubc.ca/labs/beta/Projects/autoweka/datasets/

123

Maravall, D., De Lope, J., & Fuentes, J. P. (2013). Fusion of probabilistic knowledge-based
classification rules and learning automata for automatic recognition of digital images. Pattern
Recognition Letters, 34(14), 1719-1724. doi:10.1016/j.patrec.2013.03.019

McCallum, A., Nigam, K., & Ungar, L. H. (2000). Efficient clustering of high-dimensional data sets
with application to reference matching. Paper presented at the Proceedings of the sixth ACM
SIGKDD international conference on Knowledge discovery and data mining.

Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine under test.
Neurocomputing, 55(1), 169-186.

Mladeni'c, D., & Grobelnik, M. (1998). Feature selection for classification based on text hierarchy.
Paper presented at the Text and the Web, Conference on Automated Learning and Discovery
CONALD-98.

Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal processing magazine,
13(6), 47-60.

Mossman, D. (1999). Three-way rocs. Medical Decision Making, 19(1), 78-89.

Murphy, K. P. (2006). Naive bayes classifiers. University of British Columbia.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective: MIT press.

Murthy, S. K. (1998). Automatic construction of decision trees from data: A multi-disciplinary
survey. Data mining and knowledge discovery, 2(4), 345-389.

Ng, K., & Lippmann, R. P. (1991). A comparative study of the practical characteristics of neural
network and conventional pattern classifiers. Paper presented at the Advances in Neural
Information processing systems.

Nielsen, J. D., Rumí, R., & Salmerón, A. (2009). Supervised classification using probabilistic
decision graphs. Computational Statistics and Data Analysis, 53(4), 1299-1311.
doi:10.1016/j.csda.2008.11.003

Nosofsky, R. M., & Little, D. R. (2010). Classification response times in probabilistic rule-based
category structures: Contrasting exemplar-retrieval and decision-boundary models. Memory &
cognition, 38(7), 916-927. doi:10.3758/MC.38.7.916

Owen, S., Anil, R., Dunning, T., & Friedman, E. (2011). Mahout in action: Manning Shelter Island.

Pal, M., & Foody, G. M. (2010). Feature selection for classification of hyperspectral data by SVM.
Geoscience and Remote Sensing, IEEE Transactions on, 48(5), 2297-2307.

Pavani, S.-K., Sukno, F. M., Delgado-Gomez, D., Butakoff, C., Planes, X., & Frangi, A. F. (2012).
An Experimental Evaluation of Three Classifiers for Use in Self-Updating Face Recognition
Systems. Information Forensics and Security, IEEE Transactions on, 7(3), 932-943.

Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of

max-dependency, max-relevance, and min-redundancy. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 27(8), 1226-1238.

Pizzuti, C., & Talia, D. (2003). P-autoclass: Scalable parallel clustering for mining large data sets.
Knowledge and Data Engineering, IEEE Transactions on, 15(3), 629-641.

Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized
likelihood methods. Advances in large margin classifiers, 10(3), 61-74.

Pratama, M., Anavatti, S. G., Joo, M., & Lughofer, E. D. (2015). pClass: An Effective Classifier for
Streaming Examples. IEEE Transactions on Fuzzy Systems, 23(2), 369-386.
doi:10.1109/TFUZZ.2014.2312983

124

Punch III, W. F., Goodman, E. D., Pei, M., Chia-Shun, L., Hovland, P. D., & Enbody, R. J. (1993).
Further Research on Feature Selection and Classification Using Genetic Algorithms. Paper
presented at the ICGA.

Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.

Quinlan, J. R. (2014). C4. 5: programs for machine learning: Elsevier.

Rabiner, L. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, 77(2), 257-286. doi:10.1109/5.18626

Refaeilzadeh, P., Tang, L., & Liu, H. (2009). Cross-validation Encyclopedia of database systems
(pp. 532-538): Springer.

Rice, J. R. (1975). The algorithm selection problem.

Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers estimate Bayesian a
posteriori probabilities. Neural computation, 3(4), 461-483.

Rokach, L., & Maimon, O. (2010). Classification Trees. In O. Maimon & L. Rokach (Eds.), Data
Mining and Knowledge Discovery Handbook (pp. 149-174): Springer US.

ROY, K. (2018). RapidMiner looks to boost data scientists' productivity with Auto Model. Retrieved
from 451 Research: https://rapidminer.com/resource/451-research-report-auto-model/

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines,
regularization, optimization, and beyond: MIT press.

Sharma, N., Bajpai, A., & Litoriya, M. R. (2012). Comparison the various clustering algorithms of
Weka tools. facilities, 4(7).

Sheikholesalmi, F., Mardani, M., & Giannakis, G. B. (2014, 2014). Classification of streaming big
data with misses. Paper presented at the 48th Asilomar Conference on Signals, Systems and
Computers.

Sinha, K. (2014). Semi-Supervised Learning. In C. C. Aggarwal (Ed.), Data Classification:
Algorithms and Applications.

Small, M. (2013). Securing Big Data. ITNOW, 55(3), 10-11.

Smith-Miles, K. A. (2009). Cross-disciplinary perspectives on meta-learning for algorithm
selection. ACM Computing Surveys (CSUR), 41(1), 6.

Sokal, R. R. (1974). Classification: purposes, principles, progress, prospects. Science, 185(4157),
1115-1123.

Sparks, E. R., Talwalkar, A., Haas, D., Franklin, M. J., Jordan, M. I., & Kraska, T. (2015).
Automating model search for large scale machine learning. Paper presented at the Proceedings
of the Sixth ACM Symposium on Cloud Computing.

Strauss, J. S., Bartko, J. J., & Carpenter, W. T. (1973). The use of clustering techniques for the

classification of psychiatric patients. The British Journal of Psychiatry, 122(570), 531-540.

Suthaharan, S. (2014). Big data classification: problems and challenges in network intrusion
prediction with machine learning. ACM SIGMETRICS Performance Evaluation Review, 41(4), 70-
73. doi:10.1145/2627534.2627557

Tang, J., Alelyani, S., & Liu, H. (2014). Feature selection for classification: A review. Data
Classification: Algorithms and Applications. Editor: Charu Aggarwal, CRC Press In Chapman &
Hall/CRC Data Mining and Knowledge Discovery Series.

https://rapidminer.com/resource/451-research-report-auto-model/

125

Tankard, C. (2012). Big data security. Network security, 2012(7), 5-8.

Tekin, C., & van der Schaar, M. (2013). Distributed online big data classification using context
information. Paper presented at the Communication, Control, and Computing (Allerton), 2013
51st Annual Allerton Conference on.

Tortajada, S., Robles, M., & García-Gómez, J. M. (2015). Incremental Logistic Regression for
Customizing Automatic Diagnostic Models Data Mining in Clinical Medicine (pp. 57-78): Springer.

Triguero, I., García, S., & Herrera, F. (2013). Self-labeled techniques for semi-supervised
learning: taxonomy, software and empirical study. Knowledge and Information Systems, 42(2),
245-284.

Tung, A. K. (2009). Rule-based Classification Encyclopedia of Database Systems (pp. 2459-
2462): Springer.

Vens, C., Struyf, J., Schietgat, L., Džeroski, S., & Blockeel, H. (2008). Decision trees for
hierarchical multi-label classification. Machine learning, 73(2), 185-214.

Vilalta, R., & Drissi, Y. (2002). A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2), 77-95.

Wang, X., & Pardalos, P. M. (2015). A Survey of Support Vector Machines with Uncertainties.
Annals of Data Science, 1(3-4), 293-309.

Weisberg, S. (2005). Applied linear regression (Vol. 528): John Wiley & Sons.

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.

Yan, X., & Su, X. (2009). Linear regression analysis: theory and computing: World Scientific.

Yan, Y., Zhu, Q., Shyu, M.-L., & Chen, S.-C. (2016). A Classifier Ensemble Framework for
Multimedia Big Data Classification.

Yunck, T. P. (1976). A technique to identify nearest neighbors. Systems, Man and Cybernetics,
IEEE Transactions on(10), 678-683.

Zhang, C., & Zhang, S. (2002). Association rule mining: models and algorithms: Springer-Verlag.

Zhao, Z., & Liu, H. (2007). Semi-supervised Feature Selection via Spectral Analysis. Paper
presented at the SDM.

Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields
and harmonic functions. Paper presented at the ICML.

