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Abstract 
A lot of machine learning (ML) models and algorithms exist and in 

designing classification systems, it is often a challenge looking 

for and selecting the best performing ML algorithm(s) to use for 

a dataset in a short period of time. Often, one must learn thor-

oughly about the data set structure and content, decide whether to 

use a supervised, semi-supervised or an unsupervised learning 

strategy, and then investigate, select or design via trial and 

error a classification or clustering algorithm that would work 

most accurately for that specific dataset. This can be quite a 

time consuming and tedious process. Additionally, a classification 

algorithm may not perform very well with a dataset as compared to 

using a clustering algorithm. Meta-learning (learning to learn) 

and automatic ML (autoML) are data mining-based formalisms for 

modelling evolving conventional ML functions and toolkit systems. 

The concept of modelling a decision tree-based combination of both 

formalisms as a Hybrid-AutoML toolkit extends that of traditional 

complex autoML systems.  

In hybrid-autoML, single or multiple predictive models are built 

by combining a three-layered decision learning architecture for 

automatic learning mode and model selection, by engaging formal-

isms for selecting from a variety of supervised or unsupervised 

ML algorithms and generic meta information obtained from varying 

multi-datasets. The work presented in this thesis aims to study, 

conceptualize, design and develop this hybrid-autoML toolkit. By 

extending in the simplest form, some existing methodologies for 

the model training aspect of autoML systems. The theoretical and 

experimental development focuses on the extension of autoWeka 

and use of existing meta-learning, algorithm selection and deci-

sion tree concepts. It addresses the issue of efficient ML mode 

(supervised or unsupervised) and model selection for varying 

multi-datasets, learning methods representations of practical 

alternative use cases and structuring of layered decision ML un-

folding, and algorithms for constructing the unfolding. The im-

plementation aims to develop tools for hybrid-autoML based model 

visualization or evaluation, use case simulations and analysis 

on single or multi varying datasets. An open source tool called 

hybrid-autoML has been developed to support these functionali-

ties. Hybrid-autoML provides a user-friendly graphical interface 

that facilitates single or multi varying datasets entry, sup-

ports automatic learning mode or strategy selection, automatic 

model selection on single or multi-varying datasets, supports 

predictive testing, and allows the automatic visualization and 

use of a set of analytical tools for model evaluation. It is 

highly extensible and saves a lot of time. 
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Chapter 1 

1 Introduction 
This chapter provides some background information, highlights into 

the motivations and problems resolved in this thesis and then 

discusses the aims and contributions of this thesis. 

1.1 Background 

Over the past decades, there has been an explosion in the volume, 

variety and velocity of data. Offering effective solutions as a 

resolution of some major problems this explosion brings has become 

ever more important. One of such solutions is big data machine 

learning (ML) classification or clustering. However, with the solu-

tions offered we become faced with several problems that include but 

not limited to the following: 

 

1. Varying domains: A classifier trained using a labelled dataset 

may not be suitable for another dataset. 

2.  Traditional methods cannot efficiently accommodate the large 

varieties of class types found in a dynamically growing dataset. 

This often leads to inaccurate classification results. 

3. Traditional methods are not suitable for present day multiple 

learning or multi-varying data tasks (Suthaharan, 2014).  

Data classification is a data mining process of allocating data 

into one or more categories. The original and traditional concepts 

of classification involves a process of allocating pre-labelled data 

input into their relevant category, deriving a classification 

function and then applying this function to correctly predict the 

class/category of un-labelled data input.  

One of the most basic ways for organizations to determine the 

relative importance of the data they possess is through data 

classification. An interview of three chief information security 

officers (CISOs), from different organizations (Microsoft, Royal 

Bank of Scotland and dell incorporations) by Microsoft trustworthy 

computing in (Computing, 2014), confirms the relative importance of 

data classification in today’s information security scenery.  

The data many organizations must deal with in recent years is 

referred to as big data; hence it is important to reason data 

classification in terms of big data. Big data is a term usually 

defined in terms of Volume, Variety and Velocity (3 Vs). Definitions 

and discussions on big data can be found in (Chen, Mao, & Liu, 2014; 

Fan & Bifet, 2013; Mahmood & Afzal, 2013; Small, 2013). There are 

numerous benefits of big data, which have been discussed over the 

years in different literatures, some of them include: increased 
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efficiency, better and improved services in different sectors e.g. 

healthcare, e-commerce, etc.  

In the literatures, the classification problem is mostly 

communicated as follows. Given a set of class labels (Charu C. 

Aggarwal) and a random variable input X under consideration, 

determine correctly which label should be assigned to a new 

unlabelled instance of X (Charu C Aggarwal, 2014b). Clustering 

differs from classification in that it uses similarities between 

feature variables to perform separation into groups without prior 

understanding of the group’s structure (i.e. it uses unlabelled 

dataset) (Jain, Murty et al. 1999, Aggarwal and Reddy 2013, Jacques 

and Preda 2014). While for classification, the separation is done 

based on training dataset that translates information concerning the 

construction of the clusters (i.e. it uses labelled data) (Sokal 

1974, Aggarwal 2014, Fabrico 2014). Classification is regularly 

denoted as supervised learning whereas clustering is often denoted 

as unsupervised Learning. Classification of big data has several ad-

vantages and benefits, some of which can be seen in Appendix 1.  

There are several conventional tools for data classification, and 

one of such tools is waikato environment for knowledge analysis 

(Weka) (Hall, Frank et al. 2009). It is a data-mining tool designed 

mainly for research purposes. It contains a lot of support that 

allows for data mining tasks easily and can help assist in the 

development of new ML schemes or systems. The Weka API (application 

programming interface) provides various methods and function to help 

us build customisable ML systems.  

ML is the field under which data classification resides. There is 

also no doubt that in data science, ML plays a very key and vital 

role in building smart and intelligent solutions using big data. 

From building an understanding of the most widely used ML schemes 

and algorithms, it has been observed that there are a lot of ML 

algorithms out there, and a model trained on one dataset might not 

be useful on another dataset. Also, data scientists spend an awful 

amount of time searching and selecting the best ML algorithm to use 

for a given data problem, which in turn brings about the need and 

growth in the automated ML (autoML) field. The autoML field is a 

fast-growing ML area, designed to automate tasks of data 

preparation, pre-processing, and model training to ease the tasks of 

both intermediate and experts in the field.  

Although there are a lot of traditional data classifiers or 

clusterers, classification techniques and tools that can be used to 

achieve data classification, a majority still lack in their ability 

to effectively address the major challenges of big data on the fly. 

For example, some are not very effective in handling heterogeneous 

multi-datasets, or for handling large data streams. Secondly, some 

of the traditional classification methods are not flexible and 

scalable enough to handle large datasets or changes for which they 
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were not trained to handle. A highly acceptable classification 

method or tool should be able to address the three major challenges 

of big data, should be flexible enough to adapt to changes within 

the organization. Lastly, another limitation of many classification 

systems, is the time and tedious process spent in finding the best 

ML algorithm to use on multi-varying datasets in a timely fashion. 

In ML, the decision about what learning algorithm to use, has been 

incorporated into the meta-learning (Learning to learn) research. 

Meta-learning has proven to have a major correlation with classifi-

cation tasks. This connection is because as a researcher designing a 

classification system, one must empirically and analytically study 

existing algorithms (tons of algorithms exists) and in some cases 

even make use of some base concepts or hypothesis while designing 

the systems. 

1.2  Research Focus and Values 

In effectively designing a classification system the first step af-

ter defining what the achievable goal is, usually entails the pro-

cess of deciding what ML approach or model to select. Although some 

autoML systems (e.g. autoWeka and auto-sklearn) discussed in section 

2.7.3 of this thesis, are efficient in their own ways for model 

selection, some limitations they still have include: 

a) Auto Learning mode as well as model selection: Not considering 
and using more generic information and knowledge about various 

learning schemes (supervised, unsupervised or semi supervised) 

and algorithms (e.g. what happens if for a given scenario only 

a small amount of labelled training data instances is available?) 

to automatically decide on the mode or model algorithm to use 

of any given dataset. 

b) Complexity of the various autoML systems, caused mainly by 

focussing heavily on the problem of hyper parameter search and 

selection.  

c) Supplying multi-varying datasets: Inability to supply multiple 
datasets from different domains and sources at once to the tool 

for processing. This is mainly since because the systems are 

complex and consider not just the algorithm space but also the 

hyper parameter space and other parameters such as resource 

budget, etc. they need to consider only one dataset at a time. 

These limitations listed above, form part of the problems and 

motivations for undergoing this research. The importance of study-

ing, understanding, designing, conceptualizing, and analyzing vari-

ous ML algorithms to develop autoML systems for big data is well-ac-

cepted in many application areas. The concept of meta-learning with 

hybrid autoML can play an important role with regards to the repre-

sentations of such a system. However, there is a scarcity of re-

search on the assessment of the practical usefulness of the new rep-

resentations for automatic mode as well as model selection on single 

or multi-varying datasets. To achieve such an assessment, effective 
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formal support including the use of more generic knowledge about 

various ML methods and formal verification are required, and appro-

priate tools facilitating the automatic selection and analysis of an 

appropriate algorithm for big data ML tasks are necessary.  

The contributions in this thesis helps create a simple and less 

time-consuming hybrid-autoML system, which is beneficial in the sub 

field of autoML, and the data science and ML research community at 

large.  

1.3  Aims and Contributions 

Our research hypothesis is that the hybrid big data autoML model de-

signed in this thesis, supported by an appropriate toolkit can de-

liver an effective approach to automatically determine the best ML 

mode and model that can yield the best accuracy, given a heterogene-

ously large dataset, limited resources (i.e. limited time) and 

knowledge about various ML methods. To validate this hypothesis, a 

generic methodology involving both theory and practical research is 

employed. The main aims of the study are as follows: 

Aim-1, Theory: To provide a formal foundation for hybrid autoML con-

cepts, involving the extension of current formalization and 

proofs of several results concerning model selection which 

hence govern the correct use, manipulation and analysis of var-

ious types of autoML abstraction. 

Aim-2, Toolkit: To develop a platform for uploading single or multi-

varying datasets and provide automatic decision learning on the 

ML mode to use, dedicated auto ML model selection, training, 

prediction and analysis for all the datasets on the fly. 

Aim-3, Evaluation: To assess the utility of hybrid-autoML models on 

practical use-cases faced by experts in the field. 

With regards to Aim-1, we propose several additional properties of 

basic autoML structure incorporating meta-learning. We provide new 

learning execution semantics for varying multi dataset variants, and 

we design algorithmic functions for automatic clustering (an ‘auto-

Prob’ function), automatic classification model selection (a generic 

rule based ‘model selection’ function) and the simulation of conven-

tional ML for multi datasets. We extend the existing basic autoML 

model concept for Auto-Weka (Kotthoff, Thornton, Hoos, Hutter, & 

Leyton-Brown, 2017) to formally support alternative representations 

of a given behavior based on some ideas in meta-learning research 

and in auto-sklearn (Feurer et al., 2015).  
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The new structure allows one to model multiple alternative scenarios 

that can occur in practice. We also extend basic meta-learning algo-

rithms to support new generic knowledge representations. We formally 

describe how the hybrid autoML model saves time in the first in-

stance for any user of the toolkit, by pointing them to what ML al-

gorithm they can start exploring.  

We present a novel automatic clustering selection algorithm, that 

can take a decision to choose between existing clustering algorithms 

in Weka or use an autoProb clustering function designed based on 

varying distance/similarity measures e.g. Euclidean distance. We in-

vestigate the unfolding of a less complex solution that isn’t 

primarily focused on considering the set of the hyper parameter 

space, but simply on using general knowledge about different 

learning schemes and more generic features of the data to learn and 

automatically build models on various datasets from different domain 

sources. Such an unfolding contains a representation of all the pos-

sible running processes. We provide an algorithm for the construc-

tion of the unfolding.  

In pursuit of Aim-2, we develop ‘Hybrid-autoML’, which is an open 

source tool for automatic learning mode, model selection, and model 

analysis. The tool is implemented as a Java based application or 

command line (CLI) platform which provides a flexible and extensible 

framework for the development and analysis of simple conventional 

auto ML for multi-datasets. Hybrid-autoML provides a user-friendly 

graphical interface that facilitates single or multi-datasets entry, 

supports visual simulation of various ML scenarios (e.g. presence of 

large labelled training data with little unlabeled test data, small 

unlabeled data with no specific training dataset, large unlabeled 

data with no training data, etc.), facilitates predictions, and in-

tegrates a set of analysis tools from Weka application programming 

interface (API). More specifically, for automatic model learning we 

implement the essential functionalities for their creation and visu-

alization on multi-datasets, as well as facilities for their simula-

tion, error analysis, performance verification and evaluation. We im-

plement rule-based algorithms for visualizing dataset properties, 

choosing target features for model build consistency and estimating 

missing data information.  

With regards to Aim-3, we apply ‘Hybrid-AutoML’ to five different 

practical ML scenarios related to big datasets to assess the practi-

cality of the model.  
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1.4 Outline of the Thesis 

The rest of the thesis is organized as follows. 

Chapter 2 presents a detailed literature review on big data machine 

learning, classification and clustering principles and tools 

(e.g. Weka) in the ML research community and presents detailed 

discussions on the algorithm selection problem and how meta-

learning formalism can be used to help resolve the algorithm 

selection problem. Finally, it presents discussions on autoML 

and a comparison of some of the current state of the art autoML 

related works and tools. 

Chapter 3 defines all methods used in this thesis and presents a de-

tailed discussion of all pre-design experimentations including 

the setup, algorithms considered, problems identified, and 

knowledge gained during the experiments. The identified prob-

lems and knowledge gained in this chapter, served as the basis 

for the design and modelling in the next chapter.   

Chapter 4 describes the Hybrid-AutoML system’s design, architecture, 

components, and characteristics, and presents the theory and 

algorithms for Hybrid-AutoML based unfolding. It also outlines 

the design framework and describes additional tools that have 

been added or used for the models verification, simulation and 

analysis. 

Chapter 5 discusses the results obtained and analyzed from using the 

Hybrid-AutoML toolkit on five different practical use cases. 

Chapter 6 summarizes and concludes the work and proposes directions 

for further work. 

1.5  List of Publications 

Portions of the work within this thesis have been documented in the 

following publications:  

Conferences/Workshops 

1. Ighoroje, L., Lu, J., & Xu, Q. (2016). Hybrid classifica-

tion system design using a decision learning approach and 

three-layered structure - A Meta learning paradigm in Data Min-

ing. In J. Gołuchowski, M. Pańkowska, C. Barry, M. Lang, H. 

Linger, & C. Schneider (Eds.), Information Systems Development: 

Complexity in Information Systems Development (ISD2016 Proceed-

ings). Katowice, Poland: University of Economics in Katowice. 

ISBN: 978-83-7875-307-0. 
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Summary 

We have provided in this section some background introduction into 

designing big data classification system, shown what the values and 

research focus in this thesis are, discussed the aims and 

contributions made in this thesis, and provided an outline for the 

rest of this thesis. More specifically shown is that, in designing 

highly efficient and robust big data classification systems, the 

algorithm selection problem and the time data scientists spend in 

building ML models can be greatly reduced by engaging the sub fields 

of autoML and meta-learning. In addressing the limitations of some 

state of the art autoML systems discussed in the next chapter, this 

research thesis considers the following contributions:  

1. An algorithmic function for automatic learning mode selection. 

2. An algorithmic function for automatic clustering model 

selection, with a new added function into the mix of available 

Weka clusterers called autoProbClass for class clustering, using 

euclidean distance estimation.   

3. A toolkit that supports authomatic ML model selection on single 

or varying multi-datasets, depending on the user scenario. Using 

a less complex solution that isn’t primarily focused on 

considering the set of the hyper parameter space, but simply on 

using general knowledge about different learning schemes and 

more generic features of the data to learn and automatically 

build models on various datasets from different domain sources. 

4. Saves model build time for multi-datasets ML tasks.  

5. Is highly extensible and flexible. 

In the next chapter, we provide more detailed discussions on ML and 

autoML concepts, methods, techniques and tools from state-of-the-art 

literature reviews.   
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Chapter 2 

2 Literature Review 

Introduction 

This Chapter provides discussions on what is already known in the 

area of this research. Touching particularly on the key concepts, 

theories, and factors and how they are relevant to this research. 

Some inconsistencies, limitations and problem in existing 

literatures are discussed. Discussions on why some of these 

limitations and inconsistencies occur, how the knowledge relates to 

this research, as well as issues still yet to study effectively is 

carried out. Finally, it sets the basis for what contributions this 

research makes and who will benefit from such a study.  

2.1 Big Data Machine Learning 

Data science is a science used to tackle big data and comprises of 

data cleansing, preparation and data analysis. Big data is a term 

usually discussed in terms of Volume, Variety and Velocity (3 Vs). 

Definitions and discussions on big data can be found in (Chen, Mao, 

& Liu, 2014; Fan & Bifet, 2013; Mahmood & Afzal, 2013; Small, 2013). 

There are numerous benefits of big data, which have been discussed 

over the years in different literatures, some of which include: 

increased efficiency, better and improved services in different 

sectors e.g. healthcare, e-commerce, security etc. Datasets from 

multiple sources are gathered and then machine learning, predictive 

analytics and sentiment analysis are used to extract vital 

information from the collected datasets. The field of data science 

acts as an umbrella under which data mining, data analytics, machine 

learning and various other related subject areas are included.  

Machine Learning (ML) as one of the subject areas in the field of 

data science is described as the act of applying algorithms to data, 

in order to learn from it and then predict future trends in any 

topic or domain area such as the health domain. It focuses mainly on 

the application of algorithms and statistics to the data as opposed 

to data science which is the term used when referring to the whole 

data processing practise. Machine Learning comprises supervised 

learning (data classification) and unsupervised learning (data 

clustering) schemes. The characteristic of big data brings about new 

challenges and opportunities for classification algorithms, giving 

rise to a new era of classification algorithms that will be able to 

address and handle the challenges of velocity, variety and volume 

that comes with big data. One of which is proposed in this research 

thesis. 
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2.1.1   Big Data Classification Related works  

The challenges that big data characteristics bring have led to new 

trends of classification algorithms to help address the challenges 

for effective data classification of big data. A lot of literatures 

are available on classification algorithms which is useful for big 

data classification. However, this section will focus on discussions 

of literatures that employ classification algorithms to address the 

velocity, variety & volume challenges of big data. Secondly, 

discussions on literatures that employ auto classification 

algorithms are carried out. Finally, Literatures that use semi-

supervised classification techniques are discussed. 

To address the velocity challenge of big data, ‘online streaming 

classification algorithms’ are being proposed and developed, while 

for addressing the challenges of variety, ‘heterogeneous machine 

learning’ or ‘multi-view classification for data heterogeneity’ 

algorithms are designed. For addressing the challenges of volume, 

much efforts are being made to scale up existing classification 

algorithms. Some algorithms however address either one or two of 

these challenges. Nevertheless, it is seemingly difficult to see an 

evolving, automatic, semi-supervised, hybrid probabilistic big data 

classification algorithm that can address the three challenges at 

the same time and in a simple and effective manner, like the one 

being proposed in this thesis.   

A survey of stream classification algorithms is conferred in (Charu 

C Aggarwal, 2014c). In 2005, the authors in (Law & Zaniolo, 2005), 

proposed an adaptive nearest neighbour classification algorithm 

(ANNCAD) for data streams.  

In more recent times however,  (Bertini & Zhao, 2013) present a 

graph-based algorithm to discourse the problem of moderately 

labelled streaming data. Their algorithm extends a semi-supervised 

K-associated optimal graph algorithm (KAOGSS) and a purity measure 

transductive algorithm (PMTLA), which is also a graph-based model. 

The accuracy and processing time of the algorithms extended, where 

tested with real and artificial streams of data and the results 

compared. This differs from the proposed algorithm in this research 

in the sense that the proposed algorithm in this thesis incorporates 

concepts from an unsupervised probabilistic Bayesian classification 

method called autoClass (Cheeseman, Self, Kelly, & Stutz, 1996) and 

concepts from supervised rule-based methods.  

Another interesting work is presented in (Sheikholesalmi, Mardani, 

& Giannakis, 2014), for the classification of streaming incomplete 

big data sets. A systematic model suitable for streaming big data, 

which makes use of the core low-dimensionality of feature vectors to 

design an SVM classifier that can handle relevant feature misses, is 

discussed. It is developed on the instinct that errors can be added 

using the core low-dimensionality of feature vectors, likewise the 
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basic comparisons amongst data instances of similar class. 

Stochastic alternating minimization is used to design an online 

solution that renders the proposed approach operative for big scale 

dataset with probably numerous features. Computational challenges 

where mitigated by developing a first order ‘stochastic sub-gradient 

descent (SGD)’ structure for classifier update. However, their 

proposed design is quite a complex classifier for online streaming 

data. 

The identification stage of the two stage, real time fault 

detection and identification system proposed in (Costa, Angelov, & 

Guedes, 2015) shows promising applicability to on-line streaming 

uses. The first stage in their approach is the fault detection, 

which is founded on the notion of the density in the data space for 

detection and measure of abnormalities. The second stage is the 

identification/classification, which is founded on a self-evolving 

fuzzy rule based (FRB) classifier system called the ‘AutoClass’. It 

is a fully unsupervised rule-based classifier, where the learning 

phase starts from scratch with no need for pre-specified parameters 

(e.g. the fuzzy rules or the number of classes). The number of 

classes grows on its own with new class labels added automatically 

when there is a detection of considerable abnormalities. The 

autoClass can easily evolve an existing initial rule base. The 

autoClass works with the concept of data clouds and the structure 

follows the idea of an AnYa FRB (Angelov & Yager, 2012) classifier. 

A ‘zone of influence’ user definition is the starting point of the 

autoClass Algorithm. The rule base is completely empty at the start 

(i.e. there is no predefined rule, class label, number of steps, 

etc.), it is only after construing the first data instance, a data 

cloud class nc is created and a corresponding class label classl 

added (this completes the first inference rule). For subsequent 

iterations, autoClass works with the existing FRB, updating the 

current rules and adding new ones when needed. New classes are 

formed over time and a certain number of closely related 

abnormalities are grouped together to create a new cloud class. The 

autoClass classifier developed by the authors is similar in a way to 

the one designed in this research thesis in the sense that it is an 

autonomous and self-evolving classifier, where a new class is 

created if one doesn’t already exist for an incoming dataset. 

However, the one described in the literature is a fully unsupervised 

fuzzy rule-based classifier that depends on a previous fault 

detection stage that uses the concept of density (Recursive Density 

Estimation) in the data space to determine all possible faults (this 

concept of density used is not the same as probability density 

function). Secondly, the autoClass algorithm begins with a 

definition of an initial ‘Zone of influence’ by the user. Lastly, 

even though the autoClass classifier looks promising for resolving 

the velocity (i.e. online streaming capability) and volume (i.e. it 

is scalable) challenges of big data, it does not fully address or 

provide suggestions for resolving the variety challenges also 

brought about by big data. However, the classification system 
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developed in this thesis is a system that combines both supervised 

and un-supervised learning models, employing also the concept of 

evolving and automatic classification, as well as a hybrid 

classification method that combines various traditional 

classification algorithms such as Naive Bayes (Probabilistic) and 

Rule-based technique, which will help address the challenges of 

velocity, variety and volume that big data classification is faced 

with. 

A similar fuzzy rule-based classification system to handle 

imbalanced big data is proposed in (Krawczyk, Stefanowski, & 

Wozniak, 2015), the authors aimed to get a system that is capable of 

handling imbalanced big data with good accuracy and no increase in 

the run time. They make use of the MapReduce Framework to deal with 

big data as well as considered the implementation of cost-sensitive 

learning. However, their intentions, the algorithms did not pass the 

scalability test for use with big data and the overall performance 

was poor. 

Another similar evolving rule base classifier as described in 

(Costa et al., 2015) is the parsimonious classifier (pClass) 

proposed in (Pratama, Anavatti, Joo, & Lughofer, 2015). It applies a 

fully unsupervised method to drive its learning engine from scratch 

and can be easily used with online streaming instances. 

In (Tekin & van der Schaar, 2013), the authors introduced a 

distributed online learning framework for the classification of big 

data from different data sources. The data is treated by a set of 

heterogeneous distributed classifiers. The classifiers operate in a 

discrete time setting where various events such as: a data stream 

with a specific context arriving to each classifier, each classifier 

makes use of its own classification function or other classifiers to 

create a label, etc. The authors assume the creation of a binary 

label. Probabilistic classifiers such as the naive Bayes classifier 

were among the set of classifiers used. However, the results of 

their experiments from running two different simulations on network 

security data failed to pass performance test based on classifier’s 

accuracy.   

In (Achcar et al., 2009), a system (AutoClass@IJM) for Bayesian 

classification of varying data in biology is developed. This system 

was made with a web interface to AutoClass, a prevailing 

unsupervised Bayesian classification scheme (Cheeseman et al., 1996) 

that forms part of the basic idea employed in this research. The 

AutoClas@IJM however, required a lot of human efforts e.g. 

preparation of the input data, sending the data files, providing an 

email address where the URL to the results is sent. It is also not 

very scalable to use with very large data sets, due to the return 

time involved. 
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A similar consideration of AutoClass is seen in (Pizzuti & Talia, 

2003), where a parallel version of autoClass algorithm (P-AutoClass) 

is performed on distributed memory multi-computers. The algorithm 

divides the classification task among the processors of a parallel 

machine. This method of parallelization is meant to increase the 

speed at which classification results are obtained. P-autoClass is 

also intended for scalability in mining large data sets. Both a 

theoretical and experimental performance model of the algorithm is 

carried out. Which the authors use to prove that parallel processing 

of a classification process (especially if performed on multiple 

processors) speeds up the classification task. Therefore, making 

parallel implementation of classification or clustering algorithms 

very attractive when dealing with big data. 

2.2 Classification and Clustering 

Machine Learning algorithms can be divided into mainly two broad 

categories, namely classification and clustering. These are 

discussed in the following sections below. 

2.2.1 Data Classification & Regression  

Data classification (sometimes referred to as supervised learning) 

is a data mining process of allocating data into one or more 

categories.  Traditional concepts of classification involve a 

process deriving a classification model from pre-labelled data 

instances and then applying this model to correctly predict the 

class label of un-labelled data instances in each dataset. Regres-

sion on the other hand, is data classification that focuses on pre-

dicting a quantity as opposed to a class label. A data instance can 

be classified into one of two or more classes. When two classes are 

involved it is often referred to as binary classification model, 

while when there are more than two classes it is referred to as 

multi-class classification. We refer to a classification model which 

has several classes assigned to a data instance as multi labelled. 

Some traditional classification methods are not flexible & scalable 

enough to handle large datasets or changes for which they were not 

previously trained to handle. Also, data scientists and machine 

learning experts tend to spend a huge amount of time deciding on 

which machine learning scheme and algorithm to select for a given 

dataset. Which is due to an enormous amount of supervised classifi-

cation algorithms and a lack of more generic and robust automated 

machine learning systems in place to help them achieve this goal.  

Traditional data classification algorithms normally comprise of two 

phases: 

2.2.1.1 Training phase:  

This is where a model is constructed from the pre-labelled training 

instances. However, there are some classification methods where the 
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training phase may be replaced with a pre-processing phase instead. 

For example: nearest neighbour classifiers (Yunck, 1976), auto 

classifiers (Cheeseman et al., 1996) etc. It has been observed from 

state of the art ML systems, that to obtain good classification 

results often requires a large labelled training dataset, which is 

not always available to the users.  

2.2.1.2 Testing phase:  

In this phase, the function derived from the Training Phase is 

applied to a new unlabelled data instance, and a label (in a 

classifier) or quantity (in a regressor) is generated for that 

instance. However, it is important to note that the classification 

process itself usually comprises of more phases. For example, the 

classification process may usually start with a data mining task 

such as feature/attribute selection (which may consist of a pre-

processing or filtering phase to remove irrelevant features and 

ensure that the data is in the right format needed). 

A classification algorithm outcome may be represented for a test 

instance in either two ways: 

- A Discrete label. 

- A Numerical score which can be changed to a discrete label. 

2.2.2 Data Clustering 

Clustering differs from classification in that it uses similarities 

between feature variables to perform separation into groups without 

prior understanding of the group structure (i.e. it uses unlabelled 

data) (Aggarwal & Reddy, 2013; Jacques & Preda, 2014; A. Jain, 

Murty, & Flynn, 1999). While for classification, the separation is 

done based on a training data set that translates information about 

the structure of the groups (i.e. it uses labelled data) (Charu C. 

Aggarwal, 2014; Fabrico, 2014; Sokal, 1974). Clustering is referred 

to as unsupervised Learning. In recent decades however, a hybrid 

category emerged with the attention of the masses, which is referred 

to as the semi-supervised learning (Sinha, 2014). It is a 

combination of both the supervised and unsupervised methods thus 

allowing the use of both labelled and unlabelled data for learning 

the class label of a new data input. It is a very promising method 

to use when dealing with the classification of big data, because it 

can handle the classification process effectively with only a small 

number of labelled instances and a large set of unlabelled instances 

(which is usually the case with big data). Semi-supervised method 

helps bridge the cost overhead limitation (having to label a large 

set of data, can be very costly) of the pre-labelling process in 

supervised methods, and the limitation of the unknown (which 

increases the error rate) in the unsupervised methods. 
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The usefulness of class labels e.g. intrusion activity may be 

represented as a class label (supervised event detection), 

multimedia data analysis, biological data analysis, medical disease 

diagnosis, etc. are numerous. 

Broad categories of data classification include: 

- Technique-centred e.g. probabilistic, decision trees, rule-

based method, neural networks, nearest neighbour, Support Vector 

Machine (SVM) methods, etc. 

- Data-type centred e.g. text, multimedia, metadata, time series, 

sensor data, discrete sequence, network data, big data etc. 

Different data types may require the design of different methods, 

with each been quite different. This research thesis is based mainly 

on the classification of big data type but the classification model 

designed will be scalable enough to apply on other data-types. 

Discussions on big data can be found in (Akerkar, 2013; Chen et al., 

2014; Fan & Bifet, 2013; Suthaharan, 2014; Tankard, 2012). 

- Classification Analysis Variations: e.g. semi-supervised 

learning, transfer learning, active learning, etc. Semi-supervised 

analysis variation is considered in this research. 

2.2.3 Classification Methods  

Before most classification methods are applied to a dataset, a 

method known as feature selection is often used. Data classification 

methods often used include: 

- Decision trees 

- Rule-based methods 

- Probabilistic methods 

- SVM methods 

- Instance-based methods 

- Neural networks 

These methods along with the feature selection method will be 

discussed briefly below. 

2.2.3.1 Feature Selection  

Feature selection is a method which is usually the first phase of 

almost all classification tasks. It is critical to use the correct 

features during the training phase as this will help improve the 

classification results. However, the use of many features tends to 

decrease performance of the system. The two most general supervised 

feature selection methods include: - Filter models (here the 

technique is independent of the classification algorithm) and 

Wrapper models (here the process of selecting features is inserted 

into a classification algorithm and made profound to the 

classification algorithm, this tactic distinguishes the fact that 

diverse algorithms may work well with diverse features). When using 
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Filter models, we must be able to measure the significance of a 

feature to the classification method with some form of evaluation 

measure. Other feature selection methods include the unsupervised 

feature selection method (no class label involved), semi-supervised 

method (which makes use of both labelled and unlabelled data to 

estimate feature relevance). Feature selection could be done from 

either flat features, streaming features or structured features. 

More details on feature selection methods, algorithms and 

applications is found in (Charu C. Aggarwal, 2014; Alelyani, Tang, & 

Liu, 2013; Forman, 2003; Haralick et al., 1973; A. K. Jain & Waller, 

1978; Kwak & Choi, 2002; T. Li et al., 2004; Huiqing Liu, Li, & 

Wong, 2002; Huan Liu & Motoda, 1998; Huan Liu & Yu, 2005; Mladeni'c 

& Grobelnik, 1998; Pal & Foody, 2010; Peng, Long, & Ding, 2005; 

Punch III et al., 1993; Tang, Alelyani, & Liu, 2014; Zhao & Liu, 

2007) 

2.2.3.2 Decision Tree Method  

It has a tree-like separation of the data and the various 

separations at the leaf level are related to the different classes. 

Separation at each level is done using a split criterion. Either 

univariate split (when a condition is placed on a single attribute) 

or Multivariate split (when a condition is placed on multiple 

attributes) technique can be used. A basic decision tree example is 

seen in Figure 2.1 below. It shows a scenario which aims to 

determine the response of prospective customers to direct mailing. 

The circles represent the internal/decision nodes (labelled with the 

test attribute) and the triangles represent the leaf node/class 

label. Moving down the tree progressively from the root to a leaf 

allows instances to be classified accordingly and predictions made. 

The split criterion is usually applied on each internal node to 

determine what the output node is (which could be another internal 

node or a leaf node (which is usually a class)). 
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Figure 2.1: A simple decision tree that represents responses to direct mailing (Rokach & 

Maimon, 2010).  

 

Decision tree methods are popular and provide human readable rules, 

but it is important to keep the tree and splits simple enough to 

ensure that both the understanding of and stability of the tree does 

not suffer. More details on the decision tree method and algorithms 

are discussed in (Charu C. Aggarwal, 2014; Esposito, Malerba, 

Semeraro, & Kay, 1997; Lin, Yan, Yan, & Nan, 2008; Murthy, 1998; 

Nielsen, Rumí, & Salmerón, 2009; J. Ross Quinlan, 1986; Vens, 

Struyf, Schietgat, Džeroski, & Blockeel, 2008). Two very popular 

decision tree algorithms are the classification and regression trees 

(CART) (Breiman, Friedman, Stone, & Olshen, 1984; Loh, 2011) & the 

C4.5 algorithm (J Ross Quinlan, 2014).  A decision tree growth is 

exponential to the number of attributes and distinct values per 

attribute. Hence for large data sets, it has been a difficult 

problem finding a practical, globally optimal decision tree 

solution. Some methods such as pruning of a decision tree to reduce 

the complexity and attributes have been proposed in many literatures 

such as (Esposito et al., 1997). However, the pruning method limits 

the accuracy of the classifier at the expense of reducing 

complexity. Also, the fact that a split criterion is required at 

each internal node of a decision tree (which has to match the 

training set appropriately to ensure high accuracy) means that the 

practicability of applying a split criterion used for a particular 

data set on another would be a complex and costly task. This also 

implies therefore that one would require various split criterions or 

various tree classifiers incorporated together to achieve accurate 

classification of big data (which will increase the complexity of 

the model as well as increase the run time). Asides the limitation 

of having a split criterion at each internal node and the challenge 
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of growing a decision tree without making it too complex, another 

identified problem with decision trees is that in order to avoid 

inaccuracies it is hard predicting when to stop the tree growth. In 

cases where there is a tendency for many classes, unnecessarily 

large trees may result. Many standard decision tree algorithms such 

as the CART (Breiman et al., 1984) are deterministic in nature (i.e. 

if given the same input information, the same output information is 

produced with only one pre-determined outcome considered), as 

opposed to the non-deterministic characteristic of the approach 

proposed in this thesis (i.e. where more than one possible outcome 

is considered even if give the same input information). Another 

limitation is that to decide the succeeding split, decision tree 

induction (i.e. building a decision tree automatically from a given 

data set) will need to compare all potential splits. Most standard 

decision tree algorithms are mainly supervised learning methods 

where it is compulsory to have a set of pre-labelled training data 

sets from which the tree can be built, and the accuracy is highly 

dependent on the amount of labelled test instances available. Having 

a large set of pre-labelled training instances is not the case in 

the real world, as the process is quite a costly one. 

 

2.2.3.3 Rule-Based Method  

Are methods like the decision tree method but differs in the sense 

that it allows overlaps (i.e. there is no strict hierarchical 

separation) to create a very robust training model. Some path in a 

decision tree may be understood as a rule which allocates a test 

instance to a specific label. For example, from the decision tree in 

Figure 2.1 above, the rule “if a customer’s age is greater than 30, 

then the customer will not respond to the mail” can be deduced from 

one of the paths. Rule-based methods have the advantage of being 

simple, easy to explain and understand, can be easily improved by 

addition of more rules, etc. Logic forms (e.g. IF-THEN statements) 

can be used to represent the rules which human beings can easily 

understand. They can be seen as more general models than decision 

tree models. For rule-based methods, a set of rules is extracted 

from the training data in the training phase. Then in the testing 

phase, the rules which are important to the test instance are 

determined and the final output is based on a mixture of the class 

values anticipated by the various rules. Resolution methods should 

be designed as well, in order to resolve possible rule conflicts on 

a test instance. For example, a method of prioritizing the rules is 

a good resolution strategy to avoid conflicts. More in-depth 

discussions on rule based methods are seen in (Charu C. Aggarwal, 

2014; Angelov & Yager, 2012; M. Jain et al., 2013; X.-L. Li & Liu; 

Nosofsky & Little, 2010; Pratama et al., 2015; Tung, 2009). Two 

well-known rule-based classification techniques is the rule 

induction and association rule-based classification. In rule 
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induction algorithms, a small set of rules is developed straight 

from the data. Two fundamental rule induction algorithms in the 

literature are the CN2 Induction Algorithm (Clark & Niblett, 1989) 

and RIPPER (Cohen, 1995). In the CN2 algorithm, each rule is learnt 

without assigning a class for each iteration. While in the RIPPER 

algorithm, all the rules pertaining to a class is learnt first 

before the all the rules of the following class is learnt. RIPPER 

has been employed mainly for classification of text. To achieve high 

accuracy, majority of the traditional rule induction algorithms e.g. 

CN2, RIPPER, etc. frequently contain a lot of conditions, thus 

making the rules unnecessarily long and hard to work with. 

Association rule classification proposed in (Ma, 1998) and in (Zhang 

& Zhang, 2002). It can help in detecting association rules from huge 

amount of data. Class association rules (CARs)  as proposed in (Ma, 

1998) is an example. It is required that the output of a CAR be a 

class label. Rule induction models identify only a subset of the 

rules needed for classification while classification based on 

association rule mining detects all the rules in the data. The rule-

based methods on their own are quite slow and the rules could be 

sometimes misleading if proper care is not taken. This is because 

often the rules in the rule list are dependent of each other. A 

limitation of using only rule-based method for big data 

classification is that the quality of a rule may vary between data 

instances, therefore limiting the accuracy of the results. Also, we 

will be faced with the challenge of wasting meaningful time in 

generating a long rule list (as generated from rule-based induction 

methods) instead of just having basic generalized rules that can be 

applied on all instances. Or we will be faced with the challenge of 

detecting all the rules present (as observed with CARs). Though 

detecting all the association rules of big data will help improve 

the classification of an input instance correctly, it may however 

involve a high run time. 

2.2.3.4 Probabilistic Methods  

These are very common and fundamental amongst data classification 

methods. They make use of statistical interpretation to find the 

best class for a given sample. Probabilistic classification 

algorithms will often output an equivalent posterior probability 

𝑝(C|𝑥) for each of the possible classes a test instance may belong to 
(Charu C. Aggarwal, 2014).  

Posterior probability: conditional probability obtained after 

considering precise features of the test case.  

Prior probability: probability distribution of training records 

that belongs to each specific class. 

The two basic ways that the posterior class probability is 

estimated: 
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- Through defining the class conditional probabilities 𝑝(x|𝐶) for 

each class (C), after which the prior class probability 𝑝(𝐶) is 
then inferred and Bayes theorem used to determine 𝑝(C|𝑥). 

- By modelling the joint distribution 𝑝(𝑥, 𝐶) directly and then 

normalizing it to obtain the 𝑝(C|𝑥). 

We have both generative probabilistic models (where the joint 

distribution of inputs and outputs are modelled implicitly or 

explicitly) and discriminative probabilistic models (where a 

discriminative mapping function (equation (2.0)) is learnt and used 

to model the posterior probabilities directly). A comparison of both 

generative and discriminative models is discussed in (Jordan, 2002). 

Examples of the probabilistic generative model for classification is 

the ‘Naïve Bayes Classifier’ (Murphy, 2006) and the ‘Hidden Markov 

Model’(Blunsom, 2004; Rabiner, 1989).  

 𝑓(𝑥) = 𝑝(𝐶|𝑥) (2.0) 

 

Simplification of the Bayes model is what leads to the Naive Bayes 

hypothesis (John & Langley, 1995). It is not only simple and fast 

but also commonly applicable. Its aim is to create a rule that will 

permit assigning imminent instances to a class with an assumption of 

attributes independence after establishing probabilities (Triguero, 

García, & Herrera, 2013).  Examples of popular probabilistic 

discriminative model is the ‘Logistic regression’ model and the 

‘Conditional Random Fields’ model. 

Logistic Regression model is formally defined as: 

  

 𝑃 (𝑌(𝑇) = 𝑖(𝑋) =  
1

1 + 𝑒−𝜃𝑇𝑋
) (2.1) 

 

- (Charu C. Aggarwal, 2014; W. Liu, Liu, Tao, Wang, & Lu, 2015; 

Tortajada et al., 2015),  
- Where θ is the parameters vector to be measured.  

A diversity of other probabilistic models are also known in 

literature, e.g. probabilistic graphical models (Koller & Friedman, 

2009), and conditional random fields (Lafferty, McCallum, & Pereira, 

2001). More on probabilistic methods is discussed in (Bishop, 2006) 

and (Alsallakh, Hanbury, Hauser, Miksch, & Rauber, 2014; Azar & El-

Said, 2013; Bankert, 1994; Iounousse et al., 2015; Lu et al., 2010; 

Lukasiewicz, 2008; Maravall, De Lope, & Fuentes, 2013; Murphy, 2012; 

Nielsen et al., 2009). Some common advantages of the probabilistic 

models observed in the literature include: 
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- The fact that each class’s associated probability can easily 

qualify as a value of confidence of the input instance belonging 

a class.  

- They can be easily and successfully incorporated into larger 

machine learning tasks while partially or totally avoiding the 

problem of error propagation.  

Some limitations of traditional probabilistic model are: 

- Majority of the models are deterministic in nature and do not 

consider other choices such as being able to adjust to change in 

the middle of model build.  

- They are mainly for supervised learning where there is a high 

dependency on pre-labelled data instances at the 

learning/training phase. Although, to be adaptable for 

unsupervised classification or semi-supervised classification, 

they need enhancement and optimization. 

- On their own they cannot effectively handle at the same time all 

three challenges (i.e. volume, variety and velocity) that big 

data brings. However, combining them with other methods (e.g. 

decision trees, SVM, etc.) and techniques to achieve a relatively 

high classification performance of big data is useful.  

These limitations and many more are part of the reasons that 

researchers are constantly studying and experimenting on ways to 

build or enhance these traditional classification methods to handle 

evolving real-world situations effectively. 

2.2.3.5 SVM Method  

This classification method may be well-thought-out as a single 

level decision tree with a very carefully selected multivariate 

split condition (Charu C. Aggarwal, 2014). It uses linear conditions 

to separate the classes from one another as much as possible (Cortes 

& Vapnik, 1995; L. Li, 2015). Kernel methods (using similarity 

measures between two objects) are used for general non-linear SVM 

learning methods (Schölkopf & Smola, 2002). One important criterion 

for SVM is to achieve maximum margin separation of the hyper planes. 

An advantage of the kernel methods is its ability to be extended to 

random data types and its quality of generalization (Leiva-Murillo 

et al., 2013). A downside to SVM method is that if the numbers of 

attributes are much more than the numbers of samples, SVM methods 

are likely to perform poorly. Also, they are slow and do not 

directly make available probability estimations. The probability 

estimates are calculated using cross-validation techniques which in 

practice are quite expensive.  A method to optimize the speed of SVM 

classifiers has been proposed in literatures such as (Fischetti, 

2015). But the authors in a bid to optimize the SVM method with 

Gaussian Kernel, for it to run faster further created a NP hard 

complex problem. A method to map the SVM outputs into probabilities 
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is also discussed in (Platt, 1999). A survey on SVM methods and 

applications is observed in (Wang & Pardalos, 2015) while a 

comparison of SVM methods against other classification and 

regression methods is seen in (Meyer, Leisch, & Hornik, 2003). SVM 

libraries (Chang & Lin, 2011) are also available for users to easily 

apply SVM method in their application. Another limitation of the SVM 

method is that it is designed mainly to be applied for a two-class 

situation, hence to use it for multi-class scenarios; one would have 

to apply reduction algorithms to reduce the multi-class model into 

numerous binary problems. This would likely increase the complexity 

of the model and the run time. 

2.3 Testing the Performance of Classification Algorithms  

The performance of most classification algorithms is usually 

determined by a number of parameters or measures such as: accuracy 

of the output, the integrity of the model, the run time of the 

model, simplicity in terms of computational cost, etc. The most 

fundamentally common one being accuracy of the results. There are 

various methods that have being designed over the years for 

evaluating the performance of classification systems. Validation 

methods are usually chosen, after which the classification model is 

built and then evaluation measures are used to describe how properly 

the classification performed with regards to other existing models. 

Some methods for accuracy validation of a classification process 

include: 

2.3.1 Hold-Out Method Validation method:  

A statistical method that requires the data is split into two 

segments (one for training the classifier and one for testing the 

classifier). The training data set is usually larger than the test 

data set. A disadvantage of this method is that the test is 

performed on a smaller portion of the data, thus increasing the 

tendency for false accuracy measurements (Charu C. Aggarwal, 2014).  

2.3.2 Cross Validation method:  

To address the problems of the hold out method, a more logical 

approach to the hold out method eventually got developed. It is 

known as the cross validation method (Refaeilzadeh, Tang, & Liu, 

2009), which involves the data being split equally and the hold-out 

evaluation method is performed two times by using the training data 

set from the first iteration as the test data set in the second 

iteration and vice versa. The simple form of the cross validation is 

the k-fold cross validation.  

2.3.3 Bootstrap method:  

Creates bootstrap dataset by sampling with replacement the original 

dataset. This bootstrap data set is what is then used to build the 



- 22 - 

 

classification model which is then applied to the original data used 

as the test set. The optimistic ensuing presentation of the 

bootstrap method is improved by applying a factor 0.632 in (Efron & 

Tibshirani, 1997). A study and comparison of the cross validation 

method and the bootstrap evaluation method is observed in (Kohavi, 

1995). A more detailed explanation of the bootstrap method is given 

in (Efron & Tibshirani, 1994). 

2.3.4 Confusion Matrix: 

Since the resulting output of a discrete classifier (e.g. K-nearest 

neighbours) is usually an actual class label for each situation and 

that of a probabilistic classifier (e.g. Bayes classifier) is 

usually a probability function of belonging to a class, it is 

important to differ between the evaluation methods used for each. 

However, a more general evaluation measure might be applicable in a 

situation where the resulting output of a discrete classifier is 

transformed into a weighted function or when the output of a 

probability classifier is related to a label. 

For discrete classifiers, a confusion matrix is usually used for 

evaluating accuracy measurements. 

Some terminologies derived from a confusion matrix include: 

- True positive (tp): correctly classified positive instances e.g. 

sensitive information correctly classified as sensitive.  

- False positive (fp): falsely classified positive instances e.g. 

insensitive information being classified as sensitive. 

- True negative (tn): correctly classified negative instances e.g. 

insensitive information being classified as insensitive. 

- False negative (fn): falsely classified negative instances which 

are expected as positive e.g. sensitive information being 

classified as insensitive. This is a situation that we don’t want 

to happen. 

2.3.5 Discrete Classifier Evaluation Measures 

Additional well-known evaluation metrics are only defined for 

binary classifiers but also easy to use for multi class problems. 

They include the following. 

2.3.5.1 Classification accuracy (acc)  

Accuracy equals the ratio of correctly classified instances OR can 

be expressed as the summation of the diagonal features in the 

confusion matrix. A common measure that gives an idea of the overall 

performance of the classifier, represented as:  

 

 
𝑎𝑐𝑐 =  

𝑡𝑝 + 𝑡𝑛

𝑡𝑝 + 𝑓𝑝 + 𝑡𝑛 + 𝑓𝑛
 

(2.1) 
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2.3.5.2 Mean Absolute Error (MAE) 

Mean absolute error is finding the absolute errors of the dataset 

by calculating the absolute difference between each observed versus 

predicted value, find the sum of the differences and then divide 

that value by the number of errors. Lower values of the MAE are 

better when analysing the performance and comparing the performance 

of different classification models. It is represented mathematically 

as: 

 

 
𝑀𝐴𝐸 =  

1

𝑛
 ∑|𝑋𝑜 −  𝑋𝑝| 

(2.2) 

Where n = errors count, 𝑋𝑜 = the observed value and 𝑋𝑝 = the 

predicted value. 

2.3.5.3 Recall 

It is also known as the sensitivity or true positive rate. It 

compares the number of true positives with the actual number of 

truly positive cases. It answers the question of “how many relevant 

items are selected?” Represented mathematically as: 

 

 
𝑅𝑒𝑐𝑎𝑙𝑙 =  

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

(2.3) 

 

2.3.5.4 Precision 

It compares the number of the true positives with the number of 

predicted positive cases. It answers the question of “how many 

selected items are relevant?” 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  

𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

(2.4) 

 

2.3.5.5 Specificity 

Also known as true negative rate. It compares the correctly 

classified negative cases with the total number of truly negative 

cases and represented as follows: 

 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  

𝑡𝑛

𝑓𝑝 + 𝑡𝑛
 

(2.5) 

 

2.3.5.6 Fall-out 
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This is also known as the false positive rate, and is represented 

mainly as follows: 

 𝐹𝑎𝑙𝑙𝑂𝑢𝑡 = 1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (2.6) 

 

2.3.5.7 F-Score 

F-score (or F-measure) can be used to test the performance of a 

statistical system. It is often referred to as the harmonic mean of 

precision and sensitivity, and is based on the precision and recall 

expressed as: 

 

 
𝐹𝑆𝑐𝑜𝑟𝑒 = 2 · (

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
) 

(2.7) 

 

 

Another evaluation measure that can address multi-class problems is 

discussed in (Ben-David, 2008). It is a measure that compensates for 

classification that may be due to chance and is based on Cohen’s 

Kappa function. The authors greatly recommend using sensitivity 

evaluation measures with weighted kappa in situations when the cost 

of having an error is unknown. 

2.3.5.8 Receiver operating characteristics (ROC)   

For probabilistic classifiers, the most significant evaluation 

measures are correlated to the receiver operating characteristics 

(ROC)  analysis (Majnik & Bosnic, 2013). ROC curves are wonderful 

tools for picturing and analysing the performance of classifiers. 

They have the advantage of being independent of the class 

distribution. ROC analysis technique places classifiers in the ROC 

space. The ROC space is derived by plotting a graph with the true 

positive rate (tpr) on the vertical (y) axis and the false positive 

rate (fpr) on the horizontal (x) axis of a graph.  

For example: consider 2 different classifier outputs (classifier’s 

A & B) below from 50 positive and 50 negative instances. 

𝐴 →
𝑡𝑝 = 32 𝑓𝑝 = 14

𝑓𝑛 = 18 𝑡𝑛 = 36
     with its tpr = 0.32 & fpr = 0.14. 

𝐵 →  
𝑡𝑝 = 12 𝑓𝑝 = 44

𝑓𝑛 = 38 𝑡𝑛 = 6
  with tpr = 0.12 & fpr = 0.44  
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Figure 2.2: The ROC space and plots of the two prediction cases above. 

 

 

From the ROC space as seen in Figure 2.2, we say classifier A 

performs better than classifier B according to the ROC analysis 

methodology because it has a higher true positive rate value than B. 

However, probabilistic classifiers require a threshold to signify 

the final choice for each class (Charu C. Aggarwal, 2014). 

Evaluating a large dataset requires more efficient algorithms like 

the algorithm 24.1 shown in (Charu C. Aggarwal, 2014). Area under 

the curve (AUC) is a measure that often uses a single value to 

assess the performance of a classifier. It is the area between a ROC 

curve and the y axis. In more practical scenarios ROC curves usually 

expose more information than AUC single value. However, the 

advantage of using ROC curves in performance analysis. A 

disadvantage is that it does not measure the complete performance of 

the classifier but more or less gives us the relative probability 

ranks. Therefore, the need for effective probabilistic classifier 

evaluation methods arises. This could be in the form of useful 

modifications and extensions performed on the ROC methods. There are 

ROC analysis extensions in literatures e.g. one that is extended for 

a three class situation is discussed in (Mossman, 1999). Another 

example of a more recent approach that designed a graphical 

visualization of the performance of multi-class situations, is seen 

in (Hassan, Ramamohanarao, Karmakar, Hossain, & Bailey, 2010). 

Computational cost is another issue to consider when designing 

multi-class ROC evaluation measures.  

B

A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.14 0.44

ROC Space

fpr

tpr

Better

worse

Perfect classification



- 26 - 

 

Other measures of the performance of a classifier are discussed as 

follows: 

2.3.6 Integrity of the model:  

Answers the questions “how soundly constructed is the 

classification algorithm?” or “how stable is the model?” or “what is 

the consistency in the classifier?” 

2.3.7 Simplicity  

The simplicity of a model, shows “how easy it is to understand the 

model?” or “how uncomplicated the design of the model is?” 

2.3.8 Run time  

The classification model run time, could be discussed from two 

different viewpoints. It could be viewed in terms of “the time taken 

to build or train the model” and the “time taken to test the model 

with new instances”. When building a classifier for big data, run 

time is important to consider, because it is important to build a 

high performing classifier in the best time possible. Time 

measurements during training and testing phases of a classification 

model will give a more practical evaluation of the run time and not 

just theoretical. 

2.3.9 Reliability  

The reliability of a ML model evaluates “how consistent it is in 

producing the same results, over and over again?”. An example of how 

one can estimate the reliability of a classification algorithm is 

discussed in (Gurov, 2013). 

2.3.10 Storage Requirements 

Another measure as discussed in (Charu C. Aggarwal, 2014), is to 

consider the storage requirements of the model. 

In comparing classifiers, statistical tests are essential to verify 

that indeed a new classifier outperforms other existing classifiers. 

There is the parametric and non-parametric statistical test, 

pairwise or multiple comparison tests (description is seen in (Charu 

C. Aggarwal, 2014)), transductive or inductive tests (as carried out 

in (Triguero et al., 2013)). In (Triguero et al., 2013), an 

experimental study in semi supervised classification is carried out 

using the KEEL (Knowledge Extraction based on Evolutionary Learning) 

software tool (Alcalá et al., 2010). 

2.4 Classification Tools  

There are severaldata mining tools that incorporate both data 

classification and clustering algorithms. However, this thesis 

considers and discusses a few open source tools/applications, 
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written in Java programming language, supports all operating system 

platforms and permits the use with big data. These include: 

- Waikato Environment for Knowledge Analysis (WEKA) (Hall et al., 

2009): Open Source tool that was first designed in 1993 at the 

University of Waikato in New Zealand. Supports many data mining 

tasks such as: feature selection, pre-processing/filtering, 

classification, clustering, regression and visualization. It only 

deals with flat files in ARFF format, even though various formats 

of file can be imported. Provides access to SQL databases. Has 

four interfaces: The Explorer, Experimenter, Knowledge Flow & 

Simple Command line interface. The Explorer is the main interface 

with tabs: Pre-process, Classify, Cluster, Association Rules, 

Attribute Selection & Data Visualization tabs. Weka also allows 

the installation of extension packages, and data can be imported 

from ARFF, CSV, C4.5, binary, etc. file formats, or it can be 

read from a URL or SQL database. It has some in built file 

converters, for example to convert from a csv file format to the 

arff file format. 

- Apache Mahout (Ingersoll, 2009; Owen, Anil, Dunning, & Friedman, 

2011): Open source project of Apache Software Foundation. It has 

some scalable machine learning algorithms. But it does not really 

focus on many data mining tasks. However, it primarily focuses 

on collaborative filtering, classification and clustering. It 

isimplemented in the Apache Hadoop platform and has a math 

environment to help rethink the scalability of the machine 

learning algorithms built with it. 

- Apache Scalable Advanced Massive Online Analysis (SAMOA) 

(Francisci Morales & Bifet, 2015): Is an open source project of 

Apache Software Foundation. It is a platform for mining big data 

streams. It is still at its early stages. It is a distributed 

Streaming Machine Learning framework that contains a programming 

abstraction for distributed streaming ML algorithms.  

- Massive Online Analysis (MOA) (Bifet, Holmes, Kirkby, & 

Pfahringer, 2010): Is an open source tool, specific for data 

stream mining with concept drift (unforeseen changes over time, 

in the quantity to be predicted) and supports bi-directional 

interaction with Weka. It includes a collection of ML algorithms 

e.g. classification, regression, clustering, etc. It includes 

evaluation tools. It can be extended with new mining algorithms, 

evaluation measures or stream generators. Has one interface with 

5 tabs e.g. Classification, Regression, Clustering, Outliers & 

Concept drift. It has a Command Line Interface as well. It is the 

most popular data stream mining software. 

- KEEL (Alcalá et al., 2010): Open Source tool used for various 

Knowledge discovery tasks. It pays special attention to the 

implementation of solutions based on data mining techniques e.g. 

classification, clustering, etc.  It can be extended with new 

algorithms. Has pre-processing methods incorporated. 
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A comparison and contrast of the various tools are shown in Table 

2.1 below. The representation of what each column stands for in the 

table is shown below the table. 

Table 2.1: A comparison of some tools used for data mining 

experimentations. 

Tool Link A B C D E F G H I J K L M N O P Q 

WEKA http://www.cs.wai-
kato.ac.nz/ml/Weka/ 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Mahout http://ma-
hout.apache.org/ 

✓   ✓ ✓  ✓     ✓ ✓ ✓    

SAMOA https://samoa.incuba-
tor.apache.org/ 

✓   ✓ ✓  ✓     ✓ ✓     

MOA http://moa.cms.wai-
kato.ac.nz/ 

✓ ✓ ✓ ✓ ✓  ✓ ✓  ✓  ✓ ✓ ✓ ✓ ✓  

KEEL http://www.keel.es/ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓  

 

A =Open Source, B=Easy Setup and Install, C=Has a Graphical User Interface (GUI) plus the API, 

D=Used with Big Data, E=Has a Collection of Pre-processing techniques such as filtering, etc. 

F=Over 100 classification and 50 clustering algorithm, G=Various Evaluation metrics present, 

H=Visualize results, I=Identify statistical dependencies between groups of attributes, J=Search 

and Evaluation method for attribute selection, K=Useful Educational and Research purposes/com-

munities, L=Algorithms are applied directly onto a dataset or called from your own code, M=Re-

quires user to Identify and select appropriate algorithm  for each dataset or collection of datasets, 

N=Can be run on Apache Spark, which increases the speed up to 10 times more, O=Easy imple-

mentation and Extension capability, P=Allows a complete analysis of new proposed algorithm in 

comparison to existing ones, Q=Graphical visualisations of the dataset. ✓ = Yes and  = No. 
 

2.5  The Algorithm Selection Problem 

Making the right decision about the best learning algorithm(s) to 

use in designing a classification system is a time consuming, 

tedious and costly process. In machine learning, the decision about 

what learning method (supervised learning/classifier OR unsupervised 

learning/clusterer) has been incorporated into the meta-learning 

(Learning to learn) research. Meta-learning has proven to have a 

major correlation with classification tasks. 

An interesting fact observed in the design of an effective 

classification system is that, there is a major distinct connection 

between the meta-learning paradigm and data mining classification. 

This connection is because while designing a classification system, 

one must empirically & analytically study existing algorithms (tons 

of algorithms exists) and in some cases even make use of some base 

concepts or hypothesis. When designing the classification system, 

the process of deciding what machine learning approach (supervised 

and unsupervised) to be used in next after defining the goal. There 

are many trends and knowledge shown over the years about supervised 

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
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and unsupervised machine learning, which can be formally harnessed 

in reducing the time spent in taking such decisions. 

This research proposes a hybrid classification system architecture 

that comprises of three different layers. The second layer which is 

a decision learning level, automates the decision-making process on 

what learning method to adopt at any point in time, given a 

heterogeneously large stream of data sets. This decision-making 

process is a Meta-learning (learning to learn) process. The Weka 

(Waikato Environment for Knowledge Analysis) [10] tool is used in 

this research for the experimental study. It is a data-mining tool 

designed mainly for research purposes and widely accepted in the 

data mining community. It contains a lot of tools that allows for 

performing data mining tasks easily and can help assist in the 

development of new machine learning schemes.  

An earlier formal abstraction where the algorithm selection problem 

is considered is discussed in (Rice, 1975).  The author aims to an-

swer the question: “what algorithm is best to use in a particular 

scenario?” by formalizing four criteria (the problem space P, the 

feature space F, the algorithm spaces A & the performance space Y) 

and five main steps as a possible solution for the algorithm selec-

tion problem. It turns out from observations by the author that se-

lection mapping echoes as a single most important part of the algo-

rithm selection problem solution. 

Later on in (Aha, 1992), the term ‘meta-learning’ is coined. In the 

paper, the author discusses ways in which we can draw more general 

conclusions from the results of machine learning experiments, to 

give us a set of rules that unfolds situations in which certain al-

gorithms significantly outdo others based on some needful measures. 

However similar some concepts are, the meta-learning hypothesis dis-

cussed in this research thesis distinguishes from the above study in 

the sense that it considers case studies involving both supervised 

and unsupervised learning and not only supervised learners. The set 

of Meta rules derived in this paper is as a result of empirical 

studies carried out to determine situations in which using a super-

vised learning algorithm might be more beneficial than using an un-

supervised algorithm.  

The field of Meta-learning and Automated Machine Learning (AutoML) 

have become very useful tools in solving the algorithm selection 

problem. This two fields are discussed in the following two sections 

below. 

2.6  Meta-Learning   

There are varying views of meta-learning in literatures. In 

(Vilalta & Drissi, 2002), the authors provide a survey of different 

meta-learning views with regards to machine learning. The authors 

also discuss their own viewpoint of meta-learning from the point of 
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constructing self-adaptive leaners, which gathers its Meta knowledge 

by analyzing the whole instance and updates the knowledge base ac-

cording to the characteristics of individual instances. They however 

point out an important fact, which states that despite the varying 

views on meta-learning, a constant question: “how can knowledge 

about learning be exploited to improve the performance of learning 

algorithms?” remains unchanged. The process of learning to learn in-

volves studying ways to improve learning by discovering, mining, and 

taking advantage of the invariant transformations across multiple 

domains. Invariant transformations gives a more general understand-

ing of the nature of patterns across domains (Vilalta & Drissi, 

2002).  

We can see also in (Smith-Miles, 2009) a unified framework that is 

used for analyzing various research developments that aims to tackle 

the algorithm selection problem as a general learning problem across 

different domains. 

Some literatures refer to meta-learning algorithms as one in which 

learning improves in each iterative run of a base classifier. In 

some, it is referred to as the process of putting together a set of 

characteristics or meta-features specific to a domain and with re-

spect to the classifier’s performance. For example, in (Cruz, 

Sabourin, Cavalcanti, & Ren, 2015), the authors use meta-learning to 

propose a novel dynamic ensemble selection framework, where five 

sets of meta-features capturing different properties of the base 

learner is proposed for classifier selection. Their classification 

selection rule is learned by a meta-classifier making use of the 

training data. Which then enables an induced set of rules by using a 

meta-learner to observe what conditions makes a learning algorithm 

perform better than others. This is limited as the meta-learner used 

for this analysis is related to only specific domain characteristics 

and not characteristics that can cut across domains.  

Another example of a most recent meta-learning approach is the en-

semble classifier system for classifying multimedia big data de-

signed in (Y. Yan, Zhu, Shyu, & Chen, 2016). In their approach, the 

authors integrate the outputs of different classifiers using their 

confusion matrices to arrange a set of judgers in a hierarchical 

structured decision model.  

However, in this research, a meta-learning concept is used to ena-

ble the decision learning process. The meta-learning phase of this 

research uses more general knowledge about supervised and unsuper-

vised machine learning algorithms to create some hypothesis that is 

then applied in an experiment and based on the performance results 

of the experiments a set of decision rules are drawn. 
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2.7  Automated Machine Learning (AutoML) 

As previously stated, some learning algorithms may not be very 

effective for handling heterogeneous datasets for which they were 

not previously trained to handle in an automatic, effective and 

timely manner. There is the need to know how we can improve the 

automatic build of models using more general knowledge and 

information about a given dataset. The field of automated machine 

learning, also known as AutoML, is a fast-growing machine learning 

approach, designed to automate tasks of data preparation, pre-

processing, and model training to ease the tasks of both 

intermediate and experts in the field. The autoML problem is 

formally defined for example in (Feurer, 2015) as: 

Formal Definition: For i = 1, … , n + m, let xi ∈  ℝd signify a feature 

vector and yi ∈ Y the corresponding target value. Given a training 
dataset Ɗtrain =  {(x1, y1), … , (xn, yn) } and the feature vectors xn+1, … , xn+m of 

a test dataset Ɗtest =  {(xn+ 1, yn+ 1), … , (xn+m, yn+m) } taken from the 
corresponding data distribution, given a budget resource ℬ (for 
example, computational resources such as the CPU/memory usage and/or 

the clock time which in practice is equal to the user’s time  spent) 

and a loss function ℒ (. , . ), the autoML problem is to automatically 
produce a set of test dataset predictions ẏn+1, … , ẏn+m. The loss of a 

solution ẏn+1, … , ẏn+m to the autoML problem is specified by: 
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According to (Datarobot & Triffacta), the former U.S. chief data 

scientist says that data cleaning takes up about eighty percent of 

the tasks in any data science project while Forrester records that 

“massive machine learning automation is the future in data science”. 

This research focuses on improving the model training aspect of 

AutoML without having to spend time in the data preparation stage. 

This in turn will allow for a less time consuming, tedious and a 

costly process when building highly efficient machine learning 

models for big data mining.  

There are many strategies one can adopt in the field of automated 

machine learning, two to consider is  Starting High and  Exhaustive 

Searching.  

2.7.1  Starting High 

Starting High is a machine learning method that is sophisticated 

and known to perform well on a range of predictive model problems, 

such as when random forest or gradient boosting isselected. Then the 

model is evaluated on the given problem and the results used as an 

approximate top-end benchmark, then the simplest model that achieves 

similar performance is found. The “Start High” approach is fast and 
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can help you define the bounds of model skill to expect on the 

problem and find a simple (e.g. Naïve Bayes or Occam’s Razor) model 

that can achieve similar results. It can also help you find out 

whether the problem is solvable/predictable fast, which is important 

because not all problems are predictable. 

2.7.2  Exhaustive Searching  

Evaluate all the machine learning methods that you can think of on 

the problem and select the method that achieves the best performance 

relative to the baseline. The “Exhaustive Search” is slow and is 

really intended for long-running projects where model skill is more 

important than almost any other concern. This is a common approach 

that current commercial enterprises such as 'Datarobot' and 'Rapid 

Miner' try to adopt for their AutoML products.  

2.7.3  AutoML Related Works 

(Sparks et al., 2015) present a system called TUPAQ designed to 

automate the process of training predictive models. They address the 

challenges of using fixed hyper parameter configurations, by 

achieving high quality model building via a wider search amongst the 

hyper parameter configuration space of Machine learning algorithms. 

TUPAQ takes advantage of the logical and physical optimizations for 

the purpose of large-scale model searching. They focus precisely on 

the supervised learning setting. They consider a small number of 

model families (linear Support Vector Machines, Logistic regression 

trained via gradient descent, and nonlinear SVMs that uses random 

features) with several hyper parameters, under the assumptions that 

in reality, only a small proportion of general-purpose classifiers 

are used in practice. The authors compare a baseline approach with 

the TUPAQ approach to solving the model search problem. The baseline 

model search approach compared with TUPAQ is the conventional model 

search approach using sequential grid search. Where the input is the 

labelled data, model space and budget, while the output is the best 

model. The models are trained at grid points generated on the hyper 

parameter space, resulting in several models being trained on one 

dataset. The budget which refers to the total number of models to 

train on a dataset is specified. Distinctively, TUPAQ includes batch 

size as an input, and allows for the possibility of using training 

history as an input. The TUPAQ architecture is made up of several 

components which includes the driver (in charge of providing the 

model search space and budget), the planner (passes the driver’s 

information to the tuner and the tuner’s configurations to the 

executor), the hyper parameter tuner (generates new model 

configurations to use) and the executor (for the actual training of 

models on the dataset and gives back the planner an appropriate 

execution strategy). TUPAQ design space makes use of four 

optimizations strategy namely: cost-based execution strategy (a 

model search space and budget are considered), advanced hyper 

parameter tuning (using training history as input for the hyper 
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parameter tuning process), bandit resource allocation (via runtime 

inspections to generate on-fly decisions) and batching (to train 

multiple models simultaneously).  They evaluate each design space 

strategy of TUPAQ on five UCI machine learning repository datasets 

individually, and then evaluated a combination of all the strategies 

together on two datasets with different learning goals. Significant 

improvement of the model searching process using the bandit 

allocation and batching strategies was observed on one of the 

datasets. Also, significant reduction in the search time and test 

error is seen with the optimisation strategies used by TUPAQ as 

compared with the common baseline un-optimized grid search method. 

The authors of TUPAQ explore in depths the effect of batching in a 

distributed setting and present an application of this method to the 

model search problem, while ensuring an optimization of the parallel 

execution of algorithms. The estimator in their design however needs 

more input from the developer of an algorithm and focuses on 

predicting a reasonable cluster size for a given ML model.   

In (Kotthoff, Thornton, Hoos, Hutter, & Leyton-Brown, 2017), Auto-

Weka has been designed to help users of Weka to search through all 

available learning algorithms and hyper parameter settings in Weka 

that reduces the loss due to cross validation. They achieve this by 

using a Bayesian optimization (highly parametric) approach to find a 

strong instance for the dataset given. How Auto-Weka identifies the 

classifier that performs best on a given dataset is by using SMAC 

(Sequential Model-based Algorithm Configuration). The user is asked 

to provide only one dataset at a time to process, a memory bound 

(there is a default of 1GB) as well as an overall learning time 

budget (the default is 15 minutes). Auto-Weka as it stands can only 

run the auto search on one dataset at a time and the authors advice 

that for auto-Weka to select the best learning scheme the user 

should set a minimum of 24hours. This means that to find the best 

learning scheme automatically for 5 different data sets, one will 

spend 1hour 15mins (using the default) or 120 hours/ 5 days (going 

by the advice of the authors) just to search for the algorithm 

suggestion to use. Which is still a very time-consuming process. The 

decision-making layer of hybrid system designed in this paper 

employs the use of more general characteristics of the dataset and 

more general knowledge learnt/known about the different learning 

schemes to choose faster the most ideal learning scheme, without 

needing to set any time budget or initial parameters (i.e. it is not 

a highly parametric system because it relies on less parameter space 

searching). This is a first step to making sure that parameter 

optimizations (which might improve performance), is done using the 

parameter set of only the selected scheme (as opposed to having a 

set containing all possible parameter settings of the various 

schemes available in Weka). Which means that learning time will be 

greatly improved overall.   

(Feurer et al., 2015) describe an autoML system ‘auto-sklearn’ 

which uses the same type of optimizer (i.e. Bayesian optimization) 
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as auto-Weka, includes however a smaller model and hyper parameter 

space than auto-Weka (they consider classifiers and pre-processors 

implemented in scikit-learn ML framework that are of high 

performance). Auto-sklearn uses additional meta-learning methods and 

ensemble building in its design. The results of the meta-learning 

method are used as a kick starter for the complex optimisation 

challenge of searching the hyper parameter space of a complete ML 

system. While their ensemble building acts as a post optimization 

method, where models trained during the Bayesian optimization search 

are built into an ensemble. However, promising auto-sklearn appears 

to be over autoWeka, and like the approach of meta-learning in this 

paper to aid auto machine learning, auto-sklearn is quite a complex 

system because of its use of Bayesian optimization, pre-processors, 

meta-learning and ensemble building. It also does not tackle semi-

supervised or unsupervised problems. While in this paper, we design 

a non-complex system that searches for the best learning method 

tackling classification, regression, semi supervised and 

unsupervised problem areas.  

Rapid Miner, a commercial data science platform introduced an 

additional auto model function to enhance automatic modelling which 

is completely transparent to the user (ROY, 2018). Their auto model 

function supports several learning algorithms and trains models 

using several learning algorithms, then ranks and mentions to the 

user the most suitable models they can choose from. However, there 

is a lot of user engagement involved to achieve the process of 

selecting the best model, and the user can only supply one dataset 

at a time as compared to the design in this research thesis.   

2.7.3.1 Summary 

Table 2.2 below provides a summary of the current state of the art 

autoML systems from the literatures discussed above. 

The following is referred to in Table 2.2,  

A: Supports input and automatic processing of multiple datasets at 

the same time. 

B: Selects Learning setting automatically. 

C: Selects appropriate model. 

D: Use Fixed hyper parameter Configurations. 
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Table 2.2: A summary of current state-of-the-art autoML systems 

 

Summary 

From the literatures we have been able to understand and discuss 

big data ML, then we build an understanding of the most widely used 

ML methods (supervised learning/classification and unsupervised 

learning/clustering), performance evaluators and statistics commonly 

used in testing the performance of ML algorithms. We also discuss 

and compare some well-known classification tools in the ML research 

community. From building an understanding of the most widely used ML 

schemes and algorithms, it has been observed that there are a lot of 

ML algorithms out there and a model trained on one dataset might not 

be useful on another dataset, that data scientists spend an awful 

amount of time searching and selecting the best ML algorithm to use 

for a given data problem, which in turn brings about the need and 

growth in the autoML research field. We observed from the state of 

the arts and literature study in the field that the algorithm 

selection problem and reduction of the time data scientist spend in 

building ML models can be greatly reduced by engaging the sub fields 

of autoML and meta-learning. Lastly, we have carried out some 

background study and comparison into some of the autoML systems out 

there in the research community and commercially. The next chapter 

discusses the methodology and pre design experimentations used in 

the design of an hybrid-autoML system. 

System Reference Aim Method A B C D

Auto-SkLearn 4 Extend Auto-Weka

Highly Parametric ML 

Framework with 

Bayesian Optimization, 

meta-learning step, auto 

ensemble construction No No Yes No

AutoWeka 2

Automatic ML algorithm 

selection & Hyperparameter 

optimization

Bayesian Optimization & 

SMAC No No Yes No

DataRobot 6

Automatic data processing, 

model selction and Scoring 

algorithm

Supervised ML model or 

ensemble selection, 

Model building 

transparency, Exhaustive 

search of model space No No Yes (Shows rankings) No

RapidMiner 5

Automated Modelling for 

advanced analytical use 

cases.

Human friendly user 

interface, Several 

different supervised 

algorithms, Exhaustive 

search of model space, 

Model Transparency No No

Yes (shows several 

suggestions) No

TuPAQ 3

Automatic ML at 

Scale/Supervised model 

search

Batching, Advanced 

Hyperparameter tuning, 

sequential grid search, 

Bandit resource 

allocation No No Yes No
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Chapter 3 

3 Methodology 

Introduction 

This research uses a mixture of several research methods, briefly 

described as follows: 

Pure Research: based on the summary themes of (Baban et al., 2009) 

in (Hassani, 2017). This methodology aims to enable us to discover 

new knowledge without expecting an instant mark on the present state 

of things in the field.  

Exploratory research: aims at discovering useful information in the 

field, which previous information cannot be found in order to de-

velop reflective hypothesis.  

Descriptive research: aims at explaining what the situation and 

characteristics of a problem is, as a benefit for another or other 

research areas. 

Experimental methodology: experiments help us test the accuracy of 

concepts/theories and hypothesis. In computer science, it is often 

used to analyse behaviours and performance, in many different fields 

such as automating theorem proving, machine learning, etc. There is 

often the need to also use some tools or methods (e.g. statistical 

analysis) in conjunction with the experimental method. Doing that 

will help in proving and backing up the legibility of the work de-

veloped and whether the hypothesis is supported. It is important 

that all experiments are reproducible by clearly explaining the 

steps carried out during the experiments and tools/resources used 

for the experimentation. 

Theoretical Methodology: this is a methodology related based on 

mathematics and logic. Ideas can be an existence of conceptual and 

formal models e.g. data models and algorithms. Since this methodol-

ogy is based on logic and mathematics, some ways in which it deals 

with problems is through iterations, initiations and recursions. De-

veloping theories is important to build ideas, reason about pro-

grams, improve logic and semantics in order to prove accuracy of the 

concept and formal models. Theoretical methodology through dedicated 

designs and algorithm analysis help us unravel improved solutions 

(e.g. improved performance solutions). However beneficial this 

method is, it still requires other methods that can help prove effi-

ciency of new models/theories designed. For example, in the machine 

learning field if a new classifier is to be designed, often the de-

veloper using mathematical of theoretical methodologies will require 

a proof of model efficiency by consuming one or more previous tech-

niques. Since this approach is based on mathematics there is a limi-

tation that the mathematical abstractions used in a proof maybe too 

abstract/generic that it ignores completely some serious issues that 

need to be considered in the actual system implementation.  
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Systems Design Methodology: a methodology consisting mainly of five 

stages namely, ‘design of concept’, ‘system architecture construc-

tion’, ‘prototype building’, ‘product development’ and ‘technology 

transfer’. This research work performs the first three up to proto-

type building. Prototype building helps us have a proof of concept 

for feasibility demonstration. However, the aim is to later go fur-

ther into the product development stage, once this research work has 

received due evaluation and acceptance in the wider research commu-

nity. 

The reasons/benefits of using this multimethod logical approach is 

highlighted as follows: 

- It helps to tackle the research area properly,  

- It reveals in a better manner, the characteristics of the re-

search. 

- It allows the research to be conducted in a very effective and 

orderly manner.    

This chapter gives a detailed and logically ordered plan of the 

approach, techniques, procedures and steps followed to achieve the 

research aims and objectives.  

 

3.1  Methods 

A list of the steps carried out in this research is summarised as 

follows: 

1. Theoretical studies. 
2. A mini data classification survey.  
3. Analysing some key limitations from the state-of-the-art big data 

classification and auto ML systems. 

4. Preliminary Hypothesis and Experimentations. 
5. Evaluation and Analysis of the pre-experimental results. 
6. Gained knowledge from the pre-experimental results. 
7. Design and modelling of the hybrid autoML system using the 

knowledge gained.  

8. Programming of this system using java object-oriented programming. 
9. Testing the designed hybrid autoML system model to proof it works. 

10. Evaluation and analysis of the results from the test and 

comparison with other autoML systems discussed in the literature.   

3.1.1  Reviewing Literatures 

As a basis of this research, knowledge about big data, machine 

learning, data classification, clustering algorithms, autoML 

systems, meta-learning, their applications in the field etc. is 

developed through the study of journals, articles, books, etc. The 

aim of which was to build, nurture & improve our knowledge and 

understanding of what is current (including limitations) in the 

field of data mining and machine leaning. Information gained from 
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undergoing this is discussed in Chapter 2 and across this research 

thesis. 

3.1.2  Mini Survey 

Using an online survey tool called Qualtrics, in 2015 a mini survey 

is designed to determine the knowledge, importance and application 

of big data classification and classification tools amongst data 

science professionals. It helped to determine further and justify 

the relevance of big data classification in the field. A link to the 

survey was distributed to former work colleagues of mine who are 

data scientist, posted on researchgate and linkedIn (both online 

platforms for professionals in the field). The raw questions asked 

can be located in Appendix 1. The results from the survey shows that 

the majority (85%) of those who hear about big data also hear about 

data classification. It also showed that about 41% of the 

participants agreed big data classification has many application 

areas including improving security measures of a system through 

advanced prediction of threats. On the use of big data 

classification tools, the majority (38%) said that they don’t use 

any big data classification tool.   

3.1.3  Hypothesis and Assumptions 

Hypothesis 1: if given a large labelled train data set Ɗ𝒕𝒓𝒂𝒊𝒏 and a 

corresponding test data set 𝓓𝒕𝒆𝒔𝒕 on which some prediction is to be 
made. The size ratio of the training data to the test data will 

affect the accuracy of the model built upon any given algorithm.   

Hypothesis 2: A supervised learner will be more appropriate than an 

unsupervised learner. Given a data set Ɗ, with an already existing 
large set of pre-labelled training data Ɗ𝒕𝒓𝒂𝒊𝒏 and a test set 

𝓓𝒕𝒆𝒔𝒕 which is relatively smaller in size than Ɗ𝑡𝑟𝑎𝑖𝑛, and based on 

general knowledge gained about supervised learners performing well 

in the presence of a larger pre-labelled Ɗ𝒕𝒓𝒂𝒊𝒏. 

Hypothesis 3: If Hypothesis 2 is true, and a supervised ML algo-

rithm is more desirable to be selected than an unsupervised ML algo-

rithm, then we assume that general information about the instances 

and attributes of the dataset such as the size of the training data, 

the number of attributes, the types of attributes found, the class 

attribute type, etc. will influence the choice of selecting the best 

supervised learning algorithm to use on a dataset.   

Hypothesis 4: An unsupervised self-evolving learner will be more 

appropriate than a supervised learner. Given a data set Ɗ, without 
pre-labelled training data instances and the knowledge that 

unsupervised learners are best used when no pre-labelled training 

dataset exists. 

3.2  Preliminary Experiments 
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Pre-experimentation has been done to tests some hypothesis and 

assumptions made from studying the state-of-the-art literature in 

the data mining and machine learning field. These experiments were 

aimed at proving or disproving some knowledge and limitations gained 

from the background study which this project aimed to design a 

system model to help overcome some of the limitations identified.  

3.2.1  Experiment Materials 

In undergoing research experiments, all essential materials need to 

be determined and organised. Materials here and in most computer 

science project refers to the software tools, technologies, 

programming language and data used for the project. There is usually 

more than one software tool or programming language that can be used 

to achieve one’s aim when it comes to building software solutions. 

It is important to highlight the aims and reasons for using the 

tools and programming language chosen. The following sections under 

this ‘Materials’ section aims to highlight and give more details 

into what was used for this research.  

The reasons it was used is because, 1) it an open source data-

mining tool designed mainly for research purposes and widely 

accepted in the data mining community, 2) it is java based and java 

is a familiar object oriented programming language used for 

developing scalable commercial or research systems and services, 3) 

It contains a lot of functionalities for performing data mining 

tasks easily and can help assist in the development and testing of 

new machine learning algorithms and systems 4) it has both a simple 

Graphical User Interface (GUI) and an API that helps to build 

standard customisable machine learning applications in any way 

desired. Information comparing Weka with some other tools in the 

field is discussed in section 2.4.  

The Weka GUI is used for all pre-experiments in this research while 

the Weka API is used for implementation of the model Designed after 

the pre experiments. 

When Weka is downloaded and launched, appendix 7 shows a 

representation of the GUI and other related tabs of the GUI for 

Weka. 
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3.2.2  Big Data 

A variety of datasets collected from the UCI machine learning (Dua 

& Karra Taniskidou, 2017) & KDnuggets data repository, as well as 

from the Weka tool data and auto-Weka (Lars, Chris, Frank, Holger, & 

Kevin, 2017) repositories is used. Weka has a special format for its 

dataset, called the ‘Attribute Relation File Format (. ARFF)’. Which 

is an ASCII text file describing a list of instances that share a 

set of attributes. Weka however, provides through its GUI the 

ability to load ‘.CSV’ files and manually select other file loaders. 

However, using the Weka API allows us easily work with a variety of 

datasets such as ‘.CSV’, ‘.TXT’, ‘.XML’, ‘. JSON’, etc. Or even by 

accessing databases directly using JDBC. 

For the experimentation and implementation tests of the system modelled 

in this research, a variety of datasets in different formats, collected 

from the various sources, were collected and placed in a ‘data’ 

directory with sub directories within it. A total of about thirty-five 

different datasets were used. A full list of the various datasets can 

be found in Appendix 3. Although for simplicity, we will be discussing 

the experiments in this section using just a few of the datasets. Doing 

this, will help drive the clarity of the knowledge learnt from the 

experiments. 
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Table 3.1: A list of datasets used for preliminary experiments, taken 

as a subset from the full list of datasets used in this research. 

Dataset # Instances #Attributes Class attribute 

type 

Missing Values 

contact-lenses 24 All nominal (5) Nominal No 

cpu 209 All numeric (7) Numeric No 

cpu.with.vendor 209 1 Nominal, 7 

Numeric 

Numeric No 

credit-g 1000 14 Nominal, 7 

Numeric 

Nominal No 

diabetes 768 8 Numeric, 1 

Nominal 

Nominal No 

glass 214 9 Numeic, 1 

Nominal 

Nominal No 

ionosphere 351 34 numeric, 1 

Nominal 

Nominal No 

iris.2D 150 2 Numeric , 1 

Nominal 

Nominal No 

labor 57 9 nom, 8 numeric Nominal Yes (2%) 

reutersCorn-train 1554 String Nominal No 

segment-challenge 1500 19 Numerical, 1 

Nominal 

Nominal No 

soybean 683 36 Nominal Nominal Yes (<1%) 

supermarket 4627 217 nominal Nominal Up tp 77% 

unbalanced 856 32 numerical, 1 

Nominal 

Nominal No 

vote 435 17 nominal Nominal Yes (3%) 

weather.nominal 14 5 nominal Nominal No 

weather.numeric 14 2 Numeric, 3 

Nominal  

Nominal No 

Dexter 420 20001 Numeric Numeric No 
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3.2.3  Experimental Setup 

All preliminary experiments were conducted using both the Weka 

explorer, knowledge flow and experimenter GUIs. Performed to: 

1. Prove or disprove the hypothesis made in previous section 3.1.3 
to determine what general factors about a dataset will make a 

particular machine learning algorithm more suitable than another. 

2. Determine the resulting performances of supervised and unsuper-
vised algorithms present in Weka and what factors or character-

istics of the data influenced their performance.  

3. To identify limitations and knowledge in selecting the best 

algorithm for building a machine learning model. 

All the supervised and unsupervised algorithms listed in the exper-

iment materials section (section 3.3) were tested multiple times on 

the different datasets.  

Setup as follows when need be: 

 

Figure 3.1: Weka explorer ‘Classifier’ tab. 

When Weka ‘Explorer’ is launched, we are presented with its GUI’s 

‘preprocess’ tab by default. Which we can then toggle between the 
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other explorer options such as the ‘classify’ and ‘cluster’ tab us-

ing the tool bar above (as seen in the Figure 3.1 above). There are 

varying tests options that can and were used during the experiments. 

For example, the number of folds can be played with by adjusting the 

‘Cross-validation’ option in the test options window. When the model 

builds and testing has been performed, the results are displayed in 

the classifier output window as follows: 

 

Figure 3.2: Output Result window display for a ‘classifier’ in Weka. 
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Figure 3.3: Example of a single supervised Learning knowledge flow setup in Weka. 

 

In the experiment seen in Figure 3.3 above, the selected dataset is 

loaded in by configuring the ‘ArffLoader’. The ‘ClassAssigner’ de-

termines what the class label in the dataset is. A ‘Cross Validation 

FoldMaker’ and a ‘Train Test SplitMaker’ where used interchangeably 

to split the dataset into training and test sets. Several supervised 

algorithms were used during different runs of the experiment instead 

of just a ‘NaiveBayes’ classifier alone. 

The ‘Cross Validation FoldMaker’ allows cross validation evaluation 

to be carried out on the dataset. Clicking on it in the knowledge 

flow setup will allow the number of k-folds to be set. The number of 

folds chosen has been experimentally proven to have an effect on the 

performance results of the classifier, by varying the number of 

folds in the experiment. After several fold variations, it was 

discovered that three and ten folds are more relevant. Hence, only 

the results for the three and ten folds’ experiments are recorded.  
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Figure 3.4: Unsupervised Learning knowledge flow setup in Weka. 
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Figure 3.5: Knowledge flow setup for testing several classification algorithms on a given 

dataset in parallel. 

As earlier stated in previous sections, when using Weka’s Knowledge 

flow GUI, we can set multiple classifiers in the process flow. The 

setup in Figure 3.5 above shows an example of such a scenario. Right 

clicking on the ‘ARFFLoader’ (which is the input) in the flow above 

enables us load up the dataset under consideration. After which, we 

can then configure and pass this dataset onto the different 

classifiers through the various perspectives in the setup, and then 

run the setup. By default, the last attribute index in the dataset 

is taken as the class index. But this was varied easily by right 

clicking and using the configuration settings of the ‘ClassAssigner’ 

in the setup. The ‘ClassValuePicker’ was used to specify what class 
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label needs to be determined. The ‘CrossValidationFoldMaker’ was 

used to configure k-Folds Cross-Validation analysis. By default, 10 

folds is set, but this was also tweaked during various runs of the 

experiment using the configuration settings of the cross-validation 

fold maker. The number of classifiers to evaluate on a given dataset 

can be increased easily in the setup. When the setup is run, if a 

classifier in the setup is unsuitable for that particular dataset, 

an error is logged and the analysis interrupted. An advantage of 

using this setup during the initial implementation tests, is that we 

are able to visualize and analyse the performance of the different 

classifiers by plotting their ROC curves on a single graph. A 

disadvantage of using just the knowledge flow, is that you can only 

experiment on one dataset at a time. This is where using the 

‘Experimenter’ setup in the Weka GUI is useful.  

The experimenter setup is as follows: 

 

 

Figure 3.6: Experimenter setup for testing several classification algorithms on various 

datasets. 
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In Figure 3.6 is an example of how the Weka GUI Experimenter was 

used in part of the preliminary experiments. When using the 

Experimenter, you can add several datasets and several algorithms 

all at once, to analyse different performance evaluation metrics 

such as the accuracy and F-measure. When the Experimenter is 

launched, using the ‘New’ button at the top right corner, allows the 

new datasets and algorithms we intend to analyse to be added. The 

dataset/datasets to be analysed appears in the ‘Datasets’ window, 

while the algorithms to be analysed appear in the ‘Algorithms’ 

window. We then use the ‘Run’ tab at the top of the experimenter 

window to run the experiments, after which we use the ‘Analyse’ tab 

at the top to view different evaluation metrics we desire to use in 

evaluating our algorithms against the different datasets. 

 

Figure 3.7: Dataset view in tabular format from the Experimenter 

An advantage of using the Experimenter in this experiment stage is 

that we are able to get a view of the dataset as seen in Figure 3.7, 

via clicking on any of the dataset in the ‘Datasets’ view as seen in 

Figure 3.6. From this, we can easily see for example, the attribute 
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type of our class, or how many numeric and how many nominal type 

attribute we have in the dataset. This way, we can determine the 

influence of this, when we are analysing the performances of our 

supervised classifiers. However, using the experimenter to run tests 

on several datasets at once, can give us several error messages such 

as is displayed in Figure 3.8 below. 

 

Figure 3.8: Possible errors faced when running the experimenter on 

several datasets and algorithms 

 

From Figure 3.8 above, the last error that says ‘Class attribute is 

not nominal’ is as a result of the experimenter trying to run a 

classification algorithm that can only work when the class attribute 

is nominal. Although we can tell there is an error, it is hard to 

tell which of the data inputs caused this. The user, will then have 

to go back and spend time working out which dataset must have caused 

the error (i.e. in a case of multiple datasets to multiple 

algorithms. This limitation forms a part of the motivation for this 
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research in question. This kind of error was resolved by running the 

experiments in parts, investigating and harnessing general knowledge 

about the various datasets and their effects on the choice and 

performances of the various classification algorithm. Doing this and 

then afterwards writing Java codes using the Weka API to implement 

the findings, eliminates such errors as we shall be discussing 

shortly in the results section of the next chapter. The experimenter 

also provides us the ability to save the results into a CSV file for 

further analysis. 

3.2.4 Preliminary Experiment Results 

When evaluating the performance of various algorithms, it is 

assumed that we can combine a number of known measures for success, 

to correctly help and point us to choosing the best algorithm for 

any specific dataset. Doing this, helps us to gain more confidence 

in the choice we make as regarding what algorithm performed better 

for a particular dataset. Hence, allowing us to easily find out if 

another dataset with similar general features (e.g. class attribute 

type, number of nominal to number of numeric attributes, the size, 

etc.), will also choose the same ML algorithm as its best.  

Using 3 Folds Cross Validation, the following evaluation measures 

where gathered on various datasets listed in this paper. Due to not 

much significantly improved results of using 10 folds, the results 

from the 10 folds’ cross validation can be found in Appendix 4. 

Table 3.2: Area Under the Curve (AUC) 
Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero 

R 

J48 RF 

contact-lenses 0.93 0.50 - 0.85 - 0.88 0.50 0.50 0.82 0.84 

cpu - - - - - - - - - - 

cpu.with.vendor - - - - - - - - - - 

credit-g 0.78 0.49 0.66 0.67 - 0.75 0.50 0.50 0.66 0.76 

diabetes 0.82 0.50 0.72 0.74 - 0.83 0.50 0.50 0.74 0.82 

glass 0.70 0.74 - 0.81 - 0.85 0.49 0.49 0.75 0.92 

ionosphere 0.93 0.83 0.82 0.88 - 0.94 0.50 0.50 0.88 0.97 

iris.2D 1.00 1.00 - 1.00 - 1.00 0.49 0.49 0.98 1.00 

labor 0.98 0.87 0.86 0.96 - 0.88 0.47 0.47 0.73 0.94 

reutersCorn-test - - - - - - 0.50 0.50 - - 

reutersCorn-

train 

- - - - - - 0.50 0.50 - - 

segment-

challenge 

1.00 0.72 - 1.00 - 1.00 0.50 0.50 1.00 1.00 

soybean 1.00 1.00 - 1.00 - 0.98 0.50 0.50 0.97 1.00 

supermarket 0.50 0.50 0.50 0.50 - 0.50 0.50 0.50 0.50 0.50 

unbalanced 0.59 0.50 0.50 0.65 - 0.65 0.50 0.50 0.50 0.70 

vote 0.97 0.95 0.95 0.98 - 0.99 0.50 0.50 0.98 0.99 

weather.nominal 0.82 0.50 0.63 0.78 - 0.76 - 0.43 0.67 0.84 

weather.numeric 0.80 0.50 0.53 0.69 - 0.70 - 0.43 0.63 0.64 
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Table 3.2 above, shows the area under the ROC curve, estimated for 

the various algorithms per dataset. Where a ‘- ‘is observed means 

that the supervised algorithm, was unsuitable for that dataset. 

While a ‘None’ observation means that no ROC curve is produced given 

when that algorithm was used on that dataset.  

 

Figure 3.9: Area Under ROC (AUC) 

From Figure 3.9 above, it is expected that the AUC for choosing the 

best performing algorithm given a dataset, should be the figure 

closest to 1. 
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Table 3.3: F-Measure for datasets per algorithm. 

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF 

contact-lenses 0.83 0.77 - 0.83 - 0.50 0.77 1.00 0.89 0.83 

cpu - - - - - - - - - - 

cpu.with.vendor - - - - - - - - - - 

credit-g 0.83 0.82 0.84 0.77 - 0.81 0.82 0.82 0.80 0.84 

diabetes 0.82 0.79 0.83 0.76 - 0.82 0.79 0.79 0.79 0.82 

glass 0.23 0.64 - 0.64 - 0.70 0.52 0.52 0.67 0.78 

ionosphere 0.86 0.88 0.90 0.81 - 0.93 0.78 0.78 0.93 0.95 

iris.2D 1.00 1.00 - 1.00 - 1.00 0.32 0.32 0.98 1.00 

labor 0.96 0.84 0.89 0.84 - 0.86 0.79 0.79 0.84 0.90 

reutersCorn-

test 

- - - - - - 0.98 0.98 - - 

reutersCorn-

train 

- - - - - - 0.99 0.99 - - 

segment-

challenge 

0.96 0.61 - 0.98 - 0.99 0.27 0.27 0.99 1.00 

soybean 1.00 1.00 - 1.00 - 0.81 0.24 0.24 0.90 1.00 

supermarket 0.78 0.53 0.78 0.35 - 0.78 0.78 0.78 0.78 0.78 

unbalanced 0.96 0.99 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99 

vote 0.92 0.96 0.96 0.96 - 0.96 0.76 0.76 0.97 0.98 

weather.nominal 0.84 0.78 0.71 0.75 - 0.82 - 0.78 0.67 0.78 

weather.numeric 0.82 0.78 0.67 0.78 - 0.78 - 0.78 0.76 0.78 

Table 3.3 above, gives us the F-measure estimated for each dataset 

per algorithm.

 

Figure 3.10: F-Measure for each dataset against several classification algorithms 
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From Figure 3.10 above, it is expected that an F-Measure score 

closer to 1 is more desirable for any given dataset. 

Table 3.4: Table of the Mean Absolute Error (MAE) for the various 

datasets. 

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF 

contact-lenses 0.24 0.25 - 0.18 - 0.31 0.37 0.37 0.15 0.22 

cpu - - - 206.27 43.79 35.73 96.35 96.36 - 26.97 

cpu.with.vendor - - - 196.48 35.40 29.67 87.64 87.64 - 14.74 

credit-g 0.30 0.31 0.25 0.33 - 0.34 0.42 0.42 0.34 0.35 

diabetes 0.28 0.35 0.23 0.33 - 0.31 0.45 0.45 0.31 0.31 

glass 0.16 0.10 - 0.13 - 0.12 0.21 0.21 0.10 0.10 

ionosphere 0.17 0.08 0.14 0.13 - 0.14 0.46 0.46 0.10 0.14 

iris.2D 0.03 0.03 - 0.05 - 0.05 0.45 0.49 0.06 0.03 

labor 0.08 0.11 0.14 0.12 - 0.28 0.46 0.46 0.31 0.23 

reutersCorn-

test 

- - - - - - 0.08 0.08 - - 

reutersCorn-

train 

- - - - - - 0.06 0.06 - - 

segment-

challenge 

0.06 0.15 - 0.03 - 0.03 0.24 0.24 0.02 0.02 

soybean 0.01 0.01 - 0.01 - 0.03 0.10 0.10 0.02 0.03 

supermarket 0.46 0.64 0.36 0.48 - 0.46 0.46 0.46 0.46 0.46 

unbalanced 0.09 0.01 0.01 0.02 - 0.03 0.03 0.03 0.03 0.03 

vote 0.10 0.05 0.04 0.05 - 0.07 0.47 0.47 0.06 0.07 

weather.nominal 0.37 0.36 0.36 0.32 - 0.40 - 0.47 0.37 0.33 

weather.numeric 0.38 0.36 0.43 0.32 - 0.42 - 0.47 0.40 0.40 
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Figure 3.11: Mean Absolute Error (MAE) 0-1 

 

Figure 3.12: Mean Absolute Error (MAE) for Cpu and Cpu.with.vendor Datasets 

Figure 3.11 and Figure 3.12 are graphs derived from using the 

figures in the above Table 3.4. Figure 3.12 shows the plots of the 

MAE for the Cpu and Cpu.with.vendor datasets. Since the variance of 

the values in these dataset makes them different from other 

datasets, their mean absolute error range also differs. Hence, the 

need to plot this separately from the MAE for the other datasets. It 
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is expected that the MAE closest to 0 is more desirable for any of 

the given datasets. 

Table 3.5: Accuracy in % and Correlation Coefficients for Cpu and 

CPu.With.Vendor datasets 

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero R J48 RF 

contact-lenses 83.33 62.50 - 75.00 - 70.83 62.50 62.50 87.50 79.17 

cpu - - - -0.11 0.89 0.88 -0.11 -0.11 - 0.95 

cpu.with.vendor - - - -0.11 0.93 0.90 -0.11 -0.11 - 0.97 

credit-g 75.00 69.00 75.30 67.40 - 72.10 70.00 70.00 70.50 75.50 

diabetes 75.91 65.10 76.95 68.36 - 76.17 65.10 65.10 73.31 75.39 

glass 44.39 64.02 - 57.01 - 71.50 35.51 35.51 67.76 78.04 

ionosphere 83.48 92.02 86.33 86.61 - 91.17 64.10 64.10 90.88 93.45 

iris.2D 96.00 96.00 - 94.67 - 96.00 32.00 32.00 93.33 97.33 

labor 94.74 89.47 85.96 89.47 - 80.70 64.91 64.91 77.19 85.96 

reutersCorn-

test 

- - - - - - 96.03 96.03 - - 

reutersCorn-

train 

- - - - - - 97.10 97.10 - - 

segment-

challenge 

81.00 48.13 - 90.20 - 95.87 15.73 15.73 95.13 97.33 

soybean 92.39 86.82 - 92.39 - 81.70 13.47 13.47 89.75 91.95 

supermarket 63.71 36.29 63.71 54.59 - 63.71 63.71 63.71 63.71 63.71 

unbalanced 92.52 98.60 98.60 98.13 - 98.60 98.60 98.60 98.60 98.60 

vote 90.57 95.17 95.63 95.40 - 95.40 61.38 61.38 96.09 97.01 

weather.nominal 78.57 64.29 64.29 71.43 - 71.43 - 64.29 64.29 71.43 

weather.numeric 78.57 64.29 57.14 71.43 - 64.29 - 64.29 64.29 71.43 

 

In Table 3.5 above, the values which are displayed on a scale of 0-

100 describes the accuracy of the models in terms of the correctly 

classified data instances of the dataset. While values in the range 

of 0-1 (i.e. values for Cpu and Cpu.With.Vendor datasets) represents 

the correlation coefficients. Since the variance of the values in 

the ‘Cpu’ and ‘Cpu.With.Vendor’ datasets make them different from 

other datasets, they do not return any measure for the percentage of 

accurately classified instances. However, they return a correlation 

coefficient which gives us an estimate of how closely related the 

estimated value (predicted using the model built from a particular 

algorithm) is from the real value. Correlation Coefficient ranges 

from 0-1 with 1 meaning that the estimated value is the same as the 

real value. An accuracy of 100% means that the estimated values are 

100% correct. Hence, it can be assumed that using the correlation 

coefficient in the absence of an accuracy measure to compare the 

accuracy of different algorithms on a dataset is possible. This is 

the reason why Table 3.5 displays both. There was however a need to 

plot this separately on two different plots because of the scale 

differences.  

The graphs plotted in Figure 3. and Figure 3.13 below is used to 

represent the data from Table 3.5.  
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Figure 3.13: Shows the accuracy in percentage (0-100%) of various classification models 

on a variety of datasets. 

From Figure 3.13 above, it is expected that the Accuracy closest to 

100% is more desirable for any given dataset. 

 

Figure 3.13: Correlation Coefficient 0-1 (Cpu and Cpu.With.Vendor Datasets) 
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From Figure 3.13 above, it is expected that the Correlation 

Coefficient closest to 1 or -1 (in an inverse correlation), is more 

desirable for the given datasets.  

Table 3.6: Combination of Evaluation Measures on each dataset to 

effectively evaluate performance of each algorithm on different 

algorithms, in order to understand the patterns. 

Dataset AUC F-Measure MAE Accuracy Overall 

contact-lenses NB ZeroR J48 J48 J48 

cpu - - RF RF RF 

cpu.with.vendor - - RF RF RF 

credit-g NB RF/SGD SGD RF/SGD SGD 

diabetes Bag SGD SGD SGD SGD 

glass RF RF LibSVM/J48/RF RF RF 

ionosphere RF RF LibSVM RF RF 

iris.2D NB/LibSVM/DL4J/Bag/RF NB/LibSVM/DL4J/Bag/RF LibSVM/RF RF RF 

labor NB NB NB NB NB 

reutersCorn-

test 

ZR/Stack ZR/Stack ZR/Stack ZR/Stack ZR/Stack 

reutersCorn-

train 

ZR/Stack ZR/Stack ZR/Stack ZR/Stack ZR/Stack 

segment-

challenge 

RF/Bag & NB/J48/DL4J RF/J48/Bag J48 RF RF/J48 

soybean NB/LibSVM/DL4J/RF NB/LibSVM/DL4J/RF NB/LibSVM/DL4J NB/DL4J NB 

supermarket Any Any Except libSVM/DL4J SGD Any Except 

libSVM/DL4J 

SGD 

unbalanced RF Any Except NB LibSVM/SGD Any Except 

NB/DL4J 

RF/SGD 

vote RF/Bag RF SGD RF RF 

weather.nominal RF NB DL4J NB NB 

weather.numeric NB NB DL4J NB NB 

In Table 3.6, a multiple of evaluation measures are combined to 

determine the overall most desirable algorithm for each given 

dataset. The overall most desirable algorithm for each dataset is 

assumed to be the one that occurred more as the best when the 

different evaluation measures are considered separately. For 

example, the AUC analysis showed that the NB model was the best for 

the ‘contact-lenses’ dataset, while the F-measure, MAE and Accuracy 

analysis showed the J48 as the best. Combining these, and given the 

fact that the difference shown in the AUC for the J48 was not so 

significantly smaller than that of the NB, it is concluded that the 

J48 algorithm is overall the most desirable amongst the others for 

the ’contact-lenses’ dataset. 
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3.2.5 Size Effect experiment on an example classification 
problem 

In a given scenario, where a training set and a separate test set 

are provided independently of each other. We can determine what the 

size influence of both datasets will have on the performance of a ML 

algorithm. For example, considering the Soybean and Soy test 

datasets, we check to see what changing the size of each will have 

on the performance (accuracy) of a Naïve Bayes classification 

algorithm. From doing this, the following results were obtained. 

Table 3.7: The effect of the Train and Test Sizes on a Naïve Bayes Classifier (% Accuracy). 

Size Comparison NB (% 

Accuracy) 

TRAIN > TEST 100 

TRAIN < TEST 15.959 

TRAIN = TEST  93.7042 

 

 

Figure 3.14: Size Effect on Accuracy (%) 
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supplied matters a lot when building supervised machine learning 

models. Thus proving hypothesis 1 from section 3.1.3 to be true.  

3.3 Machine Learning Algorithms Considered 

Table 3.8: The following algorithms from Weka where used in the experiments carried 

out. 
Algorithms considered Category in Weka 

AdaBoostM1 * Meta 

AttributeSelectedClassifier * (With BestFirst & 

J48) 

Meta 

AttributeSelectedClassifier * (With BestFirst & 

NB) 

Meta 

AttributeSelectedClassifier * (With BestFirst & 

RF) 

Meta 

AttributeSelectedClassifier * (With BestFirst & 

ZeroR) 

Meta 

AttributeSelectedClassifier * (With GreedyStep-

Wise & J48) 

Meta 

Bagging * Meta 

DeepLearning4J Deep Learner based on NN 

J48 (c4.5 Decision tree) learners (trees) 

Kstar learner (Lazy) 

LibSVM learners 

Linear Regression learners (functions) 

Locally weigthed learning (LWL) * Meta 

MultiClassClassifier*(With J48) Meta 

MultiClassClassifier*(With NB) Meta 

MultiClassClassifier*(With RF) Meta 

MultiClassClassifier*(With SGD) Meta 

MultiLayerPerception learner (functions) 

NaiveBayes learners (bayes) 

RandomForest learners (trees) 

RandomSubspace * Meta 

REPTree learner (trees) 

SGD learners (functions) 

Stacking + Ensemble 

ZeroR learners (rules) 

Canopy Clusterer 

Cobweb Clusterer 

Expectation Maximization (EM) Clusterer 

FarthestFirst Clusterer 

MakeDensityBasedClusterer Clusterer (wrapping a simpleKMeans by default) 

SimpleKMeans Clusterer 

BestFirst AttributeSelectionMethods 

Greedy Stepwise AttributeSelectionMethods 

Remove UseLess Filtering algorithm 

 

The reason for using and considering these algorithms in the 

initial experiments, assumes that they are very popular in the data 

mining research community. It was decided that at least a minimum of 

two algorithms from the very common categories of data 

classification algorithms from the literature review section in this 

research thesis (Section 2.2.3) is taken into consideration.    
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3.3.1 Feature Selection and Filtering 

• Best First: It is a search method used for selecting features by 

examining the feature subsets space by greedy hill climbing 

amplified with a backtracking ability. Setting the number of 

consecutive non-improving nodes permitted controls the level of 

backtracking done. Best first (Kohavi & Sommerfield, 1995) may 

start with the empty set of features and search forward or start 

with the full set of features and search backward, or begin at 

any point and search in both directions (by seeing all possible 

single feature additions and deletions at a specified point). It 

is chosen and experimentally used with the attribute selected 

classifier in  Weka to create a variation of the classifier. 

• Greedy Stepwise: Greedy stepwise (Caruana & Freitag, 1994)makes 

a greedy forward or backward search through the feature subsets 

space. Might begin with no/all features or from a random point 

in the space. Stops when the addition/deletion of any remaining 

features results in a decrease in evaluation. Can also produce a 

ranked list of features by traversing the space from one side to 

the other and recording the order that features are selected. It 

is chosen and experimentally used with the attribute selected 

classifier in  Weka to create a variation of the classifier. 

• Remove Useless: a method in Weka for filtering out attributes 

that vary too much or do not vary at all (Hall et al., 2009).  

3.3.2 Supervised Classifiers 

• AdaBoostM1: It is a classification algorithm (Freund & Schapire, 

1996) for boosting a nominal class classifier using the Adaboost 

M1 method. A ‘nominal class’ classifier simply refers to a feature 

label that is a non-quantitative value lacking any numerical 

significance e.g. ‘male’, ‘female’ etc. Only nominal class 

problems can be tackled. Often dramatically improves performance, 

but sometimes over fits. Over fitting in machine learning is when 

the details of a training dataset are overly learnt by a model 

that it affects its performance on new test data.  

• Attribute Selected Classifier: The dimensionality of training and 

test data is minimized by feature selection before being passed 

on to a classifier (Shafi, Hassan, Arshaq, Khan, & Shamail, 2008). 

• Bagging/Bootstrap Aggregation: It is a technique of applying 

bootstrap replicates method to a machine learning algorithm of 

high variance such as classification and regression trees 

(Breiman, 1996). It helps to reduce such variance in the base 

learning algorithm. It is an ensemble meta algorithm, that 

generates multiple versions of a predictor and uses that to obtain 

an aggregated predictor. There is a random partitioning of the 

data into subsets to minimize the variance when building the 

various sub models in parallel, it then uses a weighted average 

function to combine the single models.  
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• Deep Learning for Java (Dl4j): It can be downloaded and installed 

in Weka for classification through Weka’s ‘package manager’ found 

in the ‘Tools’ tab of the Weka GUI. Dl4j is a current state of 

the art in the artificial intelligence (AI) field in which machine 

learning plays an important part. It is designed based on Neural 

networks, and allows you create deep neural nets from various 

shallow nets (e.g. recurrent nets, convolutional nets, etc.) when 

needed in a distributed environment that uses Spark and Hadoop 

in addition to distributed CPUs or GPUs. 

• J48: This is a decision tree supervised ML algorithm. Decision 

tree methods have a tree like separation of the data. There are 

usually internal/decision nodes (labelled with the attributes of 

the dataset) and leaf node/class labels. Separation at each level 

is done using a split criterion. The split criterion is usually 

applied on each internal node to determine what the output node 

is (which could be another internal node or a leaf node (which 

is usually a class label). Decision tree methods are popular and 

provide human readable rules (Murthy, 1998). Two very popular 

decision tree algorithms are the classification and regression 

trees (CART) (Breiman et al., 1984; Loh, 2011) & the C4.5 

algorithm (J. Ross Quinlan, 1986; J Ross Quinlan, 2014). In Weka, 

the J48 is used to generate a pruned or unpruned C4.5 decision 

tree. 

• KStar: KStar (Cleary & Trigg, 1995) is an instance-based 

classifier. The class of a test instance is based upon the class 

of those training instances like it, as determined by some 

similarity function. It differs from other instance-based 

learners in that it uses an entropy-based distance function.   

• Lib Support Vector Machine (LibSVM): LibSVM is an integrated tool 

for support vector machine classifications, regression and 

distribution estimation. It can be downloaded and installed in 

Weka for classification through Weka’s ‘package manager’ found 

in the ‘Tools’ tab of the Weka GUI.  

• Linear Regression (LR): LR is an algorithm that models the 

relationship between the variables of the dataset using a linear 

prediction function (Weisberg, 2005). It is the first type of 

regression analysis that has been studied and used widely in 

practice (X. Yan & Su, 2009). 

• Locally Weighted Learning (LWL): LWL makes use of an instance-

based algorithm to allocate instance weights which are then used 

by a specified weighted instances Handler. It can perform 

classification e.g. using naive Bayes (Frank, Hall, & Pfahringer, 

2002) or regression (e.g. using linear regression). 

• Multi Class Classifier: This is a meta classifier for handling 

multi class datasets with two class classifiers. It can also apply 

error modifying output codes for improved accuracy.  

• MultiLayer Perception: A classifier that uses backpropagation to 

learn a multi-layer perceptron to classify instances. The network 

can be made by hand or fixed by means of a simple heuristic. The 
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network parameters can also be supervised and changed during 

training time. The nodes in this network are all sigmoid (except 

for when the class is numeric, in which case the output nodes 

become non-threshold linear units). 

• Naïve Bayes (NB): This is a generative probabilistic 

classification algorithm. It uses the Naïve Bayes hypothesis by 

(John & Langley, 1995), which is a simplification of the Bayes 

model. They are very simple, fast and commonly used amongst data 

classification methods (Murphy, 2006). They make use of 

statistical interpretation to find the best class for a given 

sample. Probabilistic classification algorithms will often output 

an equivalent posterior probability p(C│x) for each of the 

possible classes a test instance may belong to (Charu C. Aggarwal, 

2014).  

▪ Posterior probability = conditional probability 

obtained after taking into account precise features of 

the test case.  

▪ Prior probability = probability distribution of 

training records that belongs to each specific class. 

The two basic ways that the posterior class probability is 

estimated: 

▪ Through defining the class conditional probabilities 

p(x│C) for each class (C), after which the prior class 

probability p(C) is then inferred and Bayes theorem 

used to determine p(C│x). 

▪ By modelling the joint distribution p(x,C) directly and 

then normalizing it to obtain the p(C│x). 

• Random forest (RF): It is a combination of various decision trees 

that uses the bagging method. Each tree in the forest depends on 

the values of a random vector with similar distribution sampled 

independently (Breiman, 2001). 

• Random Subspace: (Barandiaran, 1998) A decision tree based 

classifier that maintains highest accuracy on training dataset 

and improves on generalization accuracy as it develops in 

difficulty. The classifier contains multiple trees constructed 

steadily by pseudo randomly choosing subsets of components of the 

feature vector (i.e. trees constructed in randomly chosen 

subspaces). 

• REPTree: A fast decision tree learner creates a decision or 

regression tree with information gain or variance and trims it 

using reduced-error pruning with back fitting. It only sorts 

values for numeric features once. Omitted values are handled by 

splitting the resulting instances into fragments. 

• Stochastic Gradient Descent (SGD): In Weka, this is an 

implementation of the stochastic gradient descent function, used 

to learn different linear models e.g. binary class SVM, binary 

class logistic regression, squared loss, Huber loss and epsilon-

insensitive loss linear regression. It replaces globally every 

missing value and does a transformation of nominal attributes to 
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binary ones. It also normalizes all attributes, so the output 

coefficients are based on the normalized data. For numeric class 

attributes, the squared, Huber or epsilon-incentive loss function 

must be used (Hall et al., 2009).   

• Stacking: This is also a meta algorithm where the original 

training data is partitioned into various subsets to build average 

performing models on each subset, then combine the models using 

a blending technique and a logistic regression function, to 

minimize both the variance as well as increase the accuracy of 

predictions (Wolpert, 1992).    

• Zero Rules (ZeroR): This is a rule-based classification algorithm. 

It relies on the target variable and ignores the other 

features/predictors. It predicts the majority of class in the 

train dataset (Aher & Lobo, 2012). Although it does not have any 

predictability power, ZeroR is useful as a baseline performance 

benchmark for other classification methods. It works by building 

a frequency table for the target class variable and select its 

most frequent value. 

3.3.3 Unsupervised Classifiers 

• Expectation Maximization (EM) clustering algorithm: This is a simple 

expectation maximization algorithm (Moon, 1996), for determining 

the maximum likelihood estimates through iterations. There is an 

alternation between two steps (the step where the expectation of 

the log likelihood is computed, and the step for computing 

parameters that maximizes the expected log-likelihood found in the 

first step (Sharma, Bajpai, & Litoriya, 2012). Using this algorithm 

will group the dataset instances into various clusters. EM assigns 

a probability distribution to each instance, which indicates the 

probability of it belonging to each of the clusters. In Weka, EM 

can decide how many clusters to create by cross validation or you 

may specify beforehand how many clusters to generate. The cross 

validation for determining the number of clusters is performed by 

first setting the number of clusters to 1, then the training set is 

split randomly into 10 folds, then EM is performed 10 times using 

the 10 folds the usual cross validation way, then the log-likelihood 

is averaged over all the different results, finally if the log-

likelihood has increased the number of clusters is increased by 1 

and a new iteration of the steps is repeated again.  

• Canopy: A clustering algorithm in Weka that requires just one pass 

over the dataset. It can be run in either batch or incremental mode. 

However, the results are not as good when its used incrementally 

because the minimum or maximum of each numeric feature is not 

determined in advance (McCallum, Nigam, & Ungar, 2000).  

• Cobweb: Algorithm that implements the cobweb and classit clustering 

algorithms. It mostly compares the best host, new leaf adding, merge 

of the two best hosts and splitting of then a split of the best host 

when deciding where to cluster a new instance (Fisher, 1987; Gennari, 

Langley, & Fisher, 1989).   
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• Farthest First: It is used as a fast simple approximate clusterer 

that enables the dataset to learn of discover something for itself. 

Based usually on the Farthest First algorithm which is first 

discussed in (Hochbaum & Shmoys, 1985).   

3.3.4 Evaluation Measures 

Cross Validation: This is one of the model evaluation techniques 

used in this research. Hold-Out Validation method is a statistical 

method that requires the dataset to be split into two segments (one 

for training the classifier and one for testing the classifier). The 

training data set is usually larger than the test data set. A 

disadvantage of this method is that the test is performed on a 

smaller portion of the data, thus increasing the tendency for false 

accuracy measurements (Charu C. Aggarwal, 2014). To address the 

problems of the hold out method, a more logical approach to the hold 

out method was developed. It is known as the cross validation method 

(Refaeilzadeh et al., 2009). It involves the data being split 

equally and the hold-out evaluation method is performed two times by 

using the training data set from the first iteration as the test 

data set in the second iteration and vice versa. The simple form of 

the cross validation is the k-fold cross validation. 

Supplying a test set: Another model evaluation method used in this 

research. As opposed to using the k-fold cross validation method to 

analyse the models built, the method of supplying a separate test 

dataset is provided as an option to the user of the system. Also 

carried out some performance evaluation using:  accuracy of the 

correctly classified instances as discussed in equation (2.1), recall 

from equation (2.3), precision from equation (2.4), specificity from 

equation (2.5), fall-out from equation (2.6) and the f-score (or f-

measure) expressed in equation (2.7). 

Correlation Coefficient: This tells us how much the true value of 

interest and the predicted value are related. Its value is usually 

between -1 and 1, with 0 meaning there is no relationship at all. This 

Statistical function is only displayed and used as an evaluation 

measure when reporting numeric class predictions. 

 Mean absolute error from equation (2.2): As the average distance 

the model predictions are from the actual data points. The predictions 

below data points are not treated as negative distances. This 

evaluation method is reported for both nominal or numeric predictions. 

The Root Mean Square Error, Relative Absolute Error and Root Relative 

squared error, are also general estimates that are displayed and can 

be used to compare the true values to their predicted values. 

3.4 Problem Identification Through Experiments 

When running the experiments on the different datasets using Weka, 

the following problems were encountered and identified: 
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1. A classifier trained using a labelled dataset was not necessarily 
suitable for the next dataset. Which means that it is therefore 

important, that one of the aims of this research which is ‘to 

help us automatically select the best machine learning method and 

algorithm to use on a particular dataset by implementing and 

transferring knowledge’ will help us resolve this problem.    

2. Despite the advantages of the experimenter and knowledge flow in 
Weka. During the pre experimentations carried out in section 3.2 

issues/errors were often encountered when automatically trying 

to apply several algorithms to multiple datasets from different 

sources while will cause the model building process to fail. Which 

we do not want to happen when we have data from various sources 

requiring classification or clustering.  

3. To avoid the problem in 2 above, the user has to manually spend 
a lot of time analysing the dataset and available algorithms, 

then perform multiple trial and error experiments on one dataset 

at a time. This problem is resolved by this research, through the 

building of a hybrid automatic machine learning system that does 

not require any time wastage on trial and error but can assist 

the user to pass in multiple datasets and then automatically 

determine which algorithm is best to use on that dataset. 

4. Traditional tools such as Weka are not suitable for present day 
multiple learning tasks. The experimenter which was the closest 

to use for running multiple algorithms on multiple datasets at 

the same time, did not provide a way to use a clustering algorithm. 

So, assuming one of our datasets is an unlabelled dataset, then 

the process also automatically fails. The system modelled in this 

research thesis aims to eliminate this problem by providing an 

automatic decision on what learning method to adopt depending on 

meta information learned e.g. by answering the question ‘is the 

data labelled or unlabelled?’ at the decision node.  

 

3.5 Knowledge Gained from Experiments 

Some observations made from the results of performing these 

preliminary experiments include: 

- If a set of class labels exists already and can be specified for 

all training instances, then supervised learning is preferred. 

- For any supervised classification algorithm to perform their best, 

it is important to first and foremost ensure that the size of the 

labelled train dataset is larger than the test dataset (it is 

assumed in this paper, based on the experiments performed that 

this should be around a ratio of 1:25). 

- When the number of test instances to be classified is small, 

Increasing the number of folds increases the accuracy of random 

forest with nominal data (only by a non-significant difference 

though if the train data set is large). 
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- Increasing the number of folds from 3 to 10 increases accuracy 

of random forest with numeric data (only by a little due to a 

larger train dataset size used). 

- Increasing the number of folds from 3 to 10 increase accuracy of 

random forest with mixed data (only by a little due to a larger 

train dataset size used). 

- For random forest, when the total number of instances is really 

small e.g. 24 or 30, its best to use 3 folds. Increasing its 

number of folds only reduces its performance in such cases. 

- We cannot use Naïve Bayes for numeric dataset, and it is very 

important to train the autoML system designed with these 

limitations by default. 

- Increasing folds from 3 to 10 for NB will improve the accuracy 

(only a little but the time taken to build the model is much 

faster than RF) for a large train dataset. 

- For Naive Bayes, it is best to use 3 folds if the dataset for 

training is really small. 

- Unsupervised learning is preferable if no pre-existing class 

label exists, 

- Unsupervised learning is preferable if the training set is way 

smaller than the sample set to be tested. 

- When the class attribute type is ‘numeric’, use the RF algorithm. 

- When the class attribute is ‘nominal’, and all other attributes 

are nominal and the total number of attributes are less than 10, 

and the number of instances are less than 50 with missing values 

<1% in total, then use the J48. 

- When the class attribute type is ‘nominal’, but the other 

attributes contain ‘String’ type attributes, then use the ZeroR 

or Stacking algorithm. 

- When the class attribute type is ‘nominal’, but we have at least 

half as many numeric attributes as there are nominal (i.e. the 

ratio of numeric to nominal is close to the scale of 1:2), then 

use the RF algorithm. 

- When the class attribute is ‘nominal’, and the total number of 

attributes are less than 10 with all other attributes as ‘numeric’, 

and there are no missing values, and the total number of instances 

are greater than 500, then using the SGD algorithm is favourable. 

-  When the class attribute type is ‘nominal’, and the total number 

of instances are less than 500, and we have more or all other 

attributes as ‘numeric’, then use the RF. 

- When the class attribute type is ‘nominal’, and the number of 

numeric attributes to nominal attributes are not any close to a 

ratio of 1 to 2, then use the NB algorithm. 

- When the class attribute type is ‘nominal’, and the total number 

of instances is greater than 500, and the total number of 

attributes is greater than 10, and we have more numeric attributes 

than nominal, then use RF. 

- When the class attribute type is ‘nominal’, and the total number 

of instances is greater than 500, and the total number of 
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attributes is greater than 10, and all other attribute types are 

nominal, and the missing values are not up to 1% (i.e. they are 

<1%), then we can use NB. 

- When the class attribute type is ‘nominal’, and the total number 

of attributes is greater than 100, and the total number of 

instances are greater than 1000, and the number of missing values 

are > 50%, then we can choose to use the SGD.  

- Last but not the least, when the class attribute type is ‘nominal’, 

and the total number of attributes are greater than 10, and all 

nominal, with missing values > 1% present in the dataset, then 

we use the RF. 

The conclusions derived from these experiments allows us to easily 

describe the decision learning (learning to learn) process of the 

auto ML system proposed as a set of Rules. Below in the following 

subsection, we will be discussing the Meta learning algorithm 

designed to this effect. As well as provide us with more details 

about the auto Machine Learning (autoML) system modelled in this 

research and from the observations listed above.  

Summary 

This chapter describes and discusses a combination of research 

methodologies e.g. experimental, theoretical and systems design used 

in this thesis. Therefore, allowing us to eliminate as much as 

possible every limitation that can be encountered with the 

individual methods themselves. For example, experimental research 

methodology has a limitation because the experiments are performed 

mainly in a controlled environment and might not reflect properly 

some practices performed ‘in the wild’. But combining this with some 

survey and prototype (system’s) design, reduced such limitations. 

The knowledge gained from carrying out preliminary experimentation 

is used in the next following chapter to design and model the 

hybrid-autoML system. 
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Chapter 4 

4 Hybrid-AutoML System 

Introduction 

This research models a hybrid classification system architecture 

comprising of three different layers. The second layer which is a 

decision learning level, automates the decision-making process on 

what learning method to adopt at any point in time, given a 

heterogeneously large input of data sets. The decision-making 

process is a Meta-learning (learning to learn) process. This 

research thesis presents a hybrid decision learning concept that 

uses more general knowledge about supervised and unsupervised 

machine learning algorithms and some meta features of the data. 

Based on the performance results of the preliminary experiments in 

section 3.2.4, a set of decision rules are drawn to enable the 

decision learning process, which further helped in achieving 

automatic classification of big data. Also, a self-evolving auto 

unsupervised classification algorithm which is suitable to use 

automatically in the absence of large labelled datasets is designed 

and developed in this Section. 

4.1 System Requirements 

1. The system is a tool for the classification of big data 

automatically, by invoking either a supervised machine learning 

algorithm, unsupervised machine learning algorithm or semi-

supervised learning algorithm, depending on the existing state 

of the data set and the scenario. 

2. The system accepts as input data of varying types and from 

different domains. 

3. System check is performed to determine if some knowledge about 

the data set is known. 

4. If some pre-labelled training data is present, the system 

invokes a probabilistic semi-supervised machine learning 

algorithm.  

5. If no pre-labelled data instance is present, the system invokes 

an unsupervised machine learning algorithm. 

6. The system outputs the corresponding class labels and the 

probability of an instance belonging to its particular class. 

4.2  The Model Design 

4.2.1  Design Goals and Aims 

1. A meta-learning rule-based design that defines a structure for 

automatically determining whether to invoke a supervised 

learning algorithm or an unsupervised learning algorithm. One 

that can be used effectively for achieving automatic pre-
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processing and model selection of the best machine-learning 

algorithm for any given dataset. 

2. The design of a self-evolving unsupervised clustering algorithm 

(determining the classes from scratch without any labeled 

instances). It will allow for effective clustering when 

required (i.e. depending on what was automatically learned from 

your data based on the meta-learning phase). Lastly, it should 

allow for a re-grouping of the classes to avoid having a large 

dataset of classes. 

3. Scalability in terms of the system handling an increasing 

amount of heterogeneous datasets and data categories. The 

system input can be datasets from various domains and fields. 

4. Achieves classification at a desired speed. It should be able 

to Achieve classification of the various datasets at a desired 

speed, making use of some generalization rules and knowledge 

of supervised and unsupervised algorithms to select 

automatically the best machine learning algorithm to use in 

building the model. 

5. The model built from automatically selecting the best 

supervised machine learning algorithm, can be used to make 

predictions on new instances. While the unsupervised clustering 

algorithm can be used in identification of anomalies/intrusion 

if applied or used in an Intrusion Identification System. 

6. Flexibility and adaptability. Ensure a high level of 

flexibility and adaptability of the system to ensure that the 

learning-to-learn process can improve to enhance an even better 

performance. 
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4.2.2  Model Architecture 

 
 

Figure 4.1: Three Layered Decision architecture for the hybrid auto 

machine learning system proposed after experiments. 
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4.2.3  Model Components 

Layer 1 (Input / Pre-processing Layer): Since big data is a 

collection of heterogeneous data which makes it difficult to analyse 

(Doug, 2001), this layer ensures that an inflow of such a data set 

is pre-processed appropriately. The pre-processing phase will 

involve dividing the vast source of data into domain specific 

sources of knowledge, next a check through the contents and 

attributes of the data is done to determine if any knowledge or 

information about its content is present. Having this layer will 

assist in the process of preventing vagueness in the heterogeneous 

data. This layer provides layer 2 the reasoning about classifying 

data using either a supervised classifier or and unsupervised 

classifier. 

Layer 2 (Strategic Learning Decision Layer): At this layer, the 

decision on which learning method to invoke is made. The main aim of 

this layer is automatic classification using the most effective 

learning method to achieve a high level of accuracy at a fast speed. 

The hypothesis used in this layer for making a decision is based on 

some general characteristics and knowledge about supervised and 

unsupervised machine learning. For example, characteristics such as 

the existence of pre-existing labelled set for training or not, the 

size of the pre-labelled training set (under the assumption that the 

size is relative to the number of instances in a particular 

dataset), existence of a test set which is a subset of the training 

set, etc. 

Layer 3 (Output / Optional Cluster Formation Layer): This is the 

output layer. In this layer, an evaluation of the different models 

built for the different dataset is made. This layer also acts as an 

optional layer for scalability through a technique of clustering the 

class labels using a similarity estimate. It is also a layer where 

the relationships of class labels can be properly secured. 

Activities like securing the relationships between class labels can 

be performed in this layer. For example, imagine a scenario in which 

the amount of resulting class labels becomes very large. The 

question now becomes: ‘how can we effectively manage a large and 

increasing set of class labels?’ At this layer, a good technique to 

effectively manage a large and self-evolving set of class labels is 

considered. This technique considers the formation of 

clusters/groups for the class labels by making use of a similarity 

or distance measurement. The resulting output from this layer will 

be a set of cluster labels (similar to the class labels, but for 

representing some knowledge about the clusters).  

4.2.4  Model Characteristics 

Meta-learning / automatic learning architecture: where supervised and 

unsupervised classification algorithms will be combined together and 

depending on certain characteristics knowledge of the data set under 



- 72 - 

 

consideration, one of the algorithm is invoked automatically to give 

more accurate classes. This reduces significantly the time spent in 

deciding the best classification algorithm to use for a particular 

data set and the high cost of learning realistically accurate 

classifiers is overcome.  

Multi Class-label type classification: a new unsupervised algorithm 

is developed in this research, which can be used successfully in second 

layer of the classification system. The algorithm allows an instance 

of a dataset to have multiple class labels based on sensitivity levels 

(e.g. sensitive level l1, l2, etc.) assigned to each attribute per 

instance, rather than assigning one class label to the data instance 

as a whole (see illustration of this in Table 4.1 below). 

Table 4.1: Hypothetical example case study of a multi-class labels unsupervised algo-

rithm. 

# Bank 

ID 

LName FName D.o.B 

1 10a Flora Catch 29.09.83 

2 20s Robin Thomson 05.10.75 

3 3b Martha Woods 04.7.60 

Class L1 L3 L2 L1 

 

From Table 4.1, there are 4 attribute features and 3 instances of 

the dataset. Every bank ID and D.o.B. is given a sensitivity class 

label l1, (where l1 is assumed to be the most sensitive class), every 

instance of the Fname is given the label l2 and the Lname is given a 

label l3. From this, it is observed that each instance in the data set 

may have one or more class labels. 

 
1. Meta-Classification: this simply means a process of classifying 

the classes. 

2. Multilevel type structure classification.  
3. Auto-Class functionality: the beneficial features of Auto-Class 

includes: 1) its ability to determine the number of classes 

automatically, 2) it permits the blend of discrete and real valued 

data, 3) it can handle missing values effectively. 

4. Classification Methods to be used: Probabilistic and Rule based 
methods will be employed. 

5. Output: the intended output per instance will be a numerical score 
that can be converted to a discrete label. 
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4.3  The Model Algorithms 

4.3.1  Decision (meta) Learning Algorithm 

Input: An inflow collection of either labeled (Dl) datasets or un-

labeled (Du) datasets or both from heterogeneous data sources and a 

collection of fully unlabeled heterogeneous dataset (D). Also, a set 

of IF → THEN rules defined from experimental knowledge obtained 

about supervised and unsupervised learning, that helps in the deci-

sion-making process. 

Output: A decision that invokes either a supervised classification 

algorithm or an unsupervised classification algorithm. 

a. IF training labeled set exists then check the size of the 

labeled set. 

b. IF size of the training set > than the test set, THEN invoke 
a supervised learning method. 

c. IF no training set exists, THEN use an unsupervised algorithm. 
d. IF the size of the training set < or = test set, use an 

unsupervised algorithm. 

e. IF no labeled instances exist, use an unsupervised algorithm. 
f. Output new decision by automatically invoking a learning 

algorithm that is the best fit for that dataset. 

 

4.3.2  AutoProbClass Unsupervised Algorithm 

An autoProbClass unsupervised algorithm: A self-evolving multi-la-

bel fuzzy unsupervised algorithm called the ‘autoProbClass’ is de-

signed in this layer. The autoProbClass algorithm combines two simi-

larity/distance measurement. The first similarity measurement is an 

instance identifier (based on its attribute weighted value) similar-

ity fraction measurement and the second is the Euclidean distance 

measurement. Euclidean distance measurement is a very popular dis-

tance (or similarity) function in the field, were one object de-

scribes not one distance but also the data model in which the dis-

tances between objects of that model can be calculated.  

Input: Unlabeled or partly labeled datasets.  

• IF the first instance in the dataset is read,  

o An instance identifier Ĩ is created. 

 Ĩ += 𝑉𝑖 where 𝑖 < 𝑛𝑎 

 

(4.1) 

• The instance identifier Ĩ is a string. 

• 𝑉𝑖 = the value of a data instance 𝑖  

• 𝑛𝑎 = the number of attributes for the given instance. 
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• Instance.value(i) is a method via the WekaAPI that will return 

an instance’s attribute value in internal format.  

• For example if we have an instance [young,myope,no,re-

duced,none] from our contact lenses dataset which has the fol-

lowing attributes: 

• @attribute age    {young, pre-presbyopic, presby-

opic} 

• @attribute spectacle-prescrip {myope, hypermetrope} 

• @attribute astigmatism  {no, yes} 

• @attribute tear-prod-rate {reduced, normal} 

• @attribute contact-lenses {soft, hard, none}  

• Then the identifier Ĩ  for that instance will be ‘00002’ and an-

other instance [young,hypermetrope,yes,normal,soft] will have 

an identifier of ‘01110’. It uses index points per instance, 

per attribute value. 

o A new class is created and is added to a Dense Instance list 

called ‘cloud’.  

o Then a label ‘ClassK’ is created and the label is added to 

a list of all Class labels. Where K is a counter set for 

keeping track of the number of class labels created. 

• IF it is not the first instance been read, then 

o An instance identifier is created for that new instance. 

o The new instance is then compared with the previous in-

stance/instances in the ‘cloud’ list, using their instance 

identifiers. The method to compare the Instances does the 

following: 

▪ IF the instanceOldIdentifier.value(i) is the same as 

the instanceNewIdentifier.value(i), then a true score 

sum is accumulated. 

▪ ELSE IF the instanceOldIdentifier.value(i) is NOT the 

same as the instanceNewIdentifier.value(i), then a 

false score accumulated. 

▪ Then a dissimilarity measure is calculated as follows:  

 𝐷 = 100(𝐹
𝑛⁄ )% (4.2) 

 

o Where D = dissimilarity, F= false score and n = total num-

ber of attributes. 

▪ While the similarity measure is denoted as:  𝑆 = 1 − 𝐷. 
▪ It is assumed that for a new instance to be like an old 

instance, then the dissimilarity measure should be 

small (for example, we have assumed a score of less 

than 20%). This assumption can be changed to an even 

smaller value, to further ensure that the dissimilarity 

between the two instances is small enough to help in 
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deciding whether they will belong to the same cluster 

or not. 

▪ IF the dissimilarity measure is high, then ‘false’ is 

added to a ‘howCloseList’ (which is a list containing 

the closeness comparison of the instances), ELSE ‘true’ 

is added to the list. When a ‘true’ is recorded in the 

‘howCloseList’, then the percentage of similarity meas-

ure is also recorded in a ‘simPercent’ list at that 

same index point a ‘true’ was recorded in the ‘howClose-

List’. Where a ‘false’ was recorded, we record a float-

ing-point value of 0.0 in the ‘simPercent’ list (this 

just means we are not interested in the similarity 

measure if the instances are not in the first place at 

all similar). 

▪ The ‘Euclidean Distance’ is also estimated between the 

newly read instance and the old instance/instances in 

the ‘cloud’ list.  

•  After the compareInstancesTest() has been performed, we get the 

class label value for the previous instance that is the closest 

to the new instance, by using the index of the maximum value in 

the ‘simPercent’ list.  

• IF the maximum value is ‘0.0’ in the ‘simPercent’ list, then it 

is assumed that the new instance was in no way like the previous 

instances. Hence, we create a new class for it and a corresponding 

new Class label. ELSE we assign the new instance into the same 

cluster as the closest previous instance to it, as well as assign 

the corresponding class label to it.  

4.4  Design Materials 

4.4.1  Weka API 

As stated in previous chapters, the Wekatool when downloaded comes 

with an application programming Interface (API), this API which 

could be a ‘.jar’ file source packaged with Weka is added in as a 

library path of the project’s implementation in my development 

environment. The API provides several methods and functions of the 

Weka tool which is used in a flexible manner to implement the system 

model. Some functions provided via the API includes: a function for 

calculating the ‘Euclidean distance’ between two data points, a 

function for performing cross validation tests, another for plotting 

and visualising results via ROC curves, etc. 

4.4.2  NetBeans IDE 

Netbeans Integrated Development Environment (IDE) was used to 

implement a Java based application of the model designed. IDEs 

provide a controlled environment for developing or implementing 

software designs. The choice was made to use Netbeans IDE because it 

is a very popular tool when building or implementing java based 

application and it is easy and friendly to use.  
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4.4.3 Program 

The programming language of choice for the implementation of this 

research is the Java Programming Language. Some reasons for using 

Java is because, it is a very familiar programming language, it has 

a very big user support community, it is efficient in building 

scalable, flexible software solutions and lastly, Weka is java based 

and came readily with an API to help aide customisable 

implementations.  

4.5 Testing and Evaluation of System Model 

Several case studies and scenarios have been created to guide in 

the testing and evaluation of the implemented prototype of the 

system. They are as follows: 

4.5.1  Case Study 1 

The hybrid automatic classification rule-based algorithm is 

implemented in this stage, validated and tested using some datasets 

not used initially in the preliminary experiments. The rule-based 

algorithm was written as a result of the fact that, from the 

preliminary experiments, it was determined that general knowledge 

about the data set e.g. the size of the training set, the class 

attribute type, the number of nominals versus numeric attribute, 

etc. definitely influences the choice of the algorithm to be 

selected. Implementation of the algorithm and the knowledge gained 

from preliminary experiments, were written in Java codes using the 

Weka API, to determine if the rules remain valid whenever it is 

applied to any other datasets not initially used. The set of rules 

implemented are derived using the result observations from the 

preliminary experiments. The datasets used in this stage are the: 

‘breast-cancer’, ‘iris’, ‘soy-test’, ‘reuters Grain-train’ & 

‘results’. They were all placed together in the same file path, and 

using the system designed only the main file path was supplied. 

Doing this helped us to determine two things as proposed in this 

paper and in hypothesis 1, which includes: 

1. When provided with a heterogeneous multi data source, can we 

automatically take decisions on what mode or model to build for 

each dataset by using some more general knowledge about machine 

learning and each dataset? 

2. If a decision to use supervised machine learning is made, how 
then can we build in a timely manner the best model per dataset 

using the rule based decision-making algorithm described in this 

research thesis? 
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Figure 4.2: Simple GUI interface for the Implementation of the Hybrid Auto Classification System. 

Figure 4.2 shows the simple GUI implemented for the system model 

designed in this paper. Using this system, the user can use the 

‘TrainDataset’ button to choose a file directory containing all the 

datasets to build the individual models for. Or they can supply a 

single train dataset and a test set using the ‘TestDataset’ button. 

If we supply a single training Dataset, we have the option to set 

what the Class index in the dataset is (if this exists and is 

known). Without setting the class index for it, it will be assumed 

that it is an unlabelled dataset and going by the design 

architecture proposed in this paper, when the ‘Model Build Proceed’ 

button is clicked, the ‘autoProbClassifier’ (Unsupervised ML 

algorithm) is automatically used in that scenario. If a file 

directory path (containing several datasets) is selected instead, 

then the last attribute in the dataset is automatically selected as 

the class attribute for labelled datasets, and clicking the ‘Model 

Build Proceed’ button in that scenario will automatically build the 

most suitable Supervised classification model for each dataset in 

the directory, by using general knowledge of that dataset and the 

set of rules derived after the preliminary experiments had been 

carried out.  The results from this stage is discussed in chapter 5. 

This case study is to show that hybrid-autoML can allow for the 

automatic mode and model selection on multiple-varying datasets at 

the same time. Therefore proving our aims from section 1.3 has been 

achieved.  

4.5.2 Case Study 2 

This is the stage of implementing an alternative ‘autoProb’ 

function designed in this thesis. In this given scenario a single 
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dataset file is supplied using the ‘Train Dataset’ file chooser and 

the user does not select a class index. If the class Index is not 

chosen, when a single dataset is supplied, we assume that the 

training data supplied is unlabelled, hence the decision to use the 

‘autoProb’ self-evolving or any other unsupervised algorithm is 

made. Results for this scenario is discussed in section 5 and proves 

if our aims 1 and 2 from section 1.3 have been achieved.  

For simplicity, we describe the testing of autoProbClassifier’s 

implementation using the ‘contact-lenses-test’ dataset (listed in 

the full datasets list table in Appendix 5). 

 

Figure 4.3: Details of the contact-lenses-test dataset used. 

Summary 

We presented the system requirements, design materials, model algo-

rithms and model design which encompasses the design goals, archi-

tecture (a three-layered architecture), components and characteris-

tics of the ‘Hybrid-AutoML’ toolkit developed in this thesis for au-

tomatic mode and model selection on single or multi-varying da-

tasets. In the next chapter we evaluate the results obtained from 

the design implementations. 
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Chapter 5 

5 Results and Discussion 

Introduction 

Use cases describe specific situations in which a product or 

service could potentially be used. They are used mainly during the 

analysis phase of a project to identify systems functionality. It is 

made up of a set of possible sequences of interactions between a 

system and users within an environment and related to a goal or 

goals of the system. The use case should contain all system 

activities that have significance to the users within a given 

system. 

In this chapter, we use a set of use cases to evaluate how the 

hybrid autoML system is used to achieve the goals set out in the 

aims and objectives of this thesis. We map each use case to our aims 

and contributions as outlined in section 1.3 of this research 

thesis. A performance comparison is also made between autoWeka and 

the hybrid autoML system on 33 datasets. The comparison is carried 

out based on three main evaluation metrics such as, the percentage 

accuracy (or correlation coefficient where applicable), the mean 

absolute error (MAE) and the time (in seconds) spent building the 

model on training data. From using the use cases and comparison 

analysis, it is observed that the aims and objectives of this 

research thesis has been met fully. Also, the performance comparison 

shows that the hybrid autoML system performs relatively close to or 

better than autoWeka on most of the datasets used. Overall, an 

interesting fact is that the hybrid autoML system fully outperforms 

autoWeka with regards to the time spent on building models or 

finding the best algorithms in the first instance. 

5.1 Evaluation of Use Cases. 

The following use cases can be used to replicate some of the 

scenarios used in evaluating the prototyped implementations for our 

hybrid autoML system. 

5.1.1  Use Case 1 (Small Unlabeled Dataset) 

We supply the hybrid system with a small unlabelled dataset. For 

this use case, we use the ‘soy-test’ dataset. This data contains 

thirty-six attributes and twenty-six unlabelled data instances. The 

aim of this use case is to show that in such a scenario, the hybrid 

autoML system will automatically choose an unsupervised clustering 

algorithm. It is expected that since it is a small unlabelled 

dataset, the ‘AutoProbClass’ algorithm described in section 4.3.2 is 

automatically selected. Hence, proving that the contribution of this 

research thesis to aid the automatic selection of an unsupervised ML 

algorithm e.g. the ‘AutoProbClass’ when supplied with an unlabelled 

dataset has been achieved. Figure 5.1 shows the data summary for the 

‘soy-test’ dataset used in this first user scenario.  
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Figure 5.1: Shows a data summary on upload of the small unlabelled dataset (soy-test). 
 

After the upload of the dataset and clicking of the ‘Model Build 

Proceed’ button, the system automatically assumes an un-labelled 

dataset. This occurs when the class index is not set using the 

‘Class index’ dropdown menu and when the target class is an unknown 

variable for each instance within the dataset.  
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Figure 5.2: shows that an unsupervised ML mode was selected 

automatically and a clustering model constructed by engaging autoProb 

clustering function on the soy-test dataset. This model automatically 

resulted in six cluster been identified in under 0.03 seconds.  

 

From Figure 5.2 above, we can see that in about 0.03 seconds the 

system automatically chooses a clustering algorithm for the given 

task. The algorithm modelled uses the ‘AutoProbClass’ function 

designed in this thesis to create six clusters for the given 

dataset. Finally, we observe from the figure that the aim of this 

use case showing the contribution of the hybrid autoML system 

providing a function for automatic selection of a learning scheme, 

as well as an ‘AutoProbClass’ function for clustering a small 

unlabelled dataset has been achieved. 
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5.1.2  Use Case 2 (Larger Unlabeled Dataset)  

We supply a larger unlabelled dataset. For this use case, an 

unlabelled ‘german-credit’ dataset is used. This dataset contains 

twenty-one attribute variables and seven hundred data instances. The 

aim of this use case is to further describe and explain how we have 

implemented and achieved the objective set out in this thesis to 

have a function for automatically selecting a learning scheme or 

model, given a large unlabelled dataset. It is expected from this 

use case and given the hybrid system’s function for model selection, 

that an unsupervised algorithm e.g. the EM algorithm will be 

automatically selected. After uploading the dataset and clicking on 

the ‘Model Build Proceed’ button, the system automatically assumes 

an un-labelled dataset, same as in use case 1. The hybrid autoML 

system, goes further to automatically choose a clustering algorithm 

for the given task as described below. 

 
Figure 5.3: shows an unsupervised ML mode using the EM clustering 

algorithm was automatically chosen as the best to use for this given 

task. Two clusters where derived and the EM model built in 3.21 seconds. 
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Hence, it can be said that an unsupervised algorithm is more 

appropriate to use in the absence of a large pre-labelled training 

set. It has also been observed that using general knowledge about a 

dataset such as the size of the training set compared with the test 

set, the class attribute type, the number of numeric in comparison 

to number of nominal attributes, etc. turned into a rule based 

algorithm, allows for this automatic mode and model selection. 

 

5.1.3  Use Case 3 (Large Labelled Train Data with Smaller 
Test Data)  

We have a large labelled dataset and some smaller test dataset. For 

this use case, we supply the system the ‘gissette’ train and test 

datasets. The training dataset contains 4900 instances and 5001 

attribute variables, while the test dataset contains 2100 instances 

and 5001 attribute variables. The last attribute in each dataset 

represents the target class attribute (which is selected using the 

‘class index’ selector of the system, after uploading both 

datasets). The aim of this use case is to show that in a given 

scenario where a user has a large labelled dataset and some smaller 

test set, then it is expected that the hybrid autoML system uses 

it’s rule based algorithm to decide on selecting a supervised 

learning algorithm. It is also expected that the most appropriate 

supervised algorithm is selected automatically and in a small amount 

of time, from a pool of various supervised ML algorithms implemented 

into the hybrid autoML function for model selection. The following 

figures and discussions below describes the evaluation of the hybrid 

autoML system in this user scenario.  

 
Figure 5.4: The ROC curve obtained after a model was built and tested 

using the gisette data set.  
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Figure 5.5: Shows the evaluation result obtained from using the hybrid 

autoML system on the 'gisette' data set. 

 

From Figure 5.5 above, we can see that the hybrid system by 

following the rule base algorithm designed in this research thesis, 

automatically uses the random forest to build a model for our given 

dataset. It is also observed from Figure 5.5 some evaluation 

metrics, which measures to what extent the system performs in this 

instance. For example, the time taken to build the model was 30.8 

seconds with an accuracy of 96.52% and MAE of 0.17. The area under 

the ROC (AUC) as displayed just above the chosen classifier used is 

0.99 (as shown in Figure 5.4). A value closer to 1 for the AUC, 

represents a high performing classifier, while a value closer to 0 

represents a poorly performed classifier. From Figure 5.5 above, we 
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can see that the classifier automatically used by our hybrid system 

performed highly in this use case.  

While showing the use of general knowledge about a dataset such as 

the size of the training set compared with the test set, etc. we 

proved that a supervised algorithm is more appropriate to use than 

an unsupervised algorithm in the presence of large pre-labelled 

training set, and turning this into a rule based algorithm, allows 

for automatic mode and model selection in such a scenario. 

5.1.4  Use Case 4 (Small Labelled Train Data with Large 
Test Data)  

The user only has a small labelled training dataset and large test 

dataset which they supply to our hybrid autoML system. In this 

example, we use a labelled version of the ‘soy-test’ dataset (from 

use Case 1) as our training dataset and an unlabelled ‘soybean’ 

dataset (containing 683 data instances and 36 attribute variables). 

The aim of this use case is to prove that the hybrid function for 

automatic model selection is effective enough to show that using a 

supervised model in such a scenario is not as effective when a user 

only has a small labelled training dataset as opposed to a large 

dataset for training. The ideal is to extend the hybrid autoML 

system designed in this thesis to include the automatic model 

selection of a semi-supervised classifier if faced with these types 

of conditions. The following figures and discussions below provide 

an evaluation of the results obtained after carrying out this use 

case in the hybrid system.  

 

 
Figure 5.6: ROC curve obtained from training the model on the given 

train data set. 
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Figure 5.7: Evaluation metrics obtained from using a small trained 

data set and large test set in useCase4. 

 

From the following ROC curve above in Figure 5.6, we observed that 

the AUC when building our training model was 0.91 (a value closer to 

1 than to 0). This AUC indicates a high performing classifier model, 

however when combined with other evaluation metrics as shown in 

Figure 5.7 above, it is observed that a Naïve Bayes model built on 

the small training dataset and tested on the larger test dataset had 

a very low accuracy. The reason for this is that, ideally in this 

scenario, a semi-supervised algorithm should be the right choice. 

However, the hybrid autoML rule-based algorithm was designed and 

constructed based on a variety of supervised and unsupervised 

algorithms supplied by WEKA. WEKA via it’s API currently lacks an 

easy way of using semi-supervised algorithms.  
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5.1.5  Use Case 5 (Location with Multi-Varying Data sets) 

We supply a location containing multi-varying domain datasets. This 

use case aims to prove that the hybrid autoML system designed in 

this thesis can allow for the automatic model selections for 

multiple varying datasets in one go as clearly set out to achieve in 

the aims and objectives. This proves the contribution of the hybrid 

system been able to handle multiple multi-domain datasets on the 

fly, while distinctively building and choosing the most appropriate 

model per dataset. It is expected that this is achieved in a lesser 

time than if the user was to supply one dataset at a time (which is 

a common major limitation of other auto ML systems such as 

autoWeka). The following figures and discussions below in this 

subsection, describes the datasets and the evaluation results from 

executing this use case. 

 
Figure 5.8: A file directory supplied as the location containing the 

varying data sets to be supplied in one run. It shows a total of 8 

datasets that we use to test this user scenario. 
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Figure 5.9: ROC curved obtained for five out of the 8 multi-varying 

data sets in our data location. 
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Figure 5.10: Shows the evaluation for the 'breast cancer' data set 

and Naive Bayes automatically chosen for it as the classifier. 
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Figure 5.11: Shows that Random forest was chosen for the 'iris' 

dataset.  

Figure 5.11 above, also shows the evaluation results for the chosen 

random forest model on this data set. 
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Figure 5.12: Evaluation results shown for the 'labour' data set.  

Figure 5.12 above, also shows that the Naive Bayes classifier was 

selected for this data set, and that it had an accuracy performance 

of up to a 100%. 
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Figure 5.13: Evaluation result for the 'Results' data set.  

From figure 5.13 above, it is shown that Random Forest was the 

classifier of choice used based on the rule-based algorithm designed 

in this thesis. 
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Figure 5.14: Evaluation results for the 'ReutersCornTrain' data set.  

Figure 5.14 above, shows that the zeroR classifier was automatically 

chosen on the ’ReutersCorn training’ data set. 
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Figure 5.15: Evaluation results showing that Random Forest 

classifier isautomatically used to build the model for the 'Samsung-

Galaxy-Gear' data set.  

Figure 5.10 to Figure 5.15 above, shows various ML models been 

built automatically for the various datasets in our data location. 

These algorithms were chosen automatically by making use of both the 

functions for model selection and the function for handling multi 

datasets in one experimental run designed in this thesis. The 

highest time spent on any of the model built is 11.71 seconds. From 

executing this use case 5, we can conclude that using more general 

knowledge about a dataset such as the size of the training set 

compared with the test set, the class attribute type, the number of 

numeric in comparison to number of nominal attributes, etc. as a 

rule based functional algorithm, allows for the automatic ML mode 
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and algorithmic model selection on multi-varying dataset as 

expected. 

5.2 Comparison of the Hybrid autoML with AutoWeka 

In the following section, we present and evaluate the performance 

of the hybrid system with autoWeka (a state-of-the-art auto ML 

system). We base this comparison on multiple evaluation metrics 

mainly % accuracy, mean absolute error (MAE) the time in seconds. 

The aim of which is to prove that the hybrid system performs 

relatively better than autoWeka. 
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Table 5.1: Comparing autoWeka and the Hybrid autoML designed in this 

thesis. 

 
 

In Table 5.1 above, we can see the performance the hybrid autoML 

system designed in this thesis has in comparison to autoWeka. Three 

main metrics of evaluation are used here. They include the accuracy 

measured in percentage, the mean absolute errors (MAE) and the time 

in seconds. Data sets which have a numerical class attribute e.g. 

cpu dataset mainly generated a correlation coefficient on a scale of 

0-1, which we then convert into a percentage score value to match up 

with the scale across other datasets for measuring accuracy (%). The 

bold numbers in the table shows where the hybrid autoML system 

ACCURACY (%) ACCURACY(%) MAE MAE TIME (secs) TIME (secs)

Dataset Chosen (by AutoWeka) AutoWeka Chosen(by Hybrid) Hybrid Model AutoWeka Hybrid Model AutoWeka Hybrid Model

contact-lenses DecisionTable 70.83 J48* 87.50 0.27 0.10 762.28 0.14

cpu AdditiveRegression 93.53 RandomForest 91.80 31.72 31.10 765.88 0.3

cpu.with.vendor MultiLayer Perceptron 99.96 RandomForest 98.91 4.99 12.24 769.69 0.27

credit-g RandomForest 70.30 RandomForest* 73.57 0.35 0.34 769.37 0.36

diabetes Logistics 75.65 SGD* 78.13 0.29 0.22 863.28 0.09

glass Lazy.IBK 76.17 RandomForest* 81.69 0.11 0.10 769.82 0.32

ionosphere SMO 92.59 RandomForest* 94.87 0.12 0.14 758.77 0.14

iris.2D AdaBoostM1 92.67 RandomForest* 96.00 0.07 0.04 762.11 0.03

labor SMO 85.96 NaiveBayes* 100.00 0.18 0.01 756.39 0

reutersCorn-train Cannot handle - ZeroR* 97.88 - 0.05 - 0

segment-challenge RandomSubspace 97.27 RandomForest* 98.00 0.01 0.02 839.05 0.42

soybean LWL 92.53 NaiveBayes* 93.39 0.02 0.01 1187.38 0.01

supermarket DecisionTable 76.94 SGD 64.53 0.32 0.35 778.03 2.00

unbalanced SMO 98.60 RandomForest 98.60 0.03 0.03 781.57 0.13

vote RandomForest 95.63 NaiveBayes 93.10 0.08 0.07 761.3 0

weather.nominal SMO 64.29 J48 50.00 0.36 0.50 765.9 0.00

weather.numeric IBk 85.71 NaiveBayes 75.00 0.17 0.38 758.67 0.00

Dorothea DecisionStump 93.29 RandomForest 88.81 0.12 0.16 74450.82 60.93

Yeast IBk 59.10 AutoWEKA engaged* 100.00 0.10 0.04 759.63 762.25

Amazon NaiveBayes 57.90 RandomForest 20.29 0.02 0.04 1107.2 18.7

Secom Bagging 93.89 RandomForest* 95.07 0.12 0.11 770.18 1.24

Semeion Logistics 100.00 RandomForest 93.55 0.00 0.09 988.31 0.84

Car AttributeSelected 100.00 NaiveBayes 85.36 0.00 0.12 885.25 0.01

Madelon lazy.IBk 100.00 RandomForest 61.88 0.01 0.48 770.4 1.63

KR-VS-KP Tress.LMT 99.91 NaiveBayes 87.53 0.09 0.22 774.35 0.01

Abalone Logistics 28.90 RandomForest 23.51 0.06 0.06 837.43 2.48

Wine Quality Ibk 100.00 RandomForest 65.09 0.04 0.09 770.42 1.64

Waveform SimpleLogistics 87.86 RandomForest 85.59 0.13 0.20 865.09 1.87

Gisette RandomForest 99.57 RandomForest 95.71 0.03 0.17 1602.26 11.46

Convex RandomForest 55.30 RandomForest* 73.03 0.48 0.39 822.3 14.78

Cifar-10-small RandomForest 99.19 RandomForest 86.02 0.06 0.16 4376 45.51

Mnist Basic RandomForest 99.83 RandomForest* 99.89 0.02 0.06 1139.34 15.42

Shuttle RandomForest 99.87 AutoWEKA engaged 99.86 0.00 0.00 844.25 924.66
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performed better or relatively close enough to that of autoWeka. A 

star beside the classifier chosen by the hybrid model in the column 

‘chosen (by hybrid)’ describes those datasets for which the hybrid 

model in this thesis outperformed autoWeka. This involved 14 out of 

the 33 datasets in the table having a higher performance in the 

hybrid-autoML system. 10 out of the 33 datasets performed relatively 

close to how autoWeka performed but with an advantage of been 

carried out in a lesser time than autoWeka. Which means that, for 

all target users of the system, the time spent in getting an idea of 

what algorithms to consider in the first instance is greatly reduced 

by using the hybrid autoML system designed in this thesis. Lastly, 

an important fact to add is that for using the autoWeka, each 

dataset had to be loaded in one after the other. While with the 

hybrid-autoML tool, the user only needs to supply a location for all 

the various datasets in question. Hence, reducing the effort and 

time of the user.  

Summary 

In this chapter, we use a set of five different use cases and 

comparison analysis, to evaluate the performance unfolding of 

hybrid-autoML system and how it is used to achieve the goals set out 

in this thesis. Use case 1 shows the ability of the hybrid autoML 

system to select automatically an unsupervised learning strategy 

i.e. the ‘autoProbClass’ function given a small unlabelled dataset. 

While use case 2 shows unsupervised mode with a readily available EM 

clustering was selected automatically on a large unlabelled dataset. 

Use cases 3 to 4, shows that the system knows when to automatically 

use a supervised learning mode to select the most appropriate 

algorithm in the shortest time possible, on single or multi-varying 

dataset. All use cases thus proves that the system’s function for 

mode and model selection (whether supervised or unsupervised) is 

effective and timely.  Use case 5 establishes the fact that the 

system can effectively handle the supply of multiple datasets of 

varying types and from varying domains at a go. However, maintaining 

the integrity of using only the most suitable ML model per dataset. 

All of which means that the aims and objectives set out to be 

achieved by the modelling and design of the hybrid-autoML system has 

been effectively met. Lastly, a comparison of the system with 

autoWeka shows that in 24 out of 33 datasets, the hybrid system 

performs relatively better than autoWeka and in a way shorter time 

than autoWeka. 
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Chapter 6 

6 Conclusion and Further Work 

6.1  Conclusion 

In this thesis, we have presented a toolkit for automatic 

machine learning (ML) mode and model selection on single or 

multi-varying datasets.  

In Chapter 1, the basic concept of big data ML, ML tools, the 

algorithm selection problem, the meta-learning (learning-to-

learn) paradigm and automated machine learning (autoML) was 

discussed. We discussed that although some hybrid autoML systems 

exists, e.g. autoWeka and auto-Sklearn, they do not consider 

knowledge known about mode selection but focus mainly on the 

supervised learning space for model selection. Some on one hand 

do not determine the importance and influence that knowledge of 

data sets meta features have over the choice of selecting the 

best ML mode and model automatically. Lastly, none of the known 

autoML system allows for automatic mode and model selection on 

multi-varying datasets at the same time. However, the hybrid-

autoML system and functions designed in this thesis eliminates 

all that by taking them into consideration appropriately.  

Chapter 2 provides more details and discussions from the 

literatures, that show the link between big data classification 

or clustering, the Meta learning paradigm, and how generic 

knowledge obtained about a dataset or about supervised and 

unsupervised learning, can be used to design a set of functions 

for automatic ML mode selection and model building on single or 

multi-varying datasets.  

In Chapter 3, we show and discuss some preliminary 

experimentations carried out in this thesis, using Weka (a well 

known data mining tool in the research community). The purpose 

of the pre experiments carried out, was to prove, properly 

identify and define the problems identified from previous 

discussions of literatures reviewed in chapter 2. The knowledge 

gained from this pre experiments helped define the rules for the 

hybrid-autoML system’s model and design. The rule based 

functions modelled, takes into account the execution semantics 

for automatic ML mode and model selection.  

Chapter 4 reported on the implementation details of the hybrid-

autoML, visualisations, simulations and analysis. More 

specifically, we discussed and showed the design architecture 

(design consisting of three layers), components, testing 

strategy and materials of hybrid-autoML, and provided the 

relevant algorithms.  
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The toolkit named hybrid-autoML is an open source project that 

can be retrieved from github and easily used or extended. 

Hybrid-autoML provides a simple graphical user interface that 

facilitates automated ML mode and models selection, 

visualisation or evaluation and prediction capabilities.  

Then in Chapter 5, we addressed the unfolding of hybrid-autoML 

by evaluating its performance using 5 practical use cases and 

well known statistical and non-statistical measures. Based on 

the performance results of the experiments, a variety of 

observations are made. For example, use case 1 in section 5.1.1 

shows an unsupervised mode and a simple and lightweight autoProb 

clustering function desgined in this thesis is chosen 

authomatically,for building a model on a small unlabelled 

dataset. While use case 2 in section 5.1.2 shows an unsupervised 

ML mode with a readily available EM clustering algorithm 

selected automatically for building a model on a larger 

unlabeled dataset. Use cases 3 and 5 from sections 5.1.3 and 

5.1.5, proves that the hybrid-autoML tool knows when to 

automatically use a supervised ML mode to build an appropriate 

model on multi-varying datasets in the shortest time possible as 

compared to conventional autoWeka.  

In conclusion, the various use cases have proved that the aims 

and contributions of this thesis to conceptualise, design, and 

develop a scalable and flexible toolkit for automatic big data 

ML mode and model selection, on single or multi-varying datasets 

has been achieved. A major benefit of the hybrid-autoML toolkit 

is that it reduces the time data scientists and researchers in 

the field spend, searching through the algorithm selections and 

hyper parameter space. This advantage was discussed in section 

5.2 where we compared the hybrid-autoML tool with autoWeka on 

about 35 datasets using measures such as: accuracy, mean 

absolute error (MAE) and time.  
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6.2  Future Work 

• Expanding the rule based function for model selection to 

accommodate more practical use case scenarios and algorithms, 

to further improve the automatic decision learning process. 

• Expand the rules to accomodate better automatic data 

cleansing strategies before the automatic mode and model 

selection is performed. 

• Considering the challenges of big data, incorporate some big 

data processing methods such as parallel processing to 

further optimize the process.  

• The hybrid-autoML system improvement. This can be achieved by 

including the hyper parameter space options for some 

algorithms, then implement this in the system to determine 

any improvements made.  

• Perform new experiments in a less controlled environment by 

using an observational study methodology to analyse how users 

interact with the system on different big dataset. 

• Improve and commercialise the functionalities and 

capabilities of the system. 
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Appendices 

Appendix 1 

Classification of big data has several advantages and benefits, 

all of which includes: 

1. It allows management of big data in a way that reflects 
organizational values. 

2. It allows big data integrity management. 
3. For big data management optimization. 
4. Helps in determining easily what data should be distributed, 

how it should be distributed and to whom it should be shared 

with? 

5. Which data needs to be kept where and who should have access 
to the data. 

6. Better performance optimization. 
7. Ease of use of information. 
8. Better use of resources which may improve the revenue 

generation of the infrastructure. 

9. Provide improved security measures and policies. 
10. Can be applied in different domains and scenarios e.g. 

in the health sector (Austin, Tu, Ho, Levy, & Lee, 2013; Azar 

& El-Said, 2013; Hu, Palreddy, & Tompkins, 1997; Strauss, 

Bartko, & Carpenter, 1973; Tortajada, Robles, & García-Gómez, 

2015), geoscience (Angus Webb et al., 2007; Baum, Tovinkere, 

Titlow, & Welch, 1997; Iounousse, Er-Raki, El Motassadeq, & 

Chehouani, 2015; Leiva-Murillo, Gomez-Chova, & Camps-Valls, 

2013), social network analysis, Document and text 

classification & filtering (Mladeni'c & Grobelnik, 1998; Zhu, 

Ghahramani, & Lafferty, 2003), multimedia data analysis 

(Bankert, 1994; Haralick, Shanmugam, & Dinstein, 1973), 

biological data analysis (Achcar, Camadro, & Mestivier, 2009; 

T. Li, Zhang, & Ogihara, 2004), language processing (Bird, 

Klein, & Loper, 2009), face recognition systems (Pavani et 

al., 2012), etc. 
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Appendix 2 

To achieve the aims set out above, the following objectives 

where achieved at different stages of this thesis: 

1. Studied, designed, conceptualised and developed high 

performing ML models on the fly in the best time possible 

and given limited resources (e.g. time, CPU power, etc.). 

2. Used more general knowledge about ML methods (e.g. 

supervised, unsupervised & semi-supervised learning), as 

well as general knowledge about input datasets (e.g. size, 

class type, presence of labelled training data, absence of 

labelled training data, etc.) to automatically help in the 

decision making process.    

3. Experimented extensively with Weka to determine the general 

knowledge and ideas that can be used. 

4. Designed a three layered decision tree-based hybrid autoML 

model.  

5. Designed and implemented a prototype of a Meta learning 

(learning to learn) algorithm for automatically deciding 

whether to invoke a supervised learning or an unsupervised 

learning algorithm.  

6. Studied, designed, conceptualised and developed a robust 

self-evolving unsupervised function that allows for the 

derivation of clusters from scratch without having to train 

the model using labelled train dataset. Since the number 

of cluster labels is not restricted, the algorithm allows 

for automatic re-grouping of the clusters based on 

similarity and distance measurements between the clusters. 
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Appendix 3 

Mini Survey Questions on the importance of Big Data 

Classification in practice. The questions can be found using 

this link 

https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfo

vETMBT?Q_JFE=qdg 

However, the actual survey itself has since been closed and 

results analysed. 

 

Q1. Big Data is often defined based on three properties: 

Volume, Variety and Velocity (known as the 3 Vs). 

 

Have you heard of the term Big Data before now? 

Yes 

No 

 

Q2. Data classification is the process of allocating data into 

one or more categories (see an example in the image below. 

 

 
 

Have you heard of Data Classification before now? 

Yes 

No 

 

Q3. Is classification of big data in real time a good 

management technique? 

Yes 

No 

Not Sure 

 

https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfovETMBT?Q_JFE=qdg
https://newqtrial2015az1.az1.qualtrics.com/jfe/form/SV_6nZx2JVfovETMBT?Q_JFE=qdg
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Q4. Do you think classifying big data will help improve data 

security measures in place? 

Definitely yes 

Probably yes 

Probably not 

Definitely not 

 

Q5. Have you or the organization you work for used Big Data 

Classification tools before? 

Yes 

No 

Not Sure 

Q6. How do you utilize big data? (you can select more than one 

option) 

• Manage big data 

• Analyse big data 

• Query big data 

• Create big data 

• Optimize big data 

• Financial trading 

• Understanding and targeting customers 

• Optimizing business processes 

• Personal quantification and Performance optimization 

• Other 

Q7. What is your job role? 

 
Q8. Comments 
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Appendix 4 

Results from the mini survey 

Out of 85% of the participants, who had previously heard about 

big data and 85% who had heard about data classification before? 

The majority thought classification of big data is a good 

management technique. 

 

Figure 6.1: shows data from the survey carried out, that data 

science professionals are well aware of data classification as a 

good management technique. 

In terms of whether they think big data classification will 

help improve security measures in place, the majority agreed 

that it definitely will while about 41% said it ‘probably will’. 

Meaning for them, there was a high level of uncertainty. 

 

Figure 6.2: Survey results, showing data science professionals 

thoughts on whether big data classification measures in place, 

effectively improves security. 
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On the use of big data classification tools and if it has been 

used by them or the organization they work for, the majority 

said no, while many were not sure and just a few actually had. 

 

Figure 6.3: Survey results on the use of big data classification tools 

by several data science professionals. 
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Appendix 5 

Lists of most datasets used throughout this project. Subsets of 

this list, are referred to at different points within the main 

content area. 

Table 6.1: A table summary of datasets used in this research. 

Dataset # Instances #Attributes Class attribute 

type 

Missing Values 

contact-lenses 24 All nominal (5) Nominal No 

cpu 209 All numeric (7) Numeric No 

cpu.with.vendor 209 1 Nominal, 7 

Numeric 

Numeric No 

credit-g 1000 14 Nominal, 7 

Numeric 

Nominal No 

diabetes 768 8 Numeric, 1 

Nominal 

Nominal No 

glass 214 9 Numeic, 1 

Nominal 

Nominal No 

ionosphere 351 34 numeric, 1 

Nominal 

Nominal No 

iris.2D 150 2 Numeric , 1 

Nominal 

Nominal No 

labor 57 9 nom, 8 numeric Nominal Yes (2%) 

reutersCorn-train 1554 String Nominal No 

segment-challenge 1500 19 Numerical, 1 

Nominal 

Nominal No 

soybean 683 36 Nominal Nominal Yes (<1%) 

soytest 26 36 Nominal Nominal No 

supermarket 4627 217 nominal Nominal Up tp 77% 

unbalanced 856 32 numerical, 1 

Nominal 

Nominal No 

vote 435 17 nominal Nominal Yes (3%) 

weather.nominal 14 5 nominal Nominal No 

weather.numeric 14 2 Numeric, 3 

Nominal  

Nominal No 

Dexter 420 20001 Numeric Numeric No 

Dorothea 805 100000 Numeric Numeric No 

Yeast 1039 8 Numeric, 1 

Nominal 

nominal No 

Amazon 1050 10001 numeric Nominal No 

Secom 1097 591 nominal Nominal Yes (5%) 

Semeion 1116 256 numeric 1 

nominal 

Nominal No 

Car 1209 7 nominal Nominal No 

Madelon 1820 500 numeric 1 

nominal 

Nominal No 

KR-VS-KP 2238 37 nominal nominal No 

Abalone 2923 2 nominal, 7 

numeric 

nominal No 

Wine Quality 3429 11 numeric, 1 

nominal 

Nominal No 

Waveform 3500 40 numeric, 1 

nominal 

Nominal No 

Gisette 4900 5000 numeric 1 

nominal 

Nominal No 

Convex 8000 784 numeric, 1 

nominal 

Nominal No 

Cifar-10-small 10000 3072 numeric, 1 

nominal 

Nominal No 

Mnist Basic 12000 784 numeric, 1 

nominal 

Nominal No 

Shuttle 43500 9 numeric, 1 

nominal 

Nominal No 

KDD09-Appentency 35000 192 numeric 39 

nominal 

Nominal Yes(99%) 

Cifar-10 50000 3072 numeric 1 

nominal 

Nominal No 

 

  



108 

 

Appendix 6 

 

Table 6.2: Area Under Curve using 10-folds cross validation 

AUC           

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero 

R 

J48 RF 

contact-lenses 0.95 0.50 - 0.82 - 0.91 0.22 0.22 0.95 0.86 

cpu - - - - - - - - - - 

cpu.with.vendor - - - - - - - - - - 

credit-g 0.79 0.49 0.69 0.69 - 0.76 0.50 0.50 0.64 0.79 

diabetes 0.82 0.50 0.73 0.77 - 0.81 0.50 0.50 0.75 0.89 

glass 0.72 0.80 - 0.80 - 0.85 0.47 0.47 0.77 0.93 

ionosphere 0.94 0.91 0.84 0.87 - 0.95 0.49 0.49 0.89 0.98 

iris.2D 1.00 1.00 - 1.00 - 1.00 0.50 0.50 0.99 1.00 

labor 0.97 0.91 0.90 0.97 - 0.86 0.47 0.47 0.70 0.94 

reutersCorn-

test 

- - - - - - 0.45 0.45 - - 

reutersCorn-

train 

- - - - - - 0.47 0.47 - - 

segment-

challenge 

1.00 0.76 - 1.00 - 1.00 0.49 0.49 1.00 1.00 

soybean 0.99 1.00 - 1.00 - 0.99 0.49 0.49 1.00 1.00 

supermarket 0.50 0.50 0.50 0.50 - 0.50 0.50 0.50 0.50 0.50 

unbalanced 0.56 0.50 0.50 0.70 - 0.52 0.43 0.43 0.43 0.72 

vote 0.97 0.96 0.97 0.98 - 0.98 0.49 0.49 0.97 0.99 

weather.nominal 0.58 0.50 0.69 0.69 - 0.31 0.18 0.18 0.63 0.53 

weather.numeric 0.44 0.50 0.49 0.53 - 0.19 0.48 0.18 0.79 0.44 
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Figure 6.4: 10-folds Analyses of the Area Under the Curve performance measure. 
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Table 6.3: 10-folds F-Measure evaluation on the datasets. 

F-MEASURE           

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero 

R 

J48 RF 

contact-lenses 0.77 0.77 - 0.73 - 0.71 0.77 0.77 0.86 0.80 

cpu - - - - - - - - - - 

cpu.with.vendor - - - - - - - - - - 

credit-g 0.83 0.81 0.83 0.77 - 0.83 0.82 0.82 0.80 0.85 

           

diabetes 0.82 0.79 0.84 0.79 - 0.82 0.79 0.79 0.80 0.82 

glass 0.25 0.72 - 0.56 - 0.70 0.52 0.52 0.64 0.81 

ionosphere 0.78 0.90 0.81 0.79 - 0.93 0.78 0.78 0.94 0.95 

iris.2D 1.00 1.00 - 1.00 - 1.00 0.50 0.50 0.99 1.00 

labor 0.92 0.90 0.93 0.91 - 0.88 0.79 0.79 0.79 0.92 

reutersCorn-

test 

- - - - - - 0.98 0.98 - - 

reutersCorn-

train 

- - - - - - 0.99 0.99 - - 

segment-

challenge 

0.96 0.68 - 0.98 - 0.99 0.27 0.27 0.99 1.00 

soybean 0.89 1.00 - 1.00 - 0.85 0.24 0.24 0.92 0.92 

supermarket 0.78 0.30 0.78 0.78 - 0.78 0.78 0.78 0.78 0.78 

unbalanced 0.95 0.99 0.99 0.99 - 0.99 0.99 0.99 0.99 0.99 

vote 0.92 0.96 0.97 0.96 - 0.96 0.76 0.76 0.97 0.97 

weather.nominal 0.70 0.78 0.78 0.78 - 0.60 0.78 0.78 0.59 0.80 

weather.numeric 0.76 0.78 0.70 0.74 - 0.67 0.78 0.78 0.74 0.74 

 

 

Figure 6.5: 10 Folds F-Measure Evaluation 
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Table 6.4: 10 Folds Mean Absolute Error Measures 

MAE           

Dataset NB LibSVM SGD DL4J LR Bagging Stacking Zero 

R 

J48 RF 

contact-lenses 0.25 0.25 - 0.20 - 0.31 0.38 0.38 0.15 0.23 

cpu - - - 205.56 41.09 34.04 96.24 96.24 - 25.61 

cpu.with.vendor - - - 196.13 36.97 25.28 87.66 87.66 - 13.69 

credit-g 0.29 0.31 0.25 0.32 - 0.33 0.42 0.42 0.35 0.34 

diabetes 0.28 0.35 0.22 0.30 - 0.32 0.45 0.45 0.32 0.31 

glass 0.15 0.09 - 0.14 - 0.12 0.21 0.21 0.10 0.10 

ionosphere 0.17 0.07 0.13 0.15 - 0.14 0.46 0.46 0.09 0.13 

iris.2D 0.03 0.02 - 0.04 - 0.05 0.44 0.44 0.04 0.04 

labor 0.10 0.07 0.09 0.07 - 0.30 0.46 0.46 0.32 0.32 

reutersCorn-

test 

- - - - - - 0.08 0.08 - - 

reutersCorn-

train 

- - - - - - 0.06 0.06 - - 

segment-

challenge 

0.06 0.13 - 0.02 - 0.02 0.24 0.24 0.01 0.02 

soybean 0.01 0.01 - 0.01 - 0.03 0.10 0.10 0.01 0.02 

supermarket 0.46 0.58 0.36 0.46 - 0.46 0.46 0.46 0.46 0.46 

unbalanced 0.11 0.01 0.01 0.02 - 0.03 0.03 0.03 0.03 0.03 

vote 0.10 0.04 0.03 0.06 - 0.07 0.47 0.47 0.06 0.07 

weather.nominal 0.44 0.36 0.29 0.31 - 0.52 0.48 0.48 0.42 0.44 

weather.numeric 0.46 0.36 0.43 0.39 - 0.53 0.48 0.48 0.29 0.47 

 

 

Figure 6.6: 10 folds MAE evaluation 
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Figure 6.7: 10 folds MAE evaluated measures for cpu and cpu.with.vendor datasets. 

 

Table 6.5: 10 folds Accuracy measures. In terms of the number of correctly classi-

fied instances. 

Dataset NB LibSV

M 

SGD DL4J LR Baggin

g 

Stacki

ng 

Zero 

R 

J48 RF  

contact-

lenses 

70.8

3 

62.50 - 66.6

7 

- 58.33 62.50 62.5

0 

83.3

3 

70.8

3 

 

cpu - - - -

0.12 

0.9

0 

0.90 -0.15 -

0.15 

- 0.95 Correlati

on coef 

cpu.with.vend

or 

- - - -

0.12 

0.9

3 

0.92 -0.14 -

0.14 

- 0.97 Correlati

on coef 

credit-g 75.4

0 

68.70 75.5

0 

67.9

0 

- 74.70 70.00 70.0

0 

70.5

0 

76.4

0 

 

diabetes 76.3

0 

65.10 77.9

9 

72.9

2 

- 75.78 65.10 65.1

0 

73.8

3 

75.7

8 

 

glass 0.15 68.69 - 56.0

7 

- 72.43 35.51 35.5

1 

66.8

2 

79.9

1 

 

ionosphere 82.6

2 

93.45 87.4

6 

85.4

7 

- 91.17 64.10 64.1

0 

91.4

5 

92.8

8 

 

iris.2D 96.0

0 

96.67 - 95.3

3 

- 95.33 33.33 33.3

3 

96.0

0 

94.0

0 

 

labor 89.4

7 

92.98 91.2

3 

92.9

8 

- 84.21 64.91 64.9

1 

73.6

8 

89.4

7 

 

reutersCorn-

test 

- - - - - - 96.03 96.0

3 

- -  

reutersCorn-

train 

- - - - - - 97.10 97.1

0 

- -  

segment-

challenge 

81.0

7 

55.40 - 93.4

0 

- 95.87 15.73 15.7

3 

95.7

3 

97.8

7 

 

soybean 92.9

7 

88.73 - 92.8

3 

- 85.65 13.47 13.4

7 

91.5

1 

92.9

7 

 

supermarket 63.7

1 

41.78 63.7

1 

63.7

1 

- 63.71 63.71 63.7

1 

63.7

1 

63.7

1 

 

unbalanced 90.7

7 

98.60 98.6

0 

97.9

0 

- 98.60 98.60 98.6

0 

98.6

0 

98.4

8 

 

vote 90.1

1 

95.63 96.7

8 

94.4

8 

- 95.63 61.38 61.3

8 

96.3

2 

96.0

9 

 

0.00

50.00

100.00

150.00

200.00

250.00

MAE 10-100

cpu - - - cpu.with.vendor - - -
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weather.nomin

al 

57.1

4 

64.29 71.4

3 

71.4

3 

- 42.86 64.29 64.2

9 

50.0

0 

71.4

3 

 

weather.numer

ic 

64.2

9 

64.29 57.1

4 

64.2

9 

- 50.00 64.29 64.2

9 

64.2

9 

64.2

9 
 

  

 

 

 

Figure 6.8: 10 folds % Accuracy 

 

 

Figure 6.9: 10 folds Correlation Coefficient of cpu and cpu.with.vendor 
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Appendix 7 

Weka GUI 

 

 

Figure 6.10: Weka GUI when initially launched. 

  The Explorer 

Clicking on the ‘Explorer’ tab after launching the Weka GUI, 

launches the Weka explorer.  
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Figure 6.11: The Weka Explorer GUI 

The Explorer lets you pre-process, visualize, classifier and 

cluster a dataset. It provides the options to load the dataset 

from a file, url, database or generate data. Once the data is 

loaded, the explorer will give a brief summary and visualization 

of the data such as the attributes listed, the name, number of 

attributes, etc. The pre-processing of the data using the Weka 

explorer can be achieved by applying one of the many filters it 

provides and applying this to the data. For more visualization 

tasks, the ‘Visualize’ tab of the explorer can be used. After 

pre-processing of the loaded data, the ‘Classify’ and ‘Cluster’ 

tabs of the explorer will supply a varying list of 

classification and clustering algorithms that the user can 

choose from for their given problem. One limitation of using the 

Weka explorer is the fact that the user has to process and 

experiment on one dataset & one algorithm at a time. 
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 The Experimenter 

Clicking on the ‘Experimenter’ tab after launching the Weka 

GUI, launches the Weka experimenter. 

 

Figure 6.12: The Weka Experimenter GUI 

The Weka experimenter enables us to test on a trial and error 

basis several techniques and parameters, analyse the results to 

determine the most suitable technique and parameters to use. It 

automates this trial and error experiments for the user by 

allowing the user queue up multiple machine learning algorithms 

to run on multiple data sets, and allows for the collection of 

the statistical comparison of their performance against each 

other. Although, the experimenter eliminates to a great degree 

the limitations of using the explorer it is limited by the fact 

that if one of the algorithms in the queue is unsuitable for one 

of the datasets in the queue (because of the meta-features of 

the dataset for example), then the experiment will fail without 

the user knowing of identifying why it failed. This limitation 

can be overcome by an automated machine learning system that 

takes into account the meta information of the dataset and 

knowledge of the algorithm to automatically choose and use the 

suitable ones for the experiment while skipping over the 
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unsuitable ones. This way the user gets the experiments 

completed successfully to the end. 

 The Knowledge Flow GUI 

Clicking on the ‘Knowledge Flow’ tab after launching the Weka 

GUI, launches the Weka knowledge flow. 

 

Figure 6.13: The Weka Knowledge Flow GUI 

The Weka Knowledge flow gives an alternative way for using Weka 

in a work flow type way. It allows you build and visualise the 

data as flowing through from input to output phases. Just like 

the ‘explorer’, it allows you perform data mining tasks on one 

dataset at a time and like the ‘experimenter’ it can allow you 

run multiple algorithms on the dataset at the same time. It is 

sometimes more efficient than the experimenter because, it 

allows performing tasks on the dataset an instance at a time 

without the need to load the whole set in memory. Although, this 

is not advisable under normal circumstances because it can bring 

about new problems such as more time used in building a model, 

due to the fact that the dataset will be read one instance at a 

time. Also, if the experiment is interrupted because of one of 

the algorithms in the flow, then it gives a proper log to the 

user of which algorithm failed exactly with reasons for failure. 

The user can easily adjust the flow by simply removing that 

algorithm from the flow and run the experiments again. The 

limitation however of the ‘knowledge flow’ is the same 

limitation with the ‘explorer’, whereby the user can only 

experiment on one dataset at a time from one data source.  
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