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Abstract 
 

Over the last 15 years, the estimation of energy consumption in buildings has become a 

critical process during various stages of building’s lifecycle due to growing global scientific and 

political pressure to respond to climate change. It has been widely acknowledged in the 

literature that there is a distinct performance gap between predicted and actual energy 

consumption of buildings which has attracted scholars across the world to investigate the 

sufficiency of software inputs and presumptions regarding how the buildings are actually 

used. Several studies have confirmed that occupant’s presence, in addition to, their 

interactions with building systems (such as: opening door and window, changing the 

thermostat set-point and using appliances), known as passive and active energy consumption 

behaviours, play significant roles in building’s energy consumption. However, the 

incorporation of occupants’ behaviours into the building energy performance analysis has 

been mostly overlooked. 

Most of the existing studies on the impacts of occupants on building energy consumption 

have focused on residential and office buildings. Therefore, there is a lack of knowledge about 

the impacts of occupants’ behaviours on energy consumption in public buildings such as: 

galleries, exhibitions, recreational facilities and institutional buildings. In such building 

occupants have limited access to building systems, and their energy consumption behaviours 

are limited to their presence and the production of metabolic heat (passive behaviour), in 

addition to, few activities such as: opening the entrance door.  

This research develops a conceptual framework to improve the accuracy of energy 

consumption assessment in multi-functional spaces at different stages of building’s lifecycle 

by integrating the impacts of occupants’ behaviours into building energy predictions to 

reduce the gap between actual and predicted energy consumption. In this quantitative 

research, a model simulation method is applied on multiple cases at different stages of the 

building lifecycle including design, construction and post-occupancy. The first two cases are 

multi-functional spaces of public buildings at the design and construction stages, which were 

studied to address the missing information and potential gaps in energy modelling and 

simulation. The study was then taken forward using case studies at the post-occupancy stage 

to integrate the realistic observed data into the building energy simulation tool. For each of 

the cases, energy simulation was run twice: first, using default values of the software, and 
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second, using the collected data. The data collection included hourly observation of 38 zones 

in both cases at the post-occupancy stage for the duration of two weeks, in addition to, using 

available governmental and real-time statistics.  

The analysis of energy simulation results using default software values and collected data 

highlighted that lack of sufficient information regarding building working hours, space layout 

and function, occupancy density and schedules, the entrance door opening time and HVAC 

set-points may result significant performance gaps in energy consumption prediction of multi-

functional spaces in institutional buildings and galleries.  

This study provides conceptual frameworks for the prospect energy modellers and 

researchers to obtain more accurate energy consumption predictions for multi-functional 

spaces of public buildings.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

5 
 

Table of Content 
 

Abstract ...................................................................................................................................... 3 

Table of Content ........................................................................................................................ 5 

List of Figures ........................................................................................................................... 10 

List of Tables ............................................................................................................................ 14 

Acknowledgements .................................................................................................................. 16 

List of Abbreviations ................................................................................................................ 17 

 

Chapter 1: Introduction ..................................................................... 19 
1.1. Research Background ................................................................................................... 19 

1.2. Research Aim and Objectives ....................................................................................... 23 

1.2.1. Research Aim ......................................................................................................... 23 

1.2.2. Research Objectives .............................................................................................. 23 

1.3. Research Methodology ................................................................................................. 23 

1.4. Contribution to Knowledge, Uniqueness and Novelty ................................................. 25 

1.5. Definitions, Technical Terms and Tools ........................................................................ 26 

1.6. Publications ................................................................................................................... 27 

1.7. Thesis Structure ............................................................................................................ 28 

1.8. Chapter Conclusion ....................................................................................................... 30 

 

Chapter 2: Literature Review ............................................................ 32 
2.1. Energy Consumption in Buildings ................................................................................. 33 

2.2. Review of the Existing Literature: Quantitative Analysis and Qualitative Review ....... 37 

2.2.1. Energy Performance Gap ....................................................................................... 45 

2.2.2. Occupant behaviour .............................................................................................. 47 

2.2.3. Parameters influencing occupants’ energy behaviour .......................................... 52 

2.2.3.1. Climate ........................................................................................................... 53 

2.2.3.2. Building Type .................................................................................................. 54 

2.2.3.3. Social and Personal Parameters ..................................................................... 55 

2.2.3.4. Regulations and Economical Parameters ....................................................... 56 

2.2.3.5. State of Occupants: Arrival and Departure .................................................... 57 

2.2.3.6. Design Features .............................................................................................. 57 



 
 

6 
 

2.3. Building Energy Prediction: Methods and Tools ........................................................... 59 

2.4. Human-behaviour-related inputs in energy prediction tools ....................................... 62 

2.4.1. Passive energy behaviour: Occupancy .................................................................. 66 

2.4.2. Active energy behaviours ...................................................................................... 71 

2.4.2.1. Use of appliances ................................................................................................ 71 

2.4.2.2. Use of openings .................................................................................................. 72 

2.4.2.3. Use of lighting ..................................................................................................... 73 

2.4.2.4. Use of solar shadings and blinds ......................................................................... 74 

2.4.2.5. Use of HVAC systems and set-points .................................................................. 75 

2.4.2.6. Use of hot water ................................................................................................. 75 

2.4.3. Summary: incorporation of occupants’ behaviours into energy prediction tools 76 

2.4.4. Existing Gaps in the Literature............................................................................... 77 

2.5. Research Focus ............................................................................................................. 79 

2.5.1. Energy prediction in multi-functional spaces of public buildings ......................... 79 

2.5.2. Space Design and Energy Consumption ................................................................ 83 

2.5.3. Integration with energy simulation tools .............................................................. 87 

2.6. Chapter Conclusion ....................................................................................................... 88 

 

Chapter 3: Research Method ............................................................ 90 
3.1. Research Method in Existing Studies ............................................................................ 90 

3.2. Layers of Research Methodology ................................................................................. 92 

3.2.1. Research Philosophy .............................................................................................. 93 

3.2.2. Research Approach ................................................................................................ 95 

3.2.3. Methodological Choice .......................................................................................... 96 

3.2.4 Research Strategy .................................................................................................. 97 

3.2.4.1. Case Study Design .......................................................................................... 98 

3.2.5. Time Horizon........................................................................................................ 100 

3.2.6. Data Collection .................................................................................................... 101 

3.3. Research Design .......................................................................................................... 103 

3.4. Chapter Conclusion ..................................................................................................... 107 

 

Chapter 4: Case Study Stage 1 ............................................................................ 109 

4.1. Selection of cases ........................................................................................................ 109 

4.2. Model simulation method .......................................................................................... 110 



 
 

7 
 

4.3. Energy simulation tool: DesignBuilder........................................................................ 111 

4.3.1. Energy modelling and simulation process ........................................................... 112 

4.4. Design Stage Case Study: Wuhan Gallery ................................................................... 114 

4.4.1. Case Study Description ........................................................................................ 114 

4.4.2. Energy Modelling and Simulation ....................................................................... 115 

4.4.3. Analysis and Findings (Case Study 1) ................................................................... 120 

4.5. Construction Stage Case Study: Oastler Building, University of Huddersfield ........... 121 

4.5.1. Case Study Description ........................................................................................ 121 

4.5.2. Energy Modelling and Simulation ....................................................................... 121 

4.5.3. Analysis and Findings (Case Study 2) ................................................................... 127 

4.6. Chapter Conclusion ..................................................................................................... 128 

 

Chapter 5: Case Study Stage 2 ............................................................................ 129 

5.1. Post-Occupancy Stage Case Study: Student Central Building, University of 
Huddersfield ........................................................................................................................... 130 

5.1.1. Case Study Description ........................................................................................ 130 

5.1.2. Energy Modelling and Simulation (Default) ........................................................ 132 

5.1.3. Data Collection .................................................................................................... 133 

5.1.3.1. Pilot Study .................................................................................................... 134 

5.1.3.2. Zoning ........................................................................................................... 136 

5.1.4. Data Analysis ........................................................................................................ 137 

5.1.4.1. Working Hours.............................................................................................. 138 

5.1.4.2. Occupancy: Low season (school holiday) ..................................................... 138 

5.1.4.3. Occupancy: High season (school academic year) ........................................ 140 

5.1.4.4. Maximum Occupancy ................................................................................... 142 

5.1.4.5. Door Opening ............................................................................................... 145 

5.1.5. Energy Modelling and Simulation (Collected Data) ............................................ 147 

5.2. Post-Occupancy Stage Case Study: Manchester Art Gallery ...................................... 150 

5.2.1. Case Study Description ........................................................................................ 150 

5.2.2. Energy Modelling and Simulation (Default) ........................................................ 151 

5.2.3. Data Collection .................................................................................................... 153 

5.2.3.1. Zoning ........................................................................................................... 153 

5.2.3.2. Occupancy .................................................................................................... 155 

5.2.4. Data Analysis ........................................................................................................ 158 

5.2.4.1. Working Hours.............................................................................................. 159 



 
 

8 
 

5.2.4.2. Occupancy .................................................................................................... 159 

5.2.4.3. Maximum Occupancy ................................................................................... 161 

5.2.4.4. Door Opening ............................................................................................... 164 

5.2.5. Energy Modelling and Simulation (Collected Data) ............................................ 165 

5.3. Chapter Conclusion ..................................................................................................... 168 

 

Chapter 6: Discussions and Framework ........................................................ 170 

6.1. Discussion ........................................................................................................................ 170 

6.1.1. Working Hours ..................................................................................................... 171 

6.1.2. Zoning .................................................................................................................. 172 

6.1.3. Door Opening ...................................................................................................... 172 

6.1.4. Occupancy ........................................................................................................... 174 

6.1.5. Key Findings ......................................................................................................... 175 

6.2. Development of the Conceptual Framework ............................................................. 176 

6.2.1. Initial Framework ................................................................................................. 177 

6.2.2. Validation and Refinement .................................................................................. 178 

6.2.2.1. Comments from expert V1 ........................................................................... 179 

6.2.2.2. Comments from expert V2 ............................................................................... 180 

6.2.2.3. Comments from expert V3 ............................................................................... 180 

6.2.2.4. Comments from expert V4 ............................................................................... 182 

6.2.2.5. Analysis of experts’ comments ......................................................................... 182 

6.2.3. Final Framework .................................................................................................. 182 

6.2.3.1. Final framework: buildings at the operation and maintenance stages ....... 185 

6.2.3.2. Final framework: buildings at the design and construction stages ............. 187 

6.3. Chapter Conclusion ..................................................................................................... 190 

 

Chapter 7: Conclusion ............................................................................................. 192 

7.1. Conclusion ................................................................................................................... 192 

7.1.2. Summary of Research Problem ........................................................................... 192 

7.1.3. Summary of research method ............................................................................. 193 

7.1.4. Summary of research findings ............................................................................. 193 

7.1.4.1. Objective 1 ................................................................................................... 194 

7.1.4.2. Objective 2 ................................................................................................... 195 

7.1.4.3. Objective 3 ................................................................................................... 195 



 
 

9 
 

7.1.4.4. Objective 4 ................................................................................................... 197 

7.1.4.5. Objective 5 ................................................................................................... 197 

7.2. Contribution to Knowledge ......................................................................................... 198 

7.2.1. Theoretical Contribution ..................................................................................... 198 

7.2.2. Practical Contribution .......................................................................................... 198 

7.2.2.1. Practical Contribution: Conceptual Framework ........................................... 199 

7.3. Research Limitations ................................................................................................... 200 

7.4. Future Work ................................................................................................................ 201 

7.5. Final Words ................................................................................................................. 202 

 

Appendix 1: Research Summary Document Sent to Experts for Validation of the Framework
................................................................................................................................................ 203 

Appendix 2: Student Central Building, Energy Simulation Using Default Data ..................... 206 

Appendix 3: Student Central Building, Energy Simulation Using Realistic Data .................... 218 

References ............................................................................................................................. 236 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

10 
 

List of Figures 
 

Figure 1. Occupant’s active and passive energy behaviours ................................................................ 20 

Figure 2. Frequency of influential parameters on occupants’ energy behaviours, reviewing more than 

100 relevant publications ..................................................................................................................... 21 

Figure 3. Research practical and theoretical contribution ................................................................... 25 

Figure 4. Literature review development ............................................................................................. 32 

Figure 5. The gap between the predicted and actual use of buildings ................................................. 34 

Figure 6. The missing information in building energy prediction at different building’s lifecycle ....... 36 

Figure 7. Different building types used as cases ................................................................................... 44 

Figure 8. Different types of occupants’ interactions ............................................................................ 44 

Figure 9. Influential parameters on occupants’ energy behaviours ..................................................... 45 

Figure 10. Occupants’ types of activities affecting building energy consumption. Adapted from (Page 

et al., 2008) ........................................................................................................................................... 49 

Figure 11. Factors and sub-factors influencing energy behaviour of occupants. ................................. 53 

Figure 12. Energy calculation methods adopted from (S. Wang et al., 2012) ...................................... 61 

Figure 13. Occupancy in DesignBuilder software ................................................................................. 63 

Figure 14. Occupancy in EcoDesigner software .................................................................................... 64 

Figure 15. Occupancy in OpenStudio .................................................................................................... 65 

Figure 16. Energy setting in Revit Architecture 2016 ........................................................................... 66 

Figure 17. Occupancy dimensions in buildings, adopted from (W. Wang et al., 2018) ........................ 68 

Figure 18. Methods of Indoor localisation ............................................................................................ 70 

Figure 19. Equipment and appliances ................................................................................................... 72 

Figure 20. Door opening in DesignBuilder ............................................................................................ 73 

Figure 21. Lighting in EcoDesigner ........................................................................................................ 74 

Figure 22. Windows, solar shading and blinds in DesignBuilder .......................................................... 75 

Figure 23. Use of hot water in OpenStudio .......................................................................................... 76 

Figure 24. Existing gaps studied in this research and research focus ................................................... 79 

Figure 25. Parameters related to building type and space function in building energy prediction 

process .................................................................................................................................................. 81 

Figure 26. Space design aspects affecting occupants’ energy behaviours ........................................... 83 

Figure 27. Space layout and occupant’s behaviour .............................................................................. 85 

Figure 28. Parameters influencing occupants’ energy behaviours and the research focus ................. 85 

Figure 29. Space design inputs in energy simulation ............................................................................ 86 



 
 

11 
 

Figure 30. Incorporation of the impacts of space design on occupancy, occupants’ behaviours and 

energy consumption in multi-functional spaces ................................................................................... 87 

Figure 31. Research strategies used among 120 reviewed papers in “occupant behaviour and energy 

consumption” research domain ........................................................................................................... 92 

Figure 32. The research onion adopted from (Saunders & Lewis, 2012; Saunders, Lewis, & Thornhill, 

2012) ..................................................................................................................................................... 93 

Figure 33. Deductive, inductive and Abductive research approaches adopted from Dudovskiy (2018)

 .............................................................................................................................................................. 95 

Figure 34. Research methodological choice ......................................................................................... 96 

Figure 35. Case study stages ................................................................................................................. 99 

Figure 36. Different types of observation with regard to researcher’s position, adopted from 

(Saunders et al., 2016b) ...................................................................................................................... 102 

Figure 37. Graphical representation of research method and case study design .............................. 104 

Figure 38. Graphical representation of research methodological design .......................................... 106 

Figure 39. Case study selection criteria .............................................................................................. 110 

Figure 40. Energy modelling and simulation using DesignBuilder ...................................................... 114 

Figure 41. Ground floor zoning ........................................................................................................... 114 

Figure 42. First floor zoning ................................................................................................................ 115 

Figure 43. Second floor zoning ............................................................................................................ 115 

Figure 44. DesinBuilder simplifications ............................................................................................... 116 

Figure 45. Revit Architecture (top) and DesignBuilder (bottom) Energy models of the building ...... 116 

Figure 46. Illustration of density 0.14 people/m2: default density of DesignBuilder for exhibitions and 

galleries ............................................................................................................................................... 118 

Figure 47. Illustration of minimum and maximum densities in design of exhibitions and galleries: 

minimum 0.1 people/m2 (left), maximum 0.36 people/m2 (right) and 0.5 people/m2 (down)........... 119 

Figure 48. Oastler energy modelling, DesignBuilder .......................................................................... 122 

Figure 49. Oastler building simplified space use, extracted from DesignBuilder model .................... 123 

Figure 50. End uses analysis, Oastler building, University of Huddersfield ........................................ 125 

Figure 51. Simulation, DesignBuilder and EnergyPlus output ............................................................ 126 

Figure 52. Heating design, EnergyPlus output .................................................................................... 126 

Figure 53. Cooling design, EnergyPlus output .................................................................................... 127 

Figure 54. Model simulation method ................................................................................................. 130 

Figure 55. The University of Huddersfield and student central building ............................................ 131 

Figure 56. Space layout analysis: entrance, circulation and function of spaces ................................. 131 



 
 

12 
 

Figure 57. DesignBuilder model of the student central building, University of Huddersfield ............ 132 

Figure 58. Original construction plans, student central building, University of Huddersfield ........... 133 

Figure 59. DesignBuilder model and the interior layout of the student central building .................. 133 

Figure 60. Space function and circulation diagram, student central building, University of 

Huddersfield, UK ................................................................................................................................. 135 

Figure 61. Preliminary occupancy data collection, student central building, University of Huddersfield

 ............................................................................................................................................................ 136 

Figure 62. Observation route of the multifunctional space, student central building, Huddersfield, UK

 ............................................................................................................................................................ 137 

Figure 63. Occupancy data collection, low season, student central building ..................................... 139 

Figure 64. Occupancy data collection, low season, student central building ..................................... 139 

Figure 65. Occupancy data collection, low season, student central building ..................................... 140 

Figure 66. Occupancy data collection, high season, student central building .................................... 141 

Figure 67. Occupancy data collection, high season, student central building .................................... 141 

Figure 68. Occupancy data collection, high season, student central building .................................... 142 

Figure 69. Predicted VS realistic occupancy of student central building, Huddersfield, UK .............. 144 

Figure 70. The main entrance, student central building, Huddersfield .............................................. 146 

Figure 71. Hourly door opening time percentage during weekdays in low and high seasons rounded 

to the nearest 5 ................................................................................................................................... 147 

Figure 72. Realistic and predicted energy demand in student central building, University of 

Huddersfield, categorised by the sources of energy consumption .................................................... 149 

Figure 73. Manchester Art Gallery ...................................................................................................... 150 

Figure 74. Manchester art gallery, interior space ............................................................................... 151 

Figure 75. Manchester art gallery ground floor 3d view .................................................................... 151 

Figure 76. DesignBuilder model of the Manchester art gallery .......................................................... 152 

Figure 77. Interior layout of the multi-functional space in DesignBuilder model of Manchester art 

gallery .................................................................................................................................................. 153 

Figure 78. Space function and observation route diagram, ground floor, Manchester art gallery .... 154 

Figure 79. Space function and observation route diagram, 1st floor, Manchester art gallery .......... 155 

Figure 80. Space function and observation route diagram, 2nd floor, Manchester art gallery ......... 155 

Figure 81. Data collection methods to capture occupancy in different zones of Manchester art gallery

 ............................................................................................................................................................ 156 

Figure 82. Total museums and galleries monthly visits in UK: 57 centres, source of data: (Delaney, 

2017) ................................................................................................................................................... 156 



 
 

13 
 

Figure 83. Manchester Art Gallery weekly occupancy, Google “popular times” graph ..................... 158 

Figure 84. Predicted VS actual working hours, Manchester art gallery, UK ....................................... 159 

Figure 85. Predicted VS realistic occupancy of Manchester art gallery (November), UK ................... 164 

Figure 86. Average hourly/daily door opening time percentage rounded to the nearest 5, 

Manchester art gallery (November) ................................................................................................... 165 

Figure 87. Realistic and predicted energy demand in Manchester art gallery, categorised by the 

sources of energy consumption .......................................................................................................... 168 

Figure 88. Human-behaviour-related gaps in energy assessment of multi-functional spaces ........... 171 

Figure 89. Parameters influencing entrance door opening time ........................................................ 173 

Figure 90. Factors and sub-factors affecting occupancy in multi-functional spaces .......................... 175 

Figure 91. A conceptual framework to improve the accuracy of energy consumption assessment in 

multi-functional spaces. ...................................................................................................................... 178 

Figure 92. Refinement of framework, V3 comments ......................................................................... 181 

Figure 93. Final framework ................................................................................................................. 184 

Figure 94. The final framework for buildings at the operation and maintenance stages .................. 185 

Figure 95. The final framework for buildings at the design and construction stages ........................ 188 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

14 
 

List of Tables 
 

Table 1. Factors affecting occupants’ energy behaviours .................................................................... 22 

Table 2. Definition of the key terms ..................................................................................................... 26 

Table 3. Description of technical terms and tools ................................................................................ 27 

Table 4. Categorisation of the reviewed papers by year of publication, methodology, building types, 

occupants’ interactions with buildings and influential parameters ..................................................... 43 

Table 5. Public building characteristics ................................................................................................. 80 

Table 6. Ontology, epistemology and axiology, adopted from (Saunders et al., 2016a) ..................... 94 

Table 7. Adopted from (Saunders et al., 2016a) ................................................................................... 94 

Table 8. Observed parameters .............................................................................................................. 97 

Table 9. Different methods for how and why questions, adopted from (Yin, 2014) ............................ 98 

Table 10. Forms of observation (Saunders et al., 2016b) ................................................................... 103 

Table 11. DesignBuilder default values used for the energy simulation ............................................ 117 

Table 12. Yearly energy simulation scenarios ..................................................................................... 119 

Table 13. Simulation scenarios for the period of 1 July- 31 August ................................................... 120 

Table 14. Available and not available data for energy prediction of Wuhan exhibition at the design 

stage .................................................................................................................................................... 120 

Table 15. Default DesignBuilder values used for the initial energy simulation .................................. 124 

Table 16. End uses............................................................................................................................... 124 

Table 17. Annual building utility performance summary ................................................................... 125 

Table 18. Available and not available data for energy prediction of Oastler building at the 

construction stage .............................................................................................................................. 128 

Table 19. Calculation of maximum density for each zone, low season (non-semester) and high season 

(school semester), student central building ....................................................................................... 143 

Table 20. “Winter design week” simulation results: the gap between realistic and predicted energy 

consumption in Huddersfield student central building ...................................................................... 148 

Table 21. School semester simulation results: the gap between realistic and predicted energy 

consumption in Huddersfield student central building ...................................................................... 148 

Table 22. Total museums and galleries monthly visits in UK (57 centres), 2016-2017 ...................... 157 

Table 23. Manchester Art Gallery, Hourly/daily occupancy ratio comparison ................................... 160 

Table 24. Realistic and predicted occupancy pattern in DesignBuilder occupancy format ............... 161 

Table 25. Calculation of maximum density for each zone, Manchester Art Gallery .......................... 162 

Table 26. Average daily door opening ratio in Manchester art gallery (November) .......................... 165 



 
 

15 
 

Table 27. Final simulation results: the gap between realistic and predicted energy consumption in 

Manchester art gallery ........................................................................................................................ 166 

Table 28. Description of the initial framework ................................................................................... 178 

Table 29. Profile of experts in building energy performance ............................................................. 179 

Table 30. Description of the framework for buildings at the operation and maintenance stages .... 187 

Table 31. Description of the framework for buildings at the design and construction stages ........... 190 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

16 
 

Acknowledgements 
 

I would like to appreciate my wonderful family, friends, colleagues and tutors and all the 

individuals who helped, influenced and inspired me throughout my PhD.  

 
First of all, my immense gratitude goes to my main supervisor Professor Song Wu for his 
endless care and support throughout my PhD journey. He has been an ever beacon of 
inspiration, motivation, intuition and knowledge. My PhD journey would have never been this 
wonderful without his cheerful and supportive attitude. Words cannot express the 
appreciation I have for him. Thank you for believing in me and encouraging me to work hard 
and push all the boundaries.  
 
I would also like to extend my sincere appreciation to my co-supervisor Professor Adrian Pitts 
for his valuable comments and advice at various stages of my PhD. Also, I would like to express 
my immense gratitude to the School of Art, Design and Architecture, University of 
Huddersfield for offering me a scholarship to pursue my PhD. I am extremely privileged and 
humbled for the great opportunity. My very special thanks go to our brilliant Dean Professor 
Mike kagioglou for his support and care. I would like to express my sincere appreciation to all 
colleagues and staff at the School of Art Design and Architecture, especially, my PGR 
colleagues. I cannot appreciate enough my intellectual, intelligent and beautiful friends at the 
QSB, whose kindness, support and friendship has warmed my heart. Special mentions are 
Oshie Albert, Omayma Alqatawneh, Clarissa Biotto, Dr. Pornima Sridarran and Rima 
alaaeddine. 
 
I would like to thank my dear Mahmood who brought joy and happiness into my life at the 
very last stage of my PhD. My special thanks to Sherry, Mohamadreza and Ali for their 
precious friendship and admirable human qualities. I would like to thank my dear friend, Greg 
Smith, who believed in me, stood by my side in the dark and helped me to overcome 
difficulties, no matter what.  
 
I would like to appreciate Patrick Flavin, Energy Reduction Officer at the Estates department 
of The University of Huddersfield and Fareda Khan, Head of Special Projects at the 
Manchester Art Gallery for providing information about my case studies which greatly helped 
me during my data collection stage. I would also like to appreciate Professor Gabriele Masera, 
Professor Hom Rijal, Razieh Divani Pomerleau, Professor Angela Lee, Professor Patricia 
Tzortzopoulos and Rima alaaeddine for their valuable contributions in this research study. 
 
Last but not least, I would like to thank my lovely family, especially, my beautiful parents 
(Shirin and Shahram) and my siblings (Azadeh and Amin) and their lovely families for their 
infinite love and kindness. Thank you for making me the person I am now. I always carry you 
in my heart, every day, everywhere.  



 
 

17 
 

List of Abbreviations 
 

2D Two Dimensional 

3D Three Dimensional 

ASHRAE American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

BEM Building Energy Modelling 

BIM Building Information Modelling 

BREEAM Building Research Establishment Environmental Assessment Method 

CO2 Carbon Dioxide 

DOE (U.S.) Department of Energy 

DXF 

EPW 

Drawing Exchange Format 

Energy Plus weather data 

gbXML Green Building XML schema 

GPS Global Positioning System 

HVAC Heating, Ventilation and Air-Conditioning 

IBPSA International Building Performance Simulation Association 

i-Point 

IoE 

Information Point 

Internet of Everything 

LEED Leadership in Energy and Environmental Design 

NREL (U.S.) National Renewable Energy Laboratory 

 

 

 

 

 

 

 

 

 

 

 



 
 

18 
 

 

 

The Impact of Occupants’ Behaviours on Energy 

Consumption in Multi-Functional Spaces 

 

 

 

 

Introduction  
Chapter 

 

 

 

 

 

“Don't worry about saving the earth. The earth will be fine. However, humans will probably 

become extinct and no longer habitat the earth. Which is probably a good thing.”  

― Blake Newman 

 

 



 
 

19 
 

Chapter 1: Introduction 

1.1. Research Background 
 

Global attention towards energy consumption is growing substantially to answer to “climate 

change” which is considered to be the greatest environmental threat of modern times. EU 

Statistics by EUROSTAT (2015) show that, building sector including households and services 

respectively account for 26.8% and 13.8% of the total energy consumption in 2015. Therefore, 

reductions in energy consumption of buildings will make a dramatic drop in the total energy 

consumption.  

It has been broadly acknowledged that the occupant’s behaviour plays essential role in the 

energy consumption of buildings, however, it has been constantly overlooked in building 

energy predictions (Calì, Osterhage, Streblow, & Müller, 2016; Fabi, Andersen, Corgnati, & 

Olesen, 2013; HUB, 2015; Maier, Krzaczek, & Tejchman, 2009; Martinaitis, Zavadskas, 

Motuziene, & Vilutiene, 2015; Schakib-Ekbatan, Çakici, Schweiker, & Wagner, 2015; Yang, 

Santamouris, & Lee, 2015). Occupants interact with building systems to acquire thermal, 

visual and acoustic comfort, as well as, improving the indoor air quality. HVAC systems, 

electrical devices and lighting which are responsible to provide thermal and visual comfort for 

the occupants, are the greatest sources of energy consumption in buildings (Harish & Kumar, 

2016). O’Brien and Gunay (2015) mentioned oversimplification of occupant behaviour as the 

main cause of inaccuracy in energy consumption predictions in buildings.  

The impact of occupants on energy consumption in buildings has been studied extensively 

and the research area is going forward rapidly, however, those studies have not considerably 

materialised the reduction of the gap between predicted and actual energy consumption in 

buildings and there is a need for further studies in order to better understand occupants’ 

behaviours. Occupants’ energy consumption behaviours refer to the occupants’ activities that 

affect the energy consumption of buildings including: using appliances, opening windows and 

doors, using hot water, using HVAC system (e.g. adjusting thermostat set-points), using 

lighting and adjusting blinds. Occupants have impacts on the energy consumption of the 

buildings, not only by their active energy use, but also, by their presence and production of 

metabolic heat (known as passive energy behaviour) which increases the internal heat gain 
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of the building. The taxonomic classification of occupants’ energy consumption behaviours is 

shown in figure 1.  

 
Figure 1. Occupant’s active and passive energy behaviours 

 

Occupants’ energy behaviour is too complex to be predicted as it is dependent on multiple 

factors. A comprehensive state-of-art review of more than 120 publications undertaken on 

the influence of occupants’ behaviour on building energy consumption reveals that the 

climatic (environmental, physical), personal (physiological and psychological), social, 

economic and legal parameters together with building type and design features are the key 

factors studied by various researchers around the world. Figure 2 displays the frequency of 

each of the aforementioned factors being discussed among the reviewed studies. Also, 

various sub-factors have been reflected by a number of recent studies (Table 1).  

Insufficiency of knowledge about influential factors on energy consumption in buildings are 

considered as the most important obstacles to improve energy performance of buildings 

(Fabi, Andersen, Corgnati, Olesen, & Filippi, 2011).  
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Figure 2. Frequency of influential parameters on occupants’ energy behaviours, reviewing 

more than 100 relevant publications 

 

Main factors Sub factors Authors, year 

Climatic 

Ventilation Salcido, Raheem, and Issa (2016) 

Indoor/ outdoor 
temperature 

Zhe Wang, Zhao, Lin, Zhu, and Ouyang (2015) 

Schakib-Ekbatan et al. (2015) 

Humidity Hom B. Rijal, Humphreys, and Nicol (2015) 

Sunlight O’Brien and Gunay (2015) 

Socio-personal 

Psychological von Grabe (2016) 

Age and gender Indraganti, Ooka, and Rijal (2015) 

Education and knowledge Day and Gunderson (2015) 

Information Jain, Taylor, and Culligan (2013) 

Lifestyle 
De Meester, Marique, De Herde, and Reiter (2013) 

Peng et al. (2012) 

Building Features 

Design features 
Karjalainen (2016) 

Heydarian, Carneiro, Gerber, and Becerik-Gerber 
(2015) 

Space function Goldstein, Tessier, and Khan (2011) 

Old/new buildings 
M. Ouf, Issa, and Merkel (2016) 

Agha-Hossein, El-Jouzi, Elmualim, Ellis, and Williams 
(2013) 

Environmental Design O’Brien and Gunay (2015) 

House- family size De Meester et al. (2013) 

Building type Zhaoxia Wang and Ding (2015) 

Building orientation Zhang and Barrett (2012) 

Economic Income Romero, Bojórquez, Corral, and Gallegos (2013) 

Climatic 
(Environmental/physical), 33%

Personal (Psychological, 
Physiological), 28%

Building/ Design 
Features, 12%

Economy/ Regulations, 10%

Socio-Personal, 10%

Arival/Departure of 
Occupants, 4%

Type of activity, 3%

Climatic (Environmental/physical)

Personal (Psychological, Physiological)

Building/ Design Features

Economy/ Regulations

Socio-Personal

Arival/Departure of Occupants

Type of activity
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Main factors Sub factors Authors, year 

Langevin, Gurian, and Wen (2013) 

Socio-economic Jun Chen, Wang, and Steemers (2013) 

Regulation Governmental regulations Guerra Santin (2010) 

Table 1. Factors affecting occupants’ energy behaviours 

 

Most of the existing studies on the impacts of occupants on energy consumption in buildings 

have investigated residential and office buildings. There is insufficient information about 

human-behaviour-related factors in other building types such as galleries, exhibitions, 

museums, institutional buildings and in particular, multi-functional spaces where various 

activities take place. In multi-functional spaces of the aforementioned building types, 

occupants are more dynamic and the prediction of their behaviours is more complicated.  

The function of the space specifies the activity, therefore, it is one of the most fundamental 

inputs of energy simulation tools. In energy assessment tools, building type and space 

function are the basis for estimation of the working hours, comfort temperature, HVAC set-

points and hot water and electricity consumption.  Energy modellers usually use the labels on 

architectural/construction plans to specify the function of each building zone. However, it is 

complicated to determine the space function for large multi-functional spaces of public 

buildings where various functions take place within one physical zone. In general, design 

features of the space such as: interior layout and furniture are amongst the most influential 

parameters on the types and duration of activities in large multi-functional spaces.  

Also, software presumptions regarding multi-functional spaces are over-simplified. For 

example, there are massive daily and monthly variations in the number of occupants/visitors. 

While, energy simulation tools use fixed occupancy schedule presumptions based on the 

space function. This research investigates the impacts of occupants’ behaviours on energy 

consumption in multi-functional spaces by incorporating inputs about how the spaces are 

actually used into energy simulation tool. 
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1.2. Research Aim and Objectives 

1.2.1. Research Aim 

This research aims to develop a conceptual framework to reduce the gap between actual and 

predicted energy consumption in multi-functional spaces at different stages of building’s 

lifecycle by integrating the impacts of occupants’ behaviours into building energy predictions. 

The proposed conceptual framework will provide guidelines for energy modellers to improve 

the accuracy of energy predictions in multi-functional spaces. 

In order to accomplish this aim, the following objectives are formulated: 

 

1.2.2. Research Objectives 

1. To review existing literature on the impacts of occupants’ behaviours on energy 

consumption in buildings and identify the gaps in the subject area through a 

comprehensive quantitative analysis and qualitative review. 

2. To analyse energy consumption of multi-functional cases at different stages of 

building’s lifecycle by comparing default software presumptions regarding human-

behaviour-related factors with the realistic collected data and investigate the 

potential gaps in energy assessment. 

3. To analyse the collected data and the results of the energy simulations in objective 3, 

formulate research findings and the conceptual framework. 

4. Refinement and validation of the framework through incorporating experts’ 

comments, conclusion and future work. 

1.3. Research Methodology 
 

The research methodology of this study consists of 4 main stages to address the research 

objectives (see: 1.2.2. Research Objectives):  

• Formulation of research problem, research focus and research design 

• Establishment of research method, case study design and data collection 

• Analysis of data and formation of the initial findings 

• Development, validation and refinement of the conceptual framework 
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In this research, in order to investigate occupants’ energy consumption behaviours in multi-

functional spaces and quantify their impacts on the energy consumption, multiple cases at 

various stages of building’s lifecycle (including design, construction and operation) have been 

studied. Hence, the case study design includes two stages:  

 

• Stage 1 of the case study design is applied on cases at the design and construction 

stages that the actual occupants’ behaviours data is unavailable. It includes three 

steps: preparation of information (such as building architectural and construction 

plans, material and systems), energy modelling and simulation and analysis of the gaps 

and insufficiency of information regarding occupants’ behaviours in prediction of 

energy consumption in multi-functional spaces at the design and construction stages 

(See: 3.2.4.1. Case Study Design). Stage 1 of the case study is explained 

comprehensively in chapter 4. The gaps that have been pointed out through stage 1, 

were further studied in stage 2.  

• Stage 2 of the case study design is an extended form of stage 1 which incorporates 

realistic observed occupants’ behaviour data with the energy simulation tool. Stage 2 

is applied on cases at the post-occupancy and operation stage and comprised of five 

steps: preparation of information, energy modelling and simulation using software 

default human-behaviour-related assumptions, data collection and analysis, detailed 

energy modelling and simulation using the collected data, evaluation and quantitative 

analysis of both simulation outcomes (using software default presumptions and data 

collection inputs) (See: 3.2.4.1. Case Study Design). Stage 2 of the case study is 

presented in chapter 5. 

The analysis of the findings (including analysis of the collected data and the simulation 

outcomes) created the initial conceptual framework. The initial framework has been validated 

through experts’ comments and the final framework is formed after refinement to provide 

guidelines for energy modellers to perform more accurate energy consumption assessments 

in multi-functional spaces by integrating occupant-behaviour-related factors into the energy 

simulation process. 
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1.4. Contribution to Knowledge, Uniqueness and Novelty  
 

Various studies have been undertaken on the impact of occupants on energy consumption in 

buildings with the aim to decrease the performance gap between the calculated and actual 

energy consumption in buildings. Reducing the performance gap will provide the opportunity 

for energy modellers, researchers and designers to achieve more accurate energy 

consumption predictions in buildings. It is also a necessity to improve energy codes and 

standards to be used by policy makers.  

Contributions of this research are both theoretical and practical. Figure3 illustrates the most 

important theoretical and practical contributions of this study. The theoretical contribution is 

accomplished by addressing some of the existing gaps in the literature. In this research, the 

impact of occupants’ behaviours on energy consumption in buildings is studied and 

quantified, which is a disregarded area causing inaccuracies in building energy prediction. The 

cases investigated in this study are multi-functional spaces of public buildings (such as 

galleries, exhibitions and institutional buildings) that have not been studied sufficiently in the 

literature. In addition to the theoretical contribution to knowledge, the findings of this study 

contribute in improving the occupancy and occupant-behaviour-related sections of energy 

simulation tools, which has great practical benefits for energy modellers, researchers and 

energy simulation software developers.  

 

Figure 3. Research practical and theoretical contribution 
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1.5. Definitions, Technical Terms and Tools 
 

The study is mainly quantitative and does not include very complicated concepts, however, a 

number of key terms used in this research have wide definitions. Therefore, in order to clarify 

them, their definitions are described in table 2.   

Terms Definition Description 

Energy Behaviour Occupants’ activities that influence energy consumption of a 

building passively or/and actively.  

Active Energy Behaviour Occupant’s planned and intentional activities that influence 

energy consumption of a building such as: opening windows 

and use of hot water, electricity and appliances.   

Passive Energy Behaviour Occupant’s presence or their unintentional activities which 

influence energy consumption of a building. Mainly refers to 

the production of metabolic heat.  

Space Design Decision upon the space appearance, arrangement and 

functioning. In this research in refers to space design features 

that influence the energy consumption of a building such as:  

space layout and furniture.  

Occupancy The state of being present in/ or to occupy a space.  

Realistic Energy 

Consumption 

The prediction of energy consumption of buildings using energy 

simulation tools with realistic inputs taken from primary data 

collection. 

Public Building “Far from the scale of the private space and its intimate 

narratives” (Adjaye, Allison, & Eshun, 2006), where, occupants 

are autonomous and have no responsibility towards energy 

bills.  

Table 2. Definition of the key terms 

 

In addition to the key terms, various technical terms and tools are used as part of this research 

study which are described in table 3.  
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Technical terms 
and tools Description 

Autodesk Revit Revit is a leading building information modelling software which 

provides various tools for architects, structural engineers, MEP 

engineers and construction professionals developed by Autodesk 

(Autodesk, 2018).  

EnergyPlus EnergyPlus is a building energy simulation tool funded by U.S. 

department of energy (DOE) and managed by the National Renewable 

Energy Laboratory (NREL). EnergyPlus is used by engineers, researchers 

and designers to predict heating, cooling, ventilation, lighting, electricity 

energy consumption and water consumption in buildings (EnergyPlus, 

2018) (See: 2.3. Building Energy Prediction Methods and Tools).  

DesignBuilder An advanced building energy simulation tool linked to EnergyPlus 

energy simulation engine and commonly used by engineers, architects 

and energy assessors (See: 4.3. Energy Simulation Tool, DesignBuilder).  

gbXML Green Building XML is a file format which is developed to store and share 

building properties between building information models and 

engineering analysis tools to increase the interoperability between 

design and building energy simulation (gbXML, 2018). 

DXF DXF (Drawing eXchange Format) is a graphical image file format 

developed by Autodesk which enables interoperability between various 

Autodesk tools (such as AutoCAD and Revit Architecture) and other 

programs such as energy modelling and simulation tools (e.g. 

DesignBuilder).  

Table 3. Description of technical terms and tools 

1.6. Publications 
 

Most of the findings of this study at different stages of the research development (including 

literature review, research method, case study design, data collection and the theoretical and 

conceptual frameworks) have been published in prominent peer-reviewed journals and 

conference proceedings. The great number of reviews this study received by experts in the 

research subject domain has highly benefitted its progress.  
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• A broad review of literature on the influence of occupants in energy consumption of 

buildings is performed through this research which formed a review paper. The paper 

(Delzendeh, Wu, Lee, & Zhou, 2017) is published in renewable and sustainable energy 

reviews journal which is one of the most remarkable journals in the subject area.  

• Two conference proceedings are the other outcomes of this research project so far: 

“a conceptual framework to simulate building occupancy using crowd modelling 

techniques for energy analysis” in Cib 2016 conference (Wu & Delzendeh, 2016) and 

“The influence of space layout design on occupant’s energy behaviour” in LC3 2017 

conference (Delzendeh & Wu, 2017). 

• The preliminary findings of this study including analysis of data collection and the 

preliminary conceptual framework formed a conference paper with the following title: 

“The role of space design in prediction of occupancy in multi-functional spaces of 

public buildings” (Delzendeh, Wu, & Alaaeddine, 2018). The paper went through a 

double-blind review, received very positive and constructive comments and is 

published in 2018 Building Performance Analysis conference and SimBuild co-

organized by ASHRAE and IBPSA-USA. 

• The above conference paper was then expanded to include detailed research method, 

simulation results and the final conceptual framework which formed another journal 

paper: “A conceptual framework to predict energy consumption in multi-functional 

spaces”

In addition, active attendance in various postgraduate research conferences and symposiums 

with both PowerPoint and poster presentations has promoted the development of this 

research.  

1.7. Thesis Structure 
 

This thesis has been created under the following chapters: 

• Chapter 1. Introduction: This chapter includes research background, aim and 

objectives, research method, contribution to knowledge, uniqueness and novelty, 

definitions and publications. 

•  Chapter 2. Literature Review: A comprehensive review on the prediction of energy 

consumption in buildings (tools and methods), the gap between the actual and 
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predicted energy consumption in buildings and the impacts of occupants’ passive and 

active behaviours on energy consumption in buildings with specific focus on multi-

functional spaces in public buildings are presented in this chapter. Besides, the existing 

gaps in the literature are pointed out and research focus and scope are explained. 

• Chapter 3. Methodology: This chapter contains a review of methods used to study the 

impacts of occupants’ behaviours on building energy consumption, followed by, 

detailed description of research method employed in this study including research 

philosophy, research approach, methodological choice, research strategy and case 

study design, time horizon and data collection techniques.   

• Chapter 4. Case Study, Stage 1: The chapter includes the selection of multi-functional 

cases of this study and the energy simulation tool used to integrate the collected data 

into energy assessment process. Case study stage 1, also, contains case study 

description, energy modelling and simulation process and their outcomes for the 

cases at the design and construction stages.  As a final point, the potential gaps in 

energy consumption prediction of multi-functional at design and construction stages 

are highlighted in this chapter.  

• Chapter 5. Case Study, Stage 2: This chapter includes case study description, energy 

modelling and simulation process, the results of simulation using default software 

human-behaviour-related assumptions, data collection, the data analysis and 

classification of the collected data and energy simulation using the collected data for 

the cases at the post-occupancy stage. The chapter concludes with the analysis of both 

simulation results (using software assumptions and using the collected data) to 

quantify the gap between energy consumption predictions using realistic and 

standard assumptions regarding occupants’ energy behaviours. 

• Chapter 6. Discussions and Framework: This chapter includes further discussions and 

the development of conceptual framework, validation and refinement of the 

framework and the final framework to improve the accuracy of energy consumption 

assessment in multi-functional spaces by incorporating occupants’ realistic energy 

behaviours into energy simulation tools.  

• Chapter 7. Conclusion: This chapter contains the conclusion of the study linked with 

research objectives, in addition to, research limitations, and future work. 
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1.8. Chapter Conclusion 
 

This chapter contains the introduction to the research by presenting its most essential aspects 

including research background, research aim and objectives and research method. It, also, 

includes the contribution to knowledge (both theoretical and practical), uniqueness and 

novelty of the research. In addition, the key terms and phrases and technical terms and tools 

which are used in this study, are introduced in this chapter. A number of publications have 

been the outcomes of this research study and are used for development of this thesis. The 

list of publications is provided in this chapter. Finally, the thesis organisation is explained to 

provide information about the content of each chapter. In the next chapter, a comprehensive 

literature review is performed to point out the existing gaps in the research domain and 

specify the research focus. 
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Chapter 2: Literature Review 
 

This chapter provides a comprehensive literature review on the state-of-art of the influence 

of occupants on building energy consumption. As the research area is fast growing, the 

reviewed content was mostly selected among the most recent research projects and 

publications, as well as, the most prominent studies. The first part of this chapter is focused 

on areas directly relevant to the research problem including energy consumption in buildings, 

building energy assessment tools, the existing performance gap, occupants’ energy 

consumption behaviours, the influential parameters and thermal comfort. It includes a 

quantitative analysis and qualitative review of the literature, to address the existing gaps in 

the subject area, followed by an explanation of the specific focus of this study. Some parts of 

this chapter has been published in leading peer-reviewed journals (Delzendeh et al., 2017) 

and conference proceedings which has greatly benefitted the development of this research 

study (See: 1.6. Publications). The second part of this chapter provides more detailed 

literature review on the research focus. The chapter organisation and literature review 

development is illustrated in figure 4.  

 
Figure 4. Literature review development 
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2.1. Energy Consumption in Buildings 
 

Over the years, the need to be more sustainable has significantly increased global focus 

towards energy consumption related analysis. Climate change is foreseen to be the greatest 

environmental threat and challenge of modern times. International agreements such as the 

Paris agreement (Salawitch, Canty, Hope, Tribett, & Bennett, 2017); the Kyoto Protocol 

(Vasser & Vasser, 2009); European agreements such as the European Emissions Trading 

Scheme and European Directive on the Energy Performance of Buildings (EPBD); and UK 

national measures such as the United Kingdom’s Climate Change Programme (UKCCP) 

(Carbontrust, 2005) and the Climate Change Levy (CCL) (GOV.UK, 2001; Pearce, 2006); all 

demonstrate its prominence. Thus, government, businesses and wider society all have a 

pivotal role to address human impact (hence, occupant behaviour) on the environment. In 

this regard, predicting energy demand is becoming more important throughout building’s 

lifecycle, from early design stages to post occupancy. According to Janda (2011), the growth 

in knowledge and public concern with regards to climate change has ensured increased 

attention towards energy consumption in relation to buildings. Statistics have affirmed that 

buildings are colossal consumers of energy. In addition, there are strong economical drivers 

towards reducing energy consumption in buildings. Energy cost accounts for almost 50% of 

the total building post-occupancy cost in average (Sekki et al., 2016).   

As published in the “International Energy Outlook” by the U.S. Energy Information 

Administration (eia, 2016), 20% of the total energy consumed worldwide is within the building 

sector (including residential and commercial). Another study (Wilkes & Goodright, 2015) 

demonstrated that from 1970 to 2014, the domestic sector alone used between 24% to 27% 

of the total energy consumption in Europe. Likewise, a separate study undertaken by the 

European Environment Agency (EEA) (EEA, 2015) presented similar results in their analysis. In 

2015, EU statistics (EUROSTAT, 2015) reported that buildings (including services and 

households) consumed around 40% of the total energy use in 2015. In China and India, the 

building sector accounts for 37% (Ji, Lomas, & Cook, 2009) and 35% (Manu, Shukla, Rawal, 

Thomas, & de Dear, 2016) of the total energy consumption, respectively. Also, 59% of the 

total energy consumption in Finland is consumed in building sector (Sekki, Andelin, 

Airaksinen, & Saari, 2016). Furthermore, statistics show that building sector accounts for 

around 30% of global yearly greenhouse gas emissions (Sekki et al., 2016).   
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Such that is the acute need to drive down energy consumption, in 2002, the Energy 

Performance Building Directive (EPBD) announced new regulatory conditions for all EU 

countries to decrease the energy needed for heating, cooling, ventilation and lighting in 

buildings. Therefore, estimated energy efficiency level of buildings has to be considered in 

the design of buildings, and subsequently in construction documentations (Fabi et al., 2013) 

as part of the planning process. 

Energy consumption of buildings is related to various factors including: the thermo-physical 

properties of the building elements, the construction technical details (energy-efficient 

building elements may not perform efficiently if poorly-constructed), climatic location 

characteristics, the quality (and maintenance) of the installed HVAC system, and occupants’ 

behaviour and activities towards energy utilization (S. Chen et al., 2015; Jessen Page, 

Robinson, & Scartezzini, 2007). Throughout building’s lifecycle, from early design to post-

occupancy and operation stages, energy simulation is used to predict energy consumption of 

buildings based on available information. However, several studies (Calì et al., 2016; Fabi et 

al., 2013; HUB, 2015; Maier et al., 2009; Martinaitis, Zavadskas, Motuziene, et al., 2015; 

Schakib-Ekbatan et al., 2015; Yang et al., 2015) showed that there was a considerable 

discrepancy between the predicted and actual energy consumption of buildings. The studies 

demonstrated that the actual energy consumption of buildings is considerably greater than 

the estimated calculation. For example, Bordass, Cohen, Standeven, and Leaman (2001) 

stated that the actual energy consumption in Probe's air-conditioned offices were twice 

higher than predicted. A study by Demanuele, Tweddell, and Davies (2010) on 15 school 

across the UK demonstrated that the actual electricity consumption was approximately 60% 

- 70% higher than predicted.  

Thus, this performance gap is due to the difference between the building design and the as-

built building in terms of the technical workmanship and installations, choice of equipment 

and material during the construction stage, and the energy behaviour of occupants, which 

has been disregarded in the energy simulation process (Calì et al., 2016; Fabi et al., 2013; Tian 

et al., 2018) (Figure 5).  

 
Figure 5. The gap between the predicted and actual use of buildings 
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Various studies have focused on different aspects of the uncertainty analysis in building 

energy prediction such as building performance,  building stock analysis (Dascalaki, Droutsa, 

Gaglia, Kontoyiannidis, & Balaras, 2010) and life cycle analysis (Tian et al., 2018). In a 

comprehensive review study by Tian et al. (2018) four types of uncertainties in prediction of 

energy consumption were classified: weather data, building envelope, HVAC system and 

occupant behaviour. The aforementioned uncertainties are believed to cause inaccuracies in 

building energy assessment.   

To predict energy consumption of buildings during design, construction, operation and 

maintenance stages, energy simulation tools are used. At different stages of building’s 

lifecycle, the available information to use as inputs for energy modelling and simulation vary 

(Figure 6). The lack of detailed information regarding building material, working hours, space 

functions, occupancy and occupants’ behaviours can result inaccurate energy consumption 

prediction. Energy prediction at early design stage is usually used for comparison between 

different scenarios of building volume, shape, orientation, etc. However, lack of building 

material, services, technical details and space function data at the early design stages may 

cause expectable and unavoidable inaccuracies in the energy prediction. Likewise, at the 

design and construction stages, the main missing pieces of information are the building 

working hours and human behaviour. Moreover, buildings keep evolving even after the post-

occupancy stage. For example, the ongoing transformations of the internal layout, space 

function and furniture. During operation and maintenance stages of a building, energy 

simulation is used to quantify and select energy saving strategies after refurbishment and 

energy retrofitting.   
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Figure 6. The missing information in building energy prediction at different building’s 

lifecycle 

Post-occupancy energy-use evaluation has been analysed in numerous research projects. For 

example, the ROWNER project (HUB, 2015) considered three stages: design and construction, 

post-occupancy evaluation and overheating. The project analysis (HUB, 2015) demonstrated 

a significant difference between the total energy consumption between two flats within the 

same building block due to differing occupant behaviours, including: different presence at 

home, different occupancy levels, and variations in the occupants’ thermal preferences. In 

another research by Gill, Tierney, Pegg, and Allan (2010), the comprehensive post-occupancy 

studies on sustainable UK EcoHomes remarked that occupants’ behaviours resulted 51%, 

37%, and 11% variations in heating, electricity, and water consumption, respectively. 

Similarly, major differences in energy consumption of similar building blocks were reported 

in another study (Kalman, 2012): Martinaitis, Zavadskas, Motuziene, et al. (2015) referred to 

five different studies to highlight that buildings did not perform as predicted, even when the 

energy simulation was very accurate. They concluded that human behaviour and occupant 

preferences as important contributors of the gap between the predicted and actual building 

energy performance. Furthermore, Schakib-Ekbatan et al. (2015) identified occupants’ 

behaviour as the most overlooked parameter that “might not be considered as part of the 

energy design” within the chain of design, construction, operation and maintenance. As such, 

a range of studies have ensued focusing on the influence of occupants’ behaviour on building 

energy consumption with the focus to interpolate behavioural aspects into building energy 

simulation tools to improve their accuracy (Hong, D'Oca, Turner, & Taylor-Lange, 2015). 
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However, despite vigorous research being undertaken in this area, the findings are 

fragmented and, therefore, there is a real need for international collaboration in the sharing 

of collected data and discovered findings (Yan & Hong, 2016). Also, it is widely believed that 

designing an energy efficient building requires a multi-disciplinary team of designers, 

mechanical engineers and energy modellers (Shi, Tian, Chen, Si, & Jin, 2016). Without this 

multi-disciplinary approach, achieving energy optimisation in buildings will remain 

incomplete.  

In the following section, a quantitative analysis and qualitative review of the existing literature 

in the state of art of the influence of occupants’ behaviours on energy consumption in 

buildings is performed. 

2.2. Review of the Existing Literature: Quantitative Analysis and Qualitative 
Review 

 
This section aims to undertake a comprehensive review of the existing studies to provide a 

summary of the extant literature and identify research gaps. The selection criteria was 

primarily based on the direct relevance to the subject, in addition to, a number of studies 

which focused on related subjects due to their substantial importance.  

Literature review usually follows a process of ‘search’ for relevant publications, utilising 

citation indexes against pre-determined criteria for eligibility and relevance to form an 

inclusion set relating to the research area. To reduce bias in this process, an objective and 

transparent approach for research synthesis was adopted, including both quantitative 

analysis and qualitative reviews. Therefore, Science Direct and Scopus databases, two of the 

leading citation index organisations, were used. For this study, the terms “building energy” 

and “occupant” were used to select any papers where it was found in the title, abstract and/ 

or keywords. In order to limit this wide scope (more than a thousand papers were identified 

by Science Direct and Scopus) and to focus closely on the influence of occupant behaviour on 

building energy consumption, a further search was made through the existing database using 

more relevant keywords. As a result, both “occupant behaviour” and “energy consumption” 

have been repeatedly used in the title, abstract and as keywords of various research papers 

that were considered as the closest key words for the topic of this research review paper. 

Following such, a search identified more than 120 research papers for the first stage of 

literature review in this study which were used to classify research gaps and select research 
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focus and scope of this study. Most of the selected papers were directly related to the impacts 

of occupants’ behaviours on building energy consumption and were published in recent years, 

to reflect this fast developing research area.  

According to the reviewed papers, the most frequent key words used by scholars in this 

subject area are ‘occupant behaviour’, ‘energy consumption or energy use’, ‘energy 

simulation or modelling’ and ‘energy efficiency or performance’, followed by ‘comfort’ and 

‘behaviour'. Thus, this identifies the notable relevance of comfort-related studies, especially 

thermal comfort, in occupant behaviour. 

The studies identified were subsequently categorised in terms of the methodology used, 

building type (i.e. residential, offices, etc.), occupants’ types of interaction with buildings and 

the influential parameter(s) on occupants’ energy behaviours (see: table 4).  

Author(s), year Methodology 
Building 

type 
Occupants 

interactions 
Influential 
parameter 

Gandhi and Brager (2016) 
(Gandhi & Brager, 2016) 

2 Years Field Study, 
Data Analysis Using 

Rstudio 

Commercial, 
Offices 

Plug Load (desktops, 
laptops, monitors, and 

task lights) 

Personal 
(Influence of 

Game) 

Jang and Kang (2016) (Jang & 
Kang, 2016b) 

Case Study, Survey, 
Gaussian Process 

Classification 

Residential 
(High-Rise) 

Heating and Electricity 
consumption 

- 

Rafsanjani and Ahn (2016) 
(Rafsanjani & Ahn, 2016) 

Non-Intrusive 
Occupant Load 

Monitoring (NIOLM) 
Commercial 

Occupants' energy 
behaviours 

Arrival- 
Departure 

Karatas, Stoiko, and Menassa 
(2016) (Karatas, Stoiko, & 
Menassa, 2016) 

Pre and Post-
occupancy 

Measurements, 
Clustering 

Residential, 
Commercial 

Occupants' energy 
behaviours 

Personal 
(Behavioural 

Studies) 

Karjalainen (2016) 
(Karjalainen, 2016) 

Case Study, Survey Offices 
Occupants' energy 

behaviours 
Design Features 

Ahn and Park (2016) (K.-U. 
Ahn & C.-S. Park, 2016) 

Experiment, Real-
time Monitoring 

Laboratory 
Occupants' Presence 

and energy behaviours 
- 

von Grabe (2016) (von Grabe, 
2016) 

Decision Theory, 
Qualitative Data 

- 
Occupants' energy 

behaviours 
Personal 

(psychological) 

Salcido, Raheem, and Issa 
(2016) (Salcido et al., 2016) 

Review Offices 
Use of mixed-mode 

ventilation 
Climatic  

Ryu and Moon (2016) (Ryu & 
Moon, 2016) 

Experiment, Decision 
Tree and Hidden 
Markov Model 

Building 
Integrated 

Control Test-
bed 

Electricity 
Consumption 

Climatic  
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Pisello, Castaldo, Piselli, 
Fabiani, and Cotana (2016) 
(Pisello, Castaldo, Piselli, 
Fabiani, & Cotana, 2016) 

Case Study, 
Monitoring using 

sensors 
Educational 

Electricity 
Consumption and 
windows/doors 

opening 

Personal/ 
Climatic 

Pellegrino, Simonetti, and 
Chiesa (2016) (Pellegrino, 
Simonetti, & Chiesa, 2016) 

Case Study, Field 
Measurement 

Residential Use of air conditioning Climatic  

Ouf, Issa, and Merkel (2016) 
(M. Ouf et al., 2016)  

Case Study 
Educational 

(School) 
Electricity 

Consumption 

Old/ New 
Building - Type 

of Activity 

Khosrowpour, Gulbinas, and 
Taylor (2016) (Khosrowpour, 
Gulbinas, & Taylor, 2016) 

Sensor-based 
Monitoring, 

Classification and 
Predictions 

Commercial Use of appliances Personal 

Kazmi, D’Oca, Delmastro, 
Lodeweyckx, and Corgnati 
(2016) (Kazmi, D’Oca, 
Delmastro, Lodeweyckx, & 
Corgnati, 2016) 

Case Study, 
Monitoring, 

Sensitivity Analysis 
Residential Use of hot water - 

Calì, Osterhage, Streblow, and 
Müller (2016) (Calì et al., 
2016) 

Field Study, 
Monitoring 

Residential 
Occupants' energy 

behaviours 
- 

Langevin, Wen, and Gurian 
(2016) (Langevin, Wen, & 
Gurian, 2016) 

Agent-based Behavior 
Model, Case Study 

Simulation 

Offices, Building 
Controls Virtual 

Test Bed 

Occupants' energy 
behaviours 

- 

Yu, Li, Li, Han, and Zhang 
(2015) (Z. Yu, Li, Li, Han, & 
Zhang, 2015) 

Existing 2-year Survey 
Data, Data mining-

based Methodology 
Residential Use of appliances - 

Hong et al. (2015) (Hong et al., 
2015) 

Ontology - - 
Personal 

(Behavioural 
Studies) 

Wang, Zhao, Lin, Zhu, and 
Ouyang (2015) (Zhe Wang et 
al., 2015) 

Field Measurement, 
Questionnaire Survey, 

Sensitivity Analysis 
Residential Heating Climatic  

Tetlow, van Dronkelaar, 
Beaman, Elmualim, and 
Couling (2015) (Tetlow, van 
Dronkelaar, Beaman, 
Elmualim, & Couling, 2015) 

Questionnaire Offices 
Electricity 

Consumption 

Socio-Personal 
(psychological: 

TPB) 

HUB (2015) (HUB, 2015) 

Case Study, Occupant 
Questionnaire, Post 

Occupancy 
Measurements 

Residential 
Gas, Electricity and 
Water consumption 

Socio-Personal 

Indraganti, Ooka, and Rijal 
(2015) (Indraganti et al., 2015) 

Thermal Comfort 
Survey, Logistic 

Regression 
Offices Occupants' satisfaction 

Personal(Age, 
Gender) 
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Feng, Yan, and Hong (2015) 
(Feng, Yan, & Hong, 2015) 

Agent-based Model, 
One-year Field Study 

Offices 
Occupants' energy 

behaviours 

Climatic, 
Behaviour 
Theories 

Schakib-Ekbatan et al. (2015) 
(Schakib-Ekbatan et al., 2015) 

Case study, 
Monitoring Data, 

Logistic Regression 
Analyses 

Offices Windows opening 
Climatic 

(Indoor/outdoor 
temperature) 

Langevin, Gurian, and Wen 
(2015) (Langevin, Gurian, & 
Wen, 2015) 

Longitudinal Case 
Study, Survey, 

Measurements, 
Human Tracking 

Offices 
Occupants' energy 

behaviours 
Personal 

Hom B. Rijal, Humphreys, and 
Nicol (2015) (Hom B. Rijal et 
al., 2015) 

Survey, 
Measurements 

Residential - 
Climatic 

(Humidity) 

Mohamed, Al-Habaibeh, 
Abdo, and Elabar (2015) 
(Mohamed, Al-Habaibeh, 
Abdo, & Elabar, 2015) 

Survey, Questionnaire Residential 
Occupants' energy 

behaviours 
Socio-Personal 

Gulbinas, Khosrowpour, and 
Taylor (2015) (Gulbinas, 
Khosrowpour, & Taylor, 2015) 

Experimental data 
analysis 

Commercial 
Occupants' energy 

behaviours 
Personal 

Wang and Ding (2015) 
(Zhaoxia Wang & Ding, 2015) 

Multiple-Case Study, 
Polynomial and 

Markov Chain–Monte 
Carlo Methods 

Offices 
(Business, 

Administration, 
Scientific 
Research) 

Use of appliances 
(Computers) 

Type of activity 

Heydarian, Carneiro, Gerber, 
and Becerik-Gerber (2015) 
(Heydarian et al., 2015) 

Experiment 
Virtual 

Environments 
Lighting choice Design Features 

S. Chen et al. (2015) (S. Chen 
et al., 2015) 

Multiple-Case Study, 
Statistical Survey 

Residential 
Occupants' energy 

behaviours 

Classification of 
Influential 

Parameters 

Feng et al. (2015) (Feng et al., 
2015) 

Review, Simulation - Occupancy - 

Zhao, Lasternas, Lam, Yun, 
and Loftness (2014) (Jie Zhao, 
Lasternas, Lam, Yun, & 
Loftness, 2014) 

Experiment, Data 
Mining 

Offices Use of appliances Climatic 

Masoudifar, Hammad, and 
Rezaee (2014-2015) 
(Masoudifar, Hammad, & 
Rezaee, 2014-2015) 

Monitoring, Real 
Time Location 

Systems, Wireless 
Energy Meters 

Offices Occupancy - 

Johnson, Starke, Abdelaziz, 
Jackson, and Tolbert (2014) 
(Johnson, Starke, Abdelaziz, 
Jackson, & Tolbert, 2014) 

Time Use Survey, 
Markov Chain 

Statistical Model 
Residential 

Occupants' 
interactions 

- 
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D’Oca, Fabi, Corgnati, and 
Andersen (2014) (D’Oca, Fabi, 
Corgnati, & Andersen, 2014) 

Dynamic Simulation 
Tool IDA Ice 

Residential 
Thermostat, Window 

opening 
- 

Gunay, O'Brien, Beausoleil-
Morrison, and Huchuk (2014) 
(Gunay, O'Brien, Beausoleil-
Morrison, & Huchuk, 2014) 

Kalman Filter 
Algorithm 

Offices 
Lighting/ Window 

blinds 
- 

Jiayu Chen and Ahn (2014) 
(Jiayu Chen & Ahn, 2014) 

Experiment, wireless 
Network for 
Monitoring 

Educational, 
Commercial 

Occupants' energy 
behaviours 

- 

Li, Li, Fan, and Jia (2014) (Li, Li, 
Fan, & Jia, 2014) 

Field Observation, 
Data Analysis Using 

SPSS Statistical 
Software 

Offices Window opening Climatic 

Simona D'Oca and Hong 
(2014) (Simona D'Oca & Hong, 
2014) 

Combined Statistical 
Analysis (with two 

data-mining 
techniques: cluster 

analysis and 
association rules 

mining) 

Offices Window opening - 

Yun, Choi, and Kim (2014) 
(Yun, Choi, & Kim, 2014) 

Case Study, Field 
Monitoring 

Offices 
HVAC system (Air 

handling unit) 
- 

Hom B. Rijal (2014) (Hom B. 
Rijal, 2014) 

Thermal Comfort 
Survey, Occupant 
Behavior Survey 

Residential 
Window opening / use 

of fans 
Climatic 

Burgas, Melendez, and 
Colomer (2014) (Burgas, 
Melendez, & Colomer, 2014) 

Case Study, 
Monitoring, Data 

mining 
Educational 

Electricity 
Consumption 

Climatic 

Romero, Bojórquez, Corral, 
and Gallegos (2013) (Romero 
et al., 2013) 

Field Study, Survey 
Residential 

(Low-income) 

Electricity 
Consumption (Air 

conditioning) 

Climatic/ 
Economic/ 
Building quality 

Langevin, Gurian, and Wen 
(2013) (Langevin et al., 2013) 

Interview 
Residential 

(Low-income) 
Occupants' energy 

behaviours 
Personal/ 
Economic 

Blight and Coley (2013) 
(Blight & Coley, 2013) 

Sensitivity Analysis, 
Multiple Regression 

Techniques 

Passive 
Residentials 

Heating - 

Kavousian, Rajagopal, and 
Fischer (2013) (Kavousian, 
Rajagopal, & Fischer, 2013) 

Smart Meter Data 
Analysis 

Residential Electricity Climatic 

Jun Chen, Wang, and 
Steemers (2013) (Jun Chen et 
al., 2013) 

Survery Study Residential 
Occupants' energy 

behaviours 

Socio-Economic 
( age and 
income) 

Agha-Hossein, El-Jouzi, 
Elmualim, Ellis, and Williams 
(2013) (Agha-Hossein et al., 
2013) 

Pre and Post-
occupancy Surveys 

Offices Occupants' satisfaction 
Old/ New 
Building 

(Refurbishment) 
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Fabi et al. (2013) (Fabi et al., 
2013) 

Case study, 
Medium/Long-term 

Monitoring 
Residential Window opening - 

Andersen, Iversen, Madsen, 
and Rode (2014) (Andersen, 
Iversen, Madsen, & Rode, 
2014) 

Case Study, Markov 
Chain 

Offices Presence - 

Martinez-Gil, Freudenthaler, 
and Natschlaeger (2013) 
(Martinez-Gil, Freudenthaler, 
& Natschlaeger, 2013) 

Experiment 
Residential, 

Offices 
Electricity 

consumption 
- 

Aldossary, Rezgui, and Kwan 
(2014) (Aldossary, Rezgui, & 
Kwan, 2014) 

Multiple-Case Study, 
Interviews 

Residential 
Occupants' energy 

behaviours 
Climatic 

Jain, Taylor, and Culligan 
(2013) (Jain et al., 2013) 

Empirical Study Residential 
Occupants' energy 

behaviours 
Personal 

(Information) 

De Meester, Marique, De 
Herde, and Reiter (2013) (De 
Meester et al., 2013) 

Case Study Residential Heating 

Personal 
(lifestyle), 

House/ Family 
size 

Andrews, Chandra Putra, and 
Brennan (2013) (Andrews, 
Chandra Putra, & Brennan, 
2013) 

Year-round Survey Commercial 
Occupants' energy 

behaviours 
- 

Fabi, Andersen, Corgnati, and 
Olesen (2012) (Fabi et al., 
2013) 

Review - Window opening 
Influential 

Parameters 

Park and Kim (2012) (Park & 
Kim, 2012) 

Field Study, Airflow 
Measurements, 

Energy Data 
Collection, 

Questionnaire 

Residential Use of fans 
Climatic/ 
Economic 

Peng et al. (2012) (Peng et al., 
2012) 

On-site Observations, 
Quantitative Data 

Measurements 
Residential 

Occupants' energy 
behaviours 

Socio-Personal 
(lifestyle) 

Dall’O’, Galante, and Torri 
(2011) (Dall’O’, Galante, & 
Torri, 2011) 

Monitoring, On-site 
Survey, Regression 

Analysis 
Residential - - 

Yu Zhun Jerry, Haghighat, 
Fung, Morofsky, and Yoshino 
(2011) (Yu Zhun Jerry, 
Haghighat, Fung, Morofsky, & 
Yoshino, 2011) 

Case Study, Data 
mining 

Residential 
Occupants' energy 

behaviours 
- 

Hom B. Rijal, Tuohy, 
Humphreys, Nicol, and 
Samuel (2011) (Hom B. Rijal, 
Tuohy, Humphreys, Nicol, & 
Samuel, 2011) 

Field survey, 
Observation 

- 
Use of windows and 

fans 
- 
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Schweiker and Shukuya 
(2011) (Schweiker & Shukuya, 
2011) 

Field Measurement, 
Internet-based Survey 

- Heating and Cooling 
Personal 

(Information) 

Goldstein, Tessier, and Khan 
(2011) (Goldstein et al., 2011) 

Case Study Offices Occupancy 
Space Layout 

Design/ Type of 
Activity 

Guerra Santin (2010) (Guerra 
Santin, 2010) 

Governmental 
Database, Regression 

Analysis 
Residential 

Occupants' energy 
behaviours 

Regulations 

Larsen et al. (2010) (Larsen et 
al., 2010) 

Review, Mixed 
Method 

Residential 
Occupants' energy 

behaviours 
- 

Indraganti and Rao (2010) 
(Indraganti & Rao, 2010) 

Field study Residential Occupants' satisfaction 
Climatic/ Socio-

personal 

Steemers and Yun (2009) 
(Steemers & Yun, 2009) 

Existing "Residential 
Energy Consumption" 

Survey (RECS) 
Residential 

Occupants' energy 
behaviours 

Socio-
Economic/ 

Climatic 

Juodis, Jaraminiene, and 
Dudkiewicz (2009) (Juodis, 
Jaraminiene, & Dudkiewicz, 
2009) 

Variability Analysis of 
Existing Data 

Residential Heating - 

Page, Robinson, Morel, and 
Scartezzini (2008) (J. Page, 
Robinson, Morel, & 
Scartezzini, 2008) 

Stochastic Model, 
Markov Chain 

Offices Presence - 

Yun and Steemers (2008) 
(Yun & Steemers, 2008) 

Case Study, 
Monitoring Data 

Offices Window opening 
Arrival- Time 
Dependant 

Hom.B. Rijal et al. (2008) 
(Hom.B. Rijal et al., 2008) 

Adaptive Algorithm, 
One-year Field Survey 

Offices 
Windows, doors and 

fans 
Climatic 

Page et al. (2007) (Jessen 
Page et al., 2007) 

Stochastic Model/ 
Markov Chain 

Offices, 
Educational 

Occupant presence 
and energy behaviours 

- 

Reinhart (2004) (Reinhart, 
2004) 

Case Study, Field 
Data, Use of Sensors 

Offices 
Electricity lighting/ 

Blinds 
- 

Al-Mumin, Khattab, and 
Sridhar (2003) (Al-Mumin, 
Khattab, & Sridhar, 2003) 

Case Study, Survey Residential 
Use of appliances 

(Electricity) 
Personal 
(lifestyle) 

Table 4. Categorisation of the reviewed papers by year of publication, methodology, building types, 

occupants’ interactions with buildings and influential parameters 

 
Analysis of table 4 is concluded as follows: 

• Residential buildings and offices respectively account for 44% and 31% of the 

reviewed studies in this topic area. Less than 20% of these studies used commercial 

and educational/institutional buildings as their case studies, and cultural and 

recreational buildings and health centres have not been sufficiently researched and 
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reported, and thus, require further investigation. The number and percentage of each 

building types used as case studies in the reviewed papers is illustrated in a pie chart 

(Figure 7). 

 

Figure 7. Different building types used as cases 

• The majority of studies focused on one or more particular types of occupant’s 

interaction, such as the use of electricity and plug loads (31%), window opening 

behaviour (18%) and use of fans/ air conditioning (15%) (Figure 8). Although the use 

of hot water (4%) is limited in the literature, it starts to appear in the more recent 

publications. 

 
Figure 8. Different types of occupants’ interactions 

Residential, 36, 
44%

Offices, 25, 31%

Commercial, 7, 8%

Educational, 6, 7%

Other types, 6, 7% Virtual Environment/ Test-bed, 2, 2%

Electricity, Plug load, 
17, 31%

Window opening, 
10, 18%

Use of fans/ Air conditioning, 
8, 15%

Occupancy/ Occupant's 
presence, 7, 13%

Heating, 7, 13%

Blinds, 2, 4%

Hot water, 2, 4% Thermostat, 1, 2%
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• Many studies focused on one or more influential parameters of the occupant’s choices 

of behaviours and satisfaction. Among those parameters, climatic (environmental, 

physical) and personal (psychological and physiological) parameters have attracted 

more attention than other parameters, and accounted 33% and 28% respectively of 

the totally review papers. Other parameters, such as building features (old/ new 

conditions and design quality), economy and regulations, socio-personal, occupant’s 

arrival and departure, and type of activity, were investigated in different studies 

(Figure 9).  

 
Figure 9. Influential parameters on occupants’ energy behaviours  

 

In the following sections, in order to study the gap between predicted and actual energy 

consumption due to occupants’ behaviours, a review of building energy prediction methods 

and tools and occupants’ energy consumption behaviours and the link between these topics 

are discussed. 

 

2.2.1. Energy Performance Gap 
 

Several studies have pointed out the gap between the actual and predicted energy 

consumption in buildings and its causes. The energy performance gap refers to the difference 

between the actual measured energy consumption and the result of calculation-based 

building energy performance assessment (de Wilde, 2014). In a comprehensive study about 

building energy performance gap, Zou, Xu, Sanjayan, and Wang (2018b) reviewed and 

Climatic (Environmental/physical), 
19, 33%

Personal (Psychological, 
Physiological), 16, 28%

Building/ Design Features, 7, 12%

Economy/ Regulations, 6, 10%

Socio-Personal, 6, 10%

Arival/Departure of Occupants, 2, 4% Type of activity, 2, 3%
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analysed 227 publications and categorised the causes of the building energy performance gap 

in three main groups: First, the gap between design and operation and lack of sufficient 

presumptions for the building energy assessment. Second, the gap between building 

construction and its final design such as: poor construction techniques and workmanship. 

Third, the gap caused by building operation which is mainly caused by occupants’ behaviours. 

The causes of the gap are usually divided into two major groups: user errors in energy 

modelling and simulation, and insufficient and inaccurate energy-performance-related 

assumptions and inputs in energy performance assessment (Allard et al., 2018).  

In a study by Strachan, Svehla, Heusler, and Kersken (2016), measured information regarding 

energy performance of two identical buildings were given to 21 energy modelling teams who 

used various energy simulation software. The study aimed to create a dataset for validation 

of various energy simulation tools in predicting energy consumption of full-scale multi-zone 

buildings. Its findings demonstrated acceptable agreement between the predicted and 

measured energy consumption which confirmed the reliability of most of the energy 

simulation tools. However, the study pointed out various user input errors which resulted 

considerable inaccuracies in energy predictions using energy simulation software. One of the 

main important user input errors were zoning and the way the energy modellers interpret 

each zone in energy simulation process. Other errors included the calculation of thermal 

bridges and solar transmissions. Also, some studies have mentioned use of abstract and 

simplified models of the buildings as a cause of discrepancy between the predicted and actual 

energy consumption in buildings (Marshall et al., 2017). Most of the 3D models of the 

buildings are not simple enough or suitable to be used in energy simulation tools. Also, there 

is no comprehensive guideline for energy modellers about creating a simplified energy model. 

As mentioned earlier, user error in energy simulation and modelling is not the only cause of 

the gap between predicted and actual energy consumption in buildings. The reliability of the 

mathematical calculations behind energy simulation tools have been confirmed broadly, 

however, insufficient and inaccurate energy-performance-related assumptions and inputs 

used in energy performance assessment are other causes of the aforementioned gap.  

Unrealistic inputs regarding weather data, building operation and occupant behaviour are 

believed to be amongst the most significant causes of the performance gap (Pollard, 2011; 

Zou et al., 2018b).  
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Various studies have confirmed inaccurate weather data as one of the causes of inaccuracies 

in energy predictions (Erba, Causone, & Armani, 2017; Kočí, Kočí, Maděra, & Černý, 2019; 

Lindberg, Binamu, & Teikari, 2004; Liu, Stouffs, Tablada, Wong, & Zhang, 2017; Lundström, 

2017). Hourly weather data (such as: solar radiation, relative humidity and dry bulb air 

temperature) is a critical input for energy consumption prediction of buildings at various 

stages and scales (Liu et al., 2017). Hence, the accuracy of weather data is essential to achieve 

reliable energy performance predictions. The global warming issue has caused faster weather 

variations year by year which has been the focus of many studies in building energy 

performance research domain.  

Studies confirm that six stakeholder groups cause the energy performance gap in buildings: 

designers, contractors, suppliers, energy modellers and energy managers, in addition to, 

building owners and occupants (Zou et al., 2018b). Here are some examples how each of these 

groups cause energy performance gap in buildings: A designer’s lack of attention to building 

users and design of complex building systems and non-flexible spaces, a contractor’s lack of 

performance testing during construction, a supplier’s low quality materials, the energy 

modeller’s errors and lack of experience, the owner’s and occupant’s lack of knowledge and 

communication (Zou, Wagle, & Alam, 2019). Among all the causes of the energy performance 

gap in buildings, there is no doubt that occupants have significant impact on the operation 

and consequently energy consumption in buildings.  

 
2.2.2. Occupant behaviour 
 

Occupant behaviour refers to the interaction with building systems in order to control the 

indoor environment for health, and to obtain thermal, visual and acoustic comfort inside 

buildings. Mankind’s “desire for control” (Endler, 1993) over environmental factors is not 

limited to the outside environment, but also, within their living spaces. According to Bluyssen 

(Bluyssen, 2009), improvement in air quality (by bringing fresh air and eliminating air pollution 

and odour), acoustical conditions (by avoiding unwanted noise and vibrations), visual or 

lighting quality (by controlling luminance ratios, reflections and glare) and aesthetic status, in 

addition to, improving thermal comfort inside the living environment, are the building 

inhabitants’ prerequisites for being able to adjust building systems and components. 
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Therefore, occupants can influence the indoor environment through their presence and 

activities in the building.  

Cabanac (1971) coined the term “alliesthesia,” composed of two words “allios” meaning 

“changed” and "aisthesis" meaning “sensation”. Using this term, the author described that “a 

given external stimulus can be perceived as either pleasant or unpleasant depending upon 

signals coming from inside the body”. People naturally try to avoid unpleasant conditions and 

look for pleasant ones. “If a change occurs, such as to produce discomfort, people react in 

ways to restore their comfort” (Nicol & Humphreys, 2002). However, due to physical, 

physiological and psychological differences between people, and many other external drivers 

such as economic and regulatory issues, people do not “receive, perceive, and respond” the 

same way (Bluyssen, 2009). 

The term “thermal comfort” was introduced during the late 19th century. The principal 

definition of thermal comfort was described by the American Society of Heating and Air-

Conditioning Engineers (ASHRAE, 2004) as: “that condition of [the] mind which expresses 

satisfaction with the thermal environment and is assessed by subjective evaluation”. Despite 

the subjective nature of thermal comfort, two quantitative formulas, first developed by 

Fanger (Fanger, 1972), are used for its measurement: predicted mean vote (PMV) and 

predicted percentage dissatisfied (PPD). PMV models integrate the impacts of temperature 

(air temperature and mean radiant temperature), humidity, air velocity, the metabolic heat 

rate and clothing thermal properties to predict the thermal comfort level (Ekici, 2016). Since 

their emergence, thermal comfort and specifically PMV and PPD models have been studied 

widely and modified by several researchers for use in different types of buildings worldwide. 

Thermal comfort factors discussed in PMV models (such as: indoor temperature, humidity, 

clothing type, etc.) are considered in building energy assessment tools, however, there is the 

individual aspect in thermal comfort related to personal experiences and expectations which 

is not reflected in the estimation of energy consumption in buildings.  

The total energy consumption of buildings is not only influenced by the metabolic heat 

produced by occupants passively, which is considered within the occupancy section of energy 

simulation software, but also by their active energy use. Occupants interact with control 

systems and building elements to reach their own personal desired level of comfort in 

different ways: use of building openings (e.g. opening and closing windows), use of lighting 

and controlling solar shading (e.g. adjusting blinds), use of HVAC systems (e.g. turning air-
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conditioning on or off and adjusting thermostat temperature), use of hot water and electrical 

appliances (Figure 10). 

 

Figure 10. Occupants’ types of activities affecting building energy consumption. Adapted 

from (J. Page et al., 2008) 

The occupant’s choice of the type of controls to reach his/ her comfort is based on its 

efficiency, ease and its potential unwanted consequences (Hom B. Rijal et al., 2011). Hong et 

al. (2015) identified actions (such as adjusting the level of clothing, opening a window and 

turning down the thermostat temperature) and inactions (such as moving to a different 

location and tolerating some discomfort) as differing strategies of occupants ‘behave’ 

(behaviour) towards the same thermal discomfort. These approaches, however, impact on 

the amount of energy use, and thus, it is important to understand the relationship between 

the building and its users’ living style and their energy use behaviour (S. Chen et al., 2015; 

Hong et al., 2015; Schakib-Ekbatan et al., 2015). HVAC systems, electrical devices and lighting 

that enable users [occupants] to manage their own thermal and visual comfort, are the key 

sources of energy consumption in buildings (Harish & Kumar, 2016) and variations in using 

these systems can cause significant variations in the total energy consumption in buildings, 

and hence, accounts for the gap between actual use and predicted energy consumption. 



 
 

50 
 

Several scholars have categorized occupants and their energy attitudes to different groups. 

D’Oca et al. (2014) divided occupants into active, medium and passive users of energy. The 

active user changes the heating set point to get warmer/ cooler; conversely, the passive user 

choses to do nothing and tolerates some level of discomfort. In another categorization, Hong 

et al. (2015) ranged people’s actions more descriptively from “energy frugal” to “energy 

profligate” via “energy indifferent”. Operating another method, S. Chen et al. (2015) classified 

behavioural factors within residential buildings into three levels according to their complexity: 

simple, intermediate and complex. Further, he suggested three research methods to study 

each category: statistical analysis, case studies and detailed diagnostics/ simulation, 

respectively. Thus, occupants profiling based on their energy behaviours could lead to more 

accurate assumptions in the energy analysis of buildings. However, a large-scale 

comprehensive study with significant quantitative data is needed to produce reliable energy 

profiles, which is presently not available. 

Additionally, some scholars have focused on a single activity of occupants affecting building 

energy consumption. For example, the window opening behaviour of occupants has been 

widely studied within various building types in differing climates (Simona D'Oca & Hong, 2014; 

D’Oca et al., 2014; Fabi, Andersen, Corgnati, & Olesen, 2012; Fabi et al., 2013; Li et al., 2014; 

Pisello et al., 2016; Hom B. Rijal, Honjo, Kobayashi, & Nakaya, 2013; Hom B. Rijal et al., 2011; 

Schakib-Ekbatan et al., 2015; Yun & Steemers, 2008). Most of the studies on window opening 

behaviour have focused on the effect on ventilation (Polinder et al., 2013) and studied the 

time, frequency and duration of opening windows. However, the calculation of the influence 

of an open window on building energy consumption requires complex air movement 

considerations that are not effectively accomplished in any of the existing studies. 

Moreover, a number of studies have focused on other types of occupants’ energy behaviours 

such as: the use of appliances and electrical consumption (Al-Mumin et al., 2003; Andrews et 

al., 2013; Burgas et al., 2014; Gandhi & Brager, 2016; Kavousian et al., 2013; Khosrowpour et 

al., 2016; Martinez-Gil et al., 2013; Ouyang & Hokao, 2009; Jessen Page et al., 2007; Pisello et 

al., 2016; Ryu & Moon, 2016; Zhaoxia Wang & Ding, 2015; Z. Yu et al., 2015; Jie Zhao et al., 

2014), use of lighting (Gunay et al., 2014; Heydarian et al., 2015; M. Ouf et al., 2016; Reinhart, 

2004), use of fans (Park & Kim, 2012; Hom B. Rijal et al., 2011) and air conditioning (Pellegrino 

et al., 2016; Yun et al., 2014), adjusting blinds (Gunay et al., 2014; Reinhart, 2004) and 

changing thermostat set-points (D’Oca et al., 2014). The use of hot water also has been 
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considered, albeit in fewer studies (S. Chen et al., 2015; HUB, 2015; Kazmi et al., 2016; Trust, 

2008). A recent study (Harish & Kumar, 2016) showed that water heating accounts for 7% and 

18% of the total energy consumption in residential and commercial buildings in the USA, 

respectively, which is considered as the 4th and 2nd most sources of energy consumption in 

these building types. Therefore, depending on the building type, it would appear that the use 

of hot water might have critical influence on the total energy consumption of a building; 

however, this requires further investigation to be conclusive. 

Of critical consideration, the majority of existing studies focus on a single energy behaviour, 

however, in reality, energy behaviours are often inter-linked. The inter-relationship between 

different energy behaviours of occupants has been highlighted by some scholars in the 

literature. Bourgeois, Reinhart, and A. Macdonald (2005) criticised that although the findings 

of some studies showed that using automated control in lighting decreased the lighting 

consumption, in some cases it did not reduce the total energy consumption. In this regard, 

they (Bourgeois et al., 2005) suggested the link between the use of natural lighting and energy 

consumption through cooling or heating and thus developed the “lighting:cooling:heating 

ratio”. In another study, Yan et al. (2015) discussed how occupants’ use of window blinds 

affects the use of daylight. Studies on the inter-relationship between various energy 

behaviours of occupants are useful but currently limited and further analysis is much needed. 

In addition to active energy use, the metabolic heat produced by occupants themselves 

impact on the building’s energy passively by directly increasing the internal heat gain. 

Occupant’s presence and movement within building spaces have been investigated and 

modelled by a number of scholars (Andersen et al., 2014; Martinaitis, Zavadskas, Motuziene, 

et al., 2015; Masoudifar et al., 2014-2015; J. Page et al., 2008; Jessen Page et al., 2007) using 

various indoor localisation techniques, such as crowd modelling tools and other statistical 

analysis methods (Andersen et al., 2014; Martinaitis, Zavadskas, Motuziene, et al., 2015; 

Masoudifar et al., 2014-2015; J. Page et al., 2008; Jessen Page et al., 2007). J. Page et al. (2008) 

reported occupant’s presence “as an inhomogeneous Markov chain” which was disrupted 

with absence periods. Later, a model of the presence profile in office buildings with single or 

more occupants using observation together with inhomogeneous Markov chains was 

proposed by Andersen et al. (2014). The findings of these studies can improve the accuracy 

of occupancy profiles in building energy predictions, and are beneficial to be extended and 

used in studies on occupants’ active energy behaviours. As an example, Masoudifar et al. 
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(2014-2015) applied two wireless sensors, one for occupancy location monitoring and the 

other for monitoring their energy behaviours; in conclusion, they demonstrated a link 

between occupant’s presence and active energy behaviours. Moreover, several studies have 

demonstrated that the consequences of occupants’ behaviours significantly increase the total 

energy consumption of buildings during non-working and unoccupied hours (Yang et al., 

2015). A study on the energy consumption of six commercial buildings in South Africa (with 

hot and dry climates) reported that 56% of the total energy consumption was consumed 

during non-working hours which was believed to occur simply because of occupants failed to 

turn off the HVAC system and lights before vacating buildings (Masoso & Grobler, 2010). 

Human behaviour is a complex phenomenon; therefore, most human behaviour studies 

adopted probabilistic methods. Fabi et al. (2013) underlined that the gap between simulated 

and actual energy consumption of buildings was the result of deterministic methods and 

unrealistic schedules used in simulation tools. In a fixed environmental condition, a person 

may behave completely differently on different occasions, which confirms the importance of 

using comprehensive data. This emphasizes the importance to use more realistic and 

comprehensive methods in this subject area.   

 

2.2.3. Parameters influencing occupants’ energy behaviour  
 

As discussed earlier, comfort (specifically thermal comfort) is a state of mind that varies from 

person to person due to personal (physiological, psychological) and social parameters, which 

directly affect occupant’s energy use. In addition, climatic parameters, economical 

parameters, regulations and policies, architecture and interior design of the space and 

building types directly influence energy behaviour of occupants (Figure 11). Fabi et al. (2012) 

reported the influential parameters on window opening behaviour of occupants, and 

classified these parameters into five groups: physical environmental factors, contextual 

factors, psychological factors, physiological factors and social factors. 
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Figure 11. Factors and sub-factors influencing energy behaviour of occupants. 

 

2.2.3.1. Climate 
 

Climatic (environmental, physical) parameters such as outdoor temperature, relative 

humidity, solar radiation, wind and rain are important parameters influencing occupants’ 

interactions with building systems to acquire thermal comfort. A research study (Hom B. Rijal 

et al., 2011) used a clear description of the climatic parameters by providing an example of 

an office block consisting of different cellular offices: it considered each cellular office had a 

window and was occupied by one person; the outside weather was cold and all the windows 

were closed. The research concluded that if the room temperature increased gradually, more 

and more occupants would feel too warm and would open their windows. The outcome of 

this research was presented as a curve to show the probability of having open windows, which 

can be extended to other activities using different scenarios. The influence of climatic 
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parameters on occupants’ energy behaviour has been widely studied for different types of 

climatic conditions (Aldossary et al., 2014; Jun Chen et al., 2013; Kavousian et al., 2013; 

Langevin, Wen, & Gurian, 2015; Li et al., 2014; Hom B. Rijal, 2014; Hom B. Rijal et al., 2013; 

Hom B. Rijal et al., 2015; Hom.B. Rijal et al., 2008; Schakib-Ekbatan et al., 2015; Zhe Wang et 

al., 2015; Jie Zhao et al., 2014). These parameters are time/ date dependent, therefore, in 

many studies stochastic models are used to estimate the probability of potential outcomes. 

Monitoring occupants’ real interactions or (and) occupant behaviour surveys, in addition to, 

year-round thermal measurements are introduced and used in these climate related studies 

(Hom B. Rijal et al., 2013). 

 

2.2.3.2. Building Type 
 

The building type determines the type of activity, clothing type, production of metabolic heat, 

together with the occupants’ specific needs and expectations and their possible degree of 

interactions with building systems. Various research studies have focused on particular 

building types (or type of activities), focussing heavily on residential buildings (Al-Mumin et 

al., 2003; Aldossary et al., 2014; Blight & Coley, 2013; Calì et al., 2016; Jun Chen et al., 2013; 

S. Chen et al., 2015; Simona  D'Oca, 2012; Dall’O’ et al., 2011; De Meester et al., 2013; Fabi et 

al., 2013; Guerra Santin, 2010; Indraganti & Rao, 2010; Jain et al., 2013; Jang & Kang, 2016b; 

Juodis et al., 2009; Karatas et al., 2016; Kavousian et al., 2013; Kazmi et al., 2016; Langevin et 

al., 2013; Larsen et al., 2010; Martinaitis, Zavadskas, Motuziene, et al., 2015; Mohamed et al., 

2015; Nicol & Humphreys, 2002; Park & Kim, 2012; Pellegrino et al., 2016; Peng et al., 2012; 

Hom B. Rijal, 2014; Hom B. Rijal et al., 2013; Hom B. Rijal et al., 2015; Romero et al., 2013; 

Steemers & Yun, 2009; Zhe Wang et al., 2015; Z. Yu et al., 2015; Yu Zhun Jerry et al., 2011) 

and offices (Agha-Hossein et al., 2013; K.-U. Ahn & C.-S. Park, 2016; Simona D'Oca & Hong, 

2014; Gandhi & Brager, 2016; Goldstein et al., 2011; Indraganti et al., 2015; Karjalainen, 2016; 

Langevin, Gurian, et al., 2015; Langevin, Wen, et al., 2015; Langevin et al., 2016; Li et al., 2014; 

Masoudifar et al., 2014-2015; J. Page et al., 2008; Salcido et al., 2016; Schakib-Ekbatan et al., 

2015; Tetlow et al., 2015; Zhaoxia Wang & Ding, 2015; Yun et al., 2014; Jie Zhao et al., 2014). 

The level of attention paid to residential buildings and offices is due to their critical impact on 

the total energy consumption in the building sector. Still, statistics confirm the great role of 

non-residential buildings on the total energy consumption and CO2 emission. For example, 
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non-residential buildings account for around 19% of the total CO2 emissions in UK (Gul & 

Patidar, 2015). Some studies have investigated commercial (Jiayu Chen & Ahn, 2014; Gandhi 

& Brager, 2016; Gulbinas et al., 2015; Karatas et al., 2016; Khosrowpour et al., 2016; 

Rafsanjani & Ahn, 2016) and educational buildings (Burgas et al., 2014; Jiayu Chen & Ahn, 

2014; M. Ouf et al., 2016; Pisello et al., 2016) with limited findings. There have been sparse 

studies undertaken on other public building types such as exhibitions and health centres.  

Furthermore, the vast majority of research on occupants’ energy behaviour focuses on single 

buildings and there are only a few studies that investigate the urban scale impacts (Dall’O’ et 

al., 2011; Park & Kim, 2012). It is suggested that future research could extend to the urban 

design scale (Andrews et al., 2013) as the understanding of the impact of occupants’ energy 

behaviours on energy consumption on a larger scale improves the credibility of energy 

consumption policies made using more realistic data. The existing methodologies used to 

study the subject area in single buildings can be adjusted and used as the basis of further 

similar studies on the urban scale.  

 

2.2.3.3. Social and Personal Parameters 
 

Social and personal (psychological and physiological) parameters play a substantial role in 

occupants’ comfort and energy attitude and has been broadly studied. Martinaitis, Zavadskas, 

Motuziene, et al. (2015) identified social and personal factors affecting energy behaviour of 

households such as: users’ awareness of energy issues, gender, age, employment, family size 

and socio-cultural belonging. Also, Janda (2011) highlighted the effect of education and 

awareness-raising on people’s energy attitude. Some studies have discussed one social or 

individual parameter; for example, the differences between male and female thermal 

preferences have been stated by some scholars (Chow, Fong, Givoni, Lin, & Chan, 2010; 

Indraganti et al., 2015; Indraganti & Rao, 2010; Lan, Lian, Liu, & Liu, 2008). However, the most 

dependable and comprehensive studies with regards to social and personal factors in this 

subject area, combined two parameters using human behavioural theories by Tetlow et al. 

(2015) and Ajzen (1991) to study occupants’ electricity consumption in office buildings. Also, 

Hong et al. (2015) applied an ontology called DNA’s framework, using a behavioural-cognitive 

theory, to suggest four key components governing occupants’ energy behaviour: drivers, 

needs, actions and systems. Various behavioural theories, for example, the theory of planned 
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behaviour (Ajzen, 1991), cognitive complex theory (Kieras  & Meyer, 1997) and cognition as a 

network of task (Freed, 1998), considered the changeable human cognition process by 

connecting human and environment. Unfortunately, there is little evidence to suggest that 

the findings have been incorporated into building energy assessment tools. The authors 

believe that a multi-disciplinary approach is needed to bring together social scientists, energy 

modellers and construction engineers to tackle this complex problem. In addition, more 

detailed quantitative studies governing the sociology aspects of occupants’ behaviours are 

suggested as necessary by some scholars (Yan & Hong, 2016), which is essential to improve 

the accuracy of energy consumption predictions in buildings.  

 

2.2.3.4. Regulations and Economical Parameters 
 

Energy regulations and economical parameters such as energy price and employment have 

been discussed in various studies. In addition, the influence of these parameters on 

occupants’ energy consumption behaviour in buildings has been raised by some scholars (Calì 

et al., 2016; Guerra Santin, 2010; HUB, 2015; Langevin et al., 2013; Martinaitis, Zavadskas, 

Motuziene, et al., 2015; Park & Kim, 2012; Hom B. Rijal et al., 2011; Romero et al., 2013; Zhe 

Wang et al., 2015). Studies show that when occupants are directly responsible for pay energy 

bills they act more energy frugal (Zhe Wang et al., 2015). Hom B. Rijal et al. (2011) investigated 

the relationship between energy price and occupants’ thermal tolerance, which affects the 

total energy consumption of buildings. According to the findings of the study by Park and Kim 

(2012), more than half of the respondents to their questionnaire indicated energy costs as 

the main reason for avoiding the use of mechanical fans and accepting some level of 

discomfort. However, Romero et al. (2013) showed that in harsh climatic conditions (e.g. very 

hot weather), low-income occupants consumed more electricity for cooling in comparison to 

other households due to the inadequate thermal insulation of the buildings. Similarly, Jun 

Chen et al. (2013) stated that occupants’ economic situation could determine the quality and 

size of their housing, which would consequently affect energy consumption. In another study, 

Langevin et al. (2013) conducted semi-structured interviews of occupants in low-income 

public housing, which revealed notable differences of energy behaviours between rental 

paying occupants and government subsidised occupants. 
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2.2.3.5. State of Occupants: Arrival and Departure 
 

A number of studies have revealed that occupants tended to adjust building systems and 

appliances more at arrival than at departure of a building. Therefore, state of occupants 

(arrival, presence in the space and departure) have been considered and modelled in a 

number of research projects (J. Page et al., 2008; Jessen Page et al., 2007; Rafsanjani & Ahn, 

2016; Yun & Steemers, 2008) and the connection between occupants’ movements and their 

behaviours have been investigated. In order to simulate the occupant’s presence, J. Page et 

al. (2008) proposed an algorithm by supposing present/absent status of occupants in each 

zone as a miscellaneous Markov Chain. Some studies used different indoor tracking methods 

to capture occupants’ movements and presences such as: sensor-based systems (e.g. passive 

infrared (PIR) motion sensors) (Azghandi, Nikolaidis, & Stroulia, 2015), vision-based methods 

(Milan, Schindler, & Roth, 2013; C.-R. Yu, Wu, Lu, & Fu, 2006), ultrasound (Knauth, Jost, & 

Klapproth, 2009) and WLAN location fingerprinting (Fet, Handte, Wagner, & Marrón, 2013; 

Shih, Chen, Chen, Wu, & Jin, 2012). Furthermore, integration of these methods in studies 

related to occupant’s energy behaviour can provide new insight towards the subject area.  

 

2.2.3.6. Design Features 
 

The impact of architecture and space design features on occupant’s behaviour has been 

broadly studied (Augustin, 2009; Caan, 2011). With regards to energy consumption, the term 

“sustainable interior design” describes the integration of sustainability principles in the 

interior design of space as part of building construction (Moxon, 2012). The practice is mainly 

focused on use of green material and energy efficient systems (E. Lee, Allen, & Kim, 2013). 

The interior design of space can influence occupant behaviour in differing ways, including: 

visual quality of building openings (windows and doors), the architecture circulation and 

colours, material and compositions of interior spaces which may change occupants’ thermal 

perception. A number of studies have demonstrated the impacts of colours, textures and 

material sensation on occupants’ perception of the indoor temperature and thermal comfort 

(Ulusoy & Nilgün, 2017; Ulusoy & Olguntürk, 2016). However, the effects of interior design of 

space on occupants’ energy consumption behaviours have not been studied extensively. The 

differences between occupants’ behaviours in old and new (or refurbished) buildings have 

http://www.thesaurus.com/browse/miscellaneous
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been reported in several studies (Agha-Hossein et al., 2013; M. Ouf et al., 2016). Moreover, 

Goldstein et al. (2011) stated that space layout could influence occupant’s presence, as it 

could link to the type of activity that occurs at the location within a space. Therefore, the 

probability of occupant’s presence in certain locations based on different functions of the 

space could be simulated. Also, there is a proven link between lighting design and the 

occupant’s lighting consumption. Gandhi and Brager (2016) investigated the influence of 

occupants on plug load (electricity and lighting) energy consumption in office buildings and 

proposed an energy efficient strategy by decreasing the general ambient lighting and using 

task lights instead. Based on a rational statement, Karjalainen (2016) suggested that using 

fixed and robust design strategies can decrease the effects of occupant behaviour on energy 

consumption in buildings, however, some studies highlighted that built environments with 

fixed thermal properties consume more energy and do not provide more thermal comfort for 

the occupants (Zhu, Ouyang, Cao, Zhou, & Yu, 2016). 

The term “design for sustainable behaviour,” which is mainly used in product design, refers 

to the role of designer in directing sustainable user behaviour during the design stage (Lilley, 

2009; Wilson, Lilley, & Bhamra, 2013). It is posited that if appropriate strategies are applied 

to the design of a product, the designer can positively influence the sustainable use of the 

product (Lilley, 2009). Also, a number of studies have confirmed the successful role of games, 

such as Cool Choices ("Cool Choices," 2016), as a motivation for occupants to practice more 

sustainable behaviours (Gandhi & Brager, 2016). In order to change occupant’s energy 

behaviour, two main approaches have been suggested: disincentive and motivation 

approaches (e.g. laws and regulations) and by increasing individual’s knowledge and 

awareness (Crocker & Lehmann, 2013). Day and Gunderson (2015) pointed out that it is 

essential to educate occupants and improve their knowledge and understanding of building 

systems, especially in high-performance buildings. Karatas et al. (2016) embraced a 

framework to measure the results of occupant’s behavioural change in energy consumption 

using a “motivation-opportunity-ability” method. As a result, the study demonstrated 

effective behavioural change approaches to attain falls in energy consumption in buildings. 
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2.3. Building Energy Prediction: Methods and Tools 
 
Energy simulation of a building is a mathematical analysis of physical properties of the 

building elements considering thermal and lighting aspects (Fabi et al., 2013). Jang and Kang 

(2016b) explained “building form, thermal properties and energy controls” as different inputs 

of building energy modelling. There are over 400 building energy modeling and simulation 

tools available ranging from very detailed to very simple (Shi et al., 2016).  

Energy simulation engines such as EnergyPlus, TRNSYS and ESP-r follow almost similar 

procedures to calculate energy consumption in a building: 

1- Specifying the location of the building and accessing its climate data 

2- Using the 3D model of the building with its existing orientation and specifying its 

different energy zones 

3- Providing information regarding the thermo-physical properties of building elements 

4- Determining the type of HVAC system  

5- Assessing building working hours, occupancy patterns and any special equipment’s 

used in every zone 

6- Selecting the demanded simulation period and running the simulation.  

The final outputs of energy assessment tools are heating/ cooling/ ventilation design data, 

lighting data, CO2 emission, the total energy consumption and cost, in addition to, various 

building energy standard certificates. Different standards are used to certify green building 

and energy efficient design such as BREEAM in the UK (Barlow, 2011), LEED in USA (Cottrell, 

2012) and Green Building Label in China (Shi et al., 2016; Ye, Cheng, Wang, Lin, & Ren, 2013). 

Most of the prominent energy simulation tools such as DesignBuilder and IES VE provide 

measurements based on LEED and BREEAM standards which can be used by designer and 

energy modellers as building energy consumption certificates.  

Energy prediction of a building is often used for two main purposes: energy efficiency 

comparison and energy consumption calculations. Energy efficiency comparison is often used 

in design stages or for building refurbishment to quantify energy saving strategies. It provides 

a more reliable data by modification of quantifiable parameters, while, energy consumption 

calculations are less dependable due to the influence of various stochastic parameters.  
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Harish and Kumar (2016) reviewed the most significant existing modelling and simulation 

methodologies used in building energy schemes. They used the term “building energy 

systems” (BES) for any devices, tools or processes which consume energy in buildings. In 

general, models and simulations are mathematical or non-mathematical; mathematical 

models are divided into two categories: theoretical and empirical (Harish & Kumar, 2016). 

According to this categorisation, energy simulation tools use mathematical equations driven 

from physics and particularly thermo-physics. Reeves, Olbina, and Issa (2015) used case 

studies to evaluate “interoperability, usability and available inputs and outputs” of 12 building 

energy modelling tools and developed a guideline for their application in different phases of 

the building lifecycle.  They highlighted the importance of the compatibility of building energy 

modelling (BEM) with building information modelling (BIM) tools for energy analysis of 

buildings, to improve the usability in difference phases from early design stages to operation 

and maintenance. In another study, S. Wang, Yan, and Xiao (2012) suggested a framework to 

classify energy prediction methods based on various criteria such as: calculation range and 

complexity of evaluation. Also, they categorized energy assessment methods into three 

groups: calculation-based, measurement-based and hybrid methods, based on the energy 

data attainment methods (Figure 12). In another classification, by performing a 

comprehensive literature review on design energy optimization from architect’s viewpoint, 

Shi et al. (2016) categorized various terms that has been used to define building energy 

simulation and modeling tools Since 1990: computational optimization, simulation-based 

optimization, building performance optimization and performance driven design. 
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Figure 12. Energy calculation methods adopted from (S. Wang et al., 2012) 

 
From computing point of view, use of “imperative programming languages” in current energy 

simulation software was criticized by some scholars (Wetter, Bonvini, & Nouidui, 2016). They 

suggested using computer algebra instead which is a lot faster and more accurate. They 

declared problems such as difficulty for programmers to develop the current programs, to 

add new parameters and solve new problems. Also, they pointed out the non-user-friendly 

nature of energy simulation software that makes it difficult for operators to recognize their 

possible interactions with their assumptions and parameters (Wetter et al., 2016).  

Dynamic energy simulation tools such as: EnergyPlus, TRNSYS, DOE-2 and ESP-r, are 

considered as very strong and  reliable tools for building energy consumption predictions (S. 

Wang et al., 2012). In addition, several studies confirm that the most powerful building energy 

simulation engines provide the most detailed inputs, which increases the accuracy of their 

calculations. In this regard, EnergyPlus, TRNSYS and DOE-2 are repeatedly mentioned by 

researchers as the most reliable building energy assessment tools. 

Among the existing energy simulation engines, EnergyPlus is considered as one of the most 

novel tools made in 1996 by a US federal agency called the National Renewable Energy 

Laboratory (NREL), which was the result of combination and development of two other 

existing tools: DOE-2 and BLAST (Crawley et al., 2001; Shabunko, Lim, & Mathew, 2018). Many 
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simulation-based studies on building energy performance have used EnergyPlus as their 

energy simulation tool because of its capability to calculate detailed and dynamic inputs with 

high reliability: Martin, Afshari, Armstrong, and Norford (2015) used EnergyPlus to measure 

urban temperature and specific humidity.  Rempel et al. (2013) integrated collected solar data 

into EnergyPlus to achieve a climate-responsive design. Many studies on energy retrofit (S. H. 

Lee et al., 2015) and energy saving (Boyano, Hernandez, & Wolf, 2013) strategies used 

EnergyPlus to compare various design and detailing alternatives. Like other pioneer energy 

simulation engines, EnergyPlus lacks user-friendly interface. Therefore, other mediator 

modelling software such as DesignBuilder are used which provide better graphical interfaces 

(S. Wang et al., 2012).   

In addition to performing calculations, energy modelling and simulation tools provide various 

adjustable presumptions about building lighting, electricity and HVAC requirements. The 

reliability of the final output of energy prediction tools, is strongly related to the accuracy of 

the initial energy model (which is sometimes a simplified version of a complex volume), 

together with, to set correct data to all the available parameters of the software. The 

consensus from researchers is that behavioural parameters should be fully incorporated into 

energy simulation tools in order to provide more accurate energy predictions.  

2.4. Human-behaviour-related inputs in energy prediction tools 
 

Several studies underline the influence of occupants’ behaviours on energy consumption in 

buildings. However, neither within both energy efficiency certification methods nor in energy 

simulation software, are occupants’ energy behaviours fully evaluated or considered 

(Martinaitis, Zavadskas, Motuziene, et al., 2015). Occupants’ energy behaviours are either 

passive or active. Occupant’s presence (which mainly refers to the natural production of 

metabolic heat) or their unintentional activities which influence energy consumption of a 

building are called passive energy behaviours. Also, active energy behaviour refers to 

occupant’s planned and intentional activities that influence the energy consumption of a 

building such as: opening windows and use of hot water, electricity and appliances. The 

critical importance of occupancy information in indoor environmental quality, energy 

consumption and building energy simulation is highlighted by some scholars (Yang et al., 

2015). Several attempts have been made towards understanding the impacts of occupants’ 
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behaviours on the energy consumption in buildings. But, there is a lack of integration of the 

findings of these studies into building energy simulation tools.  

Existing building energy assessment tools provide various user-interface for energy modellers 

and designers to incorporate occupants’ behaviours.  For example, in DesignBuilder, a leading 

energy simulation tool, occupant’s energy behaviour is considered in the “activity” section of 

the software (Figure 13). This section includes occupancy (to modify the density of people 

within each zone), activity factor, gender adjustments, clothing and use of computer and 

other equipment.  

 
Figure 13. Occupancy in DesignBuilder software 
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Another widely used tool, EcoDesigner, has less occupancy inputs including: occupant’s 

presence schedule and type of activity that determines the human heat gain (Figure 14).  

 
Figure 14. Occupancy in EcoDesigner software 
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OpenStudio energy assessment tool combines EnergyPlus engine for energy modelling and 

Radiance for advanced daylight analysis. This software provides a user-friendly interface 

considering various inputs related to occupants energy behaviours including: density, type of 

activity, use of lighting and appliances (Figure 15).  

 
Figure 15. Occupancy in OpenStudio 

 

In many construction projects, BIM tools such as: Autodesk Revit Architecture, are used to 

create incorporated models of all design disciplines (architecture, structure and mechanical). 

Therefore, the combined BIM model is sometimes used for energy prediction, with or without 

modifications. However, Autodesk Revit Architecture’s energy section mainly focuses on the 

physical and thermo-physical properties on the building elements and its location, and it does 

not integrate much data regarding occupancy and occupants’ behaviours (Figure 16). In 

Autodesk Revit Architecture, DOE-2 energy engine does the calculations, which is considered 

as a strong energy simulation engine. However, the adjustable inputs provided in the energy 

simulation process are very limited and not sufficiently detailed.  
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Figure 16. Energy setting in Revit Architecture 2016 

In the following section, the evaluation and incorporation of occupants’ passive and active 

energy behaviours in DesignBuilder, EcoDesigner, OpenStudio and Revit Architecture energy 

prediction tools is investigated.  

 

2.4.1. Passive energy behaviour: Occupancy 
 

Occupancy is commonly defined as the state of being present in or to occupy a space 

(Christensen, Melfi, Nordman, Rosenblum, & Viera, 2014) and is usually calculated using 
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density (people/m2) and zone area (m2) in energy prediction tools. It is also referred to as “the 

number and time-based” schedule of building occupants (W. Wang, Chen, & Hong, 2018). The 

production of sensible and latent heat and generation of CO2 are the most direct impacts of 

occupant’s presence on building indoor conditions. Therefore, occupancy data is a necessity 

in prediction of energy consumption in buildings. Most of the leading energy simulation tools 

including: EnergyPlus, TRNSYS and ESP-r, deliberate occupancy profiles as important inputs of 

building energy assessment (Yang, Santamouris, & Lee, 2016). However, input data regarding 

occupancy in energy simulation software is limited to occupants’ presence in fixed and 

scheduled patterns that does not reflect reality (Fabi et al., 2013; Martinaitis, Zavadskas, 

Motuziene, et al., 2015). There are various models to predict occupancy in buildings; 

however, its complex nature has caused great inaccuracies in all the existing models. In a 

research study by Mahdavi and Tahmasebi (2015), long-term monitored data was used to 

investigate the accuracy of two probabilistic occupancy models by Reinhart (2004) and J. Page 

et al. (2008). This study concluded that occupancy predictions of both probabilistic models 

were quite inaccurate and they proposed a non-probabilistic model that provided more 

realistic short-term occupancy data. In their model, two sets of occupancy data: “aggregated 

presence probability and best-fitting threshold” were used to generate a Boolean occupancy 

profile (Mahdavi & Tahmasebi, 2015). Experts firmly believe that reaching to accurate 

occupancy density and pattern predictions is extremely difficult and even impossible (Tian et 

al., 2018). Therefore, the majority of energy modelling and simulation specialists rely on 

default occupancy schedules of energy simulation software for energy analysis.  

In a comprehensive research study (Melfi, Rosenblum, Nordman, & Christensen, 2011) about 

building occupancy, its different extents is explained in a simple model (Figure 17). The model 

suggests that when studying occupancy in a building three sets of information that should be 

taken into account: space-based, time-based and presence-based. The space-based or 

“spatial resolution” is concerned with the space range and its boundaries, which is studied in 

different scales: building, floor, room, zone, etc. The time-based or “temporal resolution” is 

about different occupancy time span: monthly, weekly, daily, hourly, etc. The presence-based 

dimension of occupancy (occupancy resolution) investigates the following parameters:  

1. Presence: Weather the occupant is present or not, true/false. 

2. Count: the number of people in a particular space. 
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3. Location: Occupant’s precise position and exact location in the space. 

4. Distribution: Spatial distribution of occupants and visitors in each zone. 

5. Track: Movement of occupants, linking occupants’ locations with their near-future 

position in the space. 

6. Identity: Who is in the room, space or zone?  

7. Activity: Linking occupants’ presences with their activities.  

 

Figure 17:  

Figure 17. Occupancy dimensions in buildings, adopted from (W. Wang et al., 2018) 
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Various methods have been used for indoor localisation of occupants. Similar techniques have 

been applied to predict occupancy density and pattern in buildings. Indoor localisation 

methods can be classified in three main groups: Information-based methods, sensor-based 

methods and connection networks (Figure 18). Information-based methods such as use of 

questionnaire, interviews and surveys, need collaboration of occupants, which has its own 

pros and cons. While, the two others are more involuntary. Connection networks including: 

WLAN, cellular networks, Bluetooth, GPS, etc. rely on the fast growing existence of mobile 

phones and tablets everywhere. (Shih et al., 2012) categorises Wireless Local Area Networks 

(WLANs) to model-based and fingerprint-based systems. Model-based systems are not 

accurate and reliable for indoor spaces due to their unpredictable natures, however 

fingerprint based systems have been used for indoor localization (Fet et al., 2013; Shih et al., 

2012). (Fet et al., 2013) mentions use of dead-reckoning defined as the procedure of 

predicting occupant’s location using its previous defined locations together with 

fingerprinting method to achieve more accurate outcomes. Also, (Azghandi et al., 2015; Shih 

et al., 2012) mentions that the accuracy of Indoor localization of occupants should be at least 

up to 1-2 meters, therefore, GPS-based methods are not useful due to insufficient coverage 

for indoor environments. Sensor-based methods are considered as the most nonintrusive 

tools for monitoring occupants’ movements (Vlasenko, Nikolaidis, & Stroulia, 2015). In order 

to define a single occupant’s pathway, Vlasenko et al. (2015) located wireless passive infrared 

(PIR) sensors in the ceiling downward to get the freest vision of the space.  Using this system, 

the occupant does not have to carry specific tools or badges which is considered as an 

advantage. However, this method is not useful for tracking several occupants. Azghandi et al. 

(2015) applied a method using the combination of “anonymous (PIR) and identity (RFID) 

sensors” to track the location of multiple occupants.  
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Figure 18. Methods of Indoor localisation  

The efficiency and reliability of localisation techniques are related to various parameters such 

as the accuracy of the technology, process and algorithm being used, together with the 

placement of sensors and tools (Vlasenko et al., 2015). Vlasenko et al. (2015) suggests that 

improvement of the location of sensors will result more accurate localization outcome. For 

this, the architectural drawing of the space should be studied and mobility patterns should 

be extracted, to clarify the most optimized placement of the sensors. Azghandi et al. (2015) 

mentions the suitability of vision-based methods used by some scholars (Milan et al., 2013; 

C.-R. Yu et al., 2006) for indoor multiple occupant tracking. This study (Azghandi et al., 2015) 

also states the disadvantages of these methods including: privacy concerns, the possibility of 

blockage by other objects and the higher on-site computational needs. The tracking system 

should be chosen based on the type of space, the numbers of people and the predictability 

of possible routes. For example, a kind of badge can be given to all the visitors of a gallery is 

not feasible in a public square or metro station. 

The predicted occupancy patterns of private building types seem to be more accurate in 

comparison to public buildings. For example, in residential buildings, there are low variations 

in the number of occupants. Martinaitis, Zavadskas, Motuziene, et al. (2015) confirmed the 

reliability of default occupancy for the energy efficiency assessment of households consisting 

of four occupants with high accuracy, concluding that there is a direct relationship between 

the importance of occupancy information in energy simulation and the “complexity” factor of 

the energy performance assessment. Office buildings are not private, but the number of 

occupants is predictable and occupants are not anonymous. However, in multi-functional 

spaces of public buildings such as: galleries, exhibitions, leisure centres and educational 

buildings, there are high variations in the number of occupants, therefore, density predictions 
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are complicated. Statistical data regarding monthly visits of museums and galleries in the UK 

(Delaney, 2017), shows more than 30% difference in the number of visitors in the months of 

January and August in 2016. However, the current energy prediction tools do not fully 

incorporate the aforementioned monthly occupancy variations.  

 

2.4.2. Active energy behaviours 
 

Most of the existing building energy assessment tools have various inputs to incorporate 

occupants’ active behaviours such as use of lighting, appliances and hot water into their 

calculations. These inputs are modifiable; however, most of the energy modellers rely on the 

default software values. They usually do not change most of the software presumptions, as 

they have no access to any more accurate data and in sometimes they are not aware of the 

gap that can be caused by over-simplification of occupants’ behaviours in building energy 

assessment.  In the following sections (See: 2.4.2.1 to 2.4.2.6) the integration of various 

occupants’ active behaviours into building simulation tools is explained.  

 

2.4.2.1. Use of appliances 
 

The impacts of computers, equipment and appliances that consume energy and/ or produce 

internal heat are calculated in predictions of energy consumption in buildings. Although, not 

many energy simulation tools provide clear and detailed inputs for occupants’ use of 

appliances, in DesignBuilder, by selecting the suitable type of building and space the energy 

modeller will enable software presumptions regarding use of appliances. In DesignBuilder, 

use of computer and various equipment can be modified by adjusting the maximum heat gain 

(W/m2) which follows the zone’s schedule and operation profile, meaning in peak hours the 

maximum heat gain is calculated, and in other times of the day less amount of heat gain is 

estimated (Figure 19).  
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Figure 19. Equipment and appliances 

 

2.4.2.2. Use of openings 
 

In the most prominent building energy simulation tools, doors and windows are considered 

to be openable and their opening properties are adjustable and calculated based on the 

openable area, opening time duration and inside-outside air pressure difference. However, in 

less detailed building simulation tools, this feature of building openings is either completely 

neglected, or not adjustable.  

In DesignBuilder, in order to include the effects of air exchange through open doors and 

windows, natural ventilation section should be turned on, otherwise, their effects will not 

appear in the calculations. The overall openable percentage of the glazing area of windows 

and the type and position of the opening can both be specified. In addition, door-opening 

inputs in DesignBuilder include the openable area of the door and the duration of door 

opening time in percentages (Figure 20).  
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Figure 20. Door opening in DesignBuilder 

 

Because of the complicated and vibrant nature of the inside/outside air pressure difference 

and opening time pattern, calculation of the effects of open doors and windows are a lot more 

complicated than other types on occupants’ active energy consumption behaviours (such as 

use of appliances and lighting). Also, software default inputs regarding opening time need to 

be modified which is often overlooked. For instance, by changing the type of building from 

residential to supermarket, the default value remains the same causing inaccuracies in energy 

predictions.  

 

2.4.2.3. Use of lighting 
 

Lighting assumptions play an important role in the energy predictions of a building. Electricity 

consumption and internal heat gain by lighting system of each space are calculated in building 

energy assessment. Energy simulation software have default target illuminance and/or 

lighting density for each building zone based on the type of activity which is usually connected 

to operation profile of the space to consider the working hours. However, in public multi-

functional spaces, the lighting requirements vary based on the type of activities, the physical 

layout and the space design. For example, in museums and galleries various lighting designs 

are used, ranging from full bright to partially bright in order to emphasize on one particular 

artefact.   

In EcoDesigner, for each space, different choices of lighting can be made including 

incandescent, LED light, Fluorescent lighting tube, compact Florescent. For each type of 

lighting, there is a default power W/m2 presumption (Figure 21). 
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Figure 21. Lighting in EcoDesigner 

 

2.4.2.4. Use of solar shadings and blinds 
 

In building simulation tools, solar shading elements can be modelled like other building 

components. In addition, in some energy simulation tools such as DesignBuilder, solar 

shadings and blinds are considered as modifiable properties of windows and can be added 

without being modelled. DesignBuilder has one of the most advanced interfaces regarding 

solar shading and blinds in which the type of window shading and its position can be specified 

(Figure 22).  
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Figure 22. Windows, solar shading and blinds in DesignBuilder 

 

2.4.2.5. Use of HVAC systems and set-points 
 

The type of HVAC system and the internal minimum and maximum temperature set-points 

can be specified in the energy prediction tools. In EcoDesigner, for example, there is a full 

section called “building systems” where all heating, cooling and ventilation properties can be 

adjusted. In Autodesk Revit Architecture, the type of HVAC system can be selected from an 

available list, however, the detailed properties of each system are not accessible or 

modifiable.  

 

2.4.2.6. Use of hot water 
 

The incorporation of hot water consumption into building energy simulation tools greatly vary 

and it is often referred to as an overlooked area in building energy assessment (Harish & 

Kumar, 2016).  In EcoDesigner, use of hot water is considered through “service hot water load 

(l/day per capita)” which has default values based on the space function. In DesignBuilder, 
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too, each zone is associated with a default DWH (domestic hot water) consumption rate (l/m2 

per day) which is adjustable. OpenStudio software, has more advanced setting for use of hot 

water, where for each space water use connections, water use equipment and water heater 

set-point temperature can be specified (Figure 23).  

 
Figure 23. Use of hot water in OpenStudio 

 

2.4.3. Summary: incorporation of occupants’ behaviours into energy prediction 
tools 

 

In general, each energy prediction tool provides an interface where the energy modeller can 

insert the relevant occupancy and human-behaviour-related inputs. The accuracy of the 

energy prediction is significantly related to the precision of the inputs in the first place. The 

investigation of the incorporation of occupants’ behaviours in four different energy prediction 

tools (DesignBuilder, EcoDesigner, OpenStudio and Revit Architecture) suggests that most of 

the energy calculation tools provide the initial inputs regarding occupants’ behaviours. 

However, the main issue is that the initial assumptions and the default values. Among all the 

aforementioned tools, DesignBuilder has the most detailed inputs regarding occupancy and 

occupants’ behaviours. In addition, its user-friendly interface is an advantage for the energy 
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modellers, not only to pay more attention to human-behaviour-related factors, but also, to 

have an idea about how their impacts are calculated.  

 

2.4.4. Existing Gaps in the Literature 
 

The impact of occupants’ behaviour on buildings is a fast growing research topic. Numerous 

studies have investigated the impact of occupants on the energy consumption in buildings 

with the need to reduce the performance gap between the predicted and actual energy 

consumption of buildings. Occupants’ active and passive energy behaviours (including: 

window opening, use of solar shading and blinds, adjusting HVAC set-points, use of hot water, 

etc.) are not fully considered in current energy analysis tools. Thus, there is an inherent 

demand for energy modellers, researchers and designers to improve the calculation of energy 

consumption of buildings by considering energy behaviour of occupants. The main challenge 

is the complexity and dynamic nature of occupant’s energy behaviour, which are influenced 

by various internal and external, individual and contextual factors. Therefore, occupants’ 

motivations and reasons, and the various factors influencing their decisions to interact with 

building systems together, with the impacts of their actions on the total energy consumption 

of buildings, have to be studied in a multi-disciplinary approach to incorporate the factors 

from a sociology, psychology, economics, engineering and design perspectives. A summary of 

the key findings of the literature review suggest following research gaps: 

• Approximately 75% of the reviewed research, which directly studied the impact of 

occupant behaviour on building energy consumption, have focused on residential and 

offices buildings (44% and 31% respectively); fewer number of studies have analysed 

commercial and educational buildings, while, some building types such as exhibitions, 

recreational, institutional and healthcare facilities have been given sparse attention 

and require further analysis.  

• The review of the literature also revealed that the majority of the research 

concentrates on single buildings, and urban scale impact has not been investigated 

adequately, forming a highly recommended area for future research. Likewise, at the 

micro level, the impact of interior design in terms of space layout, fixtures and fittings 

on occupants’ action scenarios, thermal perceptions, and consequently on their 
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energy behaviour has been overlooked and requires further investigation. Particularly, 

there has been very limited studies on large multi-functional spaces where various 

functions are formed by space layout design and furniture.  

• In terms of the parameters influencing occupants’ energy behaviours, personal 

(physiological and psychological) parameters have been taken into account in many 

studies (approximately 30% of the reviewed papers). The most recent behavioural 

methodologies suggest the consideration of not only the individual and personal 

characteristics of occupants, but also the particular features of their social context. 

However, only 10% of the reviewed papers have focused on both social and personal 

(socio-personal) factors. Therefore, the authors believe multi-disciplinary approaches 

are needed to combine socio-personal parameters through psychological cognitive 

behavioural methods (e.g. theory of planned behaviour (Ajzen, 1991), cognitive 

complex theory (Kieras  & Meyer, 1997) and cognition as a network of task (Freed, 

1998), which could provide new insights to the domain.  

• According to the reviewed publications, the different types of occupants’ interactions 

with building systems, such as use of electricity, use of fans (or air conditioning) and 

use of building openings (windows and doors), have been investigated. However, 

some areas, such as the use of hot water has a significant impact on energy 

consumption in some building types (e.g. residential), have received scant attention 

in comparison but are considered to have a likely impact on energy use. Furthermore, 

future investigations about the inter-relationship between different energy 

behaviours of occupants are needed, which will generate more realistic assumptions 

in building energy predictions. 

• A considerable number of studies contain detailed methodologies including case 

studies and experiments, using different types of qualitative and quantitative data 

gathered by pre and post-occupancy surveys, occupant monitoring (using sensors or 

observation), field measurements and questionnaires, followed by data analysis 

(Markov Chain, Monte Carlo and logistic regression) and simulations. The findings of 

these studies have provided a clearer insight towards understanding the impacts of 

occupants’ behaviours on the energy consumption in buildings. However, the findings, 

at present, have yet to offer significant improvements in predicting occupants’ energy 
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behaviour in buildings. Particularly, the translation and integration of the findings of 

these studies into building energy simulation tools to reduce the gap between 

predicted and actual energy consumption in buildings remain a significant research 

challenge in this area.  

2.5. Research Focus 
 

Research gaps have been pointed out through a comprehensive literature review and the 

research scope has been specified to address some of the existing gaps in the research area. 

Therefore, this research is shaped to contribute in three main existing gaps: studying multi-

functional spaces in buildings such as galleries and institutional buildings, incorporation of 

space design in building energy assessment as an influential parameter to specify space 

function and integration of the research findings with energy simulation tools (practical 

contribution) (Figure 24). In the following sections, the research focus will be discussed in 

details.  

 
Figure 24. Existing gaps studied in this research and research focus 

 

2.5.1. Energy prediction in multi-functional spaces of public buildings 
 

According to the quantitative analysis of the current literature, three out of every four studies 

in this research area have focused on residential buildings or offices and there is a gap in the 

knowledge regarding other building types such as galleries, exhibitions and educational 

buildings. There are fundamental differences between the impacts of occupants’ behaviours 

on energy consumption in residential and office buildings and more public buildings. 

Residential buildings are private and there are low variations in the number of occupants. 

Office buildings are not private, but the number of occupants is predictable and their identity 
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is recognisable. In this research public buildings with high variations in density are studied 

which is a gap in the literature. Table 5 shows the main differences between the 

characteristics of the mentioned public buildings and residential buildings or offices. 

 

High density public building  Residential and office buildings 

Wide variations in the number of occupants Low variations in the number of occupants 

Occupants have no responsibility towards 
energy bills 

Occupants are directly or indirectly 
responsible for energy bills 

Autonomous occupants Non-autonomous occupants 

Limited access to building systems Wide variations in occupants’ access to 
building systems 

Number of visitors are more than 
permanent occupants 

Number of permanent occupants are more 
than visitors  

Table 5. Public building characteristics 

 

To predict the energy consumption of a building, depending on the inputs provided by the 

energy simulation tool, the energy modellers add all the available building data and modify 

the presumption of the software. In case of unavailability of some data, the energy modeller 

relies on software default data, which highlights the essential role of software default 

assumptions.  Function of each space is one of the primary inputs of energy assessment tools, 

however, the selection of space function can be sometimes challenging. The word “function” 

has various meanings in different subjects. In design and architecture, it refers to the practical 

use or purpose (OxfordDictionaries, 2018). Similarly, the well-known architect, Louis Sullivan, 

defined the function of a building as its purpose and reason (Sullivan, 1947). Function and 

purpose of the building has been the subject of various architecture theories such as the 

famous theory of Vitruvian, the Roman architect. In his theory, he mentioned utility, firmness 

and beauty (utilitas, firmitas and venustas) as the three key values every architecture should 

encompass. There is not a common agreement on the exact implication of “utilitas”, but it is 

usually interpreted as purpose, commodity and convenience.   

With regard to the energy consumption, not only the function of the building, but also, various 

disciplines and activities that take place in different spaces and zones of the building influence 

the building energy consumption (Khoshbakht, Gou, & Dupre, 2018). In energy assessment 
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tools, building type and space function are the basis for estimation of the working hours, 

comfort temperature, HVAC set points, occupancy density and schedule and hot water and 

electricity consumption (Figure 25). 

 

Figure 25. Parameters related to building type and space function in building energy 

prediction process 

 
Energy modellers usually use the labels on architectural/construction plans to specify the 

function of each building zone. However, it is complicated to determine the space function 

for large multi-functional spaces. In Oxford and Cambridge dictionaries, the word multi-

functional is defined as having or fulfilling several functions and uses (CambridgeDictionary, 

2018; OxfordDictionaries, 2018). With regard to space design, the term multi-functional can 

be described as the incorporation of different functions in time and space (CRCResearch, 

2018). However, some scholars challenged the existing definitions and stated that multi-

functionality is an obscure term and challenging to implement into design and planning 

(Hansen, Olafsson, van der Jagt, Rall, & Pauleit, 2017). Large multi-functional spaces provide 

or have the capacity to offer multiple functions and services (Hansen et al., 2017), therefore, 

energy consumption prediction of such spaces is very complicated.   

In energy prediction of new multi-functional public buildings, the occupancy data is usually 

not available and in energy predictions of existing buildings, the incorporation of the actual 

occupancy data of the spaces into the simulation tool is often overlooked. In some 
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probabilistic occupancy prediction models of office buildings, inputs such as: first arrival, last 

departure, intermediate departure and duration of in-between absence (e.g. lunch breaks) 

are used (Mahdavi & Tahmasebi, 2015) which are not particularly useful in public buildings 

with non-regular occupants. As mentioned above, building energy simulation tools have 

presumptions regarding the occupancy and density (number of people per square meter) of 

each space based on its main function. Most of the leading energy simulation tools use 

ASHRAE 90.1 User’s Manual standard (ASHRAE, 2016), COMNET appendix B (COMNET, 

2016a), and COMNET appendix C (COMNET, 2016b) as their main sources of occupancy 

density and schedule presumptions in energy modelling. However, when it comes to multi-

functional spaces, there isn’t a specific main function or purpose, instead, a number of 

activities take place:  sitting, standing, walking, etc. Therefore, to assign more accurate 

occupancy rate to multi-functional spaces, the space should be divided to different zones 

based on similar activities. Space furniture is a key element to take into consideration while 

defining the type of activity in multi-functional spaces. Thus, there is a need to provide data 

and specifications on the actual space furniture and interior elements, as this interior setup 

and layout in a multi-functional space contributes in defining function, purpose and activity 

zones, consequently, leading to more accurate occupancy rate for these zones. The role of 

space design is further explained in the next section (See: 2.5.2. Space Design and Energy 

Consumption). 

In public buildings such as galleries, exhibitions and institutional buildings, most of the 

occupants are autonomous with various semi-regular and non-regular visits to the building. 

Therefore, occupants of such buildings are also referred to as “visitors”. One of the limitations 

in predicting occupancy schedules in multi-functional spaces of public buildings is the various 

types of activities that take place within the space which consequently attract different 

number of visitors at different times. Several factors affect the number of visitors, which 

makes it difficult to have an accurate occupancy density assumption. In such buildings, 

occupants have limited access to building systems such as: HVAC set-points, windows, 

shading devices, etc. Therefore, their impacts on the energy consumption of the buildings are 

limited to few interactions with building elements (e.g. opening the entrance door) and 

passive energy consumption behaviours (e.g. presence and occupancy sensitive lighting). It 

can therefore be hypothesized that in public buildings with high number of visitors, passive 



 
 

83 
 

energy consumption has noticeable impacts on the energy consumption of the buildings, 

however, there is a need for more quantitative analysis in this regard.  

 

2.5.2. Space Design and Energy Consumption 
 

The impacts of design features of the space on occupant’s behaviour have been studied 

broadly (Augustin, 2009; Caan, 2011). There is a famous quote by Winston Churchill, which 

says: "We shape our buildings; thereafter they shape us.” Space design is defined as decision 

upon the space appearance, arrangement and functioning. Space design has various impacts 

on behaviours of occupants and their interactions with building systems; therefore, it affects 

the energy consumption of buildings. With regard to energy consumption issue, the term 

“sustainable interior design” refers to being committed to sustainability principles in interior 

design of the space as part of building construction (Moxon, 2012). It mainly focuses on use 

of green material and energy efficient systems for interior design of the spaces (E. Lee et al., 

2013); however, occupant’s actual energy behaviour is still an existing gap in the subject. The 

term “design for sustainable behaviour” which is mainly used in product design, refers to the 

role of designer in directing behaviour of users to more sustainable performs (Lilley, 2009; 

Wilson et al., 2013). It is believed that if proper strategies are implied to a design product 

before it is used, designer can influence sustainable use of the product positively (Lilley, 2009). 

Space design impact occupant’s energy behaviours through its psychological and physical 

aspects (Figure 26).  

 
Figure 26. Space design aspects affecting occupants’ energy behaviours 
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The occupant’s perception of the space is influenced by its design characteristics such as: 

colours, materials, light, form and shape (Arnheim, 2004) which are considered as the 

psychological features. Augustin (2009) states that the design of a space impacts the mental 

and psychological state of occupants and shapes their attitudes. Some studies have 

demonstrated the impacts of colours, textures and material sensation on occupants’ 

perception of the indoor temperature and thermal comfort (Ulusoy & Nilgün, 2017; Ulusoy & 

Olguntürk, 2016). Conventional psychology declared that any behaviour has two involved 

phenomena: the person and the environment, as behaviour is believed to be a response to 

the “physical word” (Oseland, 2009). Also, some scholars mentioned the role of “cultural 

meanings” attached to plan design (Nasar, Stamps, & Hanyu, 2005). Besides, it has been 

widely confirmed that there is a strong link between space design features and occupant’s 

satisfaction and efficiency (S. Lee, Alzoubi, & Kim, 2017). People try to elude unpleasant 

conditions and search for pleasant ones (Cabanac, 1971), as well as, looking for comfort. The 

pleasure and comfort within living environments are deeply related to people’s perceptions 

of the space, which affect their behaviours.  

Also, the physical aspects of the space such as: space layout, have impacts on the occupant’s 

energy behaviour by moderating and manipulating their actions and affecting their choices of 

intentional activities (Figure 27). Space layout (or physical arrangement) is the special order 

and embellishment of objects and furniture within the space. However, the current models 

of occupant behaviour lack considerations regarding the impacts of building design features 

and interior layout on occupants’ behaviours (Gilani, O’Brien, Gunay, & Carrizo, 2016). This 

highlights the need to develop models to predict occupancy for non-residential and office 

buildings by incorporating space design features. 
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Figure 27. Space layout and occupant’s behaviour 

 

Among parameters influencing occupants’ behaviours, the impacts of space design, layout, 

fixtures and fittings on occupants’ choices of activities, thermal perceptions, and 

consequently on their energy behaviour has been overlooked (Figure 28). Also, the existing 

studies in this domain have targeted single or multiple buildings, while, this research gives 

attention to multifunctional spaces at the micro level.  

 
Figure 28. Parameters influencing occupants’ energy behaviours and the research focus 

 

The link between space layout design and occupants’ presences and their distributions in 

different spaces was pointed out by Goldstein et al. (2011). Space design specifies what type 

of activity takes place in the space and provides site-specific occupancy information 

(Goldstein et al., 2011). Studies confirm that not only building interior design, but also, its 

external design affects the building occupancy. In public buildings, the building form, external 

appearance and its connotative meanings influence people’s decision whether they want to 

visit and spend time in the building or not (Nasar et al., 2005). Specific design features of a 

space convey messages to occupants and influence their decisions, for example the 
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characteristics of windows (such as: size, transparency, presence of grills, etc.) encourage the 

non-visual or visual properties of the space and moderate the relation of building’s inside and 

outside (Nasar et al., 2005).If the exterior of building fails to communicate its purpose, the 

percentage of visits over intended users will drop (Nasar et al., 2005). If the outside of the 

building is untidy, uninviting or uninspiring, it will give the impression to potential visitors that 

the spaces inside do not have the proper quality and the service is poor. Confirming the direct 

link between different aspects of space design with building energy efficiency, some scholars 

(Shi et al., 2016) have studied design energy optimization from architect’s viewpoint to link 

building energy efficiency with design process. Gilani et al. (2016), too, studied the impacts of 

presumptions related to occupants’ behaviours in building energy prediction tools with the 

aim to promote better design solutions. They stated that the existing experimental occupant 

behaviour models have not been able to improve energy codes to be used in design stages 

(Gilani et al., 2016) which yet needs to be studied and highlighted.  

Occupants’ behaviours and the occupancy patterns in a building are crucial inputs for building 

energy consumption assessment, which are predicted based on the building/ space function. 

Several studies highlighted the impacts of building design features, architecture, interior 

design and space layout on occupancy and occupants’ energy consumption behaviours. In 

addition to occupancy density, other design related parameters such as lighting and 

appliances are incorporated into energy simulation tools as space function-related inputs 

(Figure 29). 

 
Figure 29. Space design inputs in energy simulation 
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In general, space design contains all decision upon the space appearance, arrangement and 

functioning. The interior arrangement of the space specifies circulations and types of activities 

and has various impacts on occupants’ energy behaviours. Besides, there is a discrepancy 

between the actual and predicted space function, which creates inaccuracies in energy 

predictions of buildings. Therefore, this research aims to study the gap between predicted 

and actual energy consumption in multi-functional spaces of public building buildings by 

incorporating the impacts of space design on occupancy, occupants’ behaviours and energy 

consumption (Figure 30).    

 
Figure 30. Incorporation of the impacts of space design on occupancy, occupants’ 

behaviours and energy consumption in multi-functional spaces  

 

2.5.3. Integration with energy simulation tools 
 

In order to understand the impact of different influential parameters on occupants’ energy 

consumption behaviours, a great number of studies in this research domain have focused on 

one single behaviour of occupants such as window opening or electricity consumption. In 

these studies, the researchers investigate occupants’ intentions and their drivers towards one 

specific energy consumption behaviour. However, other studies have shown inconsistencies 
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between the findings of single-behaviour studies and the actual overall energy consumption 

which includes all occupants’ behaviours and their interactions with the building systems. 

Which means, the findings of studies on occupants’ electricity consumption behaviour, for 

instance, do not replicate the impacts of occupants on total energy consumption in the 

building. For this, in this research, the overall and combination of all occupants’ behaviours 

has been studied. In addition, targeting single zones of multi-functional spaces in public 

buildings as cases, where occupants’ types of interactions with building systems are limited, 

has made it possible to study occupants’ overall behaviours in this research.  

Also, most of the existing studies on this subject area have applied qualitative methods, 

consequently, the findings of these studies could not be incorporated into building energy 

simulation tools. Therefore, another significance which shaped the research design and 

method of this study was the challenge to integrate the findings into energy prediction tools. 

There is no doubt that by integrating realistic measured data into building energy simulation 

tools more accurate outputs can be achieved (Coakley, Raftery, & Keane, 2014).  

2.6. Chapter Conclusion 
 
This chapter reviews the existing studies on the influence of occupants’ behaviours on energy 

consumption in buildings. It provides a comprehensive quantitative and qualitative study on 

occupants’ active and passive energy consumption behaviours and parameters influencing 

occupants’ energy behaviours. Then, it discusses the existing methods and tools for building 

energy prediction and the incorporation of occupants’ behaviours into current energy 

assessment tools. After addressing the existing gaps through a broad review of the existing 

studies in the research domain, the research focus to address three existing gaps in the 

literature are explained: the impacts of occupants’ behaviours on building energy 

consumption in multi-functional spaces with focus on galleries, exhibitions and institutional 

buildings, the role of space design on occupants’ behaviour and energy consumption and the 

integration of the findings into a building energy simulation tool  with the aim to point out 

the causes of uncertainty and measure them. In the next chapter, the research methodology 

of this study is explained.  
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Chapter 3: Research Method 
 

In this chapter a qualitative and quantitative review of the methods and techniques used in 

current studies on “occupants’ behaviours and energy consumption” is presented. Following 

the analysis of research methods in existing studies, different layers of the research 

methodology of this study are discussed. For this, “research onion” model by Saunders and 

Lewis (2012) is used which includes: research philosophy, research approach, methodological 

choice, research strategy and case study design, time horizon and data collection. At the end 

of this chapter, the research design of this study is explained and illustrated. The research 

design includes 4 main stages: formation of research problem, establishment of research 

method (including case study design and data collection), data analysis and formation of initial 

findings and development of the conceptual framework (including initial framework, 

validation and refinement). 

 

3.1. Research Method in Existing Studies 
 

The existing studies on the impacts of occupants on energy consumption in buildings research 

domain, have adopted agent based or/and stochastic approaches to improve the 

deterministic energy models used in the existing energy simulation tools (K.-U. Ahn & C. S. 

Park, 2016). Stochastic methods consider parameters and probabilities derived from the 

collected data of a certain case and have been implemented by various scholars (Jang & Kang, 

2016a; Jessen Page et al., 2007). Agent based approaches focus on occupants’ intentions and 

perceptions (K.-U. Ahn & C. S. Park, 2016). There has been also a third approach using a 

combination of both agent based and stochastic methods, such as: Multiple Modules (MuMo) 

model proposed by Liao and Barooah (2010) to simulate multiple occupants’ movements 

between multiple zones. In another classification, Jing Zhao, Xin, and Tong (2012) mentioned 

model simulation methods and statistical analysis as the two prominent methods used to 

determine the energy performance in buildings. Statistical methods are used to analyse big 

data and generate general information regarding energy consumption. The reliability of such 

studies directly depends on how big the data is. Recently, machine learning techniques are 

becoming more and more prominent to integrate the results of previous studies using 

statistical analysis (Alaaeddine & Wu, 2017). Model simulation methods are usually applied 
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to incorporate realistic collected data into mathematical calculation of building energy 

consumption to quantify the impacts.  

The existing studies on this research area have applied various research methodological 

choices including: quantitative, qualitative and both. A review study (Zou, Xu, Sanjayan, & 

Wang, 2018a) on research methods used in the past decade showed that more than 80% of 

the current studies on occupants’ energy consumption behaviours are quantitative, and 

scholars tend to take positivist philosophical position. some scholars in the research domain 

believe that due to the complex nature of occupants’ energy consumption behaviours, mixed 

methods which combine different aspects of human behaviour including social and natural 

sciences lead to more reliable results (Zou et al., 2018a). However, as energy simulation is a 

purely numerical process, applying quantitative methodological choice seems to be a logical 

decision especially if the research aim to improve the accuracy of building energy prediction 

tools. To quantify the performance gap in building energy analysis, two general approaches 

are applied on mathematical models which are classified as forward and inverse uncertainty 

analysis (Tian et al., 2018). Forward uncertainty investigates the gap in the final outcome of 

the system caused by unreliable inputs, while, inverse uncertainty deals with unidentified 

input discrepancies once the actual building energy consumption data is collected (Tian et al., 

2018).  

According to the comprehensive literature review of more than 120 studies in this research 

area which was performed to design this research, 71% of the reviewed studies, used case 

study as their research strategy with different data collection techniques: survey, monitoring 

and observation, field measurements, interviews and questionnaire. In addition to case 

studies, experiments, reviews, various models and simulations were used in 13%, 10% and 

6% of other relevant reviewed studies, respectively (Figure 31). According to the reviewed 

publications, the most common research strategies and data collection techniques used in 

studies on the impact of occupants’ behaviours on energy consumption in buildings are case 

studies with surveys and/or monitoring.  
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Figure 31. Research strategies used among 120 reviewed papers in “occupant behaviour and 

energy consumption” research domain 

 

Investigating the existing research approaches used in this research domain and 

considerations regarding the specific research design of this study have shaped its research 

method. Therefore, in order to achieve the aim of the study which is the integration of the 

findings with building energy simulation tools, model simulation method using case studies 

and monitoring are adopted which is explained further in research method section.  

 

3.2. Layers of Research Methodology 
 

Research is a series of strategic and planned investigations with the aim to expand the existing 

knowledge and to establish new facts (Ahmed, Opoku, & Aziz, 2016). Research methodology 

is guideline of the research, which presents the rational process and procedure to reach the 

research aim and objectives. Therefore, it contains several layers which should be considered 

one after another. Saunders and Lewis (2012) used an illustrated model called “the research 

onion” to present several layers of the research methodology including: research philosophy, 
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approach, methodological choice, strategy, time horizon and techniques and procedures. The 

research onion model keeps evolving to incorporate new methods. Not all its classifications 

are accepted by all scholars, however, its sequence and structure is believed to provide a 

comprehensive way of explaining a research method. Therefore, research onion model is 

used to explain methodological layers of this research which are discussed in this chapter 

(Figure 32).  

 
Figure 32. The research onion adopted from (Saunders & Lewis, 2012; Saunders, Lewis, & 

Thornhill, 2012) 

 

Following the aim and objectives of this study, the methodology of this research includes 

reviewing the existing literature, defining the gap in the subject area, formulating research 

design, case study design, data collection, data analysis, final findings and development, 

validation and refinement of the framework.  

 

3.2.1. Research Philosophy 
 

Research philosophy is the conceptual foundation of the researcher’s viewpoint about the 

nature of the knowledge and its relation to the outside world (Duignan, 2016). Research 

philosophy is a general term linked with the creation and expansion of knowledge and defines 

the nature of acceptable knowledge in the research (Saunders et al., 2012). Burrel and 

Morgan (1979) pointed out that different types of assumptions such as: epistemological 

Philosophy: Positivism

Approach: Abductive and 
Inductive

Methodological choice: 
Quantitative

Strategy: Case study

Time horizon: 
Longitudinal

Data 
collection 

Data 
analysis
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assumptions (related to human knowledge), ontological assumptions (related to realities) and 

axiological assumptions (related to values), appear in every research which influence how the 

research problem in understood by the researcher (Saunders, Lewis, & Thornhill, 2016a).  

Ontology explains the nature of reality, answering to the question about “what exists”, 

epistemology refers to assumptions about knowledge and the acceptable sources of 

knowledge and axiology is related to values and morals considered in the research (Saunders 

et al., 2016a). The ontology, epistemology and axiology of this research are realism, positivism 

and value-free (Table 6).  

 

Objectivism Assumption type Subjectivism 
                    Ontology                        

Real 
External 

What is the nature of reality?        
What is the world like?    

Nominal 
Socially constructed 

                 Epistemology                   
Natural sciences 

Facts 
Numbers 

Source of knowledge? 
Acceptable knowledge? 

Good-quality data? 

Arts and humanities 
Opinions 

Narratives 
                     Axiology                      

Value-free 
Detachment 

Reflection of personal values when doing 
research? 

The values of research participants? 

Value-bound 
Integral and reflective 

Table 6. Ontology, epistemology and axiology, adopted from (Saunders et al., 2016a) 

Saunders et al. (2016a) mentioned 5 main types of research philosophies: positivism, realism, 

interpretivism, postmodernism and pragmatism. Positivism philosophy is when the 

researcher conducts observable data to develop a law-like general statement. In positivism 

philosophy, the accuracy and reliability of the knowledge is guaranteed through use of 

unbiased facts and existing theories (Saunders et al., 2016a). Besides, the position of the 

researcher is external and outside the collected data.  

Therefore, this research has positivism philosophy because of its dependence on general laws, 

observable and measurable reality of the research problem, its value-free nature and the 

objective position of the researcher (Table 7).  

Positivism 
Ontology Epistemology Axiology Typical methods 

One true reality Observable and 
measurable facts 

Value-free research 
Objective position 

Usually deductive, 
planned, quantitative 

Table 7. Adopted from (Saunders et al., 2016a) 
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3.2.2. Research Approach 
 

Research approach represents reasoning and logical process of the research. The two widely 

recognised forms of research approaches are deductive and inductive. There is, however, a 

third research approach remarked by some scholars, which is usually referred to as abductive 

or probabilistic (Ormerod, 2010). Depending on the nature of a study, it may have one single 

research approach or a combination of multiple approaches at different stages.  

Dudovskiy (2018) explained the three mentioned research approaches with a simple graph 

(Figure 33). Deductive reasoning which is mostly used in quantitative studies is the use of a 

general rule or theory to reach to a specific conclusion (Kovács & Spens, 2005) and is 

considered as a strong and reliable research reasoning. Inductive and deductive reasoning, 

on the other hand, drive logical conclusions and theories from observation.   

 
Figure 33. Deductive, inductive and Abductive research approaches adopted from Dudovskiy 

(2018) 

Human behaviour is a complex phenomenon and the more reliable studies in this topic, use 

probabilistic data. Fabi et al. (2013) underline that the gap between simulated and actual 

energy consumption of buildings is the result of deterministic methods. Most of the existing 

studies in this research use inductive and abductive reasoning to reach general findings, 

despite their quantitative nature. That is because, the data collection usually shows 

unpredicted patterns which are the main findings of the studies. The core of this study, 
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however, is using observation of cases and other available sources of real-time and 

governmental data to find out the existing gaps and missing information in a stablished 

procedure (building energy simulation). In this research, not all findings are not meant to be 

generalised, however, both prediction and general conclusion are among its various 

outcomes, which are known as abductive and inductive reasoning, respectively. 

 

3.2.3. Methodological Choice 

Methodological choice is another layer of Saunders et al. (2012)’s research onion model that 

shows the selection between qualitative, quantitative and mono, mixed and multi methods. 

The methodological choice depends on the nature of research question, range of control over 

the phenomena, and its relevance to  current happenings (Yin, 2014). It also reveals the data 

collection methods of the research. However, the most significant difference between 

quantitative and qualitative methodological choices is the analysis of the data (Gelo, 

Braakmann, & Benetka, 2008). In general, quantitative methods deal with measurements, 

numbers and statistical analysis, while, qualitative methods study thoughts, opinions and 

meanings.  

This research applies quantitative method in which the collected quantitative data will create 

parameters that will later be interpreted into energy simulation tool with the aim to improve 

the accuracy of energy predictions in multi-functional spaces (Figure 34). While this study 

incorporates occupants’ behaviours into building energy simulation process, it focuses on 

frequency and duration of behaviours and their numerical impacts on the total energy 

consumption of the building, not the thoughts and opinions. The energy simulation tool, too, 

follows a quantitative and mathematical process.  

 

Figure 34. Research methodological choice 

 

In this research, the actual human-behaviour-related factors are compared with the default 

software inputs which are often referred to as the predicted data. The studied parameters 
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include: building and zones working hours, HVAC set-points, space function, occupancy 

density and patterns and occupants’ energy consumption behaviours and the impacts on the 

energy consumption on the cases (Table 8).  Working hours are essential inputs for prediction 

of energy consumption in buildings. The longer the duration is, the more the energy 

consumption is expected to be. Occupancy schedule shows the number of people occupying 

each zone in the multi-functional spaces which is a necessary data in building energy 

assessment. All the mentioned parameters are quantitative and numerical.  

No. Predicted information: Simulation Realistic information: Observation 

1 Working hours Working hours of the building and various 
zones within the multi-functional space. 

2 HVAC set-points Who sets the HVAC set-points? What are 
the temperature set-points for each zone? 

4 Space function Detailed zoning of all spaces using space 
layout design and furniture. 

5 Density, schedule (default) 
Number of people in each zone and 
schedule patterns: daily and hourly 

occupancy density and pattern. 

6 Occupant behaviours 
What are occupant energy consumption 

behaviours? What are the impacts on 
building energy consumption? 

Table 8. Observed parameters 

3.2.4 Research Strategy 
 

Research strategies are the recognised and clear procedures of action to achieve the aim and 

objectives (Yin, 2014). Saunders et al. (2012) introduced eight common research strategies: 

experiment, survey, archival research (history), case study, ethnography, action research, 

grounded theory, and narrative inquiry. One of the most important steps before choosing the 

research strategy is to carefully define the research questions (Yin, 2014).  

This research aims to answer the following main questions: 

1- What and how much are the impacts of human-behaviour-related factors on energy 

consumption in multi-functional spaces?  

2- How can occupants’ energy behaviours be integrated into energy simulation tools to 

reduce the gap between predicted and actual energy consumption in multi-functional 

spaces? 
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Among all the aforementioned research strategies, three of them answer “how” questions: 

history, experiment and case study (Yin, 2014). “What” questions are considered as “how” 

questions when they are defined as “how much”. To differentiate between these methods, 

two questions are asked which then suggest us what the most common research strategy is 

(Table 9). The two question are: does the study deal with contemporary events? If no, it is a 

history or archival research, if yes, does it require control over existing parameters and 

conditions? If yes, it is an experiment, otherwise, case study can be the research strategy.  

Research question: how? , why? 
Method Requires control Contemporary events? 
History No No 
Experiment Yes Yes 
Case Study No Yes 

Table 9. Different methods for how and why questions, adopted from (Yin, 2014) 

Current events are the target of case studies when there is no control on the behaviours (Yin, 

2014). In experiments, the researcher manipulates the existing situation and usually the 

number of variables are limited to one or two, that’s why most of the experiments take place 

in laboratories. Yin (2014) explained that a case study lets the researcher to investigate a 

“case” in order to obtain a real and comprehensive prospect, as an example, “studying small 

group behaviour”. In case study, two types of data collection techniques are often used: 

observation and interview. In this research multiple buildings are used as cases and 

observation is the main data collection technique. 

 

3.2.4.1. Case Study Design 
 

Case study design of this research is constructed in two stages to investigate the impacts of 

occupants’ energy consumption behaviours on energy consumption in multi-functional 

spaces. Stage 1 is applied on buildings at the design and construction stages. It includes 3 

steps: preparation of information (for example: architectural/construction plan, building 

materials and systems), energy modelling and simulation of the cases using energy simulation 

software (DesignBuilder) default value, and analysis of gaps and insufficiency of information 

to address human-behaviour-related factors in prediction of energy consumption in multi-

functional spaces using the energy simulation tool. Stage 2 is an extended version of the stage 

1 to incorporate primary collected data. It consists of 5 steps including: preparation of 
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information, energy modelling and simulation of the cases using software default value, data 

collection, energy modelling and simulation of the cases using the collected data and analysis 

and comparison of the collected data and simulation results (using software default 

presumptions and data collection inputs) (Figure 35). 

 
Figure 35. Case study stages 

 

The first case study was a gallery building at design stage (Wuhan gallery) which was used to 

support and create the structure of this research and point out the types of missing 

information at the design stage. The 2nd case which was an institutional building at the 

construction stage, highlighted the occupancy and occupant behaviour related gaps and 

insufficiency of the information (see: Case study Stage 1 Chapter). The first and second cases 

(stage 1) suggested the required data to be collected and used in stage 2. The final output of 
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the stage 2 includes the quantified potential gap in energy consumption prediction of the 

cases caused by overlooking the impacts of occupants’ behaviours.  

 

3.2.5. Time Horizon 
 

Time horizon of data collection in research is often categorised into two: cross sectional and 

longitudinal. In Cross sectional studies, data are collected at a particular period, whereas, in 

longitudinal research, the data in gathered at various snap shots in a period of time (Sekaran 

& Bougie, 2010). This study intends to collect data at more than a single point in time, 

therefore, it is considered as longitudinal. As mentioned before, occupancy in public zones 

has a dynamic nature. Based on the objectives of this research, various occupancy patterns 

and distribution of occupants in the space will be inspected. Longitudinal time horizon 

provides a proper platform to study transitions, transformations and developments over 

influential parameters being considered (Saunders, Lewis, & Thornhill, 2016b).  

For the first two case studies of this research, collecting primary occupancy and human-

behaviour-related data was not possible, as the buildings were at the design and construction 

stages. Therefore, data collection for the cases at the operation stage was planned and 

modified after a short pilot study. As occupancy is one of the major parameters investigated 

in this research, a general consideration of monthly, daily and hourly occupancy patterns in 

the buildings were required to outline the data collection duration and method.  

The first post-occupancy case study of this research (student central building, University of 

Huddersfield) is a multi-functional space within an institutional building which follows two 

main occupancy patterns: crowded or high-season (during academic-semester) and quiet or 

low-season (during school holidays). Therefore, the data was collected during two weeks: one 

week in July (low-season) when students are not usually present and one week in November 

(high-season). For this case, a pilot study was performed in late May to refine data collection 

details. Data was collected once every hour between 10:00 AM to 8:00 PM for 3 weekdays 

which revealed the critical hours (such as peak hour). Further specific data were then 

collected for 2 more weekdays creating more than 40 hours of data for each zone (See: 5.1.3. 

Data Collection).  

The second post-occupancy case study of this research is a multi-functional space inside 

Manchester art gallery. The occupancy patterns in galleries are influenced by several factors 
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and range from “high-season” to “low-season” with monthly variations. As an example, bank 

holidays, school holidays and weekends are considered as high-season, when galleries have 

the most visitors. According to UK governmental data (Delaney, 2017), August, July and 

October have the most monthly visits of museums and galleries in UK respectively, and the 

least visits happen in January.  

A pilot study was performed on Manchester art gallery in September and the data collection 

technique was adjusted to be suitable for various zones within the multi-functional space. The 

final data was collected in October for duration of one week including weekdays and 

weekends. The availability of detailed google real-time data facilitated data collection for this 

case (See: 5.2.3. Data Collection). 

There are some exceptional days or hours when the spaces are more crowded like the 

registration, graduation and open days and during special events for institutional buildings 

and group visits and events for gallery and exhibition buildings. Those exceptions were noted 

and excluded from the final analysis for both cases. 

As part of the data collection, door opening time percentage was also measured at the end 

of each hourly data collection. The term “door opening time” refers to the duration of time 

that the door is open over the whole period of time, which is studied in percentages in energy 

simulation process. In order to obtain the realistic door opening time percentage of the main 

entrance doors in both cases, they were under observation for the duration of 5 minutes 

every hour. For instance, if the entrance door was open for 4 minutes out of the 5-minute 

period of the observation, the door opening time percentage would be 80%. As during 

weekdays, the occupancy density and pattern is approximately similar, it is hypothesized that 

the door opening time percentage follows the same pattern from Monday to Friday.  

 

3.2.6. Data Collection 
 

In terms of research techniques and procedures, Yin (2014) explained six sources of data 

collection for case study strategy including: document review, archival records, interviews, 

direct observations, participant observations, and physical artefacts. It is widely accepted that 

observing behaviour is a reliable and direct method of collecting data from this dynamic 

phenomena (Zeisel, 2006). Also, Saunders et al. (2016b) stated that observation is clearly one 

of the best ways to study any research related to occupant behaviour. Therefore, this study 
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proposes to collect primary data through observation and real monitoring of occupants, 

which has been used as a method of data collection in similar previous studies (Andrews et 

al., 2013; S. Chen et al., 2015; D’Oca et al., 2014; Hong et al., 2015; Schakib-Ekbatan et al., 

2015). Using observation to capture occupancy of spaces, instead of sensors, provides a 

deeper understanding of unexpected factors and improves the accuracy of the collected data. 

Besides, it is believed that using monitored data of occupancy profile in a building is mainly 

useful to estimate the “near-future” performance of the building and there is a need for a 

comprehensive theory to create a model of occupancy to be used for further occupancy 

predictions in other buildings at other times (Mahdavi & Tahmasebi, 2015). There are several 

classifications of observation types based on the nature of the observant, the position of 

observer in relation to the observant. In this research the researcher’s identity is hidden and 

researcher does not play any role except for observation (Figure 36).   

 
Figure 36. Different types of observation with regard to researcher’s position, adopted from 

(Saunders et al., 2016b) 

 

Saunders et al. (2016b) categorized forms of observation in two parts: participant observation 

and structured observation (Table 10). In structured observation, the observed phenomena 

and the procedure of the observation are clearly defined by the researcher in advance, while, 

in participant or unstructured observation, every aspect related to the phenomena is 

observed. This research is quantitative and concerned with the occurrence and frequency of 

certain behaviours rather than the meanings and drivers behind them, therefore, structured 

observation is used in this study.  
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Participant Observation Structured Observation 

Qualitative Quantitative 

Concerned with meanings and drivers of 

actions 
Concerned with frequency of actions 

Roots in Sociology or Anthropology Roots in Computer technology 

Table 10. Forms of observation (Saunders et al., 2016b) 

 

The initial method of observation included following the same route to count the number of 

occupants in each zone once every hour. The proposed method of instant observation is 

suitable for zones where occupants stay longer at one point such as: sitting, eating and 

reception areas. However, when it comes to zones such as corridors and exhibition areas, 

where occupants frequently move from one zone to another, the instant number of people 

does not lead us to an accurate set of data due to sudden density changes. For such spaces, 

either a very large number of data is needed, or the duration of observation should be 

extended to more than an instant moment. Therefore, the observation method was altered, 

and each space was observed for the duration of 5 minutes every hour, counting the 

occupancy once every minute for 5 times and the average of 5 numbers were considered as 

the actual occupancy. 

In addition to observation, archival records such as: building plans and any available data 

regarding building systems and the energy performance of building are used at the modelling 

stage. In addition, available real-time data (such as google popular times) and governmental 

data were used in this study.  

3.3. Research Design 
 

In order to address the research objectives (see: 1.2.2. research objectives), the research 

method of this study consists of 4 main steps: formulation of research problem, research 

method design and data collection, data analysis and preliminary findings, and development, 

validation and refinement of the final framework. Figure 37 illustrates the research 

methodological design stages of this research project. 
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• The first step is the formulation of research problem which includes a comprehensive 

literature review to define the existing gaps in the knowledge (objective 1), following 

by, the establishment of research focus and research method (objective 2).  

• The second step is the detailed research method which includes selection of case 

studies, data collection and the application of model simulation method on cases to 

compare software presumptions with the realistic collected data (objective 3). The 

case study design includes the investigation of multiple cases using model simulation 

method in two stages: stage 1 for cases at the design and construction stages, and 

stage 2 which is applied on cases at the operation and post-occupancy stages. Figure 

37 demonstrates research method and case study design of this research, in addition 

to, the relationship between the two stages of the case study. Stages 1 and 2 of the 

case study design are explained in chapters 4 and 5, respectively. 

 

Figure 37. Graphical representation of research method and case study design 

• The next step contains data analysis and formation of the initial findings (objective 4). 

Data analysis includes quantitative analysis of the collected data (such as hourly 

occupancy and door opening time data) and comparison of energy simulation results 

using software standard (default) presumptions regarding occupants’ behaviours and 
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the realistic occupant-behaviour-related inputs generated by analysis of the collected 

data.  

• The final step includes development, validation and refinement of the conceptual 

framework and formulation of the final framework (objective 5). Following data 

analysis, the initial framework is formed and validated by experts’ comments. The final 

framework is then formulated that is presented in chapter 6. 
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Figure 38. Graphical representation of research methodological design  
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3.4. Chapter Conclusion 
 

Research method chapter provides a comprehensive description of the research method 

applied in this study. It includes a review of the methods used in similar studies and 

explanation of different layers of research method based on Saunders and Lewis (2012) 

“research onion model”. This quantitative study has a positivism philosophy with mixed 

reasoning approaches (both abductive and inductive). Furthermore, in this research multiple 

case studies are investigated and observation is the main data collection technique. The case 

study design is constructed in two stages: stage 1 for cases at the design and construction 

stages of the building’s lifecycle and stage 2 is applied on cases at the operation stage. A 

detailed description of the case study design, data collection method and time horizon is 

provided in this chapter. In the following chapters, case study stage 1 and 2 are discussed 

comprehensively.  
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Chapter 4: Case Study Stage 1 
 

As explained in research method chapter, case study design of this study follows two stages: 

stage 1 is applied on the cases at the design and construction stages and stage 2 is applied on 

cases at the post-occupancy and operation stages (see: 3.2.4.1. Case Study Design). In this 

study, a model simulation method is applied on multiple cases of multi-functional spaces to 

integrate the realistic primary data into a prominent energy simulation tool (DesignBuilder). 

In this chapter, first, selection of cases, characteristics of the model simulation method, 

selection of the energy simulation tool (DesignBuilder) and the process of energy modelling 

and simulation using DesignBuilder is explained which is also applied on stage 2 case studies. 

Then, this chapter provides a full description of stage 1 case studies. It includes the following 

sections for both stage 1 cases: case study description, energy modelling and simulation, and 

analysis and findings. In the first case study (Wuhan exhibition) which was at the design stage, 

default software data and secondary data were used for energy analysis. The second case 

study of this research was a multi-functional space in an institutional building at the 

construction stage (Oastler building, University of Huddersfield). The analysis of both cases 

pointed out the unavailability and insufficiency of information in building energy simulation 

during design and construction stages.   

4.1. Selection of cases 
 

The type of cases considered for this research are large multi-functional indoor spaces, 

specifically, entrance, lobby and gathering spaces of buildings with vibrant and dynamic flow 

of visitors and occupants such as institutional buildings and galleries. In such spaces, there 

are different circulation patterns and high variations in the number of occupants: hourly, 

daily, monthly, etc. Another necessity in selection of the cases was the availability of 

construction and design plans, in addition to, other required inputs for the energy simulation 

such as weather data. Besides, the accessibility of the cases at the post-occupancy stage 

essential for hourly observation and data collection. The final selection of the cases, after 

considering the aforementioned factors, was based on convenience sampling technique. The 

study is focused on multi-functional spaces, however, in selectin of the cases the building type 

was also taken into account: two of the cases are located in galleries and exhibition buildings 
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and the other two are as part of institutional buildings. Figure 39 summarises and illustrates 

the selection criteria of the cases in this study. 

 
Figure 39. Case study selection criteria  

4.2. Model simulation method 
 

Among various methods and techniques used to investigate the impacts of occupants’ 

behaviours on building energy consumption, model simulation method and statistical analysis 

as the two methods widely applied in various studies: model simulation methods, which are 

the expanded version of model-based methods, use the integration of actual observed data 

and the mathematical calculation of building energy consumption and statistical analysis 

methods use great number of data and generate findings regarding energy consumption by 

analysing them (Jing Zhao et al., 2012). The application of each method depends on the nature 

of studied parameters, the availability of data and the purpose of the study. Most of the 

studies on this subject area applied statistical analysis on big data to reach more reliable 

general conclusions. Model simulation method, too, has been used in different studies to 

integrate actual energy consumption parameters into building energy consumption 

calculations and energy simulation tools (Carriere, Schoenau, & Besant, 1999; Federspiel, 

Zhang, & Arens, 2002; W.-S. Lee, 2008). The aim of using model simulation methods, however, 

is not to reach to a general conclusion. It is mainly applied to reach accurate calculations on 

single or multiple parameters and to quantify and classify the impacts. In a research by 

Carriere et al. (1999) a model simulation method using DOE-2 energy simulation tool was 

applied to study energy saving alternatives of large-scale buildings. Also, Federspiel et al. 
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(2002) implemented a model-based benchmarking to study the minimum energy 

requirements in laboratory buildings.  

Energy modellers, architects and designers use various energy simulation tools which enable 

them to run intricate building energy consumption calculations. The availability of such 

programs has been extremely advantageous for industrial and research purposes. Therefore, 

implementation of such tools in research which allows the integration of theoretical 

knowledge into the existing energy simulation tools will benefit both researchers and 

software developers. One of the gaps in the subject area is that the translation of the findings 

and outcomes of many studies have not yet been incorporated into energy simulations tools 

to improve their accuracy which is still a challenge in the research domain (see: 2.4.4. Existing 

gaps in the Literature).  

Building energy analysis is a mathematical calculation and the process of building energy 

assessment is almost similar using different simulation engines such as: EnergyPlus, TRNSYS, 

ESP-r and DOE-2. The 3D model of the building is the basis of the simulation and various inputs 

such as: building location and orientation, space functions, building materials, HVAC system 

and set-points, working hours and occupancy schedule, in addition to, the simulation period 

are set before running the energy simulation. However, some energy simulation tools provide 

more detailed inputs and the rest keep the simulation process simpler with less detailed 

inputs. The simulation engines with more detailed inputs are more accurate in theory, 

however, their non-user-friendly interfaces makes it difficult for the energy modellers to 

apply the right assumptions and parameters. Selection of simulation tool, collecting data and 

integration of the data with the simulation tool are the key components of every model 

simulation method.  

 

4.3. Energy simulation tool: DesignBuilder 
 

In this research, EnergyPlus engine and DesignBuilder interface are used as the energy 

simulation and modelling tools. DesignBuilder energy simulation graphical interface uses 

EnergyPlus engine and provides detailed inputs for building energy assessment while offering 

a user-friendly interface.  Particularly, its inputs regarding occupants’ energy behaviours are 

thorough and easily adjustable and understood by energy modellers (Rahman, Rasul, & Khan, 

2010). For occupancy related inputs, DesignBuilder uses ASHRAE standards (American Society 
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of Heating et al., 2009) which is commonly believed to be the most accurate source. 

DesignBuilder was used in various studies on occupants’ behaviours and occupancy profiles 

(Becchio, Bello, Corgnati, & Ingaramo, 2016; Carpino, Mora, Arcuri, & De Simone, 2017; 

Martinaitis, Zavadskas, Motuzienė, & Vilutienė, 2015). A study on energy management in an 

office building (Fathalian & Kargarsharifabad, 2018) resolutely confirmed the high accuracy 

of energy analysis by DesignBuilder by comparing the monthly gas and electricity bills. The 

study reported less than 1.6% gap between the actual and predicted energy demand. The gap 

is too little and may be a fortunate coincident to an extent, however, it indicates the reliability 

of Designbuilder as an accurate energy simulation tool. 

Many simulation-based studies have taken advantage of DesignBuilder for modelling and 

simulation of building energy assessment (Cárdenas et al., 2016; Fathalian & 

Kargarsharifabad, 2018; Rahman et al., 2010; Streckienė & Polonis, 2014). DesignBuilder has 

also been used in various studies for specific calculations. For example, (Boafo, Ahn, Kim, & 

Kim, 2015) applied DesignBuilder tool to calculate thermal bridge for energy retrofit. Also, in 

another study, DesignBuilder was used to estimate natural ventilation through a chimney 

using CFD (Computational fluid dynamics) (de la Torre & Yousif, 2014). Slavković (2017) ran 

detailed simulations on a double skin façade using DesignBuilder.  

Another benefit of using DesignBuilder in studies which are concentrated on some parts of 

the building (such as one floor or a single zone) is that the software offers a clear arrangement 

of spaces divided by building block, floors, zones and surfaces (Rahman et al., 2010). In this 

research which is focused on multi-functional spaces and multiple zones, DesignBuilder lets 

the inclusive calculations for the studied spaces. In conclusion, DesignBuilder energy 

assessment tool was selected for modelling and simulation phase of this research because of 

its accuracy, detailed occupancy and occupant-behaviour-related inputs, user-friendly 

interface and the availability of the software.  

 

4.3.1. Energy modelling and simulation process 
 

In order to run energy simulation for a building or a part of it, a series of actions should be 

made by the energy modeller. The same process applies for most of the energy simulation 

tools with very minor differences in the type of inputs and the level of details (See: 2.3. 

Building energy Prediction: Methods and Tools).  
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For energy modelling and simulation of the case studies of this research using DesignBuilder 

software the following steps were taken (Figure 37):  

1- Selection of building location, weather data using the closest weather station to the 

building location and building type.  

2- Creating 3d model of the building using architectural/construction plans and sections 

or exporting the available 3d model of the building from another software (for 

example Revit Architecture). 

3- Assigning any available information regarding building material, thermo-physical 

properties of building elements, HVAC system and special equipment used in different 

spaces or using software presumptions.   

4- Zoning and determining functions for all the spaces using activity section in 

DesignBuilder. Working hours, occupancy and human-behaviour-related 

presumptions of the software are attached to and associated with building type and 

the function of each space/zone.   

5- Selecting the energy simulation period, running the energy simulation and analysing 

the simulation reports and outcomes.  

For the purpose of this study, zoning and determining functions, together with, occupancy 

and occupant-behaviour-related parameters were the main focused areas during the 

simulation process and data collection (Figure 40).  
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Figure 40. Energy modelling and simulation using DesignBuilder 

4.4. Design Stage Case Study: Wuhan Gallery 
 

4.4.1. Case Study Description 
 

Wuhan art gallery and exhibition is a 4-floor building which is currently under construction 

and is located in Wuhan, China. This building was studied in this research at its final design 

stage. The project is large scale and has a relatively complex geometry. The building interior, 

contains a massive void in its centre where the vertical circulations including lifts and 

escalators are located. There is a glass dome at the top of the void which brings great amount 

of day-light into the space. The building has different types of spaces including: display and 

public areas, small scale workshops, office areas and circulation areas (corridors and 

staircases). The ground floor includes the main entrance, the atrium space, some 

administrative, office, service and circulation areas (Figure 41). The atrium encloses the main 

vertical connections of the building and is responsible to circulate building users to their main 

destinations at different floors. The first floor contains multi-functional spaces which can be 

used for small workshops, exhibitions or seminar rooms (Figure 42). The second floor includes 

the main exhibition areas and galleries: four galleries that are connected and can be used 

separately when necessary (Figure 43). The third floor contains offices only. 

 
Figure 41. Ground floor zoning 
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Figure 42. First floor zoning 

 
Figure 43. Second floor zoning 

 

4.4.2. Energy Modelling and Simulation 
 

Wuhan exhibition is a huge multi-functional building containing various office, education 

centres, seminar and lecture theatres, galleries and exhibitions with the total area of 

60391.08 m2. The building is more than 50 m high. Energy modelling of the building was 

challenging due to its complicated geometry. Therefore, the building volume was first 
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simplified and re-modelled using DesignBuilder modelling tool. The glass dome of the building 

was reformed to an equivalent glass cube in Design Builder software (Figures 44 and 45).  

 
Figure 44. DesinBuilder simplifications 

 

 

 

Figure 45. Revit Architecture (top) and DesignBuilder (bottom) Energy models of the 

building 
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Some of the default values used for the initial energy modelling and simulation including 

default heating and cooling set-points, occupancy density, equipment gain and lighting are 

displayed in table 14. Default energy simulation software value regarding building’s HVAC 

system considers natural gas as the source of energy for heating and electricity for cooling. 

Also, both mechanical and natural ventilations were “on” for the energy simulation.  

 

Spaces 
Environmental control Occupancy Equipment 

and lighting Heating set-point Cooling set point Density 
 

Circulation 
spaces 

Heating 20 °C 
Heating set-back 12 °C 

Cooling 23 °C 
Cooling set-back 28 °C 

0.1173 
(people/m2) 

Equipment 
gain: 1.85 
W/m2 

Display and 
public areas 

Heating 20 °C 
Heating set-back 12 °C 

Cooling 24 °C 
cooling set-back 28 °C 

0.1497 
(people/m2) 
Activity: 
Lighter 
manual 
work 

Normalised 
power 
density: 

5 (W/m2-
100 lux) 

Reception 
Heating 20 °C 
Heating set-back 12 °C 

Cooling 23 °C 
Cooling set-back 28 °C 

0.0947 
(people/m2) 

Equipment 
gain: 6.19 
W/m2 

Eating and 
drinking 

areas 

Heating 23 °C 
Heating set-back 12 °C 

Cooling 25 °C 
Cooling set-back 28 °C 

0.32 
(people/m2) 

Target 
illuminance 
150 lux 

Toilet 
Heating 20 °C 
Heating set-back 12 °C 

Cooling 25 °C 
cooling set-back 28 °C 

0.1238 
(people/m2) 

Target 
illuminance 
200 lux 

Table 11. DesignBuilder default values used for the energy simulation 

 

Building spaces were classified based on their types of activities to be used in “activity” 

section of DesignBuilder software. Due to unavailability of detailed interior design and space 

furniture data, the labels on the plans were used to specify space function. Some spaces were 

labelled as multi-functional or multi-purpose which made it challenging to choose the right 

type of space in energy model of the building.   

Wuhan weather data (EPW file) was taken from Energy Plus weather data library and used to 

Design Builder software for the energy simulation. The number of zones were reduced by 

combining rooms with similar energy properties and profiles in DesignBuilder software. 

Default density assumption of each zone in building energy simulation software is predicted 
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based on the zone’s function and the type of activity, however, the presumptions are 

adjustable using people/m2 or m2/people units.  

During the design stage, designers consider the density of each space according to the 

requirements of the project. For this purpose, designers use design standard and guidelines 

such as   Architects’ data book (Buxton, 2018; Neufert, Neufert, & Kister, 2012), study the 

relation between human body and the design requirements and provide guidelines for 

designers. For some building types, the number of occupants is more predictable, for 

instance, in residential buildings. While, it is nearly impossible to know the density of some 

other building types such as: exhibitions and galleries, because of their miscellaneous and 

diverse natures (Deloitte, 2010). Lord and Piacente (2014) mentioned “crowd tolerance” as 

the criterion and standard for density considerations in museum exhibitions and suggested 

to have between 30-50 ft2 (2.8- 4.6 m2) of space per person, and for more expensive and 

special exhibitions up to 100-200 ft2 (9.3-19 m2) per person. Also, Engineering ToolBox 

website developed a table to show the occupancy in different building types to be used for 

human sensible and latent heat load calculations and suggested between 30-100 ft2 (2.75-9.2 

m2) per person for exhibitions and museums (EngineeringToolBox, 2003).  

DesignBuilder considers 0.14 people per m2 for display and public areas in galleries, museums 

and libraries (Figure 46), while 30-100 ft2 per person is equal to 0.1-0.36 people per m2 (Figure 

47). Based on the differences between density numbers which are shown in the illustrations, 

there may be huge inaccuracies in energy predictions.  

 

Figure 46. Illustration of density 0.14 people/m2: default density of DesignBuilder for 

exhibitions and galleries 

http://www.engineeringtoolbox.com/metabolic-heat-persons-d_706.html
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Figure 47. Illustration of minimum and maximum densities in design of exhibitions and 

galleries: minimum 0.1 people/m2 (left), maximum 0.36 people/m2 (right) and 0.5 people/m2 

(down) 

In order to quantify the impacts of density variations in energy consumption predictions of 

exhibition buildings, the yearly energy simulation (1st January to 31st December) was run for 

the case study with two scenarios: first, using default density values for all the building zones 

and second, using the maximum density of 0.5 people/m2 for the gallery zones of the case 

study while keeping all the other factors with no changes. The density changes in the second 

simulation were only made to the gallery zones located in the second floor which include 

nearly 1/10 of the total volume of the building. Table 11 shows the results of the two 

simulation scenarios.  

Scenario No. Density in 
gallery zones 

Total energy 
consumption 

[KWh] 

KWh/m2 Simulation 
Period 

1 0.149 (default) 17998522.77 298.04 Yearly 
2 0.5 20380388.71 337.48 Yearly 

Table 12. Yearly energy simulation scenarios 

The findings of these simulations, confirm 11.68% increase in the total energy consumption 

prediction in the case study considering the maximum density in exhibition zones. Running 
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both simulations again for the period of 1st July- 31st August, showed 17.18% variations in 

the energy predictions of the building (Table 12).  

Scenario No. Density in 
gallery zones 

Total energy 
consumption 

[KWh] 

KWh/m2 Simulation 
Period 

1.2 0.149 (default) 5489240.86 90.90 1 July- 31 
August 

2.2 0.5 6628001.94 109.75 1 July- 31 
August 

Table 13. Simulation scenarios for the period of 1 July- 31 August 

4.4.3. Analysis and Findings (Case Study 1) 
 

It is widely acknowledged that the more accurate energy simulation inputs are the smaller 

the performance gap between the actual and predicted energy consumption will be. Building 

energy consumption assessment is performed at different stages of building’s lifecycle. At the 

design stage, many features of the buildings are not finalised. The detailed investigation of 

the first case study in this research suggested unavailability of sufficient information regarding 

building material, HVAC systems, building working hours, occupancy and space furniture and 

appliances (Table 13).  

Data availability for energy modelling and simulation of Wuhan exhibition 

Available Not available 

• 2D and 3D models of the building 

• Weather data 

• Function of spaces 

• Detailed building material  

• HVAC systems 

• Working hours 

• Occupancy 

• Space furniture and appliances 

Table 14. Available and not available data for energy prediction of Wuhan exhibition at the design 

stage 

Therefore, during the energy assessment of the case, default software assumption was used 

for the aforementioned inputs without any modification. Because of the particular focus of 

this study on occupancy and occupants’ behaviours, the simulation was repeated using 

various architectural standard values for maximum occupancy in gallery and exhibition areas. 

The analysis of the simulation results showed 11.68% difference between the yearly energy 
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consumption prediction using software default occupancy and other standard occupancy 

values used by architects to design the gallery spaces (Lord & Piacente, 2014).  The simulation 

revealed 17.18% difference between the two aforementioned scenarios in summer (from 1st 

July to 31st August) due to warm weather in Wuhan. The measured variations in the energy 

prediction of the building using different occupancy values confirm the necessity to further 

study and quantify the actual impacts of occupancy and human-behaviour-related factors in 

spaces with high unknown occupancy variations.  

4.5. Construction Stage Case Study: Oastler Building, University of 
Huddersfield 

 

4.5.1. Case Study Description 
 

The second case study of this research is the multi-functional lobby space located at the 

ground floor of the Oastler building which is a newly built building at the University of 

Huddersfield. For the purpose of this research, the energy consumption of the Oastler 

building was studied during its construction stage. Additionally, when the construction of the 

building finished in April 2017, the study further expanded observations and investigations. 

The building mainly aims for University’s Law School and the School of Music, Humanities and 

Media. However, its central location and the direct connection with student central building, 

together with its design features, all together make it a dominant building through University. 

The building contains classrooms, offices, lecture theatres, service areas and circulation areas. 

The ground floor has a lobby area with visual and physical connection to the lower floor, 

lecture theatres and dynamic circulation areas.   

 

4.5.2. Energy Modelling and Simulation 
 

Availability of the building’s construction plans and a detailed Autodesk Revit BIM model was 

an advantage to understand the building’s complex internal and external geometry. There is 

an advanced interoperability between BIM models and DesignBuilders energy simulation 

tool. BIM models generated using any BIM tool such as Autodesk Revit, ArchiCAD and 

Microstation can be imported to DesignBuilder via “gbxml” data exchange (DesignBuilder, 

2018b). To import an Autodesk Revit model into Designbuilder, three simple steps should be 
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followed: creating a Revit Analytical model, generating Green Building XML (gbxml) model, 

loading the gbxml model in DesignBuilder (DesignBuilder, 2018a). However, when the BIM 

model is very detailed, importing it into energy simulation tools usually causes several errors 

and incompatibilities. Therefore, the first step is to simplify the existing BIM model, which is 

usually overlooked. As the existing BIM model of the Oastler building was very detailed, heavy 

and not suitable for energy assessment purposes, in this study, the building was modelled in 

DesignBuilder (Figure 48). 

 
Figure 48. Oastler energy modelling, DesignBuilder 
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Figure 49. Oastler building simplified space use, extracted from DesignBuilder model 

 

Default heating and cooling set-points, occupancy density, equipment gain and target 

illuminance values used for various spaces during the initial energy modelling and simulation 

including are displayed in table 15. 

 

Spaces 
Environmental control Occupancy 

Equipment and 
lighting Heating set-point Cooling set point Density 

 
Circulation 
area 
(corridors 
and 
stairways) 

Heating 15 °C 
Heating set-back 12 °C 

Cooling 23 °C 
Cooling set-back 28 °C 

 0.11 
(people/m2) 

Equipment gain: 
2.00 W/m2 
Target illuminance  
100 lux 

Office area Heating 21  °C 
Heating set-back 12 °C 

Cooling 24 °C 
cooling set-back 28 °C 

 0.103 
(people/m2) 

Equipment gain: 
11.99 W/m2 
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 Target illuminance  
400 lux 

Reception Heating 20 °C 
Heating set-back 12 °C 

Cooling 23 °C 
Cooling set-back 28 °C 

0.1155 
(people/m2) 

Equipment gain: 
5.59 W/m2 
Target illuminance  
200 lux 

Teaching 
areas 

Heating 18 °C 
Heating set-back 12 °C 

Cooling 23 °C 
Cooling set-back 28 °C 

0.5523 
(people/m2) 

Equipment gain: 
4.70 W/m2 
Target illuminance   
280 lux 

Toilet Heating 15 °C 
Heating set-back 12 °C 

Cooling 25 °C 
cooling set-back 28 °C 

0.11 
(people/m2) 

Equipment gain: 5 
W/m2 
Target illuminance   
200 lux 

Hall, 
lecture 
theatre, 
assembly 
area 

Heating 20 °C 
Heating set-back 12 °C 

Cooling 23 °C 
cooling set-back 28 °C 

0.2183 
(people/m2) 

Equipment gain:  2 
W/m2  
Target illuminance  
300 lux 

Food 
preparation 
area 

Heating 17 °C 
Heating set-back 12 °C 

Cooling 21 °C 
cooling set-back 28 °C 

0.0943 
(people/m2) 

Equipment gain:  
40 W/m2  
Target illuminance  
500 lux 

Table 15. Default DesignBuilder values used for the initial energy simulation 

The final energy consumption prediction of the case using DesignBuilder and EnergyPlus tools 

are shown in tables 16 and 17. Also, figures 51, 52 and 53, display the final simulation, heating 

design and cooling design outputs of energy simulation by EnergyPlus.  

 Electricity 
(kWh) 

Natural 
Gas (kWh) 

District 
Cooling (kWh) 

District Heating 
(kWh) 

Water 
(m3) 

Heating - -  361271.20 - 
Cooling - - 127065.55 - - 
Lighting 217994.47 - - - - 
Equipment 127442.07 - - - - 
Water Systems - - - 21948.39 343.69 
Total End Uses 345436.54 0.00 127065.55 383219.59 343.69 

Table 16. End uses 

There are two terms commonly used in energy simulation tools to demonstrate and quantify 

the energy consumption in buildings: total site energy and total source energy. Total site 

energy shows the total energy consumption in a building, while, total source energy is site 

energy plus all the production, transmission and distribution losses. Depending on the type 

of energy consumed in the building (such as: electricity, gas, fuel, etc.) the site to source 

energy conversion factor differs (Fumo & Chamra, 2010). Although the total source energy is 
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the realistic total energy consumption which includes all the energy losses, total site energy 

is the basis for building energy performance assessment and shown in building energy meters 

and energy bills (Fumo & Chamra, 2010; Scofield, 2009). Table 17 shows both annual total site 

energy and annual total source energy for Oastler building. 

Annual Building Utility Performance Summary (values gathered over 8760 hours) 
EnergyPlus Version 8.5.0 

 Total Energy (kWh) Energy Per Total Building Area (kWh/m2) 
Total Site Energy 855721.68 107.85 

Total Source Energy 2612836.50 329.29 
Table 17. Annual building utility performance summary 

The analysis of the predicted energy consumption in Oastler building suggests that heating 

and electricity consumption are accountable for 45% and 40% of the total energy 

consumption, respectively (Figure 50).  

 
Figure 50. End uses analysis, Oastler building, University of Huddersfield 

 

The final outcomes of energy simulation for Oastler building include the graphical and 

numerical representation of heat gains and energy consumption for every month with details 

of the source of energy consumption (such as: lighting, electricity, cooling, heating, etc.) 

(Figure 47).  In addition, details of temperature and total, hourly and sub-hourly heat loss in 

heating and cooling design are other outcomes of DesignBuilder energy simulation (Figures 

48 and 49). 

45%

40%

15%
0%

End uses, Oastler building, University of Huddersfield

Heating Electricity Cooling Hot Water
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Figure 51. Simulation, DesignBuilder and EnergyPlus output 

 

 
Figure 52. Heating design, EnergyPlus output 
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Figure 53. Cooling design, EnergyPlus output 

 

4.5.3. Analysis and Findings (Case Study 2) 
 

Detailed analysis of the energy modelling and simulation of the Oastler building at the 

construction stage confirmed less insufficiency of information in comparison to the first case 

study of this research (Wuhan gallery) at the design stage (Table 18).  

Availability of detailed building material, HVAC systems and working hours certainly resulted 

more accurate energy consumption prediction for the building. However, there were no 

additional data regarding occupancy and occupant-behaviour-related inputs. Also, as the case 

study included some multi-functional spaces, unavailabity of detailed information about 

space furniture, made it difficult to predict various functions and activities in the multi-

functional space. Space furniture is a guide to divide the multi-functional spaces into different 

zones in building energy simulation tools.  The analysis of the second case study of this 

research suggests that occupancy and detailed space furniture are among the most significant 

missing information for prediction of energy consumption in multi-functional spaces of 

buildings at the construction stage.  
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Data availability for energy modelling and simulation of Oastler building, University of 

Huddersfield 

Available Not available 

• 2D and 3D models of the building 

• Weather data 

• Function of spaces  

• Detailed building material  

• HVAC systems 

• Working hours 

• Occupancy 

• Detailed space furniture 

Table 18. Available and not available data for energy prediction of Oastler building at the 

construction stage 

4.6. Chapter Conclusion 
 

This chapter includes the description of the case studies at the design and construction stages (stage 
1), in addition to, energy modelling and simulation of each case. The findings of each case, 
highlighted the gaps and insufficiency of presumptions in simulation tools to incorporate human-
behaviour-related factors into the building energy prediction. The investigation of the first case 
demonstrated that during the design stage, unavailability of detailed data about building material, 
HVAC systems, space furniture and appliances, in addition to, building working hours and occupancy 
may lead to considerable inaccuracies in energy assessment of the case. The analysis of the findings 
of the second case, too, indicated that during the construction stage, space furniture, working hours 
and occupancy data are amongst the most significant lack of information during energy assessment 
of the multi-functional spaces. The analysis of the findings of both stage 1 case studies were used to 
support and create the backbones of stage 2 which is explained in the next chapter.   

 

The Impact of Occupants’ Behaviours on Energy 
Consumption in Multi-Functional Spaces 
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Chapter 5: Case Study Stage 2 
 

As explained in research method chapter (See: 3.2.4.1. Case Study Design), energy assessment 

of multi-functional spaces during building operation and post-occupancy stages were 

investigated in case study stage 2 which consists of several steps: selection of the cases and 

preparation of information, energy modelling and simulation of the selected cases using 

default data of energy prediction software (DesignBuilder and EnergyPlus), data collection, 

running energy simulation for each case using the collected data, comparison and analysis of 

the collected data and simulation results. Two multi-functional spaces at the operation stage 

were studied in this research: student central building at the University of Huddersfield and 

Manchester art gallery ,both located in the North England. To quantity the impacts of 

occupants’ energy behaviours on energy consumption of the studied zones, model simulation 

method was applied on each case (Figure 54). Therefore, the energy simulation was run 
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multiple times to calculate the gap between the energy consumption prediction using 

software default inputs and the realistic collected data. Therefore, first, default software 

presumptions were used to determine the predicted energy consumption for each case. Then, 

series of energy simulations using each observed parameter including: realistic door opening 

time percentage data, occupancy density and pattern and actual working hours were carried 

out, with the aim to quantify the impacts of each parameter on energy consumption of the 

case. Finally, the initial predicted simulation data was compared with the results of the final 

simulation using all the collected data.  

 
Figure 54. Model simulation method 

This chapter contains description of each case, energy modelling and simulation based using 

software default presumptions, the process and duration of data collection, data analysis and 

energy modelling and simulation using the collected data. 

5.1. Post-Occupancy Stage Case Study: Student Central Building, University 
of Huddersfield 

 
5.1.1. Case Study Description 
 

The first case study of this research at the post-occupancy stage is the multi-functional lobby 

space located at the ground floor of the student central building, University of Huddersfield. 

Student central building opened in 2014 to perform as a connection point for some essential 

and common parts of the University of Huddersfield including central administrative, 

management and services. The main university campus accommodates more than 20 

separate buildings where nearly 20,000 students pursue their aducation (Figure 55).  
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Figure 55. The University of Huddersfield and student central building 

The multi-functional space contains different zones including: the main entrance, reception 

(iPoint), Student Union’s shop, food preparation and canteen, eating, sitting and socialising 

areas, offices, services and circulation zones (Figure 56). The reception space, which is called 

iPoint, is located in front of the main entrance door and functions as a general information 

desk for all the students and visitors. Various types of cold and warm food and drinks are 

prepared and sold in the food shops located in various locations at the multi-functional space. 

The Students’ Union shop is located very close to the main entrance door and sells various 

snacks and stationery. 

 
Figure 56. Space layout analysis: entrance, circulation and function of spaces 
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Such central spaces in institutional buildings contain constant flow of people as they 

accommodate several essential functions. Besides, the space is directly connected to some 

other substantial spaces including: central library, computer room, gym and fitness studio, 

the Student’s Union, career and employability services, disability and wellbeing services, 

students’ accommodation (Hudlet) and bank. The central library is divided into 6 floors and 

contains various reading and studying spaces. The library working hours has daily and monthly 

variations. During school-semester, some parts of the library (including the computer room) 

are open 24 hours a day. The gym and fitness studio are open during weekdays from 7:00 AM 

to 10:00 PM and weekends from 9:00 AM to 5:00 PM. Different working hours of various 

zones in a multi-functional space make occupancy predictions more complicated.  

 

5.1.2. Energy Modelling and Simulation (Default) 
 

The student central building is attached to other buildings and the chosen multi-functional 

space in this study is directly connected to other parts of the building. Therefore, in order to 

simplify the model, the multi-functional space is modelled in details and the other buildings 

are modelled as simple building blocks (Figure 57).  

Figure 57. DesignBuilder model of the student central building, University of Huddersfield 

The building’s original AutoCAD 2D drawings were imported to DXF files and used to create 

the model in DesignBuilder software. However, the interior spaces were not clearly identified 

in the original building construction plans (Figure 58). Zoning which means specifiying the 

function of every zone, is an important step in building energy modelling and simulation. For 

interior zoning of the multi-functional space of the case in DesignBuilder, except for the shop, 

offices and food preparation areas which were specified in the original construction plans, 

other spaces were considered as circulation (Figure 59).  
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Figure 58. Original construction plans, student central building, University of Huddersfield 

 

Figure 59. DesignBuilder model and the interior layout of the student central building 

 

5.1.3. Data Collection 
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A pilot study and preliminary data collection was performed to acquire more information 

about the case during its post-occupancy stage. The analysis of the pilot study then formed 

the detailed data collection of the study. In the following subchapters (5.1.3.1. and 5.1.3.2.), 

pilot study and data collection of the case are explained.  

 

5.1.3.1. Pilot Study  
 

The pilot study included the priliminary observation of the type of spaces and their functions 

within the multi-functional space, occupants’ types of interactions with the spaces and their 

energy consumption behaviours (both passive and active) followed by collecting data for the 

duration of 9 hours in one weekday on 31st May 2017. The findings of the preliminary data 

collection are presented in this section:  

• The main functions of the space at the operation stage include: entrance and 

reception (iPoint), a shop, various sitting areas, food preparation zones and 

circulation. Also, spaces such as services and offices were directly connected to the 

multi-functional space of the case. 

 

• The space function and its interior design has evolved after occupancy to place 

different functions. Figure 60 illustrates the actual diagram of space function and 

circulation. One of the major changes on the interior layout is the formation of 

reception area and information point. This space was not fully specified in the initial 

space layout and the current space takes up more space than planned primarily. It also 

contains several computers and some electrical heaters.  

 

• Furthermore, different types of furniture used in the big open space, in addition to, 

the limited availability of electricity sockets, have divided the main sitting areas to 

different categories: eating areas located near food preparation zones with hard 

canteen furniture, cosy and quiet studying spaces with electricity sockets, and multi-

purpose soft furniture for socialising, gathering, having small group casual meetings 

etc. The analysis of the collected data confirms that the space furniture has not only 

shaped the sitting areas and occupants’ behaviours, but also, has determined the 

maximum occupancy of the space during its peak hours.  
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• Other transformations of the space include adding more food containers in empty 

spaces of the food preparation area which blocks a part of sunlight coming from the 

large exterior glazing.  

 

• Also, some of the door on the building exterior are actually fire doors which have 

restricted use during certain times or by a particular group of occupants, e.g. the glass 

fire doors in area number 2. The preliminary observation confirmed that space layout 

and its furniture have a direct influence on the function of each zone. 

 
Figure 60. Space function and circulation diagram, student central building, University of 

Huddersfield, UK 

 

• The student central building is occupied by three groups of people: students, the staff 

and visitors. The university estates department fully manages building HVAC systems. 

The pilot study demonstrated that occupants’ energy behaviours in the case are 

limited to their presence, use of entrance door and appliances such as computers and 

laptops. However, the impacts of using appliances on the total energy consumption of 

the zone is very minor and neglectable, due to unavailability of electicity sockets in 

most of the spaces except for zone 11 (Figure 62). Therefore, data collection included 

hourly observation of the number of people in each space and measurement of the 
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entrance door opening time percentage. The priliminary occupancy data collection 

results are shown in figure 61. 

 
Figure 61. Preliminary occupancy data collection, student central building, University of 

Huddersfield 

5.1.3.2. Zoning 
 

The selected multi-functional space of the student central building is located in an 

institutional building which has two distinguished occupancy patterns throughout the year: 

school academic semester and school holiday. The occupancy density in school academic 

semester months are considerably higher than in non-semester months. Therefore, two sets 

of weekly data were collected in two months: one week in July which is a non-semester month 

and one week in November when the building is in full operation with presence of students. 

Hourly data was collected regarding occupancy and occupants’ behaviours from 10:00 AM to 

8:00 PM for 3 weekdays which demonstrated the critical hours (such as peak hour). Further 

specific data were then collected for 2 more weekdays generating more than 40 hours of data 

for each zone. The observation of post-occupancy uses of space, together with, the actual 

space layout and furniture, suggested a new diagram of the space utilisation consisting 12 

zones. Therefore, the observation process of the case follows the numerical order which is 

shown in figure 62.  
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Figure 62. Observation route of the multifunctional space, student central building, 

Huddersfield, UK 
 

In order to calculate occupancy density for each zone, particularly to estimate maximum 

occupancy at peak hours which is useful for energy calculations of the case, two sets of data 

is required: the number of people occupying the spaces and the area (m2) of each zone.  

Following the pilot study, data collection was carried out as explained. The comprehensive 

analysis of the collected data is presented using diagrams in the next section. 

 

5.1.4. Data Analysis  

To study the impacts of occupants’ active and passive behaviours on the energy consumption 

of the multi-functional space in student central building at the University of Huddersfield, 

hourly observation was perfomed. The first collected data was regarding space function and 

zoning which was comprehensively discussed in the previous section. Working hours, 

occupancy and door opening were the other parameters investigated in this case study.  
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5.1.4.1. Working Hours 

The building’s working hours define its operation period and is a critical parameter in building 

energy consumption assessment. The longer the working hours are the higher amount of 

energy is expected to be consumed in the building. In addition, outside temperature and 

sunlight vary at different times of the day resulting less or more lighting and HVAC 

requirements in building spaces. 

In institutional buildings, prediction of working hours in central multi-functional spaces is a 

lot more complicated than administrative and teaching spaces. There are not sufficient inputs 

and assumptions related to multi-functional spaces in public buildings. For instance, the 

library, gym and postgraduate researchers’ offices are among spaces with very dynamic 

working hours. Therefore, the main entrance and some circulation areas are sometimes in 

use 24 hours a day.  Therefore, specifying accurate working hours for some spaces in 

university buildings is very challenging. In this study, the HVAC working hours of the building 

was considered as its operating hours for energy assessment. However, an increase in 

electricity and lighting consumption is expected in the actual energy consumption of the 

building due to activities after the business hours.  

5.1.4.2. Occupancy: Low season (school holiday) 
 

The data for school holiday month (low-season) was collected for weekdays in a week starting 

from 3rd July. 29 hourly occupancy data was collected for each of the 12 zones which created 

the diagrams presented in figures 63, 64 and 65. The data was then complemented by specific 

hourly data collected for determining peak hours and peak occupancy. Peak hours of the 

multi-functional space are lunch time between 12:00 PM to 13:00 PM.  
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Figure 63. Occupancy data collection, low season, student central building 

 
 

 
Figure 64. Occupancy data collection, low season, student central building 
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Figure 65. Occupancy data collection, low season, student central building 

 
5.1.4.3. Occupancy: High season (school academic year)  
 

The data for school semester month (high-season) was collected during weekdays in a week 

starting from 6th November. Similar to the data collection during non-school-semester 

months,  hourly occupancy and door opening data was gathered from 10:00 AM to 6:00 PM 

for each zone. Figures 66, 67 and 68 present the number of people occupying  each zone every 

hour and the total number of people in the multi-functional space. Further data was collected 

during peak hours to be used for maximum occupancy calculation in each zone. The peak 

hours in most of the zones within the multi-functional space are between 12:00 PM to 13:00 

PM, which is similar to non-school-semester months.  
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Figure 66. Occupancy data collection, high season, student central building 

 

 
Figure 67. Occupancy data collection, high season, student central building 
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Figure 68. Occupancy data collection, high season, student central building 

 

5.1.4.4. Maximum Occupancy 
 
The occupancy density of the student central building at the University of Huddersfield was 

conducted during both school semester and non-semester months. In order to integrate the 

collected occupancy data into DesignBuilder energy simulation tool, the average maximum 

occupancy density should be assessed. The calculation of maximum occupancy density 

(people/m2) for both months (high season and low season) was performed for every zone 

within the multi-functional space following the below formula which is presented in table 19: 

Average number of people at peak hours/ zone area (m2)= Maximum density (people/m2) 

 

Zone Function 
Area 

(m2) 

Average Maximum Number 

of People  

Maximum Density 

(people/m2) 

Low Season High Season Low Season High Season 

Circulation (1) 81.21 5 10 0.062 0.123 

Circulation (3) 59.88 5 9 0.084 0.150 

Circulation (7) 178.76 6 21 0.034 0.117 
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Average maximum occupancy in circulation zones 0.060 0.130 

Entrance (5) 108.96 12 22 0.110 0.202 

Sitting (2) 39.99 5 12 0.125 0.300 

Sitting (10) 169.98 16 53 0.094 0.312 

Sitting (12) 22.96 6 11 0.261 0.479 

Study Area (11) 124.26 10 30 0.080 0.241 

Average maximum occupancy in sitting zones 0.140 0.333 

Canteen (9) 245.87 44 128 0.179 0.521 

Starbucks (4) 47.85 10 29 0.209 0.606 

Food shop (8) 110.03 11 12 0.100 0.109 

SU Shop (6) 167.72 14 35 0.083 0.209 

Table 19. Calculation of maximum density for each zone, low season (non-semester) and high season 

(school semester), student central building 

The analysis of the results show that occupancy density during school semester was almost 

twice the one of non-semester months, which is not considered in energy simulation 

presumptions. Figure 69 illustrates the gap between the actual average maximum occupancy 

of each zone within the multi-functional space in Huddersfield student central during both 

school semester and non-semester months with the standard ASHRAE maximum occupancy.  
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Figure 69. Predicted VS realistic occupancy of student central building, Huddersfield, UK 

The analysis of the diagram confirms the following gaps in occupancy presumptions in energy 

predictions: 

• There is a distinct difference between occupancy density in institutional buildings 

during semester and non-semester months. Depending on the space/zone function, 

school-semester occupancy density is between 1.8 to 2.9 times more than occupancy 

density in non-semester months. The occupancy density assumptions in DesignBuilder 

software (ASHRAE standard) are closer to non-semester occupancy density in 

Huddersfield student central building.  

• The multi-functional spaces in institutional buildings are utilised for various purposes. 

The function of the space alters as the furniture changes. According to the 

observation, the presence of a Ping-Pong table in a corner, a temporary performance 

platform, the availability of electricity sockets and a different arrangement of furniture 

create new activities and attraction points which changes the occupancy density and 

consequently, the total energy consumption of the space. The vibrant and dynamic 

0.1065

0.2062

0.1122

0.13

0.52

0.333

0.202

0.209

0.06

0.179

0.14

0.11

0.083

0 0.1 0.2 0.3 0.4 0.5 0.6

Circulation areas

Canteen

Eating/drinking area

Reception

Shop

Average Maximum Occupancy (people/m2)
Student central Building, Huddersfield

Actual maximum occupancy (low season, non-semester)
Actual maximum occupancy (high season, school semester)
Standard ASHRAE maximum occupancy used in DesignBuilder



 
 

145 
 

nature of these spaces makes it difficult to predict the occupancy density accurately. 

However, the observation of occupancy reveals more realistic patterns, which can be 

used to develop energy assessment predictions. This study confirms that using data 

regarding permanent space furniture to estimate the maximum occupancy of each 

zone improves the accuracy of the occupancy density predictions in multi-functional 

spaces of public buildings. 

• Reception, eating and drinking and circulation areas were the only relevant types of 

spaces to the multi-functional space of the case in activity section for university 

buildings in the simulation software. While analysing the energy consumption of the 

multi-functional space using default software values, reception and eating and 

drinking areas were not specified clearly on the plans, so the whole zone was 

considered as circulation areas (See: 5.1.2. Energy Modelling and Simulation 

(Default)). Designbuilder does not have default values for shops within university 

buildings.Therefore, one of the challenges during the process of energy assessment of 

this case before collecting the occupancy data was to select space function for the 

small retail unit in the multi-functional space. In DesignBuilder, there is a separate 

category of sales areas (not within university section) called “small shop unit sales 

area” which was selected for the shop during the initial energy assessment using 

software default values. This confirms that software presumptions about such spaces 

are not sufficient and there is a need to expand the list of space functions and activities 

to have accurate occupancy presumptions for energy consumption prediction of 

multi-functional spaces of public buildings.  

 

5.1.4.5. Door Opening 
 

Door opening data for Huddersfield student central building was conducted in two weeks 

during weekdays: low season and high season. Therefore, 17 hours of data was collected in 

June, which is a non-semester month, and 15 hours of data was conducted in September and 

November.  In central institutional buildings like this case, usually there is a great flow of 

people entering/ leaving the building constantly and passing within its spaces, which results 

a very high door opening time percentage.  
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The main entrance consists of two automatic sliding doors that create a small buffer zone 

between outside and inside of the building. However, the space between two doors is very 

small (9.34 m2) and it does not fully function as a thermal buffer zone to reduce unwanted 

air exchange (Figure 70). In cold seasons, when the door opening percentage is high (school 

semester peak hours), even availability of an air curtain above the door fails to maintain 

thermal comfort in spaces connected to the entrance area. For example, in the reception area 

(called i-point) which is located right in front of the entrance, extra electrical heating devices 

are used to provide thermal comfort for the full-time staff and part-time student staff who 

work in this area and all the visitors. In windy days, not only in the spaces such as the 

reception, café and shop that are immediately linked to the entrance door, but also, in the 

inner spaces the air exchange can be noticed.  

 

Figure 70. The main entrance, student central building, Huddersfield 

 

The collected data shows that the entrance door in student central building has high opening 

time percentage both in school semester and non-semester months (Figure 71).  In school 

semester months, between 13:00 to 15:00, the entrance door is always open because of the 

great number of people entering and leaving the building.  Even after the normal working 

hours, the door opening time percentage is a lot more than software presumptions regarding 

door opening. The data displayed in figure 71 is the average of door opening time data 

collected from 10:00 to 20:00 during weekdays in two weeks, rounded to the nearest 5.  
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Figure 71. Hourly door opening time percentage during weekdays in low and high seasons rounded 

to the nearest 5 

The analysis of the impacts of door opening on this case suggests that parameters such as 

design features of entrance space, door opening time setting, the differences between inside 

and outside air pressure (wind intensity) and temperature, interior layout, in addition to, the 

frequency of the entrance door utilisation impact occupants thermal comfort and the energy 

consumption of the building.  

 

5.1.5. Energy Modelling and Simulation (Collected Data) 
 

The initial simulation period for the second case study of this research (Huddersfield student 

central building) was the coldest week of the year from 17th to 23rd February. The selected 

period is the so called “winter design week” determined by the weather data in DesignBuilder 

simulation tool (DesignBuilder). The incorporation of all collected data with energy simulation 

tool (including zoning, occupancy patter and density and door opening) provides a 

quantitative comparison between the realistic and predicted energy consumption of the 

multi-functional space of the case. The simulation results of total energy, heating and 

electricity consumption using default and collected data are presented in table 20.  
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• The significant gap between the actual door opening time percentage (average 

maximum 85%) and software default door opening data (Maximum 5%) caused a great 

gap between the actual and predicted energy consumption.  

Student Central Building, University of Huddersfield 
Simulation Duration: 17-23 Feb (Winter Design week) 

Simulations 
Total Energy 
Consumption 

(kWh) 

Heating 
(kWh) 

Space 
Heating 
(kWh) 

Electricity 
(kWh) 

Predicted energy consumption using 
default inputs (with natural ventilation) 7978.15 3141.04 3103.6 4755.25 

Actual door opening data 10177.25 5372.84 5335.4 4755.25 
Actual space zoning 12215.22 5523.42 4040.1 5663.63 
Actual working hours No changes in working hours 
Actual space zoning and occupancy 
density 13993.78 7386.75 5903.43 5663.63 

Energy consumption using more 
realistic inputs (All actual data: door 
opening, space zoning  and occupancy) 

15083.01 8590.89 7107.57 5663.63 

Table 20. “Winter design week” simulation results: the gap between realistic and predicted energy 

consumption in Huddersfield student central building 

 
For institutional buildings, there are two distinct patterns of occupancy and human-

behaviour-related parameters in school semester and non-semester months. Therefore, 

another round of energy consumption prediction of the case was performed. Once, using 

initial software assumptions (referred to as predicted energy consumption), and then, using 

the actual observed data (realistic energy consumption) from 1 September to 31 May which 

is the official school semester period. Table 21 and figure 72 present the summary of the 

energy simulation results.  

Simulation Duration 
Total Energy 

Consumption (kWh) 

Heating 

(kWh) 

Electricity 

(kWh) 

Predicted 1 Sep to 31 May  257557.04 60118.91 177132.32 

Actual 1 Sep to 31 May  491362.72 224939.4 211569.54 

Table 21. School semester simulation results: the gap between realistic and predicted energy 

consumption in Huddersfield student central building  
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Figure 72. Realistic and predicted energy demand in student central building, University of 

Huddersfield, categorised by the sources of energy consumption 

The analysis of the results suggests a great gap between both simulation results of the studied 

space. 

• The simulation using collected door opening, space zoning and occupancy density data 

predicts 91% more energy consumption in comparison to the default simulation 

result.  

• The final simulation results show that heating consumption of the space is 274% more 

than the initial prediction. The gap was caused by unrealistic assumptions regarding 

door opening, zoning and occupancy.   

 

 

 

 

 

 

 

0 100000 200000 300000 400000 500000 600000

Total Energy (kWh) Total Site energy

Total Heating  kWh

Heating

Cooling

Total Electricity kWh

Interior Lighting

Equipment

School semester (1 Sep to 31 May)
Student Central Building, Huddersfield

Actual consumption (kWh) Predicted consumption (kWh)



 
 

150 
 

5.2. Post-Occupancy Stage Case Study: Manchester Art Gallery 

  

5.2.1. Case Study Description 

Manchester art gallery, placed in Manchester city centre, is one of the most remarkable 

galleries and art museums in North England with over half a million visitors per year (Figure 

73). It is a publicly owned building managed by Manchester city council and is free to enter. 

Manchester art gallery was first built in the 19th century (1823). It later expanded to 

accommodate more galleries and collections which occupy three joined buildings. Two of the 

three connected buildings are among listed buildings with significant historical values.  

 

 

Figure 73. Manchester Art Gallery 

The building exterior has a simple cubic volume, but, the building interior is more complex 

containing three floors with various connected spaces and voids (Figure 74). The ground floor 

consists of: an entrance hall, two exhibition areas, a shop, an information desk (reception) 

and another entrance area, a café and restaurant with two sitting areas, teaching and learning 

rooms and services. The first and second floors accommodate various exhibition and gallery 

spaces and circulation areas. The whole building (except for training and lecture sections and 

services) can be considered as one energy zone in energy calculations as its different spaces 

are not fully enclosed by walls. 
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Figure 74. Manchester art gallery, interior space 

The building has two main entrances and one direct entrance to the restaurant and café. One 

of the main entrances has a wooden historic door connected to an entrance hall, and the 

other one has a newly built glass revolving door which opens to the receiption and 

information space. The ground floor is a multi-functional space with various directly 

connected zones. Figure 75 shows a 3D view of the selected multi-functional space in 

Manchester art gallergy, highlighting its relation to entrances, vertical circulations and 

staircases and various connected spaces that it contains. 

 
Figure 75. Manchester art gallery ground floor 3d view  

 

5.2.2. Energy Modelling and Simulation (Default) 
 

For the purpose of this study, in order to study the energy consumption of a set of spaces 

located at the ground floor of Manchester art gallery, the building was modelled in 
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DesignBuilder energy simulation tool using the available architectural plans. Also, further 

general information about the building were gathered by contacting various managers at the 

Manchester art gallery directly. For energy modelling of the case, the ground floor of the 

building was modelled in details and the building floors were modelled as simple building 

blocks which allowes to run multiple specific energy calculations on the multi-functional space 

of the case (Figure 76). The building has a simple volume which made the energy modelling 

stage less challenging in comparison to other cases.  

 

 
Figure 76. DesignBuilder model of the Manchester art gallery 

Similarly, the internal layout and arrangement of various zones within the multi-functional 

space are very clear. Different spaces are partly disconnected using walls.  
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Figure 77. Interior layout of the multi-functional space in DesignBuilder model of 

Manchester art gallery 

 

5.2.3. Data Collection 
 

The preliminary observation of the interaction of occupants in various zones of Manchester 

art gallery confirmed that occupants’ energy consumption behaviours are limited to 

occupancy and door opening. Therefore, after specifying the function of each zone within the 

selected multi-functional space, occupancy and door opening were studied during working 

hours of the building which are discussed in the next sections.  

5.2.3.1. Zoning 
 

Following the initial zoning of the spaces in Manchester art gallery using its available 

architectural plans, the preliminary observation was carried out. As, the internal layout of the 

case clearly separated various functions by walls with some openings, the observation 

confirmed the  initial zoning. To collect occupancy data in different zones, the observation 

routes were created for every floor of the building which are illustrated in Figures 76, 77 and 
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78. The data collection route for the multi-functional space located at the ground floor of the 

building, for which the detailed energy consumption analysis is perfomed, started from the 

main entrance (number 1) and ended at the main reception and information point (number 

7) where circulations to upper levels are located (Figure 76). The data collection was then 

extended to floors 1 and 2.  

 
Figure 78. Space function and observation route diagram, ground floor, Manchester art 

gallery 

The first and second floors consist of various galleries, exhibitions and circulation areas 

(Figures 77 and 78). The observation of these floors was carried out with the aim to link the 

presence of occupants in the ground floor with their activities on other parts of the building 

where the main function of the building takes place and to further study occupancy density 

and patterns of the building.  
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Figure 79. Space function and observation route diagram, 1st floor, Manchester art gallery 

 

 
Figure 80. Space function and observation route diagram, 2nd floor, Manchester art gallery 

 

5.2.3.2. Occupancy 
 

In order to analyse occupancy in various zones of Manchester art gallery, three sources of 

data were used in this study: UK governmental data of monthly visits of 57 museums and 

galleries (Delaney, 2017), Google “popular times” real-time data and observation (Figure 81).  
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Figure 81. Data collection methods to capture occupancy in different zones of Manchester 

art gallery  

Monthly occupancy patterns of the building are taken from the wide-ranging governmental 

data regarding total monthly visits of 57 museums and galleries in UK between 2008 and 2017 

(Figure 82). The data allows conversion of occupancy data in a month to estimate occupancy 

in other months throughout the year.   

 
Figure 82. Total museums and galleries monthly visits in UK: 57 centres, source of data: 

(Delaney, 2017) 
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The number of visitors in galleries have high monthly variations which are not fully 

contemplated into default occupancy schedules of energy simulation tools. In some energy 

simulation tools such as DesignBuilder, the seasonal variations in buildings are only 

considered by “summer and winter design” schedules. However, the actual monthly visits of 

galleries and museums follow other distinctive patterns that are shown above. According to 

the aforementioned UK governmental data regarding the monthly visits of museums and 

galleries (Delaney, 2017) there is 33% difference between occupancy in high-season and low-

season months. According to the data, in 2016-2017 the highest number of visits happened 

in August and July and the lowest number of visits happened in January, December and 

November. Table 21 illustrates the ratio of monthly visits of galleries and museums in the UK 

over the highest monthly visit in August.  

2016-2017 
Months Total Gallery 

Visitors 
Ratio of monthly Occupancy over the 
highest monthly occupancy (August) 

April 3,935,139 0.80 
May 3,596,291 0.73 
June 3,959,636 0.80 
July 4,805,539 0.97 

August 4,943,777 1 Maximum 
September 3,610,540 0.73 

October 4,337,514 0.88 
November 3,424,767 0.69 
December 3,375,506 0.68 

January 3,299,349 0.67 Minimum 
February 3,936,889 0.80 

March 3,969,880 0.80 
Total 47,194,827 

 

Table 22. Total museums and galleries monthly visits in UK (57 centres), 2016-2017 

Google has recently provided a service called “Google popular time” which uses location-

based mobile services (such as GPS) to launch real-time information about the number of 

people visiting specific buildings (Silva & Silva, 2018). The great number of people being 

connected to google at all times or most of the time, gives a high credibility to the data it 

provides.  Another advantage of this open web service is its availability to all users of internet 

(Toepke, 2017). Therefore, Google popular times data has been used in various recent studies 

on the estimation of occupancy, population and mobility patterns (Neves et al., 2016; Nunes, 
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Ribeiro, Prandi, & Nisi, 2017; Silva & Silva, 2018; Toepke, 2017). For Manchester art gallery, 

the availability of “Google popular times” data, provided information regarding occupancy 

patterns and peak hours (Figure 83).  

 
Figure 83. Manchester Art Gallery weekly occupancy, Google “popular times” graph 

The hourly occupancy, total numbers of occupants/visitors and the number of occupants in 

each zone was collected using hourly observation of the zones following the “observation 

route” (see: Data collection, zoning). The observation of the case was done in 2 weeks: the 

first week was a pilot study to capture zoning and to modify the observation technique, and 

in the second week the data was collected during weekdays and weekends. Occupancy 

density of each zone was then calculated using the number of people in each zone and the 

area (m2) of each zone. The hourly observation also included hourly measurement of door 

opening time percentage. In the next section the further analysis of the data is presented 

(see: Data collection, Occupancy).  

5.2.4. Data Analysis  
 

The investigation of the primary and secondary data suggest various gaps between actual and 

predicted human-behaviour-related factors used in prediction of energy consumption in 

Manchester art gallery including building working hours, occupancy and door opening. The 
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actual data was also analysed to be used in DesignBuilder energy simulation tool to quantify 

the gap between actual and predicted energy consumption. The following sections further 

explain each of the aforementioned parameters.  

5.2.4.1. Working Hours  

The comparison of software default working hours for exhibition and gallery building types 

and the actual working hours of Manchester art gallery demonstrates a big difference (Figure 

84). Usually, galleries and exhibitions are not only open during weekends, but the most 

crowded. That is to encourage the majority of visitors who work and study during weekdays, 

visit cultural buildings at the weekends.  Manchester art gallery’s working hours is 6 hours 

less than predicted. Another unrealistic assumption regarding working hours of cultural 

buildings is their opening times: It is very uncommon to see such buildings open at 8 am.  

  
Figure 84. Predicted VS actual working hours, Manchester art gallery, UK 

5.2.4.2. Occupancy 

The analysis of both observed data and the daily/hourly occupancy data driven from “Google 

popular times” showed that the maximum daily/hourly occupancy in Manchester art gallery 

is in midday between 13:00 and 16:00. The highest Daily occupancy of Manchester art gallery 

is from 15:00 to 16:00 on Saturdays and the lowest occupancy happens on Sunday mornings 

between 10:00 and 11:00. Table 2 shows the ratio between the daily/hourly occupancy of 

Manchester art gallery and its maximum occupancy that happens from 15:00 to 16:00 on 

Saturdays. The comparison between Table 23 and ASHRAE occupancy pattern used in 

DesignBuilder show the gap between the predicted and actual occupancy pattern of the 
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building (Table 24). The actual occupancy pattern of the case study is illustrated in Table 3 

that is the result of data analysis in this research.  

Hourly Weekly/ Daily 
Monda

y 
Tuesday Wednesda

y 
Thursday Friday Saturday Sunday 

10:00 - 11:00 0.18 0.20 0.20 0.16 0.19 0.19 0.15 
11:00 - 12:00 0.36 0.37 0.37 0.31 0.34 0.44 0.44 
12:00 - 13:00 0.52 0.48 0.49 0.46 0.45 0.70 0.70 
13:00 - 14:00 0.55 0.51 0.56 0.56 0.49 0.77 0.80 
14:00 - 15:00 0.49 0.53 0.60 0.56 0.55 0.87 0.89 
15:00 - 16:00 0.44 0.52 0.57 0.53 0.57 1 0.80 
16:00 - 17:00 0.32 0.35 0.33 0.50 0.41 0.69 0.49 
17:00 - 18:00 - - - 0.45 - - - 
18:00 - 19:00 - - - 0.36 - - - 
19:00 - 20:00 - - - 0.26 - - - 
20:00 - 21:00 - - - 0.16 - - - 

Average daily occupancy 
ratio comparison 
(ranging from 1 to 0) 

0.40 0.42 0.44 0.39 0.42 0.66 0.61 

Table 23. Manchester Art Gallery, Hourly/daily occupancy ratio comparison 

 
Occupancy pattern in gallery spaces 

Realistic occupancy pattern Predicted occupancy pattern 
(DesignBuilder, ASHRAE data) 

Schedule:Compact, 
LibMusGall_Circulation_Occ, 
Fraction, 
Through: 31 Dec, 
For: Weekdays SummerDesignDay, 
Until: 10:00, 0, 
Until: 11:00, 0.2, 
Until: 12:00, 0.35, 
Until: 16:00, 0.5, 
Until: 17:00, 0.30, 
Until: 24:00, 0, 
For: Weekends, 
Until: 10:00, 0, 
Until: 11:00, 0.2, 
Until: 12:00, 0.45, 
Until: 13:00, 0.7, 
Until: 14:00, 0.8, 
Until: 15:00, 0.9, 
Until: 16:00, 1, 
Until: 17:00, 0.6, 
Until: 24:00, 0, 

Schedule:Compact, 
LibMusGall_CirculationPub_Occ, 
Fraction, 
Through: 31 Dec, 
For: Weekdays SummerDesignDay, 
Until: 07:00, 0, 
Until: 08:00, 0.25, 
Until: 09:00, 0.5, 
Until: 12:00, 1, 
Until: 14:00, 0.75, 
Until: 17:00, 1, 
Until: 18:00, 0.5, 
Until: 19:00, 0.25, 
Until: 24:00, 0, 
For: Weekends, 
Until: 07:00, 0, 
Until: 08:00, 0.25, 
Until: 09:00, 0.5, 
Until: 12:00, 1, 
Until: 14:00, 0.75, 
Until: 17:00, 1, 
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For: Holidays, 
Until: 10:00, 0, 
Until: 11:00, 0.2, 
Until: 12:00, 0.45, 
Until: 13:00, 0.7, 
Until: 14:00, 0.8, 
Until: 15:00, 0.9, 
Until: 16:00, 1, 
Until: 17:00, 0.6, 
Until: 24:00, 0, 
For: WinterDesignDay AllOtherDays, 
Until: 24:00, 0; 

Until: 18:00, 0.5, 
Until: 19:00, 0.25, 
Until: 24:00, 0, 
For: Holidays, 
Until: 07:00, 0, 

Table 24. Realistic and predicted occupancy pattern in DesignBuilder occupancy format 

The analysis of the table suggests a distinct gap between the actual and predicted occupancy 

pattern. Especially during weekends, when the maximum occupancy is twice the maximum 

occupancy of the weekdays. 

5.2.4.3. Maximum Occupancy 
 

The occupancy density of Manchester art gallery was conducted for duration of a week. Using 

“Google popular times”, the peak hours were specified (See: 4.4.2. occupancy and 4.3.1. 

occupancy).  The average maximum occupancy was then calculated considering the ratio 

between peak hours in each day. For example, the maximum occupancy on Saturdays is 89% 

of the maximum occupancy on Sunday. The calculated maximum occupancy for each zone is 

presented in Table 25. For spaces such as exhibitions and galleries 

Zone Function Floor 
Maximum 
number of 

people 
Area (m2) Maximum Density 

(people/m2) 

Entrance Ground Floor 14 115.1 0.122 

Shop Ground Floor 18 115.2 0.156 

Café Ground Floor 56 85.95 0.652 

Café sitting Ground Floor 9 85.1 0.106 

Exhibition 1 Ground Floor 43 169.2 0.254 

Exhibition 2 Ground Floor 8 85.49 0.094 

Exhibition 11 Frist Floor 4 99.96 0.040 

Exhibition 17 Second Floor 4 355.2 0.011 

Exhibition 18 Second Floor 10 169.3 0.059 
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Average in Exhibitions 69 879.14 0.078 

Gallery 3  
(18th Century) Frist Floor 4 99.96 0.040 

Gallery 4  
(Late 18th Century) Frist Floor 5 90.92 0.055 

Gallery 5  
(19th Century) Frist Floor 10 77.32 0.129 

Galley 6 
(Romanticism) Frist Floor 3 85 0.035 

Gallery 7  
(Pre-Raphaelites) Frist Floor 14 159.6 0.088 

Gallery 8  
(19th Century) Frist Floor 7 85 0.082 

Gallery 9  
(19th Century) Frist Floor 8 67.72 0.118 

Gallery 10  
(Late 19th Century) Frist Floor 8 79.63 0.100 

Gallery 12  
(The Edwardians) Frist Floor 13 355.2 0.037 

Gallery 14  
Art in the Netherlands Frist Floor 5 88.02 0.057 

Gallery 15  
Art in the Netherlands Frist Floor 2 103.4 0.019 

Gallery 16  
Lowry and Valette Frist Floor 4 143.4 0.028 

Average in Galleries 83 1435 0.058 

Clore Art Studio Frist Floor 21 169.3 0.124 

Design Gallery 19 Second Floor 8 335.6 0.024 

Balcony Frist Floor 9 93.38 0.096 

Bridge Frist Floor 3 87.52 0.034 
Table 25. Calculation of maximum density for each zone, Manchester Art Gallery 

Figure 85 compares the actual average maximum occupancy of each zone within the multi-

functional space in Manchester art gallery with the standard ASHRAE maximum occupancy. 

The data was collected in the month of November to avoid monthly variations. As shown in 

the diagram (Figure 85), the analysis of the data suggests the following gaps: 

• In DesignBuilder, there are default assumptions for reception, eating and drinking 

areas and services in gallery, exhibition and libraries. However, “display and public 

areas (public circulation, galleries and exhibitions)” are all defined under one category.  
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Manchester art gallery contains permanent painting galleries, in addition to, some 

temporary exhibition areas. Occupancy density in exhibitions was about 25% higher 

than permanent gallery areas.  

• This study shows differences in occupancy density and patterns of the entrance and 

other circulation areas. All circulation areas in cultural buildings (galleries, exhibitions 

and libraries) have the same occupancy presumption in energy simulation tools 

including the main entrance, primary staircases and secondary corridors.  

• There are no default assumptions in energy simulation tools for some types of spaces 

in public buildings. For example, most of the cultural buildings have gift shops. 

However, retail spaces and shops are not considered in galleries, exhibition and 

libraries list of spaces. The type of activity and attraction factor in retail units increase 

occupant’s duration of presence. Consequently, such spaces sometimes have much 

higher occupancy density rates than other display and public areas in galleries. For 

instance, in Manchester art gallery, the occupancy in the shop, which is located in the 

centre of the ground floor, is nearly 5 times higher than circulation areas and 3 times 

more than galleries.  
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Figure 85. Predicted VS realistic occupancy of Manchester art gallery (November), UK 

 

5.2.4.4. Door Opening 

Manchester art gallery is included in “The National Heritage List for England (NHLE)” as a 

grade 1 listed building. The original main façade and the entrance door have historic 

importance and are preserved as they are. The heavy wooden entrance door is almost never 

fully open due to its weight. People just open it to the extent that lets them get in and get 

out. The door directly opens to the entrance/lobby space. That is why, in cold seasons the 

lobby area is considerably colder than other spaces. To study the entrance door in 

Manchester art gallery, 23 sets of cross-sectional hourly data were conducted in November. 

Table 26 and figure 86 show the analysis of the observed daily/hourly door opening time 

percentage rounded to the nearest 5. For the purpose of this study, the numbers are rounded 

to the nearest 5 to be used as an input in energy simulation. During weekdays (Monday to 
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Friday), door opening time percentage ranges between approximately 10% in the early hours 

to nearly 50% in peak hours. Door opening peak time is slightly after the occupancy peak hour. 

That is from 14:00 to 15:00, when a great number of the occupants/visitors leave or enter the 

building. In general, galleries, exhibitions and museums are visited more during weekends 

resulting higher occupancy density and door opening time percentage. In peak hours (from 

14:00 to 15:00), the entrance door was open nearly 65% of the time.  

Door opening time percentage, Manchester art gallery 

Days 
Maximum door 
opening time 
percentage 

Minimum door 
opening time 
percentage 

Average daily door 
opening time 
percentage 

Monday to Friday 
50 % 

From 14:00 to 
15:00 

10 % 
From 10:00 to 

11:00 
30 % 

Saturday and Sundays 
65 % 

From 14:00 to 
15:00 

10 % 
From 10:00 to 

11:00 
45% 

Table 26. Average daily door opening ratio in Manchester art gallery (November) 

 

 
Figure 86. Average hourly/daily door opening time percentage rounded to the nearest 5, 

Manchester art gallery (November) 

 

5.2.5. Energy Modelling and Simulation (Collected Data) 
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To avoid the monthly variations of occupancy in gallery buildings, the simulation period for 

the first case study of this research (Manchester art gallery) was a week from 12th to 18th Feb. 

This period is identified by DesignBuilder energy simulation tool as “winter design week” 

which is a week determined by the weather data translator to be the coldest week of the year 

(DesignBuilder). The integration of all observed data with energy simulation tool (including 

working hours, occupancy patter and density, door opening and setback temperature) is 

referred to as the actual energy consumption. The final results of total energy, heating and 

electricity consumption using default and collected data are shown in table 27.  

 

Manchester art gallery 
Simulation Duration: 12-18 Feb (Winter Design week) 

Simulations 
Total Energy 
Consumption 

(kWh) 

Total 
Heating 
(kWh) 

Space 
Heating 
(kWh) 

Total 
Electricity 

(kWh) 
Predicted energy consumption using 
default inputs (with natural ventilation) 4750.13 2557.83 1659.56 2192.3 

Actual door opening data 5220.6 3028.3 2130.03 2192.3 
Actual space zoning No changes in zones 
Actual working hours 4604.27 2411.24 1512.97 2162.99 
Actual working hours and setback 
temperature 4848.53 2582.58 1786.87 2162.99 

Actual working hours, set-back 
temperature and occupancy pattern 
and density  

4608.27 2443.88 1545.61 2162.99 

Realistic energy consumption  5101.32 2936.1 2037.83 2162.99 
Table 27. Final simulation results: the gap between realistic and predicted energy consumption in 

Manchester art gallery 

The quantitative analysis of the simulation results indicates: 

The actual working hours of the building are slightly less than predicted which resulted a 

decrease in the total energy, heating and electricity consumption predictions of the case. 

Also, the realistic occupancy density and pattern of the spaces was another cause of a 

decrease  in the prediction of the total energy consumption. However, the other factors 

including setback temperature and door opening, however, increased the total energy 

consumption prediction of the case. As the multi-functional space had clear boundaries for 

each function in the construction plans used for the initial energy consumption, therefore, 

there was no significant difference between the actual and predicted zoning of the multi-
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functional space of this case. This explains why the results of predicted energy consumption 

using default software inputs are pretty close to the energy consumption presiction using 

realisting inputs. 

The significant gap between the actual door opening time percentage (average maximum 

34%) and software default door opening data (Maximum 5%) caused the most increase in the 

energy consumption of this case in comparison to other parameters studied. 

Because of the historic importance of the displayed paintings in Manchester art gallery, 

temperature and humidity should be controlled strictly. The same rule applies for all 

museums and most galleries and libraries. Therefore, when predicting the energy 

consumption of such buildings, energy modellers should modify the setback temperature 

inputs. After the working hours, setback temperature set-point controls heating and cooling 

systems to maintain the desirable temperature at all times. The initial setback temperature 

assumption of the simulation tool is 12 degree Celsius. In the final energy assessment of the 

case, the actual setback temperature set-point was adjusted to 20 degree Celsius which 

increased the energy consumption.  

Due to the low occupancy density of most zones within the multi-functional space of this case, 

integrating the actual occupancy into the energy simulation tool demonstrated a fall in the 

energy consumption.  

The realistic energy consumption is 7% more than the predicted using software default 

presumptions. Also, the realistic heating consumption is 14% more than the predicted.  

Figure 87 illustrates the gap between realistic and predicted energy consumption of the multi-

functional space in Manchester art gallery, categorised by the sources of energy consumption. 
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Figure 87. Realistic and predicted energy demand in Manchester art gallery, categorised by 

the sources of energy consumption  

 

5.3. Chapter Conclusion 
 

In stage 2 of the case study design in this research, a model simulation method is applied on 

multiple cases at the operation and post-occupancy stages to quantify the gap between 

energy consumption prediction using the standard (software presumptions) and realistic 

(collected data) occupant-behaviour-related inputs. Therefore, for stage 2 case studies 

(student central building, University of Huddersfield and Manchester art gallery), the 

comprehensive data collection was performed and the gaps between realistic and standard 

occupant-behaviour-related parameters in building energy consumption prediction were 

measured. The observation of both cases of this study suggest some of the existing gaps in 

energy consumption assessment of large multi-functional spaces at the operation stage 

including: zoning, working hours, occupancy and door opening. The quantitative analysis of 

both simulation outcomes confirm that using unrealistic occupant-behaviour-related 

assumptions may result considerable gaps between the actual and predicted energy 

consumption in multi-functional spaces. This chapter contains case study description, energy 

modelling and simulation using standard software presumptions, data collection, data 

analysis and energy simulation using the collected data for both cases. The further analysis 

and discussions about the findings of this study is presented in the next chapter.    
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Chapter 6: Discussions and Framework 
 

This chapter includes further analysis of the collected data and energy simulation results 

which were discussed in case study chapters (stages 1 and 2). Following the discussions, the 

final output of this study is presented in form of a conceptual framework which aims to 

improve the accuracy of energy consumption assessment in multi-functional spaces by 

incorporating realistic human-behaviour-related assumptions into energy predictions. This 

chapter also includes refinement and validation of the framework through incorporating 

experts’ comments. The final framework is constructed after applying experts’ comments and 

is presented in this chapter.  

6.1. Discussion 
 

The investigation of building energy modelling and simulation of cases at the design and 

construction stages which were performed comprehensively in chapter 4 (case study stage 

1), demonstrated that human-behaviour-related factors are among the most unknown 

factors during the energy prediction process of multi-functional spaces. Furthermore, the 

detailed analysis of building energy simulation results of the two multi-functional case studies 

of this research at the operation stage (see: case study stage 2 chapter) confirmed that 

insufficient inputs regarding how the buildings are actually used might result inaccurate 

energy consumption predictions in multi-functional spaces. According to the findings of this 

study, the most significant human-behaviour-related gaps in energy assessment of multi-

functional spaces are caused by using non-detailed and unrealistic inputs about building 

working hours, entrance door opening time, occupancy density and pattern and space zoning 

(Figure 88). Particularly, in building types where occupants’ access to building systems are 

restricted. When predicting the energy consumption of buildings, the energy modellers are 

usually concerned about providing accurate inputs about building 3D model, material and 

systems and the aforementioned human-behaviour-related parameters are often 

overlooked. Unavailability of those data, often urge the energy modeller to rely on simulation 

software presumptions. This quantitative analysis of the energy simulation results in this 

study confirm that there may be a considerable gap between energy prediction of multi-
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functional spaces using software standard presumptions and building energy prediction using 

realistic data. 

 
Figure 88. Human-behaviour-related gaps in energy assessment of multi-functional spaces 

 

In the following sub-sections, the findings of this study with regard to the impacts of working 

hours, zoning, door opening time and occupancy on energy consumption in multi-functional 

spaces are further discussed.  

 

6.1.1. Working Hours 
 

Working hours which are sometimes referred to as operation hours, directly affect the energy 

consumption of the buildings. In building energy simulation tools, working hours 

presumptions, for a building or a space in a building, define the time period that HVAC, 

electricity and water are expected to fully function. Therefore, the longer the working hours 

are the more energy consumption is expected to be. The findings of this study confirm that 

reliance on software assumption regarding building working hours may lead to considerable 

inaccuracies in energy consumption predictions. Especially, for some building types with more 

vibrant working hours in different parts of the buildings, specifying the actual working hours 

for each building zone can be easily overlooked during energy modelling and simulation. The 

limited number of studies on energy consumption in public buildings such as galleries, 
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museums, libraries and institutional buildings has left noticeable inaccuracies in building 

energy simulation presumptions regarding the working hours of such building types. In order 

to have more realistic assumption regarding the building’s working hours, this study suggests 

energy modellers to use working hours of similar building types in the region. 

 

6.1.2.  Zoning 
 

Zoning is the act of assigning function to each space, which enables energy simulation tools 

to have initial assumptions regarding occupants’ behaviours and their impacts on building 

energy consumption. This research proves that space design features and particularly space 

layout and furniture are amongst the most important factors defining the functions of spaces 

in multi-functional spaces. Zoning has a substantial importance in energy prediction of multi-

functional spaces which is sometimes overlooked. In large multi-functional spaces various 

functions take place within one physical zone. At design and construction stages, space design 

and furniture data is sometimes unavailable to the energy modeller. However, even during 

the process of energy consumption prediction for buildings at the operation and post-

occupancy stages, space design and furniture data are not usually amongst the provided 

information for the energy modeller. This study confirms that frequently there are significant 

differences between space functions specified through labels on architectural/ construction 

plans and what actually happens after occupancy which may cause significant gaps between 

the actual and predicted energy consumption in multi-functional spaces. By underlining the 

considerable role of space layout and furniture data in energy consumption of multi-

functional spaces, this study suggests to include the aforementioned data as required inputs 

for energy assessment of multi-functional spaces.   

  

6.1.3. Door Opening 
 

Various studies confirm that in public buildings with high flow of people such as commercial 

and institutional buildings, space heating and ventilation are respectively the major sources 

of energy consumption in both cold and hot climates (Roetzel, Tsangrassoulis, Dietrich, & 

Busching, 2010). When the entrance door opening time is high, a great amount of energy is 

wasted through doors. Even electrical air curtains which are placed on top of entrance doors 
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and are used to block and reduce unwanted air exchange, consume energy (Basarir, 2010). 

Despite the significant impact of the unwanted airflow caused by entrance door opening on 

energy consumption in public buildings, it is usually not fully calculated in building energy 

predictions due to its complicated nature. The design characteristics of building openings such 

as doors and windows including their size, type of opening (sliding, swinging, revolving, etc.), 

location on the façade and orientation determine their ventilation rates (Roetzel et al., 2010). 

The comprehensive observation of both post-occupancy cases of this study show that 

entrance door opening time ratio depends not only on the number of people entering and 

leaving the building, but also, on entrance door features including its type (manual or 

automatic), design and ease of use. In automatic doors, the opening time setting can have a 

considerable impact on the door opening time duration. In public buildings, occupants and 

visitors have no control over the above settings. Karlsonn (2013) investigated the energy 

performance and the air infiltration of different building entrance doors. He established that 

entrance doors are the main sources of air infiltration, which is affected by the frequency of 

use. Consequently, different entrances including primary and secondary have different 

impacts on the energy consumption of the building. Figure 89 shows the parameters 

influencing entrance door opening time. 

 
Figure 89. Parameters influencing entrance door opening time 

 

In DesignBuilder, one of the most prominent energy simulation tools associated with 

EnergyPlus energy prediction engine, airflow caused by external doors are considered 

through natural ventilation section (DesignBuilder, 2009). The actual effects of door opening 

will only be calculated if the energy modeller sets natural ventilation setting instead of 

calculated ventilation which is the software default setting. Besides, the software door 

opening time percentage presumption is 5% for all building types and spaces. In addition, it 

considers by default that 50% of the door area is openable. Both door opening time 
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percentage and door openable area percentage are adjustable. Depending on the building 

and entrance characteristics, unrealistic presumptions about door opening time percentage 

and openable area may cause a distinct gap between the building actual energy consumption 

and simulation results. With regard to entrance door opening, the number of people entering 

the building affect its energy consumption; however, effective design can reduce the negative 

impacts significantly. Most of the public buildings have double or revolving entrance doors. 

These types of doors are energy efficient, which reduce the negative impact of high flow of 

people through entrance doors on building’s energy performance. However, the cases 

studied in this research, did not have energy efficient entrances due to their special design 

and historical values. The findings of this study demonstrate that type of entrance door and 

the relationship between the interior layout and the entrance space are amongst influential 

parameters on entrance door opening time duration, which consequently affects the total 

energy consumption of the building.  

 

6.1.4. Occupancy 
 

Occupancy is one of the substantial information required for building energy predictions and 

has been studied broadly (see: 2.4.1. Passive Energy Behaviour: Occupancy). Various 

parameters influence the occupancy density and pattern in multi-functional spaces. Building 

attraction factor, target audience and seasonal factors directly affect the number of visitors 

in multi-functional spaces. For example, the particular historic and cultural importance of a 

buildings may attract a great number of visitors to the building, which eventually increases 

the occupancy in various spaces of the building. Also, the location of a building affects its 

number of visitors which has been pointed out in various studies. Most of the public building 

types have monthly variations in the number of occupants/ visitors. For example, galleries, 

exhibitions and institutional buildings have distinct patters of monthly occupancy, in addition 

to, high and low seasons.  

Furthermore, the findings of this study confirm the substantial impacts of space function and 

the types of activities performed in each zone on the energy consumption in multi-functional 

spaces. The interior furniture of a space has a considerable impact on its density capacity and 

maximum occupancy. Other design-related parameters such as comfort level and availability 

of internet and electricity sockets affect occupant’s duration of presence and consequently 
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has impacts on the occupancy density and energy consumption of the space. In specific spaces 

of buildings, for instance café and eating areas, the availability of free internet and electricity 

sockets may result notable growth in occupants’ duration of presence. In addition, it may 

change the main function of the space from an eating area to a studying space. Many studies 

have confirmed the direct link between comfort (particularly, thermal comfort) and 

occupant’s duration of presence in a space. Similarly, the comfort level of space furniture 

affects occupancy density in a space. This study demonstrates that the duration of activity in 

each zone which may be fixed or flexible, in addition to, the working hours in each zone within 

a multi-functional space affect its occupancy density and pattern. Moreover, the findings of 

this study confirm that there is a direct link between the maximum occupancy density of a 

space and the density capacity provided of the space furniture.  

Figure 90 provides a comprehensive illustration of the factors and sub-factors affecting 

occupancy in multi-functional spaces which is a combination of the findings of this study and 

the existing literature on building occupancy.  

 
Figure 90. Factors and sub-factors affecting occupancy in multi-functional spaces  

 

6.1.5. Key Findings 
 

This study have pointed out some of the most influential human-behaviour-related 

parameters including working hours, occupancy, zoning and door opening on energy 
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consumption in multi-functional spaces. Other key findings of this study suggest that 

considering type of activity in prediction of occupancy is more accurate than type of space. 

Moreover, estimation of the type of activity is associated with the space function which is 

determined by furniture and space design. The findings of this study confirm that to assess 

energy consumption of multi-functional spaces at the operation, post-occupancy and 

maintenance stages, using actual occupancy data is a necessity, which is often overlooked. 

Therefore, presumptions of energy simulation tools regarding occupants’ behaviours should 

be adjusted using the available information through data collection, using online resources 

and the existing literature.  

In the next section, after classification, categorisation and integration of the key findings of 

this study, the final conceptual framework is formulated, validated and refined. The 

conceptual framework illustrates a guideline for energy modellers to reach more accurate 

energy consumption predictions for multi-functional spaces during different stages of 

building’s lifecycle.  

6.2. Development of the Conceptual Framework 
 

A framework is defined as a systems of rules or concepts used to underlie something 

(CambridgeDictionary, 2018). A conceptual framework connects key parameters, variables 

and concepts and constructs their relationships to provide an understanding of the whole 

system (Miles, Huberman, Huberman, & Huberman, 1994). Jabareen (2009) defines 

conceptual framework as an interconnected system and chain of concepts that collectively 

explain a phenomenon. In a comprehensive research study about definitions of conceptual 

framework and procedures of constructing it, Jabareen (2009) suggests a methodology to 

create a conceptual framework following 8 stages: 1- categorisation of the data sources, 2- 

classification of the data, 3- specification of the concepts/ parameters, 4- classification of the 

concepts/ parameters, 5- integration of concepts/ parameters and their relationships, 6- 

synthesis (and resynthesize), 7- validation of the framework, 8- construction of the final 

framework. In this research, the development of the conceptual framework followed three 

main steps: preparation of the initial framework, validation and refinement and formation of 

the final framework. In the next sub-sections each of the mentioned steps are explained. 
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6.2.1. Initial Framework 
 

In order to formulate the initial conceptual framework of this study, first, the results of data 

analysis were categorised and classified. Then, the human-behaviour-related parameters 

which were pointed out through analysis of the cases were specified (See: 6.1. Discussion). 

Finally, the findings of the study were linked with the parameters to create the initial 

framework. The final output of this study is illustrated as a conceptual framework to help 

energy modellers perform more accurate energy consumption assessments in multi-

functional spaces by integrating occupant-behaviour-related factors into the energy 

simulation tools (Figure 91).  

As energy consumption of buildings are assessed throughout different stages of building’s 

lifecycle, the conceptual framework provides separate guidelines for post-occupancy and 

maintenance stages, and design and construction stages. It provides guidelines to incorporate 

the most influential human-behaviour-related parameters, which are highlighted in this study 

(including: working hours, occupancy, zoning and door opening), into energy consumption 

assessment of multi-functional spaces.  
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Figure 91. A conceptual framework to improve the accuracy of energy consumption 

assessment in multi-functional spaces. 

 

Energy prediction of buildings at post-

occupancy and maintenance stages 

Energy prediction of buildings at design and 

construction stages 

• Occupancy should be collected using 
proper techniques (such as 
hourly/weekly observation) and 
used instead of software 
assumptions. 

• The realistic zoning of the multi-
functional space can be reached 
using the actual space furniture. 

• Space working hours data should be 
collected and used in simulation 
software.  

• Similar to occupancy data, the 
realistic entrance door opening time 
should be collected to be used in 
building energy prediction.  

• Adjusting software assumptions 
regarding occupancy, seasonal 
occupancy should be taken into 
account, as well as, occupancy 
pattern and maximum occupancy.   

• Interior design and furniture data 
should be used as the basis for space 
zoning.  

• Space working hours data should be 
adjusted either using the actual 
working hours data or using data 
from similar building types nearby.  

• Door opening software assumptions 
should be adjusted based on the 
type of building and its predicted 
occupancy.  

Table 28. Description of the initial framework 

 

6.2.2. Validation and Refinement 
 

Depending on the nature of study, various methods may be applied for validation of 

frameworks such as using existing literature, experts’ comments, survey and case studies 

(Inglis, 2008). To validate the framework in this study, experts from building energy 

performance research domain and particularly who have experience in energy modelling and 

simulation were asked to give feedback on the conceptual framework (Table 27). For this 

purpose, a summarized document of this research study (including research problem, 

research method, findings and the conceptual framework) was presented to them (Appendix 

1). For the validation of the framework, 10 experts were contacted, 6 of them accepted to 

take part and 4 validated the framework. The profile of experts who took part in the validation 

of framework is presented in table 29.  
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Expert 
no. Description 

V1 
• Associate professor in sustainable and energy-efficient buildings 
• Expert in energy modelling and simulation 

V2 
• Architect, specialized in sustainable design 
• Expert in energy modelling and simulation 

V3 
• Researcher in building energy performance 
• Expert in occupants ’behaviours and energy consumption research domain 
• Certified passive-house consultant 

V4 

• Professor of built environment 
• Leading researcher and expert in occupant behaviours, adaptive thermal 

comfort and thermal environment 
• Skilled at energy modelling and simulation 

Table 29. Profile of experts in building energy performance 

The experts’ comments and their feedback on the framework are presented in the following 

sub-sections (see: 6.2.2.1. to 6.2.2.4.).  

 

6.2.2.1. Comments from expert V1  
 

V1 found the summarised document interesting and well-structured and did not require any 

more information to fully understand the framework. V1 made two comments about the 

types of occupants’ behaviours and the missing information during the design stage:  

• V1 mentioned that some other aspects of occupants’ behaviours, such as the reaction 

of users to lighting conditions (visual comfort), were not included in the study because 

of the type of spaces that were investigated. However, the activation (or not) of solar 

shading / filtering devices by the users, as a reaction to their perception of visual 

comfort, can alter significantly the actual energy consumption of the building 

according to the amount of solar radiation that enters the spaces. Depending on the 

case, there may be other types of occupant’s behaviours affecting the energy 

consumption of the building which is better to be mentioned somewhere in the 

framework even if no further work has been done about it.  

• V1 pointed out that the availability of information during the design stage, 

undoubtedly generates massive variations in the amount and quality of the inputs 
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used for building energy performance analysis, however, it is important that the 

framework covers in more details how the missing information could be retrieved for 

instance from the existing literature. 

6.2.2.2. Comments from expert V2 
 

V2 found the method of the study very interesting and made different questions and then 

gave some comments about the framework: 

• V2 asked which software was used for the study. The name of the software used for 

energy analysis of the cases was not mentioned in the summarised document, as the 

framework did not intend to provide guideline for a particular energy simulation tool. 

However, V2 made a notable comment that although most of the energy simulation 

tools have more or less similar inputs, but, there are slight differences. Therefore, it 

will be more accurate to mention that you are giving suggestions particularly based 

on DesignBuilder software interface.  

• V2 suggested to provide a clear definition of zoning and further explain how interior 

design and furniture data can be used for zoning.  

• V2 also mentioned the unclear boundary between design and construction stages of 

a building, as design phase usually extends till the end of construction phase. V2 

suggested to include the definition of design and construction stages.  

 

6.2.2.3. Comments from expert V3 
 

V3, first, suggested a recently published paper by M. M. Ouf, O’Brien, and Gunay (2018) which 

discussed refinement of occupant-behaviour-related inputs in building energy simulation 

tools. The paper provides a broader categorization of actions required to improve default 

assumptions of building energy simulation tools regarding occupants’ behaviours. Then, V3 

made excellent comments to develop the framework: 

• V3 recommended that each stage (design/ construction and Post-occupancy/ 

maintenance) shall branch out to 3 human-behaviour-related points: occupancy cycle, 

door control or opening and zoning. In this categorisation, occupancy and working 

hours are grouped as one. 
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• V3 suggested to use the term “occupancy cycle” instead of occupancy which includes 

five main elements:  

1. Seasonal occupancy 

2. Occupancy density 

3. Occupancy pattern (movement, activity and duration spent within zones) 

4. Working hours/occupancy schedule or period  

5. Arrival and departure  

 
Figure 92. Refinement of framework, V3 comments 

• V3 pointed to further expand the framework by adding constraints, as well as, 

relationships between the human-behaviour-related factors in the framework. For 

example, accessibility to the control system, in this case, the door control is a 

constraint and there is a relationship between the occupancy schedules, 

arrival/departure ad door opening time. Also, for the use of actual furniture, the 

freedom to adjust interior design and whether the space is private/shared might 

create constraints (Jakubiec & Reinhart, 2011).  

• To improve the table, V3 suggested to mention various techniques for collecting 

occupancy and control: IOE, use of sensors and monitoring. 
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6.2.2.4. Comments from expert V4 
 

V4, like V1, made comments about the types of human-behaviour-related factors which are 

considered in the framework.  In the multi-functional spaces investigated in the study, 

however, occupants have no control over various building systems such as windows which 

was particularly asked by the expert. V4, also, suggested exploring a study by H. B. Rijal et al. 

(2007) that used field surveys and simulation to predict occupants’ windows opening 

behaviour and its impacts on thermal comfort and building energy consumption.  

 

6.2.2.5. Analysis of experts’ comments 
 

In order to refine the initial framework using the experts’ comments, classification and 

analysis of the comments are performed in this section which is presented below: 

• Almost all the experts involved in the validation and refinement of the framework 

suggested to add more details and definitions to the framework and expand the table.  

• A number of the experts suggested to either mention or include other types of 

occupant’s behaviours which might happen in other cases of multi-functional spaces. 

• Some of the experts mentioned to improve the framework by providing information 

about the inter-relationship between its parameters.  

 

6.2.3. Final Framework 
 

After applying experts’ comments and suggestions, the final framework of this study is 

developed and presented in this sub-section. The final framework of this study provides 

guidelines to improve the accuracy of energy consumption assessment in multi-functional 

spaces by incorporating realistic occupant-behaviour-related inputs into energy simulation 

tools (Figure 93). As the focus of this study has been on energy assessment of multi-functional 

spaces at different stages of the building’s lifecycle, the final framework is constructed in two 

sections: section 1, for the buildings at the design and construction stages, and section 2, for 

buildings at the operation, post-occupancy and maintenance stages. The main difference 

between the two sections of the framework is the availability of actual occupant’s behaviours 

data. For buildings at the operation and maintenance stages, collecting occupant-behaviour-
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related data and adjusting software presumptions is explained in the framework. However, 

the framework offers more guidelines for buildings at the design and construction stages, 

explaining how to use the existing data to have more accurate assumptions regarding human-

behaviour-related factors. In the following sub-sections (see: 6.2.3.1. and 6.2.3.2.), both 

sections of the framework are explained broadly. 
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Figure 93. Final framework 
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6.2.3.1. Final framework: buildings at the operation and maintenance stages 
 

In this research, through investigation of multiple cases of multi-functional spaces in galleries 

and institutional buildings, the gaps and insufficiency of inputs in energy simulation tools to 

address occupant-behaviour-related parameters have been pointed out and discussed. The 

below framework is constructed to attain more realistic inputs for energy analysis of buildings 

at the operation and maintenance stages (Figure 94). The framework provides guidelines to 

integrate four human-behaviour-related parameters that have been pointed out in this 

research into building energy assessment process: working hours, zoning, occupancy and 

door opening. The relationship between the aforementioned parameters are illustrated in the 

framework with an orange line. 

 
Figure 94. The final framework for buildings at the operation and maintenance stages 
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The detailed description of each of the parameters in the framework and their relationships 

are provided in table 30. 

Energy prediction of multi-functional spaces at the operation and maintenance stages 

Parameter Description 

Working hours • For energy assessment of multi-functional spaces, not only the 

actual working hours of the building, but also, the working hours 

of each space/ or zone should be collected and then used to adjust 

software assumptions.  

Occupancy • Occupancy is related to working hours and zoning.  

• To integrate realistic occupancy data into building energy 

simulation tools, three sets of occupancy-related data should be 

collected: maximum occupancy density, occupancy pattern and 

seasonal occupancy. 

• For buildings at the operation and maintenance stages, all 

occupancy related data should be collected using proper 

techniques such as hourly/weekly observation, which is 

comprehensively presented in this study (see: 5.1.3. and 5.2.3. 

Data Collection) or other methods like IoE, use of sensors and 

various monitoring techniques. The collected data should then be 

used to adjust software assumptions.  

• To attain maximum occupancy density, for each zone, the space 

furniture and its maximum capacity should be taken into account.  

Door opening • Entrance door opening time is related to working hours and 

occupants’ arrival and departure. Therefore, the more the 

occupancy density is, the higher door opening time is expected to 

be. Entrance door opening time is related to space layout and 

zoning too.   

• Similar to occupancy data, the realistic entrance door opening 

time should be collected and then used to adjust software 

assumptions (see: 5.1.4.5. and 5.2.4.4.).  
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Zoning • Zoning means to specify function to each zone within a space, 

which allows energy assessment tools to have default occupant-

behaviour-related assumptions. To assign the realistic function to 

each zone, space furniture should be taken into account. 

• Observation of occupants’ activities in different zones within the 

multi-functional spaces, together with, using space furniture data 

leads to more realistic zoning. The actual zoning should then be 

used for the energy assessment.   

• In multi-functional spaces where more than one main function 

takes place, the space furniture is a reliable source to specify the 

type of activity. For example, the presence of some sitting areas in 

the entrance area or corridor changes the function of the space.  

Other types of 

occupants’ 

behaviours 

• In case studies investigated in this research, the human-

behaviour-related factors were limited to working hours, 

occupancy, door opening time and zoning. However, in multi-

functional spaces of other types of buildings, occupants may have 

less restrictions to interact with building systems. In order to 

provide realistic inputs in energy simulation tools about any other 

types of occupants’ behaviours, data collection should be planned 

and performed.  

Table 30. Description of the framework for buildings at the operation and maintenance stages 

 

6.2.3.2. Final framework: buildings at the design and construction stages 
 

There is no doubt that prediction of energy consumption for buildings at the design and 

construction stages will always have a certain degree of uncertainty. This is due to 

unavailability of various types of information which has been broadly discussed in this study 

(see: 2.1. Energy Consumption in Buildings). However, using more realistic inputs will increase 

the accuracy of the energy consumption predations and decrease the performance gap 

between actual and predicted energy consumption in buildings. The final framework of this 

study is constructed to increase the accuracy of energy consumption prediction of multi-
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functional spaces by providing guidelines to attain more realistic occupant-behaviour-related 

inputs.  The framework for buildings at the design and construction is slightly more detailed 

in comparison to the framework section for buildings at the operation and maintenance 

stages, however there are various similarities between the two sections of the framework. 

The comprehensive explanation of the parameters in the framework and their relationships 

are presented in table 31. 

 
Figure 95. The final framework for buildings at the design and construction stages 

 

Energy prediction of multi-functional spaces at the design and construction stages 

Parameter Description 

Working hours • Working hours of the building, each space or zone are required 

for energy assessment of multi-functional spaces.  
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• If the working hours of the building and its spaces are available, 

they should be used to adjust software assumptions. 

• If the working hours of the building and its spaces are unknown 

or unavailable, the findings of this study suggest to use working 

hours of similar building types to adjust software working hours 

presumptions. Various sources such as Google popular times 

provide real-time data about working hours of different buildings 

worldwide. 

Occupancy • Occupancy is related to working hours and zoning.  

• To attain realistic occupancy data for energy consumption 

prediction of buildings at the design and construction stages, 

three sets of occupancy-related data should be collected: 

maximum occupancy density, occupancy pattern and seasonal 

occupancy. 

• To achieve maximum occupancy density, for each zone, the space 

furniture and its maximum capacity should be taken into account. 

There is a link between the maximum capacity of a space and its 

furniture.  

• To predict occupancy pattern, this study suggests to use 

occupancy pattern of similar building types to adjust software 

occupancy presumptions. Various sources such as Google popular 

times provide real-time data about occupancy patterns of 

different buildings worldwide. 

Door opening • Entrance door opening time is related to working hours, 

occupancy density and pattern and zoning.  

• Door opening software assumptions should be adjusted based on 

the type of building and its predicted occupancy and working 

hours. 

Zoning • In multi-functional spaces where more than one main function 

takes place, the space furniture is a reliable source to specify the 

type of activity. 
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• To assign the realistic function to each zone, space furniture 

should be taken into account. For example, presence of some 

sitting areas and tables alongside the corridor changes its main 

function from circulation area to sitting area. In addition to space 

furniture, other space design features and facilities, such as the 

availability of electricity sockets can transform the main function 

of a sitting area to a studying area. 

• Space furniture data is suggested be requested by the energy 

modeler before energy simulation.  

Other types of 

occupants’ 

behaviours 

• More realistic assumptions about any other types of occupants’ 

behaviours could be retrieved from the existing literature.  

Table 31. Description of the framework for buildings at the design and construction stages 

 

6.3. Chapter Conclusion 
 

In this chapter, discussions about research findings and development of the final framework 

are deliberated. The gaps in existing energy simulation tools to address four human-

behaviour-related parameters including working hours, zoning, door opening and occupancy 

are discussed in this chapter. Furthermore, different stages of framework development are 

discussed and the final framework is constructed after validation and refinement. In the next 

chapter final conclusion, research limitations and future work are presented. 
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“It is good to have an end to journey toward; but it is the journey that matters, in the end.” 

(K. Le Guin, 2017) 
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Chapter 7: Conclusion 
 

This chapter includes the conclusion, research limitations and future work. The conclusion 

section provides a summary of research problem and research findings. The research findings 

section is constructed to follow research objectives and explain how the study have addressed 

each objective.  

7.1. Conclusion  
This section includes a summary of this thesis to demonstrate how research objectives are 

achieved. For this, the summary of research problem and key research findings are discussed 

below.  

 

7.1.2. Summary of Research Problem 
 
Various statistics show that building sector accounts for approximately 40% of the total yearly 

energy consumption worldwide. Therefore, building energy assessment has progressively 

become an essential process during different stages of building’s lifecycle, over the last 15 

years. Various studies confirm that occupants’ behaviours have not been fully reflected into 

building energy assessment. The gap between the actual and predicted energy consumption 

in buildings has prompted scholars around the world to investigate the sufficiency of energy 

simulation software presumptions regarding how the buildings are actually used and 

occupants’ behaviours. In order to calculate the energy consumption of a building with an 

energy simulation tool, the energy modeller has to provide information regarding the building 

type, which enables the software to use specific presumptions such as the working hours and 

schedules. In addition, the function of every space/zone of the building should be defined, as 

space function enables the energy simulation tools to apply the level of occupancy and type 

of activity, required lighting and ventilation, comfort temperature, use of hot water and 

electricity. It is often challenging to specify the space function for large multi-functional 

spaces in buildings such as public galleries and institutional buildings where various functions 

take place within one large space. For energy assessment of multi-functional spaces, in order 

to specify te function of each zone within the multi-functional spaces, space layout design and 

furniture should be incorporated into building simulation tool which is often overlooked. The 
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focus of this research has been on investigating the impacts of occupants’ behaviours on 

energy consumption in multi-functional spaces (See: 2.5. Research Focus). In addition, the 

integration of the findings with building energy assessment process has endeavoured to 

bridge the gap between theory and practice. 

 

7.1.3. Summary of research method 
 

In order to investigate the Impact of occupants’ behaviours on energy consumption in multi-

functional spaces, multiple cases at different stages of building’s lifecycle has been 

investigated. Case study design of this research consists of two stages. In stage 1, the existing 

gaps and insufficiency of human-behaviour-related parameters in energy assessment of 

multi-functional spaces at the design and constructio stages has been studied. In stage 2, a 

model simulation method was applied on two large multi-functional spaces in a gallery and 

an institutional building both located in the North England. Human-behaviour-related factors 

were observed in 38 zones of two cases for 2 weeks. The quantitative analysis and comparison 

of collected data with the presumptions of one of the most prominent energy simulation tools 

(DesignBuilder and EnergyPlus) suggested potential causes of inaccuracy in energy 

consumption prediction of multi-functional spaces. For each of the cases in this study, 

multiple energy simulation was performed to compare the energy consumption using realistic 

and standard occupant-behaviour-related inputs. For student central building, the final result 

of the energy simulation tool using default and realistic occupant-behaviour-related inputs 

are presented in appendixes 2 and 3, respectively. The final outcome of this research is a 

conceptual framework to provide guidelines for energy modellers to incorporate realistic 

occupant-behaviour-related inputs into building energy assessment. The conceptual 

framework was refined and validated by experts’ comments.  

 
 
7.1.4. Summary of research findings 
 
The summary of key findings of this study is presented in the following sub-sections under 

each of the research objectives.    
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7.1.4.1. Objective 1 
 
The first objective of this study was to investigate existing literature on the impacts of 

occupants’ behaviours on energy consumption in buildings. The comprehensive literature 

review was followed by identification of the existing gaps in the subject area through a 

comprehensive quantitative analysis and qualitative review (See: 1.2.2. Research Objectives).  

The most significant gaps in the existing knowledge are presented below: 

• The comprehensive literature review demonstrates that approximately 75% of current 

studies on the impacts of occupants’ behaviours on energy consumption in buildings 

are focused on residential and office buildings. Thus, there are limited studies in this 

research domain on other building types such as exhibitions, galleries, museums and 

recreational, institutional and healthcare facilities that require further investigations. 

• Most of the existing studies have investigated the impacts of occupants’ behaviours 

on single buildings or flat units. However, inadequate studies have explored the 

impacts at the macro (such as urban scale) and micro levels (single or multiple zones) 

forming profoundly recommended research areas.  

• Several influential parameters on occupants’ energy consumption behaviours have 

been studied extensively by various scholars. However, understanding the correlation 

between the aforementioned parameters remains obscure and inadequate that needs 

further studies. In future research, machine-learning techniques should be applied to 

combine various influential parameters on occupants’ energy consumption 

behaviours.  

• Similarly, various types of occupants’ energy consumption behaviours and types of 

occupants’ interactions with building systems (such as opening windows, using 

appliances and adjusting HVAC set points) have been investigated broadly in existing 

studies. However, there are inadequate research on the inter-relationship between 

occupants’ various types of energy consumption behaviours. Further studies are 

required to explore the holistic energy consumption behaviour of occupants to 

integrate them into building energy predictions. 

• The incorporation and integration of the quantitative findings of the existing studies 

into the building energy simulation tools has yet to be achieved, particularly, to 
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improve the sufficiency and accuracy of default occupant-behaviour-related 

assumptions. This will consequently contribute in reducing the gap between predicted 

and actual energy consumption in buildings.  

 
7.1.4.2. Objective 2 
 

The second objective of this study was to establish research focus and method to study the 

influence of occupants’ behaviours on energy consumption in multi-functional spaces (See: 

1.2.2. Research Objectives). Research focus was shaped to contribute in addressing three 

existing gaps in the knowledge:  

• First, the study has focused on multi-functional spaces of galleries and institutional 

buildings that need further investigations due to insufficiency of knowledge in the 

existing literature.  

• Second, the impacts of space design as an influential parameter on occupants’ energy 

consumption behaviours have been investigated in this study.  

• Third, applying model simulation method with the aim to incorporate the findings into 

energy simulation tools. For this, the realistic observed occupant behaviour data was 

integrated into DesignBuillder energy simulation tool to highligt the difference 

between the energy simulation outcomes using standard software assumptions and 

analysis based on actual observations. 

In this research, occupants’ energy consumption behaviours and their impacts on energy 

consumption of buildings were studied through multiple case studies. The cases were large 

multi-functional spaces at different stages of building’s life cycle. Therefore, the case study 

design of this research study consists of two stages: stage 1, for buildings at the design and 

construction stages that actual occupant’s behaviour data is unavailable, and stage 2, for 

buildings at the post-occupancy and operation stage. 

 

7.1.4.3. Objective 3 
 
The third objective of this study was to analyse energy consumption of multi-functional cases 

at different stages of building’s lifecycle by comparing default software presumptions 
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regarding human-behaviour-related factors with the realistic collected data (See: 1.2.2. 

Research Objectives). The comparison between the two aforementioned simulation 

outcomes enabled further investigation of the potential gaps in energy assessment with 

regard to occupant-behaviour-related factors. Therefore, four cases at different stages of 

building’s lifecycle were studied. The case study design of this research is developed in two 

stages.  

Stage 1 is applied on cases at the design and construction stages which is presented 

comprehensively in chapter 4. Therefore, two cases, one, at the design stage and the other 

one, at the construction stage have been investigated to point out the existing gaps and 

insufficiency of information in building energy simulation tools to reflect realistic human-

behaviour-related parameters. Stage 1 of the case study design consists of three steps 

including preparation of information, energy modelling and simulation and analysis of the 

existing gaps. The analysis of the first case confirmed that during design stage, lack of 

sufficient information about building material, HVAC systems, technical detailing, in addition 

to, space function, building working hours and occupants’ behaviour data may result 

considerable gaps between the actual and predicted energy consumption on multi-functional 

spaces. Furthermore, the analysis of the second case suggested that during construction 

stage, when building material and systems are finalised, still unavailability of occupants’ 

behaviour and space furniture data may cause inaccuracies in energy consumption 

predictions of multi-functional spaces. The study was then further expanded to investigate 

energy consumption of multi-functional spaces in buildings at the operation and post-

occupancy stages.  

Hence, stage 2 of the case study design was developed to explore and quantify the impacts 

of human-behaviour-related factors on energy consumption in multi-functional spaces of 

buildings at the operation stage which was pointed out through stage 1 case study analysis 

(see: chapter 5, case study stage 2). Therefore, a model simulation method consisting of the 

following steps were applied on two multi-functional spaces: preparation of information, 

energy modelling and simulation of the cases using default software presumptions, data 

collection with focus on occupants’ energy behaviours, energy simulation of the cases using 

the realistic collected data, comparison and analysis of the two simulation results (using 

software default assumptions and the realistic collected data) for both cases. The analysis of 
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the findings of stage 2 case studies indicate that using non-detailed and unrealistic human-

behaviour-related inputs, particularly, regarding entrance door opening time, occupancy 

density and pattern, space zoning and building working hours can result considerable gaps in 

energy assessment of multi-functional spaces.  

 

7.1.4.4. Objective 4 
 

The fourth objective of this study was to analyse the collected data and the results of the 

energy simulations to formulate a conceptual framework to improve the accuracy of energy 

consumption assessment in multi-functional spaces (See: 1.2.2. Research Objectives). The 

conceptual framework developed in this research provides guidelines for energy modellers to 

reach more realistic energy consumption predictions in multi-functional spaces by 

incorporating realistic occupant-behaviour-related inputs into building energy assessment. 

Further quantitative analysis of the collected data and simulation outcomes pointed out the 

most significant human-behaviour-related parameters in energy consumption of the cases 

(See: Chapter 6 Discussions and Framework). After categorisation, classification and 

specification of the influential parameters and their relationships, the initial conceptual 

framework was developed.  

 

7.1.4.5. Objective 5 
 
The fifth objective of this study was to validate and refine the initial conceptual framework 

through experts’ comments (See: 1.2.2. Research Objectives). For this, a summarized 

document of this research study was presented to a group of international experts from 

building energy performance research domain who are expert or adequately skilled in 

building energy modelling (See: Chapter 6 Discussions and Framework). The summarized 

document included research problem, research method, findings and the conceptual 

framework. The experts’ comments were collected, categorised and used to refine the 

conceptual framework. The final framework was then constructed after applying experts’ 

comments. The final conclusion, research limitations and future work were then investigated 

and presented in chapter 7.  
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7.2. Contribution to Knowledge 
 

The findings of this research have various contributions to knowledge, both theoretical and 

practical (See: 1.4. Contribution to Knowledge, Uniqueness and Novelty) which are further 

explained in the following sections (7.2.1. and 7.2.2.).  

 
7.2.1. Theoretical Contribution 

 

This study has several theoretical contributions to knowledge as it has addressed some of the 

existing gaps in the literature:  

• Occupant’s behaviour is often recognised as a disregarded area in building energy 

assessment causing inaccuracies in energy predictions. In this study, the impacts of 

occupants’ energy consumption behaviours on energy performance in buildings was 

studied and investigated comprehensively. 

• There is limited and insufficient existing knowledge about energy performance in 

multi-functional spaces of public buildings (such as galleries, exhibitions and 

institutional buildings) and the energy consumption behaviours of occupants/users in 

such spaces. By focusing on the aforementioned spaces and building types, this 

research has contributed in filling one of the gaps in the literature.  

• This research has measured and quantified the potential gap between actual and 

predicted energy consumption in multi-functional spaces caused by insufficient and 

inaccurate human-behaviour-related inputs in building energy predictions. 

• Despite most of the studies in this research domain that focus on one specific type of 

activity only (such as window opening and electricity consumption), in this study, the 

overall energy consumption behaviour of occupants has been investigated. This 

approach, delivers a more realistic and holistic understanding of the impact of 

occupants on energy consumption in multi-functional spaces.  

 

7.2.2. Practical Contribution 
 

The practical contributions of this study are beneficial for building energy modelling and 

simulation industry. The main beneficiaries are building energy simulation software 
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developers and energy modellers, however, it is also useful for researchers, designers and 

policy makers. 

• This research has contributed in improving the accuracy of energy simulation software 

by highlighting software gaps and insufficiency of information to address occupants’ 

behaviours in multi-functional spaces of public buildings. Therefore, the findings of 

this study are particularly beneficial for building energy simulation software 

developers.  

• One of the final outcomes of this research is a conceptual framework for energy 

modellers to reach more realistic energy predictions in multi-functional spaces by 

integrating realistic human-behaviour-related parameters into the energy modelling 

and simulation process (see: 6.2.3 Final Framework). 

 

The next sub-section expands on how the conceptual framework is beneficial for energy 

modellers to produce more reliable human-behaviour-related inputs for their building energy 

assessment.  

 

7.2.2.1. Practical Contribution: Conceptual Framework 
 

The conceptual framework is constructed in two sections. Depending on the stage of 

building’s lifecycle that the energy modeller is willing to run the energy simulation for a multi-

functional space in a public building, they can refer to one of the two sections of the 

conceptual framework: operation and maintenance stages, and design and construction 

stages (see: 6.2.3 Final Framework).   

The first section is formulated to be used for energy modelling and simulation of the multi-

functional spaces of public buildings at the operation and maintenance stages (See: 6.2.3.1 

Final framework: buildings at the operation and maintenance stages). By referring to the 

conceptual framework, the energy modeller finds guidelines to adjust human-behaviour-

related inputs before running the energy simulation. Zoning, occupancy, door opening and 

working hours, are the four main human-behaviour-related factors in multi-functional spaces 

of public buildings that the conceptual framework has focused on. The framework, also, 

indicates the interrelationship between the aforementioned human-behaviour-related 

factors that should be taken into account to have more realistic energy performance 
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assessment inputs. Accordingly, for each of the parameters, the framework suggests some 

steps. For example, in order to adjust energy simulation software assumption regarding 

occupancy in a multi-functional space of a public building at the operation and maintenance 

stages, the framework suggests to collect “maximum occupancy”, “seasonal occupancy” and 

“occupancy patterns” data from the multi-functional space. The combination of the three 

occupancy-related sets of data would produce a more realistic occupancy input for the 

building energy assessment.  

The second section is constructed to be used for energy modelling and simulation of the multi-

functional spaces of public buildings at the design and construction stages where real-time 

data is unavailable (See: 6.2.3.2 Final framework: buildings at the design and construction 

stages). Similar to the first section, in the second section, the conceptual framework contains 

series of guidelines and suggested steps on how to adjust software assumptions regarding 

human-behaviour-related factors in multi-functional spaces at the design and construction 

stages. For example, in order to use more realistic inputs regarding working hours, the 

conceptual framework suggests to use the available scheduled working hours of the building 

instead of relying on energy simulation software presumptions. If the working hours data of 

the building and its spaces are unavailable, the energy modeller is suggested to use working 

hours of similar building types which can be extracted from various recourses such as “Google 

popular times” which provides real-time data about public buildings.  

Using more realistic inputs for building energy predictions contributes in increasing their 

accuracy and decreasing the performance gap between actual and predicted energy 

consumption in buildings. 

 

7.3. Research Limitations 
 

In this research study, four cases at different stages of building’s lifecycle (including design, 

construction and operation) were investigated. The quantitative findings of this study do not 

aim to provide a general statement, instead, they point out the possible causes of inaccuracy 

in energy consumption prediction of multi-functional spaces, the potential gaps and 

insufficiency of information. However, applying a similar method on a large number of cases 
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may lead to more accurate general assumptions regarding occupancy and occupant-

behaviour-related parameters.   

In addition to constraints regarding the number of case studies investigated in this research, 

the duration of data collection was another limitation. The focus of this study was on hourly 

and daily, however, to predict yearly and monthly energy consumption more accurately, the 

duration of data collection should be extended, which was not possible because of time 

limitations in this study.  

In accordance with the aim of this study, which is to decrease the gap between actual and 

predicted energy consumption in multi-functional spaces at different stages of building’s 

lifecycle, the occupants’ realistic behaviours were collected and then integrated into the 

building energy simulation tool (See: 2.1. Research Aim). In similar studies on building energy 

performance, the actual energy consumption is found through energy bills and/or energy 

meters. However, unavailability of such data for the multi-functional spaces of the cases , 

which are specific zones inside the buildings, is a remaining limitation in this study. The 

comparison between the predicted energy consumption of the cases using collected data 

with their actual energy consumption could provide further understanding on the impacts of 

occupants’ behaviours on energy consumption in multi-functional spaces. Limited responses 

from experts in the research domain for validation of the final framework is another limitation 

in this study which provides an area for future work.  

7.4. Future Work 
 
Several gaps in the existing literature on the impacts of occupants on building energy 

consumption has been pointed out (See: 2.4.4. Existing Gaps in the Literature). This research 

has focused on three gaps (See: 2.5 Research Focus), which remains other gaps to be 

investigated in future studies.  

For future work, the method of this study can be applied on series of multi-functional spaces 

in similar building types (such as museums, libraries, galleries, etc.) to enable development of 

accurate general assumptions.  

Different influential factors affecting occupants’ energy consumption behaviours in buildings 

have been pointed out in numorous research studies (See: 2.2.2. Parameters influencing 

occupants’ energy behaviour). Applying machine learning techniques, makes it possible to 
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analyse large and complex occupant’s behaviour data by considering and integrating several 

influential parameters. The knowledge derived from studies such as this research, provide 

inputs to make machine learning algorithms to predict occupant’s energy consumption 

behaviours.  This ultimately leads to more accurate building energy predictions, consequently, 

minimizing the performance gap between actual and predicted energy consumption. 

7.5. Final Words 
 

In this chapter, a summary of research problem, method and findings and the key conclusions 

of this study has been discussed. Also, the chapter demonstrates how the aim and objectives 

of this study have been achieved. The final outcome of this study is a conceptual framework 

that provides guidelines to improve the accuracy of energy consumption assessment in multi-

functional spaces by incorporating realistic occupant-behaviour-related inputs into energy 

simulation tools. The limitations of the study are identified and the future research areas are 

introduced. The study has both theoretical and practical contributions to reduce the gap 

between predicted and actual energy consumption in multi-functional spaces and has a great 

potential to be further expanded and developed. 
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Appendix 1: Research Summary Document Sent to Experts for Validation of 
the Framework 
 

The Impacts of Occupants’ Behaviours on Energy 
Consumption in Multi-Functional Spaces 

 

It has been widely acknowledged in the literature that there is a distinct performance gap 
between predicted and actual energy consumption of buildings which has attracted scholars 
across the world to investigate the sufficiency of software inputs and presumptions regarding 
how the buildings are actually used. 

 

This research intends to develop a conceptual framework to improve the accuracy of energy 
consumption assessment in multi-functional spaces at different stages of building’s lifecycle  
by integrating the impacts of occupants’ behaviours into building energy predictions to 
reduce the gap between actual and predicted energy consumption.  
 
In this quantitative research, a model simulation method is applied on multiple cases at 
different stages of the building lifecycle including design, construction and post-occupancy.  

 
The first two cases are large multi-functional spaces at the design and construction stages, 
which were studied to address the missing information and potential gaps in energy 
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modelling and simulation (stage 1). The study was then taken forward using case studies at 
the post-occupancy stage to integrate the actual observed data into the building energy 
simulation tool. For each of the cases, energy simulation was run twice: first, using default 
values of the software, and second, using the collected data (Stage 2). The data collection 
included hourly observation of 38 zones in both cases at the post-occupancy stage for the 
duration of two weeks, in addition to, using available governmental and real-time statistics.  

 
The analysis of energy simulation results using default software values and collected data 
highlighted that lack of sufficient information regarding building working hours, space layout 
and function, occupancy density and schedules, the entrance door opening time and HVAC 
set-points may result significant performance gaps in energy consumption prediction of multi-
functional spaces in institutional buildings and galleries.  

 
Simulation Results: The Gap 

 

Gaps in energy 
assessment of 

multi-functional 
spaces

Zoning 
and 

Functions

Occupancy

Door 
Opening

Working 
Hours
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Framework 
 

The conceptual framework provides guidelines to incorporate some of the most influential 
human-behaviour-related parameters, which are highlighted in this study (working hours, 
occupancy, zoning and door opening), into energy consumption assessment of multi-
functional spaces. 

A conceptual framework to improve the accuracy of energy consumption assessment in multi-
functional spaces 

Energy prediction of buildings at post-
occupancy and maintenance stages 

Energy prediction of buildings at design and 
construction stages 

• Occupancy and door opening data 
should be collected using proper 
techniques (such as hourly/weekly 
observation) and used instead of 
software assumptions. 

• The realistic zoning of the multi-
functional space can be reached using 
the actual space furniture. 

• Space working hours data should be 
collected and used in simulation 
software.  

• Adjusting software assumptions 
regarding occupancy, seasonal 
occupancy should be taken into 
account, as well as, occupancy pattern 
and maximum occupancy.   

• Interior design and furniture data 
should be used as the basis for space 
zoning.  

• Space working hours data should be 
adjusted either using the actual 
working hours data or using data from 
similar building types nearby.  

• Door opening software assumptions 
should be adjusted based on the type 
of building and its predicted occupancy.  
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Appendix 2: Student Central Building, Energy Simulation Using Default Data 
 

For each of the cases in this study, multiple energy simulation was performed to compare the 

energy consumption using realistic and standard occupant-behaviour-related inputs. 

Appendix 2 presents selected parts of the final results of energy simulation tool for student 

central building using default software data. 

 

Program Version:EnergyPlus, Version 8.5.0-c87e61b44b, YMD=2018.06.05 10:32 

Tabular Output Report in Format: HTML 

Building: Building 

Environment: UNTITLED (17-02:23-02) ** FINNINGLEY - GBR IWEC Data WMO#=033600 

Simulation Timestamp: 2018-06-05 10:32:34 

 

Report: Annual Building Utility Performance Summary 

Timestamp: 2018-06-05 10:32:34 

Values gathered over 168.00 hours 
 
 

WARNING: THE REPORT DOES NOT REPRESENT A FULL ANNUAL SIMULATION. 
 
 
Site and Source Energy 
 

 Total Energy 
[kWh] 

Energy Per Total Building Area 
[kWh/m2] 

Energy Per Conditioned Building Area 
[kWh/m2] 

Total Site 
Energy 7978.15 1.91 1.91 

Net Site Energy 7978.15 1.91 1.91 

Total Source 
Energy 26495.92 6.36 6.36 

Net Source 
Energy 26495.92 6.36 6.36 

 
 
Site to Source Energy Conversion Factors 
 
 
 Site=>Source Conversion Factor 

Electricity 3.167 

Natural Gas 1.084 
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District Cooling 1.056 

District Heating 3.613 

Steam 0.250 

Gasoline 1.050 

Diesel 1.050 

Coal 1.050 

Fuel Oil #1 1.050 

Fuel Oil #2 1.050 

Propane 1.050 

Other Fuel 1 1.000 

Other Fuel 2 1.000 
 
 
Building Area 
 
 Area [m2] 

Total Building Area 4167.04 

Net Conditioned Building Area 4167.04 

Unconditioned Building Area 0.00 
 
 
End Uses 
 

 Electricity 
[kWh] 

Natural Gas 
[kWh] 

Additional Fuel 
[kWh] 

District Cooling 
[kWh] 

District Heating 
[kWh] 

Water 
[m3] 

Heating 0.00 0.00 0.00 0.00 3103.60 0.00 

Cooling 0.00 0.00 0.00 81.86 0.00 0.00 

Interior 
Lighting 3269.91 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipment 1485.34 0.00 0.00 0.00 0.00 0.00 

Water Systems 0.00 0.00 0.00 0.00 37.45 0.59 

              

Total End Uses 4755.25 0.00 0.00 81.86 3141.04 0.59 
Note: District heat appears to be the principal heating source based on energy usage.  
 
End Uses By Subcategory 
 
 

 Subcategory 
Electric

ity 
[kWh] 

Natur
al 

Gas 
[kWh

] 

Additio
nal 

Fuel 
[kWh] 

Distri
ct 

Cooli
ng 

[kWh
] 

Distric
t 

Heati
ng 

[kWh] 

Wat
er 

[m3
] 

Heating General 0.00 0.00 0.00 0.00 3103.
60 0.00 
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Cooling General 0.00 0.00 0.00 81.86 0.00 0.00 

Interior 
Lighting 

ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:WC#GeneralLights 98.92 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#GeneralL
ights 

295.50 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:ShopStorage#Gene
ralLights 

2.96 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Services#GeneralLi
ghts 

27.18 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StudentCentral#Ge
neralLights 

687.26 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OpenOffice#Genera
lLights 

321.77 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office1#GeneralLig
hts 

60.15 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GeneralOffice#Gen
eralLights 

213.96 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#GeneralLi
ghts 

89.21 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Gym#GeneralLights 

1023.1
9 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GymCirculation#Ge
neralLights 

197.63 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Staircase#GeneralL
ights 

17.28 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen#GeneralLig
hts 

55.05 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office#GeneralLigh
ts 

74.49 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Entrance#GeneralLi
ghts 

6.06 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeInternational
#GeneralLights 

17.43 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:InternationalOffice
#GeneralLights 

43.81 0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKitchen#
GeneralLights 

38.07 0.00 0.00 0.00 0.00 0.00 

Exterior 
Lighting General 0.00 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipment ELECTRIC EQUIPMENT#StdntCntrlGrndFlr:WC#05 61.49 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#05 60.74 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Services#05 10.22 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:StudentCentral#05 258.42 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:OpenOffice#05 333.90 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Office1#05 62.42 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:GeneralOffice#05 222.03 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#05 159.76 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Staircase#05 6.50 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Kitchen#05 98.58 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Office#05 77.30 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Entrance#05 2.28 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeInternational
#05 

18.08 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:InternationalOffice
#05 

45.46 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKitchen#
05 

68.17 0.00 0.00 0.00 0.00 0.00 

Exterior 
Equipment General 0.00 0.00 0.00 0.00 0.00 0.00 

Fans General 0.00 0.00 0.00 0.00 0.00 0.00 

Pumps General 0.00 0.00 0.00 0.00 0.00 0.00 

Heat 
Rejection General 0.00 0.00 0.00 0.00 0.00 0.00 

Humidificat
ion General 0.00 0.00 0.00 0.00 0.00 0.00 

Heat 
Recovery General 0.00 0.00 0.00 0.00 0.00 0.00 
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Water 
Systems DHW StdntCntrlGrndFlr:6ShopSU 0.00 0.00 0.00 0.00 5.59 0.09 

  DHW StdntCntrlGrndFlr:GeneralOffice 0.00 0.00 0.00 0.00 13.66 0.21 

  DHW StdntCntrlGrndFlr:Kitchen2 0.00 0.00 0.00 0.00 7.53 0.12 

  DHW StdntCntrlGrndFlr:Kitchen 0.00 0.00 0.00 0.00 4.65 0.07 

  DHW StdntCntrlGrndFlr:InternationalOffice 0.00 0.00 0.00 0.00 2.80 0.04 

  DHW StdntCntrlGrndFlr:StarbucksKitchen 0.00 0.00 0.00 0.00 3.21 0.05 
 
 
Normalized Metrics 
 
Utility Use Per Conditioned Floor Area 
 
 

 
Electricity 
Intensity 

[kWh/m2] 

Natural Gas 
Intensity 

[kWh/m2] 

Additional Fuel 
Intensity 

[kWh/m2] 

District Cooling 
Intensity 

[kWh/m2] 

District Heating 
Intensity 

[kWh/m2] 

Water 
Intensity 
[m3/m2] 

Lighting 0.78 0.00 0.00 0.00 0.00 0.00 

HVAC 0.00 0.00 0.00 0.02 0.75 0.00 

Other 0.36 0.00 0.00 0.00 0.00 0.00 

Total 1.14 0.00 0.00 0.02 0.75 0.00 
 
 
Utility Use Per Total Floor Area 
 
 

 
Electricity 
Intensity 

[kWh/m2] 

Natural Gas 
Intensity 

[kWh/m2] 

Additional Fuel 
Intensity 

[kWh/m2] 

District Cooling 
Intensity 

[kWh/m2] 

District Heating 
Intensity 

[kWh/m2] 

Water 
Intensity 
[m3/m2] 

Lighting 0.78 0.00 0.00 0.00 0.00 0.00 

HVAC 0.00 0.00 0.00 0.02 0.75 0.00 

Other 0.36 0.00 0.00 0.00 0.00 0.00 

Total 1.14 0.00 0.00 0.02 0.75 0.00 
 

Table of Contents 

Top  
Annual Building Utility Performance Summary  
Input Verification and Results Summary  
Demand End Use Components Summary  
Component Sizing Summary  
Adaptive Comfort Summary  
Climatic Data Summary  
Envelope Summary  
Lighting Summary  
Equipment Summary  
HVAC Sizing Summary  
System Summary  
Outdoor Air Summary  
Object Count Summary  
Sensible Heat Gain Summary  



 
 

211 
 

Report: Input Verification and Results Summary 

For: Entire Facility 

Timestamp: 2018-06-05 10:32:34 

General 
 
 
 Value 

Program Version and Build EnergyPlus, Version 8.5.0-c87e61b44b, YMD=2018.06.05 10:32 

RunPeriod UNTITLED (17-02:23-02) 

Weather File FINNINGLEY - GBR IWEC Data WMO#=033600 

Latitude [deg] 53.48 

Longitude [deg] -1.0 

Elevation [m] 17.00 

Time Zone 0.00 

North Axis Angle [deg] 0.00 

Rotation for Appendix G [deg] 0.00 

Hours Simulated [hrs] 168.00 
 
 
ENVELOPE 
 
Window-Wall Ratio 
 
 

 Total North (315 to 45 
deg) 

East (45 to 135 
deg) 

South (135 to 
225 deg) 

West (225 to 
315 deg) 

Gross Wall Area [m2] 1233.68 277.47 391.82 294.49 269.91 

Above Ground Wall Area 
[m2] 1233.68 277.47 391.82 294.49 269.91 

Window Opening Area [m2] 256.41 35.05 8.98 165.59 46.80 

Gross Window-Wall Ratio 
[%] 20.78 12.63 2.29 56.23 17.34 

Above Ground Window-Wall 
Ratio [%] 20.78 12.63 2.29 56.23 17.34 

 
 
Conditioned Window-Wall Ratio 
 
 

 Total North (315 to 45 
deg) 

East (45 to 135 
deg) 

South (135 to 
225 deg) 

West (225 to 
315 deg) 

Gross Wall Area [m2] 1233.68 277.47 391.82 294.49 269.91 

Above Ground Wall Area 
[m2] 1233.68 277.47 391.82 294.49 269.91 

Window Opening Area [m2] 256.41 35.05 8.98 165.59 46.80 
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Gross Window-Wall Ratio 
[%] 20.78 12.63 2.29 56.23 17.34 

Above Ground Window-Wall 
Ratio [%] 20.78 12.63 2.29 56.23 17.34 

 

Report: Demand End Use Components Summary, For: Entire Facility 

Timestamp: 2018-06-05 10:32:34 

End Uses 
 

 Electricity 
[W] 

Natural Gas 
[W] 

Propane 
[W] 

District Cooling 
[W] 

District Heating 
[W] 

Water 
[m3/s] 

Time of Peak 18-FEB-
09:30 - - 19-FEB-13:00 18-FEB-07:30 18-FEB-

11:30 

Heating 0.00 0.00 0.00 0.00 58400.18 0.00 

Cooling 0.00 0.00 0.00 12535.67 0.00 0.00 

Interior Lighting 41333.88 0.00 0.00 0.00 0.00 0.00 

Exterior Lighting 0.00 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipment 16049.44 0.00 0.00 0.00 0.00 0.00 

Water Systems 0.00 0.00 0.00 0.00 46.37 0.00 

              

Total End Uses 57383.32 0.00 0.00 12535.67 58446.55 0.00 
 
 
End Uses By Subcategory 
 

 Subcategory Electric
ity [W] 

Natur
al 

Gas 
[W] 

Propa
ne 

[W] 

District 
Cooling 

[W] 

District 
Heatin
g [W] 

Wate
r 

[m3/
s] 

Heating General 0.00 0.00 0.00 0.00 58400.
18 0.00 

Cooling General 0.00 0.00 0.00 12535.
67 0.00 0.00 

Interior 
Lighting 

ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:WC#GeneralLights 

1413.1
4 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#GeneralLi
ghts 

4690.4
9 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:ShopStorage#Gener
alLights 

45.52 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Services#GeneralLig
hts 

242.68 0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StudentCentral#Ge
neralLights 

6136.2
6 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OpenOffice#General
Lights 

5850.3
2 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office1#GeneralLig
hts 

1093.6
7 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GeneralOffice#Gene
ralLights 

3890.2
4 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#GeneralLi
ghts 

1512.0
2 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Gym#GeneralLights 

10440.
74 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GymCirculation#Ge
neralLights 

1764.5
2 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Staircase#GeneralLi
ghts 

154.29 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen#GeneralLig
hts 

932.98 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office#GeneralLight
s 

1354.4
1 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Entrance#GeneralLi
ghts 

54.07 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeInternational#
GeneralLights 

316.83 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:InternationalOffice#
GeneralLights 

796.52 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKitchen#G
eneralLights 

645.18 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipm

ent 
ELECTRIC EQUIPMENT#StdntCntrlGrndFlr:WC#05 645.80 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#05 813.02 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Services#05 88.82 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:StudentCentral#05 

2245.8
7 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:OpenOffice#05 

3507.2
7 0.00 0.00 0.00 0.00 0.00 
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  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Office1#05 655.65 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:GeneralOffice#05 

2332.2
0 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#05 

2057.5
6 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Staircase#05 56.47 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Kitchen#05 

1269.6
0 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Office#05 811.97 0.00 0.00 0.00 0.00 0.00 

  ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:Entrance#05 19.79 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeInternational#
05 

189.94 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:InternationalOffice#
05 

477.51 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKitchen#0
5 

877.96 0.00 0.00 0.00 0.00 0.00 

  DHW StdntCntrlGrndFlr:GeneralOffice 0.00 0.00 0.00 0.00 38.49 0.00 

  DHW StdntCntrlGrndFlr:InternationalOffice 0.00 0.00 0.00 0.00 7.88 0.00 
 

 

Report: Climatic Data Summary, For: Entire Facility, Timestamp: 2018-06-05 10:32:34 

SizingPeriod:DesignDay 
 
 

 Maximum Dry 
Bulb [C] 

Daily Temperature 
Range [deltaC] 

Humidity 
Value 

Humidity 
Type 

Wind 
Speed 
[m/s] 

Wind 
Direction 

SUMMER DESIGN DAY IN 
UNTITLED (17-02:23-02) 

JUL 
24.00 7.00 17.60 Wetbulb 

[C] 0.00 0.00 

WINTER DESIGN DAY IN 
UNTITLED (17-02:23-02) -3.80 0.00 -3.80 Wetbulb 

[C] 15.20 0.00 

 
 
Time Not Comfortable Based on Simple ASHRAE 55-2004 
 
 

 Winter Clothes 
[hr] 

Summer Clothes 
[hr] 

Summer or Winter 
Clothes [hr] 

STDNTCNTRLGRNDFLR:WC 50.00 50.00 50.00 

STDNTCNTRLGRNDFLR:6SHOPSU 29.50 49.00 18.50 
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STDNTCNTRLGRNDFLR:SHOPSTORAGE 61.50 65.00 61.50 

STDNTCNTRLGRNDFLR:SERVICES 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:STUDENTCENTRAL 100.50 112.00 100.50 

STDNTCNTRLGRNDFLR:OPENOFFICE 9.00 53.50 9.00 

STDNTCNTRLGRNDFLR:OFFICE1 28.50 55.00 28.50 

STDNTCNTRLGRNDFLR:GENERALOFFICE 10.00 55.00 10.00 

STDNTCNTRLGRNDFLR:KITCHEN2 59.00 59.00 59.00 

STDNTCNTRLGRNDFLR:GYM 98.00 98.00 98.00 

STDNTCNTRLGRNDFLR:GYMCIRCULATION 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:STAIRCASE 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:KITCHEN 59.00 59.00 59.00 

STDNTCNTRLGRNDFLR:OFFICE 48.00 55.00 48.00 

STDNTCNTRLGRNDFLR:ENTRANCE 95.00 103.00 91.00 

STDNTCNTRLGRNDFLR:OFFICEINTERNATIONAL 21.00 55.00 21.00 

STDNTCNTRLGRNDFLR:INTERNATIONALOFFICE 12.50 55.00 12.50 

STDNTCNTRLGRNDFLR:STARBUCKSKITCHEN 31.00 43.50 18.50 

Facility 112.00 112.00 112.00 
 
Report: Outdoor Air Summary, For: Entire Facility, Timestamp: 2018-06-05 10:32:34 
Average Outdoor Air During Occupied Hours 
 
 

 

Average 
Number 

of 
Occupan

ts 

Nominal 
Number 

of 
Occupan

ts 

Zone 
Volum
e [m3] 

Mechanic
al 

Ventilati
on [ach] 

Infiltrati
on [ach] 

AFN 
Infiltrati
on [ach] 

Simple 
Ventilati
on [ach] 

STDNTCNTRLGRNDFLR:WC 15.05 15.05 565.2
6 1.144 0.000 0.081 0.000 

STDNTCNTRLGRNDFLR:6SHOPSU 16.24 18.27 625.4
0 0.933 0.000 0.166 0.000 

STDNTCNTRLGRNDFLR:SHOPSTORAGE 1.85 1.85 72.73 0.911 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:SERVICES 5.17 5.17 194.1
4 0.953 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STUDENTCENTR
AL 130.67 130.67 4939.

56 0.948 0.000 0.019 0.000 

STDNTCNTRLGRNDFLR:OPENOFFICE 19.45 30.13 1170.
06 0.601 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICE1 3.64 5.63 218.7
3 0.598 0.000 0.080 0.000 

STDNTCNTRLGRNDFLR:GENERALOFFIC
E 12.93 20.03 778.0

5 0.600 0.000 0.035 0.000 

STDNTCNTRLGRNDFLR:KITCHEN2 5.00 5.78 241.9
2 1.886 0.000 0.069 0.000 

STDNTCNTRLGRNDFLR:GYM 203.94 253.79 5568.
39 3.798 0.000 0.006 0.000 
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STDNTCNTRLGRNDFLR:GYMCIRCULATI
ON 37.58 37.58 1411.

62 0.925 0.000 0.173 0.000 

STDNTCNTRLGRNDFLR:STAIRCASE 3.29 3.29 123.4
3 0.953 0.000 0.247 0.000 

STDNTCNTRLGRNDFLR:KITCHEN 3.09 3.57 149.2
8 1.886 0.000 0.215 0.000 

STDNTCNTRLGRNDFLR:OFFICE 4.50 6.98 270.8
8 0.595 0.000 0.143 0.000 

STDNTCNTRLGRNDFLR:ENTRANCE 1.15 1.15 43.26 0.952 0.000 13.607 0.000 

STDNTCNTRLGRNDFLR:OFFICEINTERNA
TIONAL 1.05 1.63 63.37 0.599 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:INTERNATIONA
LOFFICE 2.65 4.10 159.3

0 0.600 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STARBUCKSKIT
CHEN 2.13 2.47 121.6

4 1.603 0.000 0.383 0.000 

Minimum Outdoor Air During Occupied Hours 
 
 

 

Average 
Number 

of 
Occupan

ts 

Nominal 
Number 

of 
Occupan

ts 

Zone 
Volum
e [m3] 

Mechanic
al 

Ventilati
on [ach] 

Infiltrati
on [ach] 

AFN 
Infiltrati
on [ach] 

Simple 
Ventilati
on [ach] 

STDNTCNTRLGRNDFLR:WC 15.05 15.05 565.2
6 1.136 0.000 0.004 0.000 

STDNTCNTRLGRNDFLR:6SHOPSU 16.24 18.27 625.4
0 0.777 0.000 0.005 0.000 

STDNTCNTRLGRNDFLR:SHOPSTORAGE 1.85 1.85 72.73 0.904 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:SERVICES 5.17 5.17 194.1
4 0.944 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STUDENTCENTR
AL 130.67 130.67 4939.

56 0.938 0.000 0.001 0.000 

STDNTCNTRLGRNDFLR:OPENOFFICE 19.45 30.13 1170.
06 0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICE1 3.64 5.63 218.7
3 0.091 0.000 0.003 0.000 

STDNTCNTRLGRNDFLR:GENERALOFFIC
E 12.93 20.03 778.0

5 0.092 0.000 0.001 0.000 

STDNTCNTRLGRNDFLR:KITCHEN2 5.00 5.78 241.9
2 1.059 0.000 0.002 0.000 

STDNTCNTRLGRNDFLR:GYM 203.94 253.79 5568.
39 2.339 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:GYMCIRCULATI
ON 37.58 37.58 1411.

62 0.916 0.000 0.006 0.000 

STDNTCNTRLGRNDFLR:STAIRCASE 3.29 3.29 123.4
3 0.944 0.000 0.010 0.000 

STDNTCNTRLGRNDFLR:KITCHEN 3.09 3.57 149.2
8 1.059 0.000 0.008 0.000 
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STDNTCNTRLGRNDFLR:OFFICE 4.50 6.98 270.8
8 0.091 0.000 0.006 0.000 

STDNTCNTRLGRNDFLR:ENTRANCE 1.15 1.15 43.26 0.944 0.000 0.489 0.000 

STDNTCNTRLGRNDFLR:OFFICEINTERNA
TIONAL 1.05 1.63 63.37 0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:INTERNATIONA
LOFFICE 2.65 4.10 159.3

0 0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STARBUCKSKIT
CHEN 2.13 2.47 121.6

4 0.899 0.000 0.011 0.000 
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Appendix 3: Student Central Building, Energy Simulation Using Realistic Data 
 

This section presents selected parts of the final results of energy simulation tool for student 

central building using realistic data which has been collected in this study. 

 

Program Version:EnergyPlus, Version 8.5.0-c87e61b44b, YMD=2018.10.04 14:05 

Tabular Output Report in Format: HTML 

Building: Building 

(17-02:23-02) ** FINNINGLEY - GBR IWEC Data WMO#=033600 

Simulation Timestamp: 2018-06-05 14:06:23 

 

Report: Annual Building Utility Performance Summary 

Timestamp: 2018-06-05 14:06:23 

Values gathered over 168.00 hours 

 
WARNING: THE REPORT DOES NOT REPRESENT A FULL ANNUAL SIMULATION. 
 
 
Site and Source Energy 

 Total Energy 
[kWh] 

Energy Per Total Building 
Area [kWh/m2] 

Energy Per Conditioned Building 
Area [kWh/m2] 

Total Site 
Energy 

15083.01 3.62 3.62 

Net Site 
Energy 

15083.01 3.62 3.62 

Total Source 
Energy 

49853.09 11.97 11.97 

Net Source 
Energy 

49853.09 11.97 11.97 
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Site to Source Energy Conversion Factors 

 Site=>Source Conversion Factor 

Electricity 3.167 

Natural Gas 1.084 

District Cooling 1.056 

District Heating 3.613 

Steam 0.250 

Gasoline 1.050 

Diesel 1.050 

Coal 1.050 

Fuel Oil #1 1.050 

Fuel Oil #2 1.050 

Propane 1.050 

Other Fuel 1 1.000 

Other Fuel 2 1.000 

 
 
Building Area 

 Area [m2] 

Total Building Area 4165.77 

Net Conditioned Building Area 4165.77 

Unconditioned Building Area 0.00 

 
End Uses 
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 Electricity 
[kWh] 

Natural Gas 
[kWh] 

Additional 
Fuel [kWh] 

District 
Cooling 

[kWh] 

District 
Heating 

[kWh] 

Water 
[m3] 

Heating 0.00 0.00 0.00 0.00 7107.57 0.00 

Cooling 0.00 0.00 0.00 828.48 0.00 0.00 

Interior 
Lighting 

3297.36 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipment 

2366.27 0.00 0.00 0.00 0.00 0.00 

Water 
Systems 

0.00 0.00 0.00 0.00 1483.32 23.23 

              

Total End 
Uses 

5663.63 0.00 0.00 828.48 8590.89 23.23 

 
Normalized Metrics 
 
Utility Use Per Conditioned Floor Area 

 
Electricity 
Intensity 

[kWh/m2] 

Natural Gas 
Intensity 

[kWh/m2] 

Additional 
Fuel Intensity 

[kWh/m2] 

District 
Cooling 

Intensity 
[kWh/m2] 

District 
Heating 

Intensity 
[kWh/m2] 

Water 
Intensity 
[m3/m2] 

Lighting 0.79 0.00 0.00 0.00 0.00 0.00 

HVAC 0.00 0.00 0.00 0.20 2.06 0.01 

Other 0.57 0.00 0.00 0.00 0.00 0.00 

Total 1.36 0.00 0.00 0.20 2.06 0.01 

 
Utility Use Per Total Floor Area 

 
Electricity 
Intensity 

[kWh/m2] 

Natural Gas 
Intensity 

[kWh/m2] 

Additional 
Fuel Intensity 

[kWh/m2] 

District 
Cooling 

District 
Heating 

Water 
Intensity 
[m3/m2] 
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Intensity 
[kWh/m2] 

Intensity 
[kWh/m2] 

Lighting 0.79 0.00 0.00 0.00 0.00 0.00 

HVAC 0.00 0.00 0.00 0.20 2.06 0.01 

Other 0.57 0.00 0.00 0.00 0.00 0.00 

Total 1.36 0.00 0.00 0.20 2.06 0.01 

 
 
Electric Loads Satisfied 

 Electricity [kWh] Percent Electricity [%] 

Electricity Coming From Utility 5663.633 100.00 

Surplus Electricity Going To Utility 0.000 0.00 

Net Electricity From Utility 5663.633 100.00 

 
Setpoint Not Met Criteria 

 Degrees [deltaC] 

Tolerance for Zone Heating Setpoint Not Met Time 1.11 

Tolerance for Zone Cooling Setpoint Not Met Time 1.11 

 
Comfort and Setpoint Not Met Summary 

 Facility [Hours] 

Time Setpoint Not Met During Occupied Heating 112.00 

Time Setpoint Not Met During Occupied Cooling 0.00 

Time Not Comfortable Based on Simple ASHRAE 55-2004 112.00 

 
 
Note 1: An asterisk (*) indicates that the feature is not yet implemented. 
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Table of Contents 

Top  
Annual Building Utility Performance Summary  
Input Verification and Results Summary  
Demand End Use Components Summary  
Component Sizing Summary  
Adaptive Comfort Summary  
Climatic Data Summary  
Envelope Summary  
Lighting Summary  
Equipment Summary  
HVAC Sizing Summary  
System Summary  
Outdoor Air Summary  
Object Count Summary  
Sensible Heat Gain Summary  

Report: Input Verification and Results Summary 

For: Entire Facility 

Timestamp: 2018-10-04 14:06:23 

General 

 Value 

Program Version and Build EnergyPlus, Version 8.5.0-c87e61b44b, YMD=2018.10.04 14:05 

RunPeriod UNTITLED (17-02:23-02) 

Weather File FINNINGLEY - GBR IWEC Data WMO#=033600 

Latitude [deg] 53.48 

Longitude [deg] -1.0 

Elevation [m] 17.00 

Hours Simulated [hrs] 168.00 

 
ENVELOPE 
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Window-Wall Ratio 

 Total North (315 to 
45 deg) 

East (45 to 
135 deg) 

South (135 to 
225 deg) 

West (225 to 
315 deg) 

Gross Wall Area [m2] 1233.68 277.47 391.82 294.49 269.91 

Above Ground Wall 
Area [m2] 

1233.68 277.47 391.82 294.49 269.91 

Window Opening Area 
[m2] 

256.92 35.05 8.98 166.10 46.80 

Gross Window-Wall 
Ratio [%] 

20.83 12.63 2.29 56.40 17.34 

Above Ground Window-
Wall Ratio [%] 

20.83 12.63 2.29 56.40 17.34 

 
Conditioned Window-Wall Ratio 

 Total North (315 to 
45 deg) 

East (45 to 
135 deg) 

South (135 to 
225 deg) 

West (225 to 
315 deg) 

Gross Wall Area [m2] 1233.68 277.47 391.82 294.49 269.91 

Above Ground Wall 
Area [m2] 

1233.68 277.47 391.82 294.49 269.91 

Window Opening Area 
[m2] 

256.92 35.05 8.98 166.10 46.80 

Gross Window-Wall 
Ratio [%] 

20.83 12.63 2.29 56.40 17.34 

Above Ground Window-
Wall Ratio [%] 

20.83 12.63 2.29 56.40 17.34 

 
Report: Demand End Use Components Summary 

 Electricity 
[W] 

Natural Gas 
[W] 

Propane 
[W] 

District 
Cooling [W] 

District 
Heating [W] 

Water 
[m3/s] 
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Time of Peak 
18-FEB-

09:30 
- - 19-FEB-13:00 18-FEB-08:00 

18-FEB-
13:30 

Heating 0.00 0.00 0.00 0.00 121400.83 0.00 

Cooling 0.00 0.00 0.00 33224.55 0.00 0.00 

Interior 
Lighting 

43334.57 0.00 0.00 0.00 0.00 0.00 

Interior 
Equipment 

24455.04 0.00 0.00 0.00 0.00 0.00 

Water Systems 0.00 0.00 0.00 0.00 25152.75 0.00 

              

Total End Uses 67789.61 0.00 0.00 33224.55 146553.58 0.00 

 
 
End Uses By Subcategory 

 Subcategory 
Electri

city 
[W] 

Natu
ral 

Gas 
[W] 

Prop
ane 
[W] 

Distri
ct 

Cooli
ng 

[W] 

District 
Heatin

g [W] 

Wat
er 

[m3
/s] 

Heatin
g 

General 0.00 0.00 0.00 0.00 
12140

0.83 
0.00 

Coolin
g 

General 0.00 0.00 0.00 
33224

.55 
0.00 0.00 

Interio
r 

Lightin
g 

ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:WC#Genera

lLights 

1413.
14 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#G
eneralLights 

4690.
49 

0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:ShopStorag
e#GeneralLights 

45.52 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:7Circulation
#GeneralLights 

882.9
4 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:10Sitting#G
eneralLights 

1190.
53 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Services#Ge
neralLights 

242.6
8 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:12Sitting#G
eneralLights 

222.4
4 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OpenOffice
#GeneralLights 

5850.
32 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office1#Gen
eralLights 

1093.
67 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:9Canteen#G
eneralLights 

1821.
48 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:11Studying#
GeneralLights 

629.0
8 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GeneralOffi
ce#GeneralLights 

3890.
24 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:8Circulation
Queue#GeneralLights 

593.9
4 

0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Gym#Gener
alLights 

10440
.74 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GymCirculat
ion#GeneralLights 

1764.
52 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#G
eneralLights 

1512.
02 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Staircase#G
eneralLights 

154.2
9 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen#Ge
neralLights 

932.9
8 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office#Gene
ralLights 

1354.
41 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:3Circulation
#GeneralLights 

340.0
7 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:5LobbyRece
iption#GeneralLights 

1401.
49 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Entrance#G
eneralLights 

54.07 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:4SittingStar
bucks#GeneralLights 

275.5
5 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:1Circulation
#GeneralLights 

370.5
0 

0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeIntern
ational#GeneralLights 

316.8
3 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Internationa
lOffice#GeneralLights 

796.5
2 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKit
chen#GeneralLights 

645.1
8 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:2Sitting#Ge
neralLights 

408.9
4 

0.00 0.00 0.00 0.00 0.00 

Interio
r 

Equip
ment 

ELECTRIC 
EQUIPMENT#StdntCntrlGrndFlr:WC#05 

645.8
0 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:6ShopSU#0
5 

813.0
2 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:7Circulation
#05 

323.1
5 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:10Sitting#0
5 

2725.
51 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Services#05 
88.82 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:12Sitting#0
5 

509.2
3 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OpenOffice
#05 

3507.
27 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office1#05 
655.6

5 
0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:9Canteen#0
5 

4169.
97 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:11Studying#
05 

230.2
4 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:GeneralOffi
ce#05 

2332.
20 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:8Circulation
Queue#05 

217.3
8 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen2#05 
2057.

56 
0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Staircase#0
5 

56.47 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Kitchen#05 
1269.

60 
0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Office#05 
811.9

7 
0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:3Circulation
#05 

124.4
6 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:5LobbyRece
iption#05 

648.8
9 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Entrance#0
5 

19.79 0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:4SittingStar
bucks#05 

630.8
2 

0.00 0.00 0.00 0.00 0.00 
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ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:1Circulation
#05 

135.6
0 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:OfficeIntern
ational#05 

189.9
4 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:Internationa
lOffice#05 

477.5
1 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:StarbucksKit
chen#05 

877.9
6 

0.00 0.00 0.00 0.00 0.00 

  
ELECTRIC 

EQUIPMENT#StdntCntrlGrndFlr:2Sitting#05 
936.2

1 
0.00 0.00 0.00 0.00 0.00 

  DHW StdntCntrlGrndFlr:10Sitting 0.00 0.00 0.00 0.00 
7605.9

0 
0.00 

  DHW StdntCntrlGrndFlr:12Sitting 0.00 0.00 0.00 0.00 
1421.0

7 
0.00 

  DHW StdntCntrlGrndFlr:9Canteen 0.00 0.00 0.00 0.00 
11636.

86 
0.00 

  DHW StdntCntrlGrndFlr:GeneralOffice 0.00 0.00 0.00 0.00 96.22 0.00 

  DHW StdntCntrlGrndFlr:4SittingStarbucks 0.00 0.00 0.00 0.00 
1760.3

9 
0.00 

  DHW StdntCntrlGrndFlr:InternationalOffice 0.00 0.00 0.00 0.00 19.70 0.00 

  DHW StdntCntrlGrndFlr:StarbucksKitchen 0.00 0.00 0.00 0.00 0.00 0.00 

  DHW StdntCntrlGrndFlr:2Sitting 0.00 0.00 0.00 0.00 
2612.6

1 
0.00 

 

 Maximum 
Dry Bulb [C] 

Daily 
Temperature 

Range [deltaC] 

Humidity 
Value 

Humidity 
Type 

Wind 
Speed 
[m/s] 

Wind 
Direction 
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SUMMER DESIGN 
DAY IN UNTITLED 
(17-02:23-02) JUL 

24.00 7.00 17.60 
Wetbulb 

[C] 
0.00 0.00 

WINTER DESIGN 
DAY IN UNTITLED 

(17-02:23-02) 
-3.80 0.00 -3.80 

Wetbulb 
[C] 

15.20 0.00 

 
Time Not Comfortable Based on Simple ASHRAE 55-2004 

 Winter 
Clothes [hr] 

Summer 
Clothes [hr] 

Summer or Winter 
Clothes [hr] 

STDNTCNTRLGRNDFLR:WC 50.00 50.00 50.00 

STDNTCNTRLGRNDFLR:6SHOPSU 22.00 47.50 9.00 

STDNTCNTRLGRNDFLR:SHOPSTORAGE 52.50 65.00 52.50 

STDNTCNTRLGRNDFLR:7CIRCULATION 2.00 112.00 2.00 

STDNTCNTRLGRNDFLR:10SITTING 0.00 84.00 0.00 

STDNTCNTRLGRNDFLR:SERVICES 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:12SITTING 0.00 84.00 0.00 

STDNTCNTRLGRNDFLR:OPENOFFICE 5.00 46.00 2.50 

STDNTCNTRLGRNDFLR:OFFICE1 14.00 55.00 14.00 

STDNTCNTRLGRNDFLR:9CANTEEN 0.00 84.00 0.00 

STDNTCNTRLGRNDFLR:11STUDYING 79.00 112.00 79.00 

STDNTCNTRLGRNDFLR:GENERALOFFICE 5.00 55.00 5.00 

STDNTCNTRLGRNDFLR:8CIRCULATIONQUEUE 22.50 112.00 22.50 

STDNTCNTRLGRNDFLR:GYM 98.00 98.00 98.00 

STDNTCNTRLGRNDFLR:GYMCIRCULATION 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:KITCHEN2 43.00 59.00 43.00 
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STDNTCNTRLGRNDFLR:STAIRCASE 112.00 112.00 112.00 

STDNTCNTRLGRNDFLR:KITCHEN 32.50 59.00 32.50 

STDNTCNTRLGRNDFLR:OFFICE 37.00 55.00 37.00 

STDNTCNTRLGRNDFLR:3CIRCULATION 1.00 112.00 1.00 

STDNTCNTRLGRNDFLR:5LOBBYRECEIPTION 8.50 50.00 8.50 

STDNTCNTRLGRNDFLR:ENTRANCE 109.00 112.00 109.00 

STDNTCNTRLGRNDFLR:4SITTINGSTARBUCKS 6.00 73.00 0.00 

STDNTCNTRLGRNDFLR:1CIRCULATION 13.00 93.50 1.00 

STDNTCNTRLGRNDFLR:OFFICEINTERNATIONAL 7.50 53.50 7.50 

STDNTCNTRLGRNDFLR:INTERNATIONALOFFICE 2.50 55.00 2.50 

STDNTCNTRLGRNDFLR:STARBUCKSKITCHEN 15.00 46.50 6.50 

STDNTCNTRLGRNDFLR:2SITTING 13.50 76.50 10.50 

Facility 112.00 119.00 112.00 

Aggregated over the RunPeriods for Weather  
 
Average Outdoor Air During Occupied Hours 

 

Averag
e 

Numbe
r of 

Occupa
nts 

Nomin
al 

Numbe
r of 

Occupa
nts 

Zone 
Volu

me 
[m3] 

Mechan
ical 

Ventilat
ion 

[ach] 

Infiltrat
ion 

[ach] 

AFN 
Infiltrat

ion 
[ach] 

Simple 
Ventilat

ion 
[ach] 

STDNTCNTRLGRNDFLR:WC 15.05 15.05 
565.2

6 
1.144 0.000 0.050 0.000 

STDNTCNTRLGRNDFLR:6SHOPSU 29.05 32.68 
625.4

0 
1.670 0.000 0.103 0.000 

STDNTCNTRLGRNDFLR:SHOPSTO
RAGE 

1.85 1.85 72.73 0.910 0.000 0.000 0.000 
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STDNTCNTRLGRNDFLR:7CIRCULA
TION 

22.96 22.96 
706.3

5 
1.171 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:10SITTING 36.34 52.86 
636.7

0 
2.064 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:SERVICES 5.17 5.17 
194.1

4 
0.953 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:12SITTING 6.79 9.88 
118.6

3 
2.069 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OPENOFFI
CE 

19.45 30.13 
1170.

06 
0.603 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICE1 3.64 5.63 
218.7

3 
0.599 0.000 0.054 0.000 

STDNTCNTRLGRNDFLR:9CANTEEN 86.82 126.29 
971.4

5 
3.231 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:11STUDYI
NG 

41.90 41.90 
503.2

6 
2.991 0.000 0.019 0.000 

STDNTCNTRLGRNDFLR:GENERAL
OFFICE 

12.93 20.03 
778.0

5 
0.600 0.000 0.023 0.000 

STDNTCNTRLGRNDFLR:8CIRCULA
TIONQUEUE 

15.44 15.44 
475.1

5 
1.169 0.000 0.048 0.000 

STDNTCNTRLGRNDFLR:GYM 203.94 253.79 
5568.

39 
3.798 0.000 0.005 0.000 

STDNTCNTRLGRNDFLR:GYMCIRC
ULATION 

37.58 37.58 
1411.

62 
0.926 0.000 0.151 0.000 

STDNTCNTRLGRNDFLR:KITCHEN2 5.00 5.78 
241.9

2 
1.892 0.000 0.057 0.000 

STDNTCNTRLGRNDFLR:STAIRCASE 3.29 3.29 
123.4

3 
0.953 0.000 0.210 0.000 

STDNTCNTRLGRNDFLR:KITCHEN 3.09 3.57 
149.2

8 
1.892 0.000 0.161 0.000 
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STDNTCNTRLGRNDFLR:OFFICE 4.50 6.98 
270.8

8 
0.596 0.000 0.097 0.000 

STDNTCNTRLGRNDFLR:3CIRCULA
TION 

8.84 8.84 
272.0

5 
1.172 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:5LOBBYRE
CEIPTION 

28.31 28.31 
560.6

0 
1.812 0.000 0.007 0.000 

STDNTCNTRLGRNDFLR:ENTRANC
E 

1.41 1.41 43.26 1.122 0.000 
115.30

0 
0.000 

STDNTCNTRLGRNDFLR:4SITTINGS
TARBUCKS 

8.41 12.23 
146.9

6 
2.069 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:1CIRCULA
TION 

9.63 9.63 
296.4

0 
1.173 0.000 0.025 0.000 

STDNTCNTRLGRNDFLR:OFFICEINT
ERNATIONAL 

1.05 1.63 63.37 0.601 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:INTERNATI
ONALOFFICE 

2.65 4.10 
159.3

0 
0.601 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STARBUCK
SKITCHEN 

2.13 2.47 
121.6

4 
1.605 0.000 0.187 0.000 

STDNTCNTRLGRNDFLR:2SITTING 12.48 18.16 
218.1

0 
2.070 0.000 0.613 0.000 

Values shown for a single zone without multipliers  
 
Minimum Outdoor Air During Occupied Hours 

 

Averag
e 

Numbe
r of 

Occupa
nts 

Nomin
al 

Numbe
r of 

Occupa
nts 

Zone 
Volu

me 
[m3] 

Mechan
ical 

Ventilat
ion 

[ach] 

Infiltrat
ion 

[ach] 

AFN 
Infiltrat

ion 
[ach] 

Simple 
Ventilat

ion 
[ach] 

STDNTCNTRLGRNDFLR:WC 15.05 15.05 
565.2

6 
1.136 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:6SHOPSU 29.05 32.68 
625.4

0 
1.394 0.000 0.002 0.000 
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STDNTCNTRLGRNDFLR:SHOPSTO
RAGE 

1.85 1.85 72.73 0.903 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:7CIRCULA
TION 

22.96 22.96 
706.3

5 
1.159 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:10SITTING 36.34 52.86 
636.7

0 
0.744 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:SERVICES 5.17 5.17 
194.1

4 
0.944 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:12SITTING 6.79 9.88 
118.6

3 
0.746 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OPENOFFI
CE 

19.45 30.13 
1170.

06 
0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICE1 3.64 5.63 
218.7

3 
0.091 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:9CANTEEN 86.82 126.29 
971.4

5 
1.165 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:11STUDYI
NG 

41.90 41.90 
503.2

6 
2.960 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:GENERAL
OFFICE 

12.93 20.03 
778.0

5 
0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:8CIRCULA
TIONQUEUE 

15.44 15.44 
475.1

5 
1.158 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:GYM 203.94 253.79 
5568.

39 
2.338 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:GYMCIRC
ULATION 

37.58 37.58 
1411.

62 
0.917 0.000 0.001 0.000 

STDNTCNTRLGRNDFLR:KITCHEN2 5.00 5.78 
241.9

2 
1.063 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STAIRCASE 3.29 3.29 
123.4

3 
0.944 0.000 0.002 0.000 
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STDNTCNTRLGRNDFLR:KITCHEN 3.09 3.57 
149.2

8 
1.063 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICE 4.50 6.98 
270.8

8 
0.091 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:3CIRCULA
TION 

8.84 8.84 
272.0

5 
1.159 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:5LOBBYRE
CEIPTION 

28.31 28.31 
560.6

0 
1.794 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:ENTRANC
E 

1.41 1.41 43.26 1.095 0.000 1.563 0.000 

STDNTCNTRLGRNDFLR:4SITTINGS
TARBUCKS 

8.41 12.23 
146.9

6 
0.746 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:1CIRCULA
TION 

9.63 9.63 
296.4

0 
1.160 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:OFFICEINT
ERNATIONAL 

1.05 1.63 63.37 0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:INTERNATI
ONALOFFICE 

2.65 4.10 
159.3

0 
0.092 0.000 0.000 0.000 

STDNTCNTRLGRNDFLR:STARBUCK
SKITCHEN 

2.13 2.47 
121.6

4 
0.903 0.000 0.005 0.000 

STDNTCNTRLGRNDFLR:2SITTING 12.48 18.16 
218.1

0 
0.746 0.000 0.002 0.000 

 

 

 

 

 

 

 

 



 
 

236 
 

References 
 

Adjaye, D., Allison, P., & Eshun, K. (2006). Making public buildings. London: Thames & Hudson. 
Agha-Hossein, M. M., El-Jouzi, S., Elmualim, A. A., Ellis, J., & Williams, M. (2013). Post-

occupancy studies of an office environment: Energy performance and occupants' 
satisfaction. Building and Environment, 69, 121-130. 
doi:10.1016/j.buildenv.2013.08.003 

Ahmed, V., Opoku, A., & Aziz, Z. (2016). Research methodology in the built environment: a 
selection of case studies. London: Routledge. 

Ahn, K.-U., & Park, C.-S. (2016). Correlation between occupants and energy consumption. 
Energy & Buildings, 116, 420-433. doi:10.1016/j.enbuild.2016.01.010 

Ahn, K.-U., & Park, C. S. (2016). Different occupant modeling approaches for building energy 
prediction. Energy Procedia, 88, 721-724. doi:10.1016/j.egypro.2016.06.050 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision 
Processes.  

Al-Mumin, A., Khattab, O., & Sridhar, G. (2003). Occupants’ behavior and activity patterns 
influencing the energy consumption in the Kuwaiti residences. Energy & Buildings, 
35(6), 549-559. doi:10.1016/S0378-7788(02)00167-6 

Alaaeddine, R., & Wu, S. (2017). Application of supervised learning methods to better predict 
building energy performance. Paper presented at the International Conference on 
Sustainable Futures 2017, Bahrain. 

Aldossary, N. A., Rezgui, Y., & Kwan, A. (2014). Domestic energy consumption patterns in a 
hot and humid climate: A multiple-case study analysis. Applied Energy, 114, 353-365. 
doi:10.1016/j.apenergy.2013.09.061 

Allard, I., Olofsson, T., Nair, G., Umeå, u., Teknisk-naturvetenskapliga, f., & Institutionen för 
tillämpad fysik och, e. (2018). Energy evaluation of residential buildings: Performance 
gap analysis incorporating uncertainties in the evaluation methods. Building 
Simulation, 11(4), 725-737. doi:10.1007/s12273-018-0439-7 

American Society of Heating, R., Air Conditioning, E., Ashrae, American Society of Heating, R., 
Air-Conditioning Engineers, I., & A.S.H.R.A.E. (2009). 2009 ASHRAE handbook 
fundamentals. Place of publication not identified: American Society of Heating 
Refrigerating and Air Conditioning Engineers. 

Andersen, P. D., Iversen, A., Madsen, H., & Rode, C. (2014). Dynamic modeling of presence of 
occupants using inhomogeneous Markov chains. Energy and Buildings, 69, 213-223. 
doi:10.1016/j.enbuild.2013.10.001 

Andrews, C. J., Chandra Putra, H., & Brennan, C. (2013). Simulation Modeling of Occupant 
Behavior in Commercial Buildings. Center for Green Building at Rutgers University for 
the Energy Efficient Buildings Hub, Philadelphia, PA.  

Arnheim, R. (2004). Art and visual perception: a psychology of the creative eye (Vol. New 
version.). Berkeley, Calif;London;: University of California Press. 

ASHRAE. (2004). Thermal Environmental Conditions for Human Occupancy: American Society 
of Heating and Air-Conditioning Engineers. 

ASHRAE. (2016). ASHRAE 90.1 Standard. USA: ASHRAE. 
Augustin, S. (2009). Place advantage: applied psychology for interior architecture. Hoboken, 

N.J: John Wiley & Sons. 



 
 

237 
 

Autodesk. (2018). REVIT Built for Building Information Modelling.   Retrieved from 
https://www.autodesk.co.uk/products/revit/overview 

Azghandi, M. V., Nikolaidis, I., & Stroulia, E. (2015). Sensor placement for indoor multi-
occupant tracking. 

Barlow, S. (2011). Guide to BREEAM. London: RIBA. 
Basarir, M. N. (2010). Energy Appraisal of Retail Units: Assessing the Effect of Door Operation 

on Energy Consumption and Thermal comfort. (MPhil), University of Cambridge.    
Becchio, C., Bello, C., Corgnati, S. P., & Ingaramo, L. (2016). Influence of Occupant Behaviour 

Lifestyle on an Italian Social Housing. Energy Procedia, 101, 1034-1041. 
doi:10.1016/j.egypro.2016.11.131 

Blight, T. S., & Coley, D. A. (2013). Sensitivity analysis of the effect of occupant behaviour on 
the energy consumption of passive house dwellings. Energy and Buildings, 66, 183-
192. doi:10.1016/j.enbuild.2013.06.030 

Bluyssen, P. M. (2009). The indoor environment handbook: how to make buildings healthy and 
comfortable. London: Earthscan. 

Boafo, F. E., Ahn, J.-G., Kim, J.-H., & Kim, J.-T. (2015). Computing Thermal Bridge of VIP in 
Building Retrofits using DesignBuilder. Energy Procedia, 78, 400-405. 
doi:10.1016/j.egypro.2015.11.683 

Bordass, B., Cohen, R., Standeven, M., & Leaman, A. (2001). Assessing building performance 
in use 3: energy performance of the Probe buildings. Building Research & Information, 
29(2), 114-128. doi:10.1080/09613210010008036 

Bourgeois, D., Reinhart, C., & A. Macdonald, I. (2005). Assessing the total energy impact of 
occupant behavioural response to manual and automated lighting systems Paper 
presented at the Ninth International IBPSA Conference, Montréal, Canada.  

Boyano, A., Hernandez, P., & Wolf, O. (2013). Energy demands and potential savings in 
European office buildings: Case studies based on EnergyPlus simulations. Energy & 
Buildings, 65, 19-28. doi:10.1016/j.enbuild.2013.05.039 

Burgas, L., Melendez, J., & Colomer, J. (2014). Principal component analysis for monitoring 
electrical consumption of academic buildings. Energy Procedia, 62, 555-564. 
doi:10.1016/j.egypro.2014.12.417 

Burrel, G., & Morgan, G. (1979). Sociological paradigms and organisational analysis : elements 
of the sociology of corporate life / Gibson Burrell, Gareth Morgan. London: 
Heinemann. 

Buxton, P. (2018). Metric handbook: planning and design data (Sixth;Sixth; ed.). London: 
Routledge, Taylor & Francis Group. 

Caan, S. (2011). Rethinking Design and Interiors, Human Beings in the Built Environment. 
London: Laurence King. 

Cabanac, M. (1971). Physiological Role of Pleasure. Science, 173(4002), 1103-1107. 
doi:10.1126/science.173.4002.1103 

Calì, D., Osterhage, T., Streblow, R., & Müller, D. (2016). Energy performance gap in 
refurbished German dwellings: Lesson learned from a field test. Energy and Buildings, 
127, 1146-1158. doi:10.1016/j.enbuild.2016.05.020 

CambridgeDictionary. (2018). Cambridge Dictionary.   Retrieved from 
https://dictionary.cambridge.org/dictionary/english/multifunctional 

Carbontrust. (2005). The UK Climate Change Programme: Potential evolution for business and 
the public sector.   Retrieved from 

https://www.autodesk.co.uk/products/revit/overview
https://dictionary.cambridge.org/dictionary/english/multifunctional


 
 

238 
 

https://www.carbontrust.com/media/84912/ctc518-uk-climate-change-programme-
potential-evolution.pdf 

Cárdenas, J., Osma, G., Caicedo, C., Torres, A., Sánchez, S., & Ordóñez, G. (2016, 2016). 
Building energy analysis of Electrical Engineering Building from DesignBuilder tool: 
Calibration and simulations. 

Carpino, C., Mora, D., Arcuri, N., & De Simone, M. (2017). Behavioral variables and occupancy 
patterns in the design and modeling of Nearly Zero Energy Buildings. Building 
Simulation, 10(6), 875-888. doi:10.1007/s12273-017-0371-2 

Carriere, M., Schoenau, G. J., & Besant, R. W. (1999). Investigation of some large building 
energy conservation opportunities using the doe-2 model. Energy Conversion and 
Management, 40(8), 861-872. doi:10.1016/S0196-8904(98)00152-6 

Chen, J., & Ahn, C. (2014). Assessing occupants' energy load variation through existing 
wireless network infrastructure in commercial and educational buildings. Energy and 
Buildings, 82, 540-549. doi:10.1016/j.enbuild.2014.07.053 

Chen, J., Wang, X., & Steemers, K. (2013). A statistical analysis of a residential energy 
consumption survey study in Hangzhou, China. Energy and Buildings, 66, 193-202. 
doi:10.1016/j.enbuild.2013.07.045 

Chen, S., Yang, W., Yoshino, H., Levine, M. D., Newhouse, K., & Hinge, A. (2015). Definition of 
occupant behavior in residential buildings and its application to behavior analysis in 
case studies. Energy and Buildings, 104, 1-13. doi:10.1016/j.enbuild.2015.06.075 

Chow, T. T., Fong, K. F., Givoni, B., Lin, Z., & Chan, A. L. S. (2010). Thermal sensation of Hong 
Kong people with increased air speed, temperature and humidity in air-conditioned 
environment. Building and Environment, 45(10), 2177-2183. 
doi:10.1016/j.buildenv.2010.03.016 

Christensen, K., Melfi, R., Nordman, B., Rosenblum, B., & Viera, R. (2014). Using existing 
network infrastructure to estimate building occupancy and control plugged-in devices 
in user workspaces. International Journal of Communication Networks and Distributed 
Systems, 12(1), 4-29. doi:10.1504/IJCNDS.2014.057985 

Coakley, D., Raftery, P., & Keane, M. (2014). A review of methods to match building energy 
simulation models to measured data. Renewable and Sustainable Energy Reviews, 37, 
123-141. doi:10.1016/j.rser.2014.05.007 

COMNET. (2016a). Appendix B.   Retrieved from https://comnet.org/appendix-b-modeling-
data 

COMNET. (2016b). Appendix C.   Retrieved from https://comnet.org/appendix-c-schedules 
Cool Choices. (2016).   Retrieved from https://coolchoices.com/ 
Cottrell, M. (2012). Guide to the LEED AP homes exam (1. Aufl. ed. Vol. 40). Hoboken, N.J: 

Wiley. 
Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J., Pedersen, C. O., . . . 

Glazer, J. (2001). EnergyPlus: creating a new-generation building energy simulation 
program. Energy & Buildings, 33(4), 319-331. doi:10.1016/S0378-7788(00)00114-6 

CRCResearch. (2018). Multi-functional Spaces.   Retrieved from 
https://crcresearch.org/solutions-agenda/multi-functional-spaces 

Crocker, R., & Lehmann, S. (2013). Motivating change: sustainable design and behaviour in 
the built environment. Abingdon, Oxon: Routledge. 

D'Oca, S. (2012). Influence of occupants’ behavior on heating energy consumption and 
thermal comfort in residential buildings. Politecnico di Torino.    

https://www.carbontrust.com/media/84912/ctc518-uk-climate-change-programme-potential-evolution.pdf
https://www.carbontrust.com/media/84912/ctc518-uk-climate-change-programme-potential-evolution.pdf
https://comnet.org/appendix-b-modeling-data
https://comnet.org/appendix-b-modeling-data
https://comnet.org/appendix-c-schedules
https://coolchoices.com/
https://crcresearch.org/solutions-agenda/multi-functional-spaces


 
 

239 
 

D'Oca, S., & Hong, T. (2014). A data-mining approach to discover patterns of window opening 
and closing behavior in offices. Building and Environment, 82, 726-739. 
doi:10.1016/j.buildenv.2014.10.021 

D’Oca, S., Fabi, V., Corgnati, S. P., & Andersen, R. K. (2014). Effect of thermostat and window 
opening occupant behavior models on energy use in homes. Building Simulation, 7(6), 
683-694. doi:10.1007/s12273-014-0191-6 

Dall’O’, G., Galante, A., & Torri, M. (2011). A methodology for the energy performance 
classification of residential building stock on an urban scale. Energy & Buildings, 48, 
211-219. doi:10.1016/j.enbuild.2012.01.034 

Dascalaki, E. G., Droutsa, K., Gaglia, A. G., Kontoyiannidis, S., & Balaras, C. A. (2010). Data 
collection and analysis of the building stock and its energy performance—An example 
for Hellenic buildings. Energy & Buildings, 42(8), 1231-1237. 
doi:10.1016/j.enbuild.2010.02.014 

Day, J. K., & Gunderson, D. E. (2015). Understanding high performance buildings: The link 
between occupant knowledge of passive design systems, corresponding behaviors, 
occupant comfort and environmental satisfaction. Building and Environment, 84, 114-
124. doi:10.1016/j.buildenv.2014.11.003 

de la Torre, S., & Yousif, C. (2014). Evaluation of Chimney Stack Effect in a New Brewery Using 
DesignBuilder-energyPlus Software. Energy Procedia, 62, 230-235. 
doi:10.1016/j.egypro.2014.12.384 

De Meester, T., Marique, A.-F., De Herde, A., & Reiter, S. (2013). Impacts of occupant 
behaviours on residential heating consumption for detached houses in a temperate 
climate in the northern part of Europe. Energy and Buildings, 57, 313-323. 
doi:10.1016/j.enbuild.2012.11.005 

de Wilde, P. (2014). The gap between predicted and measured energy performance of 
buildings: A framework for investigation. Automation in Construction, 41, 40-49. 
doi:10.1016/j.autcon.2014.02.009 

Delaney, L. (2017). Statistical data set: museums and galleries monthly visits. UK Government 
Retrieved from https://www.gov.uk/government/statistical-data-sets/museums-and-
galleries-monthly-visits#summary. 

Deloitte, J. (2010). Employment densities guide. UK Retrieved from 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/37
8203/employ-den.pdf. 

Delzendeh, E., & Wu, S. (2017). The Influence of Space Layout Design on Occupant’s Energy 
Behaviour. Paper presented at the LC3 Lean and Computing in Construction Congress 
- Joint Conference on Computing in Construction. 

Delzendeh, E., Wu, S., & Alaaeddine, R. (2018). The role of space design in prediction of 
occupancy in multi-functional spaces of public buildings. Paper presented at the 2018 
Building Performance Analysis Conference and SimBuild, Chicago, IL. 

Delzendeh, E., Wu, S., Lee, A., & Zhou, Y. (2017). The impact of occupants’ behaviours on 
building energy analysis: A research review. Renewable and Sustainable Energy 
Reviews, 80, 1061-1071. doi:https://doi.org/10.1016/j.rser.2017.05.264 

Demanuele, C., Tweddell, T., & Davies, M. (2010). Bridging the gap between predicted and 
actual energy performance in schools. Paper presented at the World Renewable 
Energy Congress XI, Abu Dhabi, UAE.  

DesignBuilder. Simulation period.   Retrieved from 
http://www.designbuilder.co.uk/helpv2/Content/Simulation_Period.htm 

https://www.gov.uk/government/statistical-data-sets/museums-and-galleries-monthly-visits#summary
https://www.gov.uk/government/statistical-data-sets/museums-and-galleries-monthly-visits#summary
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/378203/employ-den.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/378203/employ-den.pdf
https://doi.org/10.1016/j.rser.2017.05.264
http://www.designbuilder.co.uk/helpv2/Content/Simulation_Period.htm


 
 

240 
 

DesignBuilder. (2009). DesignBuilder 2.1 User's Manual. Retrieved from 
http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_User
s-Manual_Ltr.pdf  

DesignBuilder. (2018a). DesignBuilder Revit – gbXML Tutorial.   Retrieved from 
http://www.designbuilder.co.uk/downloads/db_revit_tutorial_v1.pdf 

DesignBuilder. (2018b). Import 3-D BIM Data.   Retrieved from 
https://www.designbuilder.co.uk/helpv4.2/Content/Import_3-D_CAD_Data.htm 

Dudovskiy, J. (2018). The Ultimate Guide to Writing a Dissertation in Business Studies: A Step-
by-Step Assistance   

Duignan, O. (2016). A Dictionary of Business Research Methods (Vol. 1): Oxford University 
Press. 

EEA, E. E. A. (2015). Final energy consumption by sector and fuel. European Environment 
Agency. 

eia. (2016). International Energy Outlook. U.S. Energy Information Administration Retrieved 
from https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf. 

Ekici, C. (2016). Measurement Uncertainty Budget of the PMV Thermal Comfort Equation. 
International Journal of Thermophysics, 37(5), 1-21. doi:10.1007/s10765-015-2011-3 

Endler, N. S. (1993). Desire for control. Personality, social and clinical perspectives (Vol. 15, 
pp. 361-361): Elsevier Ltd. 

EnergyPlus. (2018). energyPlus.   Retrieved from https://energyplus.net/ 
EngineeringToolBox. (2003). Building Area per Person.   Retrieved from 

https://www.engineeringtoolbox.com/number-persons-buildings-d_118.html 
Erba, S., Causone, F., & Armani, R. (2017). The effect of weather datasets on building energy 

simulation outputs. Energy Procedia, 134, 545-554. doi:10.1016/j.egypro.2017.09.561 
EUROSTAT. (2015). Consumption of energy. http://ec.europa.eu/: EUROSTAT. 
Fabi, V., Andersen, R. V., Corgnati, S., & Olesen, B. W. (2012). Occupants' window opening 

behaviour: A literature review of factors influencing occupant behaviour and models. 
Building and Environment, 58, 188-198. doi:10.1016/j.buildenv.2012.07.009 

Fabi, V., Andersen, R. V., Corgnati, S. P., & Olesen, B. W. (2013). A methodology for modelling 
energy-related human behaviour: Application to window opening behaviour in 
residential buildings. Building Simulation, 6(4), 415-427. doi:10.1007/s12273-013-
0119-6 

Fabi, V., Andersen, R. V., Corgnati, S. P., Olesen, W. B., & Filippi, M. (2011). Description of 
occupant behaviour in building energy simulation: state-of-art and concept for 
improvements. Paper presented at the 12th Conference of International Building 
Performance Simulation Association, Sydney. 

Fanger, P. O. (1972). Thermal comfort, analysis and applications in environmental 
engineering. New York U6 - ctx_ver=Z39.88-
2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-
8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ff
mt%3Akev%3Amtx%3Abook&rft.genre=book&rft.title=Thermal+comfort%2C+analysi
s+and+applications+in+environmental+engineering&rft.au=Fanger%2C+P.+O&rft.dat
e=1972-01-01&rft.pub=McGraw-
Hill&rft.externalDBID=n%2Fa&rft.externalDocID=190776&paramdict=en-US U7 - 
Book: McGraw-Hill. 

Fathalian, A., & Kargarsharifabad, H. (2018). Actual validation of energy simulation and 
investigation of energy management strategies (Case Study: An office building in 

http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_Users-Manual_Ltr.pdf
http://www.designbuildersoftware.com/docs/designbuilder/DesignBuilder_2.1_Users-Manual_Ltr.pdf
http://www.designbuilder.co.uk/downloads/db_revit_tutorial_v1.pdf
https://www.designbuilder.co.uk/helpv4.2/Content/Import_3-D_CAD_Data.htm
https://www.eia.gov/outlooks/ieo/pdf/0484(2016).pdf
https://energyplus.net/
https://www.engineeringtoolbox.com/number-persons-buildings-d_118.html
http://ec.europa.eu/


 
 

241 
 

Semnan, Iran). Case Studies in Thermal Engineering, 12, 510-516. 
doi:10.1016/j.csite.2018.06.007 

Federspiel, C., Zhang, Q., & Arens, E. (2002). Model-based benchmarking with application to 
laboratory buildings. Energy & Buildings, 34(3), 203-214. doi:10.1016/S0378-
7788(01)00092-5 

Feng, X., Yan, D., & Hong, T. (2015). Simulation of occupancy in buildings. Energy and 
Buildings, 87, 348-359. doi:10.1016/j.enbuild.2014.11.067 

Fet, N., Handte, M., Wagner, S., & Marrón, P. J. (2013). LOCOSmotion: An acceleration-
assisted person tracking system based on wireless LAN. 

Freed, M. A. (1998). Simulating Human Performance in Complex, Dynamic Environments. 
(Doctor of Philosophy), Northwestern University, Evanston, Illinois.    

Fumo, N., & Chamra, L. M. (2010). Analysis of combined cooling, heating, and power systems 
based on source primary energy consumption. Applied Energy, 87(6), 2023-2030. 
doi:10.1016/j.apenergy.2009.11.014 

Gandhi, P., & Brager, G. S. (2016). Commercial office plug load energy consumption trends 
and the role of occupant behavior. Energy & Buildings, 125, 1-8. 
doi:10.1016/j.enbuild.2016.04.057 

gbXML. (2018). gbXML.   Retrieved from 
http://www.gbxml.org/About_GreenBuildingXML_gbXML 

Gelo, O., Braakmann, D., & Benetka, G. (2008). Quantitative and Qualitative Research: Beyond 
the Debate. Integrative Psychological and Behavioral Science, 42(3), 266-290. 
doi:10.1007/s12124-008-9078-3 

Gilani, S., O’Brien, W., Gunay, H. B., & Carrizo, J. S. (2016). Use of dynamic occupant behavior 
models in the building design and code compliance processes. Energy & Buildings, 117, 
260-271. doi:10.1016/j.enbuild.2015.10.044 

Gill, Z. M., Tierney, M. J., Pegg, I. M., & Allan, N. (2010). Low-energy dwellings: the 
contribution of behaviours to actual performance. Building Research & Information, 
38(5), 491-508. doi:10.1080/09613218.2010.505371 

Goldstein, R., Tessier, A., & Khan, A. (2011). Space layout in occupant behavior simulation. 
Paper presented at the 12th Conference of International Building Performance 
Simulation Association, Sydney.  

GOV.UK. (2001). Environmental taxes, reliefs and schemes for businesses.   Retrieved from 
https://www.gov.uk/green-taxes-and-reliefs/climate-change-levy 

Guerra Santin, O. (2010). Actual Energy Consumption in Dwellings : The Effect of Energy 
Performance Regulations and Occupant Behaviour. Amsterdam: IOS Press. 

Gul, M. S., & Patidar, S. (2015). Understanding the energy consumption and occupancy of a 
multi-purpose academic building. Energy & Buildings, 87, 155-165. 
doi:10.1016/j.enbuild.2014.11.027 

Gulbinas, R., Khosrowpour, A., & Taylor, J. (2015). Segmentation and Classification of 
Commercial Building Occupants by Energy-Use Efficiency and Predictability. IEEE 
Transactions on Smart Grid, 6(3), 1414-1424. doi:10.1109/TSG.2014.2384997 

Gunay, H. B., O'Brien, W., Beausoleil-Morrison, I., & Huchuk, B. (2014). On adaptive occupant-
learning window blind and lighting controls. Building Research & Information, 42(6), 
739-756. doi:10.1080/09613218.2014.895248 

Hansen, R., Olafsson, A. S., van der Jagt, A. P. N., Rall, E., & Pauleit, S. (2017). Planning 
multifunctional green infrastructure for compact cities: What is the state of practice? 
Ecological Indicators. doi:https://doi.org/10.1016/j.ecolind.2017.09.042 

http://www.gbxml.org/About_GreenBuildingXML_gbXML
https://www.gov.uk/green-taxes-and-reliefs/climate-change-levy
https://doi.org/10.1016/j.ecolind.2017.09.042


 
 

242 
 

Harish, V. S. K. V., & Kumar, A. (2016). A review on modeling and simulation of building energy 
systems. Renewable and Sustainable Energy Reviews, 56, 1272-1292. 
doi:10.1016/j.rser.2015.12.040 

Heydarian, A., Carneiro, J. P., Gerber, D., & Becerik-Gerber, B. (2015). Immersive virtual 
environments, understanding the impact of design features and occupant choice upon 
lighting for building performance. Building and Environment, 89, 217-228. 
doi:10.1016/j.buildenv.2015.02.038 

Hong, T., D'Oca, S., Turner, W. J. N., & Taylor-Lange, S. C. (2015). An ontology to represent 
energy-related occupant behavior in buildings. Part I: Introduction to the DNAs 
framework. Building and Environment, 92, 764-777. 
doi:10.1016/j.buildenv.2015.02.019 

HUB, Z. C. (2015). Post-occupancy Evaluation, Rowner Research Project Phase Two. Zero 
Carbon HUB. 

Indraganti, M., Ooka, R., & Rijal, H. B. (2015). Thermal comfort in offices in India: Behavioral 
adaptation and the effect of age and gender. Energy and Buildings, 103, 284-295. 
doi:10.1016/j.enbuild.2015.05.042 

Indraganti, M., & Rao, K. D. (2010). Effect of age, gender, economic group and tenure on 
thermal comfort: A field study in residential buildings in hot and dry climate with 
seasonal variations. Energy & Buildings, 42(3), 273-281. 
doi:10.1016/j.enbuild.2009.09.003 

Inglis, A. (2008). Approaches to the validation of quality frameworks for e-learning. Quality 
Assurance in Education, 16(4), 347-362. doi:10.1108/09684880810906490 

Jabareen, Y. (2009). Building a Conceptual Framework: Philosophy, Definitions, and 
Procedure. International Journal of Qualitative Methods, 8(4), 49-62. 
doi:10.1177/160940690900800406 

Jain, R. K., Taylor, J. E., & Culligan, P. J. (2013). Investigating the impact eco-feedback 
information representation has on building occupant energy consumption behavior 
and savings. Energy and Buildings, 64, 408-414. doi:10.1016/j.enbuild.2013.05.011 

Jakubiec, J. A., & Reinhart, C. (2011, 2011). The 'adaptive zone' - A concept for Assessing glare 
throughout daylit spaces. 

Janda, K. B. (2011). Buildings don't use energy: people do. Architectural science review, 54(1), 
15-22.  

Jang, H., & Kang, J. (2016a). A stochastic model of integrating occupant behaviour into energy 
simulation with respect to actual energy consumption in high-rise apartment 
buildings. Energy & Buildings, 121, 205-216. doi:10.1016/j.enbuild.2016.03.037 

Jang, H., & Kang, J. (2016b). A stochastic model of integrating occupant behaviour into energy 
simulation with respect to actual energy consumption in high-rise apartment 
buildings. Energy and Buildings, 121, 205-216. doi:10.1016/j.enbuild.2016.03.037 

Ji, Y., Lomas, K. J., & Cook, M. J. (2009). Hybrid ventilation for low energy building design in 
south China. Building and Environment, 44(11), 2245-2255. 
doi:10.1016/j.buildenv.2009.02.015 

Johnson, B. J., Starke, M. R., Abdelaziz, O. A., Jackson, R. K., & Tolbert, L. M. (2014, 2014). A 
method for modeling household occupant behavior to simulate residential energy 
consumption. 

Juodis, E., Jaraminiene, E., & Dudkiewicz, E. (2009). Inherent variability of heat consumption 
in residential buildings. Energy & Buildings, 41(11), 1188-1194. 
doi:10.1016/j.enbuild.2009.06.007 



 
 

243 
 

K. Le Guin, U. (2017). The Left Hand of Darkness (pp. 674-676). 
Kalman, A. (2012). Calculation of energy consumption in dwellings: theory and field data. 

Paper presented at the 5th meeting of IEA Annex 53, The Netherlands.  
Karatas, A., Stoiko, A., & Menassa, C. C. (2016). Framework for selecting occupancy-focused 

energy interventions in buildings. Building Research & Information, 44(5-6), 535-551. 
doi:10.1080/09613218.2016.1182330 

Karjalainen, S. (2016). Should we design buildings that are less sensitive to occupant 
behaviour? A simulation study of effects of behaviour and design on office energy 
consumption. Energy Efficiency, 1-14. doi:10.1007/s12053-015-9422-7 

Kavousian, A., Rajagopal, R., & Fischer, M. (2013). Determinants of residential electricity 
consumption: Using smart meter data to examine the effect of climate, building 
characteristics, appliance stock, and occupants' behavior. Energy, 55, 184-194. 
doi:10.1016/j.energy.2013.03.086 

Kazmi, H., D’Oca, S., Delmastro, C., Lodeweyckx, S., & Corgnati, S. P. (2016). Generalizable 
occupant-driven optimization model for domestic hot water production in NZEB. 
Applied Energy, 175, 1-15. doi:10.1016/j.apenergy.2016.04.108 

Khoshbakht, M., Gou, Z., & Dupre, K. (2018). Energy use characteristics and benchmarking for 
higher education buildings. Energy and Buildings, 164, 61-76. 
doi:https://doi.org/10.1016/j.enbuild.2018.01.001 

Khosrowpour, A., Gulbinas, R., & Taylor, J. E. (2016). Occupant workstation level energy-use 
prediction in commercial buildings: Developing and assessing a new method to enable 
targeted energy efficiency programs. Energy and Buildings, 127, 1133-1145. 
doi:10.1016/j.enbuild.2016.05.071 

Kieras , D., & Meyer, D. (1997). An Overview of the EPIC Architecture for Cognition and 
Performance With Application to Human-Computer Interaction. Human-computer 
Interaction, 12, 391-438.  

Knauth, S., Jost, C., & Klapproth, A. (2009). iLOC: A localisation system for visitor tracking & 
guidance. 

Kočí, V., Kočí, J., Maděra, J., & Černý, R. (2019). Effect of applied weather data sets in 
simulation of building energy demands: Comparison of design years with recent 
weather data. Renewable and Sustainable Energy Reviews, 100, 22-32. 
doi:10.1016/j.rser.2018.10.022 

Kovács, G., & Spens, K. M. (2005). Abductive reasoning in logistics research. International 
Journal of Physical Distribution & Logistics Management, 35(2), 132-144. 
doi:10.1108/09600030510590318 

Lan, L., Lian, Z., Liu, W., & Liu, Y. (2008). Investigation of gender difference in thermal comfort 
for Chinese people. European Journal of Applied Physiology, 102(4), 471-480. 
doi:10.1007/s00421-007-0609-2 

Langevin, J., Gurian, P. L., & Wen, J. (2013). Reducing energy consumption in low income 
public housing: Interviewing residents about energy behaviors. Applied Energy, 102, 
1358-1370. doi:10.1016/j.apenergy.2012.07.003 

Langevin, J., Gurian, P. L., & Wen, J. (2015). Tracking the human-building interaction: A 
longitudinal field study of occupant behavior in air-conditioned offices. Journal of 
Environmental Psychology, 42, 94-115. doi:10.1016/j.jenvp.2015.01.007 

Langevin, J., Wen, J., & Gurian, P. L. (2015). Simulating the human-building interaction: 
Development and validation of an agent-based model of office occupant behaviors. 
Building and Environment, 88, 27-45. doi:10.1016/j.buildenv.2014.11.037 

https://doi.org/10.1016/j.enbuild.2018.01.001


 
 

244 
 

Langevin, J., Wen, J., & Gurian, P. L. (2016). Quantifying the human–building interaction: 
Considering the active, adaptive occupant in building performance simulation. Energy 
& Buildings, 117, 372-386. doi:10.1016/j.enbuild.2015.09.026 

Larsen, T. S., Knudsen, H., Kanstrup, A. M., Christiansen, E., Gram-Hanssen, K., Mosgaard, M., 
. . . Rose, J. (2010). Occupants influence on the energy consumption of Danish domestic 
buildings. Department of Civil Engineering. Aalborg University.  

Lee, E., Allen, A., & Kim, B. (2013). Interior Design Practitioner Motivations for Specifying 
Sustainable Materials: Applying the Theory of Planned Behavior to Residential Design. 
Journal of Interior Design, 38(4), 1-16. doi:10.1111/joid.12017 

Lee, S., Alzoubi, H. H., & Kim, S. (2017). The Effect of Interior Design Elements and Lighting 
Layouts on Prospective Occupants’ Perceptions of Amenity and Efficiency in Living 
Rooms. Sustainability, 9(7), 1119. doi:10.3390/su9071119 

Lee, S. H., Hong, T., Piette, M. A., Sawaya, G., Chen, Y., & Taylor-Lange, S. C. (2015). 
Accelerating the energy retrofit of commercial buildings using a database of energy 
efficiency performance. Energy, 90, 738-747. doi:10.1016/j.energy.2015.07.107 

Lee, W.-S. (2008). Benchmarking the energy efficiency of government buildings with data 
envelopment analysis. Energy & Buildings, 40(5), 891-895. 
doi:10.1016/j.enbuild.2007.07.001 

Li, N., Li, J., Fan, R., & Jia, H. (2014). Probability of occupant operation of windows during 
transition seasons in office buildings. Renewable Energy, 73, 84-91. 
doi:10.1016/j.renene.2014.05.065 

Liao, C., & Barooah, P. (2010, 2010). An integrated approach to occupancy modeling and 
estimation in commercial buildings. 

Lilley, D. (2009). Design for sustainable behaviour: strategies and perceptions. Design Studies, 
30(6), 704-720. doi:10.1016/j.destud.2009.05.001 

Lindberg, R., Binamu, A., & Teikari, M. (2004). Five-year data of measured weather, energy 
consumption, and time-dependent temperature variations within different exterior 
wall structures. Energy & Buildings, 36(6), 495-501. 
doi:10.1016/j.enbuild.2003.12.009 

Liu, Y., Stouffs, R., Tablada, A., Wong, N. H., & Zhang, J. (2017). Comparing micro-scale 
weather data to building energy consumption in Singapore. Energy & Buildings, 152, 
776-791. doi:10.1016/j.enbuild.2016.11.019 

Lord, B., & Piacente, M. (2014). Manual of museum exhibitions. UK: Rowman & Littlefield. 
Lundström, L. (2017). Adaptive Weather Correction of Energy Consumption Data. Energy 

Procedia, 105, 3397-3402. doi:10.1016/j.egypro.2017.03.778 
Mahdavi, A., & Tahmasebi, F. (2015). Predicting people’s presence in buildings: An empirically 

based model performance analysis Energy & Buildings, 349- 355. 
doi:10.1016/j.enbuild.2014.10.027  

Maier, T., Krzaczek, M., & Tejchman, J. (2009). Comparison of physical performances of the 
ventilation systems in low-energy residential houses. Energy & Buildings, 41(3), 337-
353. doi:10.1016/j.enbuild.2008.10.007 

Manu, S., Shukla, Y., Rawal, R., Thomas, L. E., & de Dear, R. (2016). Field studies of thermal 
comfort across multiple climate zones for the subcontinent: India Model for Adaptive 
Comfort (IMAC). Building and Environment, 98, 55-70. 
doi:10.1016/j.buildenv.2015.12.019 

Marshall, A., Fitton, R., Swan, W., Farmer, D., Johnston, D., Benjaber, M., & Ji, Y. (2017). 
Domestic building fabric performance: Closing the gap between the in situ measured 



 
 

245 
 

and modelled performance. Energy & Buildings, 150, 307-317. 
doi:10.1016/j.enbuild.2017.06.028 

Martin, M., Afshari, A., Armstrong, P. R., & Norford, L. K. (2015). Estimation of urban 
temperature and humidity using a lumped parameter model coupled with an 
EnergyPlus model. Energy & Buildings, 96, 221-235. 
doi:10.1016/j.enbuild.2015.02.047 

Martinaitis, V., Zavadskas, E. K., Motuziene, V., & Vilutiene, T. (2015). Importance of 
occupancy information when simulating energy demand of energy efficient house: A 
case study. Energy and Buildings, 101, 64-75. doi:10.1016/j.enbuild.2015.04.031 

Martinaitis, V., Zavadskas, E. K., Motuzienė, V., & Vilutienė, T. (2015). Importance of 
occupancy information when simulating energy demand of energy efficient house: A 
case study. Energy & Buildings, 101, 64-75. doi:10.1016/j.enbuild.2015.04.031 

Martinez-Gil, J., Freudenthaler, B., & Natschlaeger, T. (2013, 2013). Modeling User Behavior 
through Electricity Consumption Patterns. 

Masoso, O. T., & Grobler, L. J. (2010). The dark side of occupants’ behaviour on building 
energy use. Energy & Buildings, 42(2), 173-177. doi:10.1016/j.enbuild.2009.08.009 

Masoudifar, N., Hammad, A., & Rezaee, M. (2014-2015, 2014;2015;). Monitoring occupancy 
and office equipment energy consumption using real-time location system and 
wireless energy meters. 

Melfi, R., Rosenblum, B., Nordman, B., & Christensen, K. (2011, 2011). Measuring building 
occupancy using existing network infrastructure. Paper presented at the Int. Green 
Conput. 

Milan, A., Schindler, K., & Roth, S. (2013). Detection- and Trajectory-Level Exclusion in Multiple 
Object Tracking. 

Miles, M. B., Huberman, A. M., Huberman, M., & Huberman, A. (1994). Qualitative data 
analysis: an expanded sourcebook (2nd ed.). Thousand Oaks, Calif;London;: Sage. 

Mohamed, A. M. A., Al-Habaibeh, A., Abdo, H., & Elabar, S. (2015). Towards exporting 
renewable energy from MENA region to Europe: An investigation into domestic 
energy use and householders' energy behaviour in Libya. Applied Energy, 146, 247-
262. doi:10.1016/j.apenergy.2015.02.008 

Moxon, S. n. (2012). Sustainability in interior design (Vol. 1). London: Laurence King. 
Nasar, J. L., Stamps, A. E., & Hanyu, K. (2005). Form and function in public buildings. Journal 

of Environmental Psychology, 25(2), 159-165. 
doi:https://doi.org/10.1016/j.jenvp.2005.03.004 

Neufert, E., Neufert, P., & Kister, J. (2012). Architects' data (Vol. 4th). Chichester: Wiley-
Blackwell. 

Neves, Y., Sindeaux, M., Souza, W., Kozievitch, N., Loureiro, A., & Silva, T. (2016, 2016). Study 
of Google Popularity Times Series for Commercial Establishments of Curitiba and 
Chicago. 

Nicol, J. F., & Humphreys, M. A. (2002). Adaptive thermal comfort and sustainable thermal 
standards for buildings. Energy & Buildings, 34(6), 563-572. doi:10.1016/S0378-
7788(02)00006-3 

Nunes, N., Ribeiro, M., Prandi, C., & Nisi, V. (2017, 2017). Beanstalk: a community based 
passive wi-fi tracking system for analysing tourism dynamics. 

O’Brien, W., & Gunay, H. B. (2015). Mitigating office performance uncertainty of occupant use 
of window blinds and lighting using robust design. Building Simulation, 8(6), 621-636. 
doi:10.1007/s12273-015-0239-2 

https://doi.org/10.1016/j.jenvp.2005.03.004


 
 

246 
 

Ormerod, R. J. (2010). Rational inference: deductive, inductive and probabilistic thinking. The 
Journal of the Operational Research Society, 61(8), 1207-1223. 
doi:10.1057/jors.2009.96 

Oseland, N. (2009). The impact of psychological needs on office design. Journal of Corporate 
Real Estate, 11(4), 244-254. doi:10.1108/14630010911006738 

Ouf, M., Issa, M., & Merkel, P. (2016). Analysis of Real-Time Electricity Consumption in 
Canadian School Buildings. Energy and Buildings. doi:10.1016/j.enbuild.2016.07.022 

Ouf, M. M., O’Brien, W., & Gunay, H. B. (2018). Improving occupant-related features in 
building performance simulation tools. Building Simulation, 11(4), 803-817. 
doi:10.1007/s12273-018-0443-y 

Ouyang, J., & Hokao, K. (2009). Energy-saving potential by improving occupants’ behavior in 
urban residential sector in Hangzhou City, China. Energy & Buildings, 41(7), 711-720. 
doi:10.1016/j.enbuild.2009.02.003 

OxfordDictionaries. (2018). Oxford Dictionaries.   Retrieved from 
https://en.oxforddictionaries.com/definition/multifunctional 

Page, J., Robinson, D., Morel, N., & Scartezzini, J. L. (2008). A generalised stochastic model for 
the simulation of occupant presence. Energy & Buildings, 40(2), 83-98. 
doi:10.1016/j.enbuild.2007.01.018 

Stochastic simulation of occupant presence and behaviour in buildings,  (2007). 
Park, J. S., & Kim, H. J. (2012). A field study of occupant behavior and energy consumption in 

apartments with mechanical ventilation. Energy and Buildings, 50, 19-25. 
doi:10.1016/j.enbuild.2012.03.015 

Pearce, D. (2006). The political economy of an energy tax: The United Kingdom's Climate 
Change Levy. Energy Economics, 28(2), 149-158. doi:10.1016/j.eneco.2005.10.001 

Pellegrino, M., Simonetti, M., & Chiesa, G. (2016). Reducing thermal discomfort and energy 
consumption of Indian residential buildings: Model validation by in-field 
measurements and simulation of low-cost interventions. Energy and Buildings, 113, 
145-158. doi:10.1016/j.enbuild.2015.12.015 

Peng, C., Yan, D., Wu, R., Wang, C., Zhou, X., & Jiang, Y. (2012). Quantitative description and 
simulation of human behavior in residential buildings. Building Simulation, 5(2), 85-
94. doi:10.1007/s12273-011-0049-0 

Pisello, A. L., Castaldo, V. L., Piselli, C., Fabiani, C., & Cotana, F. (2016). How peers' personal 
attitudes affect indoor microclimate and energy need in an institutional building: 
Results from a continuous monitoring campaign in summer and winter conditions. 
Energy and Buildings, 126, 485-497. doi:10.1016/j.enbuild.2016.05.053 

Polinder, H., Schweiker, M., Schakib-Ekbatan, K., Fabi, V., Andersen, R., Morishita, N., . . . 
Heiselberg, P. (2013). Total energy use in buildings: analysis and evaluation methods, 
Final Report Annex 53. Retrieved from  

Pollard, B. (2011). Mind the Gap: Predicted vs. Actual Performance of Green Buildings. 
Environment Design Guide(66), 1-10.  

Rafsanjani, H. N., & Ahn, C. (2016). Linking Building Energy-Load Variations with Occupants’ 
Energy-Use Behaviors in Commercial Buildings: Non-Intrusive Occupant Load 
Monitoring (NIOLM). Procedia Engineering, 145, 532-539. 
doi:10.1016/j.proeng.2016.04.041 

Rahman, M. M., Rasul, M. G., & Khan, M. M. K. (2010). Energy conservation measures in an 
institutional building in sub-tropical climate in Australia. Applied Energy, 87(10), 2994-
3004. doi:10.1016/j.apenergy.2010.04.005 

https://en.oxforddictionaries.com/definition/multifunctional


 
 

247 
 

Reeves, T., Olbina, S., & Issa, R. (2015). Guidelines for Using Building Information Modeling 
for Energy Analysis of Buildings. Buildings, 5(4), 1361.  

Reinhart, C. F. (2004). Lightswitch-2002: a model for manual and automated control of electric 
lighting and blinds. Solar Energy, 77(1), 15-28. doi:10.1016/j.solener.2004.04.003 

Rempel, A. R., Rempel, A. W., Cashman, K. V., Gates, K. N., Page, C. J., & Shaw, B. (2013). 
Interpretation of passive solar field data with EnergyPlus models: Un-conventional 
wisdom from four sunspaces in Eugene, Oregon. Building and Environment, 60, 158-
172. doi:10.1016/j.buildenv.2012.11.006 

Rijal, H. B. (2014). Investigation of Comfort Temperature and Occupant Behavior in Japanese 
Houses during the Hot and Humid Season. Buildings, 4(3), 437-452. 
doi:10.3390/buildings4030437 

Rijal, H. B., Honjo, M., Kobayashi, R., & Nakaya, T. (2013). Investigation of comfort 
temperature, adaptive model and the window-opening behaviour in Japanese houses. 
Architectural Science Review, 56(1), 54-69. doi:10.1080/00038628.2012.744295 

Rijal, H. B., Humphreys, M., & Nicol, F. (2015). Adaptive Thermal Comfort in Japanese Houses 
during the Summer Season: Behavioral Adaptation and the Effect of Humidity. 
Buildings, 5(3), 1037-1054. doi:10.3390/buildings5031037 

Rijal, H. B., Tuohy, P., Humphreys, M. A., Nicol, J. F., & Samuel, A. (2011). An algorithm to 
represent occupant use of windows and fans including situation-specific motivations 
and constraints. Building Simulation, 4(2), 117-134. doi:10.1007/s12273-011-0037-4 

Rijal, H. B., Tuohy, P., Humphreys, M. A., Nicol, J. F., Samuel, A., & Clarke, J. (2007). Using 
results from field surveys to predict the effect of open windows on thermal comfort 
and energy use in buildings. Energy & Buildings, 39(7), 823-836. 
doi:10.1016/j.enbuild.2007.02.003 

Rijal, H. B., Tuohy, P. G., Nicol, J. F., Humphreys, M. A., Samuel, A. A. A., & Clarke, J. A. (2008). 
Development of adaptive algorithms for the operation of windows, fans and doors to 
predict thermal comfort and energy use in Pakistani buildings.  

Roetzel, A., Tsangrassoulis, A., Dietrich, U., & Busching, S. (2010). A review of occupant control 
on natural ventilation. Renewable and Sustainable Energy Reviews, 14(3), 1001-1013. 
doi:10.1016/j.rser.2009.11.005 

Romero, R. A., Bojórquez, G., Corral, M., & Gallegos, R. (2013). Energy and the occupant's 
thermal perception of low-income dwellings in hot-dry climate: Mexicali, México. 
Renewable Energy, 49, 267-270. doi:10.1016/j.renene.2012.01.017 

Ryu, S. H., & Moon, H. J. (2016). Development of an occupancy prediction model using indoor 
environmental data based on machine learning techniques. Building and Environment. 
doi:10.1016/j.buildenv.2016.06.039 

Salawitch, R. J., Canty, T. P., Hope, A. P., Tribett, W. R., & Bennett, B. F. (2017). Paris Climate 
Agreement: Beacon of Hope. Cham: Springer International Publishing. 

Salcido, J. C., Raheem, A. A., & Issa, R. R. A. (2016). From simulation to monitoring: Evaluating 
the potential of mixed-mode ventilation (MMV) systems for integrating natural 
ventilation in office buildings through a comprehensive literature review. Energy and 
Buildings, 127, 1008-1018. doi:10.1016/j.enbuild.2016.06.054 

Saunders, M., & Lewis, P. (2012). Doing research in business and management: an essential 
guide to planning your project. Harlow: Financial Times Prentice Hall. 

Saunders, M., Lewis, P., & Thornhill, A. (2012). Research methods for business students (Vol. 
6th). Harlow: Pearson. 



 
 

248 
 

Saunders, M., Lewis, P., & Thornhill, A. (2016a). Research methods for business students (Vol. 
Seventh). Harlow: Pearson Education. 

Saunders, M., Lewis, P., & Thornhill, A. (2016b). Research methods for business students 
(Seventh ed.). Harlow: Pearson Education. 

Schakib-Ekbatan, K., Çakici, F. Z., Schweiker, M., & Wagner, A. (2015). Does the occupant 
behavior match the energy concept of the building? - Analysis of a German naturally 
ventilated office building. Building and Environment, 84, 142-150. 
doi:10.1016/j.buildenv.2014.10.018 

Schweiker, M., & Shukuya, M. (2011). Investigation on the effectiveness of various methods 
of information dissemination aiming at a change of occupant behaviour related to 
thermal comfort and exergy consumption. Energy Policy, 39(1), 395-407. 
doi:10.1016/j.enpol.2010.10.017 

Scofield, J. H. (2009). Do LEED-certified buildings save energy? Not really. Energy & Buildings, 
41(12), 1386-1390. doi:10.1016/j.enbuild.2009.08.006 

Sekaran, U., & Bougie, R. (2010). Research methods for business: a skill-building approach 
(Vol. 5th). Chichester: Wiley. 

Sekki, T., Andelin, M., Airaksinen, M., & Saari, A. (2016). Consideration of energy 
consumption, energy costs, and space occupancy in Finnish daycare centres and 
school buildings. Energy and Buildings, 129, 199-206. 
doi:10.1016/j.enbuild.2016.08.015 

Shabunko, V., Lim, C. M., & Mathew, S. (2018). EnergyPlus models for the benchmarking of 
residential buildings in Brunei Darussalam. Energy & Buildings, 169, 507-516. 
doi:10.1016/j.enbuild.2016.03.039 

Shi, X., Tian, Z., Chen, W., Si, B., & Jin, X. (2016). A review on building energy efficient design 
optimization rom the perspective of architects. Renewable and Sustainable Energy 
Reviews, 65, 872-884. doi:10.1016/j.rser.2016.07.050 

Shih, C.-Y., Chen, L.-H., Chen, G.-H., Wu, E. H. K., & Jin, M.-H. (2012). Intelligent radio map 
management for future WLAN indoor location fingerprinting. 

Silva, L., & Silva, T. (2018). Extraction and Exploration of Business Categories Signatures. 
Curitiba, PR, Brazil.  

Slavković, B. (2017). Application of the double skin façade in rehabilitation of the industrial 
buildings in Serbia. Thermal Science, 21(6 Part B), 2945-2955. 
doi:10.2298/TSCI160524179S 

Steemers, K., & Yun, G. Y. (2009). Household energy consumption: a study of the role of 
occupants. Building Research & Information, 37(5), 625-637. 
doi:10.1080/09613210903186661 

Strachan, P., Svehla, K., Heusler, I., & Kersken, M. (2016). Whole model empirical validation 
on a full-scale building. Journal of Building Performance Simulation, 9(4), 331-350. 
doi:10.1080/19401493.2015.1064480 

Streckienė, G., & Polonis, E. (2014). Analysis of Energy Demand for Low-Energy Multi-Dwelling 
Buildings of Different Configuration. Mokslas: Lietuvos Ateitis, 6(4), 414-420. 
doi:10.3846/mla.2014.57 

Sullivan, L. H. (1947). Kindergarten chatsand other writings (revised 1918)  
Tetlow, R. M., van Dronkelaar, C., Beaman, C. P., Elmualim, A. A., & Couling, K. (2015). 

Identifying behavioural predictors of small power electricity consumption in office 
buildings. Building and Environment, 92, 75-85. doi:10.1016/j.buildenv.2015.04.009 



 
 

249 
 

Tian, W., Heo, Y., de Wilde, P., Li, Z., Yan, D., Park, C. S., . . . Augenbroe, G. (2018). A review of 
uncertainty analysis in building energy assessment. Renewable and Sustainable 
Energy Reviews, 93, 285-301. doi:10.1016/j.rser.2018.05.029 

Toepke, S. (2017). Investigation of Geospatially Enabled, Social Media Generated Structure 
Occupancy Curves in Commercial Structures. Paper presented at the International 
Conference on Geographical Information Systems Theory, Applications and 
Management.  

ToolBox, T. E. Buildings area per person.   Retrieved from 
http://www.engineeringtoolbox.com/number-persons-buildings-d_118.html 

Trust, E. S. (2008). Measurement of Domestic Hot Water Consumption in Dwellings. Retrieved 
from  

Ulusoy, B., & Nilgün, O. (2017). Understanding responses to materials and colors in interiors. 
Color Research & Application, 42(2), 261-272. doi:10.1002/col.22072 

Ulusoy, B., & Olguntürk, N. (2016). Effects of Color Pairs on Warmth Perception in Interiors. 
Society for Imaging Science and Technology, 126-135(110). 
doi:https://doi.org/10.2352/ISSN.2169-2629.2017.32.126 

Vasser, C. P., & Vasser, C. P. (2009). Kyoto Protocol: Economic Assessments, Implementation. 
New York: Nova Science Publishers, Inc. 

Vlasenko, I., Nikolaidis, I., & Stroulia, E. (2015). The Smart-Condo: Optimizing Sensor 
Placement for Indoor Localization. IEEE Transactions on Systems, Man, and 
Cybernetics: Systems, 45(3), 436-453. doi:10.1109/TSMC.2014.2356437 

von Grabe, J. (2016). How do occupants decide their interactions with the building? From 
qualitative data to a psychological framework of human-building-interaction. Energy 
Research & Social Science, 14, 46-60. doi:10.1016/j.erss.2016.01.002 

Wang, S., Yan, C., & Xiao, F. (2012). Quantitative energy performance assessment methods 
for existing buildings. Energy and Buildings, 55, 873-888. 
doi:10.1016/j.enbuild.2012.08.037 

Wang, W., Chen, J., & Hong, T. (2018). Modeling occupancy distribution in large spaces with 
multi-feature classification algorithm. Building and Environment, 137, 108-117. 
doi:10.1016/j.buildenv.2018.04.002 

Wang, Z., & Ding, Y. (2015). An occupant-based energy consumption prediction model for 
office equipment. Energy and Buildings, 109, 12-22. 
doi:10.1016/j.enbuild.2015.10.002 

Wang, Z., Zhao, Z., Lin, B., Zhu, Y., & Ouyang, Q. (2015). Residential heating energy 
consumption modeling through a bottom-up approach for China's Hot Summer-Cold 
Winter climatic region. Energy and Buildings, 109, 65-74. 
doi:10.1016/j.enbuild.2015.09.057 

Wetter, M., Bonvini, M., & Nouidui, T. S. (2016). Equation-based languages – A new paradigm 
for building energy modeling, simulation and optimization. Energy & Buildings, 117, 
290-300. doi:10.1016/j.enbuild.2015.10.017 

Wilkes, E., & Goodright, V. (2015). Energy Consumption in the UK (2015). London: Department 
of Energy & Climate Change. 

Wilson, G. T., Lilley, D., & Bhamra, T. A. (2013). Design feedback interventions for household 
energy consumption reduction. Paper presented at the 16th Conference of the 
European Roundtable on Sustainable Consumption and Production (ERSCP) & 7th 
Conference of the Environmental Management for Sustainable Universities (EMSU).  

http://www.engineeringtoolbox.com/number-persons-buildings-d_118.html
https://doi.org/10.2352/ISSN.2169-2629.2017.32.126


 
 

250 
 

Wu, S., & Delzendeh, E. (2016). A conceptual framework to simulate building occupancy using 
crowd modelling techniques for energy analysis. Paper presented at the 33rd CIB W78 
Conference, Australia. 

Yan, D., & Hong, T. (2016). Definition and Simulation of Occupant Behavior in Buildings, ANNEX 
66. Retrieved from www.iea-ebc.org 

Yan, D., O’Brien, W., Hong, T., Feng, X., Burak Gunay, H., Tahmasebi, F., & Mahdavi, A. (2015). 
Occupant behavior modeling for building performance simulation: Current state and 
future challenges. Energy & Buildings, 107, 264-278. 
doi:10.1016/j.enbuild.2015.08.032 

Yang, J., Santamouris, M., & Lee, S. E. (2015). Review of occupancy sensing systems and 
occupancy modeling methodologies for the application in institutional buildings. 
Energy and Buildings. doi:10.1016/j.enbuild.2015.12.019 

Yang, J., Santamouris, M., & Lee, S. E. (2016). Review of occupancy sensing systems and 
occupancy modeling methodologies for the application in institutional buildings. 
Energy & Buildings, 121, 344-349. doi:10.1016/j.enbuild.2015.12.019 

Ye, L., Cheng, Z., Wang, Q., Lin, W., & Ren, F. (2013). Overview on Green Building Label in 
China. Renewable Energy, 53, 220-229. doi:10.1016/j.renene.2012.11.022 

Yin, R. K. (2014). Case study research: design and methods (Vol. 5th). Los Angeles, California: 
SAGE. 

Yu, C.-R., Wu, C.-L., Lu, C.-H., & Fu, L.-C. (2006). Human Localization via Multi-Cameras and 
Floor Sensors in Smart Home. 

Yu, Z., Li, J., Li, H. Q., Han, J., & Zhang, G. Q. (2015). A novel methodology for identifying 
associations and correlations between household appliance behaviour in residential 
buildings. Energy Procedia, 78, 591-596. doi:10.1016/j.egypro.2015.11.024 

Yu Zhun Jerry, Z. J., Haghighat, F., Fung, B. C. M., Morofsky, E., & Yoshino, H. (2011). A 
methodology for identifying and improving occupant behavior in residential buildings. 
Energy, 36(11), 6596-6608. doi:10.1016/j.energy.2011.09.002 

Yun, G. Y., Choi, J., & Kim, J. T. (2014). Energy performance of direct expansion air handling 
unit in office buildings. Energy and Buildings, 77, 425-431. 
doi:10.1016/j.enbuild.2014.03.039 

Yun, G. Y., & Steemers, K. (2008). Time-dependent occupant behaviour models of window 
control in summer. Building and Environment, 43(9), 1471-1482. 
doi:10.1016/j.buildenv.2007.08.001 

Zeisel, J. (2006). Inquiry by design: environment/behavior/neuroscience in architecture, 
interiors, landscape, and planning (Vol. Rev.). London;New York, N.Y;: W.W. Norton. 

Zhang, Y., & Barrett, P. (2012). Factors influencing occupants’ blind-control behaviour in a 
naturally ventilated office building. Building and Environment, 54, 137-147. 
doi:10.1016/j.buildenv.2012.02.016 

Zhao, J., Lasternas, B., Lam, K. P., Yun, R., & Loftness, V. (2014). Occupant behavior and 
schedule modeling for building energy simulation through office appliance power 
consumption data mining. Energy and Buildings, 82, 341-355. 
doi:10.1016/j.enbuild.2014.07.033 

Zhao, J., Xin, Y., & Tong, D. (2012). Energy consumption quota of public buildings based on 
statistical analysis. Energy Policy, 43, 362-370. doi:10.1016/j.enpol.2012.01.015 

Zhu, Y., Ouyang, Q., Cao, B., Zhou, X., & Yu, J. (2016). Dynamic thermal environment and 
thermal comfort. Indoor Air, 26(1), 125-137. doi:10.1111/ina.12233 



 
 

251 
 

Zou, P. X. W., Wagle, D., & Alam, M. (2019). Strategies for minimizing building energy 
performance gaps between the design intend and the reality. Energy & Buildings, 191, 
31-41. doi:10.1016/j.enbuild.2019.03.013 

Zou, P. X. W., Xu, X., Sanjayan, J., & Wang, J. (2018a). A mixed methods design for building 
occupants’ energy behavior research. Energy & Buildings, 166, 239-249. 
doi:10.1016/j.enbuild.2018.01.068 

Zou, P. X. W., Xu, X., Sanjayan, J., & Wang, J. (2018b). Review of 10 years research on building 
energy performance gap: Life-cycle and stakeholder perspectives. Energy & Buildings, 
178, 165-181. doi:10.1016/j.enbuild.2018.08.040 

 


	Abstract
	Table of Content
	List of Figures
	List of Tables
	Acknowledgements
	List of Abbreviations
	Chapter 1: Introduction
	1.1. Research Background
	1.2. Research Aim and Objectives
	1.2.1. Research Aim
	1.2.2. Research Objectives

	1.3. Research Methodology
	1.4. Contribution to Knowledge, Uniqueness and Novelty
	1.5. Definitions, Technical Terms and Tools
	1.6. Publications
	1.7. Thesis Structure
	1.8. Chapter Conclusion
	Chapter 2: Literature Review
	2.1. Energy Consumption in Buildings
	2.2. Review of the Existing Literature: Quantitative Analysis and Qualitative Review
	2.2.1. Energy Performance Gap
	2.2.2. Occupant behaviour
	2.2.3. Parameters influencing occupants’ energy behaviour
	2.2.3.1. Climate
	2.2.3.2. Building Type
	2.2.3.3. Social and Personal Parameters
	2.2.3.4. Regulations and Economical Parameters
	2.2.3.5. State of Occupants: Arrival and Departure
	2.2.3.6. Design Features


	2.3. Building Energy Prediction: Methods and Tools
	2.4. Human-behaviour-related inputs in energy prediction tools
	2.4.1. Passive energy behaviour: Occupancy
	2.4.2. Active energy behaviours
	2.4.2.1. Use of appliances
	2.4.2.2. Use of openings
	2.4.2.3. Use of lighting
	2.4.2.4. Use of solar shadings and blinds
	2.4.2.5. Use of HVAC systems and set-points
	2.4.2.6. Use of hot water

	2.4.3. Summary: incorporation of occupants’ behaviours into energy prediction tools
	2.4.4. Existing Gaps in the Literature

	2.5. Research Focus
	2.5.1. Energy prediction in multi-functional spaces of public buildings
	2.5.2. Space Design and Energy Consumption
	2.5.3. Integration with energy simulation tools

	2.6. Chapter Conclusion
	Chapter 3: Research Method
	3.1. Research Method in Existing Studies
	3.2. Layers of Research Methodology
	3.2.1. Research Philosophy
	3.2.2. Research Approach
	3.2.3. Methodological Choice
	3.2.4 Research Strategy
	3.2.4.1. Case Study Design

	3.2.5. Time Horizon
	3.2.6. Data Collection

	3.3. Research Design
	3.4. Chapter Conclusion
	Chapter 4: Case Study Stage 1
	4.1. Selection of cases
	4.2. Model simulation method
	4.3. Energy simulation tool: DesignBuilder
	4.3.1. Energy modelling and simulation process

	4.4. Design Stage Case Study: Wuhan Gallery
	4.4.1. Case Study Description
	4.4.2. Energy Modelling and Simulation
	4.4.3. Analysis and Findings (Case Study 1)

	4.5. Construction Stage Case Study: Oastler Building, University of Huddersfield
	4.5.1. Case Study Description
	4.5.2. Energy Modelling and Simulation
	4.5.3. Analysis and Findings (Case Study 2)

	4.6. Chapter Conclusion
	Chapter 5: Case Study Stage 2
	5.1. Post-Occupancy Stage Case Study: Student Central Building, University of Huddersfield
	5.1.1. Case Study Description
	5.1.2. Energy Modelling and Simulation (Default)
	5.1.3. Data Collection
	5.1.3.1. Pilot Study
	5.1.3.2. Zoning

	5.1.4. Data Analysis
	5.1.4.1. Working Hours
	5.1.4.2. Occupancy: Low season (school holiday)
	5.1.4.3. Occupancy: High season (school academic year)
	5.1.4.4. Maximum Occupancy
	5.1.4.5. Door Opening

	5.1.5. Energy Modelling and Simulation (Collected Data)

	5.2. Post-Occupancy Stage Case Study: Manchester Art Gallery
	5.2.1. Case Study Description
	5.2.2. Energy Modelling and Simulation (Default)
	5.2.3. Data Collection
	5.2.3.1. Zoning
	5.2.3.2. Occupancy

	5.2.4. Data Analysis
	5.2.4.1. Working Hours
	5.2.4.2. Occupancy
	5.2.4.3. Maximum Occupancy
	5.2.4.4. Door Opening

	5.2.5. Energy Modelling and Simulation (Collected Data)

	5.3. Chapter Conclusion
	Chapter 6: Discussions and Framework
	6.1. Discussion
	6.1.1. Working Hours
	6.1.2.  Zoning
	6.1.3. Door Opening
	6.1.4. Occupancy
	6.1.5. Key Findings

	6.2. Development of the Conceptual Framework
	6.2.1. Initial Framework
	6.2.2. Validation and Refinement
	6.2.2.1. Comments from expert V1
	6.2.2.2. Comments from expert V2
	6.2.2.3. Comments from expert V3
	6.2.2.4. Comments from expert V4
	6.2.2.5. Analysis of experts’ comments

	6.2.3. Final Framework
	6.2.3.1. Final framework: buildings at the operation and maintenance stages
	6.2.3.2. Final framework: buildings at the design and construction stages


	6.3. Chapter Conclusion
	Chapter 7: Conclusion
	7.1. Conclusion
	7.1.2. Summary of Research Problem
	7.1.3. Summary of research method
	7.1.4. Summary of research findings
	7.1.4.1. Objective 1
	7.1.4.2. Objective 2
	7.1.4.3. Objective 3
	7.1.4.4. Objective 4
	7.1.4.5. Objective 5


	7.2. Contribution to Knowledge
	7.2.1. Theoretical Contribution
	7.2.2. Practical Contribution
	7.2.2.1. Practical Contribution: Conceptual Framework


	7.3. Research Limitations
	7.4. Future Work
	7.5. Final Words
	Appendix 1: Research Summary Document Sent to Experts for Validation of the Framework
	Appendix 2: Student Central Building, Energy Simulation Using Default Data
	Appendix 3: Student Central Building, Energy Simulation Using Realistic Data
	References

