
University of Huddersfield Repository

Higgins, Joshua

Towards Modern, Accessible and Dynamic HPC Using Container-based Virtual Clusters

Original Citation

Higgins, Joshua (2019) Towards Modern, Accessible and Dynamic HPC Using Container-based
Virtual Clusters. Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34842/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Towards Modern, Accessible and Dynamic

HPC Using Container-based Virtual Clusters

Joshua Higgins

A thesis submitted in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

High Performance Computing Research Group

University of Huddersfield

United Kingdom

September 2018

Copyright

i The author of this thesis (including any appendices and/or schedules to this

thesis) owns any copyright in it (the “Copyright”) and s/he has given The Uni-

versity of Huddersfield the right to use such copyright for any administrative,

promotional, educational and/or teaching purposes.

ii Copies of this thesis, either in full or in extracts, may be made only in accordance

with the regulations of the University Library. Details of these regulations may

be obtained from the Librarian. This page must form part of any such copies

made.

iii The ownership of any patents, designs, trademarks and any and all other in-

tellectual property rights except for the Copyright (the “Intellectual Property

Rights”) and any reproductions of copyright works, for example graphs and ta-

bles (“Reproductions”), which may be described in this thesis, may not be owned

by the author and may be owned by third parties. Such Intellectual Property

Rights and Reproductions cannot and must not be made available for use without

the prior written permission of the owner(s) of the relevant Intellectual Property

Rights and/or Reproductions.

iii

For Jennifer

In memory of Tommy and Ozzy

iv

Acknowledgements

Dr Violeta Holmes, for your unending enthusiasm

and guidance in shaping this work

Shuo and Matt, without whose all night office hours

I wouldn’t have survived

and my family and friends too numerous to mention,

who supported me over the past 4 years.

v

vi

Abstract

In this thesis, a novel Virtual Container Cluster (VCC) framework is presented. De-

spite the growing popularity of container virtualisation in order to increase the flexi-

bility of the software stack, run time environment virtualisation still poses significant

portability challenges; by depending on the underlying cluster execution paradigm,

a niche class of HPC only containers has emerged. This trend is detrimental to

reusability, reproducibility, and encouraging new communities to HPC.

Traditional virtualisation techniques have a rich history within HPC, and have been

demonstrated to offer much more than software flexibility. A Virtual Machine by na-

ture requires an OS and full stack environment akin to a physical machine, and this

allows it to be instantiated regardless of the underlying machine and what services it

provides. This capability is essential in order to implement job forwarding and span-

ning - where the burden of an entire job can be transferred or shared between hetero-

geneous cluster systems - with a high level of confidence that the environments will

be compatible. In turn, this brings improvements to global resource performance,

reducing the job turnaround time and increasing cluster utilization.

The VCC is an innovative solution that combines the full stack and container vir-

tualisation approaches. Therefore, it offers both the flexibility of containers with

the improved portability, performance and scalability of the full stack approach. In

order to maintain the same accessibility and lower barrier of entry as the run time

environment approach, the design incorporates an autonomous configuration and

contextualisation mechanism, along with a Software Defined Networking technol-

ogy, to ensure the full stack container does not place an additional burden on the

user. The usefulness and performance is validated through benchmarking and two

case studies: virtual clusters in the classroom and inter-institutional spanning.

vii

viii

Contents

1 Introduction 1

1.1 Aim and Objectives . 11

1.2 Methodology . 12

1.3 Outline . 14

2 Related Work 17

2.1 Virtualisation Techniques: Past and Present 18

2.1.1 Xen era . 19

2.1.2 Classical era . 23

2.1.3 Container era . 27

2.2 Virtualised Clusters . 31

2.2.1 In a Cluster Fabric . 31

2.2.2 In a Grid Fabric . 38

2.2.3 In a Cloud Fabric . 42

2.3 Containers . 45

2.3.1 Run Time Environment . 45

2.3.2 Full Stack Environment . 49

2.4 Synthesis . 52

2.5 Summary . 59

ix

3 Virtual Container Cluster Framework 63

3.1 Architecture . 64

3.2 Design Decisions . 68

3.2.1 Contextual-aware Configuration 68

3.2.2 Many-Fabric Spanning . 70

3.2.3 Multi-node Parallel Execution 73

3.2.4 User Defined Image . 74

3.2.5 Image Repository and Provenance 76

3.2.6 Standalone Deployment . 77

3.3 Implementation . 78

3.3.1 Discovery . 79

3.3.2 Network Identification . 80

3.3.3 DNS . 81

3.3.4 PKI . 84

3.3.5 Dynamic Configuration . 86

3.3.6 Dynamic Scaling . 89

3.3.7 Service Management . 91

3.4 Summary . 94

4 Building a Container Cluster 97

4.1 Base Image . 98

4.1.1 VCC Installation . 98

4.1.2 Middleware Installation . 100

4.1.2.1 Roles and Dependencies 100

4.1.2.2 Cluster Hooks . 102

4.1.2.3 Service Hooks . 104

4.2 Runtime Environment . 104

x

4.3 Summary . 107

5 Performance Benchmarking 109

5.1 Benchmarking Tools . 110

5.2 Native vs SDN Interconnect . 111

5.3 Inter-cluster Interconnect . 116

5.3.1 Latency Scalability . 117

5.3.2 Spanning Simulator . 120

5.4 Summary . 124

6 Geographically Distributed Spanning 127

6.1 Nested Meta-Cluster Topology . 128

6.2 Methodology . 131

6.2.1 Cluster Connectivity . 132

6.2.2 Job Queue . 133

6.2.3 Procedure . 135

6.3 Evaluation . 136

6.3.1 Campus Grid . 139

6.3.2 Inter-institution Grid . 141

6.4 Summary . 143

7 Virtual Clusters in the Classroom 147

7.1 Parallel Computer Architectures Module 148

7.2 VCC on a Single Machine . 152

7.3 Methodology . 153

7.3.1 Usability Survey . 154

7.3.2 Skills Audit . 155

7.3.3 Procedure . 156

xi

7.4 Evaluation . 158

7.4.1 System Usability Scale . 158

7.4.2 Skills Audit . 160

7.4.3 Workflow . 161

7.4.4 System Requirements . 162

7.5 Summary . 164

8 Conclusion 167

9 Future Work 175

References 177

Appendices 189

A Engagement with Research Community 191

B Surveys and Printed Materials 199

C Data 203

xii

List of Figures

1.1 Landscape of HPC resources in the UK 5

2.1 Comparison of Virtualisation Techniques 20

2.2 Receive Page Flipping in Xen . 21

2.3 Architecture of a Dynamic Virtual Cluster 33

2.4 Architecture of a Virtual Workspace in the Grid 39

2.5 Architecture of StarCluster on Amazon EC2 43

2.6 Architecture of a prototype Virtual Cluster using Docker 50

2.7 Taxonomy of Virtualised Clusters . 53

2.8 Workflow comparison of full stack cluster node versus runtime envi-

ronment virtualisation . 56

3.1 Overview of VCC Container Architecture 64

3.2 VCC Architecture (Higgins et al., 2017a) 65

3.3 Example NFS mount using role name for dynamic DNS query 70

3.4 Communication Models within the VCC 72

3.5 Typical discovery data stored in the key-value store 79

3.6 Sequence diagram of the ClusterNet service 80

3.7 Sequence diagram of the ClusterDNS service 82

3.8 Sequence diagram of the ClusterKeys service 85

xiii

3.9 An example dependencies.yml file . 87

3.10 Sequence diagram of the dependency related services 88

3.11 Sequence diagram of the ClusterWatcher service 90

3.12 Service Dependency Ordering . 92

3.13 Unit File for ClusterDNS Service under systemd 93

3.14 VCC Service Target under systemd 93

4.1 Dockerfile excerpt to install VCC service layer 99

4.2 Dockerfile excerpt to install Middleware layer 101

4.3 Cluster hook script to generate PBS node file 103

4.4 Service hook script for the headnode role 105

4.5 Dockerfile excerpt for installing OpenFOAM run time environment . 106

4.6 Summary of VCC Image Build Process 107

5.1 Random ring bandwidth benchmark (Higgins et al. (2017a)) 114

5.2 Random ring latency benchmark (Higgins et al. (2017a)) 114

5.3 Random Ring Bandwith over VCC sizes (Higgins et al. (2017a)) . . 115

5.4 Random Ring Latency over VCC sizes (Higgins et al. (2017a)) . . . 115

5.5 Linpack benchmarking results (Higgins et al. (2017a)) 115

5.6 Latency scalability benchmarking . 119

5.7 Cluster 1 (Eridani) simulator results 122

5.8 Cluster 2 (Ascella) simulator results 123

6.1 VCC Meta-Cluster Deployment . 130

6.2 Traceroute of Spanning Case Study Connectivity 133

6.3 Job Queue Pattern for Spanning Case Study 134

6.4 Bootstrapping the Weave SDN network and spanned VCC 136

6.5 Outer Cluster Job Submission Workflow 137

6.6 Campus Grid Queue Execution Time Plots 140

xiv

6.7 Spanning Errors in Extreme Network Environments 142

6.8 Inter-institution Queue Execution Time Plots 144

7.1 Layout of the cluster laboratory . 150

7.2 System Usability Scale Scores for VCC and OSCAR 158

7.3 Combined skills audit results for VCC 161

7.4 Combined skills audit results for OSCAR 162

7.5 Workflow comparison of OSCAR and VCC 163

B.1 SUS Survey for Teaching Case Study 200

B.2 Skills Audit for Teaching Case Study 201

xv

xvi

List of Tables

1.1 Characteristics of an HPC system . 2

1.2 Summary of method and associated activities 15

2.1 Summary of works addressing virtualisation performance in HPC con-

text . 32

2.2 Feature comparison of virtualised cluster implementations 58

5.1 Systems used for performance benchmarking (Higgins et al. (2017a)) 112

5.2 Survey of typical Round Trip Time (RTT) per scenario 117

6.1 Cluster Specifications for Spanning Case Study 132

6.2 Firewall requirements for Spanning Case Study 135

6.3 Campus spanned job queue turnaround time 138

7.1 Classroom Case Study Measurable Objects and Activities 153

7.2 Timeline of Classroom Case Study Activities 157

7.3 Descriptive Statistics for SUS 2 Sample T-Test 159

7.4 Percentile Rank of SUS scores . 160

7.5 Summary of skills audit results . 160

C.1 Linpack Latency Scalability Results 204

C.2 OpenFOAM Latency Scalability Results 204

xvii

C.3 Simulator Results - Eridani . 205

C.4 Simulator Results - Ascella . 206

C.5 Campus Grid Spanning Case Study Results 207

C.6 Inter-Institution Spanning Case Study Results 208

C.7 System Usability Scale - VCC Results 209

C.8 System Usability Scale - OSCAR Results 210

C.9 Skills Audit Results - VCC Start . 211

C.10 Skills Audit Results - VCC End . 212

C.11 Skills Audit Results - OSCAR Start 213

C.12 Skills Audit Results - OSCAR End 213

xviii

Chapter 1

Introduction

Fast computing is essential to modern science. It has become a fundamental tool

underpinning research and innovation in an ever increasing array of domains, includ-

ing the modelling of physical phenomena, fluid dynamics, molecular interactions,

astronomy, genomics, game design, social media and even music technology. The

dependence on research computing capabilities will continue to grow, especially as

new methods are developed that require the processing of massive amounts of data.

However, whilst the number of fields that rely on research computing expands, the

infrastructure and technologies traditionally used to deliver it are difficult to adapt

to a diverse range of users, workflows, and deployment topologies.

High Performance Computing

High Performance Computing (HPC) is typically synonymous with cluster and grid

computing. However, it can be more precisely defined by 3 main characteristics,

outlined in Table 1.1. Firstly, a key property of an HPC system is agressive paral-

lelisation, allowing tasks operating on the same or different components of data to be

1

Parallelism
Maximise paral-
lelism

Speedup is gained from parallelisation of
tasks

MIMD, SIMD Clusters are composed of many nodes that
are parallel machines on their own

Latency
Minimise latency Low latency communications is required

for inter- and intra-node processing ele-
ments

Inter-node Processor cache and memory: 1.8ns to
70ns

Intra-node InfiniBand and Ethernet: 1us to 25us

Scalability
Strong scaling Constant problem size, time reduced by

adding processors
Weak scaling Problem size is proportional to number of

processors

Table 1.1: Characteristics of an HPC system

distributed across multiple processors and multiple computers. Classical architec-

tures for parallelisation are described by Flynn’s Taxonomy, although modern HPC

systems rarely utilise a homogeneous form of parallelism (Sterling, Anderson, &

Brodowicz, 2017). For example, distributed memory HPC systems may be classified

as Multiple Instruction Multiple Data (MIMD), but composed of individual com-

puters that can exploit processors with Single Instruction Multiple Data (SIMD)

extensions, such as Advanced Vector Extensions (AVX). Secondly, these systems

must provide a low latency interconnect between processing elements, local and dis-

tributed memory, in order to maximise the efficiency and speedup of parallelisation.

Finally, an HPC system provides scalability - this can be exhibited as strong scaling,

where the performance is improved for a constant size problem when adding more

processors, or weak scaling, where the performance per processor is constant but

the problem size is proportional to the number of processors, thus allowing larger

problems to be solved.

An HPC system supports a range of activities, including those from the user’s per-

spective - job submission, data management, visualisation - and those from a system

2

and resource management perspective - scheduling, parallel execution, and usage ac-

counting. Underpinning these activities are layers of interconnection networks. The

concurrency of processing elements enabled by this interconnection is the distinc-

tion between an HPC system and many computers with some degree of proximity.

It enables the systems to work cooperatively in order to solve problems that typ-

ically require significantly higher processing power, memory or faster turnaround

time than what can be provided by one system alone. In practice, an HPC system is

composed of a hierarchy of networks that may be required to pass messages between

processing elements on a scale ranging from nanometers to several hundred miles.

The design of these networks is the distinguishing factor between different types of

HPC systems.

At the compute node level, there are already several networks that facilitate commu-

nication between CPUs, such as QuickPath Interconnect (QPI) or HyperTransport,

and between Graphic Processing Units (GPUs), accelerators and other devices, such

as PCI Express and NVLink. These networks allow the implementation of shared

memory access, cache coherency, and parallelisation of tasks within the boundary of

a single processing element.

In a cluster, the parallelisation of tasks is performed across many processing ele-

ments. In this computing paradigm, processes belonging to the same application

are distributed across many machines. This is in contrast to a web server farm,

for example, where even though the task of serving clients can be parallelised by

running many web servers, each is independent and there is little communication

between the web servers themselves. Unlike these commodity networks and services,

the interconnect between machines in a cluster must be optimised for exchanging

messages and memory segments with high speed and low latency. Therefore, HPC

clusters typically utilize interconnects such as InfiniBand, Omni-Path or High Speed

3

Ethernet which provide data rates in excess of 100Gb/s and typical latencies of less

than 1µs and up to 25µs.

In a grid, several clusters are interconnected over a larger geographical distance. The

network connections between clusters in a grid typically facilitate data movement,

identity management and high-level scheduling in order to allow a group of clusters

to be horizontally integrated and operated in a coherent fashion. These connections

can be used to implement capabilities such as meta-scheduling, where jobs are for-

warded between resources in a grid in order to improve the overall efficiency and

throughput (Sotiriadis, Bessis, Xhafa, & Antonopoulos, 2012). For example, a job

can be forwarded from a busy cluster to an idle cluster, where it would otherwise

have had to wait in a queue.

The landscape of HPC systems in the UK is composed of 3 tiers, representing na-

tional, regional and local computing assets, as shown in Figure 1.1 (EPSRC strat-

egy for the developing landscape of Tier-2 HPC in the UK , n.d.). Tier-1 provides

the highest capability machines: ARCHER and DiRAC. Both systems can be ac-

cessed through research council funded consortia, grants and regular specific calls.

ARCHER is a Cray XC30 supercomputer providing 118,080 compute cores, mainly

supporting materials, climate, engineering and biosciences (ARCHER, n.d.). DiRAC

provides compute resources for particle and nuclear physics, astrophysics and cos-

mology through 4 HPC systems distributed around the UK, engineered to solve

distinct classes of research problems. They offer between 4116 and 20,256 cores,

including nodes with Random Access Memory up to 6TB (DiRAC , n.d.).

In 2016, the Engineering and Physical Sciences Research Council (EPSRC) provided

£20m of funding in order to create 6 Tier-2 HPC centres. The design of these sys-

tems is driven by diverse architectures, providing opportunities for ARM, Power and

GPU computation in addition to traditional HPC workloads, creating a broad scope

4

Huddersfield, Hull, Leeds, Sheffield,
Leicester, Liverpool, Bath, Plymouth,

Sussex, Cardiff, Newcastle, Manchester ...

CSD3, JADE, Cirrus,
Midlands+, Isambard, N8

ARCHER
DiRAC

Tier-3 Local university level

Tier-2 Regional level

Tier-1 National level

Figure 1.1: Landscape of HPC resources in the UK

in terms of user communities who can take advantage of access to these systems.

Furthermore, each centre provides a mechanism for training and easy access in or-

der to expedite the process for researchers seeking access to regional and national

computing facilities.

Tier-3 is composed of local institution HPC systems that support a limited user base

or highly specialised communities, but in general do not offer the same capability

or capacity as regional or national centres. Users are encouraged to scale vertically

onto higher tier systems when the demands of their projects outgrows the provision,

rather than horizontal integration with other Tier-3 systems. The QueensGate Grid

at the University of Huddersfield is an example of a Tier-3 system. It provides a

campus grid of several clusters, supporting around 50 users in local research commu-

nities from engineering, chemistry and biology, in addition to students from taught

undergraduate modules in parallel computing (Holmes & Kureshi, 2015).

There is no 4th tier in the EPSRC assessment of HPC infrastructure. However,

loosley coupled workstations - often not running cluster operating systems but still

running workloads in parallel - and midnight render farms, are two examples of

invisible HPC-like computing capability that provide essential resources for the re-

5

spective communities. It is tempting to consider them as part of the Tier-3 provi-

sion, but these systems are distinguished in that they are almost always transient

and composed from existing, general IT infrastructure.

Regardless of the scale of interconnection between systems, it is clear that HPC

facilitates more than just aggregation of computing capacity and capability; projects

such as DiRAC foster a community of knowledge exchange and collaboration between

cross-discipline researchers, in addition to providing a pool of resources and expertise

that support the computational requirements of the science being conducted. This

community provides the ecosystem of scientific inquiry, outreach and funding that

is necessary to generate and sustain the research that HPC is ultimately designed

to serve.

Software Environment Challenges

In the same way that the interconnect brings disparate computing elements into a

coherent domain, the software running on the HPC system must also do the same.

In a cluster, the homogeneous software environment presents both the user and

application with a single, unified view of the computing elements, often referred to

as a Single System Image (SSI) (Buyya, Cortes, & Jin, 2001). For example, every

compute node in a cluster typically runs the same Operating System (OS), the same

kernel version, and the software environment that composes the userland - such as

libraries, shells and compilers - will also be the same. Therefore, the application

being executed can expect to find its dependencies, with consistent versioning and

location, on every machine.

This poses significant challenges when porting or reusing applications on different

HPC systems. Firstly, differences in the environments can lead to code which is com-

piled and verified on one cluster, but cannot execute as intended on another without

6

modification, even if they share the same processor architecture. Depending on the

incompatibility, such as conflicting or missing packages, libraries and toolchains, a

resolution is generally possible but often non-trivial. Furthermore, when sharing a

computational experiment in order to allow others to reproduce it, the target sys-

tem must logically be the same kind of cluster - providing equivalent execution and

parallelisation middleware - regardless of the specific versions of individual compo-

nents. If the user does not have access to a system with the correct capabilities, and

does not posses the knowledge or resources in order to configure one, it may be near

impossible to overcome this challenge.

Secondly, in a grid there is no guarantee that the type of homogeneity in one clus-

ter is shared by all the others. When integrating resources at this level, common

interfaces for scheduling, data transfer, authentication and authorization are used

to allow a heterogeneous pool of clusters to retain some properties of an SSI. How-

ever, it does not solve the application portability problem between individual cluster

members, instead, providing methods to determine which clusters are elegible to run

the job based on discovered and advertised capabilities (Turilli, Santcroos, & Jha,

2018). Therefore, the portability problem limits the ability to scale and transfer

jobs between these systems if they do not meet the dependencies of the application,

or are unwilling to adapt.

Finally, there is a challenge in terms of training new users to become familiar with

cluster software environments. In addition to understanding the capabilities, limi-

tations and requirements of compiling software for the SSI cluster, users must also

gain intimate understanding of resource management and process launching in order

to effectively utilise the cluster, grid, or integrated resources at scale. Local systems

can be used to an extent for this purpose, but are not likely to be representative

of real world production systems. The process of experimentation and testing on a

7

production system must be carried out in such a way which does not put it at risk for

other users, and is efficient in terms of wasting metered time on the resource.

Virtualisation as a Potential Solution

Virtualisation techniques have frequently been evaluated for HPC in order to im-

prove the flexibility of the software environment. Virtual Machines (VM) offer a

solution to this problem by allowing distinct, virtual cluster environments to be

provisioned as a subset of an existing resource. In this full stack approach, the VM

is analogous to a physical cluster node - containing a full OS, unique network ad-

dressing and a isolated resources from the host machine. Within a pool of integrated

resources, such as a grid, a VM provides a high level of confidence that the job will

be executed successfully. This compatibility between systems is essential in order to

realise the full potential to improve global resource management, such as through

meta-scheduling techniques, by allowing jobs to be scheduled on clusters indiscrim-

inate of the underlying system environment. However, VMs can be cumbersome,

requiring system administration skills to create and deploy, which are not immedi-

ately accessible to the average user. In addition, virtualised execution is typically

accompanied by a performance penalty when compared to the native performance,

due to the layers of translation introduced between the VM and the host.

Containers present a radical approach where only the run time environment of an

application needs to be virtualised, rather than the full software stack. Therefore,

the process of creating a container is more accessible to the average user, and it can

be invoked on a resource with minimal disruption to the workflow, within the same

context and security principles as other non-virtualised applications. In this way,

it has gained adoption within HPC communities where traditional virtualisation

techniques have failed to gain traction, in order to improve the flexibility of the

8

software environment at the top-most layer of the software stack.

However, the implementation of existing container solutions within the HPC environ-

ment at the University of Huddersfield established that the expectation of improved

portability and flexibility is not necessarily easy to achieve. In practice, users could

not transfer a container created on the campus grid to another cluster or cloud

provider and execute it without first ensuring that the other system provided the

necessary communication and job launching middleware. In the case of a cloud re-

source which provides traditional Virtual Machines as a service, this presented a

high barrier of entry for the average user - essentially requiring them to configure a

cluster from scratch in order to execute the container. This experience provided the

motivation for the initial decisions made in forming the direction of this research

and the design of a new approach.

Considering a Full Stack Container Approach

The run time environment container approach solves many limitations with virtuali-

sation in the HPC context - it has good accessibility, performance and is convienient

to create and distribute images. In the context of a single cluster, it can be used to

allow the user to arbitrarily customise the environment on a per-application basis.

However, there is no line that determines what constitutes the run time environment,

what packages should be included, and what should not. This inconsistency means

that a container may still not be portable to other systems in the same way that

traditional VMs are, as it inherently relies on the lower levels of the software stack

to be provided by the host system. For example, a containerized MPI application

must be executed on a cluster that is already configured with appropriate process

launching middleware and interfaces to support MPI execution.

This thesis considers an improvement to existing virtualisation solutions in HPC,

9

through the implementation of full stack virtual cluster containers, rather than just

encapsulating the run time layer of the software environment. The novel Virtual

Container Cluster (VCC) framework is proposed in order to address the portability

and usability limitations identified in the existing full stack implementations, which

make them unsuitable for general HPC deployment and pose a high barrier to entry

for the average user. The framework provides deployment, configuration and inter-

connection of the full stack virtual environment, implemented as functions of the

container itself - rather than depending on external services or brokers to provide

the required capabilities. A new, self-contained discovery model is introduced, which

provides dynamic configuration and contextualisation for the virtual cluster, to en-

sure that the user is not required to perform deployment-specific adaptations to the

middleware and management layers of the stack. By coupling the application and

run time environment with the required management and middleware functions, a

full stack container has the potential to offer a solution with better portability, more

analogous to a traditional VM, but inheriting the accessibility and performance of

the container virtualisation technique.

An innovation in this new model is the application of Software Defined Networking

(SDN) as the virtual cluster interconnect, to afford the same flexibility to the network

environment that virtualisation grants to the software environment. Together, these

capabilities have the potential to improve the portability of a container environ-

ment, regardless of the underlying system and what interfaces it provides, resulting

in more opportunities to exploit resource sharing and meta-scheduling techniques -

such as job forwarding and spanning - in order to improve overall workload perfor-

mance.

Furthermore, the full stack container virtualisation approach enabled by the VCC

allows the deployment of virtual cluster topologies that were not possible before with

10

traditional virtualisation techniques. Firstly, due to the lower overhead of containers,

large virtual environments can be staged on a small number of machines. This

offers a realistic and accessible environment for mirroring the setup of a production

system for the purpose of teaching and training, without putting the real system at

risk. Secondly, the innovative SDN approach allows a single logical virtual cluster,

encapsulated within containers, to be deployed spanning across many geographically

separated resources. The promotes horizontal integration of resources, regardless of

the scale or tier of the resource, facilitating meta-scheduling like capabilities that are

transparent to the middleware and run time environment. This approach has the

potential to bring the community and technical capability of grid-like collaboration

to user groups which would otherwise not be able to establish it with ease, without

introducing a significant administrative burden, and supporting deployment on an

ad-hoc or persistent basis.

1.1 Aim and Objectives

The aim of this thesis is to develop a scalable, container-based full stack cluster

virtualisation solution, which will faciliate improvements in usability, administration,

resource management and software environment flexibility of HPC resources using

modern virtualisation techniques.

In order to accomplish this aim, the following objectives are identified:

1. Design and develop a novel, unified virtual cluster model which satisfies the

requirements of a general purpose solution synthesised from the literature.

2. Devise a novel mechanism in order to facilitate dynamic reconfiguration of the

cluster environment. The configuration mechanism must resolve the portabil-

ity limitations identified in previous work that rely on external infrastructure.

11

3. Evaluate the performance of the virtual cluster model demonstrating improve-

ments to resource utilisation, job throughput and turnaround time, through

deployment on the campus grid at the University of Huddersfield.

4. Demonstrate the scalability and portability of the solution through deploy-

ment of the virtual cluster model, facilitating horizontal integration between

Tier-3 HPC resources, and identifying the feasibility to achieve the same im-

provements to global resource performance as in the campus grid.

5. Evaluate the usability through deployment as a tool for teaching and training

in a classroom setting, quantifying any difference in accessibility and barriers

to entry by comparison with the OSCAR middleware.

6. Assess whether the opportunities of virtualisation are applicable to scenarios

and novel topologies that cannot be created with existing solutions, including

geographically distributed, multi-fabric spanned, and nested virtual clusters.

1.2 Methodology

It is essential that the design of the full stack container virtualisation solution is

cognisant of the existing work. Based on the extensive literature review into related

and existing work, the need for a new container-based, full stack virtualisation solu-

tion for HPC is identified. The definition of a taxonomy and analysis of the features

provided by existing implementations will be used as a framework to ensure that

the designed solution addresses the gap in knowledge and is relevant to the aim of

the research.

A hypothesis can be made that the implementation of full stack environment within

a container, as opposed to a VM, has a predictable outcome; firstly, that the op-

portunities to improve portability and global resource performance offered by the

12

full stack approach is transferable to the container virtualisation technique, and

secondly, that containers offer an additional gain in accessibility and a lower perfor-

mance overhead. However, the VCC introduces an innovative integration of cluster

software environment and interconnect virtualisation, which is not adequately con-

sidered by the literature. Therefore, a system to evaluate the proposed solution will

also need to be devised, and the design of this method is of critical importance.

Software engineering is a field closely tied with Information Systems and Mathe-

matics, resulting in machines or theories that can be evaluated with measurement

or proofs. However, the software aspect of engineering typically requires considera-

tion of human interaction, often borrowing research methods from psychology and

sociology (Hanenberg, 2010). Case study is an empirical method that can serve

many research purposes, such as exploratory and explanatory, conducted within a

real world context (Runeson & Höst, 2009). Case studies may also combine comple-

mentary methods of research, especially within Information Systems and Computer

Science, such as survey methods (Gable, 1994; Runeson & Höst, 2009). Therefore,

a mixed method approach has been chosen in order to comprehensively evaluate the

solution and its proposition.

Firstly, a controlled experiment will be conducted in order to benchmark the perfor-

mance of the virtual cluster model in a variety of contexts, inter-cluster bandwidth

and latency configurations. The results will be used to determine the performance

characteristics and feasibility of the model before observing the deployment on a

real system.

Secondly, representative case studies will be utilised in order to empirically eval-

uate the performance of the model within different deployment scenarios, repre-

senting scale of deployments from campus grid to geographically distributed Tier-3

resources.

13

Finally, the teaching case study will evaluate the usability of the VCC through

deployment in a classroom teaching environment, using survey and skills audit tech-

niques, throughout the course of the Parallel Computer Architectures modules at

the University of Huddersfield.

A rationale and justification of the methodology and design of each case study is

presented in the respective chapters, outlined in Table 1.2. The enhanced portability

aspects of the VCC model encourages collaboration and reuse of virtual cluster

environments, regardless of the underlying infrastructure that the user possesses in

order to execute them. Thus, the methods and experiments used in this research

are instilled with this philosophy. In order to ensure that they are reproducible by

others, the code and experimental configurations will be released online1 as open

source under the MIT License (The MIT license, 2006).

1.3 Outline

The remainder of this thesis is generally ordered chronologically, in the order that

the respective research activities were undertaken. Chapter 2 reviews the literature

surrounding virtualisation in HPC, assessing the related work in performance eval-

uation and application in cluster environments. At the end of Chapter 2, the gap in

knowledge and solution in order to address it is synthesized.

Chapter 3 describes the novel design of the Virtual Container Cluster (VCC) frame-

work and the implementation of the services that provide the deployment, configu-

ration and contextualisation capabilities.

Chapter 4 outlines the process of applying the VCC framework in order to construct

a virtual cluster. The container built in this chapter is used as the foundation for

1Repository accessible at https://github.com/hpchud

14

https://github.com/hpchud

Controlled Execution performance Parallel performance
experiment • HPL benchmark on local cluster

• Ethernet and Infiniband

Latency scalability Parallel performance
• HPL benchmark on spanned cluster
• 0.1 to 100ms latency

Case Study Campus grid Resource management
• Feasibility using historic data and administration
• Spanned job queue wall time

Inter-institution grid Novel topologies
• HPL benchmark Tier-3 integration
• Non-academic network

Classroom Usability
• Usability survey
• Workflow comparison

Table 1.2: Summary of method and associated activities

15

the evaluation carried out in the performance evaluation and case studies.

A performance evaluation of the VCC is carried out in Chapter 5, followed by the

case studies for geographically distributed spanning, and teaching in the classroom

in Chapters 6 and 7 respectively.

Finally, the conclusions, insight and impact gained during the course of this work is

considered in Chapter 8, in addition to directions for future work in order to extend

and improve this area of research.

16

Chapter 2

Related Work

Recent developments in the delivery and management of computing environments,

including the rapid adoption of cloud based systems, suggest that the landscape

of High Performance Computing is changing in favour of virtualisation technolo-

gies; there is a growing demand for highly flexible computational resources that are

reconfigurable to meet the needs of different communities.

However, virtualisation techniques have continuously been evaluated for the pur-

pose of research and execution of scientific workloads since their introduction in the

CP/CMS operating system for the IBM System/360 (Creasy, 1981).

Whilst there is a perceived performance cost of modern Hypervisors and Virtual

Machine Monitors managing aspects of the code execution, the case for adopting

them within HPC is frequently restated (Youseff, Wolski, Gorda, & Krintz, 2006;

Emeneker & Stanzione, 2006; Birkenheuer et al., 2012).

In this chapter, work addressing the contemporary performance analysis of virtu-

alisation in HPC is considered. In Section 2.2, the application of these techniques

in order to virtualise cluster software stacks is examined, followed by container vir-

17

tualisation solutions within HPC in Section 2.3. Finally, a critical analysis of the

literature in context is presented in Section 2.4. The limitations identified in the

existing work are outlined, and a solution is synthesized in order to address the gap

in knowledge.

2.1 Virtualisation Techniques: Past and Present

Pioneered by IBM in the CP/CMS, and later VM-family of operating systems, clas-

sical (full) virtualisation uses a Virtual Machine Monitor (VMM) or Hypervisor in

order to provide emulated hardware on which a separate guest OS executes (Creasy,

1981). Typically, the emulated hardware will provide interfaces for storage, network-

ing and video devices. The advantage of this approach is that, as far as the guest

OS is concerned, the interfaces provided by the VMM are indistinguishable from a

non-virtualised system (Rodŕıguez-Haro et al., 2012). Therefore, the guest OS and

software does not need to be modified in order to run under virtualisation. The main

disadvantage of this approach is that, depending on the extent of device emulation

required, the performance overhead can be significant. VMware, VirtualBox (Li,

2010) and KVM (Kivity, Kamay, Laor, Lublin, & Liguori, 2007) are solutions that

implement classical virtualisation techniques on modern x86 platforms.

Paravirtualisation avoids machine emulation by requiring modifications to the guest

OS. The guest OS must utilise Hypercalls provided by the VMM within its kernel

and driver code (Rodŕıguez-Haro et al., 2012). Hypercalls are a special set of in-

structions which replace the privileged instructions in the host machines Instruction

Set Architecture (ISA). This allows the VMM to partition the resources that are

accessed via these privileged instructions between guests. Userspace applications do

not need to be modified and these instructions are passed through directly. This

18

technique is considered a lightweight approach as no machine emulation takes place,

appearing more suited for high performance execution due to the lower overhead.

However, the main disadvantage of paravirtualisation is that it requires modifica-

tions to the guest OS. Xen (Barham et al., 2003) is a popular implementation of

paravirtualisation and features heavily in the HPC context.

Rather than faithfully recreating hardware interfaces as in a Virtual Machine, OS-

level virtualisation techniques focus on virtualisation at the application level, where

the OS kernel is responsible for providing multiple isolated user-space instances

(Fink, 2014). This evolution of virtualisation architectures, from providing opti-

mised paths through the hypervisor to the hardware, to removing the hypervisor

entirely, is shown in Figure 2.1. The advantage of OS-level virtualisation is that the

overhead is very low, typically no greater than the overhead of launching regular pro-

cesses within the OS. However, using this approach the guest applications must share

the same kernel, and thus, the same hardware type and OS family. For example,

it is not possible to virtualise a Windows guest within a Linux host using OS-level

virtualisation techniques alone. Implementations of OS-level virtualisation include

OpenVZ (Kolyshkin, 2006), Linux-VServer (Soltesz, Pötzl, Fiuczynski, Bavier, &

Peterson, 2007) and Docker (Merkel, 2014; Fink, 2014).

2.1.1 Xen era

The performance of a Xen-based HPC cluster has been evaluated in terms of two

critical subsystems: computation and communication (Youseff et al., 2006). Two

well established benchmarks are used: High Performance Linpack (HPL) (Dongarra,

Luszczek, & Petitet, 2003) and the Com benchmark from the LLNL Presta Stress

Benchmark (Carnes, 2002), respectively. It is demonstrated that the CPU execution

overhead is statistically insignificant compared to execution within the host system;

19

Host OS

Hypervisor / VMM

Guest OS Guest OS

App 1 App 2

Full Virtualisation

Host OS

VMM

Guest OS Guest OS

App 1 App 2

Paravirtualisation

Host OS

App 1 App 2

OS-level Virtualisation

Figure 2.1: Comparison of Virtualisation Techniques

the overall performance of Linpack running in the Xen environment is approximately

2% lower than execution on the native system. In terms of communication, the

results are varied depending on the communication patterns. The Com benchmark

records bandwidth and latency of communication between pairs of processors in a

ping-pong fashion, over a range of message sizes. Overall, the Xen communication

bandwidth is lower due to the guest OS requiring an exchange of packets with the

host OS for each send and receive. This is further degraded by small packet sizes

since a large number of such exchanges take place. For large message sizes, the

bandwidth is comparable to the native system. In terms of latency, the results

are counterintuitive. Within a single node, the communication latency within Xen

outperforms the native execution due to page-flipping optimisations. As shown in

Figure 2.2, the VM can exchange an empty page with the VMM for one which

contains the packet to be received, rather than copying the data into the VM’s

domain. As the number of communicating processes increases beyond a single node,

this optimisation becomes ineffective and the latency becomes equivalent to the

native system.

From this study, Youseff et al. conclude that paravirtualisation poses no significant

overhead compared to traditional OS configurations used in HPC, except where an

20

Memory

Empty page

Page with

packet data

Source device Dest device

Pre flip

Post flip

Figure 2.2: Receive Page Flipping in Xen

application exercises a specific subsystem or a combined subsystems across many

cluster resources. It is suggested that virtualisation should be reconsidered based

on the empirical evaluation presented. It also cites several advantages, such as more

flexible system maintenance and customisation, as reasons to consider a virtualised

approach.

In Emeneker and Stanzione (2006), the performance penalty of Xen is quantified

using the HPC Challenge benchmark (Luszczek et al., 2006), which incorporates

HPL along with other benchmarks in order to test I/O and memory bandwidth

subsystems. An important distinction is made between single node execution, where

the CPU execution overhead is as low as 1%, and multi-node parallel execution,

where the overhead is up to 15% slower as the processor count increases on the HPL

benchmark. The results demonstrate an average latency increase under Xen by 1.6x

and a bandwidth overhead of approximately 40%. As expected, benchmarks that are

CPU and memory bound vary less than 5% from, and in some cases outperforming

21

the native execution.

This work acknowledges that a performance overhead is inevitable, but that the

potential advantages in terms of administration and resource management gained

will outweigh the cost if it is low enough. The network latency and bandwidth are

identified as critical to running parallel applications, and it was expected to gain

close to native networking performance from Xen, and thus, similar MPI parallel

performance. However, from the results, it is clear that this is not always the case,

and must be appreciated depending on the profile and communication patterns of

the application being tested.

Despite this, the authors identify many advantages to virtualisation in the context

of this experiment. For example, the ability to make changes to a host without ex-

pensive downtime allowed various kernels to be tested and changes to be propagated

to the nodes in the cluster without rebooting. They also suggest that virtualisation

can be used to solve challenges in terms of cluster administration, such as resolving

conflicting package or library requirements, improving the reliability of the software

environment and effectively partitioning resources.

Huang, Liu, Abali, and Panda (2006) recognise that the requirement of Xen to in-

tervene on every send and receive from a guest OS is the key challenge to reduce

the critical network virtualisation overhead for HPC applications. A framework is

presented that combines a specialised OS image for an application with a VMM

bypass driver, also proposed by the authors. The VMM bypass allows access to the

networking device to be negotiated through the VMM, with subsequent communica-

tion operations being performed directly from the user process on the device. This

removes Xen from the critical path of communication and allows the virtualised ap-

plication to achieve native I/O performance. HPL is used to evaluate the application

performance, along with the NAS Parallel Benchmarks (NPB) (Bailey et al., 1991).

22

For communication intensive benchmarks, the results demonstrate a reduction in

the performance overhead from 17% to 4%. This work concludes that the costs of

virtualisation can be reduced through optimisation of specific subsystems, such as

communication, in order to provide desirable features such as ease of management,

customisation and isolation with low performance degradation. However, this solu-

tion can only be implemented where a dedicated interconnect that already provides

a native user-space programming interface, such as InfiniBand, is available.

Comparisons between Xen and classical virtualisation hypervisors are introduced

by Walters, Chaudhary, Cha, Guercio Jr, and Gallo (2008) and Nussbaum, An-

halt, Mornard, and Gelas (2009). In these studies, Xen is compared with VMware

and Kernel Virtual Machine (KVM) respectively. In terms of CPU execution perfor-

mance, VMware exhibits performance up to 10% slower than the native execution on

the NPB (Walters et al., 2008). The communication performance shows the greatest

overheads, with a 2x increase in latency observed within Xen, and over 3x increase

within VMware. The KVM performance overhead is equally significant, with a 4x

increase in latency and 30% slower than the native execution on the HPL benchmark

(Nussbaum et al., 2009). In general, these studies suggest that paravirtualisation is

still the preferred technology for HPC applications due to the lower communication

overhead than with classical virtualisation. In addition, any remaining overhead

with paravirtualisation can be eliminated with VMM bypass techniques such as

those proposed by Huang et al. and Liu, Huang, Abali, and Panda (2006).

2.1.2 Classical era

Whilst previously demonstrated to introduce the greatest overhead, the performance

of classical virtualisation techniques are shown to surpass paravirtualisation in the

context of HPC applications in a study by Younge et al. (2011). The aim of this

23

study is to evaluate whether virtualisation within HPC is viable and to select the best

virtualisation technology for this task. The motivation differs from previous work,

as the authors describe running HPC environments within a cloud deployment and

the increasing prevalence of cloud computing within academic settings. However,

the experimental setup for the study is within a local HPC resource, rather than in

the cloud, thus a valid comparison can be drawn.

A comparison is made between KVM, VirtualBox and Xen hypervisors using the

HPC Challenge benchmark, focusing on the HPL, Fast Fourier Transform (FFT) and

ping-pong communication performance results. In addition, the SPEC (Dixit, 1991)

benchmarks are evaluated in order to gain insight on shared memory multi-processor

(SMP) performance. In terms of communication bandwidth, the benchmarking

results show that Xen performs close to native speeds whilst KVM and VirtualBox

incur significant overheads. However, the opposite is observed when considering

communication latency: KVM and VirtualBox achieve near-native latency, whilst

Xen incurs extremely high overheads. In terms of execution, each hypervisor is

comparable when considering single node Star/Single FFT and SPEC performance.

In addition, each hypervisor performs similarly on the HPL benchmark, albeit with

a considerable overhead compared to native performance. However, the parallel

execution performance of Xen in MPI FFT is considerably lower. This result is

significant as, unlike a synthetic benchmark, the FFT represents a common real-

world application usage. As demonstrated by Walters et al. (2008) and others, the

latency has a significant impact on parallel execution. Therefore, in real-world usage,

it makes sense that KVM and VirtualBox will outperform Xen as their networking

capabilities become more optimised.

Overall, this study suggests that the KVM hypervisor is the best technology for

the HPC community. Even though KVM does not exhibit the lowest overhead in

24

all respects, it is shown that the latency has a greater impact on parallel execution

performance. The performance results from Xen and VirtualBox have an extremely

high variance; In some cases, they achieve acceptable performance, but the unpre-

dictable nature makes them unsuitable for building a system that provides lasting

quality of service for general HPC deployments.

In a comparison between VMware, KVM and VirtualBox carried out by Luszczek

et al. (2012), the authors provide insight in the general performance behaviours of

virtualisation, rather than providing a recommendation as to which is best suited for

high performance execution. The paper outlines challenges to measuring accurate

performance data within a virtual environment. Firstly, a significant disparity is

demonstrated between the measured wall clock and CPU time. Whilst this effect

is observed even without virtualisation, the behaviour is more inconsistent within a

virtual environment - over a range of problem sizes, there can be nearly an order

of magnitude difference. Secondly, it is shown that state accumulation within the

hypervisor or VMM can lead to inconsistent results when running the same code

repeatedly, such as when benchmarking a system until satisfactory results are ob-

tained. To illustrate this, the authors ran the HPL benchmark twice using the same

configuration of problem sizes, with the first run being in ascending order and the

second run being in descending order. In the small problem sizes, a difference in

performance of up to 50% was observed in both VirtualBox and VMware. Without

virtualisation, there is no noticeable difference in the results regardless of the order

in which they were executed.

However, they outline a limitation in that previous benchmarking methods do not

adequately consider how to mitigate the issues identified when measuring the per-

formance data. Therefore, Luszczek et al. present their own evaluation of HPL and

MPIRandomAccess performance. They demonstrate that the HPL performance is

25

good with relatively low variability across VMware, VirtualBox and KVM, with

overheads of approximately 20%, 10% and 5% respectively. However, on the MPI-

RandomAccess benchmark, which produces significant demand on the memory sub-

system, the virtualisation overhead can be as high as 70%. A high variability is

observed across these measurements, indicating that accumulated state within the

hypervisor could be negatively affecting the accuracy of results.

Birkenheuer et al. (2012) reiterate the case for implementing virtualisation within

HPC. They identify the usefulness of the high level of abstraction that has been de-

veloped in order to provide multi-tenant cloud facilities over the Internet and relate

this to the scientific context. Virtualisation would allow providers of HPC resources

to focus on delivering infrastructure whilst allowing users to provide the software,

rather than maintaining both the hardware and a global software stack. This work

recognises the lack of successful implementations and provides an assessment of the

opportunities and challenges, in a similar vein to Figueiredo, Dinda, and Fortes

(2003). A framework for combining virtualisation and HPC is presented in order to

address these challenges, such as the placement of VMs on physical resources, and

the scheduling overhead of provisioning a VM in order to execute a job. In contrast

to previous work, the proposed virtualisation framework is evaluated using a real ap-

plication rather than tools designed for the purpose of benchmarking. This has the

advantage of relating the results directly to the domain that is of interest. However,

it does not illustrate the general performance of the model given the high variability

observed by other work. The results demonstrate that the performance and scal-

ing behaviour of the molecular dynamics application Gromacs (Hess, Kutzner, Van

Der Spoel, & Lindahl, 2008) incurs a performance overhead of 15-30% in the VMware

virtualised environment, depending on the interconnect that was used for commu-

nication. This overhead is attributed to the network communication, as the results

demonstrate that the virtualised CPU performance is equivalent to the native CPU

26

performance when running on a single node. However, the authors suggest that this

performance loss is acceptable due to the opportunities presented by virtualisation,

such as VM checkpointing and migration, customisable software environments, and

the ability to dynamically reconfigure properties of the cluster during runtime.

Work by Younge et al. (2011) has shown that whilst classical virtualisation hypervi-

sors achieve low communication latency, the bandwidth overhead may be up to 50%,

as in the case of KVM. This problem is addressed by Musleh, Pai, Walters, Younge,

and Crago (2014) using a similar methodology that was employed to improve the

communication performance in Xen: VMM bypass. The solution exploits the com-

ing of age of Single Root I/O Virtualisation (SR-IOV) in InfiniBand Host Channel

Adapters, where the hardware provides a set of virtual functions to allow resource

sharing virtualisation to be performed on the device itself, effectively bypassing the

VMM or hypervisor in order to achieve bare metal performance (Kutch, 2011). A

performance evaluation is presented using the IBVerbs benchmark and the NAS

Parallel Benchmarks. It shows that careful tuning of the network driver can realise

a reduction in communication overhead by 15-30% when using SR-IOV.

2.1.3 Container era

An IBM Research Report on the performance evaluation of VMs and Docker con-

tainers demonstrates that ”In general, Docker equals or exceeds KVM performance

in every case [we] tested” (Felter, Ferreira, Rajamony, & Rubio, 2014). The results

show that while both methods do not introduce a significant overhead for CPU

and memory operations, communication and latency sensitive applications perform

significantly better within the container environment. This is as expected, as the

previous benchmarks in Section 2.1.2 detail the overhead of classical virtualisation

in terms of communication bandwidth and latency. Without VMM bypass, opera-

27

tions within the VM typically must traverse many layers before being serviced by

the hardware, adding overhead.

In particular, this study compares the HPL performance of the native, Docker and

KVM execution. The performance within the container environment is equal to

the native environment, whilst the KVM execution incurs a 17% overhead. It is

suggested that the KVM hypervisor’s abstraction of the hardware and processor

topology does not allow runtime tuning and optimisation to take place, such as

those provided by modern linear algebra libraries. This holds great significance

for scientific applications that are more likely to be heavily optimised than regular

workloads. With additional tuning effort, the performance overhead within KVM

can be reduced from 17% to 2%. However, this study only considers the single-

node performance of HPL and not the multi-node distributed execution that is

usually employed within HPC systems. Therefore, whilst it suggests that containers

could achieve comparable parallel performance to the native system, it does not

demonstrate it. Finally, the authors point out that whilst KVM can provide good

performance, configuration and tuning are difficult, presenting a high barrier to

entry. On the other hand, a container provides the combination of good performance

with ease of use and convenient workflows for deployment and configuration, even

though in some use cases they may not be faster than classical virtualisation.

As the performance characteristics of container virtualisation are reproduced and

accepted within the scientific community, the attention is turned to how viable it is

to deploy container technologies within the often constrained software environments

of HPC clusters in order to realise these benefits.

In order to integrate Docker support into the Cray XC system, Jacobsen and Canon

(2015) found that the requirement to run an always-on administrative daemon on

each node, to manage execution of the containers, poses several deployment issues.

28

For example, Docker requires exclusive use of local storage on a node in order to

store images and the working state. Since all virtualised processes are running

under the same kernel, it can also pollute the process table on the compute node

and introduce a risk that processes may not be cleaned properly. In addition, an

administrative daemon that offers user interaction may become an attack vector in

order to undermine the security of the system.

However, they recognised that the Docker workflow, by allowing users to easily de-

fine, share and instantiate customised software environments, is essential in order to

meet the needs of their scientific community while reducing the management burden,

especially for new data-intensive research. Therefore, the Shifter tool is proposed in

order to bridge the gap between Docker and the interfaces already provided by the

Cray system that are used to customise the software environment. Shifter allows

the user to create, upload and download images using the same methods that the

standard Docker runtime uses. When instantiating a container, the filesystem of the

Docker image is converted into a format suitable for deployment to the Cray sys-

tem. This allows the container to utilise the parallel file system for storage, rather

than a local disk. Benchmarking of this implementation shows that the Shifter ap-

proach performs close to the native performance of the best storage configuration

(Jacobsen & Canon, 2015). However, this work does not demonstrate how well the

system scales in terms of execution performance, as the benchmark focuses only on

disk performance.

Singularity is a container runtime, similar to Docker and Shifter, that has emerged

as a popular solution that targets HPC as the primary use case (G. Kurtzer, 2016).

The motivation for the development of a new container runtime is to remove the

requirement of running an administrative daemon on each compute node to manage

container execution, due to problems such as those previously identified by Jacobsen

29

and Canon (2015). Despite the broad acceptance of container virtualisation in in-

dustry, this requirement is presented as the reasoning behind the lack of adoption

by the scientific community.

In order to fulfil this aim, Singularity does not allow user contextual changes and

must execute all processes as the calling user. Singularity emulates the ease of use of

the Docker workflows by providing analogous, albeit incompatible, services for defin-

ing and sharing containers. The execution of Singularity containers always follow

the same security principles as the underlying system. In addition, whilst Docker

uses a Copy-On-Write (COW) filesystem in order to optimise the data transfer and

reuse, Singularity uses a single blob based filesystem image. This has the advantage

of being easily supported by parallel filesystems and existing tools such as scp,

gridftp, nfs and etc, at the cost of potentially increasing the amount of data

being transferred. This cost may be significant, for example, when an image must

be transferred to every node within a cluster. Performance analysis of Singularity

containers shows that, as is the case with Docker, the performance is comparable to

native execution (Le & Paz, 2017). This is expected as both implementations use the

same features of the Linux kernel in order to implement the OS-level virtualisation

and neither require the use of emulated hardware or a VMM.

It is argued that this approach mitigates a fundamental security problem with Docker

that allows unprivileged users on a system to easily exploit privilege escalation at-

tacks. However, in a review of the security issues surrounding container virtualisa-

tion by Higgins, Holmes, and Venters (2016), this was found only to be true where

Docker is installed without performing the recommended configuration for deploy-

ment on a multi-tenant system. For example, in the default configuration, the

administrative root account within the container is equivalent to the root account

outside of the container. Therefore, the owner of a container may gain complete con-

30

trol over any resources, such as shared filesystems, that are available to it. Whilst

this may be acceptable when utilising containers as an administrative tool, clearly,

it is not acceptable to allow normal users this capability. Configured appropriately,

Docker can offer an equivalent security model as the other container solutions, which

does not introduce a greater attack surface and restricts the most common privilege

escalation vulnerabilities from within the container Higgins et al. (2016).

Each virtualisation technique reviewed in this section, and the results of the cor-

responding performance analysis in HPC, are illustrated in Table 2.1. It is clear

that there is extreme variation: significantly different results are observed among

the tests even though they use a common set of benchmarking tools.

2.2 Virtualised Clusters

2.2.1 In a Cluster Fabric

Dynamic Virtual Clustering (DVC) is a seminal work that considers the creation of

virtualised clusters within a fabric of one or more directly interconnected clusters

(Emeneker, Jackson, Butikofer, & Stanzione, 2006). The DVC utilises Xen paravir-

tualisation in order to deploy virtual cluster nodes which are made available to the

underlying scheduler. This architecture is outlined in Figure 2.3. The functionality

is used in order to enable 3 fundamental capabilities:

Job forwarding

Job forwarding allows the execution of an entire job to be transferred to a different

cluster.

31

Reference Hypervisor Benchmark Overhead

Figueiredo et al. (2003) VMware SPEC 4-10%

Emeneker and Stanzione (2006) Xen HPL 5-20%

Youseff et al. (2006) Xen HPL 2%

Huang et al. (2006) Xen HPL 1-11%

Tikotekar et al. (2009) Xen HPL 12-18%

Walters et al. (2008) Xen NAS 1-400%
OpenVZ NAS 1-25%
VMware NAS 1-750%

Nussbaum et al. (2009) Xen HPL -5-20%

Luszczek et al. (2012) VMware HPL 15-20%
VMware RandomAccess 2-30%
KVM HPL 1-10%
KVM RandomAccess 50-70%

Younge et al. (2011) Xen HPL 4-60%
Xen PingPong -25-500%
VirtualBox HPL 30%
VirtualBox PingPong -25-1%
KVM HPL 30%
KVM PingPong 1%

Birkenheuer et al. (2012) VMware Gromacs 15-30%

Musleh et al. (2014) KVM NAS 20-250%
KVM IB-Verbs 7-15%

Felter et al. (2014) KVM HPL 2-17%
Docker HPL 0%

Higgins, Holmes, and Venters (2015) KVM HPL 7-50%
Docker HPL 1%

Table 2.1: Summary of works addressing virtualisation performance in HPC context

32

Cluster A Cluster B

Virtual Cluster

Direct link between private cluster networks

Figure 2.3: Architecture of a Dynamic Virtual Cluster

Job spanning

Job spanning allows processors from multiple clusters to be combined in order to

execute a single job.

Software environment compatibility

Virtualisation allows the software environment to be customised on a per-job basis,

offering a solution to the problem of maintaining a broad array of software packages

on an HPC resource. The ability to create a consistent software environment for

the job between multiple clusters is also a prerequisite for forwarding and span-

ning.

It is suggested that these capabilities offer an opportunity to improve resource per-

formance: utilisation and job throughput of several clusters in close proximity can

be increased by exploiting the combined idle capacity (Emeneker et al., 2006). For

example, if a job is waiting in the queue on cluster A, but the combined idle ca-

pacity of clusters A+B meets the requirement of the job, a virtual cluster can be

33

provisioned that spans the idle nodes within both clusters. The queued job can

then be forwarded to this virtual cluster and started immediately. However, the

authors do not discuss how the inter-cluster interconnect is implemented to enable

this, beyond the requirement that the nodes within one cluster must be able to com-

municate directly with the nodes in every other cluster. The typical architecture of

an HPC system does not scale geographically, characterised by the use of a private,

low latency network for inter-node communication. In order to challenge this ap-

proach, the feasibility of creating the physical connections, in addition to the effect

on security and performance, must be addressed.

The implementation of a DVC is presented based on the Moab resource manager

(Emeneker et al., 2006). The resource manager is modified in order to provide

integration for deploying Xen-based VMs, static assignment of IP addresses to each

VM, and the ability to lease virtual nodes to another cluster. However, these design

decisions introduce significant limitations: Firstly, each cluster wishing to participate

in a DVC must use the same resource manager. Therefore, a significant part of the

environment between the clusters must already be homogenous. This limits the

prospect of deploying a DVC between established clusters, given a similar diversity

in resource managers and middlewares as with user communities in HPC and their

respective applications. Secondly, a DVC requires deployment-specific information

to be embedded in advance, such as static IP addresses and hostnames. Services

such as forward and reverse DNS resolution must also be available for all physical

and virtual nodes. Therefore, it is not possible to dynamically instantiate or scale

a DVC beyond the initial deployment it was designed for. Finally, the user must

manually create a VM image that contains an OS installation, middleware, libraries

and required packages. Therefore, whilst a DVC can be deployed in response to

a job submission, it is unlikely that a typical user will hold the required system

administration knowledge in order to customise it.

34

A method in order to evaluate the potential impact of a DVC on resource perfor-

mance is presented by Emeneker and Stanzione (2007). A workload profile com-

posed of 60% parallel and 40% serial jobs is defined based on historical workload

data, using instances of the HPL benchmark to create the distribution of jobs. Two

clusters are used for deployment of the DVC, interconnected via a single Gigabit

Ethernet link. The authors demonstrate that, despite the limitations of virtualised

execution, workload performance was improved; The ability to start individual jobs

earlier in time by forwarding or spanning offsets the performance cost, decreasing the

turnaround time, and thus, increasing the throughput of the workload. Overall, the

DVC realised a 33% reduction in turnaround time and a 57% increase in throughput.

However, it is uncertain if this result will translate to other HPC environments and

applications - the experimental configuration was small scale, using 12 nodes per

cluster and 1 processing core per node. This does not represent a high demand on

the inter-cluster interconnect, reflected in only an approximate 5% increase in the

run time of a spanned job, despite the obvious networking inefficiency.

OSCAR is a middleware that automates the deployment of physical HPC clusters

(Des Ligneris, Scott, Naughton, & Gorsuch, 2003). It provides a mature platform

for managing parallel and distributed computing resources, considering both the

deployment and configuration of a cluster. The main functionality of OSCAR is

implemented as a wizard, guiding the user through the process of selecting software

packages, generating images for deployment, node discovery and installation, and

finally, validating that the cluster is operational. OSCAR-V is an extension of this

middleware in order to support Virtual Machines (VMs) as a deployment target

(Vallée, Naughton, & Scott, 2007). It enables OSCAR to manage both the deploy-

ment of the physical and virtual nodes, including the installation of a cluster envi-

ronment within them. This approach allows several distinct cluster environments

to be deployed on top of a single physical cluster, rather than requiring the virtual

35

nodes to be integrated into the physical cluster as in a DVC (Emeneker et al., 2006).

To improve portability, OSCAR-V introduces V3M, a C++ library providing a high-

level interface which abstracts the underlying virtualisation technology. Therefore,

the VMs created by OSCAR-V can be deployed on any virtualisation technology

supported by V3M, rather than tied to a specific hypervisor or VMM.

In order to take advantage of the OSCAR-V deployment and configuration frame-

work, the underlying physical cluster must be built with OSCAR. This means that

while the virtual cluster could be reused between OSCAR managed clusters, they

cannot be deployed into other execution fabrics which do not provide the V3M and

OSCAR interfaces required to configure the VMs at run time. While not specifically

stated by the authors, the images built for VM deployment in OSCAR-V are not

distinguished in any way from the images built for the physical nodes. This is a

notable advantage, as it does not introduce virtualisation-specific modifications into

core components of the cluster software stack, such as the resource manager, and

benefits from the user-friendly wizard for creating the VM image.

However, OSCAR is a tool primarily aimed at the initial configuration of a cluster,

and does not allow dynamic instantiation of virtual clusters, such as at job sub-

mission time. Furthermore, the OSCAR middleware is not currently maintained

or updated for modern Operating Systems: the latest version supports CentOS 5

which is no longer supported (CentOS Linux 5 EOL, 2017), and the official website

was last updated in 2005 (OSCAR Homepage, 2005).

The Virtual System Environment (VSE) provides an alternative mechanism for in-

tegrating virtualisation into a cluster fabric (Vallée et al., 2008). This work aims to

solve the problem of adapting or porting software to meet the execution requirements

of different cluster fabrics. It suggests that, since the science is performed within

the application, the OS and runtime environment should be adapted to meet the

36

needs of the application, rather than adapting the application to meet the needs of

the resource. Therefore, the VSE addresses the creation of a tailored virtual cluster

environment and its deployment on a target resource.

In a VSE, the VM image is defined by the combination of package sets. For example,

the user can provide a package set containing the required software for their com-

putational requirements. The system administrator can provide a package set with

the resource manager and other software required to meet the local policy of the

system on which the VSE will be deployed. The combination of package sets defines

the VSE and is stored in an XML file. This is used to generate a golden image,

which contains an installation of the package sets and defers configuration until de-

ployment time, allowing the same image to be reused between different deployment

configurations. The VSE is integrated into the OSCAR-V middleware (Vallée et al.,

2007), which provides the package sets, configuration and deployment capabilities.

This also ensures that the VMs built using the VSE methodology conform to the

cluster architecture and include the required software stack in order to implement a

distributed or parallel system.

A clear advantage of this model is in the abstraction of the virtual environment

definition, allowing the user to compose a VSE by simply specifying the required

package sets and the image is generated automatically. However, this abstraction

is supported by a custom binary packaging format that documents software depen-

dencies as well as configuration required to support deployment in a cluster context.

This introduces an additional burden in order to build these packages and main-

tain them in the long term, whereas a typical VM image can be customised using

standard distribution or upstream provided packages. Therefore, this undermines

the advantage of delegating the environment customisation tasks to the user: whilst

they most likely hold the best knowledge on how to configure their software, they

37

are unlikely to hold the required system administration knowledge in order to create,

modify and maintain package sets. The authors attempt to address this limitation

by suggesting that the responsibility for maintaining the package sets would be on

the application developer, not the user. However, a user wishing to customise either

the package or how it is configured would still face a high barrier of entry.

2.2.2 In a Grid Fabric

The Virtual Workspace (VW) is proposed as a top-down approach to integrating vir-

tualisation within the grid architecture (Keahey, Foster, Freeman, Zhang, & Galron,

2005). It is based on an abstraction of a ”transient, dynamically created execution

environment” that provides the required services or supporting infrastructure for

an application to run on a resource (Keahey, Doering, & Foster, 2004). The in-

teractions required in order to configure the VW are implemented as grid services

and a reference implementation is presented based on the Globus Toolkit. It does

not specifically define a virtualisation technology, rather, a set of criteria that it

must provide. These include providing protection between user resources, enforce-

ment of policies such as CPU time, the ability to configure and preserve state such

as environment variables and the ability to support a diverse range of codes. It

is suggested that using classical and paravirtualisation techniques to implement a

workspace offers the most flexibility (Keahey et al., 2005). The VW Manager service

is responsible for the implementation details of how to launch the virtual environ-

ment on the target resource. The VW Factory provides the interface to the grid that

allows authorised users to request a VW. However, once created the VW is atomic

and does not typically interact with other workspaces or services, apart from those

required by the application being run within the workspace. Therefore, it cannot be

used on it’s own in order to provision a virtualised cluster environment.

38

Grid VO

Virtual Workspace

Broker provides

configuration context to VW

Broker

Figure 2.4: Architecture of a Virtual Workspace in the Grid

Extensions to the Virtual Workspace by Foster et al. (2006) and X. Zhang, Kea-

hey, Foster, and Freeman (2005) provide the ability to provision a linked set of

workspaces as shown in Figure 2.4. Metadata describing the set, such as hostnames

and number of nodes, is provided in an XML file, in addition to the configurations

for the individual workspaces. For example, a set of VWs sharing a common image

can be deployed to a resource that represent worker nodes of a cluster. This set

can be deployed on any grid resource that provides VW services, without requiring

knowledge of how the underlying resource is configured. The primary limitation in

this approach is the requirement for the user to supply a VM image, inheriting the

usability issues associated with generating this. However, it provides basic facili-

ties to separate configuration from the VM image through the XML file, specifying

scripts to be executed at VM boot time. This improves the portability of the image,

as it allows adaptations based on the deployment context to be performed separately

from the software environment customisation using a scripting language of choice.

For example, scripts could be used to install additional packages, certificates, or

configure a client application, but must still be defined statically.

Image propagation is identified as a limitation that is likely to affect the scalability

39

- the deployment time of a VW is dominated by copying the VM image to the

target resources, and increases with the number of nodes in the set. To improve

the scalability, where more than one workspace uses the same image, a solution

is proposed where the image is transferred once to the resource across the grid,

and then cloned to the respective nodes using a local interconnect at the start of

execution (X. Zhang et al., 2005). Once the files for a workspace are staged, the

overheads of launching, executing and destroying are minimal.

A proof-of-concept deployment of VWs is presented in Keahey, Freeman, Lauret,

and Olson (2007) for STAR, a High Energy and Nuclear Physics application. Due

to the fact that the configuration must be defined statically, a head node is man-

ually deployed and an image for the VW is created that contains the hardcoded

address of the head node. The user may invoke instances of the image on a pool

of dynamic worker nodes, deployed across systems in the grid by the VW services

as required. Even though the experiment was successful, an additional limitation

in terms of image management is identified, suggesting that the lack of methods for

easily procuring images and demonstrating their provenance will prevent resource

providers from offering VM hosting capabilities, for fear of attracting low quality or

harmful codes. The authors predict that this will prevent users from taking advan-

tage of virtualisation for their workloads. One could argue that all customisation

can be performed by scripts and the VW only needs to provide a minimal set of

trusted images for this purpose. However, this would require the user to perform

more significant customisations within the XML file, requiring a higher degree of

system administration expertise in order to define. Furthermore, the customisations

will be applied everytime the VM is booted, potentially extending the provisioning

time of the virtual cluster.

Contextualisation aims to more clearly define the configuration required for a Vir-

40

tual Workspace in order to adapt it to a deployment context (Keahey & Freeman,

2008). This work recognises that in order to integrate a set of virtualized resources

together as a logical cluster, a dynamic provisioning method is required in addition

to other configuration tasks. Contextualisation provides a clear separation between

creating a reusable appliance, deploying an instance of the appliance, and the sub-

sequent contextual configuration. The usefulness of this separation is in supporting

the division of labor between a provider, responsible for maintaining the virtualised

software environment package, and a deployer, responsible for mapping it to an

available resource with the required contextual configuration. This does not allow

users unlimited control over what environment they wish to define, allowing them

to select from prebuilt appliances - on top of which they can supply runtime cus-

tomisations such as input data - rather than requiring the environment to be built

from scratch. The deployment mechanism performs both the contextual configura-

tion and installing the user-supplied customisations. This reduces the amount of

system administration knowledge required by the user in order to operate a virtual

environment.

An example is demonstrated where the configuration of an NFS server and client,

running in separate VWs, is performed based on IP address allocations obtained

from a grid resource manager (Keahey & Freeman, 2008). Scripts are executed

depending on the role of the workspace - for the server, it executes a script that

parses a file describing NFS clients and generates the appropriate configuration. This

is implemented on top of a simple dependency graph that describes the relationship

between workspaces. A context broker runs as an external service, which provides

a method of querying contextual information, such as hostnames and IP addresses,

from a grid resource manager.

Contextualisation offers a clear advantage over previous configuration schemes in

41

that it allows the definition of dependencies between the instances within a virtual

cluster. This enables dynamic instantiation without knowledge of the infrastructure

in advance, and allows reuse of common components in different contexts. However,

from the end user perspective, it is relatively inflexible - it requires the user to choose

from predefined appliances, in which only a limited set of parameters can be cus-

tomised. It also places the burden of maintaining the appliance on the administrator

or software provider.

The Virtual Workspace and contextualisation models are complementary - the latter

can be used to address the configurability limitations of the former. However, they

are designed to work within a grid infrastructure. This presents a high barrier of

entry in order to implement: context broker and deployer services must be compati-

ble with the desired execution fabric in order to support workspaces and appliances.

Therefore, the hosting system must either implement the grid software stack, or

provide its own VW-compatible interfaces. In some execution fabrics, there may

not be a central source of contextual information that can be queried. This does

not immediately make them portable outside of grid infrastructures.

2.2.3 In a Cloud Fabric

StarCluster is a toolkit that facilitates dynamic creation of virtual clusters on the

Amazon EC2 service (StarCluster , n.d.). Originally designed to support the compu-

tational requirements of university courses, where the resource may only be required

for a short duration throughout the year, the toolkit provides automated provision-

ing of a cluster software environment in the cloud, as shown in Figure 2.5.

Virtual cluster nodes can be added or removed on demand, with the appropriate

reconfiguration of the resource manager, Open Grid Scheduler (Open Grid Sched-

uler/Grid Engine, n.d.), taking place automatically. This process is conceptually

42

Cloud Provider

Virtual Cluster

Cloud provides

metadata required

to configure and

scale the cluster

Metadata

Figure 2.5: Architecture of StarCluster on Amazon EC2

similar to that of Keahey and Freeman (2008); the EC2 service is providing con-

textually relevant metadata, such as IP addresses, in order to perform dynamic

configuration. This configuration includes creation of VM instances, hostnames and

IP addresses, Public Key Infrastructure (PKI) and a shared filesystem among the

virtual nodes.

An load balancer is utilised in order to utilize the elasticity of the cloud deployment

method. It is a separate service that continuously polls the job queue to determine

when more nodes are required, allowing the virtual cluster to be automatically scaled

proportionally to the queue length, thus optimising the hourly usage for a workload

profile that is difficult to predict in advance. This implementation demonstrates

that a flexible and dynamic solution can be created without directly modifying core

components of the cluster software stack. The service performs the required task

(such as adding a new virtual node) in an automated manner, but using the same

interactions which would be performed manually by the administrator. However, it

is dependent on the Amazon EC2 API and does not offer support for local resources

or other cloud providers.

Whilst StarCluster has desirable features, it is aimed at a relatively narrow use case

43

which is reflected in the capabilities for customisation. A minimal default image is

provided, and the user can select from a range of plugins in order to deploy common

cluster applications, such as MPI, Hadoop, MySQL and Python (StarCluster Plugin

Documentation, 2011). However, it is clear that the configured VM image is not

designed to be a reused between invocations of a virtual cluster. This approach

allows the barrier of entry to be lowered, providing the configuration prescribed by

the plugins is acceptable. Any other customisations rapidly increase this barrier, as

they must be performed manually in the same way as a physical cluster, or defined

as a StarCluster plugin.

Dynamic Torque is a solution that enables dynamic scaling of a local cluster run-

ning the Torque resource manager into an OpenStack cloud (S. Zhang, Boland,

Coddington, & Sevior, 2014). It facilitates the provisioning of VMs that represent

virtual cluster nodes within the cloud, integrated into the resource manager to ap-

pear alongside existing physical nodes in the scheduling queue. Dynamic Torque

enables cloud bursting, where additional virtual nodes can be temporarily provi-

sioned as an extension of the local cluster in order to process a backlog of jobs.

Similarly to StarCluster, the integration approach has been to create an external

service that runs parallel to the resource manager, performing the communication

with the OpenStack API in order to automate common deployment tasks. However,

it suffers from similar limitations: it requires the virtual cluster to be deployed on

an OpenStack cloud, and does not consider the creation and customisation of the

VM image used for the worker nodes - only the methodology for dynamically scaling

them. The administrator must supply an image configured in the same way as the

physical worker nodes in the local cluster.

Unlike a virtual cluster that is nested within an existing cluster fabric, a standalone

cluster configured in a cloud fabric poses the same application portability challenge

44

as a physical cluster; They are largely equivalent from a configuration perspec-

tive, still requiring a homogeneous environment. Even though the cloud enables

a multitude of distinct clusters to be created, each with it’s own unique software

environment, it is clear that the low level abstraction of the VM does not lend itself

to easy and efficient customisation by an end user.

2.3 Containers

2.3.1 Run Time Environment

In Chamberlain and Schommer (2014), a method of creating Docker containers in

order to encapsulate scientific software is presented. The motivation for this work

is to improve the reproducibility of a computational experiment. They identify

that any code used to run the experiment is only a single part of a larger software

environment, which would need to be replicated in order to run the code. Therefore,

they propose that containers can be used to encapsulate this environment, and

present a workflow where containers are used as both the method of development

and execution.

The container is based on a minimal Linux installation, available from the Docker

Hub online repository (Overview of Docker Hub, n.d.), and must include an instal-

lation of all dependencies and libraries required for the execution of the code. This

container is used as a base to extend two more containers that are customised for

development or execution. The development container will include tools such as

compilers and debuggers, whilst it is not necessary to distribute these with the final

runnable code. In the context of a workflow, the container is invoked in place of

tools that would otherwise be installed locally.

45

The authors advocate the use of containers for runtime environment virtualisation:

unlike a VM which requires a separate OS instance to be booted within, the container

is executed seamlessly within the host OS as though it was any other executable, but

within the environment defined by the container. The advantage of this approach is

that it offers an accessible path to reproducibility, with minimal disruption to the

user. However, the main contribution is a method for defining the environment of

the container, and in this regard it does not consider where to draw the line between

what is reasonable to expect the host system to provide and what the container

must provide.

Boettiger (2015) provides a more detailed analysis of the opportunities and benefits,

demonstrating a similar workflow using R, a programming language designed for

statistical computing and data analysis (The R Project for Statistical Computing ,

n.d.). They argue that virtualisation at the runtime level allows the researcher to use

familiar tools, such as text editors and web browsers, whilst ensuring that the code

execution occurs in the container - where the environment remains consistent and

can easily be deployed to other systems without having to adopt different workflows.

A set of best practices are proposed to ensure that the advantages of virtualisation

are realised in the context of reproducibility. This includes setting up the environ-

ment of a project within containers from the outset, and using Dockerfiles to define

the configuration of the software dependencies, environment variables, and other

necessary configuration required in order to execute the application. However, as in

Chamberlain and Schommer (2014), it does not adequately consider how the con-

tainer will be executed in context on a resource, and the extent to which software

dependencies and libraries should be included in the container, such as those that

provide interactions with the host for process launching, networking and storage.

Therefore, whilst this methodology might be appropriate for simple or sequential

workflows, it does not suggest that it can be applied to distributed parallel applica-

46

tions that are typical of HPC workflows.

Singularity has popularised executable containers for HPC that addresses some of

these issues, where the container provides the runtime environment to support a

single application (G. Kurtzer, 2016). In most cases, the container can be utilised as

though it were any other executable on the system, and the behaviour is consistent.

The transparency of this approach offers clear advantages as it presents an extremely

low barrier to adoption and does not require the user to adopt new workflows, as

established by Boettiger (2015).

Similarly to Docker, Singularity defines the entry point to the container as a script

that will be executed upon starting (G. M. Kurtzer, Sochat, & Bauer, 2017). This

script describes the default behaviour of the container, unlike a traditional VM,

which would require booting, logging-in and subsequent manual launching of the

desired processes. Typically, a Singularity container follows the layout of a Linux

root filesystem and several minimal Linux images are provided, in addition to the

ability to import Docker images. The rest of the container definition is left to the

user to decide. Whilst the user may include as much or little supporting software

as desired, Singularity differs from Docker in that, by default, it recommends that

many aspects of the host system will be shared with the container. For example, a

container for an MPI application does not need to include the MPI libraries or envi-

ronment - the host’s version of these can be used (Using Host libraries: GPU drivers

and OpenMPI BTLs, 2017). This is presented as a strength of the Singularity model

since the host will typically provide optimised versions of high performance libraries

to complement its hardware. However, whilst this solves the software environment

flexibility problem within the scope of a single HPC system, the reduced portability

of this model is overlooked - what if the system executing the container does not

provide a native MPI implementation? A method to express such contextual depen-

47

dencies within the container is not available. Therefore, container execution will fail

on a system that does not meet these requirements, and it limits the scope to which

they can be shared and reused.

Despite this, a large amount of software is already packaged for Singularity. Ghosh

(2017) present a training environment that must be executed on a cluster provid-

ing a resource manager and GPU hardware resources. Elghraoui (2017) present a

containerised version of TensorFlow, which depends on filesystems available only on

the National Institutes of Health HPC system. On the other hand, Shiratori (2017)

present a containerised version of OpenFOAM, which offers no integration with the

host system and thus, good potential for reuse. Therefore, it is apparent that, in a

relatively short amount of time, a distinct class of containers have emerged that fol-

low the runtime environment virtualisation model and are exclusive to HPC, whilst

others can be shared, reused and executed on a variety of host systems.

Charliecloud is an alternative container runtime designed for the HPC use case

(Priedhorsky & Randles, 2017). Similarly to Singularity, it implements runtime en-

vironment virtualisation aimed specifically at the HPC use case. Unlike Singularity,

it adopts the Docker workflow for generation and dissemination of container images,

providing only the minimum functionality needed in order to run the container in a

way that is consistent with regular applications on an HPC resource. This provides

an advantage if the user is already familiar with Docker, maintaining a high level

of accessibility and low disruption to existing scientific workflows. However, this

minimal approach suffers from the same limitations: While it allows end user cus-

tomisation of the environment to suit an application, it does not ensure that they

will be portable between systems. The weak level of abstraction from the underly-

ing software environment limits the potential for re-use of such images in different

execution contexts, especially those where the host cluster is not of the same type

48

required by the application.

2.3.2 Full Stack Environment

Containers do not have to be used exclusively for run time environment virtuali-

sation, and may also be utilised in a way which reflects traditional virtualisation

techniques. In this mode, the container is configured to run a full software stack so

that the guest environment is more typical of a running OS, rather than a single

process. Therefore, a complete cluster nodes can be virtualised within containers,

similar to the methods outlined in Section 2.2.

In Yu and Huang (2015), a prototype implementation is presented for an auto-

scaling virtual cluster encapsulated within Docker containers. The architecture of

this virtual cluster is outlined in Figure 2.6. The deployment model uses separate

images for head node and worker node containers. It supports dynamic rendering

of a host file, which lists the IP addresses of the worker node containers. This is

achieved using an external key-value store service, Consul (Consul by HashiCorp,

n.d.). An agent runs within the container which registers the current container’s IP

address and polls the key-value store service for changes, in order to update the host

file when the cluster topology changes. Execution of a hello world parallel code,

using Message Passing Interface (MPI), is demonstrated across 2 containers. From

the head node container, the program is executed using the automatically generated

host file. When another worker node container is added to the system, the program

can be executed again taking advantage of the new worker node - the host file is

automatically updated without having to stop and restart the entire virtual cluster.

This approach encapsulates all the application layers required for parallel execution

within the container itself. This offers better portability when compared to run-

time environment virtualisation, as the execution method on which the application

49

Docker Hosts

Virtual Cluster Key-value Store

Each container provides discovered context

instead of relying on external metadata

in order to configure the virtual cluster

Figure 2.6: Architecture of a prototype Virtual Cluster using Docker

depends is included within the container, rather than being an undocumented de-

pendency that the host system is expected to provide. In addition, configuration

of the execution method is documented by the ability to dynamically render the

required host file. Therefore, these containers could be deployed on a system that is

not natively a cluster and the application would function as expected.

However, the proposed implementation is based on unrealistic assumptions about

the underlying environment. Firstly, the containers of the virtual cluster are bridged

onto the physical network of the host, and it is assumed that the network will dynam-

ically assign an IP address to them. This may not be the case for all environments

and potentially offsets the portability gain. Secondly, whilst the solution appears to

implement some of the principles of contextualisation (Keahey & Freeman, 2008),

only the model of a head node initiating communication to worker nodes can be

represented. There is no provision for the worker nodes to discover the IP address

of the head node, for example. Finally, whilst a method is available for configura-

tion files to be updated when worker nodes are joined or removed from the virtual

cluster, other configuration actions may need to take place in the context of a full

software stack, such as service reloading.

50

In general, this auto-scaling cluster model is situated halfway between run time

environment virtualisation, and virtualisation of an entire cluster software stack. It

does not provide adequate capability to configure the non-trivial environment posed

by a full cluster middleware, but in the context of a simple MPI application, it is

shown to offer improved portability and dynamicity than other solutions.

In contrast, Kniep (2014) propose a containerised virtual cluster that more closely

aligns with the microservice model, in order to exploit the deployment and orches-

tration capabilities of Docker. The initial implementation demonstrates a cluster

that mixes several OS environments, where the environment can be chosen at the

time of job submission, and is based on the SLURM resource manager (Jette &

Auble, 2010). However, it requires statically launching the containers on each node,

and configuring the partitions in the resource manager in order to direct jobs to

those containers.

An improvement to the model is demonstrated where services within the cluster are

represented by separate containers that are launched when required (Kniep, 2016).

The resource manager’s process launcher resides within a container on each node,

and new containers are launched in order to provide the environment for each job.

The advantage of this model is that it supports using the wide range of already

mature tools for orchestration and management that exist for Docker outside of

the HPC use case. This includes network virtualisation, allowing the containers to

communicate within a private virtual network across multiple hosts.

However, this model presents a departure from typical process orchestration within

HPC systems. Whilst it addresses issues such as environment customisation and

performance, it potentially poses new usability issues in terms of system adminis-

tration by using tooling and techniques that will be unfamiliar to the vast majority

of existing systems. In addition, it does not detail the modifications required to

51

the SLURM resource manager, or the requirements in order to build the container

images for job execution.

In de Alfonso, Calatrava, and Moltó (2017), EC4Docker is presented as a tool in or-

der to build virtual clusters within a container environment. The authors present a

model where each container represents a worker node in the system. However, it does

not provide a complete full stack environment: a head node container is deployed

manually and managed by a separate process that facilitates dynamic addition or

removal of the worker nodes depending on the queue length. This functionality is

presented as an innovative approach, despite affording the same capability as Yu

and Huang (2015) and applying the same configuration principle used by Dynamic

Torque (S. Zhang et al., 2014), where the required contextual information in order

to scale the system is obtained by polling an external API. Therefore, it does not

resolve the fundamental challenge of portable configuration and adaptation of the

environment based on the deployment context, which is evident from previous work.

Furthermore, the topology of the virtual cluster model that is implemented is not

flexible, and must conform to the traditional batch scheduling cluster paradigm,

using NFS to share data between virtual nodes. This fixed architecture is not ap-

propriate as a general purpose virtualisation solution for HPC.

2.4 Synthesis

A taxonomy of virtual clusters within HPC is constructed in Figure 2.7 based on the

reviewed work. The implementations that use traditional techniques, i.e. classical or

paravirtualisation, are based around the model of a full stack cluster software envi-

ronment running within the VM instance. This represents either a standalone virtual

cluster (Keahey et al., 2007; StarCluster , n.d.) or virtual worker nodes that are in-

52

Virtual Clusters

Implementation

Usability

Configurability

Non-contextual
Applications

Libraries

Contextual

Networking

Shared storage

Performance

Opportunities

Full Stack

Runtime En-
vironment

System
Administration

Resource
Management

Portability

Dynamic
Topologies

User Defined
Environments

Throughput

Utilisation

Turnaround

Spanning

Figure 2.7: Taxonomy of Virtualised Clusters

tegrated into an existing physical cluster (Emeneker & Stanzione, 2007; S. Zhang

et al., 2014). By virtue of the fact that a VM must be configured as though it were

a real machine, this model can be used to solve the software inflexibility problem

in HPC systems by allowing the user to provision a cluster environment tailored

to the requirements of a specific application. However, the literature also identifies

opportunities to realise other benefits. Virtualisation promotes better portability of

software environments between different execution fabrics. This capability can be

used to facilitate cluster spanning and job forwarding in order to improve system

performance, in terms of utilisation, job throughput and turnaround time (Emeneker

& Stanzione, 2007). In addition, it is suggested that VMs can be used to ease the

burden of system administration by allowing changes to the system-level libraries

and middleware to be tested and deployed in a controlled way, without putting an

already established cluster at risk (Youseff et al., 2006).

53

A common workflow is present throughout the solutions, composed of image pro-

curement, configuration, VM deployment, workload execution and subsequent VM

destruction. This workflow, detailed in Figure 2.8a, represents the steps that must

be taken in order to invoke a virtual cluster environment on a particular resource,

regardless of the underlying implementation or fabric. However, no one solution

satisfies the requirements of each step in this workflow for the HPC use case.

The DVC and Virtual Workspace models require the user to supply a VM image

in order to deploy the virtual cluster (Emeneker & Stanzione, 2007; Keahey et al.,

2007). This poses a significant usability challenge due to the knowledge required in

order to create the VM image, which the average user is unlikely to hold. Typically

these images are several Gigabytes in size as they consist of an entire OS and software

environment installation. This creates not only a problem for transferring the image

to the target for execution, but is an inconvenient file format for procurement and

customisation by others.

Furthermore, there is inconsistency in the separation between configuration per-

formed at the time of VM definition and configuration performed at the time of VM

deployment. For example, DVC does not specify any separation of configuration

responsibility (Emeneker & Stanzione, 2007). Therefore, these virtual clusters have

to be manually reconfigured for each deployment scenario. On the other hand, con-

textualisation defines an approach for configuration of Virtual Machines deployed

within a Grid. This allows deployment-specific configuration to be performed au-

tomatically that may not be known in advance at the time of definition, such as

IP addresses and hostnames (Keahey & Freeman, 2008). However, this relies on

metadata obtained from a grid resource manager which will not be available in

other fabrics. Cloud based solutions have a relatively rigid configuration mechanism

as they are closely mapped to the platform-specific APIs provided by the service

54

on which they are implemented. For example, Dynamic Torque effectively imple-

ments cluster spanning between a local and cloud resource, but instruments this is

in a inflexible way, as the virtual cluster nodes must be configured identically as an

extension of the physical cluster nodes (S. Zhang et al., 2014).

Containers are defined in a text file which describes the commands the user would

issue in order to configure the virtual environment (Boettiger, 2015; G. M. Kurtzer

et al., 2017). A container can have a single dependency in that it extends another

container, using it as a base image. The Docker and Singularity hubs offer a ser-

vice for procuring, sharing and asserting provenance of the container images built

from such files (Boettiger, 2015; Sochat, 2017). This approach is more accessible

to the average user, as it does not require the system administration experience

needed to construct an image from scratch, such as installing and configuring an

OS. It also optimises the transfer of data by reusing common image layers between

containers, reducing both the on-disk storage requirements and the time taken to

propagate images to the execution system (Merkel, 2014). Furthermore, the per-

formance overhead of containers is very low (Felter et al., 2014; Le & Paz, 2017),

and the workflow in order to deploy them requires less steps than the VM approach,

thus smaller adjustments to the normal working patterns of the user, as shown in

Figure 2.8b. Therefore, it is clear that the limitations in terms of usability and per-

formance in the traditional full stack approaches can be improved using container

virtualisation.

However, the typical usage model of containers is to virtualise only the run time

environment of an application - a paradigm that was not possible with traditional

virtualisation techniques. Whilst this solves the user-defined environment problem,

it does not allow the other opportunities to be realised, as the container does not

consider the lower levels of the cluster software stack where they would be imple-

55

Start

Procure / cre-
ate image

Boot VM on
the resource

Apply deployment-
specific config

Execute workload

Shutdown VM

End

(a) Full stack virtualisation

Start

Procure / cre-
ate container

Invoke container in
place of executable

End

(b) Runtime virtualisation

Figure 2.8: Workflow comparison of full stack cluster node versus runtime environ-
ment virtualisation

56

mented. Yu and Huang (2015) and Kniep (2014) introduce solutions that employ full

stack virtualisation within a container environment. However, these solutions are

presented by the authors as innovative without fully considering the HPC context

in which they are placed. Therefore, they similarly do not appreciate the opportu-

nities identified in the literature that are shown to have a quantifiable improvement

in usability or performance when deployed in a cluster environment.

Counterintuitively, both container and traditional virtualisation solutions suffer from

low portability. The services that enable good configurability for VMs are not

portable, requiring complex grid infrastructure in order to be deployed. This means

that whilst the VM is inherently portable due to the high level of abstraction from

the underlying system, the orchestration framework that enables it to be used ef-

fectively within an HPC system is not. While containers do not necessarily rely

on external services in order to be deployed or configured, they similarly inhibit

the portability by introducing dependencies on services provided further down the

software stack on the host system (Ghosh, 2017; Elghraoui, 2017). For example,

a containerised MPI application that can only execute on a system providing the

interfaces for MPI execution.

Based on the taxonomy in Figure 2.7, implementation-specific features that are

required in order to exploit the recognised benefits of virtualised clusters are used

for comparison between the solutions, detailed in Table 2.2. The solution is scored

0 if it does not consider the relevant feature. If the solution considers the feature

but has limitations within the HPC context, it is scored 1. If the solution considers

the feature without limitations in the HPC context, it is scored 2.

It can be seen that the container implementations offer strength in features that

affect usability, but have configurability limitations that prevent them from being

used in order to realise benefits other than a user-defined software environment.

57

Id
ea

l
so

lu
ti

on
D

V
C

(E
m

en
ek

er
&

S
ta

n
zi

on
e,

20
07

)

V
S
E

(V
al

lé
e

et
al

.,
20

08
)

V
ir

tu
al

W
or

ks
p
ac

e
(K

ea
h
ey

et
al

.,
20

07
)

C
on

te
xt

u
al

is
at

io
n

(K
ea

h
ey

&
F
re

em
an

,
20

08
)

S
ta

rC
lu

st
er

(S
ta

rC
lu

st
er

,
n
.d

.)

D
yn

am
ic

T
or

qu
e

(S
.

Z
h
an

g
et

al
.,

20
14

)

A
u
to

sc
al

in
g

D
oc

ke
r

(Y
u

&
H

u
an

g,
20

15
)

qn
ib

(K
n
ie

p
,

20
16

)
E

C
4D

oc
ke

r
(d

e
A

lf
on

so
et

al
.,

20
17

)

S
in

gu
la

ri
ty

(G
.

M
.

K
u
rt

ze
r

et
al

.,
20

17
)

C
h
ar

li
ec

lo
u
d

(P
ri

ed
h
or

sk
y

&
R

an
d
le

s,
20

17
)

User customisable image 2 1 1 1 1 1 0 2 1 1 2 2
Supports multiple nodes 2 2 0 2 2 2 2 2 2 2 2 2
Standalone deployment 2 0 0 0 0 0 0 2 1 2 2 2

Span multiple fabrics 2 2 0 0 0 0 2 1 1 0 1 1
Separate deploy / run config 2 0 0 0 2 1 0 0 0 0 0 0

Contextual aware config 2 0 0 1 2 2 2 2 0 0 0 0
Dynamic adjustment 2 0 0 0 1 2 2 2 0 1 0 0

Custom topologies 2 0 0 0 2 0 0 0 0 0 0 0
Provides image repository 2 0 0 0 0 1 0 2 2 0 2 2

Improve portability 2 1 0 0 1 0 0 0 0 0 0 0
Improve performance 2 1 1 1 1 0 0 1 1 0 1 1

Improve administration 2 1 0 0 0 0 0 1 1 1 1 1

Total 24 8 2 5 11 9 4 15 9 7 11 11

Table 2.2: Feature comparison of virtualised cluster implementations

58

Conversely, the traditional approaches overall have better configurability but suffer

from poor usability. However, a combination of these approaches has the potential

to provide an ideal solution that addresses each aspect of virtualised clusters more

comprehensively: specifically, a solution that employs containers as an incremental

improvement over the existing full stack cluster virtualisation approach. In addi-

tion, solving the limitations in terms of configurability and portability will allow

deployment models to be considered which are otherwise not possible with existing

container solutions, such as deploying cluster applications on a host system that

does not provide the interfaces required for cluster execution, spanning geographi-

cally distributed and heterogeneous execution fabrics, and nested virtualisation of

cluster environments.

2.5 Summary

In this chapter, a review of related work was conducted. Two types of virtualisation

approaches within HPC were identified: full stack virtualisation using traditional

VMs and run time environment virtualisation using Linux containers. Both of these

approaches offer a solution to the software environment flexibility problem. The

limitations within the existing work addressing these two types of virtualisation can

be summarised by those that require the user to hold an unreasonable amount of

system administration knowledge, and those that rely on bespoke or deployment

specific services which cannot be ported to arbitrary deployment fabrics. However,

whilst containers offer a more accessible virtualisation technique for the average user,

the full stack approach demonstrates a wider range of opportunities to improve HPC

systems using virtualisation:

• Performance, in terms of job throughput, turnaround time and resource utili-

59

sation

• Administration and Deployment

• Portability of compute environments

Whilst there is limited previous work that addresses implementation of the full stack

approach using container virtualisation, it does not adequately consider the context

of previous efforts in this area, and thus, does not facilitate the potential benefits and

opportunities. Furthermore, an examination of both approaches showed that they

suffer from poor portability despite the inherent abstraction from the underlying

system. The contemporary container implementations in HPC that target run time

environment virtualisation do not specifically define the best practice for construct-

ing a container, instead mainly focusing on how to technically support containers

on an HPC system, rather than why.

A taxonomy describing virtual clusters is synthesised based on the work reviewed in

this chapter, shown in Figure 2.7. From this, critical implementation details were

identified and used to compare the existing solutions in Table 2.2, demonstrating that

no single system is suitable for general purpose virtualisation in the HPC context

and providing a framework for the design and evaluation of a new solution.

A container-based full stack virtualisation approach is proposed in order to sat-

isfy these implementation details in a unified virtual cluster model. This solution

addresses the following gaps in knowledge:

• In-depth analysis of virtual cluster spanning performance in a range of labora-

tory and real world network conditions, using a well-known HPC benchmarking

toolkit

• Best practice for defining and constructing a container to encapsulate a cluster

application

60

• Discovery, configuration and contextualisation services without dependency on

external infrastructure

• Novel topologies

– Virtual clusters on a single workstation

– Geographically and multi-fabric distributed virtual clusters

– Nested virtual clusters

• Objective analysis of the usability and portability impact of full stack container

virtualisation in HPC

61

62

Chapter 3

Virtual Container Cluster

Framework

This chapter describes the design and implementation of the novel Virtual Container

Cluster (VCC). The VCC framework allows the construction of container images

that encapsulate one or more parallel applications within their own full stack cluster

environments. The main contribution of this design is in the standalone, self-hosted

services for configuration and contextualisation. This facilitates increased portabil-

ity and the ability to automatically adapt the configuration of the virtual cluster to

the deployment context, considering a wide range of services such as DNS resolution,

Public Key Infrastructure and dynamic reconfiguration after deployment. Together,

these services aim to meet the requirements of the ideal virtualisation solution pro-

posed in Table 2.2. The requirements address the portability limitations that affect

previous solutions due to dependencies on underlying infrastructure, and usability

limitations that require an unreasonable amount of knowledge in order to operate

and customise the solution. A key innovation in this model is defining the boundary

of a virtual cluster instance by the network connectivity rather than the software

63

environment. This boundary can be established across networks with variable levels

of connectivity by utilising Software Defined Networking (SDN) technologies.

Firstly, a high level overview of the VCC architecture is discussed, followed by a

detailed analysis of the design decisions that compose this architecture. Finally,

the low level implementation detail of each service is described. The aspects of the

design presented in this chapter are documented in the publication ”Autonomous

Discovery and Management in Virtual Container Clusters” by Higgins, Holmes, and

Venters (2017a).

3.1 Architecture

An overview of the general architecture is shown in Figure 3.1. Unlike previous con-

tainer implementations that provide runtime environment virtualisation, the founda-

tion of every VCC container is a service layer which provides discovery, contextual-

aware configuration and dynamic scaling capabilities. Above this, the middleware

layer contains the full software stack that is required in order to support execution

of the runtime environment.

The service layer discovers relevant information about the container, such as net-

VCC Services

Middleware

Runtime Env

Contextualised
automatically

Customised by
the end user

Figure 3.1: Overview of VCC Container Architecture

64

Physical Cluster A

Network A

Node Node Node ...

Docker Docker Docker

SDN SDN SDN

Physical Cluster B

Network B

Node Node ...

Docker Docker

SDN SDN

Overlay Network

VCC
head

Discovery

VCC
worker

VCC
worker

VCC
worker

VCC
worker

Virtual Cluster boundary

Batch cluster stack

Cloud stack
etc

Applications

Runtime Env

Parallel libraries

Middleware

Resource Discovery

Figure 3.2: VCC Architecture (Higgins et al., 2017a)

work identification, sharing this with other containers through the discovery service.

This information is used to dynamically configure the middleware layer, so that the

configuration is adapted correctly to the deployment context.

Therefore, the applications within the runtime environment layer can be executed as

intended, regardless of the software stack provided by the underlying system. This

allows the user to provide customisations without requiring knowledge of how the

middleware must be configured in advance.

Figure 3.21 outlines a possible deployment for an application which runs in a batch

scheduling cluster environment (Higgins et al., 2017a). The key distinguishing fea-

tures of the VCC, which enable the solution to offer an incremental improvement

over existing work, are summarised:

• Encapsulation of a full software stack regardless of the underlying system

• Discovery service providing contextually-relevant metadata without relying on

1Permission to reproduce this figure has been granted by the Oxford University Press

65

external services

• Assigning roles to individual containers in order to define both the unit of scale

and how they will be configured

• Facilitating communication through a Software Defined Network, scalable be-

tween multiple nodes and network segments

• Retaining the ability for the end user to customise only the topmost (runtime)

layer of the container environment

In this example, the containers are orchestrated such that the worker node role is

scaled out one per physical host. The container roles, and the relationship between

roles, are defined in the configuration of the virtual cluster. Therefore, the VCC

can be used to model the configuration of arbitrary application topologies that

may not conform to the traditional HPC or client/server paradigms. In practice,

this potentially replicates layers of the software stack within the container that are

already available on the host system. However, where the host may not provide the

required software stack, this is necessary in order to achieve good portability. This is

especially applicable to execution within the cloud, where it would be unreasonable

to require that the user configures the compute resource as a logical cluster before

being able to execute the container.

To facilitate dynamic scaling and spanning features, the responsibility is placed at

the services layer, rather than requiring bespoke middleware or patching applica-

tions in order to communicate over an inter-cluster interconnect. An SDN solution

is used to provide an overlay network, allowing communication between containers

distributed among many physical hosts. Where the hosts only have partial connec-

tivity, the overlay network provides a coherent view to the application as though

full connectivity is available, routing the communication through a common path

66

as appropriate. This can be utilised as the virtual inter-node interconnect, in order

to offer native spanning capabilities that are transparent to the middleware and

runtime environment.

This architecture allows the full potential of containers to be realised within an HPC

context - it affords the same level of software environment flexibility as existing

container implementations, whilst enabling the dynamic features available in full

stack Virtual Machine-based approaches that can improve resource management

and performance. Furthermore, each layer of the architecture promotes portability:

the networking configuration is decoupled from the physical infrastructure, and the

self-contained services for discovery do not require deployment-specific knowledge

to be provided manually or by an external, fabric-dependent service. This means

that the virtual environment can easily be transported and reused between different

execution systems and fabrics.

The virtualisation of networking functions within an HPC system is expected to

incur a communication overhead. In Chapter 2, previous work demonstrates that

containers do not introduce an overhead in terms of CPU execution performance,

however, the latency and bandwidth of the interconnect within an HPC system has a

profound effect on the application performance. The proposed solution is expected

to increase communication latency between processors in the virtual cluster. In

terms of application performance, the effect of this will be slower execution and

longer wall time. The size of this effect will depend on the application and type of

parallelism that it employs, however, it is anticipated that the dynamic nature of

the solution will provide an offset to the potential performance cost.

67

3.2 Design Decisions

In this section, the design decisions that compose the architecture described in Sec-

tion 3.1 are justified in detail, in terms of the requirements set out at the end of

Chapter 2.

3.2.1 Contextual-aware Configuration

Previous work demonstrates that a separation of configuration responsibility, such

as between customisations performed by the end user and the adaptations required

at run time, leads to overall improved portability and a lower barrier to entry. The

adaptations required at run time typically must be performed by the administrator,

requiring specialised knowledge about the underlying infrastructure. Contextualisa-

tion defines a methodology where this knowledge can be obtained programatically

and used to automate the adaptation of the virtual environment. However, the

implementations available in literature depend on metadata services only available

within a grid fabric, or provide a simplified model that only allows a client to be

configured with the IP address of a server (Keahey & Freeman, 2008; Yu & Huang,

2015).

In the VCC, the separation between user customisation and deployment-specific

adaptations is maintained. In order to avoid the requirement for an external meta-

data service to provide contextually-relevant information about the deployment,

each container within a VCC runs a service that discovers information about itself.

This information, such as hostnames and IP addresses, is shared with the other

containers using a simple key-value store. Each container can monitor the key-value

store in order to take action in response to events, such as a virtual node being

added or removed.

68

It is clear that dynamic configuration and dynamic scaling are not interdependent

and one is often implemented without the other - for example, Dynamic Torque al-

lows dynamic scaling of a cluster with a rigid configuration, orthogonal to the idea of

contextualisation (S. Zhang et al., 2014). However, there is no doubt that a general

purpose virtualisation framework requires both of these capabilities. The VCC ex-

tends the contextualisation methodology to introduce roles, which allow a container

to advertise that they offer specific services within the virtual cluster. Therefore,

it is possible to distinguish between events that involve a change to the layout of

the cluster and events that involve changes to the configuration of the environment,

introducing the terminology scale-based contextualisation and role-based contextual-

isation respectively. Scripts can be hooked into these events in order to provide the

actions that must be taken to configure the environment. This facilitates an innova-

tive mechanism that not only allows dynamic configuration of an environment when

it is launched, but subsequent reconfiguration when the environment is scaled up or

down, and when the providers of services within the cluster change.

The execution of scripts in order to modify configuration files with the contextually-

relevant information limits the ability to create generalisable, immutable base im-

ages. The implication is that if the user is required to consider the lower layers of

the container environment, rather than just the runtime environment, the barrier

of entry is rapidly increased. The design of the VCC overcomes this by providing a

dynamic DNS service which allows the contextualisation data to be accessed through

DNS queries. For example, an NFS mount could be configured within the container

as shown in Figure 3.3. The application is able to resolve a role name to the IP

address of the container which is providing that role, rather than substituting the

address into the command at run time or hard-coding a real container name. There-

fore, this command can now be committed to an immutable image, whilst still being

correctly contextualised with the deployment-specific information at run time. Fur-

69

mount −t n f s s t o r a g e s e r v i c e : / home /home

Figure 3.3: Example NFS mount using role name for dynamic DNS query

thermore, if the container providing the storage service changes, subsequent queries

will transparently return the new container’s IP address.

3.2.2 Many-Fabric Spanning

The ability for a job to potentially span multiple fabrics, either of the same or

different type, is key to realising the enhanced benefits of virtualisation in terms of

resource management, performance and collaboration. There are two key challenges

that the design must consider in order to facilitate spanning: software environment

compatibility and network connectivity.

Whilst there are a relatively small number of viable processor architectures for use

in contemporary HPC systems, there is a large amount of heterogeneity among soft-

ware stacks. Even between cluster systems, it is common to find sufficient differences

in the software environment to ensure that an application running on one system

cannot run unmodified on another of the same type. However, given two mutually

incompatible clusters, a third virtual cluster can be created using nodes borrowed

from each physical cluster, allowing a coherent parallel distributed execution to

take place on the combined resources. Both VM and container virtualisation meth-

ods provide adequate abstraction of the software environment in order to achieve

this.

Regardless of the virtualisation method used, in order to deploy a spanned cluster,

there must be connectivity between the nodes of the underlying clusters. This

is not typically the case in HPC systems, and the DVC requires that an inter-

70

cluster interconnect is added to join the networks of the underlying clusters together

(Emeneker & Stanzione, 2007). However, when such connectivity is available, the

middleware layer of the software environment will likely need to be modified in order

to support the unusual topology.

Therefore, the design of the VCC incorporates an SDN technology in order to provide

an overlay network for spanned connectivity. From the container perspective, the

overlay network appears to directly connect every container within a VCC on a single

subnet, regardless of the underlying physical topology. This shifts the responsibility

for implementing spanning from the application layer to the service layer, avoiding

modifications to core components of the software stack and providing a virtual cluster

interconnect that natively supports spanning. The SDN solution chosen for the VCC

implementation is Weave Net, as it can be distributed within a container itself and

supports a wide variety of engines, such as Docker (Weave Net , n.d.).

The discovery service in the VCC exposes relevant contextual information from the

overlay network, such as IP address assignments and boundaries of the physical

network. This allows the overlay network to be utilised in several ways: firstly, it

can be used analogous to a management network within a cluster, where only the

cluster state and resource management is maintained through the overlay network.

This would be appropriate for high throughput, transactional jobs, where there is

no communication between nodes, as shown in Figure 3.4a. Secondly, the overlay

network can simply be used as the main inter-node interconnect for the virtual clus-

ter, and this is the default use case as shown in Figure 3.4b - where two processes

of a parallel application may communicate transparently over the inter-cluster in-

terconnect. Finally, a combination of these modes may be used as shown in Figure

3.4c. In this case, the cluster environment is established using the overlay network,

but contextual information from the discovery service is used to configure the re-

71

A1 A2 A3 B1 B2

Virtual Cluster A+B

Job Job Job Job Job

(a) No Communication Between Nodes

A1 A2 A3 B1 B2

Virtual Cluster A+B

Spanned Job

(b) Spanning Across Inter-Cluster Interconnect

A1 A2 A3 B1 B2

Virtual Cluster A+B

Job 1 Job 2

(c) Avoiding Inter-Cluster Interconnect

Figure 3.4: Communication Models within the VCC

72

source manager such that jobs will not be scheduled to incur communication over

the inter-cluster interconnect. Therefore, it allows entire job forwarding, in addi-

tion to spanning, to be implemented using the same networking services within the

VCC.

3.2.3 Multi-node Parallel Execution

In a distributed parallel application, where processes related to the same program

will reside on mulitple nodes, careful orchestration and synchronization of these

processes is required in order for a successful execution. In an HPC system, this

capability can be provided by a cluster resource manager. Runtime environment

containers expect the host cluster to orchestrate the container as though it was the

same as a regular executable. For example, a containerised MPI code can be exe-

cuted through the host’s mpirun command (Using Host libraries: GPU drivers and

OpenMPI BTLs, 2017). However, a virtual environment with such a dependency

cannot be executed on a host system that does not provide these interfaces. There-

fore, in the VCC full stack environment, multi-node process orchestration must be

performed as a function of the virtual cluster itself.

The service layer of the container provides the information typically required in order

to run distributed parallel applications using a library such as MPI - automatically

generating a list of nodes in the virtual cluster in both /etc/hosts and machine file

compatible formats. In the simplest case, the middleware layer may only contain

the appropriate MPI library. For a complex workflow, it is possible to incorporate

a middleware layer which provides a resource manager, to allow individual jobs

within the VCC to be scheduled across the virtual nodes. In this case, the resource

manager will be configured automatically using the contextualisation methods in

the service layer, orchestrating parallel execution of jobs as though it was a physical

73

cluster.

Public Key Infrastructure is a critical component of multi-node execution, as the

means by which process launching on remote nodes can be performed securely and

safely, with the correct authorisation. Even though the implementations presented

by Emeneker et al. (2006), Keahey et al. (2007) and Yu and Huang (2015) demon-

strate multi-node execution, they do not consider how to distribute public and pri-

vate keys within the virtual cluster. A shared filesystem is commonly used for this

purpose, but may not be natively available within all execution fabrics, or accessible

when spanning multiple systems. Therefore, this is a central design consideration

of the VCC; The discovery service is utilised in order to publish public keys to all

nodes within a virtual cluster. Where no key exists, or a key was not supplied, one

will be generated automatically so that process launching may still take place. This

functionality follows the same flexibility as other VCC services, so that when the

cluster is dynamically changed, the keys will be maintained accordingly. For exam-

ple, adding a new public key to the discovery will result in it being automatically

pushed to each container, and a new container added to an existing cluster will be

automatically populated with the current set of keys.

3.2.4 User Defined Image

One of the motivations for integrating virtualisation into HPC systems is to enable

user-defined customisations to the software environment, in order to resolve the often

conflicting requirements of different user communities on a shared computational

resource. For example, multiple versions of the same software or libraries may

be required to coexist within the same environment. Incompatibilities can arise

which can be difficult, or in some cases impossible, to resolve, as in the case of

libraries providing critical OS functions such as the standard C library. Furthermore,

74

transporting the software to another environment once built poses an additional

challenge. This places a significant burden on both users and administrators of

HPC resources.

Virtual Machines inherently support customisation since they must be provided with

a filesystem or hard disk image, but this does not immediately offer a satisfactory

solution to the software environment flexibility problem. In a full stack approach,

the user is additionally required to know how to perform associated system adminis-

tration tasks, such as configuring the OS and underlying software stack. Container

virtualisation addresses this problem by considering only the runtime environment

- utilising the host system to orchestrate it as though it were any other process.

This significantly reduces the required effort and knowledge such that the difficulty

of customising a software environment within a container is comparable to with-

out.

The VCC employs a full stack approach within container virtualisation. In order

to retain an accessible method for users to customise the environment, the Docker

workflow is used so that the image can be generated as a series of layers which are

combined into a single view when the container is executed. This allows the lower

layers of the software stack, containing the discovery, middleware and libraries that

the host would otherwise provide, to be created seperately from the applications

and run time environment layers. This approach means that the user can easily

extend a VCC container by adding only the top layer containing their application,

in a process almost identical to creating a runtime environment container.

The advantage of using the Docker workflow for generating container images is that

it will be familiar to existing users and interoperable with applications already pack-

aged in the format. Furthermore, it is accessible both in terms of the knowledge

required to customise an image, and the size of the data which must be transferred:

75

image layers are defined in a plain text file which describes the commands used to

generate each layer. A disadvantage is that the system administrator, or a person

with appropriate knowledge, will still need to define the lower layers of the VCC

before the user can customise it. However, unlike previous work where administra-

tor intervention was required, as in Vallée et al. (2008), configuration in the VCC

is performed automatically based on discovered contextual information, and con-

tainers may be created and destroyed by the end user. Therefore, it is practical to

create a base VCC image which can be shared and reused without requiring further

customisation, except that by the end user. This means that the continued admin-

istrative burden of supporting full stack VCC containers is no more than runtime

environment containers, unlike VM-based virtual clusters.

3.2.5 Image Repository and Provenance

Traditional VM-based solutions suffer from the lack of easy methods to create and

distribute images once defined by the user: a monolithic filesystem image that can

exceed several Gigabytes is inconvenient to process and share. This problem is

largely solved by containers, by allowing the image to be defined in a text file and

built as a series of layers which are combined at run time. This allows common layers

between containers to be shared, reducing the filesystem footprint, and allows new

layers to be extended on top of an existing image without rebuilding or distributing

an entire new image. Online repositories that allow users to publish and share

images are available for Docker and Singularity (Boettiger, 2015; Sochat, 2017).

Furthermore, Docker allows images to be cryptographically signed to ensure that

the integrity and publisher of the data when shared can be verified (Content trust

in Docker , 2018).

In order to utilize these existing capabilities, the containers built using the VCC

76

framework follow the Docker workflow. This decision is based on the compatibility

offered by other container engines which are suitable for HPC deployment, which

support executing container images in the Docker format (Jacobsen & Canon, 2015;

G. Kurtzer, 2016; Priedhorsky & Randles, 2017). This provides an accessible method

for customising and sharing VCC containers using the online repository, in a format

which has support among a variety of container engines. When choosing to download

and run an image, or when incorporating layers from other images in your own, the

ability to sign Docker images provides a method in order to establish the provenance

of each component in the container. This is essential when transferring images across

an untrusted medium, such as the internet, to ensure that malicious changes cannot

be performed in transit.

3.2.6 Standalone Deployment

A key design goal of the VCC is to create containers with a high degree of portability,

that can be orchestrated without depending on a specific execution fabric, such as

a cluster, grid or cloud. This promotes reuse of virtual environments, allowing

users who otherwise would not have access or hold the knowledge to configure the

required environment, to deploy it on their own compute resource. The usefulness

of the container in this regard is greatly diminished if the user does not possess a

specific type of system that container depends on - the knowledge and expertise

required in order to configure the underlying system outweighs the convenience of

running the application in a container.

The full stack approach within the VCC does not assume that any functionality is

provided by the underlying system, except support for a container execution engine

such as Docker. Where local resources are provided, such as optimised parallel

libraries, this approach does not prevent them from being utilised. However, where

77

they are not available, the container includes equivalent functionality. This strategy

satisfies both scenarios where it may be beneficial to borrow such resources from the

host to improve performance, but detrimental to portability and reusability when it

comes to sharing the virtual environment with others.

In a VM-based approach, the full stack must be encapsulated in the virtual envi-

ronment in order to function, however, existing configuration methods which make

it more accessible to the average user introduce dependencies on the underlying sys-

tem, such as to provide deployment-specific metadata (Keahey & Freeman, 2008).

The VCC avoids this problem by using a contextualisation mechanism that relies

on discovered data rather than an external source. The other services typically re-

quired for execution, such as domain name resolution, resource management and

process launching, can also be provided by the VCC following the same principle.

This means that a virtual environment designed for a particular execution fabric can

be executed on a different fabric, and still work as intended without an additional

burden on the user.

3.3 Implementation

This section details the implementation of the VCC services. The services are im-

plemented using the NodeJS runtime, chosen due to the asynchronous nature of the

JavaScript language. The code artefact is published in Higgins, Holmes, and Ven-

ters (2017b) and archived online in Higgins, Holmes, and Venters (2017c). Where

appropriate, references to individual files within the source code are indicated in

footnotes.

78

/ c l u s t e r /
/ c l u s t e r / t e s t
/ c l u s t e r / t e s t / hos t s
/ c l u s t e r / t e s t / hos t s / host1 => 1 0 . 0 . 0 . 1
/ c l u s t e r / t e s t / hos t s / host2 => 1 0 . 0 . 0 . 2
/ c l u s t e r / t e s t / s e r v i c e s /headnode => host1
/ c l u s t e r / t e s t / s e r v i c e s /workernode => host2

Figure 3.5: Typical discovery data stored in the key-value store

3.3.1 Discovery

The discovery mechanism is implemented using a key-value store. It allows indi-

vidual container instances to share state, such as network identification, in order

to facilitate the dynamic and autonomous configuration of the virtual cluster. The

structure created in the key-value store during a typical run is detailed in Figure

3.5. Each instance of a VCC is given a unique cluster name, used to namespace

the discovery data, in order to allow the same key-value store to be used to deploy

multiple clusters if required.

Any key set by a container within the key-value store is subject to a Time-To-

Live (TTL), and the container is responsible for refreshing the key periodically to

ensure that it does not expire. This ensures that, should the container crash, the

keys will be removed after a short timeout and the cluster can be reconfigured

appropriately.

In order to implement this functionality, the key-value store must provide primitive

functions for setting, getting and notifying when keys are changed. Etcd (Using

etcd , n.d.) has been chosen as a lightweight database that meets these requirements

and can easily be distributed as part of the container itself. However, a simple

79

ClusterNet Config file Network

get saved address

get address

write config

Figure 3.6: Sequence diagram of the ClusterNet service

interface2 has been created to abstract the underlying key-value store, exposing

get, set and watch functions for other VCC services to use. In addition, it provides

a convenience function to register a key with a TTL, automatically refreshing the key

before the TTL time has passed. Therefore, this allows both the implementation of

VCC services to be simplified, and for the discovery mechanism to be easily ported

to other storage backends if desired.

3.3.2 Network Identification

The ClusterNet3 service performs network identification discovery within the VCC.

It is responsible for populating the IP address and hostname of the current container

instance. This service does not persist within the container as a daemon, rather, it

writes the data to a local configuration file and exits. The use of a local configuration

file ensures that the discovery key-value store does not need to be queried in order

to get information about the local container.

The sequence diagram is shown in Figure 3.6. Initially, a function is called which

checks to see if there is a saved IP address. This allows the user to bypass detection

2kvstore.js (Higgins et al., 2017b)
3clusternet.js (Higgins et al., 2017b)

80

and provide the network identification manually, such as if the physical host has a

multi-homed network configuration and a specific network interface must be used.

Otherwise, a function is called which determines the IP address of the container.

Once the IP address is determined, it is written along with the hostname to the

configuration file.

In order to determine the IP address of the container, the appropriate system calls

are used to enumerate the network devices and their assigned addresses. The devices

are checked in a specific order of preference, and the first acceptable device found

will be selected:

1. Virtual network interfaces assigned to the container, such as when running in

an overlay network

2. Primary network interface as defined by the OS

3. Any available network interface

If no suitable device is found, network identification cannot take place, and thus the

VCC is halted.

3.3.3 DNS

The ClusterDNS4 service provides dynamic name resolution for the VCC. It must

allow domain name resolution of all containers within a particular virtual cluster,

in addition to exposing names which will be resolved to the contextually-relevant

value at run time.

The sequence diagram of the implementation is shown in Figure 3.7. At startup,

the service will read the network identification stored in the configuration file from

4clusterdns.js (Higgins et al., 2017b)

81

Client ClusterDNS Config file Discovery KV store

load config

register name

set

wait ttl/2

register loopregister loop

lookup

handle query

get

complete

listen looplisten loop

Figure 3.7: Sequence diagram of the ClusterDNS service

82

the ClusterNet service, and register those in the discovery key-value store. The

registration is a loop which sets a key in the format

/ c l u s t e r / [c l u s t e r name] / hos t s / [host name] => [ip]

with a TTL time by default of 60 seconds. After half of the TTL time has passed, the

next iteration of the loop begins and the key is set again in order to reset the TTL

to 60 seconds. Refreshing each key early is essential in order to ensure that virtual

nodes are not unnecessarily removed from the cluster and immediately added again

when the TTL reaches zero. Additionally, it allows for a period of grace to deal with

transient problems that may delay the refreshing process but not interrupt execution,

such as high CPU or network load transients. This functionality is included in the

key-value store interface5 so that its implementation can be shared by each VCC

service.

The main loop is entered which listens on UDP port 53 for DNS queries from client

applications. Each DNS query contains a question, which includes the name to be

resolved. The function invoked in order to handle each lookup query searches the

following locations:

• Get the answer for the name from local cache

• Get the key /cluster/[cluster]/hosts/[name] from discovery

• Get the key /cluster/[cluster]/services/[name] from discovery

These locations are not searched in a particular order, and whichever contains the

first valid answer will be returned to the client. By searching the services directory,

it allows a query to contain the name of a service rather than a specific container,

which will be correctly resolved to the container providing that service. Thus, the

5kvstore.js (Higgins et al., 2017b)

83

runtime environment can be easily contextualised without substituting values into

configuration files, using a scheme as shown in Section 3.2.1.

If the name in question contains the vnode prefix, it will be stripped and the query

handled as normal. This is required as a hashing algorithm is often used to generate

unique references to containers, which can also be used as the hostname. However,

some applications do not correctly recognise hostnames that begin with a numeric

character, despite it being valid according to the RFC 1123 (Braden, 1989). There-

fore, this provides compatibility with such software by allowing a name to be looked

up using the alias vnode name.

3.3.4 PKI

One of the design decisions of the VCC is that it should not depend on a shared

filesystem to be available between the host systems. Therefore, it cannot be used

to share SSH keys between every node in order to establish a trusted mechanism

for process launching in the runtime environment layer. To solve this problem,

the ClusterKeys6 service within the VCC allows public keys to be published in the

discovery service and automatically distributed among the virtual cluster.

The sequence diagram of the implementation is shown in Figure 3.8. Firstly, the

service will check if the invoking user has already generated an SSH key pair, creating

one if it does not exist. Secondly, it will register the public key in the discovery

service using the TTL/refresh method (abbreviated in Figure 3.8). Finally, the

service enters the main loop. The main loop enumerates all public keys within the

discovery service and writes an authorized keys file for the invoking user, which

contains the public keys from all other containers within the virtual cluster. Iteration

of the loop is then paused until a change is detected on the discovery service, such

6clusterkeys.js (Higgins et al., 2017b)

84

ClusterKeys Config file Discovery

load config

generate keys

publish key

register loopregister loop

enumerate keys

write authorized keys

wait for change

looploop

Figure 3.8: Sequence diagram of the ClusterKeys service

85

as a new public key is added.

Two strategies to detect changes are provided: watch or poll. The watch strategy

relies on the key-value store to provide a function which blocks until a change is

detected. The poll strategy polls the key-value store at a specified interval and

compares the new result to the previous result to detect changes. If multiple changes

are detected over several polling intervals, a change is only considered once the next

poll returns to 0, or the settle limit is reached. This improves the efficiency of the

configuration process, allowing changes to be batched together and optimising the

number of times the process is executed. In large clusters, where there is always a

key being changed at any point in time due to the refreshing required in order to

avoid TTL expiry, a constant stream of changes can be generated. In this case, the

poll strategy must be used and therefore is the default.

3.3.5 Dynamic Configuration

The design of the VCC facilitates dynamic configuration of services within the virtual

cluster using a role-based contextualisation method. The implementation is split into

two services: Wait4Deps7 and RegisterService8. Each container is designated a role

and dependency between roles is defined in a dependencies.yml text file. Figure

3.9 shows an example for a cluster that has a head node role and a worker node

role. Providers define which services must be running within the container for the

role to be considered ready. Depends specifies which roles must be ready before

the current one can be started. Therefore, this describes that the headnode role is

fulfilled once a container is running a pbs server service, and that the containers

which are designated as workernode role can only be configured once the head node

is ready. In order to perform the appropriate configuration, service hook scripts

7wait4deps.js (Higgins et al., 2017b)
8registerservice.js (Higgins et al., 2017b)

86

−−−
headnode :

p rov ide r s :
− p b s s e r v e r

workernode :
depends :

− headnode

Figure 3.9: An example dependencies.yml file

are executed based on which role has changed state. Following this example, the

worker node container will execute the headnode service hook in order to configure

its connection with the head node container. The interactions between the services

which implement this functionality are shown in Figure 3.10.

Firstly, Wait4Deps waits until the services within the remote containers that pro-

vide the dependent roles are ready, by polling the following keys in the discovery

service:

/ c l u s t e r / [c l u s t e r] / s e r v i c e s / [r o l e name]

It receives a response of either ’False’, or the name of the container which is providing

the role. Once all role dependencies are ready, the service hooks are executed, where

the hook script has the same name as the role name, and the name of the container

providing the role is supplied as an argument.

/ e t c / vcc / s e r v i c e−hooks . d / [r o l e name] . sh

The purpose of the hook script is to perform the required adaptations to the config-

uration, based on contextual-specific knowledge about which container is providing

a specific role. The implementation of the hook script is dependent on the software

stack being encapsulated in the container, discussed in Chapter 4.

87

Wait4Deps RegisterService Config file Discovery Hooks SM

read dependencies

wait for remote dependencies

run service hooks

start services

started

register

register loopregister loop

Figure 3.10: Sequence diagram of the dependency related services

88

Secondly, the service manager can now start the local services which must be running

within the container. To complete the example from Figure 3.9, once the worker

node container has executed the hook for the headnode role, the local pbs mom

service can be started using its fully contextualised configuration.

Finally, the container role, as defined in the dependencies.yml file, must be regis-

tered within the discovery key-value store to advertise that the local services have

been started and that the role is now fulfilled. This is implemented by the Regis-

terService service. The container writes its host name to the key

/ c l u s t e r / [c l u s t e r] / s e r v i c e s / [r o l e name] => [c on ta ine r]

so that other containers can now associate it with the specific role.

3.3.6 Dynamic Scaling

In the previous section, the implementation of role-based contextualisation within

the VCC is described. In this section, the implementation of scale-based contextu-

alisation, in order to facilitate dynamically adding or removing nodes from a virtual

cluster, is presented. The configuration actions performed in response to these events

are usually only desired on designated nodes. For example, when a new worker node

is added to the cluster, the list of nodes within the head node is updated, however, no

equivalent action needs to be performed on every other node. The ClusterWatcher9

service is responsible for maintaining this configuration and responding to changes

when the cluster is dynamically resized.

Figure 3.11 details the sequence diagram for this service. An instance of the service

will be running in every container that is part of a VCC. Firstly, it enumerates all

the nodes in the cluster by querying the discovery service. It then writes out a hosts

9clusterwatcher.js (Higgins et al., 2017b)

89

ClusterWatcher Hooks Discovery

enumerate cluster

write hosts file

run cluster hooks

wait for cluster to change

looploop

Figure 3.11: Sequence diagram of the ClusterWatcher service

file in a /etc/hosts compatible format. Typically, the directory where the hosts file

is saved is /run in order to not conflict with the system /etc/hosts. However, when

executing as an unprivileged user, this directory can be customised by setting the

environment variable INIT RUN DIR. This allows the file to be scoped to a particular

user, such as $HOME/.local/run.

Secondly, the cluster hook scripts are executed. The hook scripts are stored in the

directory /etc/vcc/cluster-hooks.d. These scripts perform the adaptations to

the configuration which are required when the boundary of the cluster has changed.

The host file can be referred to in the hook scripts in order to access data about

the entire virtual cluster without additional requests to the discovery service. The

execution of the hook scripts occurs in parallel, in order to speed up the configuration

where many scripts are present.

Finally, once the execution of all cluster hook scripts is complete, the loop is paused

until a change is detected on the discovery service. The same detection strategies

90

as implemented in the ClusterKeys services are used: watch or poll. The default

strategy is polling, where the nodes in the cluster are enumerated at a set interval

and compared to the previous list. When using this method of change detection, the

time to react to changes within the cluster, or the configuration latency, is increased

up to the polling interval in the worst case, depending on when the change occurred

during the polling cycle. However, it allows more efficient processing in one iteration

of all changes that occur during the interval, increasing performance of the service

for large cluster sizes.

3.3.7 Service Management

The VCC services are implemented as separate daemons and must be started within

the container. Some services are dependent on other services, so the startup order

is critical for successful initialisation of the cluster. This differs from other con-

tainer solutions which are typically design to run the application as the only process

within the container. Inside a VCC container, a service manager is required in or-

der to supervise the execution of the VCC services in order to realise the full stack

virtualisation approach.

The startup of the services is sequential and therefore straightforward to implement.

The correct dependency order is detailed in Figure 3.12. After the Wait4Deps ser-

vice, but before the RegisterService, the non-VCC related services within the con-

tainer must be started. For example, if the container will provide a PBS or NFS

server, those services should be started at this point. The last service to be executed

is the ClusterWatcher, which will maintain the cluster state throughout its lifetime.

The ClusterDNS, RegisterService and ClusterWatcher services are daemons which

will persist for the duration of the container’s execution.

A simple NodeJS-based service manager is provided in the VCC framework, however,

91

it is usually more convenient to use the systemd service manager within the container

as the service files for non-VCC services will be available in this format. Systemd

performs parallelisation of service startup, so the VCC framework provides a set of

unit files in order to control the order as required.

An example unit file for the ClusterDNS service is shown in Figure 3.13. Each

unit defines the After= argument in order to ensure it is only executed once the

dependencies are satisfied. The VCC framework also installs a VCC services target,

as shown in Figure 3.14. This defines the point during service startup where non-

VCC services should be started by systemd.

Furthermore, when using systemd as the service manager, each service can send a

ClusterNet

ClusterDNS

ClusterKeys

Wait4Deps

Non-VCC Services

RegisterService

ClusterWatcher

Figure 3.12: Service Dependency Ordering

92

[Unit]
De s c r ip t i on=VCC DNS r e s o l v e r
PartOf=vcc . s e r v i c e
After=vcc−net . s e r v i c e

[S e r v i c e]
Type=n o t i f y
Not i fyAccess=a l l
ExecStart=/usr / l o c a l / bin /node / vcc / c l u s t e r d n s . j s
Restart=on− f a i l u r e

[I n s t a l l]
RequiredBy=vcc . s e r v i c e

Figure 3.13: Unit File for ClusterDNS Service under systemd

[Unit]
De s c r ip t i on=VCC launch s e r v i c e un i t s
Requires=vcc−wait4deps . s e r v i c e
After=vcc−wait4deps . s e r v i c e
Before=vcc−r e g i s t e r . s e r v i c e

Figure 3.14: VCC Service Target under systemd

93

notification when it is ready. This allows the service to perform a certain action,

such as writing a configuration file or running an iteration of the main loop, before it

is considered ready and the system starts the next service. The capability is imple-

mented in the VCC utility library 10, which is included by each service. It writes the

string READY=1 to the socket specified in the environment variable NOTIFY SOCKET.

This environment variable is populated automatically by systemd.

3.4 Summary

In this chapter, the design and implementation of the VCC framework was presented,

outlining the principles on which the architecture is based, and describing the low

level implementation details of each service within the framework.

The design introduces key innovations in order to resolve limitations present in

existing work: firstly, a novel contextualisation methodology allows the container

middleware layer to be automatically configured at run time, using deployment-

specific knoweldge obtained through a discovery process. This knowledge is shared

with other containers within a VCC, to facilitate both dynamic scaling of the vir-

tual cluster and role-base dynamic reconfiguration throughout the lifetime of the

deployment. Contextually-relevant information is exposed via DNS, enabling an

immutable image to be defined whilst still allowing the required adaptations to the

configuration to be performed. Therefore, the VCC facilitates encapsulation of a

full stack software environment within containers, whilst retaining the accessibility,

ease of use and customisation workflow of runtime environment containers.

Secondly, a Software Defined Network technology is utilised in order to provide

the inter-node interconnect when a VCC is deployed across multiple nodes. This

10vccutil.js (Higgins et al., 2017b)

94

removes the requirement for connections to be made between private networks when

spanning a VCC across several physical clusters - as long as there is a common

route between the clusters, an overlay network can be created to facilitate direct

communication between the containers. In contrast to previous work, this moves

the responsibility for configuring inter-cluster connectivity from the application layer

to the service layer, therefore, no modifications to existing software is necessary in

order to take advantage of spanning. This allows the full potential of containers

to be exploited in the context of an HPC resource, bringing the same dynamicity

and flexibility as VM-based approaches, without the associated performance and

management overheads.

Finally, the implementation of the VCC services is presented. The VCC services pro-

vide the foundation layer of each container, exposing the capabilities for discovery

and contextualisation. The services follow a general pattern where contextually-

relevant information is discovered about the container, published to the key-value

store, and then the main loop is entered in order to monitor the key-value store and

react accordingly to changes within the cluster. A key design aspect of each service

is portability - the VCC does not rely on external services to provide any knowl-

edge required for deployment and dynamic configuration. This allows a standalone

VCC to be deployed within a variety of fabrics and execute as intended, without a

significant burden in order to configure the underlying system before being able to

execute the container.

95

96

Chapter 4

Building a Container Cluster

In Chapter 3, the design and implementation of the VCC was presented. The innova-

tions in this design allow a wide range of flexibility in terms of deployment contexts,

configurability and level of skill, using a unified cluster virtualisation model. In

order to achieve this, the VCC has been designed as a framework providing ser-

vices and functionality that can be used to build containers for a specific use case

or application. This chapter details the process of building a container that en-

capsulates a parallel application executing on a batch scheduling cluster - a typical

execution paradigm in the HPC context. The workflow is detailed from definition

of the base image to subsequent extension including the runtime application layer

and experimental data.

The processes described in this chapter are based on the technical documentation of

the VCC framework, which is partially published along with the code in Higgins et

al. (2017b). This reference implementation of a VCC container is used in Chapters

5, 6 and 7 in order to evaluate the system.

97

4.1 Base Image

This section describes building a base container image that includes the VCC service

layer and the middleware layer. You do not have to separate the build process into

two parts, but it is convenient to do so because they require distinct expertise - the

base image requires system administration knowledge in order to construct, whilst

the runtime layer can easily be edited by the average user. Firstly, the VCC service

layer will be installed into the container image. Secondly, the middleware layer

can be installed. The installation of the middleware follows the same patterns as it

would on a native system, i.e. outside of a container. Finally, the VCC configuration

is created, describing the roles provided by the middleware, dependencies and hook

scripts in order to facilitate dynamic configuration. This allows the middleware layer

to be contextualised automatically by the framework at runtime.

4.1.1 VCC Installation

The installation of the VCC service layer within the container is detailed in Figure

4.1. It is necessary to decide which Operating System will be the foundation of the

container image, specified on the first line using the FROM directive. The commands

that need to be executed in order to build the image are specified using the RUN di-

rective. In this case, the VCC framework is cloned from the Git repository, however,

it is also possible to download and install from a tarball. The advantage of using

the repository is that a specific point in time can be checked out, without storing

the entire source tree for that version in the container source. This ensures that on

subsequent builds of the container, the versions of the software are guaranteed to be

the same - an important consideration if the container will be used to reproduce an

environment in the future.

98

FROM centos : 7

i n s t a l l v c c j s
WORKDIR /
RUN g i t c l one https : // github . com/hpchud/ v c c j s . g i t \

&& cd v c c j s \
&& g i t checkout −q eb26268

WORKDIR / v c c j s
RUN npm i n s t a l l

i n s t a l l systemd s e r v i c e s
RUN cp −r / v c c j s / systemd /∗ . s e r v i c e / e t c / systemd/system/
RUN cp −r / v c c j s / systemd /∗ . t a r g e t / e t c / systemd/system/
RUN cd / etc / systemd/system && sys t emct l enable vcc∗

launch s c r i p t
WORKDIR /
ENTRYPOINT [”/ v c c j s / launch . sh ”]

Figure 4.1: Dockerfile excerpt to install VCC service layer

As detailed in Chapter 3, the VCC services must be launched in the correct order

when the container is started. For this purpose, the systemd service manager will

be used as it is already provided by default in CentOS 7 (the base OS). The units

provided by the framework are copied into the correct location within the container

filesystem.

The service layer must also provide an entrypoint which dictates the startup be-

haviour of the container. In this case, the launch script1 provided by the VCC

framework is used. The purpose of the script is to read environment variables pro-

vided by the container runtime, such as the address of the discovery service, and

apply them before the service manager is started. The entrypoint script also checks

the configuration variables to ensure that launching the container will be successful.

For advanced use cases an alternative entrypoint script can be defined in order to

override the startup behaviour, however, for the majority of use cases this will not

1launch.js (Higgins et al., 2017b)

99

be necessary.

Once the Dockerfile is defined, the image is built using a command such as

docker bu i ld −t hpchud/vcc−base−centos : 7 .

in order to execute the directives in the Dockerfile and generate the image layers. The

image can optionally be pushed to an online repository, and the source code can be

stored in version control. Subsequent images can be created to extend this base im-

age with additional layers by referring to the tag hpchud/vcc-base-centos.

4.1.2 Middleware Installation

The installation of the middleware layer is divided into two parts: firstly, the required

packages and libraries are installed using the same process as would be followed

on a real system - typically this involves procuring the source code either from a

repository or tarball, and executing make && make install commands. Secondly,

hook files that describe how the middleware components will be configured with

contextually-relevant information at runtime need to be created.

These two processes are detailed in Figure 4.2 for installing the Torque/PBS resource

manager, MPICH and associated VCC hooks. This middleware layer represents a

traditional HPC execution paradigm where the resource manager is responsible for

job queuing and launching of distributed parallel code using the MPI library for

communication.

4.1.2.1 Roles and Dependencies

The dependencies.yml file defines the roles which are provided by the container.

A single container may provide several roles, with each role resulting in a different

100

FROM hpchud/vcc−base−centos : 7

RUN cd /tmp \
&& g i t c l one https : // github . com/ adaptivecomputing / torque . g i t \

−b 5 . 1 . 1 . 2 torque−s r c \
&& cd torque−s r c \
&& . / autogen . sh \
&& . / c o n f i g u r e −−p r e f i x=/usr −−d i sab l e−posixmemlock \

−−d i sab l e−cpuset \
&& make \
&& make i n s t a l l \
&& l d c o n f i g \
&& cd . . \
&& cp torque−s r c / torque . setup . \

&& rm −r torque−s r c

RUN cd /tmp \
&& c u r l −O https : //www. m i r r o r s e r v i c e . org / s i t e s /

d i s t f i l e s . macports . org /mpich/mpich−3.2 . ta r . gz \
&& tar x f mpich−∗. t a r . gz \
&& cd mpich−∗ \
&& . / c o n f i g u r e \
&& make \
&& make i n s t a l l \
&& cd / \

&& rm −r f /tmp/mpich−∗

COPY dependenc ies . yml / e t c / vcc / dependenc ies . yml

ADD hooks/ pbsnodes . sh / e tc / vcc / c l u s t e r−hooks . d/ pbsnodes . sh
ADD hooks/pdsh . sh / e tc / vcc / c l u s t e r−hooks . d/pdsh . sh
RUN chmod +x / etc / vcc / c l u s t e r−hooks . d/∗

ADD hooks/headnode . sh / e tc / vcc / s e r v i c e−hooks . d/headnode . sh
RUN chmod +x / etc / vcc / s e r v i c e−hooks . d/∗

Figure 4.2: Dockerfile excerpt to install Middleware layer

101

set of services started within the container in order to fulfil that role. It also defines

dependent roles which must be fulfilled by other containers before the current one

may start, as described in Section 3.3.5.

For the implementation of the virtual cluster, headnode and workernode roles are

defined in the image, using the example dependency file presented previously in

Figure 3.9. Compared to requiring the user to define two distinct images for the

cluster, the multi-role capability of a VCC container image reduces the amount

of data to be transferred when sharing and deploying the images, in addition to

ensuring that updates to the environment are consistent and do not have to be

repeated unnecessarily. The head node role requires the pbs server service to be

started in the container, after which it will be advertised to other containers as being

ready, through the discovery service. The worker node role defines that the pbs mom

service should be started within the container, but that it depends on the head node

role. Thus, the services for the worker node role will not be started until a container

within the VCC has published to the discovery service that it is providing the head

node role.

This flexibility of this scheme allows it to be extended to configure different roles of

nodes within the cluster, such as login nodes and post-processing nodes, or different

types of clusters entirely.

4.1.2.2 Cluster Hooks

Cluster hooks are executed when containers are added or removed from a running

instance of a virtual cluster. A cluster hook can be used to configure a service

provider using contextual information about the entire cluster. In this cluster being

built throughout this chapter, Torque/PBS is used as the resource management mid-

dleware. It requires a file to be created which describes the list of nodes within the

102

#!/ bin /bash

echo −n > / var / spoo l / torque / s e r v e r p r i v / nodes

INIT RUN DIR=”${INIT RUN DIR:−/run}”

cat $INIT RUN DIR/ hos t s . vcc | whi le read l i n e ; do
hn=”‘ echo $ l i n e | awk ’{ pr in t $2 } ’ ‘ ”
i f [”$hn” != ” ‘ hostname ‘ ”] ; then

echo ”vnode $hn” >> / var / spoo l / torque / s e r v e r p r i v / nodes
f i

done

qterm −t quick

Figure 4.3: Cluster hook script to generate PBS node file

cluster onto which batch jobs can be scheduled. This file must be created on the head

node, and updated each time the layout of the cluster changes. Therefore, a cluster

hook is used to generate the list of nodes on the head node, shown in Figure 4.3.

The hook script is placed in the configuration directory /etc/vcc/cluster-hooks.d

within the container. It will be executed by the VCC service layer whenever the

layout of the virtual cluster changes.

The ClusterWatcher service, detailed in section 3.3.6, generates an /etc/hosts-

compatible file describing the cluster layout, which is available for reference in order

to avoid multiple calls to the discovery service directly from the script. This file is

parsed by the cluster hook script in order to transform each line into the correct

format for the Torque/PBS node list. Each host is prefixed by the vnode prefix in

order to ensure the hostname begins with a non-numeric character. After the script

has been executed, the Torque/PBS service is restarted in order to load the new

node list.

103

4.1.2.3 Service Hooks

Service hooks are executed when the provider of a service is changed. In order to in-

tegrate Torque with the VCC service layer, a hook script is required for the headnode

role. The hook must perform the tasks detailed in the Torque Administrator Guide

(Configuring TORQUE on compute nodes, 2012):

1. Configure the server name in /var/spool/torque/server name

2. Configure the server name of the MOM by setting the $pbsserver variable in

/var/spool/torque/mom priv/config

3. Configure the name of the MOM with the vnode prefix by setting the $mom host

variable in /var/spool/torque/mom priv/config

This hook script will be executed at first launch by every container within a VCC

which depends on the headnode role. If the container providing the headnode role

changes throughout the lifetime of a VCC deployment, the hook will be executed

again to reconfigure the container with the new context.

The hook script is shown in Figure 4.4. The DNS name of the container providing

the headnode role, resolvable through the ClusterDNS service, is provided to the

hook script as the first argument. The script is added to the container in the VCC

configuration directory under /etc/vcc/service-hooks.d/headnode.sh.

4.2 Runtime Environment

The container built in this chapter will be used to conduct the benchmark and case

study activities, therefore, it must provide the tools outlined in the methodology as

part of the run time environment. As the run time environment is extended from

the VCC service and middleware layers, which is in turn extended from the CentOS

104

#!/ bin /bash

s e r v i c e hook f o r torque s e r v e r

echo $1 > / var / spoo l / torque / server name

c o n f i g u r e the mom i f we have i t

echo ”\ $pbsse rver $1” > / var / spoo l / torque /mom priv/ c o n f i g
echo ”\ $ logevent 255” >> / var / spoo l / torque /mom priv/ c o n f i g
echo ”\$mom host vnode ‘ hostname ‘ ” >> / var / spoo l / torque /mom priv/ c o n f i g

Figure 4.4: Service hook script for the headnode role

base image, the installation process is in no way distinguished from that of a real

CentOS system, except that the commands are placed in the Dockerfile and executed

at container build time.

OpenFOAM is installed using the recommended approach, as detailed in Figure 4.5

(OpenFOAM Build Guide, n.d.). Version v1612+ of the source tarball is down-

loaded from the upstream repository as part of the Dockerfile. This ensures good

reproducibility if the container is rebuilt in the future to ensure that versions of the

software stack remain consistent.

HPC Challenge version 1.5.0b is built against the Intel Math Kernel Library (MKL)

version 2017.1.013. The MKL is used to provide optimised libraries for Basic Linear

Alegebra Subroutines (BLAS) and Fast Fourier Transform (FFT) functions. As this

toolchain has limited distribution rights, it is not permissable to include the full

development environment and compile the executable as part of the container build

process. However, the Makefile - detailed in Appendix - is configured to link against

the MPICH library that is installed as part of the middleware image layers detailed

in Section 4.1.2. Therefore, the binary can be produced separately and copied into

the container image.

105

FROM vcc−torque−mpi : l a t e s t

RUN mkdir / opt /OpenFOAM
RUN cd /tmp/ \

&& c u r l −O −L https : // s o u r c e f o r g e . net / p r o j e c t s / openfoamplus / f i l e s
/v1612+/OpenFOAM−v1612+. tgz \

&& c u r l −O −L https : // s o u r c e f o r g e . net / p r o j e c t s / openfoamplus / f i l e s
/v1612+/ThirdParty−v1612+. tgz \

&& tar −xf /tmp/OpenFOAM−∗. tgz −C / opt/OpenFOAM \
&& tar −xf /tmp/ThirdParty−∗. tgz −C / opt/OpenFOAM \
&& rm −r f /tmp/∗ . tgz

RUN source /opt /OpenFOAM/OpenFOAM−∗/e tc / bashrc \
&& export USER=root \
&& foamSystemCheck \
&& cd /opt /OpenFOAM/OpenFOAM−∗/ \
&& . / Allwmake

Figure 4.5: Dockerfile excerpt for installing OpenFOAM run time environment

Both OpenFOAM and HPC Challenge utilize the MPI library to facilitate inter-

node communication. At the top layer of the VCC, it is only necessary to install

the software and any experimental data within the image; the middleware layer will

perform the required configuration of the environment and ensure that contextual

information, such as a host file for execution, is available to the MPI applications

at run time.

Alternatively, the Dockerfile which is used to build the run time environment layers

can invoke a package manager such as EasyBuild (Geimer, Hoste, & McLay, 2014)

in order to manage the installation of the required tools and packages within the

virtual cluster. By allowing modular installation of packages in standard filesystem

directories, this approach is more suitable for creating a virtual cluster image that

is intended to be deployed as a multi-user system, rather than a transient cluster

existing only for the duration of a single job.

106

Base OS

FROM centos:7

VCC/Middleware

FROM vcc-base-centos

Run Time

FROM vcc-torque-mpi

Administrator / Power User Typical User

Figure 4.6: Summary of VCC Image Build Process

4.3 Summary

The process of building a containerized virtual cluster using the VCC framework was

outlined in this chapter. Firstly, the base image is defined using the OS which will be

the foundation for the container, such as CentOS. This is extended to generate an-

other image which adds the middleware and configuration for a virtual Torque/PBS

cluster to this foundation. The configuration defines how the environment will be

contextualised at run time using the hooks provided by the VCC, such as adding

worker nodes to the node list on the PBS server. The run time environment is the fi-

nal layer of the VCC container. It includes the applications, libraries and supporting

software that will be executed within the virtual cluster.

In the design of the solution detailed in Chapter 3, it is anticipated that the use

of a Software Defined Network as the interconnect for the virtual cluster will have

an impact on application performance, in terms of increased communication latency

and increased job execution time. The container built in this chapter details the

installation of OpenFOAM and HPC Challenge into the run time environment, which

will be used to conduct a performance analysis of the VCC cluster through the

benchmarking and case study activities.

An outline of the chain of images that are created and extended in order to produce

107

the full stack VCC image is presented in Figure 4.6. This methodology provides clean

separation between the base OS, VCC-specific service and middleware configuration,

and the run time environment. This promotes a high level of reusability, for example,

by allowing many images providing different run time environments to be extended

from the same vcc-torque-mpi image. Furthermore, the responsibility for creating

each layer can be divided between administrators or power users, and the typical

end user of a HPC system. Where a user is already provided with the base VCC

images, they only need to add the run time environment layers on top. Therefore, it

does not significantly increase the barrier of entry to container virtualisation.

108

Chapter 5

Performance Benchmarking

This chapter details the performance evaluation of the virtual cluster model proposed

and implemented in Chapters 3 and 4. Based on previous work that considers the

performance of containers within HPC, it is expected that the virtualised execution

performance will be equivalent to the non-virtualised performance in the context

of a single cluster fabric. Benchmarking this scenario is not likely to contribute

any insight that is not already apparent through existing run time environment

virtualisation techniques.

However, the VCC full stack approach introduces the concept that the boundary of

the virtual cluster is defined by the network connectivity, rather than the software

environment - mirroring one of the main characteristics of an HPC system. The

novel application of a Software Defined Network (SDN) allows this connectivity,

and thus a virtual cluster, to be established across heterogeneous and disparate

fabrics in order to facilitate transparent job spanning and forwarding capabilities.

Nonetheless, SDN technologies are known to introduce a performance penalty of

their own; where inter-cluster communication spanning multiple fabrics is required,

the performance cost to an individual job must not be so great that it outweighs the

109

opportunities to improve global resource performance. Therefore, it is necessary to

profile the performance of the VCC under these scenarios, in order to understand

the feasibility and potential to realise these opportunities.

5.1 Benchmarking Tools

The benchmarking instruments have been chosen in order to exercise the CPU and

network subsystems, both independently and together.

Linpack

High Performance Linpack (HPL) is a benchmark based on matrix multiplication

and solving a system of linear simultaneous equations (Dongarra et al., 2003). The

result produces a single figure, the floating point rate of execution, and is there-

fore easily and widely used to compare HPC cluster and supercomputing systems

(Top500 FAQ , n.d.). However, this benchmark is CPU bound and does not exercise

the cluster interconnect.

Effective bandwidth

The effective bandwidth (b eff) benchmark measures the latency and bandwidth of

a parallel communication network using basic MPI functions (Rabenseifner, Koniges,

& Livermore, 2001). In order to perform the latency timing and bandwidth mea-

surements, the algorithm sends both short and long messages in either simultaneous

or non-simultaneous patterns between pairs of processors. The randomly ordered

ring pattern is used for the benchmarking in this chapter, as it represents the max-

imum level of contention, and thus the worst case scenario - where every processor

110

is communicating with a randomly chosen processor simultaneously.

HPC Challenge

The HPC Challenge (HPCC) is a distribution of benchmarks designed to assess

the performance of different subsystems in an HPC cluster, including Linpack for

CPU execution performance and the effective bandwidth for network performance

(Luszczek et al., 2006). In addition to executing the set of benchmarks, HPCC

produces a report containing the results of each benchmark in a standard format.

Therefore, it has been chosen as a consistent and reliable method of executing the

set of benchmarks across the range configurations and scenarios.

OpenFOAM

OpenFOAM is a set of open source numerical solvers for Computational Fluid Dy-

namics (Jasak, 2009). It has been chosen as a benchmarking tool in order to reflect

real world application usage that places demand on both CPU and networking sub-

systems simultaneously. The OpenFOAM distribution contains example simulations

of a propeller and a motorbike. These two scenarios are used as a benchmarking

instrument by refining the meshes to between 1.5-2 million cells (a common problem

size observed on the campus grid at the University of Huddersfield) and measuring

the execution wall time running under different VCC configurations.

5.2 Native vs SDN Interconnect

The service and discovery layer within a VCC container allows the same virtual

cluster environment to be deployed regardless if each node resides within the same

111

Name Nodes Cores per node Processor Interconnect

Iceotope 4 8 Xeon E5-2670 Gigabit Ethernet
Ascella 4 16 Xeon E7320 IB DDR
Eridani 32 4 Core2 Q8300 Gigabit Ethernet
UCBC 16 4 Opteron 280 IB SDR

Table 5.1: Systems used for performance benchmarking (Higgins et al. (2017a))

fabric or is spanned across many, performing the required contextualisation - such as

IP address configuration - automatically. This allows the container to take advantage

of a native high performance interconnect if deployed within the boundary of a

single fabric, where it is expected that the performance will be comparable with

or without virtualisation (Felter et al., 2014). However, once an environment is

spanned between two systems, the performance of the SDN compared to the native

interconnect becomes a critical consideration.

An evaluation of the VCC performance on Ethernet and InfiniBand interconnects

has been conducted and is published in Higgins et al. (2017a). The benchmarking

suite set out in the methodology is used to measure the performance of a VCC

deployment on 4 different systems, using the HPC Challenge benchmark, as shown

in Table 5.1. Each physical node holds a single virtual node, and the benchmark is

executed increasing the number of nodes each time, up to the maximum nodes in the

respective cluster. The Linpack, random ring bandwidth, and random ring latency

results are reported. This process is repeated using both the Weave and native

interconnects. In order to draw a fair comparison, IP-over-InfiniBand (IPoIB) is used

as the SDN operates on the IP layer, and does not support any RDMA protocols

(Weave Net , n.d.).

Figures1 5.1 and 5.2 outline the random ring bandwidth and latency results (Higgins

et al., 2017a). On the Eridani and Iceotope systems, which utilise a Gigabit Ethernet

1Permission to reproduce these figures has been granted by the Oxford University Press

112

interconnect, it can be seen that the SDN overhead in terms of bandwidth is between

5% and 7%, whilst the overhead in terms of latency is 20-30%, 18µs slower compared

to the average latency for the native execution. This suggests that while the SDN

introduces additional time in order to transmit the data, similar bandwidth to the

native interconnect can be achieved.

On the Ascella and UCBC systems, which utilise an InfiniBand interconnect, the

bandwidth overhead is significantly increased to 42-45%. Furthermore, the native

performance on the Ascella system is less than half that of the UCBC system,

despite the interconnect having twice the data rate. This highlights the significance

of offloading capabilities when utilising SDN on high bandwidth interconnects -

the UCBC system supports IPoIB offloading, but not SDN offloading, whereas the

Ascella system does not support IPoIB or SDN offloading. Therefore, the CPU

must perform the required IPoIB or SDN functions for each network packet, which

incurs a high performance cost. In Figure 5.1, the difference between the native

bandwidth of the two systems demonstrates the cost of IPoIB offloading, whilst the

difference between SDN and native within each system demonstrates the cost of the

SDN encapsulation.

In Figures2 5.3 and 5.4, the bandwidth and latency results across VCC sizes are

shown (Higgins et al., 2017a). They demonstrate that the SDN performance gener-

ally offsets the native by a fixed amount, regardless of the cluster size and underlying

interconnect. This suggests that the SDN solution has good scalability, compared

to other methods where the cost rapidly increases as the number of nodes increases

(Higgins et al., 2017a). Furthermore, it suggests that available strategies in order

to reduce the cost, such as hardware offloading capabilities in the network card, will

offer a steady performance gain across a range of deployment scales.

2Permission to reproduce these figures has been granted by the Oxford University Press

113

0 50 100

UCBC n=4

Ascella n=4

Iceotope n=4

Eridani n=4

MB/s

Native
SDN

Figure 5.1: Random ring bandwidth benchmark (Higgins et al. (2017a))

50 100 150

UCBC n=4

Ascella n=4

Iceotope n=4

Eridani n=4

usec

Native
SDN

Figure 5.2: Random ring latency benchmark (Higgins et al. (2017a))

114

0 5 10 15 20 25 30 35
0

500

1,000

1,500

nodes

M
bp
s

Eridani native
Eridani weave
UCBC native
UCBC weave

2 2.5 3 3.5 4

100

200

300

400

500

nodes

M
bp
s

Iceotope native
Iceotope weave
Ascella native
Ascella weave

Figure 5.3: Random Ring Bandwith over VCC sizes (Higgins et al. (2017a))

0 5 10 15 20 25 30 35

40

60

80

100

nodes

u
se
c

Eridani native
Eridani weave
UCBC native
UCBC weave

2 2.5 3 3.5 4
20

40

60

80

100

120

140

nodes

u
se
c

Iceotope native
Iceotope weave
Ascella native
Ascella weave

Figure 5.4: Random Ring Latency over VCC sizes (Higgins et al. (2017a))

0 100 200

UCBC

Ascella

Iceotope

Eridani

GFlops

Native
Weave

Figure 5.5: Linpack benchmarking results (Higgins et al. (2017a))

115

The Linpack results are shown in Figure3 5.5. Despite the networking overheads

introduced by the SDN networking model, the execution performance is not com-

promised. The Linpack benchmark is typically compute bound but still requires

inter-node communication during execution (Dongarra et al., 2003). For applica-

tions with a similar profile, it is expected that they will perform without overhead.

In the case of an application which is heavily dependent on network communication

or sensitive to latency, it is certain to suffer from lower performance when executed

within the SDN. However, this effect must only be appreciated when execution oc-

curs spanning two fabrics, as the SDN is not required when execution occurs within

the bounds of a single fabric - where the native interconnect can be utilised di-

rectly.

5.3 Inter-cluster Interconnect

The benchmark in Section 5.2 demonstrates that, with effectively no physical dis-

tance between processes communicating over the SDN interconnect, the execution

performance within the VCC in terms of a typical HPC benchmark is acceptable,

whilst incurring a small increase in latency.

An inter-cluster interconnect adds additional uncertainty into this model: It is more

than likely that a connection can be provisioned in order to meet the bandwidth

requirements for communication between two clusters - for example, Janet, the

National Research and Education Network in the UK, delivers multiple 400Gbps

backbone circuits (Janet Network , n.d.). However, this connection may be subject

to latency limitations, either due to artificial or physical phenomena, such as network

routing decisions or transmission speed in the medium. Previously, this has been

considered the primary factor that prevents spanned job execution between two such

3Permission to reproduce this figure has been granted by the Oxford University Press

116

Scenario Distance RTT

Cluster <10 meters 0.17 ms
Campus Grid 500 meters 0.24 ms
Inter-institution 30 miles 14.8 ms
West US to Central US 1000 miles 44 ms
East US to West US 2000 miles 76 ms
Europe to East US 4000 miles 135 ms
Europe to Central US 5000 miles 142 ms

Table 5.2: Survey of typical Round Trip Time (RTT) per scenario

interconnected clusters (Richling, Hau, Kredel, & Kruse, 2011).

5.3.1 Latency Scalability

In order to understand the range of latencies exhibited by the deployment scenarios

proposed in this research, a survey was carried out measuring round trip time be-

tween various systems that represent different geographical distances. The results

are shown in Table 5.2. All measurements were taken using the ping utility and

averaged over 10 packets. For the long distance scenarios, VMs were provisioned in

the Microsoft Azure cloud in the respective regions in order to conduct the measure-

ments.

Based on these measurements, a possible range from 0.1-150ms has been used when

assessing the performance and scalability of the VCC in terms of latency rather than

cluster size. In order to execute the benchmark suite with increasing latency between

processes, a fixed size VCC environment has been deployed on a pair of VMs within

the Microsoft Azure cloud. The D8S V3 machine type was chosen for the compute

workloads, consisting of 8x Xeon E5-2673v4 cores, 32GB RAM and 64GB SSD based

storage. For the long distance scenarios, the VMs were provisioned in the respective

regions. However, in order to conduct testing for the short distance scenarios, the

117

VMs were deployed in the same region and the network emulation capabilities of the

Linux kernel were utilised in order to add the required latency (Ludovici & Pfeifer,

2011).

The Linpack benchmark results are detailed in Figures 5.6a and 5.6b. As previously

observed, the SDN approach introduces an overhead mainly due to the additional

latency of encapsulating the virtual cluster traffic before it is transmitted over the

network. Nonetheless, the results suggest that up to 10ms, the spanned execution

performance of the Linpack benchmark is within 5% of the native performance. In

addition, the execution time - a critical factor for exploiting job spanning - is not

significantly extended up until this point. However, above 100ms of latency, it was

not possible to sustain a comparable end-to-end bandwidth, as shown in Figure

5.6c. This is reflected in a performance tail off and respective increase in execution

time.

The OpenFOAM benchmark results are detailed in Figure 5.6d. Compared to the

Linpack performance, it can be seen that the execution time is greater affected by

the network latency: 5ms is approximately 2x slower, and 10ms is approximately

3.5x slower. This is due to the fact that this computation is more dependent on

the network interconnect, where the magnitude of the data that must be exchanged

between processors is higher and more frequent than the Linpack benchmark. It is

also apparent that some cases scale better with higher latency - the Bike benchmark

uses the simple OpenFOAM solver and only suffered approximately half the perfor-

mance degradation as the Prop benchmark, however, this mesh also contained 25%

less cells (1.5 million compared to 2 million).

Overall, these results suggest that latency, as a metric describing geographical dis-

tance, provides a simple predictor of spanning performance and associated cost,

given a constant end-to-end bandwidth. HPC clusters are typically characterised by

118

1 10 100

0.4

0.6

0.8

1

Latency (ms)

F
ra

ct
io

n
of

n
a
ti

ve
p

er
fo

rm
an

ce

Native
SDN

(a) Linpack performance

1 10 100

1

2

3

Latency (ms)

x
In

cr
ea

se

Native
SDN

(b) Linpack execution time

1 10 100
700

750

800

850

900

950

Latency (ms)

M
bp
s

Native
SDN

(c) Bandwidth

0.1 1 10 100

0

10

20

Latency (ms)

x
In

cr
ea

se

Bike
Prop

(d) OpenFOAM execution time

Figure 5.6: Latency scalability benchmarking

119

exceptionally low-latency interconnects, however, the results indicate that the range

of acceptable latency for spanned job execution is modest. Depending on the com-

munication patterns of the application, a latency overhead of up to 10ms may still

provide an acceptable execution time for the job. Beyond this, the execution time

appears to increase rapidly, and the usefulness depends on whether the longer wall

time remains less than the time the job would otherwise have been queued.

5.3.2 Spanning Simulator

In order to discover the feasibility of an improvement in resource management given

a particular spanning cost, a simple simulation model was devised in order to anal-

yse the historical workload from two clusters in the campus grid at the University of

Huddersfield. The design of the simulator is not to arbitrarily reschedule the work-

load in order to achieve a desired job throughput or efficiency. In this case, one can

simply defragment the existing jobs into contiguous periods. However, this does not

reflect real world usage patterns where jobs are submitted by users when they wish.

Therefore, the purpose of the simulator is to identify points in the actual scheduling

timeline where it would have been possible to exploit forwarding or spanning.

The simulator will recognise where a job was originally queued on the cluster it was

submitted from, but where at the same time, enough nodes were idle for an adequate

period in order to satisfy its execution on another cluster. In this case, it will report

that the job was eligible to be forwarded. Similarly, the simulator will recognise

periods where a job was queued upon submission, but where at the same time, the

summation of idle nodes between the two clusters is adequate in order to satisfy

its execution. In this case, it will report that the job can be spanned. However, in

both cases it does not reschedule all subsequent jobs or introduce new jobs into the

system.

120

The simulator has been run using the scheduling logs from the campus grid at

the University of Huddersfield, covering the 12 month period from March 2016 to

March 2017. It represents usage from a variety of domains, such as Bioinformatics,

Computational Fluid Dynamics and Particle Physics. The scheduling logs include a

list of jobs executed by each system, including the following metrics:

1. Submission time

2. Start time

3. End time

4. Number of nodes required

The results are shown in Figures 5.7 and 5.8. It can be seen that there were oppor-

tunities to exploit both spanning and forwarding techniques within this workload

profile. By re-balancing jobs between the two clusters, the queue wait times were

almost eliminated in the first 4 months of the workload profile (the busiest period

of the resource in terms of number of job submissions). The overall number of jobs

executed remains the same as the simulator does not introduce new jobs into the

system - thus the utilisation remains constant. However, this creates a vacuum of

jobs towards the end of each scheduling period, as the originally submitted jobs are

completed earlier in time. This demonstrates a decrease in job turnaround time,

and the potential for backfilling new jobs within the time gained in order to increase

the utilisation of the system in a real world context.

The second aspect evaluated by the simulator is, where a job has been identified

as a candidate for spanning, would it have been able to complete execution within

the available idle time given a spanned performance penalty. It was seen that, even

with a 3x performance penalty, 42% of jobs that were eligible for spanning would

still have completed execution within a period of available idle time. Based on an

121

M
ar

20
1
6

A
p

r
2
01

6

M
ay

2
01

6

M
ay

20
16

J
u

n
20

1
6

J
u

l
20

16

J
u

l
20

1
6

A
u

g
20

1
6

S
ep

20
1
6

S
ep

20
1
6

O
ct

2
01

6

N
ov

2
0
16

N
ov

20
1
6

D
ec

2
0
16

J
an

2
01

7

J
an

2
01

7

F
eb

20
1
7

M
ar

2
0
17

M
ar

2
0
17

0

100

200

300

400

500

600

700
Queue
Run

(a) Original submitting job states

M
ar

20
1
6

A
p

r
20

1
6

M
ay

2
01

6

M
ay

2
01

6

J
u

n
20

1
6

J
u

l
20

16

J
u

l
20

16

A
u

g
20

1
6

S
ep

2
01

6

S
ep

2
01

6

O
ct

20
1
6

N
ov

2
01

6

N
ov

2
01

6

D
ec

2
01

6

J
a
n

2
01

7

J
a
n

2
01

7

F
eb

2
01

7

M
ar

2
01

7

M
ar

2
01

7

0

100

200

300

400

500

600

700
Queue
Run
Span

Forward

(b) Spanned submitting job states

Figure 5.7: Cluster 1 (Eridani) simulator results

122

M
ar

2
01

6

A
p

r
2
01

6

M
ay

2
01

6

M
ay

2
01

6

J
u

n
20

16

J
u

l
20

16

J
u

l
20

1
6

A
u

g
2
01

6

S
ep

20
1
6

S
ep

20
1
6

O
ct

2
01

6

N
ov

20
1
6

N
ov

20
1
6

D
ec

2
0
16

J
an

2
01

7

J
an

2
01

7

F
eb

20
1
7

M
ar

20
1
7

M
ar

2
0
17

0

50

100

150

200

250

300
Queue
Run

(a) Original submitting job states

M
ar

20
1
6

A
p

r
20

1
6

M
ay

20
16

M
ay

20
1
6

J
u

n
20

1
6

J
u

l
20

16

J
u

l
20

1
6

A
u

g
2
0
16

S
ep

2
01

6

S
ep

2
01

6

O
ct

20
1
6

N
ov

2
01

6

N
ov

2
01

6

D
ec

20
16

J
a
n

20
1
7

J
a
n

20
1
7

F
eb

2
01

7

M
a
r

20
17

M
a
r

20
17

0

50

100

150

200

250

300
Queue
Run
Span

Forward

(b) Spanned submitting job states

Figure 5.8: Cluster 2 (Ascella) simulator results

123

application with a similar profile to Linpack, this would equate to approximately

100ms of latency as being acceptable, or 10ms based on the profile of the OpenFOAM

benchmark.

5.4 Summary

In this chapter, a robust performance evaluation of the VCC was conducted. As

the performance characteristics of containers within the run time environment are

already well understood in literature, the benchmarking focus is on the network-

ing model and subsequent effect on HPC application performance; the innovative

full stack approach of the VCC introduces a virtualised SDN interconnect in order

to enable transparent job spanning and forwarding within a containerised cluster

environment.

Firstly, the CPU execution performance within the VCC is evaluated. A comparison

between native, run time environment and VM-based approaches suggests that the

full stack container design, and associated services for discovery, configuration and

management, does not have a negative impact on the application performance.

Secondly, the communication performance of the VCC networking model is evalu-

ated within the boundary of a single cluster fabric. It was observed that the overhead

of the SDN typically manifests as a fixed offset from the native performance. On

commodity Ethernet networks, it is possible to achieve equivalent communication

bandwidth. On a high bandwidth InfiniBand network, the results highlight that sup-

port for offloading the processing of the IP and SDN protocols onto the networking

hardware is essential in order to achieve good performance. For both interconnection

technologies, the latency overhead is similar and shown to be offset between 20-30%

from the native performance.

124

Finally, the additional latency uncertainty introduced by the inter-cluster intercon-

nect is considered. By measuring the latency between systems which are representa-

tive of the cluster, campus grid and inter-institution scenarios, the additional time

incurred was found to fall on a range between 0.1-150ms depending on geographi-

cal distance. The benchmarking suite was repeated with increasing latency added

between the communicating nodes in order to understand the effect on execution

performance.

Previous work rejects such network environments as inappropriate for HPC execu-

tion due to this latency (Richling et al., 2011). Rather than considering performance

on an individual job level, it is clear that there are opportunities for slower execution

of spanned jobs to improve global resource performance, in terms of job throughput

and utilisation. A simulator was presented based on a historical workload profile,

which identifies common periods of idle node time between several HPC clusters

and applies spanning or forwarding to jobs that would otherwise have been imme-

diately queued upon submission. Aggregating the idle capacity and using it for job

execution provides the ability to start the job earlier in time, potentially offsetting

the performance cost and improving utilisation of the individual clusters. The sim-

ulation results demonstrate that even with up to 3x slower execution, over 40% of

spanned jobs would still have been able to complete within a period of idle time.

However, this effect is dependent on the application and its communication patterns

- for example, at 100ms of latency, the Linpack run time was 1.2x slower whilst

maintaining 80% of the native performance, whereas the OpenFOAM benchmark

was approximately an order of magnitude slower.

125

126

Chapter 6

Geographically Distributed

Spanning

In this chapter, a case study composed of a VCC deployment within two real world

scenarios - campus grid and inter-institution grid - is presented. Previous work has

demonstrated the potential of job forwarding and spanning in order to improve global

resource performance, in the context of a controlled experimental environment. De-

spite this potential, it does not adequately consider the feasibility of achieving such

performance gains, given realistic workload patterns and communication constraints.

In Chapter 5, it was demonstrated that the VCC can be used to facilitate the same

meta-scheduling-like capabilities. Network-orientated benchmarking and workload

simulation based on historical job submissions suggested that, not only are the inter-

cluster interconnect performance demands modest, but that even with a spanning

cost of up to 300%, there were still many scheduling periods where a performance

improvement was attainable. This performance improvement is characterised by the

ability to start job execution earlier on spanned or forwarded assets, thus, removing

the queue wait time, decreasing turnaround time and increasing job throughput.

127

Therefore, it is necessary to evaluate whether this result is reproducible in prac-

tice.

Furthermore, in the synthesis it is identified that a virtual cluster on its own, whilst

portable, does not immediately resolve the software environment flexibility problem;

there still exists the requirement for a single system image within the virtual cluster

environment. Thus, the case study also demonstrates how a novel nested cluster

deployment topology is able to retain both portability and software flexibility aspects

afforded by virtualisation within the HPC context.

Firstly, the meta-cluster deployment topology is described. Secondly, the design of

the experiment, including the connectivity requirements of both scenarios and the

job queue used for benchmarking, is defined in Section 6.2. Finally, an evaluation

of the results and discussion of case study outcomes is presented for each scenario

in Section 6.3.

6.1 Nested Meta-Cluster Topology

One of the main problems with traditional HPC software stacks is the lack of flexibil-

ity in customising the software environment. The primary motivator for integrating

virtualisation into HPC is to address this lack of flexibility. It is clear from the lit-

erature review that the flexibility of existing solutions is defined by the persistence

of the virtual environment.

With run time environment containers, the virtualised environment lasts only for

the duration of a single process execution. This allows the environment to be arbi-

trarily customised on a per-process level, but introduces portability limitations by

depending on the underlying system to provide the necessary interfaces for execu-

tion.

128

In a full stack approach, a virtual cluster can be deployed for a single user, or for

the duration of an application execution, as with run time environment containers.

This allows the same flexibility whilst additionally increasing the portability of the

environment as the full stack is virtualised rather than just the top-most layer.

However, if a full stack virtual cluster is deployed in a multi-user or persistent

scenario, then whilst it is still inherently portable and self-contained, it does not

resolve the software flexibility limitations as a coherent, single system image is still

required as would be on a non-virtual cluster.

The design of the VCC enables a unique characteristic where it can be deployed at

either level of persistence: as a transient, temporary environment for the duration

of execution, or as a permanent, multi-user virtual cluster. In order to introduce

software environment flexibility into the persistent full stack approach, the VCC

presents a nested deployment topology as shown in Figure 6.1. The outer cluster is

the persistent virtual cluster, deployed on top of the physical resource. The software

environment of the outer cluster maintains the same limitations as a real cluster, in

that each virtual node must conform to the same software environment. However,

in order to overcome this limitation, a temporary inner virtual cluster is deployed

with a distinct software environment in order to execute the workload.

The ability to nest virtual clusters has a number of advantages; firstly, the software

environment can be gradually refined to any extent by simply nesting another cluster.

As container virtualisation does not require the layers of emulation or translation re-

quired by traditional VMs, there is no additional virtualisation overhead introduced

on the nested containers (Morgua, 2015).

Secondly, for a VCC deployed spanning a multiple of underlying physical resources,

only the outer cluster is required to establish the SDN interconnect. Therefore, the

inner cluster does not have to consider many aspects of the deployment, such as

129

Organisation A Organisation B

Outer Cluster

Inner Cluster

Figure 6.1: VCC Meta-Cluster Deployment

interconnect, DNS name resolution, and other contextual-dependent configuration.

This means that the nested clusters do not need to duplicate these services in order to

take advantage of spanning and forwarding features, as it will already be guaranteed

that the outer cluster will provide them. Furthermore, it simplifies the definition and

deployment workflow of the inner cluster in order to maintain accessibility and ease of

use for the average user, equivalent to the demands of using run time environment

containers. In practice, the administrator could deploy the outer virtual cluster,

across as many physical resources as required, and the end user can deploy as many

transient, nested virtual clusters as required in order to execute the workload of

jobs. In order to operate the inner cluster, the user will not require knowledge of,

or direct access to, the underlying physical cluster.

Finally, establishing an outer cluster provides a straightforward method in order to

divide the resources of an underlying system and limit the scale at which virtual

clusters can be deployed, without requiring dedicated resource management. As

shown in Figure 6.1, the persistent outer cluster is simply deployed across as many

physical nodes as desired within each organisation’s cluster, and this provides a nat-

ural boundary on the scale of the nested inner clusters. In a virtual cluster that

130

spans many underlying physical systems such as this, where each system is poten-

tially hosted by different institutions or organisations, this capability is essential in

order to maintain fair use and dedicate only a subset of the physical resource to be

made available for virtual cluster execution.

6.2 Methodology

The aim of this experiment is to realise a decrease in turnaround time when executing

a queue of jobs on a VCC deployed across many physical resources, by utilising

spanning and forwarding techniques. It will be conducted based on two scenarios,

campus grid and inter-institution. These two scenarios have been selected based

on the experience of past collaborations at the University of Huddersfield, which

have demanded connectivity between both computing facilities located around the

campus and computing facilities provided by nearby institutions. The process of

deploying the VCC in these two scenarios will also provide a useful assessment of

the SDN and workflow challenges in practice, such as negotiating firewall and port

forwarding requirements with the local IT departments.

Two clusters have been constructed in order to conduct the case study, detailed

in Table 6.1. A dedicated head node is located alongside each cluster to provide

management functions, which will not be included in computation. Cluster A is

installed in the main university data center, whilst cluster B will be relocated across

campus and subsequently to another institution in order to test the two scenarios in

this case study. Therefore, the hardware and software configuration remains constant

in order to observe the effect of spanning and forwarding on real world application

and resource performance. The benchmarking suite outlined in the methodology in

Section 1.2 will be used in order to measure the performance of the spanned meta-

131

cluster deployment; the OpenFOAM benchmark provides application performance

for a CFD simulation workload.

6.2.1 Cluster Connectivity

For the campus grid scenario, the two clusters will be interconnected across the gen-

eral campus LAN. This provides 1 Gbps end-to-end bandwidth and typical 0.17ms

latency. Cluster A is installed in the university data center, DC1, and Cluster B

is installed in the HPC Laboratory, HA2/13. As shown in Figure 6.2a, 4 hops are

introduced as the traffic is passed by switches within the network infrastructure in

order to reach the destination. The physical distance of this link is approximately

300m. However, the nodes within each cluster reside on a private network, with

the headnode acting as a NAT router. Direct routing between the private networks

of each cluster would not be possible. Direct physical interconnection, as required

by other solutions such as Emeneker et al. (2006), is impractical. Therefore, the

SDN interconnect will provide a virtual subnet that traverses each network, without

exposing access to the private networks from other locations on the LAN.

For the inter-institution scenario, Cluster B will be relocated to another institution

and the two clusters will be interconnected across the internet. Cluster B is selected

to be relocated as it has the fewer nodes and smaller footprint in terms of logistics.

Cluster Nodes Type CPU Memory

A 5 HP DL380 2x 6C/12T Xeon X5690 128GB
B 3 Dell R710 2x 6C/12T Xeon X5650 192GB

Table 6.1: Cluster Specifications for Spanning Case Study

132

D
C
1

H
A
2/13

(a) Campus Grid

H
aslingden

Local ISP
Peer

Janet
Peer

londtt-sbr1.ja.net

londtw
-sbr2.ja.net

leedaq-sbr1.ja.net

leedaq-sbr2.ja.net

leedaq-rbr1.ja.net

huddbs-rbr1.ja.net

U
ni.

H
uddersfield

(b) Inter-institution

Figure 6.2: Traceroute of Spanning Case Study Connectivity

As shown in Figure 6.2b, a more complex route is taken in order to pass packets

between the respective network infrastructures. This connectivity also provides up

to 1 Gbps end-to-end bandwidth with a typical latency of 18ms. The physical

distance of this link is approximately 30 miles (48 km). Similarly to the campus

grid scenario, both institutions utilise a firewall which performs NAT, therefore,

direct routing between the private networks of each cluster is not possible. The

SDN interconnect established by the VCC will facilitate this communication across

the networks in the same manner. However, there is uncertainty introduced into

this scenario, as the traffic will be subject to Quality of Service, routing and traffic

shaping policies by the respective Internet Service Providers. In the case where these

measures are apparent, and spanned execution is likely to be severely affected, the

VCC can utilise only job forwarding capabilities.

6.2.2 Job Queue

In order to examine both the global resource performance, and the individual job

performance, several OpenFOAM benchmark jobs will be queued on the spanned

VCC meta-cluster. The turnaround time of the queue will be measured in order

133

A1 A2 A3 A4 A5 B1 B2 B3

Job 1 Job 2
Job 3

Job 4

Job
Time Saved

Nodes

Time

Figure 6.3: Job Queue Pattern for Spanning Case Study

to demonstrate the time saved and the potential increase in job throughput, com-

pared to running the job queue only on cluster A without spanning to cluster B. In

addition, the performance of the spanned job can be compared to the non-spanned

jobs within the same execution conditions, without having to carry out a second

experiment.

Each job is based on the same OpenFOAM Bike benchmark using different starting

conditions. This is a common scheme observed on the campus grid at the University

of Huddersfield, where a researcher wishes to test a parameter space in order to

narrow down the conditions for subsequent investigation. Each job is configured

with the same 2 node, 24 cores per node requirement. Therefore, the queue is

devised in such a way that when submitted to the cluster, at any time one job will

effectively be forwarded and one job will be spanned, as shown in Figure 6.3. In this

case, Job 4 is forwarded as it is executed entirely within the bounds of Cluster B,

and Job 3 is spanned as it requires nodes from both Cluster A and B.

The benchmarking in Chapter 5 indicates that spanned execution will incur a per-

formance penalty; as long as the runtime of the spanned job does not exceed the

queue wait time plus the original execution time, there is a potential to complete

the job earlier in time. Thus, the time saved can enable an increase in job through-

put as the next job in the queue can also be started earlier. Without the spanning

134

Cluster Location IP Ports Type Direction

A Huddersfield 161.112.232.42 36783, 36784 TCP + UDP Both
B Haslingden 84.21.152.17 36783, 36784 TCP + UDP Both

Table 6.2: Firewall requirements for Spanning Case Study

capability, a single node from each cluster would be continuously idle as it cannot

satisfy the requirements of any jobs in the queue.

6.2.3 Procedure

In general, the outline of the procedure is to establish the SDN network, launch

the VCC containers on each node and execute the benchmark suite as detailed in

Appendix. Firstly, connectivity between the clusters must be established. For the

campus span scenario, the head nodes of clusters A and B can communicate across

the campus LAN without any special network configuration. However, for the inter-

institution scenario, each head node will require ports to be forwarded from a public

IP address in order for the SDN to be established. This configuration is detailed in

Table 6.2.

Secondly, the Weave router - which provides the SDN functionality - needs to be

launched on every node in order to establish the network. As shown in Figure

6.4, each node must be bootstrapped by providing the IP of another node within

the cluster. Once connected, the IPs of the other hosts will be discovered. A new

network interface is created on the system which exposes an IP address on the virtual

subnet provided by the SDN.

Finally, the VCC container must be launched on every node. It will automatically

detect the presence of the SDN network interface and perform the required environ-

ment contextualisation so that each container will use the SDN for communication.

135

$ weave launch −−port =36783 −−i p a l l o c−range 1 7 2 . 3 1 . 0 . 0 / 2 0
$ weave connect 161 . 112 . 232 . 42
$ weave expose 1 7 2 . 3 1 . 1 . 1 / 2 0
$ docker run −d −−net=host −−p r i v i l e g e d \

j o s h i g g i n s /vcc−exp \
−−s e r v i c e=workernode \
−−s torage−host =172 .31 .1 .1 \
−−s torage−port =4001 \
−−c l u s t e r=t e s t

Figure 6.4: Bootstrapping the Weave SDN network and spanned VCC

Even though the underlying physical clusters both have their own head nodes, within

the VCC the head node container can be deployed on any node, and it is not neces-

sary to deploy a VCC head node for each underlying head node. For the purpose of

consistency, the VCC head node is deployed on the head node for cluster A in both

scenarios.

6.3 Evaluation

In both scenarios, the deployment of the VCC was successful and created a co-

herent cluster environment across the respective geographical distances. The SDN

provided a virtual subnet, assigning IP addresses for each VCC container within a

private address range which were routable between both clusters, despite the partial

connectivity introduced by the firewalls and NAT.

From the application perspective, no changes were required to the communication

routines or resource management in order to take advantage of spanning and for-

warding. The SDN appears as a global inter-node interconnect, transparently rout-

ing and forwarding traffic to the appropriate destination, allowing the outer cluster

detailed in Section 6.1 to be established for both scenarios. Figure 6.5 shows the

136

[root@headnode /]# ping c lu s t e rB3
PING c lus t e rB3 (1 7 2 . 3 1 . 3 . 1 0) 56(84) bytes o f data .
64 bytes from 1 7 2 . 3 1 . 3 . 1 0 (1 7 2 . 3 1 . 3 . 1 0) : icmp seq=1 t t l =64 time =10.5 ms

[root@headnode /]# ping c lus te rA1
PING clus te rA1 (1 7 2 . 3 1 . 1 4 . 0) 56(84) bytes o f data .
64 bytes from 1 7 2 . 3 1 . 1 4 . 0 (1 7 2 . 3 1 . 1 4 . 0) : icmp seq=1 t t l =64 time =0.700 ms

[u1056048@headnode] $ f o r i in { 1 . . 1 0 } ; do qsub submit . job ; done

[u1056048@headnode] $ q s ta t −n
headnode :

11 . headnode u1056048 paraul p r o p o r i g i n a l h i
0 2 48 −− 336 : 00 : 00 R 00 : 00 : 3 6

c lu s t e rB1/0−23+c lus t e rB2 /0−23
12 . headnode u1056048 paraul p r o p o r i g i n a l h i
0 2 48 −− 336 : 00 : 00 R 00 : 00 : 3 6

c lu s t e rB3/0−23+c lus te rA5 /0−23
13 . headnode u1056048 paraul p r o p o r i g i n a l h i
0 2 48 −− 336 : 00 : 00 R 00 : 00 : 3 6

c lus te rA1/0−23+c lus te rA2 /0−23
14 . headnode u1056048 paraul p r o p o r i g i n a l h i
0 2 48 −− 336 : 00 : 00 R 00 : 00 : 3 6

c lus te rA3/0−23+c lus te rA4 /0−23

Figure 6.5: Outer Cluster Job Submission Workflow

workflow of the outer VCC cluster. It demonstrates that the nodes are combined

into a single virtual cluster, allowing jobs or nested clusters to be scheduled within.

Communication between nodes, regardless of the location, appears as though they

are directly connected on the same network. However, the overhead introduced

by the underlying networks can be observed by pinging between nodes within the

virtual cluster.

From an administration perspective, there was minimal concern from the respective

IT departments in order to open the two ports required for the SDN. The virtual

subnet traffic is encapsulated using the VXLAN protocol and transmitted using UDP

on the data plane port (Fast Datapath and Weave Net , n.d.). This methodology

proved to easily traverse firewalls and avoid double NAT when facilitating routing

137

between geographically distributed sites, whilst maintaining the security of each

private network. However, it is anticipated that if the system were to be used in

production, the wider implications of the bandwidth and traffic usage patterns, and

the potential impact on other services, would become a concern.

Table 6.3 details the queue turnaround time for both scenarios.

Scenario Queue turnaround (mins)

Cluster A only 226
Campus Grid 134 (41% faster)
Inter-institution 145 (36% faster)

Table 6.3: Campus spanned job queue turnaround time

Compared to execution only on cluster A, the queue was executed faster by utilising

the spanning and scaling techniques in both cases. This is because the virtual cluster

is effectively a summation of both cluster A and B with a single queue, thus, making

more nodes available for processing the queue of jobs. The result demonstrates that

the penalty of combining the two clusters using this approach does not outweigh the

benefit.

However, only the forwarding capability was utilised in the inter-institution scenario,

as the actual throughput of the connectivity was lower than expected, measured at

200 Mbps. It was not deemed suitable for spanning execution: the performance

benchmarking and feasibility study is calibrated based on a constant end-to-end

bandwidth, therefore, it would not be a fair comparison. In addition, the reduced

bandwidth is likely to significantly extend the execution time of the OpenFOAM

benchmark. Regardless, attempting to execute the spanned jobs using this con-

nection highlighted that the Message Passing Interface (MPI) library used for par-

allelisation of the OpenFOAM code is not tolerant of sustained adverse network

conditions.

138

6.3.1 Campus Grid

Figure 6.6 plots the detailed execution times of each job within the queue for the

campus grid scenario. As expected, the performance overhead of spanning is mini-

mal: the inter-cluster interconnect matches the bandwidth specification of the local

cluster interconnect (1 Gbps), and the latency is small due to the relatively close

proximity of the two systems.

Without the VCC, the concurrency for job execution scheduled in the queue on

cluster A is limited to two, whilst one node remains idle. Execution on cluster

B was slightly faster than cluster A due to differences in the hardware, however,

the concurrency is limited to one job at a time. The spanned job, highlighted by

dashes, was approximately 20% slower in comparison to the fastest execution. The

forwarded job is highlighted by a filled box. With the spanned VCC providing

both of these capabilities, four jobs may run concurrently, and hence, a subsequent

reduction in the queue turnaround time is observed.

On an individual job level, the overhead of the spanned execution is not significant

enough to extend the runtime such that it negates the advantage of starting earlier.

However, this result may only be generalised to high performance jobs; where there

is a high throughput of extremely short lived jobs, this overhead may delay the

scheduling of each job and thus, have the opposite effect of slowing down the job

queue overall. This has been observed by Emeneker and Stanzione (2007), though

due to the overheads of traditional virtualisation techniques rather than spanned

network performance.

Furthermore, the CFD simulation performed by the OpenFOAM benchmark is com-

posed of a mix of CPU bound processing and storage I/O. At the start and end of

the simulation, parallel storage I/O is performed in order to transfer the partitioned

139

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Time s

(a) Cluster A only

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Time s

(b) Spanned Cluster A+B

Figure 6.6: Campus Grid Queue Execution Time Plots

140

data to and from each node’s local scratch space. During the execution, the data

is operated in local scratch space only. Where the storage I/O is being performed

over the network, the spanning penalty also applies to this traffic in the same way

that it applies to data being passed between communicating processes.

In this case, whilst the benchmark operates on several gigabytes of scratch files, the

actual data transferred is on the order of 100’s of megabytes. Even on the 200 Mbps

network, the transfer time is a matter of seconds. When a higher demand is placed by

the application on parallelisation of storage I/O, the effect of the SDN overhead can

be mitigated when the underlying system provides a native storage service. The same

pass-through methodology can be used as when a high performance interconnect,

such as InfiniBand, is used within the VCC. Therefore, the container can access

the native storage system without incurring the overhead of communicating across

the SDN, but the individual job execution cannot span beyond the boundary of the

underlying system.

6.3.2 Inter-institution Grid

Figure 6.8 plots the detailed execution times of each job within the queue for the

inter-institution scenario. Compared to execution only on cluster A, the time to

process the queue when utilising job forwarding is reduced. This is what would be

expected if one simply added two nodes to the cluster, which is effectively what

the VCC has facilitated, despite the geographical separation between the additional

nodes and the rest of the cluster. Due to bandwidth constraints of the inter-cluster

interconnect, job spanning capability was not enabled in this scenario. Whilst this

results in a node from each underlying cluster remaining idle, the difference in queue

turnaround time of just forwarding compared to utilising both spanning and forward-

ing is only 5%, over this queue of jobs.

141

smoothSolver : So lv ing f o r Ux, I n i t i a l r e s i d u a l = 1.58663 e−07, . . .
smoothSolver : So lv ing f o r Uy, I n i t i a l r e s i d u a l = 7.49369 e−08, . . .
smoothSolver : So lv ing f o r Uz , I n i t i a l r e s i d u a l = 1.56562 e−07, . . .
−−
ORTE has l o s t communication with i t s daemon lo ca t ed on node :

hostname : c lu s t e rB1

This i s u s u a l l y due to e i t h e r a f a i l u r e o f the TCP network
connect ion to the node , or p o s s i b l y an i n t e r n a l f a i l u r e o f
the daemon i t s e l f . We cannot r e cove r from t h i s f a i l u r e , and
t h e r e f o r e w i l l terminate the job .

−−
wr i t e ip4 194 .82 .37 .91 − >161 .112 .232 .42 : wr i t e : no b u f f e r space a v a i l a b l e

Figure 6.7: Spanning Errors in Extreme Network Environments

In this case, taking into account external factors such as the cost of network transit

and the relatively small gain, it might not be worth utilising spanning even if there

is a capability to do so. However, considering just the first four jobs in each sce-

nario, the difference in performance gain is much more significant - 48% faster with

forwarding and spanning compared to 19% faster with just forwarding. Therefore,

it is clear that whilst the net gain is likely to be positive due to the fact of simply

having more nodes available for execution, the extent to which the global resource

performance is improved depends on both the spanning penalty introduced by the

VCC, and the queue length.

Attempting to execute the spanned workload despite the bandwidth limitation

demonstrates that the MPI library used for parallelisation of the code is not robust

to poor network connectivity. Therefore, even if the spanning cost is acceptable,

in extreme conditions it may not work at all. As the application itself is not na-

tively bandwidth or latency aware, this resulted in excessive packet loss due to the

exhaustion of the OS network buffers, as data was sent faster than it is possible to

be transmitted. The Weave SDN client recovers from this error, but the subsequent

142

connection reset causes problems for the MPI application. In the course of car-

rying out this experiment, the same benchmark program exhibited three different

runtime errors caused by the same problem: sometimes, the MPI library reports

that a timeout has occurred in a communication routine, which immediately stops

the simulation in a manner which is not restartable, as shown in Figure 6.7. Other

times, the program appeared to hang and make no further progress, or exited with

a segmentation fault. Even though there are algorithms available for collective com-

munications which are bandwidth and latency aware, such as Gong, He, and Zhong

(2015), it does not consider this scale of sub-gigabit speeds.

6.4 Summary

In this chapter, a case study is presented in order to evaluate the improvement to

global resource performance through deployment of the VCC in two real world en-

vironments. The meta-cluster deployment topology is outlined, in which an outer

virtual cluster spanning many underlying resources is established. Within the outer

cluster, nested, inner virtual clusters can be scheduled in order to execute the job

workloads with an abstracted, coherent environment. The inner clusters can be

nested in order to gradually refine the software environment, and do not require

knowledge of the underlying infrastructure or consideration of aspects already es-

tablished by the outer cluster, such network connectivity and shared file storage.

This offers a novel approach to introducing software environment flexibility within a

full stack virtualisation solution, whilst inheriting the good accessibility and porta-

bility afforded by run time environment virtualisation approaches.

The performance benchmarking within a controlled environment, conducted in Chap-

ter 5, suggests that it is feasible to realise a performance improvement in terms of the

143

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Time s

(a) Cluster A only

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

Job 1

Job 2

Job 3

Job 4

Job 5

Job 6

Job 7

Job 8

Job 9

Job 10

Time s

(b) Forwarded Cluster A+B

Figure 6.8: Inter-institution Queue Execution Time Plots

144

overall turnaround time and job throughput - as jobs can be started earlier in time

- by utilising the job spanning and forwarding capability provided by the VCC. The

purpose of the case study is to demonstrate that it is reproducible in a real world

environment. Two scenarios are used in order to assess the resource performance:

campus grid and inter-institution spanning. A queue of jobs is constructed based

on the OpenFOAM Bike benchmark in order to submit to each spanned VCC for

execution, and the turnaround time of the individual jobs and the overall queue is

recorded.

The challenges posted by the inter-cluster communication were easy to accommo-

date using the SDN, requiring only two firewall port forwarding rules to be in place

within each institution. In the campus grid scenario, utilising spanning and for-

warding capabilities, the queue turnaround time was 41-48% faster than execution

on a single cluster only. In the inter-institution scenario, utilising only forwarding

capabilities due to the bandwidth constraints, 18-36% faster turnaround time of

the job queue was observed. Both spanning and forwarding techniques are facili-

tated by the fact that the VCC creates a single, coherent virtual cluster across the

two physical clusters, using the SDN in order to create a communication channel

across partially connected networks - where previous solutions have required dedi-

cated links or proprietary appliances (Emeneker & Stanzione, 2007; Richling et al.,

2011).

The results demonstrate that the performance gains suggested by the benchmarking

are possible to achieve in practice. In this case study, a CFD code was used and thus,

the result can be generalisable to other codes with a similar profile in terms of CPU

and network performance requirements. However, it is highlighted that in extreme

network conditions, spanning may not work due to the parallelisation libraries used

by the code, or for high throughput applications, where the latency introduced may

145

reduce performance by preventing the rapid scheduling of jobs.

146

Chapter 7

Virtual Clusters in the

Classroom

The vast amount of computational power offered by the current petascale, and future

exascale, computing resources pose significant problems from both programming and

system administration perspectives and is an active area of research. However, ac-

cessibility to courses that enable students to study High Performance Computing

from an architecture, administration and technology platform perspective does not

reflect this level of activity. Based on the experience at the University of Hudder-

sfield in delivering the Parallel Computer Architectures module, one of the main

challenges is in developing an approach that provides a suitable environment in or-

der to achieve the learning outcomes without putting a production resource at risk.

It is often necessary to implement specialised laboratories in order to support the

computational hardware and software requirements of university courses that of-

fer hand-on experience with building, maintaining and programming HPC systems,

which poses administrative and sustainability limitations.

147

It is suggested that the VCC can be used to address these concerns. In this chapter,

a case study is presented which implements the VCC in the classroom environment.

It is designed to evaluate both the deployment of the full stack approach on one or

more standalone machines, and the effectiveness of the virtualised clusters for the

purpose of teaching and training. Sustainability, workflow, usability and attainment

parameters form the basis of this evaluation and are compared with the existing

OSCAR-based method used to deliver the module.

Firstly, the background of the module and implementation of the VCC into the

teaching method is introduced. Secondly, the design of the data collection and

processing activities are detailed in Section 7.3, followed by an evaluation of the

results in Section 7.4. Finally, a discussion of the case study outcomes in relation to

the research objectives, and the extent to which these outcomes are generalisable,

are summarised.

7.1 Parallel Computer Architectures Module

There is a notable lack of undergraduate and postgraduate courses that address both

usage and administration of HPC systems, given the proliferation of fast computing

in science, as discussed in Chapter 1. One of the reasons for this, based on the

experience at the University of Huddersfield, is the difficulty in providing appropriate

computational resources; an environment is required that facilitates experiential

learning, where the student is free to explore and interact with the system without

putting a production cluster at risk.

The PCA module at the University of Huddersfield aims to equip students with

a comprehensive understanding of the practical aspects of cluster administration,

program parallelisation and job management. It is offered to postgraduate and un-

148

dergradute students, in two separate classes that run for 12 or 22 weeks respectively

(Higgins & Holmes, 2017). The learning outcomes are designed to fulfil this aim

within the context of modern HPC environments and their application in scientific

computing:

• Understand the demand for HPC systems and evolution of their development,

in the context of speeding up applications.

• Gain knowledge about the fundamental components of cluster software en-

vironments, networking, middleware, resource management and parallel pro-

gramming.

• Identify scalability issues in an HPC system by profiling the performance of

parallel processing applications.

The underpinning administration concepts and programming models are presented

through lectures, followed by practical work during the laboratory based sessions.

The principle strategy for assessment is through project based learning. It is usually

clear to students where the inefficiencies in their system lies, through benchmarking

the constructed cluster. They must use this information to develop a critical evalu-

ation of the performance of the designed system. In order to compare and contrast

the laboratory cluster performance, the students are given access to the university

research clusters. They are expected to write shell scripts, submit jobs for execution

and analyse the outputs. In addition to project work, the final element of assessment

is examination.

The course is designed around the Open Source Cluster Application Resources (OS-

CAR) toolkit, which is utilised by the students in order to build and test a cluster

from scratch (Des Ligneris et al., 2003). The HPC laboratory is based on decom-

missioned workstations in order to provide the students with the hardware needed

149

(a) Lab

(b) Work area

Figure 7.1: Layout of the cluster laboratory

to build their own computer clusters, typically anywhere between 30 and 50 work-

stations in each cohort. In addition, each cluster requires supporting infrastructure

such as network connectivity, an Ethernet switch for the cluster interconnect, a key-

board, video and mouse (KVM) console and the required cabling. The typical layout

of the laboratory is shown in Figure 7.1.

However, this methodology suffers from hardware and software limitations: Firstly,

the OSCAR software is no longer actively maintained (OSCAR Homepage, 2005).

150

This introduces compatibility problems with modern PC hardware and software, as

an unmaintained Linux distribution is required in order to run it.

Secondly, the nature of the module activities dictate a high resource requirement

per-student in order to construct several individual clusters. Currently this demand

can be met due to the turnover of decommissioned systems, however, this strategy

is unlikely to be sustainable in the long term or easily reproducible by other insti-

tutions, and offers limited scope for building clusters with a large number of nodes

each.

Furthermore, while this method affords a high degree of hands-on experience, when

problems are encountered, in some cases persisting over several weeks, the explo-

ration and application of the theoretical aspects of the course is compromised. As

the process of building a cluster is non-trivial, a large number of remediation steps

are typically required, often reinstalling entire components of the cluster - this activ-

ity consumes a significant amount of time and does not contribute a representative

amount of value to the learning experience.

Finally, a critical path exists in the cluster deployment workflow which means that a

student must complete all steps of the cluster building phase successfully, otherwise

they cannot complete the remaining programming activities even if they are capable.

Instances of the critical path problem have been observed based on failures in both

hardware and software environments (Higgins & Holmes, 2017). Therefore, a balance

must be found between the practical and theoretical outcomes of the module.

It is suggested that the VCC can be used to resolve these limitations - providing an

accessible virtual cluster environment that can be quickly created and destroyed on

one or more standard laboratory PCs, regardless of the underlying machine and OS

combination. Containers allow a higher density of virtual instances to be deployed

per machine compared to VMs due to the lower execution overhead, thus, a large

151

number of virtualised cluster nodes can be created using a relatively small number

of machines. This environment gives the user the same interactions as a physical

cluster, and can be constructed to exactly replicate the environment of a production

cluster provided by the institution, without requiring a dedicated laboratory or

hardware resources. In addition, the use of container virtualisation and Dockerfile

format allows a known good configuration to be packaged and distributed to students

without obfuscating the steps necessary in order to create it. This offers a potential

solution to the critical path problem.

In order to implement the VCC as a replacement for the OSCAR toolkit, a virtual

cluster was built using the same middleware components and Torque/PBS resource

manager as the university research cluster, using the process described in Chapter

4. Apart from the documentation and learning resources for cluster installation, no

other supporting infrastructure changes are required by the implementation. The

delivery and assessment aspects of the module - lectures, laboratory sessions and

examination schedule - remain unchanged.

7.2 VCC on a Single Machine

The students have an option to deploy many instances of a worker node on the

same physical machine, in order to increase the size of the virtual cluster beyond

the hardware that is available in the lab. This topology is enabled by the container

virtualisation technique, as the overhead is lower than traditional virtualisation tech-

niques, thus, the density of instances can be higher. The typical RAM consumption

of the container is 180 MB per instance, compared to the 2GB minimum system re-

quirements of the CentOS distribution on which it is based. Therefore, even though

this topology is not suitable for high performance execution, the student can expe-

152

Parameter Activity Data

Sustainability Metrics Hardware and software requirements

Workflow Metrics Number of steps to build cluster
Time to first cluster

Usability Survey Perceived efficiency and effectiveness

Attainment Survey Skills Audit

Table 7.1: Classroom Case Study Measurable Objects and Activities

rience a wider variety of scheduling strategies, resource management scenarios and

other interactions such as process launching, at a scale which would otherwise not

be practical in the shared laboratory setting.

7.3 Methodology

An overview of the measurable objects and related activities in order to carry out

this case study are detailed in Table 7.1. The same activities will be carried out

against the VCC and OSCAR toolkits in order to draw a comparison. The data

required for the sustainability and workflow parameters consists of metrics such as

system requirements, number of steps to build the cluster and time to first cluster.

No special methodology is required in order to collect this data. However, survey

methods will be used in order to quantify the usability and attainment. An accepted

technique needs to be used to conduct the survey in order to measure the usability

in a meaningful way. A skills audit has also been designed in order to provide insight

on attainment based on the students’ own self-assessment.

153

7.3.1 Usability Survey

A common definition of usability is how ”easy to use” a system is. However, this

definition is not precise enough to gain an understanding of the user requirements

and formulate a technique for its evaluation (Quesenbery, 2001). Usability is defined

as ”The extent to which a product can be used by specified users to achieve specified

goals with effectiveness, efficiency and satisfaction in a specified context of use” by

the International Organization for Standardization (ISO 9241-11, 1998). Thus, the

usability does not consider the functionality or technical capabilities of a product,

but the users’ perception when performing the desired goals. An evaluation tech-

nique is required in order to gauge how easy to learn the system is, satisfaction and

user attitudes towards the system (Quesenbery, 2001). In order to quantify these as-

pects, two techniques have been considered: System Usability Scale (SUS) (Brooke,

1996) and Computer System Usability Questionnaire (CSUQ) (Lewis, 1995).

The CSUQ is designed to assess the overall satisfaction of a user when interacting

with computer systems (Lewis, 1995). It is a variant of the Post-Study System

Usability Questionnaire (PSSUQ) which changes the wording of the questions to

remove lab research specific terminology. The survey is composed of 16 statements

for which the user must indicate their agreement based on a Likert-type scale of 1 to

7, representing strong agreement or disagreement respectively. It includes statements

such as ”Whenever I make a mistake using the system, I recover easily and quickly”.

The CSUQ is able to diagnose some classes of usability problems, such as inadequate

explanation of on-screen items or error messages (Sauro & Lewis, 2016). The results

are characterised by a high level of scale reliability, with corresponding Cronbach’s

alpha typically exceeding 0.9 (Lewis, 1995).

The SUS is a subjective measure of the usability (Brooke, 1996). The survey is

composed of 10 questions with responses graded on a scale of 1 to 5, representing

154

strong disagreement and agreement respectively. It is similarly characterised by

high internal reliability without requiring a large number of participants, but can

only recognise that a problem exists within the system, rather than diagnosing a

specific area of usability that is problematic. However, the SUS has been shown to

provide insight on two factors - usability and learnability - through statements such

as ”I think that I would need the support of a technical person to be able to use this

system” (Lewis & Sauro, 2009).

While both the CSUQ and SUS surveys are regarded as appropriate techniques for

the purpose of evaluating the usability of the VCC in a classroom environment, the

SUS has been chosen as it is quick to administer, so the risk of response fatigue

due to filling out multiple surveys is mitigated. In addition, it is demonstrated

that despite rapid changes in technology since its inception, the SUS remains a

technology agnostic and effective method in order to distinguish between usable and

unusable systems (Bangor, Kortum, & Miller, 2008; Orfanou, Tselios, & Katsanos,

2015). Finally, there is a large body of published and unpublished test results from

a variety of systems that allow a score to be converted into a percentile rank, and

benchmarked against the usability of other systems evaluated with the SUS (Sauro

& Lewis, 2016).

7.3.2 Skills Audit

A skills audit has been devised in order to capture the students’ own self-assessment

of proficiency, shown in Appendix. It assesses 12 key skills ranging from basic

computing knowledge to advanced parallel computing topics:

1. Troubleshooting PC hardware

2. Measuring performance of a PC

155

3. Installing software from the internet

4. Compiling and installing software from source code

5. Basic networking (IP addressing, host names, ping)

6. Linux or Unix-like Operating Systems

7. Programming in C

8. Programming in any other language

9. Parallel programming

10. Code execution models (serial / parallel)

11. Parallelisation strategies

12. CPU level parallelism (Flynn’s taxonomy)

The student must rate each skill based on a scale of 0 to 5, where a score of 0

represents no knowledge of the topic, and 5 represents an expert in that skill. The key

skills are defined based on the learning outcomes of the module and the prerequisite

knowledge required. It is expected that most students will be familiar with basic

computing skills, and that the perceived knowledge regarding advanced topics will

improve over the course of the module.

7.3.3 Procedure

The schedule for conducting each activity is outlined in Table 7.2. In the first week of

the module, the skills audit was administered within both classes in order to establish

a baseline for comparison with the second skills audit. It provides definitions of each

point on the scale and instructs the student to read and understand them before

completing the skills audit. In the 11th week (at the end of the first term), the second

156

Week UG Class PG Class

1 1st skills audit 1st skills audit

11
2nd skills audit 2nd skills audit
SUS survey SUS survey

12 Examination

22 Examination

Table 7.2: Timeline of Classroom Case Study Activities

skills audit was issued to both classes of students. At this point, both classes have

gained similar experience with using the respective toolkits in order to build and

test a cluster. Therefore, the SUS survey is also administered at this time before the

students have reflected on their experience with the system. The survey is carried

out in accordance with the method detailed by Sauro and Lewis (2016), where the

instructions state that the student must not spend a long time considering each

statement beyond an initial impression, and that the response should be marked in

the middle of the scale if the student is unsure of their agreement or disagreement

with a statement.

In the 16/17 cohort, the VCC toolkit was implemented in the undergraduate PCA

class whilst the postgraduate class continued with the OSCAR method. In the 17/18

cohort, both undergraduate and postgraduate PCA classes migrated to the VCC

framework as the cluster building method. Therefore, whilst the same procedure is

followed for both cohorts, in the second cohort both SUS surveys report results only

for the VCC.

157

VCC OSCAR
0

10

20

30

40

50

60

70

Figure 7.2: System Usability Scale Scores for VCC and OSCAR

7.4 Evaluation

In this section, the results and evaluation from each activity conducted as part of

the case study are presented.

7.4.1 System Usability Scale

The SUS score results from both years of the study are summarised in Figure 7.2,

including those from the 16/17 cohort published in Higgins and Holmes (2017). In

total, there were 47 respondents to the VCC usability survey and 17 respondents

to the OSCAR survey. The larger population for the VCC survey is due to student

enrolment numbers in each class. As expected, the responses from the SUS surveys

have good internal reliability: 0.78 to 0.88. However, one result was discarded

due to having inconsistent responses, where the student agreed to both extremes of

poor and excellent usability within the same survey. The unprocessed responses are

detailed in Appendix.

158

VCC OSCAR

N 47 17
α 0.88 0.78
Mean SUS score 60.16 53.68
Std Dev 18.56 9.45
Margin of error (95% CL) 5.4 4.9

VCC > OSCAR p-value 0.036
Effect Size d 0.44

Table 7.3: Descriptive Statistics for SUS 2 Sample T-Test

At a glance, it can be seen that the usability score for the VCC is greater than

OSCAR. A 2 Sample T-Test was conducted between the VCC and OSCAR results

using the SUS Calculator Package version 1.42 (Sauro, 2011). A summary of the

descriptive statistics is detailed in Table 7.3. The mean SUS score for VCC exceeds

OSCAR by 7 points and the results demonstrate that this difference is statistically

significant, rather than one which may occur by chance. The effect size measure

of 0.44 gives an indication of the magnitude of this difference (Cohen, 1988). The

effect size is categorised as ”small”, where 67% of the SUS scores for the VCC are

above the mean score for OSCAR.

However, in order to determine the practical significance, the scores can be translated

into a percentile rank in order to compare how usable the software is relative to

other systems. A SUS benchmark has been used, based on a large database of over

5000 SUS results collected from various types of systems such as websites, business

and consumer facing software, mobile applications and interactive voice applications

(Sauro, 2011). Based on this benchmark, the average overall SUS score is 68. The

VCC and OSCAR scores fall within the 28th and 16th percentile ranks respectively.

The scores projected onto several grading scales are shown in Table 7.4.

It is clear that, while the VCC has greater usability than OSCAR, this increase is

only marginally significant in a practical sense; both toolkits exhibit below average

159

VCC OSCAR

Percentile Rank (Sauro, 2011) 29th 17th

Adjective (Bangor, Kortum, & Miller, 2009) OK OK

Grade (Bangor et al., 2009) D F

Grade (Sauro & Lewis, 2016) D D

Table 7.4: Percentile Rank of SUS scores

S1 S2 S2 − S1 S2/S1

Average overall skill
VCC 1.57 2.86 1.29 1.82

OSCAR 2.30 3.26 0.96 1.42

Questions 9-12
VCC 0.44 2.16 1.72 4.89

OSCAR 0.82 2.66 1.84 3.25

Table 7.5: Summary of skills audit results

usability, and in the context of a large number of products evaluated using the SUS,

are graded within the same or adjacent level of usability.

7.4.2 Skills Audit

A summary of the skills audit results is presented in Table 7.5. The unprocessed

data for the skills audit is detailed in Appendix. There is a positive change in the

average across all skills between the first skills audit, S1, and the second skills audit,

S2. This is also true when considering only the questions that relate specifically to

the learning outcomes of the module (questions 9-12). Figures 7.3 and 7.4 display

the results per question for both the VCC and OSCAR classes respectively.

As the postgraduate class used the OSCAR toolkit, it is expected that these students

have experience greater than those in the undergraduate class, and this is reflected

in a higher degree of proficiency for each skill during the first skills audit. However,

whilst this means that the relative change (S2/S1) for OSCAR is lower, the actual

160

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

Question

1st
2nd

Figure 7.3: Combined skills audit results for VCC

difference in attainment (S2 − S1) when considering questions 9-12 is comparable.

Therefore, from the perspective of the students’ own self-assessment, it suggests that

a similar level of knowledge was attained when using the VCC toolkit.

7.4.3 Workflow

A comparison between the workflows required to create a working cluster using each

respective middleware is shown in Figure 7.5. Based on the VCC design, there are

fewer steps in order to deploy the cluster, and this is reflected in practice. In the

context of the skills audit and survey results, it is clear that the reduced number of

steps contributes to improving the usability and reducing the number of problems

encountered during the cluster building phase of the course, without compromising

the learning outcomes.

161

1 2 3 4 5 6 7 8 9 10 11 12
0

1

2

3

4

5

Question

1st
2nd

Figure 7.4: Combined skills audit results for OSCAR

In addition to reducing the number of steps to build the cluster, the streamlined

workflow of the VCC enabled students to create a working environment earlier -

week 2 of the undergraduate class compared to week 4 in the postgraduate class.

This provides a more balanced workload for the student in terms of cluster build-

ing, parallel programming and evaluation, and offers a solution to the critical path

problem identified in the previous teaching method.

7.4.4 System Requirements

The system requirements of the VCC framework compared to OSCAR provide im-

proved sustainability and better compatibility with modern Operating System ver-

sions. For example, whilst OSCAR requires an old Red Hat derived Linux distri-

bution, the VCC supports any OS which can run the Docker runtime, including

Microsoft Windows. This means that standard PC laboratory equipment can be

162

Install OS

Configure
local repo

Configure packages

Install head node

Build worker
node image

Discover and
define clients

Setup networking

Boot nodes

Complete
cluster setup

Test cluster

(a) OSCAR

Install OS

Install Docker

Pull VCC image

Start head
node image

Start worker
node image

Test cluster

(b) VCC

Figure 7.5: Workflow comparison of OSCAR and VCC

163

used, and as this equipment is upgraded on the regular cycle, the VCC will continue

to support it.

Furthermore, the original teaching method required the student to build a cluster

composed of 1 head node and 2 worker nodes. Using the VCC, this system can be

virtualised entirely on a single node, requiring approximately 180 MB of RAM per

instance. This has the potential to support large environments on a single machine,

comfortably fitting 64 nodes on a typical machine with 16 GB of RAM. Whilst not

all students utilised this capability during the course of this case study, it provides

an option for future development of the course in order to introduce more complex

scheduling problems and system administration tasks at scale.

7.5 Summary

In this case study, the VCC was applied in a classroom setting in order to address

deployment on a new topology which represents a single or small number of ma-

chines. It was used for the 15/16 and 16/17 academic years in order to deliver the

Parallel Computer Architectures course at the University of Huddersfield. The us-

ability was assessed using the System Usability Scale (SUS) and compared to the

previous teaching method using the OSCAR middleware. The usability of the VCC

falls within the 29th percentile, compared to 17th for OSCAR, benchmarked against

a large body of SUS results from a variety of information technology systems. Whilst

the usability is demonstrably higher, the practical significance of the increased us-

ability has minimal impact: both solutions exhibit lower than average usability. The

skills audit suggests that there is an inherent difficulty in the subject, where both

undergraduate and postgraduate students attained a similar level of understanding

in the same HPC-specific topics. In addition, the workflow demonstrates that, whilst

164

there are less steps to deploy and configure a working cluster using the VCC, the

high level processes are similar. These two factors contribute to both the usability

being relatively low, and the two systems being similar in a practical sense.

Despite this, it is clear that the VCC framework is a sustainable solution for deliver-

ing the course in the future: not only was it sufficient to meet the learning outcomes

whilst being perceived to be slightly easier to use, the single machine topology and

system requirements enable it to be used on a variety of systems and platforms that

are already existing in typical IT laboratories in the university setting.

165

166

Chapter 8

Conclusion

This research addresses the implementation of full stack cluster environments within

containers. Traditionally, Virtual Machines (VMs) have required a full software en-

vironment by design, including an OS, middleware and management software, in

addition to the application which the user wishes to run. The VM poses several

challenges in the HPC context: they are hard to use, large filesystem images require

a lot of disk space at rest and high bandwidth while being transferred, and there is a

potential performance overhead depending on the application. Containers provide a

virtualisation technique that is more accessible to the average user, as they only re-

quire the definition of the top-most layer of the software environment - the run time

layer. The container can be orchestrated within the system similar to non-virtualised

applications, reducing the disruption to the normal workflow and patterns, and is

defined as a composition of text files describing each layer of the software environ-

ment which can be easily version controlled and shared. As no machine emulation

takes place during the execution of a container, the execution performance of the

virtualised processes is equivalent to the non-virtualised performance. The primary

motivation for implementing run time environment virtualisation is to improve the

167

portability of a particular application.

However, the full stack VM approach offers more benefits than just portability; as

it represents a full cluster environment that is independent from the host system, it

offers the ability to instantiate that environment regardless of the underlying system

and it’s capabilities. Therefore, in the context of a group of integrated resources,

such as in a grid, it enables the implementation of meta-scheduling features in order

to transfer the entire burden of a job’s execution to another system - without any

uncertainty in terms of compatibility - and to combine idle capacity among many

resources to execute the job in a spanning mode. Previous work has demonstrated

that these two capabilities offer an improvement in global resource performance, by

reducing the job turnaround time and increasing cluster utilization. Despite this,

the full stack solutions are not without limitation: the literature does not adequately

address the performance implications of introducing an inter-cluster interconnect,

which is required to facilitate job forwarding and spanning. Nonetheless, these capa-

bilities cannot be implemented using the run time environment container techniques

that have gained popularity within HPC communities.

Furthermore, a comprehensive review of existing virtualisation solutions reveals that

even though virtualised environments are inherently portable due to the abstraction

provided by the VM or container technique, in the HPC context they rely on com-

plex orchestration strategies which are not. The net result is that, while virtual

environments offer flexibility within the boundary of a small collection of systems,

they are not fit for general purpose, reusable, dynamic HPC deployment.

Accordingly, the aim of this research was to develop a novel, container-based full

stack virtualisation solution, which will enable the capabilities to improve global

resource management and software environment flexibility, whilst inheriting the im-

proved accessibility and performance of the modern container virtualisation tech-

168

nique. This thesis contributes a new, innovative design for a full stack virtualised

cluster environment, the Virtual Container Cluster, which satisfies the requirements

of a general purpose solution synthesized from the analysis of existing work.

This approach is addressing the shortcomings of the existing virtualisation systems

within HPC. The following conclusions are drawn based on the objectives and insight

gained from this research:

Improved Portability of Virtual Environments

It is identified that the full stack virtualisation approach is essential in order to avoid

compromising the portability, where the application must be shipped along with the

middleware and management stack required to execute it. However, the level of

system administration knowledge required to operate the VM, and the reliance on

external services to perform the configuration, are found to pose the most significant

barriers to entry.

In order to resolve this limitation, the VCC design provides a unique, self-contained

configuration mechanism which removes the requirement for the user to perform

contextual specific adaptations to the rest of the software stack when running a

container. The gap that this fills is two-fold; firstly, it improves the portability by

allowing the full stack container to be standalone from the underlying system and

any external services, and secondly, it lowers the barrier to entry by maintaining the

accessibility of the container virtualisation technique so that it can be operated by

the average user.

The portability of the VCC is evidenced in the performance benchmarking and case

studies, where the same image is deployed across a variety of cluster, grid and cloud

systems.

169

Containers can be used to realise benefits of meta-scheduling

Using an established experimental methodology, this research demonstrates that

containers can be used to realise the benefits of meta-scheduling in the context of

a campus grid. By utilising idle capacity among a group of clusters in order to

run an additional job, the utilization of each individual cluster is increased, and the

queue turnaround time can be decreased despite the performance cost of spanned

execution. Unlike VMs, where the performance cost results from the virtualisa-

tion technique, the inter-cluster interconnect is demonstrated to be the limiting

factor.

The Software Defined Network approach does not require a large number of par-

ticipants, and thus a diverse number of connections, in order to achieve acceptable

performance which was demonstrated to scale from 300 meters on the campus grid,

to 48 km (30 mi) between two institutions. In the campus grid, it was identified

based on 12 months of historical data that there were many opportunities to ex-

ploit job forwarding and spanning. In practice, this resulted in a 41% faster queue

turnaround time - effectively combining the idle resource in both clusters without any

changes to the underlying connectivity or increased administrative cost. Between

institutions, utilizing just job forwarding resulted in a 36% faster queue turnaround

time - without implementing any specialised network infrastructure or changes to

the host software environment.

Latency is a key factor in spanning performance

Previous work considers the bandwidth requirements of the inter-cluster intercon-

nect, but often neglects the latency characteristics of network connections at this

scale. This thesis establishes the acceptable range of latency for spanning an appli-

170

cation execution across an inter-cluster interconnect when loaded with typical HPC

workloads: a compute bound benchmark (Linpack) and a network-dependent CFD

code (OpenFOAM).

At latencies up to 10ms, which would not typically be considered appropriate for

HPC execution, the execution time of the Linpack benchmark is not significantly

extended. At 5ms, the wall time of the OpenFOAM benchmark was approximately

2x slower, increasing to 3.5x slower at 10ms. To achieve a similar slow down on the

Linpack benchmark, the latency must be increased to well beyond 100ms. Based on

the historical workload data, almost half of the opportunities to exploit spanning

would still have resulted in a turnaround time equal to or less than the original

queue wait time plus execution time, even with a 3x performance cost.

Virtual cluster is an effective environment for teaching

The VCC was used to deliver the Parallel Computer Architectures course for the

15/16 and 16/17 academic years. A usability survey was conducted and compared

to the original teaching method using the OSCAR middleware. It showed that the

usability of the VCC is comparable and in some respects better than the OSCAR

tool, however, the inherent difficulty of the subject matter means that both systems

exhibit below average usability. Furthermore, a skills audit demonstrated that the

student attainment using the VCC was sufficient to meet the learning outcomes of

the course.

Full stack containers can implement novel topologies

Two novel topologies are successfully implemented using the full stack container

which are not feasible with traditional virtualisation techniques: nested clusters

171

and single machine clusters. The spanning case study demonstrated that containers

can be nested in order to gradually refine the software environment. This provides

portability and flexibility, in a unified solution that retains the accessible nature of

container virtualisation.

The teaching case study demonstrated that a large cluster can be virtualised on a

single machine, and whilst clearly this is not suitable for high performance execution,

it is a useful traning environment. Therefore, the user can gain experience with

resource management, job submission and the other activities that characterise an

HPC system, in a realistic environment that does not put the production system at

risk.

The novelty of the work presented in this thesis is demonstrated in the design of

the framework, and the ability to deploy it in environments not previously possible

with traditional virtualisation approaches in HPC. The usefullness of the solution

is validated through case studies in two applications - grid and classroom - and the

resulting impact of this research in these applications is clear.

Firstly, the VCC framework is now being used at the University of Huddersfield in

order to deliver the Parallel Computer Architectures module. It provides a future

proof platform for teaching HPC and cluster computing concepts, in a realistic en-

vironment that can be constructed by the student with minimal prior experience,

that can be kept up to date and in line with the current trends in HPC software

environments. The hands-on approach provides a seamless transition from the train-

ing environment to the production resource. This will ensure the sustainability of

delivering these courses, and contribute to maintaining the increase in student re-

cruitment and generation of research projects that stem from students studying the

course.

172

Secondly, it facilitates accessible integration and sharing of computational resources

without a high administrative or knowledge burden. This supports collaborations

between institutions or departments without the complexity of establishing grid

infrastructure, and the associated responsibility to maintain Public Key Infrastruc-

ture, Single System Image software stack and public facing network endpoints. On

a functional level, grid-like infrastructures allow sharing of computational resources,

but they also empower cross-domain transfer of knowledge, skills and techniques.

This research demonstrates that the VCC can facilitate the same kind of collabora-

tion whilst keeping the technical overhead low. In the same way that the EPSRC

investment aims to encourage horizontal integration between Tier-2 assets, a novel

framework is provided to achieve this in the long tail of science, at Tier-3 and below.

There is a potential to provide significant impact by enabling horizontal intergra-

tion between these resources which are otherwise disparate, offering an alternative

to scaling vertically to regional and national HPC systems. For example, on research

projects where budget or time constraints make the integration with traditional grid

technologies prohibitive to implement, the VCC can be used to faciliate resource

sharing. The case study carried out between HE and FE institutions demonstrates

that even with poor inter-cluster connectivity, a valuable contribution to a shared

resource can still be made by offering job forwarding capabilities. This was demon-

strated when attempting to run the VCC on Tier 1 and 2 resources, which did not

support the containerization technology required to conduct the study at scale. In

this case, the only option was to scale horizontally between willing Tier 3 facilities,

and indeed, institutions that are not part of the HPC landscape at all.

Finally, the community developing around the software demonstrates that is it ful-

filling the need for a flexible system framework that is able to accomodate a wide

variety of applications and requirements. In addition to the refereed conference and

journal publications detailed in Appendix, the project has had over 600 downloads

173

on Docker Hub and GitHub, has been forked 3 times with 2 unique contributions

in order to improve the code, and presented at various workshops throughout the

UK. Therefore, practitioners in the field have been engaged at every stage of this

research in order to inform, continuously validate and maintain the currency of this

work, establishing its novelty and usefulness within the HPC community.

174

Chapter 9

Future Work

The work in this thesis has been published as an open source project, freely available

to the community, and will be maintained through this collaborative framework. A

richer library of base images will be created in order to reflect the more diverse range

of systems that modern HPC encompasses, in addition to the traditional PBS batch

scheduling system demonstrated in this work.

The current petascale class systems are composed from large, expensive, nationally

supported supercomputer implementations, which may be out of reach of the average

researcher or institution. However, the summation of many smaller, distributed

systems has the potential to reach the same level of performance and utility. The

VCC is not a disruptive technology from the implementation perspective, promising

to unify Tier 3 and below resources without intrusive actions on existing production

systems. Therefore, the first barrier in order to realise this alternative view of the

HPC estate is being overcome. A future direction for this research is to investigate

the remaining barriers to enable a distributed VCC meta-cluster with performance

akin to contemporary petascale systems. In the same way that virtualisation enables

capabilities that can offset the performance cost, the geographical distribution of

175

processing, power, cooling and network transit enabled by the VCC will need to be

evaluated.

Finally, it is clear that even when it is desirable to execute a job over a slower,

spanned inter-cluster interconnect - in order to improve the global resource perfor-

mance among a group of clusters - it may not be possible if the code is not robust

to adverse network conditions. Mechanisms in order to improve the fault tolerance

of parallel process launching and communication when operating in high latency

network environments will be investigated, to enable a wider range of network-

bound applications to take advantage of the transparent VCC job spanning capabil-

ities, in addition to the application and synthetic benchmarks demonstrated in this

work.

176

References

Archer. (n.d.). EPCC. Retrieved from http://www.archer.ac.uk/ (Accessed:

2018-09-01)

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,

. . . Schreiber, R. S. (1991). The NAS parallel benchmarks. The International

Journal of Supercomputing Applications, 5 (3), 63–73.

Bangor, A., Kortum, P., & Miller, J. (2009). Determining what individual SUS

scores mean: Adding an adjective rating scale. Journal of Usability Studies,

4 (3), 114–123.

Bangor, A., Kortum, P. T., & Miller, J. T. (2008). An Empirical Evaluation of the

System Usability Scale. Intl. Journal of Human–Computer Interaction, 24 (6),

574–594.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., . . . Warfield, A.

(2003). Xen and the Art of Virtualization. ACM SIGOPS Operating Systems

Review , 37 (5), 164–177.

Birkenheuer, G., Brinkmann, A., Kaiser, J., Keller, A., Keller, M., Kleineweber, C.,

. . . Wilhelm, M. (2012). Virtualized HPC: a contradiction in terms? Software:

Practice and Experience, 42 (4), 485–500.

Boettiger, C. (2015). An introduction to docker for reproducible research. ACM

SIGOPS Operating Systems Review , 49 (1), 71–79.

177

http://www.archer.ac.uk/

Braden, R. (1989, October). Requirements for Internet hosts-application and support

(RFC No. 1123). Internet Requests for Comments. Retrieved from https://

www.rfc-editor.org/rfc/rfc1123.txt (Accessed: 2018-09-02)

Brooke, J. (1996). SUS: A ’quick and dirty’ usability scale. In P. W. Jordan,

B. Thomas, I. L. McClelland, & B. Weerdmeester (Eds.), Usability Evaluation

in Industry (pp. 189–194). CRC Press, LLC.

Buyya, R., Cortes, T., & Jin, H. (2001). Single system image. The International

Journal of High Performance Computing Applications, 15 (2), 124–135.

Carnes, B. (2002, Apr). The ASCI Presta Stress Benchmark code.

LLNL. Retrieved from https://asc.llnl.gov/computing resources/

purple/archive/benchmarks/presta/

CentOS Linux 5 EOL. (2017, Apr). CentOS-announce Mailing List.

Retrieved from https://lists.centos.org/pipermail/centos-announce/

2017-April/022350.html

Chamberlain, R., & Schommer, J. (2014, Jul). Using Docker to Support Reproducible

Research. Retrieved from https://figshare.com/articles/Using Docker

to Support Reproducible Research/1101910/1 doi: 10.6084/m9.figshare

.1101910.v1

Cohen, J. (1988). Statistical power analysis for the behavioural sciences.

Configuring TORQUE on compute nodes. (2012). Adaptive Comput-

ing. Retrieved from http://docs.adaptivecomputing.com/torque/4-1

-3/Content/topics/1-installConfig/configOnComputeNodes.htm (Ac-

cessed: 2018-08-28)

Consul by HashiCorp. (n.d.). Retrieved from https://www.consul.io/ (Accessed:

2018-09-01)

Content trust in Docker. (2018, Jun). Retrieved from https://docs.docker.com/

engine/security/trust/content trust/ (Accessed: 2018-09-01)

178

https://www.rfc-editor.org/rfc/rfc1123.txt
https://www.rfc-editor.org/rfc/rfc1123.txt
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/presta/
https://asc.llnl.gov/computing_resources/purple/archive/benchmarks/presta/
https://lists.centos.org/pipermail/centos-announce/2017-April/022350.html
https://lists.centos.org/pipermail/centos-announce/2017-April/022350.html
https://figshare.com/articles/Using_Docker_to_Support_Reproducible_Research/1101910/1
https://figshare.com/articles/Using_Docker_to_Support_Reproducible_Research/1101910/1
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/1-installConfig/configOnComputeNodes.htm
http://docs.adaptivecomputing.com/torque/4-1-3/Content/topics/1-installConfig/configOnComputeNodes.htm
https://www.consul.io/
https://docs.docker.com/engine/security/trust/content_trust/
https://docs.docker.com/engine/security/trust/content_trust/

Creasy, R. J. (1981). The origin of the VM/370 time-sharing system. IBM Journal

of Research and Development , 25 (5), 483–490.

de Alfonso, C., Calatrava, A., & Moltó, G. (2017). Container-based virtual elastic

clusters. Journal of Systems and Software, 127 , 1–11.

Des Ligneris, B., Scott, S. L., Naughton, T., & Gorsuch, N. (2003). Open Source

Cluster Application Resources (OSCAR): design, implementation and interest

for the scientific community. In Proceeding of 17th Annual International Sym-

posium on High Performance Computing Systems and Applications (HPCS

2003) (pp. 241–246).

DiRAC. (n.d.). Science and Technology Facilities Council. Retrieved from https://

dirac.ac.uk/ (Accessed: 2018-08-23)

Dixit, K. M. (1991). The SPEC benchmarks. Parallel computing , 17 (10-11), 1195–

1209.

Dongarra, J. J., Luszczek, P., & Petitet, A. (2003). The LINPACK benchmark: past,

present and future. Concurrency and Computation: practice and experience,

15 (9), 803–820.

Elghraoui, A. (2017, Nov). NIH-HPC/singularity-examples. National Institutes of

Health. Retrieved from https://singularity-hub.org/collections/267

(Accessed: 2018-08-23)

Emeneker, W., Jackson, D., Butikofer, J., & Stanzione, D. (2006). Dynamic Vir-

tual Clustering with Xen and Moab. In G. Min, B. Di Martino, L. T. Yang,

M. Guo, & G. Rünger (Eds.), Frontiers of High Performance Computing and

Networking – ISPA 2006 Workshops (pp. 440–451). Springer Berlin Heidel-

berg.

Emeneker, W., & Stanzione, D. (2006, Sept). HPC cluster readiness of Xen and User

Mode Linux. In 2006 IEEE International Conference on Cluster Computing

(pp. 1–8). doi: 10.1109/CLUSTR.2006.311870

179

https://dirac.ac.uk/
https://dirac.ac.uk/
https://singularity-hub.org/collections/267

Emeneker, W., & Stanzione, D. (2007, Sept). Dynamic Virtual Clustering. In

2007 IEEE International Conference on Cluster Computing (p. 84-90). doi:

10.1109/CLUSTR.2007.4629220

EPSRC strategy for the developing landscape of Tier-2 HPC in the UK. (n.d.).

Engineering and Physical Sciences Research Council. Retrieved from https://

epsrc.ukri.org/files/research/tier2hpcstrategy/ (Accessed: 2018-09-

01)

Fast Datapath and Weave Net. (n.d.). Weaveworks. Retrieved from https://www

.weave.works/docs/net/latest/concepts/fastdp-how-it-works/ (Ac-

cessed: 2018-09-02)

Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014). IBM Research Re-

port: An Updated Performance Comparison of Virtual Machines and Linux

Containers. IBM Research Division, Austin Research Laboratory .

Figueiredo, R. J., Dinda, P. A., & Fortes, J. A. (2003). A case for grid computing on

virtual machines. In 23rd International Conference on Distributed Computing

Systems, 2003. Proceedings. (pp. 550–559).

Fink, J. (2014). Docker: a software as a service, operating system-level virtualization

framework. Code4Lib Journal , 25 .

Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., & Zhang, X.

(2006). Virtual Clusters for Grid Communities. In Sixth IEEE International

Symposium on Cluster Computing and the Grid (CCGRID’06) (Vol. 1, pp.

513–520).

Gable, G. (1994, Jan). Integrating case study and survey research methods: an

example in information systems. European Journal of Information Systems,

3 (2), 112–126. doi: 10.1057/ejis.1994.12

Geimer, M., Hoste, K., & McLay, R. (2014). Modern scientific software management

using EasyBuild and Lmod. In Proceedings of the First International Workshop

180

https://epsrc.ukri.org/files/research/tier2hpcstrategy/
https://epsrc.ukri.org/files/research/tier2hpcstrategy/
https://www.weave.works/docs/net/latest/concepts/fastdp-how-it-works/
https://www.weave.works/docs/net/latest/concepts/fastdp-how-it-works/

on HPC User Support Tools (pp. 41–51). IEEE Press. doi: 10.1109/HUST

.2014.8

Ghosh, S. (2017, Feb). satra/om-images. Retrieved from https://singularity

-hub.org/collections/87 (Accessed: 2018-08-23)

Gong, Y., He, B., & Zhong, J. (2015). Network performance aware MPI collective

communication operations in the cloud. IEEE Transactions on Parallel and

Distributed Systems, 26 (11), 3079–3089.

Hanenberg, S. (2010, October). Faith, Hope, and Love: An Essay on Software

Science’s Neglect of Human Factors. SIGPLAN Not., 45 (10), 933–946. doi:

10.1145/1932682.1869536

Hess, B., Kutzner, C., Van Der Spoel, D., & Lindahl, E. (2008). GROMACS 4: al-

gorithms for highly efficient, load-balanced, and scalable molecular simulation.

Journal of Chemical Theory and Computation, 4 (3), 435–447.

Higgins, J., & Holmes, V. (2017). Teaching parallel and distributed computing

with container virtualization. In Proceedings of EduHPC-17: Workshop on

Education for High-Performance Computing at SC17.

Higgins, J., Holmes, V., & Venters, C. (2015). Orchestrating Docker Containers

in the HPC Environment. In J. M. Kunkel & T. Ludwig (Eds.), ISC High

Performance 2015: High Performance Computing (pp. 506–513). Springer

International Publishing.

Higgins, J., Holmes, V., & Venters, C. (2016, July). Securing user defined con-

tainers for scientific computing. In 2016 International Conference on High

Performance Computing Simulation (HPCS) (pp. 449–453). doi: 10.1109/

HPCSim.2016.7568369

Higgins, J., Holmes, V., & Venters, C. (2017a). Autonomous Discovery and Manage-

ment in Virtual Container Clusters. The Computer Journal , 60 (2), 240-252.

doi: 10.1093/comjnl/bxw102

181

https://singularity-hub.org/collections/87
https://singularity-hub.org/collections/87

Higgins, J., Holmes, V., & Venters, C. (2017b, March). VCC: A framework for build-

ing containerized reproducible cluster software environments. The Journal of

Open Source Software, 2 (11). doi: 10.21105/joss.00208

Higgins, J., Holmes, V., & Venters, C. (2017c, March). VCC: A framework for build-

ing containerized reproducible cluster software environments (code repository).

doi: 10.6084/m9.figshare.4763857.v1

Holmes, V., & Kureshi, I. (2015). Developing High Performance Computing Re-

sources for Teaching Cluster and Grid Computing Courses. Procedia Computer

Science, 51 , 1714–1723.

Huang, W., Liu, J., Abali, B., & Panda, D. K. (2006). A Case for High Per-

formance Computing with Virtual Machines. In Proceedings of the 20th An-

nual International Conference on Supercomputing (pp. 125–134). ACM. doi:

10.1145/1183401.1183421

ISO 9241-11 Ergonomic Requirements for Office Work with Visual Display Termi-

nals (VDTs): Part 11: Guidance on Usability (Vol. 1998; Standard). (1998).

International Organization for Standardization.

Jacobsen, D. M., & Canon, R. S. (2015). Contain this, unleashing Docker for HPC.

Proceedings of the Cray User Group.

Janet network. (n.d.). Retrieved from https://www.jisc.ac.uk/janet (Accessed:

2018-09-02)

Jasak, H. (2009). OpenFOAM: open source CFD in research and industry. Inter-

national Journal of Naval Architecture and Ocean Engineering , 1 (2), 89–94.

Jette, M., & Auble, D. (2010). SLURM: Resource Management from the Simple to

the Sophisticated. In Lawrence Livermore National Laboratory, SLURM User

Group Meeting.

Keahey, K., Doering, K., & Foster, I. (2004). From Sandbox to Playground:

Dynamic Virtual Environments in the Grid. In Proceedings of the 5th

182

https://www.jisc.ac.uk/janet

IEEE/ACM International Workshop on Grid Computing (pp. 34–42). doi:

10.1109/GRID.2004.32

Keahey, K., Foster, I., Freeman, T., Zhang, X., & Galron, D. (2005). Virtual

Workspaces in the Grid. In J. C. Cunha & P. D. Medeiros (Eds.), Euro-Par

2005 Parallel Processing (pp. 421–431). Springer Berlin Heidelberg.

Keahey, K., & Freeman, T. (2008). Contextualization: Providing one-click virtual

clusters. In 2008 IEEE Fourth International Conference on eScience (pp. 301–

308).

Keahey, K., Freeman, T., Lauret, J., & Olson, D. (2007). Virtual workspaces

for scientific applications. In Journal of Physics: Conference Series (Vol. 78,

p. 012038).

Kivity, A., Kamay, Y., Laor, D., Lublin, U., & Liguori, A. (2007). KVM: the Linux

virtual machine monitor. In Proceedings of the Linux Symposium (Vol. 1, pp.

225–230).

Kniep, C. (2014). Containerization of High Performance Compute Workloads us-

ing Docker. Retrieved from http://doc.qnib.org/2014-11-05 Whitepaper

Docker-MPI-workload.pdf

Kniep, C. (2016). Multi-host containerised hpc cluster. Retrieved from https://

archive.fosdem.org/2016/schedule/event/hpc bigdata hpc cluster/

(Presented at FOSDEM 2016)

Kolyshkin, K. (2006). Virtualization in Linux. OpenVZ Whitepaper . Retrieved from

https://download.openvz.org/doc/openvz-intro.pdf

Kurtzer, G. (2016). Singularity 2.1.2 - Linux application and environment containers

for science.

Kurtzer, G. M., Sochat, V., & Bauer, M. W. (2017). Singularity: Scientific containers

for mobility of compute. PloS one, 12 (5), e0177459.

Kutch, P. (2011). PCI-SIG SR-IOV primer: An introduction to SR-

183

http://doc.qnib.org/2014-11-05_Whitepaper_Docker-MPI-workload.pdf
http://doc.qnib.org/2014-11-05_Whitepaper_Docker-MPI-workload.pdf
https://archive.fosdem.org/2016/schedule/event/hpc_bigdata_hpc_cluster/
https://archive.fosdem.org/2016/schedule/event/hpc_bigdata_hpc_cluster/
https://download.openvz.org/doc/openvz-intro.pdf

IOV technology. Intel application note, 321211–002. Retrieved

from https://www.intel.sg/content/dam/doc/application-note/

pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

Le, E., & Paz, D. (2017). Performance Analysis of Applications using Singularity

Container on SDSC Comet. In Proceedings of the Practice and Experience

in Advanced Research Computing 2017 on Sustainability, Success and Impact

(p. 66).

Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psy-

chometric evaluation and instructions for use. International Journal of Hu-

man–Computer Interaction, 7 (1), 57-78. doi: 10.1080/10447319509526110

Lewis, J. R., & Sauro, J. (2009). The Factor Structure of the System Usability

Scale. In M. Kurosu (Ed.), Human Centered Design (pp. 94–103). Springer

Berlin Heidelberg.

Li, P. (2010). Selecting and using virtualization solutions: our experiences with

VMware and VirtualBox. Journal of Computing Sciences in Colleges, 25 (3),

11–17.

Liu, J., Huang, W., Abali, B., & Panda, D. K. (2006). High Performance VMM-

bypass I/O in Virtual Machines. In Proceedings of the Annual Conference on

USENIX ’06 Annual Technical Conference (pp. 3–3). USENIX Association.

Ludovici, F., & Pfeifer, H. P. (2011, Nov). tc-netem(8) - Linux manual page [Com-

puter software manual].

Luszczek, P., Bailey, D. H., Dongarra, J. J., Kepner, J., Lucas, R. F., Rabenseifner,

R., & Takahashi, D. (2006). The HPC Challenge (HPCC) benchmark suite. In

Proceedings of the 2006 ACM/IEEE conference on Supercomputing (p. 213).

Luszczek, P., Meek, E., Moore, S., Terpstra, D., Weaver, V. M., & Dongarra, J.

(2012). Evaluation of the HPC Challenge Benchmarks in Virtualized Envi-

ronments. In M. Alexander et al. (Eds.), Euro-Par 2011: Parallel Processing

184

https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf
https://www.intel.sg/content/dam/doc/application-note/pci-sig-sr-iov-primer-sr-iov-technology-paper.pdf

Workshops (pp. 436–445). Springer Berlin Heidelberg.

Merkel, D. (2014). Docker: lightweight linux containers for consistent development

and deployment. Linux Journal , 2014 (239), 2.

The MIT license. (2006). Retrieved 2018-02-18, from https://opensource.org/

licenses/MIT

Morgua, A. (2015). Nesting Containers: Real Life Observations. (Presented at

DockerCon EU 2015)

Musleh, M., Pai, V., Walters, J. P., Younge, A., & Crago, S. (2014). Bridging the

virtualization performance gap for HPC using SR-IOV for InfiniBand. In 2014

IEEE 7th International Conference on Cloud Computing (pp. 627–635).

Nussbaum, L., Anhalt, F., Mornard, O., & Gelas, J.-P. (2009). Linux-based virtu-

alization for HPC clusters. In Montreal Linux Symposium.

OpenFOAM Build Guide. (n.d.). OpenCFD Ltd. Retrieved from https://www

.openfoam.com/code/build-guide.php (Accessed: 2018-09-02)

Open Grid Scheduler/Grid Engine. (n.d.). http://gridscheduler.sourceforge

.net/. (Accessed: 2018-09-02)

Orfanou, K., Tselios, N., & Katsanos, C. (2015). Perceived usability evaluation

of learning management systems: Empirical evaluation of the system usability

scale. The International Review of Research in Open and Distributed Learning ,

16 (2).

OSCAR homepage. (2005, Apr). Retrieved from http://www.csm.ornl.gov/

oscar/ (Accessed: 2018-09-02)

Overview of Docker Hub. (n.d.). Docker Documentation. Retrieved from https://

docs.docker.com/docker-hub/ (Accessed: 2018-08-23)

Priedhorsky, R., & Randles, T. (2017). Charliecloud: Unprivileged containers for

user-defined software stacks in HPC. In Proceedings of the International Con-

ference for High Performance Computing, Networking, Storage and Analysis

185

https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT
https://www.openfoam.com/code/build-guide.php
https://www.openfoam.com/code/build-guide.php
http://gridscheduler.sourceforge.net/
http://gridscheduler.sourceforge.net/
http://www.csm.ornl.gov/oscar/
http://www.csm.ornl.gov/oscar/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/

(pp. 36:1–36:10). doi: 10.1145/3126908.3126925

Quesenbery, W. (2001). What Does Usability Mean: Looking Beyond ’Ease of

Use’. In Proceedings of the 48th Annual Conference, Society for Technical

Communication (Vol. 48, pp. 432–436).

Rabenseifner, R., Koniges, A. E., & Livermore, L. (2001). The Parallel Communi-

cation and I/O Bandwidth Benchmarks: b eff and b eff io. In Proc. of 43rd

cray user group conference, indian wells, california, usa.

Richling, S., Hau, S., Kredel, H., & Kruse, H.-G. (2011). Operating two InfiniBand

grid clusters over 28 km distance. International Journal of Grid and Utility

Computing , 2 (4), 303–312.

Rodŕıguez-Haro, F., Freitag, F., Navarro, L., Hernánchez-sánchez, E., Faŕıas-

Mendoza, N., Guerrero-Ibáñez, J. A., & González-Potes, A. (2012). A sum-

mary of virtualization techniques. Procedia Technology , 3 , 267–272.

The R Project for Statistical Computing. (n.d.). The R Foundation. Retrieved from

https://www.r-project.org/ (Accessed: 2018-08-23)

Runeson, P., & Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empirical Software Engineering , 14 (2), 131.

Sauro, J. (2011). A Practical Guide to the System Usability Scale: Background,

Benchmarks & Best practices. Measuring Usability LLC.

Sauro, J., & Lewis, J. R. (2016). Quantifying the user experience: Practical statistics

for user research. Morgan Kaufmann.

Shiratori, T. (2017, Dec). TakahisaShiratori/openfoam. Retrieved from https://

singularity-hub.org/collections/386 (Accessed: 2018-08-23)

Sochat, V. (2017, Oct). Singularity Registry: Open Source Registry for Singularity

Images. The Journal of Open Source Software, 2 (18), 426. doi: 10.21105/

joss.00426

Soltesz, S., Pötzl, H., Fiuczynski, M. E., Bavier, A., & Peterson, L. (2007).

186

https://www.r-project.org/
https://singularity-hub.org/collections/386
https://singularity-hub.org/collections/386

Container-based Operating System Virtualization: A Scalable, High-

performance Alternative to Hypervisors. In ACM SIGOPS Operating Systems

Review (Vol. 41, pp. 275–287).

Sotiriadis, S., Bessis, N., Xhafa, F., & Antonopoulos, N. (2012). From meta-

computing to interoperable infrastructures: A review of meta-schedulers for

HPC, grid and cloud. In 2012 IEEE 26th International Conference on Ad-

vanced Information Networking and Applications(AINA) (pp. 874–883).

StarCluster. (n.d.). http://star.mit.edu/cluster/.

StarCluster Plugin Documentation. (2011). Retrieved from http://star.mit.edu/

cluster/docs/latest/plugins/index.html (Accessed: 2015-04-14)

Sterling, T., Anderson, M., & Brodowicz, M. (2017). High Performance Computing:

Modern Systems and Practices. Morgan Kaufmann.

Tikotekar, A., Vallée, G., Naughton, T., Ong, H., Engelmann, C., & Scott, S. L.

(2009). An Analysis of HPC Benchmarks in Virtual Machine Environments.

In E. César et al. (Eds.), Euro-Par 2008 Workshops - Parallel Processing (pp.

63–71). Springer Berlin Heidelberg.

Top500 FAQ. (n.d.). Top500.org. Retrieved from https://www.top500.org/

resources/frequently-asked-questions/ (Accessed: 2019-01-10)

Turilli, M., Santcroos, M., & Jha, S. (2018). A comprehensive perspective on pilot-

job systems. ACM Computing Surveys (CSUR), 51 (2), 43.

Using etcd. (n.d.). Red Hat, Inc. Retrieved from https://coreos.com/etcd/

(Accessed: 2018-09-02)

Using Host libraries: GPU drivers and OpenMPI BTLs. (2017, May). Re-

trieved from http://singularity.lbl.gov/tutorial-gpu-drivers-open

-mpi-mtls (Accessed: 2018-08-23)

Vallée, G., Naughton, T., Ong, H., Tikotekar, A., Engelmann, C., Bland, W., . . .

Scott, S. L. (2008). Virtual System Environments. Systems and Virtualization

187

http://star.mit.edu/cluster/
http://star.mit.edu/cluster/docs/latest/plugins/index.html
http://star.mit.edu/cluster/docs/latest/plugins/index.html
https://www.top500.org/resources/frequently-asked-questions/
https://www.top500.org/resources/frequently-asked-questions/
https://coreos.com/etcd/
http://singularity.lbl.gov/tutorial-gpu-drivers-open-mpi-mtls
http://singularity.lbl.gov/tutorial-gpu-drivers-open-mpi-mtls

Management. Standards and New Technologies, 18 , 72–83.

Vallée, G., Naughton, T., & Scott, S. L. (2007). System Management Software for

Virtual Environments. In Proceedings of the 4th International Conference on

Computing Frontiers (pp. 153–160). ACM. doi: 10.1145/1242531.1242555

Walters, J. P., Chaudhary, V., Cha, M., Guercio Jr, S., & Gallo, S. (2008). A Com-

parison of Virtualization Technologies for HPC. In 22nd International Con-

ference on Advanced Information Networking and Applications (AINA 2008)

(pp. 861–868).

Weave Net. (n.d.). Weaveworks. Retrieved from https://www.weave.works/oss/

net/ (Accessed: 2018-08-23)

Younge, A. J., Henschel, R., Brown, J. T., Von Laszewski, G., Qiu, J., & Fox,

G. C. (2011). Analysis of Virtualization Technologies for High Performance

Computing Environments. In 2011 IEEE 4th International Conference on

Cloud Computing (pp. 9–16).

Youseff, L., Wolski, R., Gorda, B., & Krintz, C. (2006). Evaluating the Performance

Impact of Xen on MPI and Process Execution For HPC Systems. In First In-

ternational Workshop on Virtualization Technology in Distributed Computing

(VTDC 2006). doi: 10.1109/VTDC.2006.4

Yu, H., & Huang, W. (2015). Building a Virtual HPC Cluster with Auto Scaling

by the Docker. CoRR, abs/1509.08231 . Retrieved from http://arxiv.org/

abs/1509.08231

Zhang, S., Boland, L., Coddington, P., & Sevior, M. (2014). Dynamic VM Provision-

ing for TORQUE in a Cloud Environment. In Journal of Physics: Conference

Series (Vol. 513, p. 032107).

Zhang, X., Keahey, K., Foster, I., & Freeman, T. (2005). Virtual Cluster Workspaces

for Grid Applications. Argonne National Laboratory, Tech. Rep. ANL/MCS-

P1246-0405 .

188

https://www.weave.works/oss/net/
https://www.weave.works/oss/net/
http://arxiv.org/abs/1509.08231
http://arxiv.org/abs/1509.08231

Appendices

189

Appendix A

Engagement with Research

Community

Refereed Publications

Higgins, J., Holmes, V., & Venters, C. (2015, July). Orchestrating docker contain-

ers in the HPC environment. In International Conference on High Performance

Computing (pp. 506-513). Springer.

Abstract: Linux container technology has more than proved itself useful in cloud

computing as a lightweight alternative to virtualisation, whilst still offering good

enough resource isolation. Docker is emerging as a popular runtime for managing

Linux containers, providing both management tools and a simple file format. Re-

search into the performance of containers compared to traditional Virtual Machines

and bare metal shows that containers can achieve near native speeds in processing,

memory and network throughput. A technology born in the cloud, it is making

inroads into scientific computing both as a format for sharing experimental applica-

191

tions and as a paradigm for cloud based execution. However, it has unexplored uses

in traditional cluster and grid computing. It provides a run time environment in

which there is an opportunity for typical cluster and parallel applications to execute

at native speeds, whilst being bundled with their own specific (or legacy) library

versions and support software. This offers a solution to the Achilles heel of cluster

and grid computing that requires the user to hold intimate knowledge of the local

software infrastructure. Using Docker brings us a step closer to more effective job

and resource management within the cluster by providing both a common definition

format and a repeatable execution environment. In this paper we present the results

of our work in deploying Docker containers in the cluster environment and an eval-

uation of its suitability as a runtime for high performance parallel execution. Our

findings suggest that containers can be used to tailor the run time environment for

an MPI application without compromising performance, and would provide better

Quality of Service for users of scientific computing.

Higgins, J., Holmes, V., & Venters, C. (2016, July). Securing user defined containers

for scientific computing. In High Performance Computing & Simulation (HPCS),

2016 International Conference on (pp. 449-453). IEEE.

Abstract: Linux containers and Docker have gained immense popularity as a

lightweight alternative to hypervisor based Virtual Machines (VMs). In the con-

text of High Performance Computing and the scientific community, it is clear that

containers can serve many useful purposes from system administration, to improved

cluster resource management and as a format for sharing reproducible research.

However, when compared to VMs, containers seem to trade isolation for perfor-

mance and ease of use, which poses unique security challenges. In this paper we

review how Docker is being used in science, highlight easy to perform exploits, and

192

evaluate the impact of these on HPC deployments. We also summarise a number of

strategies for hardening such a system to reduce the vulnerability of hosting User

Defined Containers. Based on these, an original solution to enforce default options

and container ownership for nonadministrative users in the HPC use case is pre-

sented, in addition to the experience of implementing such a system on a cluster at

the University of Huddersfield.

Higgins, J., Holmes, V., & Venters, C. (2017). Autonomous Discovery and Manage-

ment in Virtual Container Clusters. The Computer Journal, 60(2), 240-252.

Abstract: Global software stacks on scientific cluster computing resources are re-

quired to provide a homogeneous software environment which is typically inflexible.

Efforts to integrate Virtual Machines (VMs), in order to abstract the software envi-

ronment of various scientific applications, suffer from performance limitations and

require systems administration expertise to maintain. However, the motivation is

clear; in addition to increasing resource utilization, the burden of supporting new

software installations on existing systems can be reduced. In this paper, we introduce

the Virtual Container Cluster (VCC) that encapsulates a typical HPC software en-

vironment within Docker containers. The novel component cluster–watcher enables

context aware discovery and configuration of the virtual cluster. Containers offer

a lightweight alternative to VMs that more closely match the native performance,

and presents a solution that is more accessible to customization by the average user.

Combined with a Software Defined Networking (SDN) technology, the VCC enables

dynamic features such as transparent scaling and spanning across multiple physical

resources. Although SDN introduces an additional performance limitation, within

the context of a parallel communication network, the benchmarking demonstrates

that this cost is application dependent. The Linpack benchmarking shows that

193

the overhead of container virtualization and SDN interconnect is comparable to the

native performance.

Higgins, J., Holmes, V., & Venters, C. (2017). VCC: A framework for building

containerized reproducible cluster software environments. The Journal of Open

Source Software, 2(11).

Abstract: The problem of portability and reproducibility of the software used to

conduct computational experiments has recently come to the fore. Container vir-

tualisation has proved to be a powerful tool to achieve portability of a code and

it’s execution environment, through runtimes such as Docker, LXC, Singularity and

others - without the performance cost of traditional Virtual Machines. However,

scientific software often depends on a system foundation that provides middleware,

libraries, and other supporting software in order for the code to execute as intended.

Typically, container virtualisation addresses only the portability of the code itself,

which does not make it inherently reproducible. For example, a containerized MPI

application may offer binary compatibility between different systems, but for exe-

cution as intended, it must be run on an existing cluster that provides the correct

interfaces for parallel MPI execution. As a greater demand to accomodate a di-

verse range of disciplines is placed on high performance and cluster resources, the

ability to quickly create and teardown reproducible, transitory virtual environments

that are tailored for an individual task or experiment will be essential. The Vir-

tual Container Cluster (VCC) is a framework for building containers that achieve

this goal, by encapsulating a parallel application along with an execution model,

through a set of dependency linked services and built-in process orchestration. This

promotes a high degree of portability, and offers easier reproducibility by shipping

the application along with the foundation required to execute it - whether that be

194

an MPI cluster, big data processing framework, bioinformatics pipeline, or any other

execution model.

Higgins, J., & Holmes, V. (2017) Teaching parallel computing with container vir-

tualization. Accepted In Proceedings of the Workshop on Education for High Per-

formance Computing (EduHPC) at SC17. Denver, CO, USA. Pending Publica-

tion.

Abstract: Incorporating modules that equip students with parallel programming

and high performance computing skills into core computing and engineering courses

poses unique technical challenges. A typical PC laboratory environment may not

be suitable, and allowing learners access to a production resource may introduce an

unacceptable risk, if it is even possible. For decades, Beowulf clusters have offered

an attractive solution where a system can be built using commodity components,

often by the students themselves. This can instil in the learner both an under-

standing of parallel code and how it is orchestrated on the hardware - a strategy

used successfully in delivering courses at the University of Huddersfield. However,

there are two problems; Firstly, the depth of knowledge required to be learnt in

order to successfully build, program and profile a cluster. Secondly, the use of seem-

ingly antiquated tools in order to achieve this. In this paper, we outline some of

the experience of integrating parallel and distributed computing into our courses.

In addition, we present a novel, cross-platform virtual cluster toolkit developed to

address the technical requirements of delivering such courses.

Higgins, J., Aagela, A., Al-Jody, T. & Holmes, V. (2018) Inspiring the Next Gener-

ation of HPC Engineers with Reconfigurable, Multi-Tenant Resources for Teaching

195

and Research. Publication Pending. Submitted to Computer Science Education,

Taylor & Francis.

Abstract: There is a tradition at our university for teaching and research in High

Performance Computing (HPC) systems engineering. With exascale computing on

the horizon, and a shortage of HPC talent, there is a need for new research computing

specialists to secure the future of research computing. Whilst many institutions

provide research computing training for users within their particular domain, few

offer HPC engineering and infrastructure related courses, making it difficult for

students to acquire these skills. This paper outlines how and why we are training

students in HPC systems engineering skills, including technologies used in delivering

this goal. We demonstrate a potential for a multi-tenant system for education and

research which can be supported by other institutions, using novel container and

cloud based architecture. An evaluation of our activities over the last 2 years is given

in terms of recruitment metrics, skills audit feedback from students, and research

outputs enabled by the multi-tenant usage of the resource.

Higgins, J., Al-Jody, T. & Holmes, V. (2018) Rapid Deployment of Bare-Metal

and In-Container HPC clusters using OpenHPC playbooks. Publication Pending.

Submitted to the HPC Systems Professionals Workshop, held in conjunction with

SC18.

Abstract: In this paper, we present a toolbox of reusable Ansible roles and play-

books in order to configure a cluster software environment described by the freely

available OpenHPC recipes. They can be composed in order to deploy a robust

and reliable cluster environment, instilled with the best practise offered by the

OpenHPC packaging, and the repeatability and integrity guarantees of the con-

196

figuration managed approach. With container virtualization setting a new trend in

scientific software management, we focus this effort on supporting the deployment of

such environments on both bare-metal and container-based targets using the Virtual

Container Cluster framework.

Talks

Higgins, J (2017, June). VCC: building reproducible cluster software environ-

ments. Talk presented at the Docker Containers for Reproducible Research Work-

shop (C4RR), Cambridge, UK.

Abstract: Does putting code inside a container really make your experiment re-

producible? Scientific software often depends on a system foundation that provides

libraries, middleware and other supporting software in order for the code to be

executed as intended. With container virtualization, some of these things can be

shipped along with the application - clearly reducing the barrier to reproducibility.

For example, MPI applications can be containerized and the container itself executed

in place of the original program. However, whilst this containerized code may offer

compatibility between different system environments, for execution as intended, it

must still be run on a cluster that provides the correct interface for parallel MPI

execution. The VCC is a framework for building containers that ship the application

along with the foundation required to execute it - whether that is an MPI cluster,

big data processing framework, bioinformatics pipeline or other execution models.

This gives us the ability to quickly create and teardown complex virtual environ-

ments tailored for a task or experiment. These can be used as both the primary

execution environment and as the method for reproducibility, without requiring the

underlying system to provide anything but the container runtime. In this talk we

197

will introduce the tool and the principles of operation, using example applications

to demonstrate it from the point of view of the experiment creator and a person who

wants to reproduce an experiment. The tool has been utilised successfully within the

University of Huddersfield, and this experience will also be presented – where do we

draw the line at how much of the system should be encapsulated in a container, how

we adapted our computing resources to support the VCC, and how we convinced

users to use it.

Higgins, J (2017, September). Virtual container communities. Talk presented at the

Second Conference of Research Software Engineers, Manchester, UK.

Abstract: There is no doubt that container virtualisation is a useful tool for re-

producible research. An important result of its adoption is that complex, well doc-

umented environments will be accessible for others to reuse. The demand for these

portable environments will grow, especially in the long tail of science, to ease the

burden of translating experiment to execution and publication. However, the exe-

cution system itself is often overlooked when defining them. Where do we draw the

line that separates system from experiment? For example, if an experiment requires

Hadoop, do we need to distribute Hadoop with the experiment? By encapsulating

an execution model along with the code, the utility of containers can be extended

beyond reproducibility. In this talk we present a framework that can be used to

deploy temporary and permanent cluster software environments within containers.

This approach improves the portability and enables dynamic features such as scal-

ing and spanning, transparently of the application. Through nested virtualisation of

these environments, we can also move a step closer toward overcoming the technical

constraints of facilitating resource sharing at scale – whilst satisfying the needs of

every user community.

198

Appendix B

Surveys and Printed

Materials

The System Usability Scale (SUS) and Skills Audit surveys, as issued to students

during the Teaching Case Study outlined in Chapter 7, are reproduced in Figures

B.1 and B.2 respectively.

199

Virtual Container Cluster

Student number: ______________________________

For the next set of questions, please think about the usability of the VCC in terms of the grid work we did this
term. Don't think too hard, just record your immediate response to the question. If you are not sure of your
answer, or you feel that you cannot answer it, just mark down the middle and pick 3. This is really
important...... don't just pick number 1 or 5 if you don't know!

1 2 3 4 5
I think that I would like to use this system frequently strongly disagree strongly agree

I found the system unnecessarily complex strongly disagree strongly agree

I thought the system was easy to use strongly disagree strongly agree

I think that I would need the support of a technical person to be able to
use this system

strongly disagree strongly agree

I found the various functions in this system were well integrated strongly disagree strongly agree

I thought there was too much inconsistency in this system strongly disagree strongly agree

I would imagine that most people would learn to use this system very
quickly

strongly disagree strongly agree

I found the system very cumbersome to use strongly disagree strongly agree

I felt very confident using the system strongly disagree strongly agree

I needed to learn a lot of things before I could get going with this
system

strongly disagree strongly agree

These last questions are yes and no answers. If you want to elaborate on your choices, there will be a free text
box at the end. Clearly mark you choice by circling it or crossing the other options out.

Did you find it easier to work with the system on just the head node? Yes / No

Do you think it would have been better to use all 3 nodes in each group to set up the grid?
Yes / No

Do you feel like you missed out on anything by not setting up the other nodes when building the grid?
Yes / No

Do you feel like using the VCC has prepared you to use a real cluster or grid? Yes / No

Has your level of proficiency in Linux improved since you started the VCC?
Yes / No / I never used Linux before

Do you think you would know how to use a similar Linux system in future after learning using the VCC?
Yes / No

Finally, please add any other comments you would like me to consider (related to the VCC software itself):

Figure B.1: SUS Survey for Teaching Case Study

200

S
tu

d
en

t
p

ro
fi

ci
en

cy
 s

u
rv

ey
 f

or
 N

H
E

25
30

 a
n

d
 N

M
E

35
02

N
am

e
/ s

tu
de

nt
 n

um
be

r:

C
ou

rs
e

/ p
at

hw
ay

:

G
ro

up
 n

am
e:

P
le

as
e

re
ad

 th
e

sk
ill

s
lis

te
d

in
 th

e
ta

bl
e

an
d

ra
te

 y
ou

r
le

ve
l o

f
pr

of
ic

ie
nc

y
by

 ti
ck

in
g

th
e

bo
x

th
at

 is
 a

pp
lic

ab
le

 to
 y

ou
. P

le
as

e
re

ad
 th

e
de

fi
ni

ti
on

s
on

 th
e

re
ve

rs
e

to

cl
ar

if
y

w
ha

t e
ac

h
le

ve
l m

ea
ns

.A

N
o

k
n

ow
le

d
ge

B
as

ic

kn
ow

le
d

ge
N

ov
ic

e
In

te
rm

ed
ia

te
A

d
va

n
ce

d
E

xp
er

t

T
ro

ub
le

sh
oo

tin
g

P
C

 h
ar

dw
ar

e
(B

IO
S

, m
em

or
y

er
ro

rs
, r

ep
la

ci
ng

 p
ar

ts
)

M
ea

su
ri

ng
 p

er
fo

rm
an

ce
 o

f
a

PC

In
st

al
li

ng
 s

of
tw

ar
e

fr
om

 th
e

in
te

rn
et

C
om

pi
li

ng
 a

nd
 in

st
al

lin
g

so
ft

w
ar

e
fr

om
 s

ou
rc

e
co

de

B
as

ic
 n

et
w

or
ki

ng
 (

IP
 a

dd
re

ss
in

g,
 h

os
t n

am
es

, p
in

g)

C
om

pe
te

nc
y

w
ith

 L
in

ux
 o

r
ot

he
r

U
ni

x-
lik

e
O

pe
ra

tin
g

Sy
st

em

P
ro

gr
am

m
in

g
in

 C

P
ro

gr
am

m
in

g
in

 a
ny

 o
th

er
 la

ng
ua

ge

P
ar

al
le

l p
ro

gr
am

m
in

g
us

in
g

a
lib

ra
ry

 s
uc

h
as

 M
P

I

C
od

e
ex

ec
ut

io
n

m
od

el
s

(s
er

ia
l /

 p
ar

al
le

l)

P
ar

al
le

is
at

io
n

st
ra

te
gi

es
 (

em
ba

ra
ss

in
g

/ d
ep

en
de

nt
 /

in
he

re
nt

ly
 s

er
ia

l)

C
PU

 (
in

st
ru

ct
io

n)
 le

ve
l p

ar
al

le
lis

m
 (

fl
yn

n'
s

ta
xo

no
m

y)

Figure B.2: Skills Audit for Teaching Case Study

201

202

Appendix C

Data

Benchmarking Results

The Linpack and OpenFOAM benchmarking results are shown in Tables C.1 and

C.2 respectively. The spanning queue simulator results are shown in Tables C.3 and

C.4. The case study results from Chapter 6 are shown in Tables C.5 and C.6 for

Campus Grid and Inter-institution spanning respectively.

Usability Survey Results

The System Usability Scale (SUS) results are shown in Tables C.7 and C.8 for the

VCC and OSCAR solutions respectively.

Skills Audit Results

The Skills Audit questionnaire results are shown in Tables C.9 and C.10 for the

VCC, and C.11 and C.12 for OSCAR.

203

Latency Native Mbps Native Gflops SDN Mbps SDN Gflops
0.5 941 186
1 952 184
2 923 173
5 906 182 918 178
10 926 184 915 176
50 923 177 890 163
100 916 158 895 142
200 751 52 714 65

Table C.1: Linpack Latency Scalability Results

Latency Bike (hours) Prop (hours)
0.1 6.20 5.09
1 6.11 5.98
5 8.89 10.58
10 11.09 16.93
20 17.14 29.72
50 17.92 35.07
100 68.07 139.38

Table C.2: OpenFOAM Latency Scalability Results

204

Original

Date Queued Run
2016-03-31 31 3
2016-04-30 253 471
2016-05-31 175 111
2016-06-30 23 65
2016-07-31 79 99
2016-08-31 185 47
2016-09-30 170 105
2016-10-31 233 415
2016-11-30 95 113
2016-12-31 17 224
2017-01-31 149 26
2017-02-28 96 209
2017-03-31 15 0

Spanned

Date Queued Run Spanned Forwarded
2016-03-31 9 3 0 22
2016-04-30 66 471 0 187
2016-05-31 37 111 0 138
2016-06-30 23 65 0 0
2016-07-31 69 99 1 9
2016-08-31 184 47 1 0
2016-09-30 170 105 0 0
2016-10-31 233 415 0 0
2016-11-30 78 113 0 17
2016-12-31 17 224 0 0
2017-01-31 149 26 0 0
2017-02-28 96 209 0 0
2017-03-31 15 0 0 0

Table C.3: Simulator Results - Eridani

205

Original

Date Queued Run
2016-03-31 98 54
2016-04-30 98 176
2016-05-31 9 30
2016-06-30 83 0
2016-07-31 38 66
2016-08-31 59 1
2016-09-30 33 0
2016-11-30 23 3
2016-12-31 7 0
2017-01-31 4 0
2017-02-28 11 0
2017-03-31 1 0

Spanned

Date Queued Run Spanned Forwarded
2016-03-31 29 54 1 68
2016-04-30 9 176 29 60
2016-05-31 4 30 0 5
2016-06-30 7 0 0 76
2016-07-31 18 66 12 8
2016-08-31 42 1 4 13
2016-09-30 25 0 5 3
2016-11-30 3 3 8 12
2016-12-31 1 0 2 4
2017-01-31 4 0 0 0
2017-02-28 9 0 2 0
2017-03-31 1 0 0 0

Table C.4: Simulator Results - Ascella

206

Run 1

Job ID Hosts Start time End time Wall (s)
o19 clusterA4+clusterA5 1519859367 1519862132 2765
o20 clusterA2+clusterA3 1519859326 1519862032 2706
o21 clusterA1+clusterB3 1519859548 1519862159 2611
o22 clusterB1+clusterB2 1519859540 1519861706 2166
o23 clusterB1+clusterB2 1519861707 1519863838 2131
o24 clusterA1+clusterB3 1519862161 1519864772 2611
o25 clusterA2+clusterA3 1519862033 1519864759 2726
o26 clusterA4+clusterA5 1519862135 1519864895 2760
o27 clusterB1+clusterB2 1519863839 1519865965 2126
o28 clusterA1+clusterB3 1519864773 1519867394 2621

Run 2

Job ID Execution Host Start time End time Wall (s)
o53 clusterA4+clusterA5 1519896360 1519899024 2664
o54 clusterA2+clusterA3 1519896319 1519899021 2702
o55 clusterA1+clusterB3 1519896541 1519899175 2634
o56 clusterB1+clusterB2 1519896532 1519898665 2133
o57 clusterB1+clusterB2 1519898667 1519900820 2153
o58 clusterA1+clusterB3 1519899176 1519901814 2638
o59 clusterA4+clusterA5 1519899025 1519901674 2649
o60 clusterA2+clusterA3 1519899023 1519901745 2722
o61 clusterB1+clusterB2 1519900822 1519902957 2135
o62 clusterA1+clusterB3 1519901816 1519904430 2614

Table C.5: Campus Grid Spanning Case Study Results

207

Run 1

Job ID Execution Host Start time End time Wall (s)
o100 clusterB1+clusterB2 1521914112 1521916246 2134
o101 clusterA2+clusterA3 1521914785 1521917478 2693
o102 clusterA4+clusterA5 1521914550 1521917209 2659
o103 clusterB1+clusterB2 1521916248 1521918369 2121
o104 clusterA2+clusterA3 1521917480 1521920107 2627
o105 clusterA4+clusterA5 1521917210 1521919932 2722
o106 clusterB1+clusterB2 1521918371 1521920523 2152
o97 clusterB1+clusterB2 1521911990 1521914111 2121
o98 clusterA2+clusterA3 1521912024 1521914784 2760
o99 clusterA4+clusterA5 1521911861 1521914548 2687

Run 2

Job ID Execution Host Start time End time Wall (s)
o107 clusterB1+clusterB2 1521922037 1521924177 2140
o108 clusterA2+clusterA3 1521922072 1521924646 2574
o109 clusterA4+clusterA5 1521921909 1521924563 2654
o110 clusterB1+clusterB2 1521924178 1521926309 2131
o111 clusterA2+clusterA3 1521924648 1521927207 2559
o112 clusterA4+clusterA5 1521924565 1521927155 2590
o113 clusterB1+clusterB2 1521926311 1521928450 2139
o114 clusterA2+clusterA3 1521927209 1521929768 2559
o115 clusterA4+clusterA5 1521927157 1521929780 2623
o116 clusterB1+clusterB2 1521928451 1521930604 2153

Table C.6: Inter-Institution Spanning Case Study Results

208

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS
3 2 4 3 4 5 4 3 4 5 52.5
4 1 4 4 4 3 3 3 3 2 62.5
3 4 3 3 4 3 2 3 4 3 50
3 1 4 2 4 3 3 3 4 4 62.5
4 2 1 3 1 5 3 5 3 3 35
3 3 3 3 4 3 4 2 3 3 57.5
5 1 5 1 5 1 5 1 5 1 100
4 2 3 2 3 3 4 3 5 4 62.5
5 2 5 1 5 2 4 1 5 1 92.5
5 5 5 3 5 1 5 1 3 3 75
4 3 3 4 3 3 3 4 3 5 42.5
4 4 4 3 4 3 4 4 5 3 60
4 3 5 4 4 3 3 3 4 4 57.5
3 4 4 4 4 3 3 3 4 4 50
3 3 4 3 4 3 3 3 4 5 52.5
5 1 5 4 5 1 5 1 5 2 90
4 1 4 1 3 4 4 1 4 2 75
4 3 4 2 4 2 3 3 3 2 65
4 3 4 4 3 3 4 4 4 3 55
4 3 3 5 4 3 3 3 2 4 45
3 4 4 5 3 4 3 3 3 5 37.5
4 3 4 3 3 3 5 3 3 3 60
3 1 4 1 4 2 3 2 4 3 72.5
3 1 4 2 4 2 4 2 4 1 77.5
4 2 4 2 4 2 3 2 4 3 70
5 2 4 2 4 2 4 1 4 5 72.5
3 2 4 2 4 2 3 4 4 2 65
3 2 2 2 3 4 2 3 2 4 42.5
3 4 3 3 3 3 4 3 4 4 50
4 2 4 2 4 2 4 2 4 2 75
3 3 4 4 5 3 4 2 4 5 57.5
3 2 4 2 4 2 4 1 4 3 72.5
3 4 3 3 3 1 3 3 2 5 45
3 4 4 3 3 3 4 3 3 4 50
5 1 5 1 5 1 5 1 5 2 97.5
2 3 2 2 2 2 1 2 2 5 37.5
2 3 2 2 2 2 3 2 2 5 42.5
3 3 4 3 4 3 4 2 4 2 65
2 4 3 4 2 3 2 3 2 5 30
5 1 5 1 5 1 5 1 5 1 100
3 2 2 1 3 2 4 3 2 4 55
4 1 5 1 5 1 3 2 4 2 85
3 5 1 3 1 5 2 5 1 4 15
3 4 3 5 4 3 4 3 2 4 42.5
2 3 4 3 4 3 3 3 2 3 50
4 3 4 3 3 4 4 3 3 4 52.5
5 2 4 2 3 2 4 2 3 5 65

Table C.7: System Usability Scale - VCC Results

209

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS
2 2 3 3 3 2 3 2 3 2 57.5
5 3 5 3 4 2 4 3 5 3 72.5
3 3 3 4 3 3 3 3 3 4 45
3 3 3 4 3 3 3 2 4 4 50
4 2 3 2 3 2 3 2 2 2 62.5
3 3 3 5 3 3 4 3 3 4 45
3 3 4 4 3 3 4 3 4 5 50
3 3 3 3 4 2 3 2 3 2 60
3 2 4 2 4 1 4 2 4 2 75
2 3 4 4 3 3 3 3 3 4 45
4 4 3 4 3 3 2 1 4 4 50
3 3 4 4 2 3 4 3 3 4 47.5
2 4 4 3 3 3 2 2 5 4 50
3 3 2 5 3 4 4 2 4 4 45
3 2 3 2 2 3 2 2 1 2 50
2 2 3 3 3 1 3 2 3 2 60
2 3 4 4 3 2 3 3 3 4 47.5

Table C.8: System Usability Scale - OSCAR Results

210

Cohort Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
16/17 1 1 1 1 1 0 1 1 1 0 0 0

0 3 5 1 5 0 4 0 0 0 0 2
0 3 5 1 5 0 4 4 0 0 0 2
0 2 0 5 5 3 2 1 0 1 0 0
2 2 3 1 3 2 1 3 2 2 1 1
2 3 3 2 2 1 2 3 1 1 1 1
3 3 5 3 3 3 0 3 2 2 0 0
3 3 5 3 2 3 0 3 0 1 0 0
2 2 3 1 0 0 2 0 0 0 0 0
3 2 2 0 1 0 2 0 0 0 0 0
3 2 2 0 1 0 1 0 0 0 0 0
3 2 2 0 1 0 3 0 0 0 0 0
1 3 5 2 1 0 3 3 0 1 0 1
4 4 4 3 3 3 4 4 2 1 0 1
5 3 5 4 5 4 3 4 0 1 0 0
4 4 4 3 5 3 1 3 1 2 2 2
3 3 3 3 3 3 3 3 0 3 0 0
2 1 2 2 1 0 1 1 0 0 0 0
1 1 4 2 1 1 2 2 0 0 0 0
4 4 4 2 2 3 3 3 0 2 0 0
1 1 4 0 2 0 1 4 3 0 1 0
3 3 4 1 2 2 3 3 0 0 0 0

17/18 5 5 5 4 5 2 4 2 0 1 1 2
4 3 3 2 2 2 3 2 0 0 0 1
1 1 3 0 1 1 1 1 0 0 0 0
0 1 4 1 4 1 3 3 0 0 0 0
0 0 1 0 1 0 2 1 0 0 0 0
3 3 5 3 3 2 0 1 1 1 1 1
3 3 5 3 3 2 1 4 1 1 1 1
4 4 5 4 4 4 2 2 1 1 1 1
2 1 3 1 2 0 1 1 0 0 0 0
1 1 1 0 0 0 3 0 0 0 0 0
0 1 1 0 1 0 1 0 0 0 0 0
3 0 0 0 1 1 3 3 1 0 0 0
2 1 2 0 1 0 2 2 0 0 0 0

Table C.9: Skills Audit Results - VCC Start

211

Cohort Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
16/17 3 2 4 3 3 3 3 2 2 2 2 2

5 5 5 4 3 3 3 3 1 1 0 1
5 5 5 4 5 4 5 4 4 5 3 2
5 5 5 4 4 3 2 4 4 3 3 3
4 5 5 5 4 3 3 2 4 3 2 2
3 2 4 2 4 3 2 4 3 2 2 2
5 5 5 4 4 3 2 4 4 3 3 3
4 4 4 4 4 4 5 3 4 4 4 5
4 4 4 4 4 4 3 3 3 3 2 0
3 3 3 3 3 3 1 1 1 2 0 0
5 3 5 4 4 4 4 3 2 2 2 2
4 4 4 3 2 2 3 1 1 1 0 0
1 2 4 1 2 1 2 2 1 1 1 2
4 4 4 4 4 4 3 3 3 3 3 3
5 4 5 4 4 4 4 5 3 3 3 2
3 3 5 3 3 3 3 4 2 3 1 1
5 4 5 4 4 2 2 2 2 1 1 2
5 4 5 3 4 4 3 2 2 1 2 2
4 4 5 5 5 3 4 2 3 2 3 3
3 3 4 3 1 1 3 3 2 2 3 3
3 3 3 3 3 2 2 0 1 1 1 1
5 3 4 3 3 3 2 3 3 3 3 3
3 4 4 4 3 3 3 4 3 3 3 3
3 3 4 3 0 3 2 1 2 2 2 3
5 4 5 4 4 3 3 4 3 4 3 3
3 3 4 3 3 2 1 0 0 0 0 1

17/18 1 3 5 3 3 1 1 0 2 2 2 2
4 3 4 4 4 3 4 3 4 3 3 3
2 2 2 1 1 2 1 2 1 2 2 2
2 2 3 2 4 3 3 2 4 3 2 3
3 3 4 4 4 4 4 4 3 3 3 3
4 3 5 5 5 3 4 4 3 3 2 1
1 2 2 3 4 3 3 2 2 2 0 0
4 1 2 2 3 1 4 1 1 1 1 1
2 3 4 2 3 3 3 2 3 3 1 3
5 4 5 4 4 4 4 3 3 3 3 3
1 3 3 2 2 1 2 2 1 1 1 1
1 2 3 2 2 1 2 1 1 2 1 1

Table C.10: Skills Audit Results - VCC End

212

Cohort Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
16/17 4 4 4 3 3 3 2 4 1 2 1 1

3 4 4 4 4 2 3 4 3 3 3 3
4 4 4 3 2 1 3 1 0 1 1 1
4 4 4 4 4 4 5 3 3 4 2 3
2 2 5 5 4 1 3 2 1 1 1 1
3 3 4 3 2 1 3 3 0 0 0 0
3 2 4 4 3 4 1 4 0 0 0 0
5 4 5 3 3 2 1 1 0 0 0 0
3 3 3 3 0 3 1 3 0 0 0 0
3 3 4 3 3 2 1 3 0 0 0 0
3 3 4 3 3 3 1 3 0 0 0 0

Table C.11: Skills Audit Results - OSCAR Start

Cohort Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
16/17 4 3 4 4 3 3 2 3 4 3 3 3

4 4 4 3 3 3 3 3 4 3 3 3
3 3 4 4 2 4 0 4 2 2 2 2
4 4 4 4 3 2 4 3 3 2 2 0
4 4 4 4 4 4 4 4 4 4 4 4
5 5 5 4 4 3 3 3 0 2 3 2
4 4 4 4 4 4 3 5 3 3 3 3
4 4 5 3 4 2 2 3 2 3 1 3

Table C.12: Skills Audit Results - OSCAR End

213

	Introduction
	Aim and Objectives
	Methodology
	Outline

	Related Work
	Virtualisation Techniques: Past and Present
	Xen era
	Classical era
	Container era

	Virtualised Clusters
	In a Cluster Fabric
	In a Grid Fabric
	In a Cloud Fabric

	Containers
	Run Time Environment
	Full Stack Environment

	Synthesis
	Summary

	Virtual Container Cluster Framework
	Architecture
	Design Decisions
	Contextual-aware Configuration
	Many-Fabric Spanning
	Multi-node Parallel Execution
	User Defined Image
	Image Repository and Provenance
	Standalone Deployment

	Implementation
	Discovery
	Network Identification
	DNS
	PKI
	Dynamic Configuration
	Dynamic Scaling
	Service Management

	Summary

	Building a Container Cluster
	Base Image
	VCC Installation
	Middleware Installation
	Roles and Dependencies
	Cluster Hooks
	Service Hooks

	Runtime Environment
	Summary

	Performance Benchmarking
	Benchmarking Tools
	Native vs SDN Interconnect
	Inter-cluster Interconnect
	Latency Scalability
	Spanning Simulator

	Summary

	Geographically Distributed Spanning
	Nested Meta-Cluster Topology
	Methodology
	Cluster Connectivity
	Job Queue
	Procedure

	Evaluation
	Campus Grid
	Inter-institution Grid

	Summary

	Virtual Clusters in the Classroom
	Parallel Computer Architectures Module
	VCC on a Single Machine
	Methodology
	Usability Survey
	Skills Audit
	Procedure

	Evaluation
	System Usability Scale
	Skills Audit
	Workflow
	System Requirements

	Summary

	Conclusion
	Future Work
	References
	Appendices
	Engagement with Research Community
	Surveys and Printed Materials
	Data

