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Abstract 

Quality assurance at low cost needs a tight interaction between machining and inspection. For 

this reason, the modern view of quality control (QC) requires highly repeatable coordinate 

measuring systems (CMSs) capable of being integrated into the manufacturing process for in-

process feedback. Using this method, it becomes possible to reduce scrap levels and production 

costs while increasing part throughput. CMSs such as coordinate measuring machines (CMMs) 

have been used for decades in traditional manufacturing industry to ensure that the size and 

form of a part conform to design specifications. Although CMMs are considered as powerful 

and accurate measuring systems, most can only maintain or guarantee their measurement 

capability in quality control rooms typically having environmental temperature control systems 

set to maintain a nominal 20°C and maximum variation typically limited to ±2°C. However, 

shop floor environments have significant variability in ambient temperature. 

 

The need in manufacturing for dimensional inspection on the shop floor has led to many 

technological advancements in manufacturing metrology during recent years. In particular, a 

recent development includes a parallel kinematic machine (PKM)-based automatic flexible 

gauge, which is the system under investigation for this thesis. In order to be able to determine 

the measurement capability of a measuring or gauging machine to dimension a part reliably, it 

is necessary to evaluate the measurement uncertainties. This thesis first employs the design of 

experiments (DOE) approach to implement a practical analysis of measurement uncertainty of 

the automated flexible gauge. Several experimental designs are applied to investigate the 

influence of various key factors and their interaction on the uncertainty associated with 

coordinate measurement in comparator mode, in which the geometry of a part is compared with 

that of a calibrated master part nominally of the same shape. The ISO 15530-3 method is 

applied to derive uncertainty budgets for the flexible gauging system. A comparison is then 

made between typical shop floor measurement methods namely hard gauging, on-machine 

probing (OMP) and the automated flexible gauge. A set of identical test pieces was 

manufactured and then measured repeatedly using each method, with process and operator 

variability added as necessary to include typical industrial conditions. The measurement 

uncertainty is then calculated and compared for each of the measurements. The results show 

the measurement uncertainty of the comparator technique, which are lower than would be 

expected from an absolute measurement under workshop conditions. 
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Finally, Markov chain Monte Carlo (MCMC) methods are applied to evaluate uncertainty 

associated with comparative coordinate measurement using a more realistic probability model 

to avoid repeating measurements. Samples are drawn from the unnormalized posterior using 

Gibbs sampling. Another feature of this thesis is the developed empirical method based on 

Bayesian regularized artificial neural networks (BRANNs) for estimating point coordinates and 

associated uncertainties when no satisfactory measurement model can be developed and large 

experimental designs are not practical. The effectiveness of the proposed method is 

demonstrated using two case studies. 
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perpendicular to the surface 

𝒂 𝑚-by-1 vector of regression coefficients  
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𝛾  The angle between the calculated and actual perpendiculars 

Γ  The gamma function 

𝜃𝑖  𝑖th unobservable quantity  

𝜇 or ɑ  The true value or the expectation of the measurand 

𝜋𝑗  Steady-state probabilities 

𝜎2  Variance of a quantity characterized by a probability distribution 

𝜎   Standard deviation of a quantity characterized by a probability distribution 

𝜎𝑝𝑐  Point coordinate error 
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Chapter 1   

 

Introduction 

In the manufacturing industry, manually-operated measurement devices such as micrometres, 

callipers, go/no-go gauges, and height gauges have been traditionally used for decades to assess 

whether a manufactured part is within tolerances or not. However, this inspection approach can 

be time consuming, it results in high measurement uncertainties, and, the repeatability, 

reproducibility, and part throughput depend on operators. Also, manual gauging tends to be 

inflexible to product design changes and can be costly due to the required calibration of each 

hard gauge. 

 

With advances in machine automation over the last few decades, companies have been able 

use measurement systems as an alternative to operators performing manual measurements with 

custom hard gauging in order to reduce cycle times. Coordinate measuring systems (CMSs) 

such as coordinate measuring machines (CMMs) have been used extensively in manufacturing 

for a large range of measurement tasks because of their efficiency, flexibility and accuracy, 

assuming that they have been calibrated correctly and are being maintained in stable 

temperature controlled conditions, typically at 20°C. Evaluating the measurement uncertainty 

associated with CMM, however, is not straightforward since such systems are influenced by a 

large number of factors including both random and systematic effects, which are difficult to 

quantify [1]. In addition, as the need for shorter cycle times of measurement tasks and in-

process feedback increases, serious attention has been paid to place the dimensional 

measurement equipment close to the machining process for close-to-manufacturing 

measurement while ensuring fast and precise dimensional control on the shop floor. Four basic 

CMM types can be distinguished: bridge, cantilever, horizontal arm, and gantry. Bridge 

machines are built in sizes ranging from 300 × 300 × 300 mm XYZ to 2000 mm × 5000 × 

1500 mm. The accuracy of bridge machines is usually better than other types of machines, but 

they suffer from the limited accessibility to the part being measured due to their structure. The 

measuring range and accuracy of the CMM are critical selection criteria when selecting a 

CMM. The ISO 10360 series of standards addresses the accuracy testing and performance 
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verification of CMMs. Cantilever machines are generally used for measuring relatively small 

parts. Their accuracy is similar to that of bridge type or even higher. Horizontal arm machines 

are the least accurate of the four basic types CMMs, with most horizontal arm machines to 

perform to volumetric tolerances of 30 μm. Horizontal arm machines are usually used for 

measuring of large parts or parts, which have hard-to-reach features. The measuring range of 

horizontal arm machines usually vary from 2 × 2 × 1 m XYZ to 4 × 10 × 3 m XYZ. Gantry 

machines are usually used for very large or heavy parts that require the precision of a bridge 

type machine. The measuring range of gantry machines usually varies from 1 × 2 × 1 m XYZ 

to 4 × 10 × 3 m XYZ. Further details of CMM configurations are discussed in section 2.4.3. 

Over the years, enhanced CMMs, which are typically CMMs integrated with advanced thermal 

compensation techniques, have been proposed for shop floor dimensional inspection. However, 

enhanced CMMs increase the already high cost of such systems, and, in many practical 

applications, they are unable to reach the required inspection speeds while maintaining their 

repeatability due to their heavyweight structure.    

 

Computer numerically controlled (CNC) machine tools can also be used as CMMs by 

exchanging the cutting tool for a touch-trigger probing (TTP) system. However, the level of 

measurement uncertainty achieved is often critically high since the same errors that influence 

the manufacturing process are also transferred to the inspection process. Consequently, this 

measurement approach requires supplementing with independent measurements for 

applications with high accuracy requirements due to the fundamental metrological limitations. 

Recently, parallel kinematic machines (PKMs) have been employed in the manufacturing 

industry for a wide range of applications such as machining, assembling and picking. PKMs 

are very lightweight and stiff (relative to the mass) in comparison to Cartesian machines and 

thus allowing for high repeatability at fast operating speeds. 

 

Coordinate measurements can also be made in a gauging/comparator mode in which 

measurements of a production part are compared with those of a master part with known 

dimensions. The main advantage of operating in comparator mode is that the measurement 

system has only to provide relative measurements which are considered more accurate than 

absolute measurements. Another advantage is that many of the difficulties associated with 

evaluating the measurement uncertainties associated with CMSs operating in absolute mode 

are largely avoided since many of the systematic effects in the measurement system cancel out. 
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Motivated by the need for in-process feedback and the fact that one of the most critical factors 

affecting CMM performance on the shop floor is the variability in ambient temperature, 

Renishaw plc has developed a novel comparator gauging system called the EquatorTM Gauge 

to fill the gap between CMM measurement and custom hard gauging. The Renishaw Equator 

is a variable gauge that employs the comparator principle through software to account for the 

influence of systematic effects associated with the measurement system. The Equator machine 

is constructed with a parallel kinematic constraint mechanism to minimise the machine’s 

dynamic errors at high measurement speeds. To compensate for any change in temperature of 

the shop floor environment, the re-mastering process can be managed with the built-in 

temperature sensor and software configuration. So, a PKM-based flexible gauge provides all 

of the automation features of tactile CMMs, but it does so without actually requiring 

temperature controlled conditions due to the comparator principle. However, the traceability 

path is not as well defined due to comparator measurement results originating from indirect 

measurement. According to the manufacturer’s specification, the comparison uncertainty is 

±0.002 mm and the maximum part weight, including the fixture plate, is 25 kg. The machine 

has a cylindrical working envelope with the dimensions XY ø300 mm and Z 150 mm. A 

detailed description of the comparator system is provided in section 2.5.1.   

 

This thesis is focused on evaluating the measuring performance of PKM-based flexible gauges 

employed in shop floor conditions over traditional inspection methods. The Renishaw Equator 

300 based in the Centre for Precision Technologies (CPT) at the University of Huddersfield is 

the automated flexible gauge under investigation. In this thesis, the design of experiments 

(DOE) approach is applied to investigate the effect of various key factors and their interaction 

on the comparator measurement uncertainty. The DOE method is used in many fields of science 

and engineering to assess the sensitivity of a process response (dependent variable) to a number 

of factors (independent variables) involved with the minimum calculation effort and cost. 

However, like CMMs, automated flexible gauges are multipurpose measuring/gauging 

systems. Therefore, the tests carried out during this work to quantify the comparator 

measurement uncertainties could not involve all the possible measurement tasks performed by 

such dimensional measurement systems. On the contrary, special attention was paid to a certain 

set of part features and characteristics to cover most of the common measurement tasks 

performed by flexible gauging systems. In addition, the experimental designs employed in this 

thesis are intended to be representative of the actual working conditions in which automated 
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flexible gauges are used. The Equator gauge has been designed for high speed comparative 

gauging on the shop floor with possibly wide temperature variation. Hence, the experiments 

are performed in both temperature controlled and uncontrolled environments. Therefore, 

multiple experimental runs (replicates) are used where required at different temperature 

conditions to decouple the influence of environmental effects and thus drawing more refined 

conclusions on the statistical significance. 

 

Furthermore, a Markov chain Monte Carlo (MCMC) model is developed to evaluate the 

uncertainty associated with comparative coordinate measurement. Over the last three decades, 

the Bayesian approach to statistical inference has re-emerged due to the rapid developments in 

computing and demand in many fields of science and technology for modelling more 

realistically complex phenomena, systems or processes that have many parameters. 

 

The hardware performance of a CMS is determined by the measurement uncertainties in the 

point coordinates. Due to the limitations and difficulties in implementation of currently used 

measurement uncertainty evaluation methods, a new method based on Bayesian regularized 

artificial neural networks (BRANNs) is developed to estimate the uncertainty of the 

coordinates of each measured point gathered by a CMS, operating either in absolute or 

comparator mode. The method is proposed to aid the determination of uncertainty contributors 

associated with a particular axis of a Cartesian CMS such as a CMM when no satisfactory 

mathematical model can be derived and enable very efficient implementations of geometric 

element best-fit algorithms implemented in CMM and comparator coordinate data. 

 

1.1 Motivation 

The demand in the manufacturing industry for increasing part quality while reducing inspection 

cycle times and manufacturing costs has been the driving force for many research projects. 

Over the last few years, various techniques and metrological instruments have been proposed 

to achieve fast and accurate dimensional inspection on the shop floor at low cost. An efficient 

solution that has been recently adopted for this complex task is to perform comparative 

coordinate measurement using a PKM based on the Delta robot architecture. In this way, parts 

can be independently inspected in the shop floor environment within a shorter time while also 

enabling feedback to the production loop. An essential part of assessing whether a 

measurement or gauging system meets its intended purpose is to estimate the measurement 
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uncertainties. This thesis employs several experimental designs to evaluate the performance of 

automated flexible gauge and applies computational Bayesian methods and nature-inspired 

computational methods to improve the assessment of uncertainty associated with comparative 

coordinate measurement.  

 

1.2 Aims 

 To evaluate the use of modern automated gauging in the production feedback loop. 

 To produce efficient methods for evaluating uncertainty associated with comparative 

coordinate measurement.  

 

1.3 Objectives 

 Implement a practical analysis of uncertainty of measurement of the automated gauging 

system within its whole measuring volume in both temperature controlled and shop floor 

environments.  

 Apply the DOE method to investigate the influence of various key factors and their 

interaction on the uncertainty associated with comparative coordinate measurement. In 

particular, induce known errors such as part setup offsets in the automated gauging process 

to investigate the impact of part misalignment from rotation between master and measure 

coordinate frames on the comparator measurement uncertainty.  

 Perform a full analysis of measurement uncertainty of automated flexible gauge in 

comparison with traditional gauging systems and on-machine probing (OMP). 

 Investigate and apply MCMC methods to evaluate uncertainty associated with comparative 

coordinate measurement according to Bayesian principles. 

 Produce and assess an empirical method to estimate the uncertainty of measurement in the 

coordinates of each contact point. 

 

1.4 Novel contributions 

 Establishment of the influence of various key factors and their interaction on the uncertainty 

associated with comparative coordinate measurement through full factorial designs. 
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 Development of a statistical model for uncertainty associated with comparative coordinate 

measurement.  

 The in-depth comparison between shop floor dimensional measurement systems in 

manufacturing. 

 Application of MCMC methods to automated flexible gauging influenced by process 

variations for comparator measurement uncertainty evaluation. 

 Development of a novel method based on BRANNs for estimating point coordinates and 

associated uncertainties. 

 

1.5 Thesis outline 

The work presented in this thesis is structured into eight chapters providing the necessary 

background material with the research contribution detailed in five relatively self-contained 

chapters. More specifically, a breakdown of the work presented in this thesis is as follows. 

 

Chapter 2 reviews the state of the art literature in manufacturing metrology with the main 

focus on dimensional inspection methods, uncertainty associated with CMSs, and comparative 

metrology. 

 

Chapter 3 is the first of the five chapters that present original contributions. It describes the 

experimental designs performed to investigate the influence of measurement strategy and part 

misalignment from rotation between master and measure coordinate frames on the uncertainty 

associated with comparative coordinate measurement.     

 

Chapter 4 is concerned with the experimental designs performed to investigate the influence 

of part location on the comparator measurement uncertainty. This chapter is also concerned 

with the development of a statistical model for uncertainty associated with comparative 

coordinate measurement through analysis of variance (ANOVA) techniques.      

  

Chapter 5 presents a comparative study between automated flexible gauging, hard gauging, 

and OMP. The work uses a broad range of repeated measurements on nominally identical parts 

to support the statistical evaluation of the uncertainty for common characteristics. 
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Chapter 6 applies computational Bayesian methods to evaluate uncertainty associated with 

comparative coordinate measurement. Alternating conditional sampling (Gibbs sampling) is 

applied to generate samples from the posterior distribution using experimental comparator 

measurements.  

 

Chapter 7 develops a new method based on BRANNs to estimate point coordinates and 

associated uncertainties. The method is first introduced using simulated coordinate data 

representing CMM measurements and then using experimental comparator coordinate data. 

 

Chapter 8 summarises the results obtained throughout this thesis and draws conclusions. It 

also suggests some points for further research.    
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Chapter 2   

 

Review of Previous Research 

This chapter provides the literature review of manufacturing metrology relevant to this thesis. 

It commences by describing measurement uncertainty and providing an overview of different 

measurement principles and inspection approaches. Then, a comprehensive review of the major 

approaches to measurement uncertainty evaluation is conducted. This is followed by discussion 

of coordinate metrology with the main focus on the uncertainty associated with CMM 

measurement. The chapter ends with comparative metrology and automated flexible gauging 

as well as a brief summary of the literature review.  

 

2.1 Measurement error and uncertainty 

Metrology is the science that deals with measurement and its application [2, 3]. It is essential 

not to confuse, in a measurement result, the terms error and uncertainty. Measurement error is 

the measurement result minus the true value of the measurand (physical quantity intended to 

be measured). Any error that is not recognized gives rise to measurement uncertainty; it is a 

quantification of the doubt about the validity of the result of any measurement. Figure 2.1 

illustrates the difference between measurement error and measurement uncertainty as depicted 

in [4]. 

 

 

Figure 2.1: Diagram depicting the difference between measurement error and uncertainty. 
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The doubt about a measurement result has two aspects. One is the interval (confidence interval 

or coverage probability) that states the width of the margin, or in other words, the margin within 

which the true value being measured can be said to lie, with a given confidence level. The other 

aspect is the confidence level expressing the degree of confidence that the result lies within 

that margin. Sources of uncertainty in measurement can arise from a random component, where 

repeating the measurement gives a randomly different result, and a systematic component 

where the same influence has a predictable impact on the result for each of the repeated 

measurements [5]. 

 

In order to calculate the uncertainty of a measurement [6], the first step is to identify the sources 

of uncertainty in the measurement and then to estimate the size of the uncertainty from each 

source. Finally, all the individual uncertainties are combined to give an overall figure. There 

are two ways to estimate uncertainties regardless of any sources: 

 

 Type A: Evaluation of uncertainty by statistical methods. 

 Type B: Evaluation of uncertainty by non-statistical methods. 

 

Uncertainty contributions must be expressed in similar terms before their combination. This 

means that, the same units and confidence level must be used for expressing all the contributing 

uncertainties, called the standard uncertainties. A standard uncertainty is usually shown by the 

symbol 𝑢 or 𝑢(𝓎) (the standard uncertainty in 𝓎) and considered to be a margin whose size 

can be assumed as plus or minus one standard deviation.  

 

To give an overall figure, individual standard uncertainties that have been calculated either by 

Type A evaluation or Type B evaluation can be combined validly by a variety of functions such 

as summation in quadrature, also known as the root sum of the squares (RSS) method. The 

combination of standard uncertainties results in the combined standard uncertainty that may be 

also thought of as equivalent to one standard deviation and is usually shown by the symbol 𝑢𝑐 

or 𝑢𝑐(𝓎).  After having calculated the combined standard uncertainty, an overall uncertainty 

stated at another confidence level can be achieved by multiplying the combined standard 

uncertainty by a coverage factor 𝑘, which is a numerical factor that typically varies from two 

to three. This re-scaling of the combined standard uncertainty gives the expanded uncertainty 

usually shown by the symbol 𝑈. 
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2.2 Dimensional inspection 

Dimensional metrology is that branch of metrology which is concerned with the measurement 

or gauging of a number of part characteristics in order to ensure that the size and form of the 

part conform to design specifications. The difference between a measuring system and a 

gauging one is that the latter is used for measuring the magnitude and direction of the geometric 

deviation between a test part and a calibrated master part nominally of the same design. 

Therefore, a gauging system holds the advantage of providing relative (comparative) 

measurements, while a measuring system provides absolute or direct measurements since an 

unknown quantity is compared directly against a known standard. Comparative measurements 

benefit from the fact that constant systematic effects associated with the measurement system 

cancel out. Gauges fall into two general categories: hard gauges and variable gauges. A hard 

gauge such as a go/no-go gauge is a simple mechanical object which is easy to use for 

evaluating only whether a part is within tolerance or out of tolerance. Unlike a hard gauge, a 

variable gauge is capable of quantifying and displaying the amount of deviation between the 

parts. In addition, variable gauges are further subdivided into fixed and adjustable. A fixed 

variable gauge is designed to inspect a specific dimension while an adjustable variable gauge, 

as the name suggests, can be adjusted (mastered) to measure a variety of part sizes [7]. 

Examples of fixed variable gauges include mechanical and air plug gauges. The Equator system 

is an adjustable variable gauge.     

 

Following the inspection, a decision must be taken on whether or not the part meets its 

specification. However, the assessment from the examination of the part may lead to more than 

two actions [8, 9]. For example, an acceptable part may be graded as a high-, medium- or low-

quality part to be used for different applications or for selective assembly. On the other hand, 

the decision associated with an unacceptable part may result in reworking of the part and/or in 

some positive action for feedback to the production loop. The latter is of extreme importance 

because corrective actions will minimize the number of future defective parts. 

 

Dimensional inspection can be accomplished either by using labour-intensive methods such as 

hard gauges and articulated arm coordinate measuring machines (AACMMs) or by using 

automated systems such as CMMs, which is a particular type of CMSs (see Figure 2.2). 

Certainly there are major differences between manual inspection and automated inspection. In 

particular, CMMs are accurate measuring systems and potentially more versatile and flexible 
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than custom hard gauges. However, they are very costly and require environmental conditions 

that are unlikely to be met in a shop floor environment. Consequently, this approach proves 

unsuitable for effective feedback to the production loop. Also, the time required for the 

inspection cycle can often be longer than the manufacturing cycle itself. This is because of the 

need to transfer the manufactured parts to the quality control room after the machining process 

is finished and thermally stabilize them. In addition, the determination of measurement 

uncertainty of CMMs is not straightforward due to the wide range of multivariate influencing 

factors such as probing effects, kinematic errors and environmental effects [1, 10]. AACMMs 

are portable and flexible instruments consisting of a number of articulated links equipped with 

angular encoders, but they are much less accurate than CMMs [4, 11]. As with CMMs, they 

are also thermally sensitive, though they have a much simpler construction. In addition, unlike 

automated inspection systems, the manual control of AACMMs adds a non-predictable error 

source, the operator, and thus can produce worse values of repeatability and reproducibility 

[12]. A detailed description of the errors of AACMMs is outside the scope of this work, but 

interested readers are referred to [13-15]. Finally, dedicated gauging is time consuming and 

costly, since traceable calibration is required for each hard gauge, and similarly with 

AACMMs, the repeatability and reproducibility are dependent on operators. Also, hard gauges 

require a level of re-engineering when the design of the parts to be measured changes and thus 

potentially increasing production bottlenecks.  

 

 

                     (a)                                     (b)                                    (c) 

Figure 2.2: (a) CMM, (b) AACMM and (c) hard gauges. 
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OMP has been used extensively as part of the machining cycle to avoid or reduce hard gauging. 

The accuracy and repeatability of the CNC machine tool depend on the performance of the 

motion control system, which is affected by many factors [16]. Therefore, a number of research 

works have considered existing methods for modelling and simulating the dynamic behaviour 

of CNC machine tool feed drives. In particular, mechatronic modelling, which considers the 

coupling of elastic mechanical structure with the control system, has been of special importance 

and recently has become an advanced tool in machine tool industry [17, 18].  

 

Although CNC machine tools can be used in the same way as CMMs, the level of measurement 

uncertainty achieved is significant because the same errors that influence the machining 

process are also transferred to the inspection process. Consequently, this measurement 

approach is not suitable for applications with high accuracy requirements and strict traceability. 

In particular, as stated by Saunders et al. [19], CNC machine tools used as CMMs will have 

the same errors sources as CMMs; differences may be observed in the relative magnitude and 

dynamics of those errors. These authors repurposed CMM-based uncertainty evaluation 

software (UES) to OMP. However, the UES uncertainty predictions did not compare well with 

the uncertainty calculated from physical measurements on the CNC machine tool.  

 

Test procedures required to evaluate the measurement performance of TTP systems integrated 

with a CNC machine tool are specified in ISO 230-10 [20]. Therefore, the evaluation of the 

performance of the CNC machine tool used as a CMM shall, in addition to ISO 230-10, be 

evaluated according to ISO 10360-2 [21] and 10360-5[22]. Verma et al [23] tested the 

measurement capability of multi-axis CNC machine tools under various working conditions. 

They found that the repeatability of machine tool may be affected by critical performance 

variables such as machine tool warm-up and tool-change cycles.      

 

The requirement for an increasingly accurate measurement in a reduced time span has produced 

the need for new measurement methods. One commonly used approach involves hybrid 

systems (multi-sensor CMMs) based on cooperative integration of multiple sensors (contact 

and noncontact) mounted on the heads of traditional CMMs or CNC machine tools in the case 

of on-machine measurement (OMM). Although multi-sensor measuring systems overcome the 

limitations of tactile and optical sensing technologies when used separately, a problem that 

arises when they are combined is that of coordinate system unification as a change in the 

configuration of any of the systems requires the repetition of unification process [24]. Also, 
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despite the fact that currently developed methods for coordinate unification such as in [25] 

have been found to perform well, alternate measurement methods are still required in terms of 

cost, inspection time, flexibility and efficiency to fill the gap between CMM measurement and 

custom hard gauging.  

 

Manual inspection is usually used for production situations where only one part is produced 

and inspected or for sampling inspection in which only a small sample size of parts taken from 

the population is inspected. Automated inspection systems are more common for screening 

inspection (100% inspection) in mass production. The disadvantage of sampling inspection is 

that defective parts may slip through the inspection process [26]. However, this does not imply 

that the screening automated inspection is error-free. Both the manual inspection and the 

automated inspection are subject to the so-called Type I and Type II errors that occur during 

the examination and decision steps. A Type I error occurs when a good quality product is 

incorrectly classified as being defective. On the other hand, a Type II error takes place when a 

part of poor quality is mistakenly classified as being good [8, 27]. Forbes [9] applied Bayesian 

decision-making approaches to conformance assessment for both types of error using a loss 

function. He concluded that the behaviour of the expected loss depends on the magnitude of 

systematic effects associated with the measurement system. Therefore, a measurement system 

which accounts for the influence of systematic effects can significantly reduce the actual cost 

of making a wrong decision.     

 

Quality Control (QC) is a process intended to detect poor quality in manufactured parts and 

take corrective actions for eliminating it. However, QC is often limited only to inspection of 

the product and its components and determination of whether the dimensions and other features 

meet their specification [8]. The principal standard devoted to QC is the ISO 9000, which is a 

set of international standards on quality. The ISO 9000 family of standards addresses a variety 

of aspects of quality management and aims to assist organizations to implement and operate 

efficient quality systems. In QC, the time interval between the inspection procedure and the 

manufacturing process is of great importance. In particular, three main different cases can be 

distinguished [8, 28]: 

 

1. Off-line inspection 

2. On-line/in-process inspection 

3. On-line/post-process inspection 



 

31 

 

 

The first case is concerned with inspections performed away from the manufacturing process 

and after a considerable time delay once the manufacturing process is complete. The main 

disadvantage of off-line inspection is that compensating adjustments cannot be made in the 

manufacturing process in order to reduce variability. In this case, manual methods and 

statistical sampling are common. The last two situations are related to inspections which are 

performed either when the parts are made or immediately afterward. The on-line/in-process 

inspection takes place during the manufacturing process and therefore quality can be improved. 

Manual methods or OMM using touch-trigger probes integrated with a CNC machine tool are 

common. OMM using scanning probes is rare, because there are many significant sources of 

machine tool error that contribute to component errors such as thermal errors, geometric errors, 

cutting forces, kinematic errors, vibrations, etc. [19, 23, 28]. Therefore, the level of 

measurement uncertainty is critically high. The on-line/post-process inspection is the most 

common case and can be performed as either a manual procedure or an automated one. 

Although with post-process inspection, the measurement or gauging procedure in most cases 

is performed immediately following the manufacturing process, it is still considered an on-line 

method because its results can influence the production of subsequent parts. Its disadvantage 

however is that there can be no correction that will influence the processing of the part being 

gauged or measured since it has already been produced. Therefore, automated cells consisting 

mainly of manufacturing equipment, inspection equipment, and handling robots are being 

increasingly employed for shortening of feedback loops. In this way, data such as coordinates 

can be immediately fed back to the preceding machining process to correct process parameters 

on future parts [28]. However, this approach requires automated inspection systems capable of 

performing repeatable measurements in a short time on the factory floor. Also, another category 

of measurement methods that can be placed between in-process and post-process inspection 

includes process-intermittent measurements which can be performed either on or off the 

machine. In any case, the manufacturing process is halted for a relatively short time in order to 

perform measurements of the part, and those measurements are then used for process correction 

[28]. This thesis focuses on the latter two cases.    

 

CMMs have been the most effective measuring systems in traditional manufacturing for form, 

size, position and orientation assessment. However, for the aforementioned reasons of 

increased efficiency and control, the modern approach to dimensional inspection requires that 

the measuring equipment is placed close to the manufacturing equipment. Although there are 
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various CMM configurations (see section 2.4.3), there are many factors affecting their accuracy 

such as geometric errors, thermal errors, probing system errors and environmental effects (see 

section 2.4.4). Also, the heavyweight structure of CMMs causes hysteresis error and leads to 

practical limitations in terms of inspection speed in order to maintain accuracy at high levels 

[29].   

 

Over the years, enhanced CMMs have been proposed to address inspection challenges in a shop 

floor environment. However, such CMMs use compensation techniques in order to account for 

the influence of thermally induced structural deformations, which increase the already high 

cost of the CMM measurement approach to industrial dimensional metrology. CMSs can also 

be used in comparator mode in which measurements of a production part are compared with 

those of a master part nominally having the same geometry and many of the difficulties 

associated with evaluating the measurement uncertainties are avoided since many of the 

systematic effects cancel out. Although the comparative approach to dimensional inspection 

may be particularly attractive, it is not the ideal solution in terms of inspection speed since 

comparative measurements require additional measurements on the master part.  

 

PKMs can often move very fast while maintaining their precision. In particular, compared to 

Cartesian structures, parallel kinematic structures have a higher stiffness-to-mass ratio, lower 

inertial effects, better dynamic performance, no bending forces, and allow for higher working 

speeds [30]. However, their workspace size is considerably limited in comparison to Cartesian 

machines. Recently, Renishaw plc has developed a software-driven comparative gauging 

system constructed with a parallel kinematic constraint mechanism [1, 31]. The Renishaw 

Equator based on the Delta robot architecture is an automated flexible gauge used to perform 

comparative coordinate measurements on the shop floor (see section 2.5.1).  

 

2.3 Evaluating the measurement uncertainty   

The evaluation of measurement uncertainties is a necessary process for the quality of 

measurements. All measurement processes have uncertainty to some degree and therefore, 

when a measurement result is reported, the measurement uncertainty that characterizes the 

reliability of the results needs to be provided. Measurement uncertainty can result from the 

measurement equipment, the item being measured, the measurement environment and the 

operator including the measurement strategy [10, 32, 33].  
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Over the years, concepts that involve metrology and reliability of measurements have been 

established and harmonized by international organizations for bringing uniformity to the 

evaluation of measurement uncertainty. The International Organization for Standardization 

(ISO) and the Bureau International des Poids et Mesures (BIPM) created a guide to the 

expression of uncertainty in measurement (GUM). This guide was published as an ISO 

standard [34] and as a Joint Committee for Guides in Metrology (JCGM) guide [5], which are 

a reissue of the 1995 version of the GUM, with minor corrections. The GUM provides a 

framework to determine the best estimate 𝓎 of an unknown quantity 𝑌 and its associated 

standard uncertainty 𝑢(𝓎) from available information such as experimental data. The GUM 

uncertainty framework (GUF) uses linearizing approximations (first-order Taylor series) that 

can limit the validity of the results and fails when the required assumptions are not valid [35]. 

In order to overcome the limitations of GUF, recently, measurement uncertainty evaluation has 

been proposed on the basis of probability density functions (PDFs) using a Monte Carlo method 

(MCM) that actually combines and propagates distributions rather than propagating 

uncertainties as in the GUF. The MCM described in the GUM supplement 1 (GUMS1) [36] 

uses the distribution functions of each uncertainty contributor as input and runs regardless of 

the complexity of the measurement process or its mathematical model. However, an important 

drawback of both the GUM and GUMS1 approaches is that any prior information about the 

unknown quantity is not taken into account [37].    

 

The GUF recommends the t-distribution (Student’s distribution) approach when dealing with 

a small data set that follows a Gaussian (normal) distribution. However, the information on the 

parent PDF cannot be inferred from a small amount of repeated measurements. The bootstrap 

approach [38], which is a very general resampling procedure for estimating the probability 

distributions based on independent observations, is an alternative to the standard Type A 

uncertainty evaluation. Unlike the GUF, it requires no information on the PDF from which the 

actual measurements are drawn. It has been found to be successful in many situations, 

especially for estimating the reliability of estimators and their uncertainty when large sample 

sizes are available for any PDF [39]. However, although it is better than some other asymptotic 

methods, some counterexamples have shown that the bootstrap method provides incorrect 

solutions [40]. In addition, the bootstrap approach requires more effort to calculate the 

expanded uncertainty in comparison to GUF and its performance has not been specified yet for 



 

34 

 

small data sets, when the parent PDF is of a skewed type [41] and generally this is a 

controversial issue in the literature and is outside of the scope of this thesis.   

 

The normal PDF is [5]:  

 

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒

−(𝑥−𝜇)2

2𝜎2    𝑓𝑜𝑟 − ∞ < 𝑥 < +∞ 
 

(2.1) 

 

where 𝜇 is the true value of the measurand or the expectation to be more precise since a unique 

true value could be obtained only by a perfect measurement and therefore it is only an idealized 

concept and 𝜎 is the standard deviation of the normal distribution defined accordingly by:   

 

𝜇 =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

  𝑎𝑛𝑑   𝜎 = √
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

. 

 

(2.2) 

 

For a small number of repeated measurements 𝑛, and in the case where the PDF for the 

measured input quantity is a Gaussian, the GUM approach [5] uses the sample mean value 𝑥̅ 

as the expectation of 𝑥 and the experimental standard deviation of the mean 

 

𝑠(𝑥̅) =
𝑠

√𝑛
 (2.3) 

 

as uncertainty 𝑢(𝑥) associated with that mean, and infers the expanded uncertainty from a t-

distribution with 𝜈 = 𝑛 − 1 degrees of freedom (DOF). Note that, the sample mean value 𝑥̅ 

and the sample (experimental) standard deviation 𝑠 are defined accordingly by:   

 

              𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛

𝑖=1

  𝑎𝑛𝑑   𝑠 = √
1

𝑛 − 1
∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

. 

 

(2.4) 

 

So, the sample mean value 𝑥̅ gives the most likely estimate of the true mean value 𝜇. Therefore, 

let us suppose that a simple random sample of size 𝑛 is taken from a population. If the 

population from which the sample is drawn forms a normal distribution, the distribution of  
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𝑡 =
𝑥̅ − 𝜇

𝑠(𝑥̅)
 

 

(2.5) 

 

follows the t-distribution with 𝜈 = 𝑛 − 1 DOF. The PDF of the t-distribution is: 

 

𝑃(𝑡, 𝜈) =
1

√𝜋𝜈

Γ (
𝜈 + 1

2 )

Γ (
𝜈
2)

(1 +
𝑡2

𝜈
)

−(𝜈+1)/2

, −∞ < 𝑡 < +∞ 

 

(2.6) 

 

where Γ is the gamma function and 𝜈 > 0. The expectation 𝜇 of the t-distribution is equal to 

zero and its variance is equal to 𝜈/(𝜈 − 2) for 𝜈 > 2. Therefore, as 𝜈 → ∞, the t-distribution 

approaches a normal distribution with expectation 𝜇 = 0 and standard deviation 𝜎 = 1. Figure 

2.3 shows the normal (bell-shaped curve) distribution and the associated levels of confidence 

for one, two, and three standard deviations of the mean. The true variance and the sample 

(experimental) variance are defined accordingly by: 

 

𝜎2 =
1

𝑛
∑(𝑥𝑖 − 𝜇)2

𝑛

𝑖=1

  𝑎𝑛𝑑   𝑠2 =
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𝑛

𝑖=1
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(2.7) 

 

The basis for estimating measurement uncertainties is measurement traceability [42]. 

Demonstrating traceability to national standards is required to ensure confidence in the 

measurements. By definition [2], the metrological traceability is the “property of a 

measurement result relating the result to a stated metrological reference through an unbroken 

chain of calibrations of a measuring system or comparisons, each contributing to the stated 

measurement uncertainty.” Besides the importance of measurement uncertainty in traceability, 

the measurement uncertainty also plays a key role in conformity assessment, in particular, in 

setting acceptance limits [43, 44]. 

 

The last few years have seen an increase in the use Bayesian approaches to evaluating 

measurement uncertainty [45, 46]. The reason for that is because Bayesian methods can 

leverage prior knowledge of the measurement process and are particularly useful for inference 

given small sample sizes or missing data [47]. Also, developments in computing have made 

Bayesian statistical methods very attractive to apply in metrology to determine parameter 
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estimates and associated uncertainties [48]. Bayesian methods easily combine expert 

knowledge with experimental data while considering uncertainty. They use a full probability 

model providing a joint probability distribution for all observable and unobservable quantities 

and usually require MCMC methods to generate samples distributed according to the target 

posterior distribution. MCMC methods combine Monte Carlo sampling and Markov chain 

theory (see Appendix B for discrete-time Markov chains). Well-known MCMC methods 

include the Metropolis algorithm, the Metropolis-Hastings algorithm, and the Gibbs sampler, 

also called alternating conditional sampling. In particular, the latter has been found very useful 

in a large number of multidimensional problems [49]. Although computational Bayesian 

methods such as MCMC are straightforward to use to generate samples from the posterior 

distribution of interest which may otherwise be difficult to generate samples from, prior 

knowledge may be difficult to elicit in probabilistic form. 

 

 

Figure 2.3: The normal distribution. 
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2.4 Coordinate metrology 

Coordinate metrology has become fundamental for manufacturing metrology. In order to 

perform coordinate metrology, a CMS such as a CMM is employed to: a) measure the actual 

form and dimensions of a part, b) compare them against the desired form and dimensions as 

specified by a technical drawing or computer-aided design (CAD) specification, and c) evaluate 

the metrological information of interest [50]. A CMS utilizes a sensing device called a probe 

to collect point coordinates on part surface at certain areas. Its software then processes these 

point coordinates in order to produce a geometric result or to establish a local coordinate system 

from datum features. Various probe designs are available and compatible with most of the 

CMMs used in industry in order to meet the requirements of each application as best as 

possible. In particular, two basic types of probing systems can be distinguished:    

 

 Contact or tactile probing systems 

 Noncontact or nontactile probing systems 

 

Noncontact probes are capable only of measuring visible features on the exterior of a part and 

require a cleaner measurement environment than contact probes. They are usually used for 

applications which involve small and flexible parts since no physical contact is made between 

the part and the sensor, or where very high scanning speeds are required. Unlike noncontact 

probes, contact probes gather coordinate data by physically touching the part and therefore 

inspection cycle times may be slower. They are common for parts with complex geometries 

and measurements tasks with high accuracy requirements. This is because noncontact probing 

systems such as optical ones generally provide higher measurement uncertainty of each probed  

point [51]. Contact probes fall into three general categories: 

 

 Hard probes  

 Touch-trigger probes 

 Analogue scanning probes 

 

Hard probes are used in conjunction with manual CMMs for measurement tasks with typically 

low accuracy requirements [52]. Touch-trigger probes can be positioned to contact the part 

surface either manually by an operator or automatically via direct computer control (DCC). 

Both hard probes and touch-trigger probes measure discrete points. However, the latter ones 
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always measure dynamically (detection of a surface point while the machine is moving with 

constant velocity), while with hard probes the readout of the coordinate axes is triggered 

manually. Analogue scanning probes can keep contact with the part surface and measure either 

dynamically or statically [51, 53]. They are common for automated inspection, though manual 

inspection can also profit from the advantages offered by this newest technology. Unlike TTP 

systems which are suitable for measuring standard geometric features, scanning probing 

systems can acquire several hundred points each second on their path along the part surface, 

enabling measurement of form characteristics and free-form surfaces. Scanning probing 

systems have also the possibility for scanning both known and unknown parts. Therefore, two 

types of continuous scanning methods can be distinguished: open loop and closed loop [54]. 

Open loop scanning is a high-speed technique used for parts with known geometry, while 

closed loop scanning is particularly useful for measuring unknown parts, including reverse 

engineering.     

 

Furthermore, the trend in sensor development over recent years has been directed toward 5-

axis probing systems (three machine axes and two rotary axes of the head) [54]. The 5-axis 

measurement technology, which utilises an articulating head that moves in two rotary axes as 

it measures, can be used to minimise machine’s dynamic errors at very high measurement 

speeds. Two examples of 5-axis systems are the Renishaw REVO 5-axis measurement system 

capable of performing multi-sensor coordinate metrology and the Renishaw PH20 5-axis 

touch-trigger system for touch-trigger measurement.    

 

In the domain of coordinate metrology, a significant amount of research work has been 

conducted to quantify the measurement accuracy of CMMs and increase it by improvements 

in hardware, software, and general measurement strategy. In order to ensure that the 

measurements are accurate, the calibration of the CMM needs to be traceable to the 

international system of units (SI), in particular, to the international standard of length with 

known measurement uncertainty [55]. In fact, the definition of metrological traceability has 

achieved global acceptance in the metrology community [2]. Traceability is the comparison of 

a measurement system to a standard of higher accuracy. However, CMMs are multi-purpose 

measuring systems and therefore demonstrating traceability to national standards and, 

ultimately, to the international standard is not straightforward. Therefore, the only practical 

way of ensuring that the CMM measurements are accurate is to provide measurement-task-

specific traceability statements [55, 56]. As a matter of fact, the uncertainty associated with the 
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measurement of a specific feature through a specific measurement strategy is usually referred 

to as task-specific uncertainty. An excellent review for uncertainty sources and methodologies 

developed to model and assess task-specific uncertainty for coordinate measurements is 

provided by Wilhelm et al. [10]. The evaluation of measurement uncertainty associated with 

CMSs is further discussed in section 2.4.4.     

  

2.4.1 Part alignment 

In coordinate metrology using CMMs or automated flexible gauges, there are two basic types 

of coordinate systems: the machine coordinate system (MCS) which defines the XYZ position 

on the CMS with respect to the ‘HOME’ or ‘START’ position; and the part coordinate system 

(PCS) which determines the position and orientation of the part in relation to the MCS. PCSs 

are specific to each part and therefore, when using a CMS it is necessary to establish the PCS 

and relate it to the MCS. The process of assigning a reference coordinate system on the part is 

called part alignment or simply alignment. In order to establish correctly an alignment, at least 

two PCSs are required to be generated; the first is used to establish the approximate position 

of the part within the CMS’s working volume, while the second for the inspection of the part. 

 

As any unrestrained rigid body, a part in space has six DOF: three translational DOF and three 

rotational DOF. Therefore, for the inspection of a rectangular part with flat surfaces the 

minimum number of probing points required to establish the PCS is six. Three contact points 

are required to define the primary datum A (a plane) which controls three DOF (two rotational 

and one translational degree of freedom); two contact points are required to define the 

secondary datum B (a line) which controls two translational DOF; and one contact point to 

define the tertiary datum C which controls the remaining rotational degree of freedom [57, 58].  

 

The features used to define the PCS are called datum features and usually required to have 

good form so that the measurement uncertainty associated with the PCS or datum reference 

frame (DRF) can be kept low [59]. The DRF is that coordinate system against which the 

geometric dimensions and tolerances of a part are defined and can be different from the PCS. 

The tolerances on datum features should be tight because the form errors on datum features 

affect the datum measurement uncertainty. Datum uncertainties have to be taken into account 

for features which are evaluated with respect to datums such as true position. These 
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uncertainties are determined as follows since each datum controls a different number of DOF, 

[60]: 

 

𝑢𝑑𝑎𝑡𝑢𝑚 = √
3

6
× 𝑢𝑝𝑟𝑖𝑚𝑎𝑟𝑦
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(2.8) 

 

where the uncertainty for each datum is its own feature uncertainty calculated as follows:  

 

𝑢𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 =
𝜎𝑝𝑐

√𝑛𝑓 − 𝑥𝑓

 
 

(2.9) 

 

where 𝜎𝑝𝑐 is the point coordinate error, 𝑛𝑓 is the number of contact points used to define the 

feature, and 𝑥𝑓 is the mathematical minimum number of contact points required to define a 

given feature. Table 2.1 provides the mathematical minimum and the recommended minimum 

number of contact points required for various geometric features [57, 61]. 

 

Table 2.1: Number of contact points required per feature. 

Geometric feature Mathematical minimum 

number of contact points 

Recommended minimum  

number of contact points  

Line 2 5 

Plane 3 9 

Circle 3 7 

Sphere 4 9 

Cone 6 12 for straightness or 15 for roundness 

Ellipse 4 12 

Cylinder 5 12 for straightness or 15 for roundness 

Cube 6 18 

 

Both the DRF and substitute geometries are determined by the point coordinates gathered by 

the CMS through its software. For an ideal CMS (having no measurement uncertainty in the 

point coordinates) and an ideal part (having no form error), sets of point coordinates arising 

from alignment strategies based on different datum features will lead to identical computed 

results. However, in real part measurements (where both the CMS and the part are imperfect), 



 

41 

 

sets of point coordinates representing different measurement strategies will result in different 

definitions of the DRF and thus, in different estimates, for example of the positions of other 

geometric features or profile tolerances constrained with respect to datums associated with the 

part [62]. In addition, poor sampling strategies can lead to large differences in computed results 

even though the difference in point coordinates are small [4]. Approaches for evaluating the 

effect of form error associated with datum features on the uncertainties associated with 

geometric features have been described by Forbes et al. [62].  

 

2.4.2 Scanning versus touch-trigger probe data capture 

Compared to TTP systems, scanning probing systems perform faster measurements, gather 

larger amounts of data, and provide greater coverage of the feature under inspection [54, 63]. 

However, the measurement uncertainty associated with the position of a single point is 

generally higher in scanning due to dynamic influences [51]. Scanning probing systems can 

also be used to acquire discrete points, but TTP systems measure discrete points faster than 

scanning probing systems. Also, in scanning CMMs, machine dynamics limit measurement 

accuracy at higher speeds. Therefore, conventional scanning probes can achieve measurement 

accuracy at relatively low scanning speeds where inertial forces are trivial. In fact, while in 

TTP inertial forces are negligible, in scanning, acceleration and as a consequence inertial loads 

are always present. In particular, as the machine is moving faster, the accelerations typically 

increase by the square of scanning speed [64]. For this reason, dynamic compensation 

measurement techniques have received much attention in recent years [63, 64]. 

 

Renishaw developed a new dynamic error compensation method called Renscan DC (dynamic 

compensation) to enhance CMM measurement performance. This is a feature-based 

compensation method in which each feature on a part is first scanned slowly and then it is re-

measured with a higher velocity so that the errors introduced by the greater speeds can be 

taught. In particular, the differences between the measurement results are used by the universal 

CMM controller (UCC) to compute a dynamic compensation ‘map’ for each feature. Once this 

process has been derived, all subsequent parts nominally of the same size and located in the 

same part of the machine can be measured at high speed, but with the accuracy of slow speed 

scanning [53, 64].  
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Pereira and Hocken [63] proposed two scanning error compensation models to improve the 

performance of a CMM when scanning internal circular features at any scanning speed and 

radius combination. For diameters smaller than 50 mm the first model achieved an error 

reduction of more than 38% while for diameters larger than 50 mm the second model achieved 

an error reduction of 49%.        

 

Some studies have been conducted to determine the difference obtained in measurement 

accuracy between scanning and touch-trigger probe technologies. Ollison et al. [65] employed 

an experimental design and determined statistically that there is a significant difference in 

cylindricity accuracy between scanning and touch-trigger probe measurements of 3D-printed 

parts. In general, it can be concluded that the higher the number of contact points, the more 

accurate the results due to the smaller sampling effects.  

 

2.4.3 CMM configurations 

A CMM is a complex mechatronic system consisting mainly of a probe head and probing 

system along with the stylus/styli, a mechanical structure, a worktable, drive systems, 

displacement transducers, control systems, and a computer with peripheral equipment and 

application software. There are various CMM configurations (see Figure 2.4) such as moving 

bridge, fixed bridge, cantilever, horizontal arm, and gantry, each one having its own advantages 

and disadvantages [50].  

 

 

Figure 2.4: Common CMM configurations [50]. 

 

The most commonly used configuration is the moving bridge, which has a stationary table and 

a moving bridge. This design has a small to medium measuring range and is affected by yawing. 

Therefore, although it provides relatively small measurement uncertainties, the measurement 

accuracy depends on part location within the CMM’s measuring volume. The ring bridge 
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configuration, which is another category of moving bridge machines not mentioned so far in 

this thesis, enhances the structural rigidity. With this design, the Abbe offset error is reduced 

and the measurements are not affected by the mass of the part. The fixed bridge configuration 

is characterised by its high rigidity and high accuracy. In this design, the bridge is rigidly fixed 

to the machine bed and the table, which supports the part to be measured, provides one axis of 

motion. However, this adds a limitation to the operating speed and the maximum allowable 

part weight because the moving table is heavy. As a result, a major disadvantage of this 

configuration is the lower part throughput. Cantilever CMMs have a moving cantilever arm 

and a fixed table upon which the part to be measured is mounted. The cantilever arm supports 

a carrier to move in and out, which in turn supports the probe arm for the vertical movement. 

This design can support heavier parts and allows higher part throughputs because it has a low 

moving mass structure for a given working volume. The disadvantages of cantilever 

configuration over the moving bridge are the bending effect and the lower system natural 

frequency, limiting the machine size. However, cantilever CMMs are ideal for general 

measurement applications as well as long, thin parts due to their design. Horizontal arm CMMs 

are particularly suitable for measuring automobile bodies or other parts with similar size and 

tolerances. There are numerous horizontal arm configurations such as moving ram, moving 

table, and dual-arm designs. In the case of moving table horizontal arm CMMs, like all other 

such machines, the measurement speed and accuracy depend on the size and weight of the part. 

Regarding moving ram configurations, the cantilevered design lead to low dynamic stiffness 

and considerably Abbe offsets. Dual-arm configurations result in higher part throughput 

because they allow the simultaneous measurement of both part sides. Horizontal arm machines 

in any configuration are characterised by exceptional part accessibility, large measuring ranges 

(up to 25 m for moving ram configurations in the long axis), high measurement speeds, and 

small measurement accuracy with the levels of measurement uncertainties to vary significantly. 

Gantry CMMs are ideal for measuring very large parts with relatively tight tolerances. For 

convenient control of large mechanisms such as gantry machines [17, 18], two motors may be 

required to drive a single axis. Dual-drive systems have also been adopted by CMMs for the 

gantry drive. The split-axis feature (master and slave) automatically coordinates the drive of 

the two motors that receives coordinated commands to keep the mechanism properly aligned 

and thus, avoiding the yawing of the traveling beam. The main advantages of gantry CMMs 

are the large measuring volume and excellent part accessibility. For more details about 

Cartesian CMMs, interested readers are referred to [50]. Most of the aforementioned CMMs 

have significant moving mass to maintain rigidity and significant Abbe offset, therefore this 
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limits the accelerations speeds, even with dynamic compensation methods. This is one of the 

main driving forces behind the PKM design in the Renishaw Equator system described later in 

section 2.5.1.  

 

2.4.4 Uncertainty associated with coordinate measurement 

Measurement uncertainty in CMSs comes from a large number of sources. Methods for 

evaluating task-specific uncertainty in coordinate measurement were reviewed by Wilhelm et 

al. [10]. These authors divided uncertainties associated with CMSs into five main categories: 

hardware, part, extrinsic factors, sampling strategy, and fitting and evaluation algorithms. 

Weckenmann and Knauer [32] focused on the last two factors and showed that the way the 

CMM operator defines the measurement strategy has a strong influence on the CMM 

measurement uncertainty. In particular, factors that could affect the accuracy of CMM 

measurements are: 

 

 Environmental effects 

 Machine repeatability 

 Machine thermal errors 

 Machine geometry errors 

 Kinematic errors 

 Scale errors 

 Probing system errors 

 Machine dynamics 

 Vibrations 

 Measurement strategy 

 Measurement part 

 Fixturing variability  

 Software errors 

 

Thermal errors arise from thermal deformations of the machine elements and should be 

compensated by real-time error compensation techniques [66-68]. Kinematic and geometric 

errors are inter-related [69]. The geometric errors are systematic and can be compensated by 

non-real-time error compensation techniques. They affect the machine repeatability and 



 

45 

 

kinematic accuracy. For a 3-axis Cartesian machine, there are 21 parametric errors (see Table 

2.2). In particular, each axis is characterised by six geometric errors; three translation errors 

(linear positioning and two straightness errors) and three rotation errors (roll, pitch, and yaw). 

In addition to the six geometric error components along each axis, three squareness errors 

between them can be identified [4, 16].  

 

Table 2.2: Geometric errors in a 3-axis Cartesian machine. 

Errors Number per axis Total 

Linear position 1 3 

Straightness 2 6 

Angular 3 9 

Squareness - 3 

Total 6 21 

 

Although the GUM for univariate measurement models [5] or for multivariate measurement 

models [70] can be put in an application for CMM measurement [71] (the second part of ISO 

14253 is of special importance in relation to ISO 9000 quality assurance systems), a correct 

measurement uncertainty statement remains a difficult task to achieve due to the various 

complex multivariate influencing factors [72]. Wilhelm et al. [10] surveyed different 

approaches used to model and evaluate task-specific uncertainty for CMMs using contacting 

probes as listed below: 

 

 Sensitivity analysis 

 Expert judgment  

 Substitution method 

 Simulation 

 Statistical estimations from measurement history 

 Hybrid methods 

 

Sensitivity analysis is used when a precise mathematical model for the measurement process 

can be derived. In such a case, it is relatively straightforward to follow the GUM approach [5] 

for estimating measurement uncertainties using the law of propagation of uncertainties (LPU). 

However, the GUM approach based on the LPU and the characterization of the output quantity 
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by a Gaussian distribution or a scaled and shifted t-distribution is based on a number of 

assumptions that are not always valid [35]. Therefore, methods depending on the propagation 

of distributions have been applied to metrology to overcome the limitations of the GUF. The 

MCM presented in the GUMS1 [36] uses the probability distribution functions of each 

uncertainty contributor as input and runs regardless of the complexity of the measurement 

process. In Monte Carlo simulation, a computer simulates the actual measurement process a 

predefined, large number of times and each time, different values are randomly chosen for each 

uncertainty contributor from the corresponding input distributions. Thus, the number of 

measurement results is equal to the number of Monte Carlo trials, which has to be sufficient 

for achieving a representative error distribution.  

 

Expert judgment is a Type B uncertainty evaluation. This technique has been used extensively 

by experienced metrologists for decades due to the lack of other tools. However, it is now 

recommended only when measurement data are not available or a precise mathematical model 

for the measurement process and/or for the CMM itself cannot be derived.   

 

The substitution method [73] involves the regular measurement of an additional traceable 

reference part and the comparison between its calibrated value and the measured value obtained 

by the CMM to derive a correction value, Δi, which is then applied to the measurement of the 

production parts. This measurement strategy also referred to as the Comparator Principle can 

achieve high accuracy and is relatively straightforward [5, 57].  

 

Simulation is considered the state of the art approach for task-specific CMM uncertainty 

evaluation. Over the recent years, various methods based on Monte Carlo simulation have been 

developed to deal with this task e.g. the virtual CMM (VCMM) [74], simulation by constraints 

[75] and the expert CMM [76]. Such methods simulate certain characteristics of CMMs to 

estimate the task-specific measurement uncertainty for a specific CMM or facilitate CMM 

inspection planning.  

 

Statistical estimations from measurement history are common when a large number of 

measurement data are available. An efficient way to plan and conduct experiments is the 

method of DOE. This is a systematic approach used extensively for analysing and optimising 

complex processes. In dimensional metrology, the DOE method assesses the sensitivity of the 
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measurand to various factors that comprise the measurement process. Also, based on the type 

of the DOE technique used, the interactions between the factors involved can be studied.   

 

Hybrid methods are those methods that involve at least two of the methods (or part of them) 

described previously. Hybrid methods are common due to practical limitations or difficulties 

when employing only one approach. 

 

D’Amato et al. [77] presented a paper concerning the calculation of the uncertainty associated 

with the indirect measurement of angles using a moving bridge CMM located in a temperature 

controlled environment of 20°C ± 1°C. They used two different behavioral models for the 

CMM; a linear statistical model and a Mitutoyo model based on the work of Phillips et al. [75] 

to determine the values of the angles and Monte Carlo simulation to calculate their associated 

uncertainties. The results showed that the Mitutoyo model provides more conservative 

uncertainty values than the linear statistical model.  

 

Osawa et al. [78] described a method based on the combination of multiple orientation and 

substitution techniques to compensate all geometrical errors of a CMM, systematic probing 

effects, and the bending of the artefact due to gravity for cylinder measurements. They 

employed the  VCMM software [79] installed on the CMM to evaluate the task-specific 

uncertainties. Their method reduced the uncertainty of measurement by a factor of 5-10 and 

the VCMM was able to account for the effects associated with the error elimination.   

 

Limited sampling in combination with feature form deviations is usually the most important 

source of uncertainty in CMM measurement. Thus, when measuring features with a limited 

number of contact points, the influence of feature form deviations on the measurement 

uncertainty need to be considered. However, this is not straightforward using traditional 

uncertainty evaluation methods because the magnitude of the true form deviation is not known 

in advance (since it is one of the parameters to be measured). Although expert knowledge is 

often used to specify an upper limit of the true form deviation, the measurement uncertainty 

statements are still not reliable. Kruth et al. [33] have proposed an alternative method based on 

Monte Carlo simulation and a profile database of realistic form profiles to determine 

uncertainties for CMM measurements with limited sampling. 
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In the reviewed literature, numerous studies have been reported in evaluating the uncertainty 

associated with coordinate measurement through the DOE method [80]. There are various DOE 

techniques such as factorial designs, response surface designs, Taguchi orthogonal array 

designs, etc. [81, 82]. The objectives of the experiment and the number of factors of interest 

usually determine which type of experimental design to apply. In the manufacturing industry, 

the most commonly used approach includes factorial designs [83]. Factorial designs fall under 

two main categories: full factorial designs and fractional factorial designs. Fractional factorial 

designs are an alternative to full factorial designs when the number of factors is large because 

they use fewer runs than the full factorial designs. However, only the full factorial designs 

include all possible combinations of every level of every factor so that all the possible 

interactions among the factors can be examined. Response surface designs are usually used to 

refine models after the important factors have been determined using factorial designs [84]. 

Taguchi orthogonal array design is a type of general fractional factorial design and therefore 

interactions between the factors are normally not taken into consideration [85, 86].    

 

Barini et al. [87] described a study associated with point-by-point sampling of complex 

surfaces using a tactile CMM. They carried out a completely randomized full factorial 

experiment with four factors at two levels each and concluded that the analysis of factorial 

experiments can help determine the statistically important factors. Similar conclusions, but for 

length type features of ball bar gauges, were made by Piratelli-Filho and Giacomo [88] who 

applied a 32 factorial design for carrying out a performance test using a ball bar gauge and for 

investigating CMM errors associated with orientation and length in the work volume. Feng et 

al. [89] employed a sequential experimentation approach through fractional factorial designs 

for the measurement uncertainty evaluation of the location of a hole measured by a CMM 

equipped with a Renishaw TP2 touch-trigger probe. They concluded that, the interaction of 

speed and probe ratio (the ratio between the diameters of the probe and the ring gauge) is of 

statistical significance and the uncertainty is minimized when highest speed is used, the stylus 

length is shortest, and the probe ratio and number of pitch points are largest. Lobato et al. [90] 

presented a non-fully randomized experimental study due to practical considerations using a 

CMM located in a temperature controlled room with different levels of room temperature to 

simulate measurement tasks performed in workshop environments. The factors of interest 

were: the environment temperature; number of probing points; feature type; probe extension; 

and stylus length. They concluded that all studied factors were found to be statistically 



 

49 

 

significant as well as the two-factor interactions of environment temperature with feature type, 

number of probing points with feature type, and probe extension with stylus length.  

 

The coordinate data gathered by the probe of a CMM on part surface are analyzed using 

appropriate algorithms through its software in order to calculate the associated geometric 

features. Nowadays, minimum zone methods (MZMs) of various form errors evaluation have 

received much attention, because the CMM software is usually based on least squares method 

(LSM) that does not guarantee the minimum zone solution (MZS) specified in ISO 1101:2012 

[91]. Dhanish and Mathew [92] studied the effect of CMM point coordinate uncertainty on 

uncertainties of parameters of a non-ideal form circular feature using Monte Carlo simulation 

for four different criteria including the LSM, the MZM, the maximum inscribed and the 

minimum circumscribed. They showed that the distribution associated with the estimates of 

the circularity may be non-normal and the measurement uncertainty is due to finite sampling 

and random effects.   

 

Wen et al. [93] formulated the mathematical model of flatness error MZS and proposed an 

improved genetic algorithm (IGA) to implement flatness error minimum zone evaluation. Wen 

et al. [94] established the mathematical model of cylindricity error based on the minimum zone 

condition and proposed a quasi particle swarm optimization (QPSO) for searching the 

cylindricity error. Both models were nonlinear and therefore the authors considered that it is 

necessary to investigate the validity of the GUF for the uncertainty evaluation of flatness and 

cylindricity error, respectively. GUM and Monte Carlo approaches were selected to estimate 

the uncertainty of the minimum zone flatness error. In order to overcome the problem that the 

number of Monte Carlo trials is required to be defined in advance, adaptive Monte Carlo 

method (AMCM) can be used. In AMCM, a procedure that selects the number of trials 

adaptively takes place until the results have stabilized in a statistical sense. Therefore, Wen et 

al. [94] used AMCM and GUM approaches for the evaluation of measurement uncertainty of 

cylindricity error and the results showed that considering only the first-order terms in the 

Taylor series approximation, the GUM does not reach the required precision to assess the 

uncertainty of measurement of cylindricity error. The cylindricity errors of MZM were much 

smaller than those of LSM as shown by the comparison. Wen et al. [93] also used particle 

swarm optimization (PSO) to calculate the flatness errors of MZM, but the IGA was found to 

be more suitable to calculate the flatness error of MZS than PSO.  
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Ordinary least squares (OLS) is the most common fitting criterion used to fit a geometric 

surface to coordinate data. Least squares algorithms for lines, planes, circles, spheres, 

cylinders, and cones have been described by Forbes [95]. This algorithm is appropriate if the 

covariance matrix associated with the measured coordinate data is a diagonal matrix. 

Nevertheless, in recent years, much research work in the domain of coordinate metrology has 

dealt with developing more realistic uncertainty models for coordinate data. Therefore, fitting 

algorithms that can consider more realistic uncertainty structures associated with the measured 

coordinates have also been developed [96-98].  

 

Although a mathematical model of the measurement system is required to assess the 

uncertainty associated with the coordinate data, most systems are complex and thus, developing 

an accurate mathematical model for the measurement system is very difficult. In this thesis, 

data-driven models, and, in particular, artificial neural networks (ANNs) are developed to 

estimate point coordinates and associated uncertainties (see chapter 7).    

 

2.5 Comparative metrology 

Comparative measurements involve the comparison of a quantity between a test part and a 

calibrated (master) part or reference standard. A fundamental issue in comparative 

measurements is the problem of temporal drift (a time-dependent bias). Therefore, various 

approaches have been used to make the comparison sequence insensitive to drift [99-102].  

 

Sutton and Clarkson [99] presented a general approach to comparisons affected by a temporal 

drift and discussed comparison sequences for linear, quadratic, and cubic drift. They used a 

matrix least squares model in order to obtain information about the drift, the item differences, 

and their uncertainties. In their study on mass comparisons, in which the dominant drift was in 

the balance zero, the analysis of different comparison sequences showed that the best 

performance is achieved when three to five items are involved in each comparison. Gläser 

[103] was concerned with the cycles of comparison measurements to determine which 

measurement sequence leads to the smallest measurement uncertainty. Lira [102] discussed the 

least squares estimation method for evaluating comparison measurements. He presented two 

algorithms to show that this method results in a considerably more convenient framework in 

comparison to GUM [5] for analyzing different sequences of repeated measurements (cycles) 

of comparison measurements. Although the algorithms differ from each other in modelling 
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drift as the second algorithm leads directly to estimates of the differences of interest without 

an explicit drift model as opposed to the first one, an illustrative example for mass comparisons 

taken from [99] showed that both algorithms yield similar results.  

 

Although various research works such as [99, 101, 104] have discussed schemes which 

eliminate the drift effects for simultaneous comparisons, there are cases, especially in 

dimensional metrology, where the comparisons cannot be done simultaneously. For 

dimensional measurements, the instrument drift is due most often to temperature effects and 

therefore, it cannot be minimized by repeated measurements [100]. Drift effects on calibrations 

by comparison have been extensively studied at the National Institute of Standards and 

Technology (NIST). In particular, Doiron [100] presented schedules for non-simultaneous 

comparison calibrations eliminating the bias from drift and simultaneously providing a 

numerical approximation of the magnitude of drift. Drift eliminating designs for simultaneous 

comparison calibrations can be found in Cameron and Hailes [101]. 

 

Although comparison schemes where the drift effects are measured for applying a correction 

are less common [99], the particular interest of this thesis, concerning with comparative 

coordinate measurements in which the dominant drift is due to changes in temperature, falls 

under this category. The system under investigation can cope with temperature changes in a 

shop floor environment by re-zeroing the gauging system through the principle of mastering. 

This means that re-mastering will ‘zero’ any thermal effects when the environment temperature 

changes and thus, the measurement results start to drift. 

 

In a shop floor environment, the traditional approach to dimensional inspection is based on 

manually-operated devices such as micrometres, callipers, go/no-go gauges, etc., because 

CMMs often require temperature controlled rooms to adequately meet their measurement 

capability. Nevertheless, the influence of systematic effects associated with the CMM  can be 

much reduced in comparator mode in which a machine having high repeatability is required [1, 

31]. In particular, the substitution method [73], where the CMM is used as a comparator, 

generally decreases the measurement uncertainty and is used extensively, especially for 

measurement tasks with high accuracy requirements such as in the field of gauge calibration. 

In fact, the comparison between the calibrated value of the working standard and the indication 

of the CMM shows the systematic deviations of the CMM that can be subsequently used to 

correct the measurement results of production parts. Therefore, the problem of performing an 
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uncertainty budget for comparator measurements is much simpler than CMM measurements 

[5].  

 

Substitution as well as non-substitution measurements on CMMs are covered by the third part 

of ISO 15530 [73]. To calculate the measurement uncertainty associated with CMM using 

calibrated parts or measurement standards, four uncertainty contributors should be considered.  

These uncertainty contributors are described by the following standard uncertainties: 

 

 The standard uncertainty, 𝑢(𝑐𝑎𝑙), of the calibrated part. 

 The standard uncertainty, 𝑢(𝑝), of the measurement procedure. 

 The standard uncertainty, 𝑢(𝑏), of the systematic error, 𝑏. 

 The standard uncertainty, 𝑢(𝑤), from the manufacturing process. 

 

Therefore, the expanded measurement uncertainty, 𝑈, of any measurand is calculated as 

follows: 

 

𝑈 = 𝑘 × √𝑢2(𝑐𝑎𝑙) + 𝑢2(𝑝) + 𝑢2(𝑏) + 𝑢2(𝑤) + 𝑏  

(2.10) 

 

The standard uncertainty, 𝑢(𝑐𝑎𝑙), is determined from the expanded measurement uncertainty, 

𝑈(𝑐𝑎𝑙), given in the calibration certificate of the calibrated part as follows: 

   

𝑢(𝑐𝑎𝑙) =
𝑈(𝑐𝑎𝑙)

𝑘
 

 

(2.11) 

 

The standard uncertainty, 𝑢(𝑝), is determined by Equation 2.3. The systematic error, 𝑏, is 

obtained by the difference between the mean of the measured values of the CMM, 𝑥̅, and the 

calibrated value of the calibrated part, 𝓎𝑐𝑎𝑙, and thus, 𝑏 = |𝑥̅ − 𝓎𝑐𝑎𝑙|. Therefore, the standard 

uncertainty, 𝑢(𝑏), is evaluated by the repeated measurements on the calibrated part. The 

minimum number of repeated measurements is 20. Hence, this uncertainty component is 

usually neglected unless it is not very small. However, the standard uncertainty associated with 

the systematic error also includes the effect of the uncertainty in the coefficient of thermal 
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expansion (CTE) value for the calibrated part. This quantity is not negligible and is calculated 

by:  

 

𝑢(𝑏) = (𝑇 − 20°𝐶) × 𝑢(𝑎) × 𝑙 (2.12) 

 

where 𝑇 is the average temperature of the calibrated part during measurement, 𝑢(𝑎) is the 

standard uncertainty of the expansion coefficient of the calibrated part, and 𝑙 is the measured 

dimension. Finally, the standard uncertainty, 𝑢(𝑤), includes two uncertainty quantities 

associated with the uncalibrated parts: the standard uncertainty, 𝑢(𝑤𝑝), which covers the 

influences associated with the variations of form errors and roughness and the variations in 

elasticity; and the standard uncertainty, 𝑢(𝑤𝑡), which covers the influence associated with the 

variation of the CTE of the measured parts. The latter uncertainty quantity is calculated by 

Equation 2.12, but considering the uncalibrated parts. Therefore, the standard uncertainty, 

𝑢(𝑤), is obtained by: 

  

𝑢(𝑤) = √𝑢2(𝑤𝑝) + 𝑢2(𝑤𝑡)  

(2.13) 

 

2.5.1 Renishaw Equator comparator 

The Renishaw Equator comparative gauging system has been designed to be a versatile 

alternative to custom hard gauging. In particular, the Equator is not an absolute measuring 

machine like a CMM, but it is a high speed comparative gauge, which aims at medium to high 

volume gauging applications on the shop floor, alongside the manufacturing equipment. Its 

gauging technology is based on the traditional comparison of a test part to a master part with 

dimensions having a high level of confidence through a software, called RenCompare. The re-

mastering process can be managed with the built-in sensor and software configuration and is 

required to compensate for any change in thermal conditions.   

 

The Equator gauging system has been on the market since 2011. It comprises the Equator 

gauging machine, the Equator controller, and the SP25 3-axis analogue scanning probe (see 

Figure 2.5). In particular, the SP25M (25 mm diameter scanning probe with scanning and 

touch-trigger modules) comprises two sensors in a single housing in order to function either as 

a scanning probe to gather several hundred surface points each second or as a touch-trigger 
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probe to acquire discrete points on the part surface. The Equator is a parallel kinematic machine 

(PKM) and weights about 25kg. The Equator gauging machine is powered directly from its 

controller which requires single phase power. The Equator controller is a powerful dedicated 

control system that contains all the software required to run the system. Therefore, an additional 

computer is not required to operate the Equator. The Equator, as standard and used in this 

research, has a cylindrical working envelope with the dimensions ø300 mm × 150 mm (XY 

ø300 mm and Z 150 mm) as shown in Figure 2.6. Other models with larger working volumes 

are also now available.  

 

 

Figure 2.5: Equator 300 gauging system [105]. 

 

                                             (a)                                                                  (b)       

Figure 2.6: Working volume (a) front view and (b) right view [105]. 
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The Equator machine is composed of three linear drive struts separated by an angle of 120° 

with respect to each other. Each drive strut is equipped with a linear encoder and is mounted 

on the Hooke’s joint on the fixed top casting. The probe (movement) platform of the Equator 

is constrained by a parallel kinematic constraint mechanism so that it can remain parallel to the 

fixture plate or fixed base casting. Figure 2.7 provides the terminology for the Equator gauging 

machine.  

 

 

Figure 2.7: Terminology for Equator gauging machine [105]. 

 

The Renishaw MODUS Equator software has three modes: the operator mode; the programmer 

mode; and the administrator mode. The operator mode can be used by operators to run gauging 

routines and generate results using the front-end software MODUS Organiser. The operator 

software communicates with MODUS Gauge (see Figure 2.8) which is a version of MODUS, 

especially developed for gauging. MODUS Gauge communicates with RenCompare via an I++ 

dimensional measuring equipment (DME) interface. RenCompare software performs the 

comparative analysis of the metrology data and communicates with UCCserver Equator which 

commands the Equator and at the same time registers the probe position in space.  
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Figure 2.8: Software/hardware communication [105]. 

 

The programmer mode contains the MODUS Equator programming software which is used by 

production engineers to program inspection routines using the internationally recognised 

dimensional measuring interface standard (DMIS) language. Programming capabilities can be 

activated by the use of a USB security device (dongle). The administrator mode can be just 

used to set up the system for operator use and is only available for administrators.   

 

In order to generate a master data set, a master part is measured using the same measurement 

routine produced to measure each test part. Each test data set is then compared to the master 

data set to determine the actual size of the test part and assess its conformance to the 

engineering drawing. Three different comparison methods can be distinguished: 

 

 CMM Compare 

 Feature Compare 

 Golden Compare 

 

CMM Compare is the most accurate method of using an Equator flexible gauge. It does not 

require a reference master part to calibrate the Equator. With CMM Compare, a test part 

produced close to drawing nominals can be used as a master part. However, it requires to 
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calibrate the “marked” master part on an accurate CMS such as a CMM in order to generate a 

calibration (.cal) file, which is then transferred to the Equator and read during mastering to 

enable the individual points of a master data set to be compared with that of test data sets. 

Therefore, with this compare method, the calibrated absolute accuracy of the CMM located in 

a temperature controlled environment can be extended onto the shop floor to provide calibrated 

traceability to Equator measurements. 

 

Feature Compare is an alternative to CMM Compare that simplifies the calibration process of 

the master part. With Feature Compare, the inspector can manually enter the actual values for 

each feature’s size, position or orientation of the master part. 

 

Golden Compare differs from the other compare methods in that there is no requirement to first 

calibrate the master part, for example on a CMM. However, it requires a reference master part 

to calibrate the Equator and presumes that the master part is produced to drawing nominals. 

Therefore, with this compare method, any deviation of the master part to drawing nominals 

will be included in the measurements. This thesis focuses on Golden Compare and CMM 

Compare methods. 

 

2.6 Summary 

In traditional manufacturing industry, hard gauges and CMMs have been used for many years 

to assess whether the dimensions of a manufactured part conform to design specifications. 

However, inspecting manufactured parts using hard gauges: i) is time consuming and 

inflexible, ii) is characterised by costly hardware changes when the design of the production 

parts changes, and, iii) requires highly skilled operators to assure confidence on the 

measurement results. Modern manufacturing requires CMSs capable of performing complex 

inspection tasks with low measurement uncertainty in a shop floor environment and within a 

very short time. CMSs such as conventional CMMs are very accurate and flexible measuring 

systems. However, they require stable environmental temperature conditions to ensure accurate 

measurement results. As a result, hard gauges or more rarely AACMMs are usually preferred 

on the shop floor though they are also thermally sensitive. AACMMs are manual CMMs based 

on a non-Cartesian structure. Compared to CMMs, they are of lower cost and weight, portable, 

and more flexible since they may have more than six DOF. However, their manual operation, 

low accuracy and frequent calibration required to reduce their errors make them not suitable 
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for most applications in precision manufacturing. Therefore, the traditional approach to 

dimensional inspection on the shop floor is based on manual gauging.  

 

The demand for lightweight CMSs operating at higher speeds with reduced inertial effects on 

the shop floor has forced manufacturers to consider automated comparator gauges based on a 

PKM in order to achieve accurate shop floor dimensional inspection at low cost. Therefore, the 

Equator gauge has been recently adopted for flexible dimensional inspection on the shop floor 

to help bridge the divide between CMM measurement and hard gauging. Identifying defective 

parts immediately after they have been manufactured is of special importance because it 

enables effective in-process feedback from dimensional inspection on the shop floor, reduction 

of inspection scrap and bottlenecks since defective parts can be excluded immediately without 

the need for further processing, etc. However, inspection devices such as CMMs and 

comparator gauges are complex mechatronic systems and therefore, an accurate mathematical 

model for the measurement system is difficult to develop. In this thesis, artificial intelligence 

(AI) techniques are applied to predict CMS coordinate data. 

 

While research has been performed on evaluating uncertainty of coordinate metrology using 

comparative mode, there is no academic research into uncertainty for high speed PKM 

configuration. Classical uncertainty evaluation methodologies usually require many repeated 

measurements and ignore any prior knowledge about the inspection process. On the other hand, 

computational Bayesian methods such as MCMC are straightforward to use to generate 

samples from the posterior distribution, but prior knowledge may be difficult to specify in 

probabilistic form.   
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Chapter 3   

 

Evaluating the Uncertainty of Comparator Measurement 

Influenced by Misalignments using Full Factorial Designs 

This chapter is concerned with evaluating the uncertainty associated with comparative 

coordinate measurement using the DOE approach. For the Equator gauge, the fixturing 

requirement of each production part to the master part is approximately ± 1 mm for a 

comparison process with a stated uncertainty of ± 2 μm. Therefore, a number of experimental 

designs are applied with the main focus on the influence of part misalignment from rotation 

between master and measure coordinate frames on the comparator measurement uncertainty. 

Other factors considered include measurement mode mainly in scanning and TTP and 

alignment procedure used to establish the coordinate reference frame (CRF) with respect to the 

number of contact points used for each geometric feature measured.  

 

The measurement uncertainty analysis of the comparator technique used by the Equator gauge 

in Golden Compare commences with a simple measurement task using a gauge block to 

evaluate the three-dimensional (3D) uncertainty of length comparative coordinate 

measurement influenced by an offset by tilt in one direction (2D angular misalignment). Then, 

a specific manufactured measurement object is employed so that the comparator measurement 

uncertainty can be assessed for numerous measurement tasks within a satisfactory range of the 

working volume of the versatile gauge. Furthermore, in the second case study, different types 

of part misalignment including both 2D and 3D angular misalignments are applied. The time 

required for managing the re-mastering process is also examined. A task-specific uncertainty 

evaluation is completed using DOE. Also, investigating the effects of process variations that 

might be experienced by such a device in workshop environments. Most of this work has been 

published in [31] and [106].  
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3.1 Comparator measurement 

Comparator measurements are mainly subject to random effects since constant systematic 

effects associated with the measurement system cancel out through the principle of mastering. 

The re-mastering process is required to efficiently calibrate the comparator system for a 

specific measurement task. Figure 3.1 shows the measurement uncertainty contributors for 

CMMs and comparators. The main uncertainty contributors for comparator measurement can 

be considered to be: environmental effects, calibrated master part, measurement part, machine 

repeatability, part fixturing, sampling strategy, and geometric element best-fit algorithms. 

 

 

Figure 3.1: Measurement uncertainty contributors for CMMs and comparators. 

 

The principle of operation of the Equator is to gauge or compare data/components. As has been 

discussed in section 2.5.1, the Equator gauge provides various compare methods, the main ones 

being “CMM Compare” and “Golden Compare”. In CMM Compare, the calibrated absolute 

accuracy of the CMM located in a temperature controlled room can be transferred to the shop 

floor to provide calibrated traceability to Equator measurements. The Golden Compare uses a 

master part (golden master) to calibrate the Equator and differs from the CMM compare 

procedure in that there is no requirement to measure the master part on a CMM. The Golden 

Compare method assumes that the master part is produced at drawing nominals and therefore, 

any deviation of golden master part to drawing nominals will be included in the measurements. 

However, measurements need to be obtained by traceable measuring systems and therefore, 

when employing a comparator that uses a production part as a master part, traceability to 

national standards needs to be established. The Golden Compare procedure consists of the 

following steps: 
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i. Obtain a master part. 

ii. Generate the required part program on the Equator, including the commands 

COMPARE/ON and COMPARE/OFF. 

iii. Run the part program using the master part in master mode to generate an Equator master 

file. 

iv. Run the part program using the master part in measure mode (verification step). 

v. Remove the master part and replace with the production parts to be measured. 

 

The methodology for this chapter is therefore to conduct a DOE with the factors listed in Figure 

3.1, excluding the, “calibration uncertainty brought-in from master part.” The reason for this 

exclusion is that this chapter studies the performance of the comparator gauge and thus, it 

concerns only the verification step of the mastering process. In addition, the application of the 

CMM to the master part and determination of uncertainty is an established methodology [73]. 

 

3.2 Experimental design for 2D angular misalignment 

In the first stage of this thesis, a general full factorial design using a gauge block of 100 mm 

was employed to evaluate the 3D uncertainty of length comparative coordinate measurement 

influenced by a 2D angular misalignment. Gauge blocks are simple mechanical artefacts with 

accurately known length between their two flat and parallel end faces and one of their primary 

applications is that of calibration [107]. The performance of the comparator gauge was 

evaluated at 24°C ± 0.5°C temperatures (uncontrolled temperature conditions) because ideal 

laboratory conditions do not encompass uncontrollable factors and as a consequence, do not 

represent those conditions in which the comparator gauge is likely to be deployed. The stylus 

used was a typical 21 mm long stylus with stainless steel stem and a 5 mm diameter ruby ball. 

A general overview of the experimental setup is shown in Figure 3.2.     
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Figure 3.2: Test setup on Equator gauge for gauge block inspection. 

 

Beyond TTP which is slow because the probe must traverse the measurement object point-to-

point, scanning is being increasingly used in a large number of measurement tasks. Therefore, 

a number of studies have been concerned with the comparison of scanning versus touch-trigger 

probe measurement in absolute mode [65, 108]. However, no prior studies were found that 

compared scanning and touch-trigger probe measurement in comparator mode. The Equator 

300 gauge used in this thesis is a PKM. Parallel kinematic mechanism-based machines have 

many advantages over serial structured ones such as improved repeatability and reduced 

inertial effects at high working speeds [109-111]. However, they suffer from a limited 

operational workspace and nonlinear force transmission and stiffness characteristics [112]. The 

Equator gauge is supplied with the industry standard SP25 3-axis analogue scanning probe. 

The SP25M comprises two sensors in a single housing in order to function either as a scanning 

probe to gather several hundred surface points each second or as a touch-trigger probe to 

acquire discrete points on the surface. Therefore, this study sought to investigate the difference 

obtained in length accuracy between scanning and touch-trigger probe measurement in 

comparator mode and their impact on measurement uncertainty. In order to investigate the 

influence of high-speed scanning on the comparator measurement uncertainty, the speed used 

for scanning was 100 mm/s, which is the maximum recommended for the specific comparator 

gauge. For TTP, a relative small number of contact points were taken because it was only to 

evaluate the length of a simple object consisting of two parallel planes of equal sizes, i.e. gauge 

blocks.   
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One critical factor affecting CMM performance is the part-alignment procedure used to define 

the coordinate system or frame of reference (CRF). In addition, estimating the measurement 

uncertainty contributed by the misalignment of the gauge block depends upon the alignment 

procedure [113]. While some recommendations for aligning gauge blocks are given in [113], 

there is no completely general method. However, due to the fact that in many practical 

applications the inspection cycle time is crucial, especially for inspections performed by the 

Equator which is aimed at medium to high volume gauging, two alignment procedures were 

chosen to highlight the influence of this factor on the uncertainty of comparator-mode 

measurement; 1) the non-time-saving alignment in which a sufficient number, based on good 

measurement practices, of discrete points were taken for each geometric feature measured and 

2) the time-saving alignment where the number of contact points required for various geometric 

features was the mathematical minimum. 

 

In coordinate measurement, an improper part fixturing setup affects measurement accuracy and 

part throughput. On the Equator, when each part is fixtured to within 1 mm relative to the 

master part, size and position measurements made immediately following re-mastering have a 

comparison uncertainty, according to the system specification, of ± 2 μm relative to the 

certified measurements of the master part. Angular misalignments [7] can largely be avoided 

by using an appropriate fixture arrangement for part holding. However, holding the parts to be 

inspected in proper position and orientation is not always an easy task. In some cases, this is 

not even feasible from a practical point of view e.g. in automated presentation of parts by a 

robot with limited repeatability or by using a non-repeatable fixturing setup or both. In this test, 

the alignment error leads to a cosine error [114] (0.5𝛾𝐿𝑟), where 𝛾 is the angle between the 

calculated and actual perpendiculars and 𝐿𝑟 the true length of the gauge block, and a first-order 

error (𝛾𝛼), which is negligible for measurement under computer control, since in this case 𝛼, 

which is the perpendicular distance of the projected sensing points from the calculated 

perpendicular to the surface, can be chosen to be very small [113]. Cosine error is the least of 

the errors caused by misalignment despite the fact that, this type of error often receives the 

most attention [115]. Figure 3.3 shows the misalignment of the gauge block by tilt along y-axis 

and Table 3.1 shows the factors and levels of the gauge block inspection. The length and width 

of the gauge block are 100 mm and 35 mm, respectively. So, for example, for an angle 

𝜔̂ = 8.627° (AB = 15 mm), the angle 𝜃 is equal to 81.373° and therefore, based on Pythagorean 
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Theorem, ΓΔ = 5.25 mm. In order to investigate if the measurement accuracy degrades as the 

angle value 𝜔̂ increases, seven levels were used for this factor (see Table 3.2).  

 

 

Figure 3.3: Angular misalignment of the gauge block. 

 

Table 3.1: Factors and levels of the gauge block inspection. 

Factors Levels 

 1 2 3 4 5 6 7 

(A) Measurement mode Scanning TTP      

(B) CRF Non-time-saving Time-saving      

(C) Angular misalignment a b c d e f g 

 

Table 3.2: Values for the angular misalignment. 

Levels 𝜔̂ 𝜃 ΑΒ ΓΔ 

a 0.000° 90.000° 0.000 mm 0.000 mm 

b 0.573° 89.427° 1.001 mm 0.350 mm 

c 1.146° 88.854° 2.000 mm 0.700 mm 

d 2.292° 87.708° 4.000 mm 1.400 mm 

e 4.014° 85.986° 7.000 mm 2.450 mm 

f 5.739° 84.261° 10.000 mm 3.500 mm 

g 8.627° 81.373° 15.000 mm 5.250 mm 
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It is worth mentioning that, the use of randomization technique for balancing the effect of 

extraneous or uncontrollable conditions that can impact the measurement results is not required 

in this work because the flexible gauge is calibrated by mastering. In addition to that, the 

presented work is designed to be representative of the actual working conditions in which the 

flexible gauge is used. The Equator comparator has been designed for shop floor gauging with 

possibly wide temperature variation. Shop floor conditions mostly differ from ideal laboratory 

conditions in the fact that they have more random and systematic effects. It is usually difficult 

to distinguish between these effects very clearly [116]. Consequently, the concerns of 

randomization issues due to practical considerations [90] and/or the need of mixed-effects 

models [117] in statistical data analyses are largely avoided.   

 

3.3 Comparator measurement uncertainty evaluation 

In order to avoid misleading conclusions mainly due to the random effects of shop floor 

environment and achieve a good level of confidence, the measurement of the gauge block was 

followed immediately after mastering and repeated ten times without re-mastering so in total, 

280 lengths were determined. For each set of ten repeated measurements, the comparison 

measurement uncertainty was determined following the uncertainty evaluation methodology 

given in ISO 15530-3:2011 [73] concerned with substitution measurement. At present, there is 

no standard specifically concerned with uncertainty evaluation associated with scanning 

measurement in comparator mode. ISO 15530-3 provides an experimental technique for 

evaluating uncertainty associated with discrete-point probing. By capturing points by scanning, 

a high spatial density is achieved. Consequently, through the combination of oversampling and 

the application of the same measurement routine for master and production parts, the individual 

probing points are sufficiently coincident to permit the use of this standard for uncertainty 

evaluation. Therefore, the expanded uncertainty, U, was calculated by Equation 2.10 (in section 

2.5) considering only the standard uncertainty associated with the measurement procedure. In 

such a measurement system, all actual features on the master part are set to their drawing/part 

program nominal values during the master procedure.  

 

In order to evaluate the fit of a given distribution (such as the normal distribution in this case) 

to the data set, a histogram and a normal probability plot of the measurand values were 

produced. However, to easily assess substantive departures from normality, Figure 3.4 shows 

the normal probability plot of the measurand because histograms require more data in order to 
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effectively identify which standard distribution to select. Also, although a probability plot 

serves a similar function as an empirical cumulative distribution function plot, with a 

probability plot the distribution fit is easier to be judged by viewing how the data points fall 

about the line because deviations from the straight line indicate departures from normality.   

 

 

Figure 3.4: Normal probability plot of the measured length. 

 

As can be seen from Figure 3.4, the measurement results follow a normal distribution with 

negligible departures from normality. For a normal distribution, the interval that contains only 

one standard deviation provides a confidence level of 68.27%. A confidence level of 95.45% 

is achieved by using a coverage factor 𝑘 = 2 (two standard deviations of the mean) [5]. Figure 

3.5 shows the main effects plots of the factors for the expanded measurement uncertainties U 

for 𝑘 = 2 and a 95.45% confidence level.  
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Figure 3.5: Main effects plots for expanded measurement uncertainties. 

 

The results in Figure 3.5 show the measurement uncertainty of the comparator technique, which 

is well within specification. As can be seen, for this measurement task: the comparator 

measurement uncertainty is smaller in TTP mode than scanning mode though the difference in 

uncertainty between scanning and TTP is less than 0.5 μm; the number of probing points used 

to establish the CRF above the mathematical minimum have no statistically significant 

influence on the comparator measurement uncertainty; and the comparison uncertainty 

becomes larger as the angular misalignment exceeds the ± 1 mm fixturing requirement in the 

Equator specification but enabled any sensitivity and relationship to be identified. As 

previously stated, this test takes the misalignment well beyond the device’s specification. In 

addition, the interaction plots including all the possible interactions of the factors for the length 

comparator measurement uncertainties were produced. However, they are very small (< 2 μm) 

under all combinations of factors and therefore, factor interactions are shown only for the 

second experimental design.   

 

Sections 3.2 and 3.3 have provided a methodology for investigating, in an effective way, the 

effect of angular misalignment on the comparator measurement uncertainty using simple 

measurement objects such as gauge blocks. Section 3.4 follows the same procedure for 
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different measurement tasks on a representative part in order to make an adequate statement 

about the measurement capability of the flexible gauge using the Golden Compare method. In 

addition, both 2D and 3D angular misalignments are applied.      

 

3.4 Experimental design for advanced part misalignment  

For the second experimental work, a connecting rod (conrod) was designed using CAD 

software and then manufactured using a CNC machine tool so that the uncertainty of 

comparator-mode measurement can be assessed for different types of measurement (different 

features and characteristics) within a satisfactory range of the Equator working volume. 

Therefore, the probe configuration was based on preliminary experiments that involved four 

different probe configurations, multiple point alignment and minimal point alignment 

procedures, and measurement mode in scanning and TTP. Also, in order to investigate if a 

lower speed in scanning and a larger number of contact points in TTP improve or degrade 

measuring accuracy, two different speeds were used for scanning and two different numbers of 

discrete points were selected to be taken for each feature in TTP; one using a relatively large 

number of contact points and one using a relatively small number of contact points for that 

particular features according to good measurement practices. Then, based on the results of 

preliminary experiments, angular misalignments were applied with one probe configuration so 

that the emphasis is on the effects and interactions of angular misalignment with measurement 

mode and alignment procedure used to define the CRF on the comparator measurement 

uncertainty. Also, it was argued, if the distribution of points with TTP should follow the same 

path used for scanning. To avoid the influence of feature form deviations and be able to draw 

more refined conclusions about the effect of these factors and their interactions on comparator 

measurement uncertainty, the same path was used for both measurement modes. CMM 

measurement strategies, including the selection of the number and distribution of contact 

points, are outlined in the NPL good practice guide [57]. 

 

This chapter concentrates on diameter and length measurement. The levels considered for the 

angular misalignment after mastering were: no offset by tilt in any direction; 2.5 mm offset by 

tilt along z-axis; 3 mm offset by tilt along y-axis; and the resulting 3D angular misalignment 

with the simultaneous combination of both (see Figure 3.6). As described above, angular 

misalignments with unknown magnitude are common in practical applications. Therefore, 

investigating their influence on the uncertainty associated with comparative coordinate 
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measurement is of great importance. Table 3.3 shows the factors and levels of the conrod 

inspection.   

 

 

Figure 3.6: 3D offset by tilt for the conrod. 

 

Table 3.3: Factors and levels of the conrod inspection. 

Factors Levels 

 1 2 3 4 

(A) Measurement mode Scanning Scanning TTP TTP 

 100 mm/s 50 mm/s Many points Few points 

(B) CRF Non-time-saving Time-saving   

(C) Angular misalignment 0 mm 2.5 mm 3 mm  3D 

  along z-axis along y-axis  

(D) Probe configuration Stylus 21×5 Stylus 50×5 Stylus 40×2 Stylus 30×4 

 

3.4.1 Preliminary experiments for probe configuration 

A full factorial design was applied to assess the influence of the factors on the comparator 

measurement uncertainty. The factors of interest in the preliminary experiments were 

measurement mode, alignment procedure used to establish the CRF, and probe configuration 

including the following styli: 1) a 21 mm long stylus with stainless steel stem and a 5 mm 

diameter ruby ball; 2) a 50 mm long stylus with ceramic stem and a 5 mm diameter ruby ball; 

3) a 40 mm long stylus with tungsten carbide stem and a 2 mm diameter ruby ball; and 4) a 

30 mm long stylus with tungsten carbide stem and a 4 mm diameter ruby ball. The room 

temperature was set to 20°C ± 0.5°C because choosing the right probe configuration for an 

inspection process required the minimization of environmental effects. The measurement of 

the conrod was followed immediately after mastering and repeated ten times without re-



 

70 

 

mastering. 80 measurement results were determined for each measurand and for each stylus 

used. A general overview of the experimental setup is shown in Figure 3.7.  

 

 

Figure 3.7: Test setup on Renishaw Equator for preliminary experiments. 

 

To illustrate both a measure of central tendency and variability of the data against probe 

configuration, an interval plot was produced for each measurand. Due to the large number of 

measurands, only representative figures are presented. Figures 3.8 and 3.9 show one interval 

plot for diameter measurement and one interval plot for length measurement. Based on the 

interval plots and the associated standard uncertainties for all the measurands, the best results 

were obtained from the 21×5 and the 40×2 probe stylus. However, the 21×5 probe stylus was 

selected for the main experiment because a short straight stem configuration is more rigid and 

generally provides better results. The longer stylus with ceramic stem provided measurement 

data having the highest standard deviation and the least probable estimate of the true mean 

value, while the 30×4 probe stylus provided results with higher uncertainties in comparison to 

that obtained by the 21×5/40×2 probe styli. 

 



 

71 

 

 

 

Figure 3.8: Diameter of small circle versus probe configuration. 

 

 

Figure 3.9: Length distance 2 versus probe configuration. 
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3.4.2 Main experiment for advanced part misalignment 

A full factorial design was applied under workshop conditions for the main experiment using 

the first stylus and involving the factors: measurement mode, alignment procedure used to 

establish the CRF, and angular misalignment (part misalignment from rotation between master 

and measure CRFs). After mastering, ten repeated measurements were performed without re-

mastering so 320 measurement results were determined for each measurand.   

 

Furthermore, temperature readings were recorded during the main experiment to record the 

temperature variation of shop floor conditions. One temperature sensor was used for the 

ambient temperature, three for the temperature of the measuring machine, and four for the part. 

Although the flexible gauge is insensitive to ambient temperature changes due to the 

comparison method of mastering, the accuracy of inspection results is dependent on the 

influence of temperature on the parts to be measured, unless the flexible gauge has been 

calibrated using a master part having the same temperature with that of production parts or 

multiple master files have been used. Figure 3.10 shows the experimental setup and location 

of the temperature sensors. The accuracy of the temperature sensors is ± 0.5°C. The part is 

made of aluminium, which is a material with high thermal conductivity and high expansion 

coefficient making it sensitive to temperature gradients with rapid response to variation in the 

temperature of the environment. In the case of manual loading of parts into the machine, the 

temperature distribution on the part can be dependent on operator handling. Figure 3.11 shows 

a representative sample of the ambient temperature under which the experiment took place 

(temperature readings were taken every ten seconds). 

 

The fixturing arrangement was slightly modified for the main experiment in order to attach the 

temperature sensors on the bottom plane of the part. It is also worth mentioning that, an 

important contribution to the overall measurement uncertainty may owe to the fixturing 

variability due to the simple fixture arrangement used so that the angular misalignments can be 

easily applied. However, this is taken into account by the uncertainty contribution associated 

with the measurement procedure and shall not be considered separately.  
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Figure 3.10: Test setup on Renishaw Equator for main experiment. 

 

Figure 3.11: Sample of ambient temperature. 
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As with the gauge block inspection, for each set of ten repeated measurements, the comparison 

measurement uncertainty was determined following the uncertainty evaluation methodology 

given in ISO 15530-3:2011 [73]. For each measurand, a normal probability plot was produced 

for assessing substantive departures from normality and all were judged to be satisfactory for 

95% confidence level. Table 3.4 shows the results obtained by the ANOVA procedure based 

on a least squares regression approach. 

 

Table 3.4: ANOVA results for the conrod inspection. 

Measurands p-values 𝑅2 

A B C A*B A*C B*C 

Small circle diameter 0.040 0.528 0.729 0.733 0.975 0.768 68.05% 

Medium circle diameter 0.052 0.183 0.116 0.305 0.381 0.336 81.81% 

Large circle diameter 0.923 0.536 0.087 0.493 0.368 0.709 73.76% 

Length distance 1 0.853 0.222 0.013 0.498 0.481 0.449 80.20% 

Length distance 2 0.043 0.178 0.000 0.088 0.154 0.147 92.13% 

Length distance 3 0.253 0.448 0.000 0.297 0.582 0.707 90.11% 

 

Based on the ANOVA results, the statistically significant factors and second order factor 

interactions for 95% confidence level (p-values < 0.05) are: measurement mode (A) for the 

small circle; angular misalignment (C) for length distance 1 and 3; and measurement mode (A) 

and angular misalignment (C) for length distance 2. Note that, 𝑅2 is the percentage of the 

response variable variation explained by the linear regression model in Minitab [118]. Figures 

3.12-3.17 show the main effects plots for the expanded measurement uncertainties U for 𝑘 = 2 

and a confidence level of 95.45%.  
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Figure 3.12: Main effects plots for the uncertainties of small circle diameter. 

 

Figure 3.13: Main effects plots for the uncertainties of medium circle diameter. 
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Figure 3.14: Main effects plots for the uncertainties of large circle diameter. 

 

Figure 3.15: Main effects plots for the uncertainties of length distance 1. 
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Figure 3.16: Main effects plots for the uncertainties of length distance 2. 

 

Figure 3.17: Main effects plots for the uncertainties of length distance 3. 
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Based on the main effects plots shown in Figures 3.12-3.17, the following conclusions can be 

made for the specific flexible gauge, part and test conditions: 

1. The comparator measurement uncertainty is not significantly influenced by a time-saving 

alignment procedure so a considerable saving of time can be achieved by performing a 

quick alignment procedure without increasing uncertainty. However, datum uncertainties 

have to be taken into account for features which are evaluated with respect to datum’s such 

as true position [60]. 

2. Careful consideration needs to be paid for the scanning speed used for the inspection of 

each feature because this is proportional to the traversed radius. As a consequence, a very 

high scanning speed will result in increasing the comparator measurement uncertainty (see 

Figures 3.12 and 3.13 and Figures 3.15-3.17). However, a typical Cartesian CMM without 

compensation techniques normally requires lower scanning speeds to meet its measurement 

capability and thus, such low uncertainty values.  

3. A relatively large number of contact points provides smaller measurement uncertainties in 

comparison to limited sampling (see Figures 3.12-3.14 and Figures 3.16 and 3.17). 

4. The difference in comparator measurement uncertainty between scanning and TTP 

measurement is associated with the scanning speed used for scanning and the number of 

probing points used for TTP for a given feature, but was found to be less than 1 μm for all 

cases tested. 

5. The diameter measurement uncertainties remain below ± 2 μm even when exceeding the 

specified alignment conditions. 

6. The length measurement uncertainties remain below ± 2 μm under specified conditions and 

when exceeding the specified conditions only along z-axis for this experimental setup.  

 

Departures from the specified part fixturing requirement of the flexible gauge show that the 

comparator measurement uncertainty is associated with the measurement task, feature size, 

measurement strategy used, and magnitude and direction of offset angles in relation to the 

reference axes of the machine. Figures 3.18 and 3.19 show the factor interactions at the 95% 

confidence level for the expanded measurement uncertainties of length distance 3 to illustrate 

that the degree of interaction is high for length measurement only when the misalignment 

includes a 3 mm offset by tilt along y-axis, which exceeds to a great extent the specified 

conditions of the system.  
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Figure 3.18: The interaction plot of measurement mode and angular misalignment for the 

uncertainties of length distance 3. 

 

 

Figure 3.19: The interaction plot of CRF and angular misalignment for the uncertainties of 

length distance 3. 
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3.5 Managing the re-mastering process 

Another DOE was employed to examine the time required for managing the re-mastering 

process in shop floor conditions. The factors were: i) temperature in different levels for two 

different cases and ii) scanning speed in two levels (100 mm/s and 50 mm/s), as previously, for 

the main experiment. In the first case, the comparator gauge was used to measure the circular 

features of the part ten times at both scanning speeds immediately after mastering for different 

ambient conditions (21.5°C, 24°C, 26.5°C, and 29°C). In the second case, the comparator 

gauge was mastered at 21.5°C ± 0.5°C and then employed to measure the circular features of 

the part ten times at both scanning speeds without re-mastering in each case (24°C*: Master at 

21.5°C/Measure at 24°C, 26.5°C*: Master at 21.5°C/Measure at 26.5°C, and 29°C*: Master at 

21.5°C/Measure at 29°C). Table 3.5 shows the factors and levels for the DOE concerned with 

managing the re-mastering process. The results obtained from this experimental design are 

shown in Figures 3.20-3.25.  

 

Table 3.5: Factors and levels for the DOE concerned with managing re-mastering. 

Factors Levels 

 1 2 3 4 5 6 7 

(A) Temperature 21.5°C 24°C 26.5°C 29°C 24°C* 26.5°C* 29°C* 

(B) Scanning speed 100 mm/s 50 mm/s      

 

The CTE describes how the size of a part material changes with a change in temperature. For 

a typical material such as aluminium in this case this is expressed as 23.1 × 10-6 °C-1. To correct 

a length to 20°C, consider the following equation: 

 

𝑙20 = 𝑙𝑇 + (20 − 𝑇) × 𝑎 × 𝑙𝑇 (3.1) 

 

where 𝑙 is the measured length, 𝑇 is the average temperature at which the length was measured, 

and 𝑎 is the CTE. Without re-mastering the behaviour of the comparator system is similar to 

that of CMMs, which are sensitive to environmental effects. Temperature changes cause the 

machine components and parts being measured to expand, contract, and, in certain cases, distort 

in a nonlinear manner. Thus, the coefficient of linear thermal expansion may not be accurate. 
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Figure 3.20: Boxplot of the diameter of small circle. 

 

 

Figure 3.21: Boxplot of the diameter of medium circle. 
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Figure 3.22: Boxplot of the diameter of large circle. 

 

Figure 3.23: Boxplot of the length distance 1. 
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Figure 3.24: Boxplot of the length distance 2. 

 

Figure 3.25: Boxplot of the length distance 3. 
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As shown in Figures 3.20-3.25, the uncertainty requirements of the application will determine 

the time of re-mastering because environmental effects cause linear and nonlinear strains and 

deformations of the part being measured as well as the CMS. For higher accurate 

measurements, the effect of environmental conditions on the comparative measurement can be 

managed by setting a more restricted upper and lower temperature drift limit by means of built-

in sensor feature of Equator. Finally, it is important to note that in Figure 3.20, the large data 

variability owes to the high scanning speeds used for measuring the small circle of 10 mm 

diameter. However, based on the results, it can be concluded that a PKM-based flexible gauge 

maintains its accuracy at high speeds.  

 

3.6 Summary 

As the need in manufacturing for in-process feedback increases, many efforts have been made 

to place the measuring equipment close to the machining process and, at the same time, to 

achieve repeatable measurements with relatively low measurement uncertainty and within a 

very short time. Renishaw has developed a new adjustable variable gauge, called Equator. 

However, there are practical applications in which fixture arrangements are restricted to setups 

of low repeatability, thus inducing errors in the measurement process. For this reason, full 

factorial designs have been employed to evaluate the influence of 2D and 3D angular 

misalignments between master and measure coordinate frames on the comparator measurement 

uncertainty. It has been demonstrated that for this PKM-based flexible gauge and test 

conditions there is no significant effect on system repeatability associated with diameter 

measurement in comparator mode even when the fixturing requirement is exceeded by the 

studied misalignment values. In particular, it is associated with the feature size, measurement 

strategy used, and magnitude and direction of offset angles in relation to the reference axes of 

the machine. However, for length measurement, fixtures/components should relocate within 

the versatile gauge’s volume to an approximate tolerance of ± 1 mm (fixturing requirement 

according to the system specification) to ensure a successful comparison process. The 

comparator measurement uncertainty is dependent on the number of probing points used to 

measure each feature in TTP mode and on the scanning speed used in scanning mode, but not 

on the number of probing points taken for establishing the CRF. Lastly, the accuracy 

requirements of the application and task-specific uncertainty evaluation are required for 

managing the re-mastering process.      
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Chapter 4   

 

Evaluating the Comparator Uncertainty within the Whole 

Working Volume and Statistical Modelling 

This chapter employs the DOE approach to investigate the influence of part location, 

measurement strategy and environmental effects on the comparator measurement uncertainty. 

Therefore, two full factorial designs are applied to perform a practical analysis of measurement 

uncertainty of the PKM-based flexible gauge within its whole measuring volume. The Equator 

is used in Golden Compare mode under shop floor conditions and in both TTP and scanning 

mode in order to investigate the behaviour of the comparator system within its whole measuring 

volume in both measurement modes. In addition, this chapter is concerned with the 

development of a statistical model for uncertainty associated with comparative coordinate 

measurement. Therefore, another full factorial design is employed using two replicates at 

different temperature conditions in order to decouple the influence of environmental effects. 

The concepts and key results from this work have been published in [119] and [120].  

  

4.1 Comparative coordinate measurement based on TTP 

A full factorial design was employed using discrete probing to investigate the effect of part 

location and ambient temperature on comparator measurement uncertainty. The part used is a 

clutch plate with a nominal internal diameter of 77 mm and an external diameter of 98.4 mm. 

The stylus used is a typical 21 mm long stylus with stainless steel stem and a 2 mm diameter 

ruby ball. A general overview of the experimental setup is shown in Figure 4.1.    
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Figure 4.1 Test setup on Equator gauge for the clutch plate. 

 

The part was placed in nine different locations within the Equator’s measuring volume in order 

to cover a significant portion of the total working volume. For consideration of ambient 

temperature effects, two conditions were represented; 1) typical metrology room temperature 

control of 20-22°C and 2) typical uncontrolled workshop temperature of 27-29°C. The actual 

temperature varied a little depending on the part location but never exceeding a difference in 

temperature between master and measure larger of more than 1°C and, in both cases, the part 

had been thermally stabilized at each temperature before mastering. Temperature readings were 

recorded during the experiment using additional temperature sensors to record the temperature 

variation of the environment. The measurands were the internal and external diameters. For 

both diameters seven points were selected to be taken as such a sample size of contact points 

is practical for many applications. The measurement of the clutch plate was followed 

immediately after mastering and repeated 20 times without re-mastering and without moving 

the part. Therefore, in total, 720 diameters were determined; 360 internal diameters and 360 

external diameters. Table 4.1 shows the factors and levels for the DOE with the clutch plate. 

Figure 4.2 depicts the nine different locations where the part was placed.  
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Table 4.1: Factors and levels of the clutch plate inspection. 

Factors Levels 

 1 2 3 4 5 6 7 8 9 

(A) Ambient temperature 20-22°C 27-29°C        

(B) Part location 1 2 3 4 5 6 7 8 9 

 

 

Figure 4.2 Clutch plate locations. 

 

4.1.1 Diameter uncertainties for all part locations using TTP 

For each set of 20 repeated measurements, the expanded comparator measurement uncertainty 

was determined following the uncertainty evaluation methodology given in ISO 15530-3:2011 

[73]. In addition, a normality test was performed for each measurand to determine whether the 

measurement data followed a normal distribution, and all were judged to be satisfactory for a 

significance level of 0.05. Therefore, Figures 4.3 and 4.4 show the main effects plots for the 

expanded measurement uncertainties U of the internal and external diameters of clutch plate, 

for 𝑘 = 2 and a confidence level of 95.45%, where the Equator is used in TTP mode. 
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Figure 4.3: Main effects plots for the uncertainties of internal diameter. 

 

 

Figure 4.4 Main effects plots for the uncertainties of external diameter. 
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The results in Figures 4.3 and 4.4 show that the comparator measurement uncertainty is less 

than 1 μm within the whole measuring volume of the versatile gauge in TTP mode and under 

both temperature controlled and example shop floor conditions. 

 

4.2 Comparative coordinate measurement based on scanning 

An additional full factorial design was employed to investigate the effect of (A) scanning speed, 

(B) sampling point density, and (C) part location on comparator measurement uncertainty when 

scanning. The part used for this study is a production part (RESR ring) for an encoder that has 

thirteen circular features: six small-size holes with a nominal diameter of 3.6 mm, six medium-

size holes with a nominal diameter of 6 mm, and a large circle with a nominal diameter of 

80 mm. The measurands of interest in this case study were the internal diameter of the large 

circle, the diameter of one of the medium-size holes (the hole at 150° according to the CRF) 

and the diameter of one of the small-size holes (the hole at 0° according to the CRF). The stylus 

used for this experimental design is the same (21×2) with that used for the previous study 

concerning TTP. 

 

As has been discussed in previous chapters, in scanning CMMs, a major limitation at higher 

scanning speeds is the high measurement uncertainties due to dynamic influences [64]. 

Therefore, this study sought to evaluate the uncertainties associated with automated flexible 

gauging at high scanning speeds for different part locations. Hence, three levels were used for 

the scanning speed. The first level corresponds to: 5 mm/s for the small-size holes, 10 mm/s 

for the medium-size holes, and 25 mm/s for the large circle. Levels 2 and 3 are, respectively, 

the double and quadruple values of the scanning speeds used for level 1. So, they are 10 mm/s, 

20 mm/s, and 50 mm/s for level 2 and 20 mm/s, 40 mm/s, and 100 mm/s for level 3. Regarding 

the factor of sampling point density, two levels were used; level 1 corresponds to a sampling 

distance (the distance between sample points on the scan path, in the current units) of 0.5 and 

level 2 to a sampling distance of 0.1. Table 4.2 shows the factors and levels for the DOE with 

the RESR ring part. The RESR ring part is shown in Figure 4.5 and the part locations are shown 

in Figure 4.6.   
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Table 4.2: Factors and levels of the RESR ring inspection. 

Factors Levels 

 1 2 3 4 5 

(A) Scanning speed 5,  10, 25 mm/s 10, 20, 50 mm/s 20, 40, 100 mm/s   

(B) Point density 0.5 0.1    

(C) Part location 1 2 3 4 5 

 

 

Figure 4.5: RESR ring part. 
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Figure 4.6 RESR ring locations. 

 

20 repeated measurements were performed immediately after mastering on the same part at a 

temperature of 28-29°C without re-mastering in order to investigate the performance of the 

comparator gauge at high temperatures. The measurement part had been thermally stabilized at 

these temperature conditions before mastering. In total, 600 diameters were determined for each 

feature.  

 

4.2.1 Diameter uncertainties for all part locations using scanning 

As with section 4.1.1, Figures 4.7-4.9 show the main effects plots for the expanded measurement 

uncertainties U of the diameters of features of interest for 𝑘 = 2 and a confidence level of 

95.45% where the versatile gauge is used in scanning mode.   
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Figure 4.7: Main effects plots for the uncertainties of diameter of large circle. 

 

 

Figure 4.8: Main effects plots for the uncertainties of diameter of medium hole. 
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Figure 4.9: Main effects plots for the uncertainties of diameter of small hole. 

 

The results in Figures 4.7-4.9 show that: the machine dynamics do not limit the accuracy of 

size measurement at higher scanning speeds; the higher the sampling point density, the lower 

the comparator measurement uncertainty; and, the comparator measurement uncertainty is less 

than 0.5 μm within the whole measuring volume of the versatile gauge in scanning mode and 

under example shop floor conditions (28-29°C). Table 4.3 shows the results obtained by the 

ANOVA procedure based on ordinary least squares (OLS) regression for 95% confidence level 

using Minitab. 

 

Table 4.3: ANOVA results for the RESR ring inspection. 

Measurands p-values 𝑅2 

A B C A*B A*C B*C 

Diameter of large circle 0.073 0.079 0.382 0.033 0.811 0.562 81.14% 

Diameter of medium hole 0.019 0.067 0.126 0.377 0.527 0.231 84.88% 

Diameter of small hole 0.507 0.029 0.788 0.881 0.510 0.778 71.51% 
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Based on the ANOVA results, the statistically significant factors and their interactions for 95% 

confidence level are: 

1. The interaction of scanning speed and sampling point density for the diameter of large 

circle where the model explains 81.14% of the variance. 

2. The scanning speed for the diameter of medium hole where the model explains 84.88% of 

the variance. 

3. The sampling point density for the diameter of small hole where the model explains 71.51% 

of the variance. 

 

4.3 Statistical modelling of comparator measurement uncertainty 

Another full factorial design was performed, using the Renishaw Equator to investigate the 

influence of scanning speed and sampling point density and their interaction on the comparator 

measurement uncertainty when evaluating circularity. The measurands of interest were the 

circularity of all circular features of the RESR ring part (see Figure 4.5): the circularity of 

small-size holes 𝑌1, … , 𝑌6, the circularity of medium-size holes 𝑌7, … , 𝑌12, and the circularity of 

large circle 𝑌13. The factors of interest were the same with that described in section 4.2 apart 

from the factor of part location since it has no statistical significant influence on the comparator 

measurement uncertainty for 95% confidence level. The measurement of the part was followed 

immediately after mastering and then repeated 20 times, without re-mastering used to 

compensate for any shop floor temperature change. To decouple the influence of environmental 

effects two replicates were used. The first experimental run was performed at 28.5°C ± 0.5°C 

while the second at 22.5°C ± 0.5°C, representing the typical uncontrolled and controlled states 

discussed previously. 

 

The three different scanning speeds can be labelled as 𝑆𝑖(1 ≤ 𝑖 ≤ 3) and the two different 

sampling point densities as 𝐷𝑗(1 ≤ 𝑗 ≤ 2). Consequently, six different sample mean values 

𝑥̅𝑖𝑗(𝑖 = 1, … , 3;  𝑗 = 1, 2) and associated standard uncertainties 𝑢(𝑥𝑖𝑗) = 𝑠(𝑥̅𝑖𝑗) =
𝑠

√𝑛
, where 

𝑠 is the sample standard deviation and 𝑛 is the number of repeated measurements for each 𝑖 

and 𝑗, can be obtained for each replicate and measurand 𝑌 = {𝑌1, … , 𝑌13}. However, 𝑥̅𝑖𝑗 is a 

random variable due to the random effects 𝝐~N(0, 𝜎2). In particular, 𝑆𝑖 and 𝐷𝑗  are the 

controlled factors, while 𝝐 is an uncontrolled or unassigned factor. In order to investigate 
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whether 𝑆𝑖 and 𝐷𝑗  have a significant influence on the measurand 𝑌, consider the following 

model: 

 

𝓎𝑖𝑗𝑛 = 𝜇 + 𝑆𝑖 + 𝐷𝑗 + (𝑆𝐷)𝑖𝑗 + 𝜖𝑖𝑗𝑛 (4.1) 

 

where 𝓎𝑖𝑗𝑛 is the 𝑛th observed value of each measurand for each 𝑖 and 𝑗,  𝜇 is the population 

mean value and (𝑆𝐷)𝑖𝑗 is the effect of the interaction between the factors. Consequently, 𝓎𝑖𝑗𝑛 

is also Gaussian (at least for a relatively large number of repeated measurements 𝑛), and this 

was verified by performing a normality test for each measurand. Considering the uncertainty 

evaluation methodology for substitution measurement [73], the statistical model for the 

uncertainty component associated with the measurement procedure can be obtained by:   

 

𝑢(𝑥𝑖𝑗) =

√ 1
𝑛 − 1

∑ (𝑥𝑖𝑗𝑟 − 𝑥̅𝑖𝑗)2𝑛
𝑟=1

√𝑛
 

 

 

(4.2) 

 

Therefore, the expanded combined uncertainty can be given by:  

 

𝑈𝑖𝑗 = 𝑘√𝑢2(𝑥𝑖𝑗) + 𝑢2(𝑐𝑎𝑙) + 𝑢2(𝑏) + 𝑢2(𝑤𝑖𝑗) + |𝑏| 
 

(4.3) 

 

where 𝑘 is the coverage factor, 𝑢(𝑐𝑎𝑙) is the standard uncertainty obtained by the calibration 

of the master artefact, 𝑢(𝑏) is the standard uncertainty associated with the systematic error 𝑏 =

𝑥̅𝑖𝑗 − 𝓎𝑐𝑎𝑙, and 𝑢(𝑤𝑖𝑗) is the standard uncertainty associated with material and manufacturing 

variations.  

 

4.3.1 Comparator measurement uncertainties associated with circularity 

Considering the standard uncertainty of the mean value of the measurements for 𝑘 = 2, Table 

4.4 includes the ANOVA results. The statistically significant factors and second order factor 

interactions for 95% confidence level are highlighted in bold. Based on the ANOVA results 

shown in Table 4.4, it can be concluded that the scanning speed has a higher influence on the 
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comparator measurement uncertainty than the sampling point density and that their interaction 

is of less statistical significance.  

 

Table 4.4: ANOVA results for circularity. 

Measurands 

 

p-values 𝑅2 

𝑆𝑖 𝐷𝑗  (𝑆𝐷)𝑖𝑗 

𝑌1 0.000 0.002 0.020 98.28 % 

𝑌2 0.001 0.097 0.020 92.71 % 

𝑌3 0.001 0.020 0.843 92.31 % 

𝑌4 0.011 0.030 0.730 83.37 % 

𝑌5 0.000 0.000 0.007 98.55 % 

𝑌6 0.000 0.002 0.024 99.04 % 

𝑌7 0.000 0.005 0.597 93.78 % 

𝑌8 0.002 0.032 0.431 89.71 % 

𝑌9 0.000 0.010 0.333 94.33 % 

𝑌10 0.000 0.003 0.092 97.55 % 

𝑌11 0.000 0.000 0.602 98.34 % 

𝑌12 0.000 0.019 0.412 95.00 % 

𝑌13 0.000 0.642 0.033 98.47 % 

 

The main effects plots for all the measurands showed that the comparator measurement 

uncertainty associated with circularity increases as the scanning speed and sampling point 

density increase. For example, Figures 4.10-4.12 show the main effects plots for 𝑌5, 𝑌11 and 

𝑌13, respectively. Figures 4.13 and 4.14 show representative results for the factor interactions; 

the interaction plots for 𝑌5 and 𝑌13. As can be seen from Figures 4.13 and 4.14, the highest 

scanning speed (level 3) leads to the highest measurement uncertainty and this is higher for a 

sampling distance of 0.1. 
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Figure 4.10: Main effects plots for the uncertainties of Y5. 

 

 

Figure 4.11: Main effects plots for the uncertainties of Y11. 
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Figure 4.12: Main effects plots for the uncertainties of Y13. 

 

 

Figure 4.13: The interaction plot of scanning speed and sampling point density for the 

uncertainties of Y5. 
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Figure 4.14: The interaction plot of scanning speed and sampling point density for the 

uncertainties of Y13. 

 

4.4 Summary 

In this chapter, the DOE approach has been employed to perform a practical analysis of 

uncertainty of measurement of the Equator gauging system, in discrete-point probing and 

scanning measuring modes (especially at high scanning speeds), within a significant portion of 

the whole measuring volume and under workshop conditions. It has been demonstrated that the 

accuracy of shop floor dimensional inspection based on automated flexible gauging is not 

affected by part location for both measurement modes, even at high scanning speeds. In 

addition, a statistical model has been developed for comparator measurement uncertainty 

associated with circularity. Replicates, subject to the same sources of variability, were used to 

decouple the influence of environmental effects. It can be concluded that the uncertainty of 

form measurement is affected by dynamic effects. Therefore, more conservative scanning 

speeds should be used to reduce the dynamic effects for form measurement.  
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Chapter 5   

 

Flexible Gauging Comparative Study 

This chapter presents a comparative study of different dimensional inspection methods 

including OMM, automated flexible gauging, and hard gauging. For this purpose, eight parts 

(gears), two made of aluminium and six made of steel, were machined on a 5-axis CNC 

machining center and then measured by each inspection approach to evaluate various 

tolerances. Special attention was paid to ensure that the parts were measured as far as was 

possible at the same surface points. Each inspection approach is discussed separately and the 

measurements uncertainties are evaluated for each measurand and inspection approach. 

 

5.1 On-machine measurement 

A modern CNC machine tool is capable of producing parts with tight tolerances at high speed. 

More often, they are also equipped with probing systems to automate part setup and in some 

cases for verification or even inspection. Here are significant issues to consider for the latter 

two applications because the many of the errors present during machining, are also present 

during use of the probe. In addition, and sometimes the most significant influence, is the 

uncertainty due to temperature effects. Often, the machine is not in a temperature controlled 

environment and the machine has likely been performing work prior to probing which means 

there are significant transient effects from internally generated heat. Such changes occurring 

during transitions from machining and idle modes are sometimes well understood and warm-

up cycles often precede production to improve stability. An inverse problem exists for post-

production measurements, therefore the influence of which can vary significantly depending 

on the sequence and timing of the various operations. In this work, a wide variety of 

measurement have been completed with such variability considered by adding process 

variation to the probing routines. The first two parts, “G1” and “G2”, are made of aluminium 

while the other six parts, “G3”, “G4”, “G5”, “G6”, “G7”, and “G8”, are made of steel. The first 

part, “G1”, was the test gear for the program and probing routines. Therefore, measurement 

results for this gear are not included. The probe system used was the Renishaw RMP60. A 
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general overview of the experimental setup for OMP is shown in Figure 5.1. The DOE for 

OMP is described below: 

 

 The second part, “G2”, was first probed immediately after machining with no datum reset. 

The probe had been calibrated just prior to the measurements. The part was then re-probed 

two times after 1.5 hours in both cases.  

 The third part, “G3”, was first probed immediately after machining. It was then re-probed 

twice where in the second time after a warm up cycle.  

 The fourth part, “G4”, was first probed immediately after machining. It was then re-probed 

twice after the machine had cooled to include reduced transient effects. Typically, it takes 

at least 30 minutes for the rate of change of spindle thermal error to become negligible after 

a significant change in spindle speed.  

 The fifth part, “G5”, and the sixth part, “G6”, were first probed immediately after 

machining, then re-probed twice before warming the machine up, and then re-probed again 

after running the machine through a typical warm up cycle.  

 The seventh part, “G7”, was first probed immediately after machining, then re-probed 

twice, and then re-probed again after running the machine through a typical warm up cycle. 

 The eighth part, “G8”, was first probed immediately after machining and then re-probed 

twice after running the machine through a typical warm up cycle.  

 

For analysing the CNC probing points and fitting the features to those points, the ZEISS 

CALYPSO software was used. Such fitting of probing points was necessary in order to assess 

the various characteristics of interest in a standard way as per CMS software. Figure 5.2 shows 

the CAD model of the measurement part and labels the features. Table 5.1 shows the 

measurands considered for this work. 

 



 

102 

 

 

Figure 5.1: Test setup on a 5-axis CNC machining center. 

 

 

Figure 5.2: CAD model of the measurement part. 

 

 

 



 

103 

 

Table 5.1: Measurands for flexible gauging comparative study. 

 Measurands  Measurands 

A Diameter of central bore (50 mm) M Width of x-slots 4-1 (20 mm) 

B Diameter of center boss (100 mm) N Width of y-slots 3-2 (20 mm) 

C Diameter of Bore 1 (16 mm) O Width of y-slots 4-1 (20 mm) 

D Diameter of Bore 2 (16 mm) P Teeth face flatness 

E Diameter of Bore 3 (16 mm) Q Perpendicularity of y-slot 1 to datum B 

F Diameter of Bore 4 (16 mm) R Perpendicularity of y-slot 2 to datum B 

G Diameter of Bore 5 (16 mm) S Perpendicularity of y-slot 3 to datum B 

H Diameter of Bore 6 (16 mm) T Perpendicularity of y-slot 4 to datum B 

I Diameter of Bore 7 (16 mm) U Parallelism of x-slot 1 to datum B 

J Diameter of Bore 8 (16 mm) V Parallelism of x-slot 2 to datum B 

K Pitch circle diameter (129 mm) W Parallelism of x-slot 3 to datum B 

L Width of x-slots 3-2 (20 mm) X Parallelism of x-slot 4 to datum B 

 

Note that, the x-slot 1 is the perpendicular surface to y-slot 1 shown in Figure 5.2. The bores 

and y-slots are numbered clockwise while the x-slots are numbered anticlockwise. Datum A 

(XY) is defined at the center of the central bore, datum B is defined by a line perpendicular to 

y-slot1 for the 2D rotation, and datum C is defined by a plane on the top surface of the part (top 

plane) for the 3D rotation. Perpendicularity is a tolerance applied to features that must be 90° 

apart [59, 121]. Figure 5.3 is the bar graph for the combined expanded uncertainties due to the 

probing procedure and thermal expansion of the part for the size measurements for 𝑘 = 2 and 

a 95.45% confidence level from OMP. Note, the measurand P has not been considered in this 

case because it is not realistic to evaluate flatness using OMP. As can be seen, the measurement 

results for each gear are different due to varying manufacturing and measurement conditions. 

A representative sample of temperature conditions is shown in Figure 5.4 (temperature readings 

were taken every ten seconds). 
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Figure 5.3: OMP combined expanded uncertainties. 

 

 

Figure 5.4: Sample of G6 temperature. 
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5.2 Hard gauging 

As has been discussed in previous chapters, the disadvantages of inspecting manufactured parts 

using hard gauges include wear, cost, maintenance, etc [121]. In this thesis, the manual 

inspection approach was based on: (1) a measurement technique involving a dial test indicator 

(DTI) attached on a height gauge and gauge blocks to provide the height values (alternatively, 

a height micrometer could be used), (2) two bore gauges of 16 mm – 20 mm and 37 mm – 

51 mm, (3) an outside micrometer of 100 mm – 125 mm, and (4) gauge blocks. Different 

operators will provide different results based on their training, experience, fatigue, etc. 

Therefore, various operators with different level of training, experience and educational 

background including mechanical, electrical, and control engineering were employed. Only 

two gears (G4 and G6) were considered for hard gauging due to the much time required to 

measure the features of interest using this inspection method. It is important to note that the 

formal sequence and measurement locations were designed in collaboration with the NPL to 

ensure correct methodology. The variable comes from the application of the measurement after 

training. In total, seven operators carried out the measurements on a surface plate in shop floor 

conditions at various temperatures resulting from the natural variability of the workshop over 

several days of testing rather than by forced conditions. The flatness of the surface plate was 

evaluated using a CMM in TTP mode, 0.020 mm ± 0.002 mm for 𝑘 = 2 and a 95.45% 

confidence level. Tables 5.2 and 5.3 describe the DOE performed for hard gauging. 

 

The first measurement technique was employed for evaluating pitch circle diameter (PCD) and 

flatness. The second (bore gauges) for the diameters of eight small bores and central bore. The 

third (outside micrometer) for the diameter of center boss. The fourth (gauge blocks) for the 

width of slots. It is worth mentioning that the first measurement technique was very time 

consuming due to the part alignment procedure and nature of measurement technique itself. A 

general overview of the experimental setups for the hard gauging is shown in Figure 5.5.   

 

Table 5.2: DOE for hard gauging. 

Factors Levels 

(A) Operator 1 2 3 4 5 6 7 

(B) Measurement technique 1 2 3 4    

(C) Shop floor temperature Low High      
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Table 5.3: Implementation details for factor A. 

Operators Repetitions Replicates G4 Temperature (°C) G6 Temperature (°C) 

1 20 a 20.5-21 20.5-21 

1 20 b 25.6-27 23-24.9 

1 5 c 20.3-21.5 20.5-21 

1 5 d 24.3-25.1 22.7-23.5 

2 5  24-25 23-25 

3 5  20-21.5 22.9-23.6 

4 5  22.9-26.4 22.5-23.4 

5 5  26.2-26.4 24.3-25.2 

6 5  26.4-27 24.2-25.2 

7 20  25.6-26.5 24.3-24.5 

 

 

Figure 5.5: Test setups using hard gauges. 

 

Figures 5.6 and 5.7 show the bar graphs for the combined expanded uncertainties from hard 

gauging for G4 and G6, respectively. The measurement uncertainties vary for each measurand 

due to different operators and measurement conditions. These measurement uncertainties are 

the combined expanded uncertainties due to the measurement procedure and thermal expansion 

of the part for the size measurements and flatness error of the surface plate for the form 

measurements for 𝑘 = 2 and a 95.45% confidence level.  
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Figure 5.6: Combined expanded uncertainties for G4 from hard gauging. 

 

 

Figure 5.7: Combined expanded uncertainties for G6 from hard gauging. 
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Hard gauging provided high measurement uncertainties mainly due to the errors associated 

with the measurement instruments, the measurement environment, and the operator performing 

the measurements.  

 

5.3 Equator - CMM Compare 

The absolute performance of the CMM and the repeatability of the comparator gauge are 

crucial for achieving an accurate collaborative calibration of production parts using a calibrated 

master part [1]. As has been shown in previous chapters, the Renishaw Equator is very 

repeatable and therefore, using a calibrated CMM, the uncertainty associated with the 

collaborative calibration is expected to be very small. CMM accuracy is dependent upon the 

ambient thermal environment in which it operates because thermal effects degrade CMM 

accuracy. Hence, to ensure accurate comparator measurements, the production of the 

calibration file required for CMM Compare is performed using a CMM operating in a thermally 

controlled metrology lab. CMM accuracy is specified in accordance to the ISO 10360 series of 

standards (see for example [21, 22, 122]), which describe the acceptance tests, the 

reverification tests, and the interim checks for CMMs. The CMM Compare procedure consists 

of the following steps: 

 

i. Obtain a master part from the production parts. 

ii. Generate the required part program on the Equator. 

iii. Edit the part program on the CMM. The part program at this stage should include the 

commands COMPARE/ON, CAL and COMPARE/OFF.  

iv. Measure the master part using the CMM to produce a calibration file. 

v. Transfer the calibration file to the Equator and edit the part program on the Equator to add 

the commands COMPARE/ON, CAL and COMPARE/OFF. 

vi. Place the master part on the Equator and run the part program in master mode to produce a 

master file with reference to the calibration file.  

vii. Run the part program using the master part in measure mode (verification step). 

viii. Remove the master part and replace with the production parts to be measured. 

 

According to Renishaw’s equipment instructions for CMM Compare using scanning, there is 

a requirement to generate more point data from the CMM. In particular, the required minimum 

ratio of points measured on the CMM is ten for every single point measured on the Equator. In 
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addition, good measurement practice to maintain accuracy on the CMM is to reduce the part 

program speeds, accelerations and scan velocity according to the CMM’s specification. The 

calibration file for this study was obtained by a ZEISS CMM located at Renishaw. The 

fixturing design and methodology were also provided by Renishaw which ensured that the 

point position variability was minimised across the comparison. The performance of the 

Equator in CMM Compare mode was evaluated in the same shop floor conditions as the hard-

gauging and OMP. This is an uncontrolled environment therefore differences between the 

conditions is inevitable. A general overview of the experimental setup for the flexible gauging 

is shown in Figure 5.8. A temperature sample of the master part during repeated measurements 

is shown in Figure 5.9 (temperature readings were taken every ten seconds).    

 

 

Figure 5.8: Test setup on Equator gauge for CMM Compare method. 
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Figure 5.9: Sample of master part temperature. 

 

The Equator combined expanded uncertainties were calculated according to ISO 15530-3:2011 

[73]. In particular, the uncertainty contributors considered to calculate the Equator combined 

expanded uncertainties included: i) the standard uncertainty of the calibrated part (gear 7) 

estimated by the ten repeated measurements on the gear using the CMM used to produce the 

calibration file for CMM Compare, ii) the standard uncertainty of the measurement procedure 

(five repeated measurements after mastering), iii) the standard uncertainty of the systematic 

error estimated by the ten repeated measurements on the gear 7 using the Equator, iv) and the 

uncertainty due to the variation of the thermal expansion coefficient of the unknown parts for 

the size measurements [5, 73, 123]. Figure 5.10 is the bar graph for the Equator combined 

expanded uncertainties for 𝑘 = 2 and a 95.45% confidence level. As can be seen, the Equator 

has very small uncertainties despite the shop floor conditions, 24 measurands and 7 parts, with 

more than 97% of the results being less than just 2 µm. 
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Figure 5.10: Equator combined expanded uncertainties. 

 

5.4 Comparison 

This section compares the combined expanded uncertainties obtained from each shop floor 

inspection approach for 𝑘 = 2 and a 95.45% confidence level and their residuals calculated by 

the difference between the shop floor dimensional measurement systems mean values and the 

CMM results/estimates for each measurand. Figures 5.11-5.17 compare the combined 

expanded uncertainties obtained from each inspection approach.  
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Figure 5.11: Comparison between OMP and Equator uncertainties for G2. 

 

 

Figure 5.12: Comparison between OMP and Equator uncertainties for G3. 
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Figure 5.13: Comparison between OMP, hard gauging and Equator uncertainties for G4. 

 

 

Figure 5.14: Comparison between OMP and Equator uncertainties for G5. 
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Figure 5.15: Comparison between OMP, hard gauging and Equator uncertainties for G6. 

 

 

Figure 5.16: Comparison between OMP and Equator uncertainties for G7. 



 

115 

 

 

Figure 5.17: Comparison between OMP and Equator uncertainties for G8. 

 

Based on Figures 5.11-5.17, it can be concluded that hard gauging and OMP provided higher 

measurement uncertainties than automated flexible gauging for most measurands. The Equator 

combined expanded uncertainties were less than 2 μm for all the measurands and measurement 

parts apart from the measurand K (PCD) for the parts G2, G3, G4 and G8, which were about 

2.5 μm. OMP provided high uncertainties for the measurand M (width of x-slots 4-1) especially 

for the measurement parts G3, G5 and G8. Hard gauging (1st operator for 20 repetitions at low 

temperatures) provided much higher uncertainties for measurand A, B and K for G4 than G6 

though those measurements were performed at the same temperature conditions and from the 

same operator. Figures 5.18-5.24 compare the residuals as calculated by the ‘reference’ CMM 

values. 
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Figure 5.18: Comparison between OMP and Equator residuals for G2. 

 

Figure 5.19: Comparison between OMP and Equator residuals for G3. 
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Figure 5.20: Comparison between OMP, hard gauging and Equator residuals for G4. 

 

Figure 5.21: Comparison between OMP and Equator residuals for G5. 
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Figure 5.22: Comparison between OMP, hard gauging and Equator residuals for G6. 

 

Figure 5.23: Comparison between OMP and Equator residuals for G7. 
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Figure 5.24: Comparison between OMP and Equator residuals for G8. 

 

As can be seen from Figures 5.18-5.24, the Equator residuals are very small compared to the 

OMP and hard gauging residuals. The OMP and hard gauging results are subject to both 

random and systematic effects. Therefore, the evaluation of measurement uncertainty for these 

inspection approaches requires considerable efforts for valid measurement uncertainty 

estimates. Regarding the measurement time, in comparison to the Equator, OMP needed more 

than twice the time to complete the inspection and hard gauging was also very time consuming 

but a direct comparison cannot be made in this case since hard gauging was restricted to 

evaluating only a certain number of measurands due to the fundamental metrological 

limitations. Also, the inspection time for hard gauging was dependent on the operator. It is also 

worth mentioning that the Equator employed in CMM Compare requires repeatable part 

fixturing in order to achieve accurate results with low measurement uncertainties. The standard 

uncertainty associated with the fixturing repeatability must be significantly small, depending 

on the accuracy requirements and the measurement task. The same fixturing arrangement 

should also be used to produce the calibration file using the CMM. In total, compared to hard 

gauging (1st operator for 20 repetitions at low temperatures) and OMP, the Equator residuals 

and combined uncertainties are much smaller. Therefore, it can be concluded that such a 

flexible gauge employing the CMM Compare method can achieve highly repeatable 
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measurements which are traceable to national standards through the CMM calibration of the 

master part.  

  

5.5 Summary 

The aim of this chapter was to implement different shop floor inspection approaches and 

compare the measurement uncertainties obtained from each one. The dimensional inspection 

approaches included hard gauging, OMP, and automated flexible gauging. Different 

measurement results were obtained, as expected, due to the various error sources associated 

with the measurement environment (workshop conditions), measurement strategy, and 

measurement/gauging systems themselves. The measurement results have illustrated that 

traditional inspection methods such as OMP and hard gauging can lead to significant residual 

values and high measurement uncertainties. On the other hand, a PKM-based flexible gauge 

employed in a production environment in CMM Compare can achieve measurement results 

close to that obtained by a CMM located in a temperature controlled environment. Immediately 

after mastering, the comparator measurement uncertainty is mainly dependent on the accuracy 

of the CMM used to measure the master part and fixturing repeatability. If the fixturing 

variability is significant, then, the comparative analysis of the metrology data is unreliable 

because the comparison process involves a point-to-point comparison between the master part 

data and the measured part data.  
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Chapter 6   

 

A Bayesian Approach to Evaluate Uncertainty associated 

with Comparative Coordinate Measurement 

The aim of this chapter is to provide a statistical characterisation of a Renishaw Equator 

employed in comparator mode using small prior sample sizes. This solution can avoid 

executing large experimental designs thus providing a practical solution to robust statistical 

analysis for complex CMSs in industrial situations where the acquisition of large data sets is 

not practical. While the work focused on the Equator, it would be equally applicable and 

advantageous to other CMSs where unsystematic effects are dominant. Coordinate 

measurements in comparator mode benefit from the fact that many of the systematic effects 

associated with the measurement system cancel out through the principle of mastering. The 

process of mastering involves the measurement of a master part, using the measurement routine 

produced to measure the test parts, to calibrate the comparator system. Markov chains are 

suitable for modelling the performance characterised by probability distributions. Therefore, 

methods such as MCMC are required to provide summary information about these 

distributions. In this thesis, the Gibbs sampler is employed to produce a finite sample from the 

posterior. It is illustrated that estimating uncertainty associated with comparative coordinate 

measurement according to Bayesian principles offers significant advantages in terms of cost 

and reliability. 

   

6.1 Modelling comparator measurement uncertainty 

Given an accurately calibrated master artefact, the accuracy of comparative measurement 

depends mainly on the random effects associated with the comparator system and the drift of 

behaviour of the comparator system from its state at the time of the last measurement of the 

master artefact. Therefore, we can assume that comparator measurements can be modelled as 

 

𝑥𝑖 = ɑ + 𝑒 + 𝜖𝑖,     𝜖𝑖 ∈ N(0, 𝜎2),      (6.1) 
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where ɑ is the unknown true value of the measurand, 𝑒 is a fixed offset associated with the 

comparator, and 𝜖𝑖 is a random effect with unknown variance 𝜎2. Variations in the differential 

thermal expansion between the part under test and gauging machine are difficult to predict and 

intermittent re-mastering is required to manage environmental effects. Regular re-mastering 

can significantly reduce or even eliminate the effects due to environment drift. In this chapter, 

we exam the influence of environmental effects in comparator mode through a statistical 

analysis gathered in repeatability and reproducibility (R&R) conditions. 

 

Although a CMS that employs the comparator principle can account for the influence of 

systematic effects associated with the measurement system, the statistical characterisation of 

the repeatability component in comparator measurement can be determined in an R&R study. 

Another issue is the unknown time-interval required for managing efficiently the re-mastering 

process. The variability of the environmental conditions will determine the frequency at which 

the comparator system is calibrated. Due to the complexity and unpredictability of the 

environment changes and the kinematic behaviour of the instrument, a deterministic error 

model of the system parameters is not feasible. Instead we provide a statistical characterisation 

and use Bayesian methods to achieve posterior distribution of the statistical parameters. These 

posterior distributions can then be used to present the performance of the comparator system.   

 

As has been discussed in previous chapters, the Equator gauge provides two main compare 

methods; the CMM Compare and the Golden Compare. The CMM Compare does not require 

a reference master part to calibrate the Equator as with Golden Compare. With CMM Compare, 

a test part produced close to drawing nominals can be used as a master part and is first calibrated 

on an accurate CMS such as a CMM in order to generate a calibration (.cal) file. The calibration 

file is then transferred to the Equator and read during mastering to enable the individual points 

of master data set to be compared with that of test data sets. Therefore, with CMM Compare, 

the calibrated absolute accuracy of the CMM located in a temperature controlled environment 

can be transferred to the shop floor to provide calibrated traceability to Equator measurements. 

The Golden Compare differs from the CMM Compare in that there is no requirement to first 

calibrate the master part on a CMM. However, this compare method requires a reference master 

part to calibrate the Equator and assumes that the master part is produced to drawing nominals. 

Therefore, with Golden Compare, any deviation of master part to drawing nominals will be 

included in the measurements. The most accurate method of using an Equator flexible gauge 

is the CMM Compare. However, in both cases, the measurement uncertainty for a given 
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production part will inherit uncertainty from the calibration of the master part [1, 31]. In 

particular, for Golden Compare, the uncertainty component associated with the calibration of 

the master part can be found from the calibration certificate of the calibrated part, while for 

CMM Compare from the task-specific uncertainty evaluation of CMM measurement. 

However, for both cases, this uncertainty contributor can be considered as a systematic effect 

and shall be considered in the overall uncertainty budget. Hence, consider an open system with 

four variables, as shown in Figure 6.1. The dependent variable is the comparator measurement 

uncertainty while the independent variables affecting the unknown quantity of interest are the 

environmental and random effects, and the uncertainty component brought-in from the 

calibration of the master part. 

 

 

 

Figure 6.1: Comparator measurement uncertainty contributors. 

 

The environmental effects can be ignored only when measuring immediately after mastering 

and their variability is negligible, or when measuring under temperature controlled conditions. 

Random effects can be decreased by repeated measurements. Therefore, the standard 

uncertainty associated with the measurement procedure generally accounts for these effects. In 

particular, the expanded uncertainty of the comparator measurement, U, can be calculated 

according to ISO 15530-3:2011 [73] (see Equation 2.10). 
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Now, suppose we wish to obtain an estimate 𝓎 of the measurand 𝑌 and the standard uncertainty 

associated with the measurement procedure as defined by 𝑠(𝑥̅) =
𝑠

√𝑛
 where 𝑥̅ is the sample 

mean value, 𝑠 is the sample standard deviation and 𝑛 is the number of repeated measurements 

[5]. Classical uncertainty evaluation techniques require a relatively large number of repeated 

measurements to achieve reliable measurement uncertainty statements. When dealing with a 

small data set that follows a Gaussian distribution, the GUF recommends the t-distribution 

approach though the information on the parent PDF cannot be inferred from few repeated 

measurements.  

 

6.2 Experimental comparator measurements 

Experimental work was performed using the Renishaw Equator operating in Golden Compare 

and a specific manufactured part, as shown in Figure 6.2, used to validate the developed 

probabilistic model for different types of measurement. As has been mentioned in the previous 

chapters, the Equator is equipped with the SP25 3-axis analogue scanning probe. The SP25M 

(25 mm diameter scanning probe with scanning and touch-trigger modules) comprises two 

sensors in a single housing in order to function either as a scanning probe or as a touch-trigger 

probe. The machine is constructed with a parallel kinematic constraint mechanism to improve 

repeatability and reduce inertial effects when working for long periods of time and/or at high 

working speeds [111]. This device can be positioned next to the manufacturing equipment on 

the shop floor for close-to-manufacturing measurement and for fully automated applications; 

automated workcells with manufacturing equipment, robots, and comparator gauges. 

Therefore, in order to obtain realistic comparator measurements, angular misalignments (part 

misalignment from rotation between master and measure coordinate frames) were applied 

under changeable environmental effects (see chapter 3). The stylus used is a typical 21 mm 

long stylus with stainless steel stem and a 5 mm diameter ruby ball. After mastering, ten 

repeated measurements were performed in scanning mode without re-mastering for each 

angular misalignment applied; no offset by tilt in any direction, 2.5 mm offset by tilt along z-

axis, 3 mm offset by tilt along y-axis, and the resulting 3D angular misalignment with the 

simultaneous combination of both. The scanning speed used was 100 mm/s, which is the 

maximum recommended for the specific Equator. In total, 40 measurement results were 

determined for each measurand. Table 6.1 shows the measurands considered for this work. A 

general overview of the experimental setup is shown in Figure 6.2. 



 

125 

 

 

Table 6.1: Measurands for probabilistic modelling. 

 Measurands 

A Diameter of right circle (20 mm) 

B Diameter of left circle (45 mm) 

C Overall length (214.193 mm) 

D Top plane flatness 

E Circularity of right circle 

F Circularity of left circle 

 

 

Figure 6.2: Test setup on Renishaw Equator flexible gauge. 

 

6.3 Bayesian framework 

The basis for inference in computational Bayesian statistics is the algorithms used to draw 

random samples from the true posterior, even when only the unnormalized posterior is known 

[49, 124]. The posterior distribution is the conditional probability distribution of the unknown 

parameters, given the observed data. Whereas in likelihood inference, where the joint 

likelihood function is not a probability density, in Bayesian inference the posterior is always a 

probability density, conditional on the available data. For this reason, the mean of the posterior 

distribution can be used as the estimate of the unknown parameter of interest since the posterior 

mean minimizes the mean squared deviation [125]. The sampling algorithms may be based on 

direct methods or MCMC methods [48]. Algorithms based on direct methods such as 

acceptance-rejection-sampling are inefficient, particularly, for high-dimensional parameter 
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spaces. Therefore, they are mainly used as a small step in Gibbs sampler, which is one of the 

most widely used MCMC methods. MCMC sampling is based on sophisticated algorithms that 

set up a Markov chain (see Appendix B) that has the posterior distribution as its long-run 

(limiting) distribution so that a random draw from the Markov chain can be equivalent to a 

random draw from the posterior. Common MCMC sampling algorithms are the Metropolis 

sampler, the Metropolis-Hastings sampler which is a generalization of the Metropolis 

algorithm, and the Gibbs sampler which is a special case of the Metropolis-Hastings algorithm 

where proposal distributions are the posterior conditionals and the acceptance rate is always 

one and thus, there is no wasted computation. In this thesis, the Gibbs sampler [126] was used 

to obtain a MCMC sample from the posterior distribution.  

 

Let 𝜽 = (𝜃1, … , 𝜃𝑁) denote unobservable vector quantities and 𝔂 = (𝓎1, … , 𝓎𝑛) denote the 

observed data. Then, the joint PDF (or joint probability mass function in the case of discrete 

𝜽) is given by [49]: 

 

𝑝(𝜽, 𝔂) = 𝑝(𝜽)𝑝( 𝔂 ∣∣ 𝜽 ), 

 
(6.2) 

where 𝑝(𝜽) is the prior distribution and 𝑝(𝔂 ∣ 𝜽) is the likelihood. Using Bayes’ rule, the 

posterior density can be determined by:           

 

𝑝(𝜽 ∣ 𝔂) =
𝑝(𝜽, 𝔂)

𝑝(𝔂)
=

𝑝(𝜽)𝑝(𝔂 ∣ 𝜽)

𝑝(𝔂)
, 

 

(6.3) 

where 𝑝(𝔂) is the marginal or prior predictive distribution given by:  

 

𝑝(𝔂) = ∫ 𝑝(𝜽)𝑝(𝔂 ∣ 𝜽) 𝑑𝜽. (6.4) 

 

With fixed 𝔂, the factor 𝑝(𝔂) can be considered a constant and thus, it can be omitted. 

Therefore, the posterior can be expressed in the unscaled form as posterior proportional to 

prior times likelihood: 

 

𝑝(𝜽 ∣ 𝔂) ∝ 𝑝(𝜽)𝑝( 𝔂 ∣∣ 𝜽 ). 

 
(6.5) 
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Even though the formula of unnormalized posterior does not give the posterior density 

𝑝(𝜽 ∣ 𝔂) exactly, it gives its shape by the prior times the likelihood. Based on the observed 

data 𝔂, future data 𝔂̃ can be generated e.g. using Monte Carlo simulation. The distribution of 

𝔂̃, conditional on 𝔂, 𝑝(𝔂̃ ∣ 𝔂), is called the posterior predictive distribution that can be written 

as: 

 

𝑝(𝔂̃ ∣ 𝔂) = ∫ 𝑝(𝔂̃, 𝜽 ∣ 𝔂) 𝑑𝜽 

                                     = ∫ 𝑝( 𝔂̃ ∣∣ 𝜽, 𝔂 )𝑝( 𝜽 ∣∣ 𝔂 ) 𝑑𝜽 

                            = ∫ 𝑝(𝔂̃ ∣ 𝜽)𝑝(𝜽 ∣ 𝔂) 𝑑𝜽 

 

 

 

 

 

(6.6) 

with the last equality valid since in this model, 𝔂 and 𝔂̃ are conditionally independent given 

𝜽.  

 

6.4 Gibbs sampling from the posterior distribution 

We begin by considering a model of the form [46, 127]: 

 

𝓎𝑖 = 𝜙(𝑥𝑖 , 𝒂) + 𝜖𝑖,     𝜖𝑖 ∈ N(0, 𝜎2),     𝑖 = 1, … , 𝑛, (6.7) 

 

where 𝓎𝑖 is the measured response or dependent variable corresponding to accurately known 

values 𝑥𝑖, 𝜙(𝑥𝑖, 𝒂) is the modelled response with unknown parameters 𝒂 = (𝑎0, 𝑎1, … , 𝑎𝑚)T 

associated with angular misalignments in this case, and 𝜖𝑖 represents the random effects drawn 

from a Gaussian distribution with zero mean and variance 𝜎2. Suppose 𝜙(𝑥𝑖, 𝒂) = 𝑎0 + 𝑎1𝑥𝑖 

or in matrix notation:  

 

𝔂 = 𝑿𝒂 + 𝝐,     𝝐 ∈ N(0, 𝜎2𝑰), (6.8) 

 

 where 𝑰 denotes the 𝑛 × 𝑛 identity matrix and 𝑿 is given by: 
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𝑿 = [

1 𝑥11 … 𝑥1𝑚

1 𝑥21 … 𝑥2𝑚

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛1 … 𝑥𝑛𝑚

] (6.9) 

 

with 𝑚 + 1 < 𝑛. Note that, 𝔂 = (𝓎1, … , 𝓎𝑛)T and we assume that 𝔂 ∈ N(𝑿𝒂, 𝜎2𝑰). In 

particular, the “data” in a regression problem comprise both the response variable 𝔂 and the 

predictors 𝑿. Hence, without loss of generality, suppose 𝑝(𝓎𝑖, 𝑥𝑖 ∣ 𝜽) = 𝑝(𝓎𝑖 ∣ 𝑥𝑖 , 𝜽)𝑝(𝑥𝑖 ∣

𝜽), 𝑝(𝓎𝑖 ∣ 𝑥𝑖, 𝜽) = 𝑝(𝓎𝑖 ∣ 𝑥𝑖, 𝜽𝓎∣𝑥), and 𝑝(𝑥𝑖 ∣ 𝜽) = 𝑝(𝑥𝑖 ∣ 𝜽𝑥), where 𝜽 = (𝜽𝓎∣𝑥, 𝜽𝑥)T and 

𝜽𝓎∣𝑥 = (𝒂, 𝜎2) [128]. Suppose also that 𝑝( 𝔂, 𝑿 ∣∣ 𝜽 ) = 𝑝(𝔂 ∣ 𝑿, 𝜽𝓎∣𝑥)𝑝(𝑿 ∣ 𝜽𝑥). Therefore, 

the posterior distribution for 𝜽, given 𝔂 and 𝑿, can be written as: 

  

𝑝(𝜽 ∣ 𝔂, 𝑿) ∝ 𝑝(𝜽)𝑝(𝔂, 𝑿 ∣ 𝜽) (6.10) 

 

where 𝑝(𝜽) is the prior distribution representing the prior knowledge about 𝜽 and 𝑝(𝔂, 𝑿 ∣ 𝜽) 

is the likelihood. Also, given the assumptions above, and 𝑝(𝜽) = 𝑝(𝜽𝓎∣𝑥)𝑝(𝜽𝑥) =

𝑝(𝒂, 𝜎2)𝑝(𝜽𝑥), then,    

 

𝑝(𝒂, 𝜎2, 𝜽𝑥 ∣ 𝔂, 𝑿) = 𝑝(𝒂, 𝜎2 ∣ 𝔂, 𝑿)𝑝( 𝜽𝑥 ∣∣ 𝑿 ). (6.11) 

 

Note that, our interest lies only with 𝜽𝓎∣𝑥. The likelihood function for the normal linear model 

can be written as: 

 

𝑝(𝔂; 𝑿, 𝒂, 𝜎2) = (2𝜋𝜎2)−𝑛/2𝑒
(

−(𝔂−𝑿𝒂)T(𝔂−𝑿𝒂)
2𝜎2 )

. 
(6.12) 

 

Using a conjugate prior density for the parameter vector 𝜽𝓎∣𝑥 = (𝒂, 𝜎2)T, then, the posterior 

density is: 

  

𝑝(𝒂, 𝜎2 ∣ 𝔂, 𝑿) ∝ 𝑝(𝒂, 𝜎2)𝑝( 𝔂 ∣∣ 𝒂, 𝜎2 ) (6.13) 

 

where 𝑝(𝒂, 𝜎2) = 𝑝(𝒂 ∣ 𝜎2)𝑝(𝜎2) is the prior distribution and 𝑝( 𝔂 ∣∣ 𝒂, 𝜎2 ) is the likelihood. 

Conjugate prior distributions for 𝒂 given 𝜎2, and 𝜎2 can be given by: 
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𝒂 ∣ 𝜎2~N(𝒶0, 𝜎2𝑽0
−1),     𝜎2~IΓ(𝛼0, 𝛽0). (6.14) 

 

So, the conditional prior density for 𝒂 given 𝜎2 is a multivariate normal density with mean 𝒶0 

and covariance matrix 𝜎2𝑽0
−1, where 𝑽0 is a symmetric positive definite matrix of size (𝑚 +

1) × (𝑚 + 1), and the prior density for 𝜎2 is an inverse Gamma density with shape 𝛼0 and 

scale 𝛽0. Note that, while the conditional posterior density 𝑝(𝒂 ∣ 𝜎2, 𝔂, 𝑿) is a multivariate 

normal density, the marginal posterior density 𝑝(𝒂 ∣ 𝔂, 𝑿) is a multivariate t-density given by: 

 

𝑝(𝒂 ∣ 𝔂, 𝑿) = ∫ 𝑝(𝒂 ∣ 𝜎2, 𝔂, 𝑿)𝑝(𝜎2 ∣ 𝔂, 𝑿) 𝑑𝜎2 (6.15) 

 

Given different values for 𝛼0 and 𝛽0, various distributions for 𝜎 can be obtained to facilitate 

the use of prior knowledge. In the case where there is no prior knowledge, then, a possible 

noninformative prior for this model is given by 𝑝(𝒂, 𝜎2) ∝ 1/𝜎2. 

 

The Gibbs sampler was used in MATLAB [129] to draw samples from the unnormalized 

posterior, 𝑝(𝜽 ∣ 𝔂). Because our interest lies only with 𝜽𝓎∣𝑥, this will be simply denoted by 𝜽. 

Suppose 𝓎𝑖~N(𝜇𝑖, 𝜎2) where 𝜇𝑖 = 𝑎0 + 𝑎1𝑥𝑖1 + ⋯ + 𝑎𝑚𝑥𝑖𝑚 in order to estimate the 

uncertainty associated with comparative coordinate measurement influenced by process 

variations such as angular misalignments in this case while avoiding repeated measurements. 

To validate the model, various random values were drawn from each data set (see section 6.2). 

In particular, after performing a normality test for each data set, the measurement data were 

assigned the Gaussian distribution 𝔂~N(𝜇, 𝜎2). Therefore, future measurements from the 

same process could also be assumed a priori to be Gaussian. To estimate 𝜽 = (𝜇, 𝜎2), the 

posterior predictive distribution of each measurand was approximated by 𝑝(𝔂̃ ∣ 𝔂) ≈

1

𝑁
∑ 𝑝(𝔂̃ ∣ 𝜃𝑖)𝑁

𝑖=1  using Monte Carlo where the sample 𝜃𝑖 was obtained from the posterior 

distribution 𝑝(𝜽 ∣ 𝔂) produced via Gibbs sampling. Direct evaluation becomes 

computationally inefficient as the number parameters increases. Using an improper, reference 

prior, 𝑝(𝜇, 𝜎2) ∝ 1/𝜎2 then, the conditional posterior for 𝜇 is 𝜇 ∣ 𝜎2, 𝔂~N(𝓎̅, 𝜎2/𝑛) and the 

conditional posterior for 1/𝜎2 is 1/𝜎2 ∣ 𝜇, 𝔂~Γ(𝑛/2 , 𝑛𝑠𝜇
2/2), where 𝓎̅ is the sample mean, 𝑛 

is the sample size, and 𝑠𝜇
2 is the sample variance for known 𝜇. The Gibbs sample size, 𝑁, was 

set to 300 in order to ensure that the distribution of the successive values in the sequence 

𝜃1, 𝜃2,…, 𝜃𝑁 converges to the required posterior distribution. To eliminate the effects 
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associated with the starting values, the burn-in period, which involves the number of samples 

that are discarded, was set to 𝑁/2 (half of the total number of samples) though the beginning 

of the chain accurately represented the posterior [49]. Therefore, there was no need to consider 

multiple chains since there is no issue about convergence of the Markov chain [47, 48]. Chain 

thinning, which is a method used to reduce the correlation in simulated Markov chains, it was 

not required due to the very good mixing properties of the chain. Finally, there was no need to 

calculate the acceptance probability since it is always one. Figure 6.3 shows a trace plot of 

Gibbs samples after burn-in for measurand A to illustrate that the accuracy of the method 

depends on the length of samples. However, the Gibbs sample mean values will always be 

highly correlated with the prior sample mean values due to the model structure. In this case, 

the difference between the population mean values and the Bayesian estimates of the mean 

values was very small (< 0.1 μm for measurands A and B, < 0.2 μm for measurands C and E, 

and < 0.4 μm for measurands D and F) using different prior random samples for all the 

measurands. 

 

 

Figure 6.3: Trace plot of the Gibbs sampling chain after burn-in for measurand A. 
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It can be seen from Figure 6.3 that the Gibbs sampling chain is moving through the space 

satisfactorily. Figure 6.4 compares the standard uncertainties from the population with the 

uncertainties calculated by the Bayesian approach using a prior random sample. 

 

Figure 6.4: Bar graph for standard uncertainties. 

 

As can be seen from Figure 6.4, the Bayesian estimates of the uncertainty values compare well 

with that of the complete data set for all the measurands. Therefore, estimating uncertainty 

associated with comparative coordinate measurement according to Bayesian principles can be 

particularly beneficial especially when large experimental designs are impractical.    

 

6.5 Summary 

Recent advances in versatile automated gauging have enabled accurate geometric tolerance 

assessment on the shop floor. The primary task of this chapter has been to develop a 

probabilistic model for comparative coordinate measurement and apply a MCMC method to 

evaluate uncertainty associated with comparative coordinate measurement according to 

Bayesian principles. In this thesis, the Gibbs sampler, which is a specialized version of the 

Metropolis-Hastings algorithm, has been employed to draw a random sample from the 

unnormalized posterior whose distribution approaches the true posterior distribution. This 
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hybrid algorithm has produced a random sample from the posterior directly so many of the 

difficulties associated with determining the burn-in period and thinning rate have been avoided. 

Therefore, this Bayesian sampling approach can be very beneficial for modelling comparator 

measurement uncertainty, especially, when repeated measurements cannot be performed. 

Finally, evaluating uncertainty associated with coordinate measurement in absolute mode can 

also benefit from MCMC methods because they allow for developing more realistic probability 

models than classical techniques.  
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Chapter 7   

 

Estimating Point Coordinates and associated 

Uncertainties using Artificial Intelligence Techniques 

CMMs and comparator gauges are complex measuring systems that are widely used in the 

manufacturing industry for form, size, position, and orientation assessment. In essence, these 

systems collect a set of individual data points that in practice is often a relatively small sample 

of an object. Their software then processes these points in order to produce a geometric result 

or to establish a local coordinate system from datum features. The subject of CMS performance 

evaluation is a broad and multifaceted one. This chapter is concerned with the uncertainty of 

measurement in the coordinates of each point within the CMS workzone. Therefore, a novel 

method for predicting CMS point coordinates and associated uncertainties is developed. This 

new method is particularly useful when a precise mathematical model for the measurement 

system is not available and small experimental designs are unavoidable. The proposed method 

is based on a BRANN model consisting mainly of three inputs and one output. The inputs are: 

the nominal coordinates; the ambient temperature; and the temperature of the part. The output 

is the measured (actual) coordinates. An algorithm is developed and implemented before 

training the BRANN in order to map each nominal coordinate associated with the other inputs 

to the target coordinate. The method is first implemented in simulated CMM coordinate data 

and then in actual comparator coordinate data. Most part of this work has been published in 

[130]. 

 

7.1 Motivation and methodology 

CMSs such as CMMs are used extensively in manufacturing industry to carry out an inspection 

with high accuracy. Even though they only measure individual points in space, they are 

extremely flexible. Their flexibility comes from the software that processes these points in 

order to produce a geometric result or to establish a local coordinate system from datum 

features. Every point gathered by a CMM is expressed in terms of its x-, y-, and z- measured 

coordinates. However, the uncertainty in the x-, y- and z-coordinates of a point in space has a 
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large influence on the software used to process the coordinate data. Therefore, estimating the 

uncertainty of the coordinates of each measured point can enable very efficient 

implementations of geometric element best-fit algorithms [97] and help determine uncertainty 

contributors associated with a particular axis of the CMM [4].  

 

Classical statistical analysis to estimating uncertainty requires large sample sizes distributed 

according to a standard distribution such as the multivariate normal distribution. However, in 

many practical cases, a large amount of data cannot be obtained due to the cost, time, etc. For 

multivariate measurands such as a set of coordinates, uncertainties are evaluated in terms of 

variance matrices that can frequently be derived in terms of a measurement system model [96]. 

Nevertheless, this is not straightforward in the case of CMM measurement due to the 

complexity of the measurement process and the CMM itself [131]. As a result, the scope of the 

model is often limited to certain environmental and working conditions. In many applications, 

when no satisfactory mathematical model can be derived, ANNs are a good alternative 

predictive modelling approach. ANNs learn from experience rather than by deterministic 

programming and they provide highly parallel, adaptive models trained only by input-output 

data. Also, they are able to generalize from given training data to unseen data. However, ANNs 

cannot be seen as a simple one-answer-fits-all solution, and in many cases misapplication of 

artificial intelligence (AI) techniques can lead to incorrect results, especially where the ANN 

model is poorly defined and perturbations are outside the scope of the training sample. 

 

7.1.1 Artificial neural networks 

ANNs are computational models that can acquire, store and utilise knowledge gained from 

experience. They have been inspired by biological neural networks found in humans and can 

be implemented in either hardware or software. The first model of an artificial neuron called 

threshold logic unit (TLU) or linear threshold gate (LTG) was proposed by McCulloch and 

Pitts [132]. The method employed in this thesis uses multi-layer perceptron (MLP) networks 

though Elman networks will also be employed at the end of this chapter. An MLP network is 

a feedforward ANN model which consists of one input layer, one output layer, and one or more 

hidden layers [133]. Each layer includes one or more nodes. Except for the input nodes, each 

node is a perceptron (neuron) usually with a nonlinear activation function. A typical perceptron 

is depicted in Figure 7.1.   
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Figure 7.1 A perceptron. 

 

The output of a perceptron can be described by:   

 

𝚈 = 𝑓 (∑ 𝑤𝑖𝓍𝑖 − 𝑤0

𝑛

𝑖=1

) 
 

(7.1) 

 

Where 𝑓 is usually a nonlinear activation function (e.g. a bipolar sigmoid), 𝑤𝑖 is the weight 

associated with the 𝑖𝑡ℎ input (𝓍𝑖), and 𝑤0 is the weight associated with the bias input.  

 

The MLP network is the most common ANN model and is known as a supervised network 

because it requires a desired output in order to learn. Supervised learning is achieved through 

use of a training data set, prior to testing on a test data set. An MLP network aims at creating a 

model that maps the input to the output using historical data. The supervised learning technique 

utilized by an MLP for training the network is called back-propagation (BP). Determining the 

number of hidden layers and the number of neurons in each hidden layer is an important task. 

In most cases, the number of hidden layers, which depends on the complexity of the 

relationship between the inputs and the outputs, is defined first. The number of hidden neurons 

usually varies between the number of input neurons and the number of output neurons. Training 

multiple times will generate different results due to different initial conditions and sampling.  

 

Figure 7.2 shows an MLP network architecture. It contains one input layer with four input 

nodes, one hidden layer with five neurons, and one output layer with one neuron.  
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Figure 7.2: An MLP network architecture. 

 

Note that, (a) each node in one layer connects with a certain weight to every node in the 

following layer, (b) each circle in the hidden and output layer represents a perceptron including 

a summation unit and an activation function, and (c) the nonlinearity of the activation function 

will provide the nonlinear characteristic of an ANN.  

 

In this thesis, in order to enhance the ability of ANN to make predictions, the ANN is trained 

by Bayesian regularization [134]. This approach, which is an improvement of BP, uses 

statistical techniques so that the trained ANN can use the optimal number of parameters. 

Bayesian regularization provides better generalization performance than early stopping, 

especially for small data sets because it uses all the data; it does not require that a validation 

data set be separate from the training data set. BRANNs avoid overfitting because the 

regularization pushes unnecessary weights towards zero and offer a simple and usable form of 

ANN [135].     
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7.2 CMM measurement case study 

Consider that twenty individual data points representing the measured (actual) x-coordinates 

𝘹𝑖 ranged from 0 to 210 mm in this example are generated according to the model:   

 

𝘹𝑖 = 𝘹𝑖
∗ + 𝑒𝑎𝑖

+ 𝑒𝑤𝑖
+ 𝜖𝑖,     𝜖𝑖 ∈ N(0, 𝜎2),      𝑖 = {1, … ,20}, (7.2) 

 

where 𝘹𝑖
∗ is the nominal x-coordinates, 𝑒𝑎𝑖

 and 𝑒𝑤𝑖
 represent systematic effects associated with 

the ambient temperature and the part temperature, respectively, and 𝜖𝑖 represents random 

effects. Suppose then that ten data sets including twenty actual x-coordinates each are generated 

according to this model with errors ranged from -10 to 12 μm (temperature values range from 

18 to 22°C). Consequently, each data point in each data set is highly correlated to an ambient 

temperature, a part temperature, and a random, uncorrelated effect. 

 

The multi-layer perceptron (MLP) network shown in Figure 7.3 consists of three input units, 

five hidden neurons and one output unit. The activation functions for both the hidden and the 

output layers are tan-sigmoid (tansig) transfer functions to provide the nonlinear characteristic. 

The three inputs of the network are the vector of nominal coordinates, the vector of ambient 

temperature data, and the vector of part temperature data while the output (target) is the vector 

of actual coordinates (displacement). The nominal coordinates are used because they help the 

ANN to generalize for different measurement tasks across the CMM. The ANN is trained by 

Bayesian regularization to improve network generalization. To attempt to realize such a model, 

all the inputs and the output are coded as vectors. An algorithm is developed and implemented 

before training the ANN in order to map the nominal coordinates associated with the other 

inputs to the target coordinates. The data has been normalized between -1 and 1, since the 

Bayesian regularization training algorithm generally works best when the ANN inputs and 

targets are scaled within that range [135].  
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Figure 7.3: The MLP network with five hidden neurons. 

 

7.2.1 Simulation results for CMM case study 

By varying the simulations in MATLAB with different numbers of hidden neurons, four 

different models were developed. The first model consists of five hidden neurons, the second 

with ten, the third with 20, and the fourth with 40. All the models were trained for a different 

number of epochs because the training process only needs to be implemented until the errors 

converge. In order to examine the performance of all the BRANN models on non-training data, 

another ninety data sets (testing sample) were generated. So, ten simulated data sets were used 

for training and 90 simulated data sets for testing. This case is particularly important when 

small sample sizes are available.  

 

The mean squared error (MSE) performance function was used to measure each network’s 

performance. Table 7.1 shows the results obtained from all the developed models; the number 

of convergence epochs, the network’s performance according to the mean of squared errors, 

and the percentage of improvement in the calculated uncertainty compared to the complete data 

set.  
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Table 7.1: Performance of BRANN models. 

Models 

 

Number of 

hidden neurons 

Convergence 

epochs 

MSE (mm) 

 

Improvement in accuracy of the 

uncertainty calculation (%) 

1 5 2374 4.65 × 10-5 83.0 

2 10 3744 8.74 × 10-6 83.0 

3 20 3487 1.68 × 10-5 82.0 

4 40 5000 3.28 × 10-5 83.0 

 

As can be seen from Table 7.1, the minimum MSE is obtained by the second model while all 

the models provide almost the same variability. In a similar way, the method can be applied to 

y- and z-coordinates. In addition, by increasing the number of hidden layers to two, the MSE 

is reduced to a great extent as shown in Table 7.2 and thus, a VCMM can be obtained (see 

section 2.4.4 for VCMM description). Also, an improvement in the estimated uncertainty is 

achieved using the predicted variability from the models including two hidden layers. The 

minimum MSE is obtained by the second model. 

 

Table 7.2: Performance of BRANN models with two hidden layers. 

Models 

 

Number of 

hidden neurons 

Convergence 

epochs 

MSE (mm) 

 

Improvement in accuracy of the 

uncertainty calculation (%) 

1 5 – 5 1000 2.89 × 10-6 83.0 

2 10 – 10 1137 2.44 × 10-6 87.0 

3 20 – 20 972 3.13 × 10-6 87.0 

4 40 – 40 1000 4.04 × 10-6 84.0 

 

7.3 Comparator measurement case study 

The aforementioned method could also be extended beyond CMMs to include other 

measurement systems such as comparator gauges. To validate the performance of the method 

on comparator gauges, experimental work was performed using the Renishaw Equator 

operating in Golden Compare and the RESR ring part. The stylus used is a typical 21 mm long 

stylus with stainless steel stem and a 2 mm diameter ruby ball. After mastering, 80 repeated 

measurements were performed without re-mastering on the large circle with a nominal 

diameter of 80 mm using 20 probing points. The number of temperature sensors used as inputs 
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to the BRANN model in this case study is five. In particular, two temperature sensors were 

used for the ambient temperature and three for the temperature of the part. Therefore, in this 

case study, the ANN consists of six input units: a vector of nominal x-coordinates, two vectors 

of ambient temperature data and three vectors of part temperature data. The output is the vector 

of measured x-coordinates. A general overview of the experimental setup is shown in Figure 

7.4. 

 

 

Figure 7.4: Test set up on comparator gauge. 

 

7.3.1 Simulation results for comparator case study 

To achieve a relatively low MSE value, extensive simulations were performed to find the 

optimal number of hidden layers and hidden neurons. Therefore, five different models were 

developed. The first model consists of one hidden layer with ten hidden neurons. The second 

model consists of two hidden layers with ten hidden neurons each. The third model consists of 

two hidden layers with five hidden neurons in the first hidden layer and 40 in the second. The 

fourth model consists of two hidden layers with ten hidden neurons each but different activation 

functions for the hidden and the output layers. In particular, the activation function for the first 

hidden layer is linear (purelin) transfer function, the activation function for the second hidden 

layer is tan-sigmoid (tansig) transfer function and the activation function for the output layer 

is linear. The fifth model consists of one hidden layer with ten hidden neurons but two different 

activation functions for the hidden and the output layers. In particular, the activation function 

for the hidden layer is tan-sigmoid while the activation function for the output layer is linear.  
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40 data sets were used for training and 40 data sets for testing. Table 7.3 shows the results 

obtained from all the MLP networks. The minimum MSE is obtained by the fifth model. 

 

Table 7.3: Performance of MLP models for comparator data. 

Models 

 

Number of 

hidden neurons 

Convergence 

epochs 

MSE (mm) 

 

Improvement in accuracy of the 

uncertainty calculation (%) 

1 10 – 0 445 7.91 × 10-6 56.0 

2 10 – 10 715 1.23 × 10-5 56.0 

3 5 – 40 258 9.91 × 10-6 62.0 

4 10 – 10 1750 6.96 × 10-6 59.0 

5 10 – 0 2000 6.24 × 10-6 65.0 

 

Based on Table 7.3, it can be concluded that the method also performs well on experimental 

coordinate data with a modest decrease in improvement in the calculated uncertainty since the 

coordinate data have been obtained from an automated comparator gauge employed on the 

shop floor and thus, random effects are the dominant source of measurement uncertainty.  

 

In addition, Elman networks could be trained to predict the x-coordinates. Elman networks use 

positive feedback from the hidden layer to construct some form of memory in the network 

[136]. Different activation functions and number of hidden layers and neurons were tried in 

effort to find the architectures that would model the comparator coordinate data most 

effectively. Therefore, three different models were developed. The first model consists of two 

hidden layers with ten hidden neurons each. The second model consists of one hidden layer 

with ten hidden neurons. The activation function for the hidden layer is tan-sigmoid while the 

activation function for the output layer is linear. The third model consists of two hidden layers 

with ten hidden neurons each but the activation function for the output layer is linear (the 

activation functions for both hidden layers are tan-sigmoid). Table 7.4 shows the results 

obtained from all the Elman networks. The minimum MSE is obtained by the second model.  
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Table 7.4: Performance of Elman models for comparator data. 

Models 

 

Number of 

hidden neurons 

Convergence 

epochs 

MSE (mm) 

 

Improvement in accuracy of the 

uncertainty calculation (%) 

1 10 – 10 1280 1.27 × 10-5 59.0 

2 10 – 0 2000 5.81 × 10-6 62.0 

3 10 – 10 1381 6.05 × 10-6 55.0 

 

7.4 Summary 

This chapter has been concerned with the point coordinate uncertainties. Both validation case 

studies performed have shown that the prediction errors are small according to the MSE and 

the accuracy of the uncertainty calculation is improved significantly using the predicted 

variability compared to the uncertainty calculated from the limited/training sample data set. In 

particular, for validation in the CMM case study, the models were trained using a relatively 

small sample size of ten data sets to predict the variability of a larger sample size of ninety data 

sets. The accuracy of the uncertainty calculation was improved by more than 85% using the 

predicted variability compared to the uncertainty calculated from the limited sample data set. 

In the comparator case study using actual coordinate data from the Equator, the models were 

trained using the half of the complete data set and the accuracy of the calculated uncertainty 

was improved by 65% using the predicted variability compared to the uncertainty calculated 

from the training sample since random effects dominate in such measurement processes.   
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Chapter 8   

 

Conclusions and Suggestions for Further Work 

This chapter summarises the thesis, draws conclusions, outlines the major contributions of the 

research performed, and provides suggestions for further work. 

 

8.1 Summary and conclusions 

The aims of this thesis were to: i) study the performance of parallel kinematic machine (PKM)-

based automatic flexible gauge under various working and environmental conditions and ii) 

produce novel methods for evaluating uncertainty associated with coordinate measurement in 

comparator mode.  

 

This first aim was achieved by employing the design of experiments (DOE) approach. Various 

factors affecting the uncertainty associated with comparative coordinate measurement were 

investigated using several measurement parts and under different environmental conditions. 

Also, a statistical model for uncertainty associated with comparative coordinate measurement 

through analysis of variance (ANOVA) techniques was developed. The experimental designs 

indicated that the measurement strategy is a significant factor that affects the comparator 

measurement uncertainty. Other factors such as part misalignment from rotation between 

master and measure coordinate frames can also affect the comparator measurement uncertainty. 

In addition, a comparison was made between different shop floor inspection methods including 

automated flexible gauging, hard gauging, and on-machine probing (OMP). 

 

The second aim involved two parts. The first part was focused on the application of Markov 

chain Monte Carlo (MCMC) methods in the evaluation of uncertainty associated with 

comparative coordinate measurement using small data sets. The Gibbs sampler, which is one 

of the main MCMC methods, was used for performing Bayesian inference. The second was 

focused on the development of an artificial intelligence (AI)-based method using Bayesian 

regularized artificial neural networks (BRANNs) to overcome the difficulties associated with 
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estimating point coordinate uncertainties and improve the assessment of measurement 

uncertainty in this application.   

 

The following items are the conclusions of this thesis concerning with the performance 

evaluation of comparator gauge and the development of efficient methods for evaluating 

uncertainty associated with comparative coordinate measurement:  

 

 The automated comparator gauge under investigation can reduce the influence of 

systematic effects associated with the measurement system significantly and cope with 

wide temperature changes in a shop floor environment by re-zeroing the gauging system 

through the principle of mastering as shown in chapters 3-5. 

 The full factorial designs in chapter 3 have revealed that the comparator measurement 

uncertainties obtained by all the experiments agree with system features under specified 

conditions. It has also been demonstrated that when the specified conditions are exceeded, 

the uncertainty associated with comparative coordinate measurement depends on the 

measurement task, the measurement strategy used, the feature size, and the magnitude and 

direction of offset angles in relation to the reference axes of the machine. In particular, 

departures from the specified part fixturing requirement of the versatile gauge have a more 

significant effect on the uncertainty of length measurement in comparator mode and a less 

significant effect on the diameter measurement uncertainty for the specific Equator and test 

conditions. 

 The experimental results in chapter 4 have shown that the comparator gauge can achieve 

highly repeatable measurements under workshop conditions in both discrete-point probing 

and scanning measuring modes within its whole measuring volume. However, careful 

consideration of the scanning speed is required for form assessment due to dynamic effects. 

 The comparative study between the different dimensional inspection approaches that were 

studied in this thesis in chapter 5 has shown that an automated flexible gauge employed on 

the shop floor can achieve very low measurement uncertainties (< 2 µm for more than 97% 

of the results), especially in comparison to OMP and hard gauges. However, part fixturing 

repeatability is critical to comparative coordinate measurement because misalignment 

errors during comparator gauging will lead to inaccurate results. 

 A MCMC model has been developed in chapter 6 for uncertainty associated with 

comparative coordinate measurement. It has been shown that using the Gibbs sampler is 
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straightforward to obtain a MCMC sample from the posterior distribution and thus, 

providing reliable uncertainty statements for comparative coordinate measurements 

influenced by angular misalignments without the need for repeated measurements. 

 An AI-based method has been developed in chapter 7 to estimate the uncertainty of 

measurement in the point coordinates. Small prediction errors were achieved according to 

the MSE and the accuracy of the uncertainty calculation was improved by more than 85% 

and by 65% using the predicted variability compared to the uncertainty from the 

limited/training sample data set for the coordinate measuring machine (CMM) and 

comparator case study, respectively. 

 

8.2 Contribution to knowledge 

Many areas have been identified as giving a significant contribution to knowledge under the 

scope of this investigation: 

 

 A comprehensive review of the dimensional inspection methods has been conducted. 

Various key factors affecting the measurement uncertainty were investigated and 

throughout the thesis, the establishment of the influence of them and their interaction on 

the comparator measurement uncertainty has been achieved using full factorial designs. 

 Dimensional inspection on the shop floor with automated flexible gauges based on parallel 

kinematic structure has been found to be an efficient solution to fill the gap between CMM 

measurement and custom hard gauging. This was achieved through a detailed comparison 

between automated flexible gauges, hard gauges, and OMP on a range of features and 

operating conditions. 

 A statistical model for uncertainty associated with comparative coordinate measurement 

has been developed using ANOVA techniques. This is applicable to comparative 

measurement in general, not just the Equator. 

 A Bayesian approach through alternating conditional sampling has been produced to 

evaluate uncertainty associated with comparative coordinate measurement influenced by 

process variations. 

 A new empirical method based on a BRANN model has been developed to predict the 

variability associated with the CMM and automated comparator coordinate data. The 

proposed method can be used very straightforwardly to determine uncertainty sources 
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associated with a particular axis of the CMM when a precise analytical model for the 

measurement system and/or measurement process is difficult to derive and increase the 

efficiency of fitting algorithms implemented in CMM and comparator coordinate data 

while avoiding large experimental designs. 

 

8.3 Suggested further work 

 A virtual PKM-based flexible gauge based on Monte Carlo simulation could be developed 

and integrated in the Renishaw MODUS Equator software for task-specific uncertainty 

evaluation similar to that available for CMMs using virtual CMM (VCMM). 

 Improve the performance of the BRANN models by using more information as inputs to 

the network and different types of networks, number of hidden neurons, and training 

algorithms. In addition, integrate the prediction model with geometric element best-fit 

algorithms to provide task-specific uncertainty statements. 

 Application of a combination of the new artificial neural network (ANN)-based method 

and the Gibbs sampling method to enable highly efficient uncertainty evaluation of CMMs 

under a variety of operating conditions to facilitate the production of and selection of 

operating parameters for particular accuracy requirements. This could support decisions for 

infrastructure designs, whether shop floor coordinate measuring systems (CMSs) can be 

implemented as well as informing efficient measurement strategies. 

 The measuring principle of the Equator gauge is based on the traditional comparison of 

production parts to a reference master part through software. However, this requires the 

establishment of a reference master part or the calibration of a production part on an 

accurate CMS such as a CMM. Therefore, a machine learning model could be developed 

to predict master part quality using for example machining process monitoring data and 

Equator metrology data. This will enhance the efficiency of this automated shop floor 

inspection method in a practical and cost-effective way without the need for kinematic 

calibration. Hence, shop floor inspection tasks could be executed with the requirement of 

only a single measuring equipment. 
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Appendix A  

 

Renishaw Equator Specifications and Experimental Data 

Table A.1: Equator machine specifications. 

Working volume XY ø300 mm, Z 150 mm 

Comparison uncertainty ±0.002 mm 

Maximum scanning velocity 100 mm/s 

Maximum scanning acceleration 1500 mm/s2 

Maximum move velocity 500 mm/s 

Maximum move acceleration 2500 mm/s2 

Maximum scanning rate 1000 points/s 

Scale resolution 0.0002 mm 

Machine electrical supply requirements 24 V DC supplied direct from Equator controller 

Probe type Renishaw 3-axis SP25 analogue scanning probe 

Repeatability of piece part in fixture ±1 mm 

Fixture plate 305 mm × 305 mm 

Maximum part weight (including fixture 

plate) 

25 kg 

Machine dimensions (W × D × H) 570 mm × 500 mm × 700 mm 

Machine weight 25 kg 

 

Table A.2: Operating conditions. 

Attitude Maximum 2000 m 

Operating temperature +10°C to +40°C 

Storage temperature -25°C to +70°C 

Relative humidity operating range Maximum 80% RH at 40°C, non-condensing 

Transition voltages Installation category II 

Pollution degree 2 
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Table A.3: Equator controller specifications and electrical ratings. 

Controller electrical supply requirements 100 V AC - 240 V AC ±10%, 50 Hz - 60 HZ  

Maximum rated power consumption 300 W 

Maximum power consumption 190 W 

Typical power consumption 100 W 

Controller dimensions (W × D × H) 130 mm × 320 mm × 350 mm 

Controller weight 8 kg 

Communication with Equator PCIexpress 

User input devices Keyboard and mouse (USB 2.0) 

Display type VGA monitor 

Display resolution 1280 × 1024 

USB hub 2 front, 4 back (USB 2.0) 

Ethernet ports 1 × RJ45 connector 
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Table A.4: Mean values and associated expanded uncertainties for 𝑘 = 2 from the DOE with 

the gauge block. 

A B C Gauge block length 

   𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 
1 1 1 100.00081 0.96 

2 1 1 100.00003 0.19 

1 2 1 99.99994 0.16 

2 2 1 99.99979 0.64 

1 1 2 99.99987 0.21 

2 1 2 99.99954 0.59 

1 2 2 99.99960 0.49 

2 2 2 100.00016 0.27 

1 1 3 99.99981 0.31 

2 1 3 100.00035 0.47 

1 2 3 99.99964 0.45 

2 2 3 100.00032 0.52 

1 1 4 99.99964 0.61 

2 1 4 100.00014 0.27 

1 2 4 99.99983 0.27 

2 2 4 99.99968 0.47 

1 1 5 99.99934 0.79 

2 1 5 100.00054 0.66 

1 2 5 99.99898 1.17 

2 2 5 99.99932 0.80 

1 1 6 99.99898 1.12 

2 1 6 99.99950 0.58 

1 2 6 99.99859 1.51 

2 2 6 99.99973 0.42 

1 1 7 99.99811 2.02 

2 1 7 99.99911 0.99 

1 2 7 99.99823 1.83 

2 2 7 99.99922 1.00 

 

See Table 3.1 for notation. 
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Table A.5: Mean values from the DOE with the conrod part. 

A B C Small 

circle 

diameter 

Medium 

circle 

diameter 

Large 

circle 

diameter 

Length 

distance 

1 

Length 

distance 

2 

Length 

distance 

3 

   𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 

1 1 1 10.00083 20.00012 44.99980 85.09649 85.09670 170.19320 

1 2 1 10.00044 20.00015 45.00015 85.09718 85.09672 170.19390 

2 1 1 10.00027 20.00015 45.00009 85.09703 85.09687 170.19391 

2 2 1 10.00017 19.99991 45.00007 85.09675 85.09699 170.19371 

3 1 1 10.00025 19.99981 45.00029 85.09703 85.09714 170.19418 

3 2 1 10.00016 19.99971 44.99982 85.09678 85.09577 170.19256 

4 1 1 10.00003 19.99965 44.99983 85.09698 85.09641 170.19337 

4 2 1 10.00013 19.99923 44.99961 85.09694 85.09735 170.19431 

1 1 2 10.00083 20.00079 45.00004 85.09654 85.09755 170.19410 

1 2 2 10.00048 20.00059 45.00024 85.09624 85.09797 170.19421 

2 1 2 10.00027 20.00018 44.99999 85.09657 85.09740 170.19396 

2 2 2 10.00017 20.00048 45.00033 85.09588 85.09810 170.19399 

3 1 2 9.99982 19.99981 44.99993 85.09667 85.09664 170.19331 

3 2 2 10.00020 19.99992 44.99967 85.09702 85.09623 170.19325 

4 1 2 9.99946 19.99951 44.99902 85.09604 85.09631 170.19238 

4 2 2 9.99964 20.00004 44.99946 85.09665 85.09694 170.19357 

1 1 3 9.99947 19.99961 45.00064 85.09751 85.09192 170.18942 

1 2 3 10.00080 19.99938 45.00112 85.09732 85.09354 170.19085 

2 1 3 10.00014 19.99967 45.00084 85.09745 85.09369 170.19113 

2 2 3 10.00038 19.99967 45.00082 85.09708 85.09371 170.19078 

3 1 3 10.00022 19.99946 45.00129 85.09729 85.09349 170.19080 

3 2 3 10.00002 19.99954 45.00037 85.09681 85.09454 170.19137 

4 1 3 9.99971 19.99857 44.99997 85.09698 85.09385 170.19082 

4 2 3 9.99968 19.99935 44.99981 85.09679 85.09408 170.19085 

1 1 4 10.00020 20.00096 44.99956 85.09696 85.09291 170.18984 

1 2 4 10.00137 19.99990 44.99918 85.09635 85.09450 170.19083 

2 1 4 10.00059 20.00026 45.00211 85.09698 85.09426 170.19125 

2 2 4 10.00020 20.00039 44.99970 85.09614 85.09465 170.19078 

3 1 4 10.00043 19.99964 44.99949 85.09644 85.09466 170.19110 

3 2 4 10.00015 19.99962 45.00019 85.09687 85.09449 170.19136 

4 1 4 9.99945 19.99899 44.99922 85.09713 85.09417 170.19130 

4 2 4 9.99991 19.99970 44.99912 85.09684 85.09391 170.19075 

 

See Table 3.3 for notation. 
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Table A.6: Expanded uncertainties for 𝑘 = 2 from the DOE with the conrod part. 

A B C Small 

circle 

diameter 

Medium 

circle 

diameter 

Large 

circle 

diameter 

Length 

distance 

1 

Length 

distance 

2 

Length 

distance 

3 

   𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 
1 1 1 0.91 0.16 0.28 0.61 0.79 0.38 

1 2 1 0.54 0.20 0.22 1.36 0.81 1.04 

2 1 1 0.36 0.18 0.19 1.13 1.05 1.13 

2 2 1 0.21 0.15 0.15 0.85 1.17 0.88 

3 1 1 0.32 0.29 0.39 1.18 1.75 1.81 

3 2 1 0.23 0.38 0.27 0.92 0.49 0.68 

4 1 1 0.12 0.45 0.22 1.09 0.61 0.53 

4 2 1 0.22 0.86 0.50 1.05 1.65 1.60 

1 1 2 1.01 0.86 0.10 0.69 1.82 1.35 

1 2 2 0.57 0.65 0.33 0.36 2.15 1.38 

2 1 2 0.34 0.22 0.05 0.69 1.61 1.23 

2 2 2 0.20 0.52 0.41 0.28 2.24 1.15 

3 1 2 0.27 0.26 0.17 0.85 0.89 0.49 

3 2 2 0.28 0.17 0.42 1.19 0.49 0.60 

4 1 2 0.94 0.59 1.14 0.23 0.49 0.85 

4 2 2 0.46 0.10 0.65 0.82 1.24 0.83 

1 1 3 0.67 0.47 0.79 1.89 4.58 4.10 

1 2 3 0.88 0.70 1.20 1.44 2.66 2.41 

2 1 3 0.17 0.40 0.94 1.55 2.46 2.03 

2 2 3 0.44 0.37 0.87 1.26 2.40 2.40 

3 1 3 0.32 0.59 1.41 1.42 2.71 2.47 

3 2 3 0.09 0.52 0.47 0.95 1.73 1.87 

4 1 3 0.38 1.52 0.10 1.12 2.41 2.47 

4 2 3 0.43 0.78 0.28 0.99 2.12 2.44 

1 1 4 0.38 1.02 0.49 1.18 3.40 3.67 

1 2 4 1.58 0.18 0.91 0.45 1.70 2.29 

2 1 4 0.63 0.33 2.18 1.04 1.89 1.89 

2 2 4 0.23 0.44 0.38 0.27 1.50 2.37 

3 1 4 0.49 0.42 0.61 0.58 1.70 2.28 

3 2 4 0.19 0.43 0.30 1.02 1.88 2.08 

4 1 4 0.65 1.10 0.87 1.32 2.29 2.27 

4 2 4 0.15 0.34 0.97 0.94 2.37 2.56 

 

See Table 3.3 for notation. 
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Table A.7: Mean values from the DOE for managing re-mastering. 

A B Small 

circle 

diameter 

Medium 

circle 

diameter 

Large 

circle 

diameter 

Length 

distance 

1 

Length 

distance 

2 

Length 

distance 

3 

  𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 

1 1 10.00086 20.00002 45.00006 85.09667 85.09606 170.19275 

1 2 10.00014 20.00013 44.99995 85.09670 85.09687 170.19355 

2 1 10.00013 19.99998 44.99967 85.09590 85.09709 170.19298 

2 2 10.00034 20.00005 45.00003 85.09684 85.09669 170.19353 

3 1 10.00020 20.00010 44.99998 85.09708 85.09661 170.19370 

3 2 10.00009 20.00009 45.00014 85.09683 85.09697 170.19381 

4 1 10.00040 20.00016 45.00027 85.09670 85.09710 170.19379 

4 2 10.00021 19.99989 44.99986 85.09699 85.09621 170.19319 

5 1 10.00011 20.00088 45.00041 85.09675 85.09819 170.19494 

5 2 10.00035 20.00062 45.00078 85.09844 85.09865 170.19708 

6 1 10.00136 20.00129 45.00248 85.10173 85.10164 170.20334 

6 2 10.00083 20.00164 45.00301 85.10242 85.10307 170.20550 

7 1 10.00218 20.00360 45.00586 85.10713 85.10759 170.21473 

7 2 10.00220 20.00353 45.00655 85.10881 85.10883 170.21762 

 

See Table 3.5 for notation. 
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Table A.8: Mean values and associated expanded uncertainties for 𝑘 = 2 from the DOE with 

the clutch plate. 

A B Internal diameter  External diameter  

  𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 
1 1 76.99968 0.42 98.39977 0.28 

1 2 76.99997 0.19 98.39995 0.16 

1 3 77.00019 0.29 98.40027 0.41 

1 4 76.99960 0.55 98.39960 0.50 

1 5 76.99919 0.93 98.39980 0.26 

1 6 76.99933 0.82 98.39987 0.22 

1 7 76.99975 0.37 98.39989 0.19 

1 8 76.99967 0.41 98.39996 0.13 

1 9 76.99972 0.44 98.39998 0.09 

2 1 76.99978 0.36 98.39984 0.24 

2 2 76.99955 0.53 98.39936 0.76 

2 3 76.99976 0.35 98.39974 0.34 

2 4 77.00003 0.18 98.39955 0.56 

2 5 76.99965 0.47 98.39960 0.49 

2 6 76.99981 0.30 98.40016 0.35 

2 7 76.99944 0.72 98.39928 0.84 

2 8 76.99972 0.36 98.40000 0.07 

2 9 77.00021 0.34 98.39997 0.12 

 

See Table 4.1 for notation. 
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Table A.9: Mean values and associated expanded uncertainties for 𝑘 = 2 from the DOE with 

the RESR ring. 

A B C Large circle 

diameter 

Medium hole 

diameter 

Small hole 

diameter 

 

   𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 𝑥̅ [𝑚𝑚] 𝑈 [𝜇𝑚] 
1 1 1 80.00014 0.22 6.00010 0.15 3.60041 0.50 

2 1 1 79.99981 0.24 5.99987 0.18 3.59982 0.27 

3 1 1 80.00011 0.14 6.00028 0.34 3.59997 0.13 

1 2 1 79.99982 0.23 5.99999 0.04 3.59987 0.17 

2 2 1 79.99996 0.08 5.99997 0.08 3.59995 0.12 

3 2 1 79.99997 0.10 6.00019 0.24 3.60020 0.29 

1 1 2 79.99970 0.34 6.00004 0.08 3.59991 0.14 

2 1 2 80.00013 0.17 5.99984 0.22 3.59969 0.38 

3 1 2 79.99992 0.12 5.99983 0.29 3.60017 0.25 

1 2 2 79.99986 0.21 6.00001 0.04 3.60006 0.09 

2 2 2 80.00020 0.24 6.00000 0.04 3.60012 0.17 

3 2 2 79.99988 0.19 6.00012 0.18 3.59994 0.12 

1 1 3 79.99911 1.02 6.00023 0.25 3.60047 0.52 

2 1 3 79.99999 0.05 5.99977 0.27 3.60045 0.52 

3 1 3 80.00007 0.11 6.00017 0.24 3.60029 0.38 

1 2 3 79.99993 0.12 5.99988 0.15 3.59984 0.22 

2 2 3 79.99974 0.29 5.99997 0.06 3.59992 0.14 

3 2 3 80.00030 0.41 6.00018 0.23 3.60008 0.14 

1 1 4 79.99920 0.87 5.99988 0.16 3.60002 0.07 

2 1 4 79.99966 0.38 5.99993 0.14 3.59952 0.55 

3 1 4 79.99970 0.34 6.00006 0.14 3.60004 0.22 

1 2 4 79.99993 0.13 6.00003 0.05 3.60006 0.11 

2 2 4 80.00014 0.18 6.00013 0.17 3.60022 0.28 

3 2 4 80.00004 0.11 5.99968 0.38 3.59989 0.20 

1 1 5 79.99929 0.93 6.00004 0.07 3.59999 0.09 

2 1 5 79.99962 0.45 6.00004 0.08 3.60020 0.26 

3 1 5 80.00005 0.08 6.00003 0.11 3.60066 0.81 

1 2 5 79.99988 0.17 5.99990 0.13 3.59998 0.08 

2 2 5 79.99958 0.51 6.00002 0.05 3.60021 0.25 

3 2 5 79.99990 0.17 6.00001 0.06 3.59998 0.09 

 

See Table 4.2 for notation. 
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Table A.10: Mean values for small-size holes from the DOE concerned with circularity. 

A B 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 

  𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 

1 1 0.00100 0.00143 0.00107 0.00121 0.00107 0.00093 

2 1 0.00141 0.00144 0.00128 0.00138 0.00176 0.00154 

3 1 0.00262 0.00256 0.00273 0.00232 0.00310 0.00283 

1 2 0.00126 0.00136 0.00119 0.00106 0.00118 0.00107 

2 2 0.00180 0.00229 0.00185 0.00189 0.00229 0.00185 

3 2 0.00346 0.00403 0.00353 0.00347 0.00470 0.00389 

1 1 0.00118 0.00245 0.00101 0.00096 0.00118 0.00116 

2 1 0.00169 0.00187 0.00159 0.00154 0.00159 0.00123 

3 1 0.00255 0.00287 0.00275 0.00272 0.00269 0.00298 

1 2 0.00135 0.00137 0.00230 0.00238 0.00147 0.00114 

2 2 0.00200 0.00234 0.00203 0.00254 0.00236 0.00201 

3 2 0.00380 0.00430 0.00366 0.00427 0.00445 0.00364 

 

See Table 4.2 for notation. 

 

Table A.11: Mean values for medium-size holes and large circle from the DOE concerned 

with circularity. 

A B 𝑌7 𝑌8 𝑌9 𝑌10 𝑌11 𝑌12 𝑌13 

  𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 𝑥̅ [𝑚𝑚] 

1 1 0.00128 0.00215 0.00201 0.00149 0.00155 0.00179 0.00216 

2 1 0.00197 0.00235 0.00240 0.00221 0.00188 0.00250 0.00318 

3 1 0.00326 0.00403 0.00399 0.00375 0.00363 0.00354 0.00531 

1 2 0.00186 0.00278 0.00210 0.00154 0.00204 0.00247 0.00200 

2 2 0.00262 0.00322 0.00336 0.00310 0.00267 0.00302 0.00297 

3 2 0.00419 0.00568 0.00460 0.00472 0.00409 0.00428 0.00589 

1 1 0.00173 0.00155 0.00138 0.00149 0.00126 0.00181 0.00252 

2 1 0.00237 0.00245 0.00206 0.00250 0.00181 0.00223 0.00289 

3 1 0.00310 0.00349 0.00353 0.00348 0.00328 0.00349 0.00479 

1 2 0.00250 0.00188 0.00195 0.00219 0.00237 0.00177 0.00205 

2 2 0.00281 0.00292 0.00300 0.00289 0.00279 0.00267 0.00272 

3 2 0.00427 0.00462 0.00524 0.00503 0.00419 0.00440 0.00546 

 

See Table 4.2 for notation. 
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Table A.12: Expanded uncertainties for 𝑘 = 2 for small-size holes from the DOE concerned 

with circularity. 

A B 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 𝑌6 

  𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 
1 1 1.08 1.57 1.15 1.31 1.15 1.02 

2 1 1.52 1.64 1.38 1.49 1.88 1.70 

3 1 2.72 2.82 2.99 2.57 3.43 3.10 

1 2 1.31 1.43 1.26 1.13 1.28 1.13 

2 2 1.89 2.40 1.95 2.01 2.41 2.04 

3 2 3.66 4.23 3.68 3.62 4.94 4.02 

1 1 1.27 2.75 1.11 1.02 1.30 1.29 

2 1 1.86 2.00 1.72 1.67 1.71 1.36 

3 1 2.77 3.14 2.99 2.89 2.86 3.18 

1 2 1.46 1.45 2.45 2.73 1.57 1.21 

2 2 2.12 2.47 2.13 2.76 2.48 2.11 

3 2 4.01 4.51 3.86 4.61 4.68 3.81 

 

See Table 4.2 for notation. 

 

Table A.13: Expanded uncertainties for 𝑘 = 2 for medium-size holes and large circle from the 

DOE concerned with circularity. 

A B 𝑌7 𝑌8 𝑌9 𝑌10 𝑌11 𝑌12 𝑌13 

  𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 

1 1 1.38 2.40 2.20 1.64 1.70 1.94 2.55 

2 1 2.13 2.55 2.60 2.36 1.96 2.73 3.70 

3 1 3.45 4.28 4.26 4.00 3.82 3.74 5.95 

1 2 2.02 3.10 2.30 1.61 2.23 2.64 2.24 

2 2 2.85 3.37 3.64 3.26 2.86 3.25 3.45 

3 2 4.40 6.07 4.77 5.01 4.31 4.46 6.65 

1 1 1.98 1.70 1.51 1.66 1.38 2.09 2.66 

2 1 2.55 2.68 2.19 2.68 1.96 2.37 3.40 

3 1 3.32 3.68 3.69 3.72 3.51 3.66 5.23 

1 2 2.81 2.01 2.08 2.33 2.61 1.87 2.23 

2 2 3.09 3.11 3.18 3.05 3.01 2.82 3.11 

3 2 4.56 4.87 5.61 5.36 4.44 4.55 6.26 

 

See Table 4.2 for notation. 
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Table A.14: OMP combined expanded uncertainties for 𝑘 = 2. 

Measurands G2 G3 G4 G5 G6 G7 G8 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 
A 0.97 1.00 0.80 1.24 1.17 0.72 2.19 

B 2.11 1.36 1.57 1.80 1.54 1.45 2.05 

C 0.86 0.19 0.23 0.69 1.48 0.28 2.18 

D 0.88 0.71 0.99 0.82 1.24 0.78 1.28 

E 0.90 0.50 0.56 0.80 1.10 1.26 1.78 

F 1.13 1.54 0.88 0.72 0.57 1.20 1.96 

G 1.26 0.28 0.50 1.15 0.81 0.28 1.85 

H 0.45 1.61 0.71 0.84 0.70 0.56 2.03 

I 0.67 0.43 0.49 0.68 1.60 0.91 2.55 

J 1.32 1.18 0.59 1.30 0.77 1.26 2.40 

K 2.46 2.37 1.80 2.10 1.50 1.31 2.34 

L 1.21 3.36 2.42 2.02 1.91 1.35 1.40 

M 2.03 5.21 3.55 5.88 2.61 2.02 7.33 

N 2.24 0.66 3.03 2.12 1.92 2.29 2.11 

O 1.28 3.03 1.48 1.20 1.60 1.14 1.46 

Q 1.20 0.33 1.15 0.50 1.19 0.58 0.33 

R 1.33 0.58 1.00 0.63 0.41 0.87 0.67 

S 0.33 0.58 0.58 0.25 1.11 1.11 0.00 

T 2.03 1.67 0.58 0.82 0.65 0.00 0.88 

U 0.33 1.76 1.76 2.53 0.75 0.65 2.08 

V 0.67 0.67 0.67 0.58 1.22 0.41 1.20 

W 0.58 0.67 0.58 0.25 0.85 0.63 0.58 

X 1.20 0.33 0.33 0.63 0.50 0.41 0.33 

 

See Table 5.1 for notation. 
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Table A.15: Hard gauging combined expanded uncertainties for 𝑘 = 2 from operator 1 for G4. 

Measurands 1(a) 1(b) 1(c) 1(d) 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 

A 11.23 6.97 3.74 4.64 

B 9.44 6.21 1.44 3.07 

C 1.76 1.96 4.90 6.01 

D 1.09 1.43 4.90 2.48 

E 1.90 1.23 2.45 4.02 

F 1.12 1.57 2.00 4.02 

G 1.00 1.92 2.00 2.04 

H 1.17 1.03 2.00 4.02 

I 1.12 1.09 4.00 3.19 

J 1.12 1.73 2.45 2.48 

K 5.13 10.48 4.28 21.70 

L 0.08 0.76 0.08 0.49 

M 0.08 0.76 0.08 0.49 

N 0.08 0.76 0.08 0.49 

O 0.08 0.76 0.08 0.49 

P 1.97 1.71 2.12 1.81 

 

See Tables 5.1-5.3 for notation. 

 

Table A.16: Hard gauging combined expanded uncertainties for 𝑘 = 2 from operators 2-7 for 

G4. 

Measurands 2 3 4 5 6 7 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 

A 11.29 2.00 15.81 7.92 10.81 4.56 

B 16.19 0.84 5.54 6.15 8.22 5.23 

C 7.36 0.02 2.46 2.07 2.51 1.60 

D 2.48 8.94 5.10 2.51 4.04 1.19 

E 0.41 4.90 5.83 2.07 2.51 1.45 

F 6.79 0.02 6.79 3.21 3.78 1.50 

G 4.92 4.90 4.90 2.07 0.54 1.57 

H 4.92 4.90 2.46 2.51 3.21 1.57 

I 4.92 2.00 4.01 3.21 2.51 1.39 

J 2.04 2.45 3.17 2.51 4.93 1.70 

K 21.68 29.37 46.79 46.50 8.93 9.65 

L 0.49 0.08 0.28 0.64 0.73 0.64 

M 0.49 0.08 0.28 0.64 0.73 0.64 

N 0.49 0.08 0.28 0.64 0.73 0.64 

O 0.49 0.08 0.28 0.64 0.73 0.64 

P 2.97 2.47 2.21 1.79 2.62 3.96 

 

See Tables 5.1-5.3 for notation. 



 

171 

 

Table A.17: Hard gauging combined expanded uncertainties for 𝑘 = 2 from operator 1 for G6. 

Measurands 1(a) 1(b) 1(c) 1(d) 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 

A 2.16 3.67 4.28 9.44 

B 1.73 6.26 3.41 6.17 

C 1.13 1.71 2.45 2.01 

D 1.64 2.75 4.00 4.90 

E 1.13 2.77 2.00 2.01 

F 1.00 1.68 0.07 0.20 

G 2.28 2.11 4.90 2.46 

H 2.25 3.55 4.90 0.20 

I 1.15 1.16 2.00 4.00 

J 2.25 3.09 4.90 2.01 

K 2.20 8.71 2.48 3.99 

L 0.08 2.32 0.08 1.99 

M 0.08 2.31 0.08 1.82 

N 0.08 0.99 0.08 0.95 

O 0.08 1.20 0.08 0.82 

P 1.65 1.69 1.79 1.79 

 

See Tables 5.1-5.3 for notation. 

 

Table A.18: Hard gauging combined expanded uncertainties for 𝑘 = 2 from operators 2-7 for 

G6. 

Measurands 2 3 4 5 6 7 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 

A 6.20 14.72 4.95 5.09 5.22 2.32 

B 30.47 8.14 14.04 10.05 11.87 5.97 

C 4.01 2.46 2.46 3.76 2.47 2.12 

D 0.22 2.01 7.49 2.03 7.49 1.85 

E 6.79 2.01 6.33 2.03 7.36 0.61 

F 6.79 2.01 2.46 2.03 5.84 1.68 

G 4.01 2.01 4.90 2.03 3.76 1.40 

H 11.66 2.01 2.46 2.03 8.37 1.88 

I 7.35 2.01 5.48 2.03 2.47 1.57 

J 11.66 2.01 4.48 2.47 0.34 0.77 

K 27.51 22.85 26.37 30.31 36.54 19.05 

L 0.36 0.33 0.31 0.42 0.41 0.42 

M 0.36 0.33 0.31 0.42 0.41 0.42 

N 0.36 0.33 0.31 0.42 0.41 0.42 

O 0.36 0.33 0.31 0.42 4.92 0.42 

P 3.30 1.70 3.03 2.83 2.10 2.72 

 

See Tables 5.1-5.3 for notation. 
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Table A.19: Equator combined expanded uncertainties for 𝑘 = 2. 

Measurands G2 G3 G4 G5 G6 G7 G8 

 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 𝑈 [𝜇𝑚] 
A 0.96 0.68 0.73 0.52 0.57 0.32 0.28 

B 1.30 0.83 0.94 0.82 1.04 0.28 1.29 

C 0.33 1.18 0.41 0.37 0.43 0.40 1.87 

D 1.68 0.73 1.06 0.98 1.08 0.73 1.70 

E 0.65 0.42 0.56 0.37 0.62 0.70 1.31 

F 0.61 1.33 0.67 0.18 0.55 0.17 1.12 

G 0.42 1.76 0.92 0.34 0.55 0.16 1.51 

H 0.41 1.74 0.57 0.34 0.37 0.30 0.84 

I 0.35 1.31 0.94 0.80 0.48 0.76 0.99 

J 0.42 1.45 1.04 0.47 0.63 0.20 1.18 

K 2.64 2.48 2.58 0.72 1.22 0.72 2.36 

L 0.85 1.08 0.70 0.38 0.65 0.21 0.89 

M 0.35 0.95 0.51 0.69 0.70 0.24 0.54 

N 1.26 0.89 0.65 0.27 0.52 0.33 0.97 

O 0.57 0.79 0.76 0.42 0.43 0.29 0.48 

P 0.61 1.46 1.34 0.42 1.20 0.29 0.96 

Q 1.07 1.98 0.79 1.47 0.95 0.55 0.27 

R 1.42 1.93 0.64 0.26 0.85 0.27 1.02 

S 0.79 1.24 0.63 0.98 0.56 0.48 0.78 

T 1.01 0.80 0.76 1.88 0.68 0.17 0.93 

U 0.73 0.63 0.75 0.33 0.94 1.20 1.44 

V 1.39 1.13 0.98 1.30 1.10 0.87 1.01 

W 0.77 1.10 0.82 1.08 0.87 0.70 0.79 

X 1.90 0.70 1.45 1.02 1.58 1.40 1.94 

 

See Table 5.1 for notation. 
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Table A.20: CMM results for the comparative study. 

Measu-

rands 

G2 G3 G4 G5 G6 G7 G8 

 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 𝑥 [𝑚𝑚] 

A 49.9652 49.9713 49.9773 49.9656 49.9722 49.9968 49.9879 

B 99.9382 100.0140 100.0120 100.0153 99.9827 100.0067 99.9786 

C 16.0182 16.0115 16.0022 15.9971 15.9919 16.0154 16.0020 

D 16.0176 16.0111 16.0010 15.9982 15.9953 16.0142 16.0020 

E 16.0188 16.0095 16.0020 15.9970 15.9915 16.0137 16.0020 

F 16.0182 16.0070 16.0000 15.9978 15.9930 16.0124 16.0015 

G 16.0186 16.0055 16.0000 15.9962 15.9894 16.0112 16.0000 

H 16.0182 16.0060 16.0000 15.9968 15.9920 16.0102 16.0000 

I 16.0182 16.0050 16.0020 15.9948 15.9920 16.0092 16.0000 

J 16.0182 16.0038 15.9980 15.9953 15.9907 16.0083 16.0010 

K 128.9935 128.9944 128.9940 128.9956 128.9960 128.9984 128.9945 

L 20.0268 20.0122 20.0125 20.0041 19.9990 20.0103 20.0078 

M 20.0267 20.0131 20.0120 20.0044 19.9995 20.0117 20.0087 

N 20.0202 20.0096 20.0075 20.0006 19.9942 20.0079 20.0042 

O 20.0198 20.0107 20.0075 20.0002 19.9940 20.0094 20.0057 

P 0.0578 0.0833 0.0678 0.0764 0.0855 0.0707 0.0955 

Q 0.0040 0.0050 0.0035 0.0045 0.0040 0.0048 0.0031 

R 0.0039 0.0046 0.0038 0.0036 0.0048 0.0023 0.0043 

S 0.0038 0.0227 0.0042 0.0048 0.0045 0.0043 0.0053 

T 0.0045 0.0035 0.0041 0.0056 0.0037 0.0029 0.0033 

U 0.0034 0.0031 0.0040 0.0073 0.0062 0.0048 0.0054 

V 0.0044 0.0031 0.0043 0.0061 0.0056 0.0038 0.0041 

W 0.0034 0.0043 0.0052 0.0040 0.0058 0.0037 0.0036 

X 0.0045 0.0037 0.0049 0.0071 0.0075 0.0043 0.0061 

 

See Table 5.1 for notation. 
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Table A.21: OMP and Equator residuals for G2 and G3. 

Measurands Residuals for G2 Residuals for G3 

 OMP [𝜇𝑚] Equator [𝜇𝑚] OMP [𝜇𝑚] Equator [𝜇𝑚] 

A 41.95 0.45 18.93 0.47 

B 7.10 0.40 13.40 0.40 

C 14.91 0.19 15.57 1.03 

D 14.18 1.42 13.49 0.61 

E 15.78 0.42 9.64 0.26 

F 15.84 0.26 13.70 1.00 

G 16.17 0.13 12.25 1.15 

H 15.30 0.10 12.19 0.91 

I 15.15 0.15 10.71 0.49 

J 15.10 0.10 8.64 1.06 

K 5.95 1.45 5.31 1.91 

L 19.56 0.54 14.92 0.88 

M 19.30 0.10 8.13 0.67 

N 16.89 0.91 16.34 0.66 

O 15.30 0.20 15.14 0.56 

Q 2.18 0.78 3.82 1.72 

R 2.08 1.18 3.07 1.67 

S 2.02 0.68 21.23 0.98 

T 1.76 0.76 2.24 0.54 

U 1.24 0.44 1.68 0.32 

V 3.09 1.09 0.77 0.87 

W 1.85 0.55 2.46 0.34 

X 2.20 1.60 2.00 0.40 

 

See Table 5.1 for notation. 
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Table A.22: OMP, hard gauging, and Equator residuals for G4. 

Measurands Residuals for G4  

 OMP [𝜇𝑚] Hard gauging [𝜇𝑚] Equator [𝜇𝑚] 

A 16.40 4.30 0.50 

B 4.50 14.00 0.50 

C 2.70 1.20 0.30 

D 0.70 2.00 0.90 

E 0.30 3.00 0.40 

F 0.30 2.00 0.50 

G 0.60 5.00 0.80 

H 0.90 4.00 0.40 

I 2.60 1.00 0.80 

J 3.20 10.00 0.90 

K 6.40 3.00 2.10 

L 9.30 11.50 0.50 

M 10.30 11.00 0.30 

N 8.30 7.50 0.40 

O 7.40 7.50 0.50 

P - 1.00 1.00 

Q 1.00 - 0.60 

R 1.80 - 0.50 

S 1.70 - 0.40 

T 2.10 - 0.60 

U 1.20 - 0.50 

V 2.50 - 0.70 

W 3.20 - 0.60 

X 3.10 - 1.20 

 

See Table 5.1 for notation. 
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Table A.23: OMP and Equator residuals for G5. 

Measurands Residuals for G5 

 OMP [𝜇𝑚] Equator [𝜇𝑚] 

A 9.33 0.23 

B 3.90 0.30 

C 0.00 0.30 

D 0.22 0.92 

E 2.19 0.28 

F 1.42 0.08 

G 0.61 0.19 

H 0.26 0.24 

I 2.74 0.74 

J 2.68 0.42 

K 4.74 0.24 

L 16.81 0.19 

M 12.06 0.46 

N 9.55 0.05 

O 8.50 0.20 

Q 3.23 1.33 

R 2.05 0.05 

S 3.17 0.77 

T 4.15 1.65 

U 3.04 0.04 

V 3.62 1.02 

W 2.07 0.83 

X 5.51 0.71 

 

See Table 5.1 for notation. 
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Table A.24: OMP, hard gauging, and Equator residuals for G6. 

Measurands Residuals for G6  

 OMP [𝜇𝑚] Hard gauging [𝜇𝑚] Equator [𝜇𝑚] 

A 16.20 4.20 0.40 

B 6.70 3.30 0.50 

C 2.10 5.10 0.30 

D 0.40 1.70 1.00 

E 4.00 5.50 0.50 

F 1.90 3.00 0.50 

G 4.50 5.60 0.40 

H 3.30 2.00 0.30 

I 3.50 6.00 0.40 

J 5.20 3.30 0.50 

K 3.60 1.00 0.60 

L 16.40 2.00 0.40 

M 12.70 4.50 0.50 

N 6.50 4.20 0.30 

O 8.40 4.00 0.20 

P - 1.50 0.90 

Q 1.70 - 0.80 

R 3.30 - 0.60 

S 2.40 - 0.40 

T 1.40 - 0.50 

U 3.30 - 0.60 

V 3.60 - 0.80 

W 4.40 - 0.60 

X 5.20 - 1.30 

 

See Table 5.1 for notation. 
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Table A.25: OMP and Equator residuals for G7 and G8. 

Measurands Residuals for G7 Residuals for G8 

 OMP [𝜇𝑚] Equator [𝜇𝑚] OMP [𝜇𝑚] Equator [𝜇𝑚] 

A 17.01 0.11 14.36 0.04 

B 6.70 0.00 0.60 0.90 

C 5.95 0.25 1.10 1.70 

D 3.41 0.60 1.80 1.50 

E 2.17 0.63 1.60 1.20 

F 5.49 0.11 0.20 0.90 

G 4.68 0.02 0.10 1.00 

H 2.68 0.22 1.40 0.70 

I 1.23 0.67 1.40 0.80 

J 0.66 0.16 1.60 1.00 

K 4.40 0.40 4.70 1.70 

L 12.01 0.01 11.88 0.72 

M 11.85 0.05 10.72 0.28 

N 0.61 0.09 2.33 0.67 

O 4.06 0.06 4.26 0.24 

Q 3.31 0.41 1.83 0.03 

R 0.00 0.20 2.53 0.83 

S 2.23 0.33 3.76 0.66 

T 1.35 0.05 1.54 0.66 

U 2.48 0.88 2.44 1.14 

V 2.31 0.61 2.33 0.73 

W 2.56 0.46 2.10 0.50 

X 3.26 1.16 4.94 1.64 

 

See Table 5.1 for notation. 
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Table A.26: Testing, training, and MLP model 1 standard uncertainties for the comparator. 

Probing 

points 

Testing sample standard 

uncertainties [𝜇𝑚] 
Training sample standard  

uncertainties [𝜇𝑚] 
MLP model 1 standard 

uncertainties [𝜇𝑚] 

1 0.07 0.35 0.00 

2 0.09 0.40 0.25 

3 0.16 0.35 0.18 

4 0.24 0.47 0.08 

5 0.21 0.41 0.24 

6 0.21 0.45 0.12 

7 0.36 0.62 0.17 

8 0.27 0.45 0.13 

9 0.24 0.40 0.14 

10 0.10 0.36 0.17 

11 0.06 0.32 0.00 

12 0.11 0.31 0.18 

13 0.18 0.44 0.13 

14 0.21 0.40 0.12 

15 0.19 0.33 0.17 

16 0.20 0.43 0.15 

17 0.36 0.66 0.25 

18 0.42 0.53 0.08 

19 0.22 0.55 0.17 

20 0.10 0.41 0.27 

 

See Table 7.3 for notation. 
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Table A.27: MLP model 2, 3, and 4 standard uncertainties for the comparator. 

Probing 

points 

MLP model 2 standard 

uncertainties [𝜇𝑚] 
MLP model 3 standard 

uncertainties [𝜇𝑚] 
MLP model 4 standard 

uncertainties [𝜇𝑚] 

1 0.00 0.00 0.24 

2 0.35 0.11 0.24 

3 0.36 0.20 0.22 

4 0.30 0.20 0.20 

5 0.30 0.16 0.20 

6 0.28 0.31 0.20 

7 0.28 0.43 0.23 

8 0.18 0.37 0.24 

9 0.18 0.28 0.26 

10 0.17 0.13 0.28 

11 0.00 0.00 0.27 

12 0.17 0.13 0.29 

13 0.19 0.29 0.27 

14 0.19 0.39 0.26 

15 0.31 0.45 0.25 

16 0.26 0.34 0.23 

17 0.24 0.15 0.23 

18 0.28 0.19 0.23 

19 0.36 0.21 0.23 

20 0.37 0.12 0.26 

 

See Table 7.3 for notation. 
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Table A.28: MLP model 5 and Elman model 1 standard uncertainties for the comparator. 

Probing 

points 

MLP model 5 standard 

uncertainties [𝜇𝑚] 
Elman model 1 standard 

uncertainties [𝜇𝑚] 

1 0.28 0.00 

2 0.28 0.30 

3 0.24 0.31 

4 0.22 0.38 

5 0.21 0.40 

6 0.20 0.29 

7 0.21 0.35 

8 0.19 0.26 

9 0.18 0.24 

10 0.18 0.19 

11 0.16 0.00 

12 0.18 0.20 

13 0.19 0.23 

14 0.20 0.26 

15 0.22 0.38 

16 0.22 0.30 

17 0.24 0.39 

18 0.25 0.40 

19 0.26 0.35 

20 0.30 0.33 

 

See Tables 7.3 and 7.4 for notation. 
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Table A.29: Elman model 2 and 3 standard uncertainties for the comparator. 

Probing 

points 

Elman model 2 standard 

uncertainties [𝜇𝑚] 
Elman model 3 standard 

uncertainties [𝜇𝑚] 

1 0.20 0.14 

2 0.21 0.14 

3 0.18 0.12 

4 0.16 0.12 

5 0.16 0.14 

6 0.15 0.15 

7 0.19 0.19 

8 0.19 0.22 

9 0.21 0.25 

10 0.25 0.33 

11 0.23 0.32 

12 0.25 0.32 

13 0.23 0.29 

14 0.21 0.23 

15 0.20 0.20 

16 0.19 0.18 

17 0.19 0.16 

18 0.19 0.15 

19 0.20 0.14 

20 0.21 0.15 

 

See Table 7.4 for notation. 
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Appendix B  

 

Discrete-time Markov chains 

A Markov chain is a particular type of stochastic process that satisfies the Markov property 

[137, 138]. It requires a finite set 𝑺 of possible states and transition probabilities 𝑝𝑖𝑗 whose 

collection {𝑝𝑖𝑗 ∶ 𝑖, 𝑗 ∈ 𝑺} satisfies 𝑝𝑖𝑗 ≥ 0 for all 𝑖, 𝑗 ∈ 𝑺, and  

 

∑ 𝑝𝑖𝑗 = 1

𝑗∈𝑆

 

 

for each 𝑖 ∈ 𝑺. A Markov chain is mathematically described by: 

 

𝑃( 𝑋𝑛+1 = 𝑗 ∣∣ 𝑋𝑛 = 𝑖 ) = 𝑝𝑖𝑗 (B.1) 

 

for any positive integer 𝑛 and any 𝑖, 𝑗 ∈ 𝑺. The Markov property requires that: 

 

𝑃(𝑋𝑛+1 = 𝑗 ∣ 𝑋𝑛 = 𝑖, 𝑋𝑛−1 = 𝑖𝑛−1, … , 𝑋0 = 𝑖0) = 𝑝𝑖𝑗 (B.2) 

 

for all 𝑛 and all 𝑖, 𝑗, 𝑖0, … , 𝑖𝑛−1 ∈ 𝑺. The probability of any particular sequence of future states 

can be computed by:  

 

𝑃(𝑋0 = 𝑖0, 𝑋1 = 𝑖1, … , 𝑋𝑖𝑛
= 𝑖𝑛) = 𝑃(𝑋0 = 𝑖0)𝑝𝑖0

 𝑖1
⋯ 𝑝𝑖𝑛−1

 𝑖𝑛
. (B.3) 

 

Assuming that the initial state 𝑋0 is equal to some 𝑖0 then: 

 

𝑃( 𝑋1 = 𝑖1, … , 𝑋𝑖𝑛
= 𝑖𝑛 ∣∣ 𝑋0 = 𝑖0 ) = 𝑝𝑖0

 𝑖1
⋯ 𝑝𝑖𝑛−1

 𝑖𝑛
. (B.4) 

 

The 𝑛-step transition probabilities are defined by:  
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𝑟𝑖𝑗(𝑛) = 𝑃(𝑋𝑛 = 𝑗 ∣ 𝑋0 = 𝑖) 

 
(B.5) 

and can be calculated using the Chapman-Kolmogorov equation [139]: 

 

𝑟𝑖𝑗(𝑛) = ∑ 𝑟𝑖𝑘(𝑛 − 1)𝑝𝑘𝑗

𝑘∈𝑆

 (B.6) 

 

for 𝑛 > 1, and all 𝑖, 𝑗 starting with 𝑟𝑖𝑗(1) = 𝑝𝑖𝑗. Asserting that for every state 𝑗, 𝑟𝑖𝑗(𝑛) 

approaches a limiting value 𝜋𝑗 which is independent of 𝑖, then, 𝜋𝑗 is called the steady-state 

probability of 𝑗 because for large 𝑛, 𝜋𝑗 ≈ 𝑃(𝑋𝑛 = 𝑗). The steady-state probabilities 𝜋𝑗 form a 

probability distribution on the state space, which is called the stationary distribution of the 

chain, because they sum to 1.   

 

 

 

 

 

 


