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Abstract 

Obtaining three-dimensional (3D) shape data of specular surfaces plays an increasingly important 

role in the quality control and function evaluation of high value-added industry, such as space, 

automobile, Photovoltaics, integrated circuits and so on.  

In recent years, stereo deflectometry has been widely studied and applied for obtaining form 

information of freeform specular surfaces.  Theoretically, the global form measurement accuracy 

of stereo deflectometry can be up to nanometre. However, the sources of errors limit the 

measurement accuracy of the current stereo deflectometry application at the scale of submicron. 

To this end, this thesis documents the design and development of the calibration methods, error 

analysis and compensation in the field of stereo deflectometry.  To limit the influence of system 

distortion, a novel holistic calibration technique utilising iterative distortion compensation 

algorithm has been designed and developed.  A search algorithm with an objective function has 

been developed to solve the low-accuracy initial value problem caused by image distortion and 

imaging model error. With the intention of decreasing the impact of the phase error in stereo 

deflectometry, a novel imaging model has been explored the nexus between phase inaccuracy and 

gradient error. The period of fringe displayed on displaying screen and pixel size of the screen has 

been studied to augment measurement accuracy through taking into account their impact on 

sampling phase inaccuracy and gradient miscalculation. In addition, four geometric parameters of 

a stereo deflectometry system are analysed and evaluated. These are the distance between the main 

camera and the measured object surface, the angle between main camera ray and surface normal, 

the distance between the fringe-displaying screen and object and the angle between the main 

camera and the reference camera. The influence of the geometric parameters on the measurement 

accuracy is evaluated. 

A stereo deflectometry system is designed, optimised and calibrated based on the investigation of 

this thesis. Two evaluation experiments have been conducted and experimental results indicate the 

system’s measurement accuracy can achieve tens of nanometres. 
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1. Introduction  

1.1 Overview 

Freeform specular surface commonly refers to the surfaces having non-symmetric shapes and 

reflection property (Pollicove 2000, Nelson E. Claytor 2004, Jiang, Scott et al. 2007, Jiang and 

Whitehouse 2012, Thompson 2012, Evans and Davies 2015). Freeform specular surfaces can boost 

systemic function, shorten the complexity of system design and structure, and/or enhance systemic 

aesthetic and integrities (Fang, Zhang et al. 2013, Duerr, Nie et al. 2015) (Fang, Zhang et al. 2013, 

Duerr, Nie et al. 2015). Over the past decades freeform specular surfaces are applied in various 

applications, for instance green energy, aerospace, automotive, illumination, biomedical 

engineering, for attractive functional, geometric features and aesthetical reasons (Savio, De Chiffre 

et al. 2007, Fang, Zhang et al. 2013, Evans and Davies 2015, Williamson 2015).  

Numbers of methods have been investigated for measuring the form of freeform surface 

(Whitehouse 2002). According to whether the sensing probe is in contact with the measured object 

during a measurement, these methods can be categorised as non-contact measurement and contact 

measurement. Contact measurement generally uses tactile sensors such as gauges and probes to 

gather shape data via physically touching the measured surface. Probes are required to run 

perpendicular to the surface under test for contact measurement methods (Li and Gu 2004, Li and 

Gu 2005) . Contact type coordinate measuring machine (CMM) is a common example of this kind 

of methods. When contact type CMM operates, a contact probe moves along the measured 

workpiece surface to amass the surface’s meticulous dimensional information. Optical surface 

measurement technique is an important type of non-contact measurement, which operates based 

on the principle that light can travel without any contact. Several optical surface measurement 

methods with different optical principle have been developed such as non-contact CMM 

technology, interferometry, structure light projection technique, and phase measuring 

deflectometry.  

1.1.1 Coordinate measuring machine  

The first CMM (McMurtry 1982, Hemmelgarn, Bell et al. 2000, Pettersson 2009, Ferrari 2010) 

was developed by a British company named FERRANTI (Hocken and Pereira 2016). Measuring 
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method of the machine is to record coordinate value by foot pedal after its probe touches the 

measured workpiece, and then use calculator to calculate the location relationship between 

elements. With the rapid development of computer technology, CMM entered the era of CNC 

(Computerized numerical control) control and became capable of completing the measurement of 

complex mechanical parts and freeform surface. CMM consists of a measurement probe and a 

rectangular coordinate system established by three mutually perpendicular motion axes. When 

conducting measurement, the probe moves along the form of the measured surface. The trajectory 

of the probe within the rectangular coordinate system is recorded in a computer and is processed 

by corresponding software. After conducting the process, point cloud data reflecting the form of 

the measured object can be obtained. According to the type of probe, CMM can be divided into 

non-contact CMM and contact type CMM (Malacara 2007, Leach 2011, Fang, Zhang et al. 2013). 

The probe of contact type CMM is required to touch the measured surface and therefore has a 

potential to damage the tested surface by stylus tip, especially when optical components are being 

inspected. In addition, contact type CMM are not capable of measuring soft surface. Moreover, 

non-contact CMM uses probe based on optical principle and can achieve non-contact scanning. 

However, non-contact CMM is affected by the reflection characteristics of the measured surface, 

such as colour, slope and so on. Environmental light and the focalization of the measuring lens 

have an impact on its measurement accuracy as well. 

CMM has been well accepted in industry because its large measurement range.  However, CMM 

is point-by-point measurement and therefore has low measurement speed.  

1.1.2 Interferometer  

Optical interferometry (Dörband and Seitz 2001, Hariharan 2003, Wyant 2003) is a technology 

based on interference phenomena. The interference phenomena of light are commonly seen in 

daily life, such as the multi-coloured fringes in oil slick or soap bubble. Another example is the 

colour fringes in a thin film bounded by two transparent plates when they are tightly placed, which 

is also known as Newton rings. Newton rings were described by Boyle and Hooke independently 

in 17th century and were widely adopted to inspect optical components from then on (Wyant 2002, 

Schreiber and Bruning 2007). Newton rings are commonly regarded as the starting point of optical 

interferometry. In 1882, the first interferometric instrument was developed by the renowned 
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physicist Albert Michelson (Wyant 2002, Schreiber and Bruning 2007). Light in an interferometer 

is produced from an illuminating source.  Two beams are split from the light and propagates in 

different optical paths. Interference fringes are generated when the beams with optical path 

difference (OPD) recombined. The interference fringes exhibit high sensitivity to the OPD. In the 

beginning, interferometers were mainly applied in dimensional metrology. Since 1970s, with the 

development of the relevant fundamental technologies, such as computer science, laser technology 

and image sensors, interferometers found wide applications in surface metrology and became 

increasingly important. Interferometry technology developed rapidly due to the driving force 

brought by the huge market. 

Interferometric technologies can be classified into two types according to the employed 

illuminating source, namely monochromatic interferometry and white light interferometry. 

Monochromatic interferometry, such as phase shifting interferometer (PSI) (Sommargren 1999, 

Schreiber and Bruning 2007), is able to inspect surfaces with subnanometer scale vertical 

resolution and finds broad applications in the quality check of components with relatively smooth 

surfaces. However, due to the limitation posed by the well-defined 2π phase ambiguity problem, 

PSI is not appropriate to inspect discontinuous surfaces. White light interferometry (WLI) (Deck 

and De Groot 1994, Larkin 1996, Wyant 2002) which adopts broadband illumination source is 

widely adopted for determining the optical path differences between the points on the surface 

under test and the corresponding points on the reference surface with no ambiguity (Bowe and 

Toal 1998, Kou, Wang et al. 2012, Tang, Zhou et al. 2014). Apart from the academic research, 

optical interferometry is also very popular in industries. For instance, vertical scanning 

interferometry (VSI) (Harasaki, Schmit et al. 2000, Harasaki and Wyant 2000), also known as 

scanning white light interferometry (SWLI) (Deck and De Groot 1994, Sandoz 1997) or coherence 

scanning interferometry (CSI) (Lee and Strand 1990, de Groot 2011), are widely utilized in micro-

optic and micro-electronic manufacturing industries. 

Although optical interferometry features non-contact measurement with high accuracy, it has a 

shortcoming of being sensitive to environmental noise (Adhikari 2004). To overcome this issue, 

interferograms ought to be captured very fast by adopting a high-speed camera. Besides, 
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compensation of the environmental noise can also effectively increase the stability of the 

instruments and improve the measurement accuracy (Jiang, Wang et al. 2010). 

1.1.3 Structure light projection  

Structure light projection techniques (Pages, Salvi et al. 2003, Gorthi and Rastogi 2010, Zhang 

2010) utilizes a light resource, such as a projector, to project encoded patterns to the measured 

surface. The patterns can be sinusoidal (Gorthi and Rastogi 2010), binary or Ronchi (Pan, Huang 

et al. 2005), triangular (Jia, Kofman et al. 2007), saw tooth (Quan, Chen et al. 2010), and so on. 

The form of the object surface leads to a deformation of the encoded patterns. Form data of the 

surface are obtained based on the deformation through the calculation of particular algorithms. 

Among these patterns, sinusoidal pattern is most commonly investigated because absolute phase 

maps with sub-pixel accuracy can be obtained. Depth data are acquired by applying calibration to 

create the association between absolute phase and depth data. Phase wrapping techniques, such as 

phase shifting technique (Pan, Huang et al. 2006, Quan, Chen et al. 2010, Zhang, Van Der Weide 

et al. 2010), Fourier transform technique (Takeda, Ina et al. 1982, Brigham and Brigham 1988, 

Kemao 2007), and wavelet transform technique (Dursun, Özder et al. 2004, Huang, Kemao et al. 

2010), have been investigated to extract phase information from a captured single fringe pattern 

or multiple patterns. Phase shifting technique demands n  ( 3n  ) fringe patterns to obtain a 

wrapping phase map and the fringe patterns are required to be moved according to a specified 

sequence with a step size of 2 / n . Fourier transform technique and wavelet transform technique 

transform fringes information from time domain to frequency domain, and extract useful 

frequency information for analysis. Though Fourier transform technique and wavelet transform 

technique only demands one fringe pattern to acquire a wrapping phase map, the phase calculation 

accuracy of a surface with large gradient or discontinuities based on the two techniques cannot 

reach the accuracy level of phase shifting technique. Phase unwrapping algorithms have been 

studied for acquiring absolute phase map from wrapped phase map. Spatial phase unwrapping 

algorithm unwraps a wrapped phase map by simply adding or subtracting multiples of 2  and 

therefore has a disadvantage of error inheritance. Temporal phase unwrapping algorithm (Huntley 

and Saldner 1997, Huntley and Saldner 1997, Saldner and Huntley 1997) are proposed to solve 

the error inheritance problem, however the algorithm requires multiple patterns with different 

fringe frequency and therefore decreases measurement speed.  In order to increase measurement 
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speed, colour fringe projection technique (Huang, Hu et al. 1999, Zhang, Towers et al. 2006, Zhang 

2012) has been researched. In this technique, different colour channels encode fringe patterns with 

different frequencies; therefore, several patterns can be combined in a colour fringe pattern.  

Although structure light projection techniques can measure form information of a diffused object 

surface in a non-contact manner with a good speed, it cannot measure specular surface due to the 

limit of measurement principle. 

1.1.4 Phase measuring deflectometry  

Phase measuring deflectometry (PMD) (Knauer, Kaminski et al. 2004, Tang, Su et al. 2008, Tang, 

Su et al. 2009) utilizes the reflective properties of specular surfaces and extracts 3D shape of the 

work piece under test by analysing the reflected phase information. The measured surface can be 

reconstructed based on gradient information (Ettl, Kaminski et al. 2008, Huang, Idir et al. 2015, 

Ren, Gao et al. 2016) or the relationship between depth and phase data (Liu, Huang et al. 2017, 

Zhao, Gao et al. 2018). Decades ago, the pioneers in shape measurement had already used the 

basic measurement principle of this technology to measure specular surface. For example, Ritter 

et al. (Ritter and Hahn 1983) published a paper in 1983 to analyse reflection grating method. A 

camera is utilized to capture a grating plane through the reflection of surface under test. Gradient 

of the surface point is calculated based on the corresponding grating plane point and its image 

point in a camera. However, there is still one degree of freedom remains because series of 

combinations of positions and gradients can result in the same observed result. Therefore, this 

method can only qualitatively inspect a specular surface. In the early 2000s, Petz et al. (Petz and 

Ritter 2001) investigated a reflection grating method based on two parallel grating planes, which 

can realize quantitative measurement of a reflecting surface. Knauer et al. (Knauer, Kaminski et 

al. 2004) presents a method for measuring freeform specular objects and used the name of phase 

measuring deflectometry for the first time in 2004. In Knauer’s paper, measurement principle, 

physical limits, and calibration process of PMD are discussed in detail. In addition, the concept 

and measurement principle of stereo deflectometry are first proposed in this paper. After that, PMD 

has been widely spread, and numbers of research institutes in the world have begun to study this 

technology. There are many advantages for PMD compared with other specular surface 

measurement techniques. Firstly, PMD is a full-field measurement technique and have a large 
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measurement field, which makes it have a superiority compared with interferometer and non-

contact CMM in measurement speed when inspecting large specular surface. Secondly, PMD can 

measure freeform reflective surface in a non-contact manner, which is a protruding advantage over 

contact type CMM and fringe projection technique.  

1.2 Motivation 

Stereo deflectometry (Knauer, Kaminski et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 

2016) is an important PMD technique. Theoretically, the form measurement accuracy of stereo 

deflectometry can be up to nanometre, which makes this technology to be a comparable method 

to interferometry (Häusler, Faber et al. 2013). However, error sources such as calibration error, 

phase error, and imperfect performance of the components in stereo deflectometry, limit the 

measurement accuracy of the current stereo deflectometry to submicron level (Knauer, Kaminski 

et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 2016). Therefore, it is essential to research 

the key techniques of stereo deflectometry in order to improve the measurement accuracy of the 

system.  

Calibration (Zhang 2000, Bittar and Bartel 2001, Heuermann 2006) is an important step for any 

measurement system. Stereo deflectometry carries out measurement based on the principle of 

geometrical optics. Imaging relations in terms of stereo deflectometry is expressed with 

mathematical model (Knauer, Kaminski et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 

2016). However, the difference between real imaging relations and the mathematical model affects 

calibration accuracy (Knauer, Kaminski et al. 2004, Ren, Gao et al. 2015). Therefore, new camera 

and system calibration methods are required to be explored to eliminate the influence of imaging 

model error and to increase stereo deflectometry’s calibration accuracy. Moreover, iterative 

optimization algorithm is commonly applied in calibration (Huang, Idir et al. 2015, Ren, Gao et 

al. 2015, Ren, Gao et al. 2016). Factors, distortion (Weng, Cohen et al. 1992, Zhang, He et al. 

2003) for instance, lead to the iterative process cannot converge correctly. Therefore, a calibration 

method is needed to be investigated for improving calibration stability.  

Stereo deflectometry extracts shape data of an object under test from phase information, hence 

phase error has a serious impact on measurement accuracy (Wu, Yue et al. 2015). Plenty of factors, 

such as characteristic of fringe-displaying screen (Petz, Fischer et al. 2013) and layout of 
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components in stereo deflectometry, have an influence on the level of phase noise. Moreover, these 

factors affect phase noise level in comprehensive ways. Therefore, it is essential to study influence 

factors of phase error in a stereo deflectometry through mathematical modelling analysis, 

simulation and experiment. 

1.3 Aim and objectives  

The aim of this research is to improve the measurement accuracy of stereo deflectometry by 

investigating key techniques of the system. The objectives of this research are listed as follows:  

 To study a new camera calibration method for stereo deflectometry. This method will 

also benefit other camera-based optical measurement systems to improve calibration 

accuracy.  

 To investigate a new method for the calibration of non-overlapping camera system. 

This method will be helpful to investigate the systemic calibration of stereo 

deflectometry.  

 To develop a new systemic calibration method for a stereo deflectometry system. This 

method will improve the systemic calibration accuracy of stereo deflectometry.  

 To research a mathematic model for analysing the impact of phase error. Methods will 

be discovered based on this model to decrease phase error’s influence in a stereo 

deflectometry system.  

 To develop a mathematic model to analyse the influence of the geometric parameters 

of stereo deflectometry on gradient calculation accuracy. Geometric parameters of a 

stereo deflectometry system will be optimised based on this analysis to increase 

measurement accuracy.  

1.4 Thesis organization 

In-depth analyses and techniques are presented in this thesis to improve stereo deflectometry’s 

measurement accuracy. Nine chapters are organised:  

 Chapter 2 gives an overview of deflectometry. The basic measurement principle and 

the applications of deflectometry are introduced. Several typical technologies based on 

deflectometry are briefly described. In addition, a detailed literature review of stereo 

deflectometry is presented in this chapter.   
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 Chapter 3 gives an overview of some important algorithms of stereo deflectometry by 

introducing coding technique of the displayed fringe patterns, phase unwrapping 

algorithm, normal calculation algorithm and reconstruction algorithm.   

 Chapter 4 describes a camera calibration method based on phase target to increase 

camera calibration accuracy.  

 Chapter 5 presents a calibration method for non-overlapping camera system.  

 Chapter 6 describes a systemic calibration method for stereo deflectometry. A search 

algorithm is also presented for the improvement of systemic calibration stability.  

 Chapter 7 represents an imaging model to study the relationship between phase error 

and gradient miscalculation.  

 Chapter 8 describes an analysis of the influence of a stereo deflectometry system’s 

geometric parameters.  

 Chapter 9 presents evaluation experiments to test the measurement accuracy of a stereo 

deflectometry system that is optimized and calibrated based on the above 

investigations. A summary of contributions and future work are also given. 
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2. Overview of deflectometry  

An overview of deflectometry is presented in this chapter. Section 2.1 introduces the basic 

measurement principle of deflectometry, and section 2.2 presents the applications of current 

deflectometry. Several typical technologies based on deflectometry are described in section 2.3. 

In section 2.4, a detailed literature review of stereo deflectometry is presented. A brief summary 

is given in the last section of this chapter.  

2.1 Basic measurement principle 

 

Figure 2.1 Basic measurement principle of deflectometry. 

Fig. 2.1 shows the measurement principle of deflectometry. Coded patterns are produced from a 

computer and are projected onto or displayed on a screen. A camera captures these patterns via the 

reflection of a specular surface under test. The captured patterns are deformed because of the 

modulation by the form of the measured surface. By analysing the deformed information, the form 
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of the measured surface can be obtained. When conducting the measurement, using a camera and 

a screen is unable to extract the form information successfully (Knauer, Kaminski et al. 2004). 

Therefore, more constraint is required, such as moving the screen (Petz and Tutsch 2005), adding 

another camera (Knauer, Kaminski et al. 2004, Ren, Gao et al. 2015) or a virtual screen (Liu, 

Huang et al. 2017, Zhao, Gao et al. 2018) into the system. 

2.2 Applications of deflectometry  

Deflectometry can be used in many applications. In automotive industry, deflectometry can be 

applied to measure car window and car finish (Bothe, Li et al. 2004). During the manufacturing 

process of car window, a wavy surface often exists on the window border. Deflectometry can be 

used to measure the wavy surface with quantity and to monitor the quality of car window 

production, as shown in Fig. 2.2 (Bothe, Li et al. 2004). The measured car window is shown in 

Fig. 2.2(a). The obtained window shape using deflectometry is shown in Fig. 2.2(b). The shape 

after removing parabolic is given in Fig. 2.2(c). Part measurement with optimized palette range is 

presented in Fig. 2.2(d). The obtained curvature is shown in Fig. 2.2(d). Orange-peel effect is a 

long-standing problem in the varnish manufacture of a car.  Microstructures remain on car surface 

when powder lacquer finishes work on the surface. Deflectometry is able to detect this 

microstructure by quantitatively obtaining the 3D information of car surface, monitoring the 

varnishing process on line, and optimisation the varnishing parameters. A measurement of a car 

door using deflectometry is shown in Fig. 2.3 (Bothe, Li et al. 2004). The measured car door is 

given in Fig. 2.3(a). The obtained form information of the door and the obtained microstructure 

using deflectometry are represented in Fig. 2.3(b) and Fig. 2.3(c) respectively. 

 

Figure 2.2 Measurement of a car window using deflectometry. (a) The measured car window; (b) the 

obtained window shape using deflectometry; (c) shape after removing parabolic; (d) measurement fragment; 

(e) the acquired curvature. (Bothe, Li et al. 2004) 
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Figure 2.3 Measurement of a painted car door. (a) The measured car door; (b) the obtained form information 

of the door; (c) the obtained microstructure. (Bothe, Li et al. 2004) 

Plastic eyeglasses have a complicated freeform surface considering the symmetric and torus shapes 

that guarantee the spectacle wearer to have a good view on objects locating at both near and far 

distance. Using common non-contact measurement methods is difficult to measure the glasses’ 

surface because of its high dynamic range and the required accuracy. In contrast, deflectometry 

can have a robust inspection for the eyeglasses. An example is shown in Fig. 2.4 (Bothe, Li et al. 

2004). The measured glass is given in Fig. 2.4(a). The captured glass with fringe information is 

shown in Fig. 2.4(b). The obtained form of the glass by deflectometry is given in Fig. 2.4(c). 

Deflectometry is capable to measure dynamic specular surface such as fluid water surfaces. Huang 

et al. (Huang, Ng et al. 2011) proposed a dynamic full-field 3D measuring system. Fig. 2.5 (Huang, 

Ng et al. 2011) shows the measured water wave variations.  

 

Figure 2.4 Measurement of an eyeglass. (a) The measured glass; (b) an image of the glass with fringe 

information; (c) the obtained form of the glass. (Bothe, Li et al. 2004)  
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Figure 2.5 Some reconstructed 3D data of the measured water wave. (a) , (b),  (c), (d) , (e), (f) demonstrate the 

water wave at different moments. (Huang, Ng et al. 2011) 

Deflectometry can also be applicable in the measurement of optical element of astronomical 

telescope. A multi-mirror array with multiple discontinuous specular surfaces (shown in Fig. 

2.6(a)) is an essential element in the James Webb Telescope (https://www.jwst.nasa.gov/). Zhang 

et al. (Liu, Huang et al. 2017, Zhao, Gao et al. 2018) studied a method based on deflectometry to 

calculate the form of the array, as shown in Fig. 2.6. The measured optical array is shown in Fig. 

2.6(a). Measurement result of the array by deflectometry is given in Fig. 2.6(b). 

 

Figure 2.6 Measure a multi-mirror array based on deflectometry. (a) The measured array; (b) the 

measurement result. (Liu, Huang et al. 2017) 
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2.3 Typical technologies based on deflectometry 

Several typical technologies based on deflectometry have been researched, including active fringe 

reflection deflectometry (Zhao, Su et al. 2009, Xiao, Su et al. 2012, Zhang, Ji et al. 2012) , software 

configurable optical test system (Su, Parks et al. 2010, Su, Khreishi et al. 2013, Huang, Su et al. 

2014), microdeflectometry (Häusler, Richter et al. 2008, Häusler, Vogel et al. 2010), direct phase 

measuring deflectometry (Liu, Huang et al. 2017, Zhao, Gao et al. 2018), and stereo deflectometry 

(Knauer, Kaminski et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 2015). A description of 

the principle of these techniques are presented in this section.  

2.3.1 Active fringe reflection deflectometry 

Active fringe reflection deflectometry (AFRD) (Zhao, Su et al. 2009, Xiao, Su et al. 2012, Zhang, 

Ji et al. 2012) is a typical method based on deflectometry to measure the specular surface by 

moving the displaying screen along its axis with a certain distance. The principle of the method is 

demonstrated in Fig. 2.7. A screen displays coded standard patterns. The patterns are reflected by 

the measured surface. A CCD (Charge coupled device) camera captures the reflected patterns 

simultaneously. The optical centre of the CCD camera is defined as O . S  represents a point on 

the measured surface. Image of S  on the CCD is represented with P . Knowing the distance d  

of two parallel positions of the screen, the normal n  of a point S  can be calculated based on 

incident beam 
1 2Q Q  and reflected beam SP  according to the reflection law. Then the measured 

surface can be reconstructed based on gradient data.  
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Figure 2.7 Measurement principle of AFRD. 

Measurement accuracy of AFRD is limited by the screen’s translation accuracy (Zhao, Su et al. 

2009, Xiao, Su et al. 2012, Zhang, Ji et al. 2012). To obtain an accurate incident beam 
1 2Q Q , the 

shifting distance d  of the screen have to be accurately acquired. However, in a real measurement, 

travel distance of the screen and the setup of high precise translation stage are commonly limited 

by measurement space, which has a serious impact on the accuracy of the measurement. 

Additionally, screen may move to a position which is out of CCD camera’s DOF (depth of focus).  

2.3.2 Software configurable optical test system (SCOTS) 

Software configurable optical test system (SCOTS) (Su, Parks et al. 2010, Su, Khreishi et al. 2013, 

Huang, Su et al. 2014)  is a technique based on deflectometry developed in University of Arizona. 

The principle of SCOTS can be seen as the reverse of a Hartmann test. Fig. 2.8 compares the 

measurement principle of SCOTS and Hartmann test.  
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Figure 2.8 Comparison of SCOTS and Hartmann test (a) Principle of SCOTS, (b) principle of Hartmann test. 

(Su, Parks et al. 2010) 

The principle of a Hartmann test (Malacara‐Doblado and Ghozeil 2007, Malacara 2007) is shown 

in Fig.2.8(b). Neighbouring the curvature centre of the measured surface, there is a point light 

source. In front of the surface, a Hartmann screen exists. Hartmann screen is generally a plate with 

holes. The reflected rays of the light source are caught by a detector during measurement. Gradient 

of the surface under test is acquired based on transverse aberrations.  

Fig.2.8(a) demonstrates the principle of SCOTS. A screen displaying structured patterns is applied 

to substitute the detector in Hartmann test to light up the measured surface. In addition, a camera 

capturing distorted structured patterns through the reflection of the surface under test is used to 

substitute the point light source in Hartmann test. Discrete camera pixels acts as Hartmann screen 

to take sample of the measured surface. Therefore, holes are not required in SCOTS. Incident ray 

s  can be calculated from camera optical centre and camera pixel ( , )cam camx y . Emergent ray r  

can be obtained based on the reflection regions ( , )m mx y  on the surface and the physical location 

( , )screen screenx y  on the screen. Therefore, the gradients of the measured object can be calculated based 

on the optical geometric trigonometric relation consisting of target point, the lighting screen’s 

pixel, and camera pixel.   

SCOTS can achieve root mean square (RMS) value of surface slope errors better than 100 nano-

radian precision when measuring a X-ray mirror (Su, Wang et al. 2012). However, this technology 

assumes the change of height is much smaller than the system working distance. Therefore, only 
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specular surface with large size and small height variance is suitable to be measured with this 

technique.     

2.3.3 Microdeflectometry  

Another deflectometry-based method is microdeflectometry (G.Hausler, C.Richter et al. 2008). 

The measurement principle of microdeflectometry is shown in Fig. 2.9. An electronically 

controllable light modulator (such as eMagin’s OLED microdisplays) generates fringe patterns. 

The patterns are enlarged by a tube lens. The light of the enlarged fringe patterns go into a 

microscope objective through the reflection of a beam splitter. The reflected patterns are focused 

by a lens and generate an aerial fringe image in front of the measured specimen. A CCD camera 

focuses on the measured surface and the aerial fringe image.  

  

Figure 2.9 Principle of microdeflectometry (G.Hausler, C.Richter et al. 2008). 
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The major disadvantage of the method is the small depth of focus of the objectives, which means 

it requires taking multiple measurements when measuring a large depth sample.  

2.3.4 Direct phase measuring deflectometry  

 

Figure 2.10 Principle of DPMD (Liu, Huang et al. 2017, Zhao, Gao et al. 2018). 

Direct phase measuring deflectometry (DPMD) (Liu, Huang et al. 2017, Zhao, Gao et al. 2018)  

directly calculates the depth information based on phase information instead of integrating the 

gradients. A CCD camera, a beam splitter (BS) and two LCD (Liquid crystal display) screens made 

up a DPMD system. Principle of DPMD is demonstrated in Fig. 2.10 (Liu, Huang et al. 2017, 

Zhao, Gao et al. 2018). A virtual screen 
'

1LCD  of 1LCD  is adjusted to be parallel to 2LCD  through 

placing BS at a correct position. Meanwhile, a reference plane is defined to be parallel to 
'

1LCD  

and 2LCD . A relationship between absolute phase and depth information is established through 

3D calibration. Automatic pattern analysis algorithms are implemented to realize 3D 

reconstruction of the highly reflected and specular surfaces.  
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Though DPMD can measurement specular object with discontinuous surface, the measurement 

accuracy can only reach tens of micrometers (Liu, Huang et al. 2017, Zhao, Gao et al. 2018). 

2.3.5 Stereo deflectometry  

 

Figure 2.11 The measurement principle of stereo deflectometry. 

Stereo deflectometry (Knauer, Kaminski et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 

2015) solves the ambiguity problem of deflectometry by adding another camera into measurement 

system. Fig. 2.11 demonstrates measurement principle of stereo deflectometry. A stereo 

deflectometry system is typically composed of a LCD screen displaying coded patterns and two 

CCD cameras capturing the reflected patterns through the reflection of the measured surface. The 

screen displays phase-shifting sinusoidal fringe patterns in sequence. The cameras capture the 

patterns reflected by the measured surface synchronously. Because of the displayed patterns are 

mutually perpendicular, two orthogonal absolute phase maps in terms of each camera can be 

acquired by using phase wrapping and unwrapping methods (Towers, Towers et al. 2005, Zhang, 

Towers et al. 2006). For an arbitrary space point, its image on the camera’s image plane can be 

calculated based on camera calibration. Its corresponding physical point on the fringe displaying 

screen can be obtained according to the relation between the absolute phase value and the physical 

coordinate on the screen. Therefore, the equivalent normal of the space point can be acquired from 

a triangular geometric relationship composed of the space point, the corresponding point on 

camera image plane, and the corresponding point on the screen. During the measurement process, 
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one camera acts as main camera. Space points are searched along camera rays of the main camera. 

The other camera is a reference camera. The data from this camera are used to define the position 

of the searched space points. Since normal vectors of the a surface point calculated from main 

camera and reference camera should be overlapped, initial 3D data with gradient information of 

the test surface can be calculated by searching points in the space and matching the normal vectors 

from the cameras. The form of the measured surface is reconstructed by integrating the acquired 

gradient information (Huang, Idir et al. 2015, Ren, Gao et al. 2015, Ren, Gao et al. 2016).  

Compared with other deflectometry-based techniques, stereo deflectometry can reach relative high 

accurate measurement accuracy. In addition, the screen of the system is not required to have a 

movement, therefore the technique has a better advantage in a realistic measurement environment.  

2.4 The challenges in stereo deflectometry  

Stereo deflectometry is a method for 3D measurement of freeform specular surfaces (Knauer, 

Kaminski et al. 2004, Häusler, Faber et al. 2013, Ren, Gao et al. 2015) . There are still some 

challenges for this method to achieve a comparable measurement accuracy with interferometers. 

Stereo deflectometry consists of two cameras and a screen. It reconstructs the measured surface 

based on gradient information that is calculated according to the optical relation of systemic 

components. How to increase stereo deflectometry’s calibration accuracy is research hotspots in 

academic field (Knauer, Kaminski et al. 2004, Breitbarth, Kühmstedt et al. 2009, Rapp 2012, 

Häusler, Faber et al. 2013, Ren, Gao et al. 2015). Generally, three aspects (Knauer, Kaminski et 

al. 2004, Ren, Gao et al. 2015) of the system are required to be calibrated: screen calibration, 

camera calibration, and systemic calibration.  

Screen calibration is to obtain the relation between the phase value calculated from fringe patterns 

and the corresponding physical location on the screen. Currently, most deflectometry systems 

(Knauer, Kaminski et al. 2004, Breitbarth, Kühmstedt et al. 2009, Rapp 2012, Häusler, Faber et 

al. 2013, Ren, Gao et al. 2015) apply an electronic screen to display fringe patterns instead of 

projecting the patterns on a screen, therefore the relation between phase value and physical location 

can be easily obtained according to fringe density and the size of screen pixel provided by 

manufactories.  
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Camera is an elementary component in optical measurement systems such as stereo vision (Zhang 

2000, Wei and Zhao 2016), fringe projection techniques (Xu, Liu et al. 2012, Zuo, Chen et al. 

2013, Xu, Chen et al. 2014) and deflectometry (Huang, Ng et al. 2011, Ren, Gao et al. 2015). A 

necessary step in camera-based optical measurement system is camera calibration. Commonly two 

principle factors affect camera calibration’s accuracy. Feature points’ position accuracy is one of 

the factors. The other factor is imaging model accuracy. Current camera calibration processes 

commonly accept pinhole model. This model assumes the relation between a point in 3D space 

and its corresponding image in 2D (Two-dimensional) CCD plane is a linear projection. 

Nevertheless, there is camera distortion in a real imaging. Camera distortion is produced by a 

number of reasons and can be roughly divided into eccentric distortion, radial distortion, and thin 

prism distortion. Because of influence of camera distortion, real projection between space and its 

image is a nonlinear. With the intention of eliminating camera distortion, methods based on 

mathematical model with parameters have been widely investigated (Xu, Douet et al. 2013). By 

means of minimizing reprojection error, Santana-Cedrés et al. (Santana-Cedrés, Gomez et al. 

2017) investigated to estimate a distortion model. Difference of zoom lenses’ distortion was 

studied by Alvarez et al. (Alvarez, Gómez et al. 2012). Infinite high order polynomials are applied 

to represent camera distortion in traditional camera calibration methods (Xu, Douet et al. 2013) . 

The first step of traditional methods is to estimate initial camera parameter and distortion 

parameters. Afterwards, these parameters are optimized through iterative calculation with least 

squares method.  

Camera calibration accuracy is sensitive to the accuracy of initial parameters, because initial 

values’ accuracy affects the constringency of iterative optimization. Real imaging system is 

complex. Effects such as camera geometry error and imperfect shape of the image sensor all 

contribute to camera distortion. Nevertheless, a distortion model only containing partial distortion 

parameters of radial distortion and eccentric distortion is adopted by traditional calibration method 

(Zhang 2000, Sanz-Ablanedo, Rodríguez-Pérez et al. 2010, Alvarez, Gómez et al. 2012, Santana-

Cedrés, Gomez et al. 2017, Tang, von Gioi et al. 2017). Because experimental results reflect that 

a more elaborative model would result in numerical instability rather than increasing calibration 

accuracy (Zhang 2000). Consequently, parameter-based distortion mathematical model cannot 

reflect true distortion and limits traditional calibration methods’ accuracy. Researchers 
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investigated non-parametric calibration approaches to improve distortion compensation accuracy. 

A method compensating distortion based on binary structured-light is researched by Ryusuke et 

al. (Sagawa, Takatsuji et al. 2005). Ryusuke’s method cannot obtain camera’s internal parameter. 

A parameter-free calibration method is investigated by Hartley et al. (Hartley and Kang 2007).  

Radial distortion is only considered in Hartley’s method. A method recovering radial distortion 

based on multifocal tensors was studied by Thirthala et al. (Thirthala and Pollefeys 2005). 

Thirthala’s method image centre coincides with distortion centre. Consequently, new method is 

necessary to be investigated to make camera calibration more flexible and stable. 

Traditional calibration methods commonly apply 2D or 3D targets. Control points are designed on 

the targets. With knowing the physical positions of the points, these points are extracted by 

algorithms and are applied as a camera calibration input data (Maoling, Songde et al. 2000, Zhang 

2000). 2D targets contains circles, squares, and checkerboards. Because the manufacture of 2D 

target is much easier than 3D target, 2D target is popularly adopted in practical application (Zhang 

2000, De la Escalera and Armingol 2010, Donné, De Vylder et al. 2016). Owning benefits of 

massive arbitrary providing of feature points, good position extraction accuracy, and robust to 

camera defocus, phase target (Schmalz, Forster et al. 2011, Huang, Zhang et al. 2013) is 

investigated to replace conventional 2D target. For example, A feature extraction method based 

on fringe pattern groups is presented by Ma et al. (Ma, Chen et al. 2014). A calibration target with 

crossed-fringe pattern is designed by Liu et al. (Liu and Su 2012). A camera calibration method 

based on concentric circles grating and wedge grating is studied by Xue et al. (Xue, Su et al. 2012). 

Phase target utilizes sinusoidal fringes to produce phase value. The sinusoidal fringes are robust 

to camera defocus. Because the obtained phase from sinusoidal fringe has little influence on out-

of-focus images (Bell, Xu et al. 2016, Wang, Chen et al. 2016). In order to present the advantage 

of phase target, a comparison between classic calibration target and phase target have been 

conducted by Schmalz et al. (Schmalz, Forster et al. 2011). With the purpose of increasing the 

feature extraction accuracy of phase target, several techniques have been investigated. A approach 

based on windowed polynomial fitting is investigated by Huang et al. (Huang, Zhang et al. 2013). 

A method is studied by Schmalz et al. (Schmalz, Forster et al. 2011) to optimize feature location 

using neighbouring phase.  Above-mentioned methods concentrate on the improvement of feature 
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detection accuracy and target design. How to enhance camera imaging model’s accuracy and 

distortion compensation accuracy using phase target is still out of research.  

In applications such as visual measurement (Zhang 2000, Ren, Gao et al. 2015, Percoco, Guerra 

et al. 2017), scene surveillance (Javed, Shafique et al. 2005, Kim, Hwangbo et al. 2008), and 

mobile robotics (Lébraly, Deymier et al. 2010, Pagel 2010, Mei, Zhu et al. 2015), single sensor 

cannot realize system function. System requires a combination of several sensors. The field of 

view (FOV) of the sensors are occasionally non-overlapped because of cost consideration and 

function requirement. The fringe-displaying screen is generally used as a phase target to calibrate 

a stereo deflectometry system. When doing calibration, stereo deflectometry is a non-overlapping 

cameras system because cameras in stereo deflectometry have common fields on test surface and 

non-overlapping field on the screen (phase target).  

Lately, numerous kinds of methods have been investigated for calibrating a non-overlapping 

camera system. Calibration equipment are introduced in calibration. A non-overlapping cameras 

system is calibrated by Lamprecht et al. (Lamprecht, Rass et al. 2007) based on an online 

automobile. A calibration method for acquiring non-overlapping camera system’s parameters by 

using HEC is investigated by Guan et al. (Guan, Shang et al. 2015). A technique based on HEC 

(hand-eye calibration) (Zhan and Wang 2012) is studied by Pagel et al. (Pagel 2010). Nevertheless, 

the above-mentioned methods rely on calibration equipment’s accuracy. Moreover, if cameras in 

a non-overlapping cameras system cannot be moved, these methods would be invalid. Researchers 

also investigated calibration method by using a moving target go cover cameras’ common FOV. 

For example, a method is studied by Rahimi et al. (Rahimi, Dunagan et al. 2004) by recovering 

routes of a target in cameras. Nevertheless, the accuracy of this method is not enough for optical 

measurement. Geometric size of calibration target have been tried to be extended to cover FOV of 

cameras at the same time. A encoded target on a wall is applied by Dong et al. (Dong, Shao et al. 

2016) to calibration a non-overlapping camera system. A calibration method based on 1D target is 

researched by Liu et al. (Liu, Zhang et al. 2011). Extension of calibration target size cannot reach 

infinity. Therefore, for non-overlapping camera system where angle of cameras is 180 degree, 

these methods are failed. A optical flat is applied in some methods (Hesch, Mourikis et al. 2008, 

Kumar, Ilie et al. 2008) to produce an common field of non-overlapping cameras. Since non-
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overlapping cameras are required to discovery common feature points via reflection of the optical 

flat, this calibration is not convenient to use in practical application. Furthermore, the extraction 

accuracy of feature points are seriously affected by DOF of cameras. In a word, the traditional 

calibration methods for overlapping camera system (Rahimi, Dunagan et al. 2004, Lamprecht, 

Rass et al. 2007, Hesch, Mourikis et al. 2008, Kumar, Ilie et al. 2008, Pagel 2010, Liu, Zhang et 

al. 2011, Zhan and Wang 2012, Guan, Shang et al. 2015, Dong, Shao et al. 2016) are not suitable 

for stereo deflectometry’s calibration. 

Systemic calibration is also an important section of stereo deflectometry calibration, which is to 

obtain the relative geometric positions of the components in the system. There is a challenge in 

this calibration procedure, as fringes displayed on the fringe-displaying screen do not lie within 

the measurement cameras’ FOV. In order to tackle the problem, a flat mirror with or without 

markers was applied to complete systemic geometrical calibration. Knauer et al. (Knauer, 

Kaminski et al. 2004) used a flat mirror with a set of precise marks to calibrate the systemic 

geometric parameters of a stereo deflectometry system. Breitbarth et al. (Breitbarth, Kühmstedt et 

al. 2009) applied a plane mirror with a pattern of diffusely reflecting segments to complete the 

calibration procedure. Obviously, the position of the markers of the approaches above must be 

accurately positioned by photogrammetry in advance. In order to avoid the influence of positioning 

error, Xiao et al. (Xiao, Su et al. 2012) introduced a calibration method by applying a markerless 

optical flat. Conventional deflectometry’s calibration (Knauer, Kaminski et al. 2004, Breitbarth, 

Kühmstedt et al. 2009, Zhao, Su et al. 2009, Balzer, Hofer et al. 2011, Huang, Ng et al. 2012, Xiao, 

Su et al. 2012, Huang, Xue et al. 2016) complete camera calibration and systematic calibration 

separately. Camera calibration is conducted firstly and systemic geometric parameters are 

calculated based on the camera calibration result. However, objective functions of parameter 

optimization during the camera calibration and the systemic calibration are different, which results 

in an inconsistency when combining all systemic optics parameters. In addition, calibration error 

of camera calibration is propagated to systemic calibration that leads to larger systematic 

deviations. With the purpose of enhancing calibration accuracy, holistic calibration methods were 

investigated by using the fringe-displaying screen to calibrate a deflectometry system. All systemic 

optics parameters can be optimised holistically based on one objective function. Olesch and Faber 

et al. (Olesch, Faber et al. 2011, Faber 2012, Ren, Gao et al. 2015) studied an approach to calibrate 
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parameters of a set of imaging system based on deflectometry. A calibration method is investigated 

by Ren et al. (Ren, Gao et al. 2015) for a stereo deflectometry system by applying normal vector 

of an optical flat as an intermediate variable. The above-mentioned methods compensate 

deflectometry’s distortion based on conventional camera calibration’s distortion model (Zhang 

2000, Huang and Asundi 2012). The distortion model cannot match camera’s real distortion very 

accurately. Calibration accuracy is influenced by the accuracy of the distortion model. Distortion 

error is an important factor causing stereo deflectometry’s accuracy to be limited to micron level. 

In order to achieve higher calibration accuracy, a more effective and accurate distortion 

elimination method for stereo deflectometry is imperative to be investigated. In addition, the above 

holistic calibration techniques are based on iterative computation and heavily sensitive to the 

accuracy of input initial value. Inaccurate initial input causes iterative computation to converge in 

the wrong position or unable to converge. Image distortion seriously affects the calibration 

accuracy of the initial value. However, it is lack of research on how to eliminate the calculation 

error of initial value caused by image distortion for holistic calibration methods. 

In addition to deflectometry calibration’s inaccuracy, there are plenty of factors affecting a 

deflectometry system’s measurement accuracy. Unsatisfactory performance of the fringe-

dispalying screen in a deflectometry system seriously influences system’s accuracy. Characters of 

the screen such as colour displaying’s inaccuracy, transparent layers’ refraction influence, display 

surface’s flatness difference are studied by Petz et al. (Petz, Fischer et al. 2013). Phase inaccuracy 

also affects a deflectometry system’s measurement accuracy, because deflectometry is a phase-

based measurement system. Researchers have investigated techniques to eliminate deflectometry’s 

nonlinear and random phase inaccuracy. By integrating numerous approaches for compensating 

phase errors in a fringe projection system, a technique is investigated by Wu et al. (Wu, Yue et al. 

2015) to decrease nonlinear error and random error in a deflectometry system. A technique is 

studied by Yue et al. (Yue, Wu et al. 2013) for removing nonlinear carrier phase error. During 

fringe displaying process, continuous sinusoidal fringe patterns are sampled by discrete pixels of 

fringe-displaying screen. Sampling inaccuracy during this process generates significant phase 

inaccuracy. Nevertheless, influence of the sampling inaccuracy has not been studied in previous 

works yet. Investigation of gradient inaccuracy is also important to increase of deflectometry’s 

measurement accuracy, because gradient information is the basic data of the reconstruction result 
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of deflectometry. Experiments have been done by Zhao et al. (Zhao, Gao et al. 2018) to 

demonstrate that deflectometry’s measurement accuracy decreases with increasing period of the 

displayed fringe. Based on diffraction limited, the relation between gradient inaccuracy and phase 

inaccuracy is studied by Knauer et al. (Knauer, Kaminski et al. 2004). Nevertheless, influence of 

sampling phase error is not considered in the previous research. In addition to the above error 

sources, arrangements of components in a deflectometry system also affects system’s 

measurement accuracy. Impact of systemic parameters of a DPMD system have been studied by 

Zhao et al. (Zhao, Gao et al. 2018). Nevertheless, there is still a gap in analyses of the effects of 

systemic parameters of a stereo deflectometry system. Fig. 2.12 summarise the challenges and 

requirements in order to improve the measurement accuracy of stereo deflectometry. 

 

Figure 2.12 An illustrative of the challenges and requirements of stereo deflectometry. 

2.5 Summary 

Basic measurement principle of deflectometry have been reviewed in this chapter. Deflectometry-

based technologies, such as active fringe reflection deflectometry, SCOTS, microdeflectometry, 

DPMD, and stereo deflectometry have been reviewed. Active fringe reflection deflectometry 
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requires high precise translation stage and its setup is limited by the measurement environment. 

SCOTS can achieve high accurate measurement results while only specular surface with large size 

and small height variance is suitable to be measured with this technique. Microdeflectometry has 

a small depth of focus and requires taking multiple measurements when measuring a large depth 

sample. DPMD can measurement specular object with discontinuous surface, however 

measurement accuracy can only reach tens of micrometers. Stereo deflectometry has relative high 

accurate measurement accuracy compared with other deflectometry-based technique. In addition, 

the setup of stereo deflectometry is flexible since the screen in the system is not required to be 

moved. Therefore, stereo deflectometry has an obvious advantage in a realistic measurement of 

complicated and freeform specular surfaces. Then a detailed literature review of stereo 

deflectometry is presented. There are many challenges for stereo deflectometry. For example, the 

accuracy enhancement of calibration which includes camera calibration and systemic calibration 

and methods to analysis the error source in stereo deflectometry and to reduce the influence of 

these error sources. This thesis focus on key techniques to solve the challenges to improve 

deflectometry’s measurement accuracy. With the purpose of helping readers to understand the 

principle and measurement process of stereo deflectometry, the next chapter introduces several 

important techniques applied in the measurement process of stereo deflectometry, though these 

techniques are outside of the research scope of this thesis.
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3. Key techniques in stereo deflectometry  

This chapter gives an introduction of some important techniques in stereo deflectometry. Section 

3.1 introduces the coding technique of the displayed fringe patterns. Section 3.2 presents phase 

unwrapping algorithms that obtain absolute phase maps from fringe patterns. The normal 

calculation algorithm of deflectometry is described in section 3.3. In section 3.4, reconstruction 

algorithms of stereo deflectometry that obtain the 3D form of the measured surface from the 

normal vectors is presented. A brief summary of this chapter is given in section 3.5.  

3.1 Phase shifting algorithm  

Though different coding patterns techniques, such as phase marker (Cui, Liao et al. 2012), binary 

pattern (Butel, Smith et al. 2014)  have been developed for deflectometry, these methods have a 

problem caused by the limitation of depth of field because cameras in the deflectometry system 

based on these techniques cannot focus on the measured object and the screen at the same time. 

To overcome this problem, sinusoidal fringe pattern (Knauer, Kaminski et al. 2004, Häusler, Faber 

et al. 2013, Ren, Gao et al. 2015) is applied in deflectometry because defocus has little influence 

on the sinusoidal fringe pattern when the cameras focuses on the measured object. Phase shifting 

algorithm uses the intensity of the captured patterns through shifting the phase of sinusoidal fringes 

patterns to obtain the phase value (Rathjen 1995). This algorithm is popularly used in PSI 

(Capanni, Pezzati et al. 1997) and fringe projection technique (Zhang, Towers et al. 2006, Zuo, 

Huang et al. 2016). Sinusoidal fringes are also used in deflectometry as the sample patterns and 

utilizes phase shifting algorithm to obtain the phase value. During the measuring process of stereo 

deflectometry, series of phase shifting fringe patterns are displayed on the screen and are captured 

by the cameras simultaneously. The generation of the patterns is the first step of the measurement 

and has a significant influence on the measurement accuracy. The phase shifting fringe patterns 

applied in stereo deflectometry are coded according to the following equation: 

              ( , ) '( , ) ''( , )cos( ( , ) 2 / )nI x y I x y I x y x y n m                               (3.1) 

where '( , )I x y  is the average intensity, ''( , )I x y  is the intensity modulation, ( , )x y  is the phase 

to be solved. n = 0, 1… m , and m is the number of phase shift. In order to effectively restrain the 
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nonlinear error of the system, eight-step phase-shifting technique is applied and therefore m  

equals 8. Figure 3.1 shows a group of eight-step phase-shifting fringe patterns. In order to 

determine the physical coordinate on the screen of a point based on phase value, another group of 

vertical fringe patterns are generated, as shown in Fig. 3.2. In addition, the displayed fringe 

patterns are required to change the frequency to obtain an absolute phase maps, therefore there are 

48 fringe patterns in all during a measurement process. The influence of the fringe density on the 

measurement accuracy is discussed in Chapter 7. 

 

Figure 3.1 Horizontal fringe patterns. (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 3; (e) n = 4; (f) n = 5; (g) n = 6; (h) n

= 7. 

 

Figure 3.2 Vertical fringe patterns. (a) n = 0; (b) n = 1; (c) n = 2; (d) n = 3; (e) n = 4; (f) n = 5; (g) n = 6; (h) n = 7. 
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The measured phase of m -step phase shifting algorithm can be retrieved as  
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where ' cos(2 / )nI n m ,  '' sin 2 /nI n m   and ( , )x y  is the calculated wrapped phase whose 

range is limited from   to   because of arctan operation. Fig. 3.3 is the obtained horizontal 

wrapped phase map from the fringe patterns shown in Fig. 3.1. Fig. 3.4 is the obtained vertical 

wrapped phase map from the fringe patterns shown in Fig. 3.2. 

 

Figure 3.3 Wrapped phase map of horizontal fringe patterns. 
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Figure 3.4 Wrapped phase map of vertical fringe patterns. 

3.2 Phase unwrapping algorithm 

In order to get absolute phase, the 2  radians phase jumps in wrapped phase must be removed 

through a process known as phase unwrapping (Ghiglia and Pritt 1998, Rastogi and Hack 2014). 

At present, there are mainly two kinds of phase unwrapping algorithms: temporal phase 

unwrapping algorithm and spatial phase unwrapping algorithm. Spatial phase unwrapping  

algorithm (Chan, Bryanston-Cross et al. 1995) adds or subtracts multiples of 2  into wrapped 

phase by comparing neighbouring pixels’ wrapped phases. Though spatial phase unwrapping 

algorithm is easy to implement, it is sensitive to phase errors because if there is a point having 

obvious error in a wrapped phase map, every point unwrapped based on the point will be incorrect 

(Rastogi and Hack 2014).  

Stereo deflectometry requires an absolute phase map to determine the physical location of a point 

on the screen, however spatial phase unwrapping algorithm can only obtain relative phase map for 

the reason that it lacks of absolute origin point and only establishes the relation between 

neighbouring points. Therefore, spatial phase unwrapping algorithm is not suitable for stereo 

deflectometry.  

Temporal phase unwrapping algorithm (Saldner and Huntley 1997) retrieves absolute phase by 

applying series of patterns with frequency difference. This algorithm unwraps phase of each pixel 

independently. The phase of each pixel has no relation with its neighbouring pixels. Coding phase 

unwrapping algorithm (Wissmann, Schmitt et al. 2011, Zheng and Da 2012) and heterodyne phase 

unwrapping algorithm (Reich, Ritter et al. 1997) are the most commonly used phase unwrapping 

algorithms. Coding phase unwrapping algorithm applies grey fringes with different frequency. The 

fringe order of each pixel can be obtained based on encoding method. However, coding phase 

unwrapping algorithm requires a large number of fringe patterns and affects the measurement 

speed. In addition, it is easy to produce a serious phase error at the fringe boundary. Among these 

temporal phase unwrapping algorithms, one popularly utilised in a stereo deflectometry system is 

three-frequency heterodyne temporary phase unwrapping (TFHTPU) (Petz and Tutsch 2005, 

Towers, Towers et al. 2005). Because TFHTPU tries to apply fringe patterns as few as possible to 

obtain accurate absolute phase information.  
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Heterodyne phase unwrapping algorithm uses series of phase-shifting sinusoidal fringe patterns 

with frequency difference to obtain absolute unwrapped phase map. The principle of heterodyne 

phase unwrapping algorithm can be expressed in Fig. 3.5 and Eq. (3.3).  

 

Figure 3.5 The principle of heterodyne phase unwrapping algorithm. 

         





)

2
(  md                                  （3.3） 

where d  is the physical distance between a calculated point and the zero phase point.   is the 

phase value of the calculated point.   is the effective wavelength of a wrapped phase map. m  is 

the fringe order. Assuming there are two sinusoidal fringe patterns. One has a fringe number of 

0N . The other has a fringe number of 
1N . The wrapped phases calculated from the two fringe 

patterns are illustrated as the red line and the green line in Fig. 3.5. Defining measurement range 

is L , the effective wavelengths of the two groups of sinusoidal fringe patterns are defined as 

0 0/L N   and 
1 1/L N   respectively. 

0 and 
1  are the wrapped phase value of the two fringe 

patterns when the physical distance from zero phase point is d . A new fringe pattern can be 

acquired by conducting subtraction between the two fringe patterns. The phase wrapped phase 
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value of the new fringe pattern is 01  and its effective wavelength is defined as 

01 0 1 1 0/ ( )      . The following equation can be obtained based on Eq. (3.3): 
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when 
01 d  , 

01m  equals 0. Then Eq. (3.4) can be simplified to the following equation: 
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Based on Eq. (3.5), the fringe number can be calculated according to the following equation: 
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An unwrapped phase map can be obtained based on the fringe number. According to Eq. (3.6), 

during the heterodyne temporary phase unwrapping process, phase noise is amplified by the 

difference of fringe frequency. Over amplified noise will seriously affect phase accuracy. In order 

to reasonably control the degree of phase noise magnification, Towers et al. proposed TFHTPU. 

TFHTPU uses three groups of different fringes frequency. The fringe number of the applied fringe 

patterns in TFHTPU algorithm (Towers, Towers et al. 2005) can be expressed as  
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According to the definition of Eq. 3.3, the difference of fringe frequency is kept within the range 

of allowable changes.  

Because stereo deflectometry requires two cross-directional coordinates to locate a point on the 

screen, a horizontal absolute phase map and a vertical absolute phase map are needed to be 

obtained. Fig. 3.6 displays the horizontal unwrapped phases calculated from three groups of phase-
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shifting fringe patterns with frequency defference. 
0fN  is the maximum fringe number of the 

chosen patterns. 
0fN  equals to 9 in Fig. 3.6. Other two fringe numbers 1fN  and 2fN  are 8 and 6 

respectively. Fig. 3.7 displays the corresponding vertical unwrapped phases. The horizontal 

absolute phase map and vertical absolute phase map calculated from the wrapped phase maps in 

Fig. 3.6 and Fig. 3.7 based on TFHTPU are shown in Fig. 3.8 and Fig. 3.9 respectively. 

 

Figure 3.6 Horizontal wrapped phase maps. (a) Fringe number is 9; (b) fringe number is 8; (c) fringe number 

is 6. 

 

Figure 3.7 Vertical wrapped phase maps. (a) Fringe number is 9; (b) fringe number is 8; (c) fringe number is 

6. 



54 

  

 

 

Figure 3.8 Horizontal absolute unwrapped phase map. 

 

Figure 3.9 Vertical absolute unwrapped phase map. 
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3.3 Gradient calculation algorithm    

 

Figure 3.10 The measurement principle of stereo deflectometry. 

Fig. 3.10 demonstrates the gradient calculation method of stereo deflectometry. Camera 1 works 

as main camera. 
1O  is the optical centre of main camera. Camera 2 is reference camera. The optical 

centre of the reference camera is 
2O . A fringe-displaying screen displays two groups phase-

shifting fringe patterns (Werling 2011). One group of patterns is horizontal. The other group of 

patterns is vertical. The patterns are reflected by the surface under test and are captured by the 

main camera and the reference camera simultaneously. A horizontal absolute phase map and a 

vertical absolute phase map can be acquired through the calculation of phase-shifting and phase 

unwrapping (Towers, Towers et al. 2005, Zhang, Towers et al. 2006). 
1S  is an arbitrary space 

point. After camera calibration and system calibration (Xu, Gao et al. 2018), its image’s position 

1I  in the imaging plane of the main camera can be obtained. Based on the horizontal phase value 

and vertical phase value of 
1I , its corresponding physical location 

1P  on the fringe-displaying 

screen can be obtained. Space point 
1S , image point 

1I , and point 
1P  on the fringe-displaying 

screen made up an optical  triangular. Based on the optical triangular, a normal vector of 
1S  is 

obtained. In an optical  triangular consisting of 
1S , image point in the reference camera ( 2I ) and 

screen point 
2P , another normal vector of 

1S  is obtained by using similar method. Only when 
1S  

is a surface, normal vectors obtained based on the main camera and the reference camera are 
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matched. By searching space points and comparing normal vectors calculated based on the main 

camera and the reference camera, initial 3D coordinates and normal information of the surface 

under test are acquired. Final data are optimised based on the reconstruction algorithms described 

in the following section.  

3.4 Reconstruction algorithms based on gradient integration 

 

Figure 3.11 Principle of gradient integration method. 

The principle of gradient integration method is based on the Taylor’s theorem (Graves 1927) which 

describes a regular surface at a point can be approximated by a higher order polynomial. According 

to the deduction of Taylor’s theorem, for a continuous and smooth surface, normal vector of a 

point is perpendicular to a vector consisting of the point and the adjacent point, as shown in Fig. 

3.11(a).  

Since the measured objects of stereo deflectometry are continuous and smooth specular surfaces, 

an explicit function ( , )z f x y  can be used to express the surface under test. A given point has 

at least two times differentiable in the explicit function. A measured surface can be approximately 

described by a polynomial in two variables based on Taylor’s theorem  (Zorich 2002), as shown 

in the following equations: 
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(3.8) 

where x  and y  are minor increments along x  and y  direction respectively. Approximation 

error 
2( , )R x y   goes to zero faster than 2 2x y  . Eq. (3.8) can be rewritten in Eq. (3.9) by 

using vector ( , )f x y  and matrix of second derivatives 2 ( , )D f x y : 

 
21

( , ) ( , ) ( , ) ( , )
2

T
x x x

f x x y y f x y f x y D f x y
y y y

        
                       

 (3.9) 

Defining world coordinate of a given point on the surface under test is , , ,( , , )m n m n m nx y z . First and 

second differentiable of a tiny surface near the point is expressed as ( , )f x y  and 2 ( , )D f x y  

respectively. Assuming a point ,( , , )m n m nx y z on the measured surface. Neighbouring points 

, 1 , 1 , 1( , , )m n m n m nx y z   and , 1 , 1 , 1( , , )m n m n m nx y z    are positioned at either side of the point. Based on Eq. 

(3.9), the relation between the neighbouring points can be expressed with Eq. (3.10) and Eq. (3.11). 
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                              (3.11) 

where 
1x  and 2x  are tiny increment of ,m nx  along , 1m nx   and , 1m nx   respectively. 

1y  and 
2y  

are tiny increment of ,m nx  along , 1m ny   and , 1m ny   respectively. Subtracting Eq. (3.11) from Eq. 

(3.10), the relation between the neighbouring points can be depicted as  
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(3.12) 

It is noticeable that second-order element of Eq. (3.12) is smaller comparing with those of Eq. 

(3.10) and Eq. (3.11). Eq. (3.12) is more accurate than Eq. (3.10) and Eq. (3.11) when height 

relation of a surface is roughly expressed only by first differentiable. Moreover, second-order 

element of Eq. (3.12) goes to zero faster than first element. Therefore, the following equation can 

be used to replace Eq. (3.12):  
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(3.13) 

where 
xf  and 

yf  are first derivative of the measured surface along x and y direction respectively. 

Neighbouring points locating at either side of ,( , , )m n m nx y z  along y  direction can be deduced 

based on the same principle: 

 
1, 1, 1, 1, 1, 1,( ) ( )m n m n x m n m n y m n m nz z f x x f y y         

 
(3.14) 

Normal vector of a point on a regular surface can be represented as ( , , 1)x yf f   when the surface 

can be expressed with an explicit function. Therefore, normal vector of a surface point is 

perpendicular to the vectors connecting points at either side according to Eq. (3.13) and (3.14), as 

shown in Fig. 3.11(a). Therefore, relation between two neighbouring separated points in height 

can be obtained based on the following equation:  
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Fig. 3.11(b) is a visual description of Eq.  (3.15). Eq. (3.15) can be written in terms of matrices as 

the following equation:  

 
1 1Z = GD

 
(3.16) 

where 
1D  and 1G  can be obtained according to Eq. (3.17) and Eq. (3.18): 
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(3.18) 

where M and N  are the rows and columns of the measured surface. Levenberg-Marquardt 

algorithm can be applied to solve Eq. (3.18).  
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3.5 Summary 

Some key algorithms applied in stereo deflectometry are briefly introduced in this chapter, 

including phase shifting algorithm, phase unwrapping algorithm, normal calculation algorithm and 

reconstruction algorithm.  Though these techniques are outer of research scope of this thesis, they 

are significant in measurement process of stereo deflectometry and are helpful for the readers to 

understand stereo deflectometry. The mains works of this thesis are described in detail in the 

following chapters.    
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4. Improvement of camera calibration accuracy  

Camera calibration is the first step of the calibration of a stereo deflectometry system. Accuracy 

of camera calibration is seriously affected by camera distortion. Because of imprecise distortion 

compensation model of traditional calibration method, the calibration accuracy of stereo 

deflectometry cannot be satisfied. A novel camera calibration technique based on phase target is 

investigated in this chapter. Massive pixels of camera and the corresponding physical points on 

the phase target are applied to calculate initial imaging parameters of the camera. Afterwards, a 

distortion compensation technique based on an iterative algorithm is imposed. With the purpose 

of improving feature extraction of phase target, fitting and interpolation approach is studied to 

smooth phase maps. The camera calibration technique described in this chapter does not depend 

on traditional calibration methods’ distortion model. Consequently, it is more effective and 

accurate than traditional calibration methods especially for camera with big distortion. 

Experimental results indicate that calibration accuracy is improved over 100% by using the 

investigated calibration technique. The work in this chapter generated one published journal paper 

(Xu, Gao et al. 2017). 

4.1 Principle of camera calibration method 

4.1.1 Phase target  

The calibration approach studied in this chapter is based on a phase target shown in Fig. 4.1. The 

phase target consisted of a group of vertical sinusoidal fringe patterns shown in Fig. 4.1(a) and a 

group of horizontal sinusoidal fringe patterns shown in Fig. 4.1(b). After applying the phase shifted 

method and the phase unwrapping method (Towers, Towers et al. 2005, Zhang, Towers et al. 

2006), a vertical absolute phase map shown in Fig. 4.1(c) and a horizontal absolute phase map 

shown in Fig. 4.1(d) are obtained. The obtained phase maps are continuous. In practical operation, 

a LCD screen is often used to display the fringe patterns. Denoting the size of LCD pixel pitch is 

p  and the number of LCD pixels per fringe period is 
pn . Based on the vertical phase value 

x  

and horizontal phase value 
y , the corresponding physical location ( , )w wx y  on phase target of 

points on camera imaging plane can be located based on Eqs. (4.1) and (4.2).  
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( / 2 )w p xx n p        (4.1) 

( / 2 )w p yy n p      (4.2) 

 
Figure 4.1 The phase target used in camera calibration process. (a) One of vertical sinusoidal fringe patterns; 

(b) one of horizontal sinusoidal fringe patterns; (c) vertical absolute phase; (d) horizontal absolute phase. 

4.1.2 Calibration with iterative distortion compensation algorithm 

 
Figure 4.2 Phase target is placed at arbitrary poses. 

During calibration process, phase target is placed at several arbitrary positions, as shown in Fig. 

4.2. Defining the number of phase target’s position as n . With the purpose of improving calibration 

speed, sampled points uniformly distributed on camera imaging plane instead of full camera pixels 

are chose to conduct calibration calculation. Imaging parameters are acquired based on Eq. (4.3). 
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 (4.3) 

where H is a linear projection between space point and its image in camera imaging plane. World 

coordinate of a space point is defined as ( , )w wx y . Coordinate of its image point is expressed with 

( , )u v .  Image process is studied based on pinhole model. Transformation from world coordinate 

system to camera coordinate system is defined as  R t . R  is the rotation matrix of the 

transformation.  t  is the translation matrix of the transformation. Internal parameter of a camera 

is expressed with A . Scale factors of the camera along u  and v  direction is expressed with   

and   . Principal point of the camera is defined as 
0 0( , )u v .  thi  column of R  and H  is denoted 

as 
ir  and 

ih  respectively. With the knowledge that 
1r  and 

2r  are orthonormal, two constraints 

on the internal parameter can be obtained: 

1
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 (4.4) 

A  can be calculated based on at least three calibration poses because two constraints can be 

provided from a calibration pose. External parameter  , 1..i iR t i n  can be acquired based on 

Eq. (4.5): 
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 with 
1

11/ A h   (4.5) 

Eq. (4.6) reflects calculation error of the applied imaging model. 

ˆ ( , , , )m m A R t M m    (4.6) 

Physical location of space in terms of world coordinate is denoted as M . m  represent the 

deviation between real coordinate m  and reprojection coordinate m̂ obtained based on A , R , t  
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and M . m  should be a constant for the same camera pixel, since distortion is constant for a fixed 

focus camera. A corrected coordinate *m  is calculated based on Eq. (4.7): 

*m m m    (4.7) 

where  m  is the average deviation of different calibration. An iterative loop is applied to optimize 

initial values of A ,  , 1..i iR t i n , and m  by minimizing the following function with 

Levenberg-Marquardt Algorithm: 

2
*

1 1

ˆ( , ) ( , , , )
n k

i i ij

i j

m m m m A R t M
 

   (4.8) 

Fig. 4.3 summarizes the calibration process of the studied camera calibration.  

 
Figure 4.3 Summary the calibration process.  

4.1.3 Compensation algorithm for phase target error 

Interference between LCD pixels (phase target) and CCD camera pixels results in Moiré fringe. In 

addition, LCD pixels are captured by CCD camera when LCD screen locates at camera’s focus. 

Moiré fringe and the captured LCD pixels lead to a fringe distortion on the fringe pattern captured 

by CCD camera. Fig. 4.4(a) shows the fringe distortion. Fig. 4.4(b) shows the phase error of the 

fringe distortion. Gaussian filter (De la Escalera and Armingol 2010) was used to remove the fringe 

distortion and optimize fringe quality. Nevertheless, one problem of Gaussian filter is how to 
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choose filter’s size. A defocus technique is tested in Fig. 4.4(c). Phase target is placed at camera’s 

defocus position when doing calibration. A pattern captured by CCD camera shown in 4.4(c) indicates 

that fringe distortion has been removed.  

 
Figure 4.4 Fringe distortion on a captured fringe pattern. (a) A pattern captured by CCD camera when phase 

target is placed at camera’s focus position; (b) phase error; (c) a pattern captured by CCD camera when 

phase target is placed at camera’s defocus position. 

A technique is investigated to optimize the quality of phase target based on fitting and interpolation 

method. The principle of the technique is demonstrated in Fig. 4.5. Phase point located at ( , )p pu v  is 

expressed with green dot. Because absolute phase map is continuous, a tiny surface of the phase 

point can be expressed with  the tangent plane of the phase point. A plane is fitted based on the 

phase values of its neighboring L/2 pixel ploints. Least square algorithm is the basic technique of 

the fitting process. The fitted plane is shown in Fig. 4.5 with a French grey colour.  By applying 

cubic polynomial interpolation algorithm on the fitted plane, an interpolated phase point as the red 

dot shown in Fig. 4.5 is obtained. Defining L as fitting widow of the fitting method. Theoretically, 

phase error would be more effective to be removed by applying big L. Nevertheless, because 

absolute phase map is a curve surface, big L will bring fitting error. Eqs. (4.9) and (4.10) are used 

to demonstrate that absolute phase map is a curve surface. Eqs. (4.9) and (4.10) is derived based 

on Eqs (4.1)–(4.3) and presents the relationship between vertical absolute phase map 
x , 

horizontal absolute phase map 
y  and its location ( , )u v .  
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Figure 4.5 Principle of fitting and interpolation method. 

A simulation experiment is made to investigate the optimized L. With the purpose of simulating 

real measurement noise, phase error are randomly added into the experiment. Fig. 4.6 shows that 

reprojection error decreases dramatically along with increasing L from 0 to 5 pixels. At the same 

time, rotation matrix error and translation matrix error also have the same trend with reprojection 

error. Reprojection error decreases from 0.0016 pixels to 0.000172 pixels with L increasing from 

5 pixels to 60 pixels. In contrast, this is an opposite for rotation matrix error and translation matrix 

error. Therefore, in order to decreasing phase error and at the same time not over optimize original 

phase value, L should be set to 5 pixels.  
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Figure 4.6 The variety of reprojection error, error of rotation matrix and error of translation matrix along 

with the variety of window size.  

4.2 Results and discussion  

4.2.1 Simulation study  

In order to verify the studied camera calibration method, a camera is simulate and calibrated. 

Radial distortion, eccentric distortion and thin prism distortion are denoted as ( , )ur vr  , ( , )ue ve 

and ( , )up vp   respectively. Distortion coefficients are simulated based on Eq. (4.11). Distortion 

centre is (808,608) pixel. 8

1 3 10k    pixel, 14

2 3 10k    pixel, 20

3 1 10k    pixel, 26

4 1 10k    pixel, 

5

1 1 10p    pixel, 5

2 1 10p    pixel, 5

1 5 10s    pixel, 5

2 5 10s    pixel.  



68 

  

 

              

2 4 6 8

1 2 3 4

2 4 6 8

1 2 3 4

2 2

1 2

2 2

1 2

2 2

1

2 2

2

( )

( )

2 ( 3 )

(3 ) 2

( )

( )

ur p

vr p

ue p p p p

ve p p p p

up p p

vp p p

u k r k r k r k r

v k r k r k r k r

p u v p u v

p u v p u v

s u v

s u v

    

    


   


   


  


  

 with 2 2

p pr u v                                 (4.11) 

where ( , )p pu v  is true camera pixel. True camera pixels and distorted pixels are shown in Fig. 4.7. 

Eight LCD pose are simulated with 
1 [2.7695 ,-2.7856 ,-0.1811 ]Tr  , 

1 [0.7916,-0.4575,-2.7113]Tt  , 

2 [2.8293 ,-2.7519 ,-0.2241 ]Tr  , 
2 [0.7275,-0.3875,2.7896]Tt  , 

3 [3.0690 ,-2.6283 ,-0.2358 ]Tr  , 

3 [0.5033,-0.4775,2.8014]Tt  , 
4 [2.8311 ,-2.7483 ,-0.3103 ]Tr  , 

4 [0.7353,-0.0266,3.1896]Tt  , 

5 [2.8887 ,-2.7270 ,-0.0773 ]Tr  , 
5 [0.7295,-0.4887,2.8933]Tt  , 

6 [3.0078 ,-2.6686 ,-0.1458 ]Tr  , 

6 [0.5983,-0.4071,2.9964]Tt  , 
7 [-3.1212 ,-2.5625 ,-0.3108 ]Tr  , 

7 [0.3537,-0.2911,3.1097]Tt  , 

8 [2.8760 ,-2.7257 ,-0.2398 ]Tr  , 
8 [0.7231,-0.0588,3.3075]Tt  . Absolute phase map are randomly added with 

phase noise ranging from 0 to 0.005 radian. By using reprojection error to evaluate the calibration 

result, Fig. 4.8 shows the calibration result obtained with the studied camera calibration technique. 

The experimental result verify camera calibration technique described in this chapter can 

effectively eliminate camera distortion. 
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Figure 4.7 True camera pixel and distorted camera pixel. (a) Influence of radial distortion ; (b) influence of 

eccentric distortion; (c) influence of thin prism distortion; (d) overall influence of radial distortion, eccentric 

distortion and thin prism distortion. 

  

Figure 4.8 Calibration result obtained with the studied camera calibration technique. (a) Reprojection error 

of calibration along x and y direction; (b) reprojection error expressed in terms of pixel coordinate. 8 colours 

are used to distinguish different calibration poses. 

4.2.2 Experiment study  

A CCD camera with 35 mm fixed focal lens is calibrated to test the studied camera calibration 

technique, as shown in Fig. 4.9. The camera is from Lumenera (https://www.lumenera.com/) with 
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model of Lw235M. The lens is manufactured by Navitar (https://navitar.com/). The resolution of 

the camera is 1616 × 1216 pixels. Phase target is displayed on a LCD screen. Model of the screen 

is Dell E151Fpp. The LCD’s pixel size of is 0.297 mm. The resolution of the screen is 1024 × 768 

pixels. Eleven calibration poses are used during the calibration. Absolute phase maps were 

optimized by using the studied fitting and interpolating algorithm with a 5 × 5 fitting window. 

Every 10th camera pixel was selected to form a grid with the size of 161 × 121 as the input to 

calibrate the cameras with the corresponding points in the world coordinates. The distortions of 

the selected pixels under the linear projection model are shown in Fig. 4.10. Since Zhang’s 

calibration approach (Zhang 2000) is very popular in practical applications, a comparative 

experiment has been made between the proposed method and Zhang’s approach as shown in Fig. 

4.11. RMS of the calibration error obtained with Zhang’s calibration approach is 0.033 pixels. The 

calibration error decreases to 0.025 pixels when using the studied fitting technique to optimize 

phase value. In contrast, RMS of the calibration error of the investigated camera calibration 

method is 0.015 pixels. The experimental result demonstrates the investigated camera calibration 

method is 1.6 times accurate than Zhang’s calibration approach. 

 

Figure 4.9 Setup for testing the studied camera calibration technique. 
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Figure 4.10 The obtained camera distortion. (a) Camera distortion of the chosen camera pixels; (b) 

enlargement of the right-top corner of (a). Different colours are used to distinguish different calibration 

poses. 

  

Figure 4.11 Comparison between the studied camera calibration technique and Zhang’s calibration method. 

(a) Calibration error obtained of Zhang’s method without using fitting optimization technique; (b) 

calibration error expressed in pixel coordinate of Zhang’s method without using fitting optimization 

technique; (c) calibration error expressed in pixel coordinate of Zhang’s method by using fitting optimization 

technique; (d) calibration error of the studied camera calibration technique without using fitting optimization 

technique; (e) calibration error expressed in pixel coordinate of the studied camera calibration technique 

without using fitting optimization technique;  (f) calibration error expressed in pixel coordinate of the studied 

camera calibration technique by using fitting optimization technique. Different colours are used to 

distinguish different calibration poses. 
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4.3 Summary 

This chapter describes a camera calibration technique based on phase target. Camera distortion is 

eliminated with an iterative distortion compensation technique. Defocus techniques and fitting and 

interpolation techniques are investigated to improve feature extraction accuracy of phase target. 

Comparing with traditional camera calibration methods, the studied camera calibration technique 

can achieve better calibration accuracy.  

  



73 

  

 

5. Calibration of non-overlapping camera system  

In some applications, the field of view of sensors in a system cannot have an overlapped area. In 

this case, the current available camera calibration methods (Maoling, Songde et al. 2000, Zhang 

2000) cannot be used. The fringe-displaying screen of a stereo deflectometry system is applied as 

phase target to conduct calibration process. Because cameras in stereo deflectometry have 

common fields on the surface under measurement, their fields on phase target are non-overlapping. 

When carrying out calibration, stereo deflectometry is a non-overlapping camera system, as shown 

in Fig. 5.1. Therefore, designing a new calibration method for non-overlapping camera systems is 

of necessacity. In this chapter, the fringe-displaying screen in stereo deflectometry is used as a 

phase target to calibration the cameras in the system. An optical flat is applied to enable the 

cameras can capture phase target during the calibration. The relation between the cameras and 

imaging parameters of each camera are obtained based on a studied algorithm. The work in this 

chapter generated one journal paper (Xu, Gao et al. 2018).  

 

Figure 5.1 Stereo delfectometry can be treated as a non-overlapping camera systems when doing calibration. 
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5.1 Principle of the proposed calibration method for non-overlapping cameras system 

Fig. 5.2 illustrates principle of the studied calibration technique in this chapter. A LCD screen is 

used as phase target during calibration. A group of horizontal sinusoidal fringe patterns and a 

group of vertical sinusoidal fringe patterns are displayed on a LCD screen in turn. Non-overlapping 

cameras capture these fringe patterns through an optical flat’s reflection. Two orthogonal absolute 

phase maps are acquired by applying phase-shifting and phase unwrapped algorithm (Towers, 

Towers et al. 2005).  

 

Figure 5.2 The principle of the studied calibration technique. 

Knowing two orthogonal absolute phase values, physical location of control point on phase target 

can be acquired based on Eq. (5.1).  
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                                                         (5.1) 

where ( , )w wx y  represents physical location of control point. LCD pixel size is denoted as p . 
x  

and 
y  are horizontal phase value and vertical phase value respectively. The number of LCD 

pixels per fringe period is expressed with 
pn . Based on Eq. (5.2), camera’s imaging parameter and 
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the relation between control point in terms of phase target coordinate and its image point in terms 

of camera imaging plane coordinate can be calculated. Camera parameter 
1A  and the relation 

 ' 'R t  between mirrored screen and the camera coordinate system can be obtained based on the 

pinhole model by moving mirror 1 to at least 3 arbitrary positions:  

                                                   1 ' ' 'sm A R t M                                                               (5.2) 

where 
1A  represents camera’s imaging parameter. The relation between two coordinates consists 

with a rotation matrix 'R  and a translation matrix 't . Based on Eq. (5.3), 'R  and 't  can be 

obtained by placing the optical flat at more than three positions. 
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where d  represents the physical distance between optical centre of the calibrated camera and 

optical flat. The normal vector of optical flat is denoted as n  which can be acquired according to 

Eq. (5.4). 
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where m  represents a unit vector that is perpendicular to two optical flat’s normal vectors at the 

same time. Three arbitrary locations of optical flat are denotes as , ,i j k . Eq. (5.5) is used to 

obtain the value of m . 
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A linear equation shown in Eq. (5.6) is used to calculate d . 

                                                 

1 '

'

'

3 3

( ) 2 0 0

( ) 0 2 0

( ) 0 0 2

T

i i i i

iT

j j j j

jT

k k

k

t
I n n n t

d
I n n n t

d
I n n n t

d

 
     
         
      

 

                                         (5.6) 



76 

  

 

where I  is a 3x3 identity matrix. By making Eq. (5.7) reach minimization using Levenberg-

Marquardt Algorithm, the above calculated imaging parameters can be optimized.  

                                               1 1 1

1 1

ˆ ( , , , , , )
g k

ij i i i i ij

i j

m m A R t n d M
 

                                  (5.7) 

where M  represents control points on phase target. Its image point on camera imaging plane is 

expressed with m . The number of m  is denoted as k . Optical flat’s position number is g . Imaging 

parameters of the other camera can be obtained by using the same calibration technique. By 

treating phase target as an intermediate value, the relation between cameras can be acquired based 

on Eq. (5.8). 
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.                                                           (5.8) 

where 
1R  and 

1t  represent rotation matrix and translation matrix between Camera 1 and phase 

target respectively. 
2R  and 

2t  represent rotation matrix and translation matrix between Camera 2 

and phase target respectively. 
cR  and 

ct  represent rotation matrix and translation matrix between 

cameras respectively. Fig. 5.3 shows workflow of the studied calibration technique. 

 

Figure 5.3 Summary of the studied calibration technique’s workflow. 
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5.2 Experiment and results 

5.2.1 Simulation study  

Fig. 5.4 shows a simulated non-overlapping camera system which is used to verify the studied 

calibration technique. Two camera are simulated in the system. The Euler angles of rotation matrix 

between the two camera’s coordinate systems are   of 00,  of 00, and   of 1800. Translation 

vector between the two camera’s coordinate system is 0 mm along x direction, 0 mm along y 

direction, 35 mm along z direction. Phase target displayed on a screen is applied to calculate the 

relation between the two cameras. Physical location noise randomly varying within 0.005 mm are 

added into control points’ location on the phase target. Based on the calibration technique 

described in this chapter, calibration results are obtained as shown in Tab. 5.1. The calibration 

results are compared with the true relation between the two cameras. Tab. 5.1 shows the difference 

between the true value and the result based on the studied calibration technique is 0.2 mm in 

translation and 0.007 degree in rotation. 

 

Figure 5.4 A simulated non-overlapping camera system. 
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Table 5.1 Comparison between the calibration results and the true value. 

Relative poses 

Euler angles Relative translation 

[ ]
 

[ ]
 

[ ]
 

[ ]xt mm
 

[ ]yt mm
 

[ ]zt mm
 

True value 0 0 180 0 0 35 

Calibration 

result 
-0.0069 0.0024 179.9987 -0.00 -0.19 35.11 

Residual 0.0069 0.0024 0.0013 0.00 0.19 0.11 

5.2.2 Experimental study and discussion  

With the purpose of testing the studied calibration technique, a non-overlapping cameras system 

shown in Fig. 5.2 was calibrated. Two CCD cameras with model Lw235M from Lumenera 

(https://www.lumenera.com/) were set up for the non-overlapping cameras system. Because the 

relation between the two cameras’ coordinate system is hard to be known accurately, the value of 

this relation is estimated based on the two cameras’ geometric position. Euler angles of the rotation 

matrix between the two cameras’ coordinate system are   of 00,    of 00, and   of 1800. 

Translations vector between the two cameras’ coordinate systems is 0 mm along u direction and 0 

mm along v direction. A LCD screen with model Dell E151Fpp is acted as phase target. Tab. 5.2 

shows the calibration result obtained with the studied calibration technique.  
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Figure 5.5 A tested non-overlapping cameras system. 

Table 5.2 Calibration result with experimental data. 

Relative poses 

Euler angles Relative translation 

[ ]
 

[ ]
 

[ ]
 

[ ]xt mm
 

[ ]yt mm
 

Estimated value 0 0 180 0 0 

Calibration result -0.9851 -0.8834 -179.5616 -4.94 6.22 

 

5.3 Summary 

In order to investigate the systemic calibration of stereo deflectometry, a particular calibration 

technique is discussed in this chapter. Because the cameras of a stereo deflectometry system cannot 

have an overlapped field of view on calibration target, a calibration technique for non-overlapping 

camera system is studied. The studied calibration technique is more suitable for stereo 

deflectometry than other calibration method for non-overlapping camera system. Experimental 

results verified the flexibility and accuracy of the studied calibration technique. The studied 

calibration technique not only can be used in calibration of a stereo deflectometry system, but also 

can be applied in the calibration of other non-overlapping cameras systems. A test will be 
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conducted in the future by using the studied calibration method to calibrate other non-overlapping 

cameras systems. 

In the next chapter, a systemic calibration technique for a stereo deflectometry system based on 

the calibration technique described in this chapter will be represented.  
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6. Holistic system calibration method for stereo deflectometry  

Aiming to improve measurement accuracy of stereo deflectometry, a systemic calibration method 

for a stereo deflectometry system is investigated in this chapter. The method is based on the work 

described in chapter 4 and chapter 5. The gradient information of the measured surface is the 

primary data of the reconstruction results of stereo deflectometry. Calibration correctness of stereo 

deflectometry significantly affects the accuracy of surface gradient. Therefore, the accuracy of 

stereo deflcetometry’s systemic calibration plays an important role in measurement accuracy of 

the system. The studied systemic calibration approach enhances calibration accuracy of a stereo 

deflectometry system by improving the compensation accuracy of systemic distortion. The studied 

calibration technique applies an iterative distortion compensation algorithm rather than the 

distortion model used in traditional stereo deflectometry’s calibration method. Works in this part 

generated one journal paper (Xu, Gao et al. 2018).  

An algorithm is also presented in this chapter to increase the accuracy and robustness of the 

calibration of stereo deflectometry system. Holistic calibration algorithms are generally based on 

iterative computation and therefore heavily sensitive to the accuracy of input initial values. This 

chapter investigates a search algorithm with an evaluation function to solve the low-accuracy 

initial value problem caused by image distortion for holistic calibration technique. Accurate initial 

values are searched with a window moving within camera image, and determined by making the 

proposed evaluation function reach the minimum. Experiments affirm the studied algorithm can 

noticeable increase stereo deflectometry’s calibration accuracy. The RMS of calibration error can 

be reduced to 0.05 pixels from 0.31 pixels by using the proposed algorithm. One journal paper (A 

search algorithm for accuracy improvement of holistic calibration of stereo deflectometry, 

submitted) has been generated based on the work.  

6.1 Holistic calibration method with iterative distortion compensation 

6.1.1 Principle of the proposed holistic calibration method 

Fig. 6.1 shows the structure of a stereo deflectometry system. A main camera (Camera 1) and a 

reference camera (Camera 2) makes up a stereo sensor system. A LCD screen is used to display 

fringe patterns. In order to achieve accurate measurement result, the relations between the main 
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camera, the reference camera and the fringe-display screen are required to be obtained very 

accurately. 
1A  and 

2A  represent imaging parameters of the main camera and the reference camera 

respectively. 
1A  is the transformation from the camera coordinate system 

1{ }C  to the pixel 

coordinate system 
1{ }P of the main camera. 

2A  is the transformation from the camera coordinate 

system 
2{ }C  to the pixel coordinate system 

2{ }P  of the reference camera. The relation between 

different components consists with a rotation matrix and a translation vector. The rotation matrix 

and the translation vector form 
1{ }C  to 

2{ }C  are represented with 
cR  and 

ct  respectively. 
1R  and 

1t  

represent the rotation matrix and the translation vector from the screen’s system { }L  to 
1{ }C . 

2R  

and 
2t  represent the rotation matrix and the translation vector form { }L  to 

2{ }C .   

 

Figure 6.1 The structure of a stereo deflectometry system.  

An optical flat mirror is applied to enable the main camera and the reference can capture the 

displayed fringe patterns on the screen. A group of horizontal sinusoidal fringe patterns and a 

group of vertical sinusoidal fringe patterns are displayed on the screen in turn. The fringe patterns 
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have frequency difference (Werling 2011) because of the requirement of phase unwrapping 

algorithm. The main camera and the reference capture the reflected fringe patterns simultaneously. 

A horizontal phase map and a vertical phase map are acquired by applying phase-shifting and 

phase unwrapped algorithm (Towers, Towers et al. 2005, Zhang, Towers et al. 2006).  

Defining 
wx  and 

wy  as the physical location of control point on phase target along x and y 

direction respectively. Based on Eq. (5.1), 
wx  and 

wy  can be acquired by knowing two orthogonal 

absolute phase values. 
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where 
x  and 

y  are horizontal phase value and vertical phase value respectively. The number of 

LCD pixels per fringe period is expressed with 
pn . Defining A  as imaging parameter of a camera. 

The rotation matrix and the translation vector between mirrored screen’s coordinate system { '}L  

and the camera coordinate system are denoted as 'R  and 't  respectively.  Based on the pinhole 

model, A , 'R  and 't  can be calculated according to Eq. (6.2).     

 ' ' 'sm A R t M                                                              (6.2) 

Defining R  and t  as the rotation matrix and the translation vector between { }L  and the 

camera’s coordinate system. R  and t  can be obtained based on Eq. (6.3). 
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where d  represents the physical distance between the optical centre of the calibrated camera and 

the used optical flat. The normal vector of the optical flat is denoted as n . Eq. (6.4) is used to 

calculate n .  
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where e  represents a unit vector that is perpendicular to two optical flat’s normal vectors at the 

same time. Three arbitrary locations of optical flat are denotes as , ,i j k . Eq. (6.5) is used to 

obtain the value of e . 
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d  in Eq. (6.3) is obtained according to Eq. (6.6). 
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                                            (6.6) 

where I  is a 3x3 identity matrix.  

m  represents a camera pixel. The distortion of m  is denoted as m .  m  can be obtained based on 

Eq. (6.7). 

              ˆ ( , , , , , )m m A R t n d M m                                     (6.7) 

where M  is the physical position of a control point on the fringe-displaying screen. m̂  is 

reprojection pixel calculated based on M   and imaging parameters. The distortion for a certain 

camera pixel is a constant. The average value of m  is expressed as m . The corrected pixel *m  

is acquired according to Eq. (6.8). 

             *m m m                            (6.8) 

1A , 
2A , 

1R , 
1t , 

2R  and 
2t  are iteratively optimized by minimizing Eq. (6.9). 

   
1 2 1 1 2

* * * * * *

2 1 2[ , , , , , ] min( )A A R t R t e e                 (6.9) 

where 
1

*A , 
2

*A , 
1

*R , 
1

*t , 
2

*R  and *

2t  represent the optimized value of 
1A , 

2A , 
1R , 

1t , 
2R  and 

2t . 

The difference between *m  and m̂ of the main camera and the reference camera are expressed with 

1e  and 
2e  respectively, as shown in Eq. (6.10) and Eq. (6.11). 
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where 
1m  and 

2m  represent camera pixel of the main camera and the reference camera 

respectively. 
1m̂  and *

1m  represent the reprojection pixel and the corrected pixel of 
1m . 

1M  is the 

corresponding physical point on fringe-displaying screen of 
1m . 

2m̂  and *

2m  represent the 

reprojection pixel and the corrected pixel of 
2m . 

2M  is the corresponding physical point on the 

fringe-displaying screen of 
2m . The number of camera pixels and the number of calibration poses 

are denoted as g   and k  respectively.  

Fig. 6.2 summarizes the calibration process of the studied calibration technique. 

 

Figure 6.2 Summary of the calibration process of the studied calibration technique.  
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6.1.2 Experiment and results 

6.1.2.1 Simulation 

Fig. 6.3 shows a simulated stereo deflectometry system which is used to verify the studied 

calibration technique. The simulated system includes two sensors acting as the main camera and 

the reference camera and a fringe-displaying screen. An optical flat was simulated to enable the 

two sensors can capture fringe patterns displaying on the screen during calibration process. With 

the purpose of simulating real measurement noise, physical position noise varying within 0.005 

mm was randomly added into the physical position of control points on the fringe-displaying 

screen.  

 

Figure 6.3 The setup of a simulated stereo deflectometry system. 
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Figure 6.4 Effect of the simulated camera distortion. (a) Effect of radial distortion ; (b) effect of eccentric 

distortion; (c) effect of thin prism distortion; (d) an overall effect of three kinds of camera distortion. 

Camera distortion was simulated as shown in Fig. 6.4. Fig. 6.4(a), Fig. 6.4(b), Fig. 6.4(c) show the 

effect of radial distortion, eccentric distortion and thin prism distortion respectively. Fig. 6.4(d) 

shows an overall influence of radial distortion, eccentric distortion and thin prism distortion. A 

comparison experiment between a traditional calibration approach (Ren, Gao et al. 2015) and the 

studied calibration technique was conducted. Reprojection error is applied to represent calibration 

accuracy. Reprojection error was converted into a 1D vector from 2D matrix for a better 

demonstration. Fig. 6.5 shows three calibration results. Fig. 6.5(a) is calculated when no distortion 

exists in the system. The calibration result acts as a standard. Fig. 6.5(b) is calculated based on the 

traditional calibration approach. Fig. 6.5(c) is obtained using the studied calibration technique. The 

calibration result of the studied calibration technique is very close to the standard calibration result. 

In contrast, calibration result obtained based on traditional calibration approach is far from the 

result obtained based on the studied calibration technique. Based on the calibration results, an 
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optical flat was measured. Measurement results of traditional calibration approach and the studied 

calibration technique are compared in Fig. 6.6. Fig. 6.6(a) indicates the measurement result 

acquired based on standard calibration result. The PV of the measurement error of Fig. 6.6(a) is 

28.2 nm. This measurement result is used as a standard. Fig. 6.6(b) shows the measurement result 

acquired based on the calibration result of the traditional calibration approach. The PV of the 

measurement error of the traditional calibration approach is 513 nm. Fig. 6.6(c) shows the 

measurement result obtained based on the studied calibration technique. The PV of the 

measurement error is 28.3 nm which is similar to that of the standard calibration result.  

 

Figure 6.5 Comparison of calibration results. (a) Calibration results calculated when no distortion exists in 

the system; (b) calibration result calculated based on traditional calibration approach; (c) calibration result 

obtained with the studied calibration technique.   

 

Figure 6.6 Comparison of measurement results. (a) Measurement result acquired based on the standard 

calibration result; (b) measurement result acquired based on traditional calibration approach; (c) 

measurement result acquired based on the studied calibration approach. 

6.1.2.2 Experiments and discussion 

Experiments have been performed to test the studied calibration technique. Fig. 6.7 shows the 

applied stereo deflectometry system. An iPad Pro (https://www.apple.com/ipad-pro/) with a size 

of 12.9 inch is used to act as a fringe-displaying screen. iPad Pro can display fringe patterns 

produced by a computer under the control of Display Duet (https://www.duetdisplay.com/). Two 
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CCD sensors with model Lw235M from Lumenera (https://www.lumenera.com/) are used as the 

main camera and the reference camera. The resolution of the CCD sensors is 1616×1216 pixels. 

The applied camera lens is 35 mm fixed focal lens from Navitar (https://navitar.com/). The model 

of the lens is MVL35M23.  

 

Figure 6.7 The experiment setup. 

 

Figure 6.8 Calibration result of main camera and reference camera. (a) Calibration error along x direction of 

main camera obtained based on traditional calibration method; (b) calibration error along y direction of 

main camera obtained based on traditional calibration method; (c) calibration error along x direction of 

reference camera obtained based on traditional calibration method; (d) calibration error along y direction of 

reference camera obtained based on traditional calibration method; (e) calibration error along x direction of 

main camera obtained based on the studied calibration technique; (f) calibration error along y direction of 

main camera obtained based on the studied calibration technique; (g) calibration error along x direction of 

reference camera obtained based on the studied calibration technique; (h) calibration error along y direction 

of reference camera obtained based on the studied calibration technique. 
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An optical flat with / 20 flatness was applied and placed at nine calibration poses during 

calibration. The size of the optical flat is 4 inch, which is big enough to cover the whole camera 

filed. For each calibration pose of optical flat, based on phase-shifting technique and optimum 

frequency selection technique (Towers, Towers et al. 2005, Zhang, Towers et al. 2006), a 

horizontal absolute phase map and a vertical absolute phase map can be acquired. The physical 

location of control point on the fringe-displaying screen can be positioned based on its horizontal 

and vertical phase values. Camera pixels and the corresponding space points on fringe-displaying 

screen are extracted to conduct the calibration. Fig. 6.8 shows a comparison between the traditional 

calibration method (Ren, Gao et al. 2016) and the studied calibration technique. The calibration 

result obtained with traditional calibration method are shown in Fig. 6.8(a)-(d). Fig. 6.8(a) and Fig. 

6.8(b) show calibration error of main camera obtained with traditional calibration method along x 

and y directions. Fig. 6.8(c) and Fig. 6.8(d) show calibration error of reference camera obtained 

with traditional calibration method along x and y directions. A noticeable calibration error exists 

in the calibration result of traditional calibration method. Fig. 6.8(e)-(h) show the calibration result 

obtained with the studied calibration technique. Calibration error of main camera obtained with 

the studied calibration technique along x and y directions are shown in 6.8(e) and Fig. 6.8(f). 

Calibration error of reference camera obtained with the studied calibration technique along x and 

y directions are shown in 6.8(g) and Fig. 6.8(h). Calibration accuracy of the studied calibration 

technique is to a greater degree than traditional calibration method.  

Based on the calibration results, an optical flat with size of 2 inch was then measured. The flatness 

of the optical flat is / 20 . Fig. 6.9 shows the calculated gradient data with traditional calibration 

method and the studied calibration technique. Gradient data obtained with traditional calibration 

method along x and y directions are shown in Fig. 6.9(a)-(b). Gradient data obtained with the 

studied calibration technique along x direction and along y direction are shown in Fig. 6.9(c)-(d). 

Ideally, gradient data of an optical flat is a plane with no slope. Traditional calibration method lead 

to serious gradient error as shown in Fig. 6.9(a)-(b). Fig. 6.9(c)-(d) reflect that the studied 

calibration technique can significantly improve gradient calculation accuracy.  
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Figure 6.9 The calculated gradient data with traditional calibration method and the studied calibration 

technique. (a) Gradient data along x direction obtained with traditional calibration method; (b) gradient data 

along y direction obtained with traditional calibration method; (c) gradient data along x direction obtained 

with the studied calibration technique; (d) gradient data along y direction obtained with the studied 

calibration technique. 

Two measurement results were reconstructed based on the gradient data calculated with two 

calibration approaches respectively. In order to avoid the influence of reconstruction algorithm, 

the measurement results were reconstructed using the same integration technique (Ren, Gao et al. 

2016). A comparison between the measurement results are shown in Fig. 6.10. Fig. 6.10(a) shows 

the measurement error of traditional calibration method. The PV of the measurement error using 

the traditional calibration method is 282 nm. Fig. 6.10(b) shows the measurement error of the 

studied calibration technique. The PV of the measurement error using the studied calibration 

technique is 69.7 nm. Experimental results indicate that the studied calibration technique can 

acquire much better measurement accuracy than traditional calibration method.  
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Figure 6.10 A comparison between the measurement results. (a) The measurement error of traditional 

calibration method; (b) the measurement error of the studied calibration technique. 

6.2 Robustness improvement of holistic calibration  

6.2.1 Principle of the proposed search algorithm with an evaluation function 

 
Figure 6.11 The chosen camera pixels for calibration calculation. (a) Previous holistic calibration technique; 

(b) the proposed calibration method. 

Since the measured result is calculated based on the optical geometrical relation of the components 

in stereo deflectometry, the calibration accuracy plays an important role in the measurement 

accuracy. Holistic calibration technique (Ren, Gao et al. 2015, Xu, Gao et al. 2018) applies the 

screen in the system instead of an extra calibration board to calibrate the systemic parameters. 

Fringe-displaying screen displays a group of horizontal fringe patterns and a group of horizontal 
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fringe patterns. These patterns are phase-shifting pattern and have fringe frequency difference. 

Cameras in stereo deflectometry system capture these patterns through the reflection of a flat 

mirror. Both camera imaging parameters and systemic geometrical parameters are calculated based 

on camera pixels and their corresponding physical positions on fringe-displaying screen. In order 

to increase calculation speed, parts of camera pixels instead of full pixels are chosen to conduct 

the calculation. The chosen pixels of previous holistic calibration technique (Ren, Gao et al. 2015, 

Xu, Gao et al. 2018) are evenly distributed on the camera image plane as shown in Fig. 6.11(a). 

However, due to image distortion, the pixels especially those near image edge deviate from their 

theoretical positions, which results in obvious calibration error. Though distortion compensation 

approaches (Zhang 2000, Xu, Gao et al. 2017) have been proposed to solve the problem through 

iterative optimization algorithm, the compensation methods greatly depends on the input initial 

values. When the initial values have large calculation error caused by image distortion, the 

approaches will fail due to the wrong convergence.       

Based on the knowledge that distortion of the pixels near distortion centre can be ignored (Zhang 

2000), a calibration method is proposed to improve the accuracy of initial value, as shown in Fig. 

6.11(b). Firstly, a search window with a border length of 2d  is defined. The centre of the window 

coincides with image centre, as the red dot shown. Since the window size is small, the camera 

pixels within the window are not affected by distortion. Therefore, the calibration result calculated 

based on the pixels within the window should be accurate. Secondly, considering distortion centre 

and image centre no not normally coincide, the search window is moved within the image 

sequentially and an evaluation function is used to confirm the position having the minimum 

distortion effect. In order to achieve the proposed method successfully, two essential factors of the 

method are required to be researched: the size of the research window and the evaluation function. 

In order to determine the size of the search window, distortion centre is assumed to coincide with 

image centre. d  decreases from 
0d  to 0 in increments of a  as expressed in the following 

equation:  

                                                      0id d i a                                                                   (6.12) 
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where 
0d  equals half size of the image border length and i  increases from 0 to the integer part of 

0 /d a  in increments of 1. A linear mapping H  can be obtained based on the following equation: 

                                                      m H M                                                                     (6.13) 

where m  are camera pixels within a search window and M  are control points’ physical positions 

on the mirrored fringe-displaying screen. The deviation p  between m  and the calculated 

reprojected pixels m̂  under H  can be obtained based on the following equation:   

                                                     ˆ ( , )p m H M m                                                        (6.14) 

Because distortion is the main reason affecting the size of p , p  reaches the maximum when d  

equals 
0d  and decreases with decreasing of d . When the deviations of two adjacent 

id  have little 

difference, the corresponding d  can be treated as the proper border size of the search window 

used in the proposed calibration method. An equation is proposed to determine the proper border 

size by comparing the size of 
ip : 

                                                    
1( ) ( )i iRMS p RMS p                                                    (6.15) 

where RMS  means the root mean square.   is used to judge the proper border size of the search 

window according to the variation trend of 
ip . According to the experience,   can be set to 1.05. 

After determining the size of the search window, the next step is to move the window within 

camera image to find the true distortion centre. The camera imaging parameter A  is obtained 

according to Eq. (6.16).  

                                                   ' ' 's m A R t M                                                           (6.16) 

where m  are camera pixels within a search window and 'M  are control points’ physical locations 

on fringe-displaying screen. 'R  and 't  are rotation matrix and translation vector of the relation 

between mirrored screen coordinate system and camera coordinate system. With known 'R  and 't
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, the rotation matrix R  and translation vector t  of from real screen coordinate system to camera 

coordinate system are obtained according to the following equation: 

                                              
(1/ ( 2 )) '

(1/ ( 2 )) ( ' 2 )

T

T

R I nn R

t I nn t dn

   

   

                                                    (6.17) 

where n  represents the normal vector of the applied mirror. The distance from camera centre to 

the flat mirror is denoted as d . n  is obtained based on Eq. (6.18): 
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  

                                                                 (6.18) 

where e represents a unit vector and is perpendicular to two mirrors’ normal vector. Three 

arbitrary calibration poses of the applied mirror are denoted as , ,i j k . e is obtained based on 

Eq. (6.19). 
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                                                                              (6.19) 

d  and t  can be solved by the following equation: 
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                                                   (6.20) 

where I  is a 3x3 identity matrix. With the purpose of evaluating the calculated camera imaging 

parameter and systemic geometrical parameters, an equation is applied as following:  

                             ˆ ( , , , , , )m m A R t n d M m                                                          (6.21) 

where m̂  is the recalculated camera pixel based on the obtained , , , , ,M n d A R t . Deviation 

between m  and m̂  is denoted as m . During the movement of the search window, a series of 

m  can be obtained and the calibration results which achieves the minimum m  are used as the 

input initial value to conduct the following iterative optimization calculation. Fig. 6.13 summarizes 

the process of the studied calibration technique. 
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Figure 6.12 The flowchart of the studied calibration technique. 

6.2.2 Experiment and results 

A stereo deflectometry system is used to test the studied calibration technique, as shown in Fig. 

6.13. Two CCD sensors with model Lw235M from Lumenera (https://www.lumenera.com/) are 

used as the cameras in the stereo deflectometry system. The resolution of the sensor is 1616×1216 

pixels. Camera lens with 35 mm fixed focal length from Navitar (https://navitar.com/) is installed 

on the sensors. The model of the camera lens is MVL35M23. Under the control of Display Duet 

(https://www.duetdisplay.com/), an iPad Pro (https://www.apple.com/ipad-pro/) with size of 12.9 

inch is used to display fringe patterns.  
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Figure 6.13 The tested stereo deflectometry system. 

Firstly, an experiment was conducted to determine the size of search window. A window is located 

at the camera image centre. The pixels within the window are used to calculate the reprojection 

deviation p  based on Eqs. (6.13)-( 6.14). A series of p  can be obtained with half of the window 

size varying from 550 pixels to 50 pixels in increments of 50 pixels. Fig. 6.14 demonstrates the 

RMS of p  and the results demonstrate that p  decreases dramatically with decreasing d  

because of the influence of image distortion.    calculated based on Eq. (6.15) is demonstrated in 

Fig. 6.15. It is obvious that   decrease to less than 1.05 when 2d  is 400 pixels. Therefore, d  of 

the search window is decided to be 200 pixels. 
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Figure 6.14 Relation between ( )RMS p  and 2d . 

 

Figure 6.15 Relation between   and 2d . 

In order to verify the proposed algorithm, a comparison is conducted by using a calibration method 

with the proposed algorithm and a calibration method without the proposed algorithm. The initial 

values obtained based on the two calibration methods are compared first as shown in Fig. 6.16.  

Fig. 6.16 (a) shows the m  obtained without the proposed calibration method. Because the 
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influence of image distortion, there are serious calibration errors. By using the proposed algorithm, 

the minimum m  shown in Fig. 6.16(b) can be obtained with the search window moving within 

the camera image. The RMS of m  of the two calibration results are compared in Fig. 6.17. It is 

obvious that the proposed method improves the accuracy of initial value significantly. Based on 

the calculated initial values, the final calibration results can be obtained through iterative 

optimization algorithm. Fig. 6.18 (a) shows the final calibration result calculated based on the 

initial value obtained without the studied calibration technique. In contrast, Fig. 6.18 (b) shows 

the final calibration result calculated based on the initial value obtained with the studied calibration 

technique. The RMS of the final calibration error are compared in Fig. 6.19. It is obvious that the 

final calibration result obtained based on the proposed method is more accurate than the calibration 

result without the proposed method. The comparative experiment demonstrates the proposed 

algorithm can effectively enhance the robustness of the systemic calibration of stereo 

deflectometry. 

 

Figure 6.16 Comparison of accuracy of initial value calculation. (a) Without the proposed calibration 

method; (b) with the proposed calibration method. 



100 

  

 

 

Figure 6.17 RMS of m . 

 

Figure 6.18 Calibration error. (a) Based on the initial value obtained without the studied calibration 

technique; (b) based on the initial value obtained with the studied calibration technique. 
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Figure 6.19 RMS of calibration error. 

A comparison by measuring a concave mirror with / 8  surface accuracy was conducted based on 

the above calibration results. The concave mirror is from Edmund 

(https://www.edmundoptics.com/) with a stock number of 40-913. Measurement results of the test 

mirror is shown in Fig. 6.20. Fig. 6.20(a) shows measurement result obtained without the proposed 

calibration method. PV of the measurement error is 1.2 um. In contrast, the PV of the measurement 

error calculated with the studied calibration technique is 0.096 um, as shown in Fig. 6.20(b). It is 

obvious that the measurement result calculated with the studied calibration technique is more 

accurate than the measurement result calculated without the proposed method. 



102 

  

 

 

Figure 6.20 Comparison of measurement results. (a) Measurement result without the studied calibration 

technique; (b) measurement result with the studied calibration technique. 

6.3 Summary  

Systemic calibration plays an important role in the improvement of measurement accuracy of 

stereo deflectometry. This chapter studied a holistic systemic calibration technique for stereo 

deflectometry to increase the measurement accuracy of the system. By applying an iterative 

distortion compensation algorithm, the studied calibration method can significantly enhance the 

calibration accuracy. The flexibility and accuracy of the studied calibration technique have been 

tested by simulation and experimental results. In comparison of the measurement results of an 

optical flat, the PV of measurement error of the studied calibration technique is 69.7 nm, which is 

about four times better than traditional calibration method. 

With the purpose of improving the accuracy and robustness of stereo deflectometry’s calibration, 

a calibration method based on a search algorithm with an evaluation function is also researched in 

this chapter. Experimental results proved that the studied calibration technique could effectively 

enhance stereo deflectometry’s calibration accuracy and measurement accuracy. 
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7. Analysis of phase error influence 

A novel analysis method for stereo deflectometry is represented in this chapter to increase 

measurement accuracy of the system. With the purpose of studying the relation between gradient 

ambiguity and phase ambiguity in stereo deflectometry, an imaging mathematical model is 

investigated. Based on this model, the optimized pixel size of fringe-displaying screen and fringe’s 

period on the screen are researched. Works in this chapter generated one journal paper (Xu, Gao 

et al. 2018). 

7.1 Principle of the analysis method 

 

Figure 7.1 The studied mathematical model for stereo deflectometry. 

Because stereo deflectometry reconstructs the measured surface based on gradient data and phase 

data, the accuracy of gradient and phase play an important role in measurement accuracy of the 

system. With the purpose of analysing influence of gradient and phase, an imaging model is 

investigated as shown in Fig. 7.1. 
LP  represents a point on fringe-displaying screen. The image of 

LP  via specular surface’s reflection is denoted as '

LP . A camera with an optical centre of 
cO  

captures '

LP . The intersection of the measured surface and '

c LO P  is expressed with S . d represents 
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the distance between the tangent plane of S and 
LP . The intersection of image plane and '

c LO P  is 

I . Defining n  as the normal of S . Based on a triangle composed of I , S  and 
LP , n  can be 

obtained. Using I  and 
LP  represent the ambiguity of I  and 

LP . It is obvious that gradient 

calculation is influenced by I  and 
LP . 

LP  leads to a gradient ambiguity   as the green colour 

shown in Fig. 7.1. I  results in a gradient ambiguity   as the purple colour shown in Fig. 7.1. 

Defining 
x  represents the horizontal phase value of 

LP  and 
y  represents the vertical phase 

value of 
LP . The physical location of 

LP  on fringe-displaying screen is denoted as (
wx ,

wy ). Eq. 

(8.1) is used to calculate the relationship between (
wx , 

wy ) and (
x , 

y ).  

                                                                       
( / 2 )

( / 2 )

w p x

w p y

x n p

y n p
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 
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  
                                                            (7.1) 

where 
pn  represents pixel number of the displayed fringe per period. Screen pixel size is denoted 

as p . Defining (
cx , 

cy , 
cz ) as the coordinate of 

LP  in terms of camera coordinate system. Eq. 

(7.2) is applied to calculate (
cx , 

cy , 
cz ).  
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                                                            (7.2) 

where 
xf , 

yf  and 
zf  are the transformation from screen coordinate system to camera coordinate 

system along x , y  and z  direction. 
xf , 

yf  and 
zf  are only influenced by the definition of 

camera coordinate system and system coordinate system. Defining ( '

cx , '

cy , '

cz ) as the coordinate 

of '

LP  in terms of camera coordinate system. ( '

cx , '

cy , '

cz ) are calculated based on Eq. (7.3).  
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                                                         (7.3) 

where 
xg , 

yg  and 
zg  are the transformation from camera coordinate system to mirrored screen 

coordinate system along x , y  and z  direction. Only d  and n  can affect 
xg , 

yg  and 
zg . 
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Defining ( x , y ) as the location of I  in terms of camera coordinate system. Eq. (7.4) is used to 

calculate ( x , y ).  
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                                                                        (7.4) 

where f  is focal length of the camera. Defining (u , v ) as the location of I  in terms of camera 

pixel coordinate system. (u , v ) is calculated according to Eq. (7.5). 
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                                                                      (7.5) 

where 
0u  and 

0v  represent the location of original point in terms of camera pixel coordinate along  

u  and v  direction respectively. The coefficient between physical length and camera pixel are 

expressed as 
xd  along u  and 

yd  along v  direction. Defining 
wx  as the location ambiguity of 

LP  along x  direction and 
wy  as the location ambiguity of 

LP  along y  direction. Phase ambiguity 

of 
LP  along x  direction and y direction are denoted as  

x  and 
y . Eq. (7.6) is used to express 

the relation between (
x ,

y ) and (
wx , 

wy ).  
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                                                                      (7.6) 

Because 
x  equals 

y , Eq. (7.7) can be obtained by replace 
x  and 

y  in Eq. (8.6) with  .  
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                                                                      (7.7) 

Positioning ambiguity of  I  are denoted as u  along u  direction and v  along v  direction. 

Based on Eq. (7.1) - Eq. (7.5), the relationship between ( u , v ) and (
x , 

y ) can be deduced as 

shown in Eq. (7.8).  
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where 
1C , 

2C , 
3C  and 

4C  are obtained from Eq. (7.9). 
1C , 

2C , 
3C  and 

4C  are not affected by the 

parameters of fringe-displaying screen.  
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    (7.9) 

Eq. (7.10) can be deduced from Eq. (7.7) and Eq. (7.8) to calculate 
LP  and I .  
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                                 (7.10) 

Defining 
cd  represents the length of IS . The length of 

LP S  is denoted as 
Ld .   and   can be 

obtained based on Eq. (7.11) under the fact that I  is much smaller than I  and 
LP  is much 

smaller than 
Ld .  
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Defining   represents the overall gradient ambiguity of S . the normal of S  equals ( ) / 2  . 

Eq. (7.11) is deduced to reflect the relation between   and   based on Eq. (7.10) - Eq. (7.11).

         

                                                            

2 2

1 2 3 41
( )

2 2

p

cL

C C C Cn p

dd
 



  
                                      (7.12) 

With the purpose of increasing gradient calculation accuracy, two methods can be investigated 

based on Eq. (7.12). Decreasing phase ambiguity is one of the methods. Reducing the coefficient 

between gradient ambiguity and phase ambiguity is another method. Because 
1C , 

2C , 
3C , 

4C , 
Ld  

and 
cd  are influenced by both camera’s characteristic and the curvature of the surface under test, 

the influence of 
1C , 

2C , 
3C , 

4C , 
Ld  and 

cd  is hard to be analysed. Consequently, this chapter 

only investigates the influence of p  and 
pn  on measurement accuracy.  

When the screen is displaying fringe patterns, pixels of the screen samples continuous sinusoidal 

fringe patterns. The screen’s sampling error introduces a large portion of phase ambiguity. Based 

on the knowledge that increasing sampling frequency can increase the reducibility of original 

signal, phase ambiguity introduced by screen’s sampling error can be reduced by increasing 
pn . 

On the other hand, increasing 
pn  will enlarge the coefficient between gradient ambiguity and 

phase ambiguity. The enlargement of the coefficient decrease measurement accuracy of the 

measurement system.  

Now we discuss the influence of p . Decreasing p  can decrease the coefficient between gradient 

ambiguity and phase ambiguity, which is helpful to enhance the system’s measurement accuracy. 

Common LCD screen with pixel size of around 0.3 mm is used in conventional stereo 

deflectometry system (Petz and Tutsch 2005, Ren, Gao et al. 2015, Huang, Xue et al. 2016). Apple 

(https://www.apple.com/) investigates Retina Display technique that having much smaller pixel 

size (around 0.096 mm) comparing with conventional LCD screen. Consequently, comparison 
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between Retina Display screen and conventional LCD screen were conducted to test the above 

investigation.  

7.2 Experiments and results 

With the purpose of verifying the impact of 
pn  on gradient ambiguity and phase ambiguity, an 

experiment is conducted with a common LCD screen. The model of the LCD is Dell E151Fpp. 

The LCD consists of 1024×768 pixels. The size of each LCD pixel is 0.297 mm. A CCD sensor is 

used to capture the fringe patterns displayed on the LCD. The sensor is a Lumenera 

(https://www.lumenera.com/) camera with model number Lw235M. The resolution of the camera 

is 1616×1216 pixels. In order to investigate the influence of 
pn on phase error, 6 absolute phase 

maps were acquired by increasing 
pn  from 6 pixels to 16 pixels in increments of 2 pixels. The 

relation between 
pn and phase error was calculated based on the phase maps as shown in Fig. 7.2. 

When 
pn  increase from 6 pixels to 8 pixels, phase error decreases significantly. The descent trend 

of phase error become less obvious after 
pn  exceeds 8 pixels.  

In order to study the influence of 
pn  on gradient calculation error, the relation between gradient 

calculation error and 
pn  is obtained, as shown in Fig. 7.3. The gradient error can be calculated by 

using the known phase error and 
pn  according to Eq. (7.12). Gradient error touches the bottom 

when 
pn  is 8 pixels. After 

pn  exceeds 8 pixels, gradient error increases. The reason for this trend 

is because 
pn  impacts gradient ambiguity by influencing gradient ambiguity coefficient on one 

hand. On the other hand, 
pn  affects gradient ambiguity by influencing screen’s sampling error. In 

a word, with the purpose of decreasing stereo deflectometry’s gradient ambiguity, 
pn  should 

equals 8 pixels. 
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Figure 7.2 The relation between 
pn and phase error. 

 

Figure 7.3 The variation of gradient error.  
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Figure 7.4 Phase error of iPad Pro and traditional screen. 

iPad Pro (https://www.apple.com/uk/ipad-pro/) is a screen based on Retina Display technique, 

which has smaller pixel size than traditional screen. In order to test the phase error difference of 

iPad Pro and the traditional screen. An experiment was conducted to compare phase error of the 

two types of screen. The phase error was calculated under 
pn  equalling 8 pixels. The experimental 

results is shown in Figure 7.4. iPad Pro’s  phase error is 0.023 rad while tradition screen’s phase 

error is 0.025 rad. The experimental results demonstrate the influence of the two screen on phase 

error are very close.  

A stereo deflectometry system was simulated to test the impact of p . Fig. 7.5 shows the simulated 

system which contains two sensors and a fringe-displaying screen. Based on the experimental 

result of Fig. 7.4, phase noise randomly varying within 0.025 rad was added into the simulated 

phase maps. In an actual measurement process, iPad Pro need to work under the control of Duet 

Display (https://www.duetdisplay.com/) to display fringe patterns generated by a computer. In this 

case, the equivalent pixel size of iPad Pro is 0.128 mm rather than its original pixel size 0.096 mm. 

Consequently, two measurement result were obtained based on the simulated stereo deflectometry 

system. To simulate the iPad Pro’s pixel size and traditional screen’s pixel size. One measurement 
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result is obtained when p  equals 0.297 mm. The other measurement result is calculated when  p  

equals 0.128 mm. Fig. 7.6 shows the measurement results. When p  equals 0.297 mm, PV of the 

obtained measurement error is 53.7 nm as shown in Fig. 7.6(a). In contrast, PV of the obtained 

measurement error is 22.6 nm when p  equals 0.128 mm as shown in Fig. 7.6(b). The reason for 

the experimental results is because decreasing of p  can decrease the coefficient between the 

gradient ambiguity and phase ambiguity. 

 

Figure 7.5 The simulation setup. 



112 

  

 

 

Figure 7.6 Measurement result. (a) Measurement result obtained when p  equals 0.297 mm; (b) 

measurement result obtained when p  equals 0.128 mm. 

7.3 Summary 

With the purpose of improving stereo deflectometry’s measurement accuracy, this chapter 

investigate a mathematical model to studied the influence of phase ambiguity and gradient 

ambiguity in stereo deflectometry. Pixel size of fringe-displaying screen and the occupied LCD 

pixels per fringe period are researched through systematically analysing their influence on phase 

ambiguity and gradient ambiguity. Experimental results confirm the analysis described in this 

chapter could considerably increase stereo deflectometry’s measurement accuracy. 
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8. Analysis of geometric parameters influence 

This chapter presents a novel analysis of the geometric parameters of stereo deflectometry system 

to improve the system measurement accuracy. Reconstruction result of stereo deflectometry is 

integrated with the calculated normal data of the measured surface. Geometric parameters of the 

stereo deflectometry system affect the measurement accuracy by affecting the calculation accuracy 

of the normal data. In this chapter , four geometric parameters of stereo deflectometry system are 

analyzed, including the distance between main camera and the measured object surface, the angle 

between main camera ray and surface normal, the distance between the fringe displaying screen 

and object and the angle between main camera and reference camera. The influence of the 

geometric parameters to the measurement accuracy are researched. Experiments are performed 

using simulated and actual data and the results confirm the effects of these four parameters on the 

measurement results. Works in this chapter generated one journal paper (Performance analysis and 

evaluation of geometric parameters in stereo deflectometry, accepted). 

8.1 Principle of the analysis method of the geometric parameters 

  
Figure 8.1 The arrangement of stereo deflectometry. 

There are three principle error sources that directly affect measurement accuracy of a stereo 

deflectometry system: calibration error, phase error and gradient calculation error. Other error 
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sources impact on measurement accuracy by acting on the three error sources. Fig. 8.1 shows the 

arrangement of the relevant components in a stereo deflectometry system. 
dL  is the distance 

between main camera and the measured object surface.   denotes the angle between main camera 

ray and surface normal. 
sL  represents the distance between fringe displaying screen and object. 

The angle between main camera and reference camera is denoted as  . The geometric parameters

 , 
sL , 

dL , and   are analysed for their influence on the three error sources and overall 

measurement accuracy. The four parameters are independent of each other in geometry. Fig. 8.2 

shows the relationship between the geometric parameters and error sources. The arrows in this 

figure indicates that the factor of the arrow tail affects the error source of the arrow head. The 

geometric parameters affect gradient calculation accuracy independently. Though the distance 

between screen and object also impacts the phase accuracy through its influence on defocus degree 

of fringe patterns, the impact from phase accuracy is independent with the influence caused by 

other geometric parameters. Therefore, the influence of the geometric parameters on the 

measurement accuracy are not coupled. An overall flowchart to clarify the error analysis procedure 

is shown in Fig. 8.3. Four error models are investigated to analyse the influence of the geometric 

parameters. The analysis conclusions are verified through simulation and actual experiment by 

modifying measuring conditions. Finally, appropriate combination of geometric parameters is 

obtained. 

 
Figure 8.2 The relationship between the geometric parameters and error sources. 
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Figure 8.3 The procedures of error analysis. 

8.1.1 Influence of    

 

Figure 8.4 Relative positions of the imaging plane of a camera, the measured surface, and the mirrored 

screen. 
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Through the reflection of the measured surface, the image of the displaying screen can be captured 

directly by the camera in a deflectometry system. The relative positions of the imaging plane of 

the camera, the measured surface, and the mirrored screen are depicted in Fig. 8.4. Based on a 

pinhole model, a point '

LP  on the mirror screen is captured by the camera. I  is the image of '

LP  on 

the imaging plane. '

LP  and I  denote the location uncertainty caused by phase error on the 

mirrored screen and imaging plane respectively. When the measured surface is located at S , the 

surface is perpendicular to the camera ray. '

LP  results in an uncertainty 
1S  on the measured 

surface. In contrast, when the measured surface moves to 'S  where   is not equal to 0, the 

uncertainty 
2S  caused by '

LP  on the measured surface can be described as: 

                        
'

2 1

1 1

cos (1 / )cos
L

s d

S S P
L L

  
 

 


                                      (8.1) 

The uncertainty depth Z  along z  direction can be calculated as: 

            
'tan

(1 / )
L

s d

Z P
L L


 


                                                            (8.2) 

It is obvious that 
2S  and Z  increase with increasing   according to Eqs. (8.1)-(8.2).  

8.1.2 Influence of Ls   

 

Figure 8.5 Illustration of the influence of Ls . 
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In order to illustrate the influence of Ls , the screen of a stereo deflectometry system is placed at 

D  firstly and then moved to 'D , as shown in Fig. 8.5. I  is the image of a point P  on the screen 

through the reflection of the measured surface. The normal n  of the surface can be calculated based 

on incident ray PS  and reflection ray SI  according to the reflection law. Because of the influence 

of phase error, there is a location uncertainty P  for P . 
1n  and 

2n  are the calculated normal 

values affected by P  when the screen is located at Screen 1 and Screen 2 respectively. 
1  denotes 

the angle difference between 
1n  and n . 

2  represents the angle difference between 
2n  and n . 

Since Ls  are much larger than P , the value of 
1  and 

2  can be calculated according to Eq. 

(8.3): 

      
2

P

Ls


 


                                                                          (8.3) 

where   is the normal uncertainty caused by P . It is clear that   decreases with the increase of 

Ls  according to Eq. (8.3). However, there are other factors limiting the length of Ls  in a stereo 

delfectometry system. One is because the cameras in stereo deflectometry are required to focus on 

the measured surface, the fringe patterns on the screen are defocused due to the length of Ls , 

which results in the increase of P  and  . In addition, the curvature of the measured surface blurs 

the mirrored screen. The increase of Ls  enlarges the degree of fuzziness, which leads to the 

increase of   as well. 
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8.1.3 Influence of dL   

 

Figure 8.6 Illustration of the influence of 
dL . 

A camera is placed at C  and 'C  successively to analyse the influence of dL , as show in Fig. 8.6. 

1O  and 
2O  are the optical centre of C  and 'C  respectively. The location uncertainty of I  is 

denoted as I  due to the influence of phase error. 
1n  and 

2n  are the calculated normal values 

based on C  and 'C  respectively considering the influence of I . The calculation error of 
1n  and 

2n  are represented as 
1  and 

2 . Since dL  are much larger than I , 
1  and 

2  can be calculated 

based on Eq. (8.4): 

                        
2 d

I

L


 


                                                                 (8.4) 

where   is the normal uncertainty caused by I . On one hand,   decreases with the increase of 

dL  according to Eq. (8.4). On the other hand, based on the analysis of Eqs. (8.1)-(8.2), increasing 

dL  enlarges 
2S  and Z , which leads to the measurement error on the other hand. However, if the 
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camera has a long focus length, dL  is far greater than sL  and Eqs. (8.1)-(8.2) can be simplified to 

Eqs. (8.5)-(8.6): 

 

                                '

2 1

1 1

cos cos
LS S P  

 
                                              (8.5) 

         
'tan Lz P                                                                        (8.6) 

Therefore, the influence of the change of dL  on 
2S  and Z  can be neglected. 

8.1.4 Influence of    

 

Figure 8.7 Illustration of the influence of  . 
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Figure 8.8 Enlarged view of the calculated normal values. (a) The enlarged view of 
1S ; (a) The enlarged view 

of 
2S . 

The influence of  is researched in Fig. 8.7. Main camera is placed at MC . Reference camera is 

tested at RC  firstly and then moved to 'RC  to investigate the influence of  . 
1O , 

2O  and '

2O  are 

the optical center of MC , RC  and 'RC  respectively. 
0S  is a point on the measured surface and 

1I  

is the image of 
0S  on MC . '

1P  denotes the intersection of the camera ray 
1 0I S  and the mirrored 

screen. 
1P  represents the actual point on the Screen of 

'

1P . The normal n  of 
0S  can be 

calculated according to the triangular relationship composed of 
1P , 

0S , and 
1I  according to the 

reflection law. Based on the same principle, normal vectors of 
1S  and 

2S  which are two points on 

the camera ray of 
1 0I S  can be calculated. Fig. 8.8(a) is the enlarged view of 

1S . 
11n , 

21n  and 
31n  

denote the calculated normal vectors of 
1S  based on MC , RC  and 'RC  respectively. Similarly, 

2S  is enlarged in Fig. 8.8(b). The calculated normal vectors of 
2S  from MC , RC  and 'RC  are 

denoted as 12n , 
22n  and 32n . Phase error leads to a measurement uncertainty for each calculated 

normal vector, as 
11 , 

21 , 
31 , 

12 , 
22 , 

32  shown in Fig. 8.8. It is clear that the calculated normal 

vectors from MC  and RC  are overlapped. Therefore, points between 
1S  and 

2S  would be 
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wrongly judged to belong to the measured surface when using MC  and RC . In contrast, there is 

no overlapping between the calculated normal vectors based on MC  and 'RC . 
1S  and 

2S  can be 

determined correctly to be not the points on the measured surface. The above analysis indicates 

that increasing   can increase the system measurement accuracy. 

8.2 Simulation test 

Simulations were performed to test the proposed performance analysis. The simulated main 

camera and reference camera both have a resolution of 1616×1216 pixels. Pixel pitch of the 

cameras is 0.0035 mm. Fringe displaying screen in the simulation has a resolution of 1024×1024 

pixels and a 0.294 mm pixel pitch. Through the reflection of a simulated flat specular surface, 

sinusoidal fringe patterns whose period occupies eight pixels of the screen are displayed in turn 

and captured by the cameras simultaneously. In order to simulate actual measurement 

environment, random errors are added into the physical locations of the screen and the camera 

pixel location based on general experiment results. 

8.2.1 Verification of the analysis of    

A simulation was performed to test the influence of  . dL , 
SL ,   in the simulation are 300 mm, 80 

mm and 10o respectively. Random errors with a maximum value of 0.0178 mm and 0.05 pixels 

were added into the physical locations of screen and camera pixel location respectively.   varies 

from 0o to 25o. The relationship between   and measurement error is acquired as shown in Fig. 

8.9(a). 

Figure 8.9(a) shows that with increasing  , measurement error increases gradually. The increasing 

trend verifies the analysis of section 8.1.1. Therefore,   should be 0o theoretically. However, 

because the fringe patterns on the screen are required to be captured by the cameras through the 

reflection of the surface,   cannot be 0o in an actual stereo deflectometry system. In general,   

should be as small as possible. 
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8.2.2 Verification of the analysis of SL   

SL  varies from 40 mm to 200 mm in increments of 40 mm. According to the results of actual 

experiment, random errors with a maximum values of 0.0170 mm, 0.0178 mm, 0.022 mm, 0.033 

mm and 0.051 mm are added to the physical locations of the screen when SL  is 40 mm, 80 mm, 

120 mm, 160 mm and 200 mm respectively. Random errors with a maximum value of 0.05 pixels 

were added to the camera pixel location. The relationship between SL  and measurement error is 

shown in Fig. 8.9 (b). 

Fig. 8.9 (b) shows that the measurement error decreases dramatically when SL  increases from 40 

mm to 120 mm. The main reason for this decreasing trend is that the gradient uncertainty caused 

by location uncertainty on the screen decreases with increasing SL  according to Eq. (8.3). 

However, because phase errors are magnified with the increase of SL , the measurement error 

increases gradually when SL  changes from 120 mm to 200 mm. 

8.2.3 Verification of the analysis of dL   

SL ,  , and   are 80 mm, 10o, 0o respectively in a simulation for study dL . Increasing dL  from 

200 mm to 700 mm in increments of 50 mm, Fig. 8.9(c) shows the relationship between dL  and 

measurement error.  

Simulation result shows that with increasing dL , measurement error decreases gradually. The 

decreasing trend confirms the analysis of section 8.1.3. Hence, theoretically dL  should be as large 

as possible. However, large dL  results in a similarly large sized stereo deflectometry system. In 

general, dL  should be determined by overall considering the measurement accuracy and the 

application.  
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8.2.4 Verification of the analysis of    

The relationship between   and measurement error is studied through a simulation with SL , dL

,   equaling 80 mm, 300 mm and 0o respectively. Fig. 8.9(d) shows the experimental result which 

reflects that measurement error decreases gradually with increasing   and is almost stable from 

10o. The decreasing trend verifies the analysis of section 8.1.4. Therefore, in general,   should 

be no less 10o.  

 

Figure 8.9 The obtained relation between geometric parameters and measurement error based on simulation 

results. (a) Relation between   and measurement error; (b) relation between 
SL  and measurement error; (c) 

relation between 
dL  and measurement error; (d) relation between   and measurement error. 
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8.3 Actual experiments 

 

Figure 8.10 The setup of stereo deflectometry system. 

Based on the above analysis and simulation results, a measurement system was set up as shown in 

Fig. 8.10. Two Lumenera CCD sensors (Model Lw235M) are used as main camera and reference 

camera of the system. Resolution of the sensors is 1616×1216 pixels. Chapter 7 have determined 

that decreasing the pixel size of the fringe displaying screen can increase measurement accuracy. 

iPad Pro (https://www.apple.com/uk/ipad-pro/) has a ultra-fine pixel size of 0.096 mm which is 

much smaller than the most common display pixel size (around 0.3 mm). Therefore, under the 

control of Display Duet (https://www.duetdisplay.com/), an iPad Pro with a 12.9 inch size is 

applied as the displaying fringe screen. The system was calibrated with the method proposed in 

Chapter 6.  

Firstly, experiments were conducted to investigate the influence of 
SL  on phase error. Since the 

cameras in a stereo deflectometry system are required to focus on the measured surface, 
SL  makes 

the mirrored screen out of the depth of focus of the cameras and results in a blur of the captured 

fringe patterns. Phase error increases with the increase of the degree of fuzziness, which leads to 

a decrease in measurement accuracy. The relation between 
SL  and phase error is investigated 

based on an actual experiment. Errors of absolute phase maps can be obtained when 
SL  varies 
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from 0 mm to 200 mm in increments of 40 mm by applying phase-shifting and phase unwrapping 

technique (Zhang, Towers et al. 2006). Fig. 8.11 shows the experiment result. When 
SL  is 0 mm, 

phase error is 0.0415 rad which is significantly larger than the phase error (0.0151 rad) obtained 

when 
SL  is 40 mm. The reason for this phenomenon is because when the camera is focused on the 

mirrored screen, LCD pixel grids and moiré fringe (Xu, Gao et al. 2017) are recorded by the 

camera. The recorded pixel grids and moiré fringe generate large errors on phase maps. When 
SL  

is larger than 40 mm, phase error increases dramatically with increasing 
SL . The main reason 

leading to this increasing trend is that the degree of defocus of the mirrored screen is magnified 

with 
SL  increasing. Experimental results of this experiment were used to provide the correct phase 

errors for the above simulation study of 
SL .  

 

Figure 8.11 Relation between 
SL  and phase error. 

Besides image blurring brought from defocus, curvature of the measured surface also blurs the 

mirrored fringe patterns. In order to demonstrate this point, an experiment was carried out by 

capturing fringe patterns reflected from mirrors with different curvatures. Three mirrors were 

tested: a flat mirror, a concave mirror with 200 mm radius of curvature, and a concave mirror with 

100 mm radius of curvature. The captured fringe patterns when 
SL  is 80 mm and 120 mm are 
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shown in Fig. 8.12. Results demonstrate with increasing mirror curvature, fringe density decreases 

and blurring increases. Increasing 
SL  will amplify the influence of the mirror’s curvature. 

Therefore, 
SL  should be around 80 mm by comprehensive considering measurement accuracy and 

measurement range of mirror curvature.  

 

Figure 8.12 Relation between mirrored fringe pattern and mirror curvature. (a) Flat mirror when 
SL  is 80 

mm; (b) concave mirror with 200 mm radius of curvature when 
SL  is 80 mm; (c) concave mirror with 100 

mm radius of curvature when 
SL  is 80 mm; (d) flat mirror when 

SL  is 120 mm; (e) concave mirror with 200 

mm radius of curvature when 
SL  is 120 mm; (f) concave mirror with 100 mm radius of curvature when 

SL  

is 120 mm. 

An additional experiment was performed using an optical flat with / 20 flatness from Edmund 

(https://www.edmundoptics.com/).   was changed to four values in an experiment: 10o, 15o, 20o 

and 25o. Fig. 8.13(a) shows the measurement errors increase significantly with increasing  . This 

confirms the results of the analysis described earlier. Altering 
SL  at 60 mm, 80 mm, 100 mm and 

120 mm, Fig. 8.13 (b) shows the measurement errors have a similar trend to the simulation results. 

Fig. 8.13 (c) shows the influence of 
dL  on measurement accuracy. Increasing 

dL  from 240 mm to 

320 mm in increments of 20 mm, measurement errors decrease gradually during the process. This 

result corresponds to the above analysis of 
dL . Fig. 8.13 (d) shows the trend of measurement errors 
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for four different values of  : 10o, 15o, 20o and 25o. Measurement errors change slightly from 

10o, which corresponds to the trend as seen in the simulation.  

 

Figure 8.13 The obtained relation between geometric parameters and measurement error based on actual 

experimental results. (a) Relation between   and measurement error; (b) relation between 
SL  and 

measurement error; (c) relation between 
dL  and measurement error; (d) relation between   and 

measurement error. 
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8.4 Summary 

The arrangement of the screen and the cameras in a stereo deflectometry system has influence on 

the measurement accuracy of the system. In order to analysis the influence of the arrangement and 

improve the measurement accuracy of stereo deflectometry, four geometric parameters, the angle 

between main camera and reference camera, the angle between the main camera ray and the normal 

of the measured surface, the distance between the main camera and the measured surface, and the 

distance between the screen and the measured surface, are investigated through error model 

analysis, simulation test and experimental verification. This performance analysis will optimize 

the design of a stereo defletometry system, decreasing measurement error caused by system 

component positioning error. In the next chapter, a stereo deflectometry system is set up based on 

the analysis in this chapter. 
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9. Experiment evaluation and future work 

This chapter presents experimental results to evaluate the measurement accuracy of an optimised 

stereo deflectometry system. According to the investigation of Chapter 7, a stereo deflectometry 

system using an iPad Pro as the fringe-displaying screen was constructed. The arrangement of the 

system such as cameras, display screen and the measurement object were optimised based on the 

performance analysis studied in Chapter 8. The system was calibrated using the camera calibration 

and systemic calibration techniques investigated in Chapter 4-6. Evaluation experiments were 

performed by measuring a given optical flat and a given concave mirror.  

This chapter also summarises the outcomes of this research and highlights the contribution to 

knowledge in the relevant research fields. Finally, the future work of the research is discussed. 

9.1 Experiment evaluation 

9.1.1 System and measurement results 

Fig. 9.1 shows a stereo deflectometry system designed based on the investigation of the above 

chapters. This system uses an iPad Pro as the fringe-displaying screen to display fringe patterns 

during measurement process. According to the study of chapter 7, the occupied screen pixel 

number per fringe period is set to eight pixels. Two CCD sensors from Lumenera 

(https://www.lumenera.com/) with 35 mm fixed focal lens are used as the main camera and the 

reference camera in stereo deflectometry. The model of the sensors is Lw235M. The image 

resolution of the sensors is 1616×1216 pixels. Geometric parameters of the measurement system 

were determined according to the studied performance analysis in Chapter 8.   is 10o and dL  

is 300 mm in consideration of the size limit of the measurement system. SL  is chosen to be 80 

mm. In order to guarantee that the displayed patterns can be ‘see’ by the cameras,   is designed to 

be 10o. The measurement system was calibrated based on the calibration technique described in 

Chapter 4-6.  
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Figure 9.1 A designed stereo deflectometry system.  

With the purpose of evaluating the system’s measurement accuracy, an optical flat with / 20  

flatness was tested with the system. The size of the optical flat is 2 inch. Fig. 9.2 shows one of the 

captured images with fringe information in the main camera. Fig. 9.2(a) is one of the captured 

images with horizontal fringe pattern. Fig. 9.2(b) is one of the captured images with vertical fringe 

pattern. By applying phase shifting and phase unwrapping algorithm, absolute phase maps can be 

obtained from the fringe patterns. The obtained absolute phase maps of the measured optical flat 

in the main camera are shown in Fig. 9.3. Fig. 9.3(a) is the absolute phase map extracted from the 

horizontal fringe patterns. Fig. 9.3(b) is the absolute phase map extracted from the vertical fringe 

patterns. Fig. 9.4 shows the measured gradient information of the optical flat based on the gradient 

calculation algorithm described in Chapter 3. Gradient data along x direction and along y direction 

are shown in Fig. 9.4(a) and Fig. 9.4(b) respectively. By using the integration technique studied 

by Ren et al. (Ren, Gao et al. 2016), the 3D form of the measured surface was reconstructed based 

on the gradient information. A plane was fitted based on the 3D form data and was used as a 

benchmark to evaluate the measurement accuracy. Fig. 9.5 shows the deviation between the 

measured 3D form and the plane. The PV of the deviation is 69.7 nm.  
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Figure 9.2 One of the captured images with fringe information in the main camera. (a) One of the captured 

images with horizontal fringe pattern; (b) one of the captured images with vertical fringe pattern. 

 

Figure 9.3 The obtained absolute phase maps of the measured optical flat in main camera. (a) Horizontal 

absolute phase map; (b) vertical absolute phase map. 
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Figure 9.4 The obtained gradient information. (a) Gradient data along x direction; (b) gradient data along y 

direction. 

 

Figure 9.5 Measurement error of an optical flat. 

The system was also tested with a concave mirror from Edmund 

(https://www.edmundoptics.com/). Fig. 9.6(a) shows the measured concave mirror. The surface 

accuracy of the mirror is / 8 .  One of the captured images in the main camera with deformed 

fringe information is shown in Fig. 9.6(b). The diameter of the measurement field of the system is 

https://www.edmundoptics.com/
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about 2 inches. The test mirror is larger than the measurement field, therefore central section of 

the mirror is measured, as shown in Fig. 9.6(b). Fig. 9.7(a) shows the absolute phase map of the 

concave mirror extracted from the horizontal fringe patterns. Fig. 9.7(b) shows the absolute phase 

map of the concave mirror extracted from the vertical fringe patterns. The reconstructed 3D form 

of the testing concave mirror is shown in Fig. 9.8(a). Fig. 9.8(b) shows the difference between the 

reconstructed 3D form and the surface parameters provided by the manufacturer. The PV of the 

difference is 154.2 nm. The experimental results of an optical flat and a concave mirror confirm 

the designed stereo deflectometry system can acquire the form information of a specular surface 

with a high precision.  

 

Figure 9.6 A concave mirror was measured by the system. (a) The measured concave mirror; (b) one of the 

captured images from the main camera with deformed fringe information.  
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Figure 9.7 The obtained absolute phase maps of the measured concave mirror in the main camera. (a) 

Horizontal absolute phase map; (b) vertical absolute phase map. 

 

Figure 9.8 Measurement result of a stock concave mirror. (a) The obtained form of the mirror; (b) the 

difference between the measurement result and the surface parameters provided by the manufacturer. 

9.1.2 Summary 

Based on the investigated calibration algorithms, phase analysis and performance analysis method, 

a stereo deflectometry system was designed and optimised. In order to evaluate the measurement 

accuracy of the designed system, two evaluation experiments were conducted. Experimental 

results show the measurement accuracy of the system can reach tens of nanometres. 
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9.2 Conclusions and future work 

9.2.1 Summary of contributions 

This thesis investigates key techniques of a stereo deflectometry system to improve the 

measurement accuracy of the system.  

The first contribution of this thesis is the development of a camera calibration technique based on 

phase target. Camera distortion is eliminated with an iterative distortion compensation technique. 

Defocus techniques and fitting and interpolation techniques are developed to improve the feature 

extraction accuracy of the phase target. Comparing with traditional camera calibration methods, 

the developed camera calibration technique can achieve better calibration accuracy. 

The second contribution of this thesis is the development of a calibration technique for calibrating 

non-overlapping camera system. The developed calibration technique is more suitable for stereo 

deflectometry than other calibration methods explored for non-overlapping camera system. 

Experimental results verified the flexibility and accuracy of the developed calibration technique. 

The third contribution of this thesis is the development of a systemic calibration technique for 

stereo deflectometry. In order to improve the measurement accuracy of the system, a systemic 

calibration technique is developed based on the investigations described in Chapter 4 and Chapter 

5. By applying an iterative distortion compensation algorithm, the developed calibration technique 

can significantly enhance calibration accuracy. The flexibility and accuracy of the developed 

calibration technique have been tested by simulation and experimental results. In a measuring of 

an optical flat, the PV of the measurement error using the developed calibration technique is 69.7 

nm, which is about four times better than the traditional calibration method. 

The fourth contribution of this thesis is the development of a search algorithm with an evaluation 

function for increasing the accuracy and robustness of stereo deflectometry’s calibration process. 

The developed algorithm can solve the low-accuracy initial value problem caused by image 

distortion. Experimental results prove the developed calibration technique can effectively enhance 

stereo deflectometry’s calibration accuracy and measurement accuracy. The RMS of calibration 

error can be reduced to 0.05 pixels from 0.31 pixels by using the developed algorithm. 
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The fifth contribution of this thesis is the development of a mathematical model to study the 

influence of phase ambiguity and gradient ambiguity in stereo deflectometry. The pixel size of the 

fringe-displaying screen and the occupied LCD pixels per fringe period are investigated through 

systematically analysing their influence on phase ambiguity and gradient ambiguity. Experimental 

results confirm the analysis developed in this thesis could considerably enhance stereo 

deflectometry’s measurement accuracy. 

The sixth contribution of this thesis is the development of a performant analysis for a stereo 

deflectometry system. This analysis is developed to improve the system’s measurement accuracy. 

Four geometric parameters of the system are analysed based on the investigated error models. 

Experiments were performed based on simulation test and experimental verification. Experimental 

results confirm the effects of these four parameters on the measurement results. 

9.2.2 Future work 

Detailed work in the development of the key techniques of stereo deflectometry in this thesis 

revealed more interesting issues, some of which require to be investigated further:  

 In Chapter 9, the tested mirrors have high form accuracy and are treated as benchmarks 

to evaluate the stereo deflectometry system’s measurement accuracy. In order to make 

the evaluation more convincing, the measurement results obtained with stereo 

deflectometry need to be compared with interferometry such as a ZYGO Verifire 

interferometer system (https://www.zygo.com/?/met/interferometers/) or 4D 

interferometer.   

 The stereo deflectometry system described in this thesis can only accurately measure 

the surface with small gradient. When measuring a surface with big gradient surface, 

the measurement accuracy of the system cannot reach nanometres’ level because the 

curvature of the measured surface leads to big phase error. New calibration method and 

imaging model need to be investigated for the applications of large gradient specular 

surfaces to enable the stereo deflectometry for these kind of applications.  

 The current applied fringe-displaying screen in a stereo deflectometry system is not an 

ideal screen. For example, there is a glass layer in front of its displaying plane. The 

refraction of the light through the glass layer will cause errors in the calibration and 

https://www.zygo.com/?/met/interferometers/interferometer.htm
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measurement processes. The influence of the glass layer on measurement accuracy 

need to be considered in order to further increase the measurement accuracy of the 

system.  

 The camera calibration method described in this thesis is based on pinhole model. This 

model is simplified imaging model which cannot match real imaging process perfectly.  

It will bring errors to the calibration and measurement of stereo deflectometry. A new 

imaging model which can represent the real imaging process is necessary in order to 

further improve calibration accuracy.  

 Introducing data fusion to the system by using different field view CCD cameras to 

improve surface measurement accuracy. When deflectometry is used for measuring 

large specular surfaces, lateral resolution is significantly decreased. By installing the 

third CCD camera with a smaller field view can result in the surface measurement with 

increased lateral resolution. By fusing the two sets of measurement together, surface 

measurement may be improved.  
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