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Abstract

Obtaining three-dimensional (3D) shape data of specular surfaces plays an increasingly important
role in the quality control and function evaluation of high value-added industry, such as space,

automobile, Photovoltaics, integrated circuits and so on.

In recent years, stereo deflectometry has been widely studied and applied for obtaining form
information of freeform specular surfaces. Theoretically, the global form measurement accuracy
of stereo deflectometry can be up to nanometre. However, the sources of errors limit the

measurement accuracy of the current stereo deflectometry application at the scale of submicron.

To this end, this thesis documents the design and development of the calibration methods, error
analysis and compensation in the field of stereo deflectometry. To limit the influence of system
distortion, a novel holistic calibration technique utilising iterative distortion compensation
algorithm has been designed and developed. A search algorithm with an objective function has
been developed to solve the low-accuracy initial value problem caused by image distortion and
imaging model error. With the intention of decreasing the impact of the phase error in stereo
deflectometry, a novel imaging model has been explored the nexus between phase inaccuracy and
gradient error. The period of fringe displayed on displaying screen and pixel size of the screen has
been studied to augment measurement accuracy through taking into account their impact on
sampling phase inaccuracy and gradient miscalculation. In addition, four geometric parameters of
a stereo deflectometry system are analysed and evaluated. These are the distance between the main
camera and the measured object surface, the angle between main camera ray and surface normal,
the distance between the fringe-displaying screen and object and the angle between the main
camera and the reference camera. The influence of the geometric parameters on the measurement

accuracy is evaluated.

A stereo deflectometry system is designed, optimised and calibrated based on the investigation of
this thesis. Two evaluation experiments have been conducted and experimental results indicate the

system’s measurement accuracy can achieve tens of nanometres.
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1. Introduction

1.1 Overview

Freeform specular surface commonly refers to the surfaces having non-symmetric shapes and
reflection property (Pollicove 2000, Nelson E. Claytor 2004, Jiang, Scott et al. 2007, Jiang and

Whitehouse 2012, Thompson 2012, Evans and Davies 2015). Freeform specular surfaces can boost

systemic function, shorten the complexity of system design and structure, and/or enhance systemic
aesthetic and integrities (Fang, Zhang et al. 2013, Duerr, Nie et al. 2015) (Fang, Zhang et al. 2013,

Duerr, Nie et al. 2015). Over the past decades freeform specular surfaces are applied in various

applications, for instance green energy, aerospace, automotive, illumination, biomedical
engineering, for attractive functional, geometric features and aesthetical reasons (Savio, De Chiffre
et al. 2007, Fang, Zhang et al. 2013, Evans and Davies 2015, Williamson 2015).

Numbers of methods have been investigated for measuring the form of freeform surface

(Whitehouse 2002). According to whether the sensing probe is in contact with the measured object

during a measurement, these methods can be categorised as non-contact measurement and contact
measurement. Contact measurement generally uses tactile sensors such as gauges and probes to
gather shape data via physically touching the measured surface. Probes are required to run

perpendicular to the surface under test for contact measurement methods (Li and Gu 2004, Li and

Gu 2005) . Contact type coordinate measuring machine (CMM) is a common example of this kind
of methods. When contact type CMM operates, a contact probe moves along the measured
workpiece surface to amass the surface’s meticulous dimensional information. Optical surface
measurement technique is an important type of non-contact measurement, which operates based
on the principle that light can travel without any contact. Several optical surface measurement
methods with different optical principle have been developed such as non-contact CMM
technology, interferometry, structure light projection technique, and phase measuring

deflectometry.

1.1.1 Coordinate measuring machine

The first CMM (McMurtry 1982, Hemmelgarn, Bell et al. 2000, Pettersson 2009, Ferrari 2010)
was developed by a British company named FERRANTI (Hocken and Pereira 2016). Measuring
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method of the machine is to record coordinate value by foot pedal after its probe touches the
measured workpiece, and then use calculator to calculate the location relationship between
elements. With the rapid development of computer technology, CMM entered the era of CNC
(Computerized numerical control) control and became capable of completing the measurement of
complex mechanical parts and freeform surface. CMM consists of a measurement probe and a
rectangular coordinate system established by three mutually perpendicular motion axes. When
conducting measurement, the probe moves along the form of the measured surface. T