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Abstract  

Radioactive waste disposal in the UK is expected to be managed via the construction of a deep 

geological disposal facility (GDF) backfilled with cementitious grouts. Post closure the 

repository is expected to have a hyper alkaline, anoxic environment. The UK’s intermediate-

level radioactive waste (ILW) inventory contains significant quantities of cellulosic materials 

that expected to undergo alkaline hydrolysis under repository conditions to form Iso-saccharinic 

acids (ISA).  The isomers of ISA (α- and β-) are able to form water-soluble complexes with 

radioelements, increasing their solubility and enhancing their migration. The biological 

removal of ISA through microbial activity would therefore have a positive impact on repository 

performance by reducing complex formation.   

This research aimed to isolate pure cultures capable of degrade ISAs under anaerobic and 

alkaline conditions analogous to GDF. The microcosms of mineral media and CDPs-fed cycle 

as a sole carbon source inoculated by alkaline soil samples from the Buxton site. The 

degradation process monitored under a fermentation and an anaerobic respiration by adding 

terminal electron acceptors. All processes carried out under alkaline and strict anaerobic 

conditions. Different types of agar plate media used to obtain pure culture. The results of the 

current study indicate that alkaliphilic bacterial communities were capable of fermenting ISA 

to acetate up to pH 11.0.  In addition, the ISA (α- and β- isomers) degradation through terminal 

electron acceptors at pHs (7.0, 8.0, 9.0 and 10.0) were tested, resulted to a significant amount 

of ISA was degraded in Nitrate-reducing culture, and small amount in Iron (III)-reducing 

culture, whilst there was no sign of degradation in Sulphate-reducing culture.  

A 16SrRNA gene sequencing showed a significant reduction of the bacterial community in the 

microcosms compared with the crude soil sample. The phyla that detected in all microcosms at 

different pH values dominated by Firmicutes, followed by Proteobacteria, Bacteroidetes, 

Actinobacteria and Archaea Euryarchaeota. However, in pure culture many of the bacteria 

isolated were unable to degrade ISA eventhough they had been isolated and enriched under ISA 

degrading conditions. Only two bacterial strains purified which were capable of degrading ISA. 

These strains Macellibacteroides fermentans HH-ZS a Gram negative, strictly anaerobic 

bacterium and a strain of Aeromonas sp. 

The biochemical analysis, metal and NaCl tolerance, pH profile, biofilm and extracellular 

polymeric substances detection, fatty acid methyl ester profile, and whole genome sequencing 

analysis used for characterization of the some isolated Alkaliphiles. The phylogenetic and 

biomarker results led to identifying a novel strain of Macellibacteroides fermentans HH-ZS 

strain is the first Gram negative, strictly anaerobic bacteria able to degrade ISA.  

Future work; the genome of the M. fermentans HH-ZS strain harboured a number of 

carbohydrate degrading enzymes, which merit further investigation to determine the metabolic 

pathways associated with ISA degradation. In addition, some of isolated Alkaliphiles 

considered as rare strains and some of them identified as new strains; further investigation to 

find the possibility to introduce these isolates in the bioremediation and an industrial 

application.   
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The United Kingdom’s radioactive waste stock began to accumulate in the 1940s. To date 

the total volume (m3) of accumulated radioactive waste from all sources is in the region of 

4.72x106 m3 with an estimated volume of future production of 4.55x106 m3. This waste is 

classified into Low Level Waste (LLW) which accounts for 93.9% of the total volume, 

followed by Intermediate Level waste (ILW) (6.1%) and High Level waste (HLW) (0.02%) 

(Anon, 2011).  Although HLW is the smallest component on a volume basis, it accounts for 

the majority of the radioactivity.  

The UK’s preferred solution for the disposal of its ILW and HLW is via a geological disposal 

facility (GDF) (Anon, 2011). In the case of ILW, one of the design options is an engineered 

facility backfilled with a cement based grout which will create an alkaline environment. A 

major component of ILW is cellulosic materials originating from contaminated clothing, 

packaging and paper. Under the alkaline, anoxic environment expected within a ILW GDF 

cellulosic materials are expected to be subject to alkaline hydrolysis which generated 

cellulose degradation products (CDP) including the α and β stereoisomers of isosaccharinic 

acid (ISA) (Glaus, Van Loon, Achatz, Chodura, & Fischer, 1999; Humphreys, Laws, & 

Dawson, 2010). These organic acids are able to form stable complexes with certain 

radionuclides increasing their solubility and promoting their transport via groundwater 

(Greenfield, Hurdus, Spindler, & Thomason, 1997; Randall, Rigby, Thomson, & Trivedi, 

2012). 

In view of the importance of ISA in promoting the transport of radionuclides the microbial 

degradation of these compounds has received considerable attention (Bassil, Bryan, & 

Lloyd, 2015; Humphreys, West, & Metcalfe, 2010; Rout, Charles, Doulgeris, et al., 2015; 

Rout et al., 2014; S. L. Smith, Rizoulis, West, & Lloyd, 2016). Given the cementitious nature 

of the proposed ILW GDF alkaliphilic bacteria are expected to play a crucial role in ISA 

degradation. The research described in this thesis has focussed on the isolation and 

characterisation of alkaliphilic organisms from anthropogenic alkaline soils such as those 

found at the Harpur Hill lime kiln waste site, Buxton, Derbyshire, UK (Rout, Charles, et al., 

2015a).  

Although ISA degrading bacterial communities have been detected in sediment samples 

from neutral pH sites, alkaline sediments e.g. Buxton, are expected to provide a better chance 

of isolating novel alkaliphiles which may also be able to degrade ISA. Previous 

investigations have shown that the bacterial community in the hyper-alkaline sediments at 
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Harpur Hill are able to degrade ISAs under aerobic, nitrate and iron (III) reducing conditions. 

Consequently, this site is likely to be a source of novel alkaliphilic or alkali tolerant species 

that may be capable of degrading ISAs.  

 Geological disposal of radioactive waste  

The UK Nuclear Decommissioning Authority (NDA) has the responsibility for establishing 

a geological disposal facility (GDF) for the long term disposal of radioactive wastes (Figure 

1.1 A), this facility is expected to protect people and the environment from the impacts of 

radioactive wastes (Defra, Food, & Affairs, 2008). Radioactive wastes are classified into 

three types depending on the physical properties of the radioactive materials; low level waste 

(LLW), intermediate level (ILW) and high level radioactive wastes (HLW) (Anon, 2011; 

Humphreys, Laws, et al., 2010; Wild & Mathieson, 2003).  ILW contains a range of 

heterogeneous materials including a significant amount of the cellulosic materials (Anon, 

2010b). 

  

 

 

A) Deep geological disposal facility B) Drum of 500 litre capacity, 

contains a compressed wastes  

Figure 1. 1: Radioactive wastes repository and deep geological disposal facility 

concept 

Taken from the 2010 NDA (Anon, 2010b), the schematic illustrates the organisation of radioactive 

waste under the GDF system, access is provided by shafts as a pathway between surface facilities 

and the different levels of the disposal modules underground (A), Drums of 500 litre capacity, 

contains compressed wastes for storage facility until transport to the GDF (B). 
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  Intermediate–level wastes under GDF   

One of the potential designs for the United Kingdom’s ILW GDF is a multi-barrier 

repository where various packages of waste will be placed in engineered vaults backfilled 

with a cementitious grout (Figure 1.2) (Anon, 2010b). The cementitious grouts is composed 

of ordinary Portland cement and limestone flour and is designed to limit the transport of 

radionuclides from the radioactive waste to the environment (Chapman & Hooper, 2012). 

ILW contains significant amounts of cellulosic material that are derived from contaminated, 

wood, paper and cloth (Anon, 2014; Chapman & Hooper, 2012), it also contains steel, 

demolition debris and contaminated soil. Post closure, the GDF is expected to re-saturate 

with ground water which will react with the Ca(OH)2 and other alkaline compounds such as 

KOH and NaOH present in the grout to generate an alkaline pH (>pH 12.0). In addition the 

corrosion of metallic waste and construction materials will generate anaerobic conditions 

through the utilization of the oxygen during corrosion (Anon, 2010a).  

 

Figure 1. 2: Depicts a GDF for safely dispose of radionuclides. (Nirex Report N/075, 

2003) 

Surface storage in steel drums or concrete boxes (A) and then in vault for geological segregation (B) 

of cement-based backfill (C) in deep sites for optimum isolation (D).  

 The Fate of Cellulosic Materials 

Cellulosic materials account for 2,000 tonnes of the UK’s ILW inventory (Anon, 2010b). 

Cellulose is a polysaccharide composed of ß-D-glucose units that are linked together by ß-

1,4-glycosidic linkages (Figure 1.3) and with neighbouring celluloses by hydrogen bonds to 

form a linear macromolecule (Cordeiro, 2016). This structure under alkaline and anaerobic 

conditions undergoes chemical degradation to produce a range of soluble organic 

compounds with α and β isosaccharinic acids (ISA) (Figure 1.4) being the most abundant 

and small amount of other short-chain hydrocarbons include volatile fatty acids such as 
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acetic acid, butyric acid and propionic acid  (Greenfield et al., 1997; Heath & Williams, 

2005).   

 

Figure 1. 3: Chemical structure of cellulose, taken from (Cordeiro, 2016). 

The degradation reaction of cellulose under alkaline condition are carried out through three 

main pathways of chemical reactions. The peeling reaction where the terminal anhydro-

glucose unit at the reducing end of the cellulose is removed one by one to form ISA isomers. 

However, the peeling reaction is blocked due to a formation of alkali-stable terminal groups 

compounds of glucometasaccharinic acids (MSA), this process is called stopping reaction. 

The third chemical reaction is the mid-chain scission that generate a new reducing terminal 

groups by a random cleavage of the glycosidic links along the molecular chain. 

 

Figure 1. 4: ISA stereoisomers 

ISA has been shown to form complexes with radioelements, enhancing their migration and 

potentially increasing the associated radiological risks (Greenfield et al., 1997; Heath & 

Williams, 2005; Humphreys, West, & Metcalfe, 2009; Pedersen, 2000). For instance it is 

able to form complexes with Th (IV) (K Vercammen, Glaus, & Van Loon, 2001), U(IV) 

(Warwick, Evans, Hall, & Vines, 2004) and Np(IV) (Rai et al., 2003). Research by Lawson 

et al (1994) showed that the leachates produced from cellulose degradation had the ability 

to changes the plutonium behaviour, by increase its solubility and reducing sorption (A. 

Lawson et al., 1994) 
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 Microbial Processes Relevant to Radioactive Waste Disposal 

Microbial activity will have both direct and indirect effects on the performance of a GDF. 

The direct effects include gas production and biofilm formation, which may lead to 

pressurisation and the blocking of pores. The indirect effects include the alteration of pH and 

redox resulting in changes to radionuclide mobility, solubility and sorption (Brainard, 1992; 

McCabe, 1990; Pederson, 1992). However, the extreme environmental conditions associated 

with a GDF such as hyper-alkalinity, radiation and radionuclide toxicity are expected to 

suppress microbial activities. As the GDF evolves with time it is possible that microorganism 

may be tolerant to such extreme conditions (Chicote et al., 2004; Rizoulis, Steele, Morris, & 

Lloyd, 2012) and be able to utilise the organic carbon present either by fermentation or 

terminal electron accepting processes (anaerobic respiration). Under anaerobic conditions, 

instead of oxygen, microorganism can respire using a broad range of terminal electron 

acceptors (TEA) (Lloyd, 2003) including nitrate (NO3
−), Iron (III), sulfate (SO4

2−) and 

carbon dioxide (CO2) (Achtnich, Bak, & Conrad, 1995).  

The most significant degradable organics within an ILW GDF are cellulose and CDP. 

However, the quantities of terminal electron acceptors such as nitrate and sulphate are likely 

to be limited and consequently the fermentation of ISAs to volatile fatty acids, carbon 

dioxide and hydrogen gases is expected to dominate (Askarieh et al., 2000, Greenfield et al., 

1990). With the exception of carbon dioxide, the only other significant TEA is likely to be 

Fe (III), which will be generated from the corrosion of steel drums, construction steel and 

iron waste components. This corrosion will initially remove oxygen from the system and 

lead to the production of Iron (III) minerals, once the oxygen is depleted anaerobic corrosion 

will take over with the associated generation of hydrogen (Humphreys, West, et al., 2010).  

In terms of CDP Rout et al. (2014), demonstrated that microbial communities in near-surface 

neutral pH sediments were able to degrade both forms of ISAs at pH 7.0 through iron (III) 

and sulphate reduction as well as through fermentation and methanogenesis with no 

significant difference in α and β ISA degradation rates (Rout et al., 2014). Similarly Kuippers 

et al. (2015), found that the bacterial community in the alkaline sediments at Harpur Hill 

were capable of utilizing α-ISA with oxygen, nitrate, sulphate and Fe (III) as TEAs when 

incubated at pH 7.0 (Kuippers, Bassil, Boothman, Bryan, & Lloyd, 2015).  

Using the same sediments at alkaline pH values Williamson et al. (2013), documented the 

reduction of Iron (III) in the form of ferrihydrite using lactate as an electron donor 
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(Williamson et al., 2013). As did Rizoulis et al. (2012) who demonstrated that this bacterial 

community was capable of reducing Iron (III) (ferrihydrite and ferric citrate) between pH 

10.0 and pH 12.0 using lactate and yeast extract as electron donors (Rizoulis et al., 2012). 

Bassil et al. (2015), expanded this work to include ISA and demonstrate the fermentation of 

ISA to acetate at pH 10.0 in the presence of insoluble ferrihydrite. The resulting populations 

were dominated by the genus Anaerobacillus (~99%) of the phylum Firmicutes (Bassil et 

al., 2015). Bassil et al. (2014), found that the rate of ISA biodegradation under alkaline 

conditions was higher in the presence of oxygen as a TEA, similar via nitrate reduction, 

reduced during Fe(III) reduction, and very low during sulphate reduction (Bassil et al., 

2015), with no sulphate reduction detected ≥ pH 10.0 (Bassil et al., 2015). This observation 

agrees with Rizoulis et al. (2012), who were unable to detect sulphate reduction at pH 10.0, 

11.0 or 12.0 when yeast extract, acetate or lactate were provided as electron donors (Rizoulis 

et al., 2012). From a review of the literature it is clear that SRB can grow in alkaline 

environments, however the majority of these studies suggest that sulphate reduction is 

uncommon above pH 10.0.   

In terms of fermentation, Rout et al. (2015) found that the bacterial community in a neutral 

pH sediment was able to ferment ISAs under alkaline condition up to pH 10.0, with the 

degradation rate decreasing as the pH increased. A shift to alkaline conditions led to a 

significant reduction in bacterial community diversity and a shift in the dominant bacteria. 

Methanogenesis was active up to pH 10.0 via the hydrogenotrophic pathway and the 

accumulation of acetate. The metabolic activity was suppressed when the pH of the 

microcosm was raised to pH 11.0 when ISA accumulated (Rout, Charles, Doulgeris, et al., 

2015). When working on Harpur Hill sediments Rout et al. (2015), were able to confirm that 

ISAs were generated in situ due to the alkaline pH of pH 12.5. In addition, they found that 

the microbial communities in the sediments were active and capable of degrading both forms 

of ISA with the associated production of acetic acid, hydrogen and methane at pH 11.0.  

The associated bacterial community was found to be dominated by alkaliphilic Clostridia 

and hydrogenotrophic Methanobacteriaceae (Rout, Charles, et al., 2015a).  

Work by Charles et al. (2015), on cotton samples immersed for several weeks in the hyper-

alkaline soils at Harpur Hill observed a biofilm dominated by Clostridia and 

hydrogenotrophic methanogens. However, that community was significantly reduced and 

the methanogens became undetectable when the cotton sample was used to seed a CDP fed 
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microcosm operated at pH 11.0, in this case the bacterial community was dominated by 

Alishewanella and was able to completely degrade ISA (Charles et al., 2015).   

 Pure Culture Degradation of ISA 

Biodegradation of ISA by bacterial communities under aerobic and anoxic conditions at 

alkaline pH has been extensively reported. However, there are a limited number of reports 

on single isolates able to degrade ISA. Work carried out by Stand et al. (1984), used media 

containing 1g/l Gluco-Isosaccharinic acid (ISA) to test the capability of 22 aerobic and 

facultative anaerobic soil bacteria for their ability to utilize ISA as a sole carbon source. The 

results showed that none of the bacterial strains were able to degrade ISA, except some 

strains of Ancylobacter aquaticus, which were capable of growing aerobically on ISA at pH 

7.2 and 9.5 in media supplemented with vitamins, peptone and phosphate (Strand, Dykes, & 

Chiang, 1984). Bailey (1986) screened 50 bacterial strains from soil contaminated with black 

water (the black liquor is a waste of the sulphate cellulose (Kraft pulping) process where the 

wood under alkaline and high temperature converted into pure cellulose fibre and the 

Glucoisosaccharinic acid is the major component of the waste) at pH 6.0- 9.7 for their ability 

to grown on ISA. Only two of these bacteria were able degrade ISA, at pH 6.2 (Bailey, 

1986). Work by Francis et al. (2009), found that aerobic, Gram positive rods were capable 

of ISA biodegradation (Francis & Dodge, 2009). 

The degradation of the organic compounds by bacteria depends on many factors include; the 

nature of that organic compounds, biochemical composition, molecular size, concentration 

and physical factors in its environment including pH, temperature, oxygen level (Reference 

1). During the degradation process there are two types of transport mechanisms that used by 

bacterial cells for the nutrition and metabolism process for cell survival and growth; the 

passive transport mechanism by which the molecules across the cell membrane either by 

passive diffusion or facilitated diffusion of the solutes, this mechanism does not require 

energy. The second mechanism is active transport, it always requires energy in the form of 

ATP, proton motive force, or by phosphoenylpyruvate (PEP), several types of transport 

proteins are involved in this mechanism, these proteins are embedded in the cytoplasmic 

membrane that include; the group translocation transporters, ATP-Binding Cassette (ABC) 

transports, antiporters, and symporters. By using ATP-dependent ABC-transports, 

permeases, and even by passive diffusion using specific facilitator proteins; the nutrient is 

taken up by carrier protein of phosphoenolpyruvate-dependent phosphotransferase system 
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(PTS). The PTS is a first glucose transporter (GLT) was identified in E. coli and described 

in 1966, about 30 of GLT systems are characterized in more than 20 bacterial species (Amon 

& Benner, 1996; Castro et al., 2009; Erni, 1989; Jahreis, Pimentel-Schmitt, Brückner, & 

Titgemeyer, 2008).  

 Microbial Extremophiles  

 Alkaliphilic Microbiology   

Successful microbial metabolism requires a cytoplasmic pH of between pH 7.4 and 7.8 for 

neutrophilic organisms and between pH 7.5 to 8.3 for some alkaliphiles (Slonczewski, 

Fujisawa, Dopson, & Krulwich, 2009). A review by Booth et al. (1985), reported that 

fermentative micro-organism are able to grow at a wider pH range than those utilizing 

respiration pathways (Booth, 1985). Alkaliphiles have a growth optimum between pH 8.5 

and 11.5; neutrophiles between 5.5 and 8.0; and acidophiles 0.0 to 5.5 (Figure 1.5 A). A 

relationship between the occurrence of alkaliphilic microorganisms and the pH of the sample 

origin is illustrated in (Figure 1.5 B) (Koki Horikoshi, 1999). Many natural high pH habitats 

exist, for example, geothermal springs and soda lakes. There are also a range of manmade 

alkaline environments that includes paper pulping industrial sites, steel slag disposal sites 

(Rizoulis et al., 2012) and lime working sites such as Harpur Hill (Milodowski, Shaw, & 

Stewart, 2013).  

 

Figure 1. 5: pH profile of abacterial community (Koki Horikoshi, 1999)  

A) The typical pH dependency of neutrophilic and alkaliphilic bacteria is shown by open 

squares and solid circles, respectively. B) Distribution of alkaliphilic microorganisms in 

environments at various pHs (Koki Horikoshi, 1999). 
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In general, different microorganisms have characteristic pH growth ranges and a distinct pH 

growth optimum. For instance, a facultative alkaliphilic Bacillus halodurans C-125 lost its 

pH homeostatic ability and did not grow at pH above 10.8 (K. Horikoshi, 2006). There are 

numerous adaptation strategies used by bacteria in order to maintain a cytoplasmic pH 

between pH 7.2-8.0 (Koki Horikoshi, 1999) and these strategies were discussed in a review 

by Padan et al. (Padan, Bibi, Ito, & Krulwich, 2005) and include:  

(i) metabolic changes that lead to increased acid production through amino acid 

deaminases and sugar fermentation; 

(ii) increased ATP synthase that couples H+ entry to ATP generation; 

(iii) changes in cell surface properties, for example a quantities of poly-γ-L-glutamic 

acid (plg) in the cell walls increase with increasing culture pH (K. Horikoshi, 

2006); and  

(iv) elevated expression levels and activity of monovalent cation/proton antiporters 

(Figure 1.6).  

The later play an essential and dominant role in alkaline pH homeostasis in many bacteria 

(Padan et al., 2005). For instance, Bacillus firmus and Exiguobacterium auranticum use 

Na+/H+ antiporter systems in the region of pH 7.0 to 9.0, (Krulwich, Ito, Hicks, Gilmour, 

& Guffanti, 1998).  

 

Figure 1. 6: Homeostasis in alkaliphilic bacteria  

The diagram represented the strategies of bacterial cell to tolerate high pH at surrounding 

environment. Taken from Ito Laboratory in Toyo University website 

http://www2.toyo.ac.jp/~ito1107/researchen.html, [cited 13.03.2017].                               

The degradation processes catalysed by alkaliphilic bacteria depends on alkaline adapted 

enzyme systems. These extracellular alkaline‐adapted enzymes often show activities in a 
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broad pH range, with good thermostability and a tolerance to oxidants when compared with 

neutral enzymes (Fujinami & Fujisawa, 2010). Bacillus species for example are able to 

produce a variety of alkaline extracellular enzymes, such as cellulases, proteases and 

pectinases that have been exploited in various industrial processes (Fujinami & Fujisawa, 

2010; Ito, 1997; J. Singh, Batra, & Sobti, 2004). In general, cytoplasmic pools of polyamines 

and a low membrane permeability are two modes of passive regulation in bacterial cells, 

whereas sodium ion channels drive the active regulation. For example, the low molecular 

weight, aliphatic polycations and their positively charges the polyamine can bind to the 

DNA, RNA and proteins of the cell and play crucial roles in bacterial growth, modulation of 

cell signalling, in stress responses, biofilm formation, regulation of gene expression and 

stabilization of the cell membrane (Shah & Swiatlo, 2008).  (Shah & Swiatlo, 2008) 

 Heavy metal tolerance. 

Heavy metals (HM) are defined as metallic elements with density above 5 g/cm3 (Nies, 

1999). Although, some heavy metal ions are essential for microbial growth in trace amounts 

e.g. iron, nickel, zinc and copper, most heavy metals are toxic at high concentrations. Metals 

such as silver, cadmium and mercury have no biological role and are considered toxic to 

bacteria even in trace amounts (Lima e Silva et al., 2012). Toxic heavy metals can form 

complex compounds with vital cellular components, such as nucleic acids, enzymes, and 

structural proteins interfering with their function (Lemire, Harrison, & Turner, 2013). 

Bacteria overcome heavy metal toxicity by many mechanisms. Barkay et al. (2003), stated 

that bacteria are able to be become resistant to inorganic and organic mercury compounds 

(HgR), through the expression of a mercuric reductase enzyme (MerA) (Barkay, Miller, & 

Summers, 2003). Work by De et al. (2008), found that many marine bacteria are able to 

volatilize mercury through the putative merA gene and other catalyses by the reduction of 

Hg(II) to the elemental form, Hg(0), these bacteria also able to remove the toxicity of Cd 

and Pb (De, Ramaiah, & Vardanyan, 2008).  

Nies (1999) pointed out that bacteria have different strategies for survival and growth under 

extreme conditions and that the resistance against toxic heavy metals depends on two 

systems (Nies, 1999). The first type is a high substrate specific ATP efflux system, such as 

metal transport ATPases. The second resistance system depends on a chemiosmotic gradient 

and cation/proton antiporters, which is a faster, none specific system (Nies, 1999; Silver & 

Phung, 1996). Bacteria can develop a resistance against high levels of heavy metals because 
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of exposure to those metals and this resistance may not be specific. For instance in soils 

polluted with Cu, in addition to increased tolerance to Cu, the bacterial community also has 

increased tolerance to Zn, Cd, and Ni (Díaz-Raviña, Bååth, & Frostegård, 1994). 

Furthermore, bacterial communities that acquired a tolerance to Zn and Cd from a polluted 

environment, demonstrated an increased tolerance to all five metals (Díaz-Raviña et al., 

1994). 

 Biofilm formation 

Bacterial biofilms (BF) are a structural mass of bacterial cells coated with a polymer matrix 

attached to either biotic or abiotic surfaces (Davey & O'toole, 2000). The formation of a 

biofilm occurs via an established pattern, for instance (Figure 1.7) that illustrating biofilm 

formation in (Bacillus subtilis) (Vlamakis, Chai, Beauregard, Losick, & Kolter, 2013). 

Biofilms isolated from various environments share common characteristics (Stewart & 

Franklin, 2008): (i) the bacterial cells are held together by a polymeric matrix composed of 

exopolysaccharides, proteins and nucleic acids; (ii) the development of the biofilm occurs in 

response to extracellular signals, either in the environment or produced by the bacterial cells 

(Vlamakis et al., 2013). 

Biofilm formation protects bacteria and allows them to survive in hostile environmental 

conditions (Kolenbrander, Palmer, Periasamy, & Jakubovics, 2010). Biofilms can withstand 

harsh environmental conditions for instance high pH, temperature and are much more 

resistant to heavy metals than planktonic bacterial cells. Teitzel and Parsek (2003), found 

that free-swimming cells of Pseudomonas aeruginosa were less resistant (from 2 to 600 

times) to heavy metal stress than the same bacteria in a biofilm (Teitzel & Parsek, 2003). 

Biofilms protect microbes from extreme conditions whilst allowing cells to utilize the 

surrounding nutrients (Costerton, Lewandowski, Caldwell, Korber, & Lappin-Scott, 1995; 

Sutherland, 2001b), through the highly permeable water channels present in the biofilm 

(Davey & O'toole, 2000). A gradient of nutrients is observed from the top of the biofilm to 

its base. This observation reinforces the idea that the metabolic state of bacteria within a 

biofilm is dependent on its location within the structure. Moreover, biofilms can provide 

environmental conditions that support nutritional cooperation between multispecies 

consortia embedded in the biofilms matrix. Work by Charles et al. (2015) found that biofilms 

play an essential role in the protection of bacterial communities from hyper-alkaline 

conditions (pH 11.0) by creating a pH gradient within the film (Charles et al., 2015). 
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Figure 1. 7: Diagram describe a bacterial biofilm formation in Bacillus subtilis 

Biofilm formation in (Bacillus subtilis) (Vlamakis et al., 2013), Bacteria start sticking 

together to build a biofilm, the EPS production is the first step to form a matrix, then bacteria 

start growing and aggregation to build up a sticky matrix called a biofilm.    

 Extracellular polymeric substances  

Extracellular polymeric substances (EPS) are high molecular weight polymers, composed of 

sugar residues, proteins, DNA, lipids, and humic substances (Sutherland, 2001a). These EPS 

are secreted by microorganisms into the surrounding environment and the physiochemical 

properties of bacterial biofilms depend on the EPSs components (Sutherland, 2001a). EPSs 

provide protection against anti-microbial substances, starvation conditions and also extremes 

of pH and temperature (Nichols, Guezennec, & Bowman, 2005; Sutherland, 2001a). The 

biofilm matrix is highly hydrated and can contain up to 97% water (Sutherland, 2001b).  

In alkaliphilic multispecies biofilms a wide range of EPS have been observed. Charles et al. 

(2017), observed complex mixtures of EPS including polysaccharides, lipids and proteins 

with an extracellular deoxyribonucleic acid (eDNA) matrix that formed due to autolysis of 

the bacterial cells under a control of quorum sensing system which allowed the associated 

community to maintain a lower pH within the biofilm system than that of the wider 

environment(C. Charles et al., 2017). Related work by the same author, demonstrated that 

alkaliphilic biofilms formed on different surfaces, formed with different structures. This was 
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most pronounced on steel where the biofilms had an eDNA basal layer upon which the rest 

of the biofilm formed(C. J. Charles et al., 2017).    

 Identification and characterization of Microorganisms    

Although, bacterial identification and characterization still depend on the isolation of 

bacteria in a pure culture, not all environmental bacteria have been or are culturable. This is 

particularly the case since some bacteria are syntrophic, depending on growth factors 

released by other bacteria (Jiao et al., 2012; Morris, Henneberger, Huber, & Moissl‐

Eichinger, 2013). Current methodologies for the determination and identification of bacteria 

are dependent on molecular-based methods that are used for both pure isolates and 

communities.  

 Identification of bacteria by 16SrRNA gene sequencing  

Molecular analysis is often used for the study of bacterial and archaeal communities. This is 

commonly based on 16S rRNA gene sequencing since this gene is a highly conserved 

component of the transcriptional machinery of all DNA-based life forms (Patel, 2001). 

Consequently, it is highly specific as a target gene for microbial identification in samples 

that potentially contain thousands of different species. Universal PCR primers specific to the 

conserved regions of the 16S rRNA gene are available, making it possible to amplify the 

gene in a wide range of different microorganisms from a single sample. Conveniently, the 

16S rRNA gene consists of both conserved and variable regions. While the conserved region 

makes universal amplification possible, sequencing the variable regions allows 

discrimination between specific different prokaryotic microorganisms such as bacteria and 

archaea (Wintzingerode, Göbel, & Stackebrandt, 1997).  

 Biochemical test-based identification 

Biochemical test-based identification systems are based on the ability of bacteria to utilize 

substrates. Bacterial growth and substrate utilisation is detected through pH shifts, redox 

reactions or product generation. These biochemical systems usually involve plates or strips 

of wells coated with substrates such as the Biolog MicroPlateTM (Hayward, USA), and the 

API (BioMe´rieux) system.  Although these systems are considered simple to use compared 

with DNA sequencing and FAME analysis (Cook, Turenne, Wolfe, Pauls, & Kabani, 2003; 

O'Hara, 2005), these systems are dependent on the data-base that has been collated for that 
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specific system. Therefore, their  usage is limited to the number of bacterial species 

(Kunitsky, Osterhout, & Sasser, 2006).  

 Cellular fatty acids test-based identification 

Fatty acids (FAs) with between 2 and 24 carbons are present across a wide range of 

microorganisms and have been used to provide an insight into bacterial community 

characterization (Banowetz et al., 2006). The cellular fatty acids content is stable, and is not 

affected by mutations or death (Fakruddin & Mannan, 2013). This analysis is also called the 

fatty acid methyl ester (FAME) method, by transesterification of fats with methanol in the 

presence of an acid catalyst. Another approach is to us the phospholipid fatty acid (PLFA) 

compositions, these differ between microbial communities and provide a method that can 

provide an insight into bacterial community structure (Tunlid, 1992). Chintalapati et. al. 

(2004) found that bacteria are able to adapt the low temperature through modulate the fluidity 

of the membrane by various strategies such as altering their FAs composition that include 

the FAs chain length and the proportion of cis to trans FAs (Chintalapati, Kiran, & Shivaji, 

2004).  

 Whole genome sequencing based characterization  

Whole Genome Sequencing (WGS) provides important information about the characteristics 

of novel bacterial isolates. For example, it has been used to identify non-pathogenic 

Pseudomonas strains for bioremediation, industry and agriculture applications by 

determining the absence of known virulence factors (Nelson et al., 2002). WGS for bacterial 

isolates are constructed using next generation sequencing (NGS) techniques. The NGS is a 

method of DNA sequencing which provides a rapid, high-throughput approach for the 

characterisation of genomes, transcriptome profile analysis of mRNAs, small RNAs and 

transcription factor regions tRNA (Ansorge, 2009). It has also been used to describe 

microbial community structure in different ecosystems (Indugu, Bittinger, Kumar, 

Vecchiarelli, & Pitta, 2016). NGS methods include Pyrosequencing (454) (Roche, Basel, 

Switzerland), Ion semiconductor (Ion Torrent sequencing), Sequencing by ligation (SOLiD 

sequencing) (Applied Biosystems, California, USA) and Sequencing by synthesis (Illumina 

(Solexa) sequencing) (Illumina, San Diego, USA) (Indugu et al., 2016; Quail et al., 2012).  
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The Roche 454 sequencer uses pyrosequencing technology, based on the detection of 

pyrophosphate (PPi) that released during amplification of a single strand DNA and 

nucleotide incorporation. In this process, the following enzymes DNA polymerase, ATP 

sulfurylase, luciferase and apyrase are used. The PPi converted to ATP, the ATP drives the 

luciferin into oxyluciferin and generates visible light. The light is detected by a camera and 

analysed in a pyrogram (Liu et al., 2012). Ion semiconductor (Ion Torrent sequencing), the 

genomic DNA are divided into fragments, each fragment attached to the adaptor at the both 

sides for the amplification process. After that each single DNA strand attached to the beads, 

the coated beads then added to the semiconductor chips in the presence of the ion sensitive 

layer. In this process the DNA sequencing measurements based on hydrogen ions that 

released after aneling of each nucleotide. The four nucleotides are added one nucleotide 

sequence at a time. This method takes a shorter time, but it produces a short read length 

compared with other methods (Liu et al., 2012).  Sequencing by ligation (SOLiD 

sequencing), two types of sample preparation; fragment library single DNA fragment or 

mate-paired library two DNA fragments can be used. In both cases the adaptor ligated to the 

end of the targeted DNA fragment, the fragment amplified on beads in emulsion PCR, then 

the beads covalently attached to glass slide, with barcoding many samples can be run at the 

same time. The empty beads can be removed by centrifugation. In this process ligation based 

sequencing with Di-base probes that fluorescently labelled with 4 dyes. During sequencing, 

laser excites the fluorescent dye then the detector measures the energy photon that 

corresponding to dye colour (Salipante et al., 2014).  

 

Sequencing by synthesis (Illumina (Solexa) sequencing), it has a high-throughput 

community sequencing and low cost per sequence of amplicon compared with others NGS 

methods. It also called a bridge method where both sides of the DNA fragments are attached 

on the oligo-contains flowcell slide by adapters to form a bridge shape before amplification 

started. In this method the single strand sequencing started by adding four types of 

nucleotides (ddATP, ddTTP, ddGTP, ddCTP) which labelled by different cleavable 

fluorescent dye, the fluorescent signal that released during the sequencing process for each 

nucleotide could be detected through the images taken by camera (Caporaso et al., 2012; Liu 

et al., 2012; Salipante et al., 2014; Whiteford et al., 2009).  
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 Aims and objectives  

The UK’s geological disposal facility was proposed for the long term fate of radioactive 

materials supported by multi-barrier of the cementitious materials. the presence of a 

heterogeneous wastes include cellulosic materials in the ILW is an issue of particular 

concern due to a formation of CDPs include abundant amount of ISAs. The ISAs are capable 

to form complex with certain radionuclides increase their solubility in water. The ability of 

microbial consortia from the anthropogenic sites to degrade ISAs was carried out by 

previous studies.   

There is currently an absence in the literature of characterised pure cultures able to utilise 

ISAs under alkaline and strictly anaerobic conditions. The recent detection of ISAs in the 

alkaline soils of the Harpur Hill site (Rout, Charles, et al., 2015a) suggests that ISA 

degradation may be more common than previously thought. The identification and 

characterization of novel alkaliphiles and ISA degrading bacteria in particular could provide 

a platform for the metabolic pathways underpinning ISA degradation to be determined and 

the associated genes identified. In addition, the isolation and identification of alkaliphilic 

bacteria may provide species that may be used for further applications, e.g. bioremediation 

processes. 

The objectives of this study are:  

 The establishment and characterisation of CDP fed microcosms established under 

GDF relevant conditions that include anaerobic, high pH and the CDPs as a sole 

carbon source, this to be as a selective environmental condition for ISA degraded 

alkaliphiles.  

 The isolation of novel alkaliphilic bacteria from alkaline sediments of the CDPs fed 

microcosms after a period of an incubation time under an anaerobic condition and 

fed-cycles protocol. The isolation process through a series of an inoculation 

processes using agar plates to obtain pure culture. 

 Test the ability of the bacterial isolates (single and pure bacterium) for ISA 

degradation under an anaerobic and alkaline conditions.   

 The biochemical and genomic characterisation of these novel isolates, through 

comparing the results with the available information of the previous studies.    
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 The determination of the environmental capabilities (pH, salinity, heavy metal 

tolerance profiles) of these novel isolates that may use in bioremediation and novel 

industrial applications.  
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Chapter 2 

2. Materials and methods 
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 Samples 

 Alkaline soils samples  

Samples from hyper-alkaline sediments were used in order to isolate alkaliphilic bacteria. 

The main source of alkaline soils was the Harpur Hill site, Buxton, Derbyshire, UK (Figure 

2.1 and 2.2). The site has been contaminated for decades by high pH, lime kiln wastes 

(Milodowski et al., 2013). The soil samples were taken at depth (~10cm) from the points 

indicated on Figure 2.1 (Rout, Charles, et al., 2015a). These sediments are hyperalkaline, 

where the pH values of soil in-situ > pH 11.0 (Milodowski et al., 2013; Rout, Charles, et al., 

2015a; Salah, Rout, & Humphreys, 2016) and contain high calcium and silicate 

concentrations, analogous to a cementitious radioactive waste repository (Rizoulis et al., 

2012). The second source of samples were cotton samples that had been immersed in the 

alkaline environment of the Buxton site for three months prior to retrieval, further details are 

provide by Charles (Charles et al., 2015).  

 

Figure 2. 1: Overview of lime kiln waste site that was targeted for alkaline samples 

collection  

This figure was taken from Rout et al. (2015), showing the site at Brookbottom, Harpur Hill, near 

Buxton in Derbyshire, UK. Sampling points are indicated by black stars and numbers with the pH 

value of each soil sample for each site. The US= Uncontaminated Site where the pH was near neutral 

(Rout, Charles, et al., 2015a). This site developed in the 1830’s for the large scale production of lime 
for the alkali-carbonate industry which continued until the early 1950’s, the area has a highly alkaline 

(pH >11) (Milodowski et al., 2013)  
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Figure 2. 2: View across the Harpur Hill site, showing the lime waste, white deposits of 

calcareous and tufa. 

With a numerous of small “islands” with trees that have grown since 1971 (British Geological Survey 

© NERC 2014) (A).  Aerial photograph of the site, showing the extent of the high alkaline leachate 

and tufa deposits of the calcium carbonate (Aerial photography ©UKP/Getmapping Licence No. 

UKP2006/01) (B) (Milodowski et al., 2013). 

 Media   

 Cellulose degradation products (CDP) 

CDP was prepared by the method described by Rout et al. (2014) Briefly laboratory tissues 

(200 g, Pristine Paper Hygiene, London, UK) were hydrolysed in ultrapure water (1800 ml) 

in the presence of Ca(OH)2 10 g/l (18 g) and 0.1M of NaOH (7.2 g) in an anaerobic jar under 

anaerobic conditions. In order to remove oxygen from the vessel, the contents of the vessel 

were flushed with nitrogen gas for 30 min. The vessel was sealed and placed in the oven at 

80°C for 30 d. Finally, the product was filtered via a 0.22 µm Millipore filter under anaerobic 

conditions and then stored in the dark. Following preparation the CDP was analysed for its 

ISA and volatile fatty acids content (Rout et al., 2014).  

  Isosaccharinic acid in the form of Ca (ISA)2  

α-ISA in the form of Ca(ISA)2 was prepared as outlined by Vercammen et al. (1999) (Karlien 

Vercammen, Glaus, & Van Loon, 1999). 
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 Mineral medium  

Mineral medium (MM) was used as a basal broth for bacterial cultivation. The MM was 

prepared in deionised water (g/l): KH2PO4 (0.27g), Na2HPO4.12H2O (1.12g), NH4Cl 

(0.53g), CaCl2.2H2O (0.075g), MgCl2.6H2O (0.1g), FeCl2.4H2O (0.02g), NaS.9H2O (0.1g) 

and 10 ml of trace element solution (B.S.I, 2005).The components of the Trace elements 

(g/l) were: MnCl2.4H2O (0.05g), H3BO3 (0.005g), ZnCl2 (0.003g), Na2MoO4.H2O (0.001g), 

CoCl2.6H2O (0.01g), NiCl2.6H2O2 (0.01g), NaScO3 (0.005) and NaWO4.2H2O (0.002g). 

Resazurin as an oxygen indicator 0.001g, sodium thioglycolate 0.05% and L-Cystine 0.05% 

as reducing agents were added to 1L of mineral medium. In order to remove oxygen, the 

MM was purged with nitrogen gas for 30 minutes. The MM pH levels were adjusted with 4 

M of NaOH to increase the pH and create an alkaline condition. MM was used as the basic 

solution for experiments, supplemented by either CDP or ISA, depending on the experiment 

requirements.  

 Minimal medium  

Minimal medium (Min) was prepared in serum bottle 1000ml capacity, containing g/l of 

NaHCO3 (2.52g), NH4Cl (0.251g), NaH2PO4.H2O (0.6g), KCl (0.1g) supplemented with 

vitamins solution 1% (2.2.6.) (Lovley, Greening, & Ferry, 1984), and mineral solution of 

trace elements 1% that containing g/L: MgSO4.7H2O (3.0), MnSO4.2H2O (0.5), NaCl (1), 

FeSO4.7H2O (0.1), ZnSO4 (0.1), Na2MoO4.2H2O (0.001), CoCl2.6H2O (0.1), CuSO4.5H2O 

(0.01), Na2MnO4.2H20 (0.01) (Bassil et al., 2015). 

 Modified ‘Horikoshi’ Broth medium (HBM) 

Horikoshi broth medium was supplemented with yeast extract 0.1% (w/v) and peptone 

0.25% (w/v) added to mineral components in (g/l); K2HPO4 (1.0g), Mg2SO4.7H2O (0.2g) 

and Na2CO3 (10g) (Koki Horikoshi, 1999). ISA was added to this medium as a sole carbon 

source instead of glucose. The medium was prepared under a stream of nitrogen gas to avoid 

any contact with oxygen.  

 Vitamins solution (supplement) 

The formulation is based on Wolfe’s vitamin solution and contains folic acid 2.0 mg/l, 

pyridoxine hydrochloride 10.0 mg/l riboflavin 5.0 mg/l, biotin 2.0 mg/l, thiamine 5.0 mg/l, 
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nicotinic acid 5.0 mg/ml, calcium pantothenate 5.0 mg/l, vitamin B12 0.1 mg/l, p-

aminobenzoic acid 5.0 mg/l, thioctic acid 5.0 mg/l, monopotassium phosphate 900.0 mg/l. 

 Agar plate media  

A range of different agar media for the purpose of bacterial isolation include commercial 

and prepared media.  

 Commercial media  

Commercial media including tryptic soy agar (TSA), fastidious anaerobic agar (FAA) and 

R2A agar from Oxoid (Thermo Scientific) were used. In all cases the pH of these media 

were adjusted to pH 9.5 and 10.0 before autoclaving in order to isolate alkaliphilic bacteria. 

A reducing agent 0.05% of L-Cysteine HCl was added to TSA and R2A before autoclaving 

to remove oxygen from the media. 

 Prepared medium       

The ingredients of these media are MM or Min supplemented with a source of ISA as a sole 

carbon source either from CDPs 30% to 50% (V/V) or by using Ca(ISA)2 or Na-ISA at 5 to 

10 mM L-1 (W/V). In some cases 1% (V/V) multivitamins solution was added to the media, 

the media were solidified by 1.5% of agar No.1 (OxoidTM).  

 Microbiological Methods    

 The Gram-stain method   

Gram staining was carried out as outlined by Harrigan et al. (2014), it divides bacterial cells 

into two groups, Gram-negative and Gram-positive, depending on the bacterial cell wall 

structure (Harrigan & McCance, 2014). The slides were examined under oil immersion using 

an Olympus microscope (Olympus BX 40F, Japan). Controls employing known Gram 

positive and Gram negative bacteria were used. 

 Electron microscopy   

Scanning electron microscopy (SEM) was undertaken using a JEOL JSM-6060LV 

microscope (JEOL, USA). Samples were dehydrated using serial ethanol dilution of 25, 50, 

75 and 100% for 2 min per step and then sputter coated via a gold palladium plasma (CA7625 

Polaron, Quorum Technologies Ltd, UK).  
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 Identification of pure culture and bacterial community by 16SrRNA 

gene sequences     

 Ultra Clean® Microbial DNA Isolation Kit 

The Ultra Clean® Microbial DNA Isolation Kit (Mo Bio, lab USA) was used to isolate 

genomic DNA of pure bacterial isolates according to the manufacturer’s instructions.  

 Isolation genomic DNA from soil sample 

The PowerSoil® DNA Isolation Kit (MO-BIO, Carlsbad, CA, US) includes a humic 

substance removal technique for isolating genomic DNA from environmental samples, and 

it was used according to the manufacturers’ instructions.  

 Griffiths method for DNA extraction 

DNA was extracted from some environmental samples by following a modified version of 

the method provided by (Griffiths, Whiteley, O'Donnell, & Bailey, 2000).  

  Quantification of DNA sample  

Quantification of genomic DNA was carried out using the Jenway genova nano 

spectrophotometer (Jenway, UK) at 260 nm, by adding 1 µl of the DNA at the top of the 

sensor, 1µl of ultrapure water was used as a blank. 

  DNA Electrophoresis  

One percent (1% w/v) agarose gel (Bioline, London) was prepared incorporating 1µl of gel 

dye (SYBR® safe stain, USA). Loading dye was added to each DNA sample (5µl sample 

and 1µl loading dye (Bioline, London, UK)). 5µl of a 1Kb ladder (Invitrogen, USA) and 6 

µl DNA product was loaded into the wells.  The gels were run for 60 minutes at 90 volts. 

The bacterial DNA bands were detected and compared with the 1Kb HyperLadder™ on a 

gel documentation system (BioDoc-It® Imaging System, Cambridge, UK).  

 Amplification of 16S rRNA gene by PCR 

The PCR of 16S rRNA gene was carried out using a universal primer (10% primer mix of 

the primer pA and pH). PCR was run on a thermal cycler (Techne, Staffordshire, UK) under 

the following programme: initial temperature 95oC for 5min, followed by 35 cycles, each 
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cycle pass through 3 steps: denaturation of DNA at 94oC for 1 minute, annealing of primer 

at 60oC for 45 second, extension at 72oC for 1 minutes and final extension of 72oC. The PCR 

product was annealed in the thermocycler at 4oC. Agarose gel electrophoresis was performed 

to confirm the PCR products before purification.  

 PCR product purification 

The PCR products were purified using the QIAquick purification (QUAGEN, UK) kits. The 

purified DNA concentration was measured by spectrophotometer (Genway, Genova Nano, 

Stone, UK) at 260nm and confirmed by agarose gel electrophoresis. Purified DNA was 

prepared as per the instructions provided by the Eurofins Genomics DNA sequencing 

services (UK). 

 Analysis of bacteria sequencing 

The 16S rRNA gene sequencing results obtained from Eurofins MWG Operon (London, 

UK) were used to identify bacterial isolates, by comparing the sequence with the Genebank 

database (K. S. Park et al., 2012). Isolates were identified to the species or genus level using 

Basic Local Alignment Search Tool (BLAST) searches (Jisun Kim, Jung, Sung, Chun, & 

Park, 2012). In addition a number of online databases were used for gene sequence analysis 

such as the Ribosomal Database Project (RDP) (Cole et al., 2014) which is provided by the 

National Centre for Biotechnology Information (Acland et al., 2014). RDP (Release 11, 

Update, September 30, 2016) was used to identify and classify bacterial strains using the 

hierarchy browser http://rdp.cme.msu.edu/index.jsp. The obtained sequences together with 

the bacterial isolate sequences were submitted to Genbank through MEGA5 (Tamura et al., 

2011). For Eubacterial sequences the 16S rRNA sequence for Escherichia coli (Genbank 

accession number J01695), was used as a reference for chimera checking in the Genbank at 

the following URL http://www.ncbi.nlm.nih.gov/genbank (Wheeler et al., 2007).  

  Construction of phylogenetic trees  

Bacteria gene sequences were aligned with reference sequences obtained either from 

Genbank or the hierarchy browser component of RDP were used to build phylogenetic trees 

using the MEGA 5 software programme (Tamura et al., 2011). Multiple Sequence 

Comparison by Log-Expectation (MUSCLE) and Neighbour-Joining was used to estimate 

http://rdp.cme.msu.edu/index.jsp
http://www.ncbi.nlm.nih.gov/genbank
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phylogeny using a 1000 replicate bootstrap analysis of Maximum Composite Likelihood 

methods (Kumar, Nei, Dudley, & Tamura, 2008).  

Unweighted Pair Group Method with Arithmetic Mean (UPGMA), this programme used to 

build a rooted tree (dendrogram) that shows the pairwise similarity matrix structure between 

two clusters by phylogenetic distances, it also reflect the similarities between Operational 

Taxonomic Units (OTUs)  http://www.icp.ucl.ac.be/~opperd/private/upgma.html  

 Community analysis via 16SrRNA gene sequence analysis 

Community analysis (Eubacteria & Archaea) was carried out based on 16S rRNA gene 

sequences generated via next-generation sequencing (NGS) technologies, and the 

CLcommunity™ software provided by ChunLab (Korea).  

  Storage of pure bacterial cells 

Pure cultures were stored on Microbank beads (ProLab Diagnostics Ltd) at -80 °C.  In the 

case of spore forming bacteria, spore suspensions were made and stored in 50% ethanol at -

20°C.  

 Identification of pH profile for bacterial isolates 

The pH profile of the bacterial isolates was determined via the Bioscreen C Automated 

Growth Curve System (Finland) taking measurements at 450-600nm in either; fastidious 

anaerobic broth, TSB or ISO-sensitestTW broth CM0473 (OXOID). The pH was adjusted to 

a pH range of pH 4-12 in 1.0 pH increments using HCl 2M or NaOH 4M accordingly. 

Replicates were prepared in the honeycomb 100 well microplates designed for this system. 

In the case of strict anaerobic bacteria, the plates were sealed using gas proof tape. The 

Bioscreen C System was set for automatically OD measurement each hour, under continual 

shaking for between 24 hours to two days (depends on the generation time). In order to find 

the optimum pH, the area under growth curve was calculated, and the optimum pH value 

was determined for each bacterium. In order to determine the impact of pH and temperature, 

pH profile experiments were repeated at a range of temperatures either through adjustment 

of the instrument or by placing the Bioscreen in a cooled incubator.  

 

 

http://www.icp.ucl.ac.be/~opperd/private/upgma.html
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 Heavy metals tolerance   

In order to determine heavy metal tolerance the minimal inhibitory concentrations (MIC) of 

nickel, copper, lead, cadmium, cobalt and zinc were determined using the Bioscreen C 

instrument. Stock solutions were prepared from the metal chlorides and serially diluted to 

give a final concentration range from 0.5 to 10 mM at 0.5 mM intervals. In order to maintain 

the correct concentration of the metal in the instrument the stock solution for each metal was 

prepared at double strength and sterilized at 121ºC for 15min. The ISO-sensitest broth CM 

0473 (OXOIDTM) employed was also prepared in double strength 4.68% (W/V) and 

sterilized at 121ºC for 15 min. Bacterial test suspensions were prepared from fresh bacterial 

colonies and adjusted to an optical density at 620 nm that were equivalent to 107 to 108 

CFU/ml. The test plates were set up with duplicates for each metal concentration, and 

triplicate positive controls and duplicate negative controls at each metal concentration. The 

Bioscreen System was set to run from 24 to 36 hours at 30ºC with low shaking and hourly 

readings with a wide band wavelength (420-600nm). 

The MIC was calculated as per the method outlined by Lambert and Pearson (2000), where 

the fractional are is calculated as per below (Lambert & Pearson, 2000): 

                  fa =(X1- NC) / (PC-NC)                                                 eq.  1 

Where X is the average O.D. at each concentration, NC is an average of the O.D. of the 

negative control; PC is an average of the O.D. of the positive control. The MIC is then 

calculated via the fitting of a modified Gomperts function. The fractional area (y) to the log 

of heavy metal concentration (x) was analysed using a Gompertz equation eq. 2 in order to 

get calculated values for y (ycal.): 

           ycal =A+C * EXP (-EXP (B * (X-M)))                                   eq. 2  

Where A, C, B and D were calculated by Data-Solver program (Microsoft Excel to determine 

the maximum or minimum value), by solving the total of the error 2 value that was calculated 

by subtracting (fa) value from y calculated value for each HM concentration values, and the 

random values of the A, C, B and M. In order to get the lower asymptote of y that is A, slope 

parameter B, the distance between the upper and lower asymptote C, and M is the log 

concentration of the inflexion point (Lambert & Pearson, 2000). 
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 Extracellular polymeric substances detection 

The production of ESP was detected fluorescence microscopy, using 0.1% fluorescent 

brightener 28 (FB28) in deionised water. A smear was prepared for each isolate, flooded 

with FB28 for 10 minutes, and then the slide was examined by fluorescence microscopy. 

    Detection of bacterial biofilms 

After incubation for 24 to 48 hours at 25°C on an agar plate, a bacterial suspension was 

prepared in TSB broth at an optical density equivalent to 108 CFU/ml. The bacteria 

suspension (200 μl) was transferred to a 96 well plate, four wells for each isolate, the plate 

was incubated at 25°C for 24 to 48 hours. Following incubation the plate was rinsed and 

washed four times using sterile 0.9% sodium chloride. The formed biofilm was fixed by 

adding methanol (200 μl) for 15 minutes. The methanol was then rinsed and a crystal violet 

stain 2% (v/v) (200 μl) added for 5 minutes before the plate was rinsed again (x4) with 0.9% 

buffer saline. Finally glacial acetic acid (33% v/v) was added as a decolorizing (160 ml) 

agent before the optical density was measured by spectrophotometer (FLUO star OPTIMA 

(BMG Lab tech)) at 570 nm. Biofilm formation was evaluated by calculating the average 

OD of four replicates for each strain and comparison with the OD of the negative control 

(medium without inoculation). The extent of biofilm formation was evaluated as outlined 

below (Stepanović, Vuković, Dakić, Savić, & Švabić-Vlahović, 2000).  

OD ≤ ODc                                                   No biofilm formed  

ODc < OD ≤ 2x ODc                                  Weak biofilm formed 

2x ODc < OD ≤ 4x ODc                              Moderate 

4x ODc < OD                                               Strong  

Optical density cut-off value (ODc) = average OD of negative control + (3x standard 

deviation (SD) of negative control).  

   Quinones and polar lipids 

Menaquinones are abbreviated MK-n, where (M) stands for menaquinone that represent the 

functional group of "quinone" ring that are found in all (K) vitamins and the (n) represents 

the number of isoprenoid units in the side chain. Where the name of MK refer to the length 

and degree of saturation of the carbon tail (Figure 2.3).  
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Figure 2.3: An example of the menaquinone structure  

Analysis of the respiratory quinones and polar lipids (PLs) were carried out by DSMZ 

(Braunschweig, Germany). Two dimensional Thin Layer Chromatography (TLC) was used 

to separate the polar lipids, the separated PLs were identified using Molybdatophosphoric 

acid and heating at 200ºC for 10 min.   

   Cellular fatty acids contents of bacterial isolates 

In order to identify and analyse the fatty acid content of the isolates, one isolate was sent to 

DSMZ (Braunschweig, Germany) whereby freeze dried cells of the pure culture were 

prepared as specified by DSMZ. For some isolates, the fatty acid methyl esters (FAME) were 

extracted from 40 mg of bacterial cells using the method SherlockTM Microbial 

Identification Incorporation (MIDI Inc., Newark, USA) (Sasser, 1990). In this study, the 

analysis was performed by using Gas chromatography-mass spectrometry (GC-MS) system 

(Algilent technologies, Edinburgh, UK) (2.4.4) and the library of the National Institute of 

Science and Technology (NIST).    

    Biolog® EcoPlate for R1 pH10, R2 pH11 and R4 pH10.5 

Biolog® EcoPlates enable the metabolic profiling of microbial communities. The Biolog 

plates contain 96 wells containing 31 different carbon sources (substrate) plus a blank well 

(water) with each treatment present in triplicate. Utilization of the carbon sources is indicated 

by the reduction of Tetrazolium Violet Redox Dye (TVRD), which changed from colourless 

to purple (Gryta, Frąc, & Oszust, 2014). In addition, substrates were subdivided into five 

group substrates, carbohydrates, carboxylic and ketonic acids, amines and amides, amino 

acids, and polymers, according to Weber and Legge (Zak, Willig, Moorhead, & Wildman, 

1994).  EcoPlates were prepared by spinning down (10,000 rpm for 5min) 5ml of test 

material and resuspending the pellet in 15ml sterile (0.9%) NaCl prior to inoculating each 

well with 150 μl of this suspension, followed by incubation at 25ºC. Microbial activity in 

each well was expressed as colour development after 24 hours to 5 days incubation.  
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   Whole genome sequencing 

The whole genome sequencing for some isolates were performed by microbesNG 

https://microbesng.uk/ Birmingham, UK, and by BaseClear DNA sequencing services, 

Netherlands. Genomic DNA was extracted using an Ultraclean microbial isolation kit (Mo-

Bio, USA) and associated protocol. The genome was then sequenced using a whole genome 

shotgun sequence (WGS) strategy.  Illumina HiSeq 2500 were used to generate paired-end 

125 cycle sequence read (BaseClear), Illumina CASAVA and CLC Genomics Workbench 

version 7.0 were used to generate FASTQ sequence file and assembly, respectively. 

Scaffolds or supercontigs were generated by linking the contigs (Boetzer et al., 2011). 

Finally, Rapid Annotation in the Subsystem Technology (RAST) (Aziz et al., 2008) and the 

National Centre for Biotechnology Information (NCBI) Prokaryotic Genome Automatic 

Annotation were used to construct the final de novo annotation of the genome (Benson et 

al., 2013). 

 Methods for chemical analysis  

 ISA concentration measurements 

ISA concentration was measured by High-Performance Anion-Exchange Chromatography 

on either a Dionex 3000 or 5000 system (Dionex, Camberley, UK) with a Pulsed 

Amperometric Detection (HPAEC-PAD) and a CarboPac PA20 Column, at a flow rate of 

0.5 mL min-1. The mobile phase was 50 mM NaOH and the column was regenerated by 

eluting buffer 200 mM NaOH for 20 minutes. The internal control was 40 mg/l D-ribonic 

acid which was added to each sample prior to analysis. A volume of 10 μL from each sample 

was automatically injected onto the column. The integration process was performed using 

the ‘Chromeleon 7.0’ Software package. The results were calculated using a set of ISA 

standards (100, 75, 50 and 25 mg/l) (Appendix-1) and associated peak areas for each sample 

(Shaw, Robinson, Rice, Humphreys, & Laws, 2012).  

 VFAs concentration measurements   

VFAs were measured using a Gas Chromatograph (GC), Model GC6890 (Hewlett Packard, 

UK) and FID, a HP-FFAP Agilent Technology (30 m x 0.535 m x 1.00 μm) column, and a 

helium mobile phase. The operating conditions were: an initial temperature of 95°C for 2 

minutes, then 140°C no hold, followed by 200°C with a hold of 10 minutes, after that to a 

post run temperature of 50°C was employed. Samples were acidified using 85% phosphoric 

https://microbesng.uk/
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acid prior to the injection of 1µl of sample.  Concentrations were determined by comparison 

to a range of standard stock solutions of volatile fatty acids (Supelco analytical, 

Pennsylvania, US).  The calibration curve (Appendix-1) was performed for each acid at a 

linearity >0.99 in each case.  

 Head space gas analysis 

Head space gas analysis (CH4, H2, CO2) was performed via gas chromatography using a 

Model 6850 Agilent GC with a thermal conductivity detector fitted with a GS-Q column 

(30m x 0.53mm ID, Agilent technologies, Berkshire, UK) and a helium carrier gas, the 

column temperature was 30°C and the detector temperature 200°C. Sample from the 

headspace of cultures or microcosm reactors were collected by a lockable gas syringe prior 

to injection. The retention time for each gas was determined using known volumes of each 

gas. 

 Microcosm studies  

A wide range of microcosm studies were performed in this investigation. These studies are 

described below and summarised in Table 2.1. 

 CDPs-fed microcosm reactors at pH 10.0, pH 11.0 and pH 12.0 

An alkaline soil sample (30g) was divided equalise into three 250 ml Schott bottles (Figure 

2.4) containing 150 ml MM (2.2.3) and 25 ml CDP. The three microcosms were adjusted to 

pH 10, 11, and 12 respectively. The microcosms were purged for 20 minutes with nitrogen 

gas before being sealed. Twenty-five (25) ml of CDPs was added monthly to each 

microcosm and the pH readjusted to the target pH, until a final volume of 250 ml. Once the 

microcosm volume had reached 250 ml, 25ml of waste was removed prior to feeding, the 

microcosms were fed monthly for 12 months. After this period, the protocol was switched 

from 30 to 10 days waste feed cycles. In order to keep the pH levels for each reactor at the 

particular values for isolation of the bacteria that can tolerance alkaline environment.
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Figure 2. 4: Scheme of the experiments procedures in this project.  

Setting up microcosm reactors subjected to a particular pH under anaerobic conditions, 

nitrogen gas free oxygen used in order to prevent any contact with oxygen during CDP feed-

cycle and pH adjustment, that followed by sampling for chemical and biological analysis 

under anaerobic condition. The sediment samples were used to isolate bacteria in pure 

culture on agar plates under anaerobic condition, the bacterial isolates were identified by 

molecular methods, DNA extraction, DNA amplification by PCR, then the purified PCR 

products were confirmed on agarose gel electrophoresis, after that the purified DNA was 

used for bacterial identification through 16SrRNA gene sequencing. The filtered broth was 

used to measure the ISA concentration by using ion exchange chromatography and VFAs 

concentration was measured by gas chromatography.            
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 Additional microcosms at pH 8.0, 8.5 and 9.5 

Harpur Hill soil samples were incubated in MM supplemented with CDP (50:50 v/v mix). 

The media was dispensed into six 50 ml bottles, which were then inoculated with 3.0g of 

soil. The pH of the microcosms reactors was then adjusted to either pH 8, pH 8.5 or pH 9.5 

respectively. Control reactors were autoclaved and all reactors incubated at 25ºC in the dark. 

All reactors were sampled every 5 days for 30 days for the usual suite of analyses. The 

microcosms at pH 9.5 was adjusted to a pH 9.0 (microcosm R5) and incubated for further 

incubation under a protocol of CDPs feed-cycle each 30 days to give three microcosms 

reactors operating at three pH values one unit apart with the previous microcosms R1-pH 10 

and R2-pH 11 (2.5.1.).  

 Establishment of a batch fed reactor with an evolving pH (pH 8.5 to 

9.5 to 10.5)  

Microcosm reactor 4 of mineral media and CDP 4 was set up with a CDP waste-feed cycle 

and a pH that was adjusted from 8.5 to 9.5 and then 10.5 every 30 day intervals. Initially two 

250 ml reactors were set up at pH 8.5 one of them as a control, each bottle containing 50 ml 

of CDPs and 130 ml MM. For the control bottle, 10 grams of soil was autoclaved and added 

into the bottle under a stream of nitrogen gas. Another 10 grams of soil was added directly 

into the test bottle. Following incubation condition, 2ml from each reactor was collected 

every 7 days throughout the study. All samples were collected in sterile Eppendorf tubes 

under anaerobic condition by purging with nitrogen gas and stored for chemical and 

biological analysis.  

 Bacterial isolation   

In order to isolate alkaliphilic bacteria in pure culture, microcosm sediments were 

subcultured onto a range of media under anaerobic conditions. Before subculturing the agar 

plates were kept inside an anaerobic workstation (CO2 10%, H2 10% and N2 80%) for two 

days in order to remove oxygen from the media. This step was confirmed by adding 0.001% 

resazurin as an oxygen indicator. The samples were inoculated both directly and after a serial 

dilution onto the following media: FAA, CDP/MM, Ca(ISA)2 5mM/MM and (R2A+0.5% 

glucose). All plates were incubated anaerobically at 25°C. Once growth was observed, 

individual colonies were removed and plated out on identical media. The isolation steps were 

repeated several times, followed by Gram-staining in order to ensure a pure culture. Initially 
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isolates were tested to determine if they were strict or facultative anaerobes, by incubation 

under both aerobic and anaerobic conditions. Isolates were identified by 16SrRNA gene 

amplification, purification, sequencing and reference to sequence libraries.   

 The Influence of pH and the Availability of Terminal Electron 

Acceptors on the Degradation of CDP  

In order to determine the influence of pH and TEA on population diversity, a range of 

microcosms (100 ml for each bottle) (Figure 2.5), 3 bottles for each TEA were set up at pH 

7.0, pH 8.0, pH 9.0 and pH 10.0 using CDP as an electron donor and Nitrate, Sulphate and 

Iron (III) as potential electron acceptors, where the total of the bottles were 12. The relative 

concentration of Nitrate and Sulphate was established by the addition of 33.6mM NaNO3, 

Na2SO4 (21mM) and 30mM Ferrihydrite. The ferrihydrite (Fe (III) oxyhydroxide) was 

prepared as outlined by Wu et al. (Y. Wu et al., 2015). Additional fermentation microcosms 

were also set up. The microcosms were set up with MM broth supplemented with CDPs 

(30% v/v), 30ml CDP was added to 70ml broth of MM, the redox indicator resazurin (Fisher, 

UK) was also added. The media was prepared under nitrogen and autoclaved prior to the 

addition of 5 grams of Harpur Hill soil and then incubated in the dark at 25oC for 1 week. 

 

Figure 2. 5: Redox reaction compared with a fermentation process for ISAs 

 

After 1 week’s incubation the microcosms were sub-cultured into identical microcosms 

(MM, pH, TEA, CDP) and incubated for a further week and then subcultured into duplicate 

microcosms and incubated for a further 30 days with regular sub sampling. All samples were 

filtered (0.45 µm syringe filters) and preserved in -20ºC prior to analysis for ISA, VFA, 
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Nitrate, Sulphate and Iron (III). Furthermore, at the end the incubation period, the contents 

remaining in the microcosm was centrifuged and the DNA associated with the resulting 

pellet extracted for community analysis.  

 Quantification of Nitrate, Sulphate and Iron concentrations 

Sulphate and nitrate concentrations were measure via ion chromatography with a Metrosep 

AS7 column (Metrohm IC 850 professional, Metrohm, Cheshire, UK).  Sample 

concentration was determined by reference to a standard curve. Sodium carbonate (3.2 mmol 

L-1) and sodium hydrogen carbonate (1.0 mmol L-1) were used as an eluting buffer. Iron-(III) 

and Iron-(II) concentrations were determine using the ferrozine method described by 

(Viollier, Inglett, Hunter, Roychoudhury, & Van Cappellen, 2000).  

 Pure culture studies   

In order to find alkaliphilic bacteria with the ability to degrade ISA a wide range of broth 

based pure culture studies were performed. The protocols for bacterial isolation from the 

microcosm reactors has already been outlined (section 2.5). These investigations employed 

two types of basal media, mineral media (2.2.3) and minimal medium (2.2.4) supplemented 

by one of the different forms of ISAs with and without other supporting growth factors such 

as vitamins solution, yeast extract, peptone and, under alkaline and in anaerobic conditions. 

Microbial metabolism was determined via substrate and product profiles alongside 

headspace analysis and microbial growth data. 

 Statistical analysis 

The arithmetic mean of the values that obtained after a chemical analysis of the samples that 

collected from the microcosms during an incubation time include ISA and VFAs 

concentration. These values were used to calculate the standard deviation to measure the 

amount of variation values. The variation value for each reading was represented by error 

bars on the graphs. 
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Table 2. 1: Summary of the ISAs driven microcosms experiments  

The table provide a summary of the microcosm experiments, including experiment number, type of each microcosm (R), the sources of sample for 

each experiment, pH levels, incubation time, the aim of each experiment and the result number for each experiment.  
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 Alkaline Microcosm Studies  

A wide range of alkaline microcosms were operated throughout this study (Table 2.1) with a 

view to: 

 Gaining an insight into the microbiology of CDP and ISA degradation and the 

associated microbial communities; 

 Isolating and characterising alkaliphilic, ISA degrading bacteria. 

The data presented here are from those microcosms that contributed significantly to the 

overall progress of the project. Those microcosms not described in detail are outlined in Table 

2.1, and are not reported in detail either because the duration of operation was short or the 

results generated replicated those already reported for other microcosms.  

 Initial alkaline microcosms    

The first batch of soil microcosm reactors (2.5.1) were established in order to isolate alkaliphiles 

and to determine their ability to degrade ISAs under alkaline, anaerobic conditions. Three 

microcosms were run on a 10%, 30 day waste/feed cycle and maintained at pH 10.0, pH 11.0 

and pH 12.0. The 30 day feed cycle was chosen to impose a longer minimum growth rate than 

previously employed by Rout (Rout, Charles, Doulgeris, et al., 2015) and Charles (Charles et 

al., 2015). The pH of the microcosms was measured regularly with associated volatile fatty acid 

(VFA) concentrations recorded from day 120 onward.  
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B) 

 

Figure 3. 1: pH decrease in the microcosm at pH 10, 11 and 12 

The reduction of the pH at the end of each 30 day cycle (A), is an indicator of bacterial activity. The 

magnitude of reduction was variable between 30 day feed cycles (B). 

Between feed cycles a reduction of pH (Figure 3.1 A) of between 0.8 and 3.0 units (Figure 3.1 

B) was observed in all microcosms due to acetic acid generation via fermentation. It should be 

noted that a small amount (≈0.5 mM) of acetate is a component of the CDPs stock solution. The 

amount of acetate generated within the microcosms varied at all pH levels and peaked around 

20 mM after 150 days in all cases (Figure 3.2). Towards the end of operation (Days 160 to 180) 

the acetate levels levelled off with the pH 10.0 system having higher level of acetate than the 

higher pH values suggesting that the fermentation activity at pH 10.0 was greater than that seen 

at pH 11.0 and pH 12.0.  

 

Figure 3. 2: Acetate concentrations at different pH levels pH 10, pH 11 and pH 12.  

Acetate concentrations varied across the experimental period indicating that the levels of fermentation 

also varied. The amounts of acetate levelled off towards the end of the operational period with the pH 

10.0 reactor having a higher level of acetate suggesting that this reactor was sustaining a higher level of 

fermentation.  
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Figure 3. 3: ISA concentrations at different pH levels pH 10, pH 11 and pH 12. 

There was a small amount of α-ISA degradation at pH 10.0 and pH 11.0, but no signs of any reduction 

at pH 12.0. While the β-ISA concentration decreased at all pH levels include pH 12.0 (Figure 3.5 B), 

suggesting that β-ISA may be more degradable at high pH than α-ISA. 

Analysis of the head space gases indicated that methane was accumulating in the headspace of 

the pH 10.0 microcosm (Figure 3.4 A), whilst hydrogen was accumulating at pH 11.0 (Figure 

3.4 B) with no changes in the headspaces gases detected at pH 12.0. The gases were identified 

by using a known sample of both gases (Figure 3.4 C and D). This data indicates that the pH 

10.0 microcosm had an active fermentative and methanogenic community whilst the pH 11.0 

microcosm was primarily fermentative and that pH 12.0 microcosm had limited microbial 

activity, when the pH level increased, the microorganism activity decreased and it was inhibited 

at pH 12. 

The pH of these microcosms meant that any CO2 generated would remain in solution and would 

not be detected in the headspace. Although no biogenic gases were detected at pH 12.0 the 

reduction in pH observed suggests that some microbial activity was occurring. This data 

contradicts that published by Rout et al. (2015) who established methanogenic communities 

from these sediments at pH 11.0 (Rout, Charles, et al., 2015a), however, this fermenter was run 

on shorter waste/feed cycle than those described here. When operated at pH 9.5 the microcosm 

gave similar results to those obtained at pH 10.0 with a reduction of pH associated with the 

fermentation of both forms of ISA generating acetic acid (Figure 3.5 A-D).  The concentration 

of acetic acid (40 mM) being greater than that observed at the higher pH values.  
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Figure 3. 4: Biogas detected from the head space of the microcosm at pH 10 and pH 11.  

CH4 was detected after 24 hours of each CDPs feed-cycle at pH10.0 (A), Hydrogen was detected 

after 2 days of incubation after each CDPs feed-cycle at pH 11.0 (B). These gases were 

identified by comparing the retention time for each peak with standards of hydrogen and 

methane (H) and (D) respectively.  

Considerable amount of ISAs were degraded during 15 days of incubation (Figure 3.5 A) 

generating acetate, CH4, CO2 and H2.  Initially H2 gas was detected (after 4 days) which was 

accompanied by CH4 and CO2 after 20 days (Figure 3.5 F). The CO2 was detected once the 

microcosm had acidified (Figure 3.5 D). The results indicated of the presence of 

hydrogenotrophic methanogens as a part of the bacterial community in the microcosm. This 

result is in agreement with Rout et al. (2015) who found that CDP fed microcosm operated at 

pH 10.0 were dominated by fermentative populations that included hydrogenotrophic 

methanogens (Rout, Charles, Doulgeris, et al., 2015). A significant amount of acetate was 

detected (Figure 3.5 E) which decreased once the pH had decreased suggesting aceticlastic 

methanogenesis progressed once the pH had been reduced.  
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A)                    α-ISA at pH 9.5 B) β-ISA at pH 9.5 

  

C)  D)              

  

        E)  

 

Figure 3. 5: Bacterial utilization of CDPs at pH 9.5  

About 5.5mM of α-ISA was degraded (A), and about 4.5mM of β-ISA was degraded (B) during 15 day 

incubation period, a significant amount of acetate (40mM) was detected at the end of the incubation 

time (C), that causes a reduction of pH (D). H2 was detected after 4 days which was replaced by CH4 

after 20 day (E). 
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 Evolving pH microcosms    

Employing the same protocol as the initial microcosms, a microcosm was established on a 30 

day CDP feed-cycle with a gradual increase in pH from pH 8.5, to pH 9.5 and finally pH 10.5 

(2.5.4). The pH was increased at the end of each 30day waste/feed cycle. The aim being to see 

if a more gradual increase in pH would select for alkaliphilic microbes in the inoculum.  

At pH 8.5 complete degradation of α-ISA (4.5mM) and β-ISA (4.0mM) (Figure 3.6 A and B) 

was observed within 25 days of incubation time with H2, CO2 and CH4 detected in the headspace 

(Figure 3.6 D). When the pH was adjusted to pH 9.5 similar results were observed, with 

significant degradation of both forms of ISA associated with VFA production and a pH decrease 

to pH 8.0 after 30 day incubation (data not shown). At pH 10.5 the degradation of α-ISA was 

incomplete with 1.5 mM remaining after 30 days, whilst β-ISA was completely degraded by 20 

days. As anticipated, this drop was associated with a drop in pH and an increase in acetic acid 

and methane generation. The data demonstrated a greater reduction in ISA concentration at pH 

10.5 (Figure 3.7 A and B) than seen in the pH 10.0 reactor described in the previous section, 

suggesting that a more gradual increase in pH was more successful in establishing an 

alkaliphilic microbial population. However, the greater ISA degradation is associated with a 

greater acetate generation and pH decrease (Figure 3.7 C). Consequently, it is hard to separate 

the impact of the gradual increase in initial pH with the impact of the microcosm spending more 

time at a lower pH that is more favourable for microbial activity.  

The results of this microcosm are broadly similar to those obtained from the fixed pH 

microcosms with the fermentation of ISA being associated with the accumulation of acetate 

and the generation of methane (Figure 3.7 D) with the extent of ISA degradation decreasing as 

the operational pH increases.  The results are in broad agreement with those published by Rout 

et al. (2015) who found that CDP fed microcosm operated at pH 10.0 were dominated by 

fermentative populations that included hydrogenotrophic methanogens (Rout, Charles, 

Doulgeris, et al., 2015). 
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A)                     B)                          

 

 
 

  C) 

 

D) 

 

Figure 3. 6: Degradation of ISAs at pH 8.5  

Complete degradation of α-ISA and β-ISA (A and B) led to an increase of acetate concentration (C), 

causing a reduction in pH from 8.5 to 7.0 at the end of 30 days (C). A gradual reduction of ISAs was 

associated with a gradual increase of acetate (C), the fermentation process was associated with gas 

production (H2, CH4 and CO2) (D). 
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A)  B)  

  

C) 

 

D) 

 

Figure 3. 7: Complete degradation of β-ISA at pH 10.5 

Significant amounts of α-ISA (~2.0 mM) at pH 10.5 (A), and all β-ISA (~2.2 mM) (B) were degraded 

at pH 10.5 leading to an increases in acetate from ≈18 mM to ≈43mM at the end of 30 days (C) causing 

a reduction in pH from 10.5 to 8.1 (C). CH4 gradually increased peaking after 21 days and then 

decreasing (D). 
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 Operation of alkaline microcosms at shorted waste feed cycles 

The pH 9.0, 10.0, and 11.0 30 day waste/feed cycle microcosms were operated for 12 months 

in total. These microcosms were prone to significant reduction in pH which moved the 

microcosms towards a more neutral pH environment. In order to maintain the microcosms at 

alkaline pH values the microcosms were modified to a 10 day waste feed cycle. The pH values 

of each microcosm being readjusted each 10 days for 40 days (2.5.5.).  

Complete degradation of ISA was achieved at pH 9.0 however this was associated with a drop 

in pH to near neutral conditions (Figure 3.8 A-C). Adaption to the shorter feed cycle resulted 

in an initial accumulation of acetate and other VFA, these subsided as the microbial population 

adapted to the revised feed cycle. These two VFAs could be used as a substrate by butyrate-, 

and propionate-degrading syntrophic acetogens, which are able to grow syntrophically with 

hydrogenotrophic methanogens (Schink, 1997; W.-M. Wu, Jain, De Macario, Thiele, & Zeikus, 

1992). The reduction in VFA reflects the presence of methanogens as a part of the bacterial 

community utilising acetic acid to produce methane (McInerney et al., 2008; Schink, 1997; W.-

M. Wu et al., 1992). 

Although the two forms of ISA were completely degraded at pH 9.0 (Figure 3.8 A) within the 

10 days of each feed cycle. At pH 10.0 β-ISA was completely removed whilst the α-ISA 

accumulated (Figure 3.9 A). This result disagrees with the previous results by Rout et al. (2015) 

who found a complete removal of α-ISA (~ 0.4 mM) in alkaline microcosm up to pH 9.5 and 

accumulation of β-ISA in microcosm at pH 9.5 and pH 10.0 (Rout, Charles, Doulgeris, et al., 

2015). This suggests that the population has diverged from that established by Rout et al. (2015) 

due to the differing feed cycles. At pH 10.0 the microcosm pH reduced with the generation of 

acetic acid (Figure 3.9 B), however there was not the accumulation of other VFA seen in the 

pH 9.0 microcosm (Figure 3.8 B).  At pH 10.0, the acetic acid accumulated and remained in the 

system. This results agrees with the previous data presented by Rout et al. (2015) who reported 

a gradual removal of acetate at pH 7.5 but an accumulation at pH 9.5 and pH 10.0 (Rout, 

Charles, Doulgeris, et al., 2015). 
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     A) 

 
B) C) 

  

Figure 3. 8: ISAs degradation at pH 9.0 under CDPs feed-cycle each 10 days. 

Complete degradation of α-ISA (~3.3 mM) and β-ISA (~2.0 mM) (A), at the end of each 10 days feed 

cycle followed by an increase of variable amount of VFAs dominated by acetate (B). The pH value 

decreased to ~ pH 7.3 (C) due to VFAs and carbonates formation.    
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      A) 

 
B) C) 

 

 

Figure 3. 9: ISAs degradation at pH 10.0 under CDPs fed-cycle each 10 days. 

Small amounts of α-ISA (≤ 1.0 mM) were degraded alongside complete degradation of β-ISA (~2.0 

mM) (A), at the end of 10 days. This was accompanied by a variable amount of VFAs dominated by 

acetate (B), that led to decrease in the pH value to ≈pH 8.0 (C). No reduction in acetate concentration 

was observed, suggesting that the methanogens were not active at pH 10.0. 

At pH 11.0 microbial activity was significantly reduced with limited degradation of both ISA 

isomers detected through the accumulation of acetate, whist the overall ISA profile was one of 

accumulation (Figure 3.10 A and B). The accumulation of acetate produced a reduction in the 

pH, which remained above pH 10.0 for much of the experiment (Figure 3.10 C). Work by Yuan 

et al. (2006), found that the rates of fermentation of protein and carbohydrate are decreased as 

pH increased up to pH values of 10.0 and 11.0 (Yuan et al., 2006). Rout et al. (2015) found that 

an increase in pH of the CDPs driven microcosm to pH 11.0 resulted to an accumulation of ISA 

and the loss of acetoclastic methanogens from the microcosm (Rout, Charles, Doulgeris, et al., 

2015). 
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       A) 

 

B) C) 

  
 

Figure 3. 10: ISAs degradation at pH 11.0 under CDPs feed-cycle each 10 days. 

Insignificant amount of both α-ISA and β-ISA (≤ 1.0 mM) was gradually degraded (A), at the end of the 

first 10 days followed by increase of variable amount of VFAs concentration dominated by acetate (B), 

that led to decrease in the pH value to about pH 10 (C) that indicated to the metabolic activity of the 

bacterial community at pH 11.0   

The shift from a 30 days feed cycle to a 10 days feed cycle had the impact of reducing the 

biodegradation potential of the microcosms. Although the 30 days fed-cycle showed significant 

degradation of ISA at all pH levels including pH 11.0. The 10 days feed cycle resulted in a 

complete degradation of both forms of ISA only at pH 9.0 and significant β-ISA degradation at 

pH 10.0 and negligible degradation of both forms of ISA at pH 11.0. 

The results suggest that the microbial consortia in the microcosms were able to degrade both 

form of ISA at an optimum pH for alkaliphilic bacteria between pH 9.0 and pH 10.0. In addition, 

these microorganisms have an ability to tolerate and survival at up to pH 11.0. The metabolic 

activity of these microorganisms caused a slow reduction in pH during that shifted the pH into 

a region more favourable for microbial growth.  
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 Degradation of ISA over extended incubation times. 

The pH 10.0 and pH 11.0 microcosms operated on a 10 day waste/feed cycle were run for 4 

cycles (40 days) in total. At the end of this period, they were left operational and their 

performance monitored. The data presented below covers a 60 day period after the final 

waste/feed event. 

In the pH 10.0 microcosm a significant amount of α-ISA had accumulated during the 10 day 

feed cycles. When left to run for 60 days fermentation of both forms of ISA generated acetate 

resulting in a drop in overall pH. As the pH fell the extent of ISA degradation increased. 

Significant amounts of α-ISA (~5.8mM) and all the β-ISA (3mM) were degraded (Figure 3.11 

A and B), when the pH of the microcosm had fallen to pH 8.8 followed by complete degradation 

of α-ISA (~9mM) (Figure 3.11 B) and a reduction in pH to pH 7.7 by the end of the incubation 

time (Figure 3.11 D) due to an accumulation of acetic acid (Figure 3.11 C).    

A) B) 

  

C) D) 

 
 

Figure 3. 11: Degradation of ISA in the R1 at pH 10 after 60 days incubation 

Complete degradation of β-ISA (3.0mM) occurred after 10 days (B), at the same time as a significant 

degradation of α-ISA (5.8mM) (A), the pH fell during the incubation period to a final pH of pH 7.7 (D), 

a significant amount of acetate was detected due to fermentation (C). 
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The extended incubation pH 11.0 system gave similar results to those seen at pH 10.0 with the 

degradation of α-ISA only proceeding once the pH had decreased. The fermentation of β-ISA 

proceeded quickly generating the acetate that reduced the pH and facilitated the onset of α-ISA 

fermentation (Figure 3.12 A, B and C). The fermentation of β-ISA initiated at pH 11.0 although 

the low levels present meant that a detailed profile was not characterised (Figure 3.12 B).  While 

the α-ISA was only significantly degraded when the pH was reduced to below pH 9.5 (Figure 

3.12 A and D). 

A B 

  
C D 

  

Figure 3. 12: Degradation of ISA at pH 11 during 60 days incubation time 

Fermentation resulted in a decreasing the concentration of; α-ISA mM (A) and β-ISA mM (B), 

followed by increase of acetate concentration mM L (C), and a decrease in pH (D).  

 Discussion 

The review of Humphreys et al. (2010) suggested that the degradation of CDPs at alkaline pH 

would dominate the post-closure period of a repository and suggested that fermentative bacteria 

are likely to be confined to low pH niches generated by the production of gases and organic 

acids (Humphreys, Laws, et al., 2010). In the previous work reported by Grant et al., it was 
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suggested that the optimum pH values for ISA degradation were between 9.0 and 10.0 with the 

highest pH value for its degradation being pH 11.5 (Grant, 2002). More recently, a number of 

studies have confirmed that the microbial consortia present in the hyper-alkaline environments 

of Harpur Hill are capable of degrading ISAs at pH 10.0 (Bassil et al., 2015; Rout, Charles, 

Doulgeris, et al., 2015) and able to generate methane up to pH 11.0 and that the community was 

suppressed above pH 11.0 (Rout, Charles, et al., 2015a). However, other work has found that 

the same microbial consortia is capable of survival up to pH 12.0 in the form of polymicrobial 

flocs (C. Charles et al., 2017).  

The data presented here broadly agree with previously published work with the consortia 

established in the microcosms being able to initiate ISA degradation up to pH 11.0 with 

degradation accelerating as the pH is reduced.  In line with other published work (Bassil et al., 

2015; Rout, Charles, Doulgeris, et al., 2015) the fermentation of ISA results in the accumulation 

of acetate with only low levels of longer chain VFA. The generation of methane was less 

consistent, again an observation which aligns with the literature where Bassil et al. (2015) did 

not observe methane generation whilst Rout et al. (2015) did. This suggests that the methanogen 

population in the original inoculum is low resulting in an inconsistent colonisation of the 

microcosms. The accumulation of acetate suggests that the methanogenic pathway is primarily 

via the hydrogenotrophic pathway, although acetate degradation appeared to occur at lower pH 

levels.  

 Key findings 

 The bacterial community present in the alkaline soil inoculum is able to adapt to an 

alkaline medium and degrade CDP containing both forms of ISA. 

 The bacterial communities established in these microcosms were able to degrade CDP 

to methane at pH 10.0. At pH 11.0 methanogenesis was lost and the community became 

purely fermentative in nature. At pH 12.0 no clear evidence of microbial activity was 

evident. 

 The bacterial community has shown an affinity for the utilization of β-ISA, rather than 

α-ISA, even at pH10.0.  

 Significant ISA degradation was initiated when the pH fell below pH 9.5.  

 Acetate accumulation was an indicator of ISA fermentation and facilitated the reduction 

in pH.   
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 Bacterial community analysis of the CDP fed alkaline microcosms  

 Microbial community analysis of the pH 9.0, pH 10.0 and pH 11.0 

microcosms that were operated on a 30 day waste feed cycle 

The microbial communities in the pH 9.0, pH 10.0 and pH 11.0 microcosms operated on a 30 

day waste feed cycle for 12 months were further investigated via 16s rRNA gene based 

community analysis and compared to the community present in the initial sample. The pH 12.0 

microcosm not investigated further due to the lack of degradation observed in this reactor. 

Community analysis was performed using ChunLab’s pipeline analysis software (Appendix-

2), EzBioCloud 16S database (Jisun Kim et al., 2012; S.-H. Yoon et al., 2017). This was used 

alongside CD-hit (Fu, Niu, Zhu, Wu, & Li, 2012) and UCLUST (Edgar, 2010) software tools 

to obtain operational taxonomic unit (OTUs) (M. Kim et al., 2013) and alpha diversity indices 

(Cardoso, Rigal, & Carvalho, 2015). The initial soil inoculum (crude soil) showed a complex 

bacterial community (~1030 OTUs) that decreased in the microcosms; pH 9 (549 OTUs), pH 

10 (~607 OTUs) and pH 11 (~242 OTUs) (Figure 3.13).  

 

Figure 3. 13: Microbial diversity analysis of the starting inoculum, and CDPs driven 

microcosms each 30 days.  

The results indicate that the microcosms exerted a significant selective pressure on the original 

community. Given that these original soils are highly alkaline (pH 11.0 to pH 13.0) it seems 

likely that this pressure was provided by the combination of pH, anaerobic conditions and the 

CDP provided as the primary carbon source. Generally speaking, the pH 11.0 microcosm most 

closely matched that seen in the crude soil, perhaps reflecting that this microcosm was closest 

to the crude soil in terms of pH. The bacterial communities showed a sharp reduction of 

Proteobacteria phylum, from 48% in crude soil to about 5.4% and 12% at pH 9.0 and pH 10.0 

0

200

400

600

800

1000

1200

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Soils R5B pH 9.0 R1B pH 10.0 R2B pH 11.0

N
u

m
b

er
 o

f 
O

T
U

s

N
u

m
b

er
 o

f 
S

eq
u

en
ci

n
g

 R
ea

d
s

Alpha Diversity indices

Valid reads OTUs



 

55 
 

respectively, the proportion of Proteobacteria then recovered at pH 11.0 (Figure 3.14). On the 

other hand, the Firmicutes increased from 15.8% in the crude soil to about 64% at pH 9.0 and 

pH 10.0 and to 44.2% at pH 11.0. The Bacteroidetes had a similar profile to the Firmicutes with 

similar proportions at pH 9.0 (24.8%) and pH 10.0 (23%) and much lower proportions at pH 

11.0 and the crude soil. Although, the Archaea that includes methanogenic bacteria were 

undetected in the crude soil, the phylum Euryarchaeota was recovered in the microcosm at pH 

9.0 (3.7%) and pH 11.0 (0.2%), but were undetectable at pH 10.0. 

 

Figure 3. 14: Phyla level description of the microbial communities of 30 days waste/feed 

cycle 

Firmicutes was a dominant phylum in all microcosms followed by Proteobacteria 44% in microcosm 

pH 11, Bacteroidetes 24.8%, 23.2% in microcosms pH 9 and pH 10 respectively. Actinobacteria 8.4% 

in pH 11, while the dominant phylum in crude soil sample was Proteobacteria 48% followed by 

Firmicutes 15.8%, Actinobacteria 13% and Bacteroidetes 8.7%.  

The Firmicutes phylum was represented by families including the Ruminococcaceae, 

Tissierellaceae and Clostridiaceae as previously observed by Rout et al. and Kuippers et al. 

(Kuippers et al., 2015; Rout, Charles, Doulgeris, et al., 2015). Although, as observed by Bassil 

et al. (2015), who found that the Proteobacteria dominated the crude soil, this phylum was 

found in variable levels in the microcosms (pH 9.0 (5.4%), pH 10.0 (12.4%) and pH 11.0 (44%)) 

(Bassil et al., 2015). At pH 11.0 this phylum was represented by the Rhodocyclaceae family 

which was dominated in turn by member of the Azonexus genus (Figure 3.16), whilst at pH 10.0 

the Alcaligenaceae (11.6%) were dominant. The phylum Bacteroidetes was identified in all 
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microcosm and the crude soil and was represented by the Porphyromonadaceae which includes 

the genus of Macellibacteroides that was found in all microcosms with the highest percentage 

recorded at pH 9.0. The Actinobacteria phylum was most prevalent at pH 11.0 and represented 

by the Coriobacteriaceae and Dietziaceae families (Figure 3.15). The presence of the 

Dietziaceae is in agreement with observations made by Charles et al. (2017) who associated 

Dietzia sp. with biofilm formation at alkaline pH (C. Charles et al., 2017).  

 

 

Figure 3. 15: Family level in the microbial communities of 30 days waste/feed cycle 

Families that represented less than 2% of the microbial community of the crude soil sample made up 

>90% of the soil population. The microcosm at pH 9.0 was dominated by Ruminococcaceae 31.2%, 

porphyromonadaceae 17% and Tissierellaceae 11.9%. The microcosm at pH 10 was dominated by 

Ruminococcaceae 29%, Anaerovirgula 21.2% and Alcaligenaceae 11.6%. The microcosm at pH 11 was 

dominated by Rhodocyclaceae 40% and Anaerovirgula 17%.   

.  
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Figure 3. 16: Genera level of the microbial communities of 30 days waste/feed cycle 

The microcosm at pH 9.0 was dominated by; Ercella 13.8%, Tissierella 11%, and Fermentimonas 10%; 

the microcosm at pH 10 was dominated by AB630534 genus 26%, DQ677001 genus 11.8%, and 

Alkaliphilus 12.4%; while, microcosm at pH 11 dominated by Azonexus genus 38.6%, and Tissierella 

genus 9.0%.    

At the species levels, all three microcosms were dominated by unknown species identified via 

accession numbers reflecting the uncharacterised nature of the environment the microcosms 

were established from. The dominant known species in the microcosms were at pH 9.0 

Fermentimonas caanicola 9.7% and Macellibacteroides fermentans 4%. In the pH 10.0 

microcosm they were Ruminococcaceae species 25.7% and Rhodocyclaceae species 11.27%. 
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Whilst at pH 11.0 were Anaerovirgula species 6.5%, Coribacteriaceae species 4.8%, Dietzia 

species 2.5% and Azonexus species 1.43% were present. 

 

Figure 3. 17: Species level of the microbial communities of 30 days waste/feed cycle 

All of three microcosms were dominated by unknown species that identified by accession numbers. The 

dominant known species in the microcosms were at pH 9.0: Fermentimonas caanicola 9.7% and 

Macellibacteroides fermentans 4%, at pH 10: Ruminococcaceae species 25.7% and Rhodocyclaceae 

species 11.27%, at pH 11:  Anaerovirgula species 6.5%, Coriobacteriaceae species 4.8%, Dietzia species 

2.5% and Azonexus species 1.43%.            

Methane was generated in a number of the microcosms indicating the presence of methanogenic 

archaea. The microbial community analysis confirmed the presence of Archaeal groups that 

occupied 3.7% of the total prokaryotic diversity. The Archaeal population was dominated 

(39%) by hydrogenotrophic methanogens of Methanobacterium bryantii (39%), followed by 
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unknown strain AY454550 of Methanobacterium genus with 97.1% similarity to 

Methanobacterium uliginosum strain P2St. A third Archaeal strain had high similarity 

(99.74%) to the acetotrophic and hydrogenotrophic methanogens Methanosarcina 

horonobensis (9%) (accession number CP009516). The fourth strain (5.5%) had 97.9% 

similarity to Methanoculleus hydrogenitrophicus (accession number FJ977567). These findings 

are in agreement with the community analysis of microcosms based on the same sediments 

carried out via cloning and sequencing by Rout et al. 2015 (Rout, Charles, et al., 2015a). The 

dominance of hydrogenotrophic methanogens in these alkaline microcosms is supported by the 

accumulation of acetic acid in these microcosms. A position in agreement with Rout et al. 

(2015) who found that the acetoclastic methanogenesis was suppressed in microcosm at pH 

11.0 (Rout, Charles, Doulgeris, et al., 2015).  

 Bacterial community analysis of microcosms operated on a 10 day 

waste/feed cycle.  

When the waste feed cycle was reduced from 30 days to 10 days the impact on the microbial 

communities was a reduction in diversity as indicated by the number of OTUs (Figure 3.18). 

This change represented a reduction of 44 and 45% at pH 9.0 and pH 10.0, but only 20% at pH 

10.0. This reduction is despite the fact that the shorter waste feed cycle resulted in greater 

substrate availability but required the microbial community to be growing at a higher rate to 

ensure they can maintain a population in the microcosm. 

 

Figure 3. 18: Bacterial community of the starting inoculum, and CDPs driven 

microcosms.  

The α-diversity plot shows the number of OTUs in the microcosms at different pH levels.  
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The reduction in microbial diversity was associated with an increased dominance by the 

Firmicutes which increased as the pH increased (38%, 70.5%, and 83.5% at pH 9.0, pH 10.0 

and pH 11.0 respectively) an increase accompanied by a decrease in the Proteobacteria and the 

Bacteroidetes (Figure 3.19).  Gram positive bacteria from the Ruminococcaceae family 

dominated microcosms under both of CDP feed-cycles at pH 9.0 and pH 10.0, while, 

Anaerovirgula and Tissierellaceae families dominated both sets of microcosms at pH 11.0 

(Figure 3.20). Although the overall diversity had reduced the microcosms still retained bacteria 

from the Tissierella genus, the Azonexus genus and the Alkaliphilus genus (Figure 3.21). At the 

species level the microcosms were dominated by unknown species with Macellibacteroides 

fermentans and Dietzia species being notable exceptions (Figure 3.22).       

 

Figure 3. 19: Phyla level of the microbial communities of 10 days waste/feed cycle. 

Bacterial diversity of the inoculum compared with microcosms at different pH levels. bacteria in the 

crude soil were dominated by Proteobacteria 48% that was substituted by the Firmicutes phylum in 

microcosms at pH 10.0 and pH 11.0, while the microcosm at pH 9.0 was dominated by three phyla; 

Firmicutes 38%, Proteobacteria 35% and Bacteroidetes 20.7%.   
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Figure 3. 20: Family level of the microbial communities of 10 days waste/feed cycle  

Family level diversity of the inoculum and at pH 9.0, pH 10.0 and pH 11.0. There was a significant 

reduction in families (50%) when compared to the crude soil. The microcosm at pH 9.0 was dominated 

by Rhodocyclaceae 33.9%, this family was represented by very low percentages (<0.2%) in the other 

two microcosms, whereas, the Tissierellaceae family dominated at pH 10.0 (26.4%) and pH 11.0 (39%).  
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Figure 3. 21: Genera level of the microbial communities of 10 days waste/feed cycle    

Bacterial diversity of the inoculum compared with pH 9.0, pH 10.0 and pH 11.0 communities. High 

prevalence was recorded for the Tissierella genus 38% and 25.5% at pH 11.0 and pH 10.0 respectively 

followed by the Azonexus genus, 31% from pH 9.0 and the Alkaliphilus genus 18.5% from the pH 11.0.       
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Figure 3. 22: Species level of the microbial communities of 10 days waste/feed cycle  

The microcosms were dominated by unknown bacterial species. Macellibacteroides fermentans was 

detected in all microcosms pH 9.0 (3.7%), pH 10.0 (2.8%) and pH 11.0 (0.03%) and Dietzia species 

represented 4.4% of the population at pH 10.0 and ~2% at pH 11.0.  

The genus Tissierella was the dominant group in the microcosms at pH 10.0 and pH 11.0. 

Tisserella species are strictly anaerobic, Gram-positive, and non-spore-forming bacteria. 

Although it has recently been determined that some species can form a terminal oval spore and 

can be Gram variable (Alauzet et al., 2014).  Representatives of this genus have been isolated 

from various environments including, a creatinine degrading Tissierella creatinine BN1lT 

strain isolated from the sediment of a wastewater pool at a sugar refinery, the optimum pH for 
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this strain was pH 8.3 and the pH range was from pH 6.7 to 9.1 (Farrow, Lawson, Hippe, 

Gauglitz, & Collins, 1995). T. creatinophila was isolated from sewage sludge and showed an 

optimum growth on creatinine in the presence of formate up to pH 8.5 (Harms, Schleicher, 

Collins, & Andreesen, 1998). T. praeacuta on the other hand is a Gram-negative rod isolated 

from clinical and environmental samples (Caméléna et al., 2016).  

The results presented here suggest that the strain (GQ132209) which has 99% similarity to the 

Tissierella genus and represent 44.4% of the total Firmicutes in the pH 11.0 microcosm may 

play a role in ISA degradation at high pH level. The phylogenetic tree below was constructed 

to compare the sequence of GQ132209 with the closest sequences (95% match) obtained via 

BlastN (Figure 3.23).   

 

Figure 3. 23: phylogenetic tree based on 16SrRNA gene sequences.  

Maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences indicating the relationship 

between GQ132209 and the closest phylogenetic relatives of these strain. Bootstrap values (expressed 

as percentages of 1000 replicates) are shown at each node where the bar represents 0.02 changes per 

nucleotide position. Evolutionary analyses was conducted in MEGA7     

 Discussion  

Whilst the initial alkaline soil demonstrated a high microbial diversity, much of this was lost 

when it was used to establish anaerobic CDP fed microcosms at alkaline pH. The observed shift 

from a Proteobacteria dominated soil (Bassil et al., 2015) to a microbial communities dominated 

by the Firmicutes is in line with previous observations by (Kuippers et al., 2015; Rout, Charles, 

Doulgeris, et al., 2015). The shift towards the Firmicutes was most obvious when the 

microcosms were shifted to a 10 day waste/feed cycle.  

Comparison of the microbial populations found in each microcosm at both the 30 and 10 day 

waste/feed cycle was carried via the UniFrac (uniquIn order to determine whether the 
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communities are significantly different (Appendix-2; Table 1 and 2). UniFrac measures the 

fraction of the branch length of the phylogenetic distance between sets of taxa in a phylogenetic 

tree (Lozupone & Knight, 2005), and Fast Unifrac allowing integration of larger numbers of 

sequences (Hamady, Lozupone, & Knight, 2010). The microbial community at pH 9.0 was 

similar to the community in pH 10.0 when run on a 30 day waste feed cycle. Whilst under the 

10 day waste feed cycle the pH 10.0 and the pH 11.0 microcosms clustered together. The results 

suggest that neither pH nor feed cycle had an overriding control over the communities in these 

microcosms (Figure 3.24).   

 

Figure 3. 24:  Dendrogram of β-diversity; comparison between microbial communities of 

the inoculum soils sample and CDPs driven microcosms based on UPGMA.  

The community at pH 10.0 was similar to pH 9.0 at a 30 day CDP feed-cycle (A), when the protocol 

was switched to a 10 day CDPs feed-cycle the pH 10.0 microcosm became similar to that at pH 11.0 

(B).     

 

Figure 3. 25: Alpha diversity indices of the starting inoculum  compared with CDPs driven 

microcosms.  

The α-diversity plot shows the number of OTUs in the microcosms at different pH levels under both the 

30 day and 10 day feed cycles compared with the OTUs of the inoculum.  
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As the communities evolved the populations became dominated by a more limited group of 

organisms. Investigation of this is complicated by the dominance of undefined species. 

However, as the populations became more limited some species became prominent. This is 

most obvious in the case of the Firmicutes where Tissierella sp. became prominent as the 

conditions became challenging. Unfortunately, it was not possible to isolate a representative 

from this Genus.  

 Key Findings 

 A significant reduction in bacterial diversity occurred in all microcosms when compared 

to the bacterial community of the background sediment. 

 Eubacteria of the following phyla; Firmicutes, Proteobacteria, Bacteroidetes, 

Actinobacteria and Archaea of the Euryarchaeota were detected in all microcosms at 

different pH values.  

 The Firmicutes were the dominant phylum in all the CDPs driven microcosms 

represented by the following families Ruminococaceae, Anaerovirgula, Anaerobranca, 

Tissierellaceae, Eubacteriaceae, Clostridiaceae, Sedimentibacter and Clostridium.  

 The most dominant genus at microcosm pH 11.0 was the Tissierella genus.   

 A wide range of pure bacterial cultures have been isolated from these microcosms.  
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 Sub-microcosm studies  

A range of sub-microcosms were operated in order to facilitate the isolation of ISA degrading 

bacteria and to provide a more detailed insight into both CDP and Ca(ISA)2 degradation. These 

microcosms were generally run as batch systems with multiple subcultures. The calcium salt of 

ISA (Ca(ISA)2) has been used in both geochemical and microbiological studies as an alternative 

to CDP (Bassil et al., 2015), presumably due to its ease of manufacture and availability on the 

open market. However, the calcium salt of α-ISA is sparingly soluble in water (Rai, Rao, & 

Xia, 1998) when compared to the sodium salt.  Its use in microbiological studies has resulted 

in low levels of degradation and an absence of fermentative degradation at alkaline pH 

(Kuippers et al., 2015). This contrasts with higher levels of degradation and the establishment 

of methanogenic communities when CDP has been used (Rout, Charles, Doulgeris, et al., 2015).  

In addition comparisons between CDP and Ca(α-ISA)2 as carbon sources for alkaline anaerobic 

metabolism have indicated that these two carbon sources generate significantly different 

populations when the same inoculum is employed. Consequently, experiments were run to 

investigate the degradation of Ca(ISA)2 by CDP degrading communities, to provide an 

enrichment step prior to the isolation of ISA degrading organisms.  

 Sub-microcosm of the pH 10.0, pH 11.0 and pH 10.5 microcosms   

In order to isolate ISA degrading alkaliphiles a range of alternative culture conditions were 

investigated. Sediments from the pH 11.0 and pH 10.5 microcosms were incubated in a minimal 

medium (2.2.4) supplemented with Ca(ISA)2 at a pH of pH 9.0 (2.5.7.). In both cases direct 

degradation of ISA was evident (Figure 3.26).  An increase in optical density (OD) indicated 

bacterial growth which was accompanied by a decrease in ISA concentration, an increase in 

acetate concentration, gas generation and a decrease of pH value. 

A significant amount of acetate (Figure 3.26 C and F) was produced from ISA during the 

fermentation process. The concentration of acetate was proportional with ISA degradation. 

About half the amount of ISA 2.5mM in the form of Ca(ISA)2 (Figure 3.27) was degraded by 

the pH 11.0 microcosm community which resulted in the generation of ≈5.0mM of acetate in  

<10 days at 25°C. In contrast all the ISA (4.5mM) was degraded by bacterial from the pH 10.5 

microcosm, generating ≈10 mM of acetate over 15 days under the same incubation conditions. 

The microbial community from the microcosm at pH 10.5 was more active than microbial 

community of microcosm at pH 11.0.  
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Culturing of the sediments in these sub microcosms on FAA agar at pH 9.5 recovered a range 

of Gram negative bacteria including; Aeromonas salmonicida ZS-66, Alcaligenes aquatilis ZS-

22, Citrobacter sp., and Macellibacteroides fermentans ZS-69 strain. 

A) Source of inoculum pH 10.5 D) Source of inoculum pH 11     

  
B)  E)  

 
 

C) F) 

 
 

  

Figure 3. 26: ISA degradation in the form of Ca(ISA)2 by a sediments samples from (R2 

pH 11) and (R4 pH 10.5)  

The bacterial community from the pH 10.5 microcosm was more active than bacterial community from 

pH 11.0; the optical density of growth in Ca(ISA)2 broth medium (A) was higher than the OD in the 

broth of medium (D), a complete degradation of ISA (B) while half the amount of ISA was degraded in 

the broth medium (E), associated with an increase of acetate in a broth medium to about 10 mM L-1 (C), 

but in the second broth medium about 5mM of acetate was produced (F).   

When sediments were taken from the pH 10.0 microcosm (2.5.1.2) and inoculated into minimal 

medium supplemented with 2.0 mM of Ca(ISA)2, at pH 9.0 and 25°C there was a complete 



 

69 
 

degradation of Ca(ISA)2 after 4 days (Figure 3.27 B). Degradation was confirmed by an 

increase of optical density (Figure 3.27 A) production of acetate and a reduction in pH (Figure 

3.27 B). In addition, a significant amount of gas (H2, CH4 and CO2) was detected in the 

headspace (Figure 3.27 C).  

Microscopic investigation of the microcosm community indicated that it was dominated by 

Gram negative rods.  This was confirmed by community analysis based on 16S ribosomal RNA 

gene sequencing (Figure 3.28) which indicated that the community was dominated (>90%) by 

Azonexus hydrophilus which was subsequently isolated from the microcosm and is discussed 

in greater detail in section (3.6.5.4.). These experiments demonstrated that prolonged alkaline 

incubation (12 months) with CDP can lead to the establishment of communities with limited 

species diversity which retain their ability to degrade ISA. Previous studies have demonstrated 

Ca(ISA)2 degradation at pH 10.0 via respiratory processes (aerobic and denitrification) (Bassil 

et al., 2015). However, the data presented confirms the fermentation and subsequent 

methanogenesis of Ca(ISA)2 at alkaline pH (Kyeremeh, Charles, Rout, Laws, & Humphreys, 

2016), which aligns with previous studies employing CDP as a source of ISA (Charles et al., 

2015; Rout, Charles, et al., 2015a).  
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B) 

 

 

C) 

 

Figure 3. 27: Biodegradation of ISA by a bacterial community pH 9.0.  

The gradual increase in optical density indicated bacterial growth at the expense of Ca(ISA)2 degradation 

over a 4day incubation period. This was associated with an increase in acetate production and a reduction 

in the pH 8.7 at the end of 8 days (B). Fermentation gases accumulated in the headspace between first 

day and 7 days starting with significant amounts of hydrogen gas, followed by carbon dioxide and 

methane (C). 
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Figure 3. 28: Bacterial diversity of the microcosm supplemented by Ca(ISA)2 at pH 9.0   

The bacterial community analysis of the sediment demonstrated that the microcosm was dominated by 

unclassified species (accession number DQ088747) 93.45% (outer circle) of the Proteobacteria phylum 

99% (central circle).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



72 
 

Based on the 16SrRNA gene sequence the dominant strain in the community had an accession 

number DQ088747 which showed a 99% match to Azonexus hydrophilus ZS02 that was 

isolated in pure culture from the microcosm (Figure 3.29), this strain is described in greater 

detail in later sections.  

 

Figure 3. 29: Phylogenetic tree for the Azonexus genus and isolated strain related to this 

genus based on 16SrRNA gene sequences.  

Maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences demonstrating the 

relationships between the dominated strain DQ088747 and other strains from the community and related 

representatives of their genus and the closest phylogenetic relatives of these two strains with an isolated 

Azonexus hydrophilus ZS02 strain. Bootstrap values (expressed as percentages of 1000 replicates) are 

shown at each node where the bar represents 0.02 changes per nucleotide position. Evolutionary analyses 

were conducted in MEGA7.  

Although Ca(ISA)2 is the most commonly used salt of ISA, the sodium salt can be obtained 

(Shaw et al., 2012). The advantage of using Na-ISA is the fact that it is far more soluble than 

the calcium salt. In the case of other complexants e.g. citric acid there is evidence that the 

counter ion does influence the biodegradability of the associated organic compound. In view of 

this, experiments (2.5.3.) were carried out to compare the degradation rates of both forms of 

ISA by the microbial consortia present in R1 pH 10.0.  

The community present in the pH 10.0 microcosm was able to degrade both forms of ISA, with 

an associated accumulation of acetate and a reduction in a pH (Figure 3.30 A to F). However, 

the extent of degradation was more extensive with the sodium salt (~8.5 mM), rather than the 

calcium salt with the Ca(ISA)2 (4.0 mM) (Figure 3.30 A and B). There was a complete 

degradation of Na-ISA while 2mM of Ca(ISA)2 remained recalcitrant within the microcosm.  

This observation in similar to the data presented in other studies employing the calcium salt, 
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where 100% degradation is not observed (Bassil et al., 2015), however it contradicts data 

presented earlier in this section where 100% degradation was observed.  

A)                           Na-ISA B)                           Ca(ISA)2 

  

C) D) 

  

E) F) 

  

Figure 3. 30: Comparing Na-ISA and Ca(ISA)2 degradation by bacterial community.  

Complete degradation of Na-ISA (~9.0mM) during 12 days (A), at the same period of an incubation 

time only (4.0 mM) of ISA in the form of Ca(ISA)2 was degraded by bacterial community (B), 

significant amount of acetate was produced (C and D), that causes a reduction in pH values for both 

microcosms  (E and F).        

 ISA degradation in defined cultures  

In order to find alkaliphilic isolates with the ability to degrade ISA, pure cultures and mixtures 

of pure cultures were tested in microcosms using mineral media with and without the ATCC 
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vitamins (1% v/v) solution supplemented with ISA in the form of either Ca(ISA)2, Na-ISA and 

CDPs (α- and β-ISA). These were carried out using a mixture of these isolates; Aeromonas 

salmonicida (BI 14), Citrobacter gillenii (BI 30), Alcaligenes aquatilis (BI 22), Brevundimonas 

diminuta sp. (BI 36) and Ensifer adhaerens (BI 35).  Although all these strains were isolated 

from microcosms fed on CDPs/MM and isolated on CDP/MM plates, there was no evidence of 

ISA degradation in anaerobic broth culture at pH 9.0 and 25°C. This suggests that these isolates 

were either secondary members of the microcosm population, perhaps feeding on cellular 

breakdown products (e.g. proteins) from the death of other bacteria in the system. Or that ISA 

degradation by these bacteria required growth factors provided by uncultivable microorganisms 

present the microcosms. 

This work was continued by investigating a mixture of Aeromonas salmonicida (BI55), 

Citrobacter gillenii and Macellibacteroides fermentans (BI40) (Table 3.4).  These isolates had 

been isolated from CDP driven microcosms at pH 9.0, pH 10.0 and pH 11.0. In addition, these 

isolates were isolated in pure culture on FAA at pH 9.5 as well as CDPs/MM plates at pH 9.5. 

These three isolates were inoculated in minimal medium supplemented by Ca(ISA)2, under 

anaerobic condition, at pH 9.0 and at 25ºC. 

This combination showed an ability to degrade α-ISA (about 1.7mM) which levelled off after 

18 days of incubation (Figure 3.31 A). The fermentation of ISA generated acetate that gradually 

increased to about 6.0mM by the end of 25 days (Figure 3.31 B), leading to a reduction in pH 

value to about pH 8.1 (Figure 3.31 C). Given the ability of this combination of bacteria to 

degrade ISA, the isolates were investigated in greater detail.  These investigations focussed on 

the two Gram-negative bacteria (Macellibacteroides fermentans HH-ZS strain (BI40) and 

Aeromonas salmonicida strain (BI55)) in mineral medium containing either Ca(ISA)2 or CDP 

at either pH 8.0 or pH 9.0 under anaerobic condition at 25ºC.  

When combined at pH 9.0 these two strains completely degraded Ca-ISA within 24 hours with 

a 5 day lag period (Figure 3.32 A). This lag was similar to that seen when the three bacteria 

were combined (Figure 3.31 A). As expected ISA degradation was associated with acetate 

accumulation in a molar ratio of 1:2, acetate accumulation reduced the pH to pH 7.8 (Figure 

3.32 A). Microbial growth was associated with ISA degradation as indicated by the increase in 

optical density (Figure 3.32 B). When fed on CDP rather than Ca(ISA)2 at pH 9.0 degradation 

started at 5 days with approximately 2.1mM of both α-ISA and β-ISA was degraded up to day 

8 beyond which no further degradation was observed (Figure 3.33 A). Unlike the pure ISA 

experiments this ISA degradation was associated with a range of VFAs being produced  

dominated by acetate 18mM, butyrate 4.0mM and propionate 2.5Mm (Figure 3.33 B) which  
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reduced the pH to pH 7.9 (Figure 3.33 D). The results were similar at pH 8.0 however at this 

pH there was no lag in the onset of α-ISA degradation (Figure 3.34 and 3.35), although there 

was a lag in β-ISA degradation (Figure 3.35 A). 

A)  

 

B) C) 

  

Figure 3.31:  Degradation of Ca(ISA)2 by a combination of three bacterial isolates at pH 

9.0  

About 1.7mM of ISA was degraded after 18 days of incubation (A), the degradation of ISA was 

associated with acetate production (B), leading to a reduction in pH value to about pH 8.1 (C). 

 

When investigated on its own Macellibacteroides fermentans (M.f. HH-ZS) was able to degrade 

α-ISA as a sole carbon source at both pH 9.0 (Figure 3.36) and pH 8.0 (Figure 3.37) generating 

acetic acid. However, in this case the molar stoichiometry was closer to 1:1 rather than the 1:2 

observed in the mixed culture. When cultured in the presence of CDP both forms of ISA were 

degraded without a lag at pH 9.0 (Figure 3.38), but there was a lag in β-ISA degradation at pH 

8.0 (Figure 3.39). In both cases a greater amount of acetate was generated than when fed on Ca-

ISA.  

At both pH 9.0 and pH 8.0 Aeromonas salmonicida (BI55) was also able to degrade Ca(ISA)2 

with a lag period observed at both pH values (Figure 3.40 and 3.41). Degradation was associated 

with acetate generation which was approached a molar stoichiometry closer to 1:2 that the 1:1 
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Macellibacteroides fermentans. This pattern was repeated with the CDP fed cultures where 

both forms of ISA were degraded with an acetate degradation profile approaching a 1:2 

stoichiometry. As observed with Macellibacteroides fermentans there was a significant lag 

period observed with β-ISA degradation (Figure 3.42 and 3.43). Microbial growth was 

associated with ISA degradation as indicated by the increase in optical density in all cases.  

A)  

 
 

B)  

 

 

Figure 3. 32: Degradation of Ca(ISA)2 by M. fermentans HH-ZS and Aeromonas sp. (BI 

55) at pH 9.0.  
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A)  

 
 

B)  

 
C)  

 

 

Figure 3. 33: Degradation of ISAs from CDPs by M. fermentans HH-ZS and Aeromonas 

sp. at pH 9.0  
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A) 

 
 

B) 

 

Figure 3. 34: Degradation of Ca(ISA)2 by M. fermentans HH-ZS and Aeromonas sp. (BI 

55) pH 8.0 
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A)  

 
B)  

 

C) 

 

 

Figure 3. 35: Degradation of ISA from CDPs by M. fermentans HH-ZS and Aeromonas 

sp. (BI55) pH 8.0 
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A) 

 
 

B) 

 

 

Figure 3. 36: Degradation of Ca(ISA)2 by M. fermentans HH-ZS at pH 9.0  
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A) 

 

    B)  

 

Figure 3. 37: Degradation of Ca(ISA)2 by M. fermentans HH-ZS at pH 8.0  
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A) 

 

 

B)  

 

C) 

 

 

 

Figure 3. 38: Degraded of ISAs from CDPs by M. fermentans HH-ZS strain at pH 9.0  
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A) 

 

  

B) 

 

   

C) 

 

Figure 3. 39: Degradation of ISAs from CDPs by M. fermentans HH-ZS strain at pH 8.0  
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A)  

 
 

 

B) 

 

 

 

Figure 3. 40: Degradation of Ca(ISA)2 by Aeromonas sp. (BI 55) strain at pH 9.0  
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A) 

 

 
B) 

 

 

 

Figure 3. 41: ISA degradation by Aeromonas sp. (BI 55) 
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A) 

 
B)  

 

C) 

 

Figure 3. 42: Degradation of ISAs from CDPs by Aeromonas sp. (BI55) at pH 9.0  
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A) 

 
B) 

 
 

C) 

 
 

Figure 3. 43: Degradation of ISAs isomers from CDPs by Aeromonas sp. (BI 55) at pH 

8.0  
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ISA has the same general formula as glucose and is generated from cellulose which is a polymer 

of glucose, however it has a different structure. Given these similarities it is interesting to 

contrast the degradation profiles when metabolised by the same organism. In this case the 

degradation of glucose by Macellibacteroides fermentans HH-ZS was compared with α-ISA 

degradation at pH 8.5 under the same incubation conditions of minimal medium and anaerobic 

condition (Figure 3.44).  In this case glucose was degraded in <10 days (A) whilst α-ISA was 

gradually degraded, and complete degradation required around 30 days (B). This indicates that 

whilst the structure is similar, ISA degradation is more difficult that glucose degradation. This 

may be due to the transport of the relative compounds into the cells, since glucose transport 

systems are common in bacteria and ISA is a rare compound for bacteria to experience.  

A) 

 
B) 

 

Figure 3. 44: M. fermentans HH-ZS strain able to degrade both glucose and α-ISA.  
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 Discussion 

A wide range of isolates were obtained from a range of alkaline microcosms fed on CDP. The 

analysis generated two strains, i.e. A. salmonicida (BI55) and M. fermentans HH-ZS (BI40) 

able to degrade α- ISA in the form of Ca(ISA)2 and in the form of CDPs, both α- and β-ISA. 

The degradation of ISA by these two strains was detected in broth media at pH 8.0 and pH 9.0. 

The degradation of ISA by these two strains was carried out through a fermentation pathway 

that primarily generated acetic acid. In addition, the degradation rate of Ca(ISA)2 by M. 

fermentans HH-ZS strain (BI40) was faster than that demonstrated by A. salmonicida (BI55). 

The stoichiometry of ISA degradation to acetate production was closer to 1:1 for M. fermentans 

and 1:2 for A. salmonicida. 

Macellibacteroides fermentans of the Bacteroidetes phylum was detected within the microbial 

communities of the CDP fed microcosms operated between pH 9.0 and pH 11.0 (section 2) 

indicating that it was a significant component of these communities. In these microcosms the 

Bacteroidetes phylum was found to be the second most dominant phylum in the microcosms at 

pH 9.0 (24.8%) and pH 10.0 (23.22%) and at low concentration (3.14%) in the microcosm at 

pH 11.0. Work by Edward et al. (2010) found that the cellulose-degrading microbial 

communities in the marine environment was also dominated by members of the Bacteroidetes 

(Edwards et al., 2010). Although, M. fermentans was a minor member of the microbial 

community (4%, 2.8% and 0.03% at pH 9.0, pH 10.0 and pH 11.0 respectively) (Table 3.4), 

previous authors have outlined the fact that the culture dependent methods do not always 

represent the dominant species of the inoculum sources (Hugenholtz, 2002). The general 

characterisation of the members of this family are Gram negative rods, heterotrophic, non-

motile, strictly anaerobic, non-spore-forming, that ferment a broad spectrum of sugars (Class 

& KRieg, 2011). The species M. fermentans was identified for the first time by Jabari et al. 

(2012) through their work that carried on the anaerobic treatment of abattoir wastewaters in 

Tunisia (Jabari et al., 2012). M. fermentans HH-ZS (BI40) is the first strictly anaerobic 

bacterium able to degrade ISA, more details are provided in section (3.6.5.).     

 Key findings 

 The sediments from the microcosms at pH 10.0, pH 10.5 and pH 11.0 contained 

microbial communities able to degrade Ca(ISA)2 in MM at pH 9.0. 

 The microbial community present in the pH 10.0 microcosm contains a bacterial 

community able to degrade both Ca(ISA)2 and Na-ISA. 
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 Complete degradation of both forms of ISA was observed, with Na-ISA being more 

rapidly utilised.  

 Alcaligenes sp., Citrobacter sp., and M. fermentans strains were the most dominant 

culturable isolates isolated on FAA at pH 9.5. 

 Extended incubation (>12 months) of sediments under alkaline conditions can lead to 

the selection of communities dominated by a small number of species. 

 A microbial community dominated by the Gram negative bacillus, Azonexus 

hydrophilus was established allowing this organism to be isolated in pure culture.    

 M. fermentans (BI40) and A. salmonicida (BI55) were both able to degrade ISA.  

 Degradation of CDPs using the TEAs Nitrate, Iron (III) and Sulphate 

Previous experiments showed that the bacterial community present in the alkaline soils from 

the Harpur Hill site was capable of utilizing the ISA present in CDP via fermentative and 

methanogenic pathways. The objectives of this experiment was to determine the ability of this 

community to metabolise CDP via a wider range of both TEA (nitrate sulphate, and/or Fe (III)) 

and environmental pH values (pH 7.0, pH 8.0, pH 9.0, and pH 10.0) (2.5.9.). There were no 

investigations carried out under aerobic conditions since CDP are only generated in the absence 

of oxygen and the aerobic phase of a GDF is expected to have a limited duration.   

 Chemical analysis of the CDPs driven microcosms under TEAs 

As might be expected the rate of nitrate removal decreased as the pH increased (Figure 3.45 a) 

with the rate reducing exponentially as the pH increased (r2 =>0.9, Figure 3.45 b). The 

metabolism appeared to be primarily respiratory as indicated by the stable pH (Figure 3.46) 

seen in all the experiments, this is supported by the lack of significant volatile acid generation 

(Figure 3.47). The only pH where there was any suggestion of fermentation is at pH 10.0 where 

there was a slight increase in acetic acid towards the end of the incubation period. At pH 7.0, 

8.0 and 9.0 the small amounts of acetic acid present in the CDP was removed within the first 

12 days irrespective of the pH. At pH 10.0 the acetic acid concentration was relatively stable 

with a slight increase toward the end of the experiment after a decrease midway through the 

incubation period. Whilst acetic acid removal was consistent between pH 7.0 and 9.0 the 

removal of β-ISA was significantly greater at pH 7.0 where complete removal was achieved 

after 8 days (Figure 3.47). At pH 8.0 β-ISA removal ceased after 12 days, 3 days after complete 

nitrate removal. This gap between the end of nitrate removal and the end of β-ISA removal was 

seen at both pH 7.0 and 8.0 and may reflect the fact that denitrification is a multistep process 
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(Oehmen, Lopez-Vazquez, Carvalho, Reis, & Van Loosdrecht, 2010; R. L. Smith, Böhlke, 

Garabedian, Revesz, & Yoshinari, 2004) and the monitoring of nitrate only measures the first 

stage. At pH 9.0 and 10.0 the β-ISA removal profiles are generally the same. The 

biodegradation of α-ISA was more limited than the degradation of β-ISA with the degradation 

at all pH values being generally similar (Figure 3.48 and 3.49). Overall nitrate reduction 

systems appeared to preferentially removal acetic acid followed by β-ISA and finally α-ISA 

with both β-ISA and α-ISA persisting in the presence of nitrate throughout the 30 day 

experimental period. 

There was no significant evidence of fermentation even though the fermentation of both forms 

of ISA has been extensively documented in the absence of electron acceptors (Charles et al., 

2015; Rout, Charles, Doulgeris, et al., 2015; Rout et al., 2014) where strictly anaerobes of the 

Clostridia phylum appeared to drive the fermentation of the both forms of ISA at high pH. It 

may be that the oxidising environment generated by the presence of nitrate inhibited the 

anaerobic bacteria required for the fermentation of ISA. This in turn suggests that the 

fermentation of ISA in these systems is driven by strictly anaerobic organisms rather than 

facultative anaerobes. The degradation of α-ISA through nitrate reduction at pH 10.0 was 

performed by Bassil et al. (2014), they found that the complete degradation of α-ISA followed 

the production of acetate via fermentation.  Acetate generation was associated with a reduction 

of both ISA and nitrate.  The bacterial community in these systems was dominated by 

facultative anaerobic Proteobacteria (65%) followed by strictly anaerobic Firmicutes (24%) and 

Bacteroidetes (21%) (Bassil et al., 2015).   
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Figure 3. 45: Nitrate Removal.  

Nitrate reduction, complete removal of nitrate at pH 7.0 during ˂ 3 days and at pH 8.0 during ˂ 9 days, 

whilst at pH 9.0 it takes about 30 days and significant reduction at pH 10.0 during the same period of 

time (A). The rate of nitrate removal reduced as the pH increased in an exponential manner (B).  

 

Figure 3. 46: pH profiles in the nitrate reduction experiments.  

There was no evidence of pH decrease in the nitrate reduction experiments suggesting a primarily 

oxidative microbiology. If significant amounts of fermentation was occurring then the pH would be 

expected to decrease as volatile acids were generated.   
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Figure 3. 47: Acetic acid profiles of the nitrate reduction experiments.  

The only suggestion of fermentation occurs at pH 10.0 where the acetic acid concentration increases 

towards the end of the incubation period.  

 

Figure 3. 48: Removal of β-ISA under nitrate reducing conditions.  

The degradation of β-ISA was significantly greater at pH 7.0 than the other pH values investigated.  
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Figure 3. 49: Removal of α-ISA under nitrate reducing conditions.  

The degradation of α-ISA was limited across all pH values investigated.  

Under iron reducing conditions the degradation of both forms of ISA was limited with 1-2 mM 

being removed over the 30 day incubation period (Figure 3.50 a and b). As expected, the pH 

levels of the microcosms were slightly decreased (Figure 3.50 c). The degradation was 

accompanied by an increase is ferrous iron concentration which is indicative of iron reduction. 

After an initial increase, the ferrous iron concentration either levelled off or continued to 

increase slowly (Figure 3.50 d). This profile suggests that later in the incubation period the 

concentration of ferrous iron was solubility controlled most likely due to the presence of siderite 

an iron (II) carbonate or magnetite a mixed Fe(II)/Fe(III) oxide.  

Similar results were obtained by Bassil et al. (2014) who found that only about 36% of the total 

α-ISA was degraded under Iron (III)-reducing culture at pH 10.0 after 90 days of incubation.  

This ISA removal was associated with a ≈21% reduction of Iron (III) and a drop in pH to pH 

9.5 (Bassil et al., 2015). Rout et al (2014), found that the microbial community in anoxic 

sediments was able to degrade both forms of ISA by utilising a range of terminal electron 

acceptors at neutral pH. In this study similar amounts ISA were degraded under iron reducing, 

sulphate reducing and methanogenic conditions (Rout et al., 2014).    
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a) 

 
 

b) 

 
c) 
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d) 

 

Figure 3. 50: ISA degradation under Iron (III) reducing conditions.  

The degradation of both forms of ISA was limited with 1-2 mM being removed over the 30 day 

incubation period (a and b). The pH levels of the microcosms were slightly decreased (c). The ISA 

degradation was accompanied by an initial increase of ferrous iron indicating active iron reduction, the 

ferrous iron concentration either levelled off or continued to increase slowly (d).  

Unlike the nitrate and iron reducing systems the sulphate reducing showed clear evidence of 

fermentation as indicated by the accumulation of a range of VFA (Figure 3.51 d to f) at all pH 

values with the exception of pH 10.0. There was no evidence of microbial activity under 

sulphate reducing conditions at pH 10.0, a trend consistent across the sulphate and ISA removal 

data (Figure 3.51 a, b and c). The sulphate removal curves at pH 7.0 and 8.0 were broadly 

similar, whilst at pH 9.0, sulphate removal began after 6 days once the ambient pH had been 

reduced due to the VFA generation (Figure 3.51 c). Although the sulphate curve at pH 9.0 

demonstrated a lag until day 6, the VFA data indicated an immediate accumulation. This 

demonstrated a fermentation driven system with the sulphate reducing bacteria metabolising 

the VFA’s rather than the ISA. The degradation of both forms of ISA was modest between pH 

7.0 to 9.0 and in the case of the α-ISA the degradation at pH 8.0 was more extensive than at pH 

7.0 which may reflect the alkaline nature of the environment sampled and the presence of 

alkaliphilic organisms. This data is similar to that of Rout et al. (2014) who demonstrated a 

complete removal of both forms of ISA (α- and β-) in the sulphate-reducing microcosm at 

neutral pH (Rout et al., 2014). The results of the microcosm at pH 10.0  (Figure 3.51 h) are 

consistent with previous results, obtained using similar sediments incubated under sulphate 

reducing conditions with Ca(ISA)2 (Bassil et al., 2015). In addition, other experiments operated 

under sulphate reducing conditions with acetate and lactate as electron donors failed to 

demonstrate sulphate reduction even after 140 days (Rizoulis et al., 2012). These observations 

underpin the observation that sulphate reduction is limited at alkaline pH value >pH 9.0. 
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d) e) 

  

f) g) 

  
h) 

 

Figure 3. 51: ISA degradation under sulphate reducing conditions.  

Clear evidence of fermentation in the sulphate reducing culture was indicated by the accumulation of a 

range of VFA (d to f) at all pH values with the exception of pH 10.0. There was also a reduction of pH 

(h). The sulphate removal curves at pH 7.0 and 8.0 were broadly similar, whilst at pH 9.0 sulphate 

removal began after 6 days once the ambient pH had been reduced due to the VFA generation (c).    

In the absence of terminal electron acceptors, a purely fermentative system was established. 

These microcosms demonstrated greater ISA degradation than observed under iron and sulphate 

reducing conditions with the removal of both forms of ISA up to pH 10.0 (Figure 3.52 a and b). 

The ISA degradation rate was pH dependent with a general trend of decreased ISA removal as 

the pH increased. However, as with the sulphate reducing systems the degradation of α-ISA 
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was greater at pH 8.0 than at pH 7.0. VFAs accumulated at all pH values with acetic and butyric 

acids being the most abundant (Figure 3.52 e to g), this VFA generation was accompanied with 

a slight decrease in pH. Degradation of both forms of ISA via fermentation processes at 

different pH values has been confirmed by previous studies. Rout et al. (2014) found that a 

complete degradation of both forms of ISA during 3 days of an incubation time at neutral pH 

accompanied by the generation of VFAs and methane (Rout et al., 2014). The same authors 

was demonstrated that the bacteria in Buxton sediments were capable of fermenting both forms 

of ISA at pH 11.0 with the production of acetic acid, H2 and CH4 (Rout, Charles, et al., 2015a).  
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c) 

 
 

 

 

 

d) 

 

 

 

e) 

  
f) g) 

  

Figure 3. 52: Biodegradation of ISA by a purely fermentative system.   

The ISA degradation rate was pH dependent with a general trend of decreased ISA removal and the pH 

increased (a and b), VFAs accumulated at all pH values with acetic and butyric acids being the most 

abundant (e to g), this VFA generation was accompanied with a slight decrease in pH (c). 
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 Bacterial community analysis of the CDPs driven microcosms under 

Nitrate, Sulphate and Iron (III)-reducing cultures compared with 

fermentation process at different pH levels 

The number of OTUs (1035 OTUs) in the background alkaline sediment was represented by 

approximately 30 phyla dominated by Gram-negative bacteria (Proteobacteria 48% and 

Bacteroidetes 8.7%) and Gram-positive bacteria (Firmicutes 15% and Actinobacteria 13.3%) 

(Table 3.5). This profile is consistent with previous data presented by Bassil et al. (2015) where 

the background sediment was dominated by Gram-negative bacteria (Proteobacteria 44%, 

Bacteroidetes 24%) followed by low percentages of Gram-positive bacteria (Firmicutes 6%) 

(Bassil et al., 2015). The microbial communities in the microcosms demonstrated a reduction 

in diversity as indicated by the number of OTUs when compared to the original soil. Given the 

diversity of terminal electron acceptors and pH values investigated, the only common factor is 

the use of CDP, it is therefore likely that this reduction in OTU is due to the use of CDP as the 

common energy source.  The diversity was lower under the more oxidising nitrate and iron 

reducing systems than when active fermentation was occurring in the presence of sulphate or 

the absence of a terminal electron acceptor (Figure 3.53). The communities are described below 

on a system by system basis. 

 

Figure 3. 53: Alpha diversity indices of the microbial diversity calculated via ChunLab's 

CLcommunity analysis pipeline.  

0

100

200

300

400

500

600

700

800

900

1000

1100

O
T

U
s

OTUs



102 
 

The establishment of nitrate reducing conditions promoted the expansion of bacteria from the 

phylum Proteobacteria from the 48% seen in the soil to around 99% at all pH levels (Figure 

3.54 A). At the phylum level, the presence of nitrate had a greater impact than the increase in 

pH from pH 7.0 to 10.0. Although as the pH increased the proportion of Firmicutes in the 

population increased. At the family level the Proteobacteria were represented by the 

Brucellaceae (approximately 50%) followed by Alcaligenaceae (approximately 45%) (Figure 

3.54 B). These families were in turn dominated by the following species: Brucella melitensis 

61.7% at pH7, 50.1% at pH 9.0 and 41.5% at pH 10.0; and Achromobacter sp. dominated by 

Achromobacter marplatensis 36.3% at pH 8.0, 32.5% at both pH 9.0 and pH 10.0 (Figure 3.54 

(C)). Other Proteobacteria present in the systems were represented by the Pseudomonadales 

(<5%) represented by Pseudomonas tuomuerensis. The small proportion (<0.8%)  of Firmicutes 

present were represented by the following families Ruminococaceae, Sedimentibacter, 

Clostridiaceae, Lachnospiraceae and Bacillaceae, except the last family that represented 4.2% 

in microcosm at pH 10 (Table 3.5) and was dominated by Anaerobacillus macyae (3.6%).  

 

A) The Proteobacteria dominated bacterial diversity at the phylum level it increased from 48.1% in 

crude soil to high percentages 98.3, 99.4, 99.0 and 95.4% in all microcosms at all pHs (7.0, 8.0, 9.0 and 

10.0 respectively).  
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B) The dominant families in the all nitrate-reducing microcosms were; Brucellaceae followed by the 

Alcalligenaceae. The Brucellaceae family was increased from being undetectable in the crude soil 

sample to 63.9, 33.55, 51.6 and 43.0% in the microcosms at pHs (7.0, 8.0, 9.0 and 10.0 respectively), 

followed by Alcaligenaceae family 28, 61.6, 45.7 and 47.68% in microcosms at pHs (7.0, 8.0, 9.0 and 

10.0 respectively).       
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C) The dominant species in the nitrate-reducing cultures were Brucella melitensis 61.7% at pH7, it was 

50.1% at pH 9.0, 41.5% at pH 10; Achromobacter marplatensis 36.3% at pH 8.0, about 32.5% at pH 9 

and pH 10.  

Figure 3. 54: Bacterial diversity of the microcosm under a Nitrate reduction 

As was the case in the nitrate reducing systems, the iron reducing systems were dominated at 

Phylum level by the Proteobacteria at all pH levels, which grew to 95% at the highest pH level 

(Figure 3.55 (A)). The only other phyla represented in any significant manner were the 

Firmicutes which increased steadily as the pH increased. However, at the family level whilst 

the Brucellaceae were still highly represented, it was the Pseudomonadaceae rather than the 

Alcaligenaceae that made up the rest of this family. Unlike the nitrate reducing systems the 

Sedimentibacter were present at the lower pH values in proportions >30% which reduced to 

<1% at pH10.0. The proportion of the Sedimentibacter and Pseudomonadaceae decreased as 

the pH increased, whilst the Brucellaceae increased up to >40% at pH 9.0 and pH 10.0. There 

was also an increase in the proportion of Aeromonadaceae in the mid pH ranges (19% at pH 

9.0) but was unable to maintain this presence at the highest pH (Figure 3.55 (B)).  
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The dominant species under iron reducing conditions were similar to those seen under nitrate 

reducing conditions with Pseudomonas tuomuerensis having a greater presence at the lower pH 

values (42.4% at pH 7.0, 55.9% at pH 8.0, 20.8% at pH 9.0 and 11% at pH 10.0). The second 

species in common with the nitrate microcosms was the Brucella melitensis group which was 

more prevalent at the higher pH values (43.3% at pH 10.0, 40% at pH 9.0, 9.89% at pH 8.0 and 

14.9% at pH 7.0). Two other species with a significant presence were the unclassified 

EF059533 which decreased as the pH increased and Rhanella bruchi which became more 

dominant at pH 10.0 (20%) (Figure 3.55 (C)). These results are inconsistent with previous 

data provided by Basil et al, where α-ISA was used as an analogue to CDP and the pH values 

of the microcosms were reduced by fermentation and an accumulation of VFA. In that study 

the population showed an increase of the Firmicutes phylum from 6% in the background 

sediment to about 24% in the nitrate-reducing culture that was dominated by Gram-negative 

bacteria of the Proteobacteria phylum, whilst the Firmicutes was dominated of the  Fe-(III)-

reducing culture represented almost 100% of the bacteria community (Bassil et al., 2015).  

 

A): Bacterial community analysis on phyla level under Iron-(III) reducing culture  

The dominant phylum was Proteobacteria in all microcosms 65.2, 76.86, 83.46 and 95.2% at pHs (7.0, 

8.0, 9.0 and 10.0 respectively) followed by Firmicutes 34.7, 23.1, 15.95 and 4.0% at pHs (7.0, 8.0, 9.0 

and 10.0 respectively). 
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B) Bacterial community analysis on the family level under Iron-(III) reducing conditions. The most 

common families were the Pseudomonadaceae, 44.7, 58, 22.3 and 17.2%, followed by Brucellaceae 

15.5, 10.2, 41.2 and 44.9% and Sedimentibacter 30.7, 22.3, 13.5 and only 0.15% at pHs (7.0, 8.0, 9.0 

and 10.0 respectively).      
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C) The phylogenetic analysis on the species level under Iron (III)-reducing cultures. Brucella melitensis 

was dominated the community 40% and 43.3% in the microcosms at pH 9.0 and pH 10.0 respectively, 

it was presented by 14.9% and 9.89% in microcosms at pH 7.0 and pH 8.0 respectively, followed by 

Pseudomonas group that dominated the microcosms at pH 8.0 and pH 7.0 by 55.98% and 42.4% 

respectively it also found in the microcosms at 9.0 and pH 10.0 by 20.8% and 11.0% respectively   

Figure 3. 55: Bacterial community analysis under Iron-(III) reducing culture  

Under sulphate reducing conditions the most obvious change when compared to the more 

oxidising nitrate and iron reducing systems is the more prominent role take by the Firmicutes 

and the Bacteroidetes alongside the Proteobacteria. This is most obvious between pH 7 and pH 

9, since at pH 10 the Bacteroidetes fail to maintain their position within the population (Figure 

3.56 (A)). At the family level the Ruminococcaceae (45%, at pH 7.0 and 35% at pH 8.0) and 

the Prophyromonadaceae (19% at pH7.0 and 35% at pH 8.0) dominate at the lower pH values. 

Whilst >pH 8.0 the Pseudomonadaceae (36% at pH 10.0 and 13% at pH 9.0) and 

Sedimentibacter (23% at pH 10.0 and 14% at pH 9.0) take over (Figure 3.56 (B)). At the species 

level the populations were not dominated by small number of species as observed in the more 

oxidising microcosms. In these systems, a number of unclassified species had prominent roles, 

whilst Pseudomonas turmuerensis and Brucella melitensis were still present in significant 

proportions (Figure 3.57 (C)).        
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A) Bacterial phyla under a sulphate-reducing culture were dominated by the Firmicutes 70.3, 61.3, 52.55 

and 41.4% in microcosms, followed by Bacteroidetes 20.2, 35.9, 23.1 and 0.81% and Proteobacteria 

9.3, 2.7, 24.3 and 57.6% in microcosms at pHs (7.0, 8.8, 9.0 and 10.0 respectively). 
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B) On the family level the microcosms communities were dominated by the following families; 

Ruminococcaceae 45.3, 35.7, 9.6 and 2.9%, followed by Pseudomonadaceae alkaliphilic species 0.0, 

0.27, 12.7 and 36.6%; Sedimentibacter 8.1, 6.4, 13.7 and 23.5% and porophyromonadaceae 19.2, 34.7, 

15.4 and 0.45% in the microcosms at pHs (7.0, 8.0, 9.0 and 10.0 respectively).                       
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C) Bacterial diversity on the species level under a sulphate-reducing culture; three species were 

dominated the microcosm at pH 10; Brucella melitensis 10.2%, Pseudomonas tuomuerensis 31.9% and 

unclassified sp (EF059533) 20.57%.   

Figure 3. 56: Analysis of the sulphate-reducing bacterial communities  

 

In the absence of a terminal electron acceptor, the Firmicutes dominated the communities with 

the Proteobacteria and the Bacteroidetes reducing as the pH increased. (Figure 3.57 A). The 

dominant family was the Ruminococcaceae at all pH values, followed by the Sedimentibacter 

and the Aeromonadaceae families at the lower pH values (Figure 3.57 B). At the species level, 

no one identified species had a dominant position with the only possible exception being 

Aeromonas sp (19.6% at pH 7.0).  
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.    
A) Fermentative phylum was dominated the microcosms at all pHs (71% - 91%). Although the 

Proteobacteria were dominant in the crude soil, they decreased to ˂ 9.5% at pHs (8.0, 9.0 and 10).   

 

B) The families present under fermentative conditions Ruminococcaceae 29.3, 36.4, 32.7 and 42%; 

Sedimentibacter 25.5, 26, 20 and 8.8%; and Aeromonadaceae 24, 8.7, 7.5 and 2.9% in microcosms at 

pHs (7.0, 8.0, 9.0 and 10.0 respectively). 
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C) On species level the highest percentages was represented by Aeromonas (19.6%) at pH 7; AB630534 

(24.4%) at pH 8; JX391172 (12.9%), AB630534 (11.96%) at pH 9 and AB630534 (33%) at pH 10. 

Figure 3. 57: Bacterial diversity at different pH level under fermentative conditions 
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Comparison of the communities using the unique fraction metric (UniFrac) and Fast Unifrac 

provided by CLcommunity ChunLab demonstrated the clustering of the different populations 

(Figure 3.58). In this analysis the nitrate reducing and fermentative systems all clustered 

together. The iron reduction and sulphate reduction communities were more diverse, with the 

communities from ≤ pH 9.0 clustering together whilst the iron and pH 10.0 sulphate 

communities were clustered loosely. The initial soil used as the inoculum did not cluster with 

any of the other communities.  

 

 

 

Figure 3. 58:  Beta-diversity, dendrogram, comparison of the microbial communities 

present in all the microcosms compared to the initial soil based on UPGMA.  
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 Discussion  

This experiment was carried out to determine the impact of terminal electron acceptors and 

environmental pH on the CDP degrading communities present in alkaline contaminated soils 

collected from the Harper Hill site. Under nitrate-reducing conditions the rate of the ISA 

degradation decreased in an exponential manner as the pH increased.  The degradation of β-

ISA was more significant than that of α-ISA and a complete reduction of nitrate at pH 7.0, pH 

8.0, pH 9.0 and significant amount at pH 10.0.  Basil et al. investigated the same sediments and 

reported a complete degradation of α-ISA at pH 10 over a 6 day under nitrate reducing 

conditions. In Basil et al. experiments, the reduction of nitrate was associated with fermentation 

indicated by acetate production, the acetate was then removed via the reduction of nitrate 

(Bassil et al., 2015). This significant role of fermentation resulted in a drop in pH which in turn 

promoted ISA degradation. In the study reported here the alkaline pHs was maintained, and as 

such this was a more valid comparison of the impact of pH. The experiments reported here were 

also able to maintain the oxidising conditions promoted by the presence of nitrate, which is 

indicated by the absence of an accumulation of volatile fatty acids. At neutral pH Kuippers et 

al. (2015), observed the biodegradation of α-ISA under nitrate-reducing conditions (about 88% 

of ISA was degraded during 28 days) with no evidence of fermentation. These observations are 

more closely aligned with the data generated during this study.  

Bacterial species that were prominent in the nitrate fed systems included Brucella melitensis, 

(with 99.75% similarity) which had a significant presence at pH 7.0 (61.7%) at pH 8 (32.5%), 

at pH 9.0 (50.1%) and at pH 10.0 (41.5). It was also present in the Iron (III)-reducing microcosm 

at pH 7.0 (15%), pH 8.0 (10%), pH 9.0 (40%) and pH 10.0 (43%). Brucella species are 

facultative anaerobic bacteria and Brucella melitensis is a nitrate reducing species with two 

regulatory 16M: NarR genes (Haine, Dozot, Dornand, Letesson, & De Bolle, 2006) which is 

able to respire nitrate to dinitrogen. It also has a hydrogen-transporting ATP synthase that used 

by bacterial cells for regulate high pH value (DelVecchio et al., 2002). Furthermore Brucella 

melitensis has also been identified as an Iron (III) reducing strain (Danese et al., 2004) which 

explains its presence in the iron reducing microcosms.  

In addition to Brucella melitensis, Achromobacter marplatensis (with 99.5% similarity) was 

also detected in the nitrate-reducing microcosms at pH 7.0 (17.7%), pH 8.0 (36.3%), pH 9.0 

(32.4%) and at pH 10.0 (32.9%). Bacteria of this genus have been isolated from a range of 

environmental sources (water, soil) and from a number of clinical samples (Vandamme et al., 

2013). Achromobacter marplatensis was isolated from soil contaminated by pentachlorophenol 
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(Murialdo, Fenoglio, Haure, & Gonzalez, 2003) and is able to assimilate citrate, malate and 

phenylacetate. It is also capable of nitrate and nitrite reduction, although this species was unable 

to utilize a wide range of carbohydrates. However, other closely related species are able to 

utilize numerous carbohydrate carbon sources (Gomila et al., 2011) and have been associated 

with cellulose-decomposing communities (Dumova & Kruglov, 2009) where it contributes to 

the community by producing β-glucosidase (X. Chen, Wang, Yang, Qu, & Li, 2015) whilst a 

number of Achromobacter species have been identified as highly active nitrate reducing strains 

(Eltarahony, Zaki, hassan Khairalla, & Abd-El-Haleem, 2015) this study is the first to report 

alkaliphilic Achromobacter species.   

Under Fe(III)-reducing condition (Figure 3.50), there was limited ISA degradation with Fe(III) 

reduction indicated by the generation of Fe (II). The microbial populations were broadly similar 

to those observed in the nitrate reducing microcosms that were dominated by Gram-negative 

Proteobacteria e.g. Brucella melitensis and Pseudomonas tuomuerensis, followed by 

Firmicutes represented by the Sedimentibacter which occupied a proportion of the population 

in the mid pH ranges. This member of the Firmicutes phyla was the only significant Gram 

positive organism present within these microcosms. This contrasts with Bassil et al. (2015) who 

observed populations dominated by the Gram-positive Anaerobacillus genus (95.5%)  in Fe-

(III)-reducing alkaline cultures fed on α-ISA at pH 10.0 (Bassil et al., 2015). This once again 

emphasis the fact that ISA is not a valid analogue of CDP as demonstrated by Kyeremeh et al. 

(2016).   

The Pseudomonadaceae were present within these populations at the lower pH values 

represented by Pseudomonas tuomuerensis. Some pseudomonads are able to reduce many 

metals, such as Fe (III) (Lonergan et al., 1996; Tao, Zhou, He, Hu, & Li, 2014) and have been 

associated with cellulose-decomposing bacterial community (Dumova & Kruglov, 2009). At 

neutral pH Kuippers et al. (2015), found that Iron-reducing communities were initially 

dominated by Firmicutes which were replaced by Gram-negative Betaproteobacterium (40% 

sequences) later in the fermentation. They suggested that this is likely to the formation of 

insoluble iron (III) and the presence of co-factors generated by other metabolic processes 

including fermentation (Kuippers et al., 2015).    

Rhanella bruchi accounted for 17.4% of the iron-reducing communities at pH 10.0 (Table 3.5). 

The Rahnella genus was proposed in 1979, and between 2009-2012 this genus was isolated 

from the tissues of the following; Oak Decline, alder and walnut log tissue, and buprestid 
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beetles resulting in the classification of five Rhanella species including Rahnella bruchi sp. 

nov. (Type strain FRB 226T). Rahnella bruchi is a Gram-negative facultative anaerobic rod 

which is oxidase negative and positive for catalase, α-galactosidase and gelatinase. This strain 

able to reduce nitrate to nitrite and uses a wide range of carbohydrates during fermentation 

(Brady, Hunter, Kirk, Arnold, & Denman, 2014). 

As with iron reduction, there was only modest amounts of ISA degradation (~1.5mM of each 

ISAs) and associated sulphate reduction (Figure 3.51). The ISA reduction was combined with 

VFAs production that suggest the ISA reduction occurred via fermentation rather than sulphate 

reduction. These results are broadly consistent with previous data provided by Bassil et al. 

(2015), who did not find any evidence of ISA degradation under sulphate-reducing conditions 

at pH 10.0 (Bassil et al., 2015) and with the data of Rizoulis, et al. (2012) who fed similar 

sediments from Harpur Hill the Buxton site with sulphate and lactate or acetate at alkaline pH 

(Rizoulis et al., 2012). At neutral pH Kuippers et al. (2015) also found that sulphate reduction 

was associated with the fermentation of ISA (Kuippers et al., 2015). The lack of sulphate 

reduction at alkaline pH is underinned by the lack of any of the classic sulphate reducing 

bacteria. Rather the population had a similar profile to that seen in the iron reducing systems 

with the exception that a significant number of unclassified organisms began to appear in the 

population.  

 In the lower pH sulphate microcosms, the Porphyromonadaceae were the dominant bacterial 

family and these strict anaerobes were only detected under sulphate-reducing conditions (19%, 

34.8%, 15.4% and 0.5% at pH 7.0, pH 8.0, pH 9.0 and pH 10.0 respectively). This family was 

represented by the Proteiniphilum, a genus of Gram-negative, non-spore-forming rods. Isolates 

of this genus isolated from brewery wastewater, were proteolytic and able to ferment peptone, 

yeast extract, and L-arginine to acetic acid. The optimum pH (7.5-8.0) and range (pH 6.0–9.7) 

(S. Chen & Dong, 2005) supports the dominace of these bacteria in the lower pH microcosms. 

This genus has been found in other sulphate-reducing systems for example a toluene-degrading 

microbial community of a Contaminated Aquifer (Kuppardt et al., 2014). Even though these 

bacteria have been seen in other sulphate reducing conditions there is no explanation to date as 

to why they dominate in these sulphate reducing conditions.  

Ruminococcaceae and Lachnospiraceae are two strictly anaerobic families found in the sulphate 

microcosms, these families include cellulose-degrading strains (Chassard, Delmas, Robert, 

Lawson, & Bernalier-Donadille, 2012) and carbohydrate  fermenters commonly found in the 
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mammalian gut (Flint, Scott, Duncan, Louis, & Forano, 2012). For instance, Ruminococcus 

champanellensis is able to metabolize cellulose and cellobiose to acetate and succinate 

(Chassard et al., 2012). The Sedimentibacter are strictly anaerobic, polymorphous, rods with 

wide pH ranges 5.8-8 (Breitenstein et al., 2002).  These observations suggest that the cellulosic 

origins of CDP had a greater impact on the population structure than the presence of sulphate.  

In the absence of a terminal electron acceptor, the communities (Appendix-3; Table 1, 2 and 

3). were dominated by Gram-positive bacteria, which aligns with the observation of Bassil et 

al. (2015). Which in turn supports the observation that theirs was a fermentation driven rather 

than a respiratory system established due to the use of ISA rather than CDP.  

 Key findings 

 The bacterial community in the Harpur Hill sediments was able to degrade α- and β-

ISAs under all provided metabolic pathways except sulphate reduction. 

 The amount and the rate of the ISA degradation differed depending on the terminal 

electron acceptor employed and the pH level.       

 Phylogenetic analysis of the CDPs driven microcosms showed a significant reduction 

in bacterial community diversity when compared with the crude soil.  

 A significant change of the bacterial diversity structure was under the different 

metabolic pathways of fermentation, Nitrate, Sulphate and Iron (III) reduction at 

different pH level. 

 The Nitrate reducing-microcosms at different pH levels were dominated by two genera 

of Proteobacteria represented by Brucella melitensis and Achromobacter marplatensis.  

 Increases in pH led to significant changes in bacterial community structure under all 

provided metabolic pathways, it also has a direct effect on the rate of the ISA 

degradation.  

 Generally, the bacterial diversity of the microcosms under fermentation metabolic 

pathway was similar to the bacterial diversity of the microcosms at sulphate reduction 

(Figure 3.58 B). 

 The microcosms under nitrate and iron (III) reduction (Figure 3.58 A) were dominated 

by Gram-negative bacteria of phylum Proteobacteria at all pH levels.  
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 Isolation and identification of alkaliphilic bacteria  

 Isolation and identification of alkaliphiles from CDP fed sulphate 

reducing and fermentative microcosms 

 Alkaliphiles were isolated from CDP fed sulphate reducing and fermentative microcosms 

operated by Charles (2017) which had been in operation for 22 weeks at pH 11.0 and pH 12.0 

(Charles 2017). After 7 days of anaerobic incubation on FAA (pH 10.0 and pH 11.0) at 25°C, 

a mixed growth was observed (Figure 3.59 A) with the fermentative microcosm at pH 11.0 

providing more diverse and extensive growth than the fermentative microcosm at pH 12.0 and 

sulphate reducing microcosms at pH 11.0 and pH 12.0.  

 

Figure 3. 59: streak plate technique for bacterial isolation  

Mixed bacterial growth on FAA plate at pH 10 (A), isolated pure colonies (B). 

The dominant colonies from these plates were isolated and purified (Figure 3.59 A and B). The 

resulting isolates were also tested for their ability to grow in aerobic condition (Table 3.1) to 

differentiate between facultative and obligate anaerobes.  
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Figure 3. 60: Gram stains of the pure cultures derived from the pH 11 and 12 microcosms.   

Gram positive bacilli with a central spore (a), Gram positive bacilli with a terminal spore (b), Gram 

positive cocci (c), Gram positive polymorphic coccobacilli (e) and Gram negative polymorphic 

coccobacilli (d and f) 

Nine isolates were recovered, but it was not possible to maintain one isolate. Consequently, this 

strictly anaerobic Gram positive bacillus with terminal spores was lost from the investigation 

(Figure 3.60 b). Of the remaining eight isolates, four were strictly anaerobic, Gram-positive, 

spore forming bacilli that generated white colonies with a regular edge and smooth texture on 
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FAA. The other four isolates were facultative anaerobic, non-spore forming bacteria. Two of 

which were Gram-positive (Figure 3.60 c and e) and formed colourless colonies with a regular 

edge and a smooth texture on FAA at pH 10.0. The remaining two isolates were Gram-negative 

rods (Figure 3.60 d and f) that formed colourless colonies with a regular edge and smooth 

texture on FAA at pH 10.0. 

The eight pure cultures isolated were subject to phylogenetic analysis via 16s rRNA gene 

sequence analysis (See section 2.3.3.). Identification by BLASTN (Zhang, Schwartz, Wagner, 

& Miller, 2000) (Table 3.2) indicated that the FAA were dominated by Enterococcus 

gallinarum (Figure 3.60 c). This was followed by moderate growth by a strain of Aeromonas 

salmonicida (Figure 3.60 d) and Clostridium bifermentans (Figure 3.60 a). The strains 

associated with more limited growth were identified as an Acinetobacter guillouiae (Figure 

3.60 f), Exiguobacterium mexicanum (Figure 3.60 e) and three Clostridium sp. (Table 3.1). 

Generally, FAA was dominated by Gram-positive bacteria classified under the Firmicutes 

phylum, an observation consistent with the dominant phylum identified via 16s rRNA 

community analysis of the original microcosms (Charles et al., 2015). 

Table 3. 1: Identification of bacterial isolates from CDP feed sulphate reducing and 

fermentative microcosms at pH 11 and pH 12 
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A) 

 
B) 

 
C) 

 

 Clostridium bifermentans strain JCM 1386

 Clostridium bifermentans ZS-strain (S8) 

 Paraclostridium benzoelyticum strain JC272

 Clostridium sordellii strain JCM 3814

 Eubacterium tenue strain DSM 20695

 Clostridium ghonii strain JCM 1400

 Intestinibacter bartlettii strain WAL 16138

 Terrisporobacter petrolearius strain LAM0A37

 Romboutsia sedimentorum strain LAM201

 Romboutsia lituseburensis strain ATCC 25759

 Clostridium dakarense strain FF1

 S001020552 Escherichia coli J01695

86

100

80

100

90

54

33

63

0.02

 Aeromonas rivuli strain DSM 22539

 Aeromonas sobria strain 208

 Aeromonas allosaccharophila strain CECT 4199

 Aeromonas popoffii strain LMG 17541

 Aeromonas bivalvium strain 868E

 Aeromonas salmonicida ZS-strain (S9)

 Aeromonas piscicola strain S1.2

 Aeromonas salmonicida strain ATCC 33658

 Aeromonas bestiarum strain CIP 74.30

 Aeromonas encheleia strain CECT4342

 Aeromonas molluscorum strain LMG 22214

 Aeromonas aquatica strain AE235

 Aeromonas eucrenophila strain NCIMB 74

 Aeromonas hydrophila strain ATCC 7966

 Aeromonas tecta strain F518

 S001020552 Escherichia coli J01695
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D) 

 
E) 

 
F) 
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0.02

 Clostridium sordellii strain JCM 3814

 Eubacterium tenue strain DSM 20695

 Clostridium ghonii strain JCM 1400

 Paraclostridium benzoelyticum strain JC272

 Clostridium bifermentans strain JCM 1386

 Intestinibacter bartlettii strain WAL 16138

 Peptoclostridium difficile strain JCM 1296

 Clostridium mangenotii strain DSM 1289

 Clostridium mangenotii ZS-strain (S20)

 S001020552 Escherichia coli J01695

100
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56
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38

0.02
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G) 

 
 

H) 

 

Figure 3. 61: phylogenetic trees for each of the isolates based on 16SrRNA gene sequences. 

A) C. bifermentans, B) E. galinarum, C) A. salmonicida, D) A. guillouiae, E) E. mexicanum, 

F) C. mangenotii, G) C. sordelliim, H) C. malenominatum.  

Maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences provide the relationships 

between these strains and related representatives of their families. Bootstrap values (expressed as 

percentages of 1000 replicates) are shown at each node where the bar represents 0.02 changes per 

nucleotide position. Evolutionary analyses were conducted in MEGA7. 
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 Clostridium malenominatum strain DSM 1127

 Clostridium malenominatum ZS-strain (S16)

 Clostridium cochlearium strain JCM 1396

 Clostridium oceanicum strain DSM 1290

 Clostridium sporogenes strain JCM 1416

 Clostridium tetanomorphum strain DSM 4474

 Clostridium liquoris strain BEY10

 Clostridium lundense strain DSM 17049

 Clostridium kogasensis strain YHK0403

 Clostridium peptidivorans strain TMC4

 Clostridium pascui strain DSM 10365
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100

100
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Table 3. 2: Closest neighbours of the Alkaliphiles isolated from the pH 11.0 and 12.0 

microcosms  

The following results represent the evolutionary relationships of the bacterial isolates that 

analysed in the phylogenetic trees (Figures 3.62 with serial letters A-H).  

 

Investigation of a number of CDPs driven microcosms operated under fermentation and 

sulphate reducing conditions at pH 11.0 and pH 12.0 resulted in the isolate a wide range of 

Alkaliphiles. The Clostridium bifermentans ZS-8 (Figure 3.61 A, Table 3.1) isolated showed a 

99% match to the C. bifermentans Type strain ATCC 638. Clostridium bifermentans is a known 

alkaliphilic bacterium as demonstrated by the work of Joe et al. (2008) who found that the C. 

bifermentans strains are alkaline tolerant up to pH 12.0. In that case strains isolated from soil 

were able to decolorize textile azo dyes at a wide range of pH values (pH 6.0-12.0) with the 

optimum decolourization activity observed at pH 10.0 in the presence of glucose (Joe, Lim, 

Kim, & Lee, 2008). In general C. bifermentans strains are known to utilize a wide range of 

polysaccharides and proteins (C. Wang et al., 2003), which is consistent with the carbohydrate 

based alkaline environment C. bifermentans ZS-8 was isolated from CDP driven microcosm 

(Charles 2017, PhD thesis). 

The other strictly anaerobic Gram-positive rods isolated were Clostridium mangenotii ZS-20 

and Clostridium sordelli ZS-17 (Figure 3.61 F and G respectively) both of which showed 99% 

matches to their respective Type strains (Table 3.2). The remaining anaerobic Gram-positive 

rod (ZS-16) showed a 98% similarity to the Clostridium malenominatum Type strain DSM 

1127 (Table 3.2, Figure 3.61 H). In previous studies, Clostridium mangenotii has been 

associated with African soils and a draft genome is available for an isolate originating from the 

faecal material of a timber rattlesnake (McLaughlin et al., 2014). Type strain descriptions 
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indicate that optimum growth is between 30-37oC and up to pH 8.5 (P. A. Lawson, Citron, 

Tyrrell, & Finegold, 2016), the latter being consistent with the alkaline conditions employed to 

isolate ZS-16. It has been recently proposed that Clostridium mangenotii be reclassified as 

Clostridioides mangenotii (P. A. Lawson et al., 2016).   

 

The literature on C. sordellii is dominated by the fact that it is associated with serious and often 

fatal infections (Aldape, Bryant, & Stevens, 2006); however, pathogenicity in C. sordellii is 

due to the presence of plasmid borne virulence genes (Couchman et al., 2015).  In addition to 

medical sources, C. sordellii is often isolated from soils with diverse characteristics e.g. pH up 

to pH 8.2 (del Mar Gamboa, Rodríguez, & Vargas, 2005) and low temperatures (Nakamura, 

Shimamura, & Nishida, 1976) with some authors classifying these soil associated isolates as 

none pathogenic (Watanabe, Miwa, Imamura, Kohata, & Mochizuki, 1975).  C. 

malenominatum has also been isolated from soils but at much lower abundance (del Mar 

Gamboa et al., 2005) and is considered to be a classic glutamate fermenting Clostridium (Wilde, 

Collins, & Hippe, 1997). 

 

The most numerous bacteria isolated from the microcosms was E. gallinarum ZS-10 suggesting 

that this strain is able to utilize CDPs at high pH levels. The closest match via 16s rRNA gene 

sequencing was to a strain originating from a clinical study (Joulian, Ollivier, Patel, & Roger, 

1998) and E. gallinarum strains have been associated with bacteraemia in particular (Reid, 

2001). However, E. gallinarum also has a significant none pathogenic profile. Mesophilic 

strains of  E. gallinarum have been isolated from rumen fluid which have significant anaerobic 

cellulose hydrolysis capabilities (A. Wang, Gao, Ren, Xu, & Liu, 2009). The ability E. 

gallinarum to utilise a wide range of carbohydrates has also been reported by other authors (G. 

Kim et al., 2005). Other strains isolated from tannery waste-contaminated soil (Sayel et al., 

2012) were able to reduce hexavalent chromium Cr(VI) at a wide range of pH values (7.0–11.0) 

with an optimum pH of pH 10.0 and temperature range of 25-45°C. In this case, the presence 

of glucose assisted in the Cr (VI) reduction process. The strain was also able to tolerate heavy 

metals including Cu2+, Ni2+, Pb2+, Co2+ and Zn2+.   In addition, textile wastewaters were the 

source of E. gallinarum strain able to decolourise azo dyes (Bafana, Krishnamurthi, Devi, & 

Chakrabarti, 2008). The metabolic diversity and broad carbohydrate degradation capabilities of 

E. gallinarum means that it is ideally suited to the CDP fed environments of the microcosms 

investigated.  
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Gram-negative bacillus, Acinetobacter guillouiae ZS-11, was also isolated from the 

microcosms on the FAA agar plate at pH 10. The type strain of A. guillouiae originated from 

sewage contaminated gas works effluent (Nemec et al., 2010). Other strains of A. guillouiae 

(SFC 500-1A) have been isolated from tannery sediment contaminated soil, in this case the 

isolate had the ability to simultaneously remove high Cr(VI) and phenol concentrations 

(Ontañon, González, & Agostini, 2015). Acinetobacter species are commonly isolated from a 

range of different environmental sources include soil and water (Krizova, Maixnerova, Sedo, 

& Nemec, 2014). For example, a group of Acinetobacter strains were isolated from soil 

contaminated with atrazine (atrazine is a pesticide used for the nonselective weed control with 

3 ppb is a permissible level in water and soil). These Acinetobacter strains had the ability to 

grow up to 250 ppm of atrazine in alkaline media (pH 8) (P. Singh, Suri, & Cameotra, 2004).  

Despite the fact that Acinetobacter sp. are classically aerobic bacteria, some studies have 

demonstrated that the Acinetobacter guillouiae shows an optimum growth in facultative 

anaerobic condition through redox reaction in the presence of copper (Majumder, Gangadhar, 

Raghuvanshi, & Gupta, 2015). Other studies have demonstrated that facultative anaerobic 

metabolism is common in metal-respiring bacteria (Csotonyi, Stackebrandt, & Yurkov, 2006; 

Shen & Wang, 1994). However, in the reactors that this isolate was recovered from it is not 

clear what terminal electron acceptor this isolate would be employing to facilitate its 

metabolism.  

A facultative anaerobic strain of Aeromonas salmonicida ZS-9 was also isolated from the 

alkaline microcosms. In a previous studies, Aeromonas sp. were isolated from a variety of 

aquatic environments worldwide include water and sewage with a wide temperature range of 

0°C to 45°C and an optimum of 22-32°C (Didugu et al., 2015). Aeromonas salmonicida is 

known as an etiological agent of bacterial disease in fish (Daly, Kew, Moore, & Olivier, 1996; 

Joseph & Carnahan, 1994; Reith et al., 2008; Wiklund & Dalsgaard, 1998). This species can 

utilize a wide range of carbohydrates (Abbott, Cheung, & Janda, 2003), under anaerobic 

condition this genus can also utilise either a fermentative or anaerobic respiration energy 

generation strategy. Aeromonas are also able to survive in extreme conditions such as high pH 

through biofilm formation (Kirov, Castrisios, & Shaw, 2004).  The high interspecies sequence 

similarity found in the 16S rRNA gene sequences (96.7% to 100%) of the Aeromonas genus 

(A. J. Martínez-Murcia, Figueras, Saavedra, & Stackebrandt, 2007; Vega-Sánchez et al., 2014) 

makes it difficult to distinguish between closely related Aeromonas species. Additional to the 

similarity of the genes, a lack of definitive biochemical markers causes complexity in the 
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taxonomy of this genus (A. Martínez-Murcia et al., 2013; Soler et al., 2003) in both 

environmental and clinical isolates (Beaz-Hidalgo, Alperi, Figueras, & Romalde, 2009; Ørmen, 

Granum, Lassen, & Figueras, 2005). These issues explain the clustering of closely related 

Aeromonas sp. found in the phylogenetic tree presented above (Figure 3.61 C).  

Distinctive orange coloured colonies were detected on FAA at pH 10.0 and 11.0. Phylogenetic 

analysis showed that the isolated bacterium belonged to the genus Exiguobacterium and was 

related to Exiguobacterium mexicanum Type strain 8N AM072764 (99.0 %). This strain 

Exiguobacterium mexicanum ZS-15 is Gram-positive, non-spore-forming (Figure 3.60 e), 

facultatively anaerobic coccobacilli. Exiguobacterium was proposed as a new genus, belonging 

to the family Bacillaceae of the Firmicutes phylum in 1983 by (Collins, Lund, Farrow, & 

Schleifer, 1983) and includes 16 species (Vishnivetskaya et al., 2014). In previous studies, 

Exiguobacterium sp. have been isolated from markedly diverse sources including, ancient 

Siberian permafrost, Greenland glacial ice, hot springs, with temperature range from -12 to 

55°C (Vishnivetskaya, Kathariou, & Tiedje, 2009). This diversity has resulted in the 

classification of Exiguobacterium sp. into two groups depending on temperature ranges for 

growth, with few exceptions, such as Greenland ice isolate GIC31-strain that was classified 

to belong to both groups (Vishnivetskaya et al., 2014; Vishnivetskaya et al., 2009). 

Alkaliphilic strains of Exiguobacterium able to tolerate up to pH 12.0, have been isolated 

from the alkaline drain sludge of a beverage facility in New Delhi, India (Kulshreshtha, 

Kumar, Begum, Shivaji, & Kumar, 2013),  This genus is know to have a range of stress 

response genes that allow survival in extreme environments. For examples one 

Exiguobacterium strain isolated from a salt flat in the Atacama Desert, South America carries 

a number of stress-related genes including heavy metals/metalloid tolerance genes for 

cadmium, chromium, mercury, copper, tellurium, arsenic and UV stress response genes 

(Castro-Severyn et al., 2017).  Therefore, this genus is worthy of attention as its members have 

the ability to adapt to extreme conditions including psychrophilic, thermophilic, alkaliphilic 

and heavy metal contaminated environments. 

 Isolation and identification of alkaliphiles from CDP feed fermentative 

microcosms at pH 10, pH 11 and pH 12 

A range of isolates were recovered from the initial pH 10.0, 11.0 and 12.0 microcosms on FAA 

pH 9.5. These isolates represented a wide range of alkaliphiles (Table 3.3). These broke down 

to a Gram-positive group that included Enterococcus gallinarum, Bacillus mycoides, Dietzia 
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natronolimnaea and Tessaracoccus lubricantis, and a Gram-negative group composed of 

Aeromonas salmonicida, Macellibacteroides fermentans (a strictly anaerobic bacterium), 

Alcaligenes aquatilis, and Citrobacter gillenii. There were also two isolates recovered from the 

microcosm which operated at pH 12.0, these were Alishewanella aestuarii and Bacillus cohnii.  

Table 3. 3: Identification of bacterial isolates from CDP feed fermentative microcosms at 

pH 10.0, pH 11.0 and pH 12.0. 

 

The Gram-positive cocci Enterococcus gallinarum ZS-46 formed colourless colonies with a 

regular edge and a smooth texture on FAA at pH 9.5. Based on the 16SrRNA gene sequence 

this isolated strain showed a 99% match to the E.gallinarum type strain AF039900, this strain 

is also similar (with 99% match) to the E. gallinarum ZS-10 strain described in a previous 

section. The Aeromonas salmonicida ZS-55 strain isolated showed 99% similarity to the A. 

salmonicida type strain ATCC 33658 and a 99% match to the A. salmonicida ZS-9 discussed 

in the previous section.  

The following bacterial isolates (serial numbers from 6-10) are discussed in more detail in 

future section 3.6.  Macellibacteroides fermentans ZS-40 a strictly anaerobic, Gram negative 

rod, formed white colonies with a regular edge, these were soft in texture and convex in shape. 

The isolate showed a 99% match to the closest phylogenetic relatives of Macellibacteroides 

fermentans type strain LIND7H (Table 3.3). Dietzia natronolimnaea ZS-51 is a Gram-positive, 

non-spore forming cocci that formed pink colonies with regular edges, raised or convex and 
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soft in texture which showed a 99% match to the Dietzia natronolimnaea type strain DSM 

44860 (Table 3.2). Tessaracoccus lubricantis ZS-41 strain is Gram-positive cocci, non-spore-

forming bacteria, which formed yellow, translucent and shiny colonies with entire edges within 

two days on FAA plates at pH 9.5. This isolate showed a 98% match to the Tessaracoccus 

lubricantis type strain KSS-17Se (Table 3.3). Alishewanella aestuarii ZS-28 is a Gram-

negative rod, isolated from the microcosm at pH 12. This isolate formed colonies with a regular 

edge, smooth, slightly raised, beige in colour and darker at the colony centre and showed a 99% 

match to the Alishewanella aestuarii type strain B11 (Table 3.3).   

Bacillus mycoides ZS-4 strain is a spore-forming, Gram-positive bacilli, this bacterial species 

was often isolated from the pH 10.0 microcosm. Bacillus mycoides ZS-4 showed a 100% match 

to the Bacillus mycoides type strain NBRC 101228 and Bacillus weihenstephanensis strain 

DSM 11821 (Figure 3.62-1). The strain formed rhizoid colonies on the FAA at pH 9.5 that were 

able to overgrow a full plate in 5-7 days of incubation. Bacillus mycoides is a common soil 

organism worldwide (Stratford, Woodley, & Park, 2013) which is able to utilize a wide range 

of carbon and nitrogen sources for growth (Borah, Thakur, & Nigam, 2002). Through 16S 

rRNA gene sequencing B. mycoides is (99.5%) closely related to the human pathogenic strains 

of B. anthracis, B. thuringiensis and B. cereus. However, B. myocoides is non-motile with a 

distinct rhizoidal colony morphology (von Wintzingerode, Rainey, Kroppenstedt, & 

Stackebrandt, 1997). 

Bacillus cohnii ZS-27 was isolated from the pH 12.0 microcosm and showed a 99% match to 

the Bacillus cohnii type strain NBRC 15565 (Figure 3.62-2), when grown on FAA at pH 9.5 

this strain showed small, cream white colonies. The Bacillus genus was described by Ferdinand 

Cohn in 1872 and the name Bacillus cohnii was proposed in 1993 for a novel, obligate 

alkaliphilic, oval spore-Forming Bacillus (Spanka & Fritze, 1993). A number of Bacillus 

cohnii strains have been investigated for their ability to generate industrially important 

enzymes. For example Bacillus cohnii US147 isolated from soil in Tunisia, generated an 

amylase activity in both acid and alkaline pH up to pH 9.0 at 70°C (Ghorbel, Maktouf, Massoud, 

Bejar, & Chaabouni, 2009), whereas Bacillus cohnii APT5 strain produced an extracellular 

alkaline protease with an optimum activity at pH 11.0  and 50°C (Tekin et al., 2012).   

Another commonly isolated strain was Alcaligenes aquatilis ZS-13, which was isolated from 

the microcosm at both pH 10.0 and pH 11.0 showed a 99% match to the Alcaligenes aquatilis 

type strain LMG 22996 (Figure 3.62-3). This Gram negative rod, formed white circular colonies 
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with a regular edge, a low-convex profile and a smooth texture, older colonies formed irregular 

margins on FAA at pH 9.5. This genus was proposed in 1919 and classified under 

Alcaligenaceae family of the Proteobacteria phylum in 1986 (De Ley, Segers, Kersters, 

Mannheim, & Lievens, 1986). The two isolated strains NCCP-650T and NCCP-667 of 

Alcaligenes pakistanensis showed tolerance to toxic concentrations of heavy metals, including 

Cr+2, As+2, Pb+2 and Cu+2 and pH range of 5.5–10.0 (Abbas et al., 2015).  Strains of A. aquatilis 

are motile and positive for catalase and oxidase. Anaerobic growth of some strains in the 

presence of nitrate and nitrite was detected, some strains were also able to reduce nitrite but not 

nitrate. They were also able to utilize sodium acetate and produces acid from, xylose, mannitol, 

L-arabinose and maltose (Van Trappen, Tan, Samyn, & Vandamme, 2005).  

Citrobacter gillenii ZS-30 showed a 98% match to the Citrobacter gillenii type strain CDC 

4693-86 (Figure 3.62-4), this strain is a Gram-negative, facultative anaerobic, non-spore-

forming short rod that formed translucent colonies with a regular edge. The genus Citrobacter 

belongs to the Enterobacteriaceae family of the Proteobacteria phylum. Species of the genus 

Citrobacter can be found in varied environments and are considered to be inhabitants of human 

and other animal guts. In humans, some species are regarded as opportunistic pathogens 

(Samonis et al., 2009).  Citrobacter species isolated from soil were able to decolorize several 

recalcitrant dyes that used in a textile and dyeing industry under an optimal pH 7.0–9.0 and 35–

40°C (An et al., 2002). They are motile and negative for oxidase and catalase, some are also 

able to utilize a wide range of carbohydrates and produce acid from a range of sugars including 

D-glucose (Clermont et al., 2015).  

1) 
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2) 

 
3) 

 
 

4) 

 

Figure 3. 62: phylogenetic trees for each of the isolates based on 16SrRNA gene sequences.  

1) Bacillus mycoides ZS-4, 2) Bacillus cohnii ZS-27, 3) Alcaligenes aquatilis ZS-13, 4) Citrobacter 

gillenii ZS-30. Maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences. Bootstrap 

values (expressed as percentages of 1000 replicates) are shown at each node where the bar represents 

between 0.005 and 0.02 changes per nucleotide position. Evolutionary analyses were conducted in 

MEGA7.  
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 Isolation of bacteria from the pH adaption microcosms  

A number of alkaliphiles were isolated from the CDP fed microcosm that was started at pH 8.5 

and the increased to pH 9.5 and finally pH 10.5 (Figure 3.63) and identified via 16s rRNA gene 

sequencing (Figure 3.64). These alkaliphiles included; Shewanella putrefaciens ZS-53, 

Brevundimonas diminuta ZS-36, Rhodococcus erythropois ZS-49, Alcaligenes aquatilis ZS-34, 

Bacillus mycoides ZS-06 and ZS-09, Clostridium tertium ZS-83 and Aeromonas salmonicida 

ZS-24 (Table 3.4). The following two bacteria isolates; Brevundimonas diminuta ZS-36, 

Rhodococcus erythropois ZS-49 were selected for further investigation and are discussed in 

detail in later section (3.6.).  

Shewanella putrefaciens ZS-53 is a facultative anaerobic Gram-negative rod (Figure 3.63 A), 

which when grown on FAA at pH 9.5 formed bright pink colonies, with a slightly raised regular 

edge and smooth texture. The S.putrefaciens ZS-53 isolated strain showed a 99% match to the 

Shewanella putrefaciens Type strain NBRC 3908 (Figure 3.64 A). The genus Shewanella are 

aquatic microorganisms inhabiting a wide range of environments with a worldwide distribution 

(Nealson & Scott, 2006). They are also associated with food spoilage due to  exopolysaccharide 

production and biofilm formation during food processing and may cause bacterial induced 

corrosion on steel surface (Bagge, Hjelm, Johansen, Huber, & Gram, 2001). Some species of 

Shewanella has been isolated from deep sea sediments (Kato & Nogi, 2001; Martín-Gil, Ramos-

Sánchez, & Martin-Gil, 2004) and they can use insoluble Fe(III) as terminal electron acceptors 

during anaerobic growth (Blakeney, Moulaei, & DiChristina, 2000).  

Clostridium tertium ZS-83 Gram-positve spore -forming rods (Figure 3.63 B) demonstrated a 

98% match to the Type strain JCM 6289 (Figure 3.64 B). This is the first time Clostridium 

tertium has been isolated from an alkaline environment.  This strain was found in the 

microcosms at pH 10.5 and pH 9.0 prior to isolation on FAA at pH 9.5. Clostridium tertium is 

an aero tolerant clostridium species  (Lew, Wiedermann, Sneed, Campos, & McCullough, 

1990) found in both the soil and in gastrointestinal tracts of the human and animal (Miller, 

Brazer, Murdoch, Reller, & Corey, 2001). It is rarely associated with disease in the human and 

it is  considered to be a non-toxin-producing strain with low pathogenic potential (Tappe et al., 

2005; Vanderhofstadt et al., 2010). Clostridium tertium strains are a ble to utilise a wide range 

of carbohydrates (Kataoka & Tokiwa, 1998). Clostridium tertium ZS-83 was selected for 

further investigation and is described in greater detail in later section (3.6).  
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Bacillus mycoides ZS-06 and ZS-09 were isolated from the microcosm at pH 9.5 and pH 10.5 

respectively. These Gram positive rods are found in chains (Figure 3.63 E and F), however 

these two strain are 100% match to Bacillus mycoides Type strain NBRC101228 (Figure 3.64 

C). The Gram negative bacilli Aeromonas salmonicida ZS-24 is a 99% match to the Aeromonas 

salmonicida Type strain ATCC 33658 (Figure 3.64 D). 

 

Figure 3. 63: Gram stains of the pure cultures derived from the pH 8.5-10.5 microcosms.   

Gram negative bacilli of S.putrefaceiens (A) and A. aquatillis (B), Gram positive rods of terminal spore 

forming C. tertium (C), Gram positive-rods of R.erythropois ZS-49 (D) and Gram positive rods of 

Bacillus mycoides (E and F)  
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D) 

 
Figure 3. 64: phylogenetic trees for A) S. putrefaciens ZS-53, B)  Clostridium tertium ZS-

83, C) Bacillus mycoides ZS-09  and ZS-06 and  D) Aeromonas salmonicida ZS-24 

Maximum-likelihood phylogenetic trees based on 16S rRNA gene sequences provide the relationships 

between these strains and related representatives of their species and the closest phylogenetic relatives 

of these strains. Bootstrap values (expressed as percentages of 1000 replicates) are shown at each node 

where the bar represents 0.02 changes per nucleotide position. Evolutionary analyses were conducted in 

MEGA7. 

 Discussion  

Phylogenetic analysis of all the isolates recovered employing the CLcommunity™ software 

(ChunLab (Korea)) indicated that the majority of the isolates were Firmicutes, followed by 

lower numbers of Proteobacteria, Bacteroidetes and Actinobacteria (Table 3.4).  The isolates 

represented the following genus; Aeromonas, Bacillus, Acinetobacter, Alcaligenes, 

Citrobacter, Enterococcus, Rhodococcus, Microbacterium, Dietzia, Tessarococcus, Ensifer, 

Brevundimonas, Azonexus, Shewanella, Clostridium XIVb, Clostridium XIVa and Clostridium 

XI. In addition member of the newly proposed genera Macellibacteroides (Jabari et al., 2012), 

Terrisporobacter and Romboutsia (Gerritsen et al., 2014) were also recovered (Appendix-4, 

Table 1). The majority of these isolates were obtained from the lower pH microcosms (pH 8.5 

to pH 10.0), (Table 3.4) however, some isolates were obtained from microcosm operating at 

pH 12.0 including Alishewanella aestuarii and Bacillus cohnii. Facultative anaerobic isolates 

were more prevalent than the obligate anaerobic bacteria, with the latter being dominated by 

the Clostridium sp. which are easier to isolate and manipulate due to their ability to generate 

endospores. The notable exception to this was the single Macellibacteroides sp. that was 

isolated since this was a non-spore forming obligate anaerobe.  

 

 

 

 Aeromonas encheleia strain CECT4342

 Aeromonas encheleia strain A 1881

 Aeromonas aquatica strain AE235

 Aeromonas molluscorum strain LMG 22214

 Aeromonas salmonicida strain ATCC 33658

 Aeromonas bestiarum strain CIP 74.30

 Aeromonas salmonicida ZS-24

 Aeromonas rivuli strain DSM 22539

 Escherichia coli J01695

93

69

80

51

46

0.02
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 Key findings 

 Isolation from the fermentative microcosm at pH 11.0 provided a more diverse and 

extensive growth than the fermentative microcosm at pH 12.0 and the sulphate reducing 

microcosms at pH 11.0 and pH 12.0.  

 FAA at pH 10.0 and pH 11.0 were dominated by Gram positive bacteria of the Firmicutes 

Phylum. 

 The Gram positive cocci Enterococcus gallinarum ZS-10 was the most common Gram 

positive isolate followed by Clostridium bifermentans ZS-8. 

 In the case of the Gram negative bacteria the most common isolate was Aeromonas 

salmonicida ZS-9 isolated from the Charles (2017) microcosms. 

 Isolates present at lower levels of abundance included the Gram positive Exiguobacterium 

mexicanum ZS-15, Gram negative Acinetobacter sp. ZS-11 and a range of Clostridium 

species ZS strains (16, 17 and 20). 
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 Characterization of isolated Alkaliphiles 

 Overview of the isolated alkaliphiles   

A wide range of bacterial isolates were recovered from the microcosms operated in this study. 

Since the overall aim was to isolate ISA degrading bacteria, bacterial isolates were screened on 

MM agar plates supplemented with either CDP or Ca(ISA)2 (10mM) at pH 9.5 (2.5.8). Bacterial 

growth on CDP/ISA was compared with growth on general media plates (FAA) and growth 

under aerobic conditions. The incubation period for these isolates ranged from 3 to 10 days on 

ISA/MM agar plates. Generally speaking, CDP was more successful than the Ca(ISA)2 plates 

in growing bacteria which reflects the fact that CDP contains a wider range of substrates. After 

growth on solid media, isolates were screened for their ability to degrade ISA in liquid culture. 

The purity of the isolates was confirmed by Gram staining with the majority of isolates being 

Gram-positive. Once purity was confirmed the isolates were identified by 16SrRNA gene 

sequencing prior to more detailed characterisation. The majority of these isolates were obtained 

from the lower pH microcosms (pH 8.5 to pH 10.0), (Table 3.4) however, some isolates were 

obtained from microcosms operating at pH 12.0 including Alishewanella aestuarii and Bacillus 

cohnii. Facultative anaerobic isolates were more prevalence than the obligate anaerobic 

bacteria.  

Many of the isolates were unable to degrade ISA as a sole carbon source in liquid culture 

however some them were still worthy of further investigation primarily due to their rarity and 

potential applications in the field of bioremediation and biotechnology. These strains were 

characterised through both molecular (WGS) and biochemical approaches that included metal 

tolerance, pH profile, NaCl tolerance, biofilm production, EPS production and FAME analysis.  

These bacterial isolates (Table 3.4) include; Dietzia natronolimnaea (BI51), Tessaracoccus 

lubricantis (BI41), Alishewanella aestuarii (BI28), Brevundimonas diminuta (BI36), 

Rhodococcus erythropois (BI49), Azonexus hydrophilus (BI70), Clostridium tertium (BI85), 

Shewanella putrefaciens (BI53). The resulting genome sequences provided information 

regarding the metabolic capabilities and survival strategies of these organisms; with the 

metabolic characterisation providing experimental underpinning of this potential. 
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Table 3. 4: Summary of alkaliphilic isolates obtained during this research 

Alkaliphiles isolated from soil samples of Buxton site after incubated at 25ºC in the microcosms of MM supplemented by CDPs, under anaerobic 

condition at pH between 8.5 and 12. 
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BI= bacterial isolate, -B= Gram negative bacilli, +C= Gram positive cocci, Bold= Whole genome sequencing, yellow shading= ISA degrading bacteria  



140 
 

 Overall characterisation of the Alkaliphiles isolates  

The aim of this part of the research was to characterise the isolates based on their metabolic 

capabilities. The overall aim being to identify strains that are unique when compared to those 

already described in the scientific literature.  

 pH profiles  

The majority of these isolates were able to grow on CDPs/MM and/or ISA/MM media at pH 

9.5, under anaerobic condition at 25°C. The pH profiles of these isolates indicated that the 

majority were moderately alkaliphilic with optima between pH 7.0 and pH 9.0, whilst a smaller 

number had much wider pH profiles with optima ranging up to pH 10.0 (Figure 3.65).  

When all the isolates are considered, the isolates Brevundimonas diminuta (BI36), 

Tessaracoccus lubricantis (BI41), Dietzia natronolimnaea (BI51), Rhodococcus erythropois 

(BI49) and Azonexus hydrophilus (BI70) all had pH ranges between pH 6.0 and pH 10 with 

optimum growth of pH between pH 7.0 and pH 9.0 (Figure 3.65 A). Some isolates were able to 

survive at pH values up to pH 12.0. These strains include Alishewanella aestuarii HH-ZS strain 

(BI 28) which had a growth range between pH 7.0 and pH 11 with an optimum of pH 9.0 and 

Macellibacteroides fermentans HH-ZS strain (BI 40) which had a growth range between pH 

5.0 and 10 and an optimum pH between pH 7-8 (Figure 3.65 B). The other group of alkaliphiles 

presented below (Figure 3.65 C), include Bacillus cohnii (BI 27) with an optimum pH 9 and a 

growth range of pH 7-11, Dietzia natronolimnaea (BI 45) with a wide pH range for growth of 

pH 7.0-11 and an optimum of pH 9.0, the other strains (Bacillus toyonensis (BI5), Alcaligenes 

aquatilis (BI34), Shewanella putrefaciensis (BI60) and Shewanella putrefaciensis (BI53) and 

Citrobacter gillenii (BI54)) all had pH ranges between pH 6.0-9.5 and optimum pH 8.0. 
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        C) 

 

Figure 3. 65: pH profiles curves of Alkaliphiles and alkali tolerant bacterial isolates 

The sum of growth curves illustrating the pH ranges for bacterial growth. Brevundimonas diminuta (BI 

36), Tessaracoccus lubricantis (BI 41), Dietzia natronolimnaea (BI 51), Rhodococcus erythropois (BI 

49), Azonexus hydrophilus (BI 70) Alishewanella aestuarii HH-ZS strain (BI 28) Macellibacteroides 

fermentans HH-ZS (BI 40) Bacillus cohnii (BI 27) Dietzia natronolimnaea (BI 45) Bacillus toyonensis 

(BI 5), Alcaligenes aquatilis (BI 34), Shewanella putrefaciensis (BI 60) and Shewanella putrefaciensis 

(BI 53) and Citrobacter gillenii (BI 54) 

 

 Discussion  

The pH profiles of these isolates are in agreement with related strains provided by previous 

studies. For instance, bacterial isolate Brevundimonas diminuta (BI36), had pH range between 

pH 6.0 and pH 10 (Figure 3.65 A and Appendix-5), the related strain of this isolated strain was 

able to release an extracellular metalloproteases that had an optimum pH for proteolytic activity 

ranging from 7.0 to 11.0 (Chaia et al., 2000). Tessaracoccus lubricantis (BI41), had a pH range 

between pH 6.0 and pH 9.5, this result is similar with data provided in the previous studies for 

T. bendigoensis Ben 106T (Maszenan, Seviour, Patel, Schumann, & Rees, 1999) and for T. 

lubricantis  KSS-17SeT (Kämpfer, Lodders, Warfolomeow, & Busse, 2009), however a higher 

pH range was demonstrated by T. flavescens SST-39T from pH 6.1 to pH 12.1 (D. W. Lee & 

Lee, 2008).  
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Dietzia natronolimnaea (BI 51), had a pH range from pH 7.0 to pH 11.0, optimum at pH 9.0, 

which is a wider pH range than that reported for most other Dietzia sp. For instance, Dietzia 

natronolimnaea JQ-AN is able to degrade aniline in an alkaline environment at optimum pH 

8.0 (Jin et al., 2012).  

Rhodococcus erythropois (BI49) had a pH range from pH 6.0 to pH 10 and an optimum ranging 

from pH 7.0 to pH 8.0. In a previous study,  Rhodococcus erythropolis strain Y2 isolated from 

soil contaminated with haloalkanes compounds had a pH optima ranging from pH 9.2-9.5 

(Sallis, Armfield, Bull, & Hardman, 1990). Bacillus cohnii (BI 27), had a pH range from pH 

7.0 to pH 11.5 and an optimum from 9.0 to pH 10.0.  

 Biochemical characterization of alkaliphilic isolates  

There were significant differences in substrate utilisation when the isolates were compared 

using the API20A (Table 3.5) and Biolog systems (Tables 3.6 and 3.7). When compared on 

their carbohydrate utilisation Macellibacteroides fermentans (BI40), Tessaracoccus lubricantis 

(BI41), Bacilli toyonensis (BI5), Citrobacter gillenii (BI54), Clostridium celerecrescens (BI82) 

and Clostridium sartagaforme (BI89) were capable of utilizing almost all substrates, while the 

following strains; Alishewanella aestuarii (BI28), Ensifer adhaerens (BI35), Brevundimonas 

diminuta (BI36), Dietzia natronolimnaea (BI45), Rhodococcus erythropois (BI49), Dietzia 

natronolimnaea (BI51), Azonexus hydrophilus (BI70) were unable to utilize any of the 

carbohydrates provided in the system.  

Although all these organisms were isolated on media fed with carbohydrate derived carbon 

sources (ISA and CDP), there were numerous strains with a limited ability to utilize 

carbohydrates. This suggests that ISA degradation is not a marker for carbohydrate utilisation, 

presumably due to the structural differences between ISA and sugars such as glucose.   
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Table 3. 5: Biochemical identification of bacterial isolates in anaerobic condition 

The biochemical tests indicated that not all isolates were capable of utilizing all the substrates provided by the API 20A system, however, a smaller number of 

strains were capable of utilizing almost all the substrates.  Macellibacteroides fermentans (BI40), Tessaracoccus lubricantis (BI41), Bacilli toyonensis (BI5), 

Citrobacter gillenii (BI54), Clostridium sartagaforme (BI89), Aeromonas samonicida (BI55). Alishewanella aestuarii (BI28), Ensifer adhaerens (BI35), 

Brevundimonas diminuta (BI36), Dietzia sp. (BI 45, 51, 59), Rhodococcus erythropois (BI49), Shewanella putrefaciensis (BI53), Azonexus hydrophilus (BI70), 

Clostridium tertium (BI 85), Terrisporobacter mayombei (BI 91), Romboutsia sedimentorum (BI 93) and Clostridium celerecrescens (BI82).  
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Table 3. 6: Biolog of PM1 microplate of carbon sources for Alkaliphiles isolates  
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Table 3. 7: Biolog of PM2 microplate of carbon sources for Alkaliphiles isolates 
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 Heavy metal and sodium chloride tolerance 

The isolates demonstrated a varied ability to tolerate heavy metals and sodium chloride (Table 

3.8). An example data set for heavy metal tolerance is provided in Figure 3.66 and the other graphs 

in appendix-5. Some bacteria can tolerant high concentration of NaCl up to 20%. For example, 

Halothemothrix orenii, is a Gram-negative, halophilic, thermophilic, strictly anaerobic bacterium 

isolated from a saline lake sediment in Tunisia. This strain showed growth at up to 20% NaCl, 

with an optimum between 5-10% at a pH up to pH 8.2 (Cayol et al., 1994). Highly halotolerant 

Haloincola saccharolytica showed growth at a NaCl concentration up to 30%, with an optimum 

at 10% at pH 8.0 (Zhilina et al., 1992). The highest tolerance for NaCl (%) in this study was 

recorded by Clostridium tertium (BI 85), at MIC 13.7% and Macellibacteroides fermentans 

(BI40) at MIC 13%. In a previous study, strain LIND7HT of the Macellibacteroides fermentans 

showed a growth in the presence of up to 2 % NaCl (Jabari et al., 2012).  

In respect of heavy metals, the highest tolerance was showed by Brevundimonas diminuta (BI36) 

with lead (MIC 30 mM) and Zinc (MIC 12 mM) and by Aeromonas samonicida (BI55), 

Rhodococcus erythropois (BI49) and Clostridium tertium (BI 85) with Lead (MIC >5.0 mM), 

followed by Zinc, (MIC >5.0 mM). In addition, Clostridium tertium (BI 85) showed a tolerance 

to all heavy metals (Table 3.15).    

Table 3. 8:  Alkaliphiles heavy metals and NaCl tolerance for the selected isolates  

Alishewanella aestuarii (BI28), Brevundimonas diminuta (BI36), Macellibacteroides fermentans (BI40), 

T. lubricantis (BI41), R. erythropois (BI49), D. natronolimnaea (BI51), Aeromonas samonicida (BI55), 

Azonexus hydrophilus (BI70), CL. tertium (BI 85). 

 
Heavy metals tolerance MIC (mM) and NaCl tolerance (%)  

Heavy metal  16SrRNA  identified bacteria isolates 

BI 28 BI36 BI40 BI41 BI49 BI51 BI 55 BI70 BI85 

NiCl2 0.86 0.44 2.10 0.01 2.0 0.42 2.4 1.0 2.5 

CdCl2 NG 0.95 1.85 5.1 NG* 0.2 0.4 0.25 (>5.0)* 

CoCl2 0.92 1.93 0.57 2.3 2.0 0.47 2.8 1.5 5.0 

PbCl2 3.8 30 1.06 2.4 (>5.0)* 2.5 (>5.0)* 0.25 (>5.0)* 

ZnCl2 1.2 12.0 3.39 8.2 (>5.0)* 1.09 3.0 0.5 (>5.0)* 

CuCl2 2.8 3.63 2.25 1.87 6.0 4.9 4.0 NG* 5.0 

Sodium chloride tolerant %  

NaCl % 4.7 5.6 13 5.4 4.6 11 3.7 8 13.5 
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A) An example of a growth curve under a different heavy metal concentration 

 

B) Inhibition profile 

 

Figure 3. 66: An example of the heavy metal tolerant growth curve and inhibition profile  

The inhibition profile of Nickel chloride against Ensifer adhaerens (BI35) (A): (■), observed FA; (▬), 

fitted Gompertz function (FGF) (B). 

 

 Discussion  

The response of microorganisms to heavy metals depends on many factors such as the natural  

habitat of the organism, the type of metal, the concentration and bioavailability of metals and the 

detoxification mechanisms available to the organism (Coblenz & Wolf, 1994; De Rore, Top, 

Houwen, Mergeay, & Verstraete, 1994; Farrow et al., 1995; Hashemi, Leppard, & Kushnert, 

1994). However, the strains isolated in this study showed higher resistance to heavy metals when 

compared to previous published studies performed on 25 isolates for Cu, Cr (MIC from 0.02 to 

1.5 mM), Co (MIC from 0.05 to 0.8 mM) and Cd, Zn (from 0.2 to 1.5) (Hassen, Saidi, Cherif, & 
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Boudabous, 1998). In previous study, Alishewanella sp. WH16-1 strain showed the MICs for Pb, 

Cd, and Cu were 10, 0.08 and 1.0 mM, respectively (Xia et al., 2016).        

 Production of extracellular polymeric substances and biofilm 

formation  

Eleven of the bacterial isolates were clear EPS producers: Brevundimonas diminuta (BI36), 

Tessaracoccus lubricantis (BI41), Dietzia natronolimnaea (BI45, 51), Enterococcus gallinarum 

(BI46), Rhodococcus erythropois (BI49), Aeromonas samonicida (BI55), Shewanella 

putrefaciensis (BI53, 60), Citrobacter gillenii (BI54 and BI62), this finding are consistent with 

the fact that a biofilm and EPS are formed by bacteria as a protective barrier against extreme 

conditions such as high pH. The EPS was detected by a fluorescence microscope, using 0.1% 

fluorescent brighter 28, it is a blue haze surrounded bacterial cells (Figure 3.67). Further studies 

would be needed to identify and characterise the EPS produced.  

 

Figure 3. 67: Detection of EPS of bacterial isolates 

Examples of EPS producer bacteria; Dietzia natronolimnaea (BI 51) (A) and Brevundimonas diminuta 

(BI36) (B); the EPS (blue haze) and bacterial cell (white). 
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Figure 3. 68: Biofilm formation of some Alkaliphiles sp. 

The graphs indicate that a biofilm was formed by Aeromonas sp. (BI55) strong positive (SP), and moderate 

positive (MP) by Tessaracoccus sp. (BI41), while negative (N) results were detected by other strains; 

Ensifer adhaerens (BI35), Rhodococcus erythropois (BI49), Dietzia natronolimnaea (BI45), 

Microbacterium kitamience (BI38 and BI39), the results were compared with Pseudomonas sp as a positive 

control (PC). 

 

The results of the current study show the ability of most of these isolates to form of EPS and 

biofilm formation. After 24 hr incubation clear biofilms were formed by Aeromonas sp. (BI55) 

(SP) and Tessaracoccus sp. and moderate biofilm (MP) was formed by Tessaracoccus sp. (BI41), 

whereas more time (48 hours) was taken by some strains to form the moderate biofilms by 

Alishewanella aestuarii (BI28) and Brevundimonas diminuta (BI36), the same time (48 hours) 

was taken by Dietzia natronolimnaea (BI59) to form a strong biofilm (SP) (Figures 3.68 and 

3.69). No biofilm detected by the Ensifer adhaerens (BI35), Rhodococcus erythropois (BI49), 

Dietzia natronolimnaea (BI45), Microbacterium kitamience (BI38 and BI39). 
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Figure 3. 69: Biofilm detection after 48 hours incubation 

The biofilm was detected after 48 hours incubation for some Alkaliphiles strains, moderate positive;  

Alishewanella aestuarii (BI28), Brevundimonas diminuta (BI36); strong positive, Dietzia natronolimnaea 

(BI59), the density of the biofilm increased when the incubation period increased for Aeromonas sp (BI55 

and BI56). No biofilm was formed by Ensifer adhaerens (BI35), Rhodococcus erythropois (BI49), Dietzia 

natronolimnaea (BI45), Microbacterium kitamience (BI38 and BI39).  GAA=Glacial acetic acid, N= 

Negative, W= Weak positive, MP= Moderate positive, SP=Strong positive, NC= Negative control, PC= 

Positive control. 

 

 Discussion  

The presence of biofilm producing bacteria in a community may play a crucial role in metabolic 

cooperation between species by offering and facilitating interspecies substrate exchange (cross-

feeding) and the removal of metabolic wastes (syntrophic relationships) (Davey & O'toole, 2000). 

Some of these isolates have been previously detected in biofilms associated with this research, 

where these bacteria have been shown to grow in flocs composed of bacteria embedded in EPS. 

These floc based communities were dominated by Alishewanella and Dietzia species, in addition 

this community was capable to metabolize all form of ISA, with > 60% of the carbon was used 

for EPS formation (Charles et al., 2015). These results suggested that EPS and biofilm production 

have a main role in the protection of microbial communities from hyperalkaline environment (C. 

Charles et al., 2017) and provide suitable condition that support bacterial growth. In another study, 

the same author concluded that pH 13.0 suppressed biofilm formation on a range surfaces 

(graphite, stainless steel, and Nirex reference vault backfill (NRVB)) with biofilm formation only 

possible when the ambient pH was below pH 13.0 (C. J. Charles et al., 2017). 
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 Key findings 

 The bacterial isolates recovered from the CDP fed microcosms had a varied ability to 

utilize different carbohydrates. 

 A few strains were able to metabolise a wide range of carbohydrates including: 

Macellibacteroides fermentans (BI40), Tessaracoccus lubricantis (BI41), Bacillus 

toyonensis (BI5), Citrobacter gillenii (BI54), Aeromonas salmonicida (BI55); spore-

forming bacteria, Clostridium sartagaforme (BI89) and Clostridium celerecrescens 

(BI82).  

 MIC values for heavy metals and NaCl varied considerable with Clostridium tertium (BI 

85) demonstrating a tolerance to all heavy metals and NaCl.  

 EPS was produced by most of isolates and strong biofilm formation was detected by 

Aeromonas salmonicida (BI55 and BI56) and Dietzia natronolimnaea (BI59).    
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 Characterization of Spore forming bacterial strains isolated from 

alkaline microcosms 

Bacterial spores allow bacteria to survive times of extreme stress by preserving the cell's genetic 

material. In a GDF these stresses are represented by high temperature, irradiation, desiccation, 

and high pH. Therefore, it is interesting to investigate alkaliphilic spore forming bacteria with the 

ability to degrade ISA. A number of strictly anaerobic spore forming bacteria were isolated from 

(soil/CDP/MM) microcosm reactors operated at pH 9.0 and pH 10.0 (Table 3.9).  

These bacteria were recovered on FAA at pH 9.5 and identified via 16s rRNA gene sequencing 

as: Cl. propionicum (BI 80), Cl. tertium (BI 85) (Figure 3.70 A) with oval terminal and bulging 

spores (Figure 3.70 B), Cl. celerecrescens (BI82) with spherical terminal and bulging spores 

(Figure 3.70 G and H), Cl. sartagoforme (BI 89),  Terrisporobacter petrolearius (BI 86) with oval 

sub terminal and non-bulging spores (Figure 3.70 C and D) and Romboutsia sedimentorum ZS 

strain (BI93). These bacterial strains showed an ability to grow on CDPs/ISA/MM agar plates at 

pH 9.0, where the ISA and CDPs acted as the sole carbon source. 

 Microscopic characterisation of spore-forming alkaliphilic isolates  

Clostridia species have differentiated by their spore morphology; i.e. size, shape and their location 

inside the vegetative cells (endospore). Although Clostridia species are typically Gram positive 

and strictly anaerobic, some Clostridia species are found to be aero tolerant and appear Gram-

negative when stained (Wells & Wilkins, 1996). The Gram stains for these bacteria are illustrated 

below (Figure 3.70). 
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Figure 3. 70: Gram-stain for Clostridia sp. (endospore forming bacteria) 

Oval terminal and bulging (BI 85) (B), Oval sub terminal and non bulging (BI 86) (D), spherical terminal 

and bulging (BI 80 and BI 82) (G and I) and include free spores. 
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 Phylogenetic analysis of the spore forming bacterial isolates  

The 16s rRNA identification and phylogenetic analysis of the spore forming strains are outlined 

below (Figure 3.71). The closest related strains are identified in Table 3.9. 
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 Clostridium propionicum strain JCM 1430

 Clostridium propionicum ZS-strain (BI 80) 

 Clostridium neopropionicum strain DSM 3847

 Clostridium lactatifermentans strain G17

 Abyssivirga alkaniphila strain L81

 Clostridium populeti strain 743A

 S001020552 Escherichia coli J01695

75

100

85

100

0.020

 Terrisporobacter petrolearius strain LAM0A37

 Terrisporobacter petrolearius ZS-strain (BI86)

 Terrisporobacter mayombei strain SFC-5

 Terrisporobacter glycolicus strain DSM 1288

 Asaccharospora irregularis strain DSM 2635

 Intestinibacter bartlettii strain WAL 16138

 Clostridium sordellii strain JCM 3814

 Paraclostridium benzoelyticum strain JC272

 Clostridium bifermentans strain JCM 1386

 Escherichia coli J01695

99
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0.020

 Romboutsia timonensis strain DR1

 Romboutsia ilealis strain CRIB

 Romboutsia lituseburensis strain ATCC 25759

 Clostridium dakarense strain FF1

 Paraclostridium benzoelyticum strain JC272

 Clostridium bifermentans strain JCM 1386

 Romboutsia sedimentorum strain LAM201

 Romboutsia sedimentorum ZS strain (BI93)

 S001020552 Escherichia coli J01695

100

100

99
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65

48

0.020
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D) 

 

 

 
 

 

E) 

 
 

 

F)  

 

Figure 3. 71: Phylogenetic consensus tree for spore forming bacterial isolates 

The evolutionary history was inferred using the Neighbour-Joining method (Saitou & Nei, 1987). The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 

replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances were computed 

using the Maximum Composite Likelihood method (Tamura, Nei, & Kumar, 2004) and are in the units of 

the number of base substitutions per site.  
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Table 3. 9: Relationships of taxa from the gene bank to the Alkaliphiles of spore forming 

bacteria isolated from alkaline microcosms   

 

 

 Biochemical characteristics and pH profiles of the bacterial isolates 

Clostridum celerecrescens (BI82), Clostridium tertium (BI 85), Cl. sartagoforme (BI 89), and 

Terrisporobacter petrolearius (BI 86) were all negative for catalase, oxidase, and urease (Table 

3.10). All strains were positive for D-Glucose but had variable performance against the other 

carbohydrates with Cl. sartagoforme (BI 89) being able to utilize all the substrates provided. 

Whereas Terrisporobacter petrolearius showed moderate positives (+/-) for almost all the 

substrates but it was negative for D-melezitose, D-raffinose, L-rhamnose. Clostridium tertium  

was positive for D-mannitol, D-maltose, D-cellobiose, D-mannose and salicin and moderate 

positive for D-lactose and D-raffinose. 

Although, some of these spore-forming bacteria were able to tolerate and showed growth at pH 

values up to pH 12 including Cl. propionicum (BI 80), Terrisporobacter petrolearius (BI 86) and 

Cl. sartagoforme (BI 89). The pH profile of these strains prove of these bacterial isolates are 

moderate alkaliphiles. The pH range was variable for all isolates ranging from pH 5.0 and pH 6.0 

to pH 10.0 and up to pH 12.0 for some strains. In general, the optimum pHs are from pH 7.0 to 

pH 9.0 (Figure 3.72). Some strains were able to adapt to high pH values as indicated by the lag 

phases that increased as the pH increased, these strains were Cl. celerecrescens (BI82), Cl. tertium 

(BI 85), and Cl. sartagoforme (BI 89). The strain Terrisporobacter petrolearius (BI 86), showed 

fluctuating growth that may be due to bacterial cells adapting to high pH before it begins to grow.  
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Table 3. 10: Biochemical characteristics of the bacterial isolates by API20A 

 

 BI 82 BI 85 BI 89 BI 86 

Oxidase - - - - 

Catalase - - - - 

Indole + - - - 

Urease - - - - 

Protease (gelatine) - - - - 

Β-glucosidase (Esculin) +/- + + +/- 

H2S +/- - - +/- 

Acidification of Carbohydrates 

D-Glucose + + + + 

D-Mannitol + + + +/- 

D-Lactose + +/- + +/- 

D-Sucrose + - + +/- 

D-Maltose + + + +/- 

Salicin + + + +/- 

D-xylose + - + +/- 

L-arabinose + - + +/- 

Glycerol +/- - + +/- 

D-cellobiose + + + +/- 

D-mannose + + + +/- 

D-melezitose +/- - + - 

D-raffinose + +/- + - 

D-sorbitol +/- - + + 

L-rhamnose + - + - 

D-trehalose + - + +/- 

 

Cl. celerecrescens (BI82) 

Cl. tertium (BI 85) 

Cl. sartagoforme (BI 89) 

Terrisporobacter 

petrolearius (BI 86), 

Positive + 

Negative - 

Moderate positive +/- 
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Figure 3. 72: pH profiles of the spore forming bacterial isolates  

In this study Cl. sartagoforme (BI89) was able to utilize all available carbohydrates (Table 3.5) 

including glucose, xylose and cellobiose. Recently Zhang et al. (2015), reported that bio-hydrogen 

was produced from the direct degradation of cellulosic biomass by Cl. sartagoforme FZ11, which 

was able to degrade glucose, xylose, hemicellulose, xylan and cellobiose (Y. Wang et al., 2015). 

The results indicated that this strain was able to multiply in CDP fed microcosms it was unable to 

degrade both forms of ISA when it inoculated as a pure culture in a broth of mineral media either 

in the presence of CDPs or by adding Ca(ISA)2 at pH 8.0 and pH 9.0. This strain had an optimum 

pH for growth between pH 7.0 and pH 9.0 (Figure 3.72 (BI89)), with a pH range from pH 5.0 to 

pH 12.0. In this case, the lag phase took more than 12 hours at pH 5.0 as well as at pH 10.0, 11.0 

and 12.0). The results suggest that this strain has an ability to adapt to both low and high pH 

conditions in the environment. 
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Clostridium tertium ZS (BI85) was isolated from microcosms at both pH 9.0 and pH 10.0. This 

strain was able to grow on agar supplemented with CDPs or ISA as a sole of carbon source at pH 

9.0. This strain was positive for D-mannitol, D-maltose, D-cellobiose, D-mannose and salicin and 

moderate positive for D-lactose and D-raffinose (Table 3.10). The optimum pH was between pH 

7.0 and pH 9.0, with a pH range from pH 5.5-11 (Figure 3.72 (BI85)). However, this strain was 

unable to degrade ISA in both forms (- and β-) in mineral media at pH 8.0 and pH 9.0. In previous 

studies, this species is an aerotolerant strain able to ferment a wide range of carbohydrates 

(Kataoka & Tokiwa, 1998). Cl. tertium KT-5A strain, which was isolated from lotus soil, paddy 

soil and pond sediment, their pH range for growth 5-8, it was reported as an active mannanase-

producing anaerobic bacterium (Kataoka & Tokiwa, 1998). Cl. tertium (BI85) showed a 98% 

match to the Cl. tertium Type strain JCM 6289, together with their ability for growth at high pH, 

this strain was selected for whole genome sequencing analysis for a first time.  

Clostridum celerecrescens (BI82) was isolated from CDP microcosms at pH 9.0 and pH 10 on 

FAA at pH 9.5 and was positive for a wide range of sugars (Table 3.10). The optimum pH for 

growth was between pH 6.0 and pH 9.0 (Figure 3.72 (BI82)), with a pH range between pH 5.0 

and pH 10, however it showed a growth at pH 11 and pH 12 after a long lag phase. In a previous 

study, Cl. celerecrescens K-2 was isolated from waste waters had a similar sugar utilissaiton 

profile and had a high efficiency for the production of caproate and butyrate (Hu, Du, & Xu, 

2015).  

Terrisporobacter petrolearius (BI 86) was isolated from microcosms at pH 9.0 and pH 10. This 

strain was positive for D-glucose, and D-sorbitol and showed a moderate positive for a range of 

other substrates (Table 3.10). The genus Terrisporobacter was proposed by Gerritsen et al. 

(2014), this genus belongs to the family Peptostreptococcaceae of the phylum Firmicutes 

(Gerritsen et al., 2014). The closest match to BI 86 was the type strain T. petrolearius LAM0A37T 

which was isolated from a petroleum reservoir in China. The optimum pH for this strain was (7.0-

7.5) (Figure 3.73 (BI86)), with a pH range for growth 5.5–9.5, their optimum growth occurred 

without NaCl, but it tolerated NaCl up to 3.0%, it was able to utilize D-glucose and a range of 

sugars. The main products of glucose fermentation was acetate and CO2 (Deng et al., 2015).  

Romboutsia sedimentorum ZS (BI93) was isolated from CDPs driven microcosms at pH 9.5 and 

pH 10.5. In a previous study, Romboutsia gen. was proposed by Gerritsen et al. (2014), where the 

first isolate was Romboutsia ilealis CRIBT which originated from the gastrointestinal tract of a 

rat. The CRIBT strain was able to utilize a very limited number of organic compounds, it was 
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positive for L-fucose, D-glucose, raffinose, and sucrose, it showed a moderate positive for D-

arabinose and D-galactose (Gerritsen et al., 2014). Romboutsia sedimentorum LAM201T was 

isolated from sediment samples collected from an alkaline-saline lake of Daqing oilfield, China, 

the strain was able to utilize glucose, maltose, fructose, sorbitol and trehalose as the sole carbon 

source. The main products of glucose fermentation were ethanol, acetic acid, iso-valeric acid and 

iso-butanoic acid. The pH range for growth was pH 6.0–9.0 (optimum: pH 7.0) (Y. Wang et al., 

2015).  

Clostridium propionicum (BI 80) was isolated from a microcosm at pH 9.0. This strain had a pH 

range for growth between pH 4.0 and pH 12.0, the optimum pH for growth was between pH 7.0 

and pH 9.0 (Figure 3.72 (BI80)). A previous study found that Cl. propionicum was able to utilize 

a narrow pH range (pH 6.6 to pH 8.35). The strain was able to utilized a limited number of organic 

compounds for growth including acrylate and lactate by fermentation producing acetate and 

propionate. The strain was able to grow in the presence of 4% NaCl (Hetzel et al., 2003; Janssen, 

1991). Due to the strains wide pH range (pH 4.0 to pH 12.0) its ability to form biofilms was 

investigated to determine if biofilm formation was the reason the strain’s ability to resit such a 

wide pH range.  

Biofilm formation is known to be used by spore-forming bacteria to protect against extremes of 

pH. Work by Dumitrache et al. (2013) found that the obligately anaerobic cellulolytic strain 

Clostridium thermocellum 27405 was capable of the complete metabolism of cellulose through 

biofilm formation. In addition, terminal endospores appeared throughout all stages of biofilm 

growth. The results suggest that the biofilm formation depends on the substrate availability for 

cell attachment that effects the efficiency of cellulose utilization (Dumitrache, Wolfaardt, Allen, 

Liss, & Lynd, 2013). In this study, a strong biofilm was detected by Clostridium propionicum ZS-

strain (BI 80) at an optimum pH 8.0 followed by pH 7.0. Moderate biofilm production was 

detected at pH 4.0, 5.0, 6.0 and at pH 9.0 (Figure 3.73). A weak biofilm was formed between pH 

10.0 and pH 12.0. This gives an indicator of the ability of this strain to tolerate acidic condition 

and its ability to grow at a high pH through a biofilm formation.  
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Figure 3. 73: Biofilm formation by Clostridium propionicum (BI 80)  

N= Negative, W= Weak positive, MP= Moderate positive, SP=Strong positive, NC= Negative control 

 Key findings 

 Strictly anaerobic spore forming bacteria were isolated from a wide range of microcosms 

operated at pH 9.0 and pH 10.0. These strains showed an ability to grow on 

CDPs/ISA/MM agar plates at pH 9.0.  

 The pH range for these isolates was from pH 5.0 and 6.0 to pH 10.0 and up to pH 12.0 for 

some strains. In general, the optimum pHs were from pH 7.0 to pH 9.0.  

 Cl. celerecrescens (BI82), Cl. tertium (BI 85), Cl. sartagoforme (BI 89), and 

Terrisporobacter petrolearius (BI 86) were able to utilize D-Glucose, D-mannitol, D-

maltose, D-cellobiose, D-mannose, salicin, D-lactose and D-raffinose.  

 However, these bacterial strains; Cl. sartagoforme ZS strain (BI89), Cl. tertium ZS (BI85), 

Cl. celerecrescens (BI82), Terrisporobacter petrolearius (BI 86), Romboutsia 

sedimentorum ZS strain (BI93) and Cl. propionicum (BI 80) were unable to degrade ISA 

either from the CDPs or in the form of Ca(ISA)2 as a sole carbon source in liquid culture 

at either pH 8.0 and pH 9.0.  

 In the case of Cl. propionicum (BI 80) spore formation (sporulation) was detected after 

72-hour incubation while biofilms were detected after 48-hour incubation. The results 

suggest that the formation of a biofilm is the first defence used by spore-forming bacteria 

againt extreme pH levels.  
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 Characterisation and whole genome sequencing (WGS) of the selected 

Alkaliphilic strains 

A number of strains were selected for further investigation either based on the rarity of the isolate 

or the presence of specific properties such as ISA degradation. In some cases, the WGS was 

carried out and annotated via RAST (Table 3.11). Key features and associated functions are 

summarised below.  

Table 3. 11: Subsystem features counts of isolated Alkaliphiles strains   

Macellibacteroides fermentans (BI40), Alishewanella aestuarii (BI28), Azonexus hydrophilus 

(BI70), Brevundimonas diminuta (BI36); Dietzia natronolimnaea (BI51), Rhodococcus 

erythropois (BI49), Tessaracoccus lubricantis (BI41) and Clostridium tertium (BI 85). The 

highlighted numbers in the table showing the highest numbers of a group of genes 
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 Characterization of Aeromonas sp. ZS strain (BI 55) 

Aeromonas sp. have been isolated from a variety of aquatic environments worldwide including 

water and sewage with a wide temperature ranging from 0°C to 45°C and optimum of 22-32°C 

(Didugu et al., 2015). Under anaerobic conditions this genus can utilise either fermentative or 

anaerobic respiration for the generation of energy. Aeromonas sp. are able to survive extreme 

conditions such as high pH through a biofilm formation (Kirov et al., 2004). 

 Phylogenetic analysis of Aeromonas sp. ZS strain (BI 55) 

This strain was identified through 16S rRNA gene sequencing and BLASTN analysis as A. 

salmonicida subsp. Salmonicida (Figure 3.74, Table 3.12) with 99% similarity to A. salmonicida 

type strain ATCC 33658. The high interspecies sequence similarity found in the 16S rRNA gene 

sequences (96.7% to 100%) of the Aeromonas genus (A. J. Martínez-Murcia et al., 2007; Vega-

Sánchez et al., 2014) makes it difficult to distinguish between closely related Aeromonas sp. 

The Aeromonadaceae were the third dominant family of the bacterial community present in the 

CDPs fed fermentative microcosm comprising 24.5% at pH 7 which dropped to less than 9% at 

pH 8.0 and pH 9.0 (Figure 3.57 B and C). A. salmonicida species; A. salmonicida subspecies  

 

 

Figure 3. 74: Aeromonas sp. ZS strain (BI 55), evolutionary relationships of taxa  

 Aeromonas rivipollensis strain P2G1
 Aeromonas salmonicida subsp. pectinolytica strain 34mel

 Aeromonas molluscorum strain LMG 22214
 Aeromonas salmonicida strain CECT 894
 Aeromonas tecta strain CECT 7082
 Aeromonas sobria strain JCM 2139

 Aeromonas salmonicida strain NCIMB 1102
 Aeromonas rivuli strain DSM 22539
 Aeromonas salmonicida strain ATCC 33658
 Aeromonas cavernicola strain MDC 2508
 Aeromonas eucrenophila strain NCIMB 74

 Aeromonas molluscorum strain 848
 Aeromonas encheleia strain CECT4342
 Aeromonas veronii strain JCM 7375
 Aeromonas bivalvium strain 868E
 Aeromonas encheleia strain A 1881

 Aeromonas salmonicida ZS-strain (BI55)
 Aeromonas finlandiensis strain 4287D

 Aeromonas species 

 Aeromonas sanarellii strain A2-67
 Escherichia coli J01695

44

77

80

51

0.0100
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Table 3. 12: The closest strains to the A. salamonicida ZS-strain (BI55).  
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 Morphological and metabolic characterisation of Aeromonas sp. ZS 

(BI 55) 

Aeromonas sp. ZS (BI 55) was isolated from CDP fed alkaline microcosms operated at pH 8.5-

11.0. When grown on FAA at 25ºC the strain produced colonies that were smooth in texture with 

a regular edge and a convex profile. Microscopic observation revealed a short, non-spore forming 

Gram-negative rod with rounded edges (coccobacilli) (Figure 3.75). This strain was capable of 

degrading Ca(ISA)2 and both α- and β-ISA (CDP) in a broth of minimal medium at pH 8.0 and 

pH 9.0 section (3.3.).     

  

Figure 3. 75: Aeromonas sp. ZS strain (BI 55), Gram negative coccobacilli. 

 

Aeromonas salmonicida ZS (BI 55) is a mesophilic strain, with an optimum temperature of 30ºC 

and no growth at 40ºC. The pH range was from pH 6.0-10.0 with optimum growth at pH 8.0 

(Figure 3.76).  When pH and temperature were combined temperature was the dominant factor 

between pH 6.0 and pH 9.0 (Figure 3.77). However, growth at the optimum temperature allowed 

the strain to sustain significant growth at pH 10.0, which was not seen at any other temperature 

(Figure 3.77). This strain was positive for; oxidase, catalase, urease, H2S and negative for; 

protease (gelatine), β-glucosidase (esculin) and indole metabolism. The strain was also able to 

utilize a wide range of carbohydrates provided by the API system: (Table 3.5). In addition, the 

strain was able to utilising 90% of the substrates provided by the Biolog PM1 plate (Table 3.6) 

and 70% of the substrates in the Biolog PM2 (Table 3.7) microplate.  
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A) 

 
 

B) 

 

Figure 3. 76: Aeromonas sp. ZS strain (BI 55), pH profile curve  

The graphs showing a growth curves of this strain at pH 6, 7, 8, 9 and 10 (A); with an optimum pH is pH 

8 (B) at an optimum temperature is 30ºC.  
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Figure 3. 77: Aeromonas sp.  (BI 55), pH profile at different temperatures 

The strain also showed an ability to tolerate heavy metals as demonstrated through the minimal 

inhibitory concentration (MIC) for: Nickle (2.4 mM), Cadmium (0.4 mM), Cobalt (2.8 mM), Zinc 

(3.0 mM), Copper (4.0 mM) and Lead (˃ 5.0 mM) (Table 3.8).  When investigated for its response 

to NaCl the MIC was 0.633 M (Figure 3.78).  In addition, a strong capacity for biofilm formation 

was demonstrated by Aeromonas sp. ZS strain (BI 55) (Figure 3.68 and 3.69). Biofilm formation 

is an indicator of the strain’s ability to tolerate extreme conditions such as those experienced in 

an alkaline environment (Kirov et al., 2004). 

In view of the extensive research that has been carried out on Aeromonas sp. a WGS for 

Aeromonas sp. ZS strain (BI 55) was not performed.  
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Figure 3. 78: Aeromonas sp. (BI 55) NaCl tolerance  

The graphs showing curves of a bacterial growth in the presence of NaCl up to 3% (A), the MIC of NaCl 

was calculated through fractional area at different concentration and plotted on the graph against a log 

(concentration) using Gompertz function to find the MIC that equal (0.633 M) 3.7% of NaCl. The MIC 

was detected through calculation of; (■), observed FA; (▬), fitted Gompertz function illustrated on a graph 

(B). 

 Key findings 

 Aeromonas salmonicida ZS-strain (BI55) was able to degrade ISA in the form of 

Ca(ISA)2. 

 The characteristics of Aeromonas salmonicida ZS-strain (BI55) were similar to previous 

studies which found that Aeromonas species can utilize a wide range of carbohydrates 

(Abbott et al., 2003), with more than 90% of Aeromonas species characterized as 

fermentative bacteria (Janda, 1985).   

 In addition, the isolated Aeromonas salmonicida ZS-strain (BI55) was able to form a 

strong biofilm which will provide some protection from extreme environmental conditions 

(Kirov et al., 2004).  

 Draft Whole Genome Sequence of the Cl. tertium ZS strain (BI85)  

The biochemical and physiological characterisation of Cl. tertium (BI85) has been outline in the 

sections above. Cl. tertium ZS strain (BI85) has a high percentage (20.5%) of genes for 

carbohydrate metabolism compared with the subsystem groups of the other isolates (Table 3.11). 

However, this strain was unable to degrade ISA either from CDPs or in the form of Ca(ISA)2 in 

liquid culture at pH 8.0 and at pH 9.0. This strain showed only 98% similarity to the closest strain 
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of a Cl. tertium Type strain JCM 6289. This observation along with the ability for growth at high 

pH resulted in this strain being selected for whole genome sequencing. In this case it is the first 

time a whole-genome sequence has produced for this species.  

RAST annotation (Figure 3.79) indicated the presence of a numerous of functional genes 

particularly for stress responses, metal resistance and carbohydrate degradation. The number of 

genes for dormancy and stress response (heat shock, cold shock, oxidase stress and detoxification) 

indicate the adaption of this bacterium to harsh environments.  

 

 

Figure 3. 79: Whole genome sequencing and Subsystems group distribution of Clostridium 

tertium ZS strain (BI85). 
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 Characterisation and WGS of Alishewanella sp. HH-ZS strain 

The genus Alishewanella assigned to the class Gammaproteobacteria by Fonnesbech Vogel et al. 

(2000). At present, several species belonging to the genus Alishewanella have been identified such 

as: Alishewanella fetalis strain CCUG 30811T, isolated from an autopsy of a human foetus in 

Sweden  (Vogel et al., 2000); Alishewanella aestuarii B11T, isolated from tidal flat sediments in 

Korea (Roh et al., 2009); Alishewanella tabrizica RCRI4T  isolated from Qurugöl Lake in north-

west Iran (Tarhriz, Nematzadeh, Vahed, Hejazi, & Hejazi, 2012); Alishewanella solinquinati 

KMK6(T), isolated from soil contaminated with textile dyes located in India (Kolekar, Pawar, et 

al., 2013); Alishewanella jeotgali MS1T, isolated from gajami sikhae, a traditional fermented food 

in Korea made from flatfish (M.-S. Kim et al., 2009); Alishewanella agri BL06T isolated from 

landfill soil in Pohang, Korea (M.-S. Kim, Jo, Roh, & Bae, 2010). Recently Alishewanella sp. 

have been found to be dominant members of a floc based bacterial communities of CDP fed 

microcosm inoculated with colonised cotton that recovered from Harpur Hill (Charles et al., 

2015).  

 Phylogenetic analysis of Alishewanella aestuarii HH-ZS strain (BI28)  

Analysis of the partial 16SrRNA sequence  placed Alishewanella aestuarii HH-ZS strain (BI28) 

(A. HH-ZS) is homology to Alishewanella aestuarii B11T (Roh et al., 2009) with a 99% similarity 

(Table 3.13 and Figure 3.80).  

Table 3. 13: Alishewanella sp. and related strains with the closest strains to the Alishewanella 

sp. HH-ZS strain (BI28).  

List of hits from EzBioCloud 16S database 

No Name Strain Accession 

Pairwise 

Similarity 

(%) 

Authors 

1 
Alishewanella 

aestuarii 

B11 ALAB01000035 100.0 Roh et al. 2009 

2 
Alishewanella 

jeotgali 

KCTC 

22429 

AHTH01000032 100.0 Kim et al. 2009 

3 Alishewanella agri BL06 AKKU01000023 98.3 Kim et al. 2010 

4 
Alishewanella fetalis CCUG 

30811 

AF144407 98.1 Fonnesbech Vogel et 

al. 2000 

5 
Rheinheimera 

aquatica 

GR5 GQ168584 97.2 Chen et al. 2011 

6 
Alishewanella 

tabrizica 

RCRI4 GQ505294 97.1 Tarhriz et al. 2012 

7 
Alishewanella 

solinquinati 

KMK6 EU574916 96.7 Kolekar et al. 2014 

8 
Rheinheimera 

longhuensis 

LH2-2 EU183319 96.7 Liu et al. 2012 
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Figure 3. 80: Phylogenetic consensus tree based on 16S rRNA gene sequences.  

The tree showing the position of strain Alishewanella sp. HH-ZS belongs in the genus Alishewanella sp. 

Phylogenetic analysis was performed by the neighbour-joining method with 1000 random replicates of the 

16SrRNA gene sequencing (Fasta). The tree was configured using the neighbour-joining in MEGA 7.0.  

Comparison of A.HH-ZS (BI28) with the Alishewanella sp. that dominated the floc based 

community formed in the CDP fed microcosm reported by Charles et al. (C. Charles et al., 2017) 

indicated that Alishewanella sp. from the community showed a 99% identity to the A.HH-ZS 

(BI28). A phylogenetic tree generated using the neighbour-joining methods in MEGA 7.0 

showing that the Alishewanella sp. (community) was closely related to A.HH-ZS (BI28) and three 

other strains BL06, B11 and MS1 with 99% sequence identity (Figure 3.81).     

 

Figure 3. 81: Phylogenetic consensus tree of the Alishewanella sp. community strain and 

Alishewanella sp. HH-ZS strain (BI28).  
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 Morphological and metabolic characterisation of Alishewanella sp. 

HH-ZS strain            

When grown on FAA, Alishewanella sp. HH-ZS formed colonies that had a regular edge, smooth 

surface, slightly raised profile, beige colouration which was darker at the centre of the colony 

(Figure 3.82 A).  

 

Figure 3. 82: morphological characterisation of the Alishewanella sp. HH-ZS 

Colonies were pale and darker at the centre on FAA (A), sticky texture after 7 days incubation in an 

anaerobic condition on FAA agar at pH 9.5 (B), Gram-negative rods (C), images by SEM, bacilli cells 

attached to each other (D, E, F and G).  

  

The colonies were ‘sticky’ (Figure 3.82 B) after 5 days incubation in an anaerobic workstation at 

25oC. Microscopic investigation revealed A. HH-ZS to be a Gram-negative, motile rod, arranged 

as single cells (Figure 3.82 C). The cells under SEM were bacilli attached to each other (Figure 

3.82 D, E, F and G), suggesting EPS production and biofilm formation.  This was confirmed when 

the strain was evaluated for its ability to form biofilms and it was shown to form a moderate 

biofilm in a 96 well plate test (Figure 3.83).  
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Compared with its closest relatives that have been characterised (Table 3.14), A.HH-ZS was 

broadly similar. The only exception being a higher maximum pH and the absence of protease as 

indicated by its inability to hydrolyse gelatine.  

Table 3. 14: Comparison of the Alishewanella sp. HH-ZS strain and its closest related strains  

The strains are: 1, A. jeotgali sp. MS1T (M.-S. Kim et al., 2009); 2, A. fetalis CCUG 30811T (Vogel 

et al., 2000); 3, A. aestuarii B11T (Roh et al., 2009). The physiological and biochemical 

characteristics results of A. HH-ZS strain is distinct from other strains. ND, No data available. 

 

Although, the Alishewanella aestuarii HH-ZS strain showed inability to metabolize almost all 

substrates provided by the API20A system (Table 3.13), the strain was able to utilize about 35.7% 

of the substrates of carbon sources provided by PM 1 Biolog microplate, and 30% of the substrates 

provided by PM2 Biolog microplate, the names of the substrates is shown in Tables, 3.6 and 3.7, 

and they are included in the discussion section.  

The cellular fatty acid profile of A. HH-ZS strain (BI28) (Table 3.15) were compared to two if its 

closest relatives A.aestuarii  B11T and A. fetalis CCUG 30811T strain, the dominant fatty acid in 

these two  strains was C18:1 ω7C (22.6% and 17.7% respectively) (Roh et al., 2009) which was 

also present in significant amounts in  Alishewanella sp. HH-ZS (BI28). However, in A. HH-ZS 
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(BI28) significant amounts of C17:1 ω7C was present and not detected in the comparative strains 

(Table 3.15). Generally, all the three strains had similar FA profiles. The major fatty acids of 

Alishewanella sp. HH-ZS strain were C17:1 ω7C (26.71%), C18:1 ω7C (17.95%), C17:0 (17.7%) 

and C18:0 (8.1%).  

Table 3. 15: Cellular fatty acids contents (%) of Alishewanella sp. HH-ZS strain   

Fatty acid amounting to more than 1.5% of the cellular A. sp. HH-ZS strain (this study) are 

illustrated. Tr, Trace (<1.5%); -, not detected. Results from the others two strains (B11T and 

CCUG 30811T) were obtained from Roh et al. (Roh et al., 2009).  

 

 

Alishewanella sp. were detected as the dominant species in the flocs of the microbial community 

in the CDPs fed microcosms of alkaline broth media up to pH 12.0. The same author concluded 

that floc formation in hyperalkaline conditions protects bacterial communities from alkaline pH 

value up to pH 13.0 (Charles et al., 2015; C. Charles et al., 2017). Evaluation of the biofilm 

forming potential of A. HH-ZS strain (BI28) indicated that under these conditions it was only a 

moderate biofilm former. This may indicate that it was other members of the floc communities 

reported by Charles et al. (2017) e.g. Dietzia sp. that were responsible to the biofilm formation 

reported.  
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Figure 3. 83: Alishewanella sp. HH-ZS (BI 28) strain and biofilm formation 

Moderate positive (MP) of a biofilm was formed by A.HH-ZS strain, compared with negative control (N) 

and strong positive (SP) control that detected at the same incubation time using 96- wells plate method.  

 

The pH response of A.HH-ZS (BI28) was evaluated at a range of temperatures. When grown at 

the optimal growth temperature (30°C) the strain maintained optimal growth across a wider pH 

range (Figure 3.84) up to pH 11.0. At lower temperature, the optimal pH range narrowed with pH 

9.0 being the maximum pH supporting significant growth at 20, 25 and 40oC. A.HH-ZS was 

isolated from CDPs driven microcosm at pH 12.0, a pH greater than the upper pH limit of the 

strain in isolation. This suggests that in the microcosms the strain is protected from the external 

pH, potentially through interactions with other species as observed by Charles et al. (2017).  In a 

previous study, a pH profile for A jeotgali sp. MS1T, isolated from a traditional fermented food 

had a pH range from pH 6.5-9.5 and optimum pH was at pH 6.5-9.0 (M.-S. Kim et al., 2009) 

which is similar to that reported here.  

MP

N

SP

0

0.2

0.4

0.6

0.8

1

1.2

A.HH-ZS Neg. control Pos. control

O
D

 o
f 

b
io

fi
lm

 a
t 

7
5

0
n

m

Bacterial strain in TSB (48 Hour)

A.HH-ZS starin/Biofilm



178 
 

  

Figure 3. 84: Alishewanella sp. HH-ZS strain pH versus temperature for bacterial growth  

The optimum temperature for this strain is 30ºC where this strain showed capability of growth at high pH 

at pH 8.0 to pH 11.0, the lag phase was increased at high pH as the temperature decreased but the optimum 

pH was still at pH 8.0, while the growth was suppressed at a temperature 10ºC and 45ºC, (A). On the other 

hand, the lag phase was decreased as the temperature was increased above 25ºC to 40ºC. 3D surface plot 

showing the effects of pH and temperature on the growth.   

The minimal inhibitory concentration of sodium chloride was 4.7% (w/v), and the optimum 

concentration of NaCl for A.HH-ZS growth was 1-2% (w/v) (Figure 3.85). The results of the 

tolerance to heavy metals have been illustrated in Table 3.8. The strain demonstrated greatest 

tolerance to lead and copper with MICs 3.8, 2.8 mM respectively, and least tolerance to cadmium 

where it was inhibited by 0.1 mM. In a previous study, Alishewanella sp. WH16-1 strain was 

isolated from a heavy metal-rich soil of an iron and copper mine, was able to reduce chromate 

(Cr6+) to Cr3+ (less toxic) and sulfate (SO4 2−) to S2−. The latter being able to react with Cd2+ 

resulting in the precipitated of Cadmium sulfide (CdS), the strain was also able to tolerant other 

heavy metals with MICs for Cd, Pb, Cu, Chromate (Cr) and Arsenite (As) were 0.08, 10, 1.0, 45, 

and 1.0 mM, respectively (Xia et al., 2016).  
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A) B) 

 

 

C) D) 

 

 

Figure 3. 85: Sodium chloride and heavy metals (Zinc) tolerance of Alishewanella sp .HH-

ZS strain  

Growth curves of bacteria at different NaCl concentration (A), the inhibition profile of NaCl against A.HH-

ZS (BI28) MIC was detected through calculation of; (■), observed FA; (▬), fitted Gompertz function 

illustrated on a graph (B). An example growth curves for one of the total 6 heavy metals that already added 

in the appendix, this strain capable to tolerate Zinc up to 1.0 mM (C).  

  

 Draft Whole Genome Sequence  

The WGS of Alishewanella aestuarii HH-ZS strain contained 3,531,586 bp encoding for 3,304 

putative coding sequences, of which 71 have been classified as pseudogenes, 3,236 as hypothetical 

proteins, and 3,165 predicted to form known functional proteins. The genome has a GC content 

of 51.0% and contains 68 genes RNA; rRNAs (5S, 16S, 23S), 60 tRNA, and 5 noncoding RNA 

(ncRNA). The WGS from this project has been deposited at DDBJ/EMBL/GenBank under the 

accession numbers LZEJ00000000 (Alishewanella aestuarii HH-ZS). 
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Furthermore, RAST annotation (Figure 3.86) indicated the presence of 220 genes involved in 

carbohydrate metabolism (Table 3.16). This number is low when compared with the ISA 

fermentative M.f.HH-ZS strain that has 297 genes. For example, it has less than 50% of genes 

associated with monosaccharides and di- and oligosaccharides metabolism (Table 3.16).  

Table 3. 16: Comparison of carbohydrate metabolism genes between Alishewanella HH-ZS 

and M.fermentans HH-ZS.   

Alishewanella aestuarii HH-ZS strain = (A) and M.f.HH-ZS strain = (B)   

 

The presence of these genes enable Alishewanella aestuarii HH-ZS strain to utilize 35.7% of the 

substrates provided by the PM 1 Biolog microplate (Table 3.6). 
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A comparison between Alishewanella sp. HH-ZS strain (BI28) and its closest relatives (Table 

3.14) indicated that there was a similarity in most parameters. The biochemical tests indicated that 

all strains were incapable of utilizing the substrates provided by the API 20A system, except D-

Sucrose and D-Maltose which were utilized by A. jeotgali sp. nov. MS1T and A. fetalis CCUG 

30811T (M.-S. Kim et al., 2009; Vogel et al., 2000), whilst  Alishewanella aestuarii B11T capable 

to utilizing D-Maltose and  D-raffinose (Roh et al., 2009). In addition, a new strain WH16-1 of 

Alishewanella sp. showed similar results in the case of oxidase, catalase, and aesculinase and 

negative for indole. It was also able to use maltose and D-sucrose and was unable to use L-

arabinose, D-glucose, D-mannitol, D-mannose (Xia et al., 2016).  

This strain is well equipped with a range of resistance genes associated with beta lactamase, 

cobalt, zinc, arsenic, copper, chromium and several genes of efflux pumps. It also had an array of 

genes covering dormancy and stress responses (heat shock, cold shock, oxidase stress and 

detoxification) indicated the adaption of this bacterium to harsh environmental conditions. The 

Alishewanella sp. was used for Pectin degradation (Kolekar, Konde, et al., 2013; Wei et al., 2016), 

biological treatment of wastewater that was contaminated with a textile dye and converted to non-

toxic compounds (Kolekar & Kodam, 2012),  it has also described as be able to reduce the 

bioavailability of pH in soil (Zhou et al., 2016).  

 

This WGS of this strain was published as follow: 

 

Salah, Z. B., Rout, S. P., & Humphreys, P. N. (2016). Draft whole-genome sequence of the 

alkaliphilic Alishewanella aestuarii strain HH-ZS, isolated from historical lime kiln waste-

contaminated soil. Genome announcements, 4(6), e01447-16. 
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Figure 3. 86: Subsystems groups distribution statistic of Alishewanella HH-ZS strain WGS 

Based on genome annotations via RAST. The pie chart presents the abundance of each subsystem group 

and the number of each subsystem featured (in brackets). The highest percentages were: 13.8% represented 

a wide range of genes involved in utilization of amino acids and derivatives, protein metabolism 10.6% 

and carbohydrates 8.7%. 

 Key findings  

 This strain was unable to degrade ISA in the form of either CDPs or Ca(ISA)2.   

 The strain was able to tolerate extreme environmental conditions, such as pH up to pH 12, 

temperatures up to 44ºC and exposure to heavy metals. 

 The strain possessed a wide range of genes covering capabilities such as stress response 

proteins, membrane transport proteins and proteins involved in defence system. 
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 Characterisation and WGS of Azonexus hydrophilus ZS02 (BI 70)  

The location of this genus in the Betaproteobacteria, under the Rhodocyclaceae family was 

proposed by Reinhold-Hurek & Hurek (2000). Currently this genus includes two species Azonexus 

fungiphilus and Azonexus caeni. More recently Chou (2008), proposed a third species Azonexus 

hydrophilus sp. nov., which was isolated from freshwater (Chou et al., 2008). Aznexus strains have 

been identified as members of bacterial communities in an Indian coal bed at 600-700m depth. In 

these communities the Azonexus sp. enhanced the biotransformation of coal into methane through 

the nitrogen fixation abilities (D. N. Singh, Kumar, Sarbhai, & Tripathi, 2012). Azonexus 

hydrophilus ZS02 (BI70) (this study) was isolated from a minimal medium/Ca(ISA)2 microcosm 

operating at pH 9.0 where the population had become dominated by Azonexus species following 

a period of starvation. In addition, the Gram-stain result of the (sediment) sample was dominated 

by Gram-negative rods that showed similar morphological characteristics compared with the 

Gram-stain of the pure culture of Azonexus hydrophilus ZS02 strain (BI 70) (this study) (Figure 

3.87). 

 

Figure 3. 87: Gram-negative rods dominated the Ca(ISA)2 microcosm sediment  

 Phylogenetic analysis of Azonexus hydrophilus ZS02 strain 

Analysis of the 16S rRNA sequence (Figure 3.88) identified the strain as Azonexus hydrophilus 

which aligned most closely with the existing strain (d8-1) identified by (Chou et al., 2008) (Figure 

3.88). The isolated strain showed a 98% match to the Azonexus hydrophilus Type strain d8-1 and 

it showed a 95% match to an uncharacterised Azonexus sp. (Table 3.17). (DQ088747) (that 

dominated the community parent 94.6%). However, the latter showed 97% match to the Azonexus 

hydrophilus Type strain d8-1. 
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Table 3. 17: Azonexus sp. and related strains with the closest strains to the Azonexus sp. 

ZS02 strain (BI70).  List of hits from EzBioCloud 16S database 

No Name Strain Accession 
Similarity 

(%) 
Authors 

1 
Azonexus 

hydrophilus 

DSM 23864 (d8-1) AUCE01000006 98.0 Chou et al. 

2008 

2 
AY124797_s LT-1 AY124797 96.5  

3 

Azonexus 

fungiphilus 

BS5-8 AF011350 95.9 Reinhold-

Hurek and 

Hurek 2000 

4 
Azonexus caeni Slu-05 AB166882 95.6 Quan et al. 

2006 

5 AJ009452_s SJA-10 AJ009452 95.4  

6 JF775627_s S33 JF775627 95.2  

7 FN436157_s HAW-R60-B-924d-I FN436157 95.2  

8 
Dechloromonas 

denitrificans 

ATCC BAA-841 LODL01000012 95.1 Horn et al. 

2005 

9 
DQ088747_s 
 

BE23FW031301A4RD-1 
 

DQ088747 
 

95.0  

 

   

 

Figure 3. 88: Evolutionary relationships of taxa  

The evolutionary history was inferred using the Neighbour-Joining method (Saitou & Nei, 1987). The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 

replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances were computed 

using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the number 

of base substitutions per site. Evolutionary analyses were conducted in MEGA7 (Indugu et al., 2016).  

A number of Azonexus sp. were detected in the CDP fed microcosms allowing the isolated strain 

to be placed alongside these strains based on their 16S rRNA gene sequences (Figure 3.89). 

Azonexus sp. were detected a number of times in the CDP fed microcosms, these Azonexus sp. 

showed 97.5% similarity to an unclassified Azonexus strain (accession number DQ088747). In 

these communities Azonexus sp. occupied between 0.1% (pH 10.0 CDP microcosm), 30.7% (pH 

9.0 CDP microcosm) and 94.6% (extended incubation Ca(ISA)2 pH 9.0 microcosm). A. 
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hydrophilus ZS02 (BI70) was closely related to both the community associated Azonexus sp. and 

the unclassified Azonexus strain (DQ088747) (Figure 3.89).  

 

Figure 3. 89: Evolutionary relationships of taxa from the community of the microcosms  

The evolutionary history was inferred using the Neighbour-Joining method (Saitou & Nei, 1987). The 

percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 

replicates) are shown next to the branches (Felsenstein, 1985). The evolutionary distances were computed 

using the Maximum Composite Likelihood method (Tamura et al., 2004) and are in the units of the number 

of base substitutions per site. Evolutionary analyses were conducted in MEGA7 (Indugu et al., 2016). 

 Morphological and metabolic characterisation A. hydrophilus ZS02 

The isolate generated small colonies on FAA at pH 9.0 (Figure 3.90 A and B). Azonexus 

hydrophilus ZS02, is a Gram-negative, non-spore-forming, polymorphic cells (Figure 3.90 C and 

D), forming chains of slightly curved pointed rods (Figure 3.90 E, F and G). This strain was unable 

to utilize all sugars provided by API 20A (Table 3.5), while only 18.7% of the organic substrates 

of the Biolog PM1(Table 3.6). In addition, this strain was capable of utilizing 10% of the substrate 

provided by PM2 microplate (Table 3.7).  

The strain had a narrow temperature range with an optimum at 25oC (Figure 3.91).  The pH profile 

of the Azonexus sp. ZS02 showed a relatively level response between pH 6.0 to pH 9.0 suggesting 

that it is an alkali tolerant strain. As the temperature increased the optimum pH shifted toward the 

alkaline end of the growth range. The lag phase of the bacterial growth curves decreased as the 

temperature increased towards the optimum. This strain was able to tolerate NaCl up to 8.98% 

(Figure 3.92) but had relatively low metal tolerance, with greatest tolerance being seen with cobalt 

(Nickel (1.0), Cadmium (0.25), Cobalt (1.5), Lead (0.25) and Zinc (0.5)) (Table 3.8).  
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Figure 3. 90: Morphological charecterization of Azonexus hydrophilus ZS02 

*Pure colonies on the FAA agar at pH 9.5 after 5 days incubation at 25⁰C (A); small colonies, semi-soft 

in texture, regular edge and slightly raised (B); Gram-negative rods, short and long rods (C) and filament-

like in shape (D); SEM, the bacterial cells are arranged in cluster(A); diplobacilli and streptobacilli (F), 

with rounded ends (G).  
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Figure 3. 91: pH profile of BI 70 at different temperature degrees   

Poor growth at 10°C in neutral pH of pH 7.0, the bacterial activity was increased at a temperature above 

10°C, the lag phase of the bacterial growth curves decreased as the temperature increased, the optimum 

temperature for this strain is 25°C at this temperature the strain showed good growth at pH from pH 6.0 to 

pH 9.0, the optimum pH was pH 8.0, this strain was incapable of growing at 40°C from pH 4.0 to pH 12.0. 
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Figure 3. 92: sodium chloride tolerance of Azonexus sp.  ZS02 (BI70) 

 Draft Whole Genome Sequence of Azonexus sp. ZS02 (BI70)  

In this study the WGS of Azonexus sp. ZS02 (BI70) contained 3,596,517 bp encoding for 3,493 

putative coding sequences, of which 35 have been classified as pseudogenes, 3,430 as hypothetical 

proteins, and 3,395 predicted to form known functional proteins. The genome has a high GC 

content of 61.8% and contains 68 genes RNA; rRNAs 1, 1, 1 of (5S, 16S, and 23S), 56 tRNAs, 

and 5 noncoding RNA (ncRNA). The Azonexus hydrophilus whole genome shotgun (WGS) 

project has project accession MTHD00000000.  This version of the project (01) has the accession 

number MTHD01000000, and consists of sequences MTHD01000001-MTHD01000017.  

Annotation of the genome (Figure 3.94) indicated the presence of 57 resistance genes associated 

with beta lactamase, cobalt, zinc, arsenic, copper, cobalt, chromium and several genes for efflux 

pumps. Capsular and extracellular polysacchrides were also associated with 40 genes. 

Furthermore, 25 genes for nitrogen fixation were present. In addition, a wide range of genes (235 

genes) were involved in different type of carbohydrate fermentation (monosaccharide, 
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disaccharide, oligosaccharide and polysaccharide), dormancy and stress response (heat shock, 

cold shock, oxidase stress and detoxification) indicated the adaption of this bacterium to harsh 

environments. 

RAST annotation indicated that the Azonexus sp. ZS02 genome includes more than 50% of genes 

present in the fermentative strains of M.fermentans HH-ZS (Table 3.19). For instance, mixed acid 

fermentation genes are absent in Azonexus sp. ZS02 strain, these genes enable bacteria to ferment 

six-carbon sugar (B. Xu, Jahic, Blomsten, & Enfors, 1999). This suggests that although this strain 

was isolated from the same microcosm dominated by Azonexus sp. (94.6%) it is likely to be 

different. This is because that microcosm was operated at pH 9.0 and fed on the six carbon 

compound Ca(ISA)2. Azonexus sp. ZS02 strain has nitrogen-fixing genes (nif) that codes for the 

nitrogen fixing nitrogenase enzyme. Nitrogen-fixing microorganisms are enzymatically able to 

transform dinitrogen gas into ammonium that is utilized for the biosynthesis of essential 

macromolecules (Gaby & Buckley, 2012). There are many PCR primers available have been used 

to target the nifH gene (Zehr, Mellon, & Zani, 1998).  The agarose-gel figure 3.93 showing the 

band of the nifH-gene present in this strain.     

 

Figure 3. 93: Agarose gel of PCR product of nifH gene in Azonexus sp. ZS02 (BI70) 

Nitrogen metabolism in this new strain was represented by 108 genes present within subsystems 

of the WGS, these include; dissimilatory nitrite reductase (11 genes), nitrogen fixation (25 genes), 

nitrate and nitrite ammonification (17 genes), ammonia assimilation (14 genes), denitrification 

(38 genes), denitrifying reductase gene clusters (16 genes).   

Nitrogen fixation genes are associated with a conversion of molecular nitrogen to ammonia 

through catalyzed process by nitrogenase enzyme, this complex process provides the nitrogen in 

soil that is used by plants (Franche, Lindström, & Elmerich, 2009). This process is associated with 

the eubacteria and methanogenic Archaea (Young & Stacey, 1992). Nitrogen fixation processes 

are presented by cyanobacteria and Azotobacter (Thiel, 1993). However, a nif gene that produces 

nitrogenase was detected a first time in Klebsiella oxytoca strain (Arnold, Rump, Klipp, Priefer, 



190 
 

& Pühler, 1988) and new class of this gene was detected in Rhodobacter capsulatus (Schmehl et 

al., 1993). In this study, the nif genes (25 genes) was detected in the Azonexus sp. ZS02 strain 

(BI70), for instance, NifA, NifS, NifU, NifB, NifX, NifE, NifN, NifQ, NifV, NifW, NifM, NifH, NifD, 

NifK, NifZ, NifT, NifO, NifY, these genes code for nitrogenase and nitrogenase-associated proteins 

that are involved in the complex process of nitrogen fixation. In addition, this strain has 22 genes 

for denitrifaction, such as, NirS gene for cytochrome cd1 nitrite reductase; cNor-B, cNor-C, NorE, 

NorD, NorQ encoded for Nitric-oxide reductase functional group and Nitrous reductase group 

that encoded by NosZ, NosD, NosF, NosY, NosL. These genes were not detected in the genome 

of the other strains isolated in this study (Table 3.18). Denitrification genes have been detected in 

numerous groups of bacteria such as, Rhodobacter sphaeroides (Kwiatkowski & Shapleigh, 

1996), Pseudomonas aeruginosa (Toyofuku et al., 2008).  

Table 3. 18: Comparison of nitrogen metabolism genes between Azonexus hydrophilus 

ZS02 genome and other genomes of the isolated strains (this study). 

Azonexus hydrophilus ZS02 (BI70) has a greater number of genes (108 genes) for nitrogen 

metabolism compared with the genomes of the other isolated strains: Macellibacteroides 

fermentans (BI40), Alishewanella aestuarii (BI28), Azonexus hydrophilus (BI70), Brevundimonas 

diminuta (BI36); Dietzia natronolimnaea (BI51), Rhodococcus erythropois (BI49), 

Tessaracoccus lubricantis (BI41) and Clostridium tertium (BI 85). 
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Table 3. 19: Comparison of carbohydrate metabolism genes between Azonexus hydrophilus 

ZS02= (A) and M. fermentans HH-ZS strain = (B)  
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Figure 3. 94: Subsystems groups distribution statistic of Azonexus sp. ZS02 (70) WGS 

The pie chart presents the abundance of each subsystem group and the count of each subsystem feature 

that shown between curved brackets at the chart legend, the highest percentages 11% represented a wide 

range of genes involved in utilization of amino acids and derivatives, protein metabolism 9.8% and 

carbohydrates 8.5%. 
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 Key findings 

 Azonexus hydrophilus ZS02 (BI70) is an alkali tolerant strain that shows a 98% match to 

the Azonexus hydrophilus Type strain d8-1  

 The isolated strain shows a 95% match to the uncultured Azonexus sp. that has accession 

number DQ088747 that dominated (94.6%) the Ca(ISA)2 fed microcosm at pH 9.0.  

 However, this strain was unable to utilize ISA from CDPs or in the form of Ca(ISA)2.  

 This strain is distinct from the other strains isolated in this study since it has the nitrogen 

fixation genes.  

 Characterization and WGS of Dietzia sp. ZS03 (BI51). 

Dietzia sp. have been isolated from oil field samples (Borzenkov, Milekhina, Gotoeva, Rozanova, 

& Belyaev, 2006), deep sea samples and soda lakes (Duckworth, Grant, Grant, Jones, & Meijer, 

1998) (Takami, Inoue, Fuji, & Horikoshi, 1997), and from several of  petroleum-contaminated 

sediments (Brito et al., 2006; von der Weid et al., 2007). Dietzia sp. are capable of utilizing water-

immiscible hydrocarbons (Bødtker, Hvidsten, Barth, & Torsvik, 2009) and aliphatic hydrocarbons 

as a sole carbon source (Yumoto et al., 2002). In this study, Dietzia ZS03 strain (BI51) was 

isolated on FAA at pH 9.5 from an alkaline microcosm supplemented by CDPs.  

 Phylogenetic analysis of the Dietzia sp. ZS03-strain 

16SrRNA gene sequencing analysis (Figure 3.95 A) indicates that ZS03 strain (BI51) belongs to 

the genus Dietzia. The other two Dietzia strains (BI45 and BI59) all cluster with D. 

natronolimnaea and D. cercidiphylli these are the closest species match to strain BI51 (Figure 

3.95 B, Table 3.25). When compared with the Deitza sp. that dominated the bacterial floc forming 

community reported by Charles et al. (C. Charles et al., 2017), Deitzia sp. ZS03 (BI51) had a 99% 

similarity. A phylogenetic tree generated on the basis of the 16S rRNA gene sequence (850 bp, 

Figure 3.95 D) showed that Deitza sp. ZS03 (BI51), was closely related to Dietzia natronolimnaea 

DSM 44860, D. cercidiphylli YIM 65002 and the two other isolated strains (BI59 and BI45) 

(Figure 3.95 B) with 99% sequence identity. Whilst the Dietzia sp. obtained from the phylogenetic 

community analysis of Charles et al. (2017), formed new branch on the tree (Figure 3.95 B) that 

may be due to a short of the DNA sequence (407 bp) that used to build the tree. 
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Table 3. 20: Dietzia sp.and related strains with the closest strains to the Dietzia sp. ZS03 

(BI51).  

List of hits from EzBioCloud 16S database 

 

 

A) 

 

 

 

 

 

 Dietzia maris strain DSM 43672

 Dietzia schimae strain YIM 65001

 Dietzia kunjamensis strain DSM 44907

 Dietzia alimentaria strain 72

 Dietzia aerolata strain Sj14a

 Dietzia aurantiaca strain CCUG 35676

 Dietzia lutea strain YIM 80766

 Dietzia natronolimnaea strain DSM 44860

 Dietzia cercidiphylli strain YIM 65002

 Dietzia species ZS-strain (BI59)

 Dietzia species ZS-strain (BI45)

 Dietzia natronolimnaea ZS03-strain (BI51)

 Dietzia psychralcaliphila strain JCM 10987

 S001020552 Escherichia coli J01695

98

69

81

75

46

63

49

85

0.02



 

195 
 

B) 

 

Figure 3. 95: Phylogenetic consensus tree based on 16S rRNA gene sequences. 

A phylogenetic tree was generated using neighbour-joining methods in MEGA 7.0 on the basis of the 

sequencing of 16S rDNA for Deitza sp. ZS03 (BI51), showed closely related to the other two strains Dietza 

sp. (BI59 and BI45) and to DSM 44860 and YIM 65002 (A). Whilst, the Deitzia strain that dominated the 

community in the flocs was related to the same taxa that showed 99% similarity to the Deitza sp ZS03 

(BI51) by BlastN program (B).  

 Morphological and metabolic characterisation of Dietzia sp. ZS03 

(BI51). 

Based on colony morphology, three Dietzia sp. isolates were obtained (Figure 3.96 A). Dietzia 

sp. ZS03 strain (BI 51) (Figure 3.96 B) had a bright pink pigment, a regular edge, a raised convex 

profile and was soft in texture. Microscopic examination indicated Gram-positive, non-spore 

forming cocci that associate into what appear to be short rods (Figure 3.97 C).  

 

Figure 3. 96: Morphological characteristics of the Dietzia sp. ZS03 (BI51) on FAA plate 

Three bacterial isolates of Dietzia species differ in the morphology of the colonies on the FAA plate at pH 

9.5, BI 59 colonies are rough in texture and dark pink in colour, BI 45 colonies are softer and pale pink in 

colour compared with BI 59 (A), while Dietzia sp. ZS03 (BI51) colonies were soft colonies and brighter 

(B) orange.  
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Dietzia sp. ZS03 strain (BI 51) is catalase positive, oxidase negative and indole positive. It is able 

to grow between pH 7.0 and pH 11.0 with an optimum pH of pH 9.0 (Figure 3.98 A). It has a high 

salt tolerance with a minimum inhibitory concentration of 11% (Figure 3.98 B). In previous 

studies some Dietzia strains had a pH range of 7.0-10 for Dietzia kunjamensis K30-10T and MIC 

for NaCl 15% (Mayilraj, Suresh, Kroppenstedt, & Saini, 2006); Dietzia. psychralcaliphila ILA-

1T had a MIC for NaCl of 10% (Yumoto et al., 2002) as does Dietzia alimentaria 72T (Jandi Kim 

et al., 2011). Dietzia aurantiaca CCUG 35676T had a pH range of 5.5–12.5 with optimum pH 

7.0–8.0 and MIC for NaCl 12% (Kämpfer, Falsen, Frischmann, & Busse, 2012). In the addition 

Dietzia sp. ZS03 was mildly tolerant to heavy metals with MIC (mM) of: Nickel (0.42), Cadmium 

(0.2), Cobalt (0.47), Lead (2.5), Zinc (1.09) Copper (4.9), the results are compared with other 

bacterial isolates in Table 3.8.  

Fluorescent staining indicated that this strain was able to produce EPS (Figure 3.99). Dietzia 

species were one of the two bacterial genera that were detected in bacterial flocs formed in 

hyperalkaline microcosms fed on CDP. The authors Charles et al. (2107) demonstrated that this 

floc formation and EPS generation was associated with the protection of the bacteria from 

hyperalkaline pH (C. Charles et al., 2017). 

Metabolic profiling indicated that the strain was unable to metabolise a number of substrates 

provided by the API20A (anaerobically) (Table 3.5) including D-Glucose. In addition, this strain 

only utilized 20% of the substrates provided by Biolog system PM1 (Table 3.6) (aerobically) and 

only 7.3% substrates of PM2 Biolog system (Table 3.7). In a recent, review by Gharibzahedi et 

al. (2014), the authors stated that among 12 Dietzia strains only Dietzia timorensis ID05-A0528T 

(Yamamura et al., 2010) was able to utilize a wide range of carbon sources including sugars, 

whilst the remaining strains were able to utilize <50% of the carbohydrates  available 

(Gharibzahedi, Razavi, & Mousavi, 2014). 

Comparison of the biochemical characteristics of Dietzia sp. ZS03 strain (BI51) (this study) and 

other closely related strains (Dietzia natronolimnaea DSM 44860T and Dietzia psychralcaliphila 

strains) showed that all three showed similar results based on the utilization of acetate, D-glucose 

and urea. In addition DSM 44860 utilized sucrose, trehalose and citrate (aerobically)(Yassin, 

Hupfer, & Schaal, 2006), and D. cercidiphylli YIM 65002T strain was able to utilizing a few 

additional carbon sources including L-arabinose, D-glucose, D-lactose, D-mannose, maltose, 

arbutin, D-lyxose, potassium 5-ketogluconate and D-tagatose (Li et al., 2008).       
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Figure 3. 97: Dietzia sp. (BI 51) strain cells by SEM and Gram-stain by light microscope 

Cocci attached to each other (A). These cells formed in a cluster as an indicator of EPS production by this 

strain (B). Gram-positive cocci and short rods arranged in pairs and single cells (C). 
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A) 

 

B) 

 

Figure 3. 98: pH profile and MIC of NaCl for Dietzia sp. ZS03 strain (BI 51) 

Bacteria Dietzia sp. ZS03-strain (BI51) has a pH range 7.0-11.0 and optimum pH 9.0 (A), this strain can 

tolerant NaCL up to 11% (anti-log of 1.04 on the x-axis) the MIC of NaCl was calculated through fractional 

area at different concentration and plotted on the graph against a log (concentration) using Gompertz 

function to find the MIC that equal 11% of NaCl. The MIC was detected through calculation of; (■), 

observed FA; (▬), fitted Gompertz function illustrated on a graph (B). 

 

Figure 3. 99: Detection of EPS of Dietzia sp. ZS03 (BI51) strain  

The EPS (blue haze) and bacterial cell (white). 

 Draft Whole Genome Sequence of the Dietzia sp. ZS03 (BI51). 

Dietzia sp. ZS03 (BI51) has a genome of 4,003,539 bp with a high GC content (70.2%). RAST 

annotation (Figure 3.100) indicated the presence of numerous of functional genes.  

A recent review (2014) described a range of industrial application for this genus such as, 

therapeutic biotreatments for paratuberculosis animals, food ingredients as animal feed additives, 
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carotenoid pigments production, biosurfactant and extracellular polymeric substances production, 

biodegradation of hydrocarbons and industrial fermentation (Gharibzahedi et al., 2014). These 

functions are reflected in the genome of the isolated strain that contains 13 genes involved in the 

metabolism of aromatic compounds; for salicylate ester degradation (1), Quinate degradation (1), 

benzoate degradation (6), salicylate and gentisate catabolism (3) and gentisate degradation (2). In 

addition, there are a several genes encoded for invasion and intracellular resistance (36) that 

include; mycobacterium virulence operon involved in protein synthesis (SSU ribosomal proteins) 

(4). 

 

 

 

Figure 3. 100: Subsystems group distribution statistics for of Dietzia sp. ZS03 (BI51) WGS 

The pie chart presents the abundance of each subsystem group and the count of each subsystem feature 

that shown between curved brackets at the chart legend, the highest percentages 15.2% represented a wide 

range of genes involved in utilization of amino acids and derivatives, carbohydrate 13.9%, fatty acids, 

lipids, isoprenoids 10.2% and protein metabolism 9.6%. 
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 Key findings 

 This strain D. sp. ZS03 (BI51) and the other two isolated strains of Detzia sp. (BI 45 and 

59) were unable to utilise ISA either from CDPs or in the form of Ca(ISA)2 as a sole carbon 

source in pure culture. 

 The presence of this strain and closely related strain of Dietzia in anaerobic floc forming 

communities fed on CDP indicate that these Dietzia sp are able to utilise CDP and related 

compounds only in cooperation with other member of the community.  

 The WGS of these Dietzia strains indicate that they have a broad metabolic capability that 

may provide useful biotechnological applications. 

 Characterization and WGS of Brevundimonas diminuta ZS04 (BI36). 

The genus Brevundimonas was proposed by Segers et al. (1994), who reclassified two species of 

Pseudomonas (p. diminuta and p.vesicularis) through their genetic characteristics into the new 

genus Brevundimonas (Segers et al., 1994). 

 Phylogenetic analysis of the Brevundimonas sp. ZS04 (BI 36) 

16SrRNA gene sequencing analysis indicates that ZS04 strain (BI36) belongs to the genus 

Brevundimonas showing closest alignment with Brevundimonas diminuta (Figure 3.101andTable 

3.21).  

Table 3. 21: Brevundimonas sp. and related strains with the closest strains to the 

Brevundimonas sp. ZS04 (BI 36). List of hits from EzBioCloud 16S database 
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Figure 3. 101: Brevundimonas sp. ZS04 (BI 36) Phylogenetic consensus tree  

 Morphological and metabolic characterisation of Brevundimonas sp. 

ZS04 (BI 36) 

A Gram-negative, rod-shaped, Brevundimonas ZS04 (BI 36) (Figure 3.102) was isolated from 

microcosms inoculated with alkaline soil. The closest related strain was KSL-145T was isolated 

from alkaline soil in Korea (J.-H. Yoon, Kang, Lee, & Oh, 2006) which has similar morphological, 

biochemical and physiological characteristics. After 3 days incubation at 25ºC on FAA, the 

colonies are circular, smooth, slightly convex and grey in colour. This strain is facultative 

anaerobic and an EPS producer (Figure 3.67 B).  

The optimal temperature for this strain was 30ºC and growth occurs between pH 5.0 and 10.0 with 

an optimal pH between 7.5 and 9.0 (Figure 3.103 A). The optimum temperature for growth was 

30ºC and at this temperature, the strain demonstrated growth between pH 5.0 and pH 10. The lag 

phase increased at higher pH as the temperature decreased but the optimum pH was still pH 8.0, 

whilst growth was suppressed at 10ºC and 40ºC (Figure 3.103 A). The 3D diagram shows the 

optimum growth at the middle of the pyramid (Fa 3.0-3.5) at 30ºC and pH 8.0 (Figure 3.103 B).  

In addition, the strain has a variable tolerance to heavy metals, with a wide range of MIC values 

(mM); Nickel (0.44), Cadmium (0.95), Cobalt (1.93), Lead (30), Zinc (12) and copper (3.63) 

(Table 3.8). With high tolerance to lead and zinc. Metal (Zn+2, Mn+2, and Pb+2) tolerance has been 

documented in Brevundimonas diminuta strains isolated from water and a sediment of Mariout 

Lake, Egypt (Abou-Shanab, Angle, & Van Berkum, 2007). The strain did not require NaCl for 

growth, however it was tolerant up to 5.6% (wt/v) (Figure 3.104).  

 Brevundimonas diminuta strain NBRC 12697

 Brevundimonas diminuta ZS04-strain (BI36) 

 Brevundimonas naejangsanensis strain BIO-TAS2-2

 Brevundimonas faecalis strain CS20.3

 Brevundimonas olei strain MJ15

 Brevundimonas terrae strain KSL-145

 Brevundimonas bullata strain NBRC 13290

 Brevundimonas intermedia strain ATCC 15262

 Brevundimonas subvibrioides strain ATCC 15264

 Brevundimonas lenta strain DS-18

 Brevundimonas poindexterae strain FWC40

 S001020552 Escherichia coli J01695

49

44
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35

40
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Figure 3. 102: Gram-negative short rods of Brevundimonas sp. ZS04 (BI 36) strain 
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Figure 3. 103: pH profile of Brevundimonas sp. ZS04 (BI 36) strain at different temperatures 

The effect of the pH levels and temperature degrees on the bacterial growth are illustrated on the graph (A) 

and on the 3D diagram (B). The optimum pH 8.0 at a temperature 30ºC. 
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Figure 3. 104: NaCl tolerance for Brevundimonas sp. ZS04 (BI 36)  

Brevundimonas ZS04 (BI 36) has a similar G to C content (67.4%) to other species of the 

Brevundimonas Genus (J.-H. Yoon et al., 2006).  The strain has broad degradation capabilities 

but is distinct from the other related strains, since it is positive for urease and able to hydrolysis 

gelatin (J.-H. Yoon et al., 2006).  

 Draft Whole Genome Sequence of the Brevundimonas sp. ZS04 

(BI36)  

The Brevundimonas sp. ZS04 (BI 36) genome contained 3,421,534 bp encoding for 3,367 putative 

coding sequences, of which 39 have been classified as pseudogenes, 3,310 as hypothetical 

proteins, and 3,271 are predicted to form known functional proteins. The genome contains 57 

genes for RNA; rRNAs 1, 1, 1 of (5S, 16S, and 23S), 50 tRNAs, and 4 noncoding RNA (ncRNA). 

The Brevundimonas sp. ZS04 whole genome shotgun (WGS) project has the project accession 

number MTHE00000000.   

This version of the project (01) has the accession number MTHE01000000, and consists of 

sequences MTHE01000001-MTHE01000079. Annotation was added by the NCBI Prokaryotic 

Genome Annotation Pipeline (released 2013). 

RAST annotation (Figure 3.105) indicated the presence of numerous functional genes. Dormancy 

and stress response (heat shock, cold shock, oxidase stress and detoxification) indicated the 

adaption of this bacterium to harsh environments. This strain was compared with an available data 

in RAST for Brevundimonas sp. BAL3 that was isolated from the Baltic Sea at a depth of 4 meters 

(2008). The BAL3 strain whole genome has accession number: PRJNA19287 in NBCI 

BioProject. 
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The isolated strain had a greater number of genes compared with Brevundimonas diminuta BAL3 

strain, particularly in genes that encode for defence and membrane transport system (Table 3.22). 

These additional membrane transport and cation transport systems may be associated with the 

survival of B. sp. ZS04 strain (BI36) in alkaline environments.  

 

 

 

 

Figure 3. 105: Subsystems group distribution of Brevundimonas sp. ZS04 (BI36) 
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Table 3. 22: Comparison of subsystem features for Brevundimonas sp. (BI36) this study and  

Brevundimonas sp. BAL3 strain     

 

 Key findings 

 B. sp. ZS04 strain (BI36) had a high resistance to Lead and Zinc at MIC 30 mM and 12 

mM respectively which aligns with the number of genes that encoded for metals resistance.  

 Although this strain was isolated from CDPs fed microcosms, it showed an inability to 

metabolise ISA from CDPs and in the form of Ca(ISA)2.  

 The broad metabolic capabilities of this strain of Brevundimonas suggests that it may have 

industrial and bioremediation applications. 

 

 Characterisation and WGS of Rhodococcus erythropolis ZS (BI49)  

The species of Rhodococcus erythropolis is of interest in bioremediation studies due to its 

bioconversion and degradation capabilties. This species possesses enzymes for metabolic 

processes such as the desulphurisation of hydrocarbons (Borole et al., 2002) and the conversion 

of petroleum compounds such as benzene to more valuable compounds such as phenol by 

hydroxylation (Kulikova & Bezborodov, 2000). Some species are also capable of alcohol 

dehydrogenation (Gröger et al., 2004) epoxidations, dehalogenations and hydrolysis (De Carvalho 

& Da Fonseca, 2005). Recently, a group of isolates including Rhodococcus sp. were isolated from 

concrete samples to be utilised for their ability to biomineralization and generate calcium 

carbonate or calcite precipitation (Montaño-Salazar, Lizarazo-Marriaga, & Brandão, 2017).  
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 Phylogenetic analysis of the Rhodococcus erythropolis ZS-strain 

(BI49)  

A phylogenetic analysis showed that R. erythropolis ZS-49 was closely related to Rhodococcus 

baikonurensis GTC1041 AB07951, Nocardia coeliaca DSM44595 FR733721 and three other 

strains (Figure 3.106) with 99% sequence identity (Table 3.23).  

Table 3. 23: Rhodococcus sp. and related strains with the closest strains to the Rhodococcus 

erythropolis ZS-strain (BI49).  

 

 

 

Figure 3. 106: Rhodococcus erythropolis ZS-strain (BI49), Phylogenetic consensus tree  

The tree showing the position of R. erythropolis ZS-strain (BI49) within the genus Rhodococcus. 

Phylogenetic analysis was performed by the neighbour-joining method with 1000 random replicates of the 

16SrRNA gene sequencing (Fasta), the tree was configured using the neighbour-joining. This tree showing 

the position of this strain with 99% matching with other closest strains.   

 Rhodococcus baikonurensis strain A1-22

 Rhodococcus species ZS-strain (BI49)

 Rhodococcus degradans strain CCM 4446

 Rhodococcus jialingiae strain djl-6-2

 Nocardia coeliaca strain DSM 44595

 Rhodococcus qingshengii strain djl-6

 Rhodococcus erythropolis strain N11

 Rhodococcus marinonascens strain DSM 43752 1

 Rhodococcus globerulus strain DSM 43954

 Rhodococcus koreensis strain DNP505

 Rhodococcus jostii strain IFO 16295

 S001020552 Escherichia coli J01695
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 Morphological and metabolic characterisation of R. erythropolis 

(BI49)  

Rhodococcus erythropolis (BI49) was isolated from a CDPs driven microcosm reactors at pH 9.0. 

Rhodococcus erythropolis (BI49) was a facultative anaerobic, Gram-positive bacillus (Figure 

3.107 B), of mycelial morphology which fragments into rod-shaped or coccoid elements, an 

observation also reported by (Chung, Maeda, Song, Horikoshij, & Kudo, 1994; Lechevalier, 

1989). In addition, the cells of older colonies contained dark intracellular granules (Figure 3.107 

C). When grown on FAA at pH 9.5, the colonies were circular, convex, opaque, glistening, 

creamish white in colour with a smooth texture (Figure 3.107 A). This strain is also an EPS 

producer which is visible as a pale staining region on the Gram stain, and a more visible region 

under fluorescent microscopy (Figure 3.107 D).  

The strain is catalase-positive, oxidase-negative, urease-negative and indole-negative and is 

unable to degrade a range of sugars and other substrates (Table 3.5). 

 

Figure 3. 107: Rhodococcus erythropolis ZS-strain (BI49), colonies and cell morphology 

Colonies on FAA at pH 9.5 (A), Gram-positive rods surrounded by EPS (B), Gram-stain after 3 days from 

dried colonies showed a Gram-negative rods contains a dark granules (C) and EPS (blue haze) and bacterial 

cells (white) (D) 
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This strain was able to grow between pH 5.0 and pH 10.0 with an optimum between pH 6.0-8.0 

at 25ºC (Figure 3.108 B), the MIC of NaCl was 0.79M (4.6%) (Figure 3.108 A). In a previous 

study, the optimum growth of the closest strain Rhodococcus qingshengii was observed at pH 7.5–

8.0 (J.-L. Xu et al., 2007) and there was three strains R. degradans CCM 4446T, R. baikonurensis 

CCM 8450T and R. erythropolis CCM 277T which were able to grown in the presence of up to 6.5 

% NaCl (Švec et al., 2015). The R. sp. ZS-strain (BI49) was able to tolerant some heavy metals 

particularly lead, zinc and copper. The MIC results in (mM) were; Nickel (2.0), Cadmium (it was 

inhibited by 0.1 mM), Cobalt (2.0), Lead (>5.0), Zinc (>5.0) and copper (6.0) (Table 3.8).  

 

 

A) B) 

  

 

Figure 3. 108: Rhodococcus erythropolis ZS-strain (BI49), pH profile and MIC for NaCl  

From graph MIC was calculated (anti log of -0.1 concentration) that equal 0.79 M (4.6%) of NaCl (A), the 

pH range is from pH 5.5-10 with optimum pH is from 6.0-8.0 (B)  

The cellular FA profile of R. sp. ZS-strain (BI49) was compared to two if its closest relatives. 

Data for R. degradans CCM 4446T was obtained from (Švec et al., 2015) and data for R. 

qingshengii was taken from (J.-L. Xu et al., 2007). The contents of the FA profiles of these two 

strains were different to that of R. erythropolis (B149). Two FAs C16:0 and C18:0 were detected 

in all three strains (Table 3.24). Whilst, the FA C17:0, C19:1 ω9c, C15:0 were only detected and 

dominated the FAs profiles of the R. erythropolis (BI49). 
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Table 3. 24: Cellular fatty acids contents (%) of R. erythropolis ZS-strain (BI49) 

Fatty acid amounting to more than 1.5% of the cellular R. erythropolis ZS-strain (BI49) are 

illustrated. 1- R. sp.  ZS-strain (BI49), 2- R. degradans, 3- R. qingshengii.  -, not detected.  

 

 Draft Whole Genome Sequence of the R. erythropolis ZS (BI49)  

The genome of Rhodococcus erythropolis ZS-strain (BI49) contained 6,741,898 bp encoding for 

6,430 putative coding sequences and was analysed via RAST analysis (Figure 3.109). The genome 

has a 62.4% G to C content and contains 68 RNA genes. In respect to carbohydrate utilization, 

this strain has a greater number of genes compared with other isolated strains in this study (537). 

Despite this factor it was not able to degrade ISA. The contents of ZS-strain genome (this study) 

was compared (Table 3.25) with the complete genome of Rhodococcus sp. RHA1, which contain 

67% of GC (McLeod et al., 2006). The R. jostii RHA1 WGS has accession number PRJNA314082 

in NBCI BioProject. The presence of groups of genes responsible for the metabolism of aromatic 

compounds (89) means that this strain may be able to contribute to biotechnological and 

bioremediation processes. In a recent study (2017) Rhodococcus qingshengii YL-1 (which is the 

closest species to R. sp. ZS-strain (BI49)) was able to utilize buprofezin (insecticide) as a sole 

source of carbon and energy for growth (X. Chen et al., 2017).  

The isolated strain has a similar total number of genes when compared with R. jostii RHA1. 

However, there are significant differences in some groups of gene. In general R. sp. ZS (BI49) 

has a greater number of genes than RHA1 strain in key areas such as cell wall and capsules, 

membrane transport system, virulence, disease and defence.  R. sp. (BI49) has also a number of 

genes associated with phage, transposable elements and plasmids that were not detected in the 

RHA1 strain. The results suggest that the Rhodococcus sp. ZS-strain (BI49) has more adaptions 

to survival in harsh environments than the R. jostii RHA1strain. 
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Table 3. 25: Comparason of the subsystem features of Rhodococcus sp. ZS (BI49) and R. 

jostii RHA1     

 

 

 

Figure 3. 109: Subsystems group distribution of R. erythropolis ZS03 strain (BI49) 
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 Key findings 

 Rhodococcus erythropolis ZS (BI49) has a broad range of genes that may contribute to the 

bioremediation or biotransformation of hydrocarbons (hydrophobic compounds) and in 

biomineralization processed.  

 This strain has plasmids that may help the cells to utilize unusual substances of organic 

compounds and also provide resistance against toxic materials.  

 However, this strain showed an inability to utilize ISA from the CDPs and in the form of 

Ca(ISA)2.  

 Characterisation and WGS of Tessarococcus sp. ZS01 strain (BI 41) 

Tessaracoccus sp. ZS01 strain (BI41), is a member of the Propionibacteriaceae family, of 

Acinetobacteria phylum (Table 3.26). Tessaraccus species have been isolated from a range of 

different environments; T. KSS-17SeT strain was isolated from metalworking fluid in Germany 

(Kämpfer et al., 2009); T. flavescens SST-39T was isolated from a marine sediment sample in 

Korea (D. W. Lee & Lee, 2008) and  T. bendigoensis Ben 106T was isolated from a sewage-

treatment plant, Australia (Maszenan et al., 1999). Tessarococcus lapidicaptus is capable of 

precipitating carbonate and Fe-rich phosphate minerals and was isolated from the subsurface of 

Rio Tinto basin, Spain (Sánchez-Román, Puente-Sánchez, Parro, & Amils, 2015).  

 Phylogenetic analysis of the Tessaracoccus sp. ZS01 (BI41) 

Tessaracoccus strain BI41 showed a 98% sequence similarities with T. lubricantis strain KSS-

17Se, 97% with T. massiliensis SIT-7 strain and less than 97% with strains of all species of the 

genus Tessaracoccus. A phylogenetic tree resulting from neighbour-joining reconstruction 

(Saitou & Nei, 1987) is shown in (Figure 3.110, Table 3.31). 

Table 3. 26: Tessaracoccus sp. and related strains with the closest strains to the 

Tessaracoccus ZS01 (BI41).  
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Figure 3. 110: Tessaracoccus sp. ZS01 strain (BI41), Phylogenetic consensus tree  

The tree shows the position of T. ZS01 strain (BI41) in the genus Tessaracoccus. Phylogenetic analysis 

was performed by the neighbour-joining method with 1000 random replicates of the 16SrRNA gene 

sequencing (Fasta), the tree was configured using the neighbour-joining. This tree shows the position of 

this strain with 97% matches with the other closest strains. 

 Morphological and metabolic characterisation of Tessarococcus sp.  

ZS01 strain (BI 41) 

Tessarococcus sp. ZS01 strain BI41 produces yellow pigmented, translucent and shiny colonies 

with an entire edge on FAA at pH 9.5 (Figure 3.111 A), it is a Gram-positive, non-spore-forming 

cocci (Figure 3.111 B), EPS producer and biofilm-forming bacteria. 

 

Figure 3. 111: Tessaracoccus sp. ZS01 strain BI41 morphoogh 

Yellow colonies on FAA (A), Gram-positive cocci that appear as single cells and in pairs (diplococci) (B). 

The strain is catalase positive, oxidase negative, urease negative and indole negative. It utilized a 

wide range of the carbohydrates and utilize 69% and 45% of the substrates provided by the Biolog 

PM1 and PM2 plates (Table 3.6 to 3.7). In respect to the carbohydrate metabolism (Table 3.28), 

 Tessaracoccus lubricantis strain KSS-17Se

 Tessaracoccus  lubricantis ZS01-strain (BI41)
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 Tessaracoccus defluvii strain LNB-140

 Tessaracoccus rhinocerotis strain YIM 101269

 Tessaracoccus flavescens strain SST-39

 Tessaracoccus bendigoensis strain Ben106
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 Tessaracoccus oleiagri strain SL014B-20A1
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the finding are consent with the biochemical characteristics results of  Tessaracoccus lubricantis 

KSS-17SeT (Kämpfer et al., 2009). In addition, Tessarococcus sp. ZS01 (BI41) was able to 

tolerant NaCl up to 0.92 M (5.38%) (Figure 3.113) and heavy metals (Table 3.8). The strain had 

a pH range of pH 6.0 to 9.5 with an optimum pH of pH 8.0 (Figure 3.112) at 25ºC.   

The optimum temperature for growth was 25ºC where this strain demonstrated the ability to grow 

between pH 6.0 and pH 9.5. The lag phase increased at higher pH as the temperature decreased 

but the optimum pH was still pH 8.0, while growth was suppressed at a temperature less than 20ºC 

and above 40ºC, (Figure 3.112 A). A similar pH range and optimum temperature were observed 

in Tessaracoccus lubricantis KSS-17SeT that had a pH range of pH 6.5-9.5 and an optimum 

temperature of 25ºC (Kämpfer et al., 2009) and by T. bendigoensis Ben 106T strain that had pH 

range pH 5.5-9.3 and the same optimum temperature (Maszenan et al., 1999). A higher pH range 

6.1-12.1 was observed in T. flavescens SST-39T isolated from marine sediment samples that had 

an optimum temperature range 20ºC -30ºC (D. W. Lee & Lee, 2008).  

A) 
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B) 

 

Figure 3. 112: pH profile of Tessarococcus sp. ZS01 strain (BI41) at different temperatures 

The effect of pH and temperature on bacterial growth are illustrated in graph (A) and on the 3D diagram 

(B), showing optimum growth at 25ºC and pH 8.0.  

 

 

Figure 3. 113: Tessarococcus sp. ZS01  (BI41) tolerated NaCl up to 5.0% (MIC 5.38%)  
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Table 3. 27: Comparative phenotypic characters of Tessaracoccus sp. ZS01 strain (BI41) 

and Tessaracoccus type strains 

All four strains are Gram-positive and non-spore-forming, oxidase-negative, catalase-positive, 

urease-negative and indole negative. All four strains utilize D-Maltose, D-xylose, L-arabinose. 

Data for Tessaracoccus lubricantis KSS-17SeT strain were obtained from (Kämpfer et al., 2009). 

Data for T. flavescens SST-39T were taken from (D. W. Lee & Lee, 2008) and data for T. 

bendigoensis Ben 106T were obtained from (Maszenan et al., 1999). ND, No data available. 

 

The cellular fatty acid profile of T. sp. ZS01 strain (BI41) was compared to two if its closest 

relatives. Data for T. lubricantis KSS-17SeT strain was obtained from (Kämpfer et al., 2009). 

There were two sources of FAs results for T. flavescens SST-39T, data for SST-39T (I) was taken 

from (Kämpfer et al., 2009), and for the same strain SST-39T (II) data was obtained from (D. W. 

Lee & Lee, 2008), the dominant FA in these two strains was C15:0 AISO (83.2.6%. 55.8% and 

49.6 respectively). Whilst, the FAs of the T. sp. ZS01 strain (BI41) (this study) was dominated by 
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C16:0 (68%). A similar quantity for C14:0 ISO and C15:0 ISO was found in all four results (Table 

3.27).  

Table 3. 28: Cellular fatty acids contents (%) of Tessaracoccus sp. ZS01 strain (BI41) 

Fatty acids found in Tessaracoccus ZS01 strain (BI41) (this study) are illustrated below. Tr, Trace 

(<1.5%); -, not detected. The FA profile of T. sp. ZS01 strain (BI41) is composed mainly of C16: 

0 (68%). It is clearly different from the FA profiles of the other two strains KSS-17SeT and two 

results of T. flavescens SST-39T (I and II). 

 

 Draft Whole Genome Sequence of the Tessarococcus sp. ZS01 (BI41)  

The genome of Tessaracoccus sp. ZS01 strain (BI41), contained 3,184,301 bp encoding for 2,870 

putative coding sequences, of which 47 have been classified as pseudogenes, 2,773 as hypothetical 

proteins, and 2,773 predicted to form known functional proteins. The genome has a high GC 

content of 68.4% and contains 50 genes RNA; rRNAs 1, 1, 1 of (5S, 16S, and 23S), 44 tRNAs, 

and 4 noncoding RNA (ncRNA). The Tessaracoccus sp. ZS01 strain (BI41) whole genome 

shotgun (WGS) project has the project accession MTHC00000000.   

This version of the project (01) has the accession number MTHC01000000, and consists of 

sequences MTHC01000001-MTHC01000041. Annotation was added by the NCBI Prokaryotic 

Genome Annotation Pipeline (released 2013). RAST annotation (Figure 3.114) indicated the 

presence of numerous of functional genes. Dormancy and stress response (heat shock, cold shock, 

oxidase stress and detoxification) genes indicated the adaption of this bacterium to harsh 

environments. 
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Figure 3. 114: Subsystems group distribution of Tessaracoccus sp. ZS01 strain (BI41). 

 Key findings 

 Tessarococcus sp. ZS01 strain (BI41) was able to utilize a wide range of carbohydrates.  

 It has a numerous of genes for carbohydrates utilization, with an ability to produce EPS 

and biofilm formation. 

 This strain showed an inability to utilize ISA from CDPs and in the form of Ca(ISA)2.  
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 Morphological and WGS of Macellibacteroides fermentans HH-ZS 

strain (BI40). 

More than 100 bacterial isolates were obtained from the CDP fed microcosm established over a 

range of alkaline pH values with the overall aim of identifying pure culture ISA degrading isolates. 

One such isolate was Macellibacteroides fermentans HH-ZS (BI 40) which is a member of the 

Bacteroidetes phylum. This section of the thesis provides a detailed description of that isolate. 

The genus of Macellibacteroides falls within the family of Porphyromonadaceae within the 

phylum of Bacteroidetes (Jabari et al., 2012). This genus was recently identified as being distinct 

from the Genus Parabacteroides by Jabari et al. (2012) through the identification of the LIND7H 

strain that had been isolated from the anaerobic treatment of abattoir wastewaters in Tunisia. 

 Phylogenetic analysis of M. fermentans HH-ZS strain 

Macellibacteroides fermentans HH-ZS was identified via BLASTn (Zhang et al., 2000) from its 

partial 16SrRNA sequence of (888 bp) (Figure 3.115, Table 3.29). 

>Macellibacteroides fermentans HH-ZS strain (BI40) 
GGCTTACACATGCAAGTCGAGGGAGCAGCATAAAAGTAGCAATACTTTGGTGGCGACCGG 

CGCACGGGTGAGTAACGCGTATGCAACCTACCTATCAGAGGGGAATAACCCGGCGAAAGT 

CGGACTAATACCGCATAAAACAGGGGCACCGCATGGTGATATTTGTTAAAGAAATTCGCT 

GATAGATGGGCATGCGTTCCATTAGGTAGTTGGTGAGGTAACGGCTCACCAAGCCGACGA 

TGGATAGGGGAACTGAGAGGTTGGTCCCCCACACTGGTACTGAGACACGGACCAGACTCC 

TACGGGAGGCAGCAGTGAGGAATATTGGTCAATGGGCGAGAGCCTGAACCAGCCAAGTCG 

CGTGAAGGAAGAAGGATCTATGGTTCGTAAACTTCTTTTGCAGGGGAATAAAGTGCAGGA 

CGTGTCCTGTTTTGTATGTACCCTGAGAATAAGGATCGGCTAACTCCGTGCCAGCAGCCG 

CGGTAATACGGAGGATCCGAGCGTTATCCGGATTTATTGGGTTTAAAGGGTGCGTAGGTG 

GTTTGATAAGTCAGCGGTGAAAGTTTGCAGCTTAACTGTAAAAATGCCGTTGAAACTGTC 

GGACTTGAGTGTAAATGAGGTAGGCGGAATGCGTGGTGTAGCGGTGAAATGCATAGATAT 

CACGCAGAACTCCGATTGCGAAGGCAGCTTACTAAGCTACAACTGACACTGAAGCACGAA 

AGCGTGGGGATCAAACAGGATTAGATACCCTGGTAGTCCACGCAGTAAACGATGATTACT 

AGCTGTTTGCGATACACAGTAAGCGGCACAGCGAAAGCGTTAAGTAATCCACCTGGGGAG 

TACGCCGGCAACGGTGAAACTCAAAGGAATTGACGGGGGCCCGCACAA 

Figure 3. 115: 16SrRNA gene sequencing result of M. fermentans HH-ZS strain   
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Table 3. 29: Porphyromonadaceae family and related genus and species with the closest 

strains to the M. fermentans HH-ZS strain (BI40).   

 

A neighbour-joining phylogenetic tree shows the relationships between M. fermentans HH-ZS 

strain and related representatives of the family Porphyromonadaceae (Figure 3.116). Although the 

closest phylogenetic relatives of strain M. fermentans HH-ZS is the LIND7H strain, phylogenetic 

and phenotypic properties indicate that M. fermentans HH-ZS is a distinct strain within the genus 

Parabacteroides.  



 

221 
 

 

Figure 3. 116: Neighbour-joining phylogenetic tree for M. fermentans HH-ZS strain  

Maximum-likelihood algorithm phylogenetic tree based on 16S rRNA gene sequences provide the 

relationships between M. fermentans HHZS strain and related representatives of the family 

Porphyromonadaceae. 

 Morphological and metabolic characterisation of M. fermentans HH-

ZS   

When grown on FAA colonies of M. fermentans HH-ZS are concave, with a regular edge, soft 

texture and white colour (Figure 3.117 A) which became viscous when exposed to air (Figure 

3.117 B).  Direct examination of the cells via light microscopy indicate that M. fermentans HH-

ZS is a Gram-negative non-spore forming bacillus, with rods being ~1µm in length, and arranged 

in pairs or chains (Figure 3.118 A). The cells appear to be surrounded by a thin capsule like layer. 

Cell morphology was confirmed by SEM that showed the aggregation of bacterial cells that is 

suggestive of biofilm formation (Figure 3.118 B). 
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Figure 3. 117: M. fermentans HH-ZS strain colonies on FAA plates 

Pure colonies after 4days incubation (A), sticky texture of the moist colonies, after 4.0 hours incubation 

on FAA plate of hard air dried colonies (B). 

 

 

 

Figure 3. 118: Gram stain and SEM for M. fermentans HH-ZS strain 

Gram negative bacilli as single cells, arranged in chains and surrounded by a thin layer like a capsule (A), 

the SEM (x10,000) shows the bacterial cells that attached together to gives an indicator of biofilm 

formation (B). 

Although M. fermentans HH-ZS was non-spore forming, it has the ability to survive when exposed 

to air. When exposed to air on a dry sterile surface at room temperature for 3 days the soft colonies 

of M. fermentans HH-ZS became viscous and developed a fragile crust (Figure 3.119 A). 

However, these dried colonies were revived once transferred to FAA and incubated under 

anaerobic conditions (Figure 3.119 C). This ability may be related to biofilm formation and the 

capability to deal with Reactive Oxygen Species (ROS) as indicated by the presence of catalase.        
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Figure 3. 119: M. fermentans HH-ZS strain is an aerotolerant bacterium  

The moist colonies were air dried when they acquire a fragile crust like texture after more than three days 

at room atmosphere (A). The colonies become moist and sticky after 4.0 hours on FAA (B), and at this 

point are able to grow again in an anaerobic workstation (C). 

The cellular fatty acid profile of M.f.HH-ZS was compared to two if its closest relatives LIND7HT 

and P.distasonis CCUG 4941T (Jabari et al., 2012) (Table 3.30). The major fatty acids of M.f.HH-

ZS strain were anteiso-C15:0 (31.2%), C17:0 2OH (18.35%), anteiso w9c C17:0 (7.32%). The 

biggest difference in fatty acid profile was the greater percentage of C17:0 2OH and the presence 

of a range of other acids (1-5%) not present in the other bacteria.  

The menaquinone profile of M.f.HH-ZS was compared with the menaquinones of the LIND7H 

strain (Jabari et al., 2012) and the results provided by Sakamoto & Benno, (2006) for the species 

of the genus Parabacteroides; include the following: P. merdae, P. goldsteinii, P. gordonii, 

P.johnsonii, P. distasonis JCM 5825T (Sakamoto & Benno, 2006; Sakamoto, Kitahara, & Benno, 

2007; Sakamoto et al., 2009), (Table 3.31). When compared to LIND7H the major differences 

were the presence of MK8 and the absence of MK9(H2), in terms of the Parabacteroides the 

greater abundance of MK8 and lower levels of MK10 were the most obvious differences. There 

were slight differences in the polar lipids contents (Figure 3.120) of M.f.HH-ZS and LIND7HT  

(Jabari et al., 2012). The images of the TLC plate indicate that lipid (L) and Aminolipid (AL) 

were only detected and clearly identified in M. fermentans HH-ZS whilst the glycolipid (GL), and 

Phosphatidylglycerol (PG) were only detected in LIND7HT strain. Both of the two strains have 

unidentified phospholipids (PL). 
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Table 3. 30: Cellular fatty acids contents (%) of M. fermentans HH-ZS strain  

Fatty acid amounting to more than 1% of the cellular M.f. HH-ZS strain (this study) are illustrated. 

Tr, Trace (<1%); -, not detected. Results from the others two strains (LIND7H and CCUG 4941) 

were obtained from (Jabari et al., 2012), all results were obtained from the identification service 

of the DSMZ (Braunschweing. Germany).  

 

*the summed in feature3 comprises C16:1 w7c and/or C16:1 w6c 
**the summed in feature9 comprises C17:1 iso w9c or C16:0 10-methyl  

Table 3. 31: Menaquinone content of M. fermentans HH-ZS strain  

The Menaquinone contents of M.f. HH-ZS strain compared to the two closest strains; LIND7H 

strain and Parabacteroides species (Jabari et al., 2012). 

Menaquinone% M.f.HH-ZS strain LIND7H Parabacteroides sp. 

MK-8 12 0 1-5 (4) 

MK-9 49 52 10-54 (24) 

MK-9(H2) 0 33 0 

MK-10 16 15 37-72 (67) 

MK-11 0 0 Tr*-13 (4) 

*Tr, Trace amount 
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Figure 3. 120: Total polar lipids spots of M. fermentans HH-ZS strain by thin Layer 

Chromatography image 

TLC of M.f. HH-ZS strain (this study) polar lipids represented by; L, Lipid; AL, Aminolipid; PL, 

Phospholipid (unidentified phospholipids); PE, Phosphatidylethanolamine (A), compared with LIND7HT 

Strain; Polar Lipid 1–10, unidentified phospholipids; PE, phosphatidylethanolamine; GL1, unidentified 

glycolipid; PG, Phosphatidylglycerol (B) (Jabari et al., 2012).  

Biomarkers such as polar lipids, fatty acids and menaquinones have been routinely used in the 

characterization of microbial community structure and the differentiation of microbial isolates 

(Rossel et al., 2008). For example work by Rutters (2002), found that both polar lipids and fatty 

acid composition allowed the differentiation of three marine sulfate-reducing bacteria (Rütters, 

Sass, Cypionka, & Rullkötter, 2002). Differences in polar lipid, fatty acid and menaquinone 

compositions provide further evidence that M.f. HH-ZS is a distinct strain when compared with 

its closest relative LIND7HT.    

The biochemical characterisation of M.f. HH-ZS focussed on the strains enzymic and catabolic 

capabilities. Biolog and API analysis confirmed that M.f. HH-ZS has broad catabolic capabilities 

primarily focussed on carbohydrate metabolism (Table 3.32 and 3.33). The API analysis indicated 

that the enzymic activity M.f. HH-ZS was broadly similar to LIND7HT (Jabari et al., 2012) with 

the exception of M. fermentans HH-ZS being catalase and salicin positive and negative for 

protease (gelatin). The biochemical profile of M.f. HH-ZS particularly the presence of catalase 

provides further evidence that M. fermentans HH-ZS is a novel strain of M. fermentans.  
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Table 3. 32: Biolog 96 wells Microplate for M. fermentans HH-ZS strain  

This strain was utilized more than 50% of the substrates that are listed under substrate (+), while 

none metabolised substrates are listed under the substrate (-).  
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Table 3. 33: Metabolic activity of the M. fermentans HH-ZS (this study) and LIND7HT 

strain studied by Jabari et al. (2012). 

The enzyme profile of M. fermentans HH-ZS showed similarities with LIND7HT (Jabari et al., 

2012), with the exception of catalase, salicin and gelatine degradation. 

 

M. fermentans HH-ZS has the ability to survive and grow between pH 5.0 and pH 11.0 (Figure 

3.121 A), with a relatively flat response to pH between pH 5.0 and pH 8.0 (Figure 3.121 C). In 

term of an adaptation strategy, this bacterium exhibits a longer lag time at extreme acidic and 

alkaline conditions (Figure 3.121 A). Acid generation was evident between pH 7.0 and 11.0 

(Figure 3.121 B) which clearly assists the bacteria to modify its environment towards a more 

amenable pH value (Figure 3.121 B). Whilst, the lower pH for growth is similar to other strains 

such as LIND7H strain which had an optimum pH (6.5-7.5) and a range of growth between pH 

(5.0-8.5) (Jabari et al., 2012), and Parabacteroides chartae sp. nov. NS31-3T, where the optimium 

pH was (7.0–7.5) and the range for growth pH (5.5-8.5) (Tan et al., 2012). The upper pH limit for 

M. fermentans HH-ZS was considerably greater (pH 11.0). 
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A) 

 
 

 

B)  C) 

 

 

Figure 3. 121:  M.fermentans HH-ZS strain pH profile   

The M.f. HH-ZS strain has an ability to survive and grow at a wide range of the pH levels between pH 5.0 

and pH 11.0 

 Biofilm formation by M. fermentans HH-ZS strain  

Biofilm formation is one approach that bacteria may us to provide protection against extremes of 

pH. When evaluated for its ability to form a biofilm, M. fermentans HH-ZS generated a moderate 

biofilm at its optimum pH value (pH 8.0) (Figure 3.122) and weak or no biofilm at either side of 

its optimum. This suggests that this strain was not a strong biofilm former.  
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Figure 3. 122: Biofilm formation by M.fermentans HH-ZS strain (BI40) at different pH 

levels 

The blue colour indicates no biofilm formation, yellow colour indicates to moderate and orange indicate 

to weak biofilm formation.  

M. fermentans HH-ZS demonstrated a tolerance to NaCl up to a MIC of just above 13% (w/v) 

(Figure 3.123 A and B) even though the optimum NaCl concentration was between 1-2% (w/v). 

At extreme NaCl levels, the strain exhibited an extended lag phase, a response similar to that seen 

with pH (Figure 3.123 C), and a reduced overall growth (Figure 3.123 D). The strain was able to 

tolerate much greater NaCl levels than its closest relative strains which only tolerated NaCl up to 

2% for M. fermentans LIND7HT (Jabari et al., 2012)and Parabacteroides chartae NS31-3T (Tan 

et al., 2012). This tolerance to NaCl may reflect the fact that the strain originates from an 

environment high is alkaline earth metals including calcium (30%), and some sodium and 

potassium (0.54%) (Burke et al., 2012). When exposed to heavy metals (Cd, Co, Cu, Zn, Pb and 

Ni) the strain was most sensitive to Co and least sensitive to Zn (Table 3.34). The same pattern of 

an extended lag phase seen with pH and NaCl exposure was also seen at heavy metal concentration 

that approached the MIC value. Work by Riley et al. (1982), carried out the sensitivity test of 105 

strains of Bacteroides to Pb, Co, Cd, Ni, Ce, As Ag and Hg. They found that all Bacteroides 

strains were multiply resistant when exposed to a concentration of 0.1 mM. When the 
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concentration was increased to 1.0 mM, the strains was 100% resistant to Ni, Co, Pb, Cd and Cr 

(Riley & Mee, 1982).  
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C) D) 

 

 

 

Figure 3. 123: Growth curve of M.fermentans HH-ZS at a different NaCl concentration 

M.f. HH-ZS strain can tolerant to about 13% of NaCl. The area undergrowth curves were calculated and 

the MIC of NaCl was detected about (2.52 M). The inhibition profile of NaCl against M.f. HH-ZS strain 

(BI40) (A): (■), observed fa; (▬), fitted Gompertz function (B), although. The optical density of the 

inoculum-broth at the lag phase remained at the same values at a different NaCl concentration, the length 

time of the lag phase was increased (C) and the optical density (average) of the bacterial growth at 

stationary phase was decreased (D) when the NaCl concentration was increased.   

A) B) 

 

 

Figure 3. 124: M.fermentans HH-ZS growth curves in a different concentration of heavy 

metals. 

An example growth curves (A) for one of the 6 heavy metals that can be found in the appendix. The 

inhibition profile of NiCl2 against M.f. HH-ZS (BI40) was detected by calculate the fractional area at 

different concentration and plotted on the graph against a log (concentration) using Gompertz function to 

find the MIC (D) that equal 2.10 mM. The MIC was detected through calculation of; (■), observed FA; 

(▬), fitted Gompertz function illustrated on a graph (B). 
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Table 3. 34: The MIC of the heavy metals and NaCl of M. fermentans HH-ZS 

Macellibacteroids fermentans HH-ZS strain  

Heavy metals tolerance, MIC (mM) 
NaCl% 

Ni Cd Co Pb Zn Cu 

2.10 1.85 0.57 1.06 3.39 2.25 13 

 Whole genome sequencing of M. fermentans HH-ZS. 

The WGS annotation of Macellibacteroides fermentans HH-ZS was carried out by RAST  (Aziz 

et al., 2008; Overbeek et al., 2014). The genome assembly consisted of a total 4,081.835 bp within 

67 scaffolds, representing a coverage of 127.36x encoding for 3,345 putative coding sequences, 

of which 3,241 were protein coding, 69 were RNA coding and 35 were pseudogenes. The genome 

has a GC content of 41.71% and contains rRNAs 1,1,1 for 5S, 16S, 23S respectively, 64 tRNAs, 

and 2 ncRNAs. RAST annotation (Figure 3.125) displayed the presence of 65 genes responsible 

for resistance to toxic compounds such as in arsenic, copper and cobalt, 12 genes for efflux pumps, 

2 genes for iron acquisition and 11 genes for regulation and cell signalling. The highest 

percentages of the subsystem features were represented by groups of genes involved in a wide 

range of carbohydrate degradation processes (Figure 3.125, Table 3.35).  

RAST analysis indicated 267 genes involved in the utilization of a wide range of carbohydrates 

including an extracellular multi-enzyme complex (Table 3.35) known as cellulosome that was 

detected only in M. fermentans HH-ZS strain (BI40) (Table 3.36). This enzyme acts as a mediating 

factor attaching bacterial cells to complex substrates and along with a multi-functional integrating 

subunit (scaffolding), work synergistically to degrade a complex substrate (Schwarz, 2001) such 

as cellulose.  

In addition, a wide range of genes (229) involved in protein metabolism were present along with 

dormancy and stress response (53) genes. The latter covering; osmotic stress (10), oxidative stress 

(21), heat shock (14), detoxification (7), periplasmic stress (5), these features indicated that this 

bacterium capable of surviving in a strict environment and reflect the physiological evidence for 

pH, NaCl and heavy metal tolerance. 
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Figure 3. 125: Subsystems groups distribution statistic of M.fermentans HH-ZS strain 

RAST genome annotations presenting the abundance of each subsystem and the number of each subsystem 

feature (shown in brackets), the highest percentage (16%) represented a wide range of genes involved in 

fermentation of different carbohydrate potentially including ISA.   

 

The whole genome sequencing of this new strain has been deposited at BioProject under 

PRJNA324192, GenBank ID accession number LZEK00000000. 
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Table 3. 35: Carbohydrates Subsystem Feature in the M. fermentans HH-ZS srain  

 

Although, this strain was an obligate anaerobe, it was catalase positive an enzyme involved in 

protection against oxidative stress and ROS (Figure 3.126). This enzyme is very rare in anaerobic 

bacteria, however, recent research suggests that obligate anaerobic archaea and bacteria contain 

antioxidant enzymes (Jennings, Schaff, Horne, Lessner, & Lessner, 2014). Brioukhanov (2004) 

reviewed the presence of oxidative defence enzymes such as catalase and superoxide dismutase 

(SOD) in anaerobes and concluded that they are important oxidative tolerance function in some 

groups of strictly anaerobic archaea, sulphate-reducing bacteria, Bacteroides sp. and Clostridium 

sp. (Brioukhanov & Netrusov, 2004). 

The presence of the catalase gene in M. fermentans HH-ZS was determined by comparing the 

location of this gene in four known catalase positive bacteria (Figure 3.126).  The sets of genes 

(catalase) with the same sequence are indicated by number 1 and the colour red relates to the 

function of the gene catalase, whereas, the other arrows coloured grey represent the other genes 

(for other functions), the diagram was downloaded from RAST (Aziz et al., 2008). 
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A) 

 

B) 

>fig|6666666.197520.peg.1881 Catalase (EC 1.11.1.6) [Macellibacteroides fermentans] 

MEGKKKLTTESGAPVGDNQNIQTAGPHGPALLQNAWMIEKLAHFNRERIPERVVHAKGSGAFGTLTITHDITMYTKAA

IFSKIGKKTDLFLRFSTVAGERGAADTERDVRGFAIKFYTEEGNWDLVGNNTPVFFLRDPLKFPDFIHTQKRDPKTNLRS

STAAWDFWSLSPESLHQVMILMSDRGIPQNLRQMHGFGSHTFSFINDVNKRFWVKFHFKSMQGIANFTNEEAARIVAD

DREYSQRDLYNNIAGGNFPKWRMCIQIMPEAEAHTCGFNPFDLTKVWSQKNYPLIEVGIMELNKNPENYFATVEQAAF

NPANVVPGIGYSPDKMLQGRLFAYGDAARYRLGINHGSLPVNAPRCPFHNYHHDGTMRTGDNGKGSVNYEPNSFDGP

VENSQYNEPALALEGAAFNYNHREDKDYYTQPGNLYRLVPADEKERIHSNVAAAMEGVPDFIKIRAIARFYQADENC

GKGIAAKAGIQLKDVLTEVERQKDE 

Figure 3. 126: Catalase gene location for Oxidative stress and the protein sequence    

The graphic is centred on the focus gene, which is red and numbered 1; the identification that include, 

function of the gene catalase (EC1.11.1.6), coting-00012, the gene starts from 14792 bp stop 13311 bp, 

size 1482 bp, 494 aa, set 1. This feature is part of a subsystem; in Oxidative stress and protection from 

Reactive Oxygen Species (RAST server) (A). Using BlastP program, the protein sequences showed 100% 

identity to catalase (B). 

 

Clusters of Orthologous Groups (COGs) analysis allows the proteins associated with the genome 

to be identified (Tatusov, Galperin, Natale, & Koonin, 2000). The functional categories are 

classified in 26 groups and each functional group is labelled from A-Z (Tatusov et al., 2003). 

Functional classification of the M. fermentans HH-ZS genome was performed using the 

BIOiPLUG function of the ChunLab "genome service". The analysis resulted in the annotation of 

3068 genes (Figure 3.127). Similar results were also obtained using WebMGA server (S. Wu, 

Zhu, Fu, Niu, & Li, 2011). Leaving aside the genes with unknown functions, the largest groups 

were those associated with cell wall and membrane synthesis (M), carbohydrate transport and 

metabolism (G) and inorganic ion transport (P), all functions that might be expected to be 

dominant in an ISA degrading alkaliphilic isolate. However, COG includes the function of 

unknown proteins under the category (S; 1177 genes (38.36%)) which may include genes that 

coded for ISA degradation. It is not unusual for proteins with unknown function to dominate 

protein identified via COG (Tatusov et al., 2000). For example a similar result was found in the 

genome analysis of Bifidobacterium bifidum S17, where the category for unclassified proteins 

estimated 37.4% (Wei et al., 2016).  
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Figure 3. 127: The number of genes for protein-coding sequences (CDS) frequency per COG category for M.fermentans HH-ZS 

A bar graph of the number of genes for protein-coding sequences (CDS) frequency per COG category after comprehensive annotation, each bar showing the 

number of CDS in that category https://www.bioiplug.com/genome/explore?puid=77474
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Table 3. 36: Carbohydrate subsystem features of M.fermentans HH-ZS and other strains   

Subsystem Feature Counts MfHH-ZS BI85 BI 49 BI 70 BI 41 BI 28 BI 36 BI 51

Carbohydrates 297 524 537 235 398 220 207 344

 Central carbohydrate metabolism 78 128 148 108 117 101 105 124

 Methylglyoxal Metabolism 2 5 29 10 4 7 8 27

 Pyruvate:ferredoxin oxidoreductase 1 3 0 0 2 0 0 0

 Pyruvate metabolism II: acetyl-CoA, acetogenesis from pyruvate 4 9 32 21 12 8 9 27

 Pyruvate Alanine Serine Interconversions 5 5 9 6 5 6 9 4

 Glycolysis and Gluconeogenesis, including Archaeal enzymes 0 16 0 0 0 0 0 0

 Dihydroxyacetone kinases 2 8 1 0 6 0 0 6

 Glycolysis and Gluconeogenesis 14 21 11 14 16 14 13 16

 Dehydrogenase complexes 4 0 20 10 14 11 14 0

 TCA Cycle 10 0 22 17 17 17 16 19

 Entner-Doudoroff Pathway 12 27 0 0 14 13 11 0

 Pyruvate metabolism I: anaplerotic reactions, PEP 10 12 4 6 5 10 6 5

 Pentose phosphate pathway 8 20 11 11 16 9 10 8

 Glycolate, glyoxylate interconversions 6 2 0 7 0 0 4 4

 Glyoxylate bypass 0 0 6 6 6 6 5 7

 Ethylmalonyl-CoA pathway of C2 assimilation 0 0 3 0 0 0 0 1

 Aminosugars 18 64 11 0 35 6 0 0

 Chitin and N-acetylglucosamine utilization 18 21 11 0 35 6 0 0

 N-Acetyl-Galactosamine and Galactosamine Utilization 0 16 0 0 0 0 0 0

 Hyaluronate utilization 0 27 0 0 0 0 0 0

 Di- and oligosaccharides 49 157 32 1 58 16 5 25

 Fructooligosaccharides(FOS) and Raffinose Utilization 0 13 0 0 0 0 0 0

 Maltose and Maltodextrin Utilization 22 32 9 0 25 11 0 9

 Trehalose Uptake and Utilization 0 17 11 0 13 0 5 14

 Beta-Glucoside Metabolism 0 61 0 0 0 0 0 0

 Lactose and Galactose Uptake and Utilization 18 24 10 0 11 0 0 0

 Lactose utilization 9 10 2 1 6 0 0 2

 Sucrose utilization 0 0 0 0 0 5 0 0

 One-carbon Metabolism 26 6 80 5 36 35 37 62

 One-carbon metabolism by tetrahydropterines 6 5 7 5 5 5 4 5

 Serine-glyoxylate cycle 20 0 73 0 31 30 33 57

 Organic acids 6 5 23 27 12 3 3 4

 Glycerate metabolism 0 5 5 5 6 3 3 2

 Propionyl-CoA to Succinyl-CoA Module 6 0 6 5 0 0 0 0

 Lactate utilization 0 0 7 10 6 0 0 2

 Malonate decarboxylase 0 0 0 7 0 0 0 0

 Fermentation 19 37 141 48 39 24 35 89

 Butanol Biosynthesis 0 11 64 14 10 6 12 43

 Fermentations: Mixed acid 8 18 0 0 13 0 0 0

 Fermentations: Lactate 3 8 5 5 5 1 4 3

 Acetolactate synthase subunits 2 0 4 5 2 4 0 3

 Acetoin, butanediol metabolism 6 0 9 0 5 0 3 0

 Acetyl-CoA fermentation to Butyrate 0 0 59 24 4 13 16 40

 CO2 fixation 0 2 0 41 0 0 11 0

 CO2 uptake, carboxysome 0 2 0 8 0 0 0 0

 Photorespiration (oxidative C2 cycle) 0 0 0 16 0 0 11 0

 Calvin-Benson cycle 0 0 0 17 0 0 0 0

 Sugar alcohols 26 33 35 0 16 6 4 7

 Glycerol and Glycerol-3-phosphate Uptake and Utilization 16 9 15 0 7 6 4 7

 Mannitol Utilization 0 8 0 0 0 0 0 0

 Ethanolamine utilization 0 16 0 0 0 0 0 0

 Inositol catabolism 10 0 20 0 9 0 0 0

 Carbohydrates - no subcategory 0 7 0 0 7 1 1 0

 Carbon storage regulator 0 2 0 0 0 1 0 0

 Lacto-N-Biose I and Galacto-N-Biose Metabolic Pathway 0 5 0 0 7 0 0 0

 Polysaccharides 19 8 27 0 10 7 0 14

 Glycogen metabolism 4 7 7 0 7 7 0 5

 Alpha-Amylase locus in Streptocococcus 0 1 20 0 3 0 0 9

 Cellulosome 15 0 0 0 0 0 0 0

 Monosaccharides 56 77 40 5 68 21 6 19

 Mannose Metabolism 20 20 6 3 6 2 3 4

 D-ribose utilization 4 8 7 2 11 1 3 5

 Deoxyribose and Deoxynucleoside Catabolism 7 18 6 0 5 6 0 4

 D-gluconate and ketogluconates metabolism 0 6 7 0 0 0 0 2

 D-galactarate, D-glucarate and D-glycerate catabolism 0 4 0 0 0 0 0 0

 Fructose utilization 0 17 12 0 10 0 0 4

 D-galactarate, D-glucarate and D-glycerate catabolism - gjo 0 4 2 0 0 0 0 0

 Xylose utilization 10 0 0 0 12 0 0 0

 D-Galacturonate and D-Glucuronate Utilization 15 0 0 0 9 12 0 0

 L-Arabinose utilization (15) 0 0 0 0 15 0 0 0
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Further annotation using the Carbohydrate-Active enzymes (CAZyme) analysis tool kit (B. H. 

Park, Karpinets, Syed, Leuze, & Uberbacher, 2010) identified a further 69 genes and placed all 

of these into CAZY domains (Figure 3.128). Through the WGS analysis, the number of 

glycoside hydrolase proteins family was greater in M. fermentans HH-ZS compared with other 

available Parabacteroides species.   

 

Figure 3. 128: CAZy assignment of carbohydrate active enzymes of M. fermentans HH-

ZS  

Comparison of the CAZy assignment with available whole genome sequences of Parabacteroides sp. 

Glycoside Hydrolase (A), Glycosyl Transferase (B), Carbohydrate Binding Module (C), Carbohydrate 

Esterase (D), Polysaccharide Lyase (E) and Auxiliary Activities (F) associated families are shown. 
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The presence of a number of carbohydrate binding module families (CBM) in the genome, (in 

particular calcium dependent CBM4), are involved in the metabolism of a number of the 

organic materials present in soils include cellulosic materials, with the exception of crystalline 

cellulose (Kataeva, Seidel, Li, & Ljungdahl, 2001). Interestingly alkaline conditions will result 

in the swelling of cellulose and potentially its partial hydrolysis, making the cellulose fibres 

less crystalline. 

The availability of the whole genome of some related strains (Table 3.37) provides an 

alternative approach to identifying the bacteria concerned. BLASTn analysis using the partial 

sequence of the 16S rRNA gene (1528 bp) from the full sequence was employed generated with 

a partial sequences of a closest match with Macellibacteroides fermentans type strain LIND7H 

by the EzBioCloud database (S.-H. Yoon et al., 2017). A phylogenetic tree (Figure 3.129 A) 

using an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) clustered M.f HH-

ZS (BI40) with Macellibacteroides fermentans type strain LIND7H, accession number 

HQ020488.  

Whilst, the Orthologous Average Nucleotide Identity (OrthoANI) analysis provides an 

alternative approach which has similarities to the traditional DNA/DNA hybridisation approach 

employed to identify relatedness between bacterial isolates (I. Lee, Kim, Park, & Chun, 2016; 

S.-H. Yoon et al., 2017). When this approach was employed M.f HH-ZS (BI40) was aligned 

with Parabacteroides chartae Type strain DSM 24967 (Table 3.37, Figure 3.129 B) instead of 

the type strain LIND7H, that was due to the unavailability of the whole genome sequence of 

the type strain LIND7H. It should be noted that, when the HH-ZS strain was analysed via the 

updated EzBioCloud programme (S.-H. Yoon et al., 2017) the data base attributed it to the 

Parabacteroides genus rather than the Macellibacteroides genus. This result combined with the 

previous results provide further evidence that M.f. HH-ZS is a distinct strain when compared 

with its closest relative strains of Macellibacteroides fermentans LIND7HT and 

Parabacteroides chartae Type strain DSM 24967.     

 

 

 

 

 

 

 



240 
 

Table 3. 37: Whole Genome based identification of M. fermentans HH-ZS strain 

Similarity search results sorted on 16S rRNA and identity by OrthoANI values or one of them 

if the information from one of them is not available (NA). NA=not available 
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A)   

 

B) 

 

Figure 3. 129: A phylogenetic tree based on 16S rRNA sequence and UPGMA clustering 

of OrthoANI similarity.      https://www.bioiplug.com/genome/explore?puid=77474  

The similarity identification results from the EzBioCloud genome DB through BIOiPLUG, ChunLab's 

"genome service" DB. Maximum-likelihood algorithm phylogenetic tree based on 16S rRNA gene 

sequences showed closest strains to the M.f HH-ZS (BI40), with 99.6% similarity to Macellibacteroides 

fermentans type strain LIND7HT, accession number HQ020488 (A). The Dedrogram based on UPGMA 

of OrthoANI showed a similarity between M.f HH-ZS (BI40) and Parabacteroides chartae type strain 

DSM 24967 (B).  
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 Discussion  

This study identified a single strictly anaerobic bacterial strain capable of ISA degradation using 

either CDPs or Ca(ISA)2 at pH 8.0 and pH 9.0. The final products of ISA fermentation by 

Macellibacteroides fermentans HH-ZS was acetic acid when Ca(ISA)2 was provided as a 

carbon source. In addition, this strain also has the ability to ferment a wide range of sugars 

(Table 3.32 and 3.33). Whole genome annotation (Figure 3.125) demonstrated the presence of 

a range of genes (297 (16%)) encoding proteins associated with carbohydrate metabolism 

(Table 3.35). This included a group of 15 genes that encoding for the cellulosome not present 

in the genome of any of the other strains (Table 36). This multi-enzyme systems was first 

discovered in the strictly anaerobic of cellulolytic thermophile, Clostridium thermocellum (E. 

Bayer, Setter, & Lamed, 1985; E. A. Bayer, Kenig, & Lamed, 1983), and has also been detected 

in other anaerobic bacteria include; C. cellulovorans, C. cellulolyticum, Bacteroides 

ceflulosolvens, Ruminococcus flavefaciens and Acetivibrio cellulolyticus. The cellulosome in 

most of these anaerobic bacteria are similar and composed of Dockerin domine protein that 

bind to type I cohesins and CBD (Complete scaffoldin), except in Bacteroides species, where 

the cellulosome is composed of  type II cohesins and CBD without Dockerin  (Incomplete 

scaffoldin) or Cell-surface anchoring proteins (E. A. Bayer, Chanzy, Lamed, & Shoham, 1998). 

CAZy analysis revealed that the strain harbored a number of carbohydrate degrading enzymes, 

which merit further investigation to determine the metabolic pathways associated with ISA 

degradation. 

M.f. HH-ZS grew between pH 5.0–10.0 with an optimum between pH 5.0–8.0 (Figure 3.121), 

it did not require NaCl for growth, but was capable of growth in the presence of NaCl up to 

2.52 M (Figure 3.123). It was also able to tolerant heavy metals with MIC values indicating 

that it was more sensitive to Co and least sensitive to Zn (Table 3.34). In previous research 

carried out on copper contaminated sediments from contaminated lakes in Finland. It was found 

that there was a significant shift in the community structure, with the Bacteroidetes phyla 

becoming the dominated phyla in the contaminated lake due to their high resistance to heavy 

metals (X.-P. Chen et al., 2017). 

Identification of phylogeny using partial 16S rRNA sequencing have classified M.f. HH-ZS as 

a new strain within the newly established species Macellibacteroides fermentans. This strain 

shows homology to the Macellibacteroides fermentans LINND7H strain (Figure 3.116). 

However, the physical and biochemical characteristics including biomarker analysis and alkali 

and NaCl tolerance separated this isolate from the type strain of Macellibacteorides fermentans. 
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Macellibacteroides fermentans HH-ZS strain was also aerotolerant by virtue of the possession 

of catalase. The biomarker studies supported the position that this is a new strain based on the 

fact that there were significant differences in fatty acid, polar lipid and menaquinone profiles 

when compared with the closest related strains LIND7HT strain and Parabacteroides species 

(Jabari et al., 2012).  

The data collected regarding Macellibacteroides fermentans HH-ZS strain contributed to the 

publication: 

Simon P. Rout, Zohier B. Salah, Christopher J. Charles, Paul N. Humphreys: Whole-Genome 

Sequence of the Anaerobic Isosaccharinic Acid Degrading Isolate, Macellibacteroides 

fermentans Strain HH-ZS. Genome Biology and Evolution 08/2017; 9(8-8):2140-2144., 

DOI:10.1093/gbe/evx151 

 Key findings 

 Macellibacteroides fermentans HH-ZS was a novel strain with a number of 

characteristics, which separate it from its closest relatives including catalase activity, 

the presence of a cellulosome, fatty acid and polar lipid contents. 

 The strain was a strictly anaerobic bacterium with specific defence mechanisms 

against oxidative stress e.g. catalase.  

 Macellibacteroides fermentans HH-ZS was the first Gram negative, strictly anaerobic 

bacteria able to degrade ISA to be identified.  
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4. General Discussion and Conclusions 
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 Discussion 

The deep cementitious geological disposal facility (GDF), about 500 m underground, is a 

current strategy for a long term storage of the United Kingdom’s nuclear waste legacy (Anon, 

2010a). depending on the heat and radioactive outputs, the GDF are classified into three levels, 

low- intermediate- and high level waste (Anon, 2011). The intermediate waste (ILW) of GDF 

will be expected to contain a number of heterogeneous of the radionuclide-contaminated waste 

that include a significant amount of the cellulosic materials. Post closure of the facility, it is 

expected to re-saturate with the groundwater which causes the dissolution of the cementitious 

backfill that leading to create high pH (Evans, 2008). Under the alkaline and anaerobic 

environmental conditions that generated within the GDF, the cellulosic materials are subjected 

to alkaline hydrolysis and produce cellulose degradation products including the α and β 

stereoisomers of isosaccharinic acid (ISA) (Glaus et al., 1999; Humphreys, Laws, et al., 2010). 

These organic acids are able to form stable complexes with certain radionuclides increasing 

their solubility and promoting their transport via groundwater (Greenfield et al., 1997; Randall 

et al., 2012).  

The generation of ISA in the proposed GDF poses both safety and microbiological challenges 

(Glaus et al., 1999; Humphreys, Laws, et al., 2010). The research described in this thesis has 

focussed on the isolation and characterisation of alkaliphilic bacteria from anthropogenic 

alkaline soils and test their ability to degrade ISA isomers (α- and β-) in the CDP and in the 

form of Ca(ISA)2, under alkaline and anaerobic incubation conditions through the fermentation 

and anaerobic respiration by using TEA. The microcosms of CDPs/MM broth were inoculated 

with soil samples that collected from Haripur Hill lime kiln waste site, Buxton site, Derbyshire, 

UK. This site is likely to be a source of novel alkaliphilic or alkali tolerant species which may 

be capable of the degradation of ISAs (Bassil et al., 2015; Humphreys, West, et al., 2010; Rout, 

Charles, Doulgeris, et al., 2015; Rout, Charles, et al., 2015a; Rout et al., 2014; S. L. Smith et 

al., 2016). In addition, these novel alkaliphiles may have alternative applications in 

biotechnology and bioremediation. 

When used to establish CDP fed microcosms, these alkaline sediments generated communities 

able to degrade both forms of ISA (- and β-) via fermentation up to pH 11.0. At pH 12.0 there 

was no clear evidence of microbial activity, although isolation studies demonstrated that viable 

organisms remained viable at the pH. These microcosms were operated for extended incubation 

period (12 months) in order to establish stable communities. Despite the fact that the Harpur 
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Hill sediments are highly alkaline (pH 12-13) and that ISA is generated in the sediments at the 

site (Rout, Charles, et al., 2015b), ISA degradation in these microcosms was clearly pH 

dependent with increased degradation below pH 9.0. This is in agreement with previous 

observations by a number of authors (Bassil et al., 2015; Kuippers et al., 2015; Rout, Charles, 

Doulgeris, et al., 2015). The fermentation of ISA consistently generated acetic acid as the 

primary fermentation end product with other VFA rarely observed.   

Adaption to CDP fed microcosms significantly impact the associated microbial diversity. These 

observation were also consistent with previous observations by Rout et al. and Kuippers et al. 

where the microbial community shifted from a Proteobacteria dominated community to a 

Firmicutes dominated community in the microcosms (Kuippers et al., 2015; Rout, Charles, 

Doulgeris, et al., 2015). This loss in diversity from ~ 1030 OTUs in the soil to ≤600 OTUs in 

the microcosms is not surprising considering the fact that the soil will contain large numbers of 

aerobes, plant associated organisms, transient organisms and spores that will not be able to 

maintain populations in the microcosms.  

Previous studies have looked at ISA degradation at the expense of TEA at high pH (pH 10.0) 

(Bassil et al., 2015) and neutral pH (Kuippers et al., 2015) there was no systematic investigation 

looking at a range of pH environments employing CDP. These experiments demonstrated two 

trends in common with the microcosms firstly that the rate of ISA degradation decreased at 

high pH and secondly the community diversity seen in soil inoculum decreased significantly 

when incubated anaerobically with CDP and the TEA.  The use of CDP in these experiments 

rather than Ca-ISA generated different outcomes when compared to similar studies (Bassil et 

al., 2015) and neutral pH (Kuippers et al., 2015). This difference is that in the previously 

published Ca-ISA studies nitrate reduction were two stages process with nitrate reduction 

following fermentation. In the experiments reported here, nitrate reduction progressed directly 

with no evidence of fermentation. Under Fe(III)-reducing condition there was limited ISA 

degradation with Fe(III) reduction indicated by the generation of Fe (II). An observation similar 

to that recorded by Kuippers et al. (2015). The microbial populations were broadly similar to 

those observed in the nitrate reducing microcosms dominated by Gram-negative Proteobacteria 

such as B. melitensis and P. tuomuerensis followed by the Firmicutes. This results are in 

contrast with the observations of Bassil et al. (2015), who observed populations dominated by 

Gram-positive Firmicutes represented by the Anaerobacillus genus at pH 10 (Bassil et al., 

2015).   
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Under sulphate-reducing cultures, the degradation of ISA was associated with a fermentation 

process at pH 7.0 and pH 8.0 but not above pH 9.0. These results are consistent with previous 

data provided by Bassil et al. (2015), who did not find any evidence of ISA degradation under 

sulphate-reducing conditions at pH 10 (Bassil et al., 2015) and Rizoulis et al. (2012),  who 

failed to find evidence for sulphate reduction at the expense of lactate or acetate at alkaline pH 

(Rizoulis et al., 2012). They are also in agreement with Kuippers et al. (2015), who 

demonstrated sulphate reduction at neutral pH was associated with fermentation. The absence 

of sulphate reduction under alkaline conditions is further illustrated by the absence of any 

classical SRB in the community analysis of these experiments. Rather, large numbers of 

unclassified organisms dominated these experiments.  

The calcium salt of ISA (Ca(ISA)2) has been used in both geochemical and microbiological 

studies as an alternative to CDP (Bassil et al., 2015). It was used in the studies presented here 

as a step towards isolating pure cultures of ISA degrading bacteria. A large number of 

microcosms were run with Ca-ISA, one important example became dominated by Gram-

negative rods primarily composed of Azonexus species.  This then led to the isolation of a novel 

alkaliphilic nitrogen fixing strain of Azonexus.  

This Azonexus sp. was one of many bacteria isolated during the course of this investigation. 

Many of these isolates were novel and isolated from CDP fed microcosms and isolated on CDP 

and Ca-ISA plates. However, with the exception of two isolates, none was able to degrade ISA 

when cultured in anaerobic broths with ISA as a soul carbon source. This suggests that ISA 

degradation in the microcosms reported here is a multispecies process that could not be 

reproduced in pure culture.   

Two Gram-negative strains were isolated, which were able to degrade ISA in pure culture. 

These were the obligate anaerobic Macellibacteroides fermentans HH-ZS strain (BI40) and the 

facultative anaerobic Aeromonas salmonicida strain (BI55). These are the first examples of 

pure cultures able to degrade ISA under alkaline, anaerobic conditions via fermentation. In view 

of its novelty, M. fermentans HH-ZS received more detailed attention than Aeromonas 

salmonicida (BI55).  

Macellibacteroides fermentans is a member of the Bacteroidetes phylum and was detected in 

the microbial communities of the CDP microcosms, but only at a low level (4%, 2.8% and 

0.03% at pH 9.0, pH 10.0 and pH 11.0 respectively). The strain is able to ferment ISA to acetic 
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acid under strictly anaerobic conditions. The species M. fermentans was identified for a first 

time by Jabari et al. (2012) through their work on isolate LIND7H  which was obtained from 

anaerobic abattoir wastewaters in Tunisia (Jabari et al., 2012). M. fermentans HH-ZS strain 

(BI40) (this study) was significantly different to M.fermentans LIND7HT in terms of its pH 

profile, salt tolerance and the presence of catalase. Biochemical and molecular (WGS) of M. 

fermentans HH-ZS indicated that it has broad carbohydrate degradation capabilities including 

the presence of a cellulosome.   

 Conclusions 

4.2.1. Conclusion 1  

After a number of CDP fed-cycle protocol in the microcosms under the pH values between 8.0 

and 11.0, the results concluded to that, the bacterial community present in the alkaline soil was 

able to adapt to an alkaline broth medium and degrade CDP containing both forms of ISA. The 

bacterial communities established in these microcosms were able to degrade CDP to methane 

at pH 10.0. The bacterial community has shown an affinity for the utilization of β-ISA, rather 

than α-ISA, even at pH 10.0. Significant ISA degradation was initiated when the pH fell below 

pH 9.5. Acetate accumulation was an indicator of ISA fermentation and facilitated the reduction 

in pH. A significant reduction of bacterial diversity occurred during the adaption process.  

 Conclusion 2 

When subcultured in liquid culture and provided with ISA as a sole carbon source, microbial 

populations may become dominated by small numbers of bacteria. The clearest example being 

the establishment of a microbial community dominated by the Gram-negative bacillus, 

Azonexus hydrophilus. These microcosms proved to be an effective “half way house” in the 

process of isolating novel isolates.   

 Conclusion 3  

Many of the bacteria present in the microcosms were not recovered in pure culture, supporting 

the well known observation that large proportions on environmental bacteria are uncultivable 

via conventional techniques.  Of those bacteria that were isolated, many were unable to degrade 

ISA when provided as a sole carbon source in liquid culture. This suggests that the degradation 

of ISA in the CDP fed microcosms was either associated with the uncultivable bacteria or 

required the cooperation of more than one species.  
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 Conclusion 4 

This study identified two bacterial strains capable of ISA degradation under anaerobic 

conditions using either CDPs or Ca(ISA)2 at pH 8.0 and pH 9.0. These two strains were the 

Gram-negative Aeromonas species ZS-strain (BI55) and Macellibacteroides fermentans HH-

ZS. Macellibacteroides fermentans HH-ZS is the first Gram negative, strictly anaerobic 

bacteria able to degrade ISA to be identified. 

 Future work 

The large difference between the numbers of bacteria present within the microcosms and those 

recoverable via conventional culturing techniques means that there is a gap in the currently 

available techniques. The molecular analysis of these populations provides an insight into the 

organisms present. Future studies will use this analysis to identify target organisms for isolation, 

this isolation will be guided by a molecular understanding of what these organisms are capable 

of and which culture supplements they may require.  

The genome of Macellibacteroides fermentans HH-ZS harboured a number of carbohydrate 

degrading enzymes, which merit further investigation to determine the metabolic pathways 

associated with ISA degradation. In addition, some of the isolated alkaliphiles are poorly 

characterised. The characterization of these isolates would provide a platform for further 

investigation regarding their biotechnological and bioremediation potential.  

This study isolated two strain of Aeromonas salmonicida, only one of which was able to degrade 

ISA. These strains provide an opportunity to identify the mechanisms by which ISA is degraded 

by Gram-negative bacteria. This analysis could be performed via a comparison of the whole 

genomes of these two strains.   
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Appendix 
Chapter 3 

Appendix-1 

Standard curves to calculate the concentration of the ISA isomers and volatile fatty 

acids of the samples. 
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Appendix-2; Bacterial community analyses under a fermentation process  

Bacterial diversity of the microcosms; R1 at pH 10, R2 at pH 11 and R5 at pH 9.0.  

After CDPs feed-cycle each 30 days for 12 month incubation          
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After CDPs feed cycle each 10 days for further 40 day incubation. 
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Table 1: Bacterial diversity of crude soil sample compared with CDPs driven microcosms at pH 9.0, pH 10.0 and pH 11.0, under two CDPs 

feed-cycle protocols; each 30 days for 12 month and followed by each 10 days for 40 days.   

Alkaliphiles community of CDPs driven microcosms at pH 9.0, pH 10.0 and pH 11.0, were dominated by Firmicutes phylum under both of incubation 

conditions protocols, followed by Proteobacteria 44% at pH 11, 35.4% at pH 9.0 that was dominated phylum in a crud soil sample 48%. The phylum 

Bacteroidetes was presented by high percentages at pH 9.0 and pH 10.0 under both conditions with an average 23% and 21.5% respectively. 

Actinobacteria phylum was recorded a low percentage at all pH values under both of incubation conditions. UD= undetected.            
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Table 2: Bacterial diversity on a species level of crud soil sample compared with CDPs driven microcosm at pH 9.0, pH 10.0 and pH 11.0, under 

two CDPs feed-cycle protocols; each 30 days for 12 month and followed by each 10 days for 40 days. 

On a species level, the highest percentage was recorded by DQ088747 species of Azonexus genus at pH11 37% under FFCP and pH 9.0 30% under S-

FCP, followed by Ruminococcus sp. 25.7% under F-FCP at pH 10.0. The species GQ132209 of Tissierella genus (37%, 23%, at pH 11 and pH 10 

respectively, under S-FCP). JN178047 sp. of Alkaliphilus genus was presented by 17.5% under S-FCP at pH 11 and by 10% under F-FCR at pH 10.   
UD= undetected, Gram positive (G+), Gram negative (G-), *Archaea, Bold species = whole genome seq was performed from pure culture of these strains   
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Appendix-3; Bacterial diversity analysis under a redox reaction processes  

I - Phylogenetic diversity under a fermentation process, at pH7.0, 8.0, 9.0 and 10.0 

      

A) Bacterial community through fermentation (F) process at pH 7.0 

         

B) Bacterial community through fermentation (F) process at pH 8.0 

       

C) Bacterial community through fermentation (F) process at pH 9.0            
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D) Bacterial community of fermentation (F) process at pH 10.0   

II - Phylogenetic analysis under Nitrate reduction process (RX-NI) 

 

A) Bacterial diversity under nitrate reduction at pH 7.0 

 

B) Bacterial diversity under nitrate reduction at pH 8.0 
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C) Bacterial diversity under nitrate reduction at pH 9.0 

 

D) Bacterial diversity under nitrate reduction at pH 10.0 

 

III- Sulphate reduction process (RX-S): 

 

A) Bacterial diversity under Sulphate reduction condition at pH 7.0 
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B) Bacterial diversity under Sulphate reduction condition at pH 8.0 

 

C) Bacterial diversity under Sulphate reduction condition at pH 9.0 
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D) Bacterial diversity under Sulphate reduction condition at pH 10.0 

IV- Phylogenetic analysis under Iron (III) reduction process (RX-I (III)) 

 

A) Bacterial diversity under Iron (III) reduction condition at pH 7.0 
 

 

B) Bacterial diversity under Iron (III) reduction condition at pH 8.0 
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C) Bacterial diversity under Iron (III) reduction condition at pH 9.0 

 

 

D) Bacterial diversity under Iron (III) reduction condition at pH 10 
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Table 1: Bacterial diversity of the CDPs driven microcosms under a fermentation and a redox reaction at different pH levels  

 

UD=  Undetected  
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Table 2: The genera and related classified species of the dominate bacterial diversity that identified by name through 16 SrRNA gene 

sequencing of the CDPs driven microcosms under a fermentation and a redox reaction at different pH levels 

 

UD= undetected bacterial species or less than 2%   



282 
 

Table 3: unclassified species of the dominate bacterial diversity that identified by numbers through 16 SrRNA gene sequencing of the 

CDPs driven microcosms under a fermentation and a redox reaction at different pH levels 

UD= undetected bacterial species or less than 2% between all compared microcosms. F=Family and G=Genus with 93-99.5% similarity 
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Appendix-4; 16SrRNA gene sequencing for bacterial identification   

Table 6: Isolated strains, phylogenetic identification by percentage of compatibility using BLASTN  

 

BI= Bacterial Isolates vial number.  * distinguished through slight difference in pigment and texture. Yellow shading, bacteria selected for WGS
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Phylogenetic trees  
 

> Aeromonas salmonicida ZS-strain (BI 1) 946 100% 
AGCGGGAAAGTAGCTTGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATGCCTGGGGATCTGCCCAGTCGAGGGGGAT

AACAGTTGGAAACGACTGCTAATACCGCATACGCCCTACGGGGGAAAGGAGGGGACCTTCGGGCCTTTCGCGATTGGATGAA
CCCAGGTGGGATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCAC

ACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGC

CATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGCGCCTAATACGTGTCAAC
TGTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGA

ATTACTGGGCGTAAAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAA

ACTGTCCAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGT
GGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGT

CCACGCCGTAAACGATGTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGG

GAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAA
CGCGAAGAACCTTACCTGGCCTTGACATGTCTGGAATCCTGTAAA 

 

> Aeromonas salmonicida ZS-strain (BI 3) 785 99% 
AAAGTAGCTTGCTACTTTTGCCGGCGAGCGGCGGACGGGTGAGTAATGCCTGGGGATCTGCCCAGTCGAGGGGGATAACAGT

TGGAAACGACTGCTAATACCGCATACGCCCTACGGGGGAAAGGAGGGGACCTTCGGGCCTTTCGCGATTGGATGAACCCAGG

TGGGATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGA
ACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCC

GCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGCGCCTAATACGTGTCAACTGTGAC
GTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACT

GGGCGTAAAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTC

CAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGA
AGGCGGCCCCCTGGACAAAGACTGACGCTCACGTGCGAAAGCGTGGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCAC

GCCGTAAACGATGTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCG 

 

>Bacillus mycoide ZS-strain (BI 4) 924 100% 
TCGAGCGAATGGATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTACCCATAAGAC

TGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAATATTTTGAACTGCATAGTTCGAAATTGAAAGGCGGCTTCGGCTG
TCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAG

AGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACG

AAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAG
TTGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTG

GCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGT

GGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGAT

ATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGAT

TAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCAT

TAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATG
TGGTTTAATTCGAAGCAACGCGAA 

 

>Clostridium bifermentans ZS-strain (BI S8) 981 99% 
GCTACATCATGCAGTCGAGCGATCTCTTCGGAGAGAGCGGCGGACGGGTGAGTAACGCGTGGGTAACCTGCCCTGTACACAC

GGATAACATACCGAAAGGTATACTAATACGGGATAACATACGAAAGTCGCATGGCTTTTGTATCAAAGCTCCGGCGGTACAG

GATGGACCCGCGTCTGATTAGCTAGTTGGTAAGGTAATGGCTTACCAAGGCAACGATCAGTAGCCGACCTGAGAGGGTGATC
GGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGA

TGCAGCAACGCCGCGTGAGCGATGAAGGCCTTCGGGTCGTAAAGCTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAG
GAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGT

GCGTAGGTGGTTTTTTAAGTCAGAAGTGAAAGGCTACGGCTCAACCGTAGTAAGCTTTTGAAACTAGAGAACTTGAGTGCAG

GAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTAGCGAAGGCGGCTCTCTGG
ACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGT

ACTAGGTGTCGGGGGTTACCCCCCTCGGTGCCGCAGCTAACGCATTAAGTACTCCGCCTGGGAAGTACGCTCGCAAGAGTGA

AACTCAAAGGAATTGACGGGGACCCGCACAAGTAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAAG
CTTGACATCCCACTGACCTCTCCCTAATCGGAGATTCCCTTCGGGGACAGTGGTGACAGGTGGTGCATGGTTGTCGTCAGC 

 

>Acinetobacter guillouiae ZS-strain (BI 8) 916 99% 
CAGTCGAGCGGGGGAGATTGCTTCGGTAATTGACCTAGCGGCGGACGGGTGAGTAATACTTAGGAATCTGCCTATTAATGGG

GGACAACATCTCGAAAGGGATGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGATCACTTGTGACCTTGCGTTAATA

GATGAGCCTAAGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATC
CGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAACCCTGA

TCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGGCTCTCTTGGTTAATACCCA

AGATGAGTGGACGTTACTCGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCGAGCGTTA
ATCGGATTTACTGGGCGTAAAGCGTGCGTAGGCGGCTTTTTAAGTCGGATGTGAAATCCCCGAGCTTAACTTGGGAATTGCAT

TCGATACTGGGAAGCTAGAGTATGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAAT

ACCGATGGCGAAGGCAGCCATCTGGCCTAATACTGACGCTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATACCCT
GGTAGTCCATGCCGTAAACGATGTCTACTAGCCGTTGGGGCCTTTGAGGCTTTAGTGGCGCAGCTAACGCGATAAGTAGACCG

CCTGGGGAGTACGGTCGCAAGACTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG

ATGCAACGCGAAAA 
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>Bacillus mycoides ZS-strain (BI 9) 970 99% 
CTGCAGTCGAGCGAATGGATTAAGAGCTTGCTCTTATGAAGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTACCCA

TAAGACTGGGATAACTCCGGGAAACCGGGGCTAATACCGGATAATATTTTGAACTGCATAGTTCGAAATTGAAAGGCGGCTT
CGGCTGTCACTTATGGATGGACCCGCGTCGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGA

CCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAAT

GGACGAAAGTCTGACGGAGCAACGCCGCGTGAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGT
GCTAGTTGAATAAGCTGGCACCTTGACGGTACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT

AGGTGGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTC

AACCGTGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGT
AGAGATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAA

CAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTA

ACGCATTAAGCACTCCGCCTGGGGAGTACGGCCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGG
AGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACATCCTCTGAAAACTCTAGAG 

 

> Alcaligenes aquatilis ZS-strain (BI 10) 872 100% 
AACGGCAGCACGAGAGAGCTTGCTCTCTTGGTGGCGAGTGGCGGACGGGTGAGTAATATATCGGAACGTGCCCAGTAGCGGG

GGATAACTACTCGAAAGAGTGGCTAATACCGCATACGCCCTACGGGGGAAAGGGGGGGATTCTTCGGAACCTCTCACTATTG
GAGCGGCCGATATCGGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCAACGATCCGTAGCTGGTTTGAGAGGACGACC

AGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACCCTGA

TCCAGCCATCCCGCGTGTATGATGAAGGCCTTCGGGTTGTAAAGTACTTTTGGCAGAGAAGAAAAGGTATCTCCTAATACGAG
ATACTGCTGACGGTATCTGCAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTAA

TCGGAATTACTGGGCGTAAAGCGTGTGTAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGGGCTCAACCTTGGAACTGCAT

TTTTAACTGCCGAGCTAGAGTATGTCAGAGGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGAATA
CCGATGGCGAAGGCAGCCCCCTGGGATAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG

GTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGCCGTTAGGCCTTAGTAGCGCAGCTAACGCGTGAAGTTGACCGCC

TGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGACCCGCC 

 

>Acinetobacter guillouiae ZS-strain (BI011) 1019 99% 
ACCTGCAGTCGAGCGGGGGAGATTGCTTCGGTAATTGACCTAGCGGCGGACGGGTGAGTAATACTTAGGAATCTGCCTATTA
ATGGGGGACAACATCTCGAAAGGGATGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGATCACTTGTGACCTTGCGT

TAATAGATGAGCCTAAGTCGGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGA

TGATCCGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGGAAC
CCTGATCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTATGGTTGTAAAGCACTTTAAGCGAGGAGGAGGCTCTCTTGGTTAAT

ACCCAAGATGAGTGGACGTTACTCGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCGAG

CGTTAATCGGATTTACTGGGCGTAAAGCGTGCGTAGGCGGCTTTTTAAGTCGGATGTGAAATCCCCGAGCTTAACTTGGGAAT
TGCATTCGATACTGGGAAGCTAGAGTATGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAG

GAATACCGATGGCGAAGGCAGCCATCTGGCCTAATACTGACGCTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATA

CCCTGGTAGTCCATGCCGTAAACGATGTCTACTAGCCGTTGGGGCCTTTGAGGCTTTAGTGGCGCAGCTAACGCGATAAGTAG

ACCGCCTGGGGAGTACGGTCGCAAGACTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAA

TTCGATGCAACGCGAAGAACCTTACCTGGTCTTGACATAGTAAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTTACA

TACAGGTGCTGCATGGCTGTCGTCAGCTCGTGT 

 

>Aeromonas salmonicida ZS-strain (BI 12) 576 99% 
GACCGCATACGCCCTACGGGGGAAAGGAGGGGACCTTCGGGCCTTTCGCGATTGGATGAACCCAGGTGGGATTAGCTAGTTG

GTGGGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCA

GACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGG
CCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGCGCCTAATACGTGTCAACTGTGACGTTACTCGCAGAAGAA

GCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACG

CAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGAGTCTTGTA
GAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCCTGGA

CAAA 

 

>Clostridium malenominatum ZS-strain (BI S16) 906 98% 
AGAATCCCTTCGGGGACGATTCTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTGCCTCAAAGAGGGGGATAGCCCTCC

GAAAGGAGGATTAATACCGCATAAAGTTAAGAATTCGCATGAATTCATAACCAAAGGAGAAATCCGCTTTGAGATGGACCCG
CGTCCCATTAGCTAGTTGGTGAGGTAATAGCTCACCAAGGCGACGATGGGTAGCCGACCTGAGAGGGTGATCGGCCACATTG

GAACTGAGATACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCGCAATGGGGGAAACCCTGACGCAGCAACG

CCGCGTGGGTGACGAAGGTCTTCGGATTGTAAAACCCTGTCTTCTGGGACGATAATGACGGTACCAGAGGAGGAAGCCACGG
CTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTGTCCGGAATTACTGGGCGTAAAGGGTGCGTAGGCGG

ATGTTTAAGTGGGATGTGAAATACCTGAGCTCAACTCGGGTGCTGCATTCCAAACTGGATATCTAGAGTGCAGGAGAGGAGA

ATGGAATTCCTAGTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAGTGGCGAAGGCGATTCTCTGGACTGTAACTG
ACGCTGAGGCACGAAAGCGTGGGTAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTA

GGGGGGAACCTCCCTCTGTGCCGCAGTTAACACAATAAGTATTCCGCCTGGGGAGTACGATCGCAAGATTAAAACTCAAAGG

AATTGACGGGGGCCCGCACAAGCAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTGAACTTGACATCC
CCTGC 

>Alcaligenes aquatilis ZS-strain (BI 16) 608 99% 
TTGTGGCTAATACCGCATACGCCCTACGGGGGAAAGGGGGGGATTCTTCGGAACCTCTCACTATTGGAGCGGCCGATATCGG

ATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCAACGATCCGTAGCTGGTTTGAGAGGACGACCAGCCACACTGGGACTG
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AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACCCTGATCCAGCCATCCCGCGTG

TATGATGAAGGCCTTCGGGTTGTAAAGTACTTTTGGCAGAGAAGAAAAGGTATCTCCTAATACGAGATACTGCTGACGGTATC

TGCAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGT

AAAGCGTGTGTAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGGGCTCAACCTTGGAACTGCATTTTTAACTGCCGAGCTA

GAGTATGTCATAGGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGAATACCGATGGCGAAGGCAG
CCCCCTGGGATAATACTGACGCTCACACACGAAG 

 

>Clostridium sordillii ZS-strain (BI S17) 956 99% 
CATTTGCAGTCGAGCGACCCTTCGGGGTGAGCGGCGGACGGGTGAGTAACGCGTGGGTAACCTGCCCTGTACACACGGATAA

CATACCGAAAGGTATGCTAATACGGGATAACATATGAGAGTCGCATGGCTTTTGTATCAAAGCTCCGGCGGTACAGGATGGA

CCCGCGTCTGATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATCAGTAGCCGACCTGAGAGGGTGATCGGCCAC
ATTGGAACTGAGACACGGTCCAAACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGC

AACGCCGCGTGAGCGATGAAGGCCTTCGGGTCGTAAAGCTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAGGAAGCC
CCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAG

GCGGTCTTTCAAGCCAGAAGTGAAAGGCTACGGCTCAACCGTAGTAAGCTTTTGGAACTGTAGGACTTGAGTGCAGGAGAGG

AGAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTAGCGAAGGCGGCTCTCTGGACTGTAA
CTGACGCTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGT

GTCGGGGGTTACCCCCCTCGGTGCCGCAGCTAACGCATTAAGTACTCCGCCTGGGAAGTACGCTCGCAAGAGTGAAACTCAA

AGGAATTGACGGGGACCCGCACAAGTAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAAGCTTGACA
TCCCATTGACCTCTCCCTAATCGGAGATTTCCCTTCGGGGACAGTGGTGACAGGT 

 

>Acinetobacter johnsonii ZS-strain (BI 17) 1014 99% 
TGCAGTCGAGCGGGGAAGGGTAGCTTGCTACCTGACCTAGCGGCGGACGGGTGAGTAATGCTTAGGAATCTGCCTATTAGTG

GGGGACAACATTCCGAAAGGAATGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGATCTTCGGACCTTGCGCTAATA

GATGAGCCTAAGTCAGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATC
CGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCTGA

TCCAGCCATGCCGCGTGTGTGAAGAAGGCCTTTTGGTTGTAAAGCACTTTAAGCGAGGAGGAGGCTACCGAGATTAATACTCT

TGGATAGTGGACGTTACTCGCAGAATAAGCACCGGCTAACTCTGTGCCAGCAGCCGCGGTAATACAGAGGGTGCGAGCGTTA
ATCGGATTTACTGGGCGTAAAGCGTGCGTAGGCGGCTTTTTAAGTCGGATGTGAAATCCCTGAGCTTAACTTAGGAATTGCAT

TCGATACTGGGAAGCTAGAGTATGGGAGAGGATGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAAT

ACCGATGGCGAAGGCAGCCATCTGGCCTAATACTGACGCTGAGGTACGAAAGCATGGGGAGCAAACAGGATTAGATACCCT
GGTAGTCCATGCCGTAAACGATGTCTACTAGCCGTTGGGGCCTTTGAGGCTTTAGTGGCGCAGCTAACGCGATAAGTAGACCG

CCTGGGGAGTACGGTCGCAAGACTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCG

ATGCAACGCGAAGAACCTTACCTGGTCTTGACATAGTAAGAACTTTCCAGAGATGGATTGGTGCCTTCGGGAACTTACATACA
GGTGCTGCATGGCTGTCGTCAGCTCGTGT 

 

>Clostridium mangenotii ZS-strain (BI S20) 947 99% 
ATGCAGTCGAGCGACCCCTTCGGGGGAGAGCGGCGGACGGGTGAGTAACGCGTGGGTAACCTACCCTGTACACACGGATAAC

ATACCGAAAGGTTTACTAATACGTGATGACATATCAGACAGGCATCTGTTTGATATCAAAGGTCAGCTGGTACAGGATGGAC
CCGCGTCTGATTAGCTAGTTGGTGAGATAAAAGCTCACCAAGGCGACGATCAGTAGCCGACCTGAGAGGGTGATCGGCCACA

TTGGAACTGAGACACGGTCCAAACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCA

ACGCCGCGTGAGTGATGAAGGTTTTCGGATCGTAAAACTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAGGAAGCCC
CGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCTAGCGTTATCCGGATTTACTGGGCGTAAAGGGTGCGTAGG

CGGTCTTTCAAGTCAGAAGTTAAATTCTACGGCTCAACCGTAGCCAGCTTTTGAAACTGGAAGACTTGAGTGCAGGAGAGGA

GAGTAGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAGGAGGAATACCAGTAGCGAAGGCGGCTCTCTGGACTGTAAC
TGACGCTGAGGCACGAAAGCGTGGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGT

GTCGGGGGTTACCCCCCTCGGTGCCGCAGCTAACGCATTAAGTACTCCGCCTGGGGAGTACGCTCGCAAGAGTGAAACTCAA

AGGAATTGACGGGGACCCGCACAAGTAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAAGCTTGACA
TCCTGGTGACCTCTCCCTAATCGGAAATTTCCCTTCGGGGACACCAG 

 

>Exiguobacterium mexicanum ZS-strain (BI 21) 936 99% 
GCAGTCGAGCGCAGGAATCGACGGACCCTTCGGGGGGAAGTCGACGGAATGAGCGGCGGACGGGTGAGTAACACGTAAAGA

ACCTGCCCTCAGGTCTGGGATAACCACGAGAAATCGGGGCTAATACCGGATGGGTCATCGGACCGCATGGTCCGAGGATGAA

AGGCGCTTCGGCGTCGCCTGGGGATGGCTTTGCGGTGCATTAGCTAGTTGGTGGGGTAATGGCCCACCAAGGCGACGATGCA
TAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTT

CCACAATGGACGAAAGTCTGATGGAGCAACGCCGCGTGAACGATGAAGGCCTTCGGGTCGTAAAGTTCTGTTGTAAGGGAAG

AACAAGTGCCGCAGGCAATGGCGGCACCTTGACGGTACCTTGCGAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTA

ATACGTAGGTGGCAAGCGTTGTCCGGAATTATTGGGCGTAAAGCGCGCGCAGGCGGCCTCTTAAGTCTGATGTGAAAGCCCC

CGGCTCAACCGGGGAGGGCCATTGGAAACTGGGAGGCTTGAGTATAGGAGAGAAGAGTGGAATTCCACGTGTAGCGGTGAA

ATGCGTAGAGATGTGGAGGAACACCAGTGGCGAAGGCGACTCTTTGGCCTATAACTGACGCTGAGGCGCGAAAGCGTGGGG
AGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTTGGAGGGTTTCCGCCCTTCAGTGCTG

AAGCTAACGCATTAAGCACTCCGCCTGGGGAGTACGGTCGCAAGGCTGAAACTCAAAGGAATTGACGGGGACCCGCACAAG

CGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAG 
 

 

>Alcaligenes aquatilis ZS-strain (BI 19) 880 99% 
AACGGCAGCACGAGAGAGCTTGCTCTCTTGGTGGCGAGTGGCGGACGGGTGAGTAATATATCGGAACGTGCCCAGTAGCGGG

GGATAACTACTCGAAAGAGTGGCTAATACCGCATACGCCCTACGGGGGAAAGGGGGGGATTCTTCGGAACCTCTCACTATTG
GAGCGGCCGATATCGGATTAGCTAGTTGGTGGGGTAAAGGCTCACCAAGGCAACGATCCGTAGCTGGTTTGAGAGGACGACC

AGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACCCTGA

TCCAGCCATCCCGCGTGTATGATGAAGGCCTTCGGGTTGTAAAGTACTTTTGGCAGAGAAGAAAAGGTATCTCCTAATACGAG
ATACTGCTGACGGTATCTGCAGAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTAA
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TCGGAATTACTGGGCGTAAAGCGTGTGTAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGGGCTCAACCTTGGAACTGCAT

TTTTAACTGCCGAGCTAGAGTATGTCAGAGGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGAATA
CCGATGGCGAAGGCAGCCCCCTGGGATAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG

GGTAGTCCACGCCCTAAACGATGTCAACTAGCTGTTGGGGGCCGTTAGGCCTTAGTAGCGCAGCTAACGCGTGAAGTTGACC

GCCCTGGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGGAATTGACGGGGGACCCGCACA 

 

>Aeromonas media ZS-strain (BI 29) 665 99% 
TTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGACCTTCGGGCCTTGCGCGATTGGATATGCCCAGGTGGGATTAGCTT
GTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGG

TCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGTGAAGA
AGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGATACCTAATACGTATCAGCTGTGACGTTACTCGCAGAA

GAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGC

ACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGAGTCTT
GTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTG

GACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGT

CGATTTGGAGG 

 

> Citrobacter gillenii ZS-strain (BI 30) 1147 98% 
AGGGCCTATTTCTTCTACTGGTGCGTCGAACGGTAGCACAGAGGAGCTTGCTCCTTGGGTGACGAGTGGCGGACGGGTGAGT

AATGTCTGGGAAACTGCCCGATGGAGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGA

GGGGGACCTTCGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACG

ATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGA
ATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGAAGGCCTTCGGGTTGTAAAGTACTTTCAGCGA

GGAGGAAGGGGATGTGGTTAATAACCGCATTCATTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCG

CGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTCTGTCAAGTCGGATGTGAAA
TCCCCGGGCTCAACCTGGGAACTGCATCCGAAACTGGCAGGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGG

TGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGT

GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTTGGAGGTTGTTCCCTTGAGGAGTGGCT
TCCGGAGCTAACGCGTTAAGTCGACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCAC

AAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTACTCTTGACATCCACAGAACTTAGCAGAGATG

CTTTAGTGCCTTCGGGACTCTGAGACAGGTGCTGCATGGCTGTCGTCAGCCTCGTGTGTGAAATGTGGGTTAAGTCCCGCCAA
CGAGCGCAACCCATTATCATTTGTGCAGCGGATCGGCCGGACTCAAAGGAAACTGCCAGTGATTAACCTGGAGGAAAGTGGA 

 

>Aeromonas salmonicida ZS strain (BI029) 583 99% 
TTTTGGATGAACCCAGGTGGGATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGA

TGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAAC
CCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGCGCCTAA

TACGTGTCAACTGTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAG

CGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAA
TTGCATTTAAAACTGTCCAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGA

GGAATACCGGTGGCGAAGGCGGCCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAACAGGATTAGAT

ACCCTGGTAGT 

 

>Aeromonas salmonicid ZS-strain (BI 31) 591 99% 
GGACCTTCGGGCCTTTCGCGATTGGATGAACCCAGGTGGGATTAGCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATC
CCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATA

TTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGTGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGA

GGAAAGGTTGGCGCCTAATACGTGTCAACTGTGACGTTACTCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGG
TAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCC

CCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGAGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGA

AAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGG
GGGAGCAAACAGGATAAG 

 

>Ensifer adhaerens ZS-strain (BI 35) 855 99% 
CGCTGTGCGGTTAGCGCACTACCTTCGGGTAGAACCAACTCCCATGGTGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTA

TTCACCGCAGCATGCTGATCTGCGATTACTAGCGATTCCAACTTCATGCACTCGAGTTGCAGAGTGCAATCCGAACTGAGATG

GCTTTTGGAGATTAGCTCGACCTCGCGGTCTCGCTGCCCACTGTCACCACCATTGTAGCACGTGTGTAGCCCAGCCCGTAAGG
GCCATGAGGACTTGACGTCATCCCCACCTTCCTCTCGGCTTATCACCGGCAGTCCCCTTAGAGTGCCCAACTGAATGCTGGCA

ACTAAGGGCGAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCATGCAGCACCTGT
CTCCGATCCAGCCGAACTGAAGGATCACATCTCTGTAATCCGCGATCGGGATGTCAAGGGCTGGTAAGGTTCTGCGCGTTGCT

TCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCCCCCGTCAATTCCTTTGAGTTTTAATCTTGCGACCGTACTCCCCAGGC

GGAATGTTTAATGCGTTAGCTGCGCCACCGAACAGTAAACTGCCCGACGGCTAACATTCATCGTTTACGGCGTGGACTACCAG
GGTATCTAATCCTGTTTGCTCCCCACGCTTTCGCACCTCAGCGTCAGTAATGGACCAGTGAGCCGCCTTCGCCACTGGTGTTCC

TCCGAATATCTACGAATTTCACCTCTACACTCGGAATTCCACTCACCTCTTCCATACTCTAGACACCCAGTATCAAAGGCAGTT

CCAGAGTTGAGCTCTGGGATTTCA 
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>Staphylococcus saprophyticus ZS-strain (BI 37) 969 99% 
GCAGTCGAGCGAACAGATAAGGAGCTTGCTCCTTTGACGTTAGCGGCGGACGGGTGAGTAACACGTGGGTAACCTACCTATA

AGACTGGGATAACTTCGGGAAACCGGAGCTAATACCGGATAACATTTGGAACCGCATGGTTCTAAAGTGAAAGATGGTTTTG
CTATCACTTATAGATGGACCCGCGCCGTATTAGCTAGTTGGTAAGGTAACGGCTTACCAAGGCAACGATACGTAGCCGACCTG

AGAGGGTGATCGGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGG

CGAAAGCCTGACGGAGCAACGCCGCGTGAGTGATGAAGGGTTTCGGCTCGTAAAACTCTGTTATTAGGGAAGAACAAATGTG
TAAGTAACTGTGCACATCTTGACGGTACCTAATCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGT

GGCAAGCGTTATCCGGAATTATTGGGCGTAAAGCGCGCGTAGGCGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACC

GTGGAGGGTCATTGGAAACTGGGAAACTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGCAGAG
ATATGGAGGAACACCAGTGGCGAAGGCGACTTTCTGGTCTGTAACTGACGCTGATGTGCGAAAGCGTGGGGATCAAACAGGA

TTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTAGGGGGTTTCCGCCCCTTAGTGCTGCAGCTAACGCA

TTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGAGCAT
GTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAAATCTTGACATCCTTTGAAAACTCTAGAGATA 

 

>Microbacterium kitamiense ZS-strain (BI 38) 891 99% 
CTCCACGAAGGGTTGGGCCACCGGCTTCAGGTGTTACCGACTTTCATGACTTGACGGGCGGTGTGTACAAGACCCGGGAACG

TATTCACCGCAGCGTTGCTGATCTGCGATTACTAGCGACTCCGACTTCATGAGGTCGAGTTGCAGACCTCAATCCGAACTGGG
ACCGGCTTTTTGGGATTCGCTCCACCTCGCGGTATTGCAGCCCTTTGTACCGGCCATTGTAGCATGCGTGAAGCCCAAGACAT

AAGGGGCATGATGATTTGACGTCATCCCCACCTTCCTCCGAGTTGACCCCGGCAGTATCCCATGAGTTCCCACCATTACGTGC

TGGCAACATAGAACGAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAACCATGCACCA

CCTGTTCACGAGTGTCCAAAGAGTTCTACATTTCTGCAGCGTTCTCGTGTATGTCAAGCCTTGGTAAGGTTCTTCGCGTTGCAT

CGAATTAATCCGCATGCTCCGCCGCTTGTGCGGGTCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCG

GGGAACTTAATGCGTTAGCTGCGTCACGGAATCCGTGGAATGGACCCCACAACTAGTTCCCAACGTTTACGGGGTGGACTAC
CAGGGTATCTAAGCCTGTTTGCTCCCCACCCTTTCGCTCCTCAGCGTCAGTTACGGCCCAGAGATCTGCCTTCGCCATCGGTGT

TCCTCCTGATATCTGCGCATTCCACCGCTACACCAGGAATTCCAATCTCCCCTACCGCACTCTAGTCTGCCCGTACCCACTGCA

GGCTGAGGGTTGAGCCCCCAGATTTCACAGCAGACGCGACAAACCGCCTACGAGCTCTTT 

 

>Dietzia natronolimnaea ZS-strain (BI 45) 991 89%  
ACCCCCTCCTCCTCCCTAGTTCTGGTTCTCATATAGTTTGGGAAGGGCCTAACCATGGTTTTTGGGGGTGCTTCCCCGTTGGGT
GGGCCGCCCCCCCTCTCGTGATGGTGTTCGGATTTTTGCTCTAGGCTGTTGTTGTTCTTTTGTTTGTTGGCTTTTTGCTGGATTG

CGAGGGCGATTTTTGTGGTAGTTTTGCCAGATGTGAACCCGGTGGGGTAATGGCCTACCAAGGTGACGACGGGTAACGGCCT

GAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGG
GCGAAAGCCTGATGCAGCGACGCCGCGTGGGGGATGACGGTCTTCGATTGTAACCCTTTCATAGGGACGAAGCGAAATGACG

GTACCTGCAGAAGAACACCGGCCAACTACGTGCCGCAGCCGCGGTAATACGTAGGGTGCAGCGTTGTCCGGAATTACTGGGC

GTAAAGAGCTCGTAGGCGGTTTGTCACGTCTCTGTGAATCCTCCAGCTCACTGGGGCGTGCAGCGATACGGGCAACTGATACT
ACAGGGAGACTGGATTCCTGGGAGCGTGAATGCGCAGATATCAGGAGAACCCGGTGCGAAGCGGTCTCTGGTAGTACTGAC 

CTGAGAGCGAAGCATGGGAGCAACAGGATAGAACCTGGAGTCATGCCGTAACGTGGCGCAGTGTGGGTCCTCCCGGATCCTG

CGTACTACGCTTAACGCCCGCTGGGATACGGCGCAGGCAACTCAAGAATGACGGGGCCCACAACGCTGACATGTGATAATCG
AGCACCGAAACCTACTAGCTGACTAACAGACACGCAAATGCGTTCCTTCGCTGAACAGGGGGAGGTGCTCACTCGGCTGAAA

GTGGTAACCCCACACCCACCTGTTAGTGCAAATTATGTGGACTGAAACGCGGTCATCGAGAGGGGAACTCACCATGCCTAGT

AGG 

 

>Enterococcus gallinarum ZS-strain (BI 46) 968 99% 
ACATGCAGTCGAACGCTTTTTCTTTCACCGGAGCTTGCTCCACCGAAAGAAAAAGAGTGGCGAACGGGTGAGTAACACGTGG

GTAACCTGCCCATCAGAAGGGGATAACACTTGGAAACAGGTGCTAATACCGTATAACACTATTTTCCGCATGGAAGAAAGTT

GAAAGGCGCTTTTGCGTCACTGATGGATGGACCCGCGGTGCATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGAT
GCATAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAA

TCTTCGGCAATGGACGAAAGTCTGACCGAGCAACGCCGCGTGAGTGAAGAAGGTTTTCGGATCGTAAAACTCTGTTGTTAGA

GAAGAACAAGGATGAGAGTAGAACGTTCATCCCTTGACGGTATCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCG
CGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTATTGGGCGTAAAGCGAGCGCAGGCGGTTTCTTAAGTCTGATGTGAAA

GCCCCCGGCTCAACCGGGGAGGGTCATTGGAAACTGGGAGACTTGAGTGCAGAAGAGGAGAGTGGAATTCCATGTGTAGCG

GTGAAATGCGTAGATATATGGAGGAACACCAGTGGCGAAGGCGGCTCTCTGGTCTGTAACTGACGCTGAGGCTCGAAAGCGT
GGGGAGCGAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAAGTGTTGGAGGGTTTCCGCCCTTCAG

TGCTGCAGCAAACGCATTAAGCACTCCGCCTGGGGAGTACGACCGCAAGGTTGAAACTCAAAGGAATTGACGGGGGCCCGCA

CAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCAGGTCTTGACTTCCTTTG 

 

>Pseudomonas hibiscicola ZS-strain (BI 58) 881 99% 
AACGAGCAGCACAGAGGAGCTTGCTCCTTGGGTGGCGAGTGGCGGACGGGTGAGGAATACATCGGAATCTACTTTTTCGTGG
GGGATAACGTAGGGAAACTTACGCTAATACCGCATACGACCTACGGGTGAAAGCAGGGGATCTTCGGACCTTGCGCGATTGA

ATGAGCCGATGTCGGATTAGCTAGTTGGCGGGGTAAAGGCCCACCAAGGCGACGATCCGTAGCTGGTCTGAGAGGATGATCA

GCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGCAAGCCTGAT
CCAGCCATACCGCGTGGGTGAAGAAGGCCTTCGGGTTGTAAAGCCCTTTTGTTGGGAAAGAAATCCAGCCGGCTAATACCTG

GTTGGGATGACGGTACCCAAAGAATAAGCACCGGCTAACTTCGTGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAC

TCGGAATTACTGGGCGTAAAGCGTGCGTAGGTGGTCGTTTAAGTCCGTTGTGAAAGCCCTGGGCTCAACCTGGGAACTGCAGT
GGATACTGGACGACTAGAGTGTGGTAGAGGGTAGCGGAATTCCTGGTGTAGCAGTGAAATGCGTAGAGATCAGGAGGAACA

TCCATGGCGAAGGCAGCTACCTGGACCAACACTGACACTGAGGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTG

GTAGTCCACGCCCTAAACGATGCGAACTGGATGTTGGGTGCAATTTGGCACGCAGTATCGAAGCTAACGCGTTAAGTTCGCC
GCCTGGGGAGTACGGTCGCAAGACTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGT 

> Dietzia natronolimnaea ZS-strain (BI 59) 931 99% 
CTTACACATGCAAGTCGAACGGTAAGGCCCTTTCGGGGGTACACGAGTGGCGAACGGGTGAGTAACACGTGGGTAATCTGCC

CTGCACTTCGGGATAAGCCTGGGAAACCGGGTCTAATACCGGATATGAGCTCCTGCCGCATGGTGGGGGTTGGAAAGTTTTTC
GGTGCAGGATGAGTCCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAG



 
 

289 
 

 

GGTGATCGGCCACACTGGGACTGAGACACGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAA

AGCCTGATGCAGCGACGCCGCGTGGGGGATGACGGTCTTCGGATTGTAAACTCCTTTCAGTAGGGACGAAGCGAAAGTGACG
GTACCTGCAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTG

GGCGTAAAGAGCTCGTAGGCGGTTTGTCACGTCGTCTGTGAAATCCTCCAGCTCAACTGGGGGCGTGCAGGCGATACGGGCA

GACTTGAGTACTACAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAA
GGCGGGTCTCTGGGTAGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCC

GTAAACGGTGGGCGCTAGGTGTGGGGTCCTTCCACGGATTCCGTGCCGTAGCTAACGCATTAAGCGCCCCGCCTGGGGAGTA

CGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGATTAATTCGATGCAACGCG
AAGAACCTTACCTAGGCTTGACATATACAGG 

>Aeromonas salmonicida ZS-strain (BI 66) 888 99% 
ACCTACTTTTGCCGGCGAGCGGCGCAACGGGTGAGTAATGCCTGGGGATCTGCCCAGTCGAGGGGGATAACAGTTGGAAACG

ACTGCTAATACCGCATACGCCCTACGGGGGAAAGGAGGGGACCTTCGGGCCTTTCGCGATTGGATGAACCCAGGTGGGATTA
GCTAGTTGGTGGGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGAC

ACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGTG

AAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGCGCCTAATACGTGTCAACTGTGACGTTACTCGC
AGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAA

AGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGA

GTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCC
CCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAC

GATGTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGC

AAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAAC 

>Clostridium propionicum ZS-strain (BI 80) 1904 99% (8f & 1510r) 
AGGGGGGAAAAAAATGACGGTACCTGAATAAGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCA

AGCGTTATCCGGAATTACTGGGTGTAAAGGGAGAGTAGGCGGCATGGTAAGTTAGATGTGAAAGCCCGAGGCTTAACCTCGG
GATTGCATTTAAAACTATCAAGCTAGAGTACAGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAG

GAAGAACACCAGTGGCGAAGGCGACTTACTGGACTGAAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCGAACAGGATTAG

ATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTCGGGGGGGAACCCTCGGTGCCGCAGCTAACGCAATAAGCA
CTCCACCTGGGGAGTACGATCGCAAGATTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA

ATTCGAAGCAACGCGAAGAACCTTACCAAGGCTTGACATCCCTCTGACCGGTGTAGAGATACACCTTCTCTTCGGAGCAGAG

GTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTCTTA
GTAGCCATCATTCAGTTGGGCACTCTAGGGAGACTGCCGTGGATAACACGGAGGAAGGTGGGGATGACGTCAAATCATCATG

CCCCTTATGTCTTGGGCTACACACGTGCTACAATGGCTGGTAACAAAGTGACGCAAAACGGCGACGTCGAGCAAATCACAAA

AACCCAGTCCCAGTTCGGATTGTAGTCTGCAACTCGACTACATGAAGCTGGAATCGCTAGTAATCGCGAATCAGAATGTCGCG
GTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGAAGCACCCGAAGTCGGTGACCTGACCTTAC

ACCGGTCAGAGGGATGTCAAGCCTTGGTAAGGTTTTTCGCGTTGCTTCGAATTAAACCACATGCTCCACCGCTTGTGCGGGCC

CCCGTCAATTCCTTTGAGTTTCAATCTTGCGATCGTACTCCCCAGGTGGAGTGCTTATTGCGTTAGCTGCGGCACCGAGGGTTC
CCCCCCGACACCTAGCACTCATCGTTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGAGCCTCA

GCGTCAGTTTCAGTCCAGTAAGTCGCCTTCGCCACTGGTGTTCTTCCTAATATCTACGCATTTCACCGCTACACTAGGAATTCC

ACTTACCTCTCCTGTACTCTAGCTTGATAGTTTTAAATGCAATCCCGAGGTTAAGCCTCGGGCTTTCACATCTAACTTACCATG

CCGCCTACTCTCCCTTTACACCCAGTAATTCCGGATAACGCTTGCCCCCTACGTATTACCGCGGCTGCTGGCACGTAGTTAGCC

GGGGCTTCTTATTCAGGTACCGTCATTTTTTTCGTCCCTGTTGATAGAAGTTTACGAGCCGAAACCCTTCTTCCTTCACGCGGC

GTTGCTGCATCAGGCTTTCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTTTGGGCCGTGTCTCAGTCCCAAT
GTGGCCGATCACCCTCTCAGGTCGGCTACTGATCGTTGCCTTGGTGGGCTGTTATCTCACCAACTAGCTAATCAGATGCGGGC

CCATCCTGTACCGAATAAATCCTTTTCTTGCAAGAGGATGCCCTCTCGCAATGACATGCGGTATTAGTCACCGTTTCCAGTGAT

TATTCCACAGTACAGGGCAGGTTGCCCACACGTTACTCACCCGTCCGCCGCTAAAATATGTAATCTTCCTGCCGAATCTGC 

>Clostridium tertium ZS strain (BI83) 897 98% 
ACGGGTGAGTAACACGTGGGCAACCTGCCTTGTAGAGGGGAATAGCCTTCCGAAAGGAAGATTAATACCGCATAACATTGCT

TTATCGCATGATAAAGTAATCAAAGGAGCAATCCGCTACAAGATGGGCCCGCGGCGCATTAGCTAGTTGGTGAGGTAACGGC

TCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGGACTGAGACACGGCCCAAACTCCTACGGGA
GGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAATGATGAAGGTCTTCGGATCGTAA

AGTTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGGAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGT

AGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGGGAGCGTAGGCGGATTTTTAAGTGAGATGTGAAATACTCAGGCTC
AACCTGGGGGCTGCATTTCAAACTGGAAGTCTAGAGTGCAGGAGAGGAGAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTA

GAGATTAGGAAGAACACCAGTGGCGAAGGCGACTCTCTGGACTGTAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAAC

AGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTAGGGGTTGTCATGACCTCTGTGCCGCCGCTAAC
GCATTAAGTATTCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCAGCGGAG

CATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAGACTTGACATCTCCTGCATTACTCTTAATCGAGGAAGT 

>Aeromonas sp ZS-strain (BI 87) 
TTGATACTTTTGCCGGCGAGCGGCGCAACGGGTGAGTAATGCCTGGGAAATTGCCCAGTCGAGGGGGATAACAGTTGGAAAC
GACTGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGACCTTCGGGCCTTGCGCGATTGGATATGCCCAGGTGGGATT

AGCTTGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAGA

CACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTGT
GAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGGTAGCTAATAACTGCCAACTGTGACGTTACTCG

CAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAA

AGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGA
GTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCC

CCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAC

GATGTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGC
AAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAACAT 
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>Bacillus mycoide ZS-strain (BI 88) 874 99%  
TCTTATGAAGTTAGCGGCGGACGGAGTGAGTAACACGTGGGTAACCTACCCATAAGACTGGGATAACTCCGGGAAACCGGGG

CTAATACCGGATAATATTTTGAACTGCATAGTTCGAAATTGAAAGGCGGCTTCGGCTGTCACTTATGGATGGACCCGCGTCGC
ATTAGCTAGTTGGTGAGGTAACGGCTCACCAAGGCAACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACACTGGGACTG

AGACACGGCCCAGACTCCTACGGGAGGCAGCAGTAGGGAATCTTCCGCAATGGACGAAAGTCTGACGGAGCAACGCCGCGT

GAGTGATGAAGGCTTTCGGGTCGTAAAACTCTGTTGTTAGGGAAGAACAAGTGCTAGTTGAATAAGCTGGCACCTTGACGGT
ACCTAACCAGAAAGCCACGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTATCCGGAATTATTGGG

CGTAAAGCGCGCGCAGGTGGTTTCTTAAGTCTGATGTGAAAGCCCACGGCTCAACCGTGGAGGGTCATTGGAAACTGGGAGA

CTTGAGTGCAGAAGAGGAAAGTGGAATTCCATGTGTAGCGGTGAAATGCGTAGAGATATGGAGGAACACCAGTGGCGAAGG
CGACTTTCTGGTCTGTAACTGACACTGAGGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGT

AAACGATGAGTGCTAAGTGTTAGAGGGTTTCCGCCCTTTAGTGCTGAAGTTAACGCATTAAGCACTCCGCCTGGGGAGTACGG

CCGCAAGGCTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAACA 

>Aeromonas media  ZS-strain (BI 90) 855 99%ZS 
TTTGATACTTTTGCCGGCGAGCGGCGCAACGGGTGAGTAATGCCTGGGAAATTGCCCAGTCGAGGGGGATAACAGTTGGAAA

CGACTGCTAATACCGCATACGCCCTACGGGGGAAAGCAGGGGACCTTCGGGCCTTGCGCGATTGGATATGCCCAGGTGGGAT

TAGCTTGTTGGTGAGGTAATGGCTCACCAAGGCGACGATCCCTAGCTGGTCTGAGAGGATGATCAGCCACACTGGAACTGAG
ACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCCATGCCGCGTGTG

TGAAGAAGGCCTTCGGGTTGTAAAGCACTTTCAGCGAGGAGGAAAGGTTGATACCTAATACGTATCAGCTGTGACGTTACTC

GCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGCGGTAATACGGAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTA
AAGCGCACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAG

AGTCTTGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGC

CCCCTGGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAC
GATGTCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGC

AAGGTTAAAACTCAAATGAATTGACGGGGGGCCGCA 

>Alcaligenes aquatilis ZS-strain (BI 99) 929 99% 
CACTCTTGGTGGCGAGTGGTGGACAGGGTGAGTAATATATCGGAACGTGCCCAGTAGCGGGGGATAACTACTCGAAAGAGTG

GCTAATACCGCATACGCCCTACGGGGGAAAGGGGGGGATTCTTCGGAACCTCTCACTATTGGAGCGGCCGATATCGGATTAG

CTAGTTGGTGGGGTAAAGGCTCACCAAGGCAACGATCCGTAGCTGGTTTGAGAGGACGACCAGCCACACTGGGACTGAGACA
CGGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGGGAAACCCTGATCCAGCCATCCCGCGTGTATGA

TGAAGGCCTTCGGGTTGTAAAGTACTTTTGGCAGAGAAGAAAAGGTATCTCCTAATACGAGATACTGCTGACGGTATCTGCA

GAATAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAG
CGTGTGTAGGCGGTTCGGAAAGAAAGATGTGAAATCCCAGGGCTCAACCTTGGAACTGCATTTTTAACTGCCGAGCTAGAGT

ATGTCAGAGGGGGGTAGAATTCCACGTGTAGCAGTGAAATGCGTAGATATGTGGAGGAATACCGATGGCGAAGGCAGCCCC

CTGGGATAATACTGACGCTCAGACACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCCTAAACGAT
GTCAACTAGCTGTTGGGGCCGTTAGGCCTTAGTAGCGCAGCTAACGCGTGAAGTTGACCGCCTGGGGAGTACGGTCGCAAGA

TTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATGCAACGCGAAAAACCTTACC

TACCCTTGACATGTCTGGAATGCCAAAG 

>Clostridium propionicum ZS strain (BI 80)  
AGGGGGGAAAAAAATGACGGTACCTGAATAAGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGGGCA

AGCGTTATCCGGAATTACTGGGTGTAAAGGGAGAGTAGGCGGCATGGTAAGTTAGATGTGAAAGCCCGAGGCTTAACCTCGG

GATTGCATTTAAAACTATCAAGCTAGAGTACAGGAGAGGTAAGTGGAATTCCTAGTGTAGCGGTGAAATGCGTAGATATTAG
GAAGAACACCAGTGGCGAAGGCGACTTACTGGACTGAAACTGACGCTGAGGCTCGAAAGCGTGGGGAGCGAACAGGATTAG

ATACCCTGGTAGTCCACGCCGTAAACGATGAGTGCTAGGTGTCGGGGGGGAACCCTCGGTGCCGCAGCTAACGCAATAAGCA

CTCCACCTGGGGAGTACGATCGCAAGATTGAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTA
ATTCGAAGCAACGCGAAGAACCTTACCAAGGCTTGACATCCCTCTGACCGGTGTAGAGATACACCTTCTCTTCGGAGCAGAG

GTGACAGGTGGTGCATGGTTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATTCTTA

GTAGCCATCATTCAGTTGGGCACTCTAGGGAGACTGCCGTGGATAACACGGAGGAAGGTGGGGATGACGTCAAATCATCATG
CCCCTTATGTCTTGGGCTACACACGTGCTACAATGGCTGGTAACAAAGTGACGCAAAACGGCGACGTCGAGCAAATCACAAA

AACCCAGTCCCAGTTCGGATTGTAGTCTGCAACTCGACTACATGAAGCTGGAATCGCTAGTAATCGCGAATCAGAATGTCGCG

GTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGAAGCACCCGAAGTCGGTGACCTGACC 

>Terrisporobacter petrolearius ZS-strain (BI86) 
AAAGAGCGAGCGGACGGGTGAGTAACGCGTGAGGTAACCTGCCTCATACACATGGATAACATACCGAAAGGTATGCTAATA

CAGGATAATATAAGAGATTCACATGGATTTTTTATCAAAGCTCCGGCGGTATGAGATGGACCCGCGTCTGATTAGCTAGTTGG

TAAGGTAATGGCTTACCAAGGCGACGATCAGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGAACTGAGACACGGTCCAA
ACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCAACGCCGCGTGAGTGATGAAGGC

CTTCGGGTCGTAAAACTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAGGAAGCCCCGGCTAACTACGTGCCAGCAGC

CGCGGTAATACGTAGGGGGCTAGCGTTATCCGGATTTACTGGGCGTAAAGGGTGCGTAGGTGGTTTTTTAAGTCAGGAGTGA

AAGGCTACGGCTCAACCGTAGTAAGCTCTTGAAACTGGAAAACTTGAGTGCAGGAGAGGAAAGTGGAATTCCTAGTGTAGCG

GTGAAATGCGTAGATATTAGGAGGAACACCAGTAGCGAAGGCGGCTTTCTGGACTGTAACTGACACTGAGGCACGAAAGCGT

GGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGTGTCGGGGGTTACCCCCCTCGGTG
CCGCAGCTAACGCATTAAGTACTCCGCCTGGGGAGTACGCTCGCAAGAGTGAAACTCAAAGGAATTGACGGGGACCCGCACA

AGTAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAG 

>Romboutsia sedimentorum ZS strain (BI93) 
GCGGAGGGGTGAGTAACGCGTGAGGTAACCTGCCCTGTACACACGGATAACATACCGAAAGGTATGCTAATACGGGATAATG
TACTTTTGTCGCATGGCAAAAGTATCAAAGCTCCGGCGGTACAGGATGGACCCGCGTCTGATTAGCTAGTTGGAGAGGTAAT

GGCTCACCAAGGCGACGATCAGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGAACTGAGACACGGTCCAAACTCCTACG

GGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCAACGCCGCGTGAGCGATGAAGGCCTTCGGGTC
GTAAAGCTCTGTCCTCAAGGAAGATAATGACGGTACTTGAGGAGGAAGCCCCGGCTAACTACGTGCCAGCAGCCGCGGTAAT

ACGTAGGGGGCTAGCGTTATCCGGAATTACTGGGCGTAAAGGGTGCGTAGGTGGTTTCTTAAGTCAGAGGTGAAAGGCTACG

GCTCAACCGTAGTAAGCCTTTGAAACTGAGAAACTTGAGTGCAGGAGAGGAGAGTAGAATTCCTAGTGTAGCGGTGAAATGC
GTAGATATTAGGAGGAATACCAGTTGCGAAGGCGGCTCTCTGGACTGTAACTGACACTGAGGCACGAAAGCGTGGGGAGCA
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AACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAGTACTAGGTGTCGGGGGTTACCCCCCTCGGTGCCGCAGCT

AACGCATTAAGTACTCCGCCTGGGAAGTACGCTCGCAAGAGTGAAACTCAAAGGAATTGACGGGGACCCGCACAAGTAGCG
GAACATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAAGCTTGACATACTTATGACCGATACCTAATAGTATTTTTC

CCTTCGGGGACATGA 

>Clostridium tertium ZS strain (BI85) 
GGGGAAGAACCTAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCTTGTAGAGGGGAATAGCCTTCCGAAAGGAAGA
TTAATACCGCATAACATTACTTTATCGCATGATGAAGTAATCAAAGGAGCAATCCGCTACAAGATGGGCCCGCGGCGCATTA

GCTAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGGACTGAGAC

ACGGCCCAAACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAAT
GATGAAGGTCTTCGGATCGTAAAGTTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGGAAGCCACGGCTAACTACGT

GCCAGCAGCCGCGGTAATACGTAGGTGGCAAGCGTTGTCCGGATTTACTGGGCGTAAAGGGAGCGTAGGCGGATTTTTAAGT

GAGATGTGAAATACTCAGGCTCAACCTGGGGGCTGCATTTCAAACTGGAAGTCTAGAGTGCAGGAGAGGAGAGTGGAATTCC
TAGTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAGTGGCGAAGGCGACTCTCTGGACTGTAACTGACGCTGAGGC

TCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTAGGGGTTGTCA

TGACCTCTGTGCCGCCGCTAACGCATTAAGTATTCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGG
GGGCCCGCACAAGCAGCGGAGCATGTGGTTTAATTCGAAGCAACGCGAAGAACCTTACCTAGACTTGACATCTCCTGCATTA

CTC 

>Clostridium sartagoforme ZS-strain (BI89) 
GGGAAGAACCTAGCGGCGGACGGGTGAGTAACACGTGGGCAACCTGCCTTATAGAGGGGAATAGCCTTCCGAAAGGAAGAT

AATACCGCATAAGATTACATCTTCGCATGAAGAAGTAATTAAAGGAGCAATCCGCTATAAGATGGGCCCGCGGCGCATTAGC

TAGTTGGTGAGGTAACGGCTCACCAAGGCGACGATGCGTAGCCGACCTGAGAGGGTGATCGGCCACATTGGGACTGAGACAC

GGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGGGAAACCCTGATGCAGCAACGCCGCGTGAGTGA
TGAAGGTCTTCGGATCGTAAAGCTCTGTCTTCAGGGACGATAATGACGGTACCTGAGGAGGAAGCCACGGCTAACTACGTGC

CAGCAGCCGCGGTAATACGTAGGTGGCGAGCGTTGTCCGGATTTACTGGGCGTAAAGGGAGCGTAGGCGGATTTTTAAGTGA
GATGTGAAATACCCGGGCTCAACTTGGGTGCTGCATTTCAAAACTGGAAGTCTAGAGTGCAGGAGAGGAGAGTGGAATTCCT

AGTGTAGCGGTGAAATGCGTAGAGATTAGGAAGAACACCAGTGGCGAAGGCGACTCTCTGGACTGTAACTGACGCTGAGGCT

CGAAAGCGTGGGGAGCAACAGGATTAGATACCT 

>Clostridum celerecrescens ZS strain (BI82) 
ATTGACTAAGCGGCGGACGGGTGAGTAACGCGTGGGTAACCTGCCTCATACAGGGGGATAACAGTTGGAAACGACTGCTAAT

ACCGCATAAGCACACAGTGCCGCATGGTACGGTGTGAAAAACTCCGGTGGTATGAGATGGACCCGCGTCTGATTAGGTAGTT

GGTGAGGTAACGGCCCACCAAGCCGACGATCAGTAGCCGACCTGAGAGGGTGACCGGCCACATTGGGACTGAGACACGGCC
AAACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGGGAAACCCTGATCCAGCGACGCCGCGTGAGTGAAGAAG

TATTTCGGTATGTAAAGCTCTATCAGCAGGGAAGAAAATGACGGTACCTGACTAAGAAGCCCCGGCTAACTACGTGCCAGCA

GCCGCGGTAATACGTAGGGGGCAAGCGTTATCCGGATTTACTGGGTGTAAAGGGAGCGTAGACGGCACTGCAAGTCTGGAGT
GAAAGCCCGGGGCTCAACCCCGGGACTGCTTTGGAAACTGTGGTGCTAGAGTGCAGGAGAGGTAAGTGGAATTCCTAGTGTA

GCGGTGAAATGCGTAGATATTAGGAGGAACACCAGTGGCGAAGGCGGCTTACTGGACTGTAACTGACGTTGAGGCTCGAAAG

CGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGAATACTAGGTGTTGGGGAGCAAAGCTCTTC

GGTGCCGCCGCTAACGCAATAAGTATTCCACCTGGGGAGTACGTTCGCAAGAATGAAACTCAAAGGAATTGACGGGGACCCG

CACAAGCGG 

>Alishewanella aestuarii HH-ZS strain (BI28) 
AGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGCACGCAGGCGGCTTTTTAAGTCGGATGTGAAAGCCCCGGGCTC
AACCTGGGAATTGCATCTGATACTGGGAAGCTAGAGTATGTGAGAGGGGGGTAGAATTCCAAGTGTAGCGGTGAAATGCGTA

GAGATTTGGAGGAATACCAGTGGCGAAGGCGGCCCCCTGGCACAATACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAAC

AGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCTACTAGCTGTTCGCGGCCTTGTGTTGTGAGTAGCGCAGCTAAC
GCATTAAGTAGACCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAG

CATGTGGTTTAATTCGACGCAACGCGAAGAACCTTACCTACTCTTGACATCTACAGAAGAACGCAGAGATGTGTTTGTGCCTT

CGGGAACTGTAAGACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAACGAGCGCAAC
CCTTATCCTTAGTTGCCAGCGATTCGGTCGGGAACTCTAGGGAGACTGCCGGTGATAAACCGGAGGAAGGTGGGGACGACGT

CAAGTCATCATGGCCCTTACGAGTAGGGCTACACACGTGCTACAATGGTATGTACAGAGGGAGGCAAGCTGGCGACAGTGAG

CGGATCTCTTAAAGCATATCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAAGTCGGAATCGCTAGTAATCGCAAATC
AGAATGTTGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTGGGTTGCAAAAGAAGTAGGTA

GCTTAACCTTCGGGAGGGCGCTTACCACTTTGT 

  >Azonexus hydrophilus ZS02 strain (BI70) 
GAACGAGCAGCACGGGCTTCGGTCTGGTGGCGAGTGGCGAACGGGTGAGTAATGCATCGGAACGTACCCGGGAGTGGGGGA
TAACTATCCGAAAGGATAGCTAATACCGCATATTCTGTGCGCAGGAAAGCAGGGGATCTTCGGACCTTGTGCTCCCGGAGCG

GCCGATGTCAGATTAGCTAGTTGGTGGGGTAAAGGCCTACCAAGGCGACGATCTGTAGCGGGTCTGAGAGGATGATCCGCCA

CACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATTTTGGACAATGGGCGCAAGCCTGATCCAGC
CATGCCGCGTGAGTGAAGAAGGCCTTCGGGTTGTAAAGCTCTTTCGGCCGGGAAGAAATCGTACGGGTTAATACCCTGTGCG

GATGACGGTACCGGCATAAGAAGCACCGGCTAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCGAGCGTTAATCGGA

ATTACTGGGCGTAAAGCGTGCGCAGGCGGTTTTTTAAGATAGGCGTGAAATCCCCGGGCTCAACCTGGGAACTGCGCTTATG
ACTGGAAGACTAGAGTATGGCAGAGGGGGGTGGAATTCCACGTGTAGCAGTGAAATGCGTAGAGATGTGGAGGAACACCGA

TGGCGAAGGCAGCCCCCTGGGCCAATACTGACGCTCATGCACGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGT

CCACGCCCTAAACGATGTCAACTAGGTGTTGGGTGGGTAAAACCATTTAGTACCGGAGCTAACGCGTGAAGTTGACCGCCTG
GGGAGTACGGCCGCAAGGTTAAAACTCAAAGGAATTGACGGGGACCCGCACAAGCGGTGGATGATGTGGATTAATTCGATG

CAACGCGAAAAACCTTACCTACCCTTGACTTGCCA 
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>Dietzia sp. ZS03-strain BI51      
CGAACGGTAAGGCCCTTTCGGGGGTACACGAGTGGCGAACGGGTGAGTAACACGTGGGTAATCTGCCCTGCACTTCGGGATA

AGCCTGGGAAACCGGGTCTAATACCGGATATGAGCTCCTGCCGCATGGTGGGGGTTGGAAAGTTTTTCGGTGCAGGATGAGT
CCGCGGCCTATCAGCTTGTTGGTGGGGTAATGGCCTACCAAGGCGACGACGGGTAGCCGGCCTGAGAGGGTGATCGGCCACA

CTGGGACTGAGACACAGCCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCG

ACGCCGCGTGGGGGATGACGGTCTTCGGATTGTAAACTCCTTTCAGTAGGGACGAAGCGAAAGTGACGGTACCTGCAGAAGA
AGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAGGGTGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTC

GTAGGCGGTTTGTCACGTCGTCTGTGAAATCCTCCAGCTCAACTGGGGGCGTGCAGGCGATACGGGCAGACTTGAGTACTAC

AGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGG
TAGTAACTGACGCTGAGGAGCGAAAGCATGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCATGCCGTAAACGGTGGGC

GCTAGGTGTGGGGTCCTTCCACGGATTCCGTGCCGTAGCTAACGCATTAAGCGCCCCGCCTGGGGAGTACGGCCGCAAGGCT

AACACTCAAAGGAATTGACGGGGGCCCGCACAA 

 >Dietzia sp. from the flocs –community  
TGGGGAATATTGCACAATGGGCGAAAGCCTGATGCAGCGACGCCGCGTGGGGGATGACGGTCTTCGGATTGTAAACTCCTTT

CAGTAGGGACGAAGCGAAAGTGACGGTACCTGCAGAAGAAGCACCGGCCAACTACGTGCCAGCAGCCGCGGTAATACGTAG

GGTGCAAGCGTTGTCCGGAATTACTGGGCGTAAAGAGCTCGTAGGCGGTTTGTCACGTCGTCTGTGAAATCCTCCAGCTCAAC
TGGGGGCGTGCAGGCGATACGGGCAGACTTGAGTACTACAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGAT

ATCAGGAGGAACACCGGTGGCGAAGGCGGGTCTCTGGGTAGTAACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACA 

>Brevundimonas ZS04 (BI 36)  
CGTGCCAGCAGCCGCGGTAATTCGAAGGGGGCTAGCGTTGCTCGGAATTACTGGGCGTAAAGGGCGCGTAGGCGGATCGTTA
AGTCAGAGGTGAAATCCCAGGGCTCAACCCTGGAACTGCCTTTGATACTGGCGATCTTGAGTATGAGAGAGGTATGTGGAAC

TCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACATACTGGCTCATTACTGACGCTGA

GGCGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGATTGCTAGTTGTCGGGCTGC
ATGCAGTTCGGTGACGCAGCTAACGCATTAAGCAATCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGAC

GGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCACCTTTTGACATGCCTGGACC
GCCACGGAGACGTGGCTTTCCCTTCGGGGACTAGGACACAGGTGCTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGG

TTAAGTCCCGCAACGAGCGCAACCCTCGCCATTAGTTGCCATCATTTAGTTGGGAACTCTAATGGGACTGCCGGTGCTAAGCC

GGAGGAAGGTGGGGATGACGTCAAGTCCTCATGGCCCTTACAGGGTGGGCTACACACGTGCTACAATGGCAACTACAGAGGG
TTAATCCTTAAAAGTTGTCTCAGTTCGGATTGTCCTCTGCAACTCGAGGGCATGAAGTTGGAATCGCTAGTAATCGCGGATCA

GCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACACCATGGGAGTTGGTTCTACCCGAAGGCGGTGCG

CTAACCAGCAACTGGAGGCAGCCGACCACGGTAGTCAG 

>Rhodococcus sp. ZS-strain (BI49) 
CGTTGTCCGGAATTACTGGGCGTAAAGAGTTCGTAGGCGGTTTGTCGCGTCGTTTGTGAAAACCAGCAGCTCAACTGCTGGCT

TGCAGGCGATACGGGCAGACTTGAGTACTGCAGGGGAGACTGGAATTCCTGGTGTAGCGGTGAAATGCGCAGATATCAGGAG

GAACACCGGTGGCGAAGGCGGGTCTCTGGGCAGTAACTGACGCTGAGGAACGAAAGCGTGGGTAGCGAACAGGATTAGATA
CCCTGGTAGTCCACGCCGTAAACGGTGGGCGCTAGGTGTGGGTTCCTTCCACGGAATCCGTGCCGTAGCTAACGCATTAAGCG

CCCCGCCTGGGGAGTACGGCCGCAAGGCTAAAACTCAAAGGAATTGACGGGGGCCCGCACAAGCGGCGGAGCATGTGGATT

AATTCGATGCAACGCGAAGAACCTTACCTGGGTTTGACATATACCGGAAAGCTGCAGAGATGTGGCCCCCCTTGTGGTCGGT

ATACAGGTGGTGCATGGCTGTCGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTATCTTATG

TTGCCAGCACGTTATGGTGGGGACTCGTAAGAGACTGCCGGGGTCAACTCGGAGGAAGGTGGGGACGACGTCAAGTCATCAT

GCCCCTTATGTCCAGGGCTTCACACATGCTACAATGGCCAGTACAGAGGGCTGCGAGACCGTGAGGTGGAGCGAATCCCTTA
AAGCTGGTCTCAGTTCGGATCGGGGTCTGCAACTCGACCCCGTGAAGTCGGAGTCGCTAGTAATCGCAGATCAGCAACGCTG

CGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTCACGTCATGAAAGTCGGTAACACCCGAACGCCGGT 

>Tessaracoccus sp. ZS01 strain BI41 
AACGGTAAGGCCCTTTCGGGGGTACACGAGTGGCGAACGGGTGAGTAACACGTGAGTAACCTGCCCTTGACTTTGGGATAAC
TCCTGGAAACAGGTGCTAATACCGGATACCAGCCTTCACGGCATCGTGTTGGTTTGAAAGCTCCGGCGGTCAAGGATGGACTC

GCGGCCTATCAGCTTGTTGGTGAGGTAGTGGCTCACCAAGGCTTCGACGGGTAGCCGGCCTGAGAGGGTGACCGGCCACATT

GGGACTGAGATACGGCCCAAACTCCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGACGCAAGTCTGATGCAGCAAC
GCCGCGTGCGGGATGACGGCCTTCGGGTTGTAAACCGCTTTCAGCAGGGACGAAGCGAGAGTGACGGTACCTGCAGAAGAA

GCACCGGCTAACTACGTGCCAGCAGCCGCGGTGATACGTAGGGTGCGAGCGTTGTCCGGATTTATTGGGCGTAAAGAGCTTG

TAGGCGGTTTGTTGCGTCGGTAGTGAAAACTCAGGGCTTAACCCTGAGCCTGCTTCCGATACGGGCAGACTTGAGGAAGGTA
GGGGAGAATGGAATTCCTGGTGAAGCGGTGGAATGCGTAGATATCAGGAGGAACACCAGTGGCGAAGGCGGTTCTCTGGAC

CTTTCCTGACGCTGAGAAGCGAAAGCGTGGGGAGCAAACAGGCTTAGATACCCTGGTAGTCCACGCCGTAAACGGTGGGTAC

TAGGTGTGGGGTTCATTCCACGAACTCCGTGCCGCAGCTAACGCATTAAGTACCCCGCCTGGGGAGTACGGCCGCAAGGCTA
AAACTCAAAGGAATTGACGGGGCCCCGCACAAGCGGCGGAGCATGCGGATTAATTCGATGCAACGCGAAGAACCTTACCTG

GGTTTGACATATGCCGGAAACATCTAGAG 

>Aeromonas SP. ZS strain (BI55) 
CACGCAGGCGGTTGGATAAGTTAGATGTGAAAGCCCCGGGCTCAACCTGGGAATTGCATTTAAAACTGTCCAGCTAGAGTCT
TGTAGAGGGGGGTAGAATTCCAGGTGTAGCGGTGAAATGCGTAGAGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCT

GGACAAAGACTGACGCTCAGGTGCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATG

TCGATTTGGAGGCTGTGTCCTTGAGACGTGGCTTCCGGAGCTAACGCGTTAAATCGACCGCCTGGGGAGTACGGCCGCAAGG
TTAAAACTCAAATGAATTGACGGGGGCCCGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACC

TGGCCTTGACATGTCTGGAATCCTGTAGAGATACGGGAGTGCCTTCGGGAATCAGAACACAGGTGCTGCATGGCTGTCGTCA

GCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCCTGTCCTTTGTTGCCAGCACGTAATGGTGGGAACTC
AAGGGAGACTGCCGGTGATAAACCGGAGGAAGGTGGGGATGACGTCAAGTCATCATGGCCCTTACGGCCAGGGCTACACAC

GTGCTACAATGGCGCGTACAGAGGGCTGCAAGCTAGCGATAGTGAGCGAATCCCAAAAAGCGCGTCGTAGTCCGGATCGGA

GTCTGCAACTCGACTCCGTGAAGTCGGAATCGCTAGTAATCGCGAATCAGAATGTCGCGGTGAATACGTTCCCGGGCCTTGTA
CACACCGCCCGTCACCACCAT 
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Appendix-5; Overall characterization of isolates  
1. Heavy metals tolerant 

1.1 Negative control for HMs  
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Macellibacteroides fermentans HH-ZS strain (BI 40) 
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Alishewanella sp. HH-ZS strain (BI 28) 
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2. pH profile of isolates 

Aeromonas sp. ZS-strain (BI 55) pH profile at different temperatures 
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Alishewanella sp. HH-ZS strain (BI28), pH profile at different temperature degrees 
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pH profile of Azonexus sp. ZS02 strain (BI70) at different temperatures  
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Alcaligenes aquatilis (BI 22) pH profile include range and optimal pH  

  

Aeromonas salmonicida (BI 26) pH profile include range and optimal pH                                              

0

0.5

1

1.5

2

2.5

0 5 10 15 20

O
D

 o
f 

b
a
ct

er
ia

l 
g

ro
w

th

Time (Hours)

pH profile of BI 70 at 35°C

pH4 pH5 pH6 pH7 pH8

pH9 pH10 pH11 pH12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 5 6 7 8 9 10 11 12

S
u

m
 o

f 
a
re

a
s

pH levels

BI 70 at 35°C

BI 70 at 35 C

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20

O
D

 o
f 

b
a
ct

er
ia

l 
g

ro
w

th

Time (Hours)

pH profile of BI 70 at 40°C

pH4

pH5

pH6

pH7

pH8

pH9

pH10

pH11

pH12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20

O
D

 o
f 

b
a
ct

er
ia

l 
g

ro
w

th

Time (Hour)

BI 22 pH tolerate 

pH 4 pH 5 pH 6 pH 7 pH 8

pH 9 pH 10 pH 11 pH 12

0

5

10

15

20

25

4 5 6 7 8 9 10 11 12

O
D

 o
f 

g
ro

w
th

/H
o
u

r

pH Levels 

BI 22 pH tolerate test 

Control

Sample



 
 

307 
 

 

    

Enterococcus gallinarum  (BI46) pH profile, range and optimal pH                                              

    

Aeromonas salmonicida   (BI55) pH profile, range and optimal pH 
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Citrobacter gillenii  (BI54) pH profile, range and optimal pH 

  

Dietzia natronolimnaea (BI51) pH profile, range and optimal pH   

   

Shewanella putrefaciens (BI 53) pH profile, range and optimal pH   

      

Dietzia natronolimnaea (BI 45), pH profile, range and optimal pH     
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Bacillus cohnii (BI 27), pH profile, range and optimal pH          

     

Bacilli toyonensis (BI 5), pH profile, range and optimal pH      
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Alcaligenes aquatilis (BI 34), pH profile, range and optimal pH   
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