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Abstract

The age of big digital data is emerged and the size of generating data is rapidly
increasing in a millisecond through the Internet of Things (IoT) and Internet of
Everything (IoE) objects. Specifically, most of today’s available data are
generated in a form of streams through different applications including sensor
networks, bioinformatics, smart airport, smart highway traffic, smart home
applications, e-commerce online shopping, and social media streams. In this
context, processing and mining such high volume of data stream becomes one
of the research priority concern and challenging tasks. On the one hand,
processing high volumes of streaming data with low-latency response is a
critical concern in most of the real-time application before the important
information can be missed or disregarded. On the other hand, detecting events
from data stream is becoming a new research challenging task since the
existing traditional anomaly detection method is mainly focusing on; a) limited
size of data, b) centralised detection with limited computing resource, and c)
specific anomaly detection types of either point or collective rather than the
Contextual behaviour of the data. Thus, detecting Contextual events from high
sequence volume of data stream is one of the research concerns to be addressed
in this thesis.

As the size of [oT data stream is scaled up to a high volume, it is impractical to
propose existing processing data structure and anomaly detection method. This
is due to the space, time and the complexity of the existing data processing
model and learning algorithms. In this thesis, a novel distributed anomaly
detection method and algorithm is proposed to detect Contextual behaviours
from the sequence of bounded streams. Capturing event streams and
partitioning them over several windows to control the high rate of event
streams mainly base on, the proposed solution firstly. Secondly, by proposing a
parallel and distributed algorithm to detect Contextual anomalous event. The
experimental results are evaluated based on the algorithm’s performances,
processing low-latency response, and detecting Contextual anomalous
behaviour accuracy rate from the event streams. Finally, to address scalability
concerned of the Contextual events, appropriate computational metrics are
proposed to measure and evaluate the processing latency of distributed method.
The achieved result is evidenced distributed detection is effective in terms of
learning from high volumes of streams in real-time.
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Chapter 1: Introduction

Chapter 1

Introduction

The innovation of technologies and Internet connectivity are evidenced that
this world is adapting from traditional to digital-based. Specifically, in the
last decade, due to advanced technologies, high volumes of data sources from
log records, call records, biomedical records, stock exchange, social media,
network traffic, and manufacturing sensors are generating in different formats
of (e.g., structured or unstructured). Thus, a new scientific paradigm has
emerged under the umbrella of big data so-called Data Intensive Scientific
Discover (DISD) (Chen et al., 2014, p.173). The term of “big data” is now
universally used and became to a central for researchers and practitioner’s
attentions across multi-disciplines of such as bioinformatics, geophysics,
astronomy, engineering, meteorology, e-commerce and social media. The
literature of big data is very broad and there is not yet a formal definition
from neither academia nor industry, however, Chen et al. (2014, p.173) and

Tsai et al. (2015) defined it as;

“Datasets which could not be captured, managed, and processed by general
computers within an acceptable scope”.

In other words, the volume and velocity of generating data is beyond the
capacity of current technologies to process, handle, and provide

computational results. This is due to the limited computing resource, data
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structured model, and complexity of the existing of the algorithms. Thus, this
idea is motivated the industry and scientist to redesign computer hardware’s
(e.g., multi-core processor, cloud computing) based on the Moor’s law to
become more powerful than ever before (Tsai et al., 2015). Prior to the
scalability concern, discovering hidden knowledge and predicting unusual
events from high volumes of data is remaining to be a challenging task,
specifically, from high volumes of data streams. In general, big data analytic
comprises of data integrating, processing and analysing large-scale of both
static and stream data formats. Thus, detecting unusual activities from big
scale of data plays an important role in many application domains including
air traffic monitoring system (Katal et al., 2013), network attack (Hashem et
al., 2014), transaction frauds (Chen et al., 2014), weather broadcast, faulty
sensors indicating oil and gas leakage (Xie, et al., 2011), and diagnosis from

medical records (Ma, et al., 2016).

The main concept of anomaly is referring to unusual events, specious
activities or different pattern in the dataset (Candela et al., 2009; Zhang,
2013). The study and literature of anomaly detection method is very extensive
in information theory, machine learning, data mining, and statistics (Grosse &
Turin, 2012; Gupta et al., 2014; Ma et al., 2016). Importantly, anomaly can be
referred to positive or negative aspects in different application domains, for
example, in network intruder detection, the network system administrator
aims to trace suspicious activity from incoming traffic to make an immediate
action against the intruder. In banking industry, detecting online frauds and
suspicious activity is considered as one of the most priority concerns to
protect client’s account and funds. In network sensor domain, anomaly can be
beneficial in detecting fault or error in the sensors. From the perspective of
safety concerns, tracing and predicting incidents in real time is very important
in many applications including highway road traffic monitoring system,
airport surveillance, medical diagnosis, civil security, and engineering (Gupta

et al., 2014). Similarly, detecting and predicting disaster like floods, storms,
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and earthquakes are also major concerns in weather broadcast domain. In
social media, for example, anomaly plays an important role in detecting user
opinion behaviour from writing inappropriate comments (e.g., race and sexual
abuse, arranging riot activities, online activities including terror and criminal

threats).

1.1 Research Motivation

Internet of things (IoT) or Internet of Everything (IoE) are the two new
emerged fields of the computer science. Today, creating high volumes of data
is an easier process than it was in the previous decade; this is due to the low
cost of IoT devices and other digital applications. For example, the size of
connected object is expected to be one trillion sensors by 2030 (Yang &
Fong, 2015); this includes 350 billion annual meter readings, power plants,
machinery data, and Global Positioning System (GPS) (Yu & Lan, 2016).
The main benefit of such trend is to provide consumers with affordable and
secure energy supply (Zhang, 2013), while consumer and supplier could both
have energy consumptions in real time and predicting extraordinary events
and activities such as faulty sensors, energy leakage, or tampering meters.
Importantly, the majority of data is generating in a form of stream by

different applications and the size of these data is very large in scale.

On the one hand, detecting anomaly in real time plays a significant role in
monitoring unusual behaviours from big digital devices such as; home
suppliers, smart meters, smart motorways, smart city, work locations, and
airport surveillance. Thus, online anomaly detection and mining from high
volumes of data in real time is appeared to be a new research direction. The
existing and traditional anomaly detection methods are mainly focusing on a
specific type of point or collective anomaly problem in offline analysis. On

the other hand, recent works of anomaly detection methods are mainly
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disregards the scalability of the data concern; this is due to the proposed data
structure model and computational complexity of the proposed algorithms.
Considering processing and detecting anomalous events from 1 terabyte of
data centrally (over a standalone machine), this possibly requires several
hours or days to process and provide computational results with another
major concern of network overloaded. Thus, detecting anomalous events from
high volumes of IoT sensor stream is an emerged research filed of big data
stream mining (Duarte et al., 2016; De Francisci Morales, 2016; Bifet et al.,
2016). The main motivation of this research is to develop a novel algorithm
and method that will be able to detect Contextual behaviours of large
sequence of IoT sensor data streams in real time. The following challenging

tasks have been mainly studies and investigated in the thesis.

Online Learning: unusually online learning algorithms are required to process
data in several subsets of streams in a sequence rather than process all the
data at once. This is due to the need of real time processing structure and
detecting anomalous events from streams are requires single-scan learning;
once stream is processed, such data stream can be irrelevant and or it can be
discarded at the later stage. Online learning is playing an important role in
many dynamic monitoring applications such as network security, road traffic,
healthcare diagnoses, airport traffic control, fire safety, and weather

broadcast.

Scalability: as the size of data stream scales up, standalone machine is only
capable to process and handle limited size of IoT data stream; this is due to
limited memory space of the most proposed computing resources, dynamic
evolving of streams over the time, and network bandwidth (Duarte et al.,
2016; Schneider et al., 2016). Thus, in recent years, the concept of parallel
and distributed approaches is increasingly attracting the attentions of both
researchers and industry engineers to address the scalability problem.

Importantly, most of the existing anomaly detection methods are designed to
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detect anomaly centrally. Thus, research on anomaly detection over high
volumes of data stream is limited; parallel partitioning and processing is
required to compute several tasks at once with low-latency and real-time
response (Gupta et al., 2014). However, to handle such high rate of data
streams, robust parallel and distributed stream detection is suggested to be an
alternative solution. The main benefits of parallel and distributed processing
can be summarized in; a) high throughput event streams (1 million events per
second) in real time, b) low-latency computational response which is very
important for anomaly detection in real time, and c¢) overcoming
computational resource constraints (Candela et al., 2009; Grosse & Turin,

2012; Amen & Lu, 2015).

Contextual Anomaly: selecting anomaly detection type is one of the key
priorities challenging task in many big data application domains, specifically,
in streaming application domains. Existing anomaly detection methods are
mainly either focused on Point or Collective anomaly types, however,
research on data stream Contextual anomaly detection is limited (Folino &
Sabatino, 2016; Karunaratne et al., 2017). Thus, new Contextual anomaly
detection from high sequence of data stream can be a challenging task. For
example, consider highway road traffic scenario for speed monitoring of
vehicles over consecutive time-series as depicts in figure 1.1, where blue
vehicles are representing those vehicles within national speed limited of
120km/h and red vehicles are over speeded vehicles. Consider high volumes
of vehicle speeds data coming from road traffic IoT sensor in unbound of
sequence of streams in real-time. An important question can arose, what is the
main appropriate anomaly detection type (Point, Collective or Contextual) for
the stream data? This question will be answered in the next section with

detailed description of each anomaly type.
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Figure 1.1: Anomaly detection types for the time-series data
scenario in road traffic monitoring system.

In general, IoT devices are generating data in a form of streams; thus, data are
arriving in a sequence of streams with time stamped on. Consequently,
sequential analysis can be an appropriate solution to propose for data stream
anomaly. Consider three types of anomaly detection in figure 1.1. Scenario A
refers to an individual vehicle’s speed behaviour within the sequence of the
data streams, thus, a single event at ts is considered as Point anomaly. In this
context, Point anomaly is considered as one of the most common approaches
in many application domains, while collective anomaly refers to collection of
unusual events from the data instances (set of points). A group of vehicles
with over speed behaviours of 140km/h from t4; to ts are considered as
Collective anomaly in scenario B. In contract to these, Contextual anomaly is
classified based on the relations between the data instances Contextual and
behavioural attribute. The most important impact on Contextual anomaly is a
time of event occurrence [26]. Scenario C can be considered as Contextual
behaviour of the same vehicle at two different occasions t; and tg, hence, the
same vehicle’s speed of 140km/h recorded with the same context at different
time metrics. The benefit of Contextual anomaly is to define the behaviour of
the event stream in a specific context. This is one of the most appropriate

detection types to detect the contexts of data behaviour in the time-series
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domain (Candela et al., 2009), (Duarte et al., 2016). Contextual anomaly can

be defined based on the data instances and time occurrence of the attributes.

In summary, these challenges are primarily motivated this investigation, and
according to the literature, existing research studies have disregards to
investigates in-depth to the levels of distributed Confextual anomaly
detection. The main goal of this study is to address and propose novel
distributed Contextual anomalous event stream detection, specifically,
detecting Contextual behaviours from large sequence of [oT sensor streams in

parallel.
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1.2 Research Questions

The primary aim of this thesis is to design a scalable Contextual anomaly
detection approach in real time to handle high rate of event streams from IoT

sensors. To achieve this aim, the following research questions are defined.

1. What are the main existing methods to detect anomalous events from
sequence of [oT sensors in real time?

2. Is it possible to detect anomaly dynamically regardless of streams
high rate and to what extent the proposed algorithm is capable to
address and handle changes over the stream distribution without
human interventions?

3. Can an algorithm detect the Contextual behaviour in the large
sequence of data streams based on using window partitions stream
data structure model?

4. On what scale detecting Contextual behaviours from high sequence

volumes of IoT sensors in parallel is possible?

5. How is it possible the proposed Contextual stream behaviour
detection method and algorithms to solve similar other real-time

application problems?

6. What are the appropriate methods to evaluate the performance of both

change detection and prediction error rates in the data stream?
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1.3 Research Contribution

1. To address the research aim and objectives, the following significant
contributions will be achieved. Studied and highlighted the potential
problems of existing anomaly detection will be highlight and studied

from distributed computing paradigm prospective.

2. This research identifies the event stream problem, defines and designs
novel Contextual Anomaly C4 model to detect unusual event in the

different context.

3. Designs novel window algorithms to partitioning high volumes of
event streams into several event partitioning to protect event streams

from changes and concept drift drawback.

4. Implements Contextual Event Stream Anomaly (CESA) algorithm
to detect changes and Contextual behaviour from large sequence of

IoT sensor stream based on DSPE data structure model.

5. Designs new Distributed Contextual Anomaly Detection (DCAD)
Framework to address scalability data anomaly constraints with a
comparison result of centralised and decentralised performance

results.

6. Analyse and evaluated the experimental results for proposed

algorithms based on several evaluation metrics.

In summary, this thesis flows from theoretical to experimental perspective.
First, anomaly detection can be studied as a unique approach to detect
anomalous events from [oT sensor stream in real time. This can be achieved
by designing a new Contextual anomaly detection method based on the high
number of scoring contexts in parallel per each window partitioning, since
this approach is particularly absented in the existing solutions. Second, the
proposed distributed method will be able to handle high throughput of event

streams in real time with low processing time. Third, the evaluation metrics
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will measure the accuracy of the proposed algorithm, which is based on the
estimation of the scoring rate and algorithm’s performances among the
predicting error rates. The proposed algorithm and accuracy of the
computational results are critically concerned to validate the algorithm
performance. A detailed description and results of evaluation metrics are

presented in (Section 5.6 and 5.7).
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1.4 List of Publications

The main research contributions of this thesis are based on the following
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Contextual Event Stream Detection. 30th International Conference on
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- 11, 2018.
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A Theoretical Study of Anomaly Detection in Big Data Distributed Static
and Stream Analytics . 20th International Conferences on High Performance
Computing and Communications (HPCC), the (HPCC-2018), Exeter, UK, 28-
30 June 2018.

Paper IV: Amen, B., Antoniou, G., An efficient Approach to Detect Big IoT
Contextual Event Stream Anomaly Real time (2018).
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1.5 Thesis Structure

This thesis is organised into five chapters as follows.

= Chapter 2 covers research study literature for three domains of anomaly
detection, stream mining and distributed data processing in parallel. First
section discusses anomaly detection methods, second section describes
anomaly detection in streaming domain including stream definition, and
stream data processing structure model, and the third core section in this
chapter is discussed the existing related works of anomaly detection

methods in parallel.

= Chapter 3 establishes theoretical foundation of the event streams problem
definitions with proposed novel distributed event stream partitioning
design methods. The distributed partitioning method is mainly based on
the window partitioning technique with designed Contextual Event

Stream Anomaly (CESA) algorithm.

= Chapter 4 describes designed phases of anomaly detection framework of
Distributed Contextual Anomaly Detection (DCAD) and its architecture
to address two main research problem constraints of stream detection and

scalability of high throughput events in real time.

= Chapter 5 covers the experimental performed results and evaluation for
the proposed algorithms based on two IoT case studies to estimate the

accuracy, effectiveness, and scalability of proposed the DCAD.

"  Chapter 7 provides the thesis’s conclusion with the summary of the problem, discussion
of research limitations, contribution and implantations, including the experimental

research  results and overview of the future work  opportunities

12
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Chapter 2

Anomaly Detection: Background and Related Work

This chapter describes the research background and distributed anomaly
detection research related works that are relevant to this thesis with focusing on
three research domains; anomaly detection, data stream mining, distributed and
parallel processing concepts. Section 2.1 describes an overview of traditional
anomaly with driven characteristics to understand the concept of the problem.
Since most of IoT data is arriving in a form of stream formats, detecting
anomalous event from streaming data in real time is becoming a challenging
task anomaly, thus, Section 2.2 describes the concepts of anomaly in data
stream mining with stream notations, characteristics, model and processing
techniques. Additionally, due to the lack of centralised based anomaly
detection processing, decentralised and distributed is another research
challenge to be concerned, about; Section 2.3 describes parallel and distributed
computing methods in relation to high throughput (scalability) with low-
latency and real time response challenging concerns. Section 2.4 discusses and
covers anomaly detection related works in the area of parallel and distributed
computing from this domain prospective; Information Theoretic-based,
Statistical-based, Classification-based, Clustering-based, Density-based,

Distance-based, and Online-based.

14
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2.1. Anomaly Detection Overview

2.1.1. Anomaly Definitions

The term of “anomaly” is differed between one discipline to another,
importantly, outlier, anomaly, and novelty terminology can be correlated, but
in practice they are different. A formal definition of such concept is depending
on the detection method in each application domain. For example, in statistical
analysis, data is considered to be fitted into a normal model and outlier refers
to those data which are distinct from the proposed model (Aggarwal, 2016),
while the normal behaviour is based on predefined notion of normal objects in
the dataset. Faria et al. (2013), Faria et al. (2016), and Schneider, Ertel et al.
(2016) argues that both anomaly and outlier have the same definitions in terms
of dissimilar pattern or anomalous behaviour in the data. Similarly, in data
mining, outlier refers to anomalous pattern in the dataset compared to the
remaining data (Zhang, 2013). Consequently, Beigi, Chang et al. (2011)
explained that outlier possibly refers to a noise or irrelevant system behaviour,
while noise could be due to network failure or reading measurement errors.
Similarly, Aggarwal (2016) and Zhang (2013) argued that the difference
between noise and outlier, and agreed on that noise is a weak type of outlier. In
(Yang, Meratnia et al.. 2010) defined the noise as a potential source of outlier

which possibly occurs due to faults in the sensors.

In network security, anomaly refers to intrusion detection, while such
behaviour refers to fraud detection in financial sectors (Amen & Lu, 2015;
Candela et al., 2009; Grosse & Turin, 2012). To conclude this, according to the
literature definitions, it can be argued that outlier is more related to unusual
pattern or behaviour in the static data; on the contrary, anomaly can be referred
to an anomalous event in dynamic data (stream). Importantly, high score output

results of anomaly rate are more achievable rather than the outlier result in the

15
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majority of the applications, this is due to the clear understanding of anomaly

objectives in each application domain as described in Section 2.1.

2.1.2. Anomaly Detection Characteristics

Anomaly detection from static data analysis is mainly can be learnt on offline
as described in (Chandola, Banerjee et al., 2009). Similarly, the literature
survey of outlier, novelty, change, and anomaly detections for temporal data
(e.g., spatial-temporal data, data streams, time-series data, distributed data, and
network data) are presented in (Chandola, Banerjee et al., 2012; OReilly et al.,
2014 ; Yang, Meratnia et al., 2010; Zhang, 2013). According to these studies,
anomaly detection for both static and streaming data is primarily based on a

number of common facts as described in below.

i. Data Domain: one of the primary challenging task in anomaly
detection is to define a data type in order to be able to provide answers
to the problem during the data analysis or prediction. As described in
Section 2.1, the nature of data type from one application to another is
different, and data can be from collection of data instances (e.g. objects,
events, records, vectors, patterns, observations), where every instance
perhaps includes a number of attributes (categorical, binary or
continuous). In addition to these, the input data can be univariate
(single attribute) or multivariate (multi attributes).

ii.  Anomaly Type: in general anomaly is categorised into three types of
Point, Collective and Contextual. Point anomaly refers to an individual
data instance behaviour (single point) compared to the rest of the other
data instance behaviours. Point anomaly is one of the most common
detection type in various applications such as in credit card fraud
detection (Van Vlasselaer, 2015), weather forecast prediction (Erfani et
al., 2016), network intrusion detection (Garcia-Teodoro et al., 2009).

The literature study of this type of anomaly is very broad, specifically,

16
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in statistical data analysis, pattern recognition, machine learning, and
data mining. These disciplines are mainly based on addressing
classification and clustering problems (Beigi, Chang et al., 2011; Pham,
Venkatesh et al., 2012). On the other hand, Collective anomaly refers to
a collection of unusual events or behaviours from the data instances (set
of points). However, these behaviours can be grouped into clusters
based on similarly behaviours in unsupervised learning (e.g., machine
learning). This can be achieved by using a number of techniques such
as Markov Model to detect subsequence probability of the data and
label the data instances as anomaly, and similarity distance metrics (Ma
et al.,, 2016). For example, Ye and Li (2017) proposed Collective
anomaly to detect unusual behaviours over the data streams with similar
concept. Similar approach is used for sensor network detections by (Ma
et al., 2016), for social network detections by (Akcora, et al., 2014;
Ferrari & Kantarcioglu, 2014), and for multiple spatial temporal
detections by (Zheng et al., 2015). Alternatively, Hidden Markov
Model (HMM) is another appropriate model to detect subsequence
probability of the data and label the data instances as anomaly (Zheng
et al., 2015). Collective anomaly approach is proposed in various
application domains to detect a group of dissimilar data behaviours
including; Ye and Li (2017) proposed Collective method to detect a
group of sensor network behaviours, this method is also advocated for
social network behaviours in (Akcora et al., 2014; Ferrari, &
Kantarcioglu, 2014), and for multiple spatial temporal detections in
(Zheng et al., 2015).

Lastly, Contextual anomaly is associated with the relations between
both data instance’s Contextual and attributes since the most important
impact on Contextual anomaly is the time of event occurrence (Gupta et
al., 2014). For example, consider monitoring conference room normal
temperature degree as depicted in figure 2.1, On the one hand, the room

temperature is 26 °C at t1 when the room is occupied, while similar

17
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temperature degree at tl in midnight is considered as Contextual
behaviour, this is due to the fact that similar behaviour occurs in the
different contexts with different attribute value. In finance and banking
industry, Contextual anomaly is associated with customer’s spending
behaviour, however, these limitations are based on the bank’s spending
credited threshold per account holder. For example, spending large
amount of money (e.g., $1000) at Christmas is considered as normal
behaviour, while similar spending behaviour in April is concerned as an

unusual event (anomaly) (Van Vlasselaer, 2015).
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Figure 2.1: Contextual anomaly for the conference room temperature
scenario.

Contextual anomaly is proposed to predict stock market shares
(Golmohammadi & Zaiane, 2015), social networks behaviours between
different group of users (Akcora et al., 2014), sensor network pattern
detection (Hayes & Capretz, 2015), text data and semantic analysis
(Mabhapatra et al., 2012). Importantly, Contextual anomaly can also be
used for online shopping customer’s behaviours; for example, customer’s
shopping behaviours can be changed from one season to another within
the similar spending range, but with different interest (context) (Jiang et

al., 2014).
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iii.

Anomaly detection types are combined methods (e.g. Point and

Contextual, or Collective and Contextual) in a number of research studies

to address and discover different research problems. For example, Mirsky
et al. (2017) combined both Point and Contextual anomalies based on
using pcStream algorithm to protect user’s mobiles from malicious
activities. Similarly, in (Hayes and Capretz, 2015) Point and Contextual

anomalies have been combined to detect faults from high volume of

sensor networks data. Yexi, J, (2014) proposed Contextual and Collective

anomalies to detect unusual behaviours of computer clusters memory

consumption behaviour.

Output Label: the output of anomaly results is either based on label or
score results. The result techniques are based on the proposed anomaly
detection algorithms (e.g., supervised, unsupervised or semi-
supervised), specifically during the learning process for training of a
model (Faria et al., 2016), prior knowledge of the data behaviour is
required to be known. A significant human effort is required to propose
manual labelling or obtaining data labelling for the data training in
some of the anomaly detection approaches. For example, consider
labelling 1 millions of data instances manually is believed to be time
consuming, complex, and very expensive procedure (Chandola,
Banerjee et al., 2009). As data stream is changing over the time and
labelling data stream is impractical in most real time situation. On the
other hand, scoring output refers to the assigning an anomaly score, for
example, to the sequence of data instances or to the window partitions
and such approach is described in (Section 3.8). There is extensive
literature and research of output scoring techniques over sequence of
data in (Chandola, Banerjee et al., 2009; Chandola, Banerjee et al.
2012; Zhang, 2013).

In summary, the aforementioned of anomaly overview is mainly based on the

statistical data analysis point of view, in contrast to anomaly detection in non-
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stationary data where the data in form of stream is significantly different. In
dynamic situation, anomaly is required to be detected in real time and the
learning processing can be considered on online. A detailed description of data
stream, stream models, stream processing, and anomaly detection in streaming

are described in the next sections.
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2.2.  Anomaly Detection in Data Stream Analytics

2.2.1. Stream Definition

A formal definition of stream is described by Muthukrishnan (2005) as;

“a sequence of digitally encoded signals used to represent information in
transmission”.

Streams are generating at very high rate by diverse applications from IoT
sensors, online transactions, traffic networks, stock market, online web clicks,
medical records, manufacturing machines, and social media (Golmohammadi

& Zaiane, 2015) .

2.2.2. Data Stream Model

Stream model is defined as logical formula of the stream data structure and
stream computational model is one of the most common models to represents

streaming data format (Erfani et al., 2016).

Definition 1: data stream S refers to stream with unbounded of items/elements,
in contrast to static data; data streams are infinite and arrive at a very high rate.
As denoted in Equation 2.1, S; refers to the first instance of the stream while

each stream instance consists of fuple which compromises with a timestamp

(e'g'v (Slv tl))
S={S, 8 8 ...} @.1)

Definition 2: Data stream is potentially infinite (N—o0) and completed data
stream is impractical to be stored neither on memory nor disk due to the high
rate and size of the streams. For such reason, data streams can be divided into

sub-streams of tuples as denoted in Equation 2.2.

Si={(s1, 1), (52, t2), ... (Suy )} (2.2)
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Since S; consists of an unbounded sequence of fuples (s, ) and s refers to
individual data instance arrived at time ¢. Accordingly, tuple is associated with
either implicit or explicit timestamps ¢; while both categories are depending on
the application underline assumption where the data stream is created from or
arrive into the system. The implicit timestamp refers to arrive time of the fuples
as they entered into the system (Tran, Gaber et al., 2014). However, the
implicit timestamp can be added to an arriving tuple or if the timestamps are
missing. In this context, such problem can be addressed with time-based
windowing mechanism (See Section 3.4). On the contrary, explicit timestamp
refers to the embedded timestamp to the data sources when the tuple is created
by the real-world systems (Babcock et al., 2002). The explicit timestamp can
be used to re-order of the data stream fuples into a sequence of ordered
timestamps. The main disadvantage of explicit is correct ordering the
timestamps from the transmission system; for example, tuple t, could possibly
arrive before tuple t|. A details comparison of timestamps detail is described in

(Chaudhry, 2005).

In IoT applications, sensor data can be modelled and measured as a sequence
of streams and they can be considered as time-series data. The reading value
and time-series can be correlated in the sequential data analysis; thus, they can
be modelled as key-value pairs of tuple (s; t;). In the real-world applications,
sequence data can be either discrete or continuous (time-series) (Chandola,
Banerjee et al., 2012). In this situation, the IoT data stream is considered as
continued data instance with timestamps. Aggarwal (2007), Amini (2013),
Bifet (2009), Ma et al. (2016), and Muthukrishnan (2005) all agreed on the
three fundamental requirements of data stream constraints in most of the

application domains according of Time, Space, and Accuracy (TSA) metrics.

= Requirement 1: Data stream continuously arrives at a very high rate (e.g.,
millisecond). Thus, real time learning, and analysis is significantly

important, while such requirement is impossible in offline learning.

* Requirement 2: Data stream generates in unbounded sequences of data
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instances (N—). Storing potentially infinite data streams on memory is
inappropriate. Thus, suggested solution is partitioning data streams into

sub streams with single-scan over the data stream.

* Requirement 3: The nature of data stream changes over the time and
change occurs in data stream sequence, thus, proposing an appropriate and

novel computational method is a challenging task.

Furthermore, the problem of the data stream is broadly studied and investigated
by many research communities in neural networks, machine learning, data
stream mining, big data stream analytic, and social network analysis (Hu et al.,
2014; Philip Chen & Zhang, 2014). The next section describes the data
structure of stream model and stream formulations during the data stream

processing and mining.

2.2.3. Anomaly Detection in Streaming Data

In dynamic situations, data streams can be generated by various applications
and anomalous events possibly occur due to the result of either system
behaviour (e.g., sensor) or changes in nature of the data distribution. Thus,
sudden changes in the data records can be referred to the anomalous event and
such behaviour is considered as an event detection (Aggarwal, 2016). On the
other hand, in machine learning, specifically, in supervised learning, change is
referring to a novelty detection, mainly when the classifier is missed such
behaviour within the training process. In recent years, several studies have
investigated novelty detection problems based on offline and online approaches
for the multi-class label of data streams (Faria et al., 2016; Krawczyk et al.,
2017). In addition to this, change possibly occurs in several conditions such as
during data transformation, grouping data clusters, feature disappearing, class
label swaps, float probability distribution or data discards. Importantly, Gaber
et al., in (Tran, Gaber et al., 2014) descried Change detection as:
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“Change detection is the process of identifying differences in the state of an
object or phenomenon by observing it at different times or different locations in

space.”

On the other hand, gradual change in the data stream value and trend can be
related to the concept drift, this is based designed model with prior unknown
environment while according to Aggarwal (2016) change is not considered as

an anomaly and concept drift defined as in follows:

“Concept drift refers to a change in the class definitions over time or

underlying class (concept) of the data changing over time”.

A detailed review of concept drift with taxonomy of concept drift detection
methods in data streams is described in (Gama et al., 2014; Kuncheva, 2008).
In general, concept drift detection refers to the problem of supervised
classification learning scenario (Farid, Zhang et al., 2013). The proposed model
first designed based on prior knowledge of the data behaviour in advanced. For
example, the concept of the underline data stream at time # must be to the same
of the newly arriving data stream at 7+1, in contrast, the assumption output is
considered to the concept drift problem (sudden change). The detection
behaviour is mainly depending on prior known of a use of a model based on
learning estimated training of the data samples. Consider an example of
network intrusion detection learning supervised algorithm (e.g., classification
learning) based on the decision tree structured design. The model is designed
based on human prediction of expertise to construct the model tree according
the estimated of all sudden change (e.g., suspicious activity) within arrived

traffic data streams.

Alternatively, the estimation can be considered according to the data
distribution behaviours in unsupervised behaviour as described in definition 3.
In general, proposed formal model can only be appropriate when a prior
knowledge of application objective behaviour is known, then the assumption of

detection model can be beneficial, however, these learning processed is mainly
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referred to data mining and machine learning techniques.

Definition 3: Assume two stream sets (S;, $;) are observed with given two
Probability distribution of (P,P,) (Tao & Ozsu, 2009). The similarity of their
estimated distribution is based on their computed distance (e.g., Euclidian) of

dist (s,,S,) = dist (P,,P,), as denoted in the following Equation 2.3.

dist(Py,Py) = | (01 (0) — (2(v))? (2.3)

Where v(s) is the value of the data in both stream assumptions (81, S2), this is
mainly based on a prior knowledge of the formal model construction. A
probability of each vi € v(s) in §; and S; is based on the distance distribution in
pi1 (vi) and p; (v;), if the probability between P; . P; is large, it assumes that the
distribution S is changed. However, assumption of prior knowledge of the
environment in many applications such as IoT data stream is always unknown
due to the nature of the data distribution and dynamic behaviours of the sensor
devices in real-time.

Furthermore, Gama (2013) characterised five types of change in data streams
as (e.g., sudden (A), incremental (B), gradual (C), recurring (D), and outlier
(E)) in figure 2.2. Consider five scenarios for the aforementioned concept of
change types; as in on online shopping, for example, customers interest
behaviour on a particular item can changes suddenly compared to their past
interests, such shift can be considered as sudden (Type A). In retailer industry,
loyalty card has a significant positive impact of the retailer’s investment over a
time; such progress change within the data refers to (Type B). The moment
when the UK Brexit result is announced, the news data stream over social
media, specifically, Twitter stream comments have become very popular,
suddenly after several months such news deliberately becomes to less
important, between since and now, Brexit news suddenly shifts and becomes

popular again mainly when new Brexit legislation formally is introduced. Thus,
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such behaviours are considered as a gradual change (Type C). A particular item
sale can be very popular for a specific period (e.g., for a month or a year), and
this item becomes less interesting to be purchased due to the market
computation, thus, such behaviour is considered as (Type D). Similarly,
property buyer’s interest is changed from time to time between in each season.
Lastly, in banking industry transaction fraud can be considered an

outlier/anomaly against single account holder (Type E).
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Figure 2.3: Concept drift detection types.

In the last decade, several machine learning methods have been used to detect
change during the data stream distribution, for example, Ensemble classifiers
(Farid, Zhang et al., 2013) and Drift Detection Method (DDM) (Gama et al.,
2004), and Early Drift Detection Methods (EDDM) (Bifet et al., 2006). In
Farid, Zhang et al. (2013) and Kuncheva (2008) ensemble (multi-classifier)
method for both labelled and unlabelled data stream is proposed based on
window sizes and using a threshold parameter for addressing both concept drift
and change detection problems. Similarly, Kmieciak, and Stefanowski (2011)
proposed supervised learning approach based on constructing a decision tree
classifier to monitor probability distribution of a sudden change within the data
streams. A similar research in Yang and Fong (2015) presented single tree
learning classifier to detect concept drift detection within the data streams; this
learning technique is mainly depends on the behaviour of the tree

classification.
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According to Gama et al. (2014), in the data stream mining, changes possibly
occur mainly within online learning, specifically, in supervised learning, when
the relation between data instance input and object is found to be different. A
literature of change detection within data stream is provided by (Farid, Zhang
et al., 2013) and (Joao Gama, 2013) with a taxonomy of detection methods for
each (e.g. sequential contextual, control charts, and monitoring two
distributions) data analysis. Furthermore, the main difference between each
concept is that the former change detection refers to a labelled data (supervised
learning), while the later detection relates to both situations of labelled
(supervised learning) and unlabelled data (unsupervised learning) (Tran, Gaber
et al., 2014). However, the computational complexity of the former learning
approach is higher than the labelled data, due to the availability of both labelled
data.

Overall, these methods are appropriate techniques to detect change from the
data streams, while the main drawback of such methods are their capabilities
with specific data stream type, limited size of data streams, and their data
processing structured model since most of the existing detection methods are
designed to process and detect data centrally. Therefore, detecting change from
data stream in distributed and parallel computing can be an ideal solution to
overcome scalability concern and handle high throughput of the data.
Specifically, such approach can be managed with high levels of data
throughput and real time response. The aforementioned methods mainly focus
on either detecting changes in the nature of data distribution state in the
learning process, or model behaviour regardless of the scalability concerns of
sensor streams, medical streams, weather broadcast streams, network sensor
streams. However, data processing is a major concern, specifically, for
processing high volumes of data streams, thus, in recent years, many data
stream; management systems and distributed processing is developed to offer
continue queries with limited data source capabilities as described in the

following sections.
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2.2.4. Data Stream Collection Concept

Data stream can be collected through messaging system based on many-to-
many communication service. This is emerged to help collect and transfer
streams from many sources of (e.g., [oT sensors, web streams, and network
streams). A messaging system is primarily based on two models: point-to-point
and publish-subscribe (Tatbul, 2010). The former approach refers to direct
single point of messaging communication mechanism as depicted in figure 2.3.
The disadvantage of such approach is that only one message at the time from
the queue can be delivered to the specified destination. Thus, this approach is
incapable of, for example, delivering high volumes of data streams. Thus, high
throughput and scalability are critical concern in this approach due to the
system input and output communication data structured (Duarte et al., 2016;

Schneider et al., 2016).

Message Queue

1000001

Figure 2.3: Point-to-point messaging system.

The other approach of publish-subscribe of messaging delivery is an alternative
solution, and the communication service can be made through distribution of
multi brokers as depicted in figure 2.4. Publish-subscribe is also known as
producer and consumer; this approach is designed to deliver high volumes of
streams in parallel decentralised (Jacobsen, 2005). The advantage of the
distributed publish-subscribe system is the ability to integrate and delivery
multi-sources, flexibility in (pull-based, push-based), high-throughput of data
streams, and low latency communication response (Cugola and Margara,
2012). The main architecture of distributed publish-subscribe message consists

of three components.
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»  Publishers: The main task of the publisher is to produce related streams to

a subscriber in an asynchronous manner.

* Brokers: A broker assigns streams into e.g., fopic-based and content-based
partitions as shown in figure 2.4. The benefit of the broker is to filter

irrelevant events; this helps to reduce the network bandwidth in each node

and publish only requested interested streams to the subscribers.

»  Subscribers: A subscriber receives those messages from publishers based
on requested

Temperature).

In general, publish-subscribe messaging system is mainly comprised of topic-
based or content-based systems. The main role of the topic-based system is to
assign messages to a topic, where every topic is associated with the stream or
event topic names. This approach is connecting messages from producers to the
consumers based on the topics scheme as shown in figure 2.4. Filtering is one
of the main drawbacks in this approach, for this reason, it can be a critical
problem when the size of stream is scaled up, or when all streams are published

on to the given fopic. Alternative solution is to emit only forwarded request

topic names to the subscriber.

Producer

Kafka Brokers

/ Topic Partitions

Node 1

1
1
l:s A Partition-1, Topic-1: Speed ( )
1

i Partition-1, Topic-2: Tempera‘(ure( )

Node 2 |

Read events

______________________ :
|
i A Parttion-2, Topic-1: Speed ():
|
I
I
I
|

Partition-2, Topic-2: Tem peratur( )

| Read events

' D't

Subcriber

..........

..........

Figure 2.4: Distributed stream collection architecture in Kafka.
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On the other hand, topic-based is proposed in many types of research problems
e.g., social media topic detection, crowded scenes feature fopic detection (Ye
& Li, 2017), and linked stream data fopic detection (Saleh et al., 2015). In
contrast to the previous approach, the content-based approach is more flexible
and it provides filtering function for each published stream (Plale, 2003), for
example, the consumer can only receive stream that has been filtered according
to the request from publisher. As another example, in a road traffic monitoring
situation, subscriber can register a query to receive all vehicles with over speed

events from national speed limited of e.g., 120km/h' as denoted in 2.4.

{type = vehicle, speed > 120} (2.4)

The main advantage of such approach is that the flow of events to the
subscriber is motivated by event content instead of predefined groups or fopics.
Thus, in the content-based approach, events can be filtered, and only
interesting events can be forwarded to the subscriber for processing and
computations, hence, this approach is also decreases overhead messages and
handles a load balance on each node as shown in figure 2.4.

Eugster et al. (2003) argues that publish-subscribe system can support loosely
coupled communication for a scalable system while, loosely coupled can be
evaluated based on three dimensions of, time, space, and flow. Time
decoupling is associated with the information of communication between
publishers and subscribers. Specifically, publisher can produces new messages
to subscriber even when the subscriber is disconnected; then, the data can be
delivered when the subscriber is recovered or reactivated. Such characteristic is
known as a dynamic and flexible communication in publish-subscribe
messaging systems. A prior knowledge of communication and identifications

of both publishers and subscribers are unknown, hence, such approach relates

"http://www.metric.org.uk/speed-limits Worldwide Highway Speed Limited Matrix
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to space decoupling. Lastly, synchronisation decoupling refers to the
interconnection communication between both publish-subscribe while such
communication is considered to be synchronised to the consumer.

Overall, there are several enterprise publisher-subscriber messaging systems
available including IBM MQz, Java Message System J SM?, Active MQ4, and
Rabbit MQ’. These frameworks each have limitations and drawbacks in terms
of scalability in handling overloads of streams with overhead network
bandwidth, fault-tolerance, distributed architecture support, and guarantee in
delivering high volume of infinite data streams in real time. A detailed survey
of the most common and reliable distributed publish-subscribe messaging
system is described in Kreps (2011) and Tatbul (2010).

Alternative solution of distributed publish—subscribe messaging system is
proposed and developed by LinkedIn so-called Apache Kafka®. Kafka provides
anonymous many-to-many streaming messaging service delivery (Philip Chen
& Zhang, 2014). Apache Kafka' is a scalable distributed messaging system
framework, which provides anonymous streams messaging delivery service in
real time and guarantees high throughput and low-latency of streams delivery.
Additionally, in the case of failure, Kafka has a replication strategy to replace
the node tasks with the other node in the cluster and guarantees its messages
delivery service. Kafka consists of three main components, producers, topics,
and consumers. The main task of each component and implementation is

described below.

Kafka also provides distributed messaging system approach with many features
that other system is incapable to provide, such as fopic partitioning, high

throughput messages, and low-latency response. In recent years, Kafka has

2ht‘qos://www.ibm.com/su]m:)ort/knowledgecenter/en/SSFKSJ 8.0.0/com.ibm.mgq.pro.doc/q0048
70_.htm

3https://docs.oracle.com/javaee/6/tutorial/doc/bneeh.html

4http://activemq .apache.org/

5ht‘qos://www.rabbitmq .com/

6https://l<aﬂ<a.apache.org/

7https://l<aﬂ<a.apache.org/intro
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been widely proposed in many research problems to help with collecting and
aggregating streams in real time; for example, Esposito, Ficco et al. (2015)
proposed Kafka to aggregate data streams for the purpose of ontology
extraction. Similarly, Kreps (2011) proposed distributed publish-subscribe
framework to collect data logs with low latency performance in real time.
Accordingly, the main benefits of the publish-subscribe messaging system are
high-throughput and low latency (Kreps, 2011). In this context, publish-
subscribe paradigm is an appropriate and reliable messaging system to be
proposed in this thesis to aggregate large-scale of IoT sensor streams in real

time as described in (Section 2.2.4).

2.2.5. Data Stream Management System (DSMS)

Aggregating data stream in real time is a key requirement of data
processing. Data Stream Management System (DSMS) is one of the most
common techniques to handle dynamic data in form of continues data
stream. As data stream is emitted into the DSMS, it manages Continues
Query (CQ) processing over the data streams to address the velocity
problem. DSMS is capable to handle, process and retrieve data streams in
real time for only limited size of data similar to the Database Management
System (DBMS). A key challenging task in stream mining is to detect
anomalous event from continues data stream and to manage high volume of
data streams. Thus, the main purpose of stream management is to combine
the stream data into appropriate format before to extracting any knowledge
from them. DSMS offers a reliable and flexible mechanism to combine and
store streaming data locally and provides Continues Query (CQ) over the

arrived streams as can be seen in figure 2.5.

On the one hand, the advantage of CQ is that it can facilitate, handle, and
organise such high rate of continues data stream. On the other hand, the

disadvantage of DSMS is that, when the data size is scaled up, CQ can only
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capable to process limited data centrally. Thus, detecting anomalous event
throughout this technique is impractical due to the scalability of the stream.
Alternative solution is the reduction technique, which technique also can be
inappropriate, while streaming data is correlated, and event query is also
mainly has a temporal condition. Time plays an important role in event
detection, thus, conducting directly operator CQ on such high rate of data
stream could result in either workload, difficult in complexity of
computational result, hence, anomalous event possibly disappears or
becomes disregarded. On the other hand, DSMS mainly adapts inherent
timestamps to order data instances at the boundary in the Stream Processing
Engine (SPE) and such timestamp can be disappear during the processing
(Cugola and Margara, 2012). In recent years, new data stream structure
model, this so-called Data Stream Processing (DSP), this has emerged to
address such aforementioned drawbacks and provide low-latency response.

A detailed description of such approach is presented in (Section 2.2.1).

In the last decade, many data stream management systems are developed to
handle the scalability and other stream characteristics such as Extract-
Transform-Load (ETL), INFOMIX (Genesereth, Keller et al., 1997), Aurora
(Abadi et al., 2003), STREAM (Arasu et al.,, 2004), and TelegraphCQ
(Chandrasekaran, Cooper et al., 2003). The main drawbacks of such DSMS
frameworks are their data structure model and computational resource
limitation to deal with big data characteristics and the lack of supporting

distributed stream processing data structure model.
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Figure 2.7: Data stream management system architecture.
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2.3. Distributed and Parallel Data Processing

The concept of parallelism is generic; however, in recent years, due to the
advances in technologies, the size of data has grown rapidly, and parallel
distributed methods have been proposed to address the scalability of high
volumes of the datasets. The main concept of distributed computing is to
interconnect several computers and make communications through Message
Passing (MP) to perform different tasks (Agarwal, Tayal et al., 2009). For
example, figure 2.6 shows centralised and distributed data processing and
mining approaches. The centralised approach (one the left) is associated
with standalone machine for stream processing and mining data that are
coming from IoT applications including weather broadcast and traffic
monitoring system. While the distributed approach (on the right) refers to
distributed stream processing and mining across number of computer nodes
in parallel. Importantly, one of the most important aspects of distributed

computing is a parallel execution to split large complex tasks and data into a
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smaller sub-tasks to handle and produce computational results (Rauber and

Riinger, 2013).

The concept of programming model in parallelism is associated with
dynamic data partitioning across computer nodes. In general, parallel and
distributed computing is a combination of parallel programming model
(e.g., MapReduce) and computer application framework (e.g., Apache
Hadoop®, and Spark)’ to perform distributed tasks and process high volume
of datasets over different commodity architecture of either computer cluster
or cloud computing (Esposito, Ficco et al., 2015). A term of parallelism
refers to a dynamic partitioning of the continuous query over the input of the
dataset based on one of the common programming methods (e.g., data and

task parallelisms).

Data parallelism: relates to the data partition mechanism, where datasets can

be divided into across of computer nodes. Map Reduce is one of the most

common types of data parallelism to partitions and computes high volume of

the dataset into a sub-set and partitioning them across different computer nodes

in parallel. Map Reduce is based on the input data in a batch format (static

format) in an offline mode and the process can be finished when the analyse

task is completed; in contrast, event streams are arriving continuously at a very

high rate where Map Reduce is incapable to handle such requirement of the

stream.

Task parallelism: refers to the process of execution tasks made by different

operators.

8ht‘qo://hadoop.apache.org/
9ht‘qos:// spark.apache.org/
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Figure 2.4: Centralised (left) and distributed data stream processing (right).
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Big data is primarily based on two distributed data processing of batch (offline
learning and stream (online learning) analytics (Philip Chen & Zhang, 2014).
On the one hand, batch analytic is introduced to address the first (Volume) and
second (Variety) characteristics of big data for large-scale of static data
through offline learning. For example, many distributed storage systems such
as HDFS, Cassandra, HBase, Hive, and GFS frameworks have been developed
to run on Hadoop, and the aim of such frameworks are to address storage
limitations of centralised databases and to run computational operations on. In
addition to this, the batch approach is based on collecting; storing and
analysing static data, and anomaly detection can be implemented over stored
the static data regardless of considering the low-latency execution time and
online learning (stream detection in real time). On the contrary, detecting
potential events from streaming data requires online learning process and real
time prediction, this is due to the nature of the stream characteristics and

constraints as described in 2.2.2 (Karunaratne et al., 2017; Tran et al., 2014).
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Since big data phenomenon is emerged in 2012, many researchers have been
attempting to detect anomalies from large-scale of datasets including
(Mohiuddin Solaimani, 2014; Wang, Shen et al., 2015; Yan, Zhang et al.,
2015).

Theoretically, in batch analytic approach, anomaly detection refers to
predicting the number of outliers from the static data with multi-scan learning
approach over the datasets. In contrast to streaming data, anomaly refers to
event, which occurs in real time, and it requires to be detected according to the
same speed of the data stream as described in Sections 2.1, 2.2, and 2.3. On the
other hand, stream analytic has emerged to process high volumes of data
streams in real time with low-latency response and online learning prediction.
Such approach is primarily based on Distributed Stream Processing (DSP)
computational model to address big data three characteristics of (Volume),
(Variety), and (Velocity). The concept of DSP depends on the dynamic stream
partitioning, while all the partitioning mechanism is mainly based on two

parallelism models; data or task.

In distributed and parallel processing, fault-tolerance or disruption during the
learning execution in real time is a highly critical concern to guarantee
processing high throughput streams in any DSP. For such reason, a number of
Distributed Stream Processing Engines (DSPE) including Apache S4'°,
Flink'', and Storm'? have been developed to address the aforementioned
potential problems with similar stream processing data models. A detailed

comparison of these framework studies is available in Appendix 1.

%http://incubator.apache.org/projects/s4.html
"https://flink.apache.org/index.html|
12http://storm.apache.org_{/index.html
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2.3.1. Distributed Batch Data Processing

Pervious section is introduced a distributed data processing concept for
collecting and processing large-scale of datasets and streaming data. This
section describes the most common distributed batch data analytic

framework.

Apache Hadoop

Apache Hadoop is a distributed high throughput of batch data processing
engine based on Map Reduce programming models. MapReduce is one of
most reliable parallel programming model to analyse large-scale of the
dataset (Philip Chen & Zhang, 2014). The concept of MapReduce is based
on two common functions of maps and reduces. Map function sorts the
datasets and shuffles them over computer nodes in order to find a similar
matched pair from the data values, while reducing function is grouping the
data values with the same attribute values in parallel as shown in figure 2.7.
On the one hand, the main drawback of MapReduce is the re-execution
processing and learning tasks. The iteration process of computational result
is possible, thus, Map Reduce suffers from processing streaming data due to
the constraints as described in Section 2.1.2. On the other hand, MapReduce
has been proposed in many researches to address offline complex problems
across different scientific area including in bioinformatics (MapReBio3),
genetic data (MRsciel) engineering, and IoT (Hayes & Capretz, 2015;
Zhang et al., 2016), environmental data. Map-Reduce is proposed by (Ma,
Wu et al., 2015; Yan, Zhang et al., 2015) for sketching problem on Hadoop
cluster for the large-scale of datasets. Additionally, Map Reduce also
operated and deployed on different distributed computing architectures such
as cloud computing, high-performance computing (Karatepe & Zeydan,

2014), and grid computing (Bai, Wang et al., 2016).
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Figure 2.5: Map Reduce distributed programming model.

2.3.2. Distributed Stream Processing (DSP)

To evaluate the appropriate technique and method to detect anomalous event
over high volumes of data streams, a theoretical background behind stream and
distributed processing is required. Thus, understanding the concept of
distributed stream processing data structural model is required for the sensor

stream integration and pre-processing modules in Chapter 4 and 5.

Apache Storm

Apache Storm is a real time distributed stream processing framework with
the capability of processing one million stream fuples per second on a
standalone computer node (Storm, 2016). Similar to the Hadoop’s
MapReduce programming data model, Storm’s programming model is
based on three components of spout, bolt, and topology as shown in figure

2.8. Spout is known as a first entry point of Storm framework and the main
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tasks of each Spout is to read and convert data stream into a fuple data
format from messaging queue system like Katka and Twitter APIL. A tuple is
a pair of ordered values in a form of <tuple, timestamp> data format. Bolt is
known as a computational unit of input streams; hence, bolt’s computational
functions are comprised of filter, join, aggregate, and communicates
operations to execute different tasks including read and write to the
database. The most important components of Storm’s are topology; a
topology can be viewed as graphical representation of stream programming
model linking operation units to each other through streams. The structure
of topology in Storm is made from spouts and bolts based on Direct Acyclic
Graph (DAG) node representation. As can be seen in figure 2.8, Storm
topology consists of Spout (Sp, and Sp,) with (B; to Bs) bolts, through DAG

made of stream connection (e.g., red arrows).

Storm Topology Spouts

[4)

Boits (*

Stream—»
B1 \ <
Sp1 / By

Figure 2.6: Apache storm topology programming model.

The topology builder defines the topology structure, spout and bolt from two
streams, e.g., (streaml) and (stream?2). The data stream then can be shuffled

and grouped them over the different computer nodes based on ShuffleGrouping
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mechanism. This type of grouping mechanism is one of the Storm’s streams

partitioning approach as described in the next section.

Storm has been implemented in many real time stream processing solutions
including for the Twitter streams (Akter & Wamba, 2016), weather stream
(McCreadie et al., 2013), IoT sensor streams (Kamburugamuve et al., 2015),
and Social Media streams (Gao et al., 2015). Similarly, to batch data
analytic, Storm has had a mayjor contribution in addressing many anomaly
detection reseach problems, for examples, in Hu et al. (2014), Storm is
proposed to detect anomaly from CPU data stream behaviour. This research
is more related to the unusual behaviour of machines rather than solving a
particular stream problem regardless of the data scalability concern. Other
research in (Gao et al., 2015) attempted to implements distributed stream
processing on cloud architecture to analyse social media streams. Such
approach is mainly attempted to analyse social media through clustering
algorithm, and the assumption of dynamic change in the data stream is
disregarded, when there is unclear process of data stream partitioning tasks.
However, Candela in (Candela et al., 2009, and Candela et al., 2012) argues
that clustering is an unappropriate approach to detect anomaly from large
data streams due to the fact that clustering tasks are more related to dividing

data into a number of clusters rather than the data behaviour.

The architecture of storm is based on distributed infrastructure, which is
made from Nimbus, Supervisor and Zookeeper' clusters as shown in figure
2.9 While Nimbus represents as a master at node on the top of the
architecture with four Supervisor nodes and the connection between Nimbus
and Supervisor is made by Zookeeper cluster, which is acting as coordinator.
Processing latency between each storm component is playing an important

role, since number of workers in each node is depending on the

13 https://zookeeper.apache.org/
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compatibility of each used computer node in terms of processing latency

and memory space.
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Figure 2.7: Apache storm architecture.

A detailed description of Storm architecture components can be described as

follows.

il.

Nimbus: Nimbus acts as Hadoop’s master architecture, and the main
task of Nimbus is to divide created topology’s script codes across each
computer nodes known as Supervisors. Nimbus assigns and manages
computational functional tasks, which can be performed by each

supervisor.

Supervisor: A supervisor is known as a slave in Hadoop cluster
architecture. It manages Storm’s workers and the main task of
Supervisor is to execute logical functions based on assigned tasks by
the Nimbus, and to listen to the Zookeeper to excuse tasks from the
workers. A worker in Supervisor also refers to Java Virtual Machine
(JVM) and with constructed threats, which defines the tasks. Each
worker comprises a number of executors and tasks while each task

process data streams are implemented in spouts and bolts.
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iii.  Zookeeper: Apache Zookeeper is a high performance distributed
coordinator, which maintains and monitors the health status of Storm
cluster and acknowledge received messages. Zookeeper offers
distributed data synchronisation mechanism, which is a critical concern

in distributed computing environment (Philip Chen & Zhang, 2014).

The main concept behind high volumes of stream processing is a stream
partitioning scheme in the DSP, hence, the aim of partitioning scheme is to
define how the data stream can be processed or to be partitioned in parallel.
In DSPE and framework such as Storm, partitioning task can be constructed
from number operators (e.g., bolf) to process and emit data streams into the
predefined destination. In this context, Storm offers various partitioning
mechanisms and the most four common grouping techniques as described in

below;

Shuffle Grouping: Data stream tasks can be shuffled randomly based on
round robin scheme similar to Map Reduce data structure shuffles. Figure
2.10 illustrates the number of stream events, which can be partitioned across
the number of workers while each work has been assigned to processes, e.g.,
an event. Streams can be processed equally, and the benefit of such

approach is load balancing to prevent network overhead.
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Figure 2.8: Stream partitioning shuffle grouping mechanism.
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Filed Grouping: Streams can be controlled and grouped according to their
data value in each of their schema and stream tuple values. For example, a
similar value of tfuples stream can be grouped in a jointed worker, for
example, vehicle speed value tuple {s;, “140”} can be grouped and joined

by the same worker2 in bolt2 as illustrated in figure 2.11.
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Spout 4 N\
{s1,"130"} {s1,"140"} {s1,"140"}
O Workerl] [Workerzl Workera]
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Figure 2.9: Stream partitioning filed grouping mechanism.

All Grouping: Copy of data stream fuples can be replicated to all the other
bolts without partitioning them across different bolts as shown in figure
2.12. The disadvantage of this approach is overloaded data streams in each
bolt. A key benefit of all grouping is that events stream tuple values can be

all grouped by a specific e.g., Bolt 1.
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Figure 2.10: Stream partitioning all grouping mechanism.

Global Grouping: Global grouping is associated with joining all the data
stream tuples from other workers in Bolt 1 into an individual worker
(e.g.,W2) into bolt2. Computational results have been grouped them into a
specific work within e.g., Bolt2 as shown figure 2.13. This can be achieved
by defining an ID of each worker in every bolt within each supervisor node.
For example, all the events can from workerl to worker3 can be combined
into worker2 in bollf2. This supports the redirecting tasks in the storm
topology and synchronisation between each worker, since the drawback of

this technique is that overhead of memory in each node is highly possible.
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Figure 2.11: Stream partitioning global grouping mechanism.
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2.4. The Complexity of the Data Stream and Size

Since IoT data streams are generating rapidly in a form of streams and due to
the complexity of streams data structure, their data size can be very large and
noisy; thus, it is impractical to detect anomalous events through current
anomaly detection methods. Existing researches have mainly focused on
addressing anomaly problems through using dimensionality reductions such as
e.g., Sketches, Singular Value Decomposition (SVD) (Yan, Zhang et al., 2015),
Principal Component Analysis (PCA), and Independent Component Analysis
(ICA) (Muthukrishnan, 2005). The main drawback of dimensionality reduction
is that in some situations such as in time-series, data attributes and objects are
correlated with each other; for instance, temperature transmits several data
values (e.g., high or low). Similarly, in monitoring real-life applications such as
oil and gas leakage, fraud, and fire detections, data are generating in real time,
thus, decision making is highly recommended before, for example, event can
be irrelevant or dismissed. Thus, such decision making requires a robust data
processing and online learning method. The main drawback of reduction
techniques is that when the size of the data dynamically scales up, reduction
techniques are possibly leads to a missing some of the critical events or stream
tuple values can be missed. Therefore, in the process due to the high speed of
the data stream (Chakrabarti, Keogh et al., 2002). There is a survey of outlier
detection with low dimensional and high dimensional data reductions described

by (Zhang, 2013).

In practice, summarisation technique is an alternative solution to decrease the
data load and protect data from being lost. For example, Papadimitriou, Sun et
al. (2005) proposed Streaming Pattern Discovery in multiple Time-series
(SPIRIT) approach to summarise large collection of data streams. SPIRIT uses
less memory, and this approach is focused on data correlations to prevent
missing values from the high volume of data streams. SPIRIT approach is also

adaptable to detect both sudden and gradual changes within the data streams

46



Chapter 2: Anomaly Detection: Background and Related Work

and to forecast an outlier. The main drawback of SPRIT is a data structured
design for centralised-based approach. In Parthasarathy, Ghoting et al. (2007)
argued that in centralised-based mining is incapable to handle high volume of
data streams, specifically, the computational result can take a very long
process, when real time computations and response are the main priority
concern in most streaming application domains. In the last decade, alternative
solution is proposed by (Erfani et al., 2016), to divide data streams into subsets
of streams (chunk/portion) and across distributed nodes to handle such
constraints as described in the previous section. On the other hand, data
streams are generating in real time or near to real time and arrive at very high
rate. Thus, data distribution changes over the time and monitoring newly
arrived data streams and predicting their behaviours in real time is a

challenging task.

2.5. Distributed Anomaly Detection Related Works

This section describes related anomaly detection methods, which have been

proposed in parallel and distributed computing.

2.5.1. Information Theoretic-Based Anomaly Detection Method

Anomaly detection in Information theoretic method refers to the information
content and observes with an impact of anomalies probabilities of according to
the different measures (Chandola, Banerjee et al., 2012). In (Wu and Wang,
2013) a new concept of weighted complet entropy based on data distribution
and attribute correlation proposed to measure the possibility of the anomaly
candidate in large-scale of categorical data. Rettig et al. (2015) proposed
another two information theoretic measures (Relative Entropy and Pearson
Correlation) to detect large-scale of cellular network data behaviours by

implementing such approach in parallel on Apache Spark. In this work, a
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gradual change based on the Relative Entropy measurement first is detected.
Then, Pearson Correlation and correlation metric have been conducted to
detect abrupt changes in the data.

In summary, information theoretic can be measured based on the entropy
method, this is more applicable for measures the approximation of categorical
or spatial data format rather than streaming data. For such reasons, these
measures are inappropriate for the streaming data, while the selection of such

measures mainly depends on the numbers of anomalies in the dataset.

2.5.2. Statistical-Based Anomaly Detection Method

The study of statistical anomaly detection method is broad, a detailed
description of such approaches is studied in (Chandola, Banerjee et al., 2009).
The statistical technique is mainly referring to the assumption of the
probability of normal model behaviour (training set) to determine if tested data
fit into the normal model or not. In general, the statistical anomaly detection
approach is based on parametric or non-parametric models and such
approaches are proposed by (Rettig et al., 2015; Young et al., 2014) to detect
the network intrusion behaviours. Summaries of both approaches are described

in the followings.

In terms of parametric model, given dataset D generated from distribution D
(0) with unknown parameter 0, while 0 can be estimated from available D to
find d € D. In this context, Gaussian distribution is one of the most common
types of parameterised model in statistical-based method; example models are
including Regression Model, Bayesian Network (BS), Hidden Markov Model
(HMM), Gaussian Mixture Model (GMM). Consider a hypothesis of GMM for
the observation of X when this value can be generated by an infinite number of
Gaussian distributions. Every Gaussian Density N (X |7k, Y k) is a module of a

mixture noted by mean 7k, and covariance matrix Y k. The computation of P
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(6k | x) initially defines and this value can be constructed from data sample x

based on Bayes Rule of probability P (6k | x) as computed in Equitation 3.1.

P (x|6)
P (x)

P(Ok|x) = (2.5)

Where 7k can be a mixing coefficient of the module k£, which computed based
on the probability of 6k within x. Furthermore, in (Huang & Kasiviswanathan,
2015), autoregressive HMM is proposed to detect an unusual event in the data,
however, in (Rettig et al., 2015) argues that HMM execution time is very
demandable for training high volume of datasets due to the scalability size of
the dataset which is inpactical for the model to be fitted. In contrast, prior
knowledge of the data distribution in nonparametric is unknown. For example,
data with a stationary probability distribution P can be estimated from given
dataset D, while new data pointed x can be a new parameter and the relational
assumption can be approximate. There two possible solutions available to be
proposed to estimate the P based on the D or to decide if x is a random sample
from P. Nonparametric model includes Histogram and Kernel-based
approaches (Schneider et al., 2016; Su et al., 2007). Su in (Su et al., 2007),
Schneider in (Schneider et al., 2016), and Huang and Kasiviswanathan (Huang
& Kasiviswanathan, 2015) modified and optimized some of the nonparametric
method to discover abnormal behaviours of the data and measured the
proposed model based on the distribution of fixed data and micro-clusters.
Candela et al. (2009) argues that nonparametric Kernel-based techniques are
primarily capable when the assumption of the data generated from prior known
distribution; however, this technique is possibly complex and inappropriate for
the high dimensional volume of data streams. Detecting anomaly from data
streams without known prior knowledge of the data structure based on
nonparametric approach is described in (Beigi et al., 2011). The proposed data
stream model is limited and incapable to detect changes within the data

streams. Thus, the adaptability of the model is very critical in situation like
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weather prediction, while the model is required to incremental the learning
process to detect the change and return validate results. Similarly, in e-
commerce and online shopping recommendation items, the proposed model is
required to consider user’s purchasing interest behaviour and the model must

validates such unexpected change in the data distribution.

Aggarwal (2016) argues that the statistical methods computationally can be
accurate, while both parametric and nonparametric methods are impractical to
analyse large-scale of dataset. This is due to the validation results between
theorises and computational as major drawback in data mining. In situation of
anomaly detection, for example, labeling anomaly output manually may
require human expertise and time considering validating the proposed model.
To conclude, statistical models are incapable for online learning from dynamic
data and learning from streaming data is more related to an online learning

process.

2.5.3. Classification-Based Anomaly Detection Method

Classification method refers to supervised learning in machine learning and
anomaly detection technique is mainly based on training anomaly model to test
the output result of detection behaviours based on two learning assumptions of
normal and anomalous labels (Aggarwal 2007). Data label availability is a
major concern in supervised learning, as in some situation like streaming
application the data label is unknown. In the last decade to address such
problem, several classification models are proposed including Support Vector
Machine (SVM), SVM refers to one-class label classification model-based, the
learning process is based on divides the data into two sets of learning and
testing. For example, in (Perkins 2003) detected novel behaviours from data
streams based on one-class SVM classification. Similarly, OReilly et al. (2013)
proposed one-class SVM technique to reduce a computational complexity of

data sensors and detect outliers within each local node. As argued in
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(Schneider, Ertel et al., 2016), OC-SVM is incapable to assign large-scale of
labels for the model to learn and to detect anomaly due to the learning and
predicting anomaly result process by the model. Alternative solution is
proposed based on multi-class learning by (Hoens, Polikar et al., 2012) to

address such problem to training data from multi labelled normal classes.

The literature of anomaly detection in classification-based method is
extensively investigated. The proposed algorithms are categorised into tree-
based algorithms includes (e.g., bagging and boosting decision tree, random
forest, C4.5 decision tree and boosted stump), rule-based, Support Vector
Machine (SVM), and Neural Network (NN) (Chandola, Banerjee et al., 2009).
One of the most common proposed classification algorithm is decision tree.
The algorithm is easily interpreted data into a tree-based learning procedure,
this is based on hierarchical partitioning and each partition within the tree acts
as independent node. The tree procedure is based on a common assumption of

top-down approach learning where the tree develops from the root to the top.

2.5.4. Clustering-Based Anomaly Detection Method

Clustering-based method is one of alternative powerful meta-learning
technique to analyse high volumes of data created by advanced applications.
Clustering methods are referring to unsupervised learning. A taxonomy of the
Clustering-based algorithms are described in (Amini et al.,, 2014; Yang &
Fong, 2015) and (Fahad, Alshatri et al., 2014). These studies are categorised
Clustering based on partitioning methods, hierarchical methods, density-based
methods, grid-based methods, and model-based methods. In recent years,
clustering methods are widely studied and proposed in data stream mining
including to address problems across different application domains such as

micro-blogging (Lee & Chien, 2013), web analytics (Facca & Lanzi, 2005).
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In relation to the scalability concern, research on parallel and distributed
clustering algorithm in the literature is limited, specifically, for clustering data
streams. In (Zhang et al., 1997) proposed distributed clustering algorithm so-
called Balanced Iterative Reducing and Clustering using Hierarchies
(BIRICH). The main data structure for this algorithm is based on CF concept
and CF-tree method to summarise the data streams into CF data structure.
BRITCH splits leaf node of CF-tree and any CF vector with low density is
considered as outlier or anomaly. According to (Silva, Faria et al., 2013),
proposed data structure for storing the summary of the data stream is crucial to
handle memory and space constraints. While CF is constructed from d-

dimensional data point in the cluster. Splitting cluster {;)} is based oni=1,2,3,

..... , N, and CF vector of the cluster, while the splitting criterion is mainly
depending on data structure triple of CF according to cluster measurements
from: centroid, radius, and diameter. This s based on according to the number
of data objects that are represents by N, liner sum of the data instance LS, with
the sum of squared data instance by SS.

The concept of CF is proposed in another distributed clustering algorithm so-
called DenStream by (Charu C. Aggarwal 2003). DenStream is a density-based
algorithm for clustering data stream, similar to BRITCH, DenStream proposes
CF data structure with two additional p-microclusters and o-microclusters
parameters. The algorithm is constructed based on, 7, DenStream and checks
for p-microclusters to find a possible outlier o-microclusters. A detailed
description of the DenStream algorithm extension is proposed by (Feng Cao
2006).

Another extension of CF structure is Clustream algorithm, it the data structure
is based on two concepts of (online and offline) approaches. First, a statistical
summary of the data stream is stored on member and maintained by
microclusters, and then the input summary of data as captured on the online
phase can be trained and tested on offline. The proposed algorithm computes
maximum microcluster boundary based on the standard deviation of mean

distance from the cluster centroid according to the factor /. As a consequence,
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for every new data stream instance, two nearest microclusters can be merged
based on their Euclidean distance measurement and each microcluster is
required to be stored from time to time.

In summary, according to Chandola, Banerjee et al. (2009), clustering-based
method is mainly appropriate to organise data into group of data instances
instead of finding or detecting anomalies. For example, in dynamic application
scenarios, it is inpractical to large-scale of store data stream and then analysis
the data on offline. Thus, such assumption is argued in (Erfani et al., 2016), as
less accurate computational assumption for stream data. For example, both
DenStream and Clustream distributed clustering algorithms are mainly based
on CF data structure; hence, these approaches are involving a data reduction.
While the main drawbacks of detecting anomaly from data stream is
dimensionality reduction. In (Schneider, Ertel et al., 2016) argued that one of
the disadvantage of clustering is controls of outlier score when the threshold
scoring range is defined, and the distance of k nearest neighborare becomes
very complex.

In (Liang Su 2007) distributed data stream outlier detection is proposed from
kernel density estimation technique based on dived-and-conquer method to
partitioning the data streams into micro-clusters. Similarly, another approach of
anomaly detection from data stream without prior knowledge of the data is
proposed by (Beigi, Chang et al., 2011). Similarly, Yu and Lan (2016)
proposed unsupervised anomaly detection technique based on matrix sketching
of summarising the data streams to monitor the proposed stream model
behaviour. According to (De Mencagli, 2016) sketching approach based on
Turnstile model, and such a model is an inappropriate model for time-series
data. In (Zhang, 2013) argues that increasing number of attributes in sketching
is complex O(N’) in terms of both space and time constraints in the
summarisation technique.

Alternative approach of distributed anomaly detection from large dataset based
on density technique is proposed by (Wang et al., 2015), and the main concept
of such approach influenced by data portioning grid-based method. A complete
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dataset is divided into d-dimensional space grids within master-slave
architecture, and distributed Local Outlier Factor (LOF) algorithm is
implemented locally on each node to estimate the density of each data tuples.
In (Zhang, 2013) argued that there is a lack of theoretical and practical
capabilities of LOF’s to discover and detect change in the data stream,
specifically, during the dimensionality reduction of the data. Another anomaly
detection method has been proposed by (Li Yu, 2016: Schneider, Ertel et al.,
2016), the detection method is mainly based on similarity-based technique, it
focuses on similarity of the test data based on similarity-based technique from
the training data. The main drawback of similarity-based is online learning
during in dynamic stream detection (Chandola, Banerjee et al., 2012).
Alternative solution of data stream anomaly detection is proposed by (Zhang,
Li et al., 2015), this approach is mainly based on Stream Projected Outlier
detector (SPOT). Another extension of SPOT algorithm is Adaptive (A-SPOT)
approach in (Zhang, Li et al., 2015). However, the main there is a research
limitation of ASPOT in terms of both theoretical, for example, anomaly type,
or definition of anomaly on online learning, and technique limitation in terms

of, e.g., data partition and detection strategy point of views.

Chapter Summary

This chapter is described a global understanding of anomaly detection,
specifically, anomaly detection in streaming application including describing
the relations and distinguish between anomaly over static data and streaming
data. According to Aggarwal (2016), several factors can significantly can
influence the results of anomaly detection as described in Section 2.1.2. Thus,
the main difference between previous related works and this thesis are: (a)
existing methods mainly focusing on capturing only individual streams from

e.g., loT data sensor rather than multi-sensor streams while most of the existing
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anomaly methods have disregarded the main concept of stream (change in
nature of the stream); (b) this thesis aims to offer a novel Contextual anomaly
detecting method in the data stream domain, while Contextual anomaly
detection research method for the data stream is limited compared to the other
two most common researches of Point or Collective anomaly types.
Interestingly, the existing anomaly detection studies, and researches are mainly
focused on individual stream behaviour, rather than data stream’s context,
specifically in the IoT applications, data is correlated and capturing Contextual
behaviour is a new research challenging task. However, [oT data attributes are
correlated and it can be beneficial to detect the Contextual behaviour; of the
data rather than single behaviour, and (c) parallel anomaly detection is one of
the most promising methods to overcome the scalability problems and low-
latency computational response, specifically low detection computational
results, while such requirements have been disregarded in most of centralised
methods. In addition to these, distributed sensor network anomaly detection is
becoming an interesting research study to investigate and detect distributed
sensor behaviours. Some of these approaches may possibly achieve high
detecting performance based on proposing distributed stream processing
architecture, specifically, using big data state-of-the-art methods. Data
partitioning, algorithmic structure and change detection are major concern and
high demandable and ambiguous in some of these studies. Nonetheless, this
suggests that these methods are simultaneously satisfying some of the
requirements of outlier or anomaly detection regardless of anomalous event
detection over a large-scale of data streams in real time. In this concept, some
of these studies and related works have suggested that stream constraints, high
throughput, and low-latency computational results are major concern in
detecting high volumes of anomaly detection and they are required to be
considered during the data streaming mining and anomaly detection methods.
Since last decade, several machine learning and data mining algorithms have
been developed to address problems of anomaly detection through proposed of

offline learning methods, while these algorithms have mainly been designed to
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learning from the model behaviour and depends on the data reduction

techniques before the learning concepts applied to the data on the transit.
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Chapter 3

Distributed Contextual Event Stream Problem Definitions
and Designs

In this chapter, we describe our definitions of event streams, Contextual
anomalous and the proposed novel model designed. A general stream
definitions and model notation is described in Section 3.1. Section 3.2
describes event stream problem definitions and notations. Section 3.3
highlights the process of high volumes of stream based on the stream structure
model along with window modelling concepts to handle and capture infinite
sequences of large-scale of events in real time. Section 3.4 proposes novel
designs of event stream window partitions methods. Contextual Event stream
anomalous definitions and design describes in Section 3.5 followed by
described change detection procedure from the event stream over the each

window partition in Section 3.6.

3.1. General Notation of Stream Definitions and Model

This section describes a global understanding of data stream basic notation,
distributed stream processing data structure model, describes the event stream

definitions, and notations of created event from IoT stream data sensors along

58



Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

with designed event stream model.

In dynamic applications, data stream structure is represented as unbounded
sequence of stream tuples and these tuples, which are mainly consisting of raw
attributes records when each tuple is represented in a form of (x, #) pairs with

formalised implicit or explicit timestamp ¢.

Definition 1 (Zuple): A list of data attribute/value pairs in particular data

schema of (s;,) and ¢ is a discrete of tuple time stamped.

Definition 2 (Time): Before processing any event streams, event stream data
can be structured in a time-series ordered format as ¢t € T where ¢ time is a
discrete timestamp of arrived stream fuple. Particularly, the event streams can
be constructed from aggregating sensor streams within three time series

intervals.

Definition 3 (Data Stream): Data stream S is a sequence of timed tuples of
S = ((s1,t1), ., (S, t)). Each tuple is ordered by timestamp ¢ and can be
denoted as (ty,t,, ..., t, ). Data stream fuple usually arrives at a very high rate,
while in most conditions it is difficult to process or store a complete size of the
data streams. Thus, alternative solution is to constructing window partitions

and capture event streams in each window slides as describes in (Section 3.3.1)

3.2. Event Stream Model

In some of the real-world applications, event is resented as a single symbol
without a data attribute, name or type such as , “S;” and “S,”, for two S; = S,
signal sensors. In data driven paradigm, event is required to comprise data type
and value to construct an event from. Thus, in this thesis, former approach is

considered to design the novel model.
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Definition 4 (Event Tuple): An event e can be constructed from timed tuple
(e;, t;) while t; is associated with event time and each tuple is time stamped as
(e, t) € T .In this context, event model is defined as a finite sequence of (s, ¢, d )
tuples. This can be represented as name/type (s), timestamp (¢), key- value (d) as
shown in figure 3.1. For example, consider road traffic data attribute as high-

speed value (event) and vehicle flows per event tuple (A, 8:10, {120,4}).

SpeedEvent Field

Vehicle id uniqueld

Init text

Speed double

Flow double
Tuple=(s,t,d) Key * uniqueKey
(er,t;,d) (e2,tz,d) (e3, t3, d)

Figure 3.1: Unbounded sequence of event stream tuples.

Definition 5 (Event Streams): Event stream can be constructed any S
sequence of event streams where each of the event can be represented as
sequence of event instances or activities as denoted in Equation 3.1 and shown

in figure 3.2.

S = (eqe€q, .., €) (3.1
In dynamic stream processing model, it is practical to identify events

automatically based on event’s Common Correlated Attribute (CCA) value pair

per each event stream tuples. Importantly, event can be considered as
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anomalous behaviour within a specific context.

events = @

5

S,

®

Event Stream

®© @

time

Figure 3.2: Time events interval.

Definition 6 (Event Time Order): time ordering in stream processing plays a
significant role to differentiate between implicit and explicit timestamps of the
events as described in Section 2.1.2. In many real-world applications, several
events can occur together; thus, the composition U of two events can be
constructed from the time-based sequence tuples in event stream processing as

denoted in Equation 3.2.

Si(er,ex) = (et A(eyty) Aty <ty Aej,ep EW (3.2)

Overall, in both IoT application scenarios, event stream represents as a list of
finite sequences of events with timestamp where e defines any actions with
values and timestamps as defined in previous sections. The main benefit of
event time order is to identify the time of event, which has occurred, and
provide to semantically computational results. However, this can protect events
from been dismissed or disregarded during the processing time and mining

phases of distributed anomalous event detection.
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Example 4: Consider events from §; based on the definition 4, where each
event is constructed from tuple schema of ( s, ¢, d ) format. The first record
refers to event number in the S (e.g., e;), and timestamp of the arrived event
with the d value, which is associated with the vehicle speed and the number of
vehicle flows. The window partition can be used to collect the events from the
sensor streams within the specified time interval T (See Section 3.2 for window
partitioning concept). Figure 3.3 illustrates three events that have occurred in
S, where each event record consists of event number, time and speed records
per vehicle. Suppose e; is an example of event, which occurred at 7:00 am with
three vehicles’ exceeded speed values of 125km/h. The event partitioning is
mainly based on the CCA followed by the temporal order with tumble partition

as time progress.

si(?:ls eg, 333‘...., ej)

Figure 3.3: Event elements schema for a sequence of event tuples.

3.3. High Volumes of Event Stream Processing

In modern applications such as network monitoring, weather broadcast, and
stock exchange, infinite streams continuously arrive at a very high rate. Thus, it
is impractical to extract events from infinite data streams due to the constraints
as described in Section 2.1.2 without prior knowledge of data format.
Anomalous event detection plays an important role in the real time prediction.
For example, road traffic officer is mainly interested in detects vehicle’s over
speed based on either higher (120km/h), or lower (60km/h) at a specific time
period (e.g. peak, off-peak) to predict the highway traffic congestion events.
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Similarly, officer controller monitors room temperature degree and interested in

to detects unusual event or activates, assume room temperature is raised up to

26°C, which possibly is indicating an event due to either faulty sensor or the

room is under on fire. However, processing, handling, and predicting

anomalous events from large volumes of generated IoT sensor streams with a

high rate can be addressed in two proposed solutions as described in the next

ii.

sections.

Reduction Method: Approximation algorithm is one of the most common
techniques in the data stream mining and machine learning area to fulfill
the data stream constraints as described in Chapter 2. Many data stream
mining methods including classification, querying, and clustering, is using
a synopsis data construction and data reductionto to offer approximate
answers. This is implemented by selecting a subset of data streams through
micro-clusters (Charu C. Aggarwal, 2003), random sampling, (, 2007),
sketches (Hao Huang, 2015), and histograms (Brian Babcock, 2002). Such
solutions and techniques have been described in sections 2.3 and 2.4. The
disadvantage of data reduction technique is that when data continuously
arrive at a very high rate, intelligent actionable decisions are required
before the event stream is discarded or neglected during the reduction
technique. Therefore, such technique can be appropriate for the dataset in
static method rather than for the data streams (Pham, Venkatesh et al.,

2012).

Window Method: a window method is a mechanism to extract relation
from infinite streams and divides data into finite slices to prevent overflow
of memory and concept drift (Kuncheva, 2008). For any window technique,
the size and number of windows are based on two different measurements
of time-based and count-based. Data sensor streams can be partitioned into
according to either their arriving time, for example, partitions stream tuples
within a specific time period (e.g., one-hour), or based on the number of

stream fuples per window partitioning size of w (e.g. w =10,000 tuples) as
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described in below. Importantly, this this method has been used in much
data stream processing and mining, however, the main benefit of window
partition is to control and handle change and data stream distribution. In
this context, the correct implementation of window methods to detect
anomalous event streams is a challenging task. The next sections are
describing window partitioning design with detail descriptions of each
window methods adaptation and justifies the most appropriate window

partition method to adapt.

3.4. Event Stream Processing Window Partitioning
Definitions and Designs

This section describes stream processing and window partitioning design to
handle the high rate of event streams and manage memory overflow of the

proposed computing resources.

Window Concept: Consider window W as constructed window partition from
incoming sensor streams in length of L and window size of J where L can be
representing the length of streams based on either time-based or tuples as
count-based. The interchange of windows is mainly depending on the sliding

factor J based on specified interval as depicted in figure 3.4. For example, 30

event streams can be partitioned into 3 sliding factors J.

Time-based: Give timestamp ¢ € T as a temporal order of the event stream
tuples within specified time interval (e.g., minute, hours, days), where a time-
based window w;can be defined as partitioned window for arriving event
streams according to temporal order period as described in Equation 3.3. This
can be an ideal solution to partition event streams into time ordered events, for
example, capture anomalous events per every two-hours interval window

partition from the sequence of events list.
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we=(e1,e,€3,€_1,€;) (3.3)

Count-based: Give n € N, where n refers to the number of arrived event
stream tuples (e.g., 10,000 tuples) from the counted-based technique. The

notation of count-based can be described as in w, in Equation 3.4.

W, =(ej,e; ,e3,e,_1,€n) (3.4)

In this context, the proposed window partitions can be managed and count the
number of event streams per window slides; for example, consider counting
number of high or low temperature degrees in each window partition. This is
significantly very important in many dynamic application domains to detect the
number of events per sliding windows. Overall, in this thesis, window
partitioning method is consideration is an appropriate solution to be adopted in
both traffic monitoring and temperature scenarios to handle high volume of
event streams from IoT sensors and to prevent change or concept drift within
the data stream distribution. As a result, it is more practical to compute event
stream in real time before such events disappear; consider an example of traffic
stream sensors that capture vehicles’ over speeds according to the speed
limitation or congestion speed in certain location. Importantly, the result of
event steam can be grouped into one of the aforementioned three windowing
methods. Window method is also implemented to handle data streams in many
streaming application domains, such as stock exchange or weather broadcast
(Tanbeer, Ahmed et al., 2009). The main advantage of window method is to
handle high volumes of the data stream in terms of scalabilty by partitioning
data streams into windows of slides based on sliding window, landmark
window, or tumbling window. A detailed description of each window method
and proposed examples are demonstrated in the next Sections 4.4.1., 4.4.2., and

4.4.3. respectively.
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3.4.1. Sliding Window Definition

Sliding window is one of the most common methods and mechanisms to
handle incoming continuous events streams (Li and Lee, 2009). The data
structured concept of sliding window is primarily based on First-In-First-Out
(FIFO) technique. In the last decade, wide number of studies investigated on
the way of how to handle, learn, and monitor the data streams. These studies
mainly proposed sliding window method including FLOAR, and ADWIN
(Bifet et al., 2006). For example, in ADWIN algorithm the proposed sliding
window to keep contains the stream length from the most recent data streams
partition and discards the old data streams since the algorithm scans the

learning tasks.

The main advantage of sliding window is the guarantee of the data stream in
the memory space in the window size (Bifet, 2009). Additionally, sliding
window facilitates to monitor the data distribution and changes within the data
stream (Bifet 2009, and Brzezinski & Stefanowski, 2014). In order to handle
the high rate of streams, sliding window method is widely proposed in many
real life applications including stock exchange (Babcock, Datar et al., 2002),
fraud detection (Kuncheva, 2008), medical diagnose (Amineh Amini, 2014),
intrusion detection (Vu et al., 2014), network sensor nodes (Hoens, Polikar et
al., 2012), weather streams (Dariusz Brzezinski, 2014), and social media
streams (Hoens, Polikar et al., 2012). The main disadvantage of the sliding
window in [oT traffic anomalous event detection is the replication of the events

in each window this concept is more discussed in Example 1.

Sliding Window: consider sliding window of either w, or w,, where ¢ refers to
the time interval of arrived streams and n stream tuples per window. The

window updates with bounded size when new event streams arrive until L = O

is satisfied as described in Example 1 and figure 3.4.

Example 1: Suppose, » number of anomalous event streams for the last ten

minutes when ¢ = 10 seconds as shown in figure 3.4. In this scenario, window
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wy consists of e; to es from ¢ — #5, while w, consists of e4 to eg from #; — 3
since, e; and es events are belonging to both w; and w,. In this context,
replication between two windows has occurred and this can have significant
impact on the computational results. Thus, this is a major drawback in real time
event stream detection when it is impractical to have duplicated events within

new constructed window; hence, when w, is completed event e, e,, and e; will

be disregarded.
Window =[w |
Event = e
Sliding Window Size =5 Time = ¢
| L 1
©
e .
Slier e e e ey e e e ey e
o’ ---------
£ ' -
e
s L€ €2 € & e5 |8 €; €g' e9 €y
|
t ts t10

Figure 3.4: An example of event streams partition in sliding window.

3.4.2. Landmark Window Definition

Landmark window is known as fixed upper and lower bound window
approach; this scenario constructed window includes the complete n number of
events. Window starts from a particular point and expires when the size of the
window is completed. The window size monotonically increases as time
progresses and in this situation; it is impossible to discard any events due to the
predefined length of window size. For such reason, landmark window is
inappropriate to adopt for anomalous event stream processing due to the

increasing number of streams within each window; thus, this leads to memory
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overflown and highlighted as major drawback of the landmark window. On the
other hand, event replication can certainly occurs when the size of events

increases (Tanbeer, Ahmed et al., 2009).

Landmark window: Suppose landmark window W is constructed from W =
{wi, wa, ws, ..., wn}, where w; is as first constructed window which consists of
event streams while the current length of W progressively changes with new

incoming event streams within the landmark in w,, and w; respectively.

Example 2: Assume sequence of event streams can be added into number of
windows as shown in figure 3.5. Where the first w, starts with eight events, and
the state of the current window is changed since new event eg is added into w;
and wj progressively; hence, the size of window expands as time progresses,
particularly, when new event streams continuously arrive from the sensors. For
example, w; starts from # — #g and holds events from e to es; similarly, window
wy starts from the same point of w;with adding extra ey and similar procedure is
repeated for wj respectively. However, landmark window is one of the classical
window models. The main drawback of this method is incapability of handling
high volumes of event streams, due to expanding window size as new event
streams continuously arrive. Thus, this method is leading to allocated and
consumes more memory space and is time-consuming for the computational

results.
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Figure 3.5: An example event stream partition in landmark window.

3.4.3. Tumbling Window Definition

Tumbling window is mainly relying on the size and segments of the event
streams, and the primary aim of this method is to define a specific time interval
before each window becomes full of its capacity. This can be computed by
number of event streams that arrive within one hour time interval and start new
tumbled window straight after the previous window tumble is becoming full
(Manish Gupta, 2014). It is more practical to use a small size of the window in
order to achieve accurate computational results as using larger size of tumbled
window is more difficult for the computational results due to the time
constraint per each window. An ideal solution is to monitor event stream states
within window partitions to control and handle each size of window partitions.
Importantly, the main advantage of tumbling window is the impossibilities of
event replications; for example, a specific event (e;) can only exist in one
window (e.g., w;) only. The disadvantage of tumble window is their
dependability on the size and sliding bounds of the predefined window;
however, such constraint can be addressed by monitoring the state of changes

per window partitions as described in Section 3.6.
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Tumbling Window: Let w,be a tumbling window size of event streams
according to the satisfied conditions of L = J window length. The window
size possibly can shift based on the predefined time, for example, after one
hour is terminated, a new tumbled window can be constructed. In this context,
event streams can be partitioned over n number of tumbling windows as

described in the next section.

Example 3: Let compute over speed stream tuples in road traffic scenario,
where event tuples can be grouped or paired according to each vehicle’s speed
values (tuples) within each tumbling partition based on either count —based or
time-based techniques. Figure 3.5 demonstrates the computing process for the
number of vehicles (over speed tuples) within each S, S, 83 every ten minutes.
Consider, window w; consists of events from e; fo es from $3 and window w;

expired at = 5 when w, is constructed for new events partitions from eg to ejo.

Window =[]
Event = e
Time = t

S| e1 €2 e3 e e; € ©e; e ey €

S2 e, e, e3 €, e; € ©e; eg ey €9

Ss [el e2 e3 e4 e5 ][es e-7 e8 e9 elo]

t5 tg t10

|
Sliding interval = 2

Figure 3.6: An example of event stream partition in tumbling window.

Overall, since loT streams are continually arrives at a very high rate, tumbling
window partition can be an appropriate solution to be adopted in order to
handle such high rate of streams and control the changes within event stream
data distributions. A detailed description of the designed method of window

partition is discussed in the following sections.
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3.5. Event Stream Window Partitioning Design

As described in the previous sections, the main key challenging task is to select
appropriate method to process high volumes of sensor streams and detect
anomalous events dynamically. This can be achieved by designing and
implementing new event streams window partitions in parallel based on
distributed data stream structured model. In this context, event streams within
the predefined window can be computed in parallel across the number of
computer nodes according to their correlated stream tuple values. Thus, one of
the most appropriate window methods to propose and design event stream
partition is a tumbling window. This can be achieved by partitioning event
streams into number of equal constructing window length and computes the
final results per each window partition. The event streams per each window

partition can be grouped based on their correlated stream tuple values as
described in Section 2.2.2 and figure 3.6 where w; is ,-lh number of window

partition which is constructed from number of events within the event stream

time interval from ty, to tqo.

Wl W2
[91 €& € & & ][ & €1 S & e10]
>
t t5 t1o
Time

Figure 3.7: A general design sample of tumbling windows partitions.

A detailed description of window partition notations and the structural design

model is descried in the following definition.

Definition 7 (Window Partitioning): The semantics of window partitioning

design w, can be based on the number of event stream tuples and divided

71



Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

events into a window-based model until the window condition length is
satisfied as denoted in Equation 3.5 where w; represents the number of

windows (e.g., wi, wp), p partition, and w; € S while w; N w; = .

Sup = w, (3.5)

The main procedure of such concept is described in algorithm 1 and 2 for each
count or time-based method. The notation of S refers to the number of sensor
streams, k as i™ length of window partitions from the event streams according
to either time-based or count-based partition and such parameters can be

defined as w; or w, in each algorithm.

In the event stream window partitioning scenario, count-based refers to the
number of events per window and it can be so-called event-based window and
denoted as w,. Since time-based is associated with the time interval length of
window partition directly constructed from the event streams, such approach
can be called event-time based windows and it can have denoted as w,. The
design and procedure of window partition for event stream is categorised in
two steps: defining window condition and computing events per window

partitions.

Algorithm 1 describes the first step to initialise window based from the
sequence of even