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Abstract 
 

The age of big digital data is emerged and the size of generating data is rapidly 
increasing in a millisecond through the Internet of Things (IoT) and Internet of 
Everything (IoE) objects. Specifically, most of today’s available data are 
generated in a form of streams through different applications including sensor 
networks, bioinformatics, smart airport, smart highway traffic, smart home 
applications, e-commerce online shopping, and social media streams. In this 
context, processing and mining such high volume of data stream becomes one 
of the research priority concern and challenging tasks. On the one hand, 
processing high volumes of streaming data with low-latency response is a 
critical concern in most of the real-time application before the important 
information can be missed or disregarded. On the other hand, detecting events 
from data stream is becoming a new research challenging task since the 
existing traditional anomaly detection method is mainly focusing on; a) limited 
size of data, b) centralised detection with limited computing resource, and c) 
specific anomaly detection types of either point or collective rather than the 
Contextual behaviour of the data. Thus, detecting Contextual events from high 
sequence volume of data stream is one of the research concerns to be addressed 
in this thesis. 

As the size of IoT data stream is scaled up to a high volume, it is impractical to 
propose existing processing data structure and anomaly detection method. This 
is due to the space, time and the complexity of the existing data processing 
model and learning algorithms. In this thesis, a novel distributed anomaly 
detection method and algorithm is proposed to detect Contextual behaviours 
from the sequence of bounded streams. Capturing event streams and 
partitioning them over several windows to control the high rate of event 
streams mainly base on, the proposed solution firstly. Secondly, by proposing a 
parallel and distributed algorithm to detect Contextual anomalous event. The 
experimental results are evaluated based on the algorithm’s performances, 
processing low-latency response, and detecting Contextual anomalous 
behaviour accuracy rate from the event streams. Finally, to address scalability 
concerned of the Contextual events, appropriate computational metrics are 
proposed to measure and evaluate the processing latency of distributed method. 
The achieved result is evidenced distributed detection is effective in terms of 
learning from high volumes of streams in real-time.   
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1.Chapter 1 

 

Introduction 
 

The innovation of technologies and Internet connectivity are evidenced that 

this world is adapting from traditional to digital-based. Specifically, in the 

last decade, due to advanced technologies, high volumes of data sources from 

log records, call records, biomedical records, stock exchange, social media, 

network traffic, and manufacturing sensors are generating in different formats 

of (e.g., structured or unstructured). Thus, a new scientific paradigm has 

emerged under the umbrella of big data so-called Data Intensive Scientific 

Discover (DISD) (Chen et al., 2014, p.173). The term of “big data” is now 

universally used and became to a central for researchers and practitioner’s 

attentions across multi-disciplines of such as bioinformatics, geophysics, 

astronomy, engineering, meteorology, e-commerce and social media. The 

literature of big data is very broad and there is not yet a formal definition 

from neither academia nor industry, however, Chen et al. (2014, p.173) and 

Tsai et al. (2015) defined it as; 

“Datasets which could not be captured, managed, and processed by general 
computers within an acceptable scope”. 

In other words, the volume and velocity of generating data is beyond the 

capacity of current technologies to process, handle, and provide 

computational results. This is due to the limited computing resource, data 
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structured model, and complexity of the existing of the algorithms. Thus, this 

idea is motivated the industry and scientist to redesign computer hardware’s 

(e.g., multi-core processor, cloud computing) based on the Moor’s law to 

become more powerful than ever before (Tsai et al., 2015). Prior to the 

scalability concern, discovering hidden knowledge and predicting unusual 

events from high volumes of data is remaining to be a challenging task, 

specifically, from high volumes of data streams. In general, big data analytic 

comprises of data integrating, processing and analysing large-scale of both 

static and stream data formats. Thus, detecting unusual activities from big 

scale of data plays an important role in many application domains including 

air traffic monitoring system (Katal et al., 2013), network attack (Hashem et 

al., 2014), transaction frauds (Chen et al., 2014), weather broadcast, faulty 

sensors indicating oil and gas leakage (Xie, et al., 2011), and diagnosis from 

medical records (Ma, et al., 2016). 

 
The main concept of anomaly is referring to unusual events, specious 

activities or different pattern in the dataset (Candela et al., 2009; Zhang, 

2013). The study and literature of anomaly detection method is very extensive 

in information theory, machine learning, data mining, and statistics (Grosse & 

Turin, 2012; Gupta et al., 2014; Ma et al., 2016). Importantly, anomaly can be 

referred to positive or negative aspects in different application domains, for 

example, in network intruder detection, the network system administrator 

aims to trace suspicious activity from incoming traffic to make an immediate 

action against the intruder. In banking industry, detecting online frauds and 

suspicious activity is considered as one of the most priority concerns to 

protect client’s account and funds. In network sensor domain, anomaly can be 

beneficial in detecting fault or error in the sensors. From the perspective of 

safety concerns, tracing and predicting incidents in real time is very important 

in many applications including highway road traffic monitoring system, 

airport surveillance, medical diagnosis, civil security, and engineering (Gupta 

et al., 2014). Similarly, detecting and predicting disaster like floods, storms, 
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and earthquakes are also major concerns in weather broadcast domain. In 

social media, for example, anomaly plays an important role in detecting user 

opinion behaviour from writing inappropriate comments (e.g., race and sexual 

abuse, arranging riot activities, online activities including terror and criminal 

threats).  

 

1.1 Research Motivation 
 

Internet of things (IoT) or Internet of Everything (IoE) are the two new 

emerged fields of the computer science. Today, creating high volumes of data 

is an easier process than it was in the previous decade; this is due to the low 

cost of IoT devices and other digital applications. For example, the size of 

connected object is expected to be one trillion sensors by 2030 (Yang & 

Fong, 2015); this includes 350 billion annual meter readings, power plants, 

machinery data, and Global Positioning System (GPS) (Yu & Lan, 2016). 

The main benefit of such trend is to provide consumers with affordable and 

secure energy supply (Zhang, 2013), while consumer and supplier could both 

have energy consumptions in real time and predicting extraordinary events 

and activities such as faulty sensors, energy leakage, or tampering meters. 

Importantly, the majority of data is generating in a form of stream by 

different applications and the size of these data is very large in scale.  

 
On the one hand, detecting anomaly in real time plays a significant role in 

monitoring unusual behaviours from big digital devices such as; home 

suppliers, smart meters, smart motorways, smart city, work locations, and 

airport surveillance. Thus, online anomaly detection and mining from high 

volumes of data in real time is appeared to be a new research direction. The 

existing and traditional anomaly detection methods are mainly focusing on a 

specific type of point or collective anomaly problem in offline analysis. On 

the other hand, recent works of anomaly detection methods are mainly 
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disregards the scalability of the data concern; this is due to the proposed data 

structure model and computational complexity of the proposed algorithms. 

Considering processing and detecting anomalous events from 1 terabyte of 

data centrally (over a standalone machine), this possibly requires several 

hours or days to process and provide computational results with another 

major concern of network overloaded. Thus, detecting anomalous events from 

high volumes of IoT sensor stream is an emerged research filed of big data 

stream mining (Duarte et al., 2016; De Francisci Morales, 2016; Bifet et al., 

2016). The main motivation of this research is to develop a novel algorithm 

and method that will be able to detect Contextual behaviours of large 

sequence of IoT sensor data streams in real time. The following challenging 

tasks have been mainly studies and investigated in the thesis. 

Online Learning: unusually online learning algorithms are required to process 

data in several subsets of streams in a sequence rather than process all the 

data at once. This is due to the need of real time processing structure and 

detecting anomalous events from streams are requires single-scan learning; 

once stream is processed, such data stream can be irrelevant and or it can be 

discarded at the later stage. Online learning is playing an important role in 

many dynamic monitoring applications such as network security, road traffic, 

healthcare diagnoses, airport traffic control, fire safety, and weather 

broadcast. 

 

Scalability: as the size of data stream scales up, standalone machine is only 

capable to process and handle limited size of IoT data stream; this is due to 

limited memory space of the most proposed computing resources, dynamic 

evolving of streams over the time, and network bandwidth (Duarte et al., 

2016; Schneider et al., 2016). Thus, in recent years, the concept of parallel 

and distributed approaches is increasingly attracting the attentions of both 

researchers and industry engineers to address the scalability problem. 

Importantly, most of the existing anomaly detection methods are designed to 
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detect anomaly centrally. Thus, research on anomaly detection over high 

volumes of data stream is limited; parallel partitioning and processing is 

required to compute several tasks at once with low-latency and real-time 

response (Gupta et al., 2014). However, to handle such high rate of data 

streams, robust parallel and distributed stream detection is suggested to be an 

alternative solution. The main benefits of parallel and distributed processing 

can be summarized in; a) high throughput event streams (1 million events per 

second) in real time, b) low-latency computational response which is very 

important for anomaly detection in real time, and c) overcoming 

computational resource constraints (Candela et al., 2009; Grosse & Turin, 

2012; Amen & Lu, 2015). 

 

Contextual Anomaly: selecting anomaly detection type is one of the key 

priorities challenging task in many big data application domains, specifically, 

in streaming application domains. Existing anomaly detection methods are 

mainly either focused on Point or Collective anomaly types, however, 

research on data stream Contextual anomaly detection is limited (Folino & 

Sabatino, 2016; Karunaratne et al., 2017). Thus, new Contextual anomaly 

detection from high sequence of data stream can be a challenging task. For 

example, consider highway road traffic scenario for speed monitoring of 

vehicles over consecutive time-series as depicts in figure 1.1, where blue 

vehicles are representing those vehicles within national speed limited of 

120km/h and red vehicles are over speeded vehicles. Consider high volumes 

of vehicle speeds data coming from road traffic IoT sensor in unbound of 

sequence of streams in real-time. An important question can arose, what is the 

main appropriate anomaly detection type (Point, Collective or Contextual) for 

the stream data? This question will be answered in the next section with 

detailed description of each anomaly type. 
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Traffic		

Figure 1.1: Anomaly detection types for the time-series data 
scenario in road traffic monitoring system. 

 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

In general, IoT devices are generating data in a form of streams; thus, data are 

arriving in a sequence of streams with time stamped on. Consequently, 

sequential analysis can be an appropriate solution to propose for data stream 

anomaly. Consider three types of anomaly detection in figure 1.1. Scenario A 

refers to an individual vehicle’s speed behaviour within the sequence of the 

data streams, thus, a single event at t5 is considered as Point anomaly. In this 

context, Point anomaly is considered as one of the most common approaches 

in many application domains, while collective anomaly refers to collection of 

unusual events from the data instances (set of points). A group of vehicles 

with over speed behaviours of 140km/h from t4 to t6 are considered as 

Collective anomaly in scenario B. In contract to these, Contextual anomaly is 

classified based on the relations between the data instances Contextual and 

behavioural attribute. The most important impact on Contextual anomaly is a 

time of event occurrence [26]. Scenario C can be considered as Contextual 

behaviour of the same vehicle at two different occasions t3 and t8, hence, the 

same vehicle’s speed of 140km/h recorded with the same context at different 

time metrics. The benefit of Contextual anomaly is to define the behaviour of 

the event stream in a specific context. This is one of the most appropriate 

detection types to detect the contexts of data behaviour in the time-series 
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domain (Candela et al., 2009), (Duarte et al., 2016). Contextual anomaly can 

be defined based on the data instances and time occurrence of the attributes.  

 

In summary, these challenges are primarily motivated this investigation, and 

according to the literature, existing research studies have disregards to 

investigates in-depth to the levels of distributed Contextual anomaly 

detection. The main goal of this study is to address and propose novel 

distributed Contextual anomalous event stream detection, specifically, 

detecting Contextual behaviours from large sequence of IoT sensor streams in 

parallel.  
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1.2 Research Questions 
 

The primary aim of this thesis is to design a scalable Contextual anomaly 

detection approach in real time to handle high rate of event streams from IoT 

sensors. To achieve this aim, the following research questions are defined.   

 

1. What are the main existing methods to detect anomalous events from 

sequence of IoT sensors in real time?  

2. Is it possible to detect anomaly dynamically regardless of streams 

high rate and to what extent the proposed algorithm is capable to 

address and handle changes over the stream distribution without 

human interventions?  

3. Can an algorithm detect the Contextual behaviour in the large 

sequence of data streams based on using window partitions stream 

data structure model?  

4. On what scale detecting Contextual behaviours from high sequence 

volumes of IoT sensors in parallel is possible? 

5.  How is it possible the proposed Contextual stream behaviour 

detection method and algorithms to solve similar other real-time 

application problems?  

6. What are the appropriate methods to evaluate the performance of both 

change detection and prediction error rates in the data stream? 
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1.3 Research Contribution 
 

1. To address the research aim and objectives, the following significant 

contributions will be achieved. Studied and highlighted the potential 

problems of existing anomaly detection will be highlight and studied 

from distributed computing paradigm prospective.  

2. This research identifies the event stream problem, defines and designs 

novel Contextual Anomaly CA model to detect unusual event in the 

different context. 

3. Designs novel window algorithms to partitioning high volumes of 

event streams into several event partitioning to protect event streams 

from changes and concept drift drawback. 

4. Implements Contextual Event Stream Anomaly (CESA) algorithm 

to detect changes and Contextual behaviour from large sequence of 

IoT sensor stream based on DSPE data structure model. 

5. Designs new Distributed Contextual Anomaly Detection (DCAD) 

Framework to address scalability data anomaly constraints with a 

comparison result of centralised and decentralised performance 

results. 

6. Analyse and evaluated the experimental results for proposed 

algorithms based on several evaluation metrics.  

In summary, this thesis flows from theoretical to experimental perspective. 

First, anomaly detection can be studied as a unique approach to detect 

anomalous events from IoT sensor stream in real time. This can be achieved 

by designing a new Contextual anomaly detection method based on the high 

number of scoring contexts in parallel per each window partitioning, since 

this approach is particularly absented in the existing solutions. Second, the 

proposed distributed method will be able to handle high throughput of event 

streams in real time with low processing time. Third, the evaluation metrics 
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will measure the accuracy of the proposed algorithm, which is based on the 

estimation of the scoring rate and algorithm’s performances among the 

predicting error rates. The proposed algorithm and accuracy of the 

computational results are critically concerned to validate the algorithm 

performance. A detailed description and results of evaluation metrics are 

presented in (Section 5.6 and 5.7).  
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The main research contributions of this thesis are based on the following 
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Contextual Event Stream Detection. 30th International Conference on 
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- 11, 2018. 

Paper III: Amen, B., Antoniou, G.  

A Theoretical Study of Anomaly Detection in Big Data Distributed Static 

and Stream Analytics . 20th International Conferences on High Performance 
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30 June 2018. 

Paper IV: Amen, B., Antoniou, G., An efficient Approach to Detect Big IoT 

Contextual Event Stream Anomaly Real time (2018). 
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1.5 Thesis Structure  
 

This thesis is organised into five chapters as follows.  

§ Chapter 2 covers research study literature for three domains of anomaly 

detection, stream mining and distributed data processing in parallel. First 

section discusses anomaly detection methods, second section describes 

anomaly detection in streaming domain including stream definition, and 

stream data processing structure model, and the third core section in this 

chapter is discussed the existing related works of anomaly detection 

methods in parallel.  

§ Chapter 3 establishes theoretical foundation of the event streams problem 

definitions with proposed novel distributed event stream partitioning 

design methods. The distributed partitioning method is mainly based on 

the window partitioning technique with designed Contextual Event 

Stream Anomaly (CESA) algorithm. 

§ Chapter 4 describes designed phases of anomaly detection framework of 

Distributed Contextual Anomaly Detection (DCAD) and its architecture 

to address two main research problem constraints of stream detection and 

scalability of high throughput events in real time.  

§ Chapter 5 covers the experimental performed results and evaluation for 

the proposed algorithms based on two IoT case studies to estimate the 

accuracy, effectiveness, and scalability of proposed the DCAD. 

§ Chapter 7 provides the thesis’s conclusion with the summary of the problem, discussion 

of research limitations, contribution and implantations, including the experimental 

research results and overview of the future work opportunities
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2.Chapter 2 

 
Anomaly Detection: Background and Related Work 
 

This chapter describes the research background and distributed anomaly 

detection research related works that are relevant to this thesis with focusing on 

three research domains; anomaly detection, data stream mining, distributed and 

parallel processing concepts. Section 2.1 describes an overview of traditional 

anomaly with driven characteristics to understand the concept of the problem. 

Since most of IoT data is arriving in a form of stream formats, detecting 

anomalous event from streaming data in real time is becoming a challenging 

task anomaly, thus, Section 2.2 describes the concepts of anomaly in data 

stream mining with stream notations, characteristics, model and processing 

techniques. Additionally, due to the lack of centralised based anomaly 

detection processing, decentralised and distributed is another research 

challenge to be concerned, about; Section 2.3 describes parallel and distributed 

computing methods in relation to high throughput (scalability) with low-

latency and real time response challenging concerns. Section 2.4 discusses and 

covers anomaly detection related works in the area of parallel and distributed 

computing from this domain prospective; Information Theoretic-based, 

Statistical-based, Classification-based, Clustering-based, Density-based, 

Distance-based, and Online-based.   
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2.1. Anomaly Detection Overview 
 

2.1.1. Anomaly Definitions 
 

The term of “anomaly” is differed between one discipline to another, 

importantly, outlier, anomaly, and novelty terminology can be correlated, but 

in practice they are different. A formal definition of such concept is depending 

on the detection method in each application domain. For example, in statistical 

analysis, data is considered to be fitted into a normal model and outlier refers 

to those data which are distinct from the proposed model (Aggarwal, 2016), 

while the normal behaviour is based on predefined notion of normal objects in 

the dataset. Faria et al. (2013), Faria et al. (2016), and Schneider, Ertel et al. 

(2016) argues that both anomaly and outlier have the same definitions in terms 

of dissimilar pattern or anomalous behaviour in the data. Similarly, in data 

mining, outlier refers to anomalous pattern in the dataset compared to the 

remaining data (Zhang, 2013). Consequently, Beigi, Chang et al. (2011) 

explained that outlier possibly refers to a noise or irrelevant system behaviour, 

while noise could be due to network failure or reading measurement errors. 

Similarly, Aggarwal (2016) and Zhang (2013) argued that the difference 

between noise and outlier, and agreed on that noise is a weak type of outlier. In 

(Yang, Meratnia et al.. 2010) defined the noise as a potential source of outlier 

which possibly occurs due to faults in the sensors.  

 

In network security, anomaly refers to intrusion detection, while such 

behaviour refers to fraud detection in financial sectors (Amen & Lu, 2015; 

Candela et al., 2009; Grosse & Turin, 2012). To conclude this, according to the 

literature definitions, it can be argued that outlier is more related to unusual 

pattern or behaviour in the static data; on the contrary, anomaly can be referred 

to an anomalous event in dynamic data (stream). Importantly, high score output 

results of anomaly rate are more achievable rather than the outlier result in the 
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majority of the applications, this is due to the clear understanding of anomaly 

objectives in each application domain as described in Section 2.1. 

 

2.1.2. Anomaly Detection Characteristics 

 

Anomaly detection from static data analysis is mainly can be learnt on offline 

as described in (Chandola, Banerjee et al., 2009). Similarly, the literature 

survey of outlier, novelty, change, and anomaly detections for temporal data 

(e.g., spatial-temporal data, data streams, time-series data, distributed data, and 

network data) are presented in (Chandola, Banerjee et al., 2012; OReilly et al., 

2014 ; Yang, Meratnia et al., 2010; Zhang, 2013). According to these studies, 

anomaly detection for both static and streaming data is primarily based on a 

number of common facts as described in below. 

i. Data Domain: one of the primary challenging task in anomaly 

detection is to define a data type in order to be able to provide answers 

to the problem during the data analysis or prediction. As described in 

Section 2.1, the nature of data type from one application to another is 

different, and data can be from collection of data instances (e.g. objects, 

events, records, vectors, patterns, observations), where every instance 

perhaps includes a number of attributes (categorical, binary or 

continuous). In addition to these, the input data can be univariate 

(single attribute) or multivariate (multi attributes). 

ii. Anomaly Type: in general anomaly is categorised into three types of 

Point, Collective and Contextual. Point anomaly refers to an individual 

data instance behaviour (single point) compared to the rest of the other 

data instance behaviours. Point anomaly is one of the most common 

detection type in various applications such as in credit card fraud 

detection (Van Vlasselaer, 2015), weather forecast prediction (Erfani et 

al., 2016), network intrusion detection (García-Teodoro et al., 2009). 

The literature study of this type of anomaly is very broad, specifically, 
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in statistical data analysis, pattern recognition, machine learning, and 

data mining. These disciplines are mainly based on addressing 

classification and clustering problems (Beigi, Chang et al., 2011; Pham, 

Venkatesh et al., 2012). On the other hand, Collective anomaly refers to 

a collection of unusual events or behaviours from the data instances (set 

of points). However, these behaviours can be grouped into clusters 

based on similarly behaviours in unsupervised learning (e.g., machine 

learning). This can be achieved by using a number of techniques such 

as Markov Model to detect subsequence probability of the data and 

label the data instances as anomaly, and similarity distance metrics (Ma 

et al., 2016). For example, Ye and Li (2017) proposed Collective 

anomaly to detect unusual behaviours over the data streams with similar 

concept. Similar approach is used for sensor network detections by (Ma 

et al., 2016), for social network detections by (Akcora, et al., 2014; 

Ferrari & Kantarcioglu, 2014), and for multiple spatial temporal 

detections by (Zheng et al., 2015). Alternatively, Hidden Markov 

Model (HMM) is another appropriate model to detect subsequence 

probability of the data and label the data instances as anomaly (Zheng 

et al., 2015). Collective anomaly approach is proposed in various 

application domains to detect a group of dissimilar data behaviours 

including; Ye and Li (2017) proposed Collective method to detect a 

group of sensor network behaviours, this method is also advocated for 

social network behaviours in (Akcora et al., 2014; Ferrari, & 

Kantarcioglu, 2014), and for multiple spatial temporal detections in 

(Zheng et al., 2015). 

Lastly, Contextual anomaly is associated with the relations between 

both data instance’s Contextual and attributes since the most important 

impact on Contextual anomaly is the time of event occurrence (Gupta et 

al., 2014). For example, consider monitoring conference room normal 

temperature degree as depicted in figure 2.1, On the one hand, the room 

temperature is 26 °C at t1 when the room is occupied, while similar 
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Figure 2.1: Contextual anomaly for the conference room temperature 
scenario. 

temperature degree at t1 in midnight is considered as Contextual 

behaviour, this is due to the fact that similar behaviour occurs in the 

different contexts with different attribute value. In finance and banking 

industry, Contextual anomaly is associated with customer’s spending 

behaviour, however, these limitations are based on the bank’s spending 

credited threshold per account holder. For example, spending large 

amount of money (e.g., $1000) at Christmas is considered as normal 

behaviour, while similar spending behaviour in April is concerned as an 

unusual event (anomaly) (Van Vlasselaer, 2015).   

 

 

 

 

 

 

 

 

 

 

 

 

Contextual anomaly is proposed to predict stock market shares 

(Golmohammadi & Zaiane, 2015), social networks behaviours between 

different group of users (Akcora et al., 2014), sensor network pattern 

detection (Hayes & Capretz, 2015), text data and semantic analysis 

(Mahapatra et al., 2012). Importantly, Contextual anomaly can also be 

used for online shopping customer’s behaviours; for example, customer’s 

shopping behaviours can be changed from one season to another within 

the similar spending range, but with different interest (context) (Jiang et 

al., 2014). 
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Anomaly detection types are combined methods (e.g. Point and 

Contextual, or Collective and Contextual) in a number of research studies 

to address and discover different research problems. For example, Mirsky 

et al. (2017) combined both Point and Contextual anomalies based on 

using pcStream algorithm to protect user’s mobiles from malicious 

activities. Similarly, in (Hayes and Capretz, 2015) Point and Contextual 

anomalies have been combined to detect faults from high volume of 

sensor networks data. Yexi, J, (2014) proposed Contextual and Collective 

anomalies to detect unusual behaviours of computer clusters memory 

consumption behaviour.   

iii. Output Label: the output of anomaly results is either based on label or 

score results. The result techniques are based on the proposed anomaly 

detection algorithms (e.g., supervised, unsupervised or semi-

supervised), specifically during the learning process for training of a 

model (Faria et al., 2016), prior knowledge of the data behaviour is 

required to be known. A significant human effort is required to propose 

manual labelling or obtaining data labelling for the data training in 

some of the anomaly detection approaches. For example, consider 

labelling 1 millions of data instances manually is believed to be time 

consuming, complex, and very expensive procedure (Chandola, 

Banerjee et al., 2009). As data stream is changing over the time and 

labelling data stream is impractical in most real time situation. On the 

other hand, scoring output refers to the assigning an anomaly score, for 

example, to the sequence of data instances or to the window partitions 

and such approach is described in (Section 3.8). There is extensive 

literature and research of output scoring techniques over sequence of 

data in (Chandola, Banerjee et al., 2009; Chandola, Banerjee et al. 

2012; Zhang, 2013).  

In summary, the aforementioned of anomaly overview is mainly based on the 

statistical data analysis point of view, in contrast to anomaly detection in non-
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stationary data where the data in form of stream is significantly different. In 

dynamic situation, anomaly is required to be detected in real time and the 

learning processing can be considered on online. A detailed description of data 

stream, stream models, stream processing, and anomaly detection in streaming 

are described in the next sections.  
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2.2. Anomaly Detection in Data Stream Analytics 
 

2.2.1. Stream Definition 

 
A formal definition of stream is described by Muthukrishnan (2005) as; 

“a sequence of digitally encoded signals used to represent information in 
transmission”. 

Streams are generating at very high rate by diverse applications from IoT 

sensors, online transactions, traffic networks, stock market, online web clicks, 

medical records, manufacturing machines, and social media (Golmohammadi 

& Zaiane, 2015) .  

2.2.2. Data Stream Model 

 

Stream model is defined as logical formula of the stream data structure and 

stream computational model is one of the most common models to represents 

streaming data format (Erfani et al., 2016). 

Definition 1: data stream S refers to stream with unbounded of items/elements, 

in contrast to static data; data streams are infinite and arrive at a very high rate. 

As denoted in Equation 2.1, S1 refers to the first instance of the stream while 

each stream instance consists of tuple which compromises with a timestamp 

(e.g., (s1, t1)) 

S = {S1, S2, S3, …,}          (2.1) 

Definition 2: Data stream is potentially infinite (N→∞) and completed data 

stream is impractical to be stored neither on memory nor disk due to the high 

rate and size of the streams. For such reason, data streams can be divided into 

sub-streams of tuples as denoted in Equation 2.2. 

   Si = {(s1, t1), (s2, t2), …. (sn, tn)}          (2.2) 
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Since Si consists of an unbounded sequence of tuples (s, t) and s refers to 

individual data instance arrived at time t. Accordingly, tuple is associated with 

either implicit or explicit timestamps t; while both categories are depending on 

the application underline assumption where the data stream is created from or 

arrive into the system. The implicit timestamp refers to arrive time of the tuples 

as they entered into the system (Tran, Gaber et al., 2014). However, the 

implicit timestamp can be added to an arriving tuple or if the timestamps are 

missing. In this context, such problem can be addressed with time-based 

windowing mechanism (See Section 3.4). On the contrary, explicit timestamp 

refers to the embedded timestamp to the data sources when the tuple is created 

by the real-world systems (Babcock et al., 2002). The explicit timestamp can 

be used to re-order of the data stream tuples into a sequence of ordered 

timestamps. The main disadvantage of explicit is correct ordering the 

timestamps from the transmission system; for example, tuple t2 could possibly 

arrive before tuple t1. A details comparison of timestamps detail is described in 

(Chaudhry, 2005).  

In IoT applications, sensor data can be modelled and measured as a sequence 

of streams and they can be considered as time-series data. The reading value 

and time-series can be correlated in the sequential data analysis; thus, they can 

be modelled as key-value pairs of tuple (si, ti). In the real-world applications, 

sequence data can be either discrete or continuous (time-series) (Chandola, 

Banerjee et al., 2012). In this situation, the IoT data stream is considered as 

continued data instance with timestamps. Aggarwal (2007), Amini (2013), 

Bifet (2009), Ma et al. (2016), and Muthukrishnan (2005) all agreed on the 

three fundamental requirements of data stream constraints in most of the 

application domains according of Time, Space, and Accuracy (TSA) metrics. 

§ Requirement 1: Data stream continuously arrives at a very high rate (e.g., 

millisecond). Thus, real time learning, and analysis is significantly 

important, while such requirement is impossible in offline learning.  

§ Requirement 2: Data stream generates in unbounded sequences of data 
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instances (N→∞). Storing potentially infinite data streams on memory is 

inappropriate. Thus, suggested solution is partitioning data streams into 

sub streams with single-scan over the data stream. 

§ Requirement 3: The nature of data stream changes over the time and 

change occurs in data stream sequence, thus, proposing an appropriate and 

novel computational method is a challenging task. 

Furthermore, the problem of the data stream is broadly studied and investigated 

by many research communities in neural networks, machine learning, data 

stream mining, big data stream analytic, and social network analysis (Hu et al., 

2014; Philip Chen & Zhang, 2014). The next section describes the data 

structure of stream model and stream formulations during the data stream 

processing and mining.  

 

2.2.3. Anomaly Detection in Streaming Data 
 

In dynamic situations, data streams can be generated by various applications 

and anomalous events possibly occur due to the result of either system 

behaviour (e.g., sensor) or changes in nature of the data distribution. Thus, 

sudden changes in the data records can be referred to the anomalous event and 

such behaviour is considered as an event detection (Aggarwal, 2016). On the 

other hand, in machine learning, specifically, in supervised learning, change is 

referring to a novelty detection, mainly when the classifier is missed such 

behaviour within the training process. In recent years, several studies have 

investigated novelty detection problems based on offline and online approaches 

for the multi-class label of data streams (Faria et al., 2016; Krawczyk et al., 

2017). In addition to this, change possibly occurs in several conditions such as 

during data transformation, grouping data clusters, feature disappearing, class 

label swaps, float probability distribution or data discards. Importantly, Gaber 

et al., in (Tran, Gaber et al., 2014) descried Change detection as: 
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“Change detection is the process of identifying differences in the state of an 

object or phenomenon by observing it at different times or different locations in 

space.” 

On the other hand, gradual change in the data stream value and trend can be 

related to the concept drift, this is based designed model with prior unknown 

environment while according to Aggarwal (2016) change is not considered as 

an anomaly and concept drift defined as in follows: 

“Concept drift refers to a change in the class definitions over time or 

underlying class (concept) of the data changing over time”. 

A detailed review of concept drift with taxonomy of concept drift detection 

methods in data streams is described in (Gama et al., 2014; Kuncheva, 2008). 

In general, concept drift detection refers to the problem of supervised 

classification learning scenario (Farid, Zhang et al., 2013). The proposed model 

first designed based on prior knowledge of the data behaviour in advanced. For 

example, the concept of the underline data stream at time t must be to the same 

of the newly arriving data stream at t+1, in contrast, the assumption output is 

considered to the concept drift problem (sudden change). The detection 

behaviour is mainly depending on prior known of a use of a model based on 

learning estimated training of the data samples. Consider an example of 

network intrusion detection learning supervised algorithm (e.g., classification 

learning) based on the decision tree structured design. The model is designed 

based on human prediction of expertise to construct the model tree according 

the estimated of all sudden change (e.g., suspicious activity) within arrived 

traffic data streams.  

Alternatively, the estimation can be considered according to the data 

distribution behaviours in unsupervised behaviour as described in definition 3. 

In general, proposed formal model can only be appropriate when a prior 

knowledge of application objective behaviour is known, then the assumption of 

detection model can be beneficial, however, these learning processed is mainly 
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(2.3) 

referred to data mining and machine learning techniques.  

Definition 3: Assume two stream sets (S1, S2) are observed with given two 

Probability distribution of (P1,P2) (Tao & Ozsu, 2009). The similarity of their 

estimated distribution is based on their computed distance (e.g., Euclidian) of 

𝑑𝑖𝑠𝑡 S1 , S2 =  𝑑𝑖𝑠𝑡 P1 ,P2 , as denoted in the following Equation 2.3.  

𝒅𝒊𝒔𝒕 𝑷𝟏,𝑷𝟐 = (𝒑𝟏 𝒗𝒊 − (𝒑𝟐(𝒗𝒊))!
𝒏

𝒊

 

Where v(s) is the value of the data in both stream assumptions (S1, S2), this is 

mainly based on a prior knowledge of the formal model construction. A 

probability of each vi ∈ v(s) in S1 and S2 is based on the distance distribution in 

p1 (vi) and p2 (vi), if the probability between P1 ≠ P2 is large, it assumes that the 

distribution S is changed. However, assumption of prior knowledge of the 

environment in many applications such as IoT data stream is always unknown 

due to the nature of the data distribution and dynamic behaviours of the sensor 

devices in real-time. 

Furthermore,  Gama (2013) characterised five types of change in data streams 

as (e.g., sudden (A), incremental (B), gradual (C), recurring (D), and outlier 

(E)) in figure 2.2. Consider five scenarios for the aforementioned concept of 

change types; as in on online shopping, for example, customers interest 

behaviour on a particular item can changes suddenly compared to their past 

interests, such shift can be considered as sudden (Type A). In retailer industry, 

loyalty card has a significant positive impact of the retailer’s investment over a 

time; such progress change within the data refers to (Type B). The moment 

when the UK Brexit result is announced, the news data stream over social 

media, specifically, Twitter stream comments have become very popular, 

suddenly after several months such news deliberately becomes to less 

important, between since and now, Brexit news suddenly shifts and becomes 

popular again mainly when new Brexit legislation formally is introduced. Thus, 
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Figure 2.3: Concept drift detection types. 

such behaviours are considered as a gradual change (Type C). A particular item 

sale can be very popular for a specific period (e.g., for a month or a year), and 

this item becomes less interesting to be purchased due to the market 

computation, thus, such behaviour is considered as (Type D). Similarly, 

property buyer’s interest is changed from time to time between in each season. 

Lastly, in banking industry transaction fraud can be considered an 

outlier/anomaly against single account holder (Type E).  

  

In the last decade, several machine learning methods have been used to detect 

change during the data stream distribution, for example, Ensemble classifiers 

(Farid, Zhang et al., 2013) and Drift Detection Method (DDM) (Gama et al., 

2004), and Early Drift Detection Methods (EDDM) (Bifet et al., 2006). In 

Farid, Zhang et al. (2013) and Kuncheva (2008) ensemble (multi-classifier) 

method for both labelled and unlabelled data stream is proposed based on 

window sizes and using a threshold parameter for addressing both concept drift 

and change detection problems. Similarly, Kmieciak, and Stefanowski (2011) 

proposed supervised learning approach based on constructing a decision tree 

classifier to monitor probability distribution of a sudden change within the data 

streams. A similar research in Yang and Fong (2015) presented single tree 

learning classifier to detect concept drift detection within the data streams; this 

learning technique is mainly depends on the behaviour of the tree 

classification.   
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According to Gama et al. (2014), in the data stream mining, changes possibly 

occur mainly within online learning, specifically, in supervised learning, when 

the relation between data instance input and object is found to be different. A 

literature of change detection within data stream is provided by (Farid, Zhang 

et al., 2013) and (Joao Gama, 2013) with a taxonomy of detection methods for 

each (e.g. sequential contextual, control charts, and monitoring two 

distributions) data analysis. Furthermore, the main difference between each 

concept is that the former change detection refers to a labelled data (supervised 

learning), while the later detection relates to both situations of labelled 

(supervised learning) and unlabelled data (unsupervised learning) (Tran, Gaber 

et al., 2014). However, the computational complexity of the former learning 

approach is higher than the labelled data, due to the availability of both labelled 

data.  

Overall, these methods are appropriate techniques to detect change from the 

data streams, while the main drawback of such methods are their capabilities 

with specific data stream type, limited size of data streams, and their data 

processing structured model since most of the existing detection methods are 

designed to process and detect data centrally. Therefore, detecting change from 

data stream in distributed and parallel computing can be an ideal solution to 

overcome scalability concern and handle high throughput of the data. 

Specifically, such approach can be managed with high levels of data 

throughput and real time response. The aforementioned methods mainly focus 

on either detecting changes in the nature of data distribution state in the 

learning process, or model behaviour regardless of the scalability concerns of 

sensor streams, medical streams, weather broadcast streams, network sensor 

streams. However, data processing is a major concern, specifically, for 

processing high volumes of data streams, thus, in recent years, many data 

stream; management systems and distributed processing is developed to offer 

continue queries with limited data source capabilities as described in the 

following sections.  
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2.2.4. Data Stream Collection Concept 
 

Data stream can be collected through messaging system based on many-to-

many communication service. This is emerged to help collect and transfer 

streams from many sources of (e.g., IoT sensors, web streams, and network 

streams). A messaging system is primarily based on two models: point-to-point 

and publish-subscribe (Tatbul, 2010). The former approach refers to direct 

single point of messaging communication mechanism as depicted in figure 2.3. 

The disadvantage of such approach is that only one message at the time from 

the queue can be delivered to the specified destination. Thus, this approach is 

incapable of, for example, delivering high volumes of data streams. Thus, high 

throughput and scalability are critical concern in this approach due to the 

system input and output communication data structured (Duarte et al., 2016; 

Schneider et al., 2016). 

 

 

Figure 2.3: Point-to-point messaging system. 
 

The other approach of publish-subscribe of messaging delivery is an alternative 

solution, and the communication service can be made through distribution of 

multi brokers as depicted in figure 2.4. Publish-subscribe is also known as 

producer and consumer; this approach is designed to deliver high volumes of 

streams in parallel decentralised (Jacobsen, 2005). The advantage of the 

distributed publish-subscribe system is the ability to integrate and delivery 

multi-sources, flexibility in (pull-based, push-based), high-throughput of data 

streams, and low latency communication response (Cugola and Margara, 

2012). The main architecture of distributed publish-subscribe message consists 

of three components. 
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§ Publishers: The main task of the publisher is to produce related streams to 

a subscriber in an asynchronous manner. 

§ Brokers: A broker assigns streams into e.g., topic-based and content-based 

partitions as shown in figure 2.4. The benefit of the broker is to filter 

irrelevant events; this helps to reduce the network bandwidth in each node 

and publish only requested interested streams to the subscribers.  

§ Subscribers: A subscriber receives those messages from publishers based 

on requested interested stream partition from topic name (e.g., 

Temperature). 

In general, publish-subscribe messaging system is mainly comprised of topic-

based or content-based systems. The main role of the topic-based system is to 

assign messages to a topic, where every topic is associated with the stream or 

event topic names. This approach is connecting messages from producers to the 

consumers based on the topics scheme as shown in figure 2.4. Filtering is one 

of the main drawbacks in this approach, for this reason, it can be a critical 

problem when the size of stream is scaled up, or when all streams are published 

on to the given topic. Alternative solution is to emit only forwarded request 

topic names to the subscriber.  

 

 

Figure 2.4: Distributed stream collection architecture in Kafka. 
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On the other hand, topic-based is proposed in many types of research problems 

e.g., social media topic detection, crowded scenes feature topic detection (Ye 

& Li, 2017), and linked stream data topic detection (Saleh et al., 2015). In 

contrast to the previous approach, the content-based approach is more flexible 

and it provides filtering function for each published stream (Plale, 2003), for 

example, the consumer can only receive stream that has been filtered according 

to the request from publisher. As another example, in a road traffic monitoring 

situation, subscriber can register a query to receive all vehicles with over speed 

events from national speed limited of e.g., 120km/h1 as denoted in 2.4. 

 

{type = vehicle, speed > 120}        (2.4) 

 

The main advantage of such approach is that the flow of events to the 

subscriber is motivated by event content instead of predefined groups or topics. 

Thus, in the content-based approach, events can be filtered, and only 

interesting events can be forwarded to the subscriber for processing and 

computations, hence, this approach is also decreases overhead messages and 

handles a load balance on each node as shown in figure 2.4. 

Eugster et al. (2003) argues that publish-subscribe system can support loosely 

coupled communication for a scalable system while, loosely coupled can be 

evaluated based on three dimensions of, time, space, and flow. Time 

decoupling is associated with the information of communication between 

publishers and subscribers. Specifically, publisher can produces new messages 

to subscriber even when the subscriber is disconnected; then, the data can be 

delivered when the subscriber is recovered or reactivated. Such characteristic is 

known as a dynamic and flexible communication in publish-subscribe 

messaging systems. A prior knowledge of communication and identifications 

of both publishers and subscribers are unknown, hence, such approach relates 

                                                
1http://www.metric.org.uk/speed-limits Worldwide Highway Speed Limited Matrix 
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to space decoupling. Lastly, synchronisation decoupling refers to the 

interconnection communication between both publish-subscribe while such 

communication is considered to be synchronised to the consumer.  

Overall, there are several enterprise publisher-subscriber messaging systems 

available including IBM MQ2, Java Message System JSM3, Active MQ4, and 

Rabbit MQ5. These frameworks each have limitations and drawbacks in terms 

of scalability in handling overloads of streams with overhead network 

bandwidth, fault-tolerance, distributed architecture support, and guarantee in 

delivering high volume of infinite data streams in real time. A detailed survey 

of the most common and reliable distributed publish-subscribe messaging 

system is described in  Kreps (2011) and Tatbul (2010). 

Alternative solution of distributed publish—subscribe messaging system is 

proposed and developed by LinkedIn so-called Apache Kafka6. Kafka provides 

anonymous many-to-many streaming messaging service delivery (Philip Chen 

& Zhang, 2014). Apache Kafka7 is a scalable distributed messaging system 

framework, which provides anonymous streams messaging delivery service in 

real time and guarantees high throughput and low-latency of streams delivery. 

Additionally, in the case of failure, Kafka has a replication strategy to replace 

the node tasks with the other node in the cluster and guarantees its messages 

delivery service. Kafka consists of three main components, producers, topics, 

and consumers. The main task of each component and implementation is 

described below. 

Kafka also provides distributed messaging system approach with many features 

that other system is incapable to provide, such as topic partitioning, high 

throughput messages, and low-latency response. In recent years, Kafka has 

                                                
2https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q0048
70_.htm 
3https://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html 
4http://activemq.apache.org/ 
5https://www.rabbitmq.com/ 
6https://kafka.apache.org/	
7https://kafka.apache.org/intro 
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been widely proposed in many research problems to help with collecting and 

aggregating streams in real time; for example, Esposito, Ficco et al. (2015) 

proposed Kafka to aggregate data streams for the purpose of ontology 

extraction. Similarly,  Kreps (2011) proposed distributed publish-subscribe 

framework to collect data logs with low latency performance in real time. 

Accordingly, the main benefits of the publish-subscribe messaging system are 

high-throughput and low latency  (Kreps, 2011). In this context, publish-

subscribe paradigm is an appropriate and reliable messaging system to be 

proposed in this thesis to aggregate large-scale of IoT sensor streams in real 

time as described in (Section 2.2.4).  

 

2.2.5. Data Stream Management System (DSMS) 

 

Aggregating data stream in real time is a key requirement of data 

processing. Data Stream Management System (DSMS) is one of the most 

common techniques to handle dynamic data in form of continues data 

stream. As data stream is emitted into the DSMS, it manages Continues 

Query (CQ) processing over the data streams to address the velocity 

problem. DSMS is capable to handle, process and retrieve data streams in 

real time for only limited size of data similar to the Database Management 

System (DBMS). A key challenging task in stream mining is to detect 

anomalous event from continues data stream and to manage high volume of 

data streams. Thus, the main purpose of stream management is to combine 

the stream data into appropriate format before to extracting any knowledge 

from them. DSMS offers a reliable and flexible mechanism to combine and 

store streaming data locally and provides Continues Query (CQ) over the 

arrived streams as can be seen in figure 2.5.  

On the one hand, the advantage of CQ is that it can facilitate, handle, and 

organise such high rate of continues data stream. On the other hand, the 

disadvantage of DSMS is that, when the data size is scaled up, CQ can only 
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capable to process limited data centrally. Thus, detecting anomalous event 

throughout this technique is impractical due to the scalability of the stream. 

Alternative solution is the reduction technique, which technique also can be 

inappropriate, while streaming data is correlated, and event query is also 

mainly has a temporal condition. Time plays an important role in event 

detection, thus, conducting directly operator CQ on such high rate of data 

stream could result in either workload, difficult in complexity of 

computational result, hence, anomalous event possibly disappears or 

becomes disregarded. On the other hand, DSMS mainly adapts inherent 

timestamps to order data instances at the boundary in the Stream Processing 

Engine (SPE) and such timestamp can be disappear during the processing 

(Cugola and Margara, 2012). In recent years, new data stream structure 

model, this so-called Data Stream Processing (DSP), this has emerged to 

address such aforementioned drawbacks and provide low-latency response. 

A detailed description of such approach is presented in (Section 2.2.1). 

In the last decade, many data stream management systems are developed to 

handle the scalability and other stream characteristics such as Extract-

Transform-Load (ETL), INFOMIX (Genesereth, Keller et al., 1997), Aurora 

(Abadi et al., 2003), STREAM (Arasu et al., 2004), and TelegraphCQ 

(Chandrasekaran, Cooper et al., 2003). The main drawbacks of such DSMS 

frameworks are their data structure model and computational resource 

limitation to deal with big data characteristics and the lack of supporting 

distributed stream processing data structure model. 
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Figure 2.7: Data stream management system architecture. 
. 

 

2.3. Distributed and Parallel Data Processing  

 

The concept of parallelism is generic; however, in recent years, due to the 

advances in technologies, the size of data has grown rapidly, and parallel 

distributed methods have been proposed to address the scalability of high 

volumes of the datasets. The main concept of distributed computing is to 

interconnect several computers and make communications through Message 

Passing (MP) to perform different tasks (Agarwal, Tayal et al., 2009). For 

example, figure 2.6 shows centralised and distributed data processing and 

mining approaches. The centralised approach (one the left) is associated 

with standalone machine for stream processing and mining data that are 

coming from IoT applications including weather broadcast and traffic 

monitoring system. While the distributed approach (on the right) refers to 

distributed stream processing and mining across number of computer nodes 

in parallel. Importantly, one of the most important aspects of distributed 

computing is a parallel execution to split large complex tasks and data into a 
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smaller sub-tasks to handle and produce computational results (Rauber and 

Rünger, 2013).  

The concept of programming model in parallelism is associated with 

dynamic data partitioning across computer nodes. In general, parallel and 

distributed computing is a combination of parallel programming model 

(e.g., MapReduce) and computer application framework (e.g., Apache 

Hadoop8, and Spark)9 to perform distributed tasks and process high volume 

of datasets over different commodity architecture of either computer cluster 

or cloud computing (Esposito, Ficco et al., 2015). A term of parallelism 

refers to a dynamic partitioning of the continuous query over the input of the 

dataset based on one of the common programming methods (e.g., data and 

task parallelisms).  

 
Data parallelism: relates to the data partition mechanism, where datasets can 

be divided into across of computer nodes. Map Reduce is one of the most 

common types of data parallelism to partitions and computes high volume of 

the dataset into a sub-set and partitioning them across different computer nodes 

in parallel. Map Reduce is based on the input data in a batch format (static 

format) in an offline mode and the process can be finished when the analyse 

task is completed; in contrast, event streams are arriving continuously at a very 

high rate where Map Reduce is incapable to handle such requirement of the 

stream.  

Task parallelism: refers to the process of execution tasks made by different 

operators.  

 

                                                
8http://hadoop.apache.org/ 
9https://spark.apache.org/	



Chapter 2: Anomaly Detection: Background and Related Work 

	 36	 	 	
	

 

Figure 2.4: Centralised (left) and distributed data stream processing (right). 

 

Big data is primarily based on two distributed data processing of batch (offline 

learning and stream (online learning) analytics (Philip Chen & Zhang, 2014). 

On the one hand, batch analytic is introduced to address the first (Volume) and 

second (Variety) characteristics of big data for large-scale of static data 

through offline learning. For example, many distributed storage systems such 

as HDFS, Cassandra, HBase, Hive, and GFS frameworks have been developed 

to run on Hadoop, and the aim of such frameworks are to address storage 

limitations of centralised databases and to run computational operations on. In 

addition to this, the batch approach is based on collecting; storing and 

analysing static data, and anomaly detection can be implemented over stored 

the static data regardless of considering the low-latency execution time and 

online learning (stream detection in real time). On the contrary, detecting 

potential events from streaming data requires online learning process and real 

time prediction, this is due to the nature of the stream characteristics and 

constraints as described in 2.2.2 (Karunaratne et al., 2017; Tran et al., 2014). 
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Since big data phenomenon is emerged in 2012, many researchers have been 

attempting to detect anomalies from large-scale of datasets including 

(Mohiuddin Solaimani, 2014; Wang, Shen et al., 2015; Yan, Zhang et al., 

2015).  

Theoretically, in batch analytic approach, anomaly detection refers to 

predicting the number of outliers from the static data with multi-scan learning 

approach over the datasets. In contrast to streaming data, anomaly refers to 

event, which occurs in real time, and it requires to be detected according to the 

same speed of the data stream as described in Sections 2.1, 2.2, and 2.3. On the 

other hand, stream analytic has emerged to process high volumes of data 

streams in real time with low-latency response and online learning prediction. 

Such approach is primarily based on Distributed Stream Processing (DSP) 

computational model to address big data three characteristics of (Volume), 

(Variety), and (Velocity). The concept of DSP depends on the dynamic stream 

partitioning, while all the partitioning mechanism is mainly based on two 

parallelism models; data or task. 

 
In distributed and parallel processing, fault-tolerance or disruption during the 

learning execution in real time is a highly critical concern to guarantee 

processing high throughput streams in any DSP. For such reason, a number of 

Distributed Stream Processing Engines (DSPE) including Apache S410, 

Flink11, and Storm12 have been developed to address the aforementioned 

potential problems with similar stream processing data models. A detailed 

comparison of these framework studies is available in Appendix 1. 

 

 

 

                                                
10http://incubator.apache.org/projects/s4.html	
11https://flink.apache.org/index.html	
12http://storm.apache.org/index.html	
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2.3.1. Distributed Batch Data Processing  
 

Pervious section is introduced a distributed data processing concept for 

collecting and processing large-scale of datasets and streaming data. This 

section describes the most common distributed batch data analytic 

framework.  

 

Apache Hadoop 
 

Apache Hadoop is a distributed high throughput of batch data processing 

engine based on Map Reduce programming models. MapReduce is one of 

most reliable parallel programming model to analyse large-scale of the 

dataset (Philip Chen & Zhang, 2014). The concept of MapReduce is based 

on two common functions of maps and reduces. Map function sorts the 

datasets and shuffles them over computer nodes in order to find a similar 

matched pair from the data values, while reducing function is grouping the 

data values with the same attribute values in parallel as shown in figure 2.7. 

On the one hand, the main drawback of MapReduce is the re-execution 

processing and learning tasks. The iteration process of computational result 

is possible, thus, Map Reduce suffers from processing streaming data due to 

the constraints as described in Section 2.1.2. On the other hand, MapReduce 

has been proposed in many researches to address offline complex problems 

across different scientific area including in bioinformatics (MapReBio3), 

genetic data (MRscie1) engineering, and IoT (Hayes & Capretz, 2015; 

Zhang et al., 2016), environmental data. Map-Reduce is proposed by (Ma, 

Wu et al., 2015; Yan, Zhang et al., 2015) for sketching problem on Hadoop 

cluster for the large-scale of datasets. Additionally, Map Reduce also 

operated and deployed on different distributed computing architectures such 

as cloud computing, high-performance computing (Karatepe & Zeydan, 

2014), and grid computing (Bai, Wang et al., 2016). 



Chapter 2: Anomaly Detection: Background and Related Work 

	 39	 	 	
	

 

 

Figure 2.5: Map Reduce distributed programming model. 

 
 

2.3.2. Distributed Stream Processing (DSP) 
 

To evaluate the appropriate technique and method to detect anomalous event 

over high volumes of data streams, a theoretical background behind stream and 

distributed processing is required. Thus, understanding the concept of 

distributed stream processing data structural model is required for the sensor 

stream integration and pre-processing modules in Chapter 4 and 5.  

 
Apache Storm  
 
Apache Storm is a real time distributed stream processing framework with 

the capability of processing one million stream tuples per second on a 

standalone computer node (Storm, 2016). Similar to the Hadoop’s 

MapReduce programming data model, Storm’s programming model is 

based on three components of spout, bolt, and topology as shown in figure 

2.8. Spout is known as a first entry point of Storm framework and the main 
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tasks of each Spout is to read and convert data stream into a tuple data 

format from messaging queue system like Kafka and Twitter API. A tuple is 

a pair of ordered values in a form of <tuple, timestamp> data format. Bolt is 

known as a computational unit of input streams; hence, bolt’s computational 

functions are comprised of filter, join, aggregate, and communicates 

operations to execute different tasks including read and write to the 

database. The most important components of Storm’s are topology; a 

topology can be viewed as graphical representation of stream programming 

model linking operation units to each other through streams. The structure 

of topology in Storm is made from spouts and bolts based on Direct Acyclic 

Graph (DAG) node representation. As can be seen in figure 2.8, Storm 

topology consists of Spout (Sp1 and Sp2) with (B1 to B5) bolts, through DAG 

made of stream connection (e.g., red arrows).  

 

 

Figure 2.6: Apache storm topology programming model. 

 

The topology builder defines the topology structure, spout and bolt from two 

streams, e.g., (stream1) and (stream2). The data stream then can be shuffled 

and grouped them over the different computer nodes based on ShuffleGrouping 
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mechanism. This type of grouping mechanism is one of the Storm’s streams 

partitioning approach as described in the next section. 

 
Storm has been implemented in many real time stream processing solutions 

including for the Twitter streams (Akter & Wamba, 2016), weather stream 

(McCreadie et al., 2013), IoT sensor streams (Kamburugamuve et al., 2015), 

and Social Media streams (Gao et al., 2015). Similarly, to batch data 

analytic, Storm has had a mayjor contribution in addressing many anomaly 

detection reseach problems, for examples, in Hu et al. (2014), Storm is 

proposed to detect anomaly from CPU data stream behaviour. This research 

is more related to the unusual behaviour of machines rather than solving a 

particular stream problem regardless of the data scalability concern. Other 

research in (Gao et al., 2015) attempted to implements distributed stream 

processing on cloud architecture to analyse social media streams. Such 

approach is mainly attempted to analyse social media through clustering 

algorithm, and the assumption of dynamic change in the data stream is 

disregarded, when there is unclear process of data stream partitioning tasks. 

However, Candela in (Candela et al., 2009, and Candela et al., 2012) argues 

that clustering is an unappropriate approach to detect anomaly from large 

data streams due to the fact that clustering tasks are more related to dividing 

data into a number of clusters rather than the data behaviour.  

 
The architecture of storm is based on distributed infrastructure, which is 

made from Nimbus, Supervisor and Zookeeper13 clusters as shown in figure 

2.9 While Nimbus represents as a master at node on the top of the 

architecture with four Supervisor nodes and the connection between Nimbus 

and Supervisor is made by Zookeeper cluster, which is acting as coordinator. 

Processing latency between each storm component is playing an important 

role, since number of workers in each node is depending on the 

                                                
13https://zookeeper.apache.org/ 
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compatibility of each used computer node in terms of processing latency 

and memory space.  

 

 

Figure 2.7: Apache storm architecture. 
 

A detailed description of Storm architecture components can be described as 

follows.  

i. Nimbus: Nimbus acts as Hadoop’s master architecture, and the main 

task of Nimbus is to divide created topology’s script codes across each 

computer nodes known as Supervisors. Nimbus assigns and manages 

computational functional tasks, which can be performed by each 

supervisor.  

ii. Supervisor: A supervisor is known as a slave in Hadoop cluster 

architecture. It manages Storm’s workers and the main task of 

Supervisor is to execute logical functions based on assigned tasks by 

the Nimbus, and to listen to the Zookeeper to excuse tasks from the 

workers. A worker in Supervisor also refers to Java Virtual Machine 

(JVM) and with constructed threats, which defines the tasks. Each 

worker comprises a number of executors and tasks while each task 

process data streams are implemented in spouts and bolts. 
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iii. Zookeeper: Apache Zookeeper is a high performance distributed 

coordinator, which maintains and monitors the health status of Storm 

cluster and acknowledge received messages. Zookeeper offers 

distributed data synchronisation mechanism, which is a critical concern 

in distributed computing environment (Philip Chen & Zhang, 2014). 

The main concept behind high volumes of stream processing is a stream 

partitioning scheme in the DSP, hence, the aim of partitioning scheme is to 

define how the data stream can be processed or to be partitioned in parallel. 

In DSPE and framework such as Storm, partitioning task can be constructed 

from number operators (e.g., bolt) to process and emit data streams into the 

predefined destination. In this context, Storm offers various partitioning 

mechanisms and the most four common grouping techniques as described in 

below; 

Shuffle Grouping: Data stream tasks can be shuffled randomly based on 

round robin scheme similar to Map Reduce data structure shuffles. Figure 

2.10 illustrates the number of stream events, which can be partitioned across 

the number of workers while each work has been assigned to processes, e.g., 

an event. Streams can be processed equally, and the benefit of such 

approach is load balancing to prevent network overhead.  

 

 

Figure 2.8: Stream partitioning shuffle grouping mechanism. 
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Filed Grouping: Streams can be controlled and grouped according to their 

data value in each of their schema and stream tuple values. For example, a 

similar value of tuples stream can be grouped in a jointed worker, for 

example, vehicle speed value tuple {s1, “140”} can be grouped and joined 

by the same worker2 in bolt2 as illustrated in figure 2.11. 

 

 

Figure 2.9: Stream partitioning filed grouping mechanism. 

 

All Grouping:  Copy of data stream tuples can be replicated to all the other 

bolts without partitioning them across different bolts as shown in figure 

2.12. The disadvantage of this approach is overloaded data streams in each 

bolt. A key benefit of all grouping is that events stream tuple values can be 

all grouped by a specific e.g., Bolt 1. 
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Figure 2.10: Stream partitioning all grouping mechanism. 
 

Global Grouping:  Global grouping is associated with joining all the data 

stream tuples from other workers in Bolt 1 into an individual worker 

(e.g.,W2) into bolt2. Computational results have been grouped them into a 

specific work within e.g., Bolt2 as shown figure 2.13. This can be achieved 

by defining an ID of each worker in every bolt within each supervisor node. 

For example, all the events can from worker1 to worker3 can be combined 

into worker2 in bollt2. This supports the redirecting tasks in the storm 

topology and synchronisation between each worker, since the drawback of 

this technique is that overhead of memory in each node is highly possible.  

 

Figure 2.11: Stream partitioning global grouping mechanism. 
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2.4. The Complexity of the Data Stream and Size 
 

Since IoT data streams are generating rapidly in a form of streams and due to 

the complexity of streams data structure, their data size can be very large and 

noisy; thus, it is impractical to detect anomalous events through current 

anomaly detection methods. Existing researches have mainly focused on 

addressing anomaly problems through using dimensionality reductions such as  

e.g., Sketches, Singular Value Decomposition (SVD) (Yan, Zhang et al., 2015), 

Principal Component Analysis (PCA), and Independent Component Analysis 

(ICA) (Muthukrishnan, 2005). The main drawback of dimensionality reduction 

is that in some situations such as in time-series, data attributes and objects are 

correlated with each other; for instance, temperature transmits several data 

values (e.g., high or low). Similarly, in monitoring real-life applications such as 

oil and gas leakage, fraud, and fire detections, data are generating in real time, 

thus, decision making is highly recommended before, for example, event can 

be irrelevant or dismissed. Thus, such decision making requires a robust data 

processing and online learning method. The main drawback of reduction 

techniques is that when the size of the data dynamically scales up, reduction 

techniques are possibly leads to a missing some of the critical events or stream 

tuple values can be missed. Therefore, in the process due to the high speed of 

the data stream (Chakrabarti, Keogh et al., 2002). There is a survey of outlier 

detection with low dimensional and high dimensional data reductions described 

by (Zhang, 2013). 

 
In practice, summarisation technique is an alternative solution to decrease the 

data load and protect data from being lost. For example, Papadimitriou, Sun et 

al. (2005) proposed Streaming Pattern Discovery in multiple Time-series 

(SPIRIT) approach to summarise large collection of data streams. SPIRIT uses 

less memory, and this approach is focused on data correlations to prevent 

missing values from the high volume of data streams. SPIRIT approach is also 

adaptable to detect both sudden and gradual changes within the data streams 
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and to forecast an outlier. The main drawback of SPRIT is a data structured 

design for centralised-based approach. In Parthasarathy, Ghoting et al. (2007) 

argued that in centralised-based mining is incapable to handle high volume of 

data streams, specifically, the computational result can take a very long 

process, when real time computations and response are the main priority 

concern in most streaming application domains. In the last decade, alternative 

solution is proposed by (Erfani et al., 2016), to divide data streams into subsets 

of streams (chunk/portion) and across distributed nodes to handle such 

constraints as described in the previous section. On the other hand, data 

streams are generating in real time or near to real time and arrive at very high 

rate. Thus, data distribution changes over the time and monitoring newly 

arrived data streams and predicting their behaviours in real time is a 

challenging task.  

 

2.5. Distributed Anomaly Detection Related Works 
 

This section describes related anomaly detection methods, which have been 

proposed in parallel and distributed computing. 

 

2.5.1. Information Theoretic-Based Anomaly Detection Method 
 

Anomaly detection in Information theoretic method refers to the information 

content and observes with an impact of anomalies probabilities of according to 

the different measures (Chandola, Banerjee et al., 2012). In (Wu and Wang, 

2013) a new concept of weighted complet entropy based on data distribution 

and attribute correlation proposed to measure the possibility of the anomaly 

candidate in large-scale of categorical data. Rettig et al. (2015) proposed 

another two information theoretic measures (Relative Entropy and Pearson 

Correlation) to detect large-scale of cellular network data behaviours by 

implementing such approach in parallel on Apache Spark. In this work, a 
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gradual change based on the Relative Entropy measurement first is detected. 

Then, Pearson Correlation and correlation metric have been conducted to 

detect abrupt changes in the data.  

In summary, information theoretic can be measured based on the entropy 

method, this is more applicable for measures the approximation of categorical 

or spatial data format rather than streaming data. For such reasons, these 

measures are inappropriate for the streaming data, while the selection of such 

measures mainly depends on the numbers of anomalies in the dataset.  

 

2.5.2. Statistical-Based Anomaly Detection Method 
 

The study of statistical anomaly detection method is broad, a detailed 

description of such approaches is studied in (Chandola, Banerjee et al., 2009). 

The statistical technique is mainly referring to the assumption of the 

probability of normal model behaviour (training set) to determine if tested data 

fit into the normal model or not. In general, the statistical anomaly detection 

approach is based on parametric or non-parametric models and such 

approaches are proposed by (Rettig et al., 2015; Young et al., 2014) to detect 

the network intrusion behaviours. Summaries of both approaches are described 

in the followings. 

 

In terms of parametric model, given dataset D generated from distribution D 

(θ) with unknown parameter θ, while θ can be estimated from available D to 

find d ∈ D. In this context, Gaussian distribution is one of the most common 

types of parameterised model in statistical-based method; example models are 

including Regression Model, Bayesian Network (BS), Hidden Markov Model 

(HMM), Gaussian Mixture Model (GMM). Consider a hypothesis of GMM for 

the observation of X when this value can be generated by an infinite number of 

Gaussian distributions. Every Gaussian Density N (X |πk, ∑k) is a module of a 

mixture noted by mean πk, and covariance matrix ∑k. The computation of P 



Chapter 2: Anomaly Detection: Background and Related Work 

	 49	 	 	
	

(θk | x) initially defines and this value can be constructed from data sample x 

based on Bayes Rule of probability P (θk | x) as computed in Equitation 3.1.  

 

𝑃(𝜃𝑘|𝑥)  = !!! ! !!)
! (!)

            (2.5) 

 

Where πk can be a mixing coefficient of the module k, which computed based 

on the probability of θk within x. Furthermore, in (Huang & Kasiviswanathan, 

2015), autoregressive HMM is proposed to detect an unusual event in the data, 

however, in (Rettig et al., 2015) argues that HMM execution time is very 

demandable for training high volume of datasets due to the scalability size of 

the dataset which is inpactical for the model to be fitted. In contrast, prior 

knowledge of the data distribution in nonparametric is unknown. For example, 

data with a stationary probability distribution P can be estimated from given 

dataset D, while new data pointed x can be a new parameter and the relational 

assumption can be approximate. There two possible solutions available to be 

proposed to estimate the P based on the D or to decide if x is a random sample 

from P. Nonparametric model includes Histogram and Kernel-based 

approaches (Schneider et al., 2016; Su et al., 2007). Su in (Su et al., 2007), 

Schneider in (Schneider et al., 2016), and Huang and Kasiviswanathan (Huang 

& Kasiviswanathan, 2015) modified and optimized some of the nonparametric 

method to discover abnormal behaviours of the data and measured the 

proposed model based on the distribution of fixed data and micro-clusters. 

Candela et al. (2009) argues that nonparametric Kernel-based techniques are 

primarily capable when the assumption of the data generated from prior known 

distribution; however, this technique is possibly complex and inappropriate for 

the high dimensional volume of data streams.  Detecting anomaly from data 

streams without known prior knowledge of the data structure based on 

nonparametric approach is described in (Beigi et al., 2011). The proposed data 

stream model is limited and incapable to detect changes within the data 

streams. Thus, the adaptability of the model is very critical in situation like 
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weather prediction, while the model is required to incremental the learning 

process to detect the change and return validate results. Similarly, in e-

commerce and online shopping recommendation items, the proposed model is 

required to consider user’s purchasing interest behaviour and the model must 

validates such unexpected change in the data distribution. 

 

Aggarwal (2016) argues that the statistical methods computationally can be 

accurate, while both parametric and nonparametric methods are impractical to 

analyse large-scale of dataset. This is due to the validation results between 

theorises and computational as major drawback in data mining. In situation of 

anomaly detection, for example, labeling anomaly output manually may 

require human expertise and time considering validating the proposed model. 

To conclude, statistical models are incapable for online learning from dynamic 

data and learning from streaming data is more related to an online learning 

process. 

2.5.3. Classification-Based Anomaly Detection Method 

 

Classification method refers to supervised learning in machine learning and 

anomaly detection technique is mainly based on training anomaly model to test 

the output result of detection behaviours based on two learning assumptions of 

normal and anomalous labels (Aggarwal 2007). Data label availability is a 

major concern in supervised learning, as in some situation like streaming 

application the data label is unknown. In the last decade to address such 

problem, several classification models are proposed including Support Vector 

Machine (SVM), SVM refers to one-class label classification model-based, the 

learning process is based on divides the data into two sets of learning and 

testing. For example, in (Perkins 2003) detected novel behaviours from data 

streams based on one-class SVM classification. Similarly, OReilly et al. (2013) 

proposed one-class SVM technique to reduce a computational complexity of 

data sensors and detect outliers within each local node. As argued in 
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(Schneider, Ertel et al., 2016), OC-SVM is incapable to assign large-scale of 

labels for the model to learn and to detect anomaly due to the learning and 

predicting anomaly result process by the model. Alternative solution is 

proposed based on multi-class learning by (Hoens, Polikar et al., 2012) to 

address such problem to training data from multi labelled normal classes. 

 

The literature of anomaly detection in classification-based method is 

extensively investigated. The proposed algorithms are categorised into tree-

based algorithms includes (e.g., bagging and boosting decision tree, random 

forest, C4.5 decision tree and boosted stump), rule-based, Support Vector 

Machine (SVM), and Neural Network (NN) (Chandola, Banerjee et al., 2009). 

One of the most common proposed classification algorithm is decision tree. 

The algorithm is easily interpreted data into a tree-based learning procedure, 

this is based on hierarchical partitioning and each partition within the tree acts 

as independent node. The tree procedure is based on a common assumption of 

top-down approach learning where the tree develops from the root to the top.  

 

2.5.4. Clustering-Based Anomaly Detection Method 
 

Clustering-based method is one of alternative powerful meta-learning 

technique to analyse high volumes of data created by advanced applications. 

Clustering methods are referring to unsupervised learning. A taxonomy of the 

Clustering-based algorithms are described in (Amini et al., 2014; Yang & 

Fong, 2015) and (Fahad, Alshatri et al., 2014). These studies are categorised 

Clustering based on partitioning methods, hierarchical methods, density-based 

methods, grid-based methods, and model-based methods. In recent years, 

clustering methods are widely studied and proposed in data stream mining 

including to address problems across different application domains such as 

micro-blogging (Lee & Chien, 2013), web analytics (Facca & Lanzi, 2005).  
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In relation to the scalability concern, research on parallel and distributed 

clustering algorithm in the literature is limited, specifically, for clustering data 

streams. In (Zhang et al., 1997) proposed distributed clustering algorithm so-

called Balanced Iterative Reducing and Clustering using Hierarchies 

(BIRICH). The main data structure for this algorithm is based on CF concept 

and CF-tree method to summarise the data streams into CF data structure. 

BRITCH splits leaf node of CF-tree and any CF vector with low density is 

considered as outlier or anomaly. According to (Silva, Faria et al., 2013), 

proposed data structure for storing the summary of the data stream is crucial to 

handle memory and space constraints. While CF is constructed from d-

dimensional data point in the cluster. Splitting cluster {
!
} is based on i = 1,2,3, 

....., N, and CF vector of the cluster, while the splitting criterion is mainly 

depending on data structure triple of CF according to cluster measurements 

from: centroid, radius, and diameter. This s based on according to the number 

of data objects that are represents by N, liner sum of the data instance LS, with 

the sum of squared data instance by SS. 

The concept of CF is proposed in another distributed clustering algorithm so-

called DenStream by (Charu C. Aggarwal 2003). DenStream is a density-based 

algorithm for clustering data stream, similar to BRITCH, DenStream proposes 

CF data structure with two additional p-microclusters and o-microclusters 

parameters. The algorithm is constructed based on, Tp DenStream and checks 

for p-microclusters to find a possible outlier o-microclusters. A detailed 

description of the DenStream algorithm extension is proposed by (Feng Cao 

2006). 

Another extension of CF structure is Clustream algorithm, it the data structure 

is based on two concepts of (online and offline) approaches. First, a statistical 

summary of the data stream is stored on member and maintained by 

microclusters, and then the input summary of data as captured on the online 

phase can be trained and tested on offline. The proposed algorithm computes 

maximum microcluster boundary based on the standard deviation of mean 

distance from the cluster centroid according to the factor f. As a consequence, 
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for every new data stream instance, two nearest microclusters can be merged 

based on their Euclidean distance measurement and each microcluster is 

required to be stored from time to time.  

In summary, according to Chandola, Banerjee et al. (2009), clustering-based 

method is mainly appropriate to organise data into group of data instances 

instead of finding or detecting anomalies. For example, in dynamic application 

scenarios, it is inpractical to large-scale of store data stream and then analysis 

the data on offline. Thus, such assumption is argued in (Erfani et al., 2016),  as 

less accurate computational assumption for stream data. For example, both 

DenStream and Clustream distributed clustering algorithms are mainly based 

on CF data structure; hence, these approaches are involving a data reduction. 

While the main drawbacks of detecting anomaly from data stream is 

dimensionality reduction. In (Schneider, Ertel et al., 2016) argued that one of 

the disadvantage of clustering is controls of outlier score when the threshold 

scoring range is defined,  and the distance of k nearest neighborare becomes 

very complex.  

In (Liang Su 2007) distributed data stream outlier detection is proposed from 

kernel density estimation technique based on dived-and-conquer method to 

partitioning the data streams into micro-clusters. Similarly, another approach of 

anomaly detection from data stream without prior knowledge of the data is 

proposed by (Beigi, Chang et al., 2011). Similarly, Yu and Lan (2016) 

proposed unsupervised anomaly detection technique based on matrix sketching 

of summarising the data streams to monitor the proposed stream model 

behaviour. According to (De Mencagli, 2016) sketching approach based on 

Turnstile model, and such a model is an inappropriate model for time-series 

data. In (Zhang, 2013) argues that increasing number of attributes in sketching 

is complex O(N2) in terms of both space and time constraints in the 

summarisation technique.  

Alternative approach of distributed anomaly detection from large dataset based 

on density technique is proposed by (Wang et al., 2015), and the main concept 

of such approach influenced by data portioning grid-based method. A complete 
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dataset is divided into d-dimensional space grids within master-slave 

architecture, and distributed Local Outlier Factor (LOF) algorithm is 

implemented locally on each node to estimate the density of each data tuples. 

In (Zhang, 2013) argued that there is a lack of theoretical and practical 

capabilities of LOF’s to discover and detect change in the data stream, 

specifically, during the dimensionality reduction of the data. Another anomaly 

detection method has been proposed by (Li Yu, 2016: Schneider, Ertel et al., 

2016), the detection method is mainly based on similarity-based technique, it 

focuses on similarity of the test data based on similarity-based technique from 

the training data. The main drawback of similarity-based is online learning 

during in dynamic stream detection (Chandola, Banerjee et al., 2012). 

Alternative solution of data stream anomaly detection is proposed by (Zhang, 

Li et al., 2015), this approach is mainly based on Stream Projected Outlier 

detector (SPOT). Another extension of SPOT algorithm is Adaptive (A-SPOT) 

approach in (Zhang, Li et al., 2015). However, the main there is a research 

limitation of ASPOT in terms of both theoretical, for example, anomaly type, 

or definition of anomaly on online learning, and technique limitation in terms 

of, e.g., data partition and detection strategy point of views. 

 

 

Chapter Summary 

 
This chapter is described a global understanding of anomaly detection, 

specifically, anomaly detection in streaming application including describing 

the relations and distinguish between anomaly over static data and streaming 

data.  According to Aggarwal (2016), several factors can significantly can 

influence the results of anomaly detection as described in Section 2.1.2. Thus, 

the main difference between previous related works and this thesis are: (a) 

existing methods mainly focusing on capturing only individual streams from 

e.g., IoT data sensor rather than multi-sensor streams while most of the existing 
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anomaly methods have disregarded the main concept of stream (change in 

nature of the stream); (b) this thesis aims to offer a novel Contextual anomaly 

detecting method in the data stream domain, while Contextual anomaly 

detection research method for the data stream is limited compared to the other 

two most common researches of Point or Collective anomaly types. 

Interestingly, the existing anomaly detection studies, and researches are mainly 

focused on individual stream behaviour, rather than data stream’s context, 

specifically in the IoT applications, data is correlated and capturing Contextual 

behaviour is a new research challenging task. However, IoT data attributes are 

correlated and it can be beneficial to detect the Contextual behaviour; of the 

data rather than single behaviour, and (c) parallel anomaly detection is one of 

the most promising methods to overcome the scalability problems and low-

latency computational response, specifically low detection computational 

results, while such requirements have been disregarded in most of centralised 

methods.  In addition to these, distributed sensor network anomaly detection is 

becoming an interesting research study to investigate and detect distributed 

sensor behaviours. Some of these approaches may possibly achieve high 

detecting performance based on proposing distributed stream processing 

architecture, specifically, using big data state-of-the-art methods. Data 

partitioning, algorithmic structure and change detection are major concern and 

high demandable and ambiguous in some of these studies. Nonetheless, this 

suggests that these methods are simultaneously satisfying some of the 

requirements of outlier or anomaly detection regardless of anomalous event 

detection over a large-scale of data streams in real time. In this concept, some 

of these studies and related works have suggested that stream constraints, high 

throughput, and low-latency computational results are major concern in 

detecting high volumes of anomaly detection and they are required to be 

considered during the data streaming mining and anomaly detection methods. 

Since last decade, several machine learning and data mining algorithms have 

been developed to address problems of anomaly detection through proposed of 

offline learning methods, while these algorithms have mainly been designed to 
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learning from the model behaviour and depends on the data reduction 

techniques before the learning concepts applied to the data on the transit.  
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3.Chapter 3 

Distributed Contextual Event Stream Problem Definitions 
and Designs 

 

In this chapter, we describe our definitions of event streams, Contextual 

anomalous and the proposed novel model designed. A general stream 

definitions and model notation is described in Section 3.1. Section 3.2 

describes event stream problem definitions and notations.  Section 3.3 

highlights the process of high volumes of stream based on the stream structure 

model along with window modelling concepts to handle and capture infinite 

sequences of large-scale of events in real time. Section 3.4 proposes novel 

designs of event stream window partitions methods.  Contextual Event stream 

anomalous definitions and design describes in Section 3.5 followed by 

described change detection procedure from the event stream over the each 

window partition in Section 3.6. 

 

3.1. General Notation of Stream Definitions and Model 

 
This section describes a global understanding of data stream basic notation, 

distributed stream processing data structure model, describes the event stream 

definitions, and notations of created event from IoT stream data sensors along 
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with designed event stream model.  

In dynamic applications, data stream structure is represented as unbounded 

sequence of stream tuples and these tuples, which are mainly consisting of raw 

attributes records when each tuple is represented in a form of 〈x, t〉 pairs with 

formalised implicit or explicit timestamp t. 

Definition 1 (Tuple): A list of data attribute/value pairs in particular data 

schema of 𝑠𝑖,  and t is a discrete of tuple time stamped.   

Definition 2 (Time): Before processing any event streams, event stream data 

can be structured in a time-series ordered format as t ∈ T where t time is a 

discrete timestamp of arrived stream tuple. Particularly, the event streams can 

be constructed from aggregating sensor streams within three time series 

intervals.  

Definition 3 (Data Stream): Data stream S is a sequence of timed tuples of 

𝑆 =  𝑠!, 𝑡! ,… , 𝑠! , 𝑡! . Each tuple is ordered by timestamp t and can be 

denoted as 𝑡1, 𝑡2,… , 𝑡𝑛 . Data stream tuple usually arrives at a very high rate, 

while in most conditions it is difficult to process or store a complete size of the 

data streams. Thus, alternative solution is to constructing window partitions 

and capture event streams in each window slides as describes in (Section 3.3.1) 

 

3.2. Event Stream Model 
 

In some of the real-world applications, event is resented as a single symbol 

without a data attribute, name or type such as , “S1” and “S2” , for two S1 → S2 

signal sensors. In data driven paradigm, event is required to comprise data type 

and value to construct an event from. Thus, in this thesis, former approach is 

considered to design the novel model.   
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Definition 4 (Event Tuple): An event 𝑒 can be constructed from timed tuple 

𝑒𝑖, 𝑡𝑖  while 𝑡𝑖 is associated with event time and each tuple is time stamped as 

〈e, t〉 ∈ T .In this context, event model is defined as a finite sequence of 〈s, t, d 〉 

tuples. This can be represented as name/type (s), timestamp (t), key- value (d) as 

shown in figure 3.1. For example, consider road traffic data attribute as high-

speed value (event) and vehicle flows per event tuple 〈A, 8:10, {120,4}〉. 

 

 

Figure 3.1: Unbounded sequence of event stream tuples. 

 

Definition 5 (Event Streams): Event stream can be constructed any S 

sequence of event streams where each of the event can be represented as 

sequence of event instances or activities as denoted in Equation 3.1 and shown 

in figure 3.2. 

 

𝑺 =  〈 𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏〉                      (3.1) 

 

In dynamic stream processing model, it is practical to identify events 

automatically based on event’s Common Correlated Attribute (CCA) value pair 

per each event stream tuples. Importantly, event can be considered as 
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anomalous behaviour within a specific context.   

 

 

Figure 3.2: Time events interval. 
 

Definition 6 (Event Time Order): time ordering in stream processing plays a 

significant role to differentiate between implicit and explicit timestamps of the 

events as described in Section 2.1.2. In many real-world applications, several 

events can occur together; thus, the composition ∪ of two events can be 

constructed from the time-based sequence tuples in event stream processing as 

denoted in Equation 3.2.  

 
 

     𝑆𝑖 𝑒1,𝑒2  →  𝑒1, 𝑡1 ∧ 𝑒2, 𝑡2 ∧  𝑡1  ≤  𝑡2 ∧ 𝑒1,𝑒2  ∈ 𝑤         (3.2) 

 

Overall, in both IoT application scenarios, event stream represents as a list of 

finite sequences of events with timestamp where e defines any actions with 

values and timestamps as defined in previous sections. The main benefit of 

event time order is to identify the time of event, which has occurred, and 

provide to semantically computational results. However, this can protect events 

from been dismissed or disregarded during the processing time and mining 

phases of distributed anomalous event detection.   
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Example 4: Consider events from S1 based on the definition 4, where each 

event is constructed from tuple schema of 〈 s, t, d 〉 format. The first record 

refers to event number in the S1 (e.g., e1), and timestamp of the arrived event 

with the d value, which is associated with the vehicle speed and the number of 

vehicle flows. The window partition can be used to collect the events from the 

sensor streams within the specified time interval T (See Section 3.2 for window 

partitioning concept). Figure 3.3 illustrates three events that have occurred in 

S1, where each event record consists of event number, time and speed records 

per vehicle. Suppose e1 is an example of event, which occurred at 7:00 am with 

three vehicles’ exceeded speed values of 125km/h. The event partitioning is 

mainly based on the CCA followed by the temporal order with tumble partition 

as time progress.  

 

 

Figure 3.3: Event elements schema for a sequence of event tuples. 
 

3.3. High Volumes of Event Stream Processing  
 

In modern applications such as network monitoring, weather broadcast, and 

stock exchange, infinite streams continuously arrive at a very high rate. Thus, it 

is impractical to extract events from infinite data streams due to the constraints 

as described in Section 2.1.2 without prior knowledge of data format. 

Anomalous event detection plays an important role in the real time prediction. 

For example, road traffic officer is mainly interested in detects vehicle’s over 

speed based on either higher (120km/h), or lower (60km/h) at a specific time 

period (e.g. peak, off-peak) to predict the highway traffic congestion events. 
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Similarly, officer controller monitors room temperature degree and interested in 

to detects unusual event or activates, assume room temperature is raised up to 

26℃, which possibly is indicating an event due to either faulty sensor or the 

room is under on fire. However, processing, handling, and predicting 

anomalous events from large volumes of generated IoT sensor streams with a 

high rate can be addressed in two proposed solutions as described in the next 

sections. 

i. Reduction Method: Approximation algorithm is one of the most common 

techniques in the data stream mining and machine learning area to fulfill 

the data stream constraints as described in Chapter 2. Many data stream 

mining methods including classification, querying, and clustering, is using 

a synopsis data construction and data reductionto to offer approximate 

answers. This is implemented by selecting a subset of data streams through 

micro-clusters (Charu C. Aggarwal, 2003), random sampling, (, 2007), 

sketches (Hao Huang, 2015), and histograms (Brian Babcock, 2002). Such 

solutions and techniques have been described in sections 2.3 and 2.4. The 

disadvantage of data reduction technique is that when data continuously 

arrive at a very high rate, intelligent actionable decisions are required 

before the event stream is discarded or neglected during the reduction 

technique. Therefore, such technique can be appropriate for the dataset in 

static method rather than for the data streams (Pham, Venkatesh et al., 

2012). 

ii. Window Method: a window method is a mechanism to extract relation 

from infinite streams and divides data into finite slices to prevent overflow 

of memory and concept drift (Kuncheva, 2008). For any window technique, 

the size and number of windows are based on two different measurements 

of time-based and count-based. Data sensor streams can be partitioned into 

according to either their arriving time, for example, partitions stream tuples 

within a specific time period (e.g., one-hour), or based on the number of 

stream tuples per window partitioning size of w (e.g. w =10,000 tuples) as 
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described in below. Importantly, this this method has been used in much 

data stream processing and mining, however, the main benefit of window 

partition is to control and handle change and data stream distribution. In 

this context, the correct implementation of window methods to detect 

anomalous event streams is a challenging task. The next sections are 

describing window partitioning design with detail descriptions of each 

window methods adaptation and justifies the most appropriate window 

partition method to adapt. 

 

3.4. Event Stream Processing Window Partitioning 
Definitions and Designs 

 

This section describes stream processing and window partitioning design to 

handle the high rate of event streams and manage memory overflow of the 

proposed computing resources. 

Window Concept: Consider window W as constructed window partition from 

incoming sensor streams in length of L and window size of δ where L can be 

representing the length of streams based on either time-based or tuples as 

count-based. The interchange of windows is mainly depending on the sliding 

factor δ based on specified interval as depicted in figure 3.4. For example, 30 

event streams can be partitioned into 3 sliding factors δ. 

Time-based: Give timestamp t ∈ T as a temporal order of the event stream 

tuples within specified time interval (e.g., minute, hours, days), where a time-

based window 𝑤𝑡 can be defined as partitioned window for arriving event 

streams according to temporal order period as described in Equation 3.3. This 

can be an ideal solution to partition event streams into time ordered events, for 

example, capture anomalous events per every two-hours interval window 

partition from the sequence of events list.  
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𝑤𝑡 = 〈𝑒1 ,𝑒2  ,𝑒3 ,𝑒𝑗−1 ,𝑒𝑗 〉           (3.3) 

Count-based: Give n ∈ N, where n refers to the number of arrived event 

stream tuples (e.g., 10,000 tuples) from the counted-based technique. The 

notation of count-based can be described as in wn in Equation 3.4. 

 
     𝑤𝑛 = 〈𝑒1 ,𝑒2  ,𝑒3 ,𝑒𝑛−1 ,𝑒𝑛 〉             (3.4) 

In this context, the proposed window partitions can be managed and count the 

number of event streams per window slides; for example, consider counting 

number of high or low temperature degrees in each window partition. This is 

significantly very important in many dynamic application domains to detect the 

number of events per sliding windows. Overall, in this thesis, window 

partitioning method is consideration is an appropriate solution to be adopted in 

both traffic monitoring and temperature scenarios to handle high volume of 

event streams from IoT sensors and to prevent change or concept drift within 

the data stream distribution. As a result, it is more practical to compute event 

stream in real time before such events disappear; consider an example of traffic 

stream sensors that capture vehicles’ over speeds according to the speed 

limitation or congestion speed in certain location. Importantly, the result of 

event steam can be grouped into one of the aforementioned three windowing 

methods. Window method is also implemented to handle data streams in many 

streaming application domains, such as stock exchange or weather broadcast 

(Tanbeer, Ahmed et al., 2009). The main advantage of window method is to 

handle high volumes of the data stream in terms of scalabilty by partitioning 

data streams into  windows of slides based on sliding window, landmark 

window, or tumbling window. A detailed description of each window method 

and proposed examples are demonstrated in the next Sections 4.4.1., 4.4.2., and 

4.4.3. respectively. 
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3.4.1. Sliding Window Definition  
 

Sliding window is one of the most common methods and mechanisms to 

handle incoming continuous events streams (Li and Lee, 2009). The data 

structured concept of sliding window is primarily based on First-In-First-Out 

(FIFO) technique. In the last decade, wide number of studies investigated on 

the way of how to handle, learn, and monitor the data streams. These studies 

mainly proposed sliding window method including FLOAR, and ADWIN 

(Bifet et al., 2006). For example, in ADWIN algorithm the proposed sliding 

window to keep contains the stream length from the most recent data streams 

partition and discards the old data streams since the algorithm scans the 

learning tasks. 

The main advantage of sliding window is the guarantee of the data stream in 

the memory space in the window size (Bifet, 2009). Additionally, sliding 

window facilitates to monitor the data distribution and changes within the data 

stream (Bifet 2009, and Brzezinski & Stefanowski, 2014). In order to handle 

the high rate of streams, sliding window method is widely proposed in many 

real life applications including stock exchange (Babcock, Datar et al., 2002), 

fraud detection (Kuncheva, 2008), medical diagnose (Amineh Amini, 2014), 

intrusion detection (Vu et al., 2014), network sensor nodes (Hoens, Polikar et 

al., 2012), weather streams (Dariusz Brzezinski, 2014), and social media 

streams (Hoens, Polikar et al., 2012). The main disadvantage of the sliding 

window in IoT traffic anomalous event detection is the replication of the events 

in each window this concept is more discussed in Example 1. 

Sliding Window: consider sliding window of either wt or wn, where t refers to 

the time interval of arrived streams and n stream tuples per window. The 

window updates with bounded size when new event streams arrive until L = δ 

is satisfied as described in Example 1 and figure 3.4. 

Example 1: Suppose, n number of anomalous event streams for the last ten 

minutes when t = 10 seconds as shown in figure 3.4. In this scenario, window 
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w1 consists of e1 to e5 from t0 – t5, while w2 consists of e4 to e8 from t4 – t8  

since, e4 and e5 events are belonging to both w1 and w2. In this context, 

replication between two windows has occurred and this can have significant 

impact on the computational results. Thus, this is a major drawback in real time 

event stream detection when it is impractical to have duplicated events within 

new constructed window; hence, when w2 is completed event e1, e2, and e3 will 

be disregarded.  

 

 

Figure 3.4: An example of event streams partition in sliding window. 
 

 

3.4.2. Landmark Window Definition 

 
Landmark window is known as fixed upper and lower bound window 

approach; this scenario constructed window includes the complete n number of 

events. Window starts from a particular point and expires when the size of the 

window is completed. The window size monotonically increases as time 

progresses and in this situation; it is impossible to discard any events due to the 

predefined length of window size. For such reason, landmark window is 

inappropriate to adopt for anomalous event stream processing due to the 

increasing number of streams within each window; thus, this leads to memory 
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overflown and highlighted as major drawback of the landmark window. On the 

other hand, event replication can certainly occurs when the size of events 

increases (Tanbeer, Ahmed et al., 2009). 

 
Landmark window: Suppose landmark window W is constructed from W = 

{w1, w2, w3, …, wn}, where w1 is as first constructed window which consists of 

event streams while the current length of W progressively changes with new 

incoming event streams within the landmark in w2, and w3 respectively. 

Example 2: Assume sequence of event streams can be added into number of 

windows as shown in figure 3.5. Where the first w1 starts with eight events, and 

the state of the current window is changed since new event e9 is added into w2 

and w3 progressively; hence, the size of window expands as time progresses, 

particularly, when new event streams continuously arrive from the sensors. For 

example, w1 starts from t1 – t8 and holds events from e1 to e8; similarly, window 

w2 starts from the same point of w1with adding extra e9,and similar procedure is 

repeated for w3 respectively. However, landmark window is one of the classical 

window models. The main drawback of this method is incapability of handling 

high volumes of event streams, due to expanding window size as new event 

streams continuously arrive. Thus, this method is leading to allocated and 

consumes more memory space and is time-consuming for the computational 

results.  
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Figure 3.5: An example event stream partition in landmark window.  
 

 

3.4.3. Tumbling Window Definition  

 

Tumbling window is mainly relying on the size and segments of the event 

streams, and the primary aim of this method is to define a specific time interval 

before each window becomes full of its capacity. This can be computed by 

number of event streams that arrive within one hour time interval and start new 

tumbled window straight after the previous window tumble is becoming full 

(Manish Gupta, 2014). It is more practical to use a small size of the window in 

order to achieve accurate computational results as using larger size of tumbled 

window is more difficult for the computational results due to the time 

constraint per each window. An ideal solution is to monitor event stream states 

within window partitions to control and handle each size of window partitions. 

Importantly, the main advantage of tumbling window is the impossibilities of 

event replications; for example, a specific event (e1) can only exist in one 

window (e.g., w1) only. The disadvantage of tumble window is their 

dependability on the size and sliding bounds of the predefined window; 

however, such constraint can be addressed by monitoring the state of changes 

per window partitions as described in Section 3.6.  
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Tumbling Window: Let 𝑤𝑡 be a tumbling window size of event streams 

according to the satisfied conditions of L = δ window length. The window 

size possibly can shift based on the predefined time, for example, after one 

hour is terminated, a new tumbled window can be constructed. In this context, 

event streams can be partitioned over n number of tumbling windows as 

described in the next section.  

Example 3: Let compute over speed stream tuples in road traffic scenario, 

where event tuples can be grouped or paired according to each vehicle’s speed 

values (tuples) within each tumbling partition based on either count –based or 

time-based techniques. Figure 3.5 demonstrates the computing process for the 

number of vehicles (over speed tuples) within each S1, S2, S3 every ten minutes. 

Consider, window w1 consists of events from e1 to e5 from S3 and window w1 

expired at t = 5 when w2 is constructed for new events partitions from e6 to e10.  

 

 

Figure 3.6: An example of event stream partition in tumbling window. 
 

Overall, since IoT streams are continually arrives at a very high rate, tumbling 

window partition can be an appropriate solution to be adopted in order to 

handle such high rate of streams and control the changes within event stream 

data distributions. A detailed description of the designed method of window 

partition is discussed in the following sections.   
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3.5.  Event Stream Window Partitioning Design 
 

As described in the previous sections, the main key challenging task is to select 

appropriate method to process high volumes of sensor streams and detect 

anomalous events dynamically. This can be achieved by designing and 

implementing new event streams window partitions in parallel based on 

distributed data stream structured model. In this context, event streams within 

the predefined window can be computed in parallel across the number of 

computer nodes according to their correlated stream tuple values. Thus, one of 

the most appropriate window methods to propose and design event stream 

partition is a tumbling window. This can be achieved by partitioning event 

streams into number of equal constructing window length and computes the 

final results per each window partition. The  event streams per each window 

partition can be grouped based on their correlated stream tuple values as 

described in Section 2.2.2 and figure 3.6 where wi is i
th number of window 

partition which is constructed from number of events within the event stream 

time interval from t1, to t10. 

 

 

Figure 3.7: A general design sample of tumbling windows partitions. 
 

A detailed description of window partition notations and the structural design 

model is descried in the following definition.   

Definition 7 (Window Partitioning): The semantics of window partitioning 

design wp can be based on the number of event stream tuples and divided 
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events into a window-based model until the window condition length is 

satisfied as denoted in Equation 3.5 where 𝑤! represents the number of 

windows (e.g., w1, w2), p partition, and 𝑤! ⊆ 𝑆 while 𝑤! ∩ 𝑤! = ∅.  

 

𝑆!" =  𝑤!
!!!,!

 

 

The main procedure of such concept is described in algorithm 1 and 2 for each 

count or time-based method. The notation of S refers to the number of sensor 

streams, k as ith length of window partitions from the event streams according 

to either time-based or count-based partition and such parameters can be 

defined as wt or wn in each algorithm. 

In the event stream window partitioning scenario, count-based refers to the 

number of events per window and it can be so-called event-based window and 

denoted as wn. Since time-based is associated with the time interval length of 

window partition directly constructed from the event streams, such approach 

can be called event-time based windows and it can have denoted as wt. The 

design and procedure of window partition for event stream is categorised in 

two steps: defining window condition and computing events per window 

partitions.  

Algorithm 1 describes the first step to initialise window based from the 

sequence of event stream according to a predefined window (lines 1-3). The 

second step is directly constructed from continuous arrived event streams for 

processing; the algorithm computes the n number of events per each window 

partitions. Then the events can be grouped into a new window partition, for 

example, constructing first window w1 from 1,000 event stream tuples (lines 6-

8). The algorithm checks for the size of window length, if the size of n event 

stream is larger than current window, the new event stream can be assigned 

into the next window, which could be w2 (line 10-12). The design of window 

(3.5) 
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partition in algorithm 1 is based on two steps; first, the Input Event Stream 

Processing which is associated with arriving sequence of event streams from 

the DSPE and second, the Output Event-based Windows, this is mainly refers 

to the number of tumbling window partitioning over the sequence of event 

streams from the event stream processing step as illustrated in figure 3.7. 

 

 

Figure 3.8: Count-based event stream window partitions. 
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The design of time-based window partitioning can be constructed from 

algorithm 2. In this context, algorithm 2 is first initialising the window 

according to the arrival of the event streams at t where constructed new 

window time-based partition can be denoted as wt  (lines 1-3). The algorithm 

checks for every event stream based on their ordered timestamp (lines 4-6); if 

the events from within the window partition are is time-based, then such event 

streams can be grouped into a number of time-based according to the time 

ordered sequence of t1, t2,…, tn (lines 6-8). For example, event streams from t1, 

t2, can be emitted to w1, w2, respectively.  

Algorithm 1: Count-based Window Partition wp 

Input: event stream tuple S 

Output: count-based wn 

1. Initialise window L 

2. Initialise the complete condition 

3. List <event stream tuples> window w= { }; 

4.      foreach stream arrival tuple ei ∈ S do 

5.       w ← w ∪ { ei}; 

6.     if |w| = count-based then 

7.       wn = window size (capture 1,000 event stream tuples) 

8.         window.add (n) 

9.     else 

10.         if n > wn length then 

11.         update w2←emit events to new window 

12.         return wn 

13.         else 

14.      end 
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As showing in figure 3.9, the time-based event stream window partitions 

procedure is organised in two steps; First, the input event stream processing 

step is associated with the number of event streams that have arrived from S1, 

S2, and S3 at between 7:00am to 24:00am hours. Second, the output of event-

time window step is associated with the number of window partitions according 

to their constructed timestamps. In the later step, events have been partitioned 

based on the predefined time-based; for example, window can be constructed 

from the arrived events at between 7:00am to 9:00am at t1 for the first window 

partitioning w1; similarly, new window w2 can be automatically constructed 

from event streams at between 11:00am to 13:00am within t2 based on the time-

based sequence ordered as t1, t2, t3, t4, and t5 respectively. Event streams can be 

classified and grouped based on the FieldGrouping mechanism in the DESP. 

This technique is mainly depending on the correlated stream tuple value and 

the size of time-based partitioned window; for example, S1 consists of e1 to e4 

Algorithm 2: Time-based Window Partition wt 

Input: event stream tuple S 

Output: time-based wt 

1. Initialise window L 

2. Initialise the complete condition 

3. List <event stream tuples> window w= { }; 

4.     foreach stream arrival tuple ei ∈ S do 

5.      w ← w ∪ { ei}; 

6.       if |w| = time-based then 

7.          w1 = t1 (event streams from e.g., 7:00-9:00) 

8.          wt = timestamp –t1 

   else 

9. end 
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according to their time interval processing where each time t1, t2 is respectively 

constructed. Importantly, the main challenging task and benefit of time-based 

window partitioning is to process data streams as fast as achievable before 

event streams are discarded. In this situation the learning computational output 

result can be more accurate and achievable.  

 

 

Figure 3.9: Time-based event stream window partitions. 
 

 
3.6. Contextual Event Stream Definitions and Design  

 

A normal technique of Contextual anomaly is to define the anomalous attribute 

within a specific context as described in Section 2.1.2. Such behaviour is 

referred to sequential analysis in other application domains when data is in a 

static mode. Several studies including Yexi Jiang (2014) and Saleh, Hagedorn et 

al. (2015) stated that Contextual anomaly is the most appropriate method to 

detect Contextual behaviour of the data streams. Jiang (2014) argues that in 

dynamic situations Contextual method is possibly produces less accurate 

computational result from the data stream due to stream constraint and 

characteristics. Thus, to deal with such problem, in this thesis, the window 
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partitioning is regarded as a solution to address a speed rate of the data stream 

and to discover changes in the stream. 

Definition 8 (Contextual Event Stream): Event stream is anomalous in a 

precise context, when such behaviour is not normal in a different context. 

According to Angiulli, Fassetti (2010) and Chandola, Banerjee et al. (2012) 

Contextual anomaly refers to the change in the context attributes position within 

the event sequence. Consider sequence of event streams from S1, S2, and S3 are 

arriving from road traffic sensors respectively; speed events less than < 60 km/h 

at 7:00 am are considered as normal behaviour due to the traffics movement. On 

the contrary, similar speed at midnight indicates an accident due to the traffic 

speed is slowing down and can be considered a Contextual anomalous event. 

Importantly, this concept is based on the change in the event behaviour while 

the context of event attribute is remaining the same. In this thesis, such concept 

is beneficial to design CA model and implements in Contextual Event Stream 

Anomaly (CESA) algorithm over the event streams in real time. Consider road 

traffic scenario when sequence of event streams which have been emitted into 

DSPE and grouped into sequence of stream tuples according to their timestamps 

t1, t2 as illustrated in figure 3.9 where the first tuple consists of event number, 

event occurrence time and values. For example, e2 in S2 consists of 10 over 

speed records of 140 km/h at t1 (8:45 am) and similar behaviour e2 in S2 at t2 

(22:10 pm) consists of over speed values; hence, such over speed at midnight 

can be considered as Contextual events which is due to an accident on the road 

or suspicious activity.  
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Figure 3.10: Sequence of events with normal and contextual behaviours. 

 

The Contextual Anomaly CA model can be denoted as a sequence of event 

stream tuple partitions as described in the Equation (3.6) in the Contextual 

Event Stream Anomaly (CESA) algorithm 3 where Si is the ith event stream from 

the collection of sensor streams during window tumble partitions within (wt+1, 

wt+2, ...,) and Vi is associated with the event stream scores of Si from AScore as 

described in the next section.  

 

 𝐶𝐴 = 𝑆𝑖, 𝑤𝑡+1,𝑤𝑡+2 ,… ,𝑉𝑖}         (3.6) 

 
 
Definition 9 (Contextual Event Score): The output of anomalous event is 

associated with the result of event streams computed by using a scoring 

technique for every event in S according to the CA in the sequence format. In 

this situation, algorithm 3 reads event streams and the rule set r checks for the 

CCA (See Section 3.3.2) to find any rule that covers the sample of S. The 

probability of each given event stream v value is expected to be positive when 

event attributes ei in Si is less than 𝑃 𝑒! = 𝑣 𝑟 < 0.5, in contrast, if the is 

𝑃 𝑒! = 𝑣 𝑟 > 0.5 the value of the event stream score is expected to be a 
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negative value. However, 𝑟 rule computes from the sequence of r and for the 

purpose of Contextual behaviour. The AScore computation is denoted in 

Equation 3.7 and 3.8.  

 

𝐴𝑆𝑐𝑜𝑟𝑒 =  
1
𝑑 log

𝑃 𝑒! = 𝑣 𝑟
1− 𝑃 𝑒! = 𝑣 𝑟

!

!!!!

                                         (3.7) 

 

                            
1
𝑑 log 𝑃 𝑒𝑖 = 𝑣 𝑟 )− log 1−𝑃 𝑒𝑖 = 𝑣 𝑟

𝑑

𝑒𝑖=1
                          (3.8) 

 

A detailed description of the evaluation performance for AScore is presented in 

Section 5.6. Algorithm 3, describes the Contextual Event Stream Anomaly 

(CESA) process the idea of the rule set structure is used in many data stream 

research studies including in Duarte, Gama et al. (2016).The algorithm starts 

with an empty rule set 𝑟 = {}.When new event streams are partitioned by the 

window in algorithm 1 and 2, CESA  algorithm checks to find out if the event 

stream is covered by CA model. For every event stream 𝑒! in S, each rule set is 

required to be checked and computed based on the Equation (3.10) for α 

changes in the event streams. If probability of any event stream value according 

to the context attribute ei is changed, the rule set can be removed and the value 

of event stream within the CA can be updated. On the other hand, to check the 

accuracy of the CA, the algorithm will assign AScore [0,1] to each event stream 

tuple in S, and the value of each sensor data S can be updated and nominates CA 

based on the event context value in the sequence.  

On the contrary, if ei is covered by the rule sets and not considered as 

Contextual Anomaly CA, the PH test computes the error e based on the α 
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magnitude of changes and updates the r. Thus, if any event stream ei is covered 

by RS according to the CA the algorithm then returns Contextual Anomaly CA 

values based on the predefined threshold.  For example, in road traffic scenario, 

the output of the CESA is either [0,1] where 0 is associated with speed event 

during the normal hour at 10:00 am, and 1 as Contextual anomalous event at 

23:00 pm. Such concept is based on the event stream context value (e.g., event 

with similar speed as 120km/h at 10:00 am can be considered as a Contextual 

event at midnight 23:00 pm). 
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Algorithm 3: Contextual Event Stream Anomaly (CESA) 

Input: Event Streams S 

S: <e1, e2,..., > 

Output: Contextual Events Stream   

1. Init Rule Set RS = { } 

2.    CA ← 𝑒!covers by model using Eq. (4.11) 

3.   foreach event stream ei ∈S do 

4.      foreach rule r ∈ RS do 

5.         computes S using Eq. (4.10) 

6.      If α ← detected, then 

7.         remove r 

8.         update Vi get the value in CA 

9.      end 

10.       If no rule selected in RS then 

11.         update default RS 

12.       end 

13.          if AScore (ei) = λ score using Eq. (4.10) then 

14.                 RS⃪ update AScore 

15.          end 

16.          if ei not covered by RS and ei is not in CA then 

17.                 calculate prediction e 

18.                 Test PH (e, λ) 

19.     end 

20.     else 

21.             update ei when RS match CA then 

22.             return CA= [0,1]; 

23.    end if 

24.      end 

25.    end 
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3.7. Event Stream Change Detection  
 

Event stream is evolving from time to time; hence, it is impractical to assume 

that event streams have the same probability of data distributions (Gama et al., 

2009). For example, if a sets of data streams in t1 and t2, timestamps are 

different, and then this indicates the occurrence of a change within the sequence 

of the event stream partitioning. One of the aims of this thesis is primarily to 

handle and address distribution changes over the window partitioning methods. 

In this context, the appropriate algorithm is required to incrementally adapt to 

test newly arrived streams and to be able to compute the probability of event 

stream behaviour in parallel. Thus, change detection method can be an 

appropriate solution to monitor the event stream status over each window 

partitioning. 

In recent years, the problem of change detection has been studied intensively as 

it has been recognized as one of the most common problems in the streaming 

applications (Tran, Gaber et al., 2014). Since then, several studies have 

attempted to address this problem; for example, (Kuncheva, 2008) proposed 

supervised learning such as ensemble classifier to address change detection 

problems over the data streams. Alternative meta-algorithm of measuring 

change detection in the data streams based on non-parametric statistical distance 

computation is proposed in (Daniel Kifer, 2004). Similarly, Farid, Zhang et al. 

(2013) proposed adaptive ensemble classifier approach to predict a novel class 

detection concept changes from sequence of infinite of data streams. 

Change within sensor network is proposed by Tran, Gaber et al. (2014), and 

according to this study, the most reliable method to detect and monitor change 

over high volumes of the data stream is distributed processing which deploys 

online incremental learning algorithm. On the contrary, it is impractical to 

handle and detect changes from high volumes of data stream centrally; this is 

due to the resource constraint and data structure or computational model. Yang 

and Fong (2015) proposed single tree learning classifier to discover the changes 
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from streams; however, this approach is primarily designed to address a specific 

problem. For example, in supervised learning, the problem of model change or 

update and novelty change over data stream is the most common problems 

(Ikonomovska et al., 2010; Bondu & Boulle, 2011; Badarna & Wolff, 2014). 

Similarly, in unsupervised learning, change detection has been studied to detect 

data stream cluster’s behaviour (Vallim & De mello, 2014; Demšar & Bosnić, 

2018). 

In general, change in data stream occurs in two situations: first, during the 

prediction model if the model is stable; otherwise data stream is deviated during 

reconstructing of the model. Second, change possibly occurs during window’s 

either being disjoined or its reconstruction when new event data stream arrives, 

and the event stream value can be dissimilar in comparison to the pervious 

window events. Assume the value of event e1 in (w1, t1) is (200km/h) which is 

different from the similar event in (w2, t2) due to the change in the traffic speed 

behaviour. In this situation, both conditions can be concerned due to the 

uncertainty of the event streams from each window partitioning and model 

prediction. The main drawback of change within window models are studied in  

Tao and Ozsu (2009); while in dynamic situation, detecting change from the 

event streams are challenging tasks. Thus, appropriate solution is to design 

window change detection method based on partition window wp with time 

interval ∆p, and monitor window wm with time interval ∆t. This can be achieved 

by using wm which represents as a tumbling window and the result of window 

partitioning can be presented in merged partition windows. 

 

3.7.1. Window Change Detection Definition 

 

In this section, a novel change detection design will be proposed based on the 

number of unexpected event tuples in each partition window wp and such 

concept is defined as follows. 
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Definition 10 (Window Change Detection): Let 𝑑: 𝑤!𝑎𝑛𝑑 𝑤! → ℝ be two 

partitioning windows for two event streams from 𝑆! 𝑎𝑛𝑑 𝑆! in S, where d 

associates with the dissimilarity between both partitioning 𝑤!𝑎𝑛𝑑 𝑤! . 

In this context, changes can be quantified based on the dissimilarity of two 

window partitioning. For example, consider dissimilarity distance d as 

" 𝑖𝑓 𝑑 𝑤!  ,𝑤!  >  𝜀 ". The dissimilarity between two window partitioning can 

be represented in 𝑤! 𝑒!, 𝑒!, 𝑒!, . . , 𝑒!  and 𝑤! 𝑒!, 𝑒!, 𝑒!, . . , 𝑒!  and change can 

be expected when two window partitions are contains dissimilar event stream 

tuples. Hence, this can be measured by the most common Euclidian distance 

metric as denoted in Equation 3.9 where p is the associate with window 

partitioning wp, and algorithm 4 describes the process of event change 

detection. 

 

𝑑 𝑤!,𝑤! = (𝑤!,𝑤!)!
!

!!!

 

 

Assume Si consists of a sequence of event streams  < e1, e2, e3,…, en>. The 

algorithm is first defining the event stream condition and begins with 

constructed window from event streams, which are arriving according to their 

timestamp 𝑡 , and the size of ith  window partitioning. As new event emerges in 

w2 and for each update the algorithm checks for the dissimilarity to see if d (w1, 

w2) >𝛼𝑖. The selection of 𝛼𝑖 is depending on the distance length of each window 

partitions, if length is d > 𝛼𝑖 larger, then the probability of false alarm is high 

and new window can be constructed. In contrast, smaller change can be detected 

in the distribution if several event stream behaviour is also dissimilar. The detail 

description of window changes detection performance results and evaluation 

metrics are described in Chapter 6. In data stream processing and mining, a key 

strategy of window change detection is to match two window partitions (w1, w2) 

and measure the change based on their distribution rates. Consider a problem of 

change as null hypothesis of H0 compared with other hypothesis of H1 for two 

(3.9) 
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window partitions dissimilarity as shown in Equation 3.10 where 𝑑 𝑤!  ,𝑤!   is 

the distance function which computes the dissimilarity of the (w1, w2) window 

partitions 

 

𝐻!           𝑑 𝑤1,𝑤2  ≤ 𝑤
𝐻!            𝑑 𝑤1,𝑤2 > 𝑤           (3.10) 

In this situation, the assumption of change in each window partitions are 

considered where each hypothesis can reflect on the dissimilarity of the window 

partition based on the size of window partitions and timestamps of the event 

streams.  
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Algorithm 4: Detect Change (S, D) 

Input: S event stream 

d: dissimilarity d* 

1. Stage 1: 

2. begin 

3.           𝒇𝒐𝒓 𝑡1 =   𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤  do 

4.           w1,i     ⃪ first wp 

5.           w2,i     ⃪ second wp 

6.     end 

7. Stage 2: 

8.      while 𝑛𝑜𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 do 

9.      window w2,i  by 1 event 

10.            If  d (w1,i, w2,i ) > αi   then 

11.                t⃪ current time  

12.             Declare change at t1 

13.             Clear the windows and GOTO stage 1 

14.            else 

15.             Move w2,i to hold new events 

16.   end if 
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3.7.2. Change Detection Standard Evaluation Measurement 
 

The most common method to measure evolving the data streaming is described 

in below. 

First, consider two event streams are created from two sensor streams S, where 

each S can be a stream with sequence of event stream tuples. Change possibly 

occurs when the timestamps of two streams (St+1, St+2) are different according 

to t1and t2 as denoted in Equation (3.11). This is due to dissimilarity of incoming 

event stream value at t1 compared to the event stream values at t2. 

    ∑S1 (t1) ≠ ∑S2 (t2)           (3.11) 

Second, consider a sequence of event streams e1, e2, . . ., en, in each window 

partition constructed from timestamp t . To measure the rate of change over 

such event streams, Page-Hinckley (PH) test is considered to be an appropriate 

method; since the first assumption is depending on dissimilarly of sensor 

behaviour and the accuracy of learning detecting is very low (Daniel Kifer 

2004). Importantly, PH is relying on accumulated sum of a loss function error 

for the sudden change based on using Gaussian signal. This validation is 

realistic to propose and to measure event stream change detection. In this thesis, 

PH is considered as an appropriate test validation method to monitor online 

changes from the event stream sequence. Changes in event stream are common 

and detection validation can be assumed according to the prediction error rate as 

rule of 𝑒𝑡+1. PH is capable to monitor change from current event streams based 

on predicted error rate and pervious event streams. Thus, the abnormalities 

between such event streams tuples are can be considered as an error. The 

computational error rate also is computed based on two loss functional 

computation errors metrics of Mean Absolute Error (MAE) and Root Mean 

Square Error (RMSE). The predicting error rate can be defined when the model 

does not cover the rule set. Similar techniques have been used in (H. Mouss 
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2004). This concept is based on testing sum of cumulative mT from the sum of 

events <e1, e2, …,>, the sum of differences between the observed ei and their 

mean can be set within time interval [1, t] and change is expected according to 

Equations 3.12 and 3.13 where mT is associated with the maintaining of the 

minimum test mT (mt, t = 1,. . ., T).  

    

                                                    𝑒𝑡 =
1
𝑡 𝑒𝑡

𝑡

𝑡=1
                                                               (3.12) 

 

                                                     𝑚𝑇 −  1𝑇 𝑒𝑡−  𝑒𝑡− 𝛼
1

𝑡
                                          (3.13) 

 

 T is associated with monitoring test for the number of event streams based on t 

∈ T where α also refers to the change degree for every ei in t. The threshold 

parameter λ can be set to observes mT ∈ [0, 1], in (e1, e2, . . ., en), and α can be 

referred to the magnitude of changes when PH test computes the difference 

between PHT = mT –MT. However, the λ depends on the main false change rate 

prediction error. Hence, increased or decreased the false rate is mainly 

depending on the predefined threshold over the event streams to test the change 

detection.  
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Chapter Summary 

This chapter has described the research problem and definitions of the event 

stream based on the distributed stream processing data structure model and the 

designed process of detecting high volumes of anomalous event detection from 

unbounded sequence of sensor streams. Theoretically, processing and detecting 

a high volume of event stream in real time is requires an appropriate method in 

order to handle change within the event streams. In this situation, we defined 

appropriate method to capture and partition unbounded sequence of event 

streams into a number of window partitioning before the event stream is 

evolved. Since we argued that data stream is dynamically changing, we 

designed tumbling window partition as a most reliable and alternative solution 

to handle the state of the event streams. The event streams from windows are 

further processed to detect changes and recover from missing event stream 

tuple. The event streams then are aggregated to detect Contextual behaviour 

form the streams based on the anomalous event score rates. A detailed 

implementation of described assumptions and method are demonstrated in the 

next chapter.  
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4. Chapter 4 

 
Distributed Contextual Anomaly Detection (DCAD)   
 

 
Contextual anomaly detection from sequence of unbounded event streams has 

proven to be a new research challenging tasks to predict unexpected behaviour 

of events in the different context. The complexity of the Contextual event 

reflects on the robustness of the proposed method and algorithm.  In this 

chapter, we propose a novel and effective solution of distributed Contextual 

anomaly detection method to identifies different Contextual behaviour of 

events over the sequence of sensor streams. Section 4.1. demonstrates the 

overview of DCAD method. Section 4.2. will address the implementation of 

event stream collection module in the DCAD. The implementation of the 

DCAD approach including parallelism concept is explained in Section 4.3. The 

proposed DCAD architecture is described in 5.4. Section 5.5 is devoted to 

distributed event stream detection in parallel.  

 

4.1. An Overview of the DCAD  

The proposed distributed Contextual anomalous detection is based on the 

computational constraints and limitation as described in pervious Chapter 3. 

Importantly, the main difference between existing anomaly detection and 
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DCAD is that DCAD can be constructed from the number of stream modules 

according to the divide-and-conquer approach based on three decomposed of 

distributed modules; a) Event Stream Collection; b) Event Stream Processing; 

and c) Contextual Anomaly Detection. The existing anomaly detection 

methods are mainly considering centralised detection for data aggregation, 

which is beyond the scope of high volumes of sensor event data streams 

detection. This is due to the need of continuous update of the event stream 

model online and unexpected change to the event streams. A detailed 

description of each module is described as follows. 

 

4.2. Distributed Contextual Event Stream Processing and 
Detection 

 

This section is describing the high throughput of Contextual event streams 

processing, partitioning, and detection designed method. In this section, event 

streams are representing as unbounded sequence of tuples. For example, figure 

4.1 demonstrates the formats of unbounded sequence of events from two IoT 

applications (Temperature and Speed), which have been, emitted form 

distributed messaging system for the processing, partitioning, and detection.  

 

 

Figure 4.1: Input event stream tuples. 

 

After event streams have been aggregated from distributed messaging system, 

then the distributed Contextual anomalous event stream topology is constructed 

based on the Directed Acyclic graph (DAG) data structure model. In this 
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context, DCAD is mainly decomposed of three main modules of pre-

processing, matching events and Contextual detection as depicts in figure 4.2 

and Appendix 2.  

 

 

Figure 4.2: Distributed Contextual Anomaly Detection (DCAD) based on DAG 
model; Input (I), Pre-process (P), Matching Events (M), Contextual Anomaly 
(C), Output (O). 
 

Data subset division and task parallelisms are the two major solutions to handle 

scalability concern in the field of machine learning and big data distributed 

data processing. Importantly, distributed big data stream processing such as 

Storm is one of the appropriate solution to handle both data and task 

parallelism in a form of DAG data structure model. The main advantage of 

Storm is it capability of processing over one million of data streams per second 

and it capability of fault-tolerance communication discovery from failure. 

Thus, event streams have been designed to be partitioned into a number 

window to control the high rate of the streams based on one of the most 

reliable window partition method and according to the most appropriate task 

paralysis of FieldGrouping (). On the one hand, event streams can be divided 

based on their tuple value and according to their similar field values. For 
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example, tuples from same value can be emitted to the same Bolt in a round-

robin approach. This can be achieved by grouping event streams from (S1 = (e1, 

e2, e3, , e4, e5) at between (7:00am to 9:00am) to the first window partition, and 

second partition window to next constructed window partition at between 

(9:00am to 11:00am) respectively.  

Since high volumes of event streams arrive from distributed messaging system, 

the main task of DCAD is to organise the sequence of event streams into an 

appropriate format of tuples. For example, in Storm, Spout is known as first 

entry point of the distributed stream processing and the main tasks of Spout is 

to pull/ read event streams from the distributed messaging system such as 

Kafka topic partitions, converts data source into a stream tuple, and then emits 

them into the Bolts within the topology. The concept of pull-based is to pull 

event streams from the queue in the topic partition for further processing. The 

benefit of pull-based approach is to prevent Bolts form over flown of event 

streams and guarantees that each Bolts are capable process such unbounded 

sequence of event streams.  

In the DCAD, two Spouts (Sp1, Sp2) are designed and constructed as Event 

Stream Spout Splitter (E3S) to aggregated the input event stream. The main 

tasks of these Spouts are to read event streams from publisher (producer), 

converting these streams into a designed tuple format of 〈 e, t, d 〉, and splitting 

converted event streams into across of different Bolts within each window 

partitions (See Section 3.3.2). For example, to handle high input event stream 

volumes (e.g., 1,000,000 tuples per second), more than one parallel Spout is 

required in order to control the rate of event streams. Then a sequence of tuples 

can be pre-processed or filtered by the designed Bolts in the first module. Thus, 

in DCAD (B1 to B4) are constructed for the pre-processing and filtering task. 

The main task of each Bolt is to provide all the processing functionalities in 

DCAD topology including: filtering, aggregating, joining, writes, read and 

access to the database. The size of receiving event streams from Spouts are 

usually very large, and due to the need of further processing and detection, 
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multiple Bolts are required to be designed and constructed in order to handle 

such high throughput of event streams in real time. The benefit of deploying 

multiple Bolts is to handle the size of event streams and deploys a different 

computational function. Thus, in the DCAD, Bolts are designed for pre-process 

event streams and divide them into several window partitions based on the two 

proposed windowing algorithms of time-based or count-based. The matching 

Bolts (B5 to B7) are computes each event stream tuple values to detect changes 

from coming events and grouping them according to their rule sets as described 

in algorithm 3. Finally, the anomaly scoring Bolts (B7 to B9) computes 

candidates of Contextual Anomaly (CA) from the sequence of event stream 

tuples (See algorithm 3, lines 11-26).  

Figure 4.3 illustrates an overview of distributed event stream processing and 

detection methods based on Pre-processing, Event Matching, and Contextual 

Detection. An overview of each module has been described in the following 

section.    

 

Figure 4.3: Distributed Contextual Anomaly Detection method. 
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4.2.1. Pre-processing Module  
 

In this module, a window partition is required to be defined before the parallel 

aggregation is deployed in the topology. In every distributed stream processing 

including Storm, the stream tasks are processing by number of so called 

operators; the main tasks of these operators are to direct data streams into the 

worker for execution. These operators in Storm are acting as Spouts or Bolts to 

perform different computations over the event streams. One of the pre-

processing tasks is to read event streams by (E3S) and transform allocated 

event streams (e.g., event name, event number, and values) across each window 

partitions. For example, consider grouping event streams according to temporal 

length of window partitions from w1- w2 as shown in figure 4.3. The other task 

of pre-processing is to filter the event streams based on satisfied of each rule 

condition by stream tuple records in each window partitions. The rule condition 

is based on the count and sum functions in the windows operators. Consider 

high and low speed of vehicles (e.g., > 120 km/h or < 60 km/h) within each 

window partition. A temporal window length can be constructed based on the 

event stream query statement, which is stored in the Redis memory storage as; 

Query 1 (): Speed/S1, [Si = ‘event’] > " …”, Query 2 (): Speed/S1, [Si > 120], 

Window/Time (120) > " …”)  

 

While query1 filters the event streams based on the name attribute tuple, and 

query2 filters the event streams according to the speed event value of speed in 

each stream tuples.  

Filter Bolts: The task of each filtering Bolt is to filter arrived event stream 

based on event satisfied condition rule per each case studies of (e.g., high and 

low events temperature) and (e.g., over or low speed of vehicles events). For 

example, a primarily key-value records in each tuple depends on a rule 

condition as defined in each event stream tuple based on average speed (e.g., 

speed >120km/h). For example, sequences of event streams continuously 
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arrives for further processing and detection, and consider constructing of 

window partition over the event stream according to high or low tuple values as 

they can be seen in figure 4.4. 

 

 

 

 

 

 

Figure 4.4: Filter event stream per window partitioning based on (e.g., high or 
low) tuple values. 

 

Figure 4.5 shown the filtered of events from e1 to e20 from the number of sensor 

Si at a specific time period, then event streams are being filtered according to 

their rule set (e.g., over or low speeds of vehicles) and partitioning them across 

a number of n windows. The filtered event streams then can be emitted to the 

event matching and next Contextual detection modules for extracting the 

Contextual behaviour of event streams. 

Rule-based Bolts: The task of these Bolts is to compute requested event 

streams from filtered events and to provide values output, for example, to 

compute an average speed of vehicles per each window partitions according to 

the FieldsGrouping () mechanism for every two-hour time interval (e.g., 

7:00am to 9:00am) from each window partitions, w1 and w2 respectively. This 

improves and reduces a high number of changes in the event streams and 

increases the probability rates of anomalous event score. The result then can be 

tested with arrived and pervious events in each window partitions, which have 

been stored in the Redis14 memory.  

                                                
14https://redis.io/	
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Figure 4.5: Filter and aggregate event stream results from window partitioning. 
 

4.2.2. Event Matching Module  
 

Despite to the fact that event stream matching is an important step in the 

DCAD and Event stream tuples can be distributed across different Bolts. The 

task of each matching bolt is to group event streams regularly according to 

their tuple values in each window partitions. For example, w1 consists of 

sequence of event streams with similar speed tuple values according to their 

rule-set. In this module, matching individual event based on the result of 

window partitions length in the pre-processing phase is designed. The main 

task of matching procedure is to compare the event streams in each window 

partition in order to detect any changes according to their aggregation functions 

f from pre-processed module. As depicted in figure 4.6, events from a number 

of corresponding streams S1, S2, and S3 have been emitted by E3S and 

partitioned into two aggregation functions f1 and f2 streams according to their 

matched results as achieved from their field grouping mechanism. This can be 

achieved by implementing logical grouping function in the Storm topology as 

event stream tuples from S1 can be aggregated into f1, similarly, grouping 

event streams from S2, and S3 can be aggregated into f2. 
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Figure 4.6: Event stream aggregation based on filed grouping 
mechanism. 

The benefit of this technique is to match a window partitioning pf each event 

stream results to detect change within the event streams and to predict the 

behaviour of the event streams as described in Algorithm 3. The results of 

matched event streams are merged into the Contextual anomaly detection 

module to predict the Contextual behaviours of each event according to each 

tuple value records using grouping mechanism.  

 

 

 

 

 
 

 
 

4.2.3. Contextual Detection Module  

 

The main task of this module is to detect a number of Contextual anomalous 

events from forwarded pre-processed and matched event streams. The 

Contextual behaviour is based on AScore model (See Section 3.5 definition 8) 

according to the defined event stream in the sequence list with their timestamp. 

For example, the proposed Contextual anomaly behaviour is defined based on 

the context of event in the window sequence with similar Contextual behaviour 

as described in Section 3.5.   

The motivation of Contextual anomalous event detection is derived from 

aggregating and processing high volumes of sensor streams. This can be 

achived by grouping events and detecting such events over Distributed Stream 

Processing (DSP). The ideal solution is to aggregate high volumes of stream 
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records from multi vehicles of S = { S1, S2, S3 } and partitions streams across 

distributed computer nodes. Processing data streams in real time and 

aggregating the final sum of the arrived event streams in parallel within each 

window partitioning can achieve this.  

Consider arriving events from number of sensor streams 

𝑺 = {𝑺𝟏 ,𝑺𝟐 ,𝑺𝟑,… ,𝑺𝒏}, where each Si comprises a number of event streams 

(𝑒!, 𝑒!, 𝑒!,… . ). The aggregation function can be designed based on the sum of 

the computational events to fulfil the condition of Function F. The aggregation 

F can be implemented within master-slave distributed processing model for f1, 

and f2 based on DSPE Grouping () mechanism. Thus, event stream tuples 

belonging to any of Si can be grouped according to their event stream tuple in 

the DSPE in order to computes and extract Contextual behaviour from each 

window partitions during the aggregation process; for example, events from S1, 

can be grouped into f1, and S2, S3 into f2 respectively as shown in figure 4.6. 

 
Example 1: Consider n number of stream events from S1 to S3, which are 

aggregated, based on two-hour time interval ti. As showing in figure 4.6 green 

circles are associating with the number of event streams, for example, from 

traffic point of view as lower speeds of < 60 km/h, and red circles are 

representing a number of event streams from S1 to S3 for over speed of > 120 

km/h. As the event streams have been aggregated, similar behaviour according 

to their time interval can be matched according to their Contextual behaviour 

(e.g., event speed tuple records). Assume S1 consists of several over speed 

events between t2 and t3 and similar speed events are repeated in t5; thus, such 

events are can be considered as Contextual anomalous event. A detailed 

description of Contextual behaviour is described in Section 3.5. Similar speed 

event behaviour is repeatedly occurred in S2 and S3 at different time intervals. 
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Figure 4.7: Event stream aggregation from set of sensors according their time-
based. 

 

AScore Bolts:  The main tasks of these Bolts are to compute Contextual 

Anomaly CA model according to their Contextual behaviours in algorithm 3. 

As event streams have been pre-processed and matched according to their rules 

set which is defined in algorithm 3 (CESA), then CESA computes the output 

result rates based on the AScore. This can be achieved by assigning [0,1] 

scoring values into each event streams based on their value in each tuple. 

Consider vehicles event speeds of 30km/h at 8:00 am as normal behaviour due 

to the traffic congestion in the morning; on the contrary similar speed at 

midnight (12am) can be considered as anomalous event This can be due to the 

unexpected incident on the highway when the traffic speed slows down, in this 

situation the tuple value records as event is changing. Therefore, the scoring 

technique can be designed based on 0 for normal hour for every two-hour time 

interval such as between 10:00-12:00 and 1 as anomalous event at between 

17:00 -19:00.  

The process of anomalous event detection in this stage is associated with times 

of event streams occurrence in the event sequence based on predicting 

Contextual events within each window partitions. In this stage, algorithm 3 

computes the probability of the event score from each partition window. The 

result of event stream from event matching module can be computed by the 
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Figure 4.8: Contextual anomalous event detection over sequence of event 
stream tuples. 
 

CESA algorithm 3, Contextual anomalous events based on the number of 

events in the sequence can be represented and according to their temporal tuple 

behaviour (refer to figure 4.7). For example, first event at 7:45 in S1 is 

considered as Contextual anomalous; this is based on the computational 

behaviour according to the scored tuples within the event sequence. 

Specifically, this can be computed according to their similar behaviour that for 

example repeatedly occurred at 22:00. 
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5. Chapter 5 

 
5.1. Experimental Environment, Evaluation Metrics and 

Result Discussion 
 

This chapter describes the experimental environment, results and performance 

evaluation for the proposed Algorithms and methods. Section 5.2, describes the 

experimental environment and settings according to the need of distributed 

computing cluster to process high throughput of unbounded sequence of event 

streams. Section 5.3, describes the results of distributed event stream partitions 

and pre-processing results. Section 5.4, presents the experimental evaluations 

for high volumes of event streams. Section 5.5 evaluates the experimental 

results from the proposed algorithm in relation to Contextual anomalous event 

results using a scoring rate. Section 5.6, describes the predictive accuracy and 

error rates of the algorithm. Section 5.7, presents the results of change detection 

in the event streams. Section 5.8, presents the CESA algorithm computational 

complexity and performance. Section 5.9, presents the results of DCAD 

framework performance in relation to the scalability of the proposed modules in 

real time and the variant effects that possibly have an impact on the 

performance in processing time and low-latency response. The summary of the 

chapter is described in 5.10. 
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5.2.  Experimental Preliminaries  
 

As high volumes of unbounded sequence of event streams arriving at a very 

high speed, continuous online learning is crucial to evaluate the effectiveness of 

the proposed CESA algorithm. In that context, the result is mainly based on the 

following challenging objectives.  

 

1. Detect n number of Contextual anomalous event behaviour based on the 

proposed CA model and achieved AScore output result rate per every 

distributed partition window length of (e.g., 100,000, up to 1 million) event 

stream tuples respectively.  

2. Evaluate the DCAD performance based on the computational accuracy and 

memory consumption. 

3. Prediction error rate; lower error rate indicates the higher accuracy of the 

algorithm in relation to detecting change in the event streams. 

4. The cause of change detection in each of the window partitioning 

according to the PH Test computational results.  

5. The cause of the algorithm’s performance processing time according to 

increasing and decreasing number of window partitions. 

 
 

5.3. Experimental Environment 
 

The proposed algorithms are implemented in Java programming language as 

part of the DAG topology. The experiments were run on the University of 

Huddersfield distributed High Performance Computer (HPC) cluster of eight 

computer nodes. The cluster consists of one master node known as (nimbus) 

and seven supervisor nodes, where each computer node is equipped with 8GB 

of RAM, configured with an Intel(R) Core(TM) 4 Quad CPU Q8400. All the 

nodes are run on Ubuntu Xenial (v16.04.1 LTS) operating system with 
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deployed Java(TM) SE Runtime Environment (build 1.8.0_10), and Java 

HotSpot (TM) 64-Bit Server VM. Each proposed computer node is divided into 

4 workers according to the designed distributed communication channel 

Zookeeper Server (ZkServer) as illustrated in the DCAD architecture in 

Appendix 3. The task of ZkServer is to create an efficient and dynamic 

coordination between each node and provide fault-tolerant service. Finally, 

several topologies are created to be deployed across the cluster in parallel. The 

main job of each topology is to assign tasks between each DCAD’s module and 

managing the task scripts distribution between the nodes.  

 

5.4. Data Sources 
 

One of the major concerns in any anomaly detection method is to propose a 

right data type and format to computes the anomalous results, when most of the 

data is formatted and collected differently. In this thesis, two IoT case study 

data sources are used in a form of stream to support the research outcome result 

and fit to the distributed data structure methods. For example, monitoring smart 

traffic on highways and detecting high speed or congestion speed events is 

playing a signification role in terms of safety, reducing congestion, and saving 

drivers time to alter their journey. Consider a global speed limit on highways 

roads as 120km/h. Thus, over or higher speed of (e.g., 140km/h) or lower speed 

(40km/h) can be considered as unusual events or activities. Importantly, in this 

thesis, such behaviour is considered as anomalous event as described and 

defined in Chapter 2 and 3. The first data size is comprised of 210 million 

streams instances and 8 attributes. The summary of the data schema is 

described in Table 5.1. 

 

Attribute Description 
Sensors ID Identifier of the network Init sensor 
Date and Time  Date and Time of vehicles speed measurement  
Average speed  An average speed per vehicle (km/h) 
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Flow Count n vehicles with average speeds 
Headway Average time between vehicles  
Occupancy Occupancy of loops (%) 
Travel time Average time to traverse the section (s) 
Prof travel time Expected travel time based on historic profiles 

Table 5-1: Highway road traffic data schema. 

 

The second proposed data source to detect anomalous events from was a 

remote temperature stream. This data source is collected from Intel Berkeley 

Research Lab IBRL15. The sensor network is comprised of 54 sensors with 

different data attributes of temperature, humidity, light, and voltage. The sensor 

data are collected through Kafka Application Programming Interface (API) via 

implementing topic-based method. These data sources are then distributed 

through publish-subscribe messaging system as depicted in figure 4.1. The 

sensor data is converted into a stream tuple format based on the distributed 

stream processing data structure model. In this context, processing high 

volumes of event stream was a challenging task. As a first challenge, proposed 

number of data attribute is required as prior assumption of the time-series 

format. Thus, first, only temperature data attributes are collected from the topic 

partition of e.g., temperature from Si stream to create event stream tuple from. 

A second challenge was to propose different data sources to test and train the 

proposed algorithm and CA model to detect anomalous Contextual events from 

such sequence of unbounded of event streams.   

As described in the previous section, both proposed IoT data sources are 

consisting of different data attributed, which are irrelevant to the anomalous 

event detection. Thus, several pre-processing tasks are made including data 

cleaning, and data transformation before the event streams can be emitted to 

CESA algorithm for the learning process. First, for the constancy of the 

detection purpose, stream sensors have been cleaned from missing values, 

removing tuples with zero records. Second, sensors values have been 
                                                
15http://db.csail.mit.edu/labdata/labdata.html 
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transformed into tuple stream format by E3S Spouts to be fitted into the 

distributed stream processing data structure model. Such task is performed by 

one of the DCAD pre-processing modules and the size of sensor streams have 

been filtered based on the rule set of anomalous event stream tuple records; for 

example, only event stream tuple with either high or low records is emitted in 

the next module. The main advantage of this approach is to reduce the size of 

event streams from irrelevant attributes and dividing them into an appropriate 

format for the window partition algorithms to handle. Thus, sensor streams from 

only (S1, S2, and S3) is mapped and filtered based on the fieldGrouping (e.g., 

temperature) and event tuple values are reduced into approximately 1,0335,000 

from over 2.3 million sensor readings. The temperature event streams are then 

normalized based on the minimum and maximum tuple values of (e.g., 20 °C 

and 26 °C) before these event streams are emitted for the Contextual detection. 

Event streams are also normalised into [0,1] based on there high and low 
temperature ranges. Where 0 referred to all anomalous events during the 

normal hours of (e.g., 7:00AM) and 1 to as anomalous events at, 23:00PM) 

Additionally, the arriving new event stream is defined based on their tuple 

records of (new_mine) and (new_maxe) and computed in 

𝑒𝑖 = e−𝑚𝑖𝑛𝑒
𝑚𝑎𝑥𝑒− 𝑚𝑖𝑛𝑒

𝑛𝑒𝑤𝑚𝑎𝑥𝑒 − 𝑛𝑒𝑤𝑚𝑖𝑛𝑒 .   
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5.5. Results and Discussion 
 

5.5.1. Distributed Event Stream Window Partitioning Results 
 

This section describes the performance of the proposed distributed windows 

partitions algorithms to partition event streams into several window wp based on 

either counted tuple or time interval observation. The result of count-based 

window algorithm’s computational is presented in figure 5.1. The algorithm is 

constructed based on the number of equal lengths of window partition and n = 

100,000 tuples in very L. Green ∆ symbols are indicating of the lower 

temperature event streams; on the contrary, red × symbols are indicating of the 

high temperature event streams in every window partition. The size of each 

tumble window partitions is tested on average δ  = 10 over one million event 

stream tuples. The computational for the high and low temperature event is 

based on the tested and computational results, which have been made by each 

bolt in the Storm topology.  

 

Figure 5.1: Event-based window partitioning result for temperature case study. 
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A detailed of count-based window partition algorithm results of high and low 

temperature event streams are described in Chapter 3. The algorithm is first 

checked for the constructed windows wp per n tuples in every L length size to 

test the accuracy of captured event streams. The result is indicating that the 

numbers of low temperature event stream tuples (e.g., ei < 20 °C) are much 

higher than the high temperature event stream tuples (e.g., ei > 26°C). For 

example, 3 events with high temperature values are captured in w1 over the 

length L = 100,000 event streams tuples; thus, such event tuples are considered 

as anomalous event in the data stream sequence according to the predefined 

notation as described in Chapter 3. Similarly, 19 anomalous events are captured 

when L = 500,000 stream tuples based on the factor of δ  = 5.  In this 

experiment, only high and low temperature events are considered to evaluate the 

performance of window partition algorithm due to the correlation between these 

attributes Contextual behaviour. Importantly, our approach is developed to 

detect several Contextual anomalous events over high volumes of sensor 

streams in parallel.   

The complexity of expanding window length has a signification impact on the 

high accuracy of the event score results. This indicates that smaller window 

partition length is requires less memory space and efficient computational 

result. In this context, count-based window partition algorithm is mainly 

depending on the counting events statues (e.g., high or low) per each window 

length L until the size of w is satisfied.  

In the second data source scenario, only speed attributes and the number of 

event flown are most relevant data types to discover the Contextual anomalous 

events from. Detecting Contextual anomalous from high volumes of speed 

events plays an important role to predict the state of highway road traffic in real 

time. Thus, we pre-processed and aggregated speed events based on their 

sensors values and defined attributed of high max () or low min () as defined by 

equation 3.12 in Chapter 3. Figure 5.2 depicts the result of Algorithm 1, where 

event streams are partitioned and grouped according to their high (e.g., 

120km/h)_or low (e.g., 60km/h) speed events. The event streams are aggregated 
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based on n number of speeds event stream tuples for every L = 100,000 per each 

window partition wp as labeled in a-axis. The proposed algorithm is tested on δ  

= 10 over one million event stream tuples. The result is demonstrated that the 

numbers of over speed events are much higher than the lower speed events in 

each window partitions. The result of event stream computational is more 

reliable across the experimental learning of event detection.   

 

 
Figure 5.2: Event-based window partitions result from traffic case study. 

 
 

Additionally, a detailed description of the result is illustrated in Table 5.2. 

Window partitioning columns are referred to the n constructed number of 

window partitions, while Stream columns are associated with n number of 

event stream per window partition, and the last columns are repenting both 

high and low of event speeds per w = 100,000. For example, in w1 9 event 

stream tuples are captured with high records and 2 event streams tuples with 

low speed records. The learning computation is sequentially repeated for every 

tuples of stream across each window partitions until the window length L is 

satisfied.  
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Window  

Total Event 
Streams 
(wp = 10k) 

High Speed 
Events (per 
wp) 

Low Speed 
Events (per 
wp) 

w1 100000 9 2 
w2 200000 22 2 
w1 300000 24 11 
w2 400000 32 2 
w1 500000 34 4 
w2 600000 32 8 
w1 700000 38 12 
w2 800000 42 13 
w1 900000 54 18 
w2 1.000.000 58 13 
 
 Table 5-2: Result of event streams per window partitions from road traffic case 

study. 

 

The result of Algorithm 2 time-based window partitioning is presented in 

figure 5.3. The input event speed behaviours are collected according to the time 

of the speed occurrences, where for example, y-axis represents aggregated 

event streams at between 7:00AM to 21:00PM hours intervals metrics. Thus, 

the computational result is based on high and low speed features behaviours in 

every Si. Where, x-axis represents a number of high and low speed events 

tuples per window partitioning wp. The high speed of event is represented in 

(red ∆) symbols and low speed of event (green ×) symbols. The results from 

window partitions are indicating that the number of low event speeds on 

average at every t = 2 hours interval is significantly higher than the higher 

event speeds. The lower event speed is approximately 50% higher than the high 

speed events across the learning process. Organising these computational 

results is significantly important for the next objective of this thesis to detect 

Contextual behaviour from the event streams within every window partitioning. 
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Figure 5.3: Time-based event stream window partitions results from highway 
road traffic sensors. 

 

5.5.2. Contextual Event Stream Anomaly Result  
 
Modeling event stream is one of the most complex and challenging tasks to 

detect the Contextual anomalous behaviours. Most of the existing anomaly 

detecting output results are defined based on two criteria; a) labeled normal and 

abnormal data, or b) assigned scores to the output result. In contrast to statistic 

dataset, detecting anomaly results from sequence of event stream on online 

poses a significant challenging task. In this thesis, the second challenging 

scoring criteria are considered as appropriate solution to evaluate the output 

scoring results of Contextual behaviour rates. The CESA algorithm is computed 

based on the probability of Contextual anomalous events scoring result and 

according to the Equation 3.6, 3.7 and 3.8. The CA computes the event streams 

according to the event occurrence time based on their Contextual behaviour 

within each window partition. Thus, CESA algorithm is implemented to detect 

Contextual behaviour from event streams after they have been aggregated and 

pre-processed from the previous window partitioning algorithms. The algorithm 

is learnt and trained from 100,000 event stream tuples to evaluate the proposed 

CA model. This is approximately 10% of the completed event stream size and 
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the rest of 90% event stream tuples are proposed to test the probability of 

AScore. The algorithm’s learning procedure depends on the shuffling event 

streams into grouping mechanism from every window partition to measure 

estimation error or false negative rate as described in Section 5.6. 

As shown in figure 5.4, the top-axis is represents the size of event stream from 

traffic sensors to train the CA model. Where, x-axis is representing a computed 

scored of Contextual results based on sliding factor δ = 3 interval metrics at 

between [t = 0:00, t = 12, t =24:00]. The time interval metric is mainly 

according to the result of detected event by the time-based window partitions 

algorithm. This is achieved by computing Contextual event behaviours 

according to high or low tuple of speed records as normalised in [0,1]. The 

model is then trained across every event partition of wp = 200,000 tuples. On the 

other hand, the y-axis is representing the number of high speed scores in (red Δ 

symbol), in contrast to the normal events in (green Δ symbol).  

 

 

Figure 5.4: Contextual event stream result from highway road traffic streams. 

 

The results of CESA algorithm based on observing aggregated number of f 

functions from sequence of sensor streams in parallel is shown in x-axis in the 

figure 5.5 while y-axis is representing the result Contextual behaviour. In this 
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context, the result is demonstrated that S1 is consisted a higher number of 

Contextual behaviour compared to S2 and S3 per each window partition. This is 

due to the smaller number of events in each window partitions, when each of 

event tuples is observed and matched according to their Contextual AScore after 

they all event streams are mapped according to their Contextual behaviours 

based on wp ( 𝑒 ± 𝑆𝑖) = 𝑒 !
!
𝛼 ± 𝛽 𝑆𝑖 !

!
𝛼 ∓ 𝛽 > 1. This is indicating that on 

average, 50% of aggregated Contextual behaviour are occurs in S1 rather than 

other two set of sensor streams S2 and S3. The number of Contextual behaviour 

per window is increased linearly as time progressed in addition to scaled up n 

number of event streams. Thus, it can be argued that the Contextual behaviour is 

not only based on the context of the event streams, as it can be depending on the 

number of events streams per window partitions.  

 

 

Figure 5.5: Contextual anomalous event detection from aggregated and 
matched events per window partition over variant streams sensor devices. 
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5.6.  CESA Algorithm Performance  
 

 
The evaluation of CESA algorithm’s performance is based on several facts as 

follows; 

i. AScore accuracy rate 

ii. Size of event streams. 

One of the most important aspects of the proposed CESA algorithm is the 

capability of the algorithm to learn to detect Contextual behaviour on online at 

the same speed of the event streams. The experimental evaluation of CESA 

algorithm is mainly depends on the output result of AScore and the size of 

event streams. The results of CESA performance to detect Contextual 

behaviour from the proposed data sources event streams are depicts in 

Appendix 6, figure 5.10, and figure 5.5. The result of Contextual anomalous 

detection algorithm is achieved based on n event streams with O(n) processing 

time. The probability of AScore computational for each event stream tuple is 

predefined as [0,1], where high scoring is referred to high probability of 

AScore for the true event rate e > 0.5; thus, such result is refers to a true 

positive scoring result and stability of the algorithm. The probability of 

negative rate for each event stream is achieved as less than e < 0.5 scoring rate.  

The result has indicated that the model is learnt from the event stream and the 

high accuracy of positive prediction error rate is acceptable for such size of n 

event streams since e is frequently detected in total m Since 𝜎 𝑒 >  !
!

 > 
!

!!!
> 𝑙 , while high accuracy of AScore indicates the stability of the CESA for 

scoring anomalous events. Importantly, the output result of scoring over the 

total size of event stream is mainly depends on the learning algorithm after 

iterating from the change detection. On the other hand, processing a smaller 

size of event streams values per window partition has indicated the less 

computational complexity in terms of O (k log n) performance. Thus, high 

throughput of event streams is not guaranteed to improve the higher negative 
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rate, achieving less accurate scoring rates. According to the result in figure 

5.10, an alternative approach of proposed partitioned event streams across 

number of windows and deployed CESA algorithm is improved the high rate of 

positive scoring computation.  

To evaluate the performance of CESA algorithm, Contextual anomalous event 

streams detecting is implemented according to AScore in CA model for each 

case study. Thus, the aim of such experimental result is to estimate and 

evaluate the accuracy of CESA computational degree in both scenarios in 

relation to anomalous event score. The rate of AScore in the event speed 

scenario is slightly higher than the rate of AScore in the event temperature 

scenario (refer to figure 5.6). The result indicates that the capability of CESA 

algorithm to compute anomalous output score rates is acceptable since, one of 

the main criteria to evaluate the anomaly detection method is high probability 

of the computational scoring rate. 

 

 
Figure 5.6: Result of CESA algorithm accuracy performance rates over two 

IoT proposed case studies. 
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5.7.   Contextual Anomaly Detection Scalability Evaluation 

Result    
 

The size of processing event streams can have major impacts on the 

computational performance with regards to proposed both centralised and 

distributed computations. In this thesis, we evaluate the scalability detection 

processes in regarding distributed Contextual anomalous detection performance.  

The evaluation performance result is measured based on; 

 

1. Event Stream Size, the proposed event stream size threshold is stetted as 

t =100,000 stream tuples per node to evaluates the effectiveness of the 

computational performance.  

2. Number of window partitions, which is evaluate to assess the impact of 

the computational results and execution performance. 

3. Scalability, increasing number of computer node can perform effectively 

with less processing runtime performance according to Equation 5.1. 

Where p is referred to processing runtime performance time for every N 

node with the proposed cluster.  

 

    𝑝 = !! !"#$%&&'()*'+%

!"#$%&&'()*'+%!"#$% ×!
        (5.1) 

 

This is the most common metric to measure the parallelism performance for the 

runtime detection process.   

Importantly, the experiment results evaluation is based on the combination of 

the above factors. The performance of CESA can be argued according on two 

major facts, processing time and detection accuracy. First, the impact of 

scalable event streams on processing runtime for both centralised with 

distributed approached are shown in figure 5.7. The result is indicated the 

performance of the detection process is linearly increased the size of event 

streams are increased.  In addition to this, the result of implementing CESA 
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algorithm centrally requires more computational detecting processing runtime to 

computes matching and detecting anomalous events compared to the distributed 

method. In this context, we tested the algorithm with a set size of event stream 

threshold of 100,000 per computer node to evaluate the detecting computational 

performance.  

The processing of the detection is primarily based on the CESA algorithm’s 

runtime performance based on distributed and centrealised methods. The 

performance of CESA algorithm’s processing runtime is recorded in 

millisecond (ms) as depicted in y-axis. It is evident that process and computes 

Contextual event streams over 800,00 tuples, so the CESA algorithm is required 

for less than 400 milliseconds (0.4 ms). On the contrary, for testing similar 

event stream size with threshold e > 1k are expected higher processing runtime 

of 1120 (1.12 ms) is expected to computes the detection centrally. Importantly, 

as the size of event stream threshold e > t is scaled up to 800,00, the detection 

process of the runtime performance has also linearly increased and doubled. The 

result has demonstrated that the proposed CESA algorithm over DCAD 

framework is performed effectively with regard to the processing of detection 

performance runtime in real time. As described in Chapter 2, processing 

runtime and low-latency (real time) are the two major concerns in real time 

anomaly detection to have impacts on the detection performance and 

computational results.  

 

Pr
oc

es
si

ng
 T

im
e 

(in
 m

ill
is

ec
on

d)
 



Chapter 5: Experimental Results and Performance Evaluation  

	 119	 	 	
	

 

Figure 5.7: CESA processing performance based on standalone node versus 
distributed nodes with threshold of processing 100k event streams. 
 

In addition, another the key challenging task to process large-scale of event 

streams in real time is to proposed the right number of window w and event size 

length L. Consequently, a small size of window partition in each computer node 

can be more reliable regards to Contextual anomalous event scoring result. On 

the other hand, large size of proposed window partition is an alternative 

approach to enhance the detecting runtime performance, since the 

computational accuracy is the major concern in this approach, specifically, 

when the size of event stream per each window partition is high, this due to the 

fact that event stream evolves, and windows are possibly disjoint. Figure 5.8 

depicts the running time per each window partition in milliseconds as presented 

in y-axis, while x-axis presents high number of event streams throughput.  

As the result has shown, using different numbers of window partitions per 

computer node is reliable in relation to changing detection process. Hence, 

decreasing the number of windows per computer node improves the processing 

runtime latency. For example, consider window partition w = 2 per single node 

for the length L= 200,00 event stream tuples detection process, since this 

process is approximately required 30 seconds. As the experimental results 

evidence that when the length of L event stream tuples is doubled, the 
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processing runtime is also to increasing. Scaling up the number of event stream 

to, one million tuples requires 120 milliseconds to complete the detection 

process. Importantly, increasing the number of window partitions from w = 2 to 

w = 4 per computer node is required 100 milliseconds. The result demonstrates 

that increasing the number of windows partitions up to w = 8 requires less than 

75% processing runtime compared to the event stream scaling up size. In this 

context, the main benefit of increasing window partitions in parallel is to reduce 

the size of memory space on each computer node and improve the 

computational processing runtime performance as argued in Gama (2013). The 

current implantation of the proposed window partition algorithm is performed 

effectively with regards to low latency response and online learning, since these 

are a two major critical and highly concerns in most of the streaming 

application domain to control high speed of the event streams from disappearing 

or being disregarded.   

 

 

Figure 5.8: Performance of variant window number partitions computational 
processing time. 

 

One of the key concerns in this thesis is how to handle high volumes of event 

streams in real time, since scalability is playing an important role in terms of 

low-latency processing runtime response. For example, to measure the 
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effectiveness of DCAD performance, the result is primarily dependent on the 

execution runtime per computer node. The proposed approach is based on the 

number of tasks performed per workers over n number of nodes n > 1as 

described in Equation 5.1. The performance of the scalability of the event 

streams detection process result (refer to figure 5.9). The result has 

demonstrated the effectiveness of parallel processing performance and 

allocating event streams across the proposed cluster. The performance of each 

computer node is recorded in milliseconds (ms), for example, to process high 

volumes of Contextual anomalous events (e.g., 1,000,000) requires more than 

one computer node in the DCAD framework. In this context, we doubled the 

proposed nodes from 2 to 4 nodes to computes (e.g., 200,000) event streams. 

The result indicates the computational performance runtime of detection process 

is improved by 25% as labeled in y-axis. On the other hand, a similar size of 

event stream detection process with 6 nodes has significantly improved the 

computational performance up to 50% of the processing runtime. Overall, the 

experimental results have indicated that CESA algorithm satisfies both the 

DCAD computational result and have processing runtime performance for over 

one million event stream tuples in less than 1 second. This result is supported 

and improved based on the capability of distributed Apache Storm framework 

for processing one million stream tuples in 1 second. Note that our evaluation is 

mainly based on proposed distributed computational matching and Contextual 

processing of detecting event streams in real time. Our method is evidence that 

the runtime of distributed Contextual detection has satisfied the scalability of 

the detection process, since our condition facts are remained stable (e.g., 

number of window partitions and number of nodes).  
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Figure 5.9: Result of increasing nodes linearly performance in the DCAD 

framework to with scaling up event stream throughput. 

 

5.8. Point and Contextual Anomaly Detection Results 
 

The event streams per window partitions are categorised into two correlation 

coefficient metrics of Point and Contextual, with the task of Common 

Correlated Attribute (CCA) is to compare the value of a pair of event stream 

tuples. In this context, person correlation coefficient is found to be the most 

widely metric to measure the correlation between Point and Contextual 

anomalous event streams per window partitions. This is computed as 𝑒 𝑥,𝑦 =  

(x,y ) . 
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Figure 5.10: The result of distributed Point Anomaly (PA) versus Contextual 
Anomaly (CA). 

 

Table 5.3 presents the results of both point and Contextual anomalous event 

detection tests over 2.5 million of stream tuples. The size of data stream is used 

after the event streams have been pre-processed and matched their tuple values 

to check, for example, lower or higher event speed records. The size of event 

streams then has been partitioned across of seven nodes, and each node 

managed to handle to process 250k event stream tuples. The result of each 

anomaly types is demonstrated in last two columns of the table 5.3. For 

example, in n1 both Point or Contextual anomalous detection is tested over 250k 

samples of event streams; the number of point anomalous events is higher than 

the Contextual anomalous events since the completed computational runtime 

required is only 0.048 milliseconds. Overall, the results of both point and 

Contextual anomalous events are mainly based on the AScore rate and CA model 

computational testing metrics per each partition set of tuples.  

 
Allocated 
Nod 

Event 
Tuples 

Executed 
Latency 

Process 
Latency 

PA CA 

n1 250000 0.048 0.04 178300 71700 
n2 250000 0.033 0.02 201421 48579 
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n3 250000 0.047 0.03 224821 25179 
n4 250000 0.023 0.02 119565 130435 
n5 250000 0.022 0.01 185896 64104 
n6 250000 0.029 0.03 223454 26546 

Table 5-3: The comparison Point and Contextual anomaly computational results 

per computing node. 
 

Figure 5.11 depicts the CESA algorithm’s computational performance in real 

time, thus, In this context, the DCAD method is evaluated based on the 

performance of distributed DAG topology processing runtime per each for both 

sensor stream case studies and labeled in y-axis. This is evaluated based on the 

number proposed event partition detection computational in parallel in with the 

topology. For example, scaling up the computer nodes in the DCAD framework 

demonstrates that it can have a major impact on the computational processing 

runtime as shown in x-axis. Thus, adding more nodes into the distributed 

method indicates more efficient processing runtime across each case studies 

datasets. For example, to deploy standalone node with a larger size of event 

streams is required over 60 milliseconds to detect anomalous events 

computational results from the road traffic sensor streams scenario. On the 

contrary, running a similar node for temperature scenario is requires 50% less 

processing runtime for the computational of event stream results; this is due to 

the smaller size of emitted events after they have been preprocessed and 

matched.  Nonetheless, such high computational result per standalone node is 

due to the fact that deploying more bolts requires more processing runtime for 

each operational function for every module in the DCAD. Thus, an alternative 

solution is to deploy more computer nodes in the DCAD framework with 

adding more bolts in to the DAG topology to improve the detection 

computational runtime performance. For example, increasing the number of 

nodes from 1 to 8 is evident that the processing runtime of the detection 

computational is improved by approximately 50%. The performance of DCAD 

method to computes and process road traffic event stream tuples over n = 8 

nodes is significantly approved from 65 to 45 milliseconds (refer to figure 5.12). 
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This indicates the effectiveness of DCAD approach, specifically, to reduces the 

overhead in each computer node regardless scaled up of the event stream size.  

 

 

Figure 5.11: Comparison of event streams performance cluster runtime. 

 
 
5.9.  Prediction Error and Performance Measure  

 

To evaluate the performance of the proposed model and algorithms, there are 

number of evaluation metrics of sequential analysis are suggested in the 

literature; a) PH test is capable to monitor the prediction error and change in 

the event streams according to AScore as predefined in between [0,1]. b) for the 

Contextual Anomaly CA performance result evaluation, the value for threshold 

is settled according to AScore < t threshold. In this context, if the probability of 

value v of ei <0.5, then the computation ratio considered as positive result. On 

the contrary, if the probability of value v of ei> 0.5, it assumes that the 

computational ratio is negative; this is due to the increasing the number of 
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changes in the event streams data distribution during the algorithm’s learning 

process.  

The learning procedure by CESA is defined based on the result of how 

competitive the proposed algorithm is in relation to the change detection and 

prediction of error computational rates. The result of anomalous event 

detection is also evaluated based on scalability performance of the algorithm’s 

runtime process as described in the previous section. Accordingly, the most 

common and widely proposed evaluation metrics are Holdout and Prequential 

to estimate prediction computational error rate (Mouss et al., 2004). The former 

metric is complex and computationally expensive to test the algorithm over 

high volumes of event streams. For this reason, such metric is irrelevant due to 

the size of proposed event streams and distributed stream structure model. On 

the other hand, Prequential evaluation metric is mainly based on test-and-train 

procedure, thus, this metric is more reliable than the previous metric to 

estimate the performance of CESA algorithm prediction error rate. The 

learning prediction error process is mainly based on computed accumulative 

sum of the loss function error as denoted 𝐿 𝑓  from n number of event streams. 

The fading factor parameter is set as 𝛼 = 0.5 for both MAE and RMSE and the 

average of Prequential error computes over window partitions of w = 200,000 

event stream tuples; hence, such values for decay factor is an ideal value to 

measure the error rates. The total sum of absolute deviations t and the number 

of the values of vi are used to learn from n number of event streams. Since new 

event stream ei arrived for the training process, n updates respectively. In 

relation to monitoring event streams statues whether they have been covered by 

the rule or not, PH test is used to compute the loss function error based on 

MAE or RSME. The lower vi probability values state unusual change in the 

event stream tuples. This is disregarded or uncovered by the rule-set in the 

learning process and they have been considered as Contextual anomalous event 

according to the AScore probability computational rates. The summary 

description of the CESA algorithm’s parameters is demonstrated in Table 5.4. 
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Allocated 
Nod 

Event 
Tuples 

Executed 
Latency 

Process 
Latency 

PA CA 

n1 250000 0.048 0.04 178300 71700 
n2 250000 0.033 0.02 201421 48579 
n3 250000 0.047 0.03 224821 25179 
n4 250000 0.023 0.02 119565 130435 
n5 250000 0.022 0.01 185896 64104 
n6 250000 0.029 0.03 223454 26546 

Table 5-4: CESA algorithm experimental evaluation parameters. 

 

The result of the prediction error rate to test CESA algorithm performance is 

primarily based on the both Equation 3.9 and 3.10 as depicts in figure 5.13 and 

5.14. The Prequential evaluation error demonstrates the effectiveness of CA 

model, which is satisfied to the predefined threshold rate to train the model 

before any changes occurs in the event stream. This is achieved by training 

window partition as wp = 200,000, length of L = 1,000,000 size of event stream 

tuples. The experiment results have indicated that the rule set computational 

error of CA model for each event stream is competitive according to the 

evaluation mean results from MAE and RSME metrics. Such metric is proposed 

to find if event stream is covered by the rule r or is disregarded during the 

training detection as can be seen in Appendix 5.  

Figure 5.13 depicts several changes in the event streams during the learning by 

the CESA algorithm. RSME represents in ∆, which indicates the result for the 

mean square error according to predefined fading factor range, while the result 

of prediction error slightly decreases from 0.4 to 0.3. Thus, this is indicating a 

positive result while the size of event stream is increasing. This demonstrates 

the 95% accuracy of the result from testing CA model for prediction error in the 

event streams. On the other hand, MAE represented in blue (×) symbol and 

consists of several points which indicates the change in the streams sequence 

over the time; however, as the size of event stream is scaled up, the change rate 

is decreases due to the less occurred changes in the event stream behaviour and 

window partitioning mechanism. This can demonstrates how accurate the model 
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predicts the error rates and is able to rapidly adapt to the change from high 

volumes of event stream partitioning in parallel.  

In relation to the stability of CESA algorithm, middle dash line in both figures 

5.13. and 5.14 and represents how competitive are each event stream conditions 

in both case studies in terms of change. The result is evaluated based on the 

probability of AScore according in CESA to measure whether the result of 

AScore is aligned with a computational range according to Equations 3.7 and 

3.8 as < 0.5 (positive) or > 0.5 (negative). Specifically, negative score result is 

associated with event stream with Contextual behaviour while positive score 

refers to anomalous event without Contextual behaviour. The dash (-) line 

represents the predefined threshold t <0.25, while the threshold line can be 

considered the predicted score results cross the line is indicating the normal 

behaviour of the event streams, and the blew the line is considered as anomalous 

score values.  

 

 

Figure 5.12: CESA algorithm accuracy result by evaluating prequential 
predicting error metrics (MAE and RSME) using temperature event streams. 
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In contrast to the pervious case study results, in road traffic scenario both MAE 

and RSME results have shown to be less competitive due the high number of 

peaks. Such changes are due to the fact that the average function of the event 

stream error is higher.  This indicates that the event stream condition is less 

stable due to the number of changes in the speed event streams tuples. Such 

behaviour is indicating that event streams evolved over the time of predicting 

error. The results of MAE in both case scenarios have been more stable. 

Importantly, such results are indicating the stability of the CESA algorithm in 

time evolving situation and the model stability in relation to the detecting 

accuracy scoring rate. 

 

 

Figure 5.13: CESA algorithm accuracy result by evaluating prequential 
predicting error metrics (MAE and RSME) using highway road traffic event 
streams. 

 

Figure 5.14 presents both MAE and RSME results for 10,000 event streams per 

window partitions. The last two columns of the table are referring to the 

probability result of event values (refer to Appendix 5). Hence, the accuracy of 

both MAE and RMSE depends on the cost function error to measures the 
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accuracy rate; the low cost corresponds with high accuracy while the lower 

error result is indicating the high accuracy of the algorithm in relation to 

change detection prediction. In contrast, high error prediction indicates the 

instability of the algorithm in terms of delay in recovering after the change is 

detected.  

 

5.10. Changes Detection Results by the CESA Algorithm 
 

Change detecting metric is relying on the sum of false alarms and true positive 

rates to measure and estimate how compatible is the algorithm is. In such 

condition, event streams have been tested based on high mean and false alarm 

rate, which is detected by the CESA algorithm. The main result of change 

detection depends on setting variant parameters as α and λ in PH test. For the 

first case study of temperature, 100,000 event streams have been tested with a 

range of threshold rate for rule set with change detection as r > 0 >α, count 

threshold k > 1 which is λ = 100 as presented in y-axis, and wp = 10,000 event 

stream tuples per window. The rule number in each window partition increases 

since the rate of change slightly increases while event streams tuple value 

change over the time as shown in figure 5.15). The rate of false alarm is 

primarily depending on the size of event streams in each wp, the larger size of wp 

is resulting in high rate of changes in the event streams.  

The size of the event stream experimental result throughput of 1,000,000 tuples 

shown in x-axis (refer to figure 5.15). Thus, this indicates that smaller size of 

window partition is resulting of low rate of false alarm and change in the event 

streams. In contrast, larger size of window partition indicates lower 

computational results.    

In relation to highway road traffic case study, change detection is tested over 1 

million stream tuples as presented in x-axis with similar parameter ranges rule 

set r > 0 >α, count threshold k > 1 which is λ = 100, and wp = 100,000. In this 

situation, the size of stream tuples per window partition is scaled up from 
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100,000 to 1,000,000 to train the CA model for a false alarm rate. In contrast to 

the pervious scenario, the number of false alarm rate of change in the event 

streams linearly is increased 50% on average as shown in figure 5.15. For 

example, compare pervious case study with the result of road traffic change 

rates, the number of false alarm rate changes in the event streams from 0 

increased to 10 in the first window, 20 to 60 in the last window partitioning. 

This is due to the larger size of event streams in this case study and high number 

of change rates, which indicates event stream tuple value, is changing over the 

time. In this context, an ideal solution is to reduce the risk of high number of 

false alarm rate by decreasing the value of α=0.001. Importantly, as the value 

of α is decreased the range of λ is increased.  Conceptually, increasing the 

size of event streams per window partition indicates the raise of false alarm rate 

due to the number changes in the event streams tuple values.  

 

 

Figure 5.14: Detecting change rates by CESA algorithm for every wp = 10,000. 
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Figure 5.15: Detecting change rates by CESA algorithm for every wp = 
100,000. 
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Chapter Summary  

 

The experimental results of distributed event stream detection have been 

presented in this chapter. First, the result of aggregation for the pre-processing 

and event streams cleaning is presented before evaluating the result of the 

algorithms. The result of event streams partitioning according to both window 

models (count-based, time-based) is presented for the two case studies. The 

main aim of such result is to compute several events per window partitioned in 

parallel. Second, the results of detecting Contextual anomalous events by CESA 

algorithm have been presented in both IoT case studies. The Contextual 

behaviour was considered based on several facts including the time of the event 

occurrence and tuple value in every stream sequence. The performance of 

CESA algorithm was evaluated based on detecting changes in the event streams 

according to the PH test results. The algorithm is evaluated in terms of 

capability to handle high throughput event streams and ability to compute 

AScore according to CA model. Importantly, the rates of prediction error are 

evaluated to measure how effective the CESA algorithm is in relation to 

detecting changes in the event a stream. Third, the performance of DCAD 

framework has been tested over a distributed cluster based on processing time, 

low-latency of each module’s framework through a variety of experiments. The 

performance of DCAD is evaluated based on high event streams throughput, n 

number of window partitioning that had a major impact on the processing time 

and response. Importantly, the evaluation of parallelism is described based on 

different facts such as scaling up the size of event streams, increasing the 

number of computer nodes, however, the number of windows partition is 

evaluated to estimate the processing time. 
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6. Chapter 6 

 
Conclusion and Future Work 
 
This chapter summarises the main research contributions of this thesis with 

overall the empirical result discussion, followed by future works future research 

extend opportunities.  

 
6.1. Conclusion 
 

 
Due to the advances in the digital technology, the size of generating data stream 

is scaling up very rapidly. Such concept has motivated to study this research by 

investigating the research problems in the core research field of data stream 

mining and machine learning to understand the concept of online learning from 

data streams, its model and stream constraints (e.g., time, space and accuracy). 

To discover anomalous event from sensor streams with such constraints, first, 

we defined the stream processing data structure model; second, we designed CA 

model to define the Contextual behaviour of the event sensor streams.  In this 

context, distributed stream processing and detecting unusual events including 

Contextual anomalous detection behaviour from real time application is playing 

an important role. Specifically, detecting high volumes of anomalous events 

from IoT sensor stream requires a robust method and novel algorithms to design 

and to handle high rate of unbounded sequence of event streams real time. 

Importantly, since sensor stream data attributes and values are correlated, to 
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best our knowledge detecting Contextual method is disregards in the previous 

research studies for the following justified reasons,  

a) In batch (static) learning, anomaly is mainly detected through multi-scan 

learning process; for example, the dataset can be divided into two tasks 

of test and train learning, in contrast to streaming data, when in online 

learning process; space, time, and accuracy are major concerns to be 

considered, which is due to the size and rate of the data streams. 

However, detecting anomalous event in online learning is one of the 

most common appropriate techniques in most of the real time 

applications when intelligent decision making is playing an important 

role. 

b) Detecting Contextual behaviour from dynamic event streams in online 

learning can be proposed to predict unusual events from the data 

resources. However, such concept is disregarded in the most of 

streaming applications, which is due to the dynamic change in the data 

stream during the data distribution. 

c) In relation to the scalability of streaming data, specifically, for the big 

IoT data, most of the traditional anomaly detection methods are mainly 

proposing data reduction to overcome the scalability concern rather than 

distributed mining. However, such method is only capable for a limited 

size of the data and it is inappropriate for high volumes of data streams. 

Thus, in recent years, distributed data stream processing is proposed as 

an alternative solution.  

Generally,, anomalous events are occur in the real time and the size of the data 

stream is very large. Thus, we first proposed novel window partitioning 

methods according to the learning tasks of count and time-based from arriving 

event streams, and event streams then divided into several partitions to handle 

the high rate of streams. The main benefit of this approach is to handle event 

streams data distribution and detect or control unusual changes to the streams. 
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Second, we designed a novel distributed Contextual event stream detection 

method to detect the Contextual behaviour of the sensor data in real time based 

on the stream data structure model. A detailed description of the main research 

contributions is summarized as follows. 

Event stream anomaly detection: a theoretical study of the anomaly detection 

background is described in Chapter two with the concept of anomaly detection 

in different research disciplines such as statistical analysis, data mining, stream 

mining, and machine learning. In addition to this, several common detection 

methods such as supervised, semi-supervised and unsupervised learning are 

studied to identify research limitations. On the one hand, we defined and 

designed each concept of event streams, such as Contextual Anomaly CA model 

based on distributed event stream data structure model. The CA model is 

designed to define the Contextual behaviour according to the possibility of 

assigning AScore to the designed partitioned of event streams. In this context, 

CESA algorithm is designed to detect the Contextual behaviours after the 

anomalous event streams are partitioned. The algorithm is designed to first 

check the event streams status as they continuously arrive from match module in 

the DCAD, then event streams have been trained by the CA model to check 

whether event stream tuple values are associating to with the stored matching 

rule set. If the event streams are not matched, then such event streams are 

considered as Contextual anomalous event or event streams alternatively 

removed from the sequence list in each window partition.  

Distributed Contextual Anomalous Event: to deal with the stream scalability 

concern, we proposed a novel solution to handle a high rate of sequence of the 

even streams. Specifically, we designed a novel distributed method so-called 

DCAD as shown in Appendix 2, and the main task of this method is to able to 

process and detect high volumes of Contextual event streams. DCAD consists 

of three distributed computational modules; Pre-Processing, Event matching, 

and Contextual Detection. These models are primarily based on distributed 

stream processing data structure model. The first module is designed to pre-
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processing the event streams, only events with similar tuple values are 

considered for further processing and detection since matching module is 

associated with matching the event stream tuples and handling the rate of event 

streams to capture any change that possibly occurred during the event stream 

data distribution. Finally, we implemented CESA algorithm in the Contextual 

module to detect Contextual behaviour from the event streams based on their 

AScore computational stream output result values per each window partitions.   

The experimental results demonstrated the effectiveness of each fact which we 

have measured and tested based on the on the event stream size, the number of 

window partitions, and scaling up the processing time.  The result shows that 

distributed processing performance is more efficient than centralised approach 

to compute and detect high number of Contextual event behaviour in real time. 

The main drawback of centralised computation is the number of designed 

computational functions, which we have used per each bolt in the topology to 

perform by the workers in parallel. The topology is required to deploy two 

spouts and ten bolts together to perform such computational functions per only 

one standalone node. Second, the performance of DCAD framework is 

evaluated based on increased and decreased of a number window partitions; the 

experimental result is demonstrating that using more windows per computer 

node can have a major impact on the performance of the processing time.  

Importantly, using less number of windows per computer node with a smaller 

size of window partition length demonstrated a significant improvement in 

terms of using less memory space, computational runtime process, and 

detecting event streams changes. For such reasons, window partitions are 

proposed across the DCAD framework and the experimental results indicated 

the effectiveness of DCAD. The detecting experimental results are evaluated 

based on scaling up the event streams size to test the capability of each 

computing node based on their processing runtime performance. The 

experimental result is satisfied the assumption of detection scalability concern 

of over one million event streams per less than one second. An alternative 
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solution is to deploy more nodes in the DCAD framework with adding more 

bolts in the DAG topology for each case study. For example, adding from 1 to 8 

nodes could decrease the processing time by approximately 50% in parallel. 

Consider DCAD framework over 8 nodes, the result shows a significant 

improvement in the performance from 65 to 45 milliseconds to process and 

detect road traffic event streams. This can be an ideal approach to reduce 

overhead in each computer node as the size of event streams have been scaled 

up. The DCAD approach can be extended and implemented for other problems 

within the other real world application domains including for credit card fraud 

detection, network security monitoring system, weather prediction, and medical 

sensor monitoring to detect anomalous events over the data streams in real time.  

 

6.2.  Future Work 
 

In this thesis, we aimed to fulfill the main thesis’s objectives of detecting 

anomaly from high volumes of stream, specifically, addressing the problem of 

distributed Contextual anomalous event stream. The proposed solution and 

results can be extended in further studies as described in below.  

i. New window modeling-based method can easily be deployed in 

application like social media stream data by allocating Anomaly Score 

AScore to kth nearest window partition and train CA model based on new 

arriving data ws where the partition size of each window can possibly 

have an impact on processing of the computational result. Contextual 

snapshot model can be designed based on matching dissimilar collection 

of data according to their context and time-series behaviour. This can be 

achieved by dividing arriving event streams into different snapshot time-

based interval window partitions. The anomaly snapshot model can be 

built on collections of dissimilar Contextual behaviour. Thesis problem 

can be further investigated in unsupervised learning; for example, 

Clustream Clustering algorithm can be proposed to groups similar event 
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streams according to their tuple values in each window partition. 

Gaussian predictor, α and β are the most common appropriate 

coefficients metrics to detect any changes within the event streams. The 

event streams can be set into three metric intervals of t = 8, t = 16, t = 24 

per each window partitioning length of 10,000 stream tuples.  

ii. Future investigation can be considered to detect anomalous event 

streams from other application domains with multi-variant data 

attributes and high dimensional data streams; for example, grouping and 

partitioning event attribute values according to their Contextual attribute 

such as segment of events per window partition. Prior to the problem of 

anomaly detection and event stream partitioning and parallel detection. It 

is worth to study and investigate concept drift detection in other time-

series applications.  

iii. Offline and online distributed anomaly detection approach is another 

future research direction to be studied. This approach is already 

proposed in some of the research disciplines of data mining and machine 

learning; thus, we believed that distributed hybrid anomaly detection 

research is an interesting and challenging task to be studied for the 

future work. This can be achieved by; first, building anomaly model 

from historical event data behaviour in offline, and training the arriving 

new event streams on online from new window partitions. 

iv. In relation to the anomaly scalability drawback, we have proposed 

distributed cluster of computer nodes, while alternative solution can be 

implementing a cloud-based architecture. Cloud architecture is one of an 

efficient appropriate approach to aggregate and process high volumes of 

stream detection. One of a key problem in distributed messaging system 

is a communication channel between the servers. For example, when a 

topology deployed on Storm nimbus, it is necessary to have a 

communication channel destination to define tasks between the DCAD 

modules and broker. To address such problem, we designed 
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communication channel between the master-servers architecture by 

connecting Kafka brokers with Storm framework through apache 

Zookeeper 16. This is another remaining research investigation of 

dynamic distribution of event between the distributed modules and 

monitoring the data distribution behaviours. 

                                                
16https://zookeeper.apache.org/ 
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Appendix 1: Big Data State-of-the-art Comparison  
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Appendix 2: Distributed Contextual Anomaly Detection (DACD) Framework  
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Appendix 3: Distributed Contextual Anomaly Detection (DCAD) 
Architecture  
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Appendix 4: Result of Event Stream Window Partitions 
 

 
Stream 
Tuple 

Temp <20℃ Temp >26℃ Stream 
Tuple 

Temp 
<20℃ 

Temp >26℃ 

10000 1 3 510000 42 19 
20000 3 5 520000 45 17 
30000 2 6 530000 45 19 
40000 1 7 540000 46 19 
50000 3 7 550000 47 19 
60000 3 8 560000 48 18 
70000 3 7 570000 48 19 
80000 4 8 580000 49 20 
90000 4 10 590000 49 21 
100000 6 9 600000 50 21 
110000 8 8 610000 52 20 
120000 8 9 620000 53 21 
130000 8 10 630000 54 22 
140000 10 8 640000 56 21 
150000 12 7 650000 57 21 
160000 12 9 660000 58 21 
170000 12 10 670000 58 22 
180000 14 9 680000 59 22 
190000 15 10 690000 60 22 
200000 16 10 700000 60 23 
210000 16 11 710000 60 24 
220000 18 11 720000 61 23 
230000 18 12 730000 61 24 
240000 18 13 740000 63 23 
250000 19 13 750000 63 24 
260000 20 14 760000 64 24 
270000 23 13 770000 64 25 
280000 25 12 780000 66 24 
290000 25 12 790000 66 24 
300000 26 12 800000 67 24 
310000 27 12 810000 68 25 
320000 28 12 820000 69 25 
330000 28 13 830000 70 26 
340000 29 14 840000 71 26 
350000 31 14 850000 73 25 
360000 31 15 860000 73 26 
370000 32 15 870000 75 26 
380000 32 16 880000 78 24 
390000 32 17 890000 78 25 
400000 32 18 900000 78 26 
410000 33 17 910000 79 26 
420000 35 17 920000 81 25 
430000 35 19 930000 84 24 
440000 35 20 940000 85 24 
450000 37 18 950000 86 25 
460000 37 19 960000 86 26 
470000 37 20 970000 87 26 
480000 38 19 980000 88 26 
490000 39 19 990000 88 28 
500000 41 19 1000000 89 28 
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Appendix 5: Result of MAE and RSME Predicating Error by CESA 
 

 
Stream 
Tuples 

MAE RSME Stream 
Tuples 

MAE RSME 

10000 0.377734 0.436237 510000 0.342148 0.414309 
20000 0.355729 0.421506 520000 0.365707 0.428173 
30000 0.346158 0.412526 530000 0.36283 0.43084 
40000 0.352114 0.427611 540000 0.380327 0.439482 
50000 0.391087 0.445245 550000 0.378281 0.433275 
60000 0.348688 0.417421 560000 0.393992 0.444702 
70000 0.333416 0.412919 570000 0.384196 0.43875 
80000 0.349678 0.422812 580000 0.36961 0.427712 
90000 0.313396 0.394406 590000 0.398304 0.454473 
100000 0.355356 0.423262 600000 0.36985 0.431453 
110000 0.327224 0.405802 610000 0.3509 0.419499 
120000 0.326414 0.404108 620000 0.337364 0.409793 
130000 0.328005 0.409912 630000 0.359118 0.429203 
140000 0.316664 0.39871 640000 0.337389 0.412642 
150000 0.322265 0.400518 650000 0.337508 0.410686 
160000 0.387403 0.444668 660000 0.331523 0.408405 
170000 0.37841 0.432911 670000 0.316325 0.400751 
180000 0.376901 0.433851 680000 0.310247 0.388417 
190000 0.434962 0.470736 690000 0.375616 0.430434 
200000 0.30836 0.400807 700000 0.338798 0.407799 
210000 0.312019 0.395385 710000 0.330764 0.402369 
220000 0.303664 0.390776 720000 0.323569 0.404949 
230000 0.314901 0.397049 730000 0.381713 0.432922 
240000 0.305793 0.389099 740000 0.321164 0.401144 
250000 0.318161 0.401564 750000 0.350293 0.415828 
260000 0.297087 0.384984 760000 0.375969 0.432984 
270000 0.379114 0.426261 770000 0.361567 0.420211 
280000 0.385466 0.443657 780000 0.350948 0.419361 
290000 0.313561 0.388028 790000 0.321395 0.400226 
300000 0.389672 0.441858 800000 0.30614 0.390959 
310000 0.355884 0.419721 810000 0.318342 0.402854 
320000 0.331611 0.403205 820000 0.318409 0.398578 
330000 0.313279 0.397064 830000 0.291221 0.38457 
340000 0.349326 0.421857 840000 0.31505 0.402135 
350000 0.337274 0.406027 850000 0.32583 0.405458 
360000 0.369044 0.427574 860000 0.326691 0.392481 
370000 0.365935 0.429176 870000 0.324392 0.397487 
380000 0.383801 0.43677 880000 0.326381 0.40105 
390000 0.345053 0.41386 890000 0.294519 0.383192 
400000 0.357952 0.425975 900000 0.30102 0.391097 
410000 0.338022 0.411441 910000 0.321264 0.398287 
420000 0.354474 0.427024 920000 0.297009 0.388732 
430000 0.351719 0.419726 930000 0.304015 0.390988 
440000 0.321922 0.401809 940000 0.297213 0.385752 
450000 0.314427 0.395105 950000 0.301051 0.38969 
460000 0.300295 0.391369 960000 0.281209 0.37304 
470000 0.300824 0.391583 970000 0.345609 0.422641 
480000 0.284679 0.379111 980000 0.321314 0.400043 
490000 0.357031 0.427721 990000 0.298108 0.380865 
500000 0.323929 0.402367 1000000 0.35585 0.422783 
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Appendix 6: Result of CESA Computational CPU (in Millisecond) 
 
Stream 
Tuples 

Evaluation 
time (CPU 
in ms) 

MAE RSME Stream 
Tuples 

Evaluation 
time (CPU 
in ms) 

MAE RSME 

10000 0.764405 0.377734 0.436237 510000 39.81146 0.27199 0.370555 
20000 1.419609 0.318078 0.398038 520000 40.63826 0.286167 0.381862 
30000 2.074813 0.317481 0.396094 530000 41.49627 0.276589 0.373995 
40000 2.761218 0.317787 0.402433 540000 42.36987 0.308565 0.397129 
50000 3.494422 0.374653 0.432863 550000 43.21228 0.339709 0.416241 
60000 4.196427 0.319512 0.400157 560000 44.07028 0.33858 0.416693 
70000 4.914032 0.306783 0.392703 570000 44.92829 0.335415 0.412187 
80000 5.631636 0.310344 0.400669 580000 45.78629 0.339409 0.419439 
90000 6.364841 0.322444 0.40104 590000 46.6287 0.307729 0.39508 
100000 7.098046 0.313482 0.400602 600000 47.5179 0.313478 0.395766 
110000 7.76885 0.323636 0.405941 610000 48.40711 0.321348 0.40493 
120000 8.502055 0.303892 0.393001 620000 49.29632 0.304444 0.393414 
130000 9.266459 0.327823 0.404883 630000 50.20112 0.319027 0.402461 
140000 9.968464 0.319278 0.403377 640000 51.16833 0.313392 0.395451 
150000 10.73287 0.312568 0.399848 650000 52.07313 0.327152 0.405836 
160000 11.45047 0.319046 0.399314 660000 53.00914 0.320973 0.403861 
170000 12.18368 0.294529 0.388603 670000 54.00755 0.33089 0.410473 
180000 12.94808 0.300365 0.39198 680000 54.92795 0.304707 0.393328 
190000 13.69689 0.292 0.383244 690000 55.91076 0.281573 0.375513 
200000 14.44569 0.28163 0.377077 700000 56.86236 0.274878 0.367752 
210000 15.2257 0.314629 0.397056 710000 57.81397 0.255975 0.358194 
220000 16.0057 0.278633 0.374838 720000 58.73438 0.261346 0.362881 
230000 16.78571 0.285248 0.367978 730000 59.68598 0.270085 0.36789 
240000 17.55011 0.252158 0.352088 740000 60.63759 0.260343 0.355274 
250000 18.34572 0.343128 0.411512 750000 61.57359 0.256542 0.357336 
260000 19.12572 0.293045 0.376176 760000 62.494 0.266119 0.362714 
270000 19.92133 0.282907 0.376096 770000 63.43001 0.265823 0.37081 
280000 20.70133 0.299676 0.39582 780000 64.45961 0.312816 0.399184 
290000 21.51254 0.294843 0.38106 790000 65.41122 0.297663 0.386887 
300000 22.27694 0.329247 0.402235 800000 66.40963 0.253794 0.354401 
310000 23.10375 0.307977 0.392931 810000 67.36123 0.271014 0.373055 
320000 23.88375 0.282988 0.377551 820000 68.31284 0.296194 0.3832 
330000 24.69496 0.277338 0.372752 830000 69.28004 0.246577 0.350968 
340000 25.53736 0.288326 0.381658 840000 70.26285 0.270313 0.36863 
350000 26.42657 0.305149 0.389769 850000 71.23006 0.267249 0.37038 
360000 27.28457 0.287235 0.374947 860000 72.22846 0.255626 0.355875 
370000 28.08018 0.286994 0.374396 870000 73.21127 0.288104 0.380478 
380000 28.92259 0.284692 0.38201 880000 74.22528 0.275211 0.369883 
390000 29.76499 0.274043 0.37009 890000 75.19248 0.251714 0.356947 
400000 30.6074 0.275243 0.374456 900000 76.20649 0.269389 0.369061 
410000 31.4654 0.277032 0.373196 910000 77.2048949 0.28758 0.383283 
420000 32.27661 0.268367 0.363379 920000 78.2501016 0.25027 0.355447 
430000 33.10341 0.272262 0.370499 930000 79.2953083 0.268328 0.366343 
440000 33.93022 0.274671 0.373451 940000 80.3249149 0.265356 0.369605 
450000 34.74142 0.301644 0.386576 950000 81.3077212 0.266455 0.367765 
460000 35.56823 0.282809 0.375297 960000 82.2905275 0.258483 0.354583 
470000 36.39503 0.301681 0.388574 970000 83.2577337 0.260006 0.360383 
480000 37.23744 0.284054 0.377967 980000 84.2561401 0.266881 0.362767 
490000 38.09544 0.285035 0.379343 990000 85.2545465 0.253947 0.353746 
500000 38.93785 0.272656 0.37418 1000000 86.2529529 0.270685 0.370323 

 
 
 

 
 

 
 


