
University of Huddersfield Repository

Amen, Bakhtiar

Distributed Contextual Anomaly Detection from Big Event Streams

Original Citation

Amen, Bakhtiar (2018) Distributed Contextual Anomaly Detection from Big Event Streams.
Doctoral thesis, University of Huddersfield.

This version is available at http://eprints.hud.ac.uk/id/eprint/34687/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

Distributed Contextual Anomaly

Detection from Big Event Streams

BAKHTIAR AMEN

Thesis Supervisor: Prof. Grigoris Antoniou

Thesis Co-supervisor: Dr. Violeta Holmes

A thesis submitted to the University of Huddersfield in

partial fulfilment of the requirements for the degree of

Doctor of Philosophy

University of Huddersfield

School of Computing and Engineering
University of Huddersfield, Queensgate, Huddersfield, HD1 3DH, UK

January 2018

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to

this thesis) owns any copyright in it (the “Copyright”) and s/he has

given The University of Huddersfield the right to use such copyright

for any administrative, promotional, educational and/or teaching

purposes.

ii. Copies of this thesis, either in full or in extracts, may be made only in

accordance with the regulations of the University Library. Details of

these regulations may be obtained from the Librarian. This page must

form part of any such copies made.

iii. The ownership of any patents, designs, trademarks and any and all

other intellectual property rights except for the Copyright (the

“Intellectual Property Rights”) and any reproductions of copyright

works, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be

owned by third parties. Such Intellectual Property Rights and

Reproductions cannot and must not be made available for use without

the prior written permission of the owner(s) of the relevant Intellectual

Property Rights and/or Reproductions

	 i	 	 	
	

Abstract

The age of big digital data is emerged and the size of generating data is rapidly
increasing in a millisecond through the Internet of Things (IoT) and Internet of
Everything (IoE) objects. Specifically, most of today’s available data are
generated in a form of streams through different applications including sensor
networks, bioinformatics, smart airport, smart highway traffic, smart home
applications, e-commerce online shopping, and social media streams. In this
context, processing and mining such high volume of data stream becomes one
of the research priority concern and challenging tasks. On the one hand,
processing high volumes of streaming data with low-latency response is a
critical concern in most of the real-time application before the important
information can be missed or disregarded. On the other hand, detecting events
from data stream is becoming a new research challenging task since the
existing traditional anomaly detection method is mainly focusing on; a) limited
size of data, b) centralised detection with limited computing resource, and c)
specific anomaly detection types of either point or collective rather than the
Contextual behaviour of the data. Thus, detecting Contextual events from high
sequence volume of data stream is one of the research concerns to be addressed
in this thesis.

As the size of IoT data stream is scaled up to a high volume, it is impractical to
propose existing processing data structure and anomaly detection method. This
is due to the space, time and the complexity of the existing data processing
model and learning algorithms. In this thesis, a novel distributed anomaly
detection method and algorithm is proposed to detect Contextual behaviours
from the sequence of bounded streams. Capturing event streams and
partitioning them over several windows to control the high rate of event
streams mainly base on, the proposed solution firstly. Secondly, by proposing a
parallel and distributed algorithm to detect Contextual anomalous event. The
experimental results are evaluated based on the algorithm’s performances,
processing low-latency response, and detecting Contextual anomalous
behaviour accuracy rate from the event streams. Finally, to address scalability
concerned of the Contextual events, appropriate computational metrics are
proposed to measure and evaluate the processing latency of distributed method.
The achieved result is evidenced distributed detection is effective in terms of
learning from high volumes of streams in real-time.

	 ii	 	 	
	

Dedications and Acknowledgements

First and foremast, I would like to express my sincere gratitude to my advisor

Professor Grigoris Antoniou for his unremitting support, guidance and patience

during this Ph.D. research. He has been very supportive, encouraging,

enthusiastic and intense adviser. I very much appreciate all his time, ideas and

critical constructive feedbacks that immensely contributed to my professional

skills. I would like to thank my second advisor Dr. Violeta Holmes for her

support and valuable suggestions, including Dr. Violeta’s research team

members from High Performance Computing Group, for providing technical

supports. I gratefully acknowledge the funding scholarship received from the

University of Huddersfield.

I dedicate this thesis to my beloved mother, whom she has always been

encouraging me to study further and made her dream come true. I also would

like to dedicate this thesis to my beloved partner Mrs. Ban Rashid for her

limitless love, encouragement, and support that I unremittingly received from

her through this Ph.D. research. The progress of this work would not have been

achievable without her, my siblings, mother and father-in-law. Last but not

least, I would like to thank to all of my research colleagues at the University of

Huddersfield, whom they have directly or indirectly supported me during this

research; it has been a great experience to support each other and share skills

with each other during the Ph.D. journey. Most importantly, I would like to

thank Dr. Ilias Tachmazidis, and my friends Mr. Shwan Boskani and Mr.

Sardasht Mahmood for their assistance throughout this research.

	 iii	 	 	
	

Table of Contents

Abstract .. i
Dedications and Acknowledgements ... ii
List of Abbreviations ... ix
1 Chapter 1 ... 1

Introduction .. 1
1.1 Research Motivation .. 3
1.2 Research Questions .. 8
1.3 Research Contribution .. 9
1.4 List of Publications .. 11
1.5 Thesis Structure ... 12

2 Chapter 2 ... 14
Anomaly Detection: Background and Related Work 14
2.1 Anomaly Detection Overview ... 15

2.1.1 Anomaly Definitions .. 15
2.1.2 Anomaly Detection Characteristics .. 16

2.2 Anomaly Detection in Data Stream Analytics 21
2.2.1 Stream Definition ... 21
2.2.2 Data Stream Model ... 21
2.2.3 Anomaly Detection in Streaming Data 23
2.2.4 Data Stream Collection Concept .. 28
2.2.5 Data Stream Management System (DSMS) 32

2.3 Distributed and Parallel Data Processing 34
2.3.1 Distributed Batch Data Processing ... 38
2.3.2 Distributed Stream Processing (DSP) .. 39

2.4 The Complexity of the Data Stream and Size 46
2.5 Distributed Anomaly Detection Related Works 47

2.5.1 Information Theoretic-Based Anomaly Detection Method 47
2.5.2 Statistical-Based Anomaly Detection Method 48
2.5.3 Classification-Based Anomaly Detection Method 50
2.5.4 Clustering-Based Anomaly Detection Method 51

Chapter Summary .. 54
3 Chapter 3 ... 58

	 iv	 	 	
	

Distributed Contextual Event Stream Problem Definitions and Designs
 .. 58
3.1. General Notation of Stream Definitions and Model 58
3.2. Event Stream Model .. 59
3.3. High Volumes of Event Stream Processing 62
3.4. Event Stream Processing Window Partitioning Definitions and
Designs ... 64

3.4.1. Sliding Window Definition .. 66
3.4.2. Landmark Window Definition ... 67
3.4.3. Tumbling Window Definition .. 69

3.5. Event Stream Window Partitioning Design 71
3.6. Contextual Event Stream Definitions and Design 76
3.7. Event Stream Change Detection ... 82

3.7.1. Window Change Detection Definition 83
3.7.2. Change Detection Standard Evaluation Measurement 87

Chapter Summary .. 89
4. Chapter 4 ... 90

Distributed Contextual Anomaly Detection (DCAD) 90
4.1. An Overview of the DCAD ... 90

4.2. Distributed Contextual Event Stream Processing and Detection ... 91
4.2.1. Pre-processing Module ... 95
4.2.2. Event Matching Module ... 97
4.2.3. Contextual Detection Module ... 98

5. Chapter 5 ... 103
5.1. Experimental Environment, Evaluation Metrics and Result
Discussion .. 103
5.2. Experimental Preliminaries .. 104
5.3. Experimental Environment .. 104
5.4. Data Sources ... 105
5.5. Results and Discussion ... 108

5.5.1. Distributed Event Stream Window Partitioning Results 108
5.5.2. Contextual Event Stream Anomaly Result 112

5.6. CESA Algorithm Performance ... 115
5.7. Contextual Anomaly Detection Scalability Evaluation Result .. 117
5.8. Point and Contextual Anomaly Detection Results 122

	 v	 	 	
	

5.9. Prediction Error and Performance Measure 125
5.10. Changes Detection Results by the CESA Algorithm 130
Chapter Summary .. 133

6. Chapter 6 ... 135
Conclusion and Future Work .. 135
6.1. Conclusion .. 135
6.2. Future Work ... 139

Bibliography .. 142
Appendix 1: Big Data State-of-the-art Comparison 151
Appendix 2: Distributed Contextual Anomaly Detection (DACD)
Framework .. 151
Appendix 3: Distributed Contextual Anomaly Detection (DCAD)
Architecture .. 153

 ... 153
Appendix 4: Result of Event Stream Window Partitions 154
Appendix 5: Result of MAE and RSME Predicating Error by CESA 155
Appendix 6: Result of CESA Computational CPU (in Millisecond) 156

	 v	 	 	
	

FIGURE 1.1: ANOMALY DETECTION TYPES FOR THE TIME-SERIES DATA SCENARIO
IN ROAD TRAFFIC MONITORING SYSTEM. .. 6

FIGURE 2.1: CONTEXTUAL ANOMALY FOR THE CONFERENCE ROOM
TEMPERATURE SCENARIO. ... 18

FIGURE 2.2: CONCEPT DRIFT DETECTION TYPES. .. 26
FIGURE 2.3: POINT-TO-POINT MESSAGING SYSTEM. ERROR! BOOKMARK NOT

DEFINED.
FIGURE 2.4: DISTRIBUTED STREAM COLLECTION ARCHITECTURE IN KAFKA. 29
FIGURE 2.5: DATA STREAM MANAGEMENT SYSTEM ARCHITECTURE. 34
FIGURE 2.6: CENTRALISED (LEFT) AND DISTRIBUTED DATA STREAM PROCESSING

(RIGHT). ... 36
FIGURE 2.7: MAP REDUCE DISTRIBUTED PROGRAMMING MODEL. 39
FIGURE 2.8: APACHE STORM TOPOLOGY PROGRAMMING MODEL. 40
FIGURE 2.9: APACHE STORM ARCHITECTURE. .. 42
FIGURE 2.10: STREAM PARTITIONING SHUFFLE GROUPING MECHANISM. 43
FIGURE 2.11: STREAM PARTITIONING FILED GROUPING MECHANISM. 44
FIGURE 2.12: STREAM PARTITIONING ALL GROUPING MECHANISM. 45
FIGURE 2.13: STREAM PARTITIONING GLOBAL GROUPING MECHANISM. 45
FIGURE 3.1: UNBOUNDED SEQUENCE OF EVENT STREAM TUPLES.UNBOUNDED

SEQUENCE OF EVENT STREAM TUPLES. ... 60
FIGURE 3.2: TIME EVENTS INTERVAL. .. 61
FIGURE 3.3: EVENT ELEMENTS SCHEMA FOR A SEQUENCE OF EVENT TUPLES. 62
FIGURE 3.4: AN EXAMPLE OF EVENT STREAMS PARTITION IN SLIDING WINDOW. 67
FIGURE 3.5: AN EXAMPLE EVENT STREAM PARTITION IN LANDMARK WINDOW. 69
FIGURE 3.6: AN EXAMPLE OF EVENT STREAM PARTITION IN TUMBLING WINDOW.

 .. 70
FIGURE 3.7: A GENERAL DESIGN SAMPLE OF TUMBLING WINDOWS PARTITIONS. 71
FIGURE 3.8: COUNT-BASED EVENT STREAM WINDOW PARTITIONS. 73
FIGURE 3.9: TIME-BASED EVENT STREAM WINDOW PARTITIONS 76
FIGURE 3.10: SEQUENCE OF EVENTS WITH NORMAL AND CONTEXTUAL

BEHAVIOURS. ... 78
FIGURE 4.1: INPUT EVENT STREAM TUPLES. ... 91
FIGURE 4.2: DISTRIBUTED CONTEXTUAL ANOMALY DETECTION (DCAD) BASED

ON DAG MODEL; INPUT (I), PRE-PROCESS (P), MATCHING EVENTS (M),
CONTEXTUAL ANOMALY (C), OUTPUT (O). .. 92

FIGURE 4.3: DISTRIBUTED CONTEXTUAL ANOMALY DETECTION METHOD. 94
FIGURE 4.4: FILTER EVENT STREAM PER WINDOW PARTITIONING BASED ON (E.G.,

HIGH OR LOW) TUPLE VALUES. ... 96
FIGURE 4.5: FILTER AND AGGREGATE EVENT STREAM RESULTS FROM WINDOW

PARTITIONING. ... 97
FIGURE 4.6: EVENT STREAM AGGREGATION BASED ON FILED GROUPING

MECHANISM. .. 98
FIGURE 4.7: EVENT STREAM AGGREGATION FROM SET OF SENSORS ACCORDING

THEIR TIME-BASED. .. 100
FIGURE 4.8: CONTEXTUAL ANOMALOUS EVENT DETECTION OVER SEQUENCE OF

EVENT STREAM TUPLES. ... 101

	 vi	 	 	
	

FIGURE 5.1: EVENT-BASED WINDOW PARTITIONING RESULT FOR TEMPERATURE
CASE STUDY. .. 108

FIGURE 5.2: EVENT-BASED WINDOW PARTITIONS RESULT FROM TRAFFIC CASE
STUDY. ... 110

FIGURE 5.3: TIME-BASED EVENT STREAM WINDOW PARTITIONS RESULTS FROM
HIGHWAY ROAD TRAFFIC SENSORS. ... 112

FIGURE 5.4: CONTEXTUAL EVENT STREAM RESULT FROM HIGHWAY ROAD
TRAFFIC STREAMS. ... 113

FIGURE 5.5: CONTEXTUAL ANOMALOUS EVENT DETECTION FROM AGGREGATED
AND MATCHED EVENTS PER WINDOW PARTITION OVER VARIANT STREAMS
SENSOR DEVICES. ... 114

FIGURE 5.6: RESULT OF CESA ALGORITHM ACCURACY PERFORMANCE RATES
OVER TWO IOT PROPOSED CASE STUDIES. .. 116

FIGURE 5.7: CESA PROCESSING PERFORMANCE BASED ON STANDALONE NODE
VERSUS DISTRIBUTED NODES WITH THRESHOLD OF PROCESSING 100K EVENT
STREAMS. .. 119

FIGURE 5.8: PERFORMANCE OF VARIANT WINDOW NUMBER PARTITIONS
COMPUTATIONAL PROCESSING TIME. ... 120

FIGURE 5.9: RESULT OF INCREASING NODES LINEARLY PERFORMANCE IN THE
DCAD FRAMEWORK TO WITH SCALING UP EVENT STREAM THROUGHPUT.
 .. 122

FIGURE 5.10: THE RESULT OF DISTRIBUTED POINT ANOMALY (PA) VERSUS
CONTEXTUAL ANOMALY (CA) EVENTS WITH THE PROPOSED ALGORITHM’S
COMPUTATIONAL PERFORMANCE 123

FIGURE 5.11: COMPARISON OF EVENT STREAMS PERFORMANCE CLUSTER
RUNTIME. ... 125

FIGURE 5.12: CESA ALGORITHM ACCURACY RESULT BY EVALUATING
PREQUENTIAL PREDICTING ERROR METRICS (MAE AND RSME) USING
TEMPERATURE EVENT STREAMS. ... 128

FIGURE 5.13: CESA ALGORITHM ACCURACY RESULT BY EVALUATING
PREQUENTIAL PREDICTING ERROR METRICS (MAE AND RSME) USING
HIGHWAY ROAD TRAFFIC EVENT STREAMS. ... 129

FIGURE 5.14: DETECTING CHANGE RATES BY CESA ALGORITHM FOR EVERY WP
= 10,000. ... 131

FIGURE 5.15: DETECTING CHANGE RATES BY CESA ALGORITHM FOR EVERY WP
= 100,000. ... 132

	 vii	 	 	
	

	 viii	 	 	
	

TABLE 5-1: HIGHWAY ROAD TRAFFIC DATA SCHEMA. 106
TABLE 5-2: RESULT OF EVENT STREAMS PER WINDOW PARTITIONS FROM ROAD

TRAFFIC CASE STUDY. .. 111
TABLE 5-3: THE COMPARISON RESULTS OF POINT AND CONTEXTUAL ANOMALY

PER EACH DISTRIBUTED COMPUTING NODE. ... 124
TABLE 5-4: CESA ALGORITHM EXPERIMENTAL EVALUATION PARAMETERS. .. 127

	 ix	 	 	
	

List of Abbreviations

Abbreviations

Descriptions

A-SPOT Adaptive Stream Projected Outlier

API Application Programming Interface

BIRICH Balanced Iterative Reducing and Clustering Using Hierarchies

BS Bayesian Network

CA Contextual Anomaly

CCA Common Correlated Attribute

CE Complex Event

CEP Complex Event Processing

CQ Continuos Query

DAG Direct Acyclic Graph

DBMS

Database Management System

DDM Drift Detection Method

DCAD Distributed Contextual Anomaly Detection

DISD Data Intensive Scientific Discover

DSMS Data Stream Management System

DSP Distributed Stream Processing

DSP Data Stream Processing

DSPE Distributed Stream Processing Engine

E3S Event Stream Spout Splitter

EDDM Early Drift Detection Methods

ETL Extract Transform Load

FIFO First-In First-Out

GMM Gaussian Mixture Model

GPS Global Positioning System

HMM Hidden Markov Model

IBRL Intel Berkeley Research Lab

	 x	 	 	
		

ICA Independent Component Analysis

IoT Internet of Things

JVM Java Virtual Machine

LOF Local Outlier Factor

MAE Mean Absolute Error

MP Message Passing

NN Neural Network

PCA Principal Component Analysis

PHT Page Hinckley Test

RAD Real time Anomaly Detection

RMSE Root Mean Square Error

SP Stream Processing

SPE Stream Processing Engine

SPIRIT Streaming Pattern Discovery in Multiple Time-Series

SPOT Stream Projected Outlier Detector

CESA Contextual Event Stream Anomaly

SVD Singular Value Decomposition

SVM Support Vector Machine

TSA Time Space and Accuracy

UI
1.1.1 User Interface

WSN Wireless Sensor Networks

Chapter 1: Introduction

	 1	 	 	
	

1.Chapter 1

Introduction

The innovation of technologies and Internet connectivity are evidenced that

this world is adapting from traditional to digital-based. Specifically, in the

last decade, due to advanced technologies, high volumes of data sources from

log records, call records, biomedical records, stock exchange, social media,

network traffic, and manufacturing sensors are generating in different formats

of (e.g., structured or unstructured). Thus, a new scientific paradigm has

emerged under the umbrella of big data so-called Data Intensive Scientific

Discover (DISD) (Chen et al., 2014, p.173). The term of “big data” is now

universally used and became to a central for researchers and practitioner’s

attentions across multi-disciplines of such as bioinformatics, geophysics,

astronomy, engineering, meteorology, e-commerce and social media. The

literature of big data is very broad and there is not yet a formal definition

from neither academia nor industry, however, Chen et al. (2014, p.173) and

Tsai et al. (2015) defined it as;

“Datasets which could not be captured, managed, and processed by general
computers within an acceptable scope”.

In other words, the volume and velocity of generating data is beyond the

capacity of current technologies to process, handle, and provide

computational results. This is due to the limited computing resource, data

Chapter 1: Introduction

	 2	 	 	
	

structured model, and complexity of the existing of the algorithms. Thus, this

idea is motivated the industry and scientist to redesign computer hardware’s

(e.g., multi-core processor, cloud computing) based on the Moor’s law to

become more powerful than ever before (Tsai et al., 2015). Prior to the

scalability concern, discovering hidden knowledge and predicting unusual

events from high volumes of data is remaining to be a challenging task,

specifically, from high volumes of data streams. In general, big data analytic

comprises of data integrating, processing and analysing large-scale of both

static and stream data formats. Thus, detecting unusual activities from big

scale of data plays an important role in many application domains including

air traffic monitoring system (Katal et al., 2013), network attack (Hashem et

al., 2014), transaction frauds (Chen et al., 2014), weather broadcast, faulty

sensors indicating oil and gas leakage (Xie, et al., 2011), and diagnosis from

medical records (Ma, et al., 2016).

The main concept of anomaly is referring to unusual events, specious

activities or different pattern in the dataset (Candela et al., 2009; Zhang,

2013). The study and literature of anomaly detection method is very extensive

in information theory, machine learning, data mining, and statistics (Grosse &

Turin, 2012; Gupta et al., 2014; Ma et al., 2016). Importantly, anomaly can be

referred to positive or negative aspects in different application domains, for

example, in network intruder detection, the network system administrator

aims to trace suspicious activity from incoming traffic to make an immediate

action against the intruder. In banking industry, detecting online frauds and

suspicious activity is considered as one of the most priority concerns to

protect client’s account and funds. In network sensor domain, anomaly can be

beneficial in detecting fault or error in the sensors. From the perspective of

safety concerns, tracing and predicting incidents in real time is very important

in many applications including highway road traffic monitoring system,

airport surveillance, medical diagnosis, civil security, and engineering (Gupta

et al., 2014). Similarly, detecting and predicting disaster like floods, storms,

Chapter 1: Introduction

	 3	 	 	
	

and earthquakes are also major concerns in weather broadcast domain. In

social media, for example, anomaly plays an important role in detecting user

opinion behaviour from writing inappropriate comments (e.g., race and sexual

abuse, arranging riot activities, online activities including terror and criminal

threats).

1.1 Research Motivation

Internet of things (IoT) or Internet of Everything (IoE) are the two new

emerged fields of the computer science. Today, creating high volumes of data

is an easier process than it was in the previous decade; this is due to the low

cost of IoT devices and other digital applications. For example, the size of

connected object is expected to be one trillion sensors by 2030 (Yang &

Fong, 2015); this includes 350 billion annual meter readings, power plants,

machinery data, and Global Positioning System (GPS) (Yu & Lan, 2016).

The main benefit of such trend is to provide consumers with affordable and

secure energy supply (Zhang, 2013), while consumer and supplier could both

have energy consumptions in real time and predicting extraordinary events

and activities such as faulty sensors, energy leakage, or tampering meters.

Importantly, the majority of data is generating in a form of stream by

different applications and the size of these data is very large in scale.

On the one hand, detecting anomaly in real time plays a significant role in

monitoring unusual behaviours from big digital devices such as; home

suppliers, smart meters, smart motorways, smart city, work locations, and

airport surveillance. Thus, online anomaly detection and mining from high

volumes of data in real time is appeared to be a new research direction. The

existing and traditional anomaly detection methods are mainly focusing on a

specific type of point or collective anomaly problem in offline analysis. On

the other hand, recent works of anomaly detection methods are mainly

Chapter 1: Introduction

	 4	 	 	
	

disregards the scalability of the data concern; this is due to the proposed data

structure model and computational complexity of the proposed algorithms.

Considering processing and detecting anomalous events from 1 terabyte of

data centrally (over a standalone machine), this possibly requires several

hours or days to process and provide computational results with another

major concern of network overloaded. Thus, detecting anomalous events from

high volumes of IoT sensor stream is an emerged research filed of big data

stream mining (Duarte et al., 2016; De Francisci Morales, 2016; Bifet et al.,

2016). The main motivation of this research is to develop a novel algorithm

and method that will be able to detect Contextual behaviours of large

sequence of IoT sensor data streams in real time. The following challenging

tasks have been mainly studies and investigated in the thesis.

Online Learning: unusually online learning algorithms are required to process

data in several subsets of streams in a sequence rather than process all the

data at once. This is due to the need of real time processing structure and

detecting anomalous events from streams are requires single-scan learning;

once stream is processed, such data stream can be irrelevant and or it can be

discarded at the later stage. Online learning is playing an important role in

many dynamic monitoring applications such as network security, road traffic,

healthcare diagnoses, airport traffic control, fire safety, and weather

broadcast.

Scalability: as the size of data stream scales up, standalone machine is only

capable to process and handle limited size of IoT data stream; this is due to

limited memory space of the most proposed computing resources, dynamic

evolving of streams over the time, and network bandwidth (Duarte et al.,

2016; Schneider et al., 2016). Thus, in recent years, the concept of parallel

and distributed approaches is increasingly attracting the attentions of both

researchers and industry engineers to address the scalability problem.

Importantly, most of the existing anomaly detection methods are designed to

Chapter 1: Introduction

	 5	 	 	
	

detect anomaly centrally. Thus, research on anomaly detection over high

volumes of data stream is limited; parallel partitioning and processing is

required to compute several tasks at once with low-latency and real-time

response (Gupta et al., 2014). However, to handle such high rate of data

streams, robust parallel and distributed stream detection is suggested to be an

alternative solution. The main benefits of parallel and distributed processing

can be summarized in; a) high throughput event streams (1 million events per

second) in real time, b) low-latency computational response which is very

important for anomaly detection in real time, and c) overcoming

computational resource constraints (Candela et al., 2009; Grosse & Turin,

2012; Amen & Lu, 2015).

Contextual Anomaly: selecting anomaly detection type is one of the key

priorities challenging task in many big data application domains, specifically,

in streaming application domains. Existing anomaly detection methods are

mainly either focused on Point or Collective anomaly types, however,

research on data stream Contextual anomaly detection is limited (Folino &

Sabatino, 2016; Karunaratne et al., 2017). Thus, new Contextual anomaly

detection from high sequence of data stream can be a challenging task. For

example, consider highway road traffic scenario for speed monitoring of

vehicles over consecutive time-series as depicts in figure 1.1, where blue

vehicles are representing those vehicles within national speed limited of

120km/h and red vehicles are over speeded vehicles. Consider high volumes

of vehicle speeds data coming from road traffic IoT sensor in unbound of

sequence of streams in real-time. An important question can arose, what is the

main appropriate anomaly detection type (Point, Collective or Contextual) for

the stream data? This question will be answered in the next section with

detailed description of each anomaly type.

Chapter 1: Introduction

	 6	 	 	
	

Traffic		

Figure 1.1: Anomaly detection types for the time-series data
scenario in road traffic monitoring system.

In general, IoT devices are generating data in a form of streams; thus, data are

arriving in a sequence of streams with time stamped on. Consequently,

sequential analysis can be an appropriate solution to propose for data stream

anomaly. Consider three types of anomaly detection in figure 1.1. Scenario A

refers to an individual vehicle’s speed behaviour within the sequence of the

data streams, thus, a single event at t5 is considered as Point anomaly. In this

context, Point anomaly is considered as one of the most common approaches

in many application domains, while collective anomaly refers to collection of

unusual events from the data instances (set of points). A group of vehicles

with over speed behaviours of 140km/h from t4 to t6 are considered as

Collective anomaly in scenario B. In contract to these, Contextual anomaly is

classified based on the relations between the data instances Contextual and

behavioural attribute. The most important impact on Contextual anomaly is a

time of event occurrence [26]. Scenario C can be considered as Contextual

behaviour of the same vehicle at two different occasions t3 and t8, hence, the

same vehicle’s speed of 140km/h recorded with the same context at different

time metrics. The benefit of Contextual anomaly is to define the behaviour of

the event stream in a specific context. This is one of the most appropriate

detection types to detect the contexts of data behaviour in the time-series

Chapter 1: Introduction

	 7	 	 	
	

domain (Candela et al., 2009), (Duarte et al., 2016). Contextual anomaly can

be defined based on the data instances and time occurrence of the attributes.

In summary, these challenges are primarily motivated this investigation, and

according to the literature, existing research studies have disregards to

investigates in-depth to the levels of distributed Contextual anomaly

detection. The main goal of this study is to address and propose novel

distributed Contextual anomalous event stream detection, specifically,

detecting Contextual behaviours from large sequence of IoT sensor streams in

parallel.

Chapter 1: Introduction

	 8	 	 	
	

1.2 Research Questions

The primary aim of this thesis is to design a scalable Contextual anomaly

detection approach in real time to handle high rate of event streams from IoT

sensors. To achieve this aim, the following research questions are defined.

1. What are the main existing methods to detect anomalous events from

sequence of IoT sensors in real time?

2. Is it possible to detect anomaly dynamically regardless of streams

high rate and to what extent the proposed algorithm is capable to

address and handle changes over the stream distribution without

human interventions?

3. Can an algorithm detect the Contextual behaviour in the large

sequence of data streams based on using window partitions stream

data structure model?

4. On what scale detecting Contextual behaviours from high sequence

volumes of IoT sensors in parallel is possible?

5. How is it possible the proposed Contextual stream behaviour

detection method and algorithms to solve similar other real-time

application problems?

6. What are the appropriate methods to evaluate the performance of both

change detection and prediction error rates in the data stream?

Chapter 1: Introduction

	 9	 	 	
	

1.3 Research Contribution

1. To address the research aim and objectives, the following significant

contributions will be achieved. Studied and highlighted the potential

problems of existing anomaly detection will be highlight and studied

from distributed computing paradigm prospective.

2. This research identifies the event stream problem, defines and designs

novel Contextual Anomaly CA model to detect unusual event in the

different context.

3. Designs novel window algorithms to partitioning high volumes of

event streams into several event partitioning to protect event streams

from changes and concept drift drawback.

4. Implements Contextual Event Stream Anomaly (CESA) algorithm

to detect changes and Contextual behaviour from large sequence of

IoT sensor stream based on DSPE data structure model.

5. Designs new Distributed Contextual Anomaly Detection (DCAD)

Framework to address scalability data anomaly constraints with a

comparison result of centralised and decentralised performance

results.

6. Analyse and evaluated the experimental results for proposed

algorithms based on several evaluation metrics.

In summary, this thesis flows from theoretical to experimental perspective.

First, anomaly detection can be studied as a unique approach to detect

anomalous events from IoT sensor stream in real time. This can be achieved

by designing a new Contextual anomaly detection method based on the high

number of scoring contexts in parallel per each window partitioning, since

this approach is particularly absented in the existing solutions. Second, the

proposed distributed method will be able to handle high throughput of event

streams in real time with low processing time. Third, the evaluation metrics

Chapter 1: Introduction

	 10	 	 	
	

will measure the accuracy of the proposed algorithm, which is based on the

estimation of the scoring rate and algorithm’s performances among the

predicting error rates. The proposed algorithm and accuracy of the

computational results are critically concerned to validate the algorithm

performance. A detailed description and results of evaluation metrics are

presented in (Section 5.6 and 5.7).

Chapter 1: Introduction

	 11	 	 	
	

1.4 List of Publications

The main research contributions of this thesis are based on the following

peer-reviewed publications. The publications are based on the theoretical and

experimental study of big sensor stream anomaly detection in real time.

Paper I: Amen, B., & Lu, J., Sketch of Big Data Real Time Analytics Model,

The Fifth International Conference on Advances in Information Mining and

Management (IMMM), ISSN: 2326-9332, ISBN: 978-1-61208-415-2.

Brussels, Belgium, June 21-26, 2015.

Paper II: Amen, B., Antoniou, G., Holmes, V., Tachmazidis, I. Distributed

Contextual Event Stream Detection. 30th International Conference on

Scientific and Statistical Database Management. Bolzano-Bozen, Italy, July 9

- 11, 2018.

Paper III: Amen, B., Antoniou, G.

A Theoretical Study of Anomaly Detection in Big Data Distributed Static

and Stream Analytics . 20th International Conferences on High Performance

Computing and Communications (HPCC), the (HPCC-2018), Exeter, UK, 28-

30 June 2018.

Paper IV: Amen, B., Antoniou, G., An efficient Approach to Detect Big IoT

Contextual Event Stream Anomaly Real time (2018).

Chapter 1: Introduction

	 12	 	 	
	

1.5 Thesis Structure

This thesis is organised into five chapters as follows.

§ Chapter 2 covers research study literature for three domains of anomaly

detection, stream mining and distributed data processing in parallel. First

section discusses anomaly detection methods, second section describes

anomaly detection in streaming domain including stream definition, and

stream data processing structure model, and the third core section in this

chapter is discussed the existing related works of anomaly detection

methods in parallel.

§ Chapter 3 establishes theoretical foundation of the event streams problem

definitions with proposed novel distributed event stream partitioning

design methods. The distributed partitioning method is mainly based on

the window partitioning technique with designed Contextual Event

Stream Anomaly (CESA) algorithm.

§ Chapter 4 describes designed phases of anomaly detection framework of

Distributed Contextual Anomaly Detection (DCAD) and its architecture

to address two main research problem constraints of stream detection and

scalability of high throughput events in real time.

§ Chapter 5 covers the experimental performed results and evaluation for

the proposed algorithms based on two IoT case studies to estimate the

accuracy, effectiveness, and scalability of proposed the DCAD.

§ Chapter 7 provides the thesis’s conclusion with the summary of the problem, discussion

of research limitations, contribution and implantations, including the experimental

research results and overview of the future work opportunities

	 13	 	 	
	

Chapter 2: Anomaly Detection: Background and Related Work

	 14	 	 	
	

2.Chapter 2

Anomaly Detection: Background and Related Work

This chapter describes the research background and distributed anomaly

detection research related works that are relevant to this thesis with focusing on

three research domains; anomaly detection, data stream mining, distributed and

parallel processing concepts. Section 2.1 describes an overview of traditional

anomaly with driven characteristics to understand the concept of the problem.

Since most of IoT data is arriving in a form of stream formats, detecting

anomalous event from streaming data in real time is becoming a challenging

task anomaly, thus, Section 2.2 describes the concepts of anomaly in data

stream mining with stream notations, characteristics, model and processing

techniques. Additionally, due to the lack of centralised based anomaly

detection processing, decentralised and distributed is another research

challenge to be concerned, about; Section 2.3 describes parallel and distributed

computing methods in relation to high throughput (scalability) with low-

latency and real time response challenging concerns. Section 2.4 discusses and

covers anomaly detection related works in the area of parallel and distributed

computing from this domain prospective; Information Theoretic-based,

Statistical-based, Classification-based, Clustering-based, Density-based,

Distance-based, and Online-based.

Chapter 2: Anomaly Detection: Background and Related Work

	 15	 	 	
	

2.1. Anomaly Detection Overview

2.1.1. Anomaly Definitions

The term of “anomaly” is differed between one discipline to another,

importantly, outlier, anomaly, and novelty terminology can be correlated, but

in practice they are different. A formal definition of such concept is depending

on the detection method in each application domain. For example, in statistical

analysis, data is considered to be fitted into a normal model and outlier refers

to those data which are distinct from the proposed model (Aggarwal, 2016),

while the normal behaviour is based on predefined notion of normal objects in

the dataset. Faria et al. (2013), Faria et al. (2016), and Schneider, Ertel et al.

(2016) argues that both anomaly and outlier have the same definitions in terms

of dissimilar pattern or anomalous behaviour in the data. Similarly, in data

mining, outlier refers to anomalous pattern in the dataset compared to the

remaining data (Zhang, 2013). Consequently, Beigi, Chang et al. (2011)

explained that outlier possibly refers to a noise or irrelevant system behaviour,

while noise could be due to network failure or reading measurement errors.

Similarly, Aggarwal (2016) and Zhang (2013) argued that the difference

between noise and outlier, and agreed on that noise is a weak type of outlier. In

(Yang, Meratnia et al.. 2010) defined the noise as a potential source of outlier

which possibly occurs due to faults in the sensors.

In network security, anomaly refers to intrusion detection, while such

behaviour refers to fraud detection in financial sectors (Amen & Lu, 2015;

Candela et al., 2009; Grosse & Turin, 2012). To conclude this, according to the

literature definitions, it can be argued that outlier is more related to unusual

pattern or behaviour in the static data; on the contrary, anomaly can be referred

to an anomalous event in dynamic data (stream). Importantly, high score output

results of anomaly rate are more achievable rather than the outlier result in the

Chapter 2: Anomaly Detection: Background and Related Work

	 16	 	 	
	

majority of the applications, this is due to the clear understanding of anomaly

objectives in each application domain as described in Section 2.1.

2.1.2. Anomaly Detection Characteristics

Anomaly detection from static data analysis is mainly can be learnt on offline

as described in (Chandola, Banerjee et al., 2009). Similarly, the literature

survey of outlier, novelty, change, and anomaly detections for temporal data

(e.g., spatial-temporal data, data streams, time-series data, distributed data, and

network data) are presented in (Chandola, Banerjee et al., 2012; OReilly et al.,

2014 ; Yang, Meratnia et al., 2010; Zhang, 2013). According to these studies,

anomaly detection for both static and streaming data is primarily based on a

number of common facts as described in below.

i. Data Domain: one of the primary challenging task in anomaly

detection is to define a data type in order to be able to provide answers

to the problem during the data analysis or prediction. As described in

Section 2.1, the nature of data type from one application to another is

different, and data can be from collection of data instances (e.g. objects,

events, records, vectors, patterns, observations), where every instance

perhaps includes a number of attributes (categorical, binary or

continuous). In addition to these, the input data can be univariate

(single attribute) or multivariate (multi attributes).

ii. Anomaly Type: in general anomaly is categorised into three types of

Point, Collective and Contextual. Point anomaly refers to an individual

data instance behaviour (single point) compared to the rest of the other

data instance behaviours. Point anomaly is one of the most common

detection type in various applications such as in credit card fraud

detection (Van Vlasselaer, 2015), weather forecast prediction (Erfani et

al., 2016), network intrusion detection (García-Teodoro et al., 2009).

The literature study of this type of anomaly is very broad, specifically,

Chapter 2: Anomaly Detection: Background and Related Work

	 17	 	 	
	

in statistical data analysis, pattern recognition, machine learning, and

data mining. These disciplines are mainly based on addressing

classification and clustering problems (Beigi, Chang et al., 2011; Pham,

Venkatesh et al., 2012). On the other hand, Collective anomaly refers to

a collection of unusual events or behaviours from the data instances (set

of points). However, these behaviours can be grouped into clusters

based on similarly behaviours in unsupervised learning (e.g., machine

learning). This can be achieved by using a number of techniques such

as Markov Model to detect subsequence probability of the data and

label the data instances as anomaly, and similarity distance metrics (Ma

et al., 2016). For example, Ye and Li (2017) proposed Collective

anomaly to detect unusual behaviours over the data streams with similar

concept. Similar approach is used for sensor network detections by (Ma

et al., 2016), for social network detections by (Akcora, et al., 2014;

Ferrari & Kantarcioglu, 2014), and for multiple spatial temporal

detections by (Zheng et al., 2015). Alternatively, Hidden Markov

Model (HMM) is another appropriate model to detect subsequence

probability of the data and label the data instances as anomaly (Zheng

et al., 2015). Collective anomaly approach is proposed in various

application domains to detect a group of dissimilar data behaviours

including; Ye and Li (2017) proposed Collective method to detect a

group of sensor network behaviours, this method is also advocated for

social network behaviours in (Akcora et al., 2014; Ferrari, &

Kantarcioglu, 2014), and for multiple spatial temporal detections in

(Zheng et al., 2015).

Lastly, Contextual anomaly is associated with the relations between

both data instance’s Contextual and attributes since the most important

impact on Contextual anomaly is the time of event occurrence (Gupta et

al., 2014). For example, consider monitoring conference room normal

temperature degree as depicted in figure 2.1, On the one hand, the room

temperature is 26 °C at t1 when the room is occupied, while similar

Chapter 2: Anomaly Detection: Background and Related Work

	 18	 	 	
	

Figure 2.1: Contextual anomaly for the conference room temperature
scenario.

temperature degree at t1 in midnight is considered as Contextual

behaviour, this is due to the fact that similar behaviour occurs in the

different contexts with different attribute value. In finance and banking

industry, Contextual anomaly is associated with customer’s spending

behaviour, however, these limitations are based on the bank’s spending

credited threshold per account holder. For example, spending large

amount of money (e.g., $1000) at Christmas is considered as normal

behaviour, while similar spending behaviour in April is concerned as an

unusual event (anomaly) (Van Vlasselaer, 2015).

Contextual anomaly is proposed to predict stock market shares

(Golmohammadi & Zaiane, 2015), social networks behaviours between

different group of users (Akcora et al., 2014), sensor network pattern

detection (Hayes & Capretz, 2015), text data and semantic analysis

(Mahapatra et al., 2012). Importantly, Contextual anomaly can also be

used for online shopping customer’s behaviours; for example, customer’s

shopping behaviours can be changed from one season to another within

the similar spending range, but with different interest (context) (Jiang et

al., 2014).

Chapter 2: Anomaly Detection: Background and Related Work

	 19	 	 	
	

Anomaly detection types are combined methods (e.g. Point and

Contextual, or Collective and Contextual) in a number of research studies

to address and discover different research problems. For example, Mirsky

et al. (2017) combined both Point and Contextual anomalies based on

using pcStream algorithm to protect user’s mobiles from malicious

activities. Similarly, in (Hayes and Capretz, 2015) Point and Contextual

anomalies have been combined to detect faults from high volume of

sensor networks data. Yexi, J, (2014) proposed Contextual and Collective

anomalies to detect unusual behaviours of computer clusters memory

consumption behaviour.

iii. Output Label: the output of anomaly results is either based on label or

score results. The result techniques are based on the proposed anomaly

detection algorithms (e.g., supervised, unsupervised or semi-

supervised), specifically during the learning process for training of a

model (Faria et al., 2016), prior knowledge of the data behaviour is

required to be known. A significant human effort is required to propose

manual labelling or obtaining data labelling for the data training in

some of the anomaly detection approaches. For example, consider

labelling 1 millions of data instances manually is believed to be time

consuming, complex, and very expensive procedure (Chandola,

Banerjee et al., 2009). As data stream is changing over the time and

labelling data stream is impractical in most real time situation. On the

other hand, scoring output refers to the assigning an anomaly score, for

example, to the sequence of data instances or to the window partitions

and such approach is described in (Section 3.8). There is extensive

literature and research of output scoring techniques over sequence of

data in (Chandola, Banerjee et al., 2009; Chandola, Banerjee et al.

2012; Zhang, 2013).

In summary, the aforementioned of anomaly overview is mainly based on the

statistical data analysis point of view, in contrast to anomaly detection in non-

Chapter 2: Anomaly Detection: Background and Related Work

	 20	 	 	
	

stationary data where the data in form of stream is significantly different. In

dynamic situation, anomaly is required to be detected in real time and the

learning processing can be considered on online. A detailed description of data

stream, stream models, stream processing, and anomaly detection in streaming

are described in the next sections.

Chapter 2: Anomaly Detection: Background and Related Work

	 21	 	 	
	

2.2. Anomaly Detection in Data Stream Analytics

2.2.1. Stream Definition

A formal definition of stream is described by Muthukrishnan (2005) as;

“a sequence of digitally encoded signals used to represent information in
transmission”.

Streams are generating at very high rate by diverse applications from IoT

sensors, online transactions, traffic networks, stock market, online web clicks,

medical records, manufacturing machines, and social media (Golmohammadi

& Zaiane, 2015) .

2.2.2. Data Stream Model

Stream model is defined as logical formula of the stream data structure and

stream computational model is one of the most common models to represents

streaming data format (Erfani et al., 2016).

Definition 1: data stream S refers to stream with unbounded of items/elements,

in contrast to static data; data streams are infinite and arrive at a very high rate.

As denoted in Equation 2.1, S1 refers to the first instance of the stream while

each stream instance consists of tuple which compromises with a timestamp

(e.g., (s1, t1))

S = {S1, S2, S3, …,} (2.1)

Definition 2: Data stream is potentially infinite (N→∞) and completed data

stream is impractical to be stored neither on memory nor disk due to the high

rate and size of the streams. For such reason, data streams can be divided into

sub-streams of tuples as denoted in Equation 2.2.

 Si = {(s1, t1), (s2, t2), …. (sn, tn)} (2.2)

Chapter 2: Anomaly Detection: Background and Related Work

	 22	 	 	
	

Since Si consists of an unbounded sequence of tuples (s, t) and s refers to

individual data instance arrived at time t. Accordingly, tuple is associated with

either implicit or explicit timestamps t; while both categories are depending on

the application underline assumption where the data stream is created from or

arrive into the system. The implicit timestamp refers to arrive time of the tuples

as they entered into the system (Tran, Gaber et al., 2014). However, the

implicit timestamp can be added to an arriving tuple or if the timestamps are

missing. In this context, such problem can be addressed with time-based

windowing mechanism (See Section 3.4). On the contrary, explicit timestamp

refers to the embedded timestamp to the data sources when the tuple is created

by the real-world systems (Babcock et al., 2002). The explicit timestamp can

be used to re-order of the data stream tuples into a sequence of ordered

timestamps. The main disadvantage of explicit is correct ordering the

timestamps from the transmission system; for example, tuple t2 could possibly

arrive before tuple t1. A details comparison of timestamps detail is described in

(Chaudhry, 2005).

In IoT applications, sensor data can be modelled and measured as a sequence

of streams and they can be considered as time-series data. The reading value

and time-series can be correlated in the sequential data analysis; thus, they can

be modelled as key-value pairs of tuple (si, ti). In the real-world applications,

sequence data can be either discrete or continuous (time-series) (Chandola,

Banerjee et al., 2012). In this situation, the IoT data stream is considered as

continued data instance with timestamps. Aggarwal (2007), Amini (2013),

Bifet (2009), Ma et al. (2016), and Muthukrishnan (2005) all agreed on the

three fundamental requirements of data stream constraints in most of the

application domains according of Time, Space, and Accuracy (TSA) metrics.

§ Requirement 1: Data stream continuously arrives at a very high rate (e.g.,

millisecond). Thus, real time learning, and analysis is significantly

important, while such requirement is impossible in offline learning.

§ Requirement 2: Data stream generates in unbounded sequences of data

Chapter 2: Anomaly Detection: Background and Related Work

	 23	 	 	
	

instances (N→∞). Storing potentially infinite data streams on memory is

inappropriate. Thus, suggested solution is partitioning data streams into

sub streams with single-scan over the data stream.

§ Requirement 3: The nature of data stream changes over the time and

change occurs in data stream sequence, thus, proposing an appropriate and

novel computational method is a challenging task.

Furthermore, the problem of the data stream is broadly studied and investigated

by many research communities in neural networks, machine learning, data

stream mining, big data stream analytic, and social network analysis (Hu et al.,

2014; Philip Chen & Zhang, 2014). The next section describes the data

structure of stream model and stream formulations during the data stream

processing and mining.

2.2.3. Anomaly Detection in Streaming Data

In dynamic situations, data streams can be generated by various applications

and anomalous events possibly occur due to the result of either system

behaviour (e.g., sensor) or changes in nature of the data distribution. Thus,

sudden changes in the data records can be referred to the anomalous event and

such behaviour is considered as an event detection (Aggarwal, 2016). On the

other hand, in machine learning, specifically, in supervised learning, change is

referring to a novelty detection, mainly when the classifier is missed such

behaviour within the training process. In recent years, several studies have

investigated novelty detection problems based on offline and online approaches

for the multi-class label of data streams (Faria et al., 2016; Krawczyk et al.,

2017). In addition to this, change possibly occurs in several conditions such as

during data transformation, grouping data clusters, feature disappearing, class

label swaps, float probability distribution or data discards. Importantly, Gaber

et al., in (Tran, Gaber et al., 2014) descried Change detection as:

Chapter 2: Anomaly Detection: Background and Related Work

	 24	 	 	
	

“Change detection is the process of identifying differences in the state of an

object or phenomenon by observing it at different times or different locations in

space.”

On the other hand, gradual change in the data stream value and trend can be

related to the concept drift, this is based designed model with prior unknown

environment while according to Aggarwal (2016) change is not considered as

an anomaly and concept drift defined as in follows:

“Concept drift refers to a change in the class definitions over time or

underlying class (concept) of the data changing over time”.

A detailed review of concept drift with taxonomy of concept drift detection

methods in data streams is described in (Gama et al., 2014; Kuncheva, 2008).

In general, concept drift detection refers to the problem of supervised

classification learning scenario (Farid, Zhang et al., 2013). The proposed model

first designed based on prior knowledge of the data behaviour in advanced. For

example, the concept of the underline data stream at time t must be to the same

of the newly arriving data stream at t+1, in contrast, the assumption output is

considered to the concept drift problem (sudden change). The detection

behaviour is mainly depending on prior known of a use of a model based on

learning estimated training of the data samples. Consider an example of

network intrusion detection learning supervised algorithm (e.g., classification

learning) based on the decision tree structured design. The model is designed

based on human prediction of expertise to construct the model tree according

the estimated of all sudden change (e.g., suspicious activity) within arrived

traffic data streams.

Alternatively, the estimation can be considered according to the data

distribution behaviours in unsupervised behaviour as described in definition 3.

In general, proposed formal model can only be appropriate when a prior

knowledge of application objective behaviour is known, then the assumption of

detection model can be beneficial, however, these learning processed is mainly

Chapter 2: Anomaly Detection: Background and Related Work

	 25	 	 	
	

(2.3)

referred to data mining and machine learning techniques.

Definition 3: Assume two stream sets (S1, S2) are observed with given two

Probability distribution of (P1,P2) (Tao & Ozsu, 2009). The similarity of their

estimated distribution is based on their computed distance (e.g., Euclidian) of

𝑑𝑖𝑠𝑡 S1 , S2 = 𝑑𝑖𝑠𝑡 P1 ,P2 , as denoted in the following Equation 2.3.

𝒅𝒊𝒔𝒕 𝑷𝟏,𝑷𝟐 = (𝒑𝟏 𝒗𝒊 − (𝒑𝟐(𝒗𝒊))!
𝒏

𝒊

Where v(s) is the value of the data in both stream assumptions (S1, S2), this is

mainly based on a prior knowledge of the formal model construction. A

probability of each vi ∈ v(s) in S1 and S2 is based on the distance distribution in

p1 (vi) and p2 (vi), if the probability between P1 ≠ P2 is large, it assumes that the

distribution S is changed. However, assumption of prior knowledge of the

environment in many applications such as IoT data stream is always unknown

due to the nature of the data distribution and dynamic behaviours of the sensor

devices in real-time.

Furthermore, Gama (2013) characterised five types of change in data streams

as (e.g., sudden (A), incremental (B), gradual (C), recurring (D), and outlier

(E)) in figure 2.2. Consider five scenarios for the aforementioned concept of

change types; as in on online shopping, for example, customers interest

behaviour on a particular item can changes suddenly compared to their past

interests, such shift can be considered as sudden (Type A). In retailer industry,

loyalty card has a significant positive impact of the retailer’s investment over a

time; such progress change within the data refers to (Type B). The moment

when the UK Brexit result is announced, the news data stream over social

media, specifically, Twitter stream comments have become very popular,

suddenly after several months such news deliberately becomes to less

important, between since and now, Brexit news suddenly shifts and becomes

popular again mainly when new Brexit legislation formally is introduced. Thus,

Chapter 2: Anomaly Detection: Background and Related Work

	 26	 	 	
	

Figure 2.3: Concept drift detection types.

such behaviours are considered as a gradual change (Type C). A particular item

sale can be very popular for a specific period (e.g., for a month or a year), and

this item becomes less interesting to be purchased due to the market

computation, thus, such behaviour is considered as (Type D). Similarly,

property buyer’s interest is changed from time to time between in each season.

Lastly, in banking industry transaction fraud can be considered an

outlier/anomaly against single account holder (Type E).

In the last decade, several machine learning methods have been used to detect

change during the data stream distribution, for example, Ensemble classifiers

(Farid, Zhang et al., 2013) and Drift Detection Method (DDM) (Gama et al.,

2004), and Early Drift Detection Methods (EDDM) (Bifet et al., 2006). In

Farid, Zhang et al. (2013) and Kuncheva (2008) ensemble (multi-classifier)

method for both labelled and unlabelled data stream is proposed based on

window sizes and using a threshold parameter for addressing both concept drift

and change detection problems. Similarly, Kmieciak, and Stefanowski (2011)

proposed supervised learning approach based on constructing a decision tree

classifier to monitor probability distribution of a sudden change within the data

streams. A similar research in Yang and Fong (2015) presented single tree

learning classifier to detect concept drift detection within the data streams; this

learning technique is mainly depends on the behaviour of the tree

classification.

Chapter 2: Anomaly Detection: Background and Related Work

	 27	 	 	
	

According to Gama et al. (2014), in the data stream mining, changes possibly

occur mainly within online learning, specifically, in supervised learning, when

the relation between data instance input and object is found to be different. A

literature of change detection within data stream is provided by (Farid, Zhang

et al., 2013) and (Joao Gama, 2013) with a taxonomy of detection methods for

each (e.g. sequential contextual, control charts, and monitoring two

distributions) data analysis. Furthermore, the main difference between each

concept is that the former change detection refers to a labelled data (supervised

learning), while the later detection relates to both situations of labelled

(supervised learning) and unlabelled data (unsupervised learning) (Tran, Gaber

et al., 2014). However, the computational complexity of the former learning

approach is higher than the labelled data, due to the availability of both labelled

data.

Overall, these methods are appropriate techniques to detect change from the

data streams, while the main drawback of such methods are their capabilities

with specific data stream type, limited size of data streams, and their data

processing structured model since most of the existing detection methods are

designed to process and detect data centrally. Therefore, detecting change from

data stream in distributed and parallel computing can be an ideal solution to

overcome scalability concern and handle high throughput of the data.

Specifically, such approach can be managed with high levels of data

throughput and real time response. The aforementioned methods mainly focus

on either detecting changes in the nature of data distribution state in the

learning process, or model behaviour regardless of the scalability concerns of

sensor streams, medical streams, weather broadcast streams, network sensor

streams. However, data processing is a major concern, specifically, for

processing high volumes of data streams, thus, in recent years, many data

stream; management systems and distributed processing is developed to offer

continue queries with limited data source capabilities as described in the

following sections.

Chapter 2: Anomaly Detection: Background and Related Work

	 28	 	 	
	

2.2.4. Data Stream Collection Concept

Data stream can be collected through messaging system based on many-to-

many communication service. This is emerged to help collect and transfer

streams from many sources of (e.g., IoT sensors, web streams, and network

streams). A messaging system is primarily based on two models: point-to-point

and publish-subscribe (Tatbul, 2010). The former approach refers to direct

single point of messaging communication mechanism as depicted in figure 2.3.

The disadvantage of such approach is that only one message at the time from

the queue can be delivered to the specified destination. Thus, this approach is

incapable of, for example, delivering high volumes of data streams. Thus, high

throughput and scalability are critical concern in this approach due to the

system input and output communication data structured (Duarte et al., 2016;

Schneider et al., 2016).

Figure 2.3: Point-to-point messaging system.

The other approach of publish-subscribe of messaging delivery is an alternative

solution, and the communication service can be made through distribution of

multi brokers as depicted in figure 2.4. Publish-subscribe is also known as

producer and consumer; this approach is designed to deliver high volumes of

streams in parallel decentralised (Jacobsen, 2005). The advantage of the

distributed publish-subscribe system is the ability to integrate and delivery

multi-sources, flexibility in (pull-based, push-based), high-throughput of data

streams, and low latency communication response (Cugola and Margara,

2012). The main architecture of distributed publish-subscribe message consists

of three components.

Chapter 2: Anomaly Detection: Background and Related Work

	 29	 	 	
	

§ Publishers: The main task of the publisher is to produce related streams to

a subscriber in an asynchronous manner.

§ Brokers: A broker assigns streams into e.g., topic-based and content-based

partitions as shown in figure 2.4. The benefit of the broker is to filter

irrelevant events; this helps to reduce the network bandwidth in each node

and publish only requested interested streams to the subscribers.

§ Subscribers: A subscriber receives those messages from publishers based

on requested interested stream partition from topic name (e.g.,

Temperature).

In general, publish-subscribe messaging system is mainly comprised of topic-

based or content-based systems. The main role of the topic-based system is to

assign messages to a topic, where every topic is associated with the stream or

event topic names. This approach is connecting messages from producers to the

consumers based on the topics scheme as shown in figure 2.4. Filtering is one

of the main drawbacks in this approach, for this reason, it can be a critical

problem when the size of stream is scaled up, or when all streams are published

on to the given topic. Alternative solution is to emit only forwarded request

topic names to the subscriber.

Figure 2.4: Distributed stream collection architecture in Kafka.

Chapter 2: Anomaly Detection: Background and Related Work

	 30	 	 	
	

On the other hand, topic-based is proposed in many types of research problems

e.g., social media topic detection, crowded scenes feature topic detection (Ye

& Li, 2017), and linked stream data topic detection (Saleh et al., 2015). In

contrast to the previous approach, the content-based approach is more flexible

and it provides filtering function for each published stream (Plale, 2003), for

example, the consumer can only receive stream that has been filtered according

to the request from publisher. As another example, in a road traffic monitoring

situation, subscriber can register a query to receive all vehicles with over speed

events from national speed limited of e.g., 120km/h1 as denoted in 2.4.

{type = vehicle, speed > 120} (2.4)

The main advantage of such approach is that the flow of events to the

subscriber is motivated by event content instead of predefined groups or topics.

Thus, in the content-based approach, events can be filtered, and only

interesting events can be forwarded to the subscriber for processing and

computations, hence, this approach is also decreases overhead messages and

handles a load balance on each node as shown in figure 2.4.

Eugster et al. (2003) argues that publish-subscribe system can support loosely

coupled communication for a scalable system while, loosely coupled can be

evaluated based on three dimensions of, time, space, and flow. Time

decoupling is associated with the information of communication between

publishers and subscribers. Specifically, publisher can produces new messages

to subscriber even when the subscriber is disconnected; then, the data can be

delivered when the subscriber is recovered or reactivated. Such characteristic is

known as a dynamic and flexible communication in publish-subscribe

messaging systems. A prior knowledge of communication and identifications

of both publishers and subscribers are unknown, hence, such approach relates

1http://www.metric.org.uk/speed-limits Worldwide Highway Speed Limited Matrix

Chapter 2: Anomaly Detection: Background and Related Work

	 31	 	 	
	

to space decoupling. Lastly, synchronisation decoupling refers to the

interconnection communication between both publish-subscribe while such

communication is considered to be synchronised to the consumer.

Overall, there are several enterprise publisher-subscriber messaging systems

available including IBM MQ2, Java Message System JSM3, Active MQ4, and

Rabbit MQ5. These frameworks each have limitations and drawbacks in terms

of scalability in handling overloads of streams with overhead network

bandwidth, fault-tolerance, distributed architecture support, and guarantee in

delivering high volume of infinite data streams in real time. A detailed survey

of the most common and reliable distributed publish-subscribe messaging

system is described in Kreps (2011) and Tatbul (2010).

Alternative solution of distributed publish—subscribe messaging system is

proposed and developed by LinkedIn so-called Apache Kafka6. Kafka provides

anonymous many-to-many streaming messaging service delivery (Philip Chen

& Zhang, 2014). Apache Kafka7 is a scalable distributed messaging system

framework, which provides anonymous streams messaging delivery service in

real time and guarantees high throughput and low-latency of streams delivery.

Additionally, in the case of failure, Kafka has a replication strategy to replace

the node tasks with the other node in the cluster and guarantees its messages

delivery service. Kafka consists of three main components, producers, topics,

and consumers. The main task of each component and implementation is

described below.

Kafka also provides distributed messaging system approach with many features

that other system is incapable to provide, such as topic partitioning, high

throughput messages, and low-latency response. In recent years, Kafka has

2https://www.ibm.com/support/knowledgecenter/en/SSFKSJ_8.0.0/com.ibm.mq.pro.doc/q0048
70_.htm
3https://docs.oracle.com/javaee/6/tutorial/doc/bnceh.html
4http://activemq.apache.org/
5https://www.rabbitmq.com/
6https://kafka.apache.org/	
7https://kafka.apache.org/intro
	

Chapter 2: Anomaly Detection: Background and Related Work

	 32	 	 	
	

been widely proposed in many research problems to help with collecting and

aggregating streams in real time; for example, Esposito, Ficco et al. (2015)

proposed Kafka to aggregate data streams for the purpose of ontology

extraction. Similarly, Kreps (2011) proposed distributed publish-subscribe

framework to collect data logs with low latency performance in real time.

Accordingly, the main benefits of the publish-subscribe messaging system are

high-throughput and low latency (Kreps, 2011). In this context, publish-

subscribe paradigm is an appropriate and reliable messaging system to be

proposed in this thesis to aggregate large-scale of IoT sensor streams in real

time as described in (Section 2.2.4).

2.2.5. Data Stream Management System (DSMS)

Aggregating data stream in real time is a key requirement of data

processing. Data Stream Management System (DSMS) is one of the most

common techniques to handle dynamic data in form of continues data

stream. As data stream is emitted into the DSMS, it manages Continues

Query (CQ) processing over the data streams to address the velocity

problem. DSMS is capable to handle, process and retrieve data streams in

real time for only limited size of data similar to the Database Management

System (DBMS). A key challenging task in stream mining is to detect

anomalous event from continues data stream and to manage high volume of

data streams. Thus, the main purpose of stream management is to combine

the stream data into appropriate format before to extracting any knowledge

from them. DSMS offers a reliable and flexible mechanism to combine and

store streaming data locally and provides Continues Query (CQ) over the

arrived streams as can be seen in figure 2.5.

On the one hand, the advantage of CQ is that it can facilitate, handle, and

organise such high rate of continues data stream. On the other hand, the

disadvantage of DSMS is that, when the data size is scaled up, CQ can only

Chapter 2: Anomaly Detection: Background and Related Work

	 33	 	 	
	

capable to process limited data centrally. Thus, detecting anomalous event

throughout this technique is impractical due to the scalability of the stream.

Alternative solution is the reduction technique, which technique also can be

inappropriate, while streaming data is correlated, and event query is also

mainly has a temporal condition. Time plays an important role in event

detection, thus, conducting directly operator CQ on such high rate of data

stream could result in either workload, difficult in complexity of

computational result, hence, anomalous event possibly disappears or

becomes disregarded. On the other hand, DSMS mainly adapts inherent

timestamps to order data instances at the boundary in the Stream Processing

Engine (SPE) and such timestamp can be disappear during the processing

(Cugola and Margara, 2012). In recent years, new data stream structure

model, this so-called Data Stream Processing (DSP), this has emerged to

address such aforementioned drawbacks and provide low-latency response.

A detailed description of such approach is presented in (Section 2.2.1).

In the last decade, many data stream management systems are developed to

handle the scalability and other stream characteristics such as Extract-

Transform-Load (ETL), INFOMIX (Genesereth, Keller et al., 1997), Aurora

(Abadi et al., 2003), STREAM (Arasu et al., 2004), and TelegraphCQ

(Chandrasekaran, Cooper et al., 2003). The main drawbacks of such DSMS

frameworks are their data structure model and computational resource

limitation to deal with big data characteristics and the lack of supporting

distributed stream processing data structure model.

Chapter 2: Anomaly Detection: Background and Related Work

	 34	 	 	
	

Figure 2.7: Data stream management system architecture.
.

2.3. Distributed and Parallel Data Processing

The concept of parallelism is generic; however, in recent years, due to the

advances in technologies, the size of data has grown rapidly, and parallel

distributed methods have been proposed to address the scalability of high

volumes of the datasets. The main concept of distributed computing is to

interconnect several computers and make communications through Message

Passing (MP) to perform different tasks (Agarwal, Tayal et al., 2009). For

example, figure 2.6 shows centralised and distributed data processing and

mining approaches. The centralised approach (one the left) is associated

with standalone machine for stream processing and mining data that are

coming from IoT applications including weather broadcast and traffic

monitoring system. While the distributed approach (on the right) refers to

distributed stream processing and mining across number of computer nodes

in parallel. Importantly, one of the most important aspects of distributed

computing is a parallel execution to split large complex tasks and data into a

Chapter 2: Anomaly Detection: Background and Related Work

	 35	 	 	
	

smaller sub-tasks to handle and produce computational results (Rauber and

Rünger, 2013).

The concept of programming model in parallelism is associated with

dynamic data partitioning across computer nodes. In general, parallel and

distributed computing is a combination of parallel programming model

(e.g., MapReduce) and computer application framework (e.g., Apache

Hadoop8, and Spark)9 to perform distributed tasks and process high volume

of datasets over different commodity architecture of either computer cluster

or cloud computing (Esposito, Ficco et al., 2015). A term of parallelism

refers to a dynamic partitioning of the continuous query over the input of the

dataset based on one of the common programming methods (e.g., data and

task parallelisms).

Data parallelism: relates to the data partition mechanism, where datasets can

be divided into across of computer nodes. Map Reduce is one of the most

common types of data parallelism to partitions and computes high volume of

the dataset into a sub-set and partitioning them across different computer nodes

in parallel. Map Reduce is based on the input data in a batch format (static

format) in an offline mode and the process can be finished when the analyse

task is completed; in contrast, event streams are arriving continuously at a very

high rate where Map Reduce is incapable to handle such requirement of the

stream.

Task parallelism: refers to the process of execution tasks made by different

operators.

8http://hadoop.apache.org/
9https://spark.apache.org/	

Chapter 2: Anomaly Detection: Background and Related Work

	 36	 	 	
	

Figure 2.4: Centralised (left) and distributed data stream processing (right).

Big data is primarily based on two distributed data processing of batch (offline

learning and stream (online learning) analytics (Philip Chen & Zhang, 2014).

On the one hand, batch analytic is introduced to address the first (Volume) and

second (Variety) characteristics of big data for large-scale of static data

through offline learning. For example, many distributed storage systems such

as HDFS, Cassandra, HBase, Hive, and GFS frameworks have been developed

to run on Hadoop, and the aim of such frameworks are to address storage

limitations of centralised databases and to run computational operations on. In

addition to this, the batch approach is based on collecting; storing and

analysing static data, and anomaly detection can be implemented over stored

the static data regardless of considering the low-latency execution time and

online learning (stream detection in real time). On the contrary, detecting

potential events from streaming data requires online learning process and real

time prediction, this is due to the nature of the stream characteristics and

constraints as described in 2.2.2 (Karunaratne et al., 2017; Tran et al., 2014).

Chapter 2: Anomaly Detection: Background and Related Work

	 37	 	 	
	

Since big data phenomenon is emerged in 2012, many researchers have been

attempting to detect anomalies from large-scale of datasets including

(Mohiuddin Solaimani, 2014; Wang, Shen et al., 2015; Yan, Zhang et al.,

2015).

Theoretically, in batch analytic approach, anomaly detection refers to

predicting the number of outliers from the static data with multi-scan learning

approach over the datasets. In contrast to streaming data, anomaly refers to

event, which occurs in real time, and it requires to be detected according to the

same speed of the data stream as described in Sections 2.1, 2.2, and 2.3. On the

other hand, stream analytic has emerged to process high volumes of data

streams in real time with low-latency response and online learning prediction.

Such approach is primarily based on Distributed Stream Processing (DSP)

computational model to address big data three characteristics of (Volume),

(Variety), and (Velocity). The concept of DSP depends on the dynamic stream

partitioning, while all the partitioning mechanism is mainly based on two

parallelism models; data or task.

In distributed and parallel processing, fault-tolerance or disruption during the

learning execution in real time is a highly critical concern to guarantee

processing high throughput streams in any DSP. For such reason, a number of

Distributed Stream Processing Engines (DSPE) including Apache S410,

Flink11, and Storm12 have been developed to address the aforementioned

potential problems with similar stream processing data models. A detailed

comparison of these framework studies is available in Appendix 1.

10http://incubator.apache.org/projects/s4.html	
11https://flink.apache.org/index.html	
12http://storm.apache.org/index.html	

Chapter 2: Anomaly Detection: Background and Related Work

	 38	 	 	
	

2.3.1. Distributed Batch Data Processing

Pervious section is introduced a distributed data processing concept for

collecting and processing large-scale of datasets and streaming data. This

section describes the most common distributed batch data analytic

framework.

Apache Hadoop

Apache Hadoop is a distributed high throughput of batch data processing

engine based on Map Reduce programming models. MapReduce is one of

most reliable parallel programming model to analyse large-scale of the

dataset (Philip Chen & Zhang, 2014). The concept of MapReduce is based

on two common functions of maps and reduces. Map function sorts the

datasets and shuffles them over computer nodes in order to find a similar

matched pair from the data values, while reducing function is grouping the

data values with the same attribute values in parallel as shown in figure 2.7.

On the one hand, the main drawback of MapReduce is the re-execution

processing and learning tasks. The iteration process of computational result

is possible, thus, Map Reduce suffers from processing streaming data due to

the constraints as described in Section 2.1.2. On the other hand, MapReduce

has been proposed in many researches to address offline complex problems

across different scientific area including in bioinformatics (MapReBio3),

genetic data (MRscie1) engineering, and IoT (Hayes & Capretz, 2015;

Zhang et al., 2016), environmental data. Map-Reduce is proposed by (Ma,

Wu et al., 2015; Yan, Zhang et al., 2015) for sketching problem on Hadoop

cluster for the large-scale of datasets. Additionally, Map Reduce also

operated and deployed on different distributed computing architectures such

as cloud computing, high-performance computing (Karatepe & Zeydan,

2014), and grid computing (Bai, Wang et al., 2016).

Chapter 2: Anomaly Detection: Background and Related Work

	 39	 	 	
	

Figure 2.5: Map Reduce distributed programming model.

2.3.2. Distributed Stream Processing (DSP)

To evaluate the appropriate technique and method to detect anomalous event

over high volumes of data streams, a theoretical background behind stream and

distributed processing is required. Thus, understanding the concept of

distributed stream processing data structural model is required for the sensor

stream integration and pre-processing modules in Chapter 4 and 5.

Apache Storm

Apache Storm is a real time distributed stream processing framework with

the capability of processing one million stream tuples per second on a

standalone computer node (Storm, 2016). Similar to the Hadoop’s

MapReduce programming data model, Storm’s programming model is

based on three components of spout, bolt, and topology as shown in figure

2.8. Spout is known as a first entry point of Storm framework and the main

Chapter 2: Anomaly Detection: Background and Related Work

	 40	 	 	
	

tasks of each Spout is to read and convert data stream into a tuple data

format from messaging queue system like Kafka and Twitter API. A tuple is

a pair of ordered values in a form of <tuple, timestamp> data format. Bolt is

known as a computational unit of input streams; hence, bolt’s computational

functions are comprised of filter, join, aggregate, and communicates

operations to execute different tasks including read and write to the

database. The most important components of Storm’s are topology; a

topology can be viewed as graphical representation of stream programming

model linking operation units to each other through streams. The structure

of topology in Storm is made from spouts and bolts based on Direct Acyclic

Graph (DAG) node representation. As can be seen in figure 2.8, Storm

topology consists of Spout (Sp1 and Sp2) with (B1 to B5) bolts, through DAG

made of stream connection (e.g., red arrows).

Figure 2.6: Apache storm topology programming model.

The topology builder defines the topology structure, spout and bolt from two

streams, e.g., (stream1) and (stream2). The data stream then can be shuffled

and grouped them over the different computer nodes based on ShuffleGrouping

Chapter 2: Anomaly Detection: Background and Related Work

	 41	 	 	
	

mechanism. This type of grouping mechanism is one of the Storm’s streams

partitioning approach as described in the next section.

Storm has been implemented in many real time stream processing solutions

including for the Twitter streams (Akter & Wamba, 2016), weather stream

(McCreadie et al., 2013), IoT sensor streams (Kamburugamuve et al., 2015),

and Social Media streams (Gao et al., 2015). Similarly, to batch data

analytic, Storm has had a mayjor contribution in addressing many anomaly

detection reseach problems, for examples, in Hu et al. (2014), Storm is

proposed to detect anomaly from CPU data stream behaviour. This research

is more related to the unusual behaviour of machines rather than solving a

particular stream problem regardless of the data scalability concern. Other

research in (Gao et al., 2015) attempted to implements distributed stream

processing on cloud architecture to analyse social media streams. Such

approach is mainly attempted to analyse social media through clustering

algorithm, and the assumption of dynamic change in the data stream is

disregarded, when there is unclear process of data stream partitioning tasks.

However, Candela in (Candela et al., 2009, and Candela et al., 2012) argues

that clustering is an unappropriate approach to detect anomaly from large

data streams due to the fact that clustering tasks are more related to dividing

data into a number of clusters rather than the data behaviour.

The architecture of storm is based on distributed infrastructure, which is

made from Nimbus, Supervisor and Zookeeper13 clusters as shown in figure

2.9 While Nimbus represents as a master at node on the top of the

architecture with four Supervisor nodes and the connection between Nimbus

and Supervisor is made by Zookeeper cluster, which is acting as coordinator.

Processing latency between each storm component is playing an important

role, since number of workers in each node is depending on the

13https://zookeeper.apache.org/

Chapter 2: Anomaly Detection: Background and Related Work

	 42	 	 	
	

compatibility of each used computer node in terms of processing latency

and memory space.

Figure 2.7: Apache storm architecture.

A detailed description of Storm architecture components can be described as

follows.

i. Nimbus: Nimbus acts as Hadoop’s master architecture, and the main

task of Nimbus is to divide created topology’s script codes across each

computer nodes known as Supervisors. Nimbus assigns and manages

computational functional tasks, which can be performed by each

supervisor.

ii. Supervisor: A supervisor is known as a slave in Hadoop cluster

architecture. It manages Storm’s workers and the main task of

Supervisor is to execute logical functions based on assigned tasks by

the Nimbus, and to listen to the Zookeeper to excuse tasks from the

workers. A worker in Supervisor also refers to Java Virtual Machine

(JVM) and with constructed threats, which defines the tasks. Each

worker comprises a number of executors and tasks while each task

process data streams are implemented in spouts and bolts.

Chapter 2: Anomaly Detection: Background and Related Work

	 43	 	 	
	

iii. Zookeeper: Apache Zookeeper is a high performance distributed

coordinator, which maintains and monitors the health status of Storm

cluster and acknowledge received messages. Zookeeper offers

distributed data synchronisation mechanism, which is a critical concern

in distributed computing environment (Philip Chen & Zhang, 2014).

The main concept behind high volumes of stream processing is a stream

partitioning scheme in the DSP, hence, the aim of partitioning scheme is to

define how the data stream can be processed or to be partitioned in parallel.

In DSPE and framework such as Storm, partitioning task can be constructed

from number operators (e.g., bolt) to process and emit data streams into the

predefined destination. In this context, Storm offers various partitioning

mechanisms and the most four common grouping techniques as described in

below;

Shuffle Grouping: Data stream tasks can be shuffled randomly based on

round robin scheme similar to Map Reduce data structure shuffles. Figure

2.10 illustrates the number of stream events, which can be partitioned across

the number of workers while each work has been assigned to processes, e.g.,

an event. Streams can be processed equally, and the benefit of such

approach is load balancing to prevent network overhead.

Figure 2.8: Stream partitioning shuffle grouping mechanism.

Chapter 2: Anomaly Detection: Background and Related Work

	 44	 	 	
	

Filed Grouping: Streams can be controlled and grouped according to their

data value in each of their schema and stream tuple values. For example, a

similar value of tuples stream can be grouped in a jointed worker, for

example, vehicle speed value tuple {s1, “140”} can be grouped and joined

by the same worker2 in bolt2 as illustrated in figure 2.11.

Figure 2.9: Stream partitioning filed grouping mechanism.

All Grouping: Copy of data stream tuples can be replicated to all the other

bolts without partitioning them across different bolts as shown in figure

2.12. The disadvantage of this approach is overloaded data streams in each

bolt. A key benefit of all grouping is that events stream tuple values can be

all grouped by a specific e.g., Bolt 1.

Chapter 2: Anomaly Detection: Background and Related Work

	 45	 	 	
	

Figure 2.10: Stream partitioning all grouping mechanism.

Global Grouping: Global grouping is associated with joining all the data

stream tuples from other workers in Bolt 1 into an individual worker

(e.g.,W2) into bolt2. Computational results have been grouped them into a

specific work within e.g., Bolt2 as shown figure 2.13. This can be achieved

by defining an ID of each worker in every bolt within each supervisor node.

For example, all the events can from worker1 to worker3 can be combined

into worker2 in bollt2. This supports the redirecting tasks in the storm

topology and synchronisation between each worker, since the drawback of

this technique is that overhead of memory in each node is highly possible.

Figure 2.11: Stream partitioning global grouping mechanism.

Chapter 2: Anomaly Detection: Background and Related Work

	 46	 	 	
	

2.4. The Complexity of the Data Stream and Size

Since IoT data streams are generating rapidly in a form of streams and due to

the complexity of streams data structure, their data size can be very large and

noisy; thus, it is impractical to detect anomalous events through current

anomaly detection methods. Existing researches have mainly focused on

addressing anomaly problems through using dimensionality reductions such as

e.g., Sketches, Singular Value Decomposition (SVD) (Yan, Zhang et al., 2015),

Principal Component Analysis (PCA), and Independent Component Analysis

(ICA) (Muthukrishnan, 2005). The main drawback of dimensionality reduction

is that in some situations such as in time-series, data attributes and objects are

correlated with each other; for instance, temperature transmits several data

values (e.g., high or low). Similarly, in monitoring real-life applications such as

oil and gas leakage, fraud, and fire detections, data are generating in real time,

thus, decision making is highly recommended before, for example, event can

be irrelevant or dismissed. Thus, such decision making requires a robust data

processing and online learning method. The main drawback of reduction

techniques is that when the size of the data dynamically scales up, reduction

techniques are possibly leads to a missing some of the critical events or stream

tuple values can be missed. Therefore, in the process due to the high speed of

the data stream (Chakrabarti, Keogh et al., 2002). There is a survey of outlier

detection with low dimensional and high dimensional data reductions described

by (Zhang, 2013).

In practice, summarisation technique is an alternative solution to decrease the

data load and protect data from being lost. For example, Papadimitriou, Sun et

al. (2005) proposed Streaming Pattern Discovery in multiple Time-series

(SPIRIT) approach to summarise large collection of data streams. SPIRIT uses

less memory, and this approach is focused on data correlations to prevent

missing values from the high volume of data streams. SPIRIT approach is also

adaptable to detect both sudden and gradual changes within the data streams

Chapter 2: Anomaly Detection: Background and Related Work

	 47	 	 	
	

and to forecast an outlier. The main drawback of SPRIT is a data structured

design for centralised-based approach. In Parthasarathy, Ghoting et al. (2007)

argued that in centralised-based mining is incapable to handle high volume of

data streams, specifically, the computational result can take a very long

process, when real time computations and response are the main priority

concern in most streaming application domains. In the last decade, alternative

solution is proposed by (Erfani et al., 2016), to divide data streams into subsets

of streams (chunk/portion) and across distributed nodes to handle such

constraints as described in the previous section. On the other hand, data

streams are generating in real time or near to real time and arrive at very high

rate. Thus, data distribution changes over the time and monitoring newly

arrived data streams and predicting their behaviours in real time is a

challenging task.

2.5. Distributed Anomaly Detection Related Works

This section describes related anomaly detection methods, which have been

proposed in parallel and distributed computing.

2.5.1. Information Theoretic-Based Anomaly Detection Method

Anomaly detection in Information theoretic method refers to the information

content and observes with an impact of anomalies probabilities of according to

the different measures (Chandola, Banerjee et al., 2012). In (Wu and Wang,

2013) a new concept of weighted complet entropy based on data distribution

and attribute correlation proposed to measure the possibility of the anomaly

candidate in large-scale of categorical data. Rettig et al. (2015) proposed

another two information theoretic measures (Relative Entropy and Pearson

Correlation) to detect large-scale of cellular network data behaviours by

implementing such approach in parallel on Apache Spark. In this work, a

Chapter 2: Anomaly Detection: Background and Related Work

	 48	 	 	
	

gradual change based on the Relative Entropy measurement first is detected.

Then, Pearson Correlation and correlation metric have been conducted to

detect abrupt changes in the data.

In summary, information theoretic can be measured based on the entropy

method, this is more applicable for measures the approximation of categorical

or spatial data format rather than streaming data. For such reasons, these

measures are inappropriate for the streaming data, while the selection of such

measures mainly depends on the numbers of anomalies in the dataset.

2.5.2. Statistical-Based Anomaly Detection Method

The study of statistical anomaly detection method is broad, a detailed

description of such approaches is studied in (Chandola, Banerjee et al., 2009).

The statistical technique is mainly referring to the assumption of the

probability of normal model behaviour (training set) to determine if tested data

fit into the normal model or not. In general, the statistical anomaly detection

approach is based on parametric or non-parametric models and such

approaches are proposed by (Rettig et al., 2015; Young et al., 2014) to detect

the network intrusion behaviours. Summaries of both approaches are described

in the followings.

In terms of parametric model, given dataset D generated from distribution D

(θ) with unknown parameter θ, while θ can be estimated from available D to

find d ∈ D. In this context, Gaussian distribution is one of the most common

types of parameterised model in statistical-based method; example models are

including Regression Model, Bayesian Network (BS), Hidden Markov Model

(HMM), Gaussian Mixture Model (GMM). Consider a hypothesis of GMM for

the observation of X when this value can be generated by an infinite number of

Gaussian distributions. Every Gaussian Density N (X |πk, ∑k) is a module of a

mixture noted by mean πk, and covariance matrix ∑k. The computation of P

Chapter 2: Anomaly Detection: Background and Related Work

	 49	 	 	
	

(θk | x) initially defines and this value can be constructed from data sample x

based on Bayes Rule of probability P (θk | x) as computed in Equitation 3.1.

𝑃(𝜃𝑘|𝑥) = !!! ! !!)
! (!)

 (2.5)

Where πk can be a mixing coefficient of the module k, which computed based

on the probability of θk within x. Furthermore, in (Huang & Kasiviswanathan,

2015), autoregressive HMM is proposed to detect an unusual event in the data,

however, in (Rettig et al., 2015) argues that HMM execution time is very

demandable for training high volume of datasets due to the scalability size of

the dataset which is inpactical for the model to be fitted. In contrast, prior

knowledge of the data distribution in nonparametric is unknown. For example,

data with a stationary probability distribution P can be estimated from given

dataset D, while new data pointed x can be a new parameter and the relational

assumption can be approximate. There two possible solutions available to be

proposed to estimate the P based on the D or to decide if x is a random sample

from P. Nonparametric model includes Histogram and Kernel-based

approaches (Schneider et al., 2016; Su et al., 2007). Su in (Su et al., 2007),

Schneider in (Schneider et al., 2016), and Huang and Kasiviswanathan (Huang

& Kasiviswanathan, 2015) modified and optimized some of the nonparametric

method to discover abnormal behaviours of the data and measured the

proposed model based on the distribution of fixed data and micro-clusters.

Candela et al. (2009) argues that nonparametric Kernel-based techniques are

primarily capable when the assumption of the data generated from prior known

distribution; however, this technique is possibly complex and inappropriate for

the high dimensional volume of data streams. Detecting anomaly from data

streams without known prior knowledge of the data structure based on

nonparametric approach is described in (Beigi et al., 2011). The proposed data

stream model is limited and incapable to detect changes within the data

streams. Thus, the adaptability of the model is very critical in situation like

Chapter 2: Anomaly Detection: Background and Related Work

	 50	 	 	
	

weather prediction, while the model is required to incremental the learning

process to detect the change and return validate results. Similarly, in e-

commerce and online shopping recommendation items, the proposed model is

required to consider user’s purchasing interest behaviour and the model must

validates such unexpected change in the data distribution.

Aggarwal (2016) argues that the statistical methods computationally can be

accurate, while both parametric and nonparametric methods are impractical to

analyse large-scale of dataset. This is due to the validation results between

theorises and computational as major drawback in data mining. In situation of

anomaly detection, for example, labeling anomaly output manually may

require human expertise and time considering validating the proposed model.

To conclude, statistical models are incapable for online learning from dynamic

data and learning from streaming data is more related to an online learning

process.

2.5.3. Classification-Based Anomaly Detection Method

Classification method refers to supervised learning in machine learning and

anomaly detection technique is mainly based on training anomaly model to test

the output result of detection behaviours based on two learning assumptions of

normal and anomalous labels (Aggarwal 2007). Data label availability is a

major concern in supervised learning, as in some situation like streaming

application the data label is unknown. In the last decade to address such

problem, several classification models are proposed including Support Vector

Machine (SVM), SVM refers to one-class label classification model-based, the

learning process is based on divides the data into two sets of learning and

testing. For example, in (Perkins 2003) detected novel behaviours from data

streams based on one-class SVM classification. Similarly, OReilly et al. (2013)

proposed one-class SVM technique to reduce a computational complexity of

data sensors and detect outliers within each local node. As argued in

Chapter 2: Anomaly Detection: Background and Related Work

	 51	 	 	
	

(Schneider, Ertel et al., 2016), OC-SVM is incapable to assign large-scale of

labels for the model to learn and to detect anomaly due to the learning and

predicting anomaly result process by the model. Alternative solution is

proposed based on multi-class learning by (Hoens, Polikar et al., 2012) to

address such problem to training data from multi labelled normal classes.

The literature of anomaly detection in classification-based method is

extensively investigated. The proposed algorithms are categorised into tree-

based algorithms includes (e.g., bagging and boosting decision tree, random

forest, C4.5 decision tree and boosted stump), rule-based, Support Vector

Machine (SVM), and Neural Network (NN) (Chandola, Banerjee et al., 2009).

One of the most common proposed classification algorithm is decision tree.

The algorithm is easily interpreted data into a tree-based learning procedure,

this is based on hierarchical partitioning and each partition within the tree acts

as independent node. The tree procedure is based on a common assumption of

top-down approach learning where the tree develops from the root to the top.

2.5.4. Clustering-Based Anomaly Detection Method

Clustering-based method is one of alternative powerful meta-learning

technique to analyse high volumes of data created by advanced applications.

Clustering methods are referring to unsupervised learning. A taxonomy of the

Clustering-based algorithms are described in (Amini et al., 2014; Yang &

Fong, 2015) and (Fahad, Alshatri et al., 2014). These studies are categorised

Clustering based on partitioning methods, hierarchical methods, density-based

methods, grid-based methods, and model-based methods. In recent years,

clustering methods are widely studied and proposed in data stream mining

including to address problems across different application domains such as

micro-blogging (Lee & Chien, 2013), web analytics (Facca & Lanzi, 2005).

Chapter 2: Anomaly Detection: Background and Related Work

	 52	 	 	
	

In relation to the scalability concern, research on parallel and distributed

clustering algorithm in the literature is limited, specifically, for clustering data

streams. In (Zhang et al., 1997) proposed distributed clustering algorithm so-

called Balanced Iterative Reducing and Clustering using Hierarchies

(BIRICH). The main data structure for this algorithm is based on CF concept

and CF-tree method to summarise the data streams into CF data structure.

BRITCH splits leaf node of CF-tree and any CF vector with low density is

considered as outlier or anomaly. According to (Silva, Faria et al., 2013),

proposed data structure for storing the summary of the data stream is crucial to

handle memory and space constraints. While CF is constructed from d-

dimensional data point in the cluster. Splitting cluster {
!
} is based on i = 1,2,3,

....., N, and CF vector of the cluster, while the splitting criterion is mainly

depending on data structure triple of CF according to cluster measurements

from: centroid, radius, and diameter. This s based on according to the number

of data objects that are represents by N, liner sum of the data instance LS, with

the sum of squared data instance by SS.

The concept of CF is proposed in another distributed clustering algorithm so-

called DenStream by (Charu C. Aggarwal 2003). DenStream is a density-based

algorithm for clustering data stream, similar to BRITCH, DenStream proposes

CF data structure with two additional p-microclusters and o-microclusters

parameters. The algorithm is constructed based on, Tp DenStream and checks

for p-microclusters to find a possible outlier o-microclusters. A detailed

description of the DenStream algorithm extension is proposed by (Feng Cao

2006).

Another extension of CF structure is Clustream algorithm, it the data structure

is based on two concepts of (online and offline) approaches. First, a statistical

summary of the data stream is stored on member and maintained by

microclusters, and then the input summary of data as captured on the online

phase can be trained and tested on offline. The proposed algorithm computes

maximum microcluster boundary based on the standard deviation of mean

distance from the cluster centroid according to the factor f. As a consequence,

Chapter 2: Anomaly Detection: Background and Related Work

	 53	 	 	
	

for every new data stream instance, two nearest microclusters can be merged

based on their Euclidean distance measurement and each microcluster is

required to be stored from time to time.

In summary, according to Chandola, Banerjee et al. (2009), clustering-based

method is mainly appropriate to organise data into group of data instances

instead of finding or detecting anomalies. For example, in dynamic application

scenarios, it is inpractical to large-scale of store data stream and then analysis

the data on offline. Thus, such assumption is argued in (Erfani et al., 2016), as

less accurate computational assumption for stream data. For example, both

DenStream and Clustream distributed clustering algorithms are mainly based

on CF data structure; hence, these approaches are involving a data reduction.

While the main drawbacks of detecting anomaly from data stream is

dimensionality reduction. In (Schneider, Ertel et al., 2016) argued that one of

the disadvantage of clustering is controls of outlier score when the threshold

scoring range is defined, and the distance of k nearest neighborare becomes

very complex.

In (Liang Su 2007) distributed data stream outlier detection is proposed from

kernel density estimation technique based on dived-and-conquer method to

partitioning the data streams into micro-clusters. Similarly, another approach of

anomaly detection from data stream without prior knowledge of the data is

proposed by (Beigi, Chang et al., 2011). Similarly, Yu and Lan (2016)

proposed unsupervised anomaly detection technique based on matrix sketching

of summarising the data streams to monitor the proposed stream model

behaviour. According to (De Mencagli, 2016) sketching approach based on

Turnstile model, and such a model is an inappropriate model for time-series

data. In (Zhang, 2013) argues that increasing number of attributes in sketching

is complex O(N2) in terms of both space and time constraints in the

summarisation technique.

Alternative approach of distributed anomaly detection from large dataset based

on density technique is proposed by (Wang et al., 2015), and the main concept

of such approach influenced by data portioning grid-based method. A complete

Chapter 2: Anomaly Detection: Background and Related Work

	 54	 	 	
	

dataset is divided into d-dimensional space grids within master-slave

architecture, and distributed Local Outlier Factor (LOF) algorithm is

implemented locally on each node to estimate the density of each data tuples.

In (Zhang, 2013) argued that there is a lack of theoretical and practical

capabilities of LOF’s to discover and detect change in the data stream,

specifically, during the dimensionality reduction of the data. Another anomaly

detection method has been proposed by (Li Yu, 2016: Schneider, Ertel et al.,

2016), the detection method is mainly based on similarity-based technique, it

focuses on similarity of the test data based on similarity-based technique from

the training data. The main drawback of similarity-based is online learning

during in dynamic stream detection (Chandola, Banerjee et al., 2012).

Alternative solution of data stream anomaly detection is proposed by (Zhang,

Li et al., 2015), this approach is mainly based on Stream Projected Outlier

detector (SPOT). Another extension of SPOT algorithm is Adaptive (A-SPOT)

approach in (Zhang, Li et al., 2015). However, the main there is a research

limitation of ASPOT in terms of both theoretical, for example, anomaly type,

or definition of anomaly on online learning, and technique limitation in terms

of, e.g., data partition and detection strategy point of views.

Chapter Summary

This chapter is described a global understanding of anomaly detection,

specifically, anomaly detection in streaming application including describing

the relations and distinguish between anomaly over static data and streaming

data. According to Aggarwal (2016), several factors can significantly can

influence the results of anomaly detection as described in Section 2.1.2. Thus,

the main difference between previous related works and this thesis are: (a)

existing methods mainly focusing on capturing only individual streams from

e.g., IoT data sensor rather than multi-sensor streams while most of the existing

Chapter 2: Anomaly Detection: Background and Related Work

	 55	 	 	
	

anomaly methods have disregarded the main concept of stream (change in

nature of the stream); (b) this thesis aims to offer a novel Contextual anomaly

detecting method in the data stream domain, while Contextual anomaly

detection research method for the data stream is limited compared to the other

two most common researches of Point or Collective anomaly types.

Interestingly, the existing anomaly detection studies, and researches are mainly

focused on individual stream behaviour, rather than data stream’s context,

specifically in the IoT applications, data is correlated and capturing Contextual

behaviour is a new research challenging task. However, IoT data attributes are

correlated and it can be beneficial to detect the Contextual behaviour; of the

data rather than single behaviour, and (c) parallel anomaly detection is one of

the most promising methods to overcome the scalability problems and low-

latency computational response, specifically low detection computational

results, while such requirements have been disregarded in most of centralised

methods. In addition to these, distributed sensor network anomaly detection is

becoming an interesting research study to investigate and detect distributed

sensor behaviours. Some of these approaches may possibly achieve high

detecting performance based on proposing distributed stream processing

architecture, specifically, using big data state-of-the-art methods. Data

partitioning, algorithmic structure and change detection are major concern and

high demandable and ambiguous in some of these studies. Nonetheless, this

suggests that these methods are simultaneously satisfying some of the

requirements of outlier or anomaly detection regardless of anomalous event

detection over a large-scale of data streams in real time. In this concept, some

of these studies and related works have suggested that stream constraints, high

throughput, and low-latency computational results are major concern in

detecting high volumes of anomaly detection and they are required to be

considered during the data streaming mining and anomaly detection methods.

Since last decade, several machine learning and data mining algorithms have

been developed to address problems of anomaly detection through proposed of

offline learning methods, while these algorithms have mainly been designed to

Chapter 2: Anomaly Detection: Background and Related Work

	 56	 	 	
	

learning from the model behaviour and depends on the data reduction

techniques before the learning concepts applied to the data on the transit.

Chapter 2: Anomaly Detection: Background and Related Work

	 57	 	 	
	

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 58	 	 	
	

3.Chapter 3

Distributed Contextual Event Stream Problem Definitions
and Designs

In this chapter, we describe our definitions of event streams, Contextual

anomalous and the proposed novel model designed. A general stream

definitions and model notation is described in Section 3.1. Section 3.2

describes event stream problem definitions and notations. Section 3.3

highlights the process of high volumes of stream based on the stream structure

model along with window modelling concepts to handle and capture infinite

sequences of large-scale of events in real time. Section 3.4 proposes novel

designs of event stream window partitions methods. Contextual Event stream

anomalous definitions and design describes in Section 3.5 followed by

described change detection procedure from the event stream over the each

window partition in Section 3.6.

3.1. General Notation of Stream Definitions and Model

This section describes a global understanding of data stream basic notation,

distributed stream processing data structure model, describes the event stream

definitions, and notations of created event from IoT stream data sensors along

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 59	 	 	
	

with designed event stream model.

In dynamic applications, data stream structure is represented as unbounded

sequence of stream tuples and these tuples, which are mainly consisting of raw

attributes records when each tuple is represented in a form of 〈x, t〉 pairs with

formalised implicit or explicit timestamp t.

Definition 1 (Tuple): A list of data attribute/value pairs in particular data

schema of 𝑠𝑖, and t is a discrete of tuple time stamped.

Definition 2 (Time): Before processing any event streams, event stream data

can be structured in a time-series ordered format as t ∈ T where t time is a

discrete timestamp of arrived stream tuple. Particularly, the event streams can

be constructed from aggregating sensor streams within three time series

intervals.

Definition 3 (Data Stream): Data stream S is a sequence of timed tuples of

𝑆 = 𝑠!, 𝑡! ,… , 𝑠! , 𝑡! . Each tuple is ordered by timestamp t and can be

denoted as 𝑡1, 𝑡2,… , 𝑡𝑛 . Data stream tuple usually arrives at a very high rate,

while in most conditions it is difficult to process or store a complete size of the

data streams. Thus, alternative solution is to constructing window partitions

and capture event streams in each window slides as describes in (Section 3.3.1)

3.2. Event Stream Model

In some of the real-world applications, event is resented as a single symbol

without a data attribute, name or type such as , “S1” and “S2” , for two S1 → S2

signal sensors. In data driven paradigm, event is required to comprise data type

and value to construct an event from. Thus, in this thesis, former approach is

considered to design the novel model.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 60	 	 	
	

Definition 4 (Event Tuple): An event 𝑒 can be constructed from timed tuple

𝑒𝑖, 𝑡𝑖 while 𝑡𝑖 is associated with event time and each tuple is time stamped as

〈e, t〉 ∈ T .In this context, event model is defined as a finite sequence of 〈s, t, d 〉

tuples. This can be represented as name/type (s), timestamp (t), key- value (d) as

shown in figure 3.1. For example, consider road traffic data attribute as high-

speed value (event) and vehicle flows per event tuple 〈A, 8:10, {120,4}〉.

Figure 3.1: Unbounded sequence of event stream tuples.

Definition 5 (Event Streams): Event stream can be constructed any S

sequence of event streams where each of the event can be represented as

sequence of event instances or activities as denoted in Equation 3.1 and shown

in figure 3.2.

𝑺 = 〈 𝒆𝟏, 𝒆𝟐,… , 𝒆𝒏〉 (3.1)

In dynamic stream processing model, it is practical to identify events

automatically based on event’s Common Correlated Attribute (CCA) value pair

per each event stream tuples. Importantly, event can be considered as

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 61	 	 	
	

anomalous behaviour within a specific context.

Figure 3.2: Time events interval.

Definition 6 (Event Time Order): time ordering in stream processing plays a

significant role to differentiate between implicit and explicit timestamps of the

events as described in Section 2.1.2. In many real-world applications, several

events can occur together; thus, the composition ∪ of two events can be

constructed from the time-based sequence tuples in event stream processing as

denoted in Equation 3.2.

 𝑆𝑖 𝑒1,𝑒2 → 𝑒1, 𝑡1 ∧ 𝑒2, 𝑡2 ∧ 𝑡1 ≤ 𝑡2 ∧ 𝑒1,𝑒2 ∈ 𝑤 (3.2)

Overall, in both IoT application scenarios, event stream represents as a list of

finite sequences of events with timestamp where e defines any actions with

values and timestamps as defined in previous sections. The main benefit of

event time order is to identify the time of event, which has occurred, and

provide to semantically computational results. However, this can protect events

from been dismissed or disregarded during the processing time and mining

phases of distributed anomalous event detection.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 62	 	 	
	

Example 4: Consider events from S1 based on the definition 4, where each

event is constructed from tuple schema of 〈 s, t, d 〉 format. The first record

refers to event number in the S1 (e.g., e1), and timestamp of the arrived event

with the d value, which is associated with the vehicle speed and the number of

vehicle flows. The window partition can be used to collect the events from the

sensor streams within the specified time interval T (See Section 3.2 for window

partitioning concept). Figure 3.3 illustrates three events that have occurred in

S1, where each event record consists of event number, time and speed records

per vehicle. Suppose e1 is an example of event, which occurred at 7:00 am with

three vehicles’ exceeded speed values of 125km/h. The event partitioning is

mainly based on the CCA followed by the temporal order with tumble partition

as time progress.

Figure 3.3: Event elements schema for a sequence of event tuples.

3.3. High Volumes of Event Stream Processing

In modern applications such as network monitoring, weather broadcast, and

stock exchange, infinite streams continuously arrive at a very high rate. Thus, it

is impractical to extract events from infinite data streams due to the constraints

as described in Section 2.1.2 without prior knowledge of data format.

Anomalous event detection plays an important role in the real time prediction.

For example, road traffic officer is mainly interested in detects vehicle’s over

speed based on either higher (120km/h), or lower (60km/h) at a specific time

period (e.g. peak, off-peak) to predict the highway traffic congestion events.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 63	 	 	
	

Similarly, officer controller monitors room temperature degree and interested in

to detects unusual event or activates, assume room temperature is raised up to

26℃, which possibly is indicating an event due to either faulty sensor or the

room is under on fire. However, processing, handling, and predicting

anomalous events from large volumes of generated IoT sensor streams with a

high rate can be addressed in two proposed solutions as described in the next

sections.

i. Reduction Method: Approximation algorithm is one of the most common

techniques in the data stream mining and machine learning area to fulfill

the data stream constraints as described in Chapter 2. Many data stream

mining methods including classification, querying, and clustering, is using

a synopsis data construction and data reductionto to offer approximate

answers. This is implemented by selecting a subset of data streams through

micro-clusters (Charu C. Aggarwal, 2003), random sampling, (, 2007),

sketches (Hao Huang, 2015), and histograms (Brian Babcock, 2002). Such

solutions and techniques have been described in sections 2.3 and 2.4. The

disadvantage of data reduction technique is that when data continuously

arrive at a very high rate, intelligent actionable decisions are required

before the event stream is discarded or neglected during the reduction

technique. Therefore, such technique can be appropriate for the dataset in

static method rather than for the data streams (Pham, Venkatesh et al.,

2012).

ii. Window Method: a window method is a mechanism to extract relation

from infinite streams and divides data into finite slices to prevent overflow

of memory and concept drift (Kuncheva, 2008). For any window technique,

the size and number of windows are based on two different measurements

of time-based and count-based. Data sensor streams can be partitioned into

according to either their arriving time, for example, partitions stream tuples

within a specific time period (e.g., one-hour), or based on the number of

stream tuples per window partitioning size of w (e.g. w =10,000 tuples) as

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 64	 	 	
	

described in below. Importantly, this this method has been used in much

data stream processing and mining, however, the main benefit of window

partition is to control and handle change and data stream distribution. In

this context, the correct implementation of window methods to detect

anomalous event streams is a challenging task. The next sections are

describing window partitioning design with detail descriptions of each

window methods adaptation and justifies the most appropriate window

partition method to adapt.

3.4. Event Stream Processing Window Partitioning
Definitions and Designs

This section describes stream processing and window partitioning design to

handle the high rate of event streams and manage memory overflow of the

proposed computing resources.

Window Concept: Consider window W as constructed window partition from

incoming sensor streams in length of L and window size of δ where L can be

representing the length of streams based on either time-based or tuples as

count-based. The interchange of windows is mainly depending on the sliding

factor δ based on specified interval as depicted in figure 3.4. For example, 30

event streams can be partitioned into 3 sliding factors δ.

Time-based: Give timestamp t ∈ T as a temporal order of the event stream

tuples within specified time interval (e.g., minute, hours, days), where a time-

based window 𝑤𝑡 can be defined as partitioned window for arriving event

streams according to temporal order period as described in Equation 3.3. This

can be an ideal solution to partition event streams into time ordered events, for

example, capture anomalous events per every two-hours interval window

partition from the sequence of events list.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 65	 	 	
	

𝑤𝑡 = 〈𝑒1 ,𝑒2 ,𝑒3 ,𝑒𝑗−1 ,𝑒𝑗 〉 (3.3)

Count-based: Give n ∈ N, where n refers to the number of arrived event

stream tuples (e.g., 10,000 tuples) from the counted-based technique. The

notation of count-based can be described as in wn in Equation 3.4.

 𝑤𝑛 = 〈𝑒1 ,𝑒2 ,𝑒3 ,𝑒𝑛−1 ,𝑒𝑛 〉 (3.4)

In this context, the proposed window partitions can be managed and count the

number of event streams per window slides; for example, consider counting

number of high or low temperature degrees in each window partition. This is

significantly very important in many dynamic application domains to detect the

number of events per sliding windows. Overall, in this thesis, window

partitioning method is consideration is an appropriate solution to be adopted in

both traffic monitoring and temperature scenarios to handle high volume of

event streams from IoT sensors and to prevent change or concept drift within

the data stream distribution. As a result, it is more practical to compute event

stream in real time before such events disappear; consider an example of traffic

stream sensors that capture vehicles’ over speeds according to the speed

limitation or congestion speed in certain location. Importantly, the result of

event steam can be grouped into one of the aforementioned three windowing

methods. Window method is also implemented to handle data streams in many

streaming application domains, such as stock exchange or weather broadcast

(Tanbeer, Ahmed et al., 2009). The main advantage of window method is to

handle high volumes of the data stream in terms of scalabilty by partitioning

data streams into windows of slides based on sliding window, landmark

window, or tumbling window. A detailed description of each window method

and proposed examples are demonstrated in the next Sections 4.4.1., 4.4.2., and

4.4.3. respectively.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 66	 	 	
	

3.4.1. Sliding Window Definition

Sliding window is one of the most common methods and mechanisms to

handle incoming continuous events streams (Li and Lee, 2009). The data

structured concept of sliding window is primarily based on First-In-First-Out

(FIFO) technique. In the last decade, wide number of studies investigated on

the way of how to handle, learn, and monitor the data streams. These studies

mainly proposed sliding window method including FLOAR, and ADWIN

(Bifet et al., 2006). For example, in ADWIN algorithm the proposed sliding

window to keep contains the stream length from the most recent data streams

partition and discards the old data streams since the algorithm scans the

learning tasks.

The main advantage of sliding window is the guarantee of the data stream in

the memory space in the window size (Bifet, 2009). Additionally, sliding

window facilitates to monitor the data distribution and changes within the data

stream (Bifet 2009, and Brzezinski & Stefanowski, 2014). In order to handle

the high rate of streams, sliding window method is widely proposed in many

real life applications including stock exchange (Babcock, Datar et al., 2002),

fraud detection (Kuncheva, 2008), medical diagnose (Amineh Amini, 2014),

intrusion detection (Vu et al., 2014), network sensor nodes (Hoens, Polikar et

al., 2012), weather streams (Dariusz Brzezinski, 2014), and social media

streams (Hoens, Polikar et al., 2012). The main disadvantage of the sliding

window in IoT traffic anomalous event detection is the replication of the events

in each window this concept is more discussed in Example 1.

Sliding Window: consider sliding window of either wt or wn, where t refers to

the time interval of arrived streams and n stream tuples per window. The

window updates with bounded size when new event streams arrive until L = δ

is satisfied as described in Example 1 and figure 3.4.

Example 1: Suppose, n number of anomalous event streams for the last ten

minutes when t = 10 seconds as shown in figure 3.4. In this scenario, window

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 67	 	 	
	

w1 consists of e1 to e5 from t0 – t5, while w2 consists of e4 to e8 from t4 – t8

since, e4 and e5 events are belonging to both w1 and w2. In this context,

replication between two windows has occurred and this can have significant

impact on the computational results. Thus, this is a major drawback in real time

event stream detection when it is impractical to have duplicated events within

new constructed window; hence, when w2 is completed event e1, e2, and e3 will

be disregarded.

Figure 3.4: An example of event streams partition in sliding window.

3.4.2. Landmark Window Definition

Landmark window is known as fixed upper and lower bound window

approach; this scenario constructed window includes the complete n number of

events. Window starts from a particular point and expires when the size of the

window is completed. The window size monotonically increases as time

progresses and in this situation; it is impossible to discard any events due to the

predefined length of window size. For such reason, landmark window is

inappropriate to adopt for anomalous event stream processing due to the

increasing number of streams within each window; thus, this leads to memory

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 68	 	 	
	

overflown and highlighted as major drawback of the landmark window. On the

other hand, event replication can certainly occurs when the size of events

increases (Tanbeer, Ahmed et al., 2009).

Landmark window: Suppose landmark window W is constructed from W =

{w1, w2, w3, …, wn}, where w1 is as first constructed window which consists of

event streams while the current length of W progressively changes with new

incoming event streams within the landmark in w2, and w3 respectively.

Example 2: Assume sequence of event streams can be added into number of

windows as shown in figure 3.5. Where the first w1 starts with eight events, and

the state of the current window is changed since new event e9 is added into w2

and w3 progressively; hence, the size of window expands as time progresses,

particularly, when new event streams continuously arrive from the sensors. For

example, w1 starts from t1 – t8 and holds events from e1 to e8; similarly, window

w2 starts from the same point of w1with adding extra e9,and similar procedure is

repeated for w3 respectively. However, landmark window is one of the classical

window models. The main drawback of this method is incapability of handling

high volumes of event streams, due to expanding window size as new event

streams continuously arrive. Thus, this method is leading to allocated and

consumes more memory space and is time-consuming for the computational

results.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 69	 	 	
	

Figure 3.5: An example event stream partition in landmark window.

3.4.3. Tumbling Window Definition

Tumbling window is mainly relying on the size and segments of the event

streams, and the primary aim of this method is to define a specific time interval

before each window becomes full of its capacity. This can be computed by

number of event streams that arrive within one hour time interval and start new

tumbled window straight after the previous window tumble is becoming full

(Manish Gupta, 2014). It is more practical to use a small size of the window in

order to achieve accurate computational results as using larger size of tumbled

window is more difficult for the computational results due to the time

constraint per each window. An ideal solution is to monitor event stream states

within window partitions to control and handle each size of window partitions.

Importantly, the main advantage of tumbling window is the impossibilities of

event replications; for example, a specific event (e1) can only exist in one

window (e.g., w1) only. The disadvantage of tumble window is their

dependability on the size and sliding bounds of the predefined window;

however, such constraint can be addressed by monitoring the state of changes

per window partitions as described in Section 3.6.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 70	 	 	
	

Tumbling Window: Let 𝑤𝑡 be a tumbling window size of event streams

according to the satisfied conditions of L = δ window length. The window

size possibly can shift based on the predefined time, for example, after one

hour is terminated, a new tumbled window can be constructed. In this context,

event streams can be partitioned over n number of tumbling windows as

described in the next section.

Example 3: Let compute over speed stream tuples in road traffic scenario,

where event tuples can be grouped or paired according to each vehicle’s speed

values (tuples) within each tumbling partition based on either count –based or

time-based techniques. Figure 3.5 demonstrates the computing process for the

number of vehicles (over speed tuples) within each S1, S2, S3 every ten minutes.

Consider, window w1 consists of events from e1 to e5 from S3 and window w1

expired at t = 5 when w2 is constructed for new events partitions from e6 to e10.

Figure 3.6: An example of event stream partition in tumbling window.

Overall, since IoT streams are continually arrives at a very high rate, tumbling

window partition can be an appropriate solution to be adopted in order to

handle such high rate of streams and control the changes within event stream

data distributions. A detailed description of the designed method of window

partition is discussed in the following sections.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 71	 	 	
	

3.5. Event Stream Window Partitioning Design

As described in the previous sections, the main key challenging task is to select

appropriate method to process high volumes of sensor streams and detect

anomalous events dynamically. This can be achieved by designing and

implementing new event streams window partitions in parallel based on

distributed data stream structured model. In this context, event streams within

the predefined window can be computed in parallel across the number of

computer nodes according to their correlated stream tuple values. Thus, one of

the most appropriate window methods to propose and design event stream

partition is a tumbling window. This can be achieved by partitioning event

streams into number of equal constructing window length and computes the

final results per each window partition. The event streams per each window

partition can be grouped based on their correlated stream tuple values as

described in Section 2.2.2 and figure 3.6 where wi is i
th number of window

partition which is constructed from number of events within the event stream

time interval from t1, to t10.

Figure 3.7: A general design sample of tumbling windows partitions.

A detailed description of window partition notations and the structural design

model is descried in the following definition.

Definition 7 (Window Partitioning): The semantics of window partitioning

design wp can be based on the number of event stream tuples and divided

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 72	 	 	
	

events into a window-based model until the window condition length is

satisfied as denoted in Equation 3.5 where 𝑤! represents the number of

windows (e.g., w1, w2), p partition, and 𝑤! ⊆ 𝑆 while 𝑤! ∩ 𝑤! = ∅.

𝑆!" = 𝑤!
!!!,!

The main procedure of such concept is described in algorithm 1 and 2 for each

count or time-based method. The notation of S refers to the number of sensor

streams, k as ith length of window partitions from the event streams according

to either time-based or count-based partition and such parameters can be

defined as wt or wn in each algorithm.

In the event stream window partitioning scenario, count-based refers to the

number of events per window and it can be so-called event-based window and

denoted as wn. Since time-based is associated with the time interval length of

window partition directly constructed from the event streams, such approach

can be called event-time based windows and it can have denoted as wt. The

design and procedure of window partition for event stream is categorised in

two steps: defining window condition and computing events per window

partitions.

Algorithm 1 describes the first step to initialise window based from the

sequence of event stream according to a predefined window (lines 1-3). The

second step is directly constructed from continuous arrived event streams for

processing; the algorithm computes the n number of events per each window

partitions. Then the events can be grouped into a new window partition, for

example, constructing first window w1 from 1,000 event stream tuples (lines 6-

8). The algorithm checks for the size of window length, if the size of n event

stream is larger than current window, the new event stream can be assigned

into the next window, which could be w2 (line 10-12). The design of window

(3.5)

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 73	 	 	
	

partition in algorithm 1 is based on two steps; first, the Input Event Stream

Processing which is associated with arriving sequence of event streams from

the DSPE and second, the Output Event-based Windows, this is mainly refers

to the number of tumbling window partitioning over the sequence of event

streams from the event stream processing step as illustrated in figure 3.7.

Figure 3.8: Count-based event stream window partitions.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 74	 	 	
	

The design of time-based window partitioning can be constructed from

algorithm 2. In this context, algorithm 2 is first initialising the window

according to the arrival of the event streams at t where constructed new

window time-based partition can be denoted as wt (lines 1-3). The algorithm

checks for every event stream based on their ordered timestamp (lines 4-6); if

the events from within the window partition are is time-based, then such event

streams can be grouped into a number of time-based according to the time

ordered sequence of t1, t2,…, tn (lines 6-8). For example, event streams from t1,

t2, can be emitted to w1, w2, respectively.

Algorithm 1: Count-based Window Partition wp

Input: event stream tuple S

Output: count-based wn

1. Initialise window L

2. Initialise the complete condition

3. List <event stream tuples> window w= { };

4. foreach stream arrival tuple ei ∈ S do

5. w ← w ∪ { ei};

6. if |w| = count-based then

7. wn = window size (capture 1,000 event stream tuples)

8. window.add (n)

9. else

10. if n > wn length then

11. update w2←emit events to new window

12. return wn

13. else

14. end

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 75	 	 	
	

As showing in figure 3.9, the time-based event stream window partitions

procedure is organised in two steps; First, the input event stream processing

step is associated with the number of event streams that have arrived from S1,

S2, and S3 at between 7:00am to 24:00am hours. Second, the output of event-

time window step is associated with the number of window partitions according

to their constructed timestamps. In the later step, events have been partitioned

based on the predefined time-based; for example, window can be constructed

from the arrived events at between 7:00am to 9:00am at t1 for the first window

partitioning w1; similarly, new window w2 can be automatically constructed

from event streams at between 11:00am to 13:00am within t2 based on the time-

based sequence ordered as t1, t2, t3, t4, and t5 respectively. Event streams can be

classified and grouped based on the FieldGrouping mechanism in the DESP.

This technique is mainly depending on the correlated stream tuple value and

the size of time-based partitioned window; for example, S1 consists of e1 to e4

Algorithm 2: Time-based Window Partition wt

Input: event stream tuple S

Output: time-based wt

1. Initialise window L

2. Initialise the complete condition

3. List <event stream tuples> window w= { };

4. foreach stream arrival tuple ei ∈ S do

5. w ← w ∪ { ei};

6. if |w| = time-based then

7. w1 = t1 (event streams from e.g., 7:00-9:00)

8. wt = timestamp –t1

 else

9. end

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 76	 	 	
	

according to their time interval processing where each time t1, t2 is respectively

constructed. Importantly, the main challenging task and benefit of time-based

window partitioning is to process data streams as fast as achievable before

event streams are discarded. In this situation the learning computational output

result can be more accurate and achievable.

Figure 3.9: Time-based event stream window partitions.

3.6. Contextual Event Stream Definitions and Design

A normal technique of Contextual anomaly is to define the anomalous attribute

within a specific context as described in Section 2.1.2. Such behaviour is

referred to sequential analysis in other application domains when data is in a

static mode. Several studies including Yexi Jiang (2014) and Saleh, Hagedorn et

al. (2015) stated that Contextual anomaly is the most appropriate method to

detect Contextual behaviour of the data streams. Jiang (2014) argues that in

dynamic situations Contextual method is possibly produces less accurate

computational result from the data stream due to stream constraint and

characteristics. Thus, to deal with such problem, in this thesis, the window

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 77	 	 	
	

partitioning is regarded as a solution to address a speed rate of the data stream

and to discover changes in the stream.

Definition 8 (Contextual Event Stream): Event stream is anomalous in a

precise context, when such behaviour is not normal in a different context.

According to Angiulli, Fassetti (2010) and Chandola, Banerjee et al. (2012)

Contextual anomaly refers to the change in the context attributes position within

the event sequence. Consider sequence of event streams from S1, S2, and S3 are

arriving from road traffic sensors respectively; speed events less than < 60 km/h

at 7:00 am are considered as normal behaviour due to the traffics movement. On

the contrary, similar speed at midnight indicates an accident due to the traffic

speed is slowing down and can be considered a Contextual anomalous event.

Importantly, this concept is based on the change in the event behaviour while

the context of event attribute is remaining the same. In this thesis, such concept

is beneficial to design CA model and implements in Contextual Event Stream

Anomaly (CESA) algorithm over the event streams in real time. Consider road

traffic scenario when sequence of event streams which have been emitted into

DSPE and grouped into sequence of stream tuples according to their timestamps

t1, t2 as illustrated in figure 3.9 where the first tuple consists of event number,

event occurrence time and values. For example, e2 in S2 consists of 10 over

speed records of 140 km/h at t1 (8:45 am) and similar behaviour e2 in S2 at t2

(22:10 pm) consists of over speed values; hence, such over speed at midnight

can be considered as Contextual events which is due to an accident on the road

or suspicious activity.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 78	 	 	
	

Figure 3.10: Sequence of events with normal and contextual behaviours.

The Contextual Anomaly CA model can be denoted as a sequence of event

stream tuple partitions as described in the Equation (3.6) in the Contextual

Event Stream Anomaly (CESA) algorithm 3 where Si is the ith event stream from

the collection of sensor streams during window tumble partitions within (wt+1,

wt+2, ...,) and Vi is associated with the event stream scores of Si from AScore as

described in the next section.

 𝐶𝐴 = 𝑆𝑖, 𝑤𝑡+1,𝑤𝑡+2 ,… ,𝑉𝑖} (3.6)

Definition 9 (Contextual Event Score): The output of anomalous event is

associated with the result of event streams computed by using a scoring

technique for every event in S according to the CA in the sequence format. In

this situation, algorithm 3 reads event streams and the rule set r checks for the

CCA (See Section 3.3.2) to find any rule that covers the sample of S. The

probability of each given event stream v value is expected to be positive when

event attributes ei in Si is less than 𝑃 𝑒! = 𝑣 𝑟 < 0.5, in contrast, if the is

𝑃 𝑒! = 𝑣 𝑟 > 0.5 the value of the event stream score is expected to be a

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 79	 	 	
	

negative value. However, 𝑟 rule computes from the sequence of r and for the

purpose of Contextual behaviour. The AScore computation is denoted in

Equation 3.7 and 3.8.

𝐴𝑆𝑐𝑜𝑟𝑒 =
1
𝑑 log

𝑃 𝑒! = 𝑣 𝑟
1− 𝑃 𝑒! = 𝑣 𝑟

!

!!!!

 (3.7)

1
𝑑 log 𝑃 𝑒𝑖 = 𝑣 𝑟)− log 1−𝑃 𝑒𝑖 = 𝑣 𝑟

𝑑

𝑒𝑖=1
 (3.8)

A detailed description of the evaluation performance for AScore is presented in

Section 5.6. Algorithm 3, describes the Contextual Event Stream Anomaly

(CESA) process the idea of the rule set structure is used in many data stream

research studies including in Duarte, Gama et al. (2016).The algorithm starts

with an empty rule set 𝑟 = {}.When new event streams are partitioned by the

window in algorithm 1 and 2, CESA algorithm checks to find out if the event

stream is covered by CA model. For every event stream 𝑒! in S, each rule set is

required to be checked and computed based on the Equation (3.10) for α

changes in the event streams. If probability of any event stream value according

to the context attribute ei is changed, the rule set can be removed and the value

of event stream within the CA can be updated. On the other hand, to check the

accuracy of the CA, the algorithm will assign AScore [0,1] to each event stream

tuple in S, and the value of each sensor data S can be updated and nominates CA

based on the event context value in the sequence.

On the contrary, if ei is covered by the rule sets and not considered as

Contextual Anomaly CA, the PH test computes the error e based on the α

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 80	 	 	
	

magnitude of changes and updates the r. Thus, if any event stream ei is covered

by RS according to the CA the algorithm then returns Contextual Anomaly CA

values based on the predefined threshold. For example, in road traffic scenario,

the output of the CESA is either [0,1] where 0 is associated with speed event

during the normal hour at 10:00 am, and 1 as Contextual anomalous event at

23:00 pm. Such concept is based on the event stream context value (e.g., event

with similar speed as 120km/h at 10:00 am can be considered as a Contextual

event at midnight 23:00 pm).

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 81	 	 	
	

Algorithm 3: Contextual Event Stream Anomaly (CESA)

Input: Event Streams S

S: <e1, e2,..., >

Output: Contextual Events Stream

1. Init Rule Set RS = { }

2. CA ← 𝑒!covers by model using Eq. (4.11)

3. foreach event stream ei ∈S do

4. foreach rule r ∈ RS do

5. computes S using Eq. (4.10)

6. If α ← detected, then

7. remove r

8. update Vi get the value in CA

9. end

10. If no rule selected in RS then

11. update default RS

12. end

13. if AScore (ei) = λ score using Eq. (4.10) then

14. RS⃪ update AScore

15. end

16. if ei not covered by RS and ei is not in CA then

17. calculate prediction e

18. Test PH (e, λ)

19. end

20. else

21. update ei when RS match CA then

22. return CA= [0,1];

23. end if

24. end

25. end

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 82	 	 	
	

3.7. Event Stream Change Detection

Event stream is evolving from time to time; hence, it is impractical to assume

that event streams have the same probability of data distributions (Gama et al.,

2009). For example, if a sets of data streams in t1 and t2, timestamps are

different, and then this indicates the occurrence of a change within the sequence

of the event stream partitioning. One of the aims of this thesis is primarily to

handle and address distribution changes over the window partitioning methods.

In this context, the appropriate algorithm is required to incrementally adapt to

test newly arrived streams and to be able to compute the probability of event

stream behaviour in parallel. Thus, change detection method can be an

appropriate solution to monitor the event stream status over each window

partitioning.

In recent years, the problem of change detection has been studied intensively as

it has been recognized as one of the most common problems in the streaming

applications (Tran, Gaber et al., 2014). Since then, several studies have

attempted to address this problem; for example, (Kuncheva, 2008) proposed

supervised learning such as ensemble classifier to address change detection

problems over the data streams. Alternative meta-algorithm of measuring

change detection in the data streams based on non-parametric statistical distance

computation is proposed in (Daniel Kifer, 2004). Similarly, Farid, Zhang et al.

(2013) proposed adaptive ensemble classifier approach to predict a novel class

detection concept changes from sequence of infinite of data streams.

Change within sensor network is proposed by Tran, Gaber et al. (2014), and

according to this study, the most reliable method to detect and monitor change

over high volumes of the data stream is distributed processing which deploys

online incremental learning algorithm. On the contrary, it is impractical to

handle and detect changes from high volumes of data stream centrally; this is

due to the resource constraint and data structure or computational model. Yang

and Fong (2015) proposed single tree learning classifier to discover the changes

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 83	 	 	
	

from streams; however, this approach is primarily designed to address a specific

problem. For example, in supervised learning, the problem of model change or

update and novelty change over data stream is the most common problems

(Ikonomovska et al., 2010; Bondu & Boulle, 2011; Badarna & Wolff, 2014).

Similarly, in unsupervised learning, change detection has been studied to detect

data stream cluster’s behaviour (Vallim & De mello, 2014; Demšar & Bosnić,

2018).

In general, change in data stream occurs in two situations: first, during the

prediction model if the model is stable; otherwise data stream is deviated during

reconstructing of the model. Second, change possibly occurs during window’s

either being disjoined or its reconstruction when new event data stream arrives,

and the event stream value can be dissimilar in comparison to the pervious

window events. Assume the value of event e1 in (w1, t1) is (200km/h) which is

different from the similar event in (w2, t2) due to the change in the traffic speed

behaviour. In this situation, both conditions can be concerned due to the

uncertainty of the event streams from each window partitioning and model

prediction. The main drawback of change within window models are studied in

Tao and Ozsu (2009); while in dynamic situation, detecting change from the

event streams are challenging tasks. Thus, appropriate solution is to design

window change detection method based on partition window wp with time

interval ∆p, and monitor window wm with time interval ∆t. This can be achieved

by using wm which represents as a tumbling window and the result of window

partitioning can be presented in merged partition windows.

3.7.1. Window Change Detection Definition

In this section, a novel change detection design will be proposed based on the

number of unexpected event tuples in each partition window wp and such

concept is defined as follows.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 84	 	 	
	

Definition 10 (Window Change Detection): Let 𝑑: 𝑤!𝑎𝑛𝑑 𝑤! → ℝ be two

partitioning windows for two event streams from 𝑆! 𝑎𝑛𝑑 𝑆! in S, where d

associates with the dissimilarity between both partitioning 𝑤!𝑎𝑛𝑑 𝑤! .

In this context, changes can be quantified based on the dissimilarity of two

window partitioning. For example, consider dissimilarity distance d as

" 𝑖𝑓 𝑑 𝑤! ,𝑤! > 𝜀 ". The dissimilarity between two window partitioning can

be represented in 𝑤! 𝑒!, 𝑒!, 𝑒!, . . , 𝑒! and 𝑤! 𝑒!, 𝑒!, 𝑒!, . . , 𝑒! and change can

be expected when two window partitions are contains dissimilar event stream

tuples. Hence, this can be measured by the most common Euclidian distance

metric as denoted in Equation 3.9 where p is the associate with window

partitioning wp, and algorithm 4 describes the process of event change

detection.

𝑑 𝑤!,𝑤! = (𝑤!,𝑤!)!
!

!!!

Assume Si consists of a sequence of event streams < e1, e2, e3,…, en>. The

algorithm is first defining the event stream condition and begins with

constructed window from event streams, which are arriving according to their

timestamp 𝑡 , and the size of ith window partitioning. As new event emerges in

w2 and for each update the algorithm checks for the dissimilarity to see if d (w1,

w2) >𝛼𝑖. The selection of 𝛼𝑖 is depending on the distance length of each window

partitions, if length is d > 𝛼𝑖 larger, then the probability of false alarm is high

and new window can be constructed. In contrast, smaller change can be detected

in the distribution if several event stream behaviour is also dissimilar. The detail

description of window changes detection performance results and evaluation

metrics are described in Chapter 6. In data stream processing and mining, a key

strategy of window change detection is to match two window partitions (w1, w2)

and measure the change based on their distribution rates. Consider a problem of

change as null hypothesis of H0 compared with other hypothesis of H1 for two

(3.9)

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 85	 	 	
	

window partitions dissimilarity as shown in Equation 3.10 where 𝑑 𝑤! ,𝑤! is

the distance function which computes the dissimilarity of the (w1, w2) window

partitions

𝐻! 𝑑 𝑤1,𝑤2 ≤ 𝑤
𝐻! 𝑑 𝑤1,𝑤2 > 𝑤 (3.10)

In this situation, the assumption of change in each window partitions are

considered where each hypothesis can reflect on the dissimilarity of the window

partition based on the size of window partitions and timestamps of the event

streams.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 86	 	 	
	

Algorithm 4: Detect Change (S, D)

Input: S event stream

d: dissimilarity d*

1. Stage 1:

2. begin

3. 𝒇𝒐𝒓 𝑡1 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑤𝑖𝑛𝑑𝑜𝑤 do

4. w1,i ⃪ first wp

5. w2,i ⃪ second wp

6. end

7. Stage 2:

8. while 𝑛𝑜𝑡 𝑎𝑡 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑠𝑡𝑟𝑒𝑎𝑚 do

9. window w2,i by 1 event

10. If d (w1,i, w2,i) > αi then

11. t⃪ current time

12. Declare change at t1

13. Clear the windows and GOTO stage 1

14. else

15. Move w2,i to hold new events

16. end if

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 87	 	 	
	

3.7.2. Change Detection Standard Evaluation Measurement

The most common method to measure evolving the data streaming is described

in below.

First, consider two event streams are created from two sensor streams S, where

each S can be a stream with sequence of event stream tuples. Change possibly

occurs when the timestamps of two streams (St+1, St+2) are different according

to t1and t2 as denoted in Equation (3.11). This is due to dissimilarity of incoming

event stream value at t1 compared to the event stream values at t2.

 ∑S1 (t1) ≠ ∑S2 (t2) (3.11)

Second, consider a sequence of event streams e1, e2, . . ., en, in each window

partition constructed from timestamp t . To measure the rate of change over

such event streams, Page-Hinckley (PH) test is considered to be an appropriate

method; since the first assumption is depending on dissimilarly of sensor

behaviour and the accuracy of learning detecting is very low (Daniel Kifer

2004). Importantly, PH is relying on accumulated sum of a loss function error

for the sudden change based on using Gaussian signal. This validation is

realistic to propose and to measure event stream change detection. In this thesis,

PH is considered as an appropriate test validation method to monitor online

changes from the event stream sequence. Changes in event stream are common

and detection validation can be assumed according to the prediction error rate as

rule of 𝑒𝑡+1. PH is capable to monitor change from current event streams based

on predicted error rate and pervious event streams. Thus, the abnormalities

between such event streams tuples are can be considered as an error. The

computational error rate also is computed based on two loss functional

computation errors metrics of Mean Absolute Error (MAE) and Root Mean

Square Error (RMSE). The predicting error rate can be defined when the model

does not cover the rule set. Similar techniques have been used in (H. Mouss

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 88	 	 	
	

2004). This concept is based on testing sum of cumulative mT from the sum of

events <e1, e2, …,>, the sum of differences between the observed ei and their

mean can be set within time interval [1, t] and change is expected according to

Equations 3.12 and 3.13 where mT is associated with the maintaining of the

minimum test mT (mt, t = 1,. . ., T).

 𝑒𝑡 =
1
𝑡 𝑒𝑡

𝑡

𝑡=1
 (3.12)

 𝑚𝑇 − 1𝑇 𝑒𝑡− 𝑒𝑡− 𝛼
1

𝑡
 (3.13)

 T is associated with monitoring test for the number of event streams based on t

∈ T where α also refers to the change degree for every ei in t. The threshold

parameter λ can be set to observes mT ∈ [0, 1], in (e1, e2, . . ., en), and α can be

referred to the magnitude of changes when PH test computes the difference

between PHT = mT –MT. However, the λ depends on the main false change rate

prediction error. Hence, increased or decreased the false rate is mainly

depending on the predefined threshold over the event streams to test the change

detection.

Chapter 3: Distributed Contextual Event Stream Problem Definitions and
Designs

	 89	 	 	
	

Chapter Summary

This chapter has described the research problem and definitions of the event

stream based on the distributed stream processing data structure model and the

designed process of detecting high volumes of anomalous event detection from

unbounded sequence of sensor streams. Theoretically, processing and detecting

a high volume of event stream in real time is requires an appropriate method in

order to handle change within the event streams. In this situation, we defined

appropriate method to capture and partition unbounded sequence of event

streams into a number of window partitioning before the event stream is

evolved. Since we argued that data stream is dynamically changing, we

designed tumbling window partition as a most reliable and alternative solution

to handle the state of the event streams. The event streams from windows are

further processed to detect changes and recover from missing event stream

tuple. The event streams then are aggregated to detect Contextual behaviour

form the streams based on the anomalous event score rates. A detailed

implementation of described assumptions and method are demonstrated in the

next chapter.

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 90	 	 	
	

4. Chapter 4

Distributed Contextual Anomaly Detection (DCAD)

Contextual anomaly detection from sequence of unbounded event streams has

proven to be a new research challenging tasks to predict unexpected behaviour

of events in the different context. The complexity of the Contextual event

reflects on the robustness of the proposed method and algorithm. In this

chapter, we propose a novel and effective solution of distributed Contextual

anomaly detection method to identifies different Contextual behaviour of

events over the sequence of sensor streams. Section 4.1. demonstrates the

overview of DCAD method. Section 4.2. will address the implementation of

event stream collection module in the DCAD. The implementation of the

DCAD approach including parallelism concept is explained in Section 4.3. The

proposed DCAD architecture is described in 5.4. Section 5.5 is devoted to

distributed event stream detection in parallel.

4.1. An Overview of the DCAD

The proposed distributed Contextual anomalous detection is based on the

computational constraints and limitation as described in pervious Chapter 3.

Importantly, the main difference between existing anomaly detection and

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 91	 	 	
	

DCAD is that DCAD can be constructed from the number of stream modules

according to the divide-and-conquer approach based on three decomposed of

distributed modules; a) Event Stream Collection; b) Event Stream Processing;

and c) Contextual Anomaly Detection. The existing anomaly detection

methods are mainly considering centralised detection for data aggregation,

which is beyond the scope of high volumes of sensor event data streams

detection. This is due to the need of continuous update of the event stream

model online and unexpected change to the event streams. A detailed

description of each module is described as follows.

4.2. Distributed Contextual Event Stream Processing and
Detection

This section is describing the high throughput of Contextual event streams

processing, partitioning, and detection designed method. In this section, event

streams are representing as unbounded sequence of tuples. For example, figure

4.1 demonstrates the formats of unbounded sequence of events from two IoT

applications (Temperature and Speed), which have been, emitted form

distributed messaging system for the processing, partitioning, and detection.

Figure 4.1: Input event stream tuples.

After event streams have been aggregated from distributed messaging system,

then the distributed Contextual anomalous event stream topology is constructed

based on the Directed Acyclic graph (DAG) data structure model. In this

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 92	 	 	
	

context, DCAD is mainly decomposed of three main modules of pre-

processing, matching events and Contextual detection as depicts in figure 4.2

and Appendix 2.

Figure 4.2: Distributed Contextual Anomaly Detection (DCAD) based on DAG
model; Input (I), Pre-process (P), Matching Events (M), Contextual Anomaly
(C), Output (O).

Data subset division and task parallelisms are the two major solutions to handle

scalability concern in the field of machine learning and big data distributed

data processing. Importantly, distributed big data stream processing such as

Storm is one of the appropriate solution to handle both data and task

parallelism in a form of DAG data structure model. The main advantage of

Storm is it capability of processing over one million of data streams per second

and it capability of fault-tolerance communication discovery from failure.

Thus, event streams have been designed to be partitioned into a number

window to control the high rate of the streams based on one of the most

reliable window partition method and according to the most appropriate task

paralysis of FieldGrouping (). On the one hand, event streams can be divided

based on their tuple value and according to their similar field values. For

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 93	 	 	
	

example, tuples from same value can be emitted to the same Bolt in a round-

robin approach. This can be achieved by grouping event streams from (S1 = (e1,

e2, e3, , e4, e5) at between (7:00am to 9:00am) to the first window partition, and

second partition window to next constructed window partition at between

(9:00am to 11:00am) respectively.

Since high volumes of event streams arrive from distributed messaging system,

the main task of DCAD is to organise the sequence of event streams into an

appropriate format of tuples. For example, in Storm, Spout is known as first

entry point of the distributed stream processing and the main tasks of Spout is

to pull/ read event streams from the distributed messaging system such as

Kafka topic partitions, converts data source into a stream tuple, and then emits

them into the Bolts within the topology. The concept of pull-based is to pull

event streams from the queue in the topic partition for further processing. The

benefit of pull-based approach is to prevent Bolts form over flown of event

streams and guarantees that each Bolts are capable process such unbounded

sequence of event streams.

In the DCAD, two Spouts (Sp1, Sp2) are designed and constructed as Event

Stream Spout Splitter (E3S) to aggregated the input event stream. The main

tasks of these Spouts are to read event streams from publisher (producer),

converting these streams into a designed tuple format of 〈 e, t, d 〉, and splitting

converted event streams into across of different Bolts within each window

partitions (See Section 3.3.2). For example, to handle high input event stream

volumes (e.g., 1,000,000 tuples per second), more than one parallel Spout is

required in order to control the rate of event streams. Then a sequence of tuples

can be pre-processed or filtered by the designed Bolts in the first module. Thus,

in DCAD (B1 to B4) are constructed for the pre-processing and filtering task.

The main task of each Bolt is to provide all the processing functionalities in

DCAD topology including: filtering, aggregating, joining, writes, read and

access to the database. The size of receiving event streams from Spouts are

usually very large, and due to the need of further processing and detection,

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 94	 	 	
	

multiple Bolts are required to be designed and constructed in order to handle

such high throughput of event streams in real time. The benefit of deploying

multiple Bolts is to handle the size of event streams and deploys a different

computational function. Thus, in the DCAD, Bolts are designed for pre-process

event streams and divide them into several window partitions based on the two

proposed windowing algorithms of time-based or count-based. The matching

Bolts (B5 to B7) are computes each event stream tuple values to detect changes

from coming events and grouping them according to their rule sets as described

in algorithm 3. Finally, the anomaly scoring Bolts (B7 to B9) computes

candidates of Contextual Anomaly (CA) from the sequence of event stream

tuples (See algorithm 3, lines 11-26).

Figure 4.3 illustrates an overview of distributed event stream processing and

detection methods based on Pre-processing, Event Matching, and Contextual

Detection. An overview of each module has been described in the following

section.

Figure 4.3: Distributed Contextual Anomaly Detection method.

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 95	 	 	
	

4.2.1. Pre-processing Module

In this module, a window partition is required to be defined before the parallel

aggregation is deployed in the topology. In every distributed stream processing

including Storm, the stream tasks are processing by number of so called

operators; the main tasks of these operators are to direct data streams into the

worker for execution. These operators in Storm are acting as Spouts or Bolts to

perform different computations over the event streams. One of the pre-

processing tasks is to read event streams by (E3S) and transform allocated

event streams (e.g., event name, event number, and values) across each window

partitions. For example, consider grouping event streams according to temporal

length of window partitions from w1- w2 as shown in figure 4.3. The other task

of pre-processing is to filter the event streams based on satisfied of each rule

condition by stream tuple records in each window partitions. The rule condition

is based on the count and sum functions in the windows operators. Consider

high and low speed of vehicles (e.g., > 120 km/h or < 60 km/h) within each

window partition. A temporal window length can be constructed based on the

event stream query statement, which is stored in the Redis memory storage as;

Query 1 (): Speed/S1, [Si = ‘event’] > " …”, Query 2 (): Speed/S1, [Si > 120],

Window/Time (120) > " …”)

While query1 filters the event streams based on the name attribute tuple, and

query2 filters the event streams according to the speed event value of speed in

each stream tuples.

Filter Bolts: The task of each filtering Bolt is to filter arrived event stream

based on event satisfied condition rule per each case studies of (e.g., high and

low events temperature) and (e.g., over or low speed of vehicles events). For

example, a primarily key-value records in each tuple depends on a rule

condition as defined in each event stream tuple based on average speed (e.g.,

speed >120km/h). For example, sequences of event streams continuously

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 96	 	 	
	

arrives for further processing and detection, and consider constructing of

window partition over the event stream according to high or low tuple values as

they can be seen in figure 4.4.

Figure 4.4: Filter event stream per window partitioning based on (e.g., high or
low) tuple values.

Figure 4.5 shown the filtered of events from e1 to e20 from the number of sensor

Si at a specific time period, then event streams are being filtered according to

their rule set (e.g., over or low speeds of vehicles) and partitioning them across

a number of n windows. The filtered event streams then can be emitted to the

event matching and next Contextual detection modules for extracting the

Contextual behaviour of event streams.

Rule-based Bolts: The task of these Bolts is to compute requested event

streams from filtered events and to provide values output, for example, to

compute an average speed of vehicles per each window partitions according to

the FieldsGrouping () mechanism for every two-hour time interval (e.g.,

7:00am to 9:00am) from each window partitions, w1 and w2 respectively. This

improves and reduces a high number of changes in the event streams and

increases the probability rates of anomalous event score. The result then can be

tested with arrived and pervious events in each window partitions, which have

been stored in the Redis14 memory.

14https://redis.io/	

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 97	 	 	
	

Figure 4.5: Filter and aggregate event stream results from window partitioning.

4.2.2. Event Matching Module

Despite to the fact that event stream matching is an important step in the

DCAD and Event stream tuples can be distributed across different Bolts. The

task of each matching bolt is to group event streams regularly according to

their tuple values in each window partitions. For example, w1 consists of

sequence of event streams with similar speed tuple values according to their

rule-set. In this module, matching individual event based on the result of

window partitions length in the pre-processing phase is designed. The main

task of matching procedure is to compare the event streams in each window

partition in order to detect any changes according to their aggregation functions

f from pre-processed module. As depicted in figure 4.6, events from a number

of corresponding streams S1, S2, and S3 have been emitted by E3S and

partitioned into two aggregation functions f1 and f2 streams according to their

matched results as achieved from their field grouping mechanism. This can be

achieved by implementing logical grouping function in the Storm topology as

event stream tuples from S1 can be aggregated into f1, similarly, grouping

event streams from S2, and S3 can be aggregated into f2.

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 98	 	 	
	

Figure 4.6: Event stream aggregation based on filed grouping
mechanism.

The benefit of this technique is to match a window partitioning pf each event

stream results to detect change within the event streams and to predict the

behaviour of the event streams as described in Algorithm 3. The results of

matched event streams are merged into the Contextual anomaly detection

module to predict the Contextual behaviours of each event according to each

tuple value records using grouping mechanism.

4.2.3. Contextual Detection Module

The main task of this module is to detect a number of Contextual anomalous

events from forwarded pre-processed and matched event streams. The

Contextual behaviour is based on AScore model (See Section 3.5 definition 8)

according to the defined event stream in the sequence list with their timestamp.

For example, the proposed Contextual anomaly behaviour is defined based on

the context of event in the window sequence with similar Contextual behaviour

as described in Section 3.5.

The motivation of Contextual anomalous event detection is derived from

aggregating and processing high volumes of sensor streams. This can be

achived by grouping events and detecting such events over Distributed Stream

Processing (DSP). The ideal solution is to aggregate high volumes of stream

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 99	 	 	
	

records from multi vehicles of S = { S1, S2, S3 } and partitions streams across

distributed computer nodes. Processing data streams in real time and

aggregating the final sum of the arrived event streams in parallel within each

window partitioning can achieve this.

Consider arriving events from number of sensor streams

𝑺 = {𝑺𝟏 ,𝑺𝟐 ,𝑺𝟑,… ,𝑺𝒏}, where each Si comprises a number of event streams

(𝑒!, 𝑒!, 𝑒!,… .). The aggregation function can be designed based on the sum of

the computational events to fulfil the condition of Function F. The aggregation

F can be implemented within master-slave distributed processing model for f1,

and f2 based on DSPE Grouping () mechanism. Thus, event stream tuples

belonging to any of Si can be grouped according to their event stream tuple in

the DSPE in order to computes and extract Contextual behaviour from each

window partitions during the aggregation process; for example, events from S1,

can be grouped into f1, and S2, S3 into f2 respectively as shown in figure 4.6.

Example 1: Consider n number of stream events from S1 to S3, which are

aggregated, based on two-hour time interval ti. As showing in figure 4.6 green

circles are associating with the number of event streams, for example, from

traffic point of view as lower speeds of < 60 km/h, and red circles are

representing a number of event streams from S1 to S3 for over speed of > 120

km/h. As the event streams have been aggregated, similar behaviour according

to their time interval can be matched according to their Contextual behaviour

(e.g., event speed tuple records). Assume S1 consists of several over speed

events between t2 and t3 and similar speed events are repeated in t5; thus, such

events are can be considered as Contextual anomalous event. A detailed

description of Contextual behaviour is described in Section 3.5. Similar speed

event behaviour is repeatedly occurred in S2 and S3 at different time intervals.

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 100	 	 	
	

Figure 4.7: Event stream aggregation from set of sensors according their time-
based.

AScore Bolts: The main tasks of these Bolts are to compute Contextual

Anomaly CA model according to their Contextual behaviours in algorithm 3.

As event streams have been pre-processed and matched according to their rules

set which is defined in algorithm 3 (CESA), then CESA computes the output

result rates based on the AScore. This can be achieved by assigning [0,1]

scoring values into each event streams based on their value in each tuple.

Consider vehicles event speeds of 30km/h at 8:00 am as normal behaviour due

to the traffic congestion in the morning; on the contrary similar speed at

midnight (12am) can be considered as anomalous event This can be due to the

unexpected incident on the highway when the traffic speed slows down, in this

situation the tuple value records as event is changing. Therefore, the scoring

technique can be designed based on 0 for normal hour for every two-hour time

interval such as between 10:00-12:00 and 1 as anomalous event at between

17:00 -19:00.

The process of anomalous event detection in this stage is associated with times

of event streams occurrence in the event sequence based on predicting

Contextual events within each window partitions. In this stage, algorithm 3

computes the probability of the event score from each partition window. The

result of event stream from event matching module can be computed by the

Chapter 4: DCAD: Distributed Contextual Anomaly Detection

	 101	 	 	
	

Figure 4.8: Contextual anomalous event detection over sequence of event
stream tuples.

CESA algorithm 3, Contextual anomalous events based on the number of

events in the sequence can be represented and according to their temporal tuple

behaviour (refer to figure 4.7). For example, first event at 7:45 in S1 is

considered as Contextual anomalous; this is based on the computational

behaviour according to the scored tuples within the event sequence.

Specifically, this can be computed according to their similar behaviour that for

example repeatedly occurred at 22:00.

	 102	 	 	
	

Chapter 5: Experimental Results and Performance Evaluation

	 103	 	 	
	

5. Chapter 5

5.1. Experimental Environment, Evaluation Metrics and

Result Discussion

This chapter describes the experimental environment, results and performance

evaluation for the proposed Algorithms and methods. Section 5.2, describes the

experimental environment and settings according to the need of distributed

computing cluster to process high throughput of unbounded sequence of event

streams. Section 5.3, describes the results of distributed event stream partitions

and pre-processing results. Section 5.4, presents the experimental evaluations

for high volumes of event streams. Section 5.5 evaluates the experimental

results from the proposed algorithm in relation to Contextual anomalous event

results using a scoring rate. Section 5.6, describes the predictive accuracy and

error rates of the algorithm. Section 5.7, presents the results of change detection

in the event streams. Section 5.8, presents the CESA algorithm computational

complexity and performance. Section 5.9, presents the results of DCAD

framework performance in relation to the scalability of the proposed modules in

real time and the variant effects that possibly have an impact on the

performance in processing time and low-latency response. The summary of the

chapter is described in 5.10.

Chapter 5: Experimental Results and Performance Evaluation

	 104	 	 	
	

5.2. Experimental Preliminaries

As high volumes of unbounded sequence of event streams arriving at a very

high speed, continuous online learning is crucial to evaluate the effectiveness of

the proposed CESA algorithm. In that context, the result is mainly based on the

following challenging objectives.

1. Detect n number of Contextual anomalous event behaviour based on the

proposed CA model and achieved AScore output result rate per every

distributed partition window length of (e.g., 100,000, up to 1 million) event

stream tuples respectively.

2. Evaluate the DCAD performance based on the computational accuracy and

memory consumption.

3. Prediction error rate; lower error rate indicates the higher accuracy of the

algorithm in relation to detecting change in the event streams.

4. The cause of change detection in each of the window partitioning

according to the PH Test computational results.

5. The cause of the algorithm’s performance processing time according to

increasing and decreasing number of window partitions.

5.3. Experimental Environment

The proposed algorithms are implemented in Java programming language as

part of the DAG topology. The experiments were run on the University of

Huddersfield distributed High Performance Computer (HPC) cluster of eight

computer nodes. The cluster consists of one master node known as (nimbus)

and seven supervisor nodes, where each computer node is equipped with 8GB

of RAM, configured with an Intel(R) Core(TM) 4 Quad CPU Q8400. All the

nodes are run on Ubuntu Xenial (v16.04.1 LTS) operating system with

Chapter 5: Experimental Results and Performance Evaluation

	 105	 	 	
	

deployed Java(TM) SE Runtime Environment (build 1.8.0_10), and Java

HotSpot (TM) 64-Bit Server VM. Each proposed computer node is divided into

4 workers according to the designed distributed communication channel

Zookeeper Server (ZkServer) as illustrated in the DCAD architecture in

Appendix 3. The task of ZkServer is to create an efficient and dynamic

coordination between each node and provide fault-tolerant service. Finally,

several topologies are created to be deployed across the cluster in parallel. The

main job of each topology is to assign tasks between each DCAD’s module and

managing the task scripts distribution between the nodes.

5.4. Data Sources

One of the major concerns in any anomaly detection method is to propose a

right data type and format to computes the anomalous results, when most of the

data is formatted and collected differently. In this thesis, two IoT case study

data sources are used in a form of stream to support the research outcome result

and fit to the distributed data structure methods. For example, monitoring smart

traffic on highways and detecting high speed or congestion speed events is

playing a signification role in terms of safety, reducing congestion, and saving

drivers time to alter their journey. Consider a global speed limit on highways

roads as 120km/h. Thus, over or higher speed of (e.g., 140km/h) or lower speed

(40km/h) can be considered as unusual events or activities. Importantly, in this

thesis, such behaviour is considered as anomalous event as described and

defined in Chapter 2 and 3. The first data size is comprised of 210 million

streams instances and 8 attributes. The summary of the data schema is

described in Table 5.1.

Attribute Description
Sensors ID Identifier of the network Init sensor
Date and Time Date and Time of vehicles speed measurement
Average speed An average speed per vehicle (km/h)

Chapter 5: Experimental Results and Performance Evaluation

	 106	 	 	
	

Flow Count n vehicles with average speeds
Headway Average time between vehicles
Occupancy Occupancy of loops (%)
Travel time Average time to traverse the section (s)
Prof travel time Expected travel time based on historic profiles

Table 5-1: Highway road traffic data schema.

The second proposed data source to detect anomalous events from was a

remote temperature stream. This data source is collected from Intel Berkeley

Research Lab IBRL15. The sensor network is comprised of 54 sensors with

different data attributes of temperature, humidity, light, and voltage. The sensor

data are collected through Kafka Application Programming Interface (API) via

implementing topic-based method. These data sources are then distributed

through publish-subscribe messaging system as depicted in figure 4.1. The

sensor data is converted into a stream tuple format based on the distributed

stream processing data structure model. In this context, processing high

volumes of event stream was a challenging task. As a first challenge, proposed

number of data attribute is required as prior assumption of the time-series

format. Thus, first, only temperature data attributes are collected from the topic

partition of e.g., temperature from Si stream to create event stream tuple from.

A second challenge was to propose different data sources to test and train the

proposed algorithm and CA model to detect anomalous Contextual events from

such sequence of unbounded of event streams.

As described in the previous section, both proposed IoT data sources are

consisting of different data attributed, which are irrelevant to the anomalous

event detection. Thus, several pre-processing tasks are made including data

cleaning, and data transformation before the event streams can be emitted to

CESA algorithm for the learning process. First, for the constancy of the

detection purpose, stream sensors have been cleaned from missing values,

removing tuples with zero records. Second, sensors values have been

15http://db.csail.mit.edu/labdata/labdata.html

Chapter 5: Experimental Results and Performance Evaluation

	 107	 	 	
	

transformed into tuple stream format by E3S Spouts to be fitted into the

distributed stream processing data structure model. Such task is performed by

one of the DCAD pre-processing modules and the size of sensor streams have

been filtered based on the rule set of anomalous event stream tuple records; for

example, only event stream tuple with either high or low records is emitted in

the next module. The main advantage of this approach is to reduce the size of

event streams from irrelevant attributes and dividing them into an appropriate

format for the window partition algorithms to handle. Thus, sensor streams from

only (S1, S2, and S3) is mapped and filtered based on the fieldGrouping (e.g.,

temperature) and event tuple values are reduced into approximately 1,0335,000

from over 2.3 million sensor readings. The temperature event streams are then

normalized based on the minimum and maximum tuple values of (e.g., 20 °C

and 26 °C) before these event streams are emitted for the Contextual detection.

Event streams are also normalised into [0,1] based on there high and low
temperature ranges. Where 0 referred to all anomalous events during the

normal hours of (e.g., 7:00AM) and 1 to as anomalous events at, 23:00PM)

Additionally, the arriving new event stream is defined based on their tuple

records of (new_mine) and (new_maxe) and computed in

𝑒𝑖 = e−𝑚𝑖𝑛𝑒
𝑚𝑎𝑥𝑒− 𝑚𝑖𝑛𝑒

𝑛𝑒𝑤𝑚𝑎𝑥𝑒 − 𝑛𝑒𝑤𝑚𝑖𝑛𝑒 .

Chapter 5: Experimental Results and Performance Evaluation

	 108	 	 	
	

5.5. Results and Discussion

5.5.1. Distributed Event Stream Window Partitioning Results

This section describes the performance of the proposed distributed windows

partitions algorithms to partition event streams into several window wp based on

either counted tuple or time interval observation. The result of count-based

window algorithm’s computational is presented in figure 5.1. The algorithm is

constructed based on the number of equal lengths of window partition and n =

100,000 tuples in very L. Green ∆ symbols are indicating of the lower

temperature event streams; on the contrary, red × symbols are indicating of the

high temperature event streams in every window partition. The size of each

tumble window partitions is tested on average δ = 10 over one million event

stream tuples. The computational for the high and low temperature event is

based on the tested and computational results, which have been made by each

bolt in the Storm topology.

Figure 5.1: Event-based window partitioning result for temperature case study.

Chapter 5: Experimental Results and Performance Evaluation

	 109	 	 	
	

A detailed of count-based window partition algorithm results of high and low

temperature event streams are described in Chapter 3. The algorithm is first

checked for the constructed windows wp per n tuples in every L length size to

test the accuracy of captured event streams. The result is indicating that the

numbers of low temperature event stream tuples (e.g., ei < 20 °C) are much

higher than the high temperature event stream tuples (e.g., ei > 26°C). For

example, 3 events with high temperature values are captured in w1 over the

length L = 100,000 event streams tuples; thus, such event tuples are considered

as anomalous event in the data stream sequence according to the predefined

notation as described in Chapter 3. Similarly, 19 anomalous events are captured

when L = 500,000 stream tuples based on the factor of δ = 5. In this

experiment, only high and low temperature events are considered to evaluate the

performance of window partition algorithm due to the correlation between these

attributes Contextual behaviour. Importantly, our approach is developed to

detect several Contextual anomalous events over high volumes of sensor

streams in parallel.

The complexity of expanding window length has a signification impact on the

high accuracy of the event score results. This indicates that smaller window

partition length is requires less memory space and efficient computational

result. In this context, count-based window partition algorithm is mainly

depending on the counting events statues (e.g., high or low) per each window

length L until the size of w is satisfied.

In the second data source scenario, only speed attributes and the number of

event flown are most relevant data types to discover the Contextual anomalous

events from. Detecting Contextual anomalous from high volumes of speed

events plays an important role to predict the state of highway road traffic in real

time. Thus, we pre-processed and aggregated speed events based on their

sensors values and defined attributed of high max () or low min () as defined by

equation 3.12 in Chapter 3. Figure 5.2 depicts the result of Algorithm 1, where

event streams are partitioned and grouped according to their high (e.g.,

120km/h)_or low (e.g., 60km/h) speed events. The event streams are aggregated

Chapter 5: Experimental Results and Performance Evaluation

	 110	 	 	
	

based on n number of speeds event stream tuples for every L = 100,000 per each

window partition wp as labeled in a-axis. The proposed algorithm is tested on δ

= 10 over one million event stream tuples. The result is demonstrated that the

numbers of over speed events are much higher than the lower speed events in

each window partitions. The result of event stream computational is more

reliable across the experimental learning of event detection.

Figure 5.2: Event-based window partitions result from traffic case study.

Additionally, a detailed description of the result is illustrated in Table 5.2.

Window partitioning columns are referred to the n constructed number of

window partitions, while Stream columns are associated with n number of

event stream per window partition, and the last columns are repenting both

high and low of event speeds per w = 100,000. For example, in w1 9 event

stream tuples are captured with high records and 2 event streams tuples with

low speed records. The learning computation is sequentially repeated for every

tuples of stream across each window partitions until the window length L is

satisfied.

Chapter 5: Experimental Results and Performance Evaluation

	 111	 	 	
	

Window

Total Event
Streams
(wp = 10k)

High Speed
Events (per
wp)

Low Speed
Events (per
wp)

w1 100000 9 2
w2 200000 22 2
w1 300000 24 11
w2 400000 32 2
w1 500000 34 4
w2 600000 32 8
w1 700000 38 12
w2 800000 42 13
w1 900000 54 18
w2 1.000.000 58 13

 Table 5-2: Result of event streams per window partitions from road traffic case

study.

The result of Algorithm 2 time-based window partitioning is presented in

figure 5.3. The input event speed behaviours are collected according to the time

of the speed occurrences, where for example, y-axis represents aggregated

event streams at between 7:00AM to 21:00PM hours intervals metrics. Thus,

the computational result is based on high and low speed features behaviours in

every Si. Where, x-axis represents a number of high and low speed events

tuples per window partitioning wp. The high speed of event is represented in

(red ∆) symbols and low speed of event (green ×) symbols. The results from

window partitions are indicating that the number of low event speeds on

average at every t = 2 hours interval is significantly higher than the higher

event speeds. The lower event speed is approximately 50% higher than the high

speed events across the learning process. Organising these computational

results is significantly important for the next objective of this thesis to detect

Contextual behaviour from the event streams within every window partitioning.

Chapter 5: Experimental Results and Performance Evaluation

	 112	 	 	
	

Figure 5.3: Time-based event stream window partitions results from highway
road traffic sensors.

5.5.2. Contextual Event Stream Anomaly Result

Modeling event stream is one of the most complex and challenging tasks to

detect the Contextual anomalous behaviours. Most of the existing anomaly

detecting output results are defined based on two criteria; a) labeled normal and

abnormal data, or b) assigned scores to the output result. In contrast to statistic

dataset, detecting anomaly results from sequence of event stream on online

poses a significant challenging task. In this thesis, the second challenging

scoring criteria are considered as appropriate solution to evaluate the output

scoring results of Contextual behaviour rates. The CESA algorithm is computed

based on the probability of Contextual anomalous events scoring result and

according to the Equation 3.6, 3.7 and 3.8. The CA computes the event streams

according to the event occurrence time based on their Contextual behaviour

within each window partition. Thus, CESA algorithm is implemented to detect

Contextual behaviour from event streams after they have been aggregated and

pre-processed from the previous window partitioning algorithms. The algorithm

is learnt and trained from 100,000 event stream tuples to evaluate the proposed

CA model. This is approximately 10% of the completed event stream size and

Ev
en

t S
tr

ea
m

s
(p

er
 w

in
do

w
)

Event Stream Throughput
07:00 09:00 11:00 13:00 15:00 17:00 19:00 21:00 12:00

Chapter 5: Experimental Results and Performance Evaluation

	 113	 	 	
	

the rest of 90% event stream tuples are proposed to test the probability of

AScore. The algorithm’s learning procedure depends on the shuffling event

streams into grouping mechanism from every window partition to measure

estimation error or false negative rate as described in Section 5.6.

As shown in figure 5.4, the top-axis is represents the size of event stream from

traffic sensors to train the CA model. Where, x-axis is representing a computed

scored of Contextual results based on sliding factor δ = 3 interval metrics at

between [t = 0:00, t = 12, t =24:00]. The time interval metric is mainly

according to the result of detected event by the time-based window partitions

algorithm. This is achieved by computing Contextual event behaviours

according to high or low tuple of speed records as normalised in [0,1]. The

model is then trained across every event partition of wp = 200,000 tuples. On the

other hand, the y-axis is representing the number of high speed scores in (red Δ

symbol), in contrast to the normal events in (green Δ symbol).

Figure 5.4: Contextual event stream result from highway road traffic streams.

The results of CESA algorithm based on observing aggregated number of f

functions from sequence of sensor streams in parallel is shown in x-axis in the

figure 5.5 while y-axis is representing the result Contextual behaviour. In this

Chapter 5: Experimental Results and Performance Evaluation

	 114	 	 	
	

context, the result is demonstrated that S1 is consisted a higher number of

Contextual behaviour compared to S2 and S3 per each window partition. This is

due to the smaller number of events in each window partitions, when each of

event tuples is observed and matched according to their Contextual AScore after

they all event streams are mapped according to their Contextual behaviours

based on wp (𝑒 ± 𝑆𝑖) = 𝑒 !
!
𝛼 ± 𝛽 𝑆𝑖 !

!
𝛼 ∓ 𝛽 > 1. This is indicating that on

average, 50% of aggregated Contextual behaviour are occurs in S1 rather than

other two set of sensor streams S2 and S3. The number of Contextual behaviour

per window is increased linearly as time progressed in addition to scaled up n

number of event streams. Thus, it can be argued that the Contextual behaviour is

not only based on the context of the event streams, as it can be depending on the

number of events streams per window partitions.

Figure 5.5: Contextual anomalous event detection from aggregated and
matched events per window partition over variant streams sensor devices.

Chapter 5: Experimental Results and Performance Evaluation

	 115	 	 	
	

5.6. CESA Algorithm Performance

The evaluation of CESA algorithm’s performance is based on several facts as

follows;

i. AScore accuracy rate

ii. Size of event streams.

One of the most important aspects of the proposed CESA algorithm is the

capability of the algorithm to learn to detect Contextual behaviour on online at

the same speed of the event streams. The experimental evaluation of CESA

algorithm is mainly depends on the output result of AScore and the size of

event streams. The results of CESA performance to detect Contextual

behaviour from the proposed data sources event streams are depicts in

Appendix 6, figure 5.10, and figure 5.5. The result of Contextual anomalous

detection algorithm is achieved based on n event streams with O(n) processing

time. The probability of AScore computational for each event stream tuple is

predefined as [0,1], where high scoring is referred to high probability of

AScore for the true event rate e > 0.5; thus, such result is refers to a true

positive scoring result and stability of the algorithm. The probability of

negative rate for each event stream is achieved as less than e < 0.5 scoring rate.

The result has indicated that the model is learnt from the event stream and the

high accuracy of positive prediction error rate is acceptable for such size of n

event streams since e is frequently detected in total m Since 𝜎 𝑒 > !
!

 >
!

!!!
> 𝑙 , while high accuracy of AScore indicates the stability of the CESA for

scoring anomalous events. Importantly, the output result of scoring over the

total size of event stream is mainly depends on the learning algorithm after

iterating from the change detection. On the other hand, processing a smaller

size of event streams values per window partition has indicated the less

computational complexity in terms of O (k log n) performance. Thus, high

throughput of event streams is not guaranteed to improve the higher negative

Chapter 5: Experimental Results and Performance Evaluation

	 116	 	 	
	

rate, achieving less accurate scoring rates. According to the result in figure

5.10, an alternative approach of proposed partitioned event streams across

number of windows and deployed CESA algorithm is improved the high rate of

positive scoring computation.

To evaluate the performance of CESA algorithm, Contextual anomalous event

streams detecting is implemented according to AScore in CA model for each

case study. Thus, the aim of such experimental result is to estimate and

evaluate the accuracy of CESA computational degree in both scenarios in

relation to anomalous event score. The rate of AScore in the event speed

scenario is slightly higher than the rate of AScore in the event temperature

scenario (refer to figure 5.6). The result indicates that the capability of CESA

algorithm to compute anomalous output score rates is acceptable since, one of

the main criteria to evaluate the anomaly detection method is high probability

of the computational scoring rate.

Figure 5.6: Result of CESA algorithm accuracy performance rates over two

IoT proposed case studies.

Chapter 5: Experimental Results and Performance Evaluation

	 117	 	 	
	

5.7. Contextual Anomaly Detection Scalability Evaluation

Result

The size of processing event streams can have major impacts on the

computational performance with regards to proposed both centralised and

distributed computations. In this thesis, we evaluate the scalability detection

processes in regarding distributed Contextual anomalous detection performance.

The evaluation performance result is measured based on;

1. Event Stream Size, the proposed event stream size threshold is stetted as

t =100,000 stream tuples per node to evaluates the effectiveness of the

computational performance.

2. Number of window partitions, which is evaluate to assess the impact of

the computational results and execution performance.

3. Scalability, increasing number of computer node can perform effectively

with less processing runtime performance according to Equation 5.1.

Where p is referred to processing runtime performance time for every N

node with the proposed cluster.

 𝑝 = !! !"#$%&&'()*'+%

!"#$%&&'()*'+%!"#$% ×!
 (5.1)

This is the most common metric to measure the parallelism performance for the

runtime detection process.

Importantly, the experiment results evaluation is based on the combination of

the above factors. The performance of CESA can be argued according on two

major facts, processing time and detection accuracy. First, the impact of

scalable event streams on processing runtime for both centralised with

distributed approached are shown in figure 5.7. The result is indicated the

performance of the detection process is linearly increased the size of event

streams are increased. In addition to this, the result of implementing CESA

Chapter 5: Experimental Results and Performance Evaluation

	 118	 	 	
	

algorithm centrally requires more computational detecting processing runtime to

computes matching and detecting anomalous events compared to the distributed

method. In this context, we tested the algorithm with a set size of event stream

threshold of 100,000 per computer node to evaluate the detecting computational

performance.

The processing of the detection is primarily based on the CESA algorithm’s

runtime performance based on distributed and centrealised methods. The

performance of CESA algorithm’s processing runtime is recorded in

millisecond (ms) as depicted in y-axis. It is evident that process and computes

Contextual event streams over 800,00 tuples, so the CESA algorithm is required

for less than 400 milliseconds (0.4 ms). On the contrary, for testing similar

event stream size with threshold e > 1k are expected higher processing runtime

of 1120 (1.12 ms) is expected to computes the detection centrally. Importantly,

as the size of event stream threshold e > t is scaled up to 800,00, the detection

process of the runtime performance has also linearly increased and doubled. The

result has demonstrated that the proposed CESA algorithm over DCAD

framework is performed effectively with regard to the processing of detection

performance runtime in real time. As described in Chapter 2, processing

runtime and low-latency (real time) are the two major concerns in real time

anomaly detection to have impacts on the detection performance and

computational results.

Pr
oc

es
si

ng
 T

im
e

(in
 m

ill
is

ec
on

d)

Chapter 5: Experimental Results and Performance Evaluation

	 119	 	 	
	

Figure 5.7: CESA processing performance based on standalone node versus
distributed nodes with threshold of processing 100k event streams.

In addition, another the key challenging task to process large-scale of event

streams in real time is to proposed the right number of window w and event size

length L. Consequently, a small size of window partition in each computer node

can be more reliable regards to Contextual anomalous event scoring result. On

the other hand, large size of proposed window partition is an alternative

approach to enhance the detecting runtime performance, since the

computational accuracy is the major concern in this approach, specifically,

when the size of event stream per each window partition is high, this due to the

fact that event stream evolves, and windows are possibly disjoint. Figure 5.8

depicts the running time per each window partition in milliseconds as presented

in y-axis, while x-axis presents high number of event streams throughput.

As the result has shown, using different numbers of window partitions per

computer node is reliable in relation to changing detection process. Hence,

decreasing the number of windows per computer node improves the processing

runtime latency. For example, consider window partition w = 2 per single node

for the length L= 200,00 event stream tuples detection process, since this

process is approximately required 30 seconds. As the experimental results

evidence that when the length of L event stream tuples is doubled, the

Chapter 5: Experimental Results and Performance Evaluation

	 120	 	 	
	

processing runtime is also to increasing. Scaling up the number of event stream

to, one million tuples requires 120 milliseconds to complete the detection

process. Importantly, increasing the number of window partitions from w = 2 to

w = 4 per computer node is required 100 milliseconds. The result demonstrates

that increasing the number of windows partitions up to w = 8 requires less than

75% processing runtime compared to the event stream scaling up size. In this

context, the main benefit of increasing window partitions in parallel is to reduce

the size of memory space on each computer node and improve the

computational processing runtime performance as argued in Gama (2013). The

current implantation of the proposed window partition algorithm is performed

effectively with regards to low latency response and online learning, since these

are a two major critical and highly concerns in most of the streaming

application domain to control high speed of the event streams from disappearing

or being disregarded.

Figure 5.8: Performance of variant window number partitions computational
processing time.

One of the key concerns in this thesis is how to handle high volumes of event

streams in real time, since scalability is playing an important role in terms of

low-latency processing runtime response. For example, to measure the

Chapter 5: Experimental Results and Performance Evaluation

	 121	 	 	
	

effectiveness of DCAD performance, the result is primarily dependent on the

execution runtime per computer node. The proposed approach is based on the

number of tasks performed per workers over n number of nodes n > 1as

described in Equation 5.1. The performance of the scalability of the event

streams detection process result (refer to figure 5.9). The result has

demonstrated the effectiveness of parallel processing performance and

allocating event streams across the proposed cluster. The performance of each

computer node is recorded in milliseconds (ms), for example, to process high

volumes of Contextual anomalous events (e.g., 1,000,000) requires more than

one computer node in the DCAD framework. In this context, we doubled the

proposed nodes from 2 to 4 nodes to computes (e.g., 200,000) event streams.

The result indicates the computational performance runtime of detection process

is improved by 25% as labeled in y-axis. On the other hand, a similar size of

event stream detection process with 6 nodes has significantly improved the

computational performance up to 50% of the processing runtime. Overall, the

experimental results have indicated that CESA algorithm satisfies both the

DCAD computational result and have processing runtime performance for over

one million event stream tuples in less than 1 second. This result is supported

and improved based on the capability of distributed Apache Storm framework

for processing one million stream tuples in 1 second. Note that our evaluation is

mainly based on proposed distributed computational matching and Contextual

processing of detecting event streams in real time. Our method is evidence that

the runtime of distributed Contextual detection has satisfied the scalability of

the detection process, since our condition facts are remained stable (e.g.,

number of window partitions and number of nodes).

Chapter 5: Experimental Results and Performance Evaluation

	 122	 	 	
	

Figure 5.9: Result of increasing nodes linearly performance in the DCAD

framework to with scaling up event stream throughput.

5.8. Point and Contextual Anomaly Detection Results

The event streams per window partitions are categorised into two correlation

coefficient metrics of Point and Contextual, with the task of Common

Correlated Attribute (CCA) is to compare the value of a pair of event stream

tuples. In this context, person correlation coefficient is found to be the most

widely metric to measure the correlation between Point and Contextual

anomalous event streams per window partitions. This is computed as 𝑒 𝑥,𝑦 =

(x,y) .

Chapter 5: Experimental Results and Performance Evaluation

	 123	 	 	
	

Figure 5.10: The result of distributed Point Anomaly (PA) versus Contextual
Anomaly (CA).

Table 5.3 presents the results of both point and Contextual anomalous event

detection tests over 2.5 million of stream tuples. The size of data stream is used

after the event streams have been pre-processed and matched their tuple values

to check, for example, lower or higher event speed records. The size of event

streams then has been partitioned across of seven nodes, and each node

managed to handle to process 250k event stream tuples. The result of each

anomaly types is demonstrated in last two columns of the table 5.3. For

example, in n1 both Point or Contextual anomalous detection is tested over 250k

samples of event streams; the number of point anomalous events is higher than

the Contextual anomalous events since the completed computational runtime

required is only 0.048 milliseconds. Overall, the results of both point and

Contextual anomalous events are mainly based on the AScore rate and CA model

computational testing metrics per each partition set of tuples.

Allocated
Nod

Event
Tuples

Executed
Latency

Process
Latency

PA CA

n1 250000 0.048 0.04 178300 71700
n2 250000 0.033 0.02 201421 48579

Chapter 5: Experimental Results and Performance Evaluation

	 124	 	 	
	

n3 250000 0.047 0.03 224821 25179
n4 250000 0.023 0.02 119565 130435
n5 250000 0.022 0.01 185896 64104
n6 250000 0.029 0.03 223454 26546

Table 5-3: The comparison Point and Contextual anomaly computational results

per computing node.

Figure 5.11 depicts the CESA algorithm’s computational performance in real

time, thus, In this context, the DCAD method is evaluated based on the

performance of distributed DAG topology processing runtime per each for both

sensor stream case studies and labeled in y-axis. This is evaluated based on the

number proposed event partition detection computational in parallel in with the

topology. For example, scaling up the computer nodes in the DCAD framework

demonstrates that it can have a major impact on the computational processing

runtime as shown in x-axis. Thus, adding more nodes into the distributed

method indicates more efficient processing runtime across each case studies

datasets. For example, to deploy standalone node with a larger size of event

streams is required over 60 milliseconds to detect anomalous events

computational results from the road traffic sensor streams scenario. On the

contrary, running a similar node for temperature scenario is requires 50% less

processing runtime for the computational of event stream results; this is due to

the smaller size of emitted events after they have been preprocessed and

matched. Nonetheless, such high computational result per standalone node is

due to the fact that deploying more bolts requires more processing runtime for

each operational function for every module in the DCAD. Thus, an alternative

solution is to deploy more computer nodes in the DCAD framework with

adding more bolts in to the DAG topology to improve the detection

computational runtime performance. For example, increasing the number of

nodes from 1 to 8 is evident that the processing runtime of the detection

computational is improved by approximately 50%. The performance of DCAD

method to computes and process road traffic event stream tuples over n = 8

nodes is significantly approved from 65 to 45 milliseconds (refer to figure 5.12).

Chapter 5: Experimental Results and Performance Evaluation

	 125	 	 	
	

This indicates the effectiveness of DCAD approach, specifically, to reduces the

overhead in each computer node regardless scaled up of the event stream size.

Figure 5.11: Comparison of event streams performance cluster runtime.

5.9. Prediction Error and Performance Measure

To evaluate the performance of the proposed model and algorithms, there are

number of evaluation metrics of sequential analysis are suggested in the

literature; a) PH test is capable to monitor the prediction error and change in

the event streams according to AScore as predefined in between [0,1]. b) for the

Contextual Anomaly CA performance result evaluation, the value for threshold

is settled according to AScore < t threshold. In this context, if the probability of

value v of ei <0.5, then the computation ratio considered as positive result. On

the contrary, if the probability of value v of ei> 0.5, it assumes that the

computational ratio is negative; this is due to the increasing the number of

Road Traffic Events

Temperature Events

 1 2 3 4 5 6 7 8

70

60

50

40

30

20

10

0 Computer Node (Cluster)

R
un

tim
e

(in
 m

ils
ec

on
d)

Chapter 5: Experimental Results and Performance Evaluation

	 126	 	 	
	

changes in the event streams data distribution during the algorithm’s learning

process.

The learning procedure by CESA is defined based on the result of how

competitive the proposed algorithm is in relation to the change detection and

prediction of error computational rates. The result of anomalous event

detection is also evaluated based on scalability performance of the algorithm’s

runtime process as described in the previous section. Accordingly, the most

common and widely proposed evaluation metrics are Holdout and Prequential

to estimate prediction computational error rate (Mouss et al., 2004). The former

metric is complex and computationally expensive to test the algorithm over

high volumes of event streams. For this reason, such metric is irrelevant due to

the size of proposed event streams and distributed stream structure model. On

the other hand, Prequential evaluation metric is mainly based on test-and-train

procedure, thus, this metric is more reliable than the previous metric to

estimate the performance of CESA algorithm prediction error rate. The

learning prediction error process is mainly based on computed accumulative

sum of the loss function error as denoted 𝐿 𝑓 from n number of event streams.

The fading factor parameter is set as 𝛼 = 0.5 for both MAE and RMSE and the

average of Prequential error computes over window partitions of w = 200,000

event stream tuples; hence, such values for decay factor is an ideal value to

measure the error rates. The total sum of absolute deviations t and the number

of the values of vi are used to learn from n number of event streams. Since new

event stream ei arrived for the training process, n updates respectively. In

relation to monitoring event streams statues whether they have been covered by

the rule or not, PH test is used to compute the loss function error based on

MAE or RSME. The lower vi probability values state unusual change in the

event stream tuples. This is disregarded or uncovered by the rule-set in the

learning process and they have been considered as Contextual anomalous event

according to the AScore probability computational rates. The summary

description of the CESA algorithm’s parameters is demonstrated in Table 5.4.

Chapter 5: Experimental Results and Performance Evaluation

	 127	 	 	
	

Allocated
Nod

Event
Tuples

Executed
Latency

Process
Latency

PA CA

n1 250000 0.048 0.04 178300 71700
n2 250000 0.033 0.02 201421 48579
n3 250000 0.047 0.03 224821 25179
n4 250000 0.023 0.02 119565 130435
n5 250000 0.022 0.01 185896 64104
n6 250000 0.029 0.03 223454 26546

Table 5-4: CESA algorithm experimental evaluation parameters.

The result of the prediction error rate to test CESA algorithm performance is

primarily based on the both Equation 3.9 and 3.10 as depicts in figure 5.13 and

5.14. The Prequential evaluation error demonstrates the effectiveness of CA

model, which is satisfied to the predefined threshold rate to train the model

before any changes occurs in the event stream. This is achieved by training

window partition as wp = 200,000, length of L = 1,000,000 size of event stream

tuples. The experiment results have indicated that the rule set computational

error of CA model for each event stream is competitive according to the

evaluation mean results from MAE and RSME metrics. Such metric is proposed

to find if event stream is covered by the rule r or is disregarded during the

training detection as can be seen in Appendix 5.

Figure 5.13 depicts several changes in the event streams during the learning by

the CESA algorithm. RSME represents in ∆, which indicates the result for the

mean square error according to predefined fading factor range, while the result

of prediction error slightly decreases from 0.4 to 0.3. Thus, this is indicating a

positive result while the size of event stream is increasing. This demonstrates

the 95% accuracy of the result from testing CA model for prediction error in the

event streams. On the other hand, MAE represented in blue (×) symbol and

consists of several points which indicates the change in the streams sequence

over the time; however, as the size of event stream is scaled up, the change rate

is decreases due to the less occurred changes in the event stream behaviour and

window partitioning mechanism. This can demonstrates how accurate the model

Chapter 5: Experimental Results and Performance Evaluation

	 128	 	 	
	

predicts the error rates and is able to rapidly adapt to the change from high

volumes of event stream partitioning in parallel.

In relation to the stability of CESA algorithm, middle dash line in both figures

5.13. and 5.14 and represents how competitive are each event stream conditions

in both case studies in terms of change. The result is evaluated based on the

probability of AScore according in CESA to measure whether the result of

AScore is aligned with a computational range according to Equations 3.7 and

3.8 as < 0.5 (positive) or > 0.5 (negative). Specifically, negative score result is

associated with event stream with Contextual behaviour while positive score

refers to anomalous event without Contextual behaviour. The dash (-) line

represents the predefined threshold t <0.25, while the threshold line can be

considered the predicted score results cross the line is indicating the normal

behaviour of the event streams, and the blew the line is considered as anomalous

score values.

Figure 5.12: CESA algorithm accuracy result by evaluating prequential
predicting error metrics (MAE and RSME) using temperature event streams.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200000 400000 600000 800000 1000000

MAE

RSME

Stream Throughput

 A
Sc

or
e

Er
ro

r P
re

di
ct

io
n

Chapter 5: Experimental Results and Performance Evaluation

	 129	 	 	
	

In contrast to the pervious case study results, in road traffic scenario both MAE

and RSME results have shown to be less competitive due the high number of

peaks. Such changes are due to the fact that the average function of the event

stream error is higher. This indicates that the event stream condition is less

stable due to the number of changes in the speed event streams tuples. Such

behaviour is indicating that event streams evolved over the time of predicting

error. The results of MAE in both case scenarios have been more stable.

Importantly, such results are indicating the stability of the CESA algorithm in

time evolving situation and the model stability in relation to the detecting

accuracy scoring rate.

Figure 5.13: CESA algorithm accuracy result by evaluating prequential
predicting error metrics (MAE and RSME) using highway road traffic event
streams.

Figure 5.14 presents both MAE and RSME results for 10,000 event streams per

window partitions. The last two columns of the table are referring to the

probability result of event values (refer to Appendix 5). Hence, the accuracy of

both MAE and RMSE depends on the cost function error to measures the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 200000 400000 600000 800000 1000000

MAE

RSME

Stream Throughput

SC
A

D
 P

re
di

ct
io

n
Er

ro
r

Chapter 5: Experimental Results and Performance Evaluation

	 130	 	 	
	

accuracy rate; the low cost corresponds with high accuracy while the lower

error result is indicating the high accuracy of the algorithm in relation to

change detection prediction. In contrast, high error prediction indicates the

instability of the algorithm in terms of delay in recovering after the change is

detected.

5.10. Changes Detection Results by the CESA Algorithm

Change detecting metric is relying on the sum of false alarms and true positive

rates to measure and estimate how compatible is the algorithm is. In such

condition, event streams have been tested based on high mean and false alarm

rate, which is detected by the CESA algorithm. The main result of change

detection depends on setting variant parameters as α and λ in PH test. For the

first case study of temperature, 100,000 event streams have been tested with a

range of threshold rate for rule set with change detection as r > 0 >α, count

threshold k > 1 which is λ = 100 as presented in y-axis, and wp = 10,000 event

stream tuples per window. The rule number in each window partition increases

since the rate of change slightly increases while event streams tuple value

change over the time as shown in figure 5.15). The rate of false alarm is

primarily depending on the size of event streams in each wp, the larger size of wp

is resulting in high rate of changes in the event streams.

The size of the event stream experimental result throughput of 1,000,000 tuples

shown in x-axis (refer to figure 5.15). Thus, this indicates that smaller size of

window partition is resulting of low rate of false alarm and change in the event

streams. In contrast, larger size of window partition indicates lower

computational results.

In relation to highway road traffic case study, change detection is tested over 1

million stream tuples as presented in x-axis with similar parameter ranges rule

set r > 0 >α, count threshold k > 1 which is λ = 100, and wp = 100,000. In this

situation, the size of stream tuples per window partition is scaled up from

Chapter 5: Experimental Results and Performance Evaluation

	 131	 	 	
	

100,000 to 1,000,000 to train the CA model for a false alarm rate. In contrast to

the pervious scenario, the number of false alarm rate of change in the event

streams linearly is increased 50% on average as shown in figure 5.15. For

example, compare pervious case study with the result of road traffic change

rates, the number of false alarm rate changes in the event streams from 0

increased to 10 in the first window, 20 to 60 in the last window partitioning.

This is due to the larger size of event streams in this case study and high number

of change rates, which indicates event stream tuple value, is changing over the

time. In this context, an ideal solution is to reduce the risk of high number of

false alarm rate by decreasing the value of α=0.001. Importantly, as the value

of α is decreased the range of λ is increased. Conceptually, increasing the

size of event streams per window partition indicates the raise of false alarm rate

due to the number changes in the event streams tuple values.

Figure 5.14: Detecting change rates by CESA algorithm for every wp = 10,000.

0

10

20

30

40

50

60

70

80

90

100

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

change

rules No.

C
ha

ng
e

D
et

ec
tio

n
R

at
er

 (p
er

 w
in

do
w

 w
p)

Eevnt Stream Throughput

Chapter 5: Experimental Results and Performance Evaluation

	 132	 	 	
	

Figure 5.15: Detecting change rates by CESA algorithm for every wp =
100,000.

0

10

20

30

40

50

60

70

80

90

100

0 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

change

rules No.

C
ha

ng
e

D
et

ec
tio

n
R

at
e

(p
er

 w
in

do
w

)

Event Stream Throughput

Chapter 5: Experimental Results and Performance Evaluation

	 133	 	 	
	

Chapter Summary

The experimental results of distributed event stream detection have been

presented in this chapter. First, the result of aggregation for the pre-processing

and event streams cleaning is presented before evaluating the result of the

algorithms. The result of event streams partitioning according to both window

models (count-based, time-based) is presented for the two case studies. The

main aim of such result is to compute several events per window partitioned in

parallel. Second, the results of detecting Contextual anomalous events by CESA

algorithm have been presented in both IoT case studies. The Contextual

behaviour was considered based on several facts including the time of the event

occurrence and tuple value in every stream sequence. The performance of

CESA algorithm was evaluated based on detecting changes in the event streams

according to the PH test results. The algorithm is evaluated in terms of

capability to handle high throughput event streams and ability to compute

AScore according to CA model. Importantly, the rates of prediction error are

evaluated to measure how effective the CESA algorithm is in relation to

detecting changes in the event a stream. Third, the performance of DCAD

framework has been tested over a distributed cluster based on processing time,

low-latency of each module’s framework through a variety of experiments. The

performance of DCAD is evaluated based on high event streams throughput, n

number of window partitioning that had a major impact on the processing time

and response. Importantly, the evaluation of parallelism is described based on

different facts such as scaling up the size of event streams, increasing the

number of computer nodes, however, the number of windows partition is

evaluated to estimate the processing time.

	 134	 	 	
	

Chapter 7: Conclusion and Future Work

	 135	 	 	
	

6. Chapter 6

Conclusion and Future Work

This chapter summarises the main research contributions of this thesis with

overall the empirical result discussion, followed by future works future research

extend opportunities.

6.1. Conclusion

Due to the advances in the digital technology, the size of generating data stream

is scaling up very rapidly. Such concept has motivated to study this research by

investigating the research problems in the core research field of data stream

mining and machine learning to understand the concept of online learning from

data streams, its model and stream constraints (e.g., time, space and accuracy).

To discover anomalous event from sensor streams with such constraints, first,

we defined the stream processing data structure model; second, we designed CA

model to define the Contextual behaviour of the event sensor streams. In this

context, distributed stream processing and detecting unusual events including

Contextual anomalous detection behaviour from real time application is playing

an important role. Specifically, detecting high volumes of anomalous events

from IoT sensor stream requires a robust method and novel algorithms to design

and to handle high rate of unbounded sequence of event streams real time.

Importantly, since sensor stream data attributes and values are correlated, to

Chapter 7: Conclusion and Future Work

	 136	 	 	
	

best our knowledge detecting Contextual method is disregards in the previous

research studies for the following justified reasons,

a) In batch (static) learning, anomaly is mainly detected through multi-scan

learning process; for example, the dataset can be divided into two tasks

of test and train learning, in contrast to streaming data, when in online

learning process; space, time, and accuracy are major concerns to be

considered, which is due to the size and rate of the data streams.

However, detecting anomalous event in online learning is one of the

most common appropriate techniques in most of the real time

applications when intelligent decision making is playing an important

role.

b) Detecting Contextual behaviour from dynamic event streams in online

learning can be proposed to predict unusual events from the data

resources. However, such concept is disregarded in the most of

streaming applications, which is due to the dynamic change in the data

stream during the data distribution.

c) In relation to the scalability of streaming data, specifically, for the big

IoT data, most of the traditional anomaly detection methods are mainly

proposing data reduction to overcome the scalability concern rather than

distributed mining. However, such method is only capable for a limited

size of the data and it is inappropriate for high volumes of data streams.

Thus, in recent years, distributed data stream processing is proposed as

an alternative solution.

Generally,, anomalous events are occur in the real time and the size of the data

stream is very large. Thus, we first proposed novel window partitioning

methods according to the learning tasks of count and time-based from arriving

event streams, and event streams then divided into several partitions to handle

the high rate of streams. The main benefit of this approach is to handle event

streams data distribution and detect or control unusual changes to the streams.

Chapter 7: Conclusion and Future Work

	 137	 	 	
	

Second, we designed a novel distributed Contextual event stream detection

method to detect the Contextual behaviour of the sensor data in real time based

on the stream data structure model. A detailed description of the main research

contributions is summarized as follows.

Event stream anomaly detection: a theoretical study of the anomaly detection

background is described in Chapter two with the concept of anomaly detection

in different research disciplines such as statistical analysis, data mining, stream

mining, and machine learning. In addition to this, several common detection

methods such as supervised, semi-supervised and unsupervised learning are

studied to identify research limitations. On the one hand, we defined and

designed each concept of event streams, such as Contextual Anomaly CA model

based on distributed event stream data structure model. The CA model is

designed to define the Contextual behaviour according to the possibility of

assigning AScore to the designed partitioned of event streams. In this context,

CESA algorithm is designed to detect the Contextual behaviours after the

anomalous event streams are partitioned. The algorithm is designed to first

check the event streams status as they continuously arrive from match module in

the DCAD, then event streams have been trained by the CA model to check

whether event stream tuple values are associating to with the stored matching

rule set. If the event streams are not matched, then such event streams are

considered as Contextual anomalous event or event streams alternatively

removed from the sequence list in each window partition.

Distributed Contextual Anomalous Event: to deal with the stream scalability

concern, we proposed a novel solution to handle a high rate of sequence of the

even streams. Specifically, we designed a novel distributed method so-called

DCAD as shown in Appendix 2, and the main task of this method is to able to

process and detect high volumes of Contextual event streams. DCAD consists

of three distributed computational modules; Pre-Processing, Event matching,

and Contextual Detection. These models are primarily based on distributed

stream processing data structure model. The first module is designed to pre-

Chapter 7: Conclusion and Future Work

	 138	 	 	
	

processing the event streams, only events with similar tuple values are

considered for further processing and detection since matching module is

associated with matching the event stream tuples and handling the rate of event

streams to capture any change that possibly occurred during the event stream

data distribution. Finally, we implemented CESA algorithm in the Contextual

module to detect Contextual behaviour from the event streams based on their

AScore computational stream output result values per each window partitions.

The experimental results demonstrated the effectiveness of each fact which we

have measured and tested based on the on the event stream size, the number of

window partitions, and scaling up the processing time. The result shows that

distributed processing performance is more efficient than centralised approach

to compute and detect high number of Contextual event behaviour in real time.

The main drawback of centralised computation is the number of designed

computational functions, which we have used per each bolt in the topology to

perform by the workers in parallel. The topology is required to deploy two

spouts and ten bolts together to perform such computational functions per only

one standalone node. Second, the performance of DCAD framework is

evaluated based on increased and decreased of a number window partitions; the

experimental result is demonstrating that using more windows per computer

node can have a major impact on the performance of the processing time.

Importantly, using less number of windows per computer node with a smaller

size of window partition length demonstrated a significant improvement in

terms of using less memory space, computational runtime process, and

detecting event streams changes. For such reasons, window partitions are

proposed across the DCAD framework and the experimental results indicated

the effectiveness of DCAD. The detecting experimental results are evaluated

based on scaling up the event streams size to test the capability of each

computing node based on their processing runtime performance. The

experimental result is satisfied the assumption of detection scalability concern

of over one million event streams per less than one second. An alternative

Chapter 7: Conclusion and Future Work

	 139	 	 	
	

solution is to deploy more nodes in the DCAD framework with adding more

bolts in the DAG topology for each case study. For example, adding from 1 to 8

nodes could decrease the processing time by approximately 50% in parallel.

Consider DCAD framework over 8 nodes, the result shows a significant

improvement in the performance from 65 to 45 milliseconds to process and

detect road traffic event streams. This can be an ideal approach to reduce

overhead in each computer node as the size of event streams have been scaled

up. The DCAD approach can be extended and implemented for other problems

within the other real world application domains including for credit card fraud

detection, network security monitoring system, weather prediction, and medical

sensor monitoring to detect anomalous events over the data streams in real time.

6.2. Future Work

In this thesis, we aimed to fulfill the main thesis’s objectives of detecting

anomaly from high volumes of stream, specifically, addressing the problem of

distributed Contextual anomalous event stream. The proposed solution and

results can be extended in further studies as described in below.

i. New window modeling-based method can easily be deployed in

application like social media stream data by allocating Anomaly Score

AScore to kth nearest window partition and train CA model based on new

arriving data ws where the partition size of each window can possibly

have an impact on processing of the computational result. Contextual

snapshot model can be designed based on matching dissimilar collection

of data according to their context and time-series behaviour. This can be

achieved by dividing arriving event streams into different snapshot time-

based interval window partitions. The anomaly snapshot model can be

built on collections of dissimilar Contextual behaviour. Thesis problem

can be further investigated in unsupervised learning; for example,

Clustream Clustering algorithm can be proposed to groups similar event

Chapter 7: Conclusion and Future Work

	 140	 	 	
	

streams according to their tuple values in each window partition.

Gaussian predictor, α and β are the most common appropriate

coefficients metrics to detect any changes within the event streams. The

event streams can be set into three metric intervals of t = 8, t = 16, t = 24

per each window partitioning length of 10,000 stream tuples.

ii. Future investigation can be considered to detect anomalous event

streams from other application domains with multi-variant data

attributes and high dimensional data streams; for example, grouping and

partitioning event attribute values according to their Contextual attribute

such as segment of events per window partition. Prior to the problem of

anomaly detection and event stream partitioning and parallel detection. It

is worth to study and investigate concept drift detection in other time-

series applications.

iii. Offline and online distributed anomaly detection approach is another

future research direction to be studied. This approach is already

proposed in some of the research disciplines of data mining and machine

learning; thus, we believed that distributed hybrid anomaly detection

research is an interesting and challenging task to be studied for the

future work. This can be achieved by; first, building anomaly model

from historical event data behaviour in offline, and training the arriving

new event streams on online from new window partitions.

iv. In relation to the anomaly scalability drawback, we have proposed

distributed cluster of computer nodes, while alternative solution can be

implementing a cloud-based architecture. Cloud architecture is one of an

efficient appropriate approach to aggregate and process high volumes of

stream detection. One of a key problem in distributed messaging system

is a communication channel between the servers. For example, when a

topology deployed on Storm nimbus, it is necessary to have a

communication channel destination to define tasks between the DCAD

modules and broker. To address such problem, we designed

Chapter 7: Conclusion and Future Work

	 141	 	 	
	

communication channel between the master-servers architecture by

connecting Kafka brokers with Storm framework through apache

Zookeeper 16. This is another remaining research investigation of

dynamic distribution of event between the distributed modules and

monitoring the data distribution behaviours.

16https://zookeeper.apache.org/

Bibliography		

	 142	 	 	
	

Bibliography

Abadi, D. J., Carney, D., Etintemel, U., Cherniack, M., Convey, C., Lee, S., IDaster-servers

architecture by connecting Kafka brokers with Storm framework throughThe VLDB
Journal The International Journal on Very Large Data Bases, 12(2), 120 139.
https://doi.org/10.1007/s00778-003-0095-z

 Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., es Lee, S., IDaster-servers
architecture by connecting Kafka brokers with Storm framework through apache
Zookeeper detection. proce12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’16) (pp. 265IX Symposium on Operating Systems Desi

Aggarwal, C. C., & Wang, J. (2007). Data Streams: Models and Algorithms. Data Streams, 31,
9a Streams C., & Wang, J. (2007). Data Streams:

Aggarwal, C. (2016). Outlier Analysis. New York: Yorktown Heights.

Aggarwal, C. C. (2012). A segment-based framework for modelling and mining data streams.
Knowledge and Information Systems, 30(1), 1dge and Information Systems-based
framework fo

Aggarwal, C. C., Watson, T. J., Ctr, R., Han, J., Wang, J., & Yu, P. S. (2003). A Framework
for Clustering Evolving Data Streams. Proc. of the 29th Int. Conf. on Very Large Data
Bases, 81. of the 29th Int. Conf. on Very La

 Agneeswaran, V. S. (2014). Big Data Analytics Beyond Hadoop. Big Data Analytics Beyond
Hadoop. Retrieved from
http://ptgmedia.pearsoncmg.com/images/9780133837940/samplepages/0133837947.pdf

 Akcora, C. G., Carminati, B., Ferrari, E., & Kantarcioglu, M. (2014). Detecting anomalies in
social network data consumption. Social Network Analysis and Mining, 4(1), 1 Network
Analysis and Miningrari, E., & Kantar

Akter, S., & Wamba, S. F. (2016). Big data analytics in E-commerce: a systematic review and
agenda for future research. Electronic Markets, 26(2), 173–194.
https://doi.org/10.1007/s12525-016-0219-0

 Alam, A., & Ahmed, J. (2014). Hadoop architecture and its issues. In Proceedings - 2014
International Conference on Computational Science and Computational Intelligence,
CSCI 2014 (Vol. 2, pp. 2884 Internatis://doi.org/10.1109/CSCI.2014.140

 Almeida, E., Ferreira, C., & Gama, J. (2013). Adaptive model rules from data streams. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) (Vol. 8188 LNAI, pp. 480 Science
(including subseries Lecture Notes in Arti

Amini, A., Saboohi, H., & Wah, T. Y. (2013). A multi density-based clustering algorithm for
data stream with noise. In Proceedings - IEEE 13th International Conference on Data
Mining Workshops, ICDMW 2013 (pp. 1105s - IEEE 13th International Conference on
Data

Amini, A., Wah, T. Y., & Saboohi, H. (2014). On density-based data streams clustering
algorithms: A survey. Journal of Computer Science and Technology.
https://doi.org/10.1007/s11390-014-1416-y

Andrade, H., Gedik, B., Wu, K.-L., & Yu, P. S. (2011). Processing high data rate streams in
System S. Journal of Parallel and Distributed Computing, 71(2), 145of Parallel and
Distributed Computing. (2011). P

 Angiulli, F., & Fassetti, F. (2010). Distance-based outlier queries in data streams: The novel
task and algorithms. Data Mining and Knowledge Discovery, 20(2), 290ing

Bibliography		

	 143	 	 	
	

anhttps://doi.org/10.1007/s10618-009-0159-9

Arasu, A., Babcock, B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., … Widom, J. (2004).
STREAM: The Stanford Data Stream Management System. Concrete, (2004e., Babcock,
B., Babu, S., Cieslewicz, J., Ito, K., Motwani, R., … Widom, J.

 Amen, B., & Lu, J., (2015). Sketch of Big Data Real time Analytics Model. The Fifth
International Conference on Advances in Information Mining and Management
(IMMM), 21st - 26th June 2015, Brussels, Belgium.

Assunt - 26th June 2015, Brussels, Belgium.ces in Information Mining and Management
(IMMM). STREAM: The Stanford Data Stream Management Syctions. Journal of
Parallel and Distributed Computing, 79–80, 3rnal of Parallel and Distributed
Computings in

 Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer
Networks, 54(15), 2787etworkshings: A survey. G. (2010).omnet.2010.05.010

Babcock, B., Babu, S., Datar, M., Motwani, R., & Widom, J. (2002). Models and issues in data
stream systems. In Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systemssystems. In (p. 1).
https://doi.org/10.1145/543613.543615

Badarna, M., & Wolff, R. (2014). Fast and accurate detection of changes in data streams.
Statistical Analysis and Data Mining, 7(2), 125cal Analysis and Data Miningt and accur

Bai, M., Wang, X., Xin, J., & Wang, G. (2015). An efficient algorithm for distributed density-
based outlier detection on big data. Neurocomputing, 181, 19ocomputing X., Xin, J., &
Wang, G. (2015). An eff

Baldoni, R., Querzoni, L., Tarkoma, S., & Virgillito, A. (2009). Distributed event routing in
publish/subscribe systems. In Middleware for Network Eccentric and Mobile
Applications (pp. 219e for Network Eccentric and Mobile ApplicationsIn 0

Beigi, M. S., Chang, S.-F., Ebadollahi, S., & Verma, D. C. (2011). Anomaly detection in
information streams without prior domain knowledge. IBM Journal of Research and
Development, 55(5), 11:1-11:11. https://doi.org/10.1147/JRD.2011.2163280

Bhatnagar, V., Kaur, S., & Chakravarthy, S. (2014). Clustering data streams using grid-based
synopsis. Knowledge and Information Systems, 41(1), 127e and Information
Systemsvarthy, S. (2014). Clu

Bifet, A., Morales-bueno, R., Baena-Garcia, M., Campo-Avila, J. Del, Fidalgo, R., Bifet, A.,
synopsis. lier detection on big data. ment Syctions. framewor4th ECML PKDD
International Workshop on Knowledge Discovery from Data Streams (Vol. 6, pp.
77ternational Workshop on Knowledge Di

Bifet, A., de Francisci Morales, G., Read, J., Holmes, G., & Pfahringer, B. (2015). Efficient
Online Evaluation of Big Data Stream Classifiers. Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, (April
2016), 59 21th ACM SIGKDD International Conference on

Bifet, A. (2009). Adaptive Learning and Mining for Data Streams and Frequent Patterns.
Dissertation Universitat Politecnica de Catalunya, 11(1), 55ation Universitat Politecnica
de Catalunyar

Bondu, A., & Boullrsitat PolitecA supervised approach for change detection in data streams.
International Joint Conference on Neural Networks (IJCNN), 8. Retrieved from
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6033265%0Ahttp://www.marc-
boulle.fr/publications/BonduEtAlIJCNN11.pdf

Brzezinski, D., & Stefanowski, J. (2014). Reacting to different types of concept drift: The
accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and
Learning Systems, 25(1), 81ansactions on Neural Networks and Learning Syst

Bibliography		

	 144	 	 	
	

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006). Density-based clustering over an evolving
data stream with noise. Proceedings of the Sixth SIAM International Conference on Data
Mining, 2006, 328edings of the Sixth SIAM International Confer

Caron, E., & De Assuncao, M. D. (2017). Multi-criteria malleable task management for
hybrid-cloud platforms. In Proceedings of 2016 International Conference on Cloud
Computing Technologies and Applications, CloudTech 2016 (pp. 326gs of 2016
International Conference on Cloud Computin

Chakrabarti, K., Keogh, E., Mehrotra, S., & Pazzani, M. (2002). Locally adaptive
dimensionality reduction for indexing large time series databases. ACM Transactions on
Database Systems, 27(2), 188sactions on Database Systems, S., & Pazzani

Candela, V., Banerjee, A., & Kumar, V. (2012). Anomaly detection for discrete sequences: A
survey. IEEE Transactions on Knowledge and Data Engineering.
https://doi.org/10.1109/TKDE.2010.235

Candela, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(September),
1Survehttps://doi.org/10.1145/1541880.1541882

Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M. J., Hellerstein, J. M., Hong, W.,
y reduction for indexing large time series databases. amework through apache Zookeeper
Cidr, 20(March), 668. https://doi.org/10.1145/872757.872857

Chaudhry, N., Shaw, K., & Abdelguerfi, M. (2005). Stream Data Management (1st ed.). US:
Springer US

Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. In Mobile Networks and Applications
(Vol. 19, pp. 171d Applications14). Big/10.1007/s11036-013-0489-0

Cugola, G., & Margara, A. (2012). Processing flows of information. ACM Computing Surveys,
44(3), 1mputing Surveys, A. (2012). Processing flows

De Matteis, T., & Mencagli, G. (2016). Keep calm and react with foresight: Strategies for
Low- Latency and Energy-Efficient Elastic Data Stream Processing. Proceedings of the
21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming -
PPoPP d E, 1ceedings of the 21st ACM SIGPLAN Symposium o

Demceedings of the 21st ACM S8). Detecting concept drift in data streams using model
explanation. Expert Systems with Applications, 92, 546t Systems with Applications
Detecting concept dr

Ding, S., Wu, F., Qian, J., Jia, H., & Jin, F. (2015). Research on data stream clustering
algorithms. Artificial Intelligence Review, 43(4), 593al Intelligence Reviewa, H., & Jin,
F. (2015).

Dobre, C., & Xhafa, F. (2014). Parallel programming paradigms and frameworks in Big Data
Era. International Journal of Parallel Programming, 42(5), 710ional
Jours://doi.org/10.1007/s10766-013-0272-7

 Doulkeridis, C., & N/doi.org/10.1007/s10766-013-0272-7adigms and frameworks in Big Data
Era. rithms. PP VLDB Journal. https://doi.org/10.1007/s00778-013-0319-9

Department for Business, Energy & Industrial Strategy. (2016). Smart Meters Quarterly Report
to End September: final report. Retrieved from
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/579197/20
16_Q3_Smart_Meters_Report_Final.pdf

Duarte, J., Gama, J., & Bifet, A. (2016). Adaptive Model Rules From High-Speed Data
Streams. ACM Transactions on Knowledge Discovery from Data, 10(3), 1ansactions on
Knowledge Discovery fr

Erfani, S. M., Rajasegarar, S., Karunasekera, S., & Leckie, C. (2016). High-dimensional and

Bibliography		

	 145	 	 	
	

large-scale anomaly detection using a linear one-class SVM with deep learning. Pattern
Recognition, 58, 121rn Recognition detection using a linear one-class

Esposito, C., Ficco, M., Palmieri, F., & Castiglione, A. (2015). A knowledge-based platform
for big data analytics based on publish/subscribe services and stream processing.
Knowledge-Based Systems, 79, 3wledge-Based Systems, Palmieri, F., & Castiglione

 Eugster, P. T., Felber, P. A., Guerraoui, R., & Kermarrec, A.-M. (2003). The many faces of
publish/subscribe. ACM Computing Surveys, 35(2), 114uting Surveyser, P. A.,
Guerraoui, R., & Ke

Facca, F. M., & Lanzi, P. L. (2005). Mining interesting knowledge from weblogs: A survey.
Data and Knowledge Engineering. https://doi.org/10.1016/j.datak.2004.08.001

 Fahad, A., Alshatri, N., Tari, Z., Alamri, A., Khalil, I., Zomaya, A. Y., … Bouras, A. (2014).
A survey of clustering algorithms for big data: Taxonomy and empirical analysis. IEEE
Transactions on Emerging Topics in Computing, 2(3), 267nsactions on Emerging Topics
in Computinghalil9

Fan, J., & Liu, H. (2013). Statistical analysis of big data on pharmacogenomics. Advanced
Drug Delivery Reviews. https://doi.org/10.1016/j.addr.2013.04.008

Faria, E. R., Gon/10.1016/j.addr.2013.04.008sis of big data on pharmacogenomics. as, A.
(2014). A ction in data streams. Artificial Intelligence Review, 45(2), 235al Intelligence
Reviewdr.2013.04.008sis of big

Faria, E. R., Gama, J., & Carvalho, A. C. (2013). Novelty detection algorithm for data streams
multi-class problems. Proceedings of the 28th Annual ACM Symposium on Applied
Computing, 795edings of the 28th Annual ACM Symposium on Ap

Farid, D. M., Zhang, L., Hossain, A., Rahman, C. M., Strachan, R., Sexton, G., & Dahal, K.
(2013). An adaptive ensemble classifier for mining concept drifting data streams. Expert
Systems with Applications, 40(15), 5895tems with Applications, A., Rahman, C. M.,
Strach

Ferrer-Troyano, F., Aguilar-Ruiz, J. S., & Riquelme, J. C. (2005). Incremental rule learning
based on example nearness from numerical data streams. In Proceedings of the 2005
ACM symposium on Applied computing - SAC ’05 (p. 568).
https://doi.org/10.1145/1066677.1066808

 Folino, G., & Sabatino, P. (2016). Ensemble based collaborative and distributed intrusion
detection systems: A survey. Journal of Network and Computer Applications.
https://doi.org/10.1016/j.jnca.2016.03.011

 Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection.
Brazilian Symposium on Artificial Intelligence, 286lian Symposium on Artificial
Intelligences,45-5_29

Gama, J. (2012). A survey on learning from data streams: current and future trends. Prog Artif
Intell, 1, 45 Artif IntellA survey on learning from data st

Gama, J., SebastiA survey on learning from data streams: current and future trends. ction.
delgorithms. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD n s (p. 329).
https://doi.org/10.1145/1557019.1557060

 Gama, J., https://doi.org/10.1145/1557019.1557060onference on Knowledge discovery rvey
on concept drift adaptation. ACM Computing Surveys, 46(4), 1mputing
Surveysi.org/10.1145/1557019

Gao, X., Ferrara, E., & Qiu, J. (2015). Parallel clustering of high-dimensional social media data
streams. In Proceedings - 2015 IEEE/ACM 15th International Symposium on Cluster,
Cloud, and Grid Computing, CCGrid 2015 (pp. 323gs - 2015 IEEE/ACM 15th
International Symposi

Bibliography		

	 146	 	 	
	

 Garc 323gs - 2015 IEEE/ACM 15th International Symposium on Cluster, Cloud, and Grid
Computing, CCGrid 2015In ation. y. rom numTechniques, systems and challenges.
Computers & Security, 28, 18uters & SecurityEEE/ACM 15th International Symp

Genesereth, M., Keller, A., & Duschka, O. (1997). Infomaster: an information integration
system. SIGMOD Rec, 26(2), 539-542.

Golmohammadi, K., & Zaiane, O. R. (2015). Time series contextual anomaly detection for
detecting market manipulation in stock market. In Proceedings of the 2015 IEEE
International Conference on Data Science and Advanced Analytics, DSAA 2015.
https://doi.org/10.1109/DSAA.2015.7344856

Grosse, V., & Turin, F. (2012). Stream mining: A novel architecture for ensemble-based
classification. Knowledge and Information Systems, 30(2), 247e and Information
Systemsel architecture for en

 Gupta, M., Gao, J., Aggarwal, C. C., & Han, J. (2014). Outlier Detection for Temporal Data:
A Survey. Knowledge and Data Engineering, IEEE Transactions on, 26(9), 2250 and
Data Engineering, IEEE Transactions on4

 Hashem, I. A. T., Yaqoob, I., Anuar, N. B., Mokhtar, S., Gani, A., & Ullah Khan, S. (2015).
The rise of “big data” on cloud computing: Review and open research issues.
Information Systems, 47, 98rmation SystemsYaqoob, I., Anuar, N. B., Mokht

 Hayes, M. A., & Capretz, M. A. (2015). Contextual anomaly detection framework for big
sensor data. Journal of Big Data, 2(1). https://doi.org/10.1186/s40537-014-0011-y

Hoens, T. R., Polikar, R., & Chawla, N. V. (2012). Learning from streaming data with concept
drift and imbalance: an overview. Progress in Artificial Intelligence, 1(1), 89s in
Artips://doi.org/10.1007/s13748-011-0008-0

 Hu, H., Wen, Y., Chua, T. S., & Li, X. (2014). Toward scalable systems for big data analytics:
A technology tutorial. IEEE Access, 2, 652Accessn, Y., Chua, T. S., & Li, X. (2014).
Toward

Huang, H., & Kasiviswanathan, S. P. (2015). Streaming anomaly detection using randomized
matrix sketching. Proceedings of the VLDB Endowment, 9(3), 192ngs of the VLDB
EndowmentP. (2015). Streaming

 Ikonomovska, E., Gama, J., & DntP. (2015). Streaming anomaly detection using randomizeata
streams. Data Mining and Knowledge Discovery, 23(1), 128ing and Knowledge
Discovery (2015). Streaming a

IEEE Society, I.-S. E. (2007). IEEE Standard for Standard General Requirements for Liquid-
Immersed Distribution, Power, and Regulating Transformers

Jiang, Y., Zeng, C., Xu, J., & Li, T. (2014). Real time contextual collective anomaly detection
over multiple data streams. Workshop on Outlier Detection & Description under Data
Diversity (ODD), 1, 23shop on Outlier Detection & Description unde

Kamburugamuve, S., Christiansen, L., & Fox, G. (2015). A framework for real time processing
of sensor data in the cloud. Journal of Sensors, 2015.
https://doi.org/10.1155/2015/468047

 Karatepe, I. A. & Zeydan, E. (2014). Anomaly Detection In Cellular Network Data Using Big
Data Analytics. European Wireless 2014; 20th European Wireless Conference;
Proceedings of.

 Karunaratne, P., Karunasekera, S., & Harwood, A. (2017). Distributed stream clustering using
micro-clusters on Apache Storm. Journal of Parallel and Distributed Computing, 108,
74nal of Parallel and Distributed Computing, A. (

Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: Issues, challenges, tools and Good
practices. In 2013 Sixth International Conference on Contemporary Computing ({IC}3)

Bibliography		

	 147	 	 	
	

(pp. 404–409). https://doi.org/10.1109/IC3.2013.6612229

Kifer, D., Ben-david, S., & Gehrke, J. (2004). Detecting Change in Data Streams. In the 30th
International Conference on Very Large Data Bases Conference (pp. 180International
Conference on Very Large71(94)90421-9

 Kmieciak, M. R., & Stefanowski, J. (2011). Handling Sudden Concept Drift in Enron
Messages Data Stream. Control and Cybernetics, 667ol an

 Krawczyk, B., Minku, L. L., Gama, J., Stefanowski, J., & WoConcept Drift in Enron
Messages Data Streama stream analysis: A survey. Information Fusion, 37, 132mation
Fusionku, L. L., Gama, J., Stefanowski, J.,

Krempl, G., Spiliopoulou, M., Stefanowski, J., ski, J., & WoConcept Drift in Enron Messages
Data Sievi, S. (2014). Open challenges for data stream mining research. ACM SIGKDD
Explorations Newsletter, 16(1), 1GKDD Explorations Newsletteranowski, J., ski

Kreps, J., Narkhede, N., & Rao, J. (2011). Kafka: a Distributed Messaging System for Log
Processing. ACM SIGMOD Workshop on Networking Meets Databases, 6. Retrieved
from http://research.microsoft.com/en-
us/um/people/srikanth/netdb11/netdb11papers/netdb11-final12.pdf

 Kuncheva, L. I. (2008). Classifier ensembles for detecting concept change in streaming data:
Overview and perspectives. Proceedings of the Second Workshop SUEMA, ECAI 2008,
(July), 5 of the Second Workshop SUEMA, ECAI 2008etecting con

Lee, C. H., & Chien, T. F. (2013). Leveraging microblogging big data with a modified density-
based clustering approach for event awareness and topic ranking. Journal of Information
Science, 39(4), 523of Information Scienceata with a modified dens

Li, G., & Jacobsen, H.-A. (2005). Composite subscriptions in content-based publish/subscribe
systems. In Middleware a05: Proceedings of the ACM/IFIP/USENIX 2005 International
Conference on Middleware (pp. 249e a05: Proceedings of the ACM/IFIP/USEN

Li, H.-F., & Lee, S.-Y. (2009). Mining frequent itemsets over data streams using efficient
window sliding techniques. Expert Systems with Applications, 36(2), 1466stems with
ApplicationsMining frequent itemsets o

Liu, Y., & Plale, B. (2003). Survey of publish subscribe event systems. Indiana University
Department of Computer Science, (TR574), 1ersity Department of Computer
Scienx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.3753&rep=rep1&type=p
df

Ma, J., & Perkins, S. (2003). Time-series novelty detection using one-class support vector
machines. Proceedings of the International Joint Conference on Neural Networks, 2003.,
3, 1741–1745. https://doi.org/10.1109/IJCNN.2003.1223670

Ma, J., Sun, L., Wang, H., Zhang, Y., & Aickelin, U. (2016). Supervised Anomaly Detection in
Uncertain Pseudoperiodic Data Streams. ACM Transactions on Internet Technology,
16(1), 1ansactions on Intern/10.1145/2806890

Ma, Y., Wu, H., Wang, L., Huang, B., Ranjan, R., Zomaya, A., & Jie, W. (2015). Remote
sensing big data computing: Challenges and opportunities. Future Generation Computer
Systems, 51, 47re Generation Computer Systems., Ranjan, R., Zoma

Mahapatra, A., Srivastava, N., & Srivastava, J. (2012). Contextual anomaly detection in text
data. Algorithms, 5(4), 469ms anomaly detection in text data. , J

McCreadie, R., Macdonald, C., Ounis, I., Osborne, M., & Petrovic, S. (2013). Scalable
distributed event detection for Twitter. In Proceedings - 2013 IEEE International
Conference on Big Data, Big Data 2013 (pp. 543gs - 2013 IEEE International
Conference on Big Data

Mirsky, Y., Shabtai, A., Shapira, B., Elovici, Y., & Rokach, L. (2017). Anomaly detection for

Bibliography		

	 148	 	 	
	

smartphone data streams. Pervasive and Mobile Computing, 35, 83asive and Mobile
Computingra, B., Elovici, Y., &

Mouss, H., Mouss, D., Mouss, N., & Sefouhi, L. (2004). Test of page-hinckley, an approach
for fault detection in an agro-alimentary production system. Proceedings of the 5th Asian
Control Conference, 815edings of the 5th Asian Control Conference(200

Muthukrishnan, S. (2005). Data Streams: Algorithms and Applications. Foundations and
Trends5). Data Streams: Algorithms and , 1(2), 117ons and
Tre://doi.org/10.1561/0400000002

Nguyen, H.-L., Woon, Y.-K., & Ng, W.-K. (2014). A survey on data stream clustering and
classification. Knowledge and Information Systems, 45(3), 535e and Information
Systems W.-K. (2014). A surve

OReilly, C., Gluhak, A., Imran, M., & Rajasegarar, S. (2014). Anomaly Detection in Wireless
Sensor Networks in a Non-Stationary Environment. Ieeexplore.Ieee.Org, 16(3),
1lore.Ieee.Org, A., Imran, M., & Rajasegarar, S. (20

Papadimitriou, S., Sun, J., & Faloutsos, C. (2005). Streaming pattern discovery in multiple
time-series. Eedings of the 31st International Conference on Very Large Data Bases,
697gs of the 31st International Conference on Very Large Data Bas

Parthasarathy, S., Ghoting, a, & Otey, M. (2007). A survey of distributed mining of data
streams. Data Streams. https://doi.org/10.1007/978-0-387-47534-9_13

Pham, D., Venkatesh, S., Lazarescu, M., & Budhaditya, S. (2012). Anomaly detection in high
volume data stream networks. Data Mining and Knowledge Discovery. 28(1), 145-189.

Philip Chen, C. L., & Zhang, C.-Y. (2014). Data-intensive applications, challenges, techniques
and technologies: A survey on Big Data. Information Sciences, 275, 314mation
Sciences& Zhang, C.-Y. (2014). Data-inte

Rathore, M. M., Ahmad, A., & Paul, A. (2016). Real time intrusion detection system for ultra-
high-speed big data environments. Journal of Supercomputing, 72(9), 3489f
Supercomputingtion system for ultra-high-speed

Rauber, T., & Rrcomputingtion sysParallel programming: For multicore and cluster systems.
Parallel Programming: For Multicore and Cluster Systems. https://doi.org/10.1007/978-
3-642-37801-0

Rettig, L., Khayati, M., Cudre-Mauroux, P., & Piorkowski, M. (2015). Online anomaly
detection over Big Data streams. In 2015 IEEE International Conference on Big Data
(Big Data) (pp. 1113International Conference on Big Data (Big Data) M. (

Saleh, O., Hagedorn, S., & Sattler, K.-U. (2015). Complex Event Processing on Linked Stream
Data. Datenbank-Spektrum, 15(2), 119k-Spektrumn, S., & Sattle1007/s13222-015-0190-
5

Schneider, M., Ertel, W., & Ramos, F. (2016). Expected similarity estimation for large-scale
batch and streaming anomaly detection. Machine Learning, 105(3), 305Learningrtel, W.,
& Ramos, F. (2016). Expected

Silva, J. A., Faria, E. R., Barros, R. C., Hruschka, E. R., Carvalho, A. C. P. L. F. de, & Gama,
J. (2013). Data stream clustering. ACM Computing Surveys, 46(1), 1mputing SurveysE.
R., Barros, R. C., Hruschk

Solaimani, M., Iftekhar, M., Khan, L., & Thuraisingham, B. (2014). Statistical technique for
online anomaly detection using Spark over heterogeneous data from multi-source
VMware performance data. In Proceedings - 2014 IEEE International Conference on
Big Data, IEEE Big Data 2014 (pp. 1086s - 2014 IEEE International
Conferencea.2014.7004343

Su, L., Han, W., Zou, P., Jia, Y., & Yang, S. (2007). Continuous Kernel-Based Outlier

Bibliography		

	 149	 	 	
	

Detection over Distributed Data Streams. Frontiers of High Performance Computing and
Networking ISPA 2007 Workshops, 305iers of High Performance Computing -540-
74767-3_32

Tao, Y., & Ozsu, M. (2009). Mining data streams with periodically changing distributions.
Proceedings of the 18th ACM conference on Information and knowledge management.
Hong Kong, China, ACM: 887-896.

Tanbeer, S. K., Ahmed, C. F., Jeong, B. S., & Lee, Y. K. (2009). Sliding window-based
frequent pattern mining over data streams. Information Sciences, 179(22), 3843n
Sciencesd, C. F., Jeong, B. S., & Lee, Y. K. (

Tatbul, N. (2010). Streaming data integration: Challenges and opportunities. ICDE Workshops,
155Workshops10). Streaming data integration: Challe

Tran, D.-H., Gaber, M. M., & Sattler, K.-U. (2014). Change Detection in Streaming Data in the
Era of Big Data: Models and Issues. ACM SIGKDD Explorations Newsletter - Special
Issue on Big Data, (1), 30D Explorations Newsletter - Special Issue on

Tsai, C.-W., Lai, C.-F., Chao, H.-C., & Vasilakos, A. V. (2015). Big data analytics: a survey.
Journal of Big Data, 2(1), 21. https://doi.org/10.1186/s40537-015-0030-3

Vallim, R. M. M., & De Mello, R. F. (2014). Proposal of a new stability concept to detect
changes in unsupervised data streams. Expert Systems with Applications, 41(16),
7350tems with Applicationsept to detect changes in un

Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L., Snoeck, M., & Baesens,
B. (2015). APATE: A novel approach for automated credit card transaction fraud
detection using network-based extensions. Decision Support Systems, 75, 38sion Support
Systemso, C., Caelen, O., Eliassi

Vu, A. T., De Francisci Morales, G., Gama, J., & Bifet, A. (2014). Distributed Adaptive Model
Rules for mining big data streams. In 2014 IEEE International Conference on Big Data
(Big Data) (pp. 345 International Conference on Big Data (Big Data). (

 Wang, X.-T., D.-R. Shen, M. Bai, T.-Z. Nie, Y. Kou and G. Yu (2015). An Efficient
Algorithm for Distributed Outlier Detection in Large Multi-Dimensional Datasets.
Computer Science and Technology, 30(6), 1233-1248.

Wu, S., & Wang, S. (2013). Information-theoretic outlier detection for large-scale categorical
data. IEEE Transactions on Knowledge and Data Engineering, 25(3), 589nsactions on
Knowledge and Data Engineering

Yan, Y., J. Zhang, B. Huang, X. Sun, J. Mu, Z. Zhang and T. Moscibroda (2015). Distributed
Outlier Detection using Compressive Sensing. In Proceedings of the 2015ACM SIGMOD
International Conference on Management of Data, (pp. 3-16).

Xie, M., Han, S., Tian, B., & Parvin, S. (2011). Anomaly detection in wireless sensor
networks: A survey. Journal of Network and Computer Applications, 34(4), 1302f
Network and Computer Applications11). Anomaly d

Yang, H., & Fong, S. (2015). Countering the concept-drift problems in big data by an
incrementally optimized stream mining model. Journal of Systems and Software, 102,
158al of Systems and.org/10.1016/j.jss.2014.07.010

Ye, R., & Li, X. (2017). Collective Representation for Abnormal Event Detection. Journal of
Computer Science and Technology, 32(3), 470of Computer Science and
Technologyentation for

Young, W. C., Blumenstock, J. E., Fox, E. B., & Mccormick, T. H. (2014). Detecting and
classifying anomalous behaviour in spatiotemporal network data. Kdd-Lesi.

Yu, L., & Lan, Z. (2016). A Scalable, Non-Parametric Method for Detecting Performance
Anomaly in Large Scale Computing. IEEE Transactions on Parallel and Distributed

Bibliography		

	 150	 	 	
	

Systems, 27(7), 1902sactions on Parallel and Distributed SystemsMeth

Zhang, J. (2013). Advancements of Outlier Detection: A Survey. ICST Transactions on
Scalable Information Systems, 13(1), e2. https://doi.org/10.4108/trans.sis.2013.01-03.e2

Zhang, X., Fang, Z., Wen, Y., Li, Z. & Qiao, Y. (2016). Range Loss for Deep Face
Recognition with Long-tail: CoRR ArXiv e-prints,
http://dblp.org/rec/bib/journals/corr/ZhangFWL016

Zhang, J., Gao, Q., & Wang, H. (2008). SPOT: A system for detecting projected outliers from
high-dimensional data streams. In Proceedings - International Conference on Data
Engineering (pp. 1628s - International Conference on Data Engineeringd

Zhang, Meratnia, N., & Havinga, P. (2010). Outlier Detection Techniques for Wireless Sensor
Networks: A Survey. IEEE Communications Surveys & Tutorials, 12(2), 159munications
Surveys & Tutorials0). Outlier Detection

Zhang, T., Ramakrishnan, R., & Livny, M. (1997). BIRCH: A New Data Clustering Algorithm
and Its Applications. Data Mining and Knowledge Discovery, 1(2), 141ing and
Knowledge Discoveryy, M. (1997). BIRC

Zheng, Y., Zhang, H., & Yu, Y. (2015). Detecting collective anomalies from multiple spatio-
temporal datasets across different domains. In Proceedings of the 23rd SIGSPATIAL
International Conference on Advances in Geographic Information Systems - GIS oss (pp.
1ings of the 23rd SIGSPATIAL International Con

Appendix	 	

	
151

	

Appendix 1: Big Data State-of-the-art Comparison

Appendix	 	

	
152

	

Appendix 2: Distributed Contextual Anomaly Detection (DACD) Framework

Appendix	 	

	
153

	

Appendix 3: Distributed Contextual Anomaly Detection (DCAD)
Architecture

Appendix	 	

	
154

	

Appendix 4: Result of Event Stream Window Partitions

Stream
Tuple

Temp <20℃ Temp >26℃ Stream
Tuple

Temp
<20℃

Temp >26℃

10000 1 3 510000 42 19
20000 3 5 520000 45 17
30000 2 6 530000 45 19
40000 1 7 540000 46 19
50000 3 7 550000 47 19
60000 3 8 560000 48 18
70000 3 7 570000 48 19
80000 4 8 580000 49 20
90000 4 10 590000 49 21
100000 6 9 600000 50 21
110000 8 8 610000 52 20
120000 8 9 620000 53 21
130000 8 10 630000 54 22
140000 10 8 640000 56 21
150000 12 7 650000 57 21
160000 12 9 660000 58 21
170000 12 10 670000 58 22
180000 14 9 680000 59 22
190000 15 10 690000 60 22
200000 16 10 700000 60 23
210000 16 11 710000 60 24
220000 18 11 720000 61 23
230000 18 12 730000 61 24
240000 18 13 740000 63 23
250000 19 13 750000 63 24
260000 20 14 760000 64 24
270000 23 13 770000 64 25
280000 25 12 780000 66 24
290000 25 12 790000 66 24
300000 26 12 800000 67 24
310000 27 12 810000 68 25
320000 28 12 820000 69 25
330000 28 13 830000 70 26
340000 29 14 840000 71 26
350000 31 14 850000 73 25
360000 31 15 860000 73 26
370000 32 15 870000 75 26
380000 32 16 880000 78 24
390000 32 17 890000 78 25
400000 32 18 900000 78 26
410000 33 17 910000 79 26
420000 35 17 920000 81 25
430000 35 19 930000 84 24
440000 35 20 940000 85 24
450000 37 18 950000 86 25
460000 37 19 960000 86 26
470000 37 20 970000 87 26
480000 38 19 980000 88 26
490000 39 19 990000 88 28
500000 41 19 1000000 89 28

Appendix	 	

	
155

	

Appendix 5: Result of MAE and RSME Predicating Error by CESA

Stream
Tuples

MAE RSME Stream
Tuples

MAE RSME

10000 0.377734 0.436237 510000 0.342148 0.414309
20000 0.355729 0.421506 520000 0.365707 0.428173
30000 0.346158 0.412526 530000 0.36283 0.43084
40000 0.352114 0.427611 540000 0.380327 0.439482
50000 0.391087 0.445245 550000 0.378281 0.433275
60000 0.348688 0.417421 560000 0.393992 0.444702
70000 0.333416 0.412919 570000 0.384196 0.43875
80000 0.349678 0.422812 580000 0.36961 0.427712
90000 0.313396 0.394406 590000 0.398304 0.454473
100000 0.355356 0.423262 600000 0.36985 0.431453
110000 0.327224 0.405802 610000 0.3509 0.419499
120000 0.326414 0.404108 620000 0.337364 0.409793
130000 0.328005 0.409912 630000 0.359118 0.429203
140000 0.316664 0.39871 640000 0.337389 0.412642
150000 0.322265 0.400518 650000 0.337508 0.410686
160000 0.387403 0.444668 660000 0.331523 0.408405
170000 0.37841 0.432911 670000 0.316325 0.400751
180000 0.376901 0.433851 680000 0.310247 0.388417
190000 0.434962 0.470736 690000 0.375616 0.430434
200000 0.30836 0.400807 700000 0.338798 0.407799
210000 0.312019 0.395385 710000 0.330764 0.402369
220000 0.303664 0.390776 720000 0.323569 0.404949
230000 0.314901 0.397049 730000 0.381713 0.432922
240000 0.305793 0.389099 740000 0.321164 0.401144
250000 0.318161 0.401564 750000 0.350293 0.415828
260000 0.297087 0.384984 760000 0.375969 0.432984
270000 0.379114 0.426261 770000 0.361567 0.420211
280000 0.385466 0.443657 780000 0.350948 0.419361
290000 0.313561 0.388028 790000 0.321395 0.400226
300000 0.389672 0.441858 800000 0.30614 0.390959
310000 0.355884 0.419721 810000 0.318342 0.402854
320000 0.331611 0.403205 820000 0.318409 0.398578
330000 0.313279 0.397064 830000 0.291221 0.38457
340000 0.349326 0.421857 840000 0.31505 0.402135
350000 0.337274 0.406027 850000 0.32583 0.405458
360000 0.369044 0.427574 860000 0.326691 0.392481
370000 0.365935 0.429176 870000 0.324392 0.397487
380000 0.383801 0.43677 880000 0.326381 0.40105
390000 0.345053 0.41386 890000 0.294519 0.383192
400000 0.357952 0.425975 900000 0.30102 0.391097
410000 0.338022 0.411441 910000 0.321264 0.398287
420000 0.354474 0.427024 920000 0.297009 0.388732
430000 0.351719 0.419726 930000 0.304015 0.390988
440000 0.321922 0.401809 940000 0.297213 0.385752
450000 0.314427 0.395105 950000 0.301051 0.38969
460000 0.300295 0.391369 960000 0.281209 0.37304
470000 0.300824 0.391583 970000 0.345609 0.422641
480000 0.284679 0.379111 980000 0.321314 0.400043
490000 0.357031 0.427721 990000 0.298108 0.380865
500000 0.323929 0.402367 1000000 0.35585 0.422783

	

	
156

	

Appendix 6: Result of CESA Computational CPU (in Millisecond)

Stream
Tuples

Evaluation
time (CPU
in ms)

MAE RSME Stream
Tuples

Evaluation
time (CPU
in ms)

MAE RSME

10000 0.764405 0.377734 0.436237 510000 39.81146 0.27199 0.370555
20000 1.419609 0.318078 0.398038 520000 40.63826 0.286167 0.381862
30000 2.074813 0.317481 0.396094 530000 41.49627 0.276589 0.373995
40000 2.761218 0.317787 0.402433 540000 42.36987 0.308565 0.397129
50000 3.494422 0.374653 0.432863 550000 43.21228 0.339709 0.416241
60000 4.196427 0.319512 0.400157 560000 44.07028 0.33858 0.416693
70000 4.914032 0.306783 0.392703 570000 44.92829 0.335415 0.412187
80000 5.631636 0.310344 0.400669 580000 45.78629 0.339409 0.419439
90000 6.364841 0.322444 0.40104 590000 46.6287 0.307729 0.39508
100000 7.098046 0.313482 0.400602 600000 47.5179 0.313478 0.395766
110000 7.76885 0.323636 0.405941 610000 48.40711 0.321348 0.40493
120000 8.502055 0.303892 0.393001 620000 49.29632 0.304444 0.393414
130000 9.266459 0.327823 0.404883 630000 50.20112 0.319027 0.402461
140000 9.968464 0.319278 0.403377 640000 51.16833 0.313392 0.395451
150000 10.73287 0.312568 0.399848 650000 52.07313 0.327152 0.405836
160000 11.45047 0.319046 0.399314 660000 53.00914 0.320973 0.403861
170000 12.18368 0.294529 0.388603 670000 54.00755 0.33089 0.410473
180000 12.94808 0.300365 0.39198 680000 54.92795 0.304707 0.393328
190000 13.69689 0.292 0.383244 690000 55.91076 0.281573 0.375513
200000 14.44569 0.28163 0.377077 700000 56.86236 0.274878 0.367752
210000 15.2257 0.314629 0.397056 710000 57.81397 0.255975 0.358194
220000 16.0057 0.278633 0.374838 720000 58.73438 0.261346 0.362881
230000 16.78571 0.285248 0.367978 730000 59.68598 0.270085 0.36789
240000 17.55011 0.252158 0.352088 740000 60.63759 0.260343 0.355274
250000 18.34572 0.343128 0.411512 750000 61.57359 0.256542 0.357336
260000 19.12572 0.293045 0.376176 760000 62.494 0.266119 0.362714
270000 19.92133 0.282907 0.376096 770000 63.43001 0.265823 0.37081
280000 20.70133 0.299676 0.39582 780000 64.45961 0.312816 0.399184
290000 21.51254 0.294843 0.38106 790000 65.41122 0.297663 0.386887
300000 22.27694 0.329247 0.402235 800000 66.40963 0.253794 0.354401
310000 23.10375 0.307977 0.392931 810000 67.36123 0.271014 0.373055
320000 23.88375 0.282988 0.377551 820000 68.31284 0.296194 0.3832
330000 24.69496 0.277338 0.372752 830000 69.28004 0.246577 0.350968
340000 25.53736 0.288326 0.381658 840000 70.26285 0.270313 0.36863
350000 26.42657 0.305149 0.389769 850000 71.23006 0.267249 0.37038
360000 27.28457 0.287235 0.374947 860000 72.22846 0.255626 0.355875
370000 28.08018 0.286994 0.374396 870000 73.21127 0.288104 0.380478
380000 28.92259 0.284692 0.38201 880000 74.22528 0.275211 0.369883
390000 29.76499 0.274043 0.37009 890000 75.19248 0.251714 0.356947
400000 30.6074 0.275243 0.374456 900000 76.20649 0.269389 0.369061
410000 31.4654 0.277032 0.373196 910000 77.2048949 0.28758 0.383283
420000 32.27661 0.268367 0.363379 920000 78.2501016 0.25027 0.355447
430000 33.10341 0.272262 0.370499 930000 79.2953083 0.268328 0.366343
440000 33.93022 0.274671 0.373451 940000 80.3249149 0.265356 0.369605
450000 34.74142 0.301644 0.386576 950000 81.3077212 0.266455 0.367765
460000 35.56823 0.282809 0.375297 960000 82.2905275 0.258483 0.354583
470000 36.39503 0.301681 0.388574 970000 83.2577337 0.260006 0.360383
480000 37.23744 0.284054 0.377967 980000 84.2561401 0.266881 0.362767
490000 38.09544 0.285035 0.379343 990000 85.2545465 0.253947 0.353746
500000 38.93785 0.272656 0.37418 1000000 86.2529529 0.270685 0.370323

