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Abstract 
 

Chronic activation of microglia results in neuroinflammation and subsequently 

neurodegeneration. Diosgenin is a plant-derived steroidal saponin found in 

fenugreek and roots of yam. Some studies have shown that diosgenin possess 

anti-inflammatory effect in various experimental models. However, little is known 

about the anti-neuroinflammatory effect of diosgenin in the microglia. In this 

study, the anti-neuroinflammatory effect of diosgenin (5, 10 and 20 µM) was 

investigated in LPS-activated BV2 microglia. Nitrite and PGE2 levels were 

measured using a Griess assay and an enzyme immunoassay (EIA), 

respectively. In addition, levels of the cytokines TNFα, IL-6, IL-1β and IL-10 were 

measured using specific mouse ELISA. Further, LPS-induced ROS generation in 

BV2 microglia was tested using a DCFDA assay. Protein levels of COX-2, iNOS, 

the main targets in NF-B pathway as well as the levels of p38 MAPK and Akt 

were measured with immunoblotting. Additionally, the effect of diosgenin on the 

activity of NF-B promoter was examined using a luciferase reporter gene assay 

in HEK293 cells. NF-B binding to the DNA was investigated using EMSA. The 

role of Nrf2 in the anti-neuroinflammatory effect of diosgenin was investigated in 

BV2 microglia by western blot analysis of HO-1, NQO1 and Nrf2. BV2 microglia 

were transfected with siRNA for Nrf2, followed by stimulation with LPS in order to 

investigate the role of Nrf2 in the anti-inflammatory activity of diosgenin. The 

effect of diosgenin on neuroinflammation-induced HT22 neuronal toxicity was 

also evaluated using conditioned medium obtained from LPS-activated BV2 

microglia.  

Results show that diosgenin reduced the production of NO and PGE2 through 

inhibition of iNOS and COX-2 expression, respectively in LPS-stimulated BV2 

microglia. In addition, diosgenin reduced the secretion of other pro-inflammatory 

factors including IL-6, IL-1β, TNFα and ROS. By contrast, the compound 

increased IL-10 release in LPS-stimulated BV2 cells. Further results show that 

the anti-neuroinflammatory effect of diosgenin is mediated through the inhibition 

of NF-B signalling pathway. Furthermore, the compound also attenuated Akt 

signalling, but did not inhibit p38 MAPK signalling in LPS-stimulated BV2 cells. 

Additionally, diosgenin treatment resulted in an up-regulation of the expression 
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of the antioxidant proteins HO-1 and NQO1, and GSH in BV2 microglia, 

suggesting that diosgenin activates Nrf2 signalling. In addition, the compound 

increased the nuclear translocation of Nrf2 and its binding to ARE in BV2 

microglia. Diosgenin down-regulated the level of the inhibitory protein Keap1, 

indicating that diosgenin activates Nrf2/ARE pathway by down-regulation of 

Keap1. Transfection of BV2 microglia with Nrf2 siRNA resulted in the loss of anti-

neuroinflammatory effect of diosgenin. Diosgenin produced a neuroprotective 

effect through the inhibition of neuroinflammation-induced neurotoxicity and ROS 

generation in HT22 mouse hippocampal neurons. Taken together, these results 

demonstrate that diosgenin inhibits LPS-mediated neuroinflammation through 

interference with NF-B signalling. The anti-neuroinflammatory effect of 

diosgenin is dependent on the activation of Nrf2 signalling.  

The results obtained from this study suggest that diosgenin inhibited NF-B-

mediated neuroinflammation through molecular mechanisms that are possibly 

closely linked to Nrf2/ARE antioxidant protection system in BV2 microglia cells. It 

was demonstrated that diosgenin is neuroprotective in both neuroinflammation 

and oxidative stress-mediated neuronal damage, an action that is important in 

neurogeneration. The effects of the compound on processes linked to oestrogen 

receptors suggests a potential estrogenic activity which needs further 

investigation. Activation of microglial AMPK is a property which further 

demonstrates that diosgenin may be producing inhibition of neuroinflammation 

through activation of endogenous systems which block the transcriptional activity 

of NF-B. 

Keywords: Microglia, neuroinflammation, Nrf2, diosgenin 
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TLR4 Toll-Like receptor 4 

TNFR1/2 TNFα receptor type 1/2 

TNFα Tumour necrosis factor 

TRAF6 TNF-receptor-associated factor 6 

Trk-B1 Truncated tropomyosin-related kinase-B-T1 receptor 
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 Introduction 

 The immune response in the central nervous system   

The human nervous system is a complex network of nerves and neurons that 

transmit information in the form of signals between various parts of the body. 

Structurally, the nervous system is divided into two parts; the central nervous 

system (CNS) and the peripheral nervous system. The CNS is made up of two 

parts the brain and the spinal cord, and is the most important part of the nervous 

system (Noback et al., 2005, Mai and Paxinos, 2011). 

The CNS is an important part for survival due to the presence of, for example, 

about 100 billion neurons in the brain. It is necessary for the CNS and for neurons 

to be well protected due to a limited regenerative capacity against harmful 

influences. In general, there are various types of cells in the CNS including 

neurons, epithelial cells, oligodendrocytes, microglia and astrocytes. Microglia 

are the primary immune cells in the brain (Tian et al., 2015, Gundersen et al., 

2015). For decades, it was thought that the basic function of the CNS was only 

to regulate most bodily functions such as signal transmission regulation. In fact, 

the CNS is a highly immunologically-active organ and plays an essential role in 

the regulation of normal immune and inflammatory responses due to the 

presence of some specific immune cells named microglia that have some 

important pattern recognition receptors (Lampron et al., 2013, Schwartz et al., 

2013).  

The immune response in the CNS can be defined as a biological response to 

foreign invaders such as damaged cells and microorganisms (Ransohoff and 

Brown, 2012, Bilbo and Schwarz, 2012). In the presence of insults, microglia are 

activated to protect all the components of the CNS, especially neurons against 

excessive immune response-mediated neuroinflammation through transduction 

of microglial pattern recognition receptors (Kraft and Harry, 2011).   

Findings from several studies have demonstrated that microglia play a key role 

in the modulation of the immune and inflammatory responses in the CNS (Tian 

et al., 2009). The CNS environment is monitored or scanned by microglia to 

recognise and then to remove the physical and chemical insults such as 

pathogens (Olson and Miller, 2004). For example, a bacterial infection is identified 
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as one of the most important inducer of an immune response due to the presence 

of microglia in the CNS (Buchanan et al., 2010). Numerous studies have 

suggested that this biological response is either a defence response to repair the 

host or a pathological response that completely damages the cells depending on 

the duration of microglial activation (Gomes‐Leal, 2012). However, several 

studies have been carried out to understand the pathophysiologic mechanisms 

of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s 

disease (PD), and amyotrophic lateral sclerosis (ALS) (Cameron and Landreth, 

2010, Taylor et al., 2013, Brites and Vaz, 2014). These authors have suggested 

that an excessive immune response in a form of uncontrolled neuroinflammation 

is the most common factor that results in neurodegenerative disorders (Block and 

Hong, 2005, Kim et al., 2015).  

 Cell types of the central nervous system  

In general, the three glial cells microglia, astrocytes and oligodendrocytes as well 

as neurons are the main components of the CNS. The glial cells and neurons 

represent 90% and 10% of the cells, respectively in the CNS. Microglial cells 

constitute 10% to 20 % of the total population of glial cells in the adult brain 

(Gomez-Nicola and Perry, 2015, Ginhoux et al., 2013). As shown in Table 1, the 

non-neuronal glial cells play an important role to support and protect neurons 

(Verkhratsky and Butt, 2007, Mai and Paxinos, 2011, Tian et al., 2015, 

Gundersen et al., 2015). 

Table 1 Types of glial cells in the nervous system 

 Types of glial cells Basic functions 

1-  Central nervous system 

A- Microglia Regulate the immune and neuroinflammatory 
responses  

B- Astrocytes Form blood brain barrier and synapses 

C- Oligodendrocytes Form the myelin sheaths around the axons of 
neurons 

D- Ependymal cells Produce and circulate in the cerebrospinal fluid 

2-  Peripheral nervous system 

A- Schwann cells  Form the myelin sheaths around the axons of 
neurons 

B- Satellite cells Cover the surface of nerve cell bodies 
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1.1.2.1. Neurons 

Approximately one hundred billion neurons are located in the human brain. The 

structure of the specialised cell neuron is not similar to that of other cells in the 

body because it consists of a dendrite, an axon and a cell body. Unlike others 

cells, neurons are never replaced when they die (Sherwood et al., 2010, 

Kempuraj et al., 2016). Electrical massages or information are transmitted by 

neuron-neuron communication through different electrochemical processes. Due 

to the importance of neurons in the regulation of most bodily functions, these cells 

are considered as the most important cell type in the humans. Therefore, neurons 

have been extensively studied in a wide variety of scientific fields including 

neuroscience and pharmacology. In the brain, the neurons are protected by glial 

cells such as microglia as well as the blood brain barrier (BBB) (Abbott et al., 

2010, Lampron et al., 2013). Normal activation of microglia is required to protect 

neurons against viral and bacterial products (Graeber et al., 2011). However, 

long-term microglial over-activation is identified as a hallmark of 

neuroinflammation, because long exposure of surrounding healthy neurons to 

microglial neurotoxic mediators results in neuronal loss and death (Rojo et al., 

2014).  

1.1.2.2. Microglia 

1.1.2.2.1. Nature of microglia  

Microglia are the primary innate immune cells in the CNS (Graeber et al., 2011). 

Microglia are a type of glial cells present in a resting state. The morphology of 

microglial cells is ramified with a small cell body and extended multiple branches 

in all directions. They are derived from the myeloid progenitors of the embryonic 

yolk sac (Michell-Robinson et al., 2015). Microglia are the only cell population in 

the CNS that originate outside the brain. Microglia are identified as macrophages 

of the brain because both microglia and peripheral macrophages share the same 

properties and roles in the immune response (Perry and Teeling, 2013). These 

mononuclear phagocytic cells are found in all areas of the brain so they form part 

of the CNS structure. Microglia have been reported to play a central role in the 

activation of the immune response in the CNS (Ransohoff and Brown, 2012). As 

shown in Table 2, microglia are important immune effectors due to the presence 

of a diverse variety of receptors on their surfaces that play essential roles in 
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neuroinflammation (Rock and Peterson, 2006, Pocock and Kettenmann, 2007, 

Sierra et al., 2008, Kettenmann et al., 2011, Sierra et al., 2013, Murugan et al., 

2013, Murer et al., 2001). These receptors are expressed in microglia and play 

detrimental roles in microglial activation-mediated neuroinflammation (Mead et 

al., 2012).  

Table 2 Types of microglial cell membrane receptors 

Receptor type Examples of receptor 
subtypes 

Examples of ligand (s) 

 Cytokines IFN-γ-R, M-CSF-R, TNFR1/2, IL-
1R1/2, IL-10R 

IL-1α/β, IL-6, IL-10, TNFα, IFN-γ  

Chemokines CXCR1-5, CCR1-7, MCP-1-R  MIP-1/2, MCP-1, IP-10,  
Fractalkine  

Neurotrophin   p75NTR, Trk-B1, TGF-β1R NGF, BDNF, bFGF, NT-3/4, EGF, 
TGF-β1 

Toll-like TLR1-9  LPS, LTA, Zymosan  

Complement C1qR, C3aR, C5aR C1q, C3a, C5a 

Oestrogen ERα, ERβ 17β-oestradiol 

Glutamatergic GluR1-7, mGluR1-8, KA1/2R,  Glutamate, Kainate 

Scavenger SCARA-1/-2, SCARB-1/-2,  LDL, HDL, Thrombospondin, Aβ  

Immunoglobulins 
superfamily  

FcγRI-III, RAGE AGE, MHC-I/II, ICAM-1, 
Immunoglobulins 

Glucocorticoid Glucocorticoid receptor Cortisol, Corticosterone, 
Dexamethasone 

 

It is well-known that microglia exert several roles in the CNS including antigen 

presentation, production of many pro-inflammatory and anti-inflammatory factors 

such as nitric oxide (NO), cytokines, reactive oxygen species (ROS), complement 

components and glutamate as well as phagocytosis. Microglia are activated in 

order to initiate an inflammatory response, so it is necessary to understand the 

phenotypic states of microglia during neuroinflammation in order to understand 

the pathophysiological roles of microglia in the brain. Several studies have 

demonstrated that the phenotypes of activated microglia can be divided into two 

subtypes M1 and M2 (Walker and Lue, 2015). 

1.1.2.2.2.  Phenotypes of activated microglia  

In the healthy brain, the fundamental role of microglia is to protect neurons 

against pathological invaders including bacterial infection, dead cells (e.g. dying 
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neurons), and brain debris (Graeber et al., 2011, Tang and Le, 2016). Under 

physiological conditions or in the absence of inflammatory stimulus, the 

morphology of resting microglia is ramified. Microglia are morphologically and 

functionally changed into an active cells to produce various types of active 

mediators in the presence of pathological assaults such as a bacterial infection, 

brain injury, and brain trauma (Varnum and Ikezu, 2012). Several studies have 

demonstrated that the phenotypes of activated microglia can be divided into two 

subtypes M1 and M2 (Walker and Lue, 2015). The M1 phenotype of activated 

microglia is responsible for the induction of the early stage of the inflammatory 

response against pathogen invasion and dead cells. As shown in Figure 1.1, in 

the existence of an inflammatory stimulus such as the bacterial product LPS; a 

wide variety of endogenous pro-inflammatory and oxidative mediators including 

tumour necrosis factor-α (TNFα), interleukin-6 (IL-6), interleukin-1β (IL-1β), 

prostaglandin E2 (PGE2), NO, and ROS are secreted from M1-classically 

activated microglia (Hu et al., 2015, Tang and Le, 2016). 

After that, M1 microglia are transformationally changed into amoeboid/phagocytic 

form (M2 microglia) to phagocytise the detected insult (Brown and Neher, 2010, 

Fu et al., 2014). M2 microglia are characterised by the production of anti-

inflammatory and neuroprotective factors such as interleukin 10 (IL-10) and 

transforming growth factor-β1 (TGF-β1). This results in the clearance of dead 

cells and pathogens by phagocytosis and then the modulation of 

neuroinflammation. M2 microglia are considered as important reactive phagocytic 

cells in the regulation of the immune response (Walker and Lue, 2015). Thus, the 

detected damaged cells, cell debris, and pathogens can be removed by microglia 

using secreted pro-inflammatory mediators as well as phagocytosis (Brown and 

Neher, 2010). 
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Figure 1.1 Phenotypes of activated microglia.  

Resting microglia are activated by various inflammatory stimuli such as lipopolysaccharide (LPS) 

and brain injury. The M1 phenotype of the activated microglia is responsible for the production of 

several pro-inflammatory and oxidative factors such as nitric oxide (NO), reactive oxygen species 

(ROS), cytokines, and chemokines. This results in a neuroinflammation. After that, activated 

microglia are transformed into M2 phenotype which is responsible for the secretion of anti-

inflammatory and neuroprotective factors such as interleukin 10 (IL-10) and transforming growth 

factor-β1 (TGF-β1) that protect neurons (Hu et al., 2015, Xia et al., 2015, Rojo et al., 2014). 

1.1.2.2.3.  Microglia-mediated neuroinflammation  

Many studies have reported that the inflammatory response of reactive microglia 

is either neuroprotective or neurotoxic, depending on the intensity of both 

microglial cell activation and neuroinflammation. It is well known that sustained 

hyper-activation of microglia has been associated with the neuronal loss and 

neuronal death (Xu et al., 2016). Several lines of evidence have suggested that 

long-term microglial over-activation due to the presence of inflammatory insults 

such as LPS are more likely to cause neuroinflammation and neurotoxicity 

(Graeber et al., 2011). Healthy (viable) neurons and glial cells that are located 
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close to the damaged neurons or dead cells are affected during 

neuroinflammatory response due to chronic exposure of these healthy cells to 

high levels of both pro-inflammatory and neurotoxic factors and microglial 

phagocytosis (Xu et al., 2016, Graeber et al., 2011).  

According to numerous experimental studies, synaptic dysfunction and neuronal 

cell death have been associated with over-activated microglia and 

neuroinflammation (Suzumura, 2013, Viviani et al., 2014). For example, neuronal 

death due to the protein amyloid-beta (Aβ) is mediated by highly phagocytic 

activity of microglia on neurons (Neniskyte et al., 2011). Another study showed 

that LPS-induced neuronal death due to microglial phagocytosis and 

neuroinflammation is mediated by the protein Milk-fat globule EGF factor-8 

(Fricker et al., 2012). In addition, hyper-activation of microglia results in 

dysfunction of the BBB due to a direct contact of the BBB with microglial pro-

inflammatory and neurotoxic mediators (Sumi et al., 2010). Furthermore, over-

activated microglia play synergistic role with astrocytes in the induction of 

neuronal death (Liddelow et al., 2017).  

Regarding the dual role of microglia in AD pathology, microglial cells are found in 

close association with Aβ deposits in the AD brain. Increased numbers of reactive 

microglia within and around Aβ plaques have been detected in a wide variety of 

AD models and in AD patients (Combs, 2009). It was shown that microglia are 

shifted to a more pro-inflammatory and less phagocytic state during chronic 

activation due to the presence of Aβ in AD (Hickman et al., 2008, Krabbe et al., 

2013). Several reports have also established that microglia are implicated in the 

progression of ALS (Frakes et al., 2014, Gerber et al., 2012).  

1.1.2.2.4.  Microglia as a target for the modulation of neuroinflammation 

In recent years, the pathophysiological roles of microglia have been extensively 

studied in cell culture studies due to their vital roles in defence and/or pathology 

of the CNS (Chew et al., 2006, Schwartz et al., 2013). A timeline of the main tools 

and methods that have revolutionised and critically contributed to elucidate 

microglial cells identity, ontogeny, and function is summarised in Figure 1.2 

(Sousa et al., 2017). 
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Figure 1.2 The history of microglia research 

(Sousa et al., 2017, Tremblay et al., 2015, Sieger and Peri, 2013, Ginhoux et al., 2013, Kaur et 
al., 2001, Kierdorf and Prinz, 2017). 

It is well established that neuroinflammation might be inhibited or progressively 

slowed by a number of effective approaches. For example, inhibiting the 
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production of numerous pro-inflammatory factors from hyper-reactive microglia 

by drug treatment is one of the effective strategies against neuroinflammation 

(McCarty, 2006, Cartier et al., 2014). Activation of microglial cell lines such as 

murine primary microglia or BV2 cells by potent inflammatory stimuli such as LPS 

(Bachstetter et al., 2011), TNFα (Syed et al., 2007), or Aβ (Pan et al., 2011) have 

been used as experimental models to study the pathophysiological roles of 

microglia and to find new compounds active against neuroinflammation (Choi et 

al., 2011). Most of recent studies have focused on how to control chronic 

microglial activation-mediated neuroinflammation by using test compounds such 

as natural products in the experimental models (Figuera-Losada et al., 2014). 

The main purpose of experimental studies is to find effective drugs that might be 

used for preventing or treating CNS diseases such as AD and PD because 

numerous CNS disorders are thought to be mediated by over-activation of 

microglia (Karunaweera, 2015, Minter et al., 2016).  

In addition, systemic inflammation plays a critical role in the etiology of 

neuroinflammation (Perry et al., 2007). For example, activation of microglia and 

subsequent neuroinflammation can be induced by an intravenous injection of 

LPS in rat brain (Qin et al., 2007, Hoogland et al., 2015). It has also been 

observed that the peripheral pro-inflammatory mediator TNFα can pass the BBB 

to induce neuroinflammation (Qian et al., 2010). Thus, it is necessary to protect 

neurons against neuroinflammation in the CNS or induced by either systemic 

inflammation through the modulation of microglial activity. 

 Defining neuroinflammation 

The immune response is one of the most important lines of defence against 

damaged cells, microorganisms, and brain injury. A neuroinflammatory response 

is induced to protect both neuronal and non-neuronal cells in the CNS (Lyman et 

al., 2014). In fact, neuroinflammation is not easy to define because it is protective 

and/or destructive (Graeber et al., 2011, O'callaghan et al., 2008). 

Neuroinflammation can be defined as an active defensive process or response 

by microglia against brain injury and brain infection as part of the innate immune 

system (Zipp and Aktas, 2006, Patro et al., 2016). There are many factors that 

control neuroinflammation, including the time (duration) and the intensity (rate) of 

neuroinflammatory response. Neuroinflammation can be divided into two classes; 
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an acute and chronic neuroinflammation. An acute neuroinflammation is started 

rapidly and become severe in a short period during brain injury, in which activated 

microglia are rapidly moved to the site of brain injury to repair the damage. In 

contrast to acute neuroinflammation, chronic neuroinflammation is a prolonged 

and persistent neuroinflammation that lasts for several months or years and that 

progressively causes neurodegeneration. For example, long-term 

neuroinflammation has been associated with common CNS disorders such as 

AD, PD, and ALS (Graeber et al., 2011). 

The pathological mechanisms of neuroinflammation have been incompletely 

defined because it is mainly mediated by complex pathological factors such as 

microglial over-activation (Glass et al., 2010). Microglial over-activation is 

considered as an initial event of the pathophysiological process 

neuroinflammation (Khandelwal et al., 2011). Several in vivo and in vitro 

experiments have been performed to understand the mechanisms of 

neuroinflammation using several ligands that are known to produce 

neuroinflammation. A neuroinflammatory stimulus can be defined as a physical 

or chemical insult that cause neuroinflammation in the CNS. Numerous 

inflammatory stimuli including brain injury, LPS, and Aβ are known to produce 

neuroinflammation (Sondag et al., 2009, Fan et al., 2015). 

 Role of neuroinflammation in neurodegenerative diseases 

It is well known that normal activation of resting microglia and thereby, a normal 

immune response is responsible for protecting all types of cells in the CNS. On 

the other hand, long-term immune response due to chronic microglial over-

activation and excessive neuroinflammation is implicated in neurodegenerative 

diseases (Yuste et al., 2015). As shown in Figure 1.3, the most common 

neurodegenerative disorders that are associated with neuroinflammation are AD, 

PD, and ALS (Morales et al., 2016). 
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Figure 1.3 Model of neuroinflammation and neurodegeneration cycle. 

Ramified microglia are activated in the presence of a damage signal. Excessive production of 

microglial pro-inflammatory and neurotoxic mediators results in neuroinflammation and thereby, 

neurodegenerative diseases. In addition, neurodegenerative neurons release mediators that 

activate microglia to produce more pro-inflammatory and neurotoxic mediators (Morales et al., 

2016, Solito and Sastre, 2012, Rocha et al., 2015, Brites and Vaz, 2014). 

In the last few years, several cell culture, animal, and human studies have 

demonstrated that neuronal cell death and synaptic dysfunctions in 

neurodegenerative diseases are associated with over-inflammatory response 

(Morales et al., 2016). During neuroinflammatory response, many microglial pro-

inflammatory and neurotoxic mediators produce direct or indirect deleterious 

effects on neurons in various models of AD, PD, and ALS (Solito and Sastre, 

2012, Rocha et al., 2015, Brites and Vaz, 2014). In general, these 



30 
 

neurodegenerative diseases are characterised by selective death of certain 

group of neurons in the CNS due to an increase in the expression and levels of 

mediators. For example, it has been suggested that NO produced by microglial 

inducible nitric oxide synthase (iNOS) during neuroinflammation is responsible 

for neuronal death because NO inhibits cytochrome oxidase in competition with 

molecular oxygen (O2) and release glutamate that cause excitotoxicity (Brown 

and Neher, 2010). TNFα as one of the potent pro-inflammatory mediators induce 

neuronal loss that is mediated by excessive microglial phagocytosis (Neniskyte 

et al., 2014). Neuronal loss induced by neuroinflammation is also mediated by 

up-regulation of the microglial factor cathepsin H (Fan et al., 2015). In addition, 

the total number of microglial cells increase in CNS diseases (Fu et al., 2014). 

Thus, neuroinflammation is identified as an essential target to prevent the 

pathogenesis of these disorders. 

Neuroinflammation has been implicated in the pathogenesis of AD. This disease 

is an irreversible, progressive neurodegenerative disorder characterised by 

problems in memory, thinking, and behaviour (Cameron and Landreth, 2010, 

Perl, 2010). Neuroinflammation is known to play an essential role in Aβ- and tau-

mediated neurodegeneration. In different experimental models, production of the 

AD marker, Aβ plaques as well as phosphorylation of tau tangles are increased 

due to over-activated microglia-mediated neuroinflammation (Bronzuoli et al., 

2016, Metcalfe and Figueiredo‐Pereira, 2010). The expression and levels of the 

pro-inflammatory mediators such as IL-1β, TNFα and IL-6, cyclooxygenase-2 

(COX-2), and complement component q1 increased in many animal models of 

AD (Solito and Sastre, 2012, De Felice and Lourenco, 2015). In addition, 

neuroinflammation has been associated with tau-mediated neurodegeneration in 

a mouse model (Jaworski et al., 2011). 

Secondly, PD is a neurodegenerative movement disorder characterised by the 

progressive loss of dopaminergic neurons in the substantia nigra and the 

deposition of the protein α-synuclein. Degeneration of nigrostriatal connections 

is responsible for motor, cognitive, and psychiatric symptoms (Taylor et al., 2013). 

It is noted that the number of microglial cells are increased in PD patients (Rocha 

et al., 2015). Based on biochemical analyses, levels of TNFα, IL-1β are increased 

in the midbrain of PD patients (Wang et al., 2015b). In addition, neurotoxicity 
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induced by α-synuclein is also mediated by neuroinflammatory response of 

microglia (Wang et al., 2015a). 

ALS is another neurodegenerative disease that is characterised by progressive 

loss of motor neurons in the brain and the spinal cord. It results in progressive 

muscle atrophy, paralysis, and then death due to respiratory failure (Brites and 

Vaz, 2014, Komine and Yamanaka, 2015). Several findings have suggested that 

neuroinflammation is involved in the pathological features of ALS (Bowerman et 

al., 2013). The expression and levels of secreted microglial chemokines such as 

MCP-1 and IL-8 are high in the cerebrospinal fluids of patients with ALS (Kuhle 

et al., 2009). In addition, the expression of TNFα receptors as well as TNFα level 

have been significantly elevated in ALS patients (Poloni et al., 2000). 

In addition, several findings have demonstrated that a number of biological 

processes are affected by excessive neuroinflammatory response. For example, 

the differentiation of neuronal progenitor cells to neurons (neurogenesis) in the 

adults is impaired due to excessive neuroinflammation (Fuster-Matanzo et al., 

2013, Ekdahl et al., 2009). It has been suggested that basal hippocampal adult 

neurogenesis induced by tissue damage associated with LPS infusion is impaired 

due to neuroinflammation (Gomes‐Leal, 2012).  

Disruption of the BBB by hyper-activated microglia is also associated with 

excessive neuroinflammation (da Fonseca et al., 2014, Banks et al., 2015). 

Physiologically, the brain is protected by the BBB against systemic inflammation 

that induced by peripheral inflammatory attacks such as bacterial infection 

(Abbott et al., 2010, Lampron et al., 2013). Neuroinflammation has been 

proposed to play a critical role in the BBB breakdown due to the toxic effects of 

microglial pro-inflammatory and neurotoxic factors on the BBB that also results in 

phagocytes infiltration and subsequently more neuroinflammation in the brain 

(Abbott et al., 2010). Several ligands can be used experimentally to understand 

the association between neuroinflammation and dysfunction of the BBB (Qin et 

al., 2007, Ransohoff and Brown, 2012). For example, LPS as a potent bacterial 

product disrupt the BBB by microglia-induced neuroinflammation due to 

generation of ROS (Banks and Erickson, 2010). Therefore, neuroinflammation is 
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not only associated with the pathogenesis of neurodegenerative diseases, but 

also with the BBB degradation.  

 Roles of neuroinflammatory mediators in neuroinflammation 

Recent findings have demonstrated that various types of microglial pro-

inflammatory and oxidative factors are associated with the pathogenesis of many 

chronic neurodegenerative diseases (Brown and Neher, 2010). Microglial cells 

are the main source of neurodegenerative mediators in the brain. Microglia have 

been shown to be the most important target for the therapeutic agents that might 

be used for recovery of CNS diseases (Liu and Hong, 2003). It is important to 

understand the pathological and the molecular roles of neuroinflammatory and 

oxidative mediators in order to understand the pathogenesis of 

neurodegenerative diseases.   

1.1.5.1.  Nitric oxide 

The bioactive free radical NO is classified as one of the most important reactive 

nitrogen species (RNS) that induce neuroinflammation (Ali et al., 2012). Several 

studies have suggested that NO is derived from three NOS isomers; iNOS, 

endothelial NO synthase, and neuronal NO synthase (Garry et al., 2015). NO is 

produced from various immune cells such as microglia against pathogens 

(Ghasemi and Fatemi, 2014). Figure 1.4 shows that microglial NO is formed by 

oxidation of L-arginine into L-citrulline by the enzyme iNOS, O2, tetrahydrobipterin 

(BH4), and nicotinamide adenine dinucleotide phosphate hydrogen (NADPH). 

Under circumstances such as depletion of L-arginine and BH4; the anion 

superoxide (O2˙−), an initial product for the synthesis of ROS is also produced 

because of microglial iNOS coupling (Förstermann and Sessa, 2011). 
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Figure 1.4 Synthesis of nitric oxide (NO) in microglia. 

 In uncoupled (normal) state, NO is formed due to the oxidation of L-arginine into L-citrulline in 

the presence of inducible nitric oxide synthase (iNOS), molecular oxygen (O2) and a number of 

cofactors such as tetrahydrobipterin (BH4) and nicotinamide adenine dinucleotide phosphate 

hydrogen (NADPH). In coupled (dysfunctional) state, superoxide anions (O2˙−) are produced in 

the absence of L-arginine and BH4 (Förstermann and Sessa, 2011, Yuste et al., 2015). 

The fundamental effects of NO have been reported to be either neuroprotective 

and/or neurotoxic in the CNS; depending on its concentration. The physiological 

actions of NO are associated with the regulation of vasodilatation and 

neurotransmission in the CNS (Förstermann and Sessa, 2011, Ali et al., 2012). 

However, the pathological effects of NO are associated with the pathogenesis of 

neurodegenerative diseases due to the detrimental effects of NO at high level 

(Saha and Pahan, 2006, Ali et al., 2012). NO has direct and/or indirect toxic 

effects on neurons; depending on its levels. In the CNS, the formation of the 

highly reactive metabolite O2˙− is indicated as the first step in ROS generation. 

The secreted microglial NO reacts with O2˙− that is generated from other sources 

to form a highly RNS peroxynitrite (Zaki et al., 2005). It is well known that the toxic 

effects of peroxynitrite are lipid peroxidation, deoxyribonucleic acid (DNA) 

oxidation and protein nitration (Cobb and Cole, 2015). NO that is secreted from 

hyperactive microglia plays a key role in neuroinflammation and neuronal cell 

death (Brown and Neher, 2010). 

It is documented that iNOS is a major important NOS isoform in the 

physiopathology of the CNS because iNOS is an important source of NO, ROS, 

and RNS in the brain. Unlike endothelial and neuronal isomers of NOS; iNOS is 

induced by many inflammatory ligands such as LPS and cytokines (Ghasemi and 
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Fatemi, 2014, Garry et al., 2015). Secondly, iNOS is an important source of both 

NO and O2˙− that interact with other free radicals to form RNA and ROS in the 

brain. Finally, amounts of NO and ROS produced by iNOS is 100-1000 times 

more than that produced by other NOS types (Garry et al., 2015).  

Regarding the modulation of neuroinflammation, the protein iNOS is not 

constitutively expressed in microglial cells (Lei et al., 2014). It is induced by LPS 

alone or a combination of more than one stimulus. Many studies have 

demonstrated that several inflammatory ligands can produce large amounts of 

iNOS and NO in different cell culture models of microglia. In an in vivo study, the 

rates of both iNOS expression and NO production can be increased in LPS-

activated microglia (Habashi et al., 2016). In addition, it is noted that iNOS-NO 

pathway is one of the most important mechanisms in hyperactive microglia-

mediated neurotoxicity (Mander and Brown, 2005). However, the transcription of 

the enzyme iNOS is regulated by various transcription factors of the signalling 

pathways such as NF-B (Do et al., 2010, Saha and Pahan, 2006). 

1.1.5.2.  Prostaglandin E2  

Prostaglandins are lipid autacoids derived from arachidonic acid. The most 

important bioactive prostaglandins produced in vivo are PGE2, prostacyclin, 

prostaglandin D2, and prostaglandin F2 (Ricciotti and FitzGerald, 2011). PGE2 is 

one of the most abundant prostaglandin in almost all cell types of the CNS 

(Ricciotti and FitzGerald, 2011). A number of studies have demonstrated that 

PGE2 exert essential pathophysiological roles in the CNS through the activation 

of four distinct G-protein coupled receptors E-type prostanoid (EP), EP1-4 

(Yagami et al., 2016). PGE2 is known to regulate both normal immune and 

neuroinflammatory responses in the CNS (Yagami et al., 2016). In addition, PGE2 

is an active signal in the modulation of fever due to a bacterial infection (Kalinski, 

2012). PGE2 production is dramatically increased in immune cells such as 

microglia in response to a wide variety of stimuli including LPS, and cytokines 

(Dai et al., 2011, De Oliveira et al., 2008). It has been reported that EP2 and EP3 

are expressed in microglia (Bonfill-Teixidor et al., 2017). For example, up-

regulation of several pro-inflammatory mediators and enzymes such as COX-2, 

iNOS, IL-6, and IL-1β induced by PGE2 are mediated by EP2 in LPS and IFN-γ-
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activated rat microglia (Bonfill-Teixidor et al., 2017). Therefore, these receptors 

are associated with neuroinflammation.  

Two types of cyclooxygenases have been identified in the body (Cudaback et al., 

2014). Cyclooxygenase-1 (COX-1) is constitutively expressed in most cells 

because the end products of COX-1 are responsible for the modulation of normal 

physiological functions. In contrast, COX-2 is constitutively expressed in the cells 

of the brain including microglia and neurons (Minghetti, 2004, Kirkby et al., 2016). 

The end products of COX-2 are associated with the modulation of 

neuroinflammatory response. COX-2 is the common known source of the 

important prostaglandin, PGE2 in cancer and inflammatory diseases (Giuliano 

and Warner, 2002, Yagami et al., 2016). Arachidonic acid is released from the 

plasma membrane phospholipids by the enzyme phospholipase A.  Arachidonic 

acid is then catalysed by COX-2 into PGE2 (Yagami et al., 2016).  

It has been reported that the COX-2/PGE2 cascade is involved in the etiology of 

various neurodegenerative diseases such as AD, and PD (Listì et al., 2010, 

Teismann, 2012). COX-2 overexpression has been detected in patients with AD 

due to over-activated microglia-mediated neuroinflammation (Hoozemans et al., 

2002). In order to understand the role of microglial neurotoxic factors such as 

PGE2 and signalling pathways in neuroinflammation-mediated 

neurodegenerative diseases, many inflammatory ligands such as LPS have 

extensively been used to induce neuroinflammation using models of cell cultures 

and animals. For example, LPS treatment increased PGE2 level in primary 

microglia due to COX-2 expression induction (De Oliveira et al., 2008). 

Expression of COX-2 is regulated by signalling pathways including NF-B and 

MAPK (Tsatsanis et al., 2006). It is reported that COX-2 expression and then 

PGE2 production is regulated by NF-B in LPS-stimulated microglia (Gong et al., 

2008, Oh et al., 2010). Therefore, COX-2 is responsible for the production of 

microglial PGE2 in LPS-stimulated microglia (Hoozemans et al., 2002, De Oliveira 

et al., 2008). 

Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen 

are drugs that possess anti-inflammatory, antipyretic, and analgesic effects due 

to inhibition of COX-2/PGE2 pathway (Brune and Patrignani, 2015). In addition, 
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several epidemiological studies have evaluated the activity of these drugs against 

neurodegenerative disorders such as AD (Moore et al., 2010). Thus, this cascade 

has been identified as one of the important cascades that regulate systemic 

inflammation and neuroinflammation. Many findings have shown that COX-2 

inhibitors have beneficial activities such as anti-inflammatory and neuroprotective 

activities in the brain (Strauss, 2008). However, long-term use of NSAIDs are 

known to produce severe side effects such as stomach ulcers and bleeding due 

to non-competitive inhibition of COX isomers (Brune and Patrignani, 2015, 

Goldstein and Cryer, 2015). It is known that prostaglandins play protective role in 

maintaining gastric mucosal defence system. NSAIDs have been noted to 

produce stomach damage through inhibiting mucosal COX-1 activity.  

1.1.5.3. Pro-inflammatory cytokines 

In general, cytokines can be classified into two main groups; pro-inflammatory or 

anti-inflammatory cytokines. Cytokines are endogenous proteins that produce a 

wide range of functions including development of the CNS and immune response 

regulation (Deverman and Patterson, 2009). Under physiological condition or in 

the healthy CNS, gene encoding cytokines as well as cytokine receptors are 

constitutively expressed at low levels (Lucas et al., 2006). Cytokines play 

important roles in regulation of the pathophysiological environment of the CNS 

(Smith et al., 2012). A number of studies have showed that the actions of potent 

pro-inflammatory cytokines are either neuroprotective or neurodegenerative in 

the CNS, based on the intensity and duration of the neuroinflammatory response 

(Smith et al., 2012). The most common cytokines that play critical roles in both 

sustained neuroinflammation and the CNS disorders are TNFα, IL-6 and IL-1β 

(Wang et al., 2015b). 

1.1.5.3.1. Tumor necrosis factor-α 

Tumor necrosis factor-α (TNFα) is a potent pro-inflammatory cytokine and is the 

most important pro-inflammatory mediator of TNFα family in the CNS (McCoy 

and Tansey, 2008, Park and Bowers, 2010). It was first identified as a serum 

factor that can induce haemorrhagic necrosis of tumors (Van Hauwermeiren et 

al., 2011). The physiological and pathological actions of TNFα in the brain are not 

completely understood (Figiel, 2008, Clark et al., 2010). The main roles of TNFα 

have been associated with the normal immune response, neuroinflammation, 
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oxidative stress, and apoptosis (Fischer and Maier, 2015). Several findings have 

demonstrated that the major functions of TNF are mediated through the activation 

of two distinct receptors, TNF receptor type 1 and type 2 (TNFR 1/2) (Sedger and 

McDermott, 2014). TNFR1 is ubiquitously expressed on all cell types and is 

activated by the two forms of TNF, the membrane-bound and soluble one. TNFR2 

is expressed in a more limited manner on some cells including endothelial cells, 

microglia, and neurons is mainly activated by the membrane-bound form of TNF 

(Faustman and Davis, 2013). The main biological roles of TNF such as 

neuroinflammatory response and apoptosis are mediated by the activation of 

TNFR1 (Thommesen and Lægreid, 2005). In contrast to TNFR1, the biological 

responses of TNFR2-mediated TNF signalling is limited to include cell survival 

(Thommesen and Lægreid, 2005, Sedger and McDermott, 2014).  

It is thought that TNFα-mediated signalling pathway is involved in the 

pathogenesis of several diseases including uncontrolled neuroinflammatory 

response-mediated neurodegenerative diseases (McCoy and Tansey, 2008). For 

example, TNFα level is found to be high in the neurodegenerative brains such as 

the brains of AD patients (Grammas and Ovase, 2001, Tarkowski et al., 2003). 

Based on the important role of microglial cytokines in the regulation of 

neuroinflammation, the pro-inflammatory ligand TNFα can be secreted from 

immune effectors such as microglia in response to numerous inflammatory stimuli 

(Lee et al., 2002, Welser-Alves and Milner, 2013). For instance, TNFα expression 

is increased in human microglia treated with LPS or Aβ (Lee et al., 2002). It is 

well known that TNFR1 is involved in hyper-activated microglia-produced motor 

neuronal death (Veroni et al., 2010). In addition, TNFα is identified as one of the 

most potent inducers that produce TNFα from microglia (Syed et al., 2007, Kuno 

et al., 2005). A study showed that this cytokine induced neurotoxicity through 

increasing the secretion of glutamate from microglia (Takeuchi et al., 2006). 

However, it is necessary to regulate the neuroinflammatory response of microglia 

in order to prevent or treat TNFα-mediated CNS diseases such as 

neurodegenerative diseases (McCoy and Tansey, 2008, Chadwick et al., 2008).  

It could be mediated through inhibiting both over-activation of TNF signalling and 

decreasing the excessive production of microglial TNFα in the CNS. For example, 
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resveratrol inhibited the production of some pro-inflammatory mediators such as 

NO and TNFα in LPS-activated microglia (Bi et al., 2005). 

1.1.5.3.2. Interleukin-6 

The potent cytokine IL-6 is one of the most important members of the IL-6 family. 

The IL-6 family is a group of cytokines including IL-6, IL-11, ciliary neurotrophic 

factor, leukaemia inhibitory factor and others. In general, the actions of IL-6 are 

mediated through the activation of specific receptors (Scheller and Rose-John, 

2006). Classic IL-6 signalling is mediated by the binding of IL-6 to the membrane 

bound IL-6 receptor. After that, this complex is associated with cellular membrane 

bound gp 130. This signalling is mainly regenerative and protective. IL-6 trans-

signalling is another signalling that is mediated by binding of IL-6 to the soluble 

IL-6 receptor and then the complex is attached to gp 130. In contrast to classic 

IL-6 signalling, this signalling is involved in the regulation of a pro-inflammatory 

response (Schaper and Rose-John, 2015). 

The IL-6 receptor is expressed in various brain cells including astrocytes, 

microglia, epithelial cells, and neurons (Erta et al., 2012, Aniszewska et al., 2015). 

Several studies have established that IL-6 receptors are expressed in different 

culture models of microglia (Sawada et al., 1993, Erta et al., 2012, Aniszewska 

et al., 2015). IL-6 is produced in high concentrations in response to potent stimuli 

such as pro-inflammatory ligands and brain injury. For example, IL-6 is one of the 

major important pro-inflammatory mediator that is secreted following LPS 

treatment of microglia (Minogue et al., 2012, Smith et al., 2012).  

The pathophysiological actions of IL-6 in the CNS are neuroprotective, pro-

inflammatory as well as neurotoxic, depending on its level. IL-6 is known to exert 

biological functions including the regulation of normal immune and 

neuroinflammatory responses at normal level (Scheller and Rose-John, 2006). 

However, many findings have suggested that IL-6 has a detrimental role in 

neurodegenerative diseases due to uncontrolled neuroinflammation. For 

example, the expression and level IL-6 are elevated in the cerebrospinal fluids of 

patients with AD and PD (Erta et al., 2012, Dursun et al., 2015). One of the 

neurotoxic actions of IL-6 is that it is involved in neuronal loss using developing 

cerebellar granule neurons (Conroy et al., 2004). In addition, chronic exposure of 
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neurons to IL-6 is noted to increase calcium influx in response to N-methyl-D-

aspartate (NMDA) and cause neurodegenerative changes (Sallmann et al., 

2000). Furthermore, the expression of TNFα, IL1β, and COX-2 as well as motor 

neuronal survival are reduced following IL-6 treatment in rat primary microglia 

(Krady et al., 2008). 

1.1.5.3.3. Interleukin-1β 

Interleukin-1β (IL-1β) is the most powerful membrane cytokine of the IL-1 family 

(Netea et al., 2010). IL-1β is known to play a central role in the regulation of 

normal immune and neuroinflammatory responses (Henry et al., 2009). In the 

presence of an brain infection or a brain injury, IL-1β is secreted as a host defence 

response (Van de Veerdonk et al., 2011). It is expressed in a variety of cell types 

in the CNS include microglia and neurons (Ferreira et al., 2010). Several 

evidences have shown that the biological actions of IL-1β are mediated by 

activation of two specific receptors; IL-1 receptor type 1 and type 2 (IL-1R1/2) 

(Weber et al., 2010).  

Like other microglial cytokines, IL-1β signalling has been associated with the 

pathophysiological condition of cells in the CNS. High levels of both IL-1β coding 

gene and IL-1β significantly were detected in neurodegenerative diseases 

including AD and PD (Griffin et al., 2006, Dursun et al., 2015). Many experimental 

studies have indicated that this microglial cytokine plays a key role in the 

modulation of neuroinflammation and neurotoxicity because IL-1β treatment 

produces free radicals-induced neuronal death in rat mixed glial/neuronal co-

culture (Thornton et al., 2006). For instance, neurotoxicity is mediated by IL-1β 

through increasing the synthesis of Aβ and Tau phosphorylation in AD (Shaftel et 

al., 2008). Furthermore, a recent study showed that IL-1β can induce 

neurotoxicity through activation of the apoptotic protein p53 (Rossi et al., 2014). 

It is known that the rate of production of the most important pro-inflammatory 

mediators can be dramatically increased by addition of the potent cytokine IL-1β 

in microglia. In various microglial cells cultures, the endotoxin LPS enhanced the 

expression of IL-1R1 and level of IL-1β (Pinteaux et al., 2002).  
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1.1.5.4. Reactive oxygen species  

Oxidative stress is a pathological disturbance due to an imbalance between the 

rate of ROS production and rate of ROS metabolism (Schieber and Chandel, 

2014). ROS are a class of wide variety of molecules that oxidise the main cellular 

macromolecules such as lipids, proteins, and DNA (Schieber and Chandel, 

2014). The cellular biological functions of these target molecules are then 

negatively altered. The highly reactive molecules of ROS as well as RNS are 

listed in Table 4 (Rahman et al., 2012). Importantly, normal or low levels of ROS 

are secreted to regulate several biological processes such as cell signalling, 

metabolism, cell survival, migration, and proliferation. One of the physiological 

effects of ROS are associated with host defence against pathogens (Beckhauser 

et al., 2016). The major important ROS such as O2˙− and H2O2 are synthesized 

by various enzymatic and non-enzymatic processes. The most important sources 

of ROS are NADPH oxidase, xanthine oxidase; cyclooxygenase, and iNOS. In 

addition, the mitochondrial electron transport chain is another important source 

of ROS in the mammalian CNS (Haslund‐Vinding et al., 2017). It is well known 

that the substrate O2˙− is an initial product for synthesis of ROS. It is formed due 

to the reduction of O2 by the addition of one electron in the presence of ROS-

generated enzymes or in mitochondria. It is well documented that several 

substances are known to act as either oxidative stressors or antioxidants in the 

body (Rahal et al., 2014).  
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Table 3 Examples of the main reactive oxygen species (ROS) and reactive 
nitrogen species (RNS)   

A- Reactive oxygen species (ROS)  

 Radicals Non-radicals 

1 Superoxide: O2
.- Hydrogen peroxide: H2O2 

2 Hydroxyl: OH- Hypochlorous acid: HOCl 

3 Peroxyl: RO2
- Hypobrromus acid: HOBr 

4 Alkoxyl: RO- Ozone: O3 

5 Hydroperoxyl: HO2
- Single oxygen: Δg 

B- Reactive nitrogen species (RNS)  

 Radicals Non-radicals 

1 Nitric oxide: NO- Nitrogen dioxide: NO2 

2 Nitrous acid: HNO2 Nitrosyl cation: NO 

3  Nitrosyl anion: NO- NO-  

4  Dinitrogen tetroxide: N2O4 

5  Dinitrogen trioxide: N2O3 

6  Peroxynitrite: ONOO- 

7  Peroxinitrous acid: ONOOH 

8  Alkylperoxynitrites: ROONO 

 

However, in physiological conditions, a wide range of antioxidant enzymes are 

produced to detoxify and eliminate ROS (Valko et al., 2007). In inflammatory or 

oxidative conditions due to presence of ROS and RNS, healthy cells are not 

completely able to protect their cellular components such as proteins, lipids, and 

nucleic acids. This results in various molecular modifications that are responsible 

for disturbed biological functions as shown in Figure 1.5 (Lugrin et al., 2014). 
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Figure 1.5 Major molecular targets and biological consequences of 
oxidative stress. 

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are toxic molecules that 

cause damage to the major cellular components such as proteins, lipids, and nucleic acids. This 

results in various molecular modifications that disturb biological functions (Lugrin et al., 2014, 

Schieber and Chandel, 2014, Haslund‐Vinding et al., 2017). 

Neuroinflammation-mediated oxidative stress has been linked to life-threating 

diseases such as neurodegenerative disorders, cancer and aging. The 

pathological effects of ROS at high levels are associated with oxidative stress-

induced cellular damage such as neuronal death (Kim et al., 2015). Direct or 

indirect chronic oxidative stress has been mainly implicated in neuronal loss and 

death because the biological functions of the neuronal components are damaged 

by ROS (Schieber and Chandel, 2014). ROS are markedly secreted at high rate 

in the pathological conditions such as neuroinflammation, brain injury and cancer 

(Olmez and Ozyurt, 2012). Based on the importance of both neuroinflammation 

and the role of microglial ROS in the neuroinflammatory and oxidative responses, 

several studies have suggested that excessive ROS levels are associated with 

the progression of neurodegenerative diseases (Hsieh and Yang, 2013). ROS 
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are identified as one of the major neurotoxic molecules in which elevated levels 

of ROS have been detected in the patients with AD and PD (Guidi et al., 2006, 

Kim et al., 2015). For instance, the elevated level of 4-hydroxy-2, 3-nonenal, 

which is an important breakdown product of lipid peroxidation has been observed 

in AD brains. In addition, DNA bases are hydroxylated due to ROS-mediated 

oxidative stress (Rahman et al., 2012). In addition, many inflammatory target 

proteins including matrix metalloproteinase-9 (MMP-9), cytosolic phospholipase 

A2 (cPLA2), COX-2, iNOS, intercellular adhesion (ICAM) are upregulated by 

various pro-inflammatory factors including cytokines, peptides infection products, 

peroxidants and others by a ROS signal-dependent manner in neuroglial cells 

such as microglia (Figure 1.6). This results in neuroinflammation and neuronal 

death (Hsieh and Yang, 2013).  

Several findings have shown that microglia are one of the biological sources of 

ROS in the CNS that respond to pathogens. For example, H2O2 synergically 

increased LPS-induced increase in NO production in BV2 microglial cell (Eguchi 

et al., 2011). LPS increased the production rate of ROS that is followed by iNOS 

expression induction (Pawate et al., 2004). In addition, Aβ peptide-induced 

microglial over-activation is noted to be mediated by ROS (Kang et al., 2001). 

The biological roles of several signalling cascades including NF-B, p38 MAPK, 

and PI3K/AKT that regulate many biological processes such as 

neuroinflammation are regulated, at least in part, by the second messengers ROS 

(Hensley et al., 2000, Ray et al., 2012). For example, the activity of NF-B which 

is a sensitive transcriptional factor in the neuroinflammatory response and 

oxidative stress, in part, is regulated by ROS after addition of pro-inflammatory 

stimuli such as Aβ and LPS in microglial BV2 cell cultures (Kang et al., 2001, 

Park et al., 2015a). 
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Figure 1.6 Schematic representation of the redox signals due to ROS 
production and their role in the development of neuroinflammation and 
neuronal death. 

Several inflammatory target proteins including matrix metalloproteinase-9 (MMP-9), 

cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), and intercellular adhesion 

(ICAM) can be upregulated by various pro-inflammatory factors. The most important factors 

include cytokines (e.g., interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α 

(TNFα), peptides (e.g., beta-amyloid (Aβ), infection (e.g., bacterial and virus), oxidants (e.g., 

hydrogen peroxide (H2O2) and others via a ROS signal-dependent manner in neuroglial cells (e.g., 

microglia). These inflammatory mediators can cause neuroinflammation and neuronal death 

(Hsieh and Yang, 2013, Vilhardt, 2005, Von Bernhardi et al., 2015, Polazzi and Monti, 2010).
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However, one of the main purpose of extensive researches that have been 

carried out is to inhibit the neurotoxic effects of ROS in the body. For instance, 

the levels of pro-inflammatory and oxidative mediators such as NO and ROS can 

be reduced by synthetic and plant-derived natural compounds that suppress 

neuroinflammatory genes expression (Chung et al., 2010, Wu et al., 2012). 

Therefore, a normal balance between the cell signalling and ROS level in the 

CNS is an important factor for both cell death and cell survival.  

It is well known that NADPH oxidase is an important source of ROS generation. 

It is involved in the regulation of immune response and host defence. NADPH 

oxidase is expressed in various CNS cell types such as neurons and microglia 

(Haslund‐Vinding et al., 2017). The enzyme is highly expressed and extremely 

distributed in microglia (Chéret et al., 2008, Wilkinson and Landreth, 2006). Three 

isoforms of NADPH oxidase; NOX1, NOX2, and NOX4 have been expressed in 

microglia (Harrigan et al., 2008). However, this enzyme plays a critical role in the 

ROS-mediated neuroinflammatory and oxidative responses. For example, 

microglia-induced neurotoxicity is mediated by NADPH oxidase hyper-activation 

and ROS over-production (Qin et al., 2004). It is established that the enzyme 

NADPH oxidase is up-regulated in a variety of neurodegenerative disorders such 

as AD (Block, 2008, Gao et al., 2003). NADPH oxidase activity is regulated by 

signalling pathways (Chéret et al., 2008). NADPH-dependent ROS signalling is 

involved in LPS-induced increase in activation of signalling pathways and gene 

expression of pro-inflammatory factors such as TNFα and IL-6 in rat microglia 

(Pawate et al., 2004). In addition, several conventional and natural compounds 

have been reported to significantly attenuate LPS-induced increase in microglial 

NADPH oxidase activity (Maraldi, 2013, Huo et al., 2011). Overall, it is important 

to inhibit NADPH-dependent ROS signalling pathway in order to protect neurons 

(Block, 2008, Choi et al., 2012). In addition, it is necessary to maintain the cellular 

redox balance and to find effective substances that might be used to preventing 

the negative feedbacks of ROS on the survival of healthy mammalian cell (Poljsak 

et al., 2013).   
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 Importance of IL-10 in neuroinflammation 

Although reactive microglial cells are known to secret a wide spectrum of pro-

inflammatory cytokines during the immune response, microglial IL-10 has been 

identified as the most important anti-inflammatory cytokine in the brain (Iyer and 

Cheng, 2012). It is produced to counteract cellular damage driven by an 

excessive neuroinflammatory response. The IL-10 receptor (IL-10R) is expressed 

by all CNS cell types such as neurons and microglia (Lobo-Silva et al., 2016). IL-

10 has been associated with increased neuronal survival and the regulation of 

adult neurogenesis (Lobo-Silva et al., 2016). It is noted that IL-10 gene encoding 

and IL-10R is constitutively expressed in inactivated human and rat microglia 

(Ledeboer et al., 2002, Lee et al., 2002). Many experiments have been carried 

out to understand the molecular mechanism of the anti-neuroinflammatory action 

of IL-10 in the CNS. It is well established that IL-10 actions have been mostly 

mediated by IL-10 receptors (Lobo-Silva et al., 2016). Because of its cytokine 

nature, the gene encoding for IL-10 plays an important role in the regulation of 

host defence and neuroinflammatory processes (Kremlev and Palmer, 2005).  

IL-10 has a role in the modulation of neuroinflammation, and this cytokine is 

known to be an active anti-inflammatory agent against neurotoxicity induced by 

potent toxic ligands such as LPS and 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP) (Qian et al., 2010). In a rat model of PD, 6-

hydroxydopamine-induced neurotoxicity was inhibited by IL-10 (Johnston et al., 

2008). In addition, polymorphism of the gene IL10 might be a risk factor for AD 

(Zhang et al., 2011). The anti-inflammatory and neuroprotective actions of IL-10 

have been investigated in numerous experimental models (Qian et al., 2006b, 

Xin et al., 2011). For example, IL-10 inhibited neuroinflammation and 

neurotoxicity through inhibiting the expression of cytokine receptors and pro-

inflammatory cytokines production in LPS-induced hyper-activated microglia (Zhu 

et al., 2015). IL-10 inhibited LPS-induced TNFα production in human microglia 

(Lee et al., 2002). In addition, IL-10 attenuated the secretion of TNFα, IL-1β, and 

ROS from primary microglia (Kremlev and Palmer, 2005, Qian et al., 2006a). IL-

10 is endogenously expressed in microglia in order to inhibit LPS-induced 

neurodegeneration in the rat cerebral cortex (Park et al., 2007). IL-10 treatment 

inhibited NF-B-mediated increase in IL-6 by LPS in microglia (Henry et al., 
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2009). IL-10 markedly reduced LPS-mediated neurotoxicity through inhibition of 

NADPH oxidase in primary midbrain cultures (Qian et al., 2006a). Inhibiting 

microglial hyper-activation and subsequent neurotoxicity by increasing the level 

of the target IL-10 in the brain is an effective strategy in preventing uncontrolled 

neuroinflammation (Asadullah et al., 2003).  

 Lipopolysaccharide as an activator of neuroinflammation  

The bacterial product LPS is an inflammatory component that induces 

uncontrolled neuroinflammation through the activation of Toll-like receptors such 

as Toll-Like receptor 4 (TLR4). They are mammalian homologues of the 

Drosophila melanogaster Toll receptor protein (Buchanan et al., 2010). Toll-like 

receptors are the major important receptors among the signalling pattern 

recognition receptors that recognise microbial products (Lehnardt, 2010). TLR4 

has been known to play a critical role in the regulation of normal immune and 

neuroinflammatory responses against bacterial infection and bacterial products 

such as LPS (Takeda and Akira, 2005). TLR4 is known to be highly expressed 

by the potent neuroinflammatory stimulus LPS as part of the pro-inflammatory 

response of the host (Yao et al., 2013). Microglial TLR4 is activated by LPS to 

induce signalling pathways that regulate the immunity in the CNS. Several lines 

of evidence have demonstrated that microglial TLR4 is responsible for 

recognising the endotoxin LPS in the brain in order to destroy and remove the 

bacterial product. This results in the protection of a wide variety of cells in the 

CNS (Molteni et al., 2016). 

LPS is the major outer membrane component of the cell wall in Gram-negative 

bacteria (Buchanan et al., 2010). Several studies have suggested that the 

neuroinflammatory effects of LPS have been mediated through the activation of 

TLR4 signalling transduction, in which the soluble plasma protein LPS-binding 

protein is combined to the bacterial product LPS. Subsequently, the complex is 

associated with the soluble protein cluster of differentiation (CD14). LPS is then 

transferred to the receptor complex of TLR4 and myeloid differentiation 2 (MD-2) 

by CD14. Endocytosis of the TLR4/MD-2/LPS complex results in conformational 

changes of the receptor. The adaptor protein myeloid differentiation primary 

response gene 88 is then recruited to the receptor complex in the presence of 

TIR domain-containing adaptor protein. Then, interleukin-1 receptor-associated 
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kinase 1 and 4 and TNF-receptor-associated factor 6 (TRAF6) are recruited to 

the receptor complex. After that, transforming growth factor-β-activated kinase 1 

(TAK1) is activated by the signal transducer TRAF6 (Glezer et al., 2007, 

Kaminska et al., 2016). The downstream IKK and MAPKs signalling pathways 

are activated by phosphorylated TAK1 that results in activation of NF-B and 

activator protein-1, respectively. As shown in Figure 1.7, the LPS stimulatory 

action is mediated by the activation of multiple signalling pathways (Kacimi et al., 

2011, Ostareck-Lederer et al., 2013). Several studies have shown that LPS is a 

potent inflammatory ligand for the activation of many signalling pathways such as 

NF-B (Kacimi et al., 2011), MAPKs (Han et al., 2002, Xie et al., 2004), and Akt 

(Saponaro et al., 2012). These cascades are responsible for neuroinflammatory 

and neurotoxic product-mediated neuroinflammation. 

Microglia are the major cell population in the CNS that respond to LPS via TLR4. 

Many cell-based studies have been performed to study the role TLR4 signalling 

pathway in neuroinflammation due to bacterial infection using different in vitro 

microglial cell lines such as BV2 microglia (Lehnardt, 2010). Several findings 

have suggested that several pro-inflammatory mediators are produced from 

immune cells such as microglia after application of LPS (Bachstetter et al., 2011). 

It has also been suggested that activation of NADPH oxidase is regulated by 

TLR4 signalling (Haslund‐Vinding et al., 2017). In LPS-stimulated microglia, NO-

generated iNOS and O2˙−-generated NADPH oxidase modulated peroxynitrite-

mediated oligodendrocyte death (Li et al., 2005). Therefore, microglial TLR4 is 

identified as a major target for the in vitro specific binding of LPS and a good 

target for compounds that might be used to prevent hyper-active microglia-

mediated neuroinflammation. 
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Figure 1.7 Proposed model for lipopolysaccharide (LPS)-induced microglial 
hyper-activation and neuronal death. 

Toll-like receptors 4 (TLR4) are stimulated by LPS and this results in the activation of a variety of 

signalling molecules such as Akt, nuclear factor-kappa B (NF-B), and p38 that regulate different 

signalling pathways in microglia. After that, several target genes such as inducible nitric oxide 

synthase (iNOS), cyclooxygenase (COX-2), and genes encoding for tumour necrosis factor-α 

(TNFα), interlukin-1β (IL-1β), and interlukin-6 (IL-6) are expressed in order to produce a variety 

of pro-inflammatory and oxidative mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), 

TNFα, IL-1β, L-6, and reactive oxygen species (ROS). The healthy neuron is then damaged due 

to long-term of pro-inflammatory and oxidative mediators-mediated neuroinflammation and 

oxidative stress. In addition, the hyper-activated microglial cell and healthy neurons that are 

located close to the damaged neurons are also affected by neuronal death (Kaminska et al., 2016, 

Ostareck-Lederer et al., 2013, Kacimi et al., 2011). 
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  Diosgenin 

Several attempts have been made to discover novel oestrogen-like compounds, 

which specifically inhibit neuroinflammation, in order to avoid oestrogen 

deficiency-mediated menopausal symptoms and oestrogen-mediated breast 

cancer. Therefore, it is necessary to find natural or semi-synthetic oestrogens, for 

example phytoestrogens that lack the adverse effects of endogenous 17β-

oestradiol for the treatment or prevention neuroinflammation-mediated 

neurodegeneration (Prokai and Simpkins, 2007, Cvoro et al., 2008).  

1.1.8.1.  Sources and chemistry of diosgenin 

It is well known that steroidal saponins and their aglycones (steroidal 

sapogenins) as raw materials have economic and therapeutic values. They play 

some important roles in both the manufacture of various synthetic steroid 

hormonal drugs and the treatment of some diseases. All steroidal sapogenins 

possess a parent cholestane carbon skeleton (C27), having a 

perhydrocyclopentenophenanthrene (sterane) nucleus (rings A, B, C, and D), 

and the side chain of which undergoes cyclisation resulting in either a hexacyclic 

system (four carbocyclic and two heterocyclic rings) or a pentacyclic system 

(four carbocyclic and one heterocyclic ring). In a saponin containing a hexacyclic 

aglycone, such as diosgenin or tigogenin, the 3-OH group is usually decorated 

with an oligosaccharide chain. Spirostan-type saponins are the most common 

steroidal saponins in plants. Diosgenin is one of the most important sapogenins 

in the plant kingdom. Diosgenin [(25R)-5-spirosten-3β-ol] is a spirostanol saponin 

with a molecular weight of 414.627. The plant diosgenin has a ring structure 

similar to the chemical backbone of steroids such as 17β-oestradiol (Figure 1.8). 

The molecular formula of diosgenin is C27H42O3 and that of 17β-oestradiol is 

C18H24O2. In addition, the chemical structure of diosgenin is similar to that of other 

steroids including cholesterol, and dehydroepiandrosterone-the precursor to 

testosterone (Deshpande and Bhalsing, 2014, Masood-ur-Rahman and Ara, 

2017, Basu and Srichamroen, 2010, Hanson, 2010, Powell and D'Arcy, 2013, 

Hanson, 2005, Munafo Jr and Gianfagna, 2015).   
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Figure 1.8 Molecular structures of diosgenin and 17β-oestradiol (Raju and 
Rao, 2012, Patisaul and Jefferson, 2010). 

Diosgenin is the major active ingredient found in plants such as Trigonella foenum 

graecum (Fenugreek) and many species of Dioscorea (e.g., Yam), and Costus 

speciosus (Koen) (Dangi et al., 2014, Yi et al., 2014) (Table 3). The root tubers 

of wild yam (Dioscorea villosa) and the seeds of fenugreek have been used as a 

major dietary source for the industrial production of diosgenin (Deshpande and 

Bhalsing, 2014, Jesus et al., 2016). 
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Table 4 List of medicinal plants containing diosgenin 

Genus Species Common name 

Dioscorea Dioscorea villosa Wild Yam 

Dioscorea alata Greater Yam  

Dioscorea nipponoca Dioscorea nipponoca 

Dioscorea colletti Dioscorea Hypoglauca 

Trigonella  Trigonella foenum graecum Fenugreek 

Costus Costus speciosus Crape Ginger 

Smilax Smilax china Smilax china 

 Smilax glabra Smilax glabra 

Asparagus  Asparagus officinalis Wild Asparagus 

Solanum Solanum incanum Grey bitter-apple  

 Solanum xanthocarpum Yellow Berried Night 
Shade  

 

1.1.8.2. Pharmacology of diosgenin 

Diosgenin-containing medicinal plants have been used in folk medicine 

throughout the world. In recent years, several studies have been performed to 

study the activity of diosgenin as an isolated compound or as part of plant extracts 

(Patel et al., 2012, Venkata et al., 2017). Several findings have suggested that 

fenugreek, containing diosgenin, possess anti-inflammatory and antioxidant 

activities in various experiments (Sharififar et al., 2009, Gupta et al., 2010b, 

Uemura et al., 2010, Tripathi and Chandra, 2010, Tejaswini et al., 2012, 

Mandegary et al., 2012, Suresh et al., 2012, Belguith-Hadriche et al., 2013, 

Kumar and Bhandari, 2013, Khole et al., 2014, Abedinzade et al., 2015). Yam, 

containing diosgenin, produced anti-inflammatory activity in ovalbumin-induced 

food allergy in mice (Mollica et al., 2013). It was reported that diosgenin as an 

isolated compound produced numerous biological effects in a variety of cellular, 

animal and human models such as antioxidant (Son et al., 2007), anti-

inflammatory (Ku and Lin, 2013, Tewtrakul and Itharat, 2007), antidiabetic 

(McAnuff et al., 2005), and antihyperlipidaemic (Gong et al., 2010).  
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1.1.8.2.1. Anti-inflammatory effects of diosgenin  

Diosgenin has been evaluated for treating various types of metabolic and 

inflammatory diseases (Raju and Rao, 2012). For example, diosgenin from 

Dioscorea villosa extract was shown to produce an anti-inflammatory effect in a 

rodent model (Lima et al., 2013). Diosgenin from Dioscorea membranacea 

extract inhibited the production of NO in LPS-stimulated RAW 264.7 cells 

(Tewtrakul and Itharat, 2007). In addition, a number of studies have suggested 

that diosgenin, as an isolated active ingredient has anti-inflammatory and 

antioxidant activity in various in vitro inflammatory models. Further, diosgenin 

attenuated subacute intestinal inflammation in rats. In a murine model of food 

allergy, diosgenin inhibited allergen-induced intestinal inflammation 

immunoglobulin E secretion (Huang et al., 2010). It was shown that diosgenin 

inhibited palmitate-induced an increase in the secretion of pro-inflammation 

mediators such as TNFα and IL-6 in endothelial cells through inhibiting inhibitory 

kappa B kinase (IKK) and Nuclear factor-kappa beta (NF-B) phosphorylation 

(Liu et al., 2012). In addition, diosgenin has been reported to exert anti-

inflammatory activity against LPS-induced inflammation in mouse primary 

peritoneal macrophages (Singh et al., 2014), and in mouse lung injury (Gao et 

al., 2013). Furthermore, diosgenin inhibited the secretion of inflammatory 

mediators in co-culture model of 3T3-L1 adipocytes and RAW 264 macrophages 

(Hirai et al., 2010). Another study has shown that this compound inhibited 

LPS/interferon gamma (IFN-γ)-stimulated production of pro-inflammatory factors 

in Raw264.7 murine macrophages (Jung et al., 2010a).  

1.1.8.2.2. Antioxidant effects of diosgenin 

Some studies have indicated that diosgenin possess antioxidant activity in other 

organs. For example, diosgenin increased the levels of antioxidant enzymes such 

as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 

(GPX) as well as the antioxidant protein GSH in the liver, plasma and erythrocytes 

in high-cholesterol fed rats (Son et al., 2007). Furthermore, pre-treatment with 

diosgenin showed antioxidant effect on myocardial reperfusion injury in rat heart 

by increasing the activities of SOD and GPX (Badalzadeh et al., 2015). 

Diosgenin also attenuated the hydrogen peroxide (H2O2)-induced increase in 

ROS level and oxidative stress in human vein endothelial cells and in H92C cells 
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(Gong et al., 2010, Jamshidi et al., 2016). It increased the activity of SOD, CAT, 

and GPX and thereby, reduced oxidative stress in adenine-induced chronic renal 

failure rats (Manivannan et al., 2015). Therefore, these findings suggest that 

diosgenin or herbal crude extracts containing diosgenin might be used as anti-

inflammatory and anti-oxidant medication in traditional medicine. 

1.1.8.2.3. Neuroprotective activity of diosgenin 

Diosgenin has been experimentally identified as one of the natural products that 

produce neuroprotection (Venkatesan et al., 2015). In addition, the 

neuroprotective effect of diosgenin have been investigated in numerous 

experiments. For example, oral administration of diosgenin improved memory 

and inhibited galactose-induced oxidative stress in mice through increasing the 

activity of some antioxidant enzymes such as SOD and GPX (Chiu et al., 2011). 

A study showed that diosgenin improved memory and reduced axonal 

degeneration in an AD mouse model (Tohda et al., 2012). It has also been 

demonstrated that diosgenin treatment resulted in an improvement in cognitive 

functions in normal rats through the activation of steroid-binding receptors (Tohda 

et al., 2013). In a rodent model, diosgenin induced neuronal regeneration by 

increasing the level of nerve growth factor (NGF) and thus attenuated diabetic 

neuropathy that is characterised by axonal degeneration, demyelination, and 

atrophy (Kang et al., 2011). In addition, the compound stimulated the NGF 

production against Aβ-induced neuronal damage in mice (Koh et al., 2016). A 

diosgenin-rich yam extract was reported to enhance cognitive function in healthy 

humans (Tohda et al., 2017). It has also been reported that diosgenin attenuated 

mitochondrial dysfunction in the presence of dopamine in isolated rat 

synaptosomes (Kondeva-Burdina et al., 2007). Another study has showed that 

diosgenin protected neurons in vitro against Tat (a novel regulator of HIV 

transcription) plus morphine-induced neurotoxicity (Turchan-Cholewo et al., 

2006). In addition, diosgenin prevented spinal cord injury-induced secondary 

injury by inhibiting the inflammatory response, repressing apoptosis, and 

promoting autophagy in perilesional tissues of rats (Zhang et al., 2017). In this 

study, diosgenin reduced the levels of pro-inflammatory levels of cytokines 

including TNFα, IL-1β, and IL-6 in spinal cord tissues. Diosgenin was also shown 

to attenuate the brain injury induced by transient focal cerebral ischemia-
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reperfusion through reducing the levels of cytokines in blood serum of the 

ischemia-reperfusion treated rats (Zhang et al., 2016).  

 

It inhibited neuronal damage through attenuating neuroinflammation and 

oxidative stress, and suppressed pentylenetetrazole-induced oxidative damage 

in brain tissues by increasing SOD, glutathione (GSH), and CAT levels in mice 

(Tambe et al., 2015). Diosgenin produced a neuroprotective activity in vitro 

against oxygen-glucose deprivation using primary cortical neuron culture (Chang 

et al., 2013). Some studies have showed that diosgenin might be used for the 

treatment of demyelinating diseases such as multiple sclerosis. For example, 

diosgenin produced a neuroprotective action in an attenuated experimental 

model of autoimmune encephalomyelitis in mice through activation of microglia 

(Liu et al., 2017). Further, diosgenin induced differentiation of oligodendrocyte 

progenitor cells without affecting the viability, proliferation, or migration of these 

cells in a purified rat culture model (Xiao et al., 2012). The effect was exerted 

through oestrogen receptors (ER)-mediated extracellular signal-regulated kinase 

1/2 activation that accelerate remyelination. In addition, diosgenin glucoside 

produced neuroprotective effect through modulation of microglial polarization 

(Wang et al., 2017). 

1.1.8.3. Effects of diosgenin on the signalling pathways  

Finally, a number of studies have noted that diosgenin mediated its anti-

inflammatory through down-regulation of signalling pathways such as NF-B, 

mitogen-activated protein kinase (MAPK), and PI3K/AKT in different models 

(Jung et al., 2010a). For example, diosgenin attenuated NF-B and MAPK 

pathways in LPS-induced lung injury in mice (Gao et al., 2013). Diosgenin 

reduced brain injury induced by transient focal cerebral ischemia-reperfusion in 

rats through inhibition of NF-B (Zhang et al., 2016). Diosgenin down-regulated 

NF-B and c-Jun N-terminal kinases in macrophage (Jung et al., 2010a).  

Furthermore, it has been hypothesised that diosgenin produces oestrogen-like 

effects in humans because of its structural similarity to 17β-oestradiol. In addition, 

a number of studies have shown that diosgenin possess oestrogenic activity 

(Alcantara et al., 2011, Wu et al., 2015). Diosgenin reduced adipocyte 

differentiation through ERβ-induced Peroxisome proliferator-activated receptor γ 
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expression (Wang et al., 2015c). In addition, diosgenin increased the nuclear 

expression of ERβ (Wang et al., 2015c). Diosgenin induced hypoxia-inducible 

factor-1 activation and angiogenesis through ER-related Akt and p38 MAPK 

pathways in osteoblasts (Yen et al., 2005). Furthermore, diosgenin induced 

differentiation of oligodendrocyte progenitor cells in purified rat culture model 

through ER (Xiao et al., 2012).  

  Gap in knowledge 

To date, the anti-neuroinflammatory activity of diosgenin against hyper-activated 

microglia-mediated neuroinflammation has not yet been studied. In addition, the 

molecular mechanisms involved in the neuroprotective effect of diosgenin have 

not been elucidated. 

 Aim and Objectives 

This research was aimed at investigating whether diosgenin modulates 

neuroinflammation in LPS-activated BV2 cells. Therefore, this study sought to 

address the following specific objectives: 

i. To determine the anti-neuroinflammatory effect of diosgenin in LPS-

stimulated microglial BV2 cells. 

ii. To identify the molecular mechanism underlying the anti-

neuroinflammatory effect of diosgenin in LPS-activated BV2 cells  

iii. To investigate whether antioxidant protective mechanisms are associated 

with the anti-neuroinflammatory effect of diosgenin. 

iv. To determine the neuroprotective effect of diosgenin against 

neuroinflammation-induced HT22 neuronal death. 

 Thesis Structure 

It is a good idea to summarise the next chapters as the following: 

Chapter 2: This chapter will provide the significant results that demonstrates the 

anti-neuroinflammatory effect of diosgenin in LPS-stimulated microglial BV2 cells 

as well as the mechanism of the anti-neuroinflammatory activity of this compound 

against NF-B in LPS-activated BV2 cells.  

Chapter 3: The goal of this chapter is to provide the data that suggests the effect 

of diosgenin on the antioxidant defence system (Nrf2/ARE mechanism) in 
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unstimulated BV2 microglia. In addition, it is aimed to show the results that 

investigates the important role of Nrf2 signalling pathway in the modulation of the 

anti-neuroinflammatory effect of diosgenin in LPS-activated BV2 cells.  

Chapter 4: The chapter 4 of the thesis describes the results that support the 

important role of diosgenin’s anti-neuroinflammatory in neuroinflammation-

mediated neurodegeneration through activation of some important signalling 

cascades including AMPK and ER in BV2 cells. 

Chapter 5: This chapter will provide a general summary about the results of the 

previous chapters. 
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 Diosgenin inhibited NF-B-mediated 

neuroinflammation in LPS-activated BV2 

microglia 
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 Introduction 

 Microglial NF-B signalling pathway 

Nuclear factor-kappa beta (NF-B), as a nuclear transcription factor, is a primary 

regulator of immune and/or inflammatory responses in the CNS (Shih et al., 

2015). It was first identified as a nuclear factor κ-light-chain-enhancer of activated 

B cells. As seen in Figure 2.1, the NF-B p65/p50 heterodimer is one of the five 

members of mammalian NF-B transcription factor family (Christian et al., 2016, 

Schmukle and Walczak, 2012). The most widely studied form of NF-B 

heterodimers are the p50 and p65 subunits because these subunits have been 

known as potent inducers of pro-inflammatory gene transcription during the 

immune response. All of these family members have a Rel-homology domain that 

is essential for DNA binding and dimerisation. The members of the NF-B family 

are regulated by a wide variety of the inhibitory kappa B (IκB) and the IKK families. 

Several studies have demonstrated that NF-B plays some key roles in the 

regulation of numerous biological processes including cell survival, apoptosis, 

and neuroinflammation (Mincheva-Tasheva and Soler, 2013, Ledoux and 

Perkins, 2014, Serasanambati and Chilakapati, 2016). Regarding 

neuroinflammation, microglial NF-B is involved in the regulation of the 

transcription of a large number of target genes against a wide variety of 

inflammatory stimuli and insults such as brain infection and brain injury 

(Serasanambati and Chilakapati, 2016).
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Figure 2.1 Members of the nuclear factor-kappa B (NF-B), Inhibitory kappa 
B (IκB), and Inhibitory kappa kinase (IKK) families. 

(A) The five members of the NF-B family are RelA (p65), RelB, c-Rel, p105 (p50), and p100 

(p52). (B) The IκB family of proteins consists of four members: IκBα, IκBβ, IκBϵ and BCL-3. (C) 

The three members of IKK complex: NF-B Essential Modulator (NEMO or IKKγ), IκB kinase α, 

(IKKα or IKK1) and IκB kinase β (IKKβ or IKK2) (Schmukle and Walczak, 2012, Hoesel and 

Schmid, 2013). 

 

Findings from several studies have shown that microglial NF-B signalling 

pathway is associated with normal inflammatory response and 

neuroinflammation (Hoesel and Schmid, 2013). Normal activation of this cascade 

results in the synthesis and then production of pro-inflammatory mediators such 

as cytokines and ROS against the attack in the CNS. NF-B signalling can be 

activated, for example, by LPS, TNFα, and IL-1β, through the activation of TLR4, 

TNFα receptor and IL-1β receptor, respectively in spite of the structural 

differences among these receptors (Shabab et al., 2017, Kuno et al., 2005). The 



 

61 
 

most potent inducers that activate microglial NF-B p50/p65 signalling pathway 

are LPS, Aβ, and TNFα (Kuno et al., 2005, Capiralla et al., 2012). This activation 

results in neuroinflammatory response against LPS or other abnormal products. 

NF-B is present as an inactive in the cytoplasm because it is attached to the 

inhibitory subunit IκB-α (Figure 2.2).  

Upon activation of microglial TLR4 by LPS, the IKK complex is phosphorylated 

and the IκB-α subunit is then phosphorylated by the phosphorylated IKK. After 

that, the phosphorylated IκB-α is polyubiquitinated and rapidly degraded by the 

proteasome enzyme. The free active NF-B dimers are rapidly translocated into 

the nucleus, and then attached to specific sequences of DNA called ᴋB sites that 

are located in the promoters of a large number of pro-inflammatory genes such 

as iNOS, COX-2, and genes encoding for TNFα, IL-1β, and IL-6 (Hayden and 

Ghosh, 2012). It is noted that NF-B/DNA complex is responsible for the 

regulation of transcription of several target genes that have protective and/or 

neurotoxic effects on neurons (Vega and de Andres Martin, 2008).
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Figure 2.2 Proposed model for lipopolysaccharide (LPS)-induced nuclear 

factor-kappa B (NF-B) in microglial cell. 

 NF-B is present as an inactive complex because it is attached to the subunit Inhibitory kappa B 

(IκB-α) in the cytoplasm. Upon activation of Toll-like receptor 4 (TLR4) with LPS, the Inhibitor 

kappa B kinase (IKK) complex is phosphorylated and the IκB-α subunit is then phosphorylated by 

the phosphorylated IKK. After that, the free active NF-B is translocated into the nucleus, and 

attached to specific sequences of deoxyribonucleic acid (DNA) that are located in the promoters 

of pro-inflammatory and oxidative genes. The expression of target genes such as inducible nitric 

oxide synthase (iNOS), cyclooxygenase (COX-2), and genes encoding for tumour necrosis factor-

α (TNFα), interleukin-1β (IL-1β), and interleukin-6 (IL-6) results in the production of a variety of 

pro-inflammatory and oxidative mediators such as nitric oxide (NO), prostaglandin E2 (PGE2), 

TNFα, IL-1β, IL-6, and reactive oxygen species (ROS). This results in neuroinflammation- and 

oxidative stress- mediated neurodegenerative diseases (Vega and de Andres Martin, 2008, 

Spencer et al., 2012, O'Neill and Kaltschmidt, 1997). 



 

63 
 

 Role of NF-B signalling in neuroinflammation 

Several studies have shown that chronic activation or dysregulation of the 

microglial NF-B signalling pathway is implicated in a wide variety of chronic 

diseases such as cancer, diabetes mellitus, and neurodegenerative diseases 

(Tornatore et al., 2012, Hoesel and Schmid, 2013). In the CNS, NF-B plays a 

potential role in the regulation of several genes such as COX-2, iNOS and those 

encoding TNFα, IL-1β, and IL-6 that regulate the secretion of pro-inflammatory 

and neurotoxic mediators including NO, cytokines, and ROS (Hoesel and 

Schmid, 2013). Findings from several studies have shown that the NF-B 

signalling pathway is associated with the excessive neuroinflammatory and 

oxidative responses (Shih et al., 2015). This critical hypothesis has been 

confirmed because down-regulation of NF-B-mediated transcriptional activity 

results in the suppression of NF-B signalling-mediated neuroinflammation (Wan 

and Lenardo, 2010).  

Moreover, NF-B has been involved in the pathogenesis of AD (Zhang and Jiang, 

2015). Elevated levels of β-site APP cleaving enzyme 1 (BACE1) were found in 

the brains of AD-suffering patients; increased BACE1 expression is responsible 

for the production of the toxic protein Aβ mediated by NF-B activation (Chen et 

al., 2012). In addition, increasing NF-B activation results in neuronal apoptosis 

in the hippocampus of Tg2576 transgenic mice model of AD (Niu et al., 2010). 

Furthermore, the activation of NF-B has been noted in substantia nigra of AD 

patients and in animal models of PD. Zhang and co-workers showed that 

inactivation of the NF-B cascade by inhibiting microglial IKK activity resulted in 

the protection of dopaminergic neurons against LPS-induced neurotoxicity 

(Zhang et al., 2010). It is noted that NF-B activation is induced in the substantia 

nigra of PD patients and MPTP-treated mice. Deactivation of this microglial 

cascade by inhibiting IKK protected the dopaminergic neurons from MPTP-

induced nigral degredation in a mouse model (Ghosh et al., 2007). In addition, 

NF-B activity increased by MPTP in the substantia nigra of hemi-parkinsonian 

monkeys. Inhibition of NF-B activation, and subsequently iNOS expression 

resulted in neuronal protection and locomotor activity improvement (Mondal et 

al., 2012). NF-B activation has been associated with the pathology of ALS. For 

example, microglia induced motor neuron death due to NF-B activation in 
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mutant SOD mice (Frakes et al., 2014). Thus, regulating microglial NF-B activity 

is necessary to modulate uncontrolled neuroinflammation involved in 

neurodegenerative diseases such as AD and PD.  

 Specific Aim and Objectives 

This research was aimed at investigating whether diosgenin modulates 

neuroinflammation in LPS-activated BV2 cells. Therefore, this study sought to 

address the following specific objectives: 

I. To determine the anti-neuroinflammatory effect of diosgenin in LPS-

stimulated microglial BV2 cells. 

II. To identify the molecular mechanism underlying the anti-

neuroinflammatory effect of diosgenin in LPS-activated BV2 cells  

 Methods 

 BV2 cell culture  

BV2 microglia are a transformed cell line that are used instead of human or 

animal primary microglia for studying microglia-mediated neuroinflammation 

(Henn et al., 2009, Stansley et al., 2012). BV2 cells were generated by infecting 

mouse primary microglia with a v-raf/v-myc oncogene-carrying retrovirus (Blasi 

et al., 1990) BV2 mouse microglia cell line ICLC ATL03001 was purchased from 

Interlab Cell Line Collection (Banca Biologica e Cell Factory, Italy). BV2 cells 

used in this study were routinely cultured in T75 cm2 cell culture flask containing 

Roswell Park Memorial Institute 1640 (RPMI 1640) medium (Life Technologies), 

supplemented with 10% heat-inactivated fetal bovine serum (FBS; Sigma), 2 mM 

L-glutamine (Sigma), 1 mM sodium pyruvate (Sigma), 100 U/mL of penicillin 

(Sigma), and 100 μg/mL of streptomycin (Sigma). The flask containing BV2 cells 

was incubated in a humidified atmosphere of 5% CO2 and 95% O2 at 37°C.  

The culture medium was replaced by fresh complete RPMI 1640 medium 

approximately every 48 hours. The cells were sub-cultured when they reached 

70-80% confluence. In general, BV2 cells were sub-cultured twice a week. Once 

confluent, the medium was poured into a sterile tube, and the flask was washed 

with 5 mL of Dulbecco’s phosphate-buffered saline (PBS; Life Technologies). 

Next, 0.05% trypsin-ethylenediaminetetraacetic (EDTA) (Sigma) was added to 

the flask in order to dissociate and disaggregate the cells, and incubated at 37°C 
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for 2 minutes. 8 mL of RPMI 1640 medium was added to inactivate trypsin, and 

then poured into the tube that contained the spent medium. After centrifugation 

at 1200 g for 5 minutes, the supernatant was removed, and the pellet was re-

suspended in fresh RPMI 1640 medium. Next, the cells were again cultured into 

a new flask containing RPMI 1640 medium, and incubated under the same 

conditions for further subculture. Cells were counted by using a haemocytometer 

and diluted to the desired density in order to seed out the cells in a plate.  

 HEK293 cell culture 

HEK293 cells are experimentally transformed cells derived from human 

embryonic kidney cells. It is an excellent cell line for transfection experiments 

because of their reliable growth and propensity for transfection (Thomas and 

Smart, 2005). HEK293 cells were obtained from HPA Cultures (Salisbury, UK). 

HEK293 cells were cultured in Minimum Essential Media (MEM)-Eagle’s medium 

(Life technologies), supplemented with 10% FBS, 2 mM L-glutamine, 1 mM 

sodium pyruvate, 40 U/mL penicillin, and 40 μg/mL streptomycin. The flask was 

incubated in a humidified atmosphere of 5% CO2 and 95% O2 at 37°C. The 

medium was replaced by complete MEM-Eagles medium approximately every 48 

hours. The cells were typically sub-cultured when they reached 70-80% 

confluence. In general, cells were passaged twice a week. Once confluent, cells 

were split to a ratio of 1:10 using trypsin/EDTA.  

 HT22 cell culture  

The HT22 neuronal cell line was derived from HT4 cells that were originally 

immortalised from a primary mouse hippocampal neuronal culture. HT22 cells 

were a kind gift from Dr Jeff Davis. They were routinely maintained and grown in 

T75 cm2 cell culture flasks containing Dulbecco’s modified Eagles medium 

(DMEM; Life Technologies), supplemented with 10% heat-inactivated FBS, 2 mM 

L-glutamine, 1 mM sodium pyruvate, 100 U/mL of penicillin, and 100 μg/mL of 

streptomycin. The flask was incubated in a humidified atmosphere of 5% CO2 

and 95% O2 at 37°C. The culture medium was replaced by complete DMEM 

approximately every 48 hours using sterile tips. The cells were sub-cultured when 

they reached 75-80% confluence. Once confluent, the cells were washed with 

5 mL of PBS. After removing PBS, 0.05% trypsin-EDTA was added to the flask, 

and incubated at 37°C for 2 minutes. 8 mL of complete DMEM was added to the 

http://www.altogen.com/transfection.php
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flask to inactivate trypsin, and then poured off into the tube containing the spent 

medium. The cell suspension was centrifuged at 1200 rpm for 5 minutes. The 

supernatant was aspirated, and the pellet was re-suspended in complete DMEM. 

HT22 cells concentration was counted using a haemocytometer. HT22 cells 

suspension was diluted with complete DMEM to get the required density of cells 

that to be seeded out in plates.  

 Treatment of cell culture 

BV2 cells were seeded out at the required density in a cell culture plate, and then 

incubated for approximately 48 hours. Subsequently, the cultured medium was 

replaced with serum- and phenol red-free RPMI 1640 medium. After 2 hours’ 

incubation, BV2 cells were treated as follows; BV2 cells were left untreated in 

RPMI 1640 medium as a negative-control. Cells were stimulated with 100 ng/mL 

of LPS as a positive-control. BV2 cells were treated with 5, 10, and 20 µM of 

diosgenin for 30 minutes, followed by addition of 100 ng/mL of LPS. After that, 

the plate was incubated for the indicated time period, according to each 

experiment, as shown in the text. Diosgenin (≥ 93 %) (Sigma) was dissolved in 

dimethyl sulfoxide (DMSO; Sigma) to prepare a stock solution of 10 mM and then 

stored as small aliquots at - 80 °C for short term future use. LPS (Sigma) was 

derived from Salmonella enterica serotype typhimurium SL1181. Aβ (human 

fragment 1-42) (Tocris Bioscience) at 2 µM was used as a pro-inflammatory 

ligand instead LPS in order to test whether diosgenin has anti-neuroinflammatory 

activity against Aβ-activated BV2 cells. Cells were treated as shown above and 

the positive-control was Aβ-treated BV2 microglia. The cells were counted using 

a haemocytometer and diluted to the desired density in order to seed out the cells 

in a plate.  

HEK293 cells were used to study the effect of diosgenin on NF-B-mediated 

transcriptional activity. 1 ng/mL of TNFα was used as an inflammatory ligand 

instead of LPS to test whether diosgenin produce anti-neuroinflammatory effect 

against TNFα-induced transcriptional activity in HEK293 cells. Therefore, the 

positive-control was TNFα-treated BV2 cells. 
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 Cell viability assay 

The 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) assay is 

a colorimetric assay that is widely used to evaluate cell viability in cell culture after 

drug or stimuli treatment. In this assay, the yellow compound MTT is reduced to 

a purple coloured formazan dye by the enzyme mitochondrial dehydrogenase in 

viable cells (Figure 2.3) (Aula et al., 2015).  

The MTT assay was used to evaluate whether diosgenin causes any cytotoxic 

effect on BV2 microglial cells at concentrations used in subsequent studies. BV2 

cells were seeded out at a concentration of 2.0 x 105 cells/mL (200 µL/well) in a 

96-well plate and incubated for 48 hours. The medium was then replaced with 

serum-free RPMI 1640 medium for 2 hours. The cells were treated with 5, 10, 

and 20 µM of diosgenin for 30 minutes, and subsequently stimulated with 100 

ng/mL of LPS. After incubation for 24 hours, the medium was carefully removed 

and the cells were incubated with 200 μL of MTT (0.5 mg/mL (Sigma) in PBS) at 

37oC. After 4 hours, the medium was carefully removed and the formed insoluble 

purple formazan crystals were solubilized with 150 μL of DMSO. The plate was 

incubated at room temperature for ten minutes with shaking to increase the 

solubility of crystals. After that, the absorbance was measured at 540 nm using a 

microplate reader (Tecan Infinite F50) (Mosmann, 1983). The relative cell viability 

was expressed as a percentage relative to the untreated control cells.  

 



 

68 
 

 

Figure 2.3 Principle of MTT assay 

The compound 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) is 

intracellularly reduced to a purple coloured formazan dye by the enzyme mitochondrial 

dehydrogenase in living cells (Aula et al., 2015, van Meerloo et al., 2011, Bahuguna et al., 2017). 

 Griess assay  

Nitric oxide (NO) secreted from microglia has been identified as one of the most 

important pro-inflammatory factors involved in microglia-mediated 

neuroinflammatory response and neurotoxicity in high concentrations (Habib and 

Ali, 2011, Rojo et al., 2014). Thus, the Griess assay is used to estimate the 

accumulated level of nitrite (NO2
-) after pro-inflammatory ligand treatment in cell 

culture. It is also used to evaluate anti-inflammatory effect of compound in cell 

cultures in the existence of pro-inflammatory ligand such as LPS. It is important 
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to know that NO2
- is measured as an indicator for the production of NO, because 

NO2
- is a stable end product of NO in the cell culture medium. Initially, 

sulfanilamide is quantitatively converted to a diazonium salt by reaction with NO2
- 

in acid solution. The diazonium salt is then coupled to N-[1-naphthyl]-

ethylenediamine dihydrochloride (NED) to form an azo compound (Figure 2.4). 

Sulfanilamide and NED compete for NO2
- in the Griess reaction.  

The Griess assay was used to investigate the anti-neuroinflammatory effect of 

diosgenin in LPS-stimulated BV2 cells. BV2 cells were seeded out at a 

concentration of 2.0 x 105 cells/mL (2 mL/well) in a 6-well plate and then 

incubated for 48 hours. The cultured medium was replaced by serum-free RPMI 

1640 medium for 2 hours. The cells were treated with 5, 10, and 20 µM of 

diosgenin, and incubated for 30 minutes and subsequently stimulated with 100 

ng/mL of LPS for 24 hours. LPS-control BV2 cells were incubated with 100 ng/mL 

of LPS for 24 hours. In addition, BV2 cells were left untreated as negative control. 

The media were centrifuged at 1200 g for 5 minutes at 4°C to remove debris. The 

supernatants were stored at - 80°C for short term future use. The concentrations 

of NO2
- in the culture supernatants of BV2 cells were determined using Griess 

reagent system (Promega), according to the manufacturer's instructions. 50 µl of 

each supernatant was mixed with 50 µl of 1% sulfanilamide in 96-well plate. The 

plate was then incubated at room temperature for 10 minutes in the dark. After 

that, 50 µl of 0.1% NED was added to each well and incubated for additional 10 

minutes at room temperature in the dark. Absorbance was measured at 540 nm 

using a microplate reader (Tecan Infinite F50) (Griess, 1879).  
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Figure 2.4 Chemical reactions involved in the measurement of nitrite.  

Initially, sulfanilamide is quantitatively converted to a diazonium salt by reaction with NO2
- in acid 

solution. The diazonium salt is then coupled to N-[1-naphthyl]-ethylenediamine dihydrochloride 

(NED) to form an azo compound (Griess, 1879, Bryan and Grisham, 2007, Sun et al., 2003). 

 Enzyme-linked immunosorbent assay (ELISA) 

Pro-inflammatory and anti-inflammatory cytokines are endogenous proteins that 

produce a wide range of actions in the CNS including immune response 

regulation (Deverman and Patterson, 2009). It was necessary to measure the 

levels of cytokines in BV2 cell culture by enzyme-linked immunosorbent assay 

(ELISA) since higher concentrations of pro-inflammatory cytokines are implicated 

in neuroinflammation and neurotoxicity (Smith et al., 2012, Wang et al., 2015b). 

ELISA is an immunochemical technique that is widely used for detection and 

quantification of antigens such as pro-inflammatory cytokines and transcription 

factors in cell culture samples.  
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The principle of one of the most common ELISA types, sandwich ELISA is 

summarised in Figure 2.5 (Aydin, 2015, Engvall and Perlmann, 1971). The target 

antigen molecule to be measured is sandwiched between two different primary 

antibodies the solidified capture antibody and the detection antibody. Next, an 

enzyme-conjugated secondary antibody is attached to the capture antibody. A 

chromogenic substrate is hydrolysed by the enzyme into a coloured product that 

is measured in order to quantify the antigen of interest. The rate of colour 

formation is directly proportional to the amount of antigen to be measured in the 

sample.  

 

Figure 2.5 Types and basic principle of enzyme-linked immunosorbent 
assay (ELISA). 

In sandwich ELISA, the target antigen molecule to be measured is bound between two different 

primary antibodies the solidified capture antibody and the detection antibody. Next, an enzyme-

conjugated secondary antibody is attached to the capture antibody. A chromogenic substrate of 

the enzyme is then changed to a coloured product that is measured in order to quantify the antigen 

of interest (Aydin, 2015, Cox et al., 2014).  

BV2 microglia were seeded out at a concentration of 2.0 x 105 cells/mL (2 

mL/well) in a 6-well plate for 48 hours. The cultured medium was replaced by 

serum-free RPMI 1640 medium for 2 hours. The cells were treated with various 

concentrations of diosgenin (5, 10, and 20 µM) for 30 minutes and subsequently 
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stimulated with 100 ng/mL of LPS for 24 hours. LPS-control BV2 cells were 

incubated with LPS for 24 hours and the cells left untreated were indicated as 

untreated control. The media were centrifuged at 1200 g for 5 minutes at 4oC to 

collect the supernatants that were stored at - 80°C for short term future use to 

measure the levels of the released pro-inflammatory factors using commercially 

available ELISA kits. The absorbance was measured at 450 nm using a 

microplate reader (Tecan Infinite F50). All samples were assayed in duplicate. If 

the samples needed to be diluted prior to the assay, then the concentrations were 

determined after multiplication by an appropriate dilution factor. 

2.3.7.1. Determination of TNFα production in LPS-stimulated BV2 microglia 

Several studies have suggested that TNFα is a potential signal in the modulation 

of immune and neuroinflammatory responses in the CNS. TNFα is a neurotoxic 

factor in high concentrations in the CNS (Fischer and Maier, 2015). Thus, it was 

important to measure the level of TNFα in BV2 cell cultures activated with LPS. 

The concentration of the pro-inflammatory factor TNFα in the BV2 cells 

supernatant was determined using mouse TNFα DuoSet ELISA Development 

System kit (R & D Systems) according to the manufacturer’s protocol.  

After treatment of BV2 cells, 96-well plate was coated with 100 μL of TNFα 

capture antibody, and the sealed plate was incubated overnight at room 

temperature. The plate was washed with 400 μL of wash buffer (0.05% Tween-

20 in PBS) to remove any unbound antibody. Next, the plate was blocked with 

300 μL of a reagent diluent (1% bovine serum albumin; BSA) at room temperature 

for 1 hour to block non-specific binding. After washing, 100 μL of diluted samples 

were added, and the plate was incubated at room temperature for 2 hours. After 

washing, 100 μL of TNFα detection antibody was added and incubated at room 

temperature for 2 hours. 100 μL of streptavidin linked to horseradish-peroxidase 

(HRP) was added after washing and the plate was then incubated at room 

temperature for 20 minutes in the dark. After washing, 100 μL of substrate 

solution was added and the plate was incubated at room temperature for 20 

minutes in the dark. 50 μL of a stop solution (2 N sulphuric acid) was added. The 

plate was gently tapped to ensure thorough mixing and the absorbance of the 

colour change was measured at 450 nm using a microplate reader (Tecan Infinite 

F50) (Engvall and Perlmann, 1971, Favre et al., 1997).  
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2.3.7.2. Determination of IL-6 production in LPS-stimulated BV2 microglia 

Interleukin-6 (IL-6) is a well-known pro-inflammatory cytokine that plays some 

potential roles in neuroinflammation (Schaper and Rose-John, 2015). A Mouse 

IL-6 DuoSet ELISA Development System kit (R & D Systems) was used to 

determine the concentrations of the pro-inflammatory factor IL-6 in the 

supernatants of BV2 cell cultures, according to the manufacturer’s protocol. The 

method used for estimation of IL-6 levels in the samples is described in section 

2.2.7.1.   

2.3.7.3. Determination of IL-1β production in LPS-stimulated BV2 microglia  

The role of the pro-inflammatory cytokine IL-1β in the pathophysiology of the CNS 

is important in the immune and pro-inflammatory responses in the brain (Henry 

et al., 2009, Van de Veerdonk et al., 2011). A Mouse IL-1β ELISA MAX™ 

Standard Set kit (BioLegend) was used to determine the concentration of IL-1β 

in BV2 cell cultures, according to the manufacturer’s instruction. The method for 

the determination of the pro-inflammatory cytokine IL-1β concentration in the 

samples is described in section 2.2.7.1.   

2.3.7.4. Determination of IL-10 production in LPS-stimulated BV2 microglia  

Although microglia are known to produce a wide spectrum of pro-inflammatory 

cytokines during the immune response as well as neuroinflammation, microglial 

IL-10 is the most important anti-inflammatory cytokine in the brain (Kremlev and 

Palmer, 2005, Iyer and Cheng, 2012). The concentration of the anti-inflammatory 

factor IL-10 was determined by ELISA assay using a mouse IL-10 ELISA MAX™ 

Standard Set kit (BioLegend) according to the manufacturer’s protocol. The 

procedure for the determination of IL-10 concentration was described in section 

2.2.7.1.   

 PGE2 enzyme immunoassay  

Several studies have suggested that the level of PGE2 is increased during 

neuroinflammation-mediated neurotoxicity (Cimino et al., 2008). Therefore, PGE2 

is known to regulate both normal immune and neuroinflammatory responses in 

the CNS (Yagami et al., 2016). An Enzyme immunoassay (EIA), a competitive 

immunoassay was used for the detection and quantification of PGE2 in the 

samples.  
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Concentrations of PGE2 were measured using a DetectX PGE2 enzyme 

immunoassay Kit (Arbor Assays) according to the manufacturer's instructions. 

After treatment of BV2 cells and collection of supernatants as described in section 

2.2.7, 100 μL of supernatants were added into the wells using an antibody (goat 

anti-mouse IgG)-coated 96 well plate. Secondly, 125 μL of an assay buffer was 

added into the non-specific binding wells. After that, 100 μL of an assay buffer 

was added into the wells to act as maximum binding wells. Next, 25 μL of the 

PGE2-peroxidase conjugate was added to each well. 25 μL of PGE2 antibody was 

added to each well, except the non-specific binding wells. The sealed plate was 

then incubated at room temperature for 2 hours with shaking. The plate was 

washed with 300 μL of wash buffer. 100 μL of substrate was added and the plate 

was incubated at room temperature for 30 minutes without shaking. After addition 

of 50 μL of a stop solution, the absorbance of the colour change was measured 

at 450 nm using a microplate reader (Tecan Infinite F50) (Schuurs and Van 

Weemen, 1980, Yalow, 1978).  

 Generation of intracellular ROS 

The physiological effects of ROS at low level are associated with the host defence 

system. However, high levels of intracellular ROS are known to be associated 

with neuroinflammation and oxidative stress-induced cellular damage such as 

neuronal death (Kim et al., 2015). The fluorogenic dye 2’, 7’-dichlorofluorescin 

diacetate (DCFDA) diffuses into cells, and then is deacetylated to a non-

fluorescent intermediate called 2’, 7’-dichlorofluorescin (DCFH) by intracellular 

esterases. DCFH is then rapidly oxidised by ROS into a highly fluorescent product 

called 2’, 7’-dichlorofluorescein (DCF) that is detected by fluorescence 

spectroscopy (Figure 2.6) (Held, 2012, LeBel et al., 1992). 

Levels of ROS were measured to evaluate the effect of diosgenin on LPS-induced 

ROS generation in BV2 microglia using a DCFDA-cellular ROS detection assay 

kit (Abcam). BV2 cells were seeded out at a concentration of 2.5 × 105 cells/mL 

(100 µl/well) in a 96-well plate and then incubated overnight. The cells were 

washed with PBS, and then stained with 20 μM of DCFDA (Abcam) and incubated 

at 37°C for 30 minutes in the dark. The cells were washed with PBS, and then 

phenol red-free RPMI 1640 medium was added into each well. The cells were 

treated with 5, 10, 20 µM of diosgenin for 30 minutes, followed by stimulation with 
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LPS for 6 hours. The fluorescence intensity was measured with an excitation and 

emission wavelengths of 485 and 535 nm, respectively using a FLUOstar 

OPTIMA plate reader (BMG LABTECH) (Keston and Brandt, 1965). The 

fluorescence intensity of DCF is directly proportional with the level of intracellular 

ROS generated. All samples and standards were assayed in duplicate. 

 

Figure 2.6 Principle of ROS detection 

The fluorogenic dye 2’, 7’-dichlorofluorescin diacetate (DCFDA) diffuses into cells, and is 

deacetylated to the non-fluorescent intermediate 2’, 7’-dichlorofluorescin (DCFH) by cellular 

esterases. After that, DCFH is rapidly oxidized by ROS into a highly fluorescent product 2’, 7’-

dichlorofluorescein (DCF) that is detected by fluorescence spectroscopy (LeBel et al., 1992, Held, 

2012, Dikalov and Harrison, 2014, Keston and Brandt, 1965). 

 NADPH Assay  

The cofactor NADPH is responsible for the generation of NO and ROS in host 

defence and neuroinflammation and oxidative stress (Maghzal et al., 2012). In 
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addition, NADPH is an important cofactor in the maintenance of GSH in the 

reduced form GSH that is needed to prevent ROS toxicity (Vilhardt et al., 2017, 

Calkins et al., 2009). The reduced form, NADPH is used as a cofactor for many 

redox enzymes (Liu and Wang, 2007, Ying, 2008). The NADPH assay is a 

colorimetric assay used to measure the concentration of NADPH in various cells 

and tissues. It is used to study metabolic and redox state of cells and tissues as 

well as cell signalling in various cells.  

Levels of NADPH were measured in LPS-activated BV2 cells after diosgenin 

treatment using a NADPH assay kit (Abcam). BV2 cells were seeded out at a 

concentration of 2.0 x 105 cells/mL (100 µl/well) in a 96-well plate and incubated 

for 48 hours. After changing the medium, the cells were treated with 5, 10, and 

20 µM of diosgenin for 30 minutes followed by stimulation with LPS for 6 hours. 

After removing the medium, the cells were lysed with lysis buffer and incubated 

at room temperature for 15 minutes. Next, the lysate was centrifuged at 14000 g 

at 4°C for 5 minutes to collect the supernatant. 50 µl of sample was added to 

each well using 96-well plate, followed by addition of 50 µl of the NADPH reaction 

mixture. The plate was sealed and incubated at room temperature for 15 minutes 

in the dark. The absorbance was measured at 460 nm using a microplate reader 

(Tecan Infinite F50) (Kupfer and Munsell, 1968, Zhang et al., 2000). The cell 

lysates were prepared based on the total protein concentration (Bradford, 1976).  

 Preparation of cytoplasmic and nuclear protein lysates 

Cytoplasmic and nuclear extraction are processes used in collecting the 

cytoplasmic and nuclear extracts from cultured cells, respectively. Cytoplasmic 

and nuclear extraction have been widely used in a variety of applications 

including studying gene expression and quantify protein level by western blotting. 

In the present study, the cytoplasmic and nuclear lysates were prepared to study 

the nuclear translocation of the transcription factors such as NF-B. Nuclear 

extracts were prepared to study the activity of transcription factor inside the 

nucleus such as protein-DNA binding activity. Cytoplasmic lysates were prepared 

in order to determine the levels of proteins. Cell lysates were prepared to study 

the effect of diosgenin on LPS on activity of several transcription factors including 

NF-B, p38 MAPK, and Akt in LPS-activated BV2 cells. Cytoplasmic and nuclear 

lysates were prepared to study the nuclear translocation of NF-Bp65 after 
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treatment of BV2 cells with diosgenin and LPS. In addition, cytoplasmic extracts 

were collected to measure the levels of pro-inflammatory enzymes iNOS and 

COX-2 and kinases including IκB-α, IKK, p38 and Akt that regulate NF-B 

signalling. Furthermore, nuclear extracts were prepared to study the DNA-binding 

activity of NF-B.  

The EpiSeeker Nuclear Extraction kit (Abcam) was used to collect both 

cytoplasmic and nuclear extracts, according to the manufacturer’s instructions. 

After treatment of BV2 cells, the cells were washed with ice-cold PBS to remove 

the cell culture media. Next, the cells were scraped with ice-cold PBS and then 

centrifuged to get the pellets. After that, 20 µL of a mixture containing ice-cold 

ENE1 (10X Pre-Extraction Buffer), dithiothreitol (DTT), and a protease inhibitor 

cocktail was added to each cell pellet and, incubated on ice for 10 minutes. 

Thereafter, the cell extracts were vortexed for ten seconds and centrifuged at 

12000 g for one minute at 4°C. The supernatants containing cytoplasmic protein 

lysates were collected carefully and stored at - 80°C until use for immunoblotting. 

Next, 10 µl of a mixture containing ENE2 (Extraction Buffer), DTT, and protease 

inhibitor cocktail was added to each pellet, and incubated on ice for 15 minutes 

with mixing every 3 minutes. The cell extracts were centrifuged at 14000 g for 15 

minutes at 4°C. The supernatants containing nuclear proteins lysates were 

collected and stored at - 80°C until use for immunoblotting.   

In addition, a Cell Lysis Buffer (Cell Signaling) was used to collect protein lysates 

that were used to measure the levels of proteins in the cytoplasm. The plate was 

washed with ice-cold PBS, and 20 µL of ice-cold Cell Lysis Buffer containing 1 

mM phenylmethylsulfonyl fluoride (Sigma) was then added into each well for 10 

minutes on ice. Next, the cells were scraped to collect the cell extracts that were 

centrifuged at 13500 g for 10 minutes at 4°C to pellet the cellular debris. The 

supernatants containing protein lysates were collected and stored at - 80°C until 

use for immunoblotting.   

 Determination of protein concentration 

The Bradford protein assay is a simple colorimetric assay used to measure total 

protein concentration in a solution. The procedure is based on the binding of the 

dye Coomassie G-250 to primarily basic and aromatic amino acids residues of 
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the proteins under acidic conditions. The formation of a protein-dye complex 

results in a colour change from brown to blue (Figure 2.7) (Bradford, 1976).The 

procedure is based on the colour change of the dye in response to various 

concentration of proteins.  

The protein concentrations in the cytoplasmic and nuclear lysates were quantified 

using a Coomassie Plus Assay Kit (Thermo Scientific) according to the 

manufacturer’s instructions. The concentrations of proteins in the lysates were 

quantified and then subjected for Western blotting applications. BV2 cell lysates 

were diluted with distilled water at a 1:10 ratio to obtain a sufficient concentration 

of protein. Next, 5 µL of both samples and seven known protein concentrations 

of BSA standard (125 to 2000 µg/mL) were added in duplicate into a 96-well plate. 

After that, 250 µL of Coomassie reagent was added and incubated at room 

temperature for 10 minutes. The absorbance was measured at 595 nm using a 

microplate reader (Tecan Infinite F50). The protein concentration in a test sample 

was determined using standard curve. 
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Figure 2.7 Mechanism of Coomassie G-250 dye to protein. 

The colorimetric reaction is based on the binding of protein to Coomassie G-250 dye to form a 

protein-dye complex under acidic condition. This results in a colour change from brown to blue 

(Bradford, 1976, Brunelle et al., 2017). 

 Western blotting 

Western blotting is an immunoblotting technique used to detect the existence of 

specific proteins in a sample based on their molecular weights. Firstly, the 

proteins in the sample are separated by gel electrophoresis. Following 

separation, the proteins are transferred from the gel onto a blotting membrane. 

The membrane is blocked to prevent nonspecific binding, and then incubated with 

a primary antibody, which specifically binds to the protein of interest. Next, the 

membrane is washed to remove any unbound primary antibody. The membrane 

is again incubated with a secondary antibody that specifically recognises and 

binds to the primary antibody that is linked to a reporter enzyme that produces 

colour (Towbin et al., 1979). 
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BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL (2 mL/well) in 

a 6-well plate and incubated for 48 hours. Cells were treated with 5, 10, and 20 

µM of diosgenin for 30 minutes, and then stimulated with 100 ng/mL of LPS for 

the indicated time. After treatment and collection of the lysates, 20 µg of protein 

was mixed with NuPAGE LDS sample buffer (Invitrogen) and NuPAGE sample 

reducing agent (Invitrogen). The samples were heated at 70°C for 10 minutes. A 

total volume of 20 μL of each sample and 5 µl of protein standard were loaded 

onto a NuPAGE Novex 4-12% Bis-Tris gel (Invitrogen) with running buffer 

(Invitrogen). After that, the samples were separated by electrophoresis 

instrument at a constant voltage of 200 V for 35 minutes. The separated target 

proteins were then transferred onto polyvinyldiene difluoride membrane 

(Immbilon-FL; Millipore) with transfer buffer (Invitrogen) at 25 V for 2 hours. The 

membrane was blocked with 5% non-fat dried milk (Cell Signaling) in Tris-

Buffered Saline with Tween-20 (TBS-T; chemcruz Santa Cruz) at room 

temperature for 1 hour with shaking. The blot was then washed three times with 

TBS (Life technologies) at room temperature for 10 minutes with shaking. After 

that, it was incubated with the target primary antibodies at 4°C for overnight with 

shaking. The membrane was washed with TBS-T three times and incubated with 

the secondary antibody Alexa Fluor 680 goat anti-rabbit IgG (1:10000; Invitrogen) 

at room temperature for one hour in the dark with shaking. The blot was washed 

with TBS-T three times, and then the antigen-antibody complexes were detected 

using an Odyssey infrared imaging system (LI-COR, Bioscience) according to 

manufacturer’s instructions. β-actin (Sigma) was used as a loading control for the 

blotting of whole cell and cytosolic proteins and lamin B (Santa Cruz) was used 

for the same purpose but for the blotting of nuclear proteins. The determination 

of unknown proteins on the membrane was based on the values obtained for the 

bands of proteins in the molecular weight standard Precision Plus Protein 

unstained standard (Bio-Rad). The relative density of the protein expressions was 

measured using Image J (National Institutes of health). All antibodies were 

prepared in TBS-T at specific ratios.  

The membrane was stripped using Restore Fluorescent Western Blot Stripping 

Buffer (Thermo scientific) to remove the primary and secondary antibodies from 

western blots. In brief, the membrane was incubated with the diluted stripping 
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buffer at room temperature for 20 minutes with constant shaking. After that, the 

membrane was rinsed with ultrapure water three times, and then washed with 

TBS-T three times. Western blotting was used to study the effect of diosgenin on 

the levels of proteins listed in Table 5.  

Table 5 List of primary and secondary antibodies used in Western blotting 

Antibody Host Dilution 
Factor 

Product 
Number 

kDa Company 

iNOS Rabbit 1:500 sc-650 130 Santa Cruz 
Biotechnology 

COX-2 Rabbit 1:500 sc-1747-R 72 Santa Cruz 
Biotechnology 

Phospho-IᴋB-α Rabbit 1:500 sc-101713 41 Santa Cruz 
Biotechnology 

IᴋB-α Rabbit 1:500 sc-371 35 Santa Cruz 
Biotechnology 

Phospho-IKKα/β Rabbit 1:500 sc-21661 85 Santa Cruz 
Biotechnology 

IKKα/β Rabbit 1:500 sc-7607 85 Santa Cruz 
Biotechnology 

Phospho-NF-Bp65 Rabbit 1:500 sc-101752 65 Santa Cruz 
Biotechnology 

NF-Bp65 Rabbit 1:500 
 

sc-372 65 Santa Cruz 
Biotechnology 

Phospho-p38 Rabbit 1:500 sc-17852-R 38 Santa Cruz 
Biotechnology 

p38α Rabbit 1:500 sc-535 38 Santa Cruz 
Biotechnology 

Phospho-Akt1/2/3 Rabbit 1:500 sc-33437 62 Santa Cruz 
Biotechnology 

Akt1/2/3 Rabbit 1:500 Sc-8312 62 Santa Cruz 
Biotechnology 

Lamin B1 Rabbit 1:1000 sc-20682 67 Santa Cruz 
Biotechnology 

β-actin Rabbit 1:1000 A5060 42 Sigma-Aldrich 

Goat anti-Rabbit IgG Goat 1:10000 A-21076  Life 
technologies 

 

 NF-B luciferase reporter gene assay 

The binding of transcription factors to their binding sites results in the 

transcriptional activation of several genes that regulate immune response and 

neuroinflammation (Vega and de Andres Martin, 2008, Hayden and Ghosh, 2012, 

Joshi and Johnson, 2012). The luciferase reporter gene assay was used to 

measure the specific ability of a transcription factor to activate the transcription of 

target genes and the transcription factor-dependent transcriptional activities. This 

assay has been used as a gene technology to study gene expression at the 

transcriptional level (Gorman et al., 1982). Firefly luciferases have been widely 
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used as experimental reporters to monitor changes in the expression of the genes 

of interest. Renilla luciferase can be used as a control reporter to normalise the 

results for any interfering factors such as differences in cell viability.  

Mechanism of bioluminescent reactions that are catalysed by firefly and Renilla 

luciferases are shown in Figure 2.8. In the luciferase reaction, the substrate 

beetle luciferin is oxidised into oxyluciferin by the firefly luciferase in the presence 

of adenosine triphosphate (ATP), magnesium (Mg2+) and O2, which results in the 

production of extra energy in the form of light. In the Renilla luciferase reaction, 

coelenterazine is converted into coelenteramide by the Renilla luciferase in the 

presence of O2 and results in the emission of light  
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Figure 2.8 Mechanism of bioluminescent reactions catalysed by the firefly 
and Renilla luciferases. 

In the luciferase reaction, the substrate beetle luciferin is oxidised into oxyluciferin by the firefly 

luciferase in the presence of adenosine triphosphate (ATP), magnesium (Mg2+) and molecular 

oxygen (O2), which results in the production of extra energy in the form of light. In the 

Renilla luciferase reaction, coelenterazine is converted into coelenteramide by Renilla luciferase 

only in the presence of O2. This is also results in the emission of light (Thorne et al., 2010, Kaskova 

et al., 2016, Marques and Esteves da Silva, 2009).  
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Consequently, the NF-B-dependent transcriptional activity was measured in 

cultured HEK293 cells using a luciferase reporter gene assay. HEK293 cell line 

was used to test the effect of diosgenin on NF-B transcriptional activity using the 

ONE-Glo Luciferase Assay System (Promega), according to the manufacturer’s 

instructions. One day before transfection, HEK293 cells were seeded out at a 

concentration of 1.5 x 105 cells/mL (100 µL/well) in a 96-well plate, using 

complete MEM medium supplemented with 5% FBS. After 24 hours incubation, 

the complete spent MEM medium was replaced by Opti-MEM I reduced serum 

medium (Gibco). The cells were transfected with 100 ng pGL4.32[luc2P/NF-B-

RE/Hygro] vector (Promega) using a FuGENE 6 transfection reagent (Promega) 

at a 3:1 transfection reagent:DNA ratio and further incubated for 18 hours. The 

medium was replaced by Opti-MEM I reduced-serum medium and incubated for 

6 hours. The transfected cells were treated with diosgenin for 30 minutes and 

then stimulated with 1 ng/mL TNFα. After 5 hours incubation, 100 µL of a mixture 

of ONE-Glo buffer and ONE-Glo substrate was added to each well and the 

luminescence was then measured with a FLUOstar OPTIMA plate reader (BMG 

LABTECH). 

 Immunofluorescence  

Immunofluorescence is a cell imaging technique used to detect antigens in a 

sample using a specific primary antibody. There are two types of 

immunofluorescence; direct and indirect (Figure 2.9). Direct immunofluorescence 

is an assay in which a fluorochrome-conjugated primary antibody is attached to 

the antigen of interest. Indirect immunofluorescence is an assay in which the 

target protein in the sample is specifically bound to the unlabelled primary 

antibody during incubation. The plate is washed to remove any unbound primary 

antibody. Next, a secondary antibody is labelled with a fluorochrome and binds 

to the primary antibody. The complex is then visualised with fluorescence 

microscopy in order to detect the antigen of interest(Coons et al., 1955).      
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Figure 2.9 Types of immunofluorescence assays. 

Direct immunofluorescence is an assay in which a fluorochrome-conjugated primary antibody is 

attached to the antigen of interest. Indirect immunofluorescence is an assay in which a 

fluorochrome-conjugated secondary antibody is attached to the primary antibody, and this results 

in the detection of the antigen of interest (Mohan et al., 2008, Odell and Cook, 2013). 

The effect of diosgenin on nuclear accumulation of NF-Bp65 was detected using 

an indirect immunofluorescence assay. Microglia were seeded out at a 

concentration of 2.0 x 105 cells/mL (1 mL/well) in a 24-well plate and incubated 

for 48 hours. After changing the medium, the cells were treated with 5, 10, and 

20 µM of diosgenin for 30 minutes and then stimulated with 100 ng/mL LPS for 
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one hour in order to detect nuclear accumulation of NF-Bp65. BV2 cells were 

either left untreated as a negative-control or stimulated with LPS (LPS-positive).  

After treatment of the cells, the medium was aspirated and the cells were washed 

with PBS three times. The cells were fixed with ice-cold 100% methanol for 

20 minutes at - 20°C. After a wash with PBS, the fixed cells were blocked with 

5% BSA containing 10% horse serum in 1X BPS for one hour at room 

temperature in order to block non-specific binding sites. Thereafter, the plate was 

incubated with the primary antibody against NF-Bp65 antibody (1:100 dilution; 

Santa Cruz) at 4°C for overnight. The cells were washed and then incubated with 

Alexa Fluor 488-conjugated donkey anti-rabbit immunoglobulin G secondary 

antibody (1:500 dilution; Life Technologies) at room temperature for 2 hours in 

the dark. After washing, the plate was incubated with 300 nM of 4’-6-diamidino-

2-phenylindole dihydrochloride (DAPI; Invitrogen) for 5 minutes. After washing 

the stained cells, one drop of ProLong Gold Antifade Reagent (Invitrogen) was 

added to each well. All images were captured with EVOS FLoid cell imaging 

station (Life technologies).  

 Electrophoretic mobility gel shift assay (EMSA)  

It is well known that NF-B binds to the DNA at its specific binding site, and 

thereby regulates the production of several pro-inflammatory genes that play an 

important role in the regulation of immune and neuroinflammatory responses 

(Hayden and Ghosh, 2012). EMSA is used to study an interaction between 

proteins such as transcription factor and DNA. Solutions of protein and DNA are 

combined and the resulting mixture are subjected to electrophoresis through a 

non-denaturing polyacrylamide gel. After electrophoresis, the distribution of the 

protein-DNA complex is determined by autoradiography. In general, a protein-

DNA complex migrates more slowly than the corresponding free DNA (Fried and 

Crothers, 1981). 

EMSA was used to evaluate the effect of diosgenin on the DNA-binding activity 

of NF-B. BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL (2 

mL/well) in a 6-well plate and incubated for 48 hours. After changing the medium, 

the cells were treated with 5, 10, and 20 µM of diosgenin and then incubated with 

LPS for 1 hour. 5 μg/μL nuclear protein lysate was added into a mixture containing 
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ultra-pure water (Fisher), 10X Binding Buffer (100 mM Tris, 500 mM KCl, 10 mM 

DTT; pH 7.5), 25 mM DTT/2.5% Tween® 20, 1 μg/μL Poly (dI.dC) in 10 mM Tris, 

1 mM EDTA; pH 7.5, 1 % NP-40 and 100 mM MgCl2. 1 µL of double-stranded 

DNA oligonucleotide containing the consensus NF-B DNA binding site (5 ’- AGT 

TGA GGG GAC TTT CCC AGG C -3’) end-labeled with IRDye 700 was added 

into the mixture. All components were mixed and incubated at room temperature 

for 30 minutes in the dark to allow NF-B protein binding to DNA. 2 µL of 10X 

Orange Loading Dye (LI-COR-Bioscience) was added into the mixture. A total 

volume of 21 μL of each sample was loaded onto a 4-12% TBE gel (Life 

technologies) in Tris-Borate-EDTA (TBE) running buffer (Life technologies) and 

then electrophoresed at 100 V for one hour at room temperature in the dark. The 

gel was then dried, and the intensity of radioactive DNA/protein complex bands 

were detected using Odyssey infrared imaging system (LI-COR, Bioscience). 

 ELISA for DNA-binding of NF-B 

The TransAM format is a colorimetric assay used to study the binding of 

transcription factors to a consensus-binding site oligonucleotide. Firstly, the 

activated transcription factor in the nuclear extract binds to the consensus-

binding site on the oligonucleotide immobilized in the well. After that, the plate is 

incubated with the primary and secondary antibodies in order to quantify the 

amount of activated transcription factor (Figure 2.10).(Engvall and Perlmann, 

1971, Cox et al., 2014)  
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Figure 2.10 Flow chart of the TransAM process. 

An activated transcription factor in the cell nuclear extract binds to the consensus-binding site on 

the oligo immobilized in the well. The plate is incubated with the primary and secondary antibodies 

in order to quantify the amount of activated transcription factor (Aydin, 2015, Cox et al., 2014, 

Engvall and Perlmann, 1971). 

It was necessary to assess the effect of diosgenin on LPS-induced increase in 

DNA-binding activity of NF-B in BV2 cells. The effect of diosgenin on the DNA-

binding of NF-Bp65 was evaluated using the TransAM NF-Bp65 kit (Active 

Motif), according to the manufacturer’s instructions.  

BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL (2 mL/well) in 

a 6-well plate and incubated for 48 hours. The medium was replaced by serum-
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free RPMI 1640 medium for 2 hours. The cells were treated with 5, 10, and 20 

µM of diosgenin, for 30 minutes, and then stimulated with 100 ng/mL of LPS for 

one hour. Untreated cells were used as negative control and the cells stimulated 

with 100 ng/mL LPS for one hour were used as positive-control. Nuclear extracts 

containing the activated transcription factors were incubated in a 96-well plate 

coated with a specific double-stranded oligonucleotides containing the NF-B 

consensus site (5′-GGGACTTTCC-3′).  

30 µL of Complete Binding Buffer AM3 (dithiothreitol, Herring sperm DNA, and 

Binding Buffer AM3) was added, followed by the addition of 20 µg of nuclear 

extract diluted in 20 µL of Complete Lysis Buffer. The sealed plate was incubated 

at room temperature for one hour with shaking. The plate was washed with 200 

µL of Wash Buffer three times. The sealed plate was incubated with 100 µL of 

the primary antibody for one hour without shaking. The sealed plate was washed 

and then incubated with the HRP-conjugated secondary antibody for a further 

one hour. After the last wash, 100 µL of a developing solution was added to each 

well for 5 minutes in the dark. Next 100 µL of a stop solution was added to stop 

the colorimetric reaction. After 3 minutes, the absorbance was measured at 450 

nm using a microplate reader (Tecan Infinite F50). The dilution factor was 1:1000 

for the preparation of antibodies. 

 BV2 microglia conditioned media-induced neurotoxicity 

It is well known that a direct contact between microglia and neurons is involved 

in the pathogenesis of neurodegenerative diseases due to uncontrolled 

neuroinflammation and neurotoxicity (Gresa-Arribas et al., 2012). Excessive 

production of pro-inflammatory mediators from microglia is responsible for 

neuronal death (Xu et al., 2016). For example, microglial pro-inflammatory factors 

such as NO, TNFα, and ROS are neurotoxic molecules at high concentrations in 

the CNS (Takeuchi et al., 2006, Ali et al., 2012). Therefore, it was necessary to 

assess the neuroprotective activity of diosgenin in microglia conditioned medium-

induced neurotoxicity. For this purpose, BV2 microglial conditioned medium was 

prepared in order to evaluate the neuroprotective effect of diosgenin against BV2 

microglial activation-induced HT22 neuronal death. BV2 cells were seeded out at 

a concentration of 2.0 x 105 cells/mL (2 mL/well) in a 6-well plate and incubated 

for 48 hours. After changing the medium, the cells were treated with 5, 10, and 
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20 µM of diosgenin for 30 minutes and then incubated with LPS (1 µg/mL) for 24 

hours. The culture medium was centrifuged at 1200 g at 4°C for 5 minutes to 

remove cell debris to obtain the conditioned medium containing the pro-

inflammatory mediators. The existence of pro-inflammatory mediators (NO, 

TNFα, IL-6, and PGE2) in the conditioned medium was confirmed by measuring 

the levels of these factors.  

2.3.18.1. Measurement of intracellular ROS in HT22 cells 

The pathological effects of microglial ROS are associated with neuroinflammation 

and oxidative stress-induced neuronal death (Olmez and Ozyurt, 2012, Kim et 

al., 2015). The effect of diosgenin on the level of intracellular ROS in HT22 cells 

induced by the conditioned media of LPS-activated microglia was evaluated. 

HT22 cells were seeded out at a concentration of 2.5 × 105 cells/mL (100 µL/well) 

in a 96-well plate and incubated for 48 hours. After that, HT22 cells were washed 

with PBS, and then stained with 20 μM of DCFDA and, incubated at 37°C for 30 

minutes in the dark. The cells were washed with PBS, and then phenol red-free 

RPMI 1640 medium was added into each well. Next, the cells were treated with 

the 100 µL of conditioned medium for 6 hours. Fluorescence intensity was then 

measured with an excitation and emission wavelengths of 485 and 535 nm, 

respectively using a FLUOstar OPTIMA plate reader (BMG LABTECH). 

2.3.18.2. Determination of HT22 neuronal viability  

The conditioned medium prepared from LPS-activated BV2 cells was used to 

evaluate the effect on viability of HT22 cells using an MTT assay. After 

preparation of the conditioned media, HT22 cells were seeded out at a 

concentration of 2.0 x 105 cells/mL (200 µl/well) in a 96-well plate and incubated 

for 24 hours. The cultured medium in each well was replaced with 200 µl of 

conditioned medium and the plate was then incubated for 24 hours. After that, an 

MTT assay was carried out on HT22 cells as described in section 2.2.5 in order 

to determine the viability of HT22 cells.   

 Statistical Analysis 

Values are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post-

hoc Student Newman-Keuls test. The ANOVA compares the mean between 
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various groups and determines whether those means are significantly different 

from each other. To determine the specific groups that are significantly different 

from each other, the results were evaluated by with post-hoc Student Newman-

Keuls test with multiple comparisons. Calculations for statistical analysis were 

performed with Graph Pad Prism softwere version 5. Differences were significant 

at p<0.05. For the neuroinflammation experiments, designations include &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, 

***p<0.001 compared to LPS-treated control. 
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 Results  

 Diosgenin did not affect the viability of BV2 cells 

The MTT assay was used to determine whether diosgenin do not produce 

cytotoxic effect on BV2 cells and to select, at least three various concentrations 

of needed to perform the present study. Microglial BV2 cells were treated with 

various concentrations (1, 5, 10, 20, 25, 30, 35, and 40 µM) of diosgenin for 30 

minutes and then stimulated with 100 ng/ml of LPS for 24 hours. It was important 

to know that various concentration (25, 50, 100, 500 and 1000 ng/mL) of LPS 

were tested to determine the effective concentration that induce microglial 

activation using Griess assay. The result showed that the concentrations of LPS 

at 100 ng/ml and 500 ng/ml were the effective ones and subsequently the lower 

concentration of LPS (100 ng/ml) was selected to evaluate the anti-

neuroinflammatory effect of diosgenin. MTT assay result showed that the 

concentrations of diosgenin at 1, 5, 10, and 20 µM did not affect the viability of 

BV2 cells, compared to untreated BV2 cells (Figure 2.11). The cell viability in the 

untreated BV2 microglia is shown as 100%. Further, this assay indicated that LPS 

at 100 ng/ml did not affect viability of BV2 cells. Therefore, this finding suggest 

that diosgenin at 5, 10, and 20 µM had no cytotoxicity effect on BV2 cells and 

subsequently, these three concentrations were selected for performing the further 

experiments of the present research. 
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Figure 2.11 Effect of diosgenin on the viability of LPS-stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. Data are expressed as the mean ± SEM of three independent experiments. Data 

were analysed using one-way ANOVA for multiple comparisons with post hoc Student Newman-

Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, 

**p<0.01, ***p<0.001 compared to LPS-treated control.  

 Diosgenin attenuated NO production by suppressing iNOS 

expression in LPS-stimulated BV2 cells  

It is well known that the NO/iNOS system plays an important role in hyper-

activated microglia-mediated neuroinflammation (Ghasemi and Fatemi, 2014, 

Garry et al., 2015). Thus, the effect of diosgenin in LPS-activated NO/iNOS 

mechanism in BV2 microglia was investigated. Results show that the stimulation 

of BV2 cells with LPS for 24 hours produced a marked increase (14.3 ± 5.1 µM) 

(p<0.001) in the production of nitrite (a measure of NO production), compared to 

the unstimulated-control (Figure 2.12). The observed increase in the level of 

nitrite in LPS-activated BV2 cells is defined as 100%. Treatment of cells with 5, 

10, and 20 µM of diosgenin significantly (p<0.001) reduced the production of 

nitrite, compared to LPS-stimulated BV2 cells (Figure 2.12). Pre-treatment of the 

cells with 20 µM of diosgenin resulted in 50% of NO production, compared to the 

LPS-control. 



 

94 
 

 

Figure 2.12 Effect of diosgenin on the NO production of LPS-stimulted BV2 
cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of NO were measured as described above. Data are expressed as the 

mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA for 

multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.  

To determine whether diosgenin reduced the level of nitrite (NO) in LPS-

stimulated BV2 cells through modulation of the NO/iNOS pathway, the levels of 

iNOS were detected and quantified using western blotting. The level of iNOS 

protein was significantly increased by LPS (p<0.001) after 24 hours, compared 

to that of untreated cells (Figure 2.13). The observed increase in the level of this 

protein by LPS is expressed as 100%. However, LPS-induced increases in iNOS 

expression was significantly reduced (p<0.001) with all concentrations of 

diosgenin used (Figure 2.13). It was observed that 48.5% and 26.5% of iNOS 

proteins were produced in the presence of 10 µM and 20 µM of diosgenin, 

respectively when compared to the LPS-control. 
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Figure 2.13  Effect of diosgenin on the iNOS expression in LPS-stimulated 
BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of iNOS were measured as described above. Data are expressed as the 

mean ± SEM of three independent experiments.  Data were analysed using one-way ANOVA for 

multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.  

 Diosgenin reduced the secretion of PGE2 by reducing COX-2 

expression in LPS-stimulated BV2 cells  

Like NO, the microglial pro-inflammatory mediator PGE2 plays an important role 

in the regulation of the immune system and the neuroinflammatory response in 

the CNS (Yagami et al., 2016). As expected, LPS stimulation of cells with LPS 

resulted in a marked increase (960.5 ± 84.3 pg/mL) (p<0.001) in PGE2 levels, 

compared to unstimulated cells (Figure 2.14). The degree of the inflammatory 

response induced by LPS in the LPS-control is shown as 100%. On the other 

hand, diosgenin treatment significantly (p<0.001) reduced LPS-induced PGE2 
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production, compared to the LPS-control (Figure 219). In the presence of 

diosgenin (10 µM and 20 µM), PGE2 release was 21% and 12.3%, respectively 

when compared to the cells treated with only LPS (Figure 2.14) 

 

Figure 2.14 Effect of diosgenin on the production of PGE2 in LPS-stimulated 
BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of PGE2 were measured as described above. Data are expressed as the 

mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA for 

multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.  

It is well established that COX-2 is responsible for PGE2 production in microglia 

(Bonfill-Teixidor et al., 2017). Western blotting was used to determine whether 

diosgenin-induced decrease in PGE2 levels in LPS-stimulated BV2 cells was 

associated with the down-regulation of LPS-induced increase in the COX-2 

protein. Comapred to the negative control, LPS produced a significant increase 

(p<0.01) in the COX-2 level (100%) (Figure 2.15). However, pre-treatment with 

5, 10, and 20 μM of diosgenin significantly reduced (p<0.001) the level of COX-

2, compared to that in LPS-stimulated BV2 cells (Figure 2.15). Pre-treatment with 

20 µM diosgenin resulted in the expression of 45.5% of COX-2 protein, in 

comparison with LPS-stimulation of BV2 microglia.  
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Figure 2.15 Effect of diosgenin on the expression of COX-2 in LPS-
stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of COX-2 were measured as described above. Data are expressed as 

the mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA 

for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, 

&&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to 

LPS-treated control.  

 Diosgenin reduced the levels of the pro-inflammatory cytokines 

TNFα, IL-6 and IL-1β in LPS-stimulated BV2 microglia 

Reactive microglia secrete a wide variety of pro-inflammatory cytokines that play 

a critical role in neuroinflammation (McCoy and Tansey, 2008, Fischer and Maier, 

2015). To assess whether the anti-neuroinflammatory action of diosgenin is 

associated with the modulation of the production of pro-inflammatory cytokines, 

the effect of diosgenin on the LPS-induced production of TNFα, IL-6, and IL-1β 

in BV2 cells was investigated.  
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The activation of cells with LPS resulted in a significant increase (p<0.001) in the 

release of TNFα (448.0 ± 13.0 pg/mL) from BV2 microglia (Figure 2.16a). This 

increase was significantly (p<0.001) reduced by diosgenin (5-20 µM). It was 

observed that 35% of TNFα level was detected in the supernatant of cells pre-

treated with 20 µM diosgenin, compared to the LPS-control (Figure 2.16a).    

The pro-inflammatory cytokine IL-6 is another important mediator in microglia-

mediated neuroinflammatory response (Smith et al., 2012, Minogue et al., 2012, 

Schaper and Rose-John, 2015). As expected, the stimulation of microglia with 

100 ng/mL LPS showed a marked increase (435.2 ± 29.8 pg/mL) (p<0.001) in the 

production of IL-6, compared to untreated microglia (Figure 2.16b). However, the 

LPS-induced increase in IL-6 release was significantly diminished with all the 

concentrations of diosgenin tested. As shown in Figure 2.16b, 37% of IL-6 was 

produced (p<0.001) by 20 µM diosgenin, compared to LPS-control. IL-1β is also 

involved in microglia-mediated excessive neuroinflammatory (Henn et al., 2009, 

Van de Veerdonk et al., 2011). Exposure of BV2 cells to LPS led to a significant 

elevation (322.2 ± 20.0 pg/mL) (p < 0.001) in the IL-1β level, compared with 

untreated BV2 cells (Figure 2.16c). However, the elevated level of IL-1β induced 

by LPS was significantly reduced with 5, 10, and 20 µM of diosgenin (p<0.001) 

(Figure 2.16c). The level of this cytokine was 53.5% in LPS-activated BV2 cells 

pre-treated with 20 µM diosgenin.  
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Figure 2.16 Effect of diosgenin on the production of TNFα (a), IL-6 (b) and 
IL-1β (c) production in LPS-stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of TNFα, IL-6 and IL-1β were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  
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 Diosgenin increased the production of the anti-inflammatory 

cytokine IL-10 in LPS-stimulated BV2 cells  

Microglia produce anti-inflammatory cytokines such as IL-10 during the host 

defence (Kremlev and Palmer, 2005, Iyer and Cheng, 2012), in order to bring 

about resolution of inflammation. The effect of diosgenin on the secretion of IL-

10 after addition of LPS was also evaluated. The result showed that LPS 

stimulation caused a significant reduction (20.5 ± 10.5 pg/mL) (p<0.001) in the 

IL-10 level, compared to the untreated-control BV2 cells (Figure 2.17). The IL-10 

level (246.9 ± 20.4 pg/mL) measured in the untreated control is taken as 100%. 

However, the LPS-induced reduction in IL-10 level was significantly inhibited with 

increasing concentrations of diosgenin (p<0.01) (Figure 2.17).  

 

 

Figure 2.17 Effect of diosgenin on the production of IL-10 in LPS-stimulated 
BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 24 hours. The levels of IL-10 were measured as described above. Data are expressed as the 

mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA for 

multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.  
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 Diosgenin reduced the intracellular ROS level in LPS-stimulated 

BV2 microglia 

Since microglial ROS play a critical role in the pathogenesis of CNS inflammation 

(Hsieh and Yang, 2013), the effect of diosgenin on ROS generation in the 

activated cells was also examined. There was a significant increase in the ROS 

level following activation of microglia with LPS (Figure 2.18). However, diosgenin 

significantly inhibited the generation of ROS in LPS-activated BV2 cells (Figure 

2.18). Compared to the LPS-control, the level of ROS in LPS-stimulated BV2 cells 

pre-treated with 20 µM diosgenin was 55% (p<0.001). 

 

 

Figure 2.18 Effect of different concentrations of diosgenin on the 
production of ROS in LPS-stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 6 hours. The levels of ROS were measured as described above. Data are expressed as the 

mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA for 

multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.  
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 Diosgenin did not affect NADPH level in LPS-stimulated BV2 

cells  

The cofactor NADPH is responsible for the cellular generation of NO and ROS 

that are regulated by iNOS and NADPH oxidase, respectively (Maghzal et al., 

2012, Rojo et al., 2014). However, NADPH is an important cofactor in the 

maintenance of the reduced form of GSH that inhibit ROS toxicity (Calkins et al., 

2009, Vilhardt et al., 2017). This experiment was performed to determine whether 

diosgenin would affect the level of NADPH in BV2 microglia. In comparison to the 

unstimulated cells, the pro-inflammatory agent LPS significantly (p<0.001) 

lowered the level of NADPH (Figure 2.19). However, diosgenin treatment did not 

significantly increase the level of NADPH in the cells stimulated by LPS (Figure 

2.19).  

 

Figure 2.19 Effect of different concentrations of diosgenin on the NADPH 
level in LPS-activated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 6 hours. The levels of NADPH were measured as described above. Data are expressed as 

the mean ± SEM of three independent experiments. Data were analysed using one-way ANOVA 

for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, 

&&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to 

LPS-treated control.  
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 Diosgenin reduced the transcriptional activity of NF-B in TNFα-

stimulated HEK293 cells  

The previous results showed that diosgenin down-regulated the expression, and 

consequently production of a number of pro-inflammatory mediators that are 

regulated by NF-B in neuroinflammation. Therefore, it was interesting to 

examine whether diosgenin produced anti-neuroinflammatory effect via inhibiting 

NF-B signalling pathway. First of all, the inhibitory effect of diosgenin on NF-B-

mediated gene expression in general was investigated using an NF-B-

dependent reporter gene assay. TNFα stimulation of HEK293 cells induced a 

marked increase (p<0.001) in the transcriptional activity of NF-B, in comparison 

with the untreated-control (Figure 2.20). The rate of transcriptional activity 

mediated by TNFα is shown as 100%. Treatment with 5, 10, and 20 μM 

significantly (p<0.05) attenuated TNFα-induced increase in the transcriptional 

activity of NF-B, compared to TNFα-control. Pre-treatment with 20 μM of 

diosgenin reduced by 40 % the TNFα-induced NF-B-transcriptional activity 

(Figure 2.20).  
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Figure 2.20 Effect of diosgenin on the transcriptional activity of NF-B in 
TNFα-stimulated HEK293 cells. 

Transfected HEK293 cells were treated for 30 minutes with diosgenin, and then stimulated with 1 

ng/mL of TNFα for 6 hours. The intensity of luciferase activity was measured as described above. 

Data are expressed as the mean ± SEM of three independent experiments. Data were analysed 

using one-way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p 

<0.05, &&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to TNFα-treated control.  

 Diosgenin did not inhibit LPS-induced IKK phosphorylation in 

LPS-stimulated BV2 cells  

Since diosgenin reduced the transcriptional activity of NF-B in the transfected 

HEK293 cells, it was necessary to further explore whether the anti-

neuroinflammtory effect of diosgenin was mediated by inhibiting NF-B signalling 

pathway in BV2 microglia. The inhibitory effect of diosgenin on the IKK 

phosphorylation in LPS-stimulated BV2 cells was firstly investigated using 

western blotting. As expected, the result showed that LPS produced a significant 

elevation in the level of the phosphorylated form of IKK (p-IKK), compared to 

untreated cells (Figure 2.21). However, this LPS-induced increase in IKK 

phosphorylation was not affected in the cells pre-treated with diosgenin (5-20 M) 

(Figure 2.21).  
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Figure 2.21 Effect of diosgenin on the IKK phosphorylation in LPS-
stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for 30 minutes. The levels of p-IKK and total IKK were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  

 Diosgenin treatment prevented the phosphorylation and 

degradation of IκB-α in LPS-stimulated BV2 cells  

Since diosgenin had no any inhibitory effect on LPS-induced IKK 

phosphorylation, the next step was to examine whether diosgenin attenuated 

phosphorylation of IκB-α induced by LPS stimulation. Expectedly, LPS 

significantly induced marked phosphorylation of IκB-α, and thereby elevation of 

the p-IκB-α protein, compared to untreated cells (Figure 2.22a). The elevated 

level of p-IκB-α protein induced by LPS alone is taken as 100%. In addition, LPS 

activation of BV2 cells resulted in the degradation of IκB-α (Figure 2.22b). 
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However, LPS-induced increase in phosphorylation and degradation of IκB-α was 

significantly blocked by pre-treatment with diosgenin (5-20 µM) as observed in 

Figure 2.22a. Diosgenin restored total IκB-α depletion induced by LPS (Figure 

2.22b). For example, pre-treatment with diosgenin at the concentration of 20 µM 

resulted in 35% of p-IκB-α level (p<0.001), when compared to the LPS control.  
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Figure 2.22 Effect of diosgenin on the IκB-α phosphorylation (a) and IκB-α 
degradation (b) in LPS-activated BV2 microglia. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for one hour. The levels of IκB-α (a) and total IκB-α (b) were measured as described above. Data 

are expressed as the mean ± SEM of three independent experiments. Data were analysed using 

one-way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  
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 Diosgenin inhibited the nuclear translocation of NF-B in LPS-

stimulated BV2 cells  

Following observations showing that diosgenin interfered with LPS-induced 

phosphorylation and degradation of p-IκB-α, further investigations were 

conducted to determine whether diosgenin would affect the nuclear translocation 

of NF-B in LPS-treated BV2 microglia. As shown in Figure 2.23, the cytoplasmic 

level of total NF-Bp65 was significantly (p<0.01) lowered by LPS, compared to 

untreated cells. The total level of p65 in the untreated BV2 microglia is expressed 

as 100%. However, compared to the LPS-control, treatment of the cells with 

diosgenin significantly increased the levels of total p65 in LPS-stimulated BV2 

cells (Figure 2.23). It was observed that the level of the non-phosphorylated form 

of NF-B in the activated cells pre-treated with 20 µM was 95%, compared to the 

untreated cells.  
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Figure 2.23 Effect of diosgenin on the cytoplasmic level of total NF-Bp65 
in LPS-treated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for one hour. The levels of total NF-Bp65 (p65) were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  

Since diosgenin inhibited LPS-induced reduction in cytoplasmic p65 in BV2 

microglia, it was expected that the compound reduced the level of the 

phosphorylated form of NF-B (p-p65) in the nucleus of cells activated by LPS. 

The result showed that the nuclear level of p-p65 in LPS-stimulated BV2 cell was 

significantly higher than that in the untreated control (Figure 2.24). On the other 

hand, the increased level of p-p65 induced by LPS response was significantly 

(p<0.001) reduced by diosgenin treatment (Figure 2.24). Pre-treatment of BV2 

cells with 20 µM diosgenin resulted in detection of 31% p-p65 protein, when 

compared to the LPS control.  
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Figure 2.24 Effect of diosgenin on the nuclear level of p-NF-Bp65 in LPS-
treated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for one hour. The levels of p-NF-Bp65 (p-p65) were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  

The inhibitory impact of diosgenin on the nuclear translocation of NF-B in BV2 

microglia observed in western blotting was confirmed with indirect 

immunofluorescence staining. The immunofluorescence analysis showed the 

cytoplasmic distribution of p65 in untreated BV2 cells (Figure 2.25). When BV2 

cells were stimulated with LPS, the nuclear translocation of NF-B was increased, 

compared to that of untreated control (Figure 2.25). In comparison to the LPS-

control, diosgenin attenuated the nuclear translocation of NF-B in a 

concentration dependent effect.  
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Figure 2.25 Effect of diosgenin on the nuclear translocation of NF-B in 
LPS-treated BV2 cells after immunofluorescence staining. 

The BV2 cells were either left untreated in the negative control group or stimulated with 100 ng/mL 

of LPS for one hour (LPS-positive group). In addition, the BV2 cells were pre-treated with the 

indicated concentrations of diosgenin for 30 minutes before 100 ng/mL of LPS stimulation. The 

green fluorescence represented the location and level of NF-Bp65 in the cytoplasmic and 

nuclear zones. BV2 cells were stained with the counterstain DABI for visualization of DNA (blue 

fluorescence) (Scale bar= 100 µm). 
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 Diosgenin inhibited the LPS-induced DNA-binding activity of 

NF-B in LPS-stimulated BV2 cells  

In this study, the effect of diosgenin on the DNA-binding activity of NF-B in LPS-

activated BV2 microglia was investigated. Results show that there was a marked 

increase in the DNA-binding activity of NF-B in cells stimulated with LPS (Figure 

2.26). In the presence of diosgenin (5-20 μM) however, the DNA-binding activity 

of NF-B was significantly reduced, compared to the LPS-control. The position of 

the NF-B/DNA complex and that of the free probe are shown in Figure 2.26.  
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Figure 2.26 Effect of diosgenin on the DNA-binding activity of NF-B in LPS-
stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for one hour. Results are presented as mean percentage ± SEM of three independent 

experiments. None is a control without nuclear extract and the negative control is the nuclear 

extract of untreated BV2 cells. Data were analysed using one-way ANOVA for multiple 

comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control. 
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 Diosgenin did not affect the LPS-induced p38 phosphorylation 

in LPS-stimulated BV2 cells 

As diosgenin reduced the levels of several pro-inflammatory mediators, it was 

important to determine whether diosgenin exhibited an inhibitory effect on p38 

MAPK signalling pathway that is activated during neuroinflammation (Bachstetter 

et al., 2011, Ramesh, 2014). Western blotting analysis showed that 100 ng/mL of 

LPS stimulated the cells to activate p38 signalling. A marked increase in the level 

of p-p38 was observed after stimulation of BV2 cells with LPS, compared to the 

untreated cells (Figure 2.27). However, treatment with 5, 10 and 20 µM of 

diosgenin did not produce inhibition of LPS-induced p38 phosphorylation, 

compared to LPS-control (Figure 2.27).  
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Figure 2.27 Effect of diosgenin on the p38 phosphorylation in LPS-treated 
BV2 microglia. 

Effects of diosgenin on the p38 phosphorylation in LPS-treated BV2 cells. BV2 cells were treated 

for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS for one hour. The levels 

of p38 and total p38 were measured as described above. Data are expressed as the mean ± SEM 

of three independent experiments Data were analysed using one-way ANOVA for multiple 

comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated 

control.   

 Diosgenin inhibited the phosphorylation of Akt in LPS-

stimulated BV2 cells  

The signalling pathway PI3K/AKT plays a potential role in the pathogenesis of 

neuroinflammation-mediated neurodegenerative diseases (Maiese et al., 2012, 

Cohen, 2013). Akt is the main target that regulate the activity of this pathway in 

the brain. Several studies have indicated that NF-κB signalling is regulated, at 

least in part by PI3K/Akt signalling (Madrid et al., 2000, Dan et al., 2008). Since 

diosgenin reduced the levels of pro-inflammatory molecules such as NO and 
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TNFα and attenuated NF-B activity in LPS-actived BV2 microglia, the effect of 

diosgenin on Akt signalling was investigated. In response to LPS stimulation, an 

elevated level of the phosphorylated form of Akt (p-Akt) was observed in BV2 

microglia (Figure 2.28). However, the LPS-induced increase in Akt 

phosphorylation was significantly (p<0.001) inhibited by 5, 10, and 20 μM of 

diosgenin, compared to the LPS-control. Pre-treatment of stimulated BV2 

microglia with diosgenin (20 µM) resulted in the expression of 20% of p-Akt level, 

compared to the LPS-control (Figure 2.28).  

 

 

Figure 2.28 Effect of diosgenin on the Akt phosphorylation in LPS-activated 
BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 100 ng/mL of LPS 

for one hour. The levels of Akt and total Akt were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.   
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 Diosgenin exerted weak anti-inflammatory activity in Aβ-

activated BV2 cells  

Many studies have shown that exposure to Aβ resulted in microglial hyper-

activation and neuroinflammation (Minter et al., 2016). This is known to increase 

the production of several pro-inflammatory and oxidative mediators such as 

TNFα, IL-1β, and ROS (Jekabsone et al., 2006). In this research, the anti-

neuroinflammatory effect of diosgenin against Aβ-activation of BV2 microglia was 

also investigated. Results show that 5, 10, and 20 µM of diosgenin did not affect 

BV2 viability, compared to untreated cells (100% cell viability) (Figure 2.29). In 

addition, Aβ at this concentration did not reduce cell viability, when compared to 

the untreated cells (Figure 2.29).  

 

 

Figure 2.29 Effect of diosgenin on the viability of Aβ-stimulated BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 2 µM of Aβ for 24 

hours. Data are expressed as the mean ± SEM of three independent experiments. Data were 

analysed using one-way ANOVA for multiple comparisons with post hoc Student Newman-Keuls 

test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, 

***p<0.001 compared to Aβ-treated control.  

However, 2 µM of Aβ stimulated the cells to release a significant levels of nitrite 

(17.6 ± 1.1 µM) (Figure 2.30a), PGE2 (536.8 ± 25.7 pg/mL) (Figure 2.30b), TNFα 

(802.2 ± 11.5 pg/mL) (Figure 2.30c) and IL-6 (463.6 ± 25.7 pg/mL) (Figure 2.30d), 

compated to unstimulated control. The level of each pro-inflammatory mediator 



 

118 
 

produced from Aβ-stimulated BV2 microglia is taken as 100%. However, in the 

presence of 20 µM of diosgenin, there was a significant reduction in the levels of 

nitrite (Figure 2.30a) and IL-6 (Figure 2.30d) released from the cells, compared 

to the Aβ-control. At 20 µM, diosgenin did not reduce the levels of PGE2 (Figure 

2.30b) and TNFα (Figure 30c), compared to the Aβ -control. It was observed that 

treatment with 5 µM and 10 µM diosgenin did not result in the reduction of the 

levels of all pro-inflammatory mediators in Aβ-stimulated BV2 cells (Figure 2.30). 

 

Figure 2.30 Effects of diosgenin on the Aβ-induced production of NO, PGE2, 
TNFα and IL-6 in BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 2 µM of Aβ for 24 

hours. The levels of NO, PGE2, TNFα and IL-6 were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to Aβ-treated control.  
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 Diosgenin inhibited the LPS-mediated indirect neurotoxicity in 

HT22 neuronal cells 

Several studies have demonstrated that the hyper-activation of microglia and 

subsequent neuroinflammation are associated with neuronal death (Viviani et al., 

2014, Xu et al., 2016). Since diosgenin attenuated LPS-induced 

neuroinflammation, it was hypothesised that diosgenin would prevent 

neuroinflammation-induced neuronal death. Therefore, the neuroprotective effect 

of diosgenin against microglial pro-inflammatory factors-induced HT22 neuronal 

death was examined. To identify and confirm whether LPS-induced 

neuroinflammation and also whether diosgenin attenuated this 

neuroinflammation and indirect neuronal death by inhibiting the production of 

microglial pro-inflammatory mediators, the levels of these factors (NO, PGE2, 

TNFα and IL-6) in the conditioned media were firstly measured. The results 

showed that the levels of NO (19.3 ± 3.0 µM) (Figure 2.31a), PGE2 (667.6 ± 68.5 

pg/mL) (Figure 2.31b), TNFα (847.5 ± 22.2 pg/mL) (Figure 2.31c), and IL-6 (605.3 

± 53.8 pg/mL) (Figure 2.31d) in the conditioned medium prepared from LPS-

treated BV2 were significantly (p<0.001) increased, compared to the untreated 

control. However, the levels of pro-inflammatory mediators were significantly 

reduced due to diosgenin treatment, compared to the LPS-control (Figure 2.31). 
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Figure 2.31 Effects of diosgenin on the production of NO, PGE2, TNFα, and 
IL-6 in the conditioned medium of BV2 cells. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 1µg/mL of LPS for 

24 hours. After that, the conditioned media were collected and the levels of NO, PGE2, TNFα, and 

IL-6 were measured as described above. Data are expressed as the mean ± SEM of three 

independent experiments. Data were analysed using one-way ANOVA for multiple comparisons 

with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with 

untreated control; and *p <0.05, **p<0.01, ***p<0.001 compared to LPS-treated control.  

Based on these results, the direct LPS stimulation of BV2 microglia resulted in 

increased levels of NO, PGE2, TNFα, IL-6 and ROS that are known to induce 

neuroinflammation-mediated neuronal damage (Dumont and Beal, 2011, 

Schieber and Chandel, 2014, Kim et al., 2015, Xu et al., 2016). Thus, the effect 

of conditioned medium obtained from stimulated microglia on the ROS generation 

in HT22 cells was investigated. The observation showed that the ROS level in 

HT22 neuronal cells treated with the conditioned medium of LPS-stimulated BV2 

microglia was significantly (p<0.001) increased, compared to HT22 cells 

incubated with the conditioned medium of control BV2 microglia (Figure 2.32). 

However, the intracellular level of ROS in HT22 cells treated with the conditioned 

medium derived from BV2 microglia pre-treated with diosgenin was significantly 
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reduced, compared to the positive-control HT22 cells (Figure 2.37). Diosgenin at 

10 µM and 20 µM showed 70% and 57.3% of ROS levels, respectively, compared 

to the control (Figure 2.32).   

 

Figure 2.32 Effect of diosgenin on the ROS production in conditioned 
medium-treated HT22 cells. 

HT22 cells were treated for 30 minutes with diosgenin, and then stimulated with conditioned 

medium obtained from 1 µg/mL LPS-activated BV2 microglia for 6 hours. The levels of ROS were 

measured as described above. Data are expressed as the mean ± SEM of three independent 

experiments. Data were analysed using one-way ANOVA for multiple comparisons with post hoc 

Student Newman-Keuls test. &p <0.05, &&p<0.01, &&&p<0.001 compared with untreated control; 

and *p<0.05, **p<0.01, ***p<0.001 compared to LPS-treated control. 

An MTT assay was used to establish whether diosgenin exerted a 

neuroprotective effect against conditioned medium-induced HT22 neuronal cell 

death. The conditioned medium derived from BV2 cells stimulated with LPS 

resulted in a significant (p<0.01) reduction (44 %) in HT22 neuronal viability, 

compared to the untreated-control (Figure 2. 33). However, the conditioned 

media obtained from BV2 microglia pre-treated with 10 µM and 20 µM of 

diosgenin significantly reduced conditioned medium-induced neurotoxicity 

(Figure 2.33). Treatment with 20 µM of diosgenin resulted in 90% HT22 cell 

viability, compared to that of untreated control. In addition, the conditioned 

medium obtained from untreated BV2 cells did not affect HT22 cell viability.  
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Figure 2.33 Effect of diosgenin on LPS-induced HT22 neuronal cell death. 

BV2 cells were treated for 30 minutes with diosgenin, and then stimulated with 1 µg/mL of LPS 

for 24 hours. After that, the conditioned media were collected and HT22 cells were then incubated 

with the conditioned media. Viability of HT22 cells were determined by MTT assy. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control.  
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 Discussion 

It is well established that the microglia are associated with the pathogenesis of 

neuroinflammation and neuronal death (Lyman et al., 2014, Patro et al., 2016). 

Chronic activation of microglia and thereby, uncontrolled neuroinflammation 

results CNS inflammation. An excessive production of pro-inflammatory and 

neurotoxic factors such as NO, PGE2, TNFα, and ROS from microglia has been 

implicated in neurodegenerative diseases (Glass et al., 2010, Rojo et al., 2014). 

Thus, an inhibition of overproduction of these mediators during 

neuroinflammation is a key point for treatment of neuroinflammatory disorders 

(Sarris et al., 2011). It is well known that plant-based natural compounds play an 

important role in the drug discovery and CNS inflammation (Butler, 2008). In this 

study, the anti-neuroinflammatory effect of diosgenin was investigated in LPS-

activated BV2 microglia.  

Results obtained from this research show that diosgenin prevented the 

production of NO from BV2 microglia activated by LPS. In addition, diosgenin 

inhibited iNOS expression, an outcome which clearly suggests that the inhibitory 

effect of diosgenin on NO secretion was due to down-regulating the expression 

of iNOS protein. This is an interesting outcome, as iNOS has been reported to be 

involved in the pathogenesis of neuroinflammation-mediated neurodegenerative 

diseases (Ghasemi and Fatemi, 2014, Garry et al., 2015). In addition, diosgenin 

exhibited anti-neuroinflammatory activity against Aβ-induced NO production. This 

finding suggests that diosgenin inhibits neuroinflammatory processes which are 

closely linked to neurodegenerative diseases associated with NO/iNOS 

mechanism. Like NO, PGE2 as well as the enzyme COX-2 play critical roles in 

microglial activation and CNS inflammation (Yagami et al., 2016, Teismann, 

2012, Listì et al., 2010). In the present study, diosgenin inhibited PGE2 production 

through reduction of the expression of COX-2 in LPS-activated BV2 cells. Thus, 

diosgenin could block neuroinflammation through suppressing microglial 

PGE2/COX-2 pathway. Several studies have suggested that pro-inflammatory 

cytokines have been involved in the physiopathological features of 

neurodegenerative illnesses (McCoy and Tansey, 2008, Chadwick et al., 2008, 

Henry et al., 2009, Van de Veerdonk et al., 2011, Smith et al., 2012, Schaper and 

Rose-John, 2015). The results of this study showed that diosgenin attenuated the 
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production of the most important cytokines including TNFα, IL-6, and IL-1β from 

LPS-activated BV2 microglia. Compared to microglial pro-inflammatory 

cytokines, IL-10 as a microglial anti-inflammatory cytokine is produced in order to 

counteract neuroinflammatory responses (Iyer and Cheng, 2012, Lobo-Silva et 

al., 2016). It was observed that diosgenin increased the production of IL-10 in 

LPS-stimulated BV2 cells. This observation demonstrates that diosgenin shifts 

M1 (pro-inflammatory) phenotype of microglia into M2 (anti-proinflammatory) 

phenotype and thereby, reduces the rate of neuroinflammatory response. 

Similary, microglial ROS are known as pro-neuroinflammatory and neurotoxic 

products (Kim et al., 2015, Schieber and Chandel, 2014). In this study, diosgenin 

treatment also abrogated the intracellular ROS generation in LPS-stimulated BV2 

cells. This evidence suggests that the inhibition of microglial ROS generation 

might be one of the important effects that is responsible for mediating the anti-

neuroinflammatory and antioxidant effects of diosgenin. Regarding the 

importance of the physiopathological role of NADPH in the microglia, diosgenin 

did not affect NADPH homeostasis in LPS-activated BV2 cells. The findings of 

this study have therefore clearly demonstrated that diosgenin produces an anti-

neuroinflammatory effect against LPS-activated BV2 microglial cells, but 

posseses a weak anti-neuroinflammatory effect against Aβ-stimulated BV2 cells.  

Diosgenin has been reported to posseses similar anti-inflammatory action in 

other immune and non-immune cells, thereby supporting the outcome of this 

study. For example, studies have shown that diosgenin inhibited palmitate-

induced production of TNFα and IL-6 in endothelial cells (Liu et al., 2012). In 

addition, diosgenin exerted anti-inflammatory activity against LPS-induced 

increase in the production of some cytokines in mouse primary peritoneal 

macrophages (Singh et al., 2014), and in mouse lung injury (Gao et al., 2013). A 

study reported that diosgenin attenuated the production of several inflammatory 

mediators (e.g., TNFα, and NO) in co-culture model of 3T3-L1 adipocytes and 

RAW 264 macrophages (Hirai et al., 2010). Furthermore, diosgenin inhibited the 

LPS/interferon gamma (IFN-γ)-stimulated production of IL-6, NO, and ROS in 

RAW 264.7 murine macrophages (Jung et al., 2010a). The anti-trachea 

inflammatory effect of diosgenin was shown to be mediated by suppressing 

cytokines production (Junchao et al., 2017). This study provides the first evidence 
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on the action of diosgenin in reducing brain inflammation and the resulting 

damage to neurons. The outcome of this research also provides further 

information on the spectrum of anti-inflammatory activity of diosgenin and shows 

that its anti-inflammatory activity in brain-resident macrophages is consistent with 

the activity observed in other cells in the periphery. 

It is well known that NF-B regulates the expression of iNOS, COX-2 and genes 

encoding pro-inflammatory cytokines that secret different pro-inflammatory 

mediators (e.g NO, PGE2, and TNFα) (Vega and de Andres Martin, 2008). 

Several findings showed that NF-B is a potential target for the prevention and/or 

treatment of neuroinflammation-mediated neurodegenerative disorders 

(Tornatore et al., 2012, Hoesel and Schmid, 2013). Since diosgenin attenuated 

the expression of iNOS, COX-2 and the production of these mediators, the 

inhibitory effect of diosgenin on NF-kappa B activation was examined in LPS-

activated BV2 microglia. Diosgenin was shown in this study to interfere with the 

transcriptional activity of NF-B through the reduction in NF-B-mediated 

luciferase expression in TNFα-activated HEK293 cells. Furthemore, diosgenin 

attenuated IκB-α phosphorylation and IκB-α degradation. Interestingly, the 

compound did not affect the upstream step involving IKK phosphorylation in LPS-

treated BV2 microglia. Since the majority of IKK inhibitors act as ATP-competitive 

molecules or have allosteric effect to limit the activity of IKK, the reason for the 

inability of diosgenin to target the IKK step may be lacking of one of these 

inhibition mechanisms (Gupta et al., 2010a, Gamble et al., 2012).  

Further downstream of IκB-α phosphorylation and degradation, diosgenin 

inhibited the nuclear translocation and DNA-binding activity of the p65 subunit of 

NF-B in BV2 cells activated by LPS. Targeting the NF-B cascade by diosgenin 

was consistent with previous observations. A study showed that diosgenin 

exhibited an immunosuppressive effect via NF-B deactivation in murine 

macrophages (Jung et al., 2010a). In another study, diosgenin suppressed LPS-

induced NF-B activity in mouse lung injury (Gao et al., 2013). A review by Gupta 

et al. suggested that IκB-α phosphorylation was the main target of diosgenin in 

order to inhibit NF-B activity (Gupta et al., 2010a). This hypothesis probably 

explains the lack of effect by diosgenin on IKK phosphorylation in this study, as 
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this step occurs upstream of IκB-α in LPS-induced activation of NF-B signalling 

in most cells. This study did not use a kinase activity assay to further establish 

whether disogenin could produce a direct inhibition of IKK. For the first time, this 

research has demonstrated that diosgenin inhibits neuroinflammation by 

targeting the molecular signalling pathway involving the IκB-α/NF-B signalling 

pathway in LPS-activated BV2 microglia. The study showed that the compound 

did not have an effect upstream of IκB-α.  

Several studies have suggested that p38 MAPK and Akt play a critical role in 

neuroinflammation and the pathogenesis of CNS diseases (Griffin et al., 2006, 

Munoz and Ammit, 2010). In this study, diosgenin blocked Akt phosphorylation, 

but did not inhibit p38 phosphorylation in LPS-stimulated BV2 microglia. These 

findings demonstrate that the anti-neuroinflammatory activity of diosgenin might 

be mediated in part via interference with Akt signalling. A number of studies have 

supported the results of this research. For example, diosgenin suppresses NF-

B activation but not p38 MAPK activity in the peripheral immune cells 

macrophages (Jung et al., 2010a). Furthermore, investigations in a variety of cell 

types (Dan et al., 2008, Supriady et al., 2015), showed that the inhibitory effect 

of diosgenin on IκB-α phosphorylation may be associated with inhibition of Akt 

phosphorylation. A similar activity has been reported for caffeine and kaempferol, 

which inhibited Akt-dependent NF-κB activation in microglia (Kang et al., 2012, 

Park et al., 2011).  

Microglial pro-inflammatory mediators such as NO and ROS contribute 

significantly to neuroinflammaton and neurotoxicity (Schieber and Chandel, 2014, 

Xu et al., 2016). Results of this research show that diosgenin protected HT22 

neuronal cells against neuronal death and ROS generation induced by 

conditioned medium obtained from LPS-activated BV2 microglia, through its 

ability to inhibit excessive production of NO, PGE2, TNFα, IL-6.  

In summary, these results demonstrate the anti-neuroinflammatory and 

neuroprotective effects of diosgenin in BV2 microglia for the first time. In addition, 

the mode of action of the in vitro anti-neuroinflammatory activity of diosgenin is 

proposed to be through the interference with microglial NF-B activation by 

blocking IκB-α phosphorylation and thereby; NF-B translocation. 
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Nrf2 activation contributes to inhibition 

of neuroinflammation by diosgenin 
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 Introduction 

 Nrf2/ARE signalling pathway in neuroinflammation 

The transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) is the 

most important antioxidant transcription factor in the defence system (Zhang et 

al., 2013). Nrf2 plays an important role in mitigating against uncontrolled 

neuroinflammation and oxidative stress (Innamorato et al., 2008, Sandberg et al., 

2014). The fundamental role of Nrf2 is to regulate the balance between cellular 

damage and cellular host defence due to the pathogenicity of neuroinflammation 

and oxidative stress (Valko et al., 2007, Buendia et al., 2016). The pro-

inflammatory and neurotoxic molecules such as cytokines, NO, and ROS that 

induce neuroinflammation and oxidative stress are chemically converted into less 

or harmless molecules by the up-regulation of Nrf2-dependent antioxidant 

enzymes and products (Kensler et al., 2007). This defence system is mediated 

by the production of direct antioxidant enzymes (e,g., heme oxygenase-1; HO-1), 

and detoxifing enzymes (e.g., (NADPH): quinone oxidoreductase 1; NQO1) as 

well as glutation and thiol homeostasis (Buendia et al., 2016).  

Several studies have demonstrated that a Nrf2 signal has antioxidant and 

neuroprotective effects against neuroinflammation (Joshi and Johnson, 2012, 

Xiong et al., 2015). Furthermore, it has been shown that inhibition of the Nrf2 

signal is responsible for the production of pro-inflammatory and oxidative 

mediators (Wardyn et al., 2015). For example, the levels of microglial 

inflammatory mediators such as iNOS, COX-2, IL-6, and TNFα are markedly 

elevated and that of anti-inflammatory markers such as interleukin 4 are reduced 

in Nrf2-deficient mice (Innamorato et al., 2008). Nrf2 knockout has also been 

shown to be responsible for increasing the expression of microglial pro-

inflammatory factors such as iNOS, IL-6, and TNFα as well as the number of 

microglial cells due to neuroinflammation-induced LPS in mice (Innamorato et al., 

2008). Regarding the role of Nrf2 in the pathology of AD, the Nrf2 target protein 

p62 is significantly reduced in the frontal cortex of AD patients (Salminen et al., 

2012). Moreover, Nrf2 and Nrf2-dependent target genes such as NQO1 are 

lowered in APP/PS1 transgenic mice upon accumulation of Aβ deposits in the 

hippocampal neurons (Kanninen et al., 2008). These reports suggest that Nrf2 

plays an important role in the regulation of neuroinflammation and oxidative 
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stress. In addition, Nrf2 might be an attractive therapeutic target for treating 

and/or preventing a number of CNS disorders that are induced by microglia-

mediated uncontrolled neuroinflammation and oxidative stress (Innamorato et al., 

2008, Joshi and Johnson, 2012).  

3.1.1.1. Nrf2 activation 

The antioxidant mechanism of action of Nrf2 signalling is summarised in Figure 

3.1. In the basal condition, Nrf2 is inactivated because is combined to the 

negative regulator Kelch-like ECH associating protein 1 (Keap 1) in the cytoplasm 

of microglial cell. Once activated it is disassociated from Keap1 and translocated 

to the nucleus. Thereafter, Nrf2 is attached into the antioxidant responsive 

element (ARE) in the promoter regions of several target genes encoding phase 

II detoxifying and antioxidant enzymes. The most important anti-inflammatory and 

antioxidant proteins that are up-regulated by Nrf2 signalling including HO-1, 

NQO1, glutathione reductase (GR), GPX, SOD, and CAT (Joshi and Johnson, 

2012). This result in the activation of a Nrf2-dependent antioxidant defence 

response against neuroinflammatory and oxidative assaults that exert cellular 

damage and neurotoxicity (Joshi and Johnson, 2012, Kim et al., 2010). Invasion 

of the brain by pathogens such as the bacterial product LPS results in the 

activation of the microglial Nrf2 pathway to activate host defence and then to 

eliminate the detrimental effects of the attack. For example, it is noted that a LPS-

induced over-activation of microglia is significantly inhibited by over-expression 

of Nrf2 (Koh et al., 2011).  
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Figure 3.1 Proposed model for the activation of an Nrf2 signalling pathway 
by a Nrf2 activator in microglial cells. 

Under normal conditions, microglial Nrf2 is inactivated because it is combined to the negative 

regulator Kelch-like ECH associating protein 1 (Keap 1) in the cytoplasm. In the presence of an 

Nrf2 activator, Nrf2 is disassociated from Keap1 and then translocated to the nucleus. After that, 

Nrf2 is attached to an antioxidant responsive element (ARE) in the promoter regions of target 

genes encoding phase II detoxifying and antioxidant enzymes. Subsequently, several enzymes 

such as heme oxygenase-1 (HO-1), nicotinamide adenine dinucleotide phosphate plus hydrogen 

(NAD(P)H):quinone oxidoreductase 1 (NQO1), glutathione reductase (GR), glutathione 

peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) are expressed. This results 

in the modulation of an Nrf2-dependent antioxidant defence response (Joshi and Johnson, 2012, 

Kim et al., 2010, Murphy and Park, 2017). 
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3.1.1.2. Enzymatic and non-enzymatic antioxidants that are regulated 

by Nrf2  

There are several enzymatic and non-enzymatic antioxidants that are up-

regulated by Nrf2 in the CNS. The most important enzymes that play an important 

role in the antioxidant defence system are SOD, CAT, GPX, GR, HO-1, and 

NQO1 (Joshi and Johnson, 2012). O2
- is generated from a broad spectrum of 

sources including mitochondria and ROS-generated enzymes such as NADPH 

oxidase. As shown in Figure 3.2, O2 is reduced to the primary product O2˙− due 

to the addition of one electron by NADPH oxidase in which the electron donor 

NADPH is converted to NADP+ and H+. After that, O2˙− is rapidly reduced to more 

stable molecule H2O2 by the enzyme SOD. H2O2 is further converted to water 

(H2O) by either CAT or GPX in presence of the antioxidant protein GSH as a 

reducing agent. The oxidized GSH (GSSG) is recycled to GSH by GR (Rojo et 

al., 2014, Maghzal et al., 2012). Thus, the neurotoxic effects of O2˙− are reduced 

and/or suppressed and this results in the protection of neurons against 

neuroinflammation. 

HO-1 is one of the most important phase II detoxifying  enzyme that is highly 

expressed in microglia (Min et al., 2006). In addition, HO-1 expression is up-

regulated in neurodegenerative diseases such as AD and PD (Schipper, 2000). 

HO-1 expression is induced by the stressor to prevent oxidative stress and then 

cellular damage. The primary function of this enzyme is to metabolize heme into 

bilirubin, which is subsequently converted into biliverdin, in which bilirubin and 

biliverdin are potent free radical scavengers in the CNS (Syapin, 2008). A variety 

of studies have suggested that HO-1 is a potent anti-inflammatory protein 

because it is responsible for the enzymatic degradation of the pro-inflammatory 

free heme as well as for production of some anti-inflammatory products such as 

bilirubin and carbon monoxide (Paine et al., 2010). These products play an 

essential role in the modulation of neuroinflammation and oxidative stress (Ryter 

et al., 2002). Increasing HO-1 expression in microglia by pharmacological agents 

is known to protect the brain against harmful attacks that induce 

neuroinflammation and oxidative stress (Lee and Suk, 2007). For example, some 

natural products inhibited LPS-induced inflammatory responses by increasing the 

expression of HO-1 in microglia (Jung et al., 2010b).  
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Several studies have documented that NQO1 is an important protective enzyme 

against inflammatory and oxidative responses in the CNS (Keum, 2012). NQO1 

which is a broadly distributed cytoplasmic flavoprotein is reported to catalyse the 

two electrons reduction of a wide variety of substrates including quinones, 

quinone-imines, nitroaromatics, and azo compounds in order to prevent ROS 

generation (Stringer et al., 2004). Two and four-electron reductions of 

endogenous and exogenous quinones are catalysed to their hydroquinone forms 

by NQO1 in order to protect the cells (Ross et al., 2000). NQO1 is strongly 

expressed in many cells such as microglia (Lee et al., 2013, Lee et al., 2011). 

The anti-inflammatory and cytoprotective activities of NQO1 is regulated by the 

Keap1/Nrf2/ARE pathway (Atia et al., 2014).  

 

Figure 3.2 Schematic representation of the antioxidant defence system for 
detoxifying ROS. 

Molecular oxygen (O2) is reduced to the initial product superoxide (O2˙−) due to the addition of 

one electron by ROS-generated enzymes such as NADPH oxidase (NOX). The electron donor 

NADPH is converted to NADP+ and H+. After that, O2
.- is reduced to H2O2 by superoxide dismutase 

(SOD). H2O2 is further converted to water (H2O) by either catalase (CAT) or glutathione 

peroxidase (GPX) in the presence of the antioxidant peptide glutathione (GSH) as a reducing 

agent. The oxidized GSH (GSSG) is recycled to GSH by glutathione reductase (GR) (Maghzal et 

al., 2012, Rojo et al., 2014, Di Meo et al., 2016).  
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 Crosstalk between Nrf2 and NF-B pathways 

The transcription factor Nrf2 is not only an antioxidant protein that regulates the 

expression of detoxifying enzymes against oxidative stress, but also is an anti-

inflammatory factor that controls NF-B-mediated anti-inflammatory processes. 

A variety of studies have suggested that there is a cross-talk between Nrf2 and 

NF-B signalling pathways in a wide variety of cells such as microglia (Buelna-

Chontal and Zazueta, 2013, Bryan et al., 2013, Wardyn et al., 2015, Okorji et al., 

2016). For example, Nrf2 signalling inhibits LPS-induced NF-B activation in 

hyper-activated BV2 cells (Koh et al., 2011). In addition, several natural products 

have been shown to activate Nrf2 and inhibit NF-B simultaneously in BV2 cells 

and primary microglia (Lee et al., 2011, Kang et al., 2013, Jayasooriya et al., 

2014, Park et al., 2015b).  

 Specific Aim and Objectives 

This part of the research was aimed to evaluate whether the Nrf2 signalling 

pathway played any role in the anti-neuroinflammatory effect of diosgenin. 

Therefore, this study sought to address the following specific objectives:  

i. To evaluate the effect of diosgenin on Nrf2/ARE pathway in BV2 microglia  

ii. To identify whether this antioxidant mechanism is involved in the anti-

neuroinflammatory effect of diosgenin in LPS-activated BV2 cells  

 

 Methods 

 BV2 cell culture  

Microglial BV2 cells were cultured as described in section 2.2.1. BV2 cells were 

left untreated in RPMI 1640 medium as a negative-control. In addition, BV2 cells 

were treated with 5, 10, and 20 µM of diosgenin for 30 minutes. After that, the 

plate was incubated for the indicated time, according to each experiment, as 

shown in the text.  

 HEK293 cell culture 

HEK293 cells were used to study the effect of diosgenin on Nrf2 transcriptional 

activity. HEK293 cells were cultured as described in section 2.2.2. 
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 Preparation of cytoplasmic and nuclear protein lysates 

Cytoplasmic and nuclear extracts were prepared as described in section 2.2.11 

to study the nuclear translocation of the transcription factor Nrf2. In addition, 

cytoplasmic extracts were collected to measure the amounts of HO-1 and NQO1 

after diosgenin treatment. Furthermore, nuclear extracts were prepared to study 

the DNA-binding activity of Nrf2. BV2 cells were seeded out at a concentration of 

2.0 x 105 cells/mL (2 mL/well) in a 6-well plate and then incubated for 48 hours. 

The culture medium was replaced by serum-free RPMI 1640 medium for 2 hours. 

Cells were treated with 5, 10, and 20 µM of diosgenin and then incubated for the 

indicated times.  

 Western blotting 

Western blotting as described in section 2.2.13 was used to study the effect of 

diosgenin on the levels of Nrf2 and its antioxidant proteins (Table 6).  

Table 6 List of primary and secondary antibodies used in Western blotting 

  Antibody Host Dilution 
Factor 

Product 
Number 

kDa        Company 

HO-1 Rabbit 1:500 WB sc-10789 32 Santa Cruz 

Biotechnology 

NQO-1 Rabbit 1:500 WB sc-25591 31 Santa Cruz 

Biotechnology 

Nrf2 Rabbit 1:500 WB sc-722 61 Santa Cruz 

Biotechnology 

Keap1 Rabbit 1:500 WB sc-33569 69 Santa Cruz 

Biotechnology 

Lamin B1 Rabbit 1:1000 

WB 

sc-20682 67 Santa Cruz 

Biotechnology 

β-actin Rabbit 1:1000 

WB 

A5060 42 Sigma-Aldrich 

Goat anti-Rabbit IgG Goat 1:10000 

WB 

A-21076  Life technologies 

 Measurement of GSH levels 

The reduced form GSH is a potent non-enzymatic antioxidant that plays a key 

role in the regulation of microglial redox signalling and neuroinflammation (Rojo 

et al., 2014). GSH is known to protect neurons against the pathogenesis of 

neuroinflammation and oxidative stress (Aoyama and Nakaki, 2013, Lee et al., 



 

135 
 

2010). The amount of GSH in BV2 microglial cells was determined using GSH-

Glo glutathione assay kit (Promega), according to the manufacturer’s 

instructions. The luminogenic substrate luciferin derivative (Luc-NT) is converted 

into luciferin by the enzyme glutathione S-transferase (GST) in the presence of 

glutathione. After that, luciferin is oxidized by Ultra-Glo luciferase in the presence 

of ATP, Mg2+ and O2, and resulted in production of extra energy in form of light 

(Figure 3.3).  Cells were seeded out at a concentration of 1.0 x 105 cells/mL (100 

µl/well) in a 96-well plate and incubated overnight. BV2 cells were then treated 

with 5, 10, and 20 µM of diosgenin for 24 hours. GSH-Glo reagent was prepared 

by adding Luciferin-NT and GST to the GSH-Glo reaction buffer. Carefully, the 

medium was replaced with GSH-Glo reagent 1X and the plate was incubated at 

room temperature for 30 minutes with shaking. Next, 100 µL of Luciferin detection 

reagent was added and incubated at room temperature for 15 minutes with 

shaking. Luminescence was measured using a FLUOstar OPTIM reader (BMG 

LABTECH) (Romero and Mueller‐Klieser, 1998, Mourad et al., 2000).  

 

Figure 3.3 Chemical reactions involved in the measurement of glutathione 
(GSH). 

The luminogenic substrate luciferin derivative (Luc-NT) is converted to luciferin by the enzyme 

glutathione S-transferase (GST) in the presence of GSH. After that, luciferin is oxidized by 

luciferase in the presence of adenosine triphosphate (ATP), magnesium (Mg2+) and molecular 

oxygen O2, and resulted in the production of extra energy in the form of light (Li et al., 2013, 

Gorman et al., 1982). 

 Immunofluorescence  

The effect of diosgenin on the nuclear accumulation of Nrf2 was detected using 

an indirect immunofluorescence assay as described in section 2.2.15. BV2 cells 

were seeded out at a concentration of 2.0 x 105 cells/mL (1 mL/well) in a 24-well 

plate and incubated for 48 hours. After changing the medium, the cells were 

treated with 5, 10, and 20 µM of diosgenin for 24 hours in order to investigate the 
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Nrf2 level. Untreated cells were used as negative control. The cells were 

incubated with a primary antibody against Nrf2 at 4°C for overnight.  

 Luciferase reporter gene assay 

Binding of Nrf2 to DNA at its binding site results in the transcriptional activation 

of target genes that regulate the immune response and the neuroinflammatory 

process (Vega and de Andres Martin, 2008, Joshi and Johnson, 2012). 

Therefore, the effect of disogenin on Nrf2-dependent transcriptional activity was 

evaluated in cultured HEK293 cells using the antioxidant response element 

(ARE) luciferase reporter gene assay. HEK293 cells were seeded out as 

described in section 2.2.2. The cells were transfected with 100 ng total DNA of 

pGL4.37[luc2P/ARE/Hygro] (Promega) and pGL4.75 [hRluc/CMV] Renilla 

luciferase vectors (Promega), respectively FuGENE 6 transfection reagent 

(Promega) at a 3:1 transfection reagent:DNA ratio, and further incubated for 18 

hours. Thereafter, the medium was replaced by Opti-MEM I reduced-serum 

medium and then incubated for 6 hours. The transfected cells were treated with 

5, 10, 20 µM of diosgenin, and further incubated for 18 hours. 100 µL of Dual-Glo 

Luciferase reagent (Promega, UK) containing Dual-Glo Luciferase buffer and 

Dual-Glo Luciferase substrate was added into each well. After 10 minutes, firefly 

luminescence was measured using FLUOstar OPTIMA plate reader (BMG 

LABTECH). 100 µL of Dual-Glo stop & Glo reagent was added for 10 minutes 

and Renilla luminescence was then measured using the plate reader. The 

amounts of firefly luciferase activity values were normalized to Renilla luciferase 

activity values.  

 DNA binding activity of Nrf2 

It is well known that Nrf2 binds to the DNA at its specific binding site to regulate 

the expression of several antioxidants and Phase II detoxification genes that play 

an important role in the regulation of the immune response, neuroinflammation, 

and oxidative stress (Kim et al., 2010, Joshi and Johnson, 2012). The effect of 

diosgenin on the DNA-binding activity of Nrf2 was studied as part of its antioxidant 

activity. The effect of diosgenin on the DNA-binding activity of Nrf2 was evaluated 

using the TransAM Nrf2 kit (Active Motif), according to the manufacturer’s 

instructions. BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL 

(2 mL/well) in a 6-well plate and incubated for 48 hours. The medium was 
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replaced by serum-free RPMI 1640 medium for 2 hours. The cells were treated 

with 5, 10, and 20 µM of diosgenin, and then incubated for one hour. Untreated 

cells were used as negative control. After that, nuclear extracts were prepared as 

described in section 3.3.3. Nuclear extracts containing activated transcription 

factors were incubated in a 96-well plate coated with a specific double-stranded 

oligonucleotides containing ARE consensus-binding site (5′- 

GTCACAGTGACTCAGCAGAA-TCTG-3′). The cells were incubated with Nrf2 

antibody for one hour.  

 Nrf2 siRNA transfection 

The purpose of RNA interference (RNAi) was to determine whether the anti-

neuroinflammatory effect of diosgenin is dependent on Nrf2 activity. RNAi is the 

process by which the expression of a target gene is effectively silenced or 

knocked down by the selective inactivation of its corresponding mRNA by double-

stranded RNA (dsRNA) molecule (Figure 3.4) (Fire et al., 1998). RNAi as a post-

transcriptional gene silencing is a process to block the expression of specific 

protein such as Nrf2. It is important to note that the absence of or the low level of 

the target protein can be detected by western blotting analysis.  

BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL in a 6-well 

plate. The plate was incubated until the cells achieved approximately 60-70% 

confluence. For each transfection, 2 µL of 100 nM Nrf2 siRNA duplex (Santa Cruz 

Biotechnology) and 2 µL of siRNA transfection reagent (Santa Cruz 

Biotechnology) were diluted in Opti-MEM I reduced serum medium, and 

incubated for 30 minutes at room temperature. BV2 cells transfected with 100 nM 

control siRNA (Santa Cruz Biotechnology) were used as control siRNA-

transfected cells. After washing, Opti-MEM I reduced serum medium was added 

to each transfection complex, and then 200 µL of siRNA transfection reagent 

mixture was added, and the plate incubated for 6 hours. The medium was 

replaced with RPMI 1640 medium, and the plate incubated for an additional 18 

hours. After that, transfected BV2 cells were treated with 20 µM of diosgenin for 

30 minutes followed by LPS stimulation for 24 hours. Gene knockdown of Nrf2 

protein expression was confirmed by immunoblotting using lysates of control 

siRNA-transfected and Nrf2 siRNA-transfected BV2 cells. The effects of 20 µM 

of diosgenin on NO, TNFα, IL-6, and PGE2 production in LPS-stimulated control 
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siRNA-transfected and Nrf2 siRNA-transfected BV2 cells were investigated as 

described in sections 2.2.6, 2.2.7.1, 2.2.7.2, and 2.2.8, respectively.  

The levels of the phospho-NF-κBp65 in the nuclear extracts of control siRNA-

transfected and Nrf2 siRNA-transfected BV2 cells were determined using 

phospho-NFkB p65 (Ser536) InstantOne ELISA Kit (Biolegend) according to the 

manufacturer’s protocol. 50 µL of nuclear extract was added to each of the wells 

in a 96-well plate. 50 µL of antibody cocktail containing 25 µL of capture antibody 

reagent and 25 µL of detection antibody reagent was added and the plate was 

then incubated at room temperature for one hour with shaking at 300 g. The wells 

were washed with 200 μL of wash buffer. Next, 100 µL of a detection reagent was 

added and the plate was incubated at room temperature for 30 minutes with 

shaking at 300 g. 100 μL of stop solution was added to stop the reaction and the 

absorbance was then measured at 450 nm using a microplate reader (Tecan 

Infinite F50).  

The effect of Nrf2 silencing on the inhibitory effect of diosgenin on LPS-induced 

DNA-binding activity of NF-B in BV2 cells was also investigated. The nuclear 

lysates of both control siRNA-transfected and Nrf2 siRNA-transfected BV2 cells 

were collected to measure NF-B/DNA binding activity. The protocol of this 

experiment was described as showed in section 3.3.3. 
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Figure 3.4. Model of the RNA interference pathway. 

The long double-stranded RNA molecule is cleaved to small interfering RNA (siRNA) by Dicer. 

One of the siRNA strands is cleaved and dissociated from the complex upon RISC activation. The 

other strand remains in the complex, and the activated RISC is attached to the target mRNA. This 

resulted in cleavage and then degradation of mRNA (Petrova et al., 2013, Meister and Tuschl, 

2004, Aagaard and Rossi, 2007). 
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 Statistical Analysis 

Values are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post-

hoc Student Newman-Keuls test. The ANOVA compares the mean between the 

groups and determine whether those means are significantly different from each 

other. To determine the specific groups that are significantly different from each 

other were evaluated by with post-hoc Student Newman-Keuls test with multiple 

comparisons. Calculations for statistical analysis were performed with Graph Pad 

Prism softwere version 5. Differences were significant at p<0.05. For Nrf2 

experiments, designations include &p<0.05, &&p<0.01, &&&p<0.001 compared with 

untreated control. For siRNA experiments: θp<0.05, θθp<0.01, θθθp<0.001 as 

compared within the groups of untreated control. $p<0.05, $$p<0.01, $$$p<0.001 

as compared within the groups of LPS-treated control. #p<0.05, ##p<0.01, 

###p<0.001 as compared within the groups of pre-treated with 20 µM of diosgenin. 
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 Results 

 Diosgenin enhanced HO-1, NQO1, and GSH levels in BV2 

microglia 

The transcription factor Nrf2 plays an important role in the regulation of microglial 

dynamics and neuroinflammation through the expression of antioxidant proteins 

like HO-1, NQO1 and GSH (Joshi and Johnson, 2012, Rojo et al., 2014). 

Experiments were carried out to achieve the overall objective of establishing a 

role for Nrf2 in the anti-neuroinflammatory effect of diosgenin in BV2 microglia. In 

this part of the study, the effects of diosgenin on the levels of Nrf2-regulated 

antioxidant proteins HO-1, NQO1 and GSH are shown. Results of western 

blotting showed that treatment of cells with diosgenin resulted in a marked 

increase in the levels of HO-1 protein, when compared to control cells (Figure 

3.5). The levels of HO-1 were increased by 1-, 5.0- and 6.5-folds after treatment 

of cells with 5, 10 and 20 μΜ of diosgenin, respectively, compared to a non-

treated control (Figure 3.5).  

 



 

142 
 

 

Figure 3.5 Effect of diosgenin on HO-1 levels in BV2 cells. 

BV2 cells were treated with diosgenin for 24 hours. The total levels of HO-1 were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

Next, the results showed that diosgenin at 10 µM and 20 µM produced a marked 

(p<0.001) increase in the NQO1 expression, compared to that of untreated cells 

(Figure 3.6). Compared to untreated cells, 3.5-fold and 6.0-fold increases in the 

NQO1 levels were observed with10 µM and 20 µM of diosgenin, respectively. 

However, at 5 µM, diosgenin treatment did not produce any significant increase 

in NQO1 expression. 
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Figure 3.6 Effect of diosgenin on NQO1 levels in BV2 cells. 

BV2 cells were treated with diosgenin for 24 hours. The total levels of NQO1 were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

Since diosgenin significantly induced the expression of HO-1 and NQO1 in BV2 

microglia at concentrations of 10-20 µM, it was hypothesised that diosgenin 

elevated the levels of the antioxidant product GSH in the cells. GSH is an 

important antioxidant peptide in the cellular defence system because the activity 

of GSH is regulated by the transcription factor Nrf2 (Rojo et al., 2014, Vilhardt et 

al., 2017). As observed in Figure 3.7, diosgenin treatment induced a significant 

elevation (p<0.05) in GSH levels, compared to the control cells. Diosgenin 

treatment at 5, 10, and 20 µM caused 0.3-, 0.46- and 0.65-fold increases in the 

GSH levels, respectively, compared to untreated cells.  
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Figure 3.7 Effect of diosgenin on GSH levels in BV2 cells. 

BV2 cells were treated with diosgenin for 24 hours. The levels of GSH were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

 Diosgenin increased the nuclear translocation of Nrf2 in BV2 

microglia 

The main mechanism of the antioxidant defence system that regulates 

neuroinflammation and oxidative stress is the activation of Nrf2 (Sandberg et al., 

2014). Western blotting results show that diosgenin significantly reduced 

(p<0.001) the level of Nrf2 protein in the cytoplasm (Figure 3.8), compared to that 

of untreated cells. The cytoplasmic level of Nrf2 was lowered 7.0- and 8.0-fold 

with 10 µM and 20 µM of diosgenin, respectively, compared to the control BV2 

microglia. 
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Figure 3.8 Effect of diosgenin on the cytoplasmic level of Nrf2 in BV2 cells. 

BV2 cells were treated with diosgenin for one hour. The cytoplasmic levels of Nrf2 were measured 

as described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

Expectedly, when cells were incubated with diosgenin, we observed a significant 

increases in the nuclear levels of nuclear Nrf2 protein (suggesting an increase in 

nuclear translocation of Nrf2), in comparison with untreated BV2 cells (Figure 

3.9). It was observed that 5, 10 and 20 µM of diosgenin induced 1.75-, 3.5- and 

6.0-fold increases in the nuclear level of Nrf2, respectively. 
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Figure 3.9 Effect of diosgenin on the nuclear level of Nrf2 in BV2 cells. 

BV2 cells were treated with diosgenin for one hour. The nuclear levels of Nrf2 were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

Furthermore, the diosgenin-induced increase in Nrf2 nuclear accumulation 

observed was confirmed with immunofluorescence analysis. This showed that 

diosgenin treatment significantly increased the nuclear translocation of Nrf2, 

compared to that of untreated cells (Figure 3.10).  
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Figure 3.10 Effect of diosgenin on Nrf2 expression in BV2 cells after 
immunofluorescence staining. 

The BV2 cells were either left untreated (negative control) or pre-treated with the indicated 

concentrations of diosgenin for 24 hours. The green fluorescence represents the location and 

levels of Nrf2 in the cytoplasmic and nuclear zones. BV2 cells were stained with the counterstain 

DABI for visualization of DNA (blue fluorescence). (Scale bar= 100 µm). 

 Diosgenin inhibited Keap 1 activity in BV2 cells  

Under basal conditions, the transcription factor Nrf2 is a constitutively inactived 

protein in the cytoplasm because it is complexed to the inhibitory protein Keap1 

(Kim et al., 2010, Joshi and Johnson, 2012). The previous results showed that 

diosgenin increased the accumulation of the protein Nrf2 in the nucleus of BV2 

microglial cells. It was therefore important to investigate whether diosgenin-

mediated Nrf2 nuclear translocation was achieved through a modulation of Keap 

1 activity. Results indicated that diosgenin significantly reduced the level of Keap1 
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in the cytoplasm, compared to that of control BV2 cells (Figure 3.11). Treatment 

with10 µM and 20 µM of diosgenin resulted in 5.2- and 6.0-fold down-regulation 

in expression of the Keap1 protein, respectively, compared to the control cells. 

 

 

Figure 3.11 Effect of diosgenin on Keap 1 levels in BV2 cells. 

BV2 cells were treated with diosgenin for 24 hours. The levels of Keap1 were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

 Diosgenin increased the DNA-binding activity of Nrf2 in BV2 

cells  

Nrf2 possesses two important domains; a distinct transactivation and a DNA 

binding domain that are essential for its transcriptional activity. As observed 

above, diosgenin treatment increased the nuclear accumulation of Nrf2 in BV2 

cells. Further experiments to determine whether diosgenin increase DNA-binding 

activity of Nrf2 in BV2 microglial cells showed that the compound produced a 
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significant increase in the DNA-binding activity of Nrf2, when compared to 

untreated control cells (Figure 3.12). Diosgenin at 10 µM and 20 µM resulted in 

5.0- and 7.0-fold increase in the Nrf2/DNA binding activity, respectively, 

compared to that of control cells.  

 

Figure 3.12 Effect of diosgenin on Nrf2/DNA binding activity in BV2 cells. 

BV2 cells were treated with diosgenin for one hour. The Nrf2/DNA binding activity was measured 

as described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

 Diosgenin increased the ARE-luciferase activity in HEK293 

cells  

Following nuclear translocation, the Nrf2 protein is bound to specific elements 

called antioxidant responsive element (ARE) that are located on the promoters of 

target genes encoding antioxidant enzymes. To determine whether diosgenin 

increase the transcriptional activity of Nrf2, ARE-dependent luciferase activity 

was measured in HEK293 cells. Results in Figure 3.13 show that ARE-luciferase 

activity was significantly increased (p<0.001) by diosgenin when compared to 

untreated cells. Treatment of HEK293 cells with 5, 10 and 20 µM of diosgenin 

induced a 1.6-, 2.3- and 3.4-fold increase in the ARE-dependent luciferase 

activity, respectively, in comparison to the untreated cells.  
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Figure 3.13 Effect of diosgenin on ARE-luciferase activity in HEK293 cells. 

Transfected HEK293 cells were treated for 6 hours with diosgenin. The intensities of Firefly and 

Renilla luciferase activities were measured as described above. Data are expressed as the mean 

± SEM of three independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 

compared with untreated control. 

 The Anti-neuroinflammatory effect of diosgenin is dependent 

on Nrf2 activity in LPS-stimulated BV2 microglia 

It has been demonstrated that there is a cross-talk between Nrf2 and NF-B 

signalling pathways (Buelna-Chontal and Zazueta, 2013, Wardyn et al., 2015). It 

has also been reported that the absence of an Nrf2 response is responsible for 

the production of several pro-inflammatory and oxidative mediators and thereby, 

neuroinflammation in neurodegenerative conditions (Wardyn et al., 2015, 

Buendia et al., 2016). Since diosgenin has been shown in this research to inhibit 

neuroinflammation, as well as as increasing direct activation of Nrf2 in BV2 

microglia, siRNA was used to determine whether the anti-neuroinflammatory 

effect of diosgenin was dependent on the up-regulation of the Nrf2 gene.  

Nrf2 siRNA duplex was transfected into BV2 cells, and then treated with 20 µM 

of diosgenin for 30 minutes followed by 100 ng/mL LPS for 24 hours. The effects 

diosgenin on the production of NO, PGE2, TNFα and IL-6 in both LPS-stimulated 

control siRNA-transfected and Nrf2 siRNA-transfected BV2 cells were 

investigated. Compared to the unstimulated control, LPS stimulated the cells to 
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release significant amounts of nitrite (19.3 ± 2.5 and 18.0 ± 3.8 µM) (Figure 

3.14a), PGE2 (535.5 ± 95.2 and 543.5 ± 93.9 pg/mL) (Figure 3.14b), TNFα (711.8 

± 47.1 and 700.4 ± 21.2 pg/mL) (Figure 3.14c) and IL-6 (565.0 ± 69.9 and 580.3 

± 71.6 pg/mL) (Figure 3.14d) in control siRNA-transfected and Nrf2 siRNA-

transfected BV2 cells, respectively. The level of each pro-inflammatory mediator 

produced by LPS in control siRNA-transfected BV2 microglia is taken as 100%. 

It was observed that 20 µM diosgenin caused a significant reduction (p<0.001) in 

the concentrations of NO (7.8 ± 2.5 µM) (Figure 3.14a), PGE2 (250.3 ± 46.2 

pg/mL) (Figure 3.14b), TNFα (373.5 ± 10.0 pg/mL) (Figure 3.14c) and IL-6 (323.9 

± 23.1 pg/mL) (Figure 3.14d) that were induced by LPS in the control siRNA-

transfected BV2 microglia. However, silencing of Nrf2 gene reversed the 

inhibitory effect of diosgenin (20 µM) on the production of these pro-inflammatory 

factors, compared to control cells.  
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Figure 3.14 Effects of diosgenin on NO (a), PGE2 (b), TNFα (c) and IL-6 (d) 
production in LPS-stimulated control siRNA-transfected and Nrf2 siRNA-
transfected BV2 cells. 

Both control siRNA-transfected and Nrf2 siRNA-transfected BV2 cells were treated for 30 minutes 

with 20 µM of diosgenin, and then stimulated with 100 ng/mL of LPS for 24 hours. The levels of 

NO, PGE2, TNFα and IL-6 were measured as described above. Data are expressed as the mean 

± SEM of three independent experiments. Data were analysed using one-way ANOVA for multiple 

comparisons with post hoc Student Newman-Keuls test. θp<0.05, θθp<0.01, θθθp<0.001 as 

compared within the groups of untreated control. $p<0.05, $$p<0.01, $$$p<0.001 as compared 

within the groups of LPS-treated control. #p<0.05, ##p<0.01, ###p<0.001 as compared within the 

groups of pre-treated with 20 µM of diosgenin. 

Since diosgenin exerted an anti-neuroinflammatory effect via inhibiting NF-B 

signalling in LPS-stimulated BV2 cells (Chapter 2), it became necessary to 

investigate whether Nrf2 was required for the inhibition NF-B activity by 

diosgenin in these cells. Results in Figure 3.15 show that diosgenin treatment (20 

µM) showed a significant reduction (p<0.01) in LPS-induced increase in protein 

levels of p-NF-B p65 sub-unit in control siRNA-transfected BV2 microglia. On 

the other hand, Nrf2 silencing reversed the NF-B inhibitory effect of diosgenin, 
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compared to the control cells, suggesting that an interaction with the Nrf2 gene 

contributes to the inhibition of NF-B activity by diosgenin (Figure 3.15).  

 

 

Figure 3.15 Effect of diosgenin on LPS-induced increase in p-p65 level in 
LPS-stimulated control siRNA-transfected and Nrf2 siRNA-transfected 
BV2 cells. 

Both control siRNA-transfected and Nrf2 siRNA-transfected BV2 cells were treated for 30 minutes 

with 20 µM of diosgenin, and then stimulated with 100 ng/mL of LPS for one hour. The levels of 

p-p65 in the nuclear lysates were measured as described above. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. θp<0.05, 

θθp<0.01, θθθp<0.001 as compared within the groups of untreated control. $p<0.05, $$p<0.01, 

$$$p<0.001 as compared within the groups of LPS-treated control. #p<0.05, ##p<0.01, ###p<0.001 

as compared within the groups of pre-treated with 20 µM of diosgenin. 

Furthermore, the effect of diosgenin (20 µM) on the DNA-binding activity of NF-

B was examined in the absence of the Nrf2 gene. The compound significantly 

(p<0.001) inhibited the LPS-induced DNA-binding activity of NF-B in control 

siRNA-transfected BV2 cells (Figure 3.16). In contrast, diosgenin did not inhibit 

the binding of NF-B into DNA in LPS-stimulated Nrf2 siRNA-transfected BV2 

microglia as observed in Figure 3.16. 
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Figure 3.16 Effect of diosgenin on LPS-induced increase in DNA-binding 

activity of NF-B in LPS-stimulated control siRNA-transfected and Nrf2 
siRNA-transfected BV2 cells. 

Both control siRNA-transfected and Nrf2 siRNA-transfected BV2 cells were treated for 30 minutes 

with 20 µM of diosgenin, and then stimulated with 100 ng/mL of LPS for one hour. DNA-binding 

activity of NF-B in in the nuclear lysates were measured as described above. Data are expressed 

as the mean ± SEM of three independent experiments. Data were analysed using one-way 

ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, 

&&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to 

LPS-treated control.  

 

 

 

 

 

 

 

 



 

155 
 

 Discussion 

The transcription factor Nrf2 plays an anti-neuroinflammatory role against harmful 

stimuli that induce neuroinflammation in the CNS (Zhang et al., 2013, Sandberg 

et al., 2014). A number of studies have found that Nrf2 has antioxidant and 

neuroprotective effects against neuroinflammation (Joshi and Johnson, 2012, 

Xiong et al., 2015). Numerous studies have observed that Nrf2 inhibits NF-B-

mediated neuroinflammation in various cell lines such as microglia (Lee et al., 

2011, Kang et al., 2013, Jayasooriya et al., 2014, Park et al., 2015b). Innamorato 

et al., have also reported that Nrf2 knockout resulted in increases in the 

production of microglial pro-inflammatory mediators in mice treated with LPS 

(Innamorato et al., 2008). Therefore, Nrf2 is a therapeutic target against 

neurodegenerative diseases that are associated with microglia-induced 

neuroinflammation (Calkins et al., 2009, Joshi and Johnson, 2012).  

Results of investigations presented in Chapter 2 show that diosgenin inhibits 

neuroinflammation through inactivation of NF-B in LPS-stimulated BV2 

microglia, the next focus of this research was to determine whether diosgenin 

reduce neuroinflammation via Nrf2-dependent mechanisms. It is important to 

note that the defence against neuroinflammation is mediated through the 

production of direct antioxidant enzymes such as HO-1, and detoxifing enzymes 

like NQO1, as well as GSH and thiol homeostasis (Rojo et al., 2014, Vilhardt et 

al., 2017, Buendia et al., 2016). Diosgenin increased levels of the antioxidant HO-

1, an anti-inflammatory protein which is known to block neuroinflammation (Ryter 

et al., 2002, Paine et al., 2010). This finding thus seems to suggest that diosgenin 

may be reducing the intensity of neuroinflammation by inducing HO-1 expression 

in microglia. This cytoprotective mechanism has been observed with some 

natural products that inhibited LPS-induced inflammatory responses through 

increasing the expression of HO-1 in microglia (Jung et al., 2010b, Lee et al., 

2011, Foresti et al., 2013). Similarly, diosgenin elevated the amount of NQO1, 

which has also been shown to be effective against inflammatory and oxidative 

responses (Keum, 2012). In addition, diosgenin increased the level of the non-

enzymatic antioxidant peptide GSH in BV2 microglia. GSH is known to protect 

neurons against the pathogenesis of neuroinflammation (Lee et al., 2010, 

Aoyama and Nakaki, 2013). Taken together, it appears diosgenin induces gene 
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expression of HO-1, NQO1 and GSH in BV2 microglia and thereby activating 

protective mechanisms against neuroinflammation. 

It is well known that Nrf2 is responsible for the regulation of HO-1 and NQO1 

expression as well as GSH levels in microglia (Kim et al., 2010, Joshi and  

Johnson, 2012). Since diosgenin induced the expression of these antioxidant 

proteins, it was expected that Nrf2 might play an essential role in the ability of 

diosgenin to increase their levels in BV2 microglia. Nrf2, as a modular protein, 

has distinct transactivation and DNA-binding domains that are essential for its 

transcriptional activity in the nucleus. Firstly, the result of this study showed that 

diosgenin increased antioxidant responsive element (ARE)-mediated luciferase 

activity, suggesting that diosgenin elevated the levels of HO-1, NQO1, and GSH 

by induction of ARE-mediated gene expression. In addition, diosgenin increased 

nunclear translocation of Nrf2 and also the DNA-binding activity of Nrf2 in BV2 

microglia. Under normal conditions, Nrf2 is an inactive protein because of a 

combination with the inhibitory protein Keap 1. Upon Nrf2 pathway induction, Nrf2 

is disassociated from the Keap1 protein that is enzymatically degraded. This 

results in a rapid nuclear translocation of Nrf2 followed by binding to ARE 

sequences. This leads to the secretion of cytoprotective antioxidant products 

against neuroinflammation. The result showed that diosgenin down-regulated the 

expression of Keap 1 protein, thereby suggesting that disassociation of Nrf2 from 

the protein Keap 1 plays an important role in diosgenin-induced nuclear 

translocation and thereby activation of Nrf2 in BV2 microglia. However, this study 

did not establish whether diosgenin may be inhibiting Keap1 activity by non-

covalent direct inhibition of the keap1-Nrf2 protein-protein interaction or by 

interacting with the sulfhydryl groups of cysteine residues in Keap 1 by oxidation 

or alkylation (Abed et al., 2015). The results of this study clearly show for the first 

time that diosgenin induce Nrf2/Keap1/ARE signalling pathway in BV2 microglia. 

This outcome may contribute to the suggestion that diosgenin possibly targets 

molecular mechanisms which mitigate against neuroinflammation-mediated 

neurodegenerative diseases.  

Several studies have suggested that a cross-talk between NF-B and Nrf2 

pathways have been observed in various cell types including microglia (Buelna-

Chontal and Zazueta, 2013, Bryan et al., 2013). It is established that activation of 
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Nrf2 results in inhibition of NF-B, and subsequently neuroinflammation (Koh et 

al., 2011). For example, a number of compounds (e.g., xanthohumol, quercetin 

and β-hydroxyisovalerylshikonin) attenuated the chronic microglial activation-

induced neuroinmflammatory response by Nrf2-dependent NF-B inhibition (Lee 

et al., 2011, Kang et al., 2013, Jayasooriya et al., 2014). To verify whether the 

inhibition of NF-B activation, and subsequently the neuroinflammation by 

diosgenin is dependent on Nrf2, the signal of the latter was blocked by Nrf2 gene 

knockdown. Results show that diosgenin reduced the levels of microglia-derived 

pro-inflammatory mediators (NO, PGE2, TNFα, and IL-6) in LPS-stimulated 

control siRNA-transfected BV2 cells. However, the inhibitory effect of diosgenin 

was reversed by silencing Nrf2 in LPS-stimulated Nrf2 siRNA-transfected BV2 

cells. These findings suggest that the anti-neuroinflammatory effect of diosgenin 

was dependent on Nrf2 activation. Next, to clarify whether diosgenin did not 

inhibit neuroinflammatory process because of Nrf2 knockdown, the result showed 

that diosgenin did not inhibit NF-B over-activation induced by LPS after Nrf2 

knockdown, compared to control cells. This finding suggest that siRNA-mediated 

knockdown Nrf2 gene expression prevents the anti-neuroinflammatory effect of 

diosgenin in LPS-activated BV2 microglia. Therefore, the anti-neuroinflammatory 

activity of diosgenin is dependent on the activation of Nrf2 in microglial BV2 cells 

in order to block neuroinflammation. In summary, the present study demonstrates 

that diosgenin activates Nrf2/ARE defence mechanism in BV2 microglia. In 

addition, the anti-neuroinflammatory effect of diosgenin seems to be dependent 

on the activation of Nrf2. 
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Miscellaneous pharmacological activities 

of diosgenin in BV2 microglia 
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 Introduction 

 Role of oestrogens in neuroinflamation 

Oestrogens are an entire class of related hormones including oestriol, 17β-

oestradiol, and oestrone. It is well known that 17β-oestradiol is the most potent 

non-selective oestrogen in the body (Cui et al., 2013). 17β-oestradiol is 

responsible for the development and regulation of the female reproductive 

system and secondary sex characteristics (Santoro et al., 2016). In addition, it 

plays anti-neuroinflammatory, antioxidant and neuroprotective actions in both 

sexes (Spence and Voskuhl, 2012, Laredo et al., 2014). In general, the 

oestrogen’s physiological functions including their anti-neuroinflammatory effect 

are mediated through the activation of two classes of ER; ERβ and ERα (Laredo 

et al., 2014). Due to importance of ER in the development and functions of the 

CNS, ERα and ERβ are distributed in most regions of the CNS including 

hypothalamus, hippocampus and cortex (Cui et al., 2013). Specifically, ERα and 

ERβ are expressed in neurons and a variety of glial cells (Sierra et al., 2008, 

Mhyre and Dorsa, 2006). In the mammalian brain of both sexes, oestrogens are 

synthesised in neurons and astrocytes by aromatase (Garcia‐Segura, 2008). 

However, 17β-oestradiol is not synthesised in microglia that express ERα and 

ERβ (Yague et al., 2010, Ishihara et al., 2015).  

17β-oestradiol is an endogenous therapeutic hormone that can prevent and/or 

treat neurodegenerative diseases (Correia et al., 2010, Arevalo et al., 2015). 

Several findings have demonstrated that low level of oestrogens are associated 

with excessive inflammation and thereby, postmenopausal symptoms such as 

arthritis, osteoporosis, and AD (Yang et al., 2010, Islander et al., 2011, Lobo et 

al., 2014). A number of observations have reported that oestrogen replacement 

therapy is effective against postmenopausal symptoms and neurodegenerative 

disorders (Sherwin, 2006). However, a long-term use of oestrogen replacement 

therapy can result in breast cancer, suggesting the role of non-specific 

oestrogenic effects of oestrogens (Lai et al., 2013, Nilsson et al., 2001).  

The anti-neuroinflammatory and neuroprotective activities of oestrogens in the 

CNS have been extensively studied but not completely understood. Oestrogens 

protect the neurons directly or indirectly by modulating neuroinflammation 

(Vegeto et al., 2006). Due to the induction role of the hyper-activated microglia in 
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the excessive neuroinflammatory response and thereby, neuronal death, one of 

the anti-neuroinflammatory roles of oestrogens is mediated by suppression of 

microglial over-activation (Vegeto et al., 2003, Habib and Beyer, 2015). For 

example, oestrogens through activation of microglial ER attenuated the hyper-

activated microglia-mediated neuroinflammation and cell death (Liu et al., 2005, 

Smith et al., 2011). In addition, oestrogens and ER agonists up-regulated the 

expression of ERα and ERβ in rat primary microglia and attenuated LPS toxicity-

induced cell death (Smith et al., 2011). Furthermore, the elevated enzymatic 

levels of iNOS and COX-2 induced by LPS attenuated by oestrogens through 

activation of ERβ in BV2 microglia (Baker et al., 2004). 17β-oestradiol reduced 

LPS-induced microglial activation through increasing the expression of ERα in 

the male and ovariectomised female rats (Tapia-Gonzalez et al., 2008). It 

inhibited the expression of pro-inflammatory mediators including MCP-1, MIP-2, 

and TNFα mediated by the ligand LPS in the AD model (Vegeto et al., 2006). 

Oestrogens increased the level of the anti-inflammatory cytokine IL-10 and 

reduced the levels of TNFα and IFN-γ in LPS-stimulated microglial N9 cells. 

Oestrogens inhibited LPS-induced an increase in IL-6 and IL-1β in the brains of 

ovariectomised mice through ERα/ERβ-dependent mechanism as it did not 

attenuate LPS-induced neuroinflammation in ERα knockout and ERβ knockout 

mice (Brown et al., 2010). The mechanism of the anti-inflammatory effect of 

oestrogens is mediated by the suppression of signallings including NF-B in 

microglia (Baker et al., 2004, Kalaitzidis and Gilmore, 2005, Wu et al., 2013), 

MAPK (Kato et al., 1995) and Akt (Zhang et al., 2001). ERs regulate the anti-

neuroinflammatory effect of oestrogen by down-regulating the expression of 

NF-B-dependent target genes (Chadwick et al., 2005, Suuronen et al., 2005). 

For example, 17β-oestradiol significantly inhibited LPS-induced NF-B signalling 

pathway activation in microglia (Ghisletti et al., 2005).  

Finally, several observations have found that the chronic use of oestrogen 

replacement therapy results in deleterious effects including breast cancer 

because of the non-specific oestrogenic effects of oestrogens (Nilsson et al., 

2001, Lai et al., 2013). Therefore, it is necessary to find and develop some safe 

oestrogen-like compounds, for instance phytoestrogens that lack the adverse 

impacts of endogenous 17β-oestradiol in order treat or to slow the progression of 
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neuroinflammation-mediated neurodegenerative disorders (Borrelli and Ernst, 

2010). Finding synthetic or natural substances as specific ER agonists that 

possess an anti-neuroinflammatory effect, but lack the growth-promoting activity 

of oestrogen on the uterus and the mammary glands might be used against CNS 

inflammation such as AD and PD (Cvoro et al., 2008, Chakrabarti et al., 2014). 

 Role of AMPK signalling in neuroinflammation 

Adenosine monophosphate (AMP)-activated protein kinase (AMPK), as a 

heterotrimeric protein kinase complex, is expressed in a wide variety of cells in 

the CNS including neurons and microglia (Carling et al., 2012). AMPK is involved 

in the regulation of cellular energy including the metabolism of glucose and lipids 

during the physiological and pathological states (Viollet et al., 2010). Canonically, 

it serves as a cellular energy sensor to restore cellular energy haemostasis in 

pathological conditions such hypoglycaemia, brain ischemia, as well as 

neuroinflammatory and oxidative responses (Hardie et al., 2006, Ronnett et al., 

2009, Ramamurthy and Ronnett, 2012). AMPK is activated during the metabolic 

and oxidative stresses to protect the cells such as neurons against intracellular 

depletion of ATP by switching-off ATP-consuming biosynthetic pathways (Carling 

et al., 2012, Hardie et al., 2006). At high AMP level and low ATP level, AMPK is 

phosphorylated via upstream kinases and this results in the phosphorylation of 

down-stream targets that increase or balance the cellular level of ATP. The main 

AMPK-activating kinase is liver kinase B1, a protein expressed ubiquitously and 

recruited for AMPK phosphorylation after an elevation of the AMP/ATP ratio (Sid 

et al., 2013).  

Many studies have suggested that AMPK play a central role in the modulation of 

inflammation by regulating inflammatory gene expression (Viollet et al., 2010, Sid 

et al., 2013). AMPK has been identified as an anti-inflammatory and 

neuroprotective protein in a wide variety of models. Regarding the role of 

microglia in neuroinflammation, a study showed that the activation of AMPK 

results in the inhibition of several IFN-γ-induced cytokines and chemokines in 

primary microglia (Meares et al., 2013). Several experiments have suggested that 

some compounds inhibit neuroinflammation through AMPK activation in LPS-

activated microglial cells (Chen et al., 2014, Giri et al., 2004, Park et al., 2016, 

Lin et al., 2014a). In addition, AICAR protects hippocampal neurons against 
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glucose deprivation and glutamate excitotoxicity through the up-regulation of 

AMPK (Culmsee et al., 2001). However, AMPK activity has been involved in the 

pathology of neuroinflammation and neurodegenerative diseases such as AD 

(Cai et al., 2012). Several studies have shown that AMPK activation results in 

inhibiting amyloidogenesis in the neurons of AD models (Novikova et al., 2015). 

For example, Aβ production is increased in the cortical neurons of AMPK-

knockout rat and the activation of AMPK results in the inhibition of Aβ deposition 

(Won et al., 2010). In the same study, AICAR is noted to decrease Aβ production 

through activating AMPK signalling. Furthermore, down-regulation of AMPK is 

responsible for inhibiting resveratrol-reduced Aβ accumulation in primary mouse 

neurons (Vingtdeux et al., 2010). Therefore, increasing the activity of AMPK to 

improve energy metabolism in the CNS is one of the strategies that is needed to 

prevent neurodegenerative disorders (Ronnett et al., 2009). 

 Role of hydrogen peroxide in neuroinflammation  

Hydrogen peroxide (H2O2) is an important molecule in the host defence against 

pathogens and dead cells through induction of several antioxidant enzymes from 

microglia (Marinho et al., 2014, Veal et al., 2007). However, it is known that H2O2 

is one of the major ROS that induce neuroinflammation and neurotoxicity 

(Eguchi et al., 2011, Jekabsone et al., 2006). Excessive production of H2O2 due 

to the over-activation of microglia is responsible for oxidative stress and 

neuroinflammation because H2O2 reacts with free iron to form more toxic 

molecules called hydroxyl radicals (Marinho et al., 2014). H2O2 is produced in 

response to inflammatory ligands such as LPS, Aβ and cytokines (Veal et al., 

2007). It is noted that H2O2 is one of the ligand that induces neuronal apoptosis 

in the CNS.   Therefore, it is necessary to attenuate the excessive production of 

H2O2 from hyper-actived microglia in the CNS. H2O2 has been used extensively 

in a variety of cell culture and animal models to study the association between 

neuroinflammation, oxidative stress and neurodegeneration. An increased iNOS 

expression and subsequently, NO production induced by LPS is significantly 

potentiated by H2O2 secreted from BV2 microglia (Eguchi et al., 2011).  

 Specific Aim and Objectives 

This part of research was aimed at investigating whether diosgenin modulates 

neuroinflammation through activation of other important signalling pathways in 
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BV2 cells. Therefore, this study sought to address the following specific 

objectives: 

I. To determine whether AMPK pathway plays a role in the modulation of the 

anti-neuroinflammatory activity of diosgenin in BV2 microglia. 

II. To identify whether ER expression and activation are modulated by 

diosgenin in microglial BV2 cells.  

 Methods 

 BV2 cell culture   

Microglial BV2 cells were cultured as described in section 2.2.1. BV2 cells were 

left untreated in RPMI 1640 medium as a negative-control. In addition, BV2 cells 

were treated with 5, 10, and 20 µM of diosgenin for 30 minutes. After that, the 

plate was incubated for the indicated time, according to each experiment, as 

shown in the text.  

 HT22 cell culture 

HT22 cells were cultured as described in section 2.2.3. 

 Drug treatment  

In order to investigate the effect of diosgenin on the amounts of ERβ and AMPK, 

BV2 cells were seeded out at a concentration of 2.0 x 105 cells/mL (2 mL/well) in 

a 6-well plate and then incubated for 48 hours. The culture medium was replaced 

by serum-free RPMI 1640 medium for two hours. BV2 cells were treated with 5, 

10, and 20 µM of diosgenin and then incubated for 24 hours. The cells left 

untreated were used as a negative control.  

To investigate whether diosgenin exerts an anti-neuroinflammatory effect by 

blocking ERβ in LPS-stimulated BV2 cells, the cells were seeded out at a 

concentration of 2.0 x 105 cells/mL (2 mL/well) in a 6-well plate and then 

incubated for 48 hours. Next, the cultured media were replaced by serum-free 

RPMI 1640 medium for two hours. The cells were treated with 20 µM of diosgenin 

for 30 minutes, and then stimulated with 100 ng/mL of LPS for 24 hours. In 

addition, the cells were pre-treated for 30 minutes with 100 mM of fulvestrant, 

followed by 20 µM of diosgenin for another 30 minutes, and then stimulated with 

100 ng/mL of LPS for 24 hours. Further, the cells were stimulated with only 100 

ng/mL of LPS for 24 hours and used as positive-control. Cells were left untreated 
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in a serum- and phenol red-free RPMI 1640 medium as negative-control. After 

that, the cultured media were collected and centrifuged at 1200 g at 4°C for 5 

minutes. The supernatants were stored at - 80°C for short term future use to 

measure the levels of the released pro-inflammatory mediators NO, TNFα, IL-1β, 

and PGE2 from the microglial cells using commercially available kits. The cells 

were treated in the same manner, but the incubation time of LPS was one hour 

in order to determine whether diosgenin attenuated LPS-induced p65 

phosphorylation through activation of ERβ. 

 Griess assay  

This assay was used to determine whether diosgenin exerts an anti-

neuroinflammatory effect by blocking ERβ in LPS-stimulated BV2 cells. The level 

of NO in the cultured medium was determined as described in section 2.2.6. 

 Enzyme-linked immunosorbent assay  

Like the Griess assay, ELISA method was used to establish whether diosgenin 

induced an anti-neuroinflammatory effect through a reduction in the levels of pro-

inflammatory cytokines after activation of ERβ. The levels of microglial cytokines 

TNFα and IL6 in the cultured medium were measured as described in 2.2.7.  

The effect of diosgenin on LPS-induced p65 phosphorylation in the absence and 

presence of ER antagonist in BV2 cells was determined by measuring the levels 

of phospho-NF-Bp65 in the nuclear extracts. The concentrations of phospho-

NF-Bp65 in the nuclear extracts were determined using phospho-NF-Bp65 

InstantOne ELISA Kit (Biolegend), according to the manufacturer’s protocol as 

described in section 3.3.9. 

 PGE2 enzyme immunoassay  

An EIA was used to investigate the anti-neuroinflammatory effect of diosgenin on 

ERβ in LPS-stimulated BV2 cells. The level of this pro-inflammatory factor was 

measured as described in section 2.2.8.  

 Preparation of cytoplasmic and nuclear protein lysates 

After treatment of the cells, the cytoplasmic and nuclear lysates were prepared 

as described in section 2.2.11. Determination of protein concentrations in each 

sample was measured as showed in section 2.2.12. 
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 Western blotting 

A western blotting protocol was used as described in section 2.2.13. The 

cytoplasmic lysates were prepared to study the expression of ERβ and AMPK 

phosphorylation following diosgenin treatment. The nuclear lysates were 

prepared to observe the effect of diosgenin on NF-B signalling after blocking of 

ERβ in LPS-activated BV2 microglia.  

 Cell viability  

The neuroprotective effect of diosgenin against H2O2-induced HT22 neuronal 

death was investigated using an MTT assay. 50 µM of H2O2 (Sigma) was used in 

order to induce HT22 neuronal death. HT22 cells were seeded out at a 

concentration of 2.0 x 105 cells/mL (200 µL/well) in a 96-well plate and incubated 

for approximately 48 hours. After changing the media, the cells were treated with 

5, 10, and 20 µM of diosgenin and incubated for 30 minutes, and subsequently 

stimulated with 50 µM of H2O2 for 24 hours. The cells treated with 50 µM of H2O2 

for 24 hours were used as a positive control and those left untreated were used 

as a negative control. The absorbance was measured to determine the cell 

viability of HT22 cells as previously described in section 2.2.5.   

 Statistical Analysis 

Values were expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post-

hoc Student Newman-Keuls test. The ANOVA compares the mean between the 

groups and determine whether those means are significantly different from each 

other. Specific groups that were significantly different from each other were 

evaluated with post-hoc Student Newman-Keuls test with multiple comparisons. 

Calculations for statistical analysis were performed with Graph Pad Prism 

software version 5. Differences were significant at p<0.05. &p<0.05, &&p<0.01, 

&&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS- or H2O2-treated control. @p<0.05, @@p<0.01, @@@p<0.001 as 

compared between the LPS + diosgenin-treated cells. 
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 Results 

 Diosgenin increased AMPK phosphorylation in BV2 cells  

As AMPK signalling plays a key role in the modulation of neuroinflammation 

(Hardie et al., 2006, Ronnett et al., 2009, Ramamurthy and Ronnett, 2012), the 

effect of diosgenin on AMPK phosphorylation was investigated in BV2 microglia. 

Compared to the untreated control, AMPK phosphorylation was significantly 

increased by diosgenin in BV2 cells. It was found that treatment with diosgenin 

at 5 µM and 10 µM enhanced the levels of p-AMPK (0.5- and 1.48-fold increase, 

respectively), when compared to control BV2 cells (Figure 4.1). In addition, 2.6-

fold induction (p<0.001) in the p-AMPK level was detected with 20 µM of 

diosgenin, compared to the control (Figure 4.1).  

 

Figure 4.1 Effect of diosgenin on AMPK phosphorylation in BV2 cells. 

BV2 cells were treated with diosgenin for 24 hours. The levels of AMPK were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 
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 Diosgenin inhibited H2O2-mediated HT22 neuronal death 

Hydrogen peroxide (H2O2) is one of the microglial pro-inflammatory ROS 

molecules that induce neuroinflammation and neurotoxicity (Marinho et al., 

2014). Therefore, the neuroprotective effect of diosgenin against H2O2-induced 

HT22 neuronal death was investigated. Results in Figure 4.2 show that exposure 

of HT22 neurons to H2O2 significantly (p<0.001) resulted in 74% neuronal death, 

compared to the control cells (Figure 4.2). However, it was observed that pre-

treatment with 20 µM of diosgenin significantly produced an increase in the HT22 

cell viability, compared to the H2O2 control (Figure 4.2).  

 

Figure 4.2 Effect of diosgenin on H2O2-induced HT22 neuronal cell death.  

HT22 cells were treated for 30 minutes with diosgenin, and then stimulated with 50 µM of H2O2 

for 24 hours. After that, the viability of HT22 cells were determined by an MTT assay. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to H2O2-treated control.  

 Diosgenin increased the levels of ERβ protein in BV2 microglia 

The ERβ subtype oestrogen receptor is highly expressed in BV2 microglial cells. 

A number of studies have indicated that estrogen receptors play an important role 

in the microglia-triggered neuroinflammatory response (Laredo et al., 2014, 

Spence and Voskuhl, 2012). Thus, this study examined the effect of diosgenin on 
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the expression of ERβ in BV2 cells. Immunoblotting analyses showed detectable 

levels of ERβ in untreated BV2 cells (Figure 4.3). Furthermore, a significant and 

concentration-dependent increase (p<0.001) in the levels of ERβ protein was 

reported with diosgenin (5-20 M) treatment, compared to the untreated cells 

(Figure 4.3).  

 

Figure 4.3 Effect of diosgenin on ERβ levels in BV2 cells.  

BV2 cells were treated with diosgenin for 24 hours. The total levels of ERβ were measured as 

described above. Data are expressed as the mean ± SEM of three independent experiments. 

Data were analysed using one-way ANOVA for multiple comparisons with post hoc Student 

Newman-Keuls test. &p<0.05, &&p<0.01, &&&p<0.001 compared with untreated control. 

 Diosgenin did not inhibit neuroinflammation in LPS-stimulated 

BV2 microglia pre-treated with fulvestrant  

Since diosgenin produced an anti-neuroinflammatory effect in LPS-stimulated 

BV2 microglia (Chapter 2) and up-regulated ERβ protein in untreated BV2 cells, 

it was next assessed whether the compound produced an ERβ-dependent 

inhibition of neuroinflammation in BV2 microglia. To achieve this, cells were 
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treated with the ER antagonist fulvestrant, then diosgenin (20 M). After 24-hour 

incubation, the levels of pro-inflammatory mediators in the cultured media were 

measured. Results showed that LPS stimulation induced a significant increase 

(p<0.001) in the concentrations of the pro-inflammatory mediators (NO (11.1 ± 

1.2 µM), PGE2 (614.3 ± 92.8 pg/mL), TNFα (739.6 ± 106.4 pg/mL) and IL-6 (465.6 

± 30.4 pg/mL)) in LPS-stimulated BV2 microglial cells, in comparison with the 

untreated cells. However, diosgenin significantly reduced the microglial levels of 

these factors (NO (6.1 ± 0.2 µM), PGE2 (269.6 ± 63.1 pg/mL), TNFα (330.5 ± 79.7 

pg/mL) and IL-6 (185.4 ± 12.7 pg/mL)), compared to the LPS-control. However, 

Figures 4.4a-d show that diosgenin did not reduce the levels of pro-inflammatory 

mediators (NO (9.7 ± 1.2 µM), PGE2 (553.1 ± 70.5 pg/mL), TNFα (694.7 ± 95.03 

pg/mL) and IL-6 (448.0 ± 30.9 pg/mL)) in LPS-stimulated BV2 microglia in the 

presence of fulvestrant (100 nM), compared to the LPS-activated BV2 microglia 

pre-treated with diosgenin.  
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Figure 4.4 Effects of 20 µM of diosgenin on the LPS-induced an increase in 
production of NO, PGE2, TNFα and IL-6 in BV2 cells in the absence or 
presence of fulvestrant. 

The levels of NO, PGE2, TNFα and IL-6 were measured as described above. Data are expressed 

as the mean ± SEM of three independent experiments. Data were analysed using one-way 

ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, &&p<0.01, 

&&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 compared to 

LPS-treated control. @p<0.05, @@p<0.01, @@@p<0.001 as compared between the LPS + 

diosgenin-treated cells. 

Also, in comparison to untreated cells, LPS stimulation resulted in a significant 

increase in the levels of p-p65 (p<0.001) (Figure 4.5). However, pre-treatment of 

cells with diosgenin (20 µM) resulted in a significant reduction (p<0.05) in the p-

p65 level, compared to the LPS-control (Figure 4.5). By contrast, diosgenin did 

not reduce the elevated level of p-p65 in LPS-activated cells in the presence of 

fulvestrant (100 nM), compared to LPS-activated BV2 microglia pre-treated with 

diosgenin (Figure 4.5).  
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Figure 4.5 Effect of 20 µM of diosgenin on the LPS-induced increase in the 

nuclear level of p-NF-Bp65 in BV2 cells.  

The nuclear levels of p-NF-Bp65 (p-p65) were measured as described above. Data are 

expressed as the mean ± SEM of three independent experiments. Data were analysed using one-

way ANOVA for multiple comparisons with post hoc Student Newman-Keuls test. &p<0.05, 

&&p<0.01, &&&p<0.001 compared with untreated control; and *p<0.05, **p<0.01, ***p<0.001 

compared to LPS-treated control. @p<0.05, @@p<0.01, @@@p<0.001 as compared between the 

LPS + diosgenin-treated cells. 
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 Discussion 

Several signalling pathways play an important role in the pathogenesis of 

neuroinflammation. Each cellular cascade is regulated by molecule(s) or 

mediator(s) that inhibit or induce neuroinflammatory processes. For example, the 

estrogen, 17β-oestradiol and the protein AMPK are important endogenous 

substances that reduce microglia-mediated neuroinflammation. However, ROS 

including H2O2 are one of the major molecules that are known to induce 

neuroinflammation and therefore, neurotoxicity (Jekabsone et al., 2006, Eguchi 

et al., 2011). 17β-oestradiol as an anti-neuroinflammatory and neuroprotective 

hormone acts on two common receptors; ERα and ERβ that activate several 

target genes (Spence and Voskuhl, 2012, Smith et al., 2011, Laredo et al., 2014). 

AMPK is a protein that modulate the cellular metabolism and anti-

neuroinflammatory effect in the CNS (Peixoto et al., 2017, Ronnett et al., 2009). 

This study has demonstrated that diosgenin increased the phosphorylation of 

AMPK. A study has shown that diosgenin blocked the inflammation-mediated 

endothelial dysfunction by activating the AMPK pathway (Chen et al., 2016). In 

another study, diosgenin prevented the development of non-alcoholic fatty liver 

disease via AMPK phosphorylation (Cheng et al., 2017). However, this is the first 

report showing that disogenin activated AMPK in BV2 microglia. This observation 

demonstrates that the activation of AMPK possibly contributes to the inhibition of 

neuroinflammation by diosgenin (Ronnett et al., 2009, Ramamurthy and Ronnett, 

2012). Further studies are however needed to determine whether the compound 

produce any modulatory effect on AMPK/sirtuin 1 survival mechanisms in the 

microglia, as part of its molecular mechanisms of action in activated microglia.  

Diosgenin is classified as a phytoestrogen because its chemical structure is 

similar to that of steroids such as 17β-oestradiol (Bak et al., 2016, Scott et al., 

2001). Consequently, it was hypothesised that diosgenin may, at least in part, 

mediate its anti-neuroinflammatory effect through interactions with the ERβ 

protein in BV2 microglia. Results showed that diosgenin increased the expression 

of ERβ in BV2 microglia, suggesting that diosgenin possibly plays a role in 

microglial ERβ-mediated gene expression and oestrogen signalling. This finding 

also provides evidence that ERβ is expressed in BV2 microglial cells as reported 

in other studies (Baker et al., 2004, Saijo et al., 2011). It is important to note that 
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elevated levels of the ERβ protein may suggest a possible involvement of a 

nonclassical effect of diosgenin on microglia as observed with 17β-oestradiol in 

another study (Liu et al., 2005). Oestrogens produce anti-inflammatory effects 

through the activation of ERβ in microglia (Baker et al., 2004). Thus, the 

increasing microglial ERβ protein expression by diosgenin may be partially 

involved in the mediation of its anti-inflammatory effect in this present study. 

In order to determine whether the anti-neuroinflammatory activity of diosgenin is 

mediated at least in part, through ERβ, the microglial ERβ receptor was blocked 

with the ER antagonist fulvestrant. Results showed that diosgenin did not inhibit 

the LPS-induced neuroinflammation in LPS-activated BV2 cells pre-treated with 

fulvestrant. This seems to suggest a role for microglial ERβ in the inhibition of 

microglial pro-inflammatory mediator secretion induced by LPS. Similarly, 

diosgenin did not block NF-B activity in LPS-stimulated BV2 cells pre-treated 

with fulvestrant. A number of studies have reported that diosgenin produced an 

oestrogenic effect (Rao and Kale, 1992, Alcantara et al., 2011, Wu et al., 2015), 

which may explain the observed role of oestrogen receptors in the effect of this 

compound. Interestingly, it has been reported that the membrane translocation 

and transcriptional activity of ER during proliferation of rat TM4 cells is activated 

by diosgenin (Wu et al., 2015).  

Diosgenin has a neuroprotective effect in HT22 neuronal death induced by H2O2. 

Similar protective actions have been reported in other studies. For instance, 

diosgenin showed a protective mechanism against H2O2-induced oxidative stress 

in human vascular endothelial cells (Gong et al., 2010) as well as H9C2 cells 

(Jamshidi et al., 2016). This finding suggests that diosgenin inhibits neuronal 

damage due to an excessive generation of ROS such as H2O2.  

In summary, it is possible that the activation of AMPK by diosgenin in the 

microglia could be another important anti-neuroinflammatory mechanism to 

support the previously observed anti-neuroinflammatory effects of this 

compound. In addition, an activation of ERβ signalling might be involved in the 

inhibitory effect of diosgenin in LPS-induced neuroinflammation. Further studies 

are needed to substantiate these preliminary results.  
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General Discussion and Conclusion 
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 General discussion 

The steroidal saponin diosgenin is a natural product that exhibits numerous 

biological properties, such as antioxidant (Son et al., 2007), anti-inflammatory (Ku 

and Lin, 2013, Tewtrakul and Itharat, 2007) and antihyperlipidaemic (Gong et al., 

2010) effects. The anti-inflammatory effects of the compound have been 

extensively investigated in a wide variety of inflammatory models. However, to 

date the anti-neuroinflammatory effect of diosgenin has not yet been investigated. 

In the current investigation, the anti-inflammatory effect of diosgenin was 

demonstrated in LPS-stimulated BV2 microglia.  

Several studies have suggested that the microglial pro-inflammatory factors 

including NO, TNFα, IL-6, PGE2 and ROS are involved in the pathogenesis of 

neurodegenerative diseases (González et al., 2014, Viviani et al., 2014). Over-

activation of microglia results in an uncontrolled neuroinflammtory process that is 

responsible for neuronal loss and death (Lucas et al., 2006, Glass et al., 2010). 

This study has established that diosgenin inhibited the production of NO as well 

as the prostaglandin PGE2 through the down-regulation of iNOS and COX-2, 

respectively in LPS-activated BV2 microglia. In the same culture model, 

diosgenin attenuated the production of the most important pro-inflammatory 

cytokines TNFα, IL-6 and IL-1β. In contrast, diosgenin increased the level of the 

anti-neuroinflammatory cytokine IL-10 in LPS-stimulated cells. Furthermore, 

diosgenin blocked the generation of ROS, but did not affect NADPH homeostasis 

in LPS-activated BV2 cells. Therefore, these results suggest that diosgenin 

produced an anti-neuroinflammatory effect against LPS-induced 

neuroinflammation in BV2 microglia. This outcome is consistent with the data 

obtained from other studies. For example, diosgenin induced anti-inflammatory 

activity against LPS-induced inflammation in mouse primary peritoneal 

macrophages (Singh et al., 2014), and in mouse lung injury (Gao et al., 2013). In 

addition, diosgenin attenuated the production of pro-inflammatory mediators in 

the co-culture model of 3T3-L1 adipocytes with RAW 264 macrophages (Hirai et 

al., 2010), and in RAW 264.7 murine macrophages (Jung et al., 2010a).  

It is well known that the transcription factor NF-B is the most important protein 

which controls the expression of a diverse variety of pro-inflammatory genes such 

as iNOS and COX-2 in microglia (Förstermann and Sessa, 2011, Habashi et al., 
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2016, Yagami et al., 2016). In fact, the hyper-activation of microglial NF-B 

cascade results in neuroinflammation and neuronal death, and subsequently 

neurodegenerative disorders (Hoesel and Schmid, 2013). Therefore, targeting 

the NF-B signalling pathway is one of the most important strategy to slow the 

progression of microglia-induced CNS inflammation. NF-Bp65/p50 is one of the 

five members of mammalian NF-B transcription factors family that regulates the 

immune and inflammatory responses (Lawrence, 2009). Upon stimulation of the 

microglial cell with the inflammatory ligand (e.g. LPS), IKK is phosphorylated in 

order to phosphorylate the inhibitory protein p-IκB-α in the cytoplasm. Next, the 

dimer NF-B is liberated from IκB-α and translocated into the nucleus. After that, 

the phosphorylated subunit p65 binds to specific DNA sites on the promoter of 

the target genes to transcript pro-inflammatory mediators that regulate the normal 

immune response (Vega and de Andres Martin, 2008). The results of this 

research showed that diosgenin prevents the phosphorylation, nuclear 

translocation and then the DNA-binding activity of the subunit NF-κBp65 in LPS-

activated BV2 microglia. Moreover, the inhibitory effect on LPS-induced NF-B 

activation was mediated by inhibiting phosphorylation and degradation of IκB-α. 

Diosgenin did not block the phosphorylation of the complex protein IKK. Based 

on these observations, it is proposed that diosgenin inhibits LPS-mediated 

neuroinflammation via targeting IB/NF-B cascade in BV2 microglial cells. 

The p38 MAPK and Akt signalling cascades mediate microglial activation and 

neuroinflammatory responses (Bachstetter et al., 2011, Ramesh, 2014, Maiese 

et al., 2012, Cohen, 2013). Blocking the activity of these proteins is another 

potential stratgy for preventing neuroinflammation. This work shows that 

diosgenin attenuated LPS-induced Akt phosphorylation, but did not inhibit p38 

phosphorylation due to LPS stimulation of BV2 microglia. A number of studies 

have supported these results. Diosgenin blocked NF-B activity, but did not inhibit 

p38 MAPK activity in the peripheral immune cells macrophages (Jung et al., 

2010a). In contrast, diosgenin attenuated p38 activation in LPS-induced lung 

injury (Gao et al., 2013). In addition, this compound interfered with death 

receptor-5 through p38 activation and Akt inactivation in colon cancer cells 

(Lepage et al., 2011). Lin et al. showed that diosgenin attenuated ROS generation 

via suppression of p38 and Akt pathways in the activated mouse neutrophils (Lin 
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et al., 2014b). The significant differences between these outcomes might be due 

to a number of factors including cell line type, culture environment and the 

concentrations of diosgenin as well as the pro-inflammatory ligands.  

Several studies have demonstrated that the antioxidant pathway of Nrf2 is 

important in the attenuation of neuroinflammation. Nrf2 is not only an antioxidant 

protein that regulates the expression of detoxifying enzymes, but also is anti-

inflammatory factor to regulate NF-B-mediated anti-inflammatory processes. 

Nrf2 plays important role in modulation of uncontrolled neuroinflammation and 

oxidative stress (Innamorato et al., 2008, Sandberg et al., 2014). In the present 

study, diosgenin increased the expression of the antioxidant enzymes HO-1 and 

NQO1, possibly due to its ability to activate the Nrf2/ARE signalling in BV2 

microglia. This study also established that the presence of Nrf2 is a requirement 

for the NF-B-mediated inhibition of neuroinflammation by diosgenin. A similar 

inhibitory mechanism has been reported for other compounds (Lee et al., 2011, 

Kang et al., 2013, Park et al., 2015b, Jayasooriya et al., 2014). An interesting 

outcome of this study is the observed activation of microglia AMPK by diosgenin. 

Considering the inhibitory role of AMPK in neuroinflamation (Ronnett et al., 2009, 

Ramamurthy and Ronnett, 2012), this is a line of investigation that deserves 

future attention.  

Diosgenin demonstrated neuroprotective effects in both neuroinflammation- and 

H2O2-induced HT22 neuronal death. This is a significant outcome, as there is a 

clear evidence indicating that diosgenin is a potential chemical scaffold for the 

identification of novel anti-inflammatory and neuroprotective compounds for 

neurodegenerative disorders. To fully exploit the therapeutic potential of 

diosgenin in this regard, it would be necessary to establish whether this 

compound or synthesised derivatives cross the BBB and acts in the CNS. In 

general, compounds cross the BBB by a wide variety of mechanisms including 

transmembrane diffusion and saturable transporters. It is well known that most of 

drugs cross the BBB by transmembrane diffusion because they are small (low 

molecular weight) molecules and soluble-lipid at the same time (Banks, 2009, 

Pajouhesh and Lenz, 2005). Regarding the importance of scaffolds in drug 

discovery, novel anti-neuroinflammatory compounds were obtained by 

assembling fragments derived from resveratrol (stilbene) and GIBH-130 

(piperazinyl pyrimidine) using BV2 microglia (Fang et al., 2018). 
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The observed increase in the expression of ERβ in BV2 microglia by diosgenin is 

another novel outcome of this study that requires further pharmacological 

exploration. This assertion is further strengthened by results showing that the 

anti-inflammatory activity of diosgenin in BV2 microglia was lost in the presence 

of the oestrogen receptor antagonist fulvestrant. Therefore, in this study, the 

possible molecular mechanism of anti-neuroinflammatory action of diosgenin was 

mediated by inhibiting IκB-α phosphorylation/degradation of NF-B cascade 

through ERβ-mediated activation of Nrf2. 

 General conclusion 

The data obtained from this study suggest that diosgenin inhibited NF-B-

mediated neuroinflammation through molecular mechanisms that are possibly 

closely linked to Nrf2/ARE antioxidant protection system BV2 microglia cells. It 

was demonstrated that the compound is neuroprotective in both 

neuroinflammation and oxidative stress-mediated neuronal damage, an action 

that is important in neurogeneration. The effects of the compound on processes 

linked to estrogen receptor suggests a potential estrogenic activity which needs 

further investigation. Activation of microglial AMPK is a property which further 

demonstrates that diosgenin may inhibit neuroinflammation through activation of 

endogenous systems which block the transcriptional activity of NF-B. 

  Future work 

It is important to investigate the effects of diosgenin in transgenic animal models 

of neuroinflammation and in models of neurodegenerative disorders such as 

Alzheimer’s disease. The therapeutic benefit of compounds with potential in 

neurodegenerative disorders can only be applied if they are able to permeate the 

BBB and act in the CNS. Consequently, in vitro models employing hCMEC/D3 

microvascular cells would be an excellent tool for investigating the BBB 

permeability of diosgenin. This study has opened up a new question about the 

potential oestrogenic effect of diosgenin. Studies are required to establish the 

potential pharmacological/therapeutic implications of this effect. Research 

questions need to focus on neuroprotection without peripheral actions such as 

proliferation of breast and ovarian cancer cells, a phenomenon that is common 

to many known synthetic and natural estrogenic compounds.   
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