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Abstract

Automated planning is an important research area of Artificial Intelligence (AI). In classical
planning, which is a sub-area of automated planning, attention is given to ‘agile’ planning,
i.e., solving planning problems as quickly as possible regardless of the quality of solution
plans. Obtaining solutions quickly is important for real-time applications as well as in
situations of imminent danger. Post-planning optimisation techniques for improving the
quality of solution plans are a good option for improving poor quality plans. Since such
techniques are run as post-processing, this avoids situations where there is a risk of not
having solution plans in time. This thesis focuses on an important sub-area of post-planning
optimisation; that is, on identifying and removing redundant actions from solution plans. In
particular, this study extends the existing Action Elimination and Greedy Action Elimination
algorithms by introduce two approaches to improve their efficiency. The AE and GAE
algorithms are thereby developed into the UAIAE and UGAIAE systems respectively. The
key to our approaches is based on optimise the process while keeping the same ‘elimination
power’ (identifying and removing the same number of redundant actions). First approach
improves the algorithms by considering situations where inverse actions are redundant, while
the other identifies a subset of actions that cannot be present in any redundant actions set.
This subset is named justified unique actions. The study’s approach to identifying this subset
has been motivated by a promising heuristic approach called ‘landmarks’, which are facts or
actions that cannot be eliminated to achieve the goal.

The approaches in this study have been empirically evaluated using several benchmark
domains, as well as several planning engines that participated in the Agile track of the
International Planning Competition 2014. In addition, they have been evaluated against
state-of-the-art optimal and satisficing planners, as well as they are evaluated against a plan
repair technique.

The methods of AE family can be understood as polynomial methods that improve the
quality of a plan by removing redundant actions, or as tools to complement more sophisticated
plan optimisation techniques.
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Chapter 1

Introduction

This chapter gives an introduction to AI planning and to post-planning plan optimisation. It
also presents the contributions of this work and describes the outline of this dissertation.

1.1 AI Planning

In normal English, planning can mean many different kinds of things, such as project
planning, pension planning and urban planning. In Artificial Intelligence, AI Planning is
the research area that studies the process of selecting and organising actions in order to
achieve desired goals (Ghallab et al., 2004). AI planning is an important area for study as
it directly contributes to the scientific and engineering goals of AI. The scientific goal of
AI planning is to understand the principles that make intelligence behaver possible and the
planning is an important component of rational behaver. The engineering goal of AI is to
build autonomous intelligent machines (robots) in which planning engines are embedded in
such a way that the control loop of the machine (robot) consists of sensing, planning and
acting stages. However, AI planning engines generate plans or solutions to given planning
problems which can be passed to an autonomous agent (robot), which can then execute these
plans in order to achieve the desired goals.

Classical Planning is the simplest form of AI Planning. It is interested in finding the
sequence of actions that transforms an initial state to goal state. This sequence is called a
plan. "Classical AI planning is concerned mainly with the generation of plans to achieve
a set of pre-defined goals in situations where most relevant conditions in the outside world
are known, and where the plan’s success is not affected by changes in the outside world."
(Yang, 2012). In other words, the classical planning system relies on a number of restrictive
assumptions (Ghallab et al., 2004), such as a finite number of states, complete knowledge
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about the state, deterministic actions, static state of the world that changes only when an
action is applied, an attainment goal, sequential plans, and implicit time.

1.2 Motivation

In general, classical planning is known to be computationally intractable (PSPACE-complete)
(Bylander, 1994; Erol et al., 1995). There are two different approaches to finding the solution
to a planning problem. One is a satisficing approach that finds any solution, while the other is
an optimal approach that finds the optimal solution with minimal total cost (typically minimal
length). In some cases, these two approaches might differ in terms of complexity, as it has
been proven that in many cases, finding an optimal solution is NP-hard, whereas finding
any solution is tractable (i.e., solvable in polynomial time) (Helmert, 2003, 2006b). Many
modern planning engines are ‘satisficing’; that is, they produce correct but not necessarily
optimal solutions (the number of actions in plans may be higher than necessary). This
allows the planner to be more efficient, which is particularly useful in real time situations
when any correct plan produced is better than no plan. LPG (Gerevini et al., 2004), which
performs a greedy local search on a planning graph, is a good example of the satisficing
planner preference for obtaining a solution quickly rather than one of better quality. Other
well-known satisficing planners, such as Fast Downward (Helmert, 2006a), LAMA (Richter
and Westphal, 2010) and Mercury (Katz and Hoffmann, 2014) use an anytime approach;
they attempt to quickly find an initial plan of possibly low quality, then use the remaining
time to improve upon this plan. Moreover, sequential agile track planners, which were
introduced in IPC2014 (Vallati et al., 2015) such as YAHSP3 (Vidal, 2014), Madagascar
(Rintanen, 2014), PROBE and BFS(f) (Lipovetzky et al., 2014), focus on finding solutions to
challenging problems and do not consider plan quality. In contrast to satisficing planning
engines, optimal planning engines such as SymBA*-2 (Torralba et al., 2014a), GAMER
(Edelkamp and Kissmann, 2008) and its extension cGamer(Kissmann et al., 2014), which
are based on exploring binary decision diagrams, are focused on finding the best (shortest)
plans. However, optimal planning is usually more time-consuming and therefore might be
inappropriate for real-time applications.

Various methods are used to measure plan quality. The two most common methods for
unit cost actions are the length of the plan (number of actions), and the execution time of the
plan (makespan) if the actions can be executed in parallel. For non-uniform action cost, the
total cost of the plan is defined as the sum of the cost of all actions. However, post-planning
plan optimisation is a good option for improving poor quality plans generated by satisficing
planners. It is planner-independent and run as post-processing step. In addition, some
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techniques optimise plans in polynomial time. Such process takes a valid plans and looks for
opportunities to shorten them. This post-processing step is very useful when compromising
between the speed of the planning process and the quality of solutions.

The motivation behind post-planning plan optimization techniques reflects situations
in which there is a need to obtain a plan in a short time, for instance, when a robot is in
imminent danger and must act quickly. However, when the plan is returned, there still may
be some time to optimise it through post-planning analysis.

Different techniques have been proposed for post-planning plan optimization. These
techniques can be classified into two categories:

• Pre-optimisation techniques identify and remove only redundant actions from plans
in polynomial time (e.g., Balyo et al., 2014; Chrpa et al., 2012a; Nakhost and Müller,
2010). These are very important tools to complement more sophisticated plan optimi-
sation techniques.

• More sophisticated techniques are more complex techniques that can find better
(shorter) plans. Examples include a plan optimisation technique based on genetic
programming (Westerberg and Levine, 2001); exploring state space around the plan
in order to find shorter (more optimal) plans (Nakhost and Müller, 2010); replacing
(sub)sequences of actions by shorter ones (Chrpa et al., 2012a; Estrem and Krebsbach,
2012); and decompiling a given plan into subplans and optimising each subplan locally
(Siddiqui and Haslum, 2015; Siddiqui et al., 2013).

This thesis deals with pre-optimisation techniques that improve plan quality by removing
redundant actions. The aim is to improve the efficiency of Action Elimination and Greedy
Action Elimination algorithms, in order to provide a computationally easy method for
determining redundant actions.

1.3 Contribution of the Thesis

This work provides an overview of existing post-planning plan optimisation techniques and
presents the current techniques that improve a given plan in polynomial time. The main
contribution, however, is extension of the Action Elimination (Nakhost and Müller, 2010)
and Greedy Action Elimination (Balyo et al., 2014) algorithms that improve the quality of
a plan by identifying and removing redundant actions by introducing two approaches to
improve their efficiency (reducing the CPU-time ) while keeping the same ‘elimination power’
(identifying and removing the same number of redundant actions). The first approach involves
incorporating an Inverse Action Elimination algorithm feature (Chrpa et al., 2012a,b) into
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them and develop two new algorithms named AIAE and GAIAE respectively. The second
approach involves developing a new algorithm to extract justified unique actions (actions that
cannot be present in any redundant set) in a given plan and integrating this algorithm into
AIAE and GAIAE, thereby developing two further algorithms named UAIAE and UGAIAE
respectively (from the original AE and GAE).

The extraction of this subset of the actions is derived from a promising heuristic approach
called ’landmarks’. The Landmarks are facts or actions that can not be eliminated to achieve
the goal and can be achieved more than once and every solution plan has to achieve them
at some point (Hoffmann et al., 2004). On the other hand, the justified unique actions are
the subset of actions in a given plan that cannot be eliminated from the plan because they
introduce unique facts that achieve the goal.

All the approaches in this thesis are accompanied by the necessary theoretical foundations.
In addition, they are empirically evaluated using several benchmark domains and several
planning engines that participated in the Agile track of the 20141 International Planning
Competition. Furthermore the approaches are also evaluated against anytime planners, an
optimal planner and a plan repair strategy.

1.4 Structure of the Thesis

This thesis is structured into seven chapters including the current one. The current chapter
has briefly introduced the research problem, and the contributions. The reminder of the thesis
is organised as follows:

• Chapter Two provides relevant background information with regard to the AI planning
area. It starts with a brief history of AI planning and presents conceptual model of AI
planning and its components. Subsequently, it covers classical planning representation,
and classical planning techniques.

• Chapter Three reviews and analyses existing plan optimization techniques, providing
a theoretical background in plan optimisation. In addition, it gives deep insight into
pre-optimization algorithms.

• Chapter Four presents this study’ approach to extending the pre-optimization al-
gorithms, Action Elimination and Greedy Action Elimination. It provides some
theoretical foundations for incorporating Inverse Action Elimination into them, and
describes the new extended algorithms.

1https://helios.hud.ac.uk/scommv/IPC-14/
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• Chapter Five deals with the approach to identifying the subset of the actions that
cannot be removed from a plan. It provides the preliminaries on which this approach
is based, as well as some theoretical foundations for identifying them, and describes
a new algorithm that extracts this subset from the plan. Furthermore,it describes
how exploit this subset to improve pre-optimistaion plan process and presents the
implementation of this approach with the extended algorithms.

• Chapter Six presents different empirical evaluations based on several benchmark
domains and several planning engines that participated in the Agile track of the Interna-
tional Planning Competition 2014. It provides the setting of the experiments, compares
between the different classes of actions in the plan, evaluates the contributions of this
study to Action Elimination and Greedy Action Elimination algorithms and provides a
discussion of the results.

• Chapter Seven summaries the contributions of this thesis, and and discusses some
interesting challenges and suggests some areas for future work.





Chapter 2

Background and Terminology

This chapter provides the background relating to AI planning. It covers the basic elements of
planning and classical planning approaches.

2.1 An overview of AI Planning

AI planning became an active research area in the 1960s as a result of various attempts to
create programs aiming to simulate human problem-solving abilities. One of the first such
programs was General Problem Solver (Newell and Simon, 1963). The General Problem
Solver applied actions that reduced the difference between an existing state and a goal state.
Later, a new problem-solver known as STRIPS (Stanford Research Institute Problem Solver)
was introduced (Fikes and Nilsson, 1971). In STRIPS, the states are represented as sets of
propositions, whilst operators are represented by their effects and pre- and post-conditions,
and the solution is a sequence of operators leading from the initial state to a goal state. In
1984, STRIPS was developed to become the planning component for controlling the Shakey
robot(Nilsson, 1984).

Systems in the classical planning era (until the 1990s) applied methods including state-
space or plan-space search, heuristics and hierarchical decomposition, among others. In
1998, the Planning Domain Definition Language (PDDL) was developed in preparation for
the first International Planning Competition (McDermott et al., 1998). Since that time it has
become the standard language for the planning community.

In the last two decades, researchers have successfully applied automated planning in
many applications including space exploration, such as the Mars Rover(Estlin et al., 2003);
manufacturing, such as the software to plan sheet-metal bending operations(Gupta et al.,
1998); and games, such as Bridge Baron(Smith et al., 1998).
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During recent years, automated planning has presented classical approaches that assess
‘toy’ problems, such as those applied in International Planning Competitions which simulate
real-world problems but with numerous simplifications and assumptions. In this kind of
problem, many aspects must be taken into consideration by the planner, such as time and
resources; furthermore, the planner must support more expressing knowledge representations,
plan in dynamic environments, etc. However, there are many issues of practical importance
that can also be modelled as planning problems.

Modern approaches to classical planning almost always use a state-space heuristic search.
In addition, a lot of approaches translate the planning problem into a SAT problem or into a
SAS+ problem. There are also many portfolio approaches where the planner consists of a set
of old planners.

2.1.1 Conceptual Model for Planning

A conceptual model is a simple theoretical device that describes the main components of
a problem needing to be solved, and which helps in terms of gaining understanding and
formalisation (Ghallab et al., 2004). The model shown in Figure 2.1, describes the interaction
between three components: a state-transition system, a controller and a planner

Fig. 2.1 Conceptual Model for Planning (Ghallab et al., 2004)
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2.1.1.1 State- Transition System

A state transition system is also called a discrete-event system (Dean and Wellman, 1991). It
is a formal model of the real-world system for which we want to create plans, and it deals
only with the aspects that the planner needs to reason about(Ghallab et al., 2004). It is
specified by a 4-tuple :∑ = (S, A, E, γ), where:

• S = {s0,s1,s2, · · ·} is a finite set or recursively enumerable of states. These are all
possible states the world can be in.

• A = {a1,a2, · · ·} is a finite or recursively enumerable set of actions. The actions can
be performed by the agent in order to modify the world.

• E = {e1,e2, · · ·} is a finite or recursively enumerable set of events. Events, similarly to
actions, can change the state of the world; however, the agent has no explicit control
over them.

• γ : S×(A∪E)→ 2S is a state-transition function.γ takes two arguments as inputs: state
of the world and actions or events. The result of applying the state transition function
is another set of states (all possible states as result of applying actions or events).

This definition can be used in order to formally define some other concepts,such as
applicability. If a is an action (a ∈ A), and γ(s, a) is not empty, then an action a is applicable
in state s. Applying a in s will take the state transition system to some state in γ(s,a).

State Transition System Example

Figure2.2 describes a state-transition system for a simple domain involving a container in
a pile, a crane that can pick up and put down the container, and a robot that can carry the
container and move it from one location to another. Here, the state transition system for this
domain can be described as follows:

• S = {s0,s1,s2,s3,s4,s5}, the set of states;

• A = {move1,move2, put, take, load,unload}, the set of actions;

• E = {}, there are no events;

• γ is a set of states, but not necessarily a set of all possible states.

Moreover, each state transition leads to just one other state, i.e.,it is deterministic. For
example, γ(s0, take) = s1, γ(s4,move2) = s5 and so on.
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Fig. 2.2 A state- transition system for a simple domain involving a crane and a robot for transporting
containers (Ghallab et al., 2004)

2.1.1.2 Planner

A planner is a solver that takes a planning problem as input and provides the plan or policy
able to solve the planning problem. The planning problem includes a description of the
system ∑, an initial situation and some objective (goal state, set of goal states, set of tasks,
etc.). For example in Figure 2.2 the planning problem P consists of the initial state s1, and a
single goal state s5, and the planner’s output is the plan or policy that solves the planning
problem. The plan is take, move1, load,move2, which is the sequence of actions. This plan
will be passed on to the controller for execution.

2.1.1.3 Controller

The controller takes the plan generated by the planner and executes the actions in the
plan,thereby changing the state of the system, such as in regard to the real world. The system
is not only changed by the actions that are controlled by the controller; it is also changed
because events may occur. In order for the controller to take appropriate actions, it usually
needs to establish the current state of the system so that it receives observations from the
system. The observation can be modelled as an observation function η : S→ O that maps
the state to a set of observations that can be made in the state. Thus, the controller takes the
observation O = η(s), where s is the current state as input.
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As a consequence, the conceptual model is not very realistic as the real world in which we
may wish to execute a plan is different from the description of the state transition system given
to the planner. The reason for this is the description given to the planner is an abstraction
where some real world attributes cannot be (properly) modelled. The controller and the
planner must be powerful in order to overcome the difference between ∑ and the real world.

2.1.2 Types of Planners

Automated planning systems are categorized into three classes, based on their capability to
configure work in different planning domains (Nau, 2007): these classes are domain specific
planners, domain configurable planners and domain independent planners.

2.1.2.1 Domain-Specific Planners

These planners are made for specific planning domains, and are difficult to generalise to other
planning domains. Importantly, they use specific forms of representation and techniques
appropriate to each problem. This category includes most planners that have been developed
in practical applications such as Mars exploration, sheet-metal bending, playing bridge, etc.

2.1.2.2 Domain-Independent Planners

Domain-independent planners accept domain models and problem specifications as inputs
and provide plans as outputs. They deal with problems without specific knowledge of the
domain. In essence, they work in any planning domain. In practical, it is very difficult to
make domain independent planners work well in all possible planning domains. They need
restrictions in terms of the type of planning domain.

2.1.2.3 Domain-Configurable Planners

Domain-configurable and domain-specific planners benefit from domain-specific knowledge,
which serves to restrict the search to a small part of the search space. In a domain-configurable
planner,the planning engine is domain independent engine, but a collection of domain-specific
knowledge (domain description) is given as input to the planner. In other words, domain-
configurable planners are based on domain-independent planners, which can compute and
exploit additional knowledge about planning domains. Consequently, the planning engine
is able to be configured to work in another problem domain by giving it a new domain
description. Existing domain-configurable planners can be divided into two main types:
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hierarchical task network (HTN) planners such as O-Plan (Tate et al., 1994) and Shop2(Nau
et al., 2003), and control-rule planners such as Talplanner(Kvarnström and Doherty, 2000).

However, the domain-configurable planners are based on domain-independent planners,
which can compute and exploit additional knowledge about planning domains.

2.2 Classical Planning Representation

The description of the planning problem is a very important input for any planning algorithm.
Practically, this problem description cannot include a straightforward listing of all possible
states and transitions. Such a listing would make a description extremely large, and the work
required to generate would be greater than that involved in solving the planning problem.
Instead of this, it is important to represent the planning problem in a way which makes it
easy to compute the state and state transitions quickly.

Classical representation is a more expressive form two other representation schemes
including set-theoretic and state-variable representation. It uses a concept originating from
first order logic to generalise the set-theoretic representation. It represents the states as sets
of logical atoms and represents the actions by planning operators.

Definition 1. A planning operator is a 4-tuple o = (name(o), pre(o),e f f−(o),e f f+(o)),
where:

• name(o),the name of the operator, is expressed in the form n(x1, ...x2),where n is termed
as an operator symbol, x1, ...,xk are all of the variable symbols that are appeared
anywhere in o, and n is unique;

• pre(o),e f f−(o)ande f f+(o) are sets of(unground) predicates representing the opera-
tor’s precondition, negative and positive effects respectively.

Definition 2. An action is any grounded instance of planning operators. If a is an action
and s is a state where pre(a)⊆ s, then a is applicable to s, and the outcome of applying a to
s is the state: γ(s,a) = (s\ e f f−(a))∩ e f f+(a).

Definition 3. Let L be a first-order language. The planning domain is a restricted state-
transition system ∑ = (S,A,γ) such that:

• S⊆ 2allgroundatomso f L;

• A=all grounded instances of operators in O

• γ(s,a) = (s\ e f f−(a))∩ e f f+(a) if a is applicable to s;
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• If s ∈ S, then for each action a is applicable to s,γ(s,a) ∈ S.

Definition 4. A classical planning problem is a triple Π = (∑,s0,g) where:

• s0, is the initial state;

• g is the goal(any set of ground predicates);

• {Sg = s ∈ S| s satisfy g }.

A plan is a sequence of actions. A plan solves a planning problem if a consecutive
application of actions in the plan, starting in the initial state, results in a state where all goal
atoms are present (the goal state). A plan solving a given planning problem is optimal if and
only if there does not exist a plan solving the problem that is shorter (in terms of the number
of actions in the action sequence). It should be noted that as well as sequential plans, there
are also parallel plans, sequences of sets of independent actions, or partial-order plans.

2.2.1 Classical Planning Techniques

2.2.1.1 State Space Planning

In the case of state space planning, each node represents a state of the world, actions identify
transitions between nodes, and a plan is a current path through the search space. They can be
based on progression- a forward search from the initial state looking for the goal state- or they
can be based on regression; in other words, a backward search from the goals towards the
initial state. The search in these algorithms is not efficient without good heuristic function,
which estimates the cost from a state to the goal. In the case of STRIPS planners, the cost of
each action is 1; thus, the cost is the number of actions. The basic idea of planning heuristic
is to consider the actions’ effects and the goals that must be achieved, as well as the number
of actions needed to achieve all goals. Finding the exact number is intractable; however most
of the time it is possible to establish reasonable estimates without too much computation. In
heuristic search planners, such as those by (Bonet and Geffner, 1999), the heuristic estimates
are extracted by analysing the planning problem automatically, the heuristic then combined
with standard search algorithms to achieve a search in the state space. FF planner(Hoffmann
and Nebel, 2001) depends on a forward search in the state space, and is guided by a heuristic
that estimates goal distances by ignoring negative effects.

The ability to derive an admissible heuristic that does not overestimate is also possible;
this could be used with an A* search to find optimal solutions. Two approaches can be used:
the first is to derive a relaxed problem from the given problem specification by ignoring
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negative effects; the second approach is the subgoal independence assumption, where the
cost of solving a conjunction of subgoals is approximated by the sum of the costs of solving
each subgoals independently.

2.2.1.2 Planning as Heuristic Search

Heuristic search is regarded as promising approach by state-of-the-art classical planners
such as((Hoffmann and Nebel, 2001);(Gerevini and Serina, 2002);(Hoffmann, 2003) and
(Richter and Westphal, 2010)). They depend on heuristic evaluation function that estimates
the cost of the solution or the distance from any given state to the goal to guide the search
towards goal states. Although the heuristic search is efficient in finding solutions to great
planning problems, the solutions are not optimal due to non-admissible estimates or the
search algorithm used. On the other hand, admissible heuristics are guaranteed to find optimal
plans because they never overestimate the distance to the goal. Although finding the accurate
number is NP-hard, it is possible to find feasible estimates most of the time.

Heuristic estimators are based on four categories: abstractions (e.g.,(Culberson and
Schaeffer, 1998); (Helmert et al., 2014);(Katz and Domshlak, 2010)), delete relaxations (e.
g., (Bonet and Geffner, 2001);(Hoffmann and Nebel, 2001);(Keyder and Geffner, 2008);(Katz
et al., 2013)), critical paths ((Haslum and Geffner, 2000)), and landmarks (e. g., (Richter
et al., 2008); (Karpas and Domshlak, 2009);(Helmert and Domshlak, 2009);(Keyder et al.,
2010)). Currently,the landmarks category play an important role in raising the performance
of satisfying planners.

2.2.2 Plan Space Planning

In plan-space planning,the search space is a set of partial plans; nodes represent partially-
ordered plans and actions transform (refine) one partially-ordered plan into another. Plan
space planning differs from state space planning not only in its search space but also in
its definition of the solution plan. It uses a more general plan structure than a sequence of
actions. The general strategy of delaying a choice during search is referred to as the least
commitment strategy, which avoids adding to the partial plan any constraint that is not strictly
needed for addressing the refinement purpose. Here, planning is considered as two separate
operations: (1) the choice of actions,and (2) the ordering of the chosen actions to achieve
the goal. A plan is defined as a set of planning operators together with ordering constraints
and binding constraints. A partial plan can be defined as any subset of actions, precedence
relations and causal links. The actions keep some useful part of the plan structure, with
precedence relations between actions(e.g. action move-robot-AB must be performed before
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load-pack-B), and causal links are relations of the form: action 1 → (e) action 2, which
means that action 1 has an effect e which is required by action 2. Plan space planners work
back from the goal to achieve each sub-goal in the plan. They refine the partial plan by future
ordering and constraining its actions or by adding new actions anywhere in the partial plan,
as long as the constraints in plan can be satisfied.

2.2.3 Planning as Satisfiability

Planning as satisfiability is very successful approach in classical planning. It was proposed
in 1992 by Kautz and Selman (Kautz et al., 1992). The main idea of planning with SAT is to
transform the planning problem into a propositional satisfiability problem, using efficient
SAT solver in order to extract the solution for the planning problem from a translated CNF
formula. Some modern planners are based on SAT solver for example, Madagascar (Rintanen,
2014) and Freelunch (Balyo, 2014).





Chapter 3

Plan Optimization Background

This chapter presents an overview of state-of-the-art approaches for post-planning plan
optimization. First all approaches in general are presented; thereafter the chapter focus on
pre-optimization approaches that deal with identifying and removing redundant actions from
a solution plan.

3.1 Existing Techniques for Post-Planning Plan Optimiza-
tion

Several techniques have been proposed for post-planning plan optimization. For exam-
ple,using genetic programming in post-planning plan optimization might provide some
promising results (Westerberg and Levine, 2001). However, it is unclear whether such an
approach is domain-independent (i.e. whether it is required to handle code optimization
policies for each domain) and, moreover, the running time of such a method might be high.
Another technique for plan improvement is used in the Aras system (Nakhost and Müller,
2010). This system takes any valid plan as input and improves it by iterating between
two techniques. First,it applies an Action Elimination(AE) algorithm to remove redundant
actions. Secondly,it creates a Plan Neighborhood Graph (PNG) using a breadth-first search
and expanding a limited number of states (nodes) around each state along the plan, which is
often a small subset of the original state space. Then it applies Dijsktra’s algorithm to find a
shorter path in the neighborhood graph, which might lead towards better, i.e. shorter plans.
PNGS is extremely useful for local improvement of plan quality; although this approach
might not work well if some ‘optimizable’ actions lie far from each other in the plan, in some
permutations of the plan, actions can be adjacent.
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AIRS (Estrem and Krebsbach, 2012) improves plans by identifying ‘optimizable’ sub-
sequences of actions according to heuristic estimation, and attempts to find shorter (optimal)
ones by utilising more expensive (optimal) planning techniques and eventually replacing
the longer sequence with the shorter one. The heuristic estimation is used for estimating a
distance between given pairs of states. If states seem to be closer than they are in the plan,
then an optimal or near-optimal planner is used to re-plan between these states.

Other work (Chrpa et al., 2012b) proposes a method that explores plan structures based
on analysing action dependencies and independencies (Chrpa and Barták, 2008) in order
to identify redundant actions or non-optimal subplans. Firstly, the method identifies and
removes all the actions upon which the goal is not dependent, which basically corresponds
to backward justified actions (Fink and Yang, 1992). Secondly, all pairs of inverse actions
reverting each other’s effects are checked for redundancy, which depends only on actions
placed in between the pair of inverse actions, and these are eventually removed. An extension
allowing grouped nested pairs of inverse actions to be removed, which covers situations
when it is only possible to remove all the pairs together and not step by step, it has been
introduced in (Chrpa et al., 2012a). Thirdly, the method identifies pairs of weakly adjacent
actions, i.e., actions that can be adjacent in some permutations of the plan, and if possible
replaces them with a single action. The weak adjacency of action is determined through
use of the action independence relation, which allows swapping adjacent actions without
affecting plans’ validity. An algorithm for determining weak adjacency of actions in plans
has also been used for learning macro-operators (Chrpa, 2010). This approach has presented
various positive aspects, such as being able to reasonably optimize plans in a short time. It is
efficient in combination with fast satisfcing planners (e.g. LPG). Although this method is
quite restricted to specific cases (e.g. inverse actions, non-optimal subplans of length two), it
might be very useful as a preprocessing step to some other method (e.g. PNGS).

It is also worth mentioning an approach that optimises parallel plans (Balyo et al., 2012).
This approach improves plans locally where (parallel) subplans of a pre-defined length
k could possibly be replaced by shorter ones. After all the subplans are processed, k is
incremented and the optimization process is performed until the length of subplans reaches
(or exceeds) a given limit.

Recently, an approach for optimal planning with inadmissible heuristics has been pro-
posed (Karpas and Domshlak, 2012). Shortcut rules are introduced, which are learnt and
applied during the planning process; in concrete terms, they are used for deriving existen-
tial optimal landmarks and for removing redundant actions from partial plans. In general,
shortcut rules can be used to replace some action sequences (totally or partially ordered)
by shorter (or less expensive) action sequences without violating the correctness of plans.
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These rules can be obtained from several sources, including learning them online, during the
planning process, such as plan rewrite rules(Nedunuri et al., 2011). Plan quality optimisation
via block decomposition (Siddiqui et al., 2013) is the most recent work in sophisticated plan
optimization techniques. This method decomposes a given plan using plan deordering into
blocks of partially ordered subplans, which are optimized autonomously using a bounded
cost search and then substituted into the plan. Later this work has since been extended
(Siddiqui and Haslum, 2015). The strength of this method lies in its ability to optimize
subplans where actions may lie far from each other in a totally ordered plan. Another recent
work are introduced by Balyo et al.,2014 adapts the action elimination algorithm reinvented
by Fink and Yang 1992 and Nakhost and Mullure2010 in order to remove more expensive
redundant actions. In addition, Balyo et al.,2014 propose two new algorithms based on partial
maximum satisfiability (PMaxSAT) and weight partial maximum satisfiability (WPMaxSAT)
solving to remove the set of redundant actions with a maximum possible total cost.

3.2 Pre-Optimization Approaches

This section will focus on a subset of state-of-the-art approaches for post-planning plan
optimization. It will present pre-optimization techniques that are interested in identifying
and removing redundant actions from the plan in polynomial time.

3.2.1 Preliminaries

Naturally, actions in sequential plans influence each other in some way. For instance, actions
achieve atoms of other actions that need them as their precondition. These relationships
between actions are called dependencies (Chrpa et al., 2012b), which can be defined as
follows:

Definition 5. let ⟨a1, .....an⟩ be an ordered sequence of actions. Action a j is directly
dependent on action ai (denoted as ai −→ a j) iff i < j, (e f f+(ai)∩ pre(a j)) ̸= /0 and
(e f f+(ai)∩ pre(a j))⊈ ∪ j−1

t=i+1e f f+(at).

Solution plans are thus structured in a way which can be exploited in order to gather
additional knowledge that might be useful on many different occasions, for instance, in
generating macro-operators that can speed up the planning process (Chrpa, 2010; Chrpa
et al., 2014). The de-ordering of solution plans into blocks has been shown to be useful for
optimising these plans (Siddiqui et al., 2013). Analysing the structure of solution plans can
identify actions that if removed from the solution plan, the plan remains a valid. Such actions
are called redundant actions (Chrpa et al., 2012a). The formal definition is as follows:
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Definition 6. Let Π be a planning problem and π its solution plan. The actions ax1 , . . . ,axk ∈
π are redundant in π (or form a set of redundant actions in π) iff π ′ = π \{ax1, . . . ,axk} is a
solution plan of Π.

Identifying the largest set of redundant actions is NP-complete (Nakhost and Müller,
2010). This is not a very desirable result. On the other hand, a lot of redundant actions can
still be identified and removed in polynomial time (Balyo et al., 2014). In literature (Nakhost
and Müller, 2010), a plan procured by removing redundant actions called reduction(π ′), and
the minimal reduction is a lowest-cost plan that can be obtained by removing redundant
actions.

Definition 7. Let π ′ is subsequence of π , π ′ is a reduction of the plan π , symbolized by
(π ,π ′) iff π ′ is also a plan for Π

Definition 8. let π = ⟨a1, .....an⟩ is solution plan to planning problem. The cost of π is the
sum of action costs, cost(π)=∑

n
i=1 f (ai)

Definition 9. π ′ is called minimal reduction of π iff for every π ′′ such that reduct(π ′,π ′′),cost(π ′)≤
cost(π ′′)

3.2.2 Plan Justifications

The notion of plan justification was introduced by Fink and Yang 1992. A justified plan is
a plan that does not include any actions which are not needed to achieve the goal. In their
work, Fink and Yang ? define various kinds of plan justifications and present algorithms to
find justified plans.

3.2.2.1 Backward Justified Plan

The idea of a backward justified plan is derived from partial order plans which represent a
time precedence relation between operators. The backward justified plan is a solution plan in
which every action introduces an important atom to achieve the goal. The actions in justified
plans are called backward justified actions. The idea behind backward justified actions can
be formalised in the following definition:

Definition 10. Let π = ⟨a1, ....an⟩ be a plan solution to planning problem Π. An action ai is
called backward justified iff ∃p ∈ e f f (ai) such that ai provides p either for the goal or for
another backward justified action.
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Finding a backward justified subplan is not hard, but it may possibly contain some
redundant actions. For example, the action ai is in some cases not truly justified and can be
removed from the plan without violating the correctness of the plan. Such a case may occur
when an other action provides the same atom that is important to achieve the goal.

3.2.2.2 Well Justified Plan

A well Justified plan is a plan that does not contain any action can be removed without
violating the correctness of the plan. The actions in a well justified plan are named well
justified actions, the idea behind well justified action can be formalised in the following
definition:

Definition 11. Let π = ⟨a1, ....an⟩ be a plan solution to planning problem Π. An action
ai ∈ π is called well-justified iff ∃p ∈ e f f (ai) such that ai provides p either for some action
or for the goal, and p does not hold before ai.

A well justified plan does not include any action that is not necessary to achieve the goal,
and it stronger than backward justified plan.

3.2.2.3 Perfectly Justified Plan

Although, well Justified plans cannot contain unnecessary actions, they may still contain
unnecessary groups of actions. This means that while no single action may be removed from
the plan, a subset of its actions can possibly be removed together. However,the plan is called
perfectly justified if no subset of its actions possibly removed from the plan. The idea behind
a perfect plan can be formalised as follow:

Definition 12. A valid plan is called perfectly justified iff it does not have any shorter subplan
that achieve the goal.

Although perfect justification is powerful than other justifications,and perfectly justified
plan does not has redundant actions, it cannot found in polynomial time. It has been proven
that finding perfectly justified plan is NP-complete (Fink and Yang, 1992).

3.2.2.4 Greedily Justified Plan

As mentioned before, it is NP-hard to find a perfectly justified plan. The greedy justification
task seeks to find a nearly perfectly justified plan by removing a subset of actions that are not
greedily justified. The following definition describes greedily justified action formally:
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Definition 13. Let π = ⟨a1, ....an⟩ be a plan solution to planning task Π, ai ∈ π , and
depend = (ai1, ....,aik) is a set of actions that depends on ai and depend ∈ π .The action ai

is called greedily justified iff π′ = π\(ai∪depend) is not solution for Π.

Ti can be seen that a plan is greedily justified if all its actions are greedily justified. In
addition, every well justified plan is backward justified, and every greedily justified plan is
well justified. The algorithms that describe how to find justified plans are presented in more
details in the work (Fink and Yang, 1992).

3.2.3 Action Elimination Algorithm

Action Elimination(AE) (Nakhost and Müller, 2010) is an algorithm which identifies and
removes some redundant actions from solution plans of classical planning problems (see
Algorithm 3). AE is derived from the concept of greedily justified actions (Fink and Yang,
1992) descried above. AE iteratively checks whether actions are greedily justified and
if they are not, such actions and their dependents can be removed from the plan without
compromising its validity. In particular, an intermediate step of the main loop ai action is
marked for removal. Then, an attempt is made to apply actions starting from ai+1 to the end
of the plan. If an action is not applicable, then it is marked for removal and its effects are
ignored (it is not applied). After reaching the end of the plan, it can be verified whether the
goal is satisfied. If so, the marked actions are redundant and can be removed.

3.2.4 Inverse Action Elimination Algorithm

In many planning domain models, it is the case that planning operators reverse each other’s
effects (e.g., in the BlocksWorld domain, they are pickup(?x) and putdown(?x) operators that
reverse each other’s effects). Hence, solution plans might consist of actions that reverse each
other’s effects, in other words, inverse actions, in other words. The formal definition is as
follows:

Definition 14. The actions a and a′ in plan are inverse iff for every state s such that a is
applicable in s, it is the case that γ(s,⟨a,a′⟩)⊆ s.

It should be noted that the definition considers actions as inverse even if their consecutive
application in some state results in its sub-state. Since negative preconditions (i.e., not having
an atom present in a state) are not considered, all actions that can be applicable in a sub-state
of a state are also applicable in that state. Such assumption does not invalidate the rest of the
plan if the inverse actions (a and a′) in a solution plan are redundant (and removed). The
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Algorithm 1: AE
Input :s0, plan π = (a1, .....an),and goal state G
Output :π ′

1 s← s0;
2 i← 1;
3 while i < n do
4 mark ai;
5 s′← s;
6 for j← i+1 to n do
7 if applicable(a j,s′) then
8 s′← apply(s′,a j);
9 else

10 mark a j;
11 end
12 if s′ does not satisfy G then
13 unmark all actions;
14 s← apply(s′,ai);
15 else
16 π ′ = π\ markedactions;
17 end
18 end
19 i← i+1
20 end
21 return π ′ ;
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Inverse Action Elimination (IAE) (Chrpa et al., 2012a,b) algorithm identifies and removes
pairs of redundant inverse actions from the plan(see Algorithm 2). The main idea behind the
IAE algorithm is formalised in the following proposition:

Proposition 1. Let π = ⟨a1, . . . ,an⟩ be a solution plan of some planning problem. Let
ai,a j ∈ π (i < j) be inverse actions. If there is no action ak, where (i < k < j), such that
eff+(ai)∩pre(ak) ̸= /0 or eff−(ak)∩ eff+(a j) ̸= /0, then ai and a j are redundant in π .

Proof. See (Chrpa et al., 2012a).

Although IAE algorithm is specific and does not cover all possibly redundant actions in
the plan, it is beneficial in some domains.

Algorithm 2: IAE
Input : plan π = (a1, .....an)
Output :π ‘

1 s′← initial state ;
2 while i < n do
3 for j← i+1 to n do
4 if ai and a j are inverse then
5 Rinv← false ;
6 for k← i+1 to j−1 do
7 if (ak is dependent on ai)∨ eff−(ak)∩ eff+(a j) ̸= /0 then
8 Rinv← True;
9 break;

10 end
11 end
12 end
13 end
14 if ¬ Rinv then
15 mark both ai and a j
16 end
17 i← i+1;
18 π ′ = π\ markedactions;
19 end
20 return π ′;

3.2.5 Greedy Action Elimination

Action elimination(see Algorithm 1) removes a set of redundant actions as soon as they are
discovered and ignores the cost of them. Greedy action elimination (Balyo et al., 2014) is
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modified version of action elimination that first identifies all the sets of redundant actions and
subsequently eliminates the redundant set with the highest cost(sum of the actions ’costs)
and repeats this process until no more set of redundant actions are detected. Details of
greedy action elimination are given in Algorithm 3. Initially, it calls AECost a function
that identifies the subsets of redundant actions and returns the most costly set of redundant
actions; then, the greedy action elimination removes this set. This process is reiterated until
no such set is found. Greedy action elimination does not guarantee to remove all redundant
actions in the plan. It outperforms AE in some cases (Balyo et al., 2014).

3.2.6 SAT-Based Algorithms

SAT Based Algorithms (Balyo and Chrpa, 2014; Balyo et al., 2014) are dependent on SAT
encoding for the problem of detecting redundant actions in the plan. One algorithm is
called Minimal Length Reduction(MLR) and this aims to eliminate the maximum subset
of redundant actions from the plan and without considering the action cost. It contracts
the optimized plan using a satisfying task that obtained from Partial Maximum Satisfiabil-
ity(PMaxSAT) solver. Another algorithm is called Minimal Reduction(MR) and it is similar
to the first one. One difference, however is that MR depends on a Weighted Maximum
Satisfiability(WPMaxSAT) solver. MR removes the actions with a maximal total cost where
all actions have a nunit cost.

Although such methods guarantee to eliminate the best set of redundant actions in the
plan they are NP-complete, so they need exponential time to run (in general).

3.3 Comparison of Techniques of AE family to Related Work

Techniques of AE family can be understood as a complement tools to the state-of-the-art
plan optimisation techniques such as PNGS (Nakhost and Müller, 2010), AIRS (Estrem and
Krebsbach, 2012) and genetic programing (Westerberg and Levine, 2001). They identify
and remove redundant actions from plans (without compromising their validity), which can
often be done in a short time. Since other methods are based on more sophisticated, often
time-consuming techniques that can optimise suboptimal parts of plans by finding their
"better replacements", they can benefit by "pre-optimisation" from the AE family. In addition,
the AE family can efficiently identify redundant actions that are placed far from each other
in a plan; while the other methods are useful for local enhancement, they do not take into
account a plan’s structure.
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Algorithm 3: GAE
1 Algorithm GAE(π)
2 n← lenght of the plan
3 repeat
4 BestCost=0
5 Cost=0
6 BestSet=AECost(π)
7 if BestSet is not empty then
8 π ′ = π\ BestSet
9 end

10 until BestSet is empty
11 return π ′

1 Function AECost(π)
2 s← s0
3 for i← 0 to i < n do
4 mark ai
5 s′← s
6 for j← i+1 to n do
7 if applicable(a j,s′) then
8 s′← apply(s′,a j)
9 else

10 mark a j
11 end
12 if s′ does not satisfy G then
13 Unmark all actions
14 s← apply(s′,ai)

15 else
16 cost=cost of marked actions
17 if cost >= Bestcost then
18 Bestcost=cost
19 Best-Redundant-Set=Marked Actions
20 end
21 end
22 end
23 end
24 return Best-Redundant-set



Chapter 4

Improving the Time for Redundancy
Checking in AE and GAE Algorithms

4.1 Identifying Redundant Actions

Although finding and removing all redundant actions from a plan is NP-hard, there are several
polynomial algorithms that can remove redundant actions such as Action Elimination (Fink
and Yang, 1992; Nakhost and Müller, 2010), Greedy Action Elimination (Balyo et al., 2014)
and Inverse Action Elimination (Chrpa et al., 2012a). They all have a basic structure which
can be described as follows:

• Identify the subset of actions in a plan based on specific criteria.

• Mark these actions to be removed.

• Check the plan’ validity.

• If the rest of the plan remains valid, remove marked actions from the plan.

Since every action in the solution plan is tested, this process results in time complexity
of AE and GAE algorithms. For example, in the Action Elimination Algorithm the time
complexity is O(n2 p), and in Greedy Action Elimination (Balyo et al., 2014) it is O(n3p),
where n=|π| and p is the maximum number of preconditions of the actions. On the other hand,
Inverse Action Elimination does not remove all possible redundant actions, but it provides a
computationally easy way of identifying a specific set of the redundant actions in a given
plan and cares only about actions in between a pair of inverse actions ( see Proposition 1,
Chapter 3), and does not have to go through the rest of the plan to check the redundancy.
Consider a simple Blockword task shown in figure 4.1, there are three blocks referred to as
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A, B and C, such that the initial state is on(A, B) and ontable(C), and the goal situation is
on (A, B) and on(B,C). If a solution plan likes this: unstack(A, B), stack(A,C), unstack(A,C),
putdown(A),pickup(B), stack(B, C), pickup(A), stack(A, B) , in such a case, stack(A,C) and
unstack(A,C) are inverse redundant actions and can be removed from the plan. If AE and
GAE algorithms are applied to identify and remove these actions, they will check all the
actions before removing both of them. On the other hand, IAE will identify and remove them
without checking the rest of the plan.

Fig. 4.1 An Example Blockword Task 1

Lemma 1. Let π = ⟨a1, .....an⟩ be a plan solution to planning problem Π, ai,a j are inverse
redundant actions in the plan, k the number of actions placed between them ,and l the
number of the actions placed after a j. Then:

• IAE only needs o(k) steps to identify them.

• AE needs O(k+l) steps to identify them .

• GAE needs O((k+l)n).

Proof. It can observed that since the IAE algorithm just identifies and removes ai and a j

from the plan by checking the redundancy of actions between them only, it needs o(k) steps
to check if there is any action between them which depends on ai. On the other hand, AE
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and GAE check all the actions between ai and a j and all the actions that are located after a j

if they depend on ai. In this case, in one iteration that contains ai and a j, AE needs O(k+l)
steps, and GAE needs O((k+l)n) because it repeats that n times.

From Lemma 1 it can be concluded that there is possibility of saving some CPU-time in
AE and GAE in some cases where two actions in one iteration are redundant and inverse. This
can optimise the process while keeping the same ’elimination power’ in terms of identifying
and removing the same number of redundant actions. To determine the redundancy of pairs
of inverse actions only actions placed in between the pair of inverse actions need to be
investigated.

4.2 Extended Algorithms

Following a vision based on incorporating the IAE algorithm feature into AE and GAE ones,
Two algorithms named AIAE and GAIAE have developed respectively in order to improve
the CPU-time of AE and GAE by modifying the step of identifying redundant actions (Kilani,
2015).

4.2.1 AIAE Algorithm

AIAE is a standard to incorporate the Inverse Action Elimination Algorithm feature into the
Action Elimination one (IAE+AE). The Action Elimination algorithm (Nakhost and Müller,
2010) identifies and removes some redundant actions from the plan by iteratively checking
actions for ’relaxed greedy justification’ and, if removing the involved actions does not affect
the validity of the plan, the plan is updated (optimized); otherwise, the removed actions are
restored, and the plan remains unchanged (for more details see Chapter 3). Although AE is
strong and fast, in some cases it cannot identify certain kinds of redundant actions and does
not care about the interactions between actions in the plan. The AIAE algorithm modifies AE
one by considering situation where two actions in one iteration are inverse. This states under
what conditions a pair of inverse actions in a solution plan is redundant(see Proposition 1 ,
Chapter 3).The idea behind the AIAE algorithm formulated in the following proposition:

Proposition 2. Let π = ⟨a1, .....an⟩ be a plan solution to planning problem Π, ai and a j are
inverse redundant actions in π . Then the steps required to identify ai and a j as redundant
actions by AIAE are fewer than the steps required to identify them by AE.
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Proof. Following Lemma 1, assume that ai and a j are redundant inverse actions in plan π , k
is the number of actions placed between them ,and l is the number of actions placed after a j.
In one iteration that contains ai and a j, AE needs o(k+l) steps to identify them as redundant
actions in the plan . On the other hand , AIAE only needs o(k) steps.

Details of AIAE are given in Algorithm 4. The algorithm is divided into two phases.
First, it marks every action in the plan and all the action that depend on it (line 5 to line 16 ).
In the next phase it checks the validity of the plan without the marked subset. If the plan is
correct, it removes this subset of actions otherwise; it unmarks this subset (line 16 to line 22)
and goes for the next iteration, continuing thus until the final action in the plan.

In the main loop it marks ai as an action to remove and tries to apply the actions that are
located after it. If an action is applicable it applies this action in the state and considers its
effects. Otherwise, it marks this action to be remove as its preconditions are not satisfied.
After reaching the end of the plan, it tests whether the current state satisfies the goal. If so, it
removes the marked actions as they are redundant. Otherwise, the marked actions are not
redundant, and cannot be removed.

AIAE modifies AE by adding an intermediate steps in lines 12,13 and 14. Before moving
on to test a next a j action, AIAE checks if ai, and a j are inverse with no actions marked
between them(actions dependent on ai). If so (proposition 1 in Chapter 3 holds), AIAE will
mark a j without checking the rest of the actions in the plan. It will break j loop and remove
ai and a j(this is the main difference between AE and AIAE). This will reduce the CPU-time
spent on iterations that contain inverse actions, and will be more efficient when the inverse
actions are laying close to each other in the plan.

4.2.2 GAIAE Algorithm

GAIAE is a standard to incorporate the Inverse Action Elimination Algorithm feature into the
Greedy Action Elimination one (IAE+GAE).The Greedy Action Elimination algorithm which
presented in (Balyo et al., 2014) and described in Chapter 3, is an extension to the Action
Elimination one which is expected to give better quality results at the cost of increased CPU-
time. It identifies all sets of redundant actions and chooses the most expensive set to remove,
and repeats that until no sets of redundant actions are found. Due to the repetition of the main
loops n times, the time complexity of the algorithm is high. The GAIAE algorithm extends
the GAE one by considering situations where two actions in one iteration are redundant
actions in the same AIAE situation, with respect to maintaining the quality of optimised
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Algorithm 4: AIAE
1 Input s0, plan π = (a1, .....an),and goal state g

Output :π ′

2 s← s0
3 i← 1
4 while i < n do
5 mark ai
6 s′← s
7 for j← i+1 to n do
8 if applicable(a j,s′) then
9 s′← apply(s′,a j)

10 else
11 mark a j;
12 if ai and a j are inverse and proposition 2 holds then
13 remove ai and a j from the plan
14 break
15 end
16 end
17 if s′ does not satisfy g then
18 unmark all actions
19 s← apply(s′,ai)

20 else
21 π ′ = π\ markedactions
22 end
23 end
24 i← i+1
25 end
26 return π ′
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plans while needing (generally) less CPU-time. The idea behind the GAIAE algorithm is
formulated in the following proposition:

Proposition 3. Let π = ⟨a1, .....an⟩ be a plan solution to planning problem Π, ai and a j are
redundant inverse actions in π . Then the steps required to identify ai and a j as redundant
actions by GAIAE are fewer than the steps required to identify them by GAE.

Proof. Following the Lemma 1, assume that ai and a j are redundant inverse actions in plan
π , k is the number of actions placed between them, and l is the number of actions placed after
a j. In one iteration that contains ai and a j, GAIAE needs o(k+l) steps to identify them as
redundant actions in one i iteration that is repeated n. On the other hand , AIAE only needs
o(k) steps.

Details of GAIAE are given in Algorithm 5. In this thesis, the algorithm has been in
a different way from our original one (Balyo et al., 2014). GAIAE relies on an AECost
function that identifies the subsets of redundant actions and returns the most costly set of
redundant actions; the cost of set is computed by considering that every action has one unit
cost. Firstly, AECost function takes an initial state, goal and plan as input and returns the
best set of redundant actions, that containing the greater number of inverse actions. If this set
is not empty, GAIAE removes this set from the plan. This process is reiterated until no such
set is found.

4.2.3 AECost Function

The AECost function is the same as AE, GAE, and AIAE algorithms(lines: 2 to 18) in its
ability to identify the subset of redundant actions. The feature of incorporation of IAE is sim-
ulated on lines 11 and 12 where if pairs of actions are redundant inverse actions(Proposition
1 Chapter 3 holdS), the j loop will be broken without checking the rest of the actions in the
plan (this is the difference between GAE and GAIAE). If a temporal state satisfies the goal,
then AECost will computes the cost of the marked actions and compare it with the best cost
found until now, if(cost >= Bestcost). If it is a best cost, AECost will identify the marked
action set as the best redundant set, and do that in every i iteration. When all actions have
been tested AECost will return the redundant set with the highest number of actions.
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Algorithm 5: GAIAE
1 Algorithm GreedyAIAE(π ,s0,g)
2 n← length of the plan
3 repeat
4 BestCost←0
5 BestIndex←0
6 BestSet← AECost(s0,g,π,)
7 if Bestset is not empty then
8 π ′←\Bestset
9 end

10 until BestSet is empty
11 return π ′

1 Function AECost(s0,g,π)
2 s← s0
3 for i← 0 to i < n do
4 mark ai
5 s′← s
6 for j← i+1 to n do
7 if applicable(a j,s′) then
8 s′← apply(s′,a j)
9 else

10 mark a j
11 if ai and a j are inverse and (proposition 1 holds) then
12 goto 20
13 end
14 end
15 end
16 if s′ does not satisfy g then
17 Unmark all actions
18 s← apply(s′,ai)

19 else
20 cost← cost of marked actions
21 if cost >= Bestcost then
22 Bestcost← cost
23 BestRedundantSet←MarkedActions
24 end
25 end
26 end
27 return BestRedundantSet
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4.2.4 Correctness

Proposition 4. Let π = (a1, . . . ,an) be a solution plan of some planning problem. Let AAE

be a set of actions that are removed from π by the AE algorithm and AAIAE be a set of actions
that are removed from π by the AIAE algorithm. Then, AAE = AAIAE .

Proof. It can be observed that AE and AIAE differ only in the following situation. After an
action ai is marked for removal, and later on an action a j is marked for removal too, then if
ai and a j are inverse and redundant (the condition of Proposition1, Chapter3 holds), AIAE
in contrast to AE, does not continue exploring the rest of the plan (after a j) and proceeds
directly to removing these actions. Proposition 1 (see Chapter 3); however, implies that
actions applied after a j remain applicable and their application results in a goal state(see 2).
AE thus does not mark and remove any other action than ai and a j.

Proposition 5. Let π = (a1, . . . ,an) be a solution plan of some planning problem. Let AGAE

be a set of actions that are removed from π by the GAE algorithm and AGAIAE be a set of
actions that are removed from π by the GAIAE algorithm. Then, AGAE = AGAIAE .

Proof. The proof is straightforward and similar to proof Proposition 3. GAE and GAIAE
are only different in the following case. After an action ai is marked for removal and later
on an action a j is marked for removal too, then if ai and a j are inverse and redundant (the
condition of Proposition 1 in Chapter 3 holds), GAIAE does not continue exploring the rest
of the plan (after a j) (see Proposition 3) and proceeds directly to compute their cost without
going through the rest of the plan.

Lemma 2. Let Π be a planning problem π be a solution plan, π′IAE is a valid plan reduction
produced by IAE, and π′AE is a valid plan reduction produced by AE, π′AIAE , is a plan
reduction produced by AIAE, π′GAE , is a plan reduction produced by GAE and π′GAIAE , is
a plan reduction produced by GAIAE. Then π′IAE ,π′andAE and π′AIAE are Identical iff and
only if all of the redundant set are pairs of inverse actions.

Proof. Lemma 2 is a specific case when all the redundant actions are inverse. Let Ainverse

=((ai1,a ji),.......(aik,a jk)) be a set of inverse actions in a solution plan, and all of the pairs are
redundant. Accordion to on all a theoretical background above if one algorithm identifies
this subset as redundant actions, then AE, GAE, AIAE, GAIAE and will do as will.



4.3 Summary 35

4.3 Summary

This chapter has described how the existing Action Elimination and Greedy Action Elimina-
tion algorithms were extended by considering situations where inverse actions are redundant.
The extended algorithms were accompanied by the necessary theoretical foundations and
empirically evaluated using several benchmark domains and several planning engines that
participated in the Agile track of the International Planning Competition 2014 (see Chapter
6). They are very useful when the domain has a lot of inverse redundant actions and this will
reduce the CPU-time of AE and GAE when inverse actions are close to each other in the
plan.





Chapter 5

Justified Unique Actions and
Pre-Optimization Techniques

This chapter demonstrates two key aspects of the present work: First, it introduces a new
approach to identifying the subset of actions in a solution plan that cannot be presented at
any set of redundant actions. Secondly, it describes how to exploit this approach to improve
the efficiency of extended algorithms that we presented in chapter 4.

5.1 Introduction

Actions in a solution plan are classified into two categories. The first type are redundant
actions that can safely be removed from the plan (for further detail see Chapter 3). The
second type are non-redundant actions that cannot be removed from the plan. If we have a
solution plan for planning problem, we can identify which actions that may be redundant
or non-redundant. In the literature (Fink and Yang, 1992) non-redundant actions are called
justified actions.

Current pre-optimisation techniques seek to improve plans by identifying a subset of
actions to remove and testing the validity of the plan without this subset; if the plan remains
valid, the subset is removed. The approach adopted in this work is different. Firstly, the
subset of actions that can not be removed from the plan, or which cannot be present in a
set of redundant actions, is identified; then, a subset of redundant actions is identified and
removed. There are Some several issues to be considered here: (1) What criteria should be
used to identify this subset? (2) How can this subset be exploited? (3) What is the expected
improvements for this subset?.
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5.2 Inspiration from Landmarks

In STRIPS planning,a state is a finite set of ground predicates or facts that represent the
world. A planning problem is specified through a planning domain, an initial state and a
set of goal facts. An initial state is a finite set of ground predicates or facts that represent
the state of the problem, a goal is a conjunction of positive ground predicates or facts, and
a state satisfies a goal if the state contains all of the conjunct facts in the goal. Actions are
defined by action schema that consist of three parts: action name, preconditions and effects.
Preconditions must hold before the action can be executed, and effects describe how the
action changes the state of the world when it is executed.

Facts in planning are provided by the initial state or by actions that are introduced as
effects. These facts are either preconditions for other actions or as the goal state facts. In
planning literature, facts or subgoals that must appear at some point in every solution plan
are called ’landmarks’ (Hoffmann et al., 2004; Keyder et al., 2010; Porteous and Cresswell,
2002; Porteous et al., 2001; Richter et al., 2008). To illustrate this, it is helpful to consider a
simple Nomystery problem, depicted in Figure 5.1 , with six locations l0, l1, l2, l3, l4 and
l5, one trackt0, and six packages p0, p1, p2, p3, p4and p5 . In the initial state,[(at p0 l2),(at
p1 l2),(at p2 l1),(at p3 l3),(at p4 l3),(at p5 l5)]. The goal is to have the packages at their
respective destinations, ((at p0 l3), (at p1 l4), (at p2 l3), (at p3 l2), (at p4 l2), (at p5 l4)) and
initially these do not hold. For the goal to be achieved (loaded p4 t0 l3), and (loaded p3 t0 l3)
must occur at some point and thus they are landmarks for this task. In addition, goal facts
are landmarks, and thus (at p3 l2) and (at p4 l2) are landmarks as well. In the following
definition, terminology from Hoffmann et al. (2004) is adopted to represent fact landmarks.

Definition 15. Given planning problem Π = (A,I,G). A fact F is landmark iff for all
π=⟨a1, .....,an⟩ , G ⊆ Result(I,π):F ∈Result(I,(a1,.....,ai)) for some 0≤ i≤ n.

From the fact landmarks, a specific subset of fact landmarks can be derived in order
to identify a specific subset of actions that cannot be removed from a plan solution. The
extraction of this subset is motived by the fact that the goal may contains unique facts
achieved by one action within the plan’s execution. Before this subset is identified, some
terms need to be formally described.

Definition 16. Let π=⟨a1, .....,an⟩ be a solution plan for planning task (A,I,G), F is positive
fact, and G⊆ Result(I,π):F ∈ Result((I,(a1,.....,an)). F is called a unique fact iff F is present
in the effects of only one action and F /∈ s0.

Definition 17. Let π = <a1,a2, .....an> be solution plan to a planning problem. An action
ai is called a Unique Action in π iff it achieves some fact or facts which are not present in
any action effects and also in the initial state.
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Fig. 5.1 An Example Nomystery Task

Definition 18. Let π =< a1,a2, ...........an > be solution plan to planning problem Π, F is a
Unique fact, and F ∈ e f f+ai, and F ∈ goal facts. Then F is called goal unique fact, and ai

is called a goal unique action that introduces F to the goal.

The above definition shows that if the plans contains some unique actions that introduce
unique facts to a goal. Given a plan like that shown in Figure 5.2, according to the above
definitions,( unload P2 T0 L3) and (unload P0 T0 L3) are goal unique actions, and (at p0 l3)
and (at p2 l3) are goal unique facts.

The difference between landmarks and unique facts is that unique facts depend on a
given plan and are achieved only once, landmarks can be achieved more than once and every
solution plan has to achieve them at some point. For a goal facts, every unique fact is a
landmark, and every landmark is not necessarily unique.

Proposition 6. let π =< a1,a2, ...........an > be solution plan to planning task Π, ai is a
unique goal action. Then π\ai is not solution to the planning problem.

Proof. The proof can be shown in the following way. From the above example, action
(unload P2 T0 L3) introduces (at p2 l3) which is necessary to achieve the goal and (at p2 l3) is
unique fact (see Definition 18). That means no other actions in the plan can provide this fact,
and the goal cannot be achieved if (at p2 l3) is not achieved, therefor (unload P2 T0 L3) can
not be redundant in a solution plan.

Clearly, a unique goal action can imply an other subset of actions that introduce unique
preconditions to it. The following definition describes this relation formally:
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Fig. 5.2 A Plan solution for Nomystery task

Definition 19. let π = ⟨a1, .....an⟩ be a solution plan, let ai ∈ π and ai be unique goal
action,p ∈ e f f+a j and j<i, p is a unique, and p ∈ pre(ai). Then a j is called a related
unique action.

From the above example,(load p0 t0 l2) is a related unique action to goal unique action
(unload P2 t0 l3) that introduces unique fact(loaded p0 t0).

Proposition 7. let π =< a1,a2, ...........an > be a solution plan to planning problem Π, a j is
a Unique Related Unique Action. Then π\a j is not solution to the planning problem.

Proof. Action a j introduces unique fact p that is precondition to ai and no other action can
provide this precondition. This means that if a j is removed from the plan, p can not be
provided and ai cannot be applied. Therefor, the goal cannot be achieved, and a j cannot be
redundant.

Definition 20. let A∗ ⊂ π be unique goal actions in π , and A′ ⊂ π be related unique actions
then A∗∪A′ is called a Justified Unique Actions.

Justified Unique Actions name is derived from the term Greedily Justified Action (Fink
and Yang, 1992), an action which, if it and the actions that depend on are removed from the
plan, causes the plan to become invalid (see Chapter 3).

From above theoretical foundations, following corollary can be concluded:
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Corollary 1. let π =< a1,a2, ...........an > be solution plan to planning task Π, A ju ⊆ π is a
set of Justified Unique Actions in π . Then A ju subset of actions that must appear in every
plan reduction.

Proof. Follow the proof of Proposition6and Proposition 7. A ju cannot be redundant in a
solution plan. Then when we try to optimise a plan by any plan optimization method such
as AE or GAE we cannot eliminate this subset because of a plan reduction must have this
subset to achieve a goal.

5.3 Extraction of Justified Unique Actions from Solution
Plan

A pre-process that extract justified unique actions in a solution plan has been developed. It
consists of two phases. In the first phase, backward search is performed to find a subset
of actions that introduce unique facts to the goal. In the second phase, backward search is
performed to identify the subset of actions that introduce unique preconditions to the unique
actions identified in the first phase.

The pre-process is detailed in Algorithm 6. Firstly, the algorithm identifies first candidate
facts that include goal facts and removes all facts that already provided by the initial state.
After that, it starts from the last action in the plan. For every action, it test whether this
action introduces any unique facts to goal. Unique Candidates facts are extracted using the
UniqueFact function, which takes the set of facts and the action’ position in the plan as input.
For every goal fact present in the action effects, the function test whether it has yet been
identified. If so, it adds an attribute to the goal fact (action position in the plan). Otherwise, it
removes this fact from the unique facts set. After identifying all the unique facts in the goal,
the algorithm identifies unique goal actions by their positions and add them to the Justified
Unique Action(JUA) set.

In the next phase,the JUA identifies second unique candidate facts which include precon-
ditions of unique goal actions and removes all facts already provided in the initial state. For
every action not introduced in the unique goal action set, it tests whether an action achieves
any unique facts by using UniqueFact function. Then, it identifies the related unique actions
by their position in the plan and adds them to the Justified Unique Actions set. Finally, it
return a set of Justified Unique Actions.
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Algorithm 6: JUA
1 Algorithm JustifiedUniqueActions(π ,Π,g,s0)
2 Ufacts← g\s0 // initialise unique facts set and remove the facts

that already in an initial state
3 UPrec←{} // initialise unique preconditions set
4 i← n // n=length of the plan
5 while i ≥ 1 do
6 UniqueFact(Ufacts,i) // identify unique goal facts
7 i←i-1
8 end
9 foreach f act ∈U f acts do

10 j← get attribute of fact
11 add a j to JuniqueActions
12 UPrec←UPrec ∪perc(a j) // identify candidate precondition

facts
13 UPrec←UPre \ s0 // remove the facts that already in an

initial state
14 end
15 i← 1
16 while i≤ n do
17 foreach ai /∈ JuniqeActions do
18 UniqueFact( UPrec, ai) // identify unique preconditions
19 end
20 i← i+1
21 end
22 foreach fact ∈ UPrec do
23 j← get an attribute of fact
24 add a j to JuniqueActions
25 end

1 Function UniqueFact(Facts, i)
2 foreach f act ∈ e f f+(ai)and f act ∈ Facts do
3 if f act is undefined in Facts then
4 set attribute i to fact
5 else
6 remove fact from Facts
7 end
8 end
9 return Justified Unique Actions
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5.4 Improving Pre-Optimization Plan Process

Improving a pre-optimization plan process is based on identifying a subset of the actions that
cannot be removed from the plan (justified unique actions). A key goal of this approach is to
develop a complementary tools to more Sophisticated plan optimization techniques. Figure
5.3 shows a the structure of these process. It structures the pre-optimization plan process
into three main stages, including (1) extracting a justified unique actions set, (2) identifying a
subset of redundant actions by considering situations where two inverse actions are redundant;
and (3) removing redundant actions. The main difference from previous methods is that,
instead of checking every action in the plan and its dependents for redundancy, it firstly
identifies justified unique actions (actions that cannot be present in any redundant action set)
and, before going to mark any action, it tests whether this a action is non-redundant in a given
plan. This will reduce the effort of checking the redundancy of every actions in a plan, and
reduce CPU-time since process of extracting justified unique actions is in polynomial time.

Fig. 5.3 A New Structure for Pre-Optimisation Plan Process

5.4.1 Implementation of a New Algorithms

Through this structurer two new plan optimization methods has been developed. The
algorithms implemented in Chapter 4 (AIAE and GAIAE) have been extended, and new
methods are UAIAE and UGAIAE respectively. Details of UAIAE are given in Algorithm
7. The main difference between AIAE and UAIAE is that before determining whether any
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action in a given plan can be removed in every i iteration, it checks whether this action is
a justified unique action; if so, it applies this action and continues to test the next actions
in a plan. otherwise, it checks every action in j iteration if it also justified unique action. If
so it continues to test next action in j iteration. Otherwise; it marks this action. To avoid
repetition, U(GAIAE) one follows the same steps that UAIAE uses to identify redundant
actions, considering action cost as GAIAE does.

5.5 Summary

This chapter has introduced and defined the concept of a justified unique actions set in
a solution plan. It has presented a polynomial algorithm to extract this subset of actions.
Implementation of the algorithm has accompanied by necessary theoretical foundations.
In addition, This algorithm feature has been exploited to introduce a framework for the
pre-optimization plan process. This is framework has been simulated with the extended
algorithms that presented in Chapter 4. The new algorithms have been adapted using different
approaches to work together in one algorithm, this enabling them to work as an efficient
complementary tools to more sophisticated plan optimisation technique. They have been
empirically evaluated using several benchmark domains and several planning engines that
participated in the Agile track of the International Planning Competition 2014(see Chapter
6).
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Algorithm 7: UAIAE
1 Input s0, plan π = (a1, .....an),and goal state g

Output :π ′

2 s← s0
3 JUA← justi f ieduniqueactions
4 i← 1
5 while i < n do
6 if ai ∈ JUA then
7 s← apply(s,ai)
8 i← i+1
9 continue

10 end
11 mark ai
12 s′← s
13 for j← i+1 to n do
14 if applicable(a j,s′) then
15 s′← apply(s′,a j)
16 else
17 mark a j;
18 if ai and a j are inverse and proposition 2 holds then
19 remove ai and a j from the plan
20 break
21 end
22 end
23 if s′ does not satisfies g then
24 Unmark all actions
25 s← apply(s,ai)

26 else
27 π ′ = π\ markedactions
28 end
29 end
30 i← i+1
31 end
32 return π ′





Chapter 6

Empirical Results

This chapter presents the experimental results of this work regarding improvement to the
pre-optimization techniques AE and GAE. In addition, it presents the evaluation of improved
techniques against state-of-the -art optimal and satisficing planners, and plan repair strategy.

6.1 Experimental Settings

• To test the efficiency of introduced approaches, Inverse Action Elimination(IAE),
Action Elimination(AE), Greedy Action Elimination(GAE), and their extensions AIAE
and GAIAE were implemented. In addition, Justified Unique Action (JUA) algorithm
was implemented, and integrated into AIAE, and GAIAE.

• For benchmarks, domains from the sequential staisficing track of the 2011 and 2014
IPCs were tested. However, because the introduced techniques does not support some
of PDDL features such as conditional effects, a limited number of IPC2014 domains,
such as Barman, Floortile, Thoughtful and Transport were tested.

• To obtain the initial plans, five state-of-the-art agile track planners from the Interna-
tional Planning Competition(IPC2014) were used. Theses were, Yahsp3 (Vidal, 2014);
Madagascar(Rintanen, 2014); Probe and Bfs(f) (Lipovetzky et al., 2014); and Jasper
(Xie et al., 2014). These planners focus on finding solutions to challenging problems
but do not consider plan quality. The planners had a time limit of five minutes per
problem to find a solution plan.

• To evaluate the quality of the plans optimised by introduced methods against optimal
plans, three top performers from IPC2014, SymbA*-2 (Torralba et al., 2014a); SPM&S
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(Torralba et al., 2014b); and RIDA (Franco et al., 2014) were selected. The planners
had a time limit of 30 minutes per problem to find a solution plan.

• To evaluate the performance of introduced methods against the incremental approaches
for improving the quality of the plans, two satisficing planners, the winner of both
the 2008 and 2011 IPC competitions LAMA (Richter and Westphal, 2010), and the
runner-up planner of sequential satisfcing track in the IPC2014 Mercury (Katz and
Hoffmann, 2014). Again, the planners had a time limit of 30 minutes per problem to
find a solution plan.

• To evaluate the performance of introduced methods against plan repair strategy, LPG
(Gerevini et al., 2003) were used to repair invalidated plans.

6.2 Experiments Requirements

• All methods are implemented in C++.

• All methods support typed STRIPS representation in PDDL.

• All the experiments were run on a 3.6 Ghz CPU with 16.0 GB of RAM.

6.3 Experiment 1: Performance of the Planners

This experiment compared the performance of three optimal planners and seven satisfycing
planners. 180 problems were tested from IPC2011 domains, while from IPC2014 domains,
80 problems were tested. Figures 6.1 and 6.2 illustrate the number of problems per domain
solved by the ten planners. It can be seen that agile planners were able to solve many
problems in each domain except Madagascar planner. It was unable to solve problems in the
Barman, Elevators, Parking, Sokoban and Transport domains. The anytime planners were
able to solve most of the problems in all domains, but the optimal planners were unable to
solve problems of Barman, Elevators and Transport domains.

6.4 Experiment 2: Evaluation of Incorporation of IAE Fea-
ture into AE and GAE Algorithms

The cumulative results (results of all problems considered in particular domains and planners)
are presented in Tables 6.1 and 6.2. Four plan optimisation techniques, AE, AIAE, GAE
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Fig. 6.1 Number of problems solved in IPC11 by different planners

Fig. 6.2 Number of problems solved in IPC14 by different planners
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and GAIAE, were compared with each other. For each of them, the total plan length Ω and
the total run time ♢ to optimise the plans were measured. For the main comparison (see
propositions 1 and 2 in Chapter 4), the IAE algorithm was used to find inverse redundant
actions in a plan. For IAE, ∑ is the total number of inverse actions and ♢ the total run time
to find them. For more detailed results see Appendix A.

• Inverse Action Elimination (IAE) algorithm is very fast compared with other algo-
rithms. It identifies a specific set of redundant actions (pairs of inverse actions). For the
IPC2011 domains, it was noted that most of the domains containing redundant actions,
also contained redundant inverse actions, except for the Scanlyzer and Sokoban do-
mains. In addition, in some domains where the number of redundant actions was high,
the number of redundant inverse actions was high as well, for example in the Elevators,
Transport and Barman domains. In the IPC2014 domains, all plans contained inverse
actions except for those generated by Probe and Bfs-f for the Thoughtful domain.
There was a high number of redundant inverse actions in plans generated by Yahsp3
for the Transport domain, and in Jasper plans for the Barman domain, the number
was also high. An interesting result observed for the Parking domain was that all the
redundant actions were inverse.

• Action Elimination (AE) algorithm removes the highest number of redundant actions
in a very short time, except for in the Transport and Sokoban domains, where it took a
long time. Among the IPC2011 domains, it was noted that there were no redundant
actions in the Pegsol domain for any plans generated by any of the tested planners.
Furthermore, among plans generated by the Probe and Bfs planners, there were no
redundant actions in the Nomystery and Parking domains. On the other hand, all other
domains contained redundant actions and the number of these was very high, especially
in plans generated by Yahsp3 for the Elevators, Transport and Sokoban domains; in
plans generated by Madagascar for the Floortile domain, and in plans generated by
Jasper for the Barman domain. With regard to the IPC14 domains, it was observed
that all domains contained redundant actions and the total number of these was very
high in plans generated by Yahsp3 for the Transport domain and in plans generated by
Jasper for the Barman domain.

• AIAE algorithm removes the same number of redundant actions as AE because it is
an extended version of AE, but just considers the situations where redundant actions
are inverse in order to reduce the CPU-time of AE (see propositions in Chapter 4).

• Greedy Action Elimination (GAE) algorithm generally removed the same number of
redundant actions that AE and AIAE removed and the run time was not much increased
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in most cases, except for plans in the Transport and Elevators domains. The highest run
time was, in most instances, due to the repetition of the process n times (n is number
of the actions in the plan).

• GAIAE algorithm removes the same number of redundant actions as GAE. It is an
extended version of GAE, but just considers situations where redundant actions are
inverse in order to reduce the CPU-time of GAE (see proposition 2 in Chapter 4).

Generally, the total run time of AIAE and GAIAE algorithms is less than that of AE and GAE
algorithms. The best overall results were achieved in plans generated by Yahsp3, especially
in the Transport, Elevators and the Sokoban domains where the number of inverse actions
was high.

6.5 Experiment3: Justified Unique Actions and Redundant
Actions

This experiment demonstrates the relationship between justified unique actions and redundant
actions in a plan solution. To calculate the number of redundant actions AE algorithm was
used. For justified unique actions (actions that can not be eliminated to achieve the goal),the
JUA algorithm was used (for more details, see chapter5).

The cumulative results of the experiment are displayed in Tables 6.3 and 6.4. With regard
to the total number of justified unique actions, it was found that all plans in all domains
contained justified unique actions except for some plans in the Sokoban domain. The total
number of these, when compared with the total length of the plans, was generally high. For
example, in the Nomystery domain, the total number was around 50 percent of the total plan
length for all plans generated by the five planners.

However, looking at the total number of redundant actions and the total number of
justified unique actions, an interesting result can be observed. In general, when the number
of justified unique actions is high, the total number of redundant actions is low, especially
in the Scanalyzer, Nomystery, Pegsol, Parking, Floortile and Thoughtful domains. Detailed
results per problem are presented in Appendix A.

6.5.1 Experiments 4: Justified Unique Actions and Improving Pre-Optimization
Plan Process

This experiment evaluates introduced approach to optimise plans by adding a pre-process
that identify justified unique actions (non-redundant). The extended algorithms AIAE and
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Table 6.1 Results of experiments on the plans for IPC11 domains found by the planners
Yahsp3, Madagascar, Probe, Bfs-f, and Jasper. The column ’Plans’ contains the number
(Num) of the plans and the total length of them (T.Length). The column IAE contains the
total number of the redundant inverse actions ∑ in the plans and the total run time in seconds
♢ required to find them. The following columns contains the total length of optimised plans
Ω and the total time in seconds ♢ required for optimization process for the four evaluated
algorithms.

Planner Domain Plans IAE AE AIAE GAE GAIAE
Num T.Length ∑ ♢ Ω ♢ Ω ♢ Ω ♢ Ω ♢

yahsp3 Barman 1 235 84 153 0.1 137 0.6 137 0.4 137 20 137
Floortile 6 303 32 0.06 268 0.3 268 0.3 268 1 268 0.9
Nomystery 9 275 0 0.2 275 3 275 3 275 5 275 5
Parking 2 137 4 0.1 73 0.1 73 0.1 73 0.2 73 0.2
Pegsol 20 603 0 0.1 603 0.6 603 0.6 603 0.7 603 0.7
Scanalyzer 17 2278 0 0.4 1898 6 1898 5 1898 61 1898 56
Transport 12 3432 417 1 2693 102 2693 93 2734 1325 2731 1440

Madagascar Floortile 18 1663 172 0.2 1452 10 1452 7 1452 94 1452 89
Nomystery 12 381 24 5 354 75 354 68 354 165 345 158
Pegsol 17 479 0 0.1 479 0.6 479 0.6 479 0.4 479 0.5
Scanlyzer 5 166 9 0.01 142 0.2 142 0.2 142 0.2 142 0.3

Probe Barman 18 2780 38 0.8 2732 7 2732 7 2732 16 2732 15
Elevators 16 4078 40 3 3958 267 3958 266 3958 1592 3958 1658
Floortile 4 181 6 0 172 0.05 172 0.0.7 172 0.4 172 0.4
Nomystery 4 114 0 2 114 21 144 21 114 23 114 22
Parking 11 1580 14 0.6 1553 2 1553 2 1553 3 1553 3
Pegsol 20 565 0 0.2 565 0.7 565 0.8 565 0.8 565 0.8
Scanalyzer 17 576 0 0.1 566 0.6 566 0.6 566 0.6 566 0.6
Sokoban 18 5074 0 3 4852 112 4852 112 4850 236 4850 236
Transport 13 3218 68 1 2955 94 2955 87 2949 507 2949 503

Bfs-f Barman 17 2423 48 3 2369 6 2369 6 2369 19 2367 20
Elevators 5 814 30 0.3 779 23 779 22 779 139 779 126
Floortile 6 291 10 0 281 0.3 281 0.3 281 0.8 281 0.7
Nomystery 17 610 0 12 610 181 610 182 610 183 610 183
Parking 18 1528 0 0.3 1528 1 1528 1 1528 2 1528 2
Pegsol 20 603 0 0.064 601 0.5 603 0.5 601 0.6 603 0.7
Scanalyzer 18 675 0 0.1 663 0.8 663 0.8 663 0.9 663 0.9
Sokoban 16 2550 0 2 2534 65 2534 66 2534 86 2534 86
Transport 13 2583 66 1 2493 62 2493 61 2493 294 2493 294

Jasper Barman 8 1620 259 0.4 1220 5 1220 4 1220 72 1220 62
Elevators 17 3777 58 2 3671 245 3671 240 3671 1156 3671 1138
Floortile 5 261 16 0.01 237 0.3 237 0.3 237 1 237 1
Nomystery 19 687 0 12 687 193 687 191 687 248 687 249
Parking 20 2045 28 2 1983 2 1938 2 1938 4 1938 3
Pegsol 20 644 0 0.06 644 0.6 644 0.8 644 0.8 644 0.8
Scanalyzer 20 793 0 0.06 763 0.8 763 0.9 763 1 763 0.2
Sokoban 16 4703 0 2 4477 103 4477 100 4477 328 4477 328
Transport 7 1178 64 0.3 1069 20 1069 16 1069 110 1069 112
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Table 6.2 Results of experiments on the plans for IPC14 domains found by the planners
Yahsp3, Madagascar, Probe, Bfs-f, and Jasper. The column ’Plans’ contains the number(Num)
of the plans and the total length of them(T.Length). The column IAE contains the total number
of the redundant inverse actions ∑ in the plans and the total run time in seconds ♢ required
to find them. The following columns contains the total length of optimised plans Ω and the
total time in seconds ♢ required for optimization process for the four evaluated algorithms

Planner Domain Plan IAE AE AIAE GAE GAIAE
Num T.Length ∑ ♢ Ω ♢ Ω ♢ Ω ♢ Ω ♢

Yahsp3 Floortile 2 102 20 0 78 0.1 78 0.1 78 0.4 78 0.4
Thoughtful 10 1556 4 0.1 1131 10 1131 12 1219 107 1219 101

Madagascar Floortile 20 1861 160 0.3 1624 7 1624 5 1624 39 1624 36
Thoughtful 5 210 4 0.06 177 0.5 177 0.5 177 0.7 177 0.7

Barman 9 1790 26 0.7 1696 9 1696 8 1694 34 1694 33
Probe Floortile 2 81 4 0 76 0.06 76 0.07 76 0.2 76 0.1

Thoughtful 12 1283 0 0.78 1240 8 1240 7 1240 14 1240 13
Transport 2 765 10 0.2 702 25 702 24 702 211 702 210

Bfs-f Barman 20 3315 94 1 3207 12 3207 11 3205 46 3207 40
Floortile 3 241 8 0.1 288 0.6 288 0.6 288 2 288 1
Thoughtful 16 1746 0 2 1715 11 1715 11 1715 24 1715 21
Transport 6 1558 42 0.6 1543 51 1543 48 1543 240 1543 242

Jasper Floortile 2 90 0 0 82 0.08 82 0.07 82 0.3 82 0.3
Thoughtful 17 1818 2 1 1753 9 1753 9 1753 22 21
Transport 6 1545 96 0.6 1397 48 1397 43 1397 462 1397 481
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Table 6.3 Comparison of the total number of justified actions and the total number of
redundant for plans of IPC2011 domains found by the planners Yahsp3, Madagascar, Probe,
Bfs-f, and Jasper. The column ’Plans’ contains the number(Num) of the tested plans and the
total length of them(T.Length). The column JUA contains the total number of the justified
unique actions in the tested plans, and the column Redundant contains the total number of
the redundant actions in the tested plans.

Planner Domain Plans JUA Redundant
Num T.Length

yahsp3 Barman 1 235 9 153
Elevators 20 25985 718 14275
Floortile 6 303 94 35
Nomystery 9 257 149 2
Parking 2 137 71 4
Pegsol 20 603 281 0
Scanalyzer 17 2278 210 380
Transport 20 3432 670 375

m Floortile 18 1663 485 211
Nomystery 12 550 265 80
Pegsol 17 479 222 0
Scanlyzer 5 166 95 44

Probe Barman 18 2780 215 48
Elevators 17 4078 1069 120
Floortile 4 181 62 9
Nomystery 4 114 60 0
Parking 11 1580 366 27
Pegsol 19 626 277 0
Scanalyzer 18 575 229 10
Sokoban 16 5074 50 222
Transport 13 3218 454 263

Bfs-f Barman 20 3033 204 54
Elevators 5 814 241 35
Floortile 6 291 99 10
Nomystery 16 610 341 0
Parking 18 1528 731 0
Pegsol 20 603 280 0
Scanalyzer 18 675 12
Sokoban 13 2550 48 16
Transport 13 2583 516 90

Jasper Barman 20 5081 93 300
Elevators 17 3777 1257 106
Floortile 5 261 79 24
Nomystery 18 687 393 4
Parking 20 2052 697 69
Pegsol 20 644 284 0
Scanalyzer 20 793 259 30
Sokoban 16 4703 56 226
Transport 7 1178 254 109
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Table 6.4 Comparison of the total number of justified actions and the total number of
redundant for plans of IPC2014 domains found by the planners Yahsp3, Madagascar, Probe,
Bfs-f, and Jasper. The column ’Plans’ contains the number(Num) of the tested plans and the
total length of them(T.Length). The column JUA contains the total number of the justified
unique actions in the tested plans, and the column Redundant contains the total number of
the redundant actions ∑ in the tested plans.

Planner Domain Plan Justified Unique Redundant
Num T.Length

Yahsp3 Floortile 2 102 29 24
Thoughtful 10 1556 113 425

Madagascar Floortile 20 1861 536 237
Thoughtful 5 210 56 33
Barman 9 1790 132 98

Probe Floortile 2 81 27 5
Thoughtful 12 1283 150 43
Transport 2 765 115 63

Bfs-f Barman 20 3315 284 108
Floortile 4 241 77 13
Thoughtful 16 1746 224 31
Transport 6 1558 351 15

Jasper Floortile 2 90 26 8
Thoughtful 17 1818 214 65
Transport 6 1545 327 148

GAIAE were adapted to work with this feature and implemented as U(AIAE), and U(GAIAE)
respectively.

The detailed results of this evaluation are presented in Appendix A. New algorithms were
compared with the original AE and GAE algorithms. Generally, the run times of UAIAE and
UGAIAE compared with original ones AE and GAE respectively were improved in several
cases when the number of justified unique actions was high especially in the Nomystery,
Elevators, and Transport domains. From Table 6.5, it can observed that the run times were
reduced up to 70% in the Nomystery domain.

6.6 Experiment 5: Plan Optimisation Technique(UAIAE)
against Optimal Planners

This subsection analyses the results of a comparison between plan optimisation technique
and optimal planners in some domains. Only the results of domains where optimal planners
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Table 6.5 This table represents the percentage of reduced run time of UAIAE and UGAIA
compared with original ones

Planner UAIAE UGAIAE
Yahsp3 71% 67%
Madagascar 68% 47%
Probe 62% 58%
Bfs-f 65% 74%
Jasper 70% 65%

were able to solve some of the problems are displayed. It compares between the quality of
optimised plans by UAIAE (obtained by agile planners) and the quality of optimal plans (in
term of the number of actions) to show how our method find optimal or sub optimal plans. In
order to evaluate the efficiency of our method, it also compares between generation time of
optimal plan against the total run time of generation and optimsation of plans. The results
are shown in Tables 6.6, 6.7, 6.8, and 6.9.

Plan Quality
As can be seen from the Tables 6.6,6.7, 6.8, and 6.9, the length of the plans generated by

agile planners and optimsed by UAIAE method is very close to length of the optimal ones in
some cases and in others is same in the Floortile and Nomystery domains for plans generated
by Madagascar , and the Scanalyzer domain for plans generated by Jasper. It was Only in the
Sokoban domain that the length of the plans was not close.

Plan Generation and Optimisation Time
Generally, the generation and optimization times for satisficing plans were lees then from

generation time of optimal plans. The most interesting results are those of the Madagascar
planner in the Floortile domain and Jasper in the Scanalyzer Domain. All the plans take
less than one second to be generated and optimised. On the oder hand, the generation and
optimisation times of plans in the sokoban domain were more than generation time of optimal
plans in some cases.

6.7 Experiment 6: Plan Optimisation Technique(UAIAE)
via Anytime Planners

In this section, the performance of the fast AE family technique (UAIAE) with Lama (Richter
and Westphal, 2010) and Mercury (Katz and Hoffmann, 2014) planners is evaluated. Since
both planners perform multiple iterations of a heuristic search to improve their initial plans,
the first plans generated by these planners were taken and optimised by UAIAE, and then
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Table 6.6 This table Compares between optimal plans generated by SymbA*-2 and plans
generated by Madagscar and optimised by UAIAE in the Floortile domain(IPC11). The
column ’Optimal’ contains the length of optimal plan Ω, and plan generation time ♢. The
following column ’M+UAIAE’ contains the length of the plan Ω1 generated by Madagascar,
the length of optimised Ω2 plan by UAIAE, and the total time of generation and optimisation
♢.

Problem Optimal M+UAIAE
Ω ♢ Ω1 Ω2 ♢

p01 35 0.1 39 35 0.02
p02 36 0.1 42 36 0.02
p03 44 0.1 51 44 0.03
p04 48 0.3 54 50 0.04
p05 45 0.8 50 49 0.2
p06 46 0.8 52 48 0.04
p07 60 2 75 60 0.1
p08 57 1 64 59 0.1
p09 74 5 91 76 0.1
p10 73 5 74 73 0.1
p11 75 15 85 77 0.1
p12 78 17 86 82 0.1

compared in terms of plan length and plan optimisation time with the best plans found by the
planners. The best overall results for UAIAE were achieved in the Barman, Floortile and
Transport domains. On the other hand, UAIAE was unable to find any redundant actions in
the Pegsol and Nonmystery, and only found some of them in the Parking, Scanalyzer and
Sokoban (see Appendix B for more details and results).

Table 6.10 shows a comparison of the plans in the Barman. As can be seen, Lama could
only improve three solutions, but Mercury was able to improve all of its solutions. Lama is
able to quickly find an initial solution, but fails to improve on it over time (Xie et al., 2013).
However, UAIAE outperformed them both in terms of length and optimisation time. For
the Elevators domain, Lama was not able to find any improvement on the initial solution,
whereas Mercury was able to find some improvement. On the other hand, UAIAE was able to
find some improvement in the Lama plans see Table 6.11 but unable to improve the Mercury
plans. In the Floortile domain see Table 6.12, the plans optimised by UAIAE were very close
in length to those optimised by Lama and Mercury. For the Transport domain, Lama was
able to improve seven out of twenty plans, while Mercury was able to improve all twenty
of them. Meanwhile, UAIE outperformed Lama in terms of both plan length and time in
seventeen plans, but was unable to find any redundant actions in plans generated by Mercury.
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Table 6.7 This table Compares between optimal plans generated by RIDA and plans generated
by Madagscar and optimised by UAIAE in the Nomystery domain(IPC11). The column
’Optimal’ contains the length of optimal plan Ω, and plan generation time ♢. The following
column ’M+UAIAE’ contains the length of the plan Ω1 generated by Madagascar, the length
of optimised Ω2 plan by UAIAE, and the total time of generation and optimisation ♢.

Problem Optimal M+UAIAE
Ω ♢ Ω2 Ω2 ♢

p01 18 60 23 20 2
p02 21 44 23 21 5
p03 25 67 65 28 82
p04 28 111 34 32 212
p05 34 94 45 37 8
p06 36 28 36 36 6
p08 40 45 47 44 161
p11 18 50 21 19 5
p12 21 38 21 21 3
p13 25 56 29 26 105
p14 28 86 28 28 4
p15 34 116 34 34 5
p16 36 27 40 36 4
p18 40 41 48 40 98
p20 48 64 56 48 132

Table 6.8 This table Compares between optimal plans generated by SymbA*-2 and plans
generated by Jasper and optimised by UAIAE in the Scanalyzer domain(IPC11). The column
’Optimal’ contains the length of optimal plan Ω, and plan generation time ♢. The following
column ’J+UAIAE’ contains the length of the plan Ω1 generated by Jasper, the length of
optimised Ω2 plan by UAIAE, and the total time of generation and optimisation ♢.

Problem Optimal J+UAIAE
Ω ♢ Ω1 Ω2 ♢

p01 10 11 14 10 1
p02 12 373 12 12 0.1
p03 20 2.6 30 30 0.03
p05 14 607 16 16 0.3
p06 14 6 24 16 1
p07 16 561 16 16 0.6
p08 18 5 22 22 0.8
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Table 6.9 This table Compares between optimal plans generated by SMPS and plans generated
by Jasper and optimised by UAIAE in the Sokoban domain(IPC11). The column ’Optimal’
contains the length of optimal plan Ω, and plan generation time ♢. The following column
’P+UAIAE’ contains the length of the plan Ω1 generated by Probe, the length of optimised
Ω2 plan by UAIAE, and the total time of generation and optimisation ♢.

Problem Optimal P+UAIAE
Ω ♢ Ω1 Ω2 ♢

1 161 33 205 193 2
2 151 1 242 228 2
3 185 36 245 245 2
4 289 17 309 309 9
5 190 10 324 324 5
6 299 126 367 345 16
7 429 1 429 429 38
8 207 13 335 323 7
9 354 547 592 562 94
10 147 147 273 273 109
11 83 1233 181 181 13
12 155 4 536 410 164
13 328 8 440 434 87
14 254 873 353 353 236

Table 6.10 Results of experiments on the plans for Barman domain(IPC11) found by Lama
and and Mercury. The columns Lama and Mercury contains the first plan generated by
them ’initial Solution’( the lenght of first plan Ω1 ), and best plan generated by them ’Best
Solution’ (the length of optimized plan Ω2), and First plan optimised by ’UAIA’(the length
of optimized plan Ω3).

Problem Lama Mercury
Initial Solution Best Solution UAIAE Initial Solution Best Solution UAIAE
Ω1 ♢ Ω2 ♢ Ω3 ♢ Ω1 ♢ Ω2 ♢ Ω3 ♢

1 157 1 - - 127 0.4 158 0.4 156 0.8 132 0.3
2 147 0.8 144 1491 124 0.3 138 0.5 - - 122 0.2
3 177 1 167 706 143 0.5 155 0.7 - - 123 0.3
4 154 0.8 - - 136 0.3 142 0.5 141 1 128 0.2
5 162 1 - - 136 0.4 159 0.8 157 1 135 0.3
6 222 4 - - 156 0.7 163 1 162 2 145 0.3
7 146 0.4 - - 132 0.4 157 0.8 - - 137 0.3
8 160 1 - - 150 0.4 156 1 154 3 138 0.3
9 188 2 - - 157 0.6 202 2 200 5 162 0.5
10 165 1 - - 157 0.6 183 1 172 3 161 0.5
11 231 191 - - 173 0.8 191 2 189 5 159 0.5
12 208 2 - - 165 0.8 196 1 193 3 162 0.5
13 252 9 - - 197 1 213 1 209 3 181 0.7
14 231 4 - - 181 1 200 1 198 70 170 0.7
15 213 10 - - 199 1 288 5 275 9 215 1
16 225 2 - - 187 1 232 1 231 3 232 0.9
17 273 7 - - 208 2 248 2 - - 198 1
18 216 1 - - 190 1 222 0.9 - - 185 0.9
19 191 2 - - 172 0.8 165 3 - - 159 0.5
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Table 6.11 Results of experiments on the plans for Barman domain(IPC11) found by Lama.
The column ’initial Solution’ contains the length of the first plan Ω1 and plan generation
time ♢ , and Column ’Best Solution’ contains the length of optimized plan Ω2 and plan
optimization time ♢. The following column contains the length of optimized plan Ω3 by
UAIAE and optimization time ♢

Problem Initial Solution UAIAE
Ω ♢ Ω ♢

p01 80 0.1 80 0.4
p02 143 2 136 2
p03 156 2 151 2
p04 118 0.6 115 0.7
p05 116 0.4 115 0.8
p06 184 3 182 4
p07 173 2 161 3
p08 205 4 202 5
p09 198 5 196 4
p10 214 3 214 6
p11 254 18 241 9
p12 265 18 261 8
p13 284 64 274 10
p14 289 33 281 11
p15 288 26 286 11
p16 248 20 248 20
p17 312 45 300 31
p18 313 34 313 32
p19 380 155 369 45
p20 362 57 358 40

Table 6.12 Results of experiments on the plans for Floortile domain(IPC11) found by Mercury
. The column ’initial Solution’ contains the length of the first plan Ω1 and plan generation
time ♢ , and Column ’Best Solution’ contains the length of optimized plan Ω2 and plan
optimization time ♢. The following column contains the length of optimized plan Ω3 by
UAIAE and optimization time ♢

Problem Initial Solution Best Solution UAIAE Initial Solution Best Solution UAIAE
Ω ♢ Ω ♢ Ω ♢ Ω ♢ Ω ♢ Ω ♢

1 44 20 35 78 37 0.02 40 3 35 29 37 0.03
2 41 19 36 93 38 0.02 38 3 36 73 36 0.02
3 57 304 44 881 50 0.05 52 11 44 140 46 0.04
4 61 229 52 1407 52 0.06 56 444 - - 52 0.05
5 51 429 45 720 47 0.05 53 125 45 653 53 0.05
6 52 424 52 158 48 0.05 56 44 46 467 56 0.06
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Table 6.13 Results of experiments on the plans for Transport domain(IPC14) found by Lama.
The column ’initial Solution’ contains the length of the first plan Ω1 and plan generation
time ♢ , and Column ’Best Solution’ contains the length of optimized plan Ω2 and plan
optimization time ♢. The following column contains the length of optimized plan Ω3 by
UAIAE and optimization time ♢

Problem Initial Solution Best Solution UAIAE
Ω ♢ Ω ♢ Ω ♢

1 99 2 - - 96 1
2 120 2 - - 113 1
3 166 7 163 109 166 3
4 150 5 - - 139 2
5 205 6 - - 191 3
6 255 66 233 76 222 5
7 260 235 - - 245 7
8 163 4 - - 144 3
9 325 154 - - 306 15
10 202 11 - - 187 5
11 173 7 - - 165 3
12 191 7 - - 174 4
13 186 9 - - 175 4
14 569 610 481 685 529 73

6.8 Experiment 7: Plan Optimisation Technique versus Plan
repair

In this experiment, the performance of the plan optimisation technique (UAIAE) was evalu-
ated against a plan repair strategy using LPG (Gerevini et al., 2003). Since LPG restarts from
a partial plan obtained from a valid one by removing some actions randomly and repairing
invalidated plan, the evaluation was performed by taking valid plans generated by agile
planners and invalidating them by randomly removing 25% of the actions to force the error,
then inputting those invalidated plans to LPG in order to repair them. The lengths of the
plans validated by LPG were compared with the lengths of the original ones optimised by
UAIAE.

The figures 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8, show the results obtained in IPC2011 domain
problems solved by agile planners. The overall results show that the optimised plans were
shorter than the repaired plans, except in the Sokoban domain, where the repaired plans were
shorter than the original and optimised plans in some cases, and close to them in others. This
applied to the total cost of each particular plan.
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Fig. 6.3 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Barman domain
plans obtained by Jasper.On the left hand side, comparison of plan length and on the right hand side
comparison of process time.
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Fig. 6.4 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Elevators
domain plans obtained by Yahsp3. On the left hand side, comparison of plan length and on the right
hand side comparison of process time.
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Fig. 6.5 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Floortile
domain plans obtained by Madagascar. On the left hand side, comparison of plan length and on the
right hand side comparison of process time.
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Fig. 6.6 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Scanalyzer
domain plans obtained by Probe. On the left hand side, comparison of plan length and on the right
hand side comparison of process time.
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Fig. 6.7 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Sokoban
domain plans obtained by Jasper. On the left hand side, comparison of plan length and on the right
hand side comparison of process time.
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Fig. 6.8 Comparison between plan optimisation(UAIAE) and plan repair(LPG) in the Transport
domain plans obtained by Yahsp3. On the left hand side, comparison of plan length and on the right
hand side comparison of process time.
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If the post-processing time is considered, it can be observed that the optimisation process
is generally faster than the repair process. However, in some cases, the repair process was
faster than the optimisation process, for example, in the Sokoban domain. An interesting
observation was that when the number of justified unique actions in the plans was high,
LPG was able to introduce plans that were close to both the original and optimised plans,
for example, in the Floortile domain. On the other hand, when the number of justified
unique actions was low, LPG introduced plans that were very different from the original and
optimised plans, such as in the Barman domain. Therefore, it can be concluded that LPG
plan repair works well when the number of JUA is high because of the plans that contains
high number of JUA is high quality plans and original high quality plans led to repaired high
quality plans. For more detailed results see Appendix C.

6.9 Discussion

The aim of extending action elimination and Greedy Action elimination was to reduce
CPU-time of these algorithms while the keeping the same ’elimination power’ (identifying
and removing the same number of redundant actions). Clearly, the extended algorithms
AIAE and GAIAE (considering situation where the inverse actions are redundant) remove
the same number of redundant actions as AE and GAIAE respectively, and improve the
run time in some cases where the number of inverse actions is high, such as the transport
and Sokoban domains for plans generated by the Yahsp3 planner. In some other cases the
improvement was not great, but was enough to to demonstrate the validity of our methods.
On the other hand, in some cases the the time was not improved at all and in the worst cases
was increased and added additional steps compared to the original algorithms. This happened
for two reasons. The first reason was that, there were no redundant actions or a vary low
number of redundant actions in the plans, such as,the Thoughtful domain plans generated by
Madagascar. The Second reason may be that the inverse actions lie too far from each other in
the plan. These algorithms will be more beneficial in specific cases in domains that have a
high number of inverse actions where pairs of redundant inverse actions lie too close from
each other in a plan.

Furthermore, adding a pre-step to plan optimisation process that identified the subset
of justified unique (non-redundant)actions in a given plan was efficient in several cases,
especially when the number of the justified unique actions was very high, such as Elevators,
Nomyastery, and Transport domains. Clearly, adapting three approaches to work together
in one algorithm (UAIAE) and four approaches in the other (UGAIAE) is guaranteed to
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provide optimised plans in less run time then AE, and GAE, but in term of plan quality their
performance is same as the AE and GAE methods.

For comparison with optimal planners, UAIAE was able to introduce optimal or sub-
optimal plans in less time in some cases. For compression with anytime planners, UAIAE
outperforms these planners in several cases weather in term of quality or term of optimisation
time. Even though , Lama and Mercury are given 30 minutes they find first solution and they
were not able to improve it over the time. This time was identified by Xie et al. (2013) as the
"unproductive time" of Lama in IPC-2011 domains( Barman and Elevators). On the other
hand, in some cases UAIAE was not able to improve the plans.

However, the total run time was very high in some cases because the algorithms take
input in PDDL format and this varies depending on the size of the plans and domains. The
highest run time was in optimising plans from the Transport, Elevators, Nomyastery and
Sokoban domains. On the other hand, the lowest run time was in optimising plans of Floortile
and Barman.

Finally, it can be concluded that pre-optimisation techniques can be integrated with
satisficing planners in order to find optimal or sub optimal plans in a polynomial time.





Chapter 7

Conclusion and Future Work

This chapter summarizes our contributions and proposes several directions to follow for
future work.

7.1 Contributions

This thesis contribute to the topic of post planning plan optimisation as follow:

• It has provided an overview of the existing plan optimisation techniques and presented
the current techniques that identify and remove redundant actions from a given plan
in polynomial time, such as Action Elimination and Greedy Action Elimination.
Such techniques are very important because of they serve as pre-process and a a
complementary tool to more sophisticated plan optimisation techniques.

• It has extended Action Elimination and Greedy Action Elimination algorithms by
incorporating Inverse Action Elimination feature into them and developed two new
algorithms named AIAE and GAIAE respectively. This extension was accompanied
by necessary theoretical foundations. New algorithms are beneficial to optimise plans
in shorter time in some cases where the number of inverse actions is high such as
transport domain. They will be more efficient when pairs of inverse actions are close
to each other in the plan.

• It has presented the development of an algorithm to extract subset of the actions from a
given plan that cannot be present at any set of redundant actions or cannot be removed
from the plan. Again, this implementation has been accompanied with necessary
theoretical foundations. The subset, which contains the actions that introduce unique
facts to goal and the actions introduce unique facts to them named justified unique
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actions; this is an approach that, to the author’s knowledge, this approach has never
been previously explored.

• It has presented adding pre-process to the above extended methods (AIAE and GAIAE)
and developing two new algorithm UAIAE and UGAIAE respectively. New algorithms
firstly identify non-redundant actions (justified unique actions) in a given plan, then
they identify the redundant actions. In several cases, this approach proved efficient in
reducing CPU-time than the original methods.

• It has provided detailed experimental results that show pre-optimization process is very
an important process to post planning optimisation, because it identifies and removes
many redundant actions from a solution plan in polynomials time before applying
more sophisticated plan optimisation technique.

7.2 Challenges and Future Work

Clearly, there has been significant progress during the last years in this area; however, post-
planning plan optimization remains a challenge. In addition, although there are several
algorithms that identify and remove redundant actions from a plan, determining a maximum
set of redundant actions in a plan is intractable. In this section, we present some of challenges
and directions to future work.

• Optimal Planning with Macro-operators

A macro-operator is a sequence of actions that can be planned at one time like a
single operator. In some instances, through the use of macro-operators, domains can
be enhanced, with such operators encompassing a number of sequences of primitive
operators. It also has been recognised that, during the course of the application of
macro-operators throughout the search, plans may be generated at a much faster pace;
however, this commonly goes hand-in-hand with the drawback of a loss in solution
plans optimality. As has been noted in (Chrpa et al., 2012b), in some instances, there
may be the opportunity to refine an optimal plan from (sub-optimal) plans through
the adoption of macro-operators sourced from an optimal planning engine. In the
Depots domain, macro-operators’ lift-load and unload-drop’ may be generated. Should
there be an issue, such as the need to move a crate from one stack to another, the
use of an optimal planning engine could facilitate a solution. Such a plan, i.e. (lift-
load,unload-drop), can be unfolded to generate (lift,load,unload,drop) although this is
not considered an optimal plan. It is apparent that load and unload are inverse actions,
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and thus can be established both as redundant and removed (Chrpa et al., 2012a).
Nonetheless, should the depot comprise two or more hoists, such actions might not
be inverse owing to the fact that the crate would be unloaded form the truck with a
different hoist. In an instance such as this, the actions load and unload would not be
disregarded from the plan owing to the fact that the precondition of the drop would not
be satisfied. In order to resolve this, the argument referring to the drop action’s hoist
would be amended in line with the lift action.

A macro-operator refuel-fly can be generated in the Zeno domain, whereby, even in the
case of utilising an optimal planning engine, it remains that an excessive number of
refuel actions might be included in the unfolded solution plans. Comparably, deleting
the plan’s refuel action would mean the subsequent fly or zoom actions would be
inapplicable; thus, their purposes in regards fuel levels would require modification.
Accordingly, it would be suitable to direct attention towards classifying possible
situations that might arise whilst planning with macro-operators using optimal planning
engines, i.e. those without the presence of action costs. Devising or implementing
existing optimisation approaches for such classes whilst ensuring their optimality is a
notable challenge to undertake.

• Characteristic Domains:

When considering the BlocksWorld domain, which is very well known, one plan non-
optimality source is that of Sussman Anomaly (see Figure 7.1). As an example, if there
are three blocks referred to as A, B and C, such that the initial state is on (C, A) and on
Table(B) and the goal situation is on (A,B) and on (B,C), there would be two possibili-
ties in regards to achieving goal atoms order, i.e. on (A,B) then on (B,C), or vice-versa.
A number of different plans may be generated, namely i) hunstack(C,A), putdown(C),
pickup(A), stack(A,B), unstack(A,B), putdown(A), pickup(B), stack(B,C), pickup(A),
stack(A,B), and ii) hpickup(B), stack(B,C), unstack(B,C), putdown(B), unstack(C,A),
putdown(C), pickup(A), stack(A,B), unstack(A,B), putdown(A), pickup(B), stack(B,C),
pickup(A), stack(A,B)i. In such cases, an approach centred on establishing redundant
actions can be adopted (Chrpa et al., 2012a); these are able to provide the most optimal
of optimised plans. Such an approach is recognised as valuable in working in the ways
the literature considers, specifically in regards more complicated instances, such as
when, after stacking A to B, we might be moving blocks between different stacks and
subsequently unstacking A from B. Notably, such an approach should be questioned in
terms of whether it can guarantee optimal plans.
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Fig. 7.1 An Example Blockword Task 2

When considering the Gold-miner domain, there is a need to progress through the maze
in an effort to gather gold. In this case, there is the need to unblock cells, such as with
the use of bomb or laser; notably, however, a bomb is the only way of unblocking a cell
containing goal. Importantly, when unblocking using bomb, the bomb is consumed and,
as a result, would need to be re-collected. Accordingly, the most valuable approach
would be to select the laser for unblocking all essential cells, and then using the bomb
only when there are gold-containing cells. Regardless of such suggestions, however,
some planners might hold the preference of bomb utilisation as opposed to laser; this
could result in non-optimal plans. In this case, there would need to be the use of an
optimal plan, such as with the use of AIRS (Fikes and Nilsson, 1971); this can use an
optimal (or almost optimal) planner to re-plan that particular element of the plan.

In regards the Zeno domain, as an example, we might utilise more refuel actions than is
strictly required; nonetheless, as discussed earlier, disregarding essential refuel actions
would mean the plan would be considered invalid. Thus, in order to make the plan
valid, the fuel level arguments associated with zoom or fly actions would need to be
modified. It is possible that an amended version of this technique could be devised in
order to establish redundant actions (Chrpa et al., 2012b).

In the Depots domain, it might be decided that shifting a crate from one truck to
another is not an optimal approach; rather than implementing two actions, namely
unload and load, one additional drive action could be included. However, the unload
and load actions cannot be simply replaced with the drive action as, in such an instance,
the plan’s validity might be lost. There is the need to propagate such a change as the
crate will not be unloaded from the second truck, and the first truck would be located
elsewhere. In this case, it might be more valuable to implement the PNGS (Nakhost
and Müller, 2010) technique, although it might not work so well if such actions are
positioned far from one another.
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• Learning Shortcut Rules: Shortcut rules (Karpas and Domshlak, 2012) can be un-
derstood as a mapping between causal structures of planning operators (or actions)
, such that structures are mapped to structures offering the benefit of lower costs, as
established by the sum of action costs of operators or the number of operators. A
particular shortcut rules case is that of plan rewrite rules (Nedunuri et al., 2011), which
may be applied for replacing sub-plans (outcomes of actions in plans) by shorter (or
less expensive) action outcomes. AIRS (Estrem and Krebsbach, 2012) is concerned
with establishing possibly non-optimal sub-plans and replacing them with optimal (or
almost optimal) ones. In this vein, pairs of weakly adjacent actions, i.e. those that
may be adjacent in some change implemented in the plan, is established in (Chrpa
et al., 2012b); these then may be replaced by a single action. In such an instance,
replaceability may be explained as an action that might replace another action but that
needs to have an equal or otherwise weaker precondition, equal or weaker negative
effect, or equal or stronger positive effect. In some instances, however, this could
be a very strong assumption to make as, in some instances, strongly preconditions
could be satisfied. Accordingly, there is a need to differentiate between problem-
or plan-specific shortcut rules or problem-independent rules. As is clear, shortcut
rules may comprise far more complicated planning operator-related casual structures.
However, the question centres on how shortcut rules may be learnt. One possibility
is to learn when optimising plans online; nonetheless, this approach could have the
drawback of consuming too much time owing to the fact there is a need to carry out
a blind check on the significantly high number of casual structures in the operator.
One further possibility is to establish potential non-optimal operator casual structures;
this can be done through examining the schema of operators, which could provide the
opportunity to establish different ways of achieving an atom or atoms. Nevertheless,
there are various drawbacks that could hinder the learning of problem-specific shortcut
rules: as an example, in the case of the Depots domain, a single drive action could
replace two drive actions, with drive(t,a,c) replacing drive(t,a,b), drive(t,b,c). However,
assuming an extensive of the domain, where there needs to be a road between locations
so as to facilitate the truck moving, is applicable only when there is a road between
a and c locations. Implementing shortcut rules could be tractable; nonetheless, it is
debatable whether or not the extent of the polynomial could be excessive. Ensuring
a pair of actions is replaced by a single one can take at worst O(l2) (where l is the
number of actions placed in between the pair) (Chrpa et al., 2012b). Nonetheless, there
may be a greater complexity recognised in complex shortcut rules. When taking into
account situations where shortcut rules’ actions are not aligned, replacing such actions
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could cause complicated as the new actions might be influenced by actions positioned
between the old actions. As such, there is a need to examine how adopting shortcut
rules, and the computational complexity of such, rises in line with size; in other words,
involving more complex causal structures of operators). However, structures such as
causal graph or relations such as mutexes might be useful in identifying suboptimal
subsequences.

Developing, a new system for post-planning plan optimisation that combines new tools
developed in this work with a more sophisticated plan optimisation technique that
learns and applies shortcut rules would be an interesting direction for future work. The
system could apply one of this work tools to identify and remove redundant actions,
then apply the other method to learn and apply shortcut rules alternately.

• Integration with Heuristic-based Planners:

Some of this work methods could be integrated with heuristic-based planners such as
Lama. The method could be used as an intermediate step in the plan improvement
process to identify and remove redundant actions from a solution plan that will be
improved by the planner. Every time the planner tries to improve the plan, the method
should be applied. This would help the planner to optimise the plan in a little time, as
well as to improve the plans in some domains where the planner is unable to make any
improvement.

• Extension:

Even though the tools utilised in this thesis support only classical (STRIPS) plan-
ning,the intention is to extend this further in the further for non-classical planning,
such as temporal planning . In this case, identification and removing of redundant
actions will not change the plan‘total ordering. The Only problem would be that after
removing redundant actions there is need to re-schedule the rest of the plan.
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Appendix A

Agile Planners and Plan Optimisation
Techniques

This appendix presents detailed results of experimental evaluation of the extended algorithms
in this thesis using several benchmark domains, as well as several planning engines that
participated in the Agile track of the International Planning Competition 2014

In this evaluation, six plan optimisation techniques were tested AE, AIAE, GAE, GAIAE,
UAIAE, and UGAIAE. Furthermore IAE algorithm were used to identify redundant inverse
actions and JUA algorithm was used to identify justified unique actions in a given plan.
Different problems of IPC2011 and IPC2014 domains solved by different agile planners, and
optimised by these methods. For each problem, tables contain plan length , plan generation
time, number of justified unique actions and their extraction time, number of redundant
inverse actions and their identifying time, the length of the optimised plan by AE, AIAE,
GAE,GAIAE, UAIAE, and GAIAE, their optimiation time. Ω denote to plan length, ♢
denote to process time, and ∑ number of the actions. Some of tables contain dashes, which
indicate to undefined results. The results were presented per problem for each domain and
planner. Tow comparison terms were used:

• Comparison of the run time of AE and AIAE, and between GAE and GAIAE by taking
into account the number of redundant inverse actions identified by IAE.

• Comparison of the run time of AE and UAIAE, and between GAE and GAIAE by
taking into account the number of justified unique actions.
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IPC11 Domains

Barman

For Barman problems the results are presented in Tables A.1, A.2, A.3 and A.4. As can
be seen, the number of redundant inverse actions is high in plans obtained by Yahsp3, thus
AIAE reduced the run times of AE were improved. With regard to justified unique actions, it
was low in all plans obtained by all planners.

Table A.1 Results of experiments on the plan for Barman domain(IPC11) found by Yahsp3
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 235 84 9 0.05 153 0.07 137 0.6 0.4 0.4 137 20 16 15

Table A.2 Results of experiments on the plans for Barman domain(IPC11)) found by Probe
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 130 0.3 9 0.03 2 0.04 128 0.2 0.2 0.2 128 0.5 0.5 0.4
2 117 0.1 10 0.03 0 0.03 117 0.2 0.2 0.1 117 0.2 0.2 0.1
3 118 0.1 9 0.03 0 0.03 118 0.2 0.2 0.1 118 0.2 0.2 0.2
4 120 0.2 9 0.02 2 0.03 118 0.2 0.2 0.1 118 0.4 0.4 0.3
5 144 0.1 12 0.03 0 0.04 144 0.3 0.3 0.3 144 0.3 0.3 0.3
6 143 0.1 11 0.03 0 0.04 143 0.3 0.3 0.2 143 0.3 0.3 0.2
7 150 0.1 11 0.03 0 0.04 150 0.3 0.3 0.3 150 0.3 0.4 0.3
8 132 0.2 12 0.03 2 0.03 130 0.2 0.2 0.2 130 0.5 0.5 0.4
9 159 1 12 0.04 2 0.05 149 0.4 0.4 0.4 149 2 2 1
10 172 0.6 13 0.04 6 0.05 166 0.5 0.5 0.4 166 2 1 1
11 145 0.2 12 0.03 0 0.04 145 0.3 0.3 0.3 145 0.3 0.3 0.4
12 155 0.3 12 0.04 4 0.05 151 0.4 0.4 0.3 151 1 1 1
13 170 0.6 14 0.04 2 0.05 168 0.5 0.5 0.4 168 1 1 0.9
14 200 0.5 12 0.05 2 0.06 198 0.7 0.7 0.6 198 1 1 1
15 187 2 13 0.05 4 0.06 181 0.7 0.6 0.5 181 2 2 2
16 177 1 14 0.05 6 0.05 171 0.6 0.6 0.5 171 2 2 2
17 197 0.8 14 0.06 2 0.07 195 0.7 0.7 0.6 195 1 1 1
18 164 0.8 16 0.05 4 0.05 160 0.5 0.5 0.4 160 1 1 1

Elevators

Results related to Elevators domain are shown in Tables A.5, A.6 and A.7.The number of
inverse action was high in plans generated by Yahsp3 and run times were improved in several
times. For justified unique actions, it was high in all plans generated by all planners, and run
times reduction was clear especially in plans obtained by Yahsp3 and Probe.
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Table A.3 Results of experiments on the plans for Barman domain(IPC11) found by BFS-F
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 113 0.3 9 0.02 0 0.03 113 0.2 0.2 0.2 113 0.2 0.2 0.2
2 109 0.1 10 0.02 0 0.03 109 0.2 0.2 0.1 109 0.1 0.1 0.1
3 131 0.4 9 0.02 2 0.03 129 0.3 0.2 0.2 129 0.5 0.5 0.4
4 112 0.3 9 0.02 0 0.02 112 0.2 0.2 0.1 112 0.2 0.2 0.2
5 123 0.1 12 0.03 0 0.03 123 0.2 0.2 0.2 123 0.2 0.2 0.2
6 128 0.6 11 0.03 0 0.03 128 0.2 0.2 0.2 128 0.2 0.2 0.2
7 136 0.5 11 0.03 2 0.04 134 0.3 0.2 0.2 134 0.6 0.6 0.5
8 123 0.1 12 0.03 0 0.3 123 0.2 0.2 0.2 123 0.2 0.2 0.2
9 140 0.7 12 0.03 0 0.04 140 0.3 0.4 0.3 140 0.3 0.4 0.3
10 138 0.2 13 0.04 0 0.04 138 0.3 0.3 0.3 138 0.3 0.3 0.3
11 141 0.7 12 0.03 0 0.04 141 0.3 0.4 0.3 141 0.3 0.4 0.3
12 151 1 12 0.04 2 0.04 147 0.4 0.4 0.4 147 1 1 1
13 160 1 14 0.04 0 0.05 160 0.5 0.5 0.5 160 0.5 0.5 0.5
14 203 1 13 0.05 22 0.06 179 0.7 0.7 0.6 179 7 7 6
15 192 2 14 0.05 18 0.06 172 0.7 0.7 0.6 170 6 7 6
16 170 16 15 0.05 2 0.05 168 0.5 0.6 0.5 168 1 1 1
17 153 0.4 16 0.04 0 0.05 153 0.4 0.5 0.4 153 0.4 0.5 0.4

Table A.4 Results of experiments on the plans for Barman domain(IPC11) found by Jasper
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 161 0.7 9 0.03 27 0.04 133 0.3 0.3 133 133 4 3 3
2 147 1 9 0.03 20 0.04 127 0.3 0.2 127 127 2 3 2
3 156 1 12 0.03 18 0.04 138 0.3 0.3 138 138 3 3 2
4 228 3 11 0.05 56 0.07 167 0.7 0.7 167 167 17 14 13
5 220 1 11 0.05 62 0.07 149 0.7 0.5 149 149 16 13 12
6 172 1 12 0.04 18 0.05 144 0.4 0.4 144 144 4 4 4
7 227 1 13 0.06 38 0.08 180 1 0.8 180 180 17 14 13
8 209 3 16 0.06 20 0.07 182 0.8 0.8 182 182 9 8 7

Floortile

As shown in tables A.8, A.9, A.10, A.11 and A.12, the number of redundant inverse actions
was low therefor run times of AIAE and GAIAE did not improved compared with original
AE and GAIAE. on the other hand, the number of justified unique actions was fair and there
little improvement in run times.

Nomystery

For Nomystery domain, the results are shown in Tables A.13, A.14, A.15, A.16 and A.17.
No redundant actions were found except plans obtained by Madagascar. As can shown in
Table A.14, there is 36 redundant inverse actions in problem(p03) and it improved run time
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Table A.5 Results of experiments on the plans for Elevators domain(IPC11) found by Probe
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 87 0.3 29 0.03 0 0.03 87 0.6 0.6 0.4 87 0.6 0.6 0.4
2 187 4 31 0.1 6 0.1 171 5 5 0.4 171 41 40 32
3 173 5 54 0.1 2 0.1 169 4 4 3 169 20 20 14
4 116 1 51 0.06 2 0.04 113 1 1 0.6 113 4 3 2
5 138 1 37 0.06 4 0.05 132 2 1 1 132 5 4 3
6 216 11 57 0.1 0 0.1 215 7 7 5 215 17 17 12
7 163 6 46 0.1 2 0.09 160 4 4 3 160 13 13 10
8 271 22 64 0.2 2 0.1 259 12 12 9 259 77 77 58
9 269 24 74 0.2 0 0.1 268 12 12 9 268 26 26 19
10 317 78 86 0.3 6 0.2 303 18 18 13 303 135 136 100
11 319 98 78 0.3 0 0.2 316 19 19 13 316 83 83 58
12 391 121 91 0.4 12 0.3 359 27 27 21 359 273 338 265
13 344 154 105 0.4 2 0.2 339 22 22 16 339 122 122 87
14 348 147 91 0.4 0 0.2 345 23 23 16 345 100 100 67
15 318 113 80 0.6 2 0.4 313 39 39 29 313 214 215 159
16 421 268 95 1 0 0.5 409 72 72 55 409 462 464 351

Table A.6 Results of experiments on the plans for Elevators domain(IPC11) found by BFS-F

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 89 0.6 29 0.04 0 0.02 87 0.7 0.7 0.5 87 1 1 1
2 117 1 53 0.07 0 0.04 117 1 1 0.8 117 1 1 0.8
3 141 2 45 0.07 6 0.05 135 2 1 1 135 6 6 4
4 189 14 48 0.1 18 0.1 171 6 6 4 171 60 52 38
5 278 77 66 0.2 6 0.1 269 14 14 10 269 71 66 51

of extended algorithm AIAE. On the other hand, the number of justified unique actions was
very high in all plan obtained by all planners. It can be noticed that the run times of extended
algorithms were reduced in all the cases.

Parking

The results are shown in Tables A.18, A.19, A.20 and A.21. As can be seen, no redundant
actions were found in plans obtained by Bfs-f and there are some of them in others obtained
by Yahsp3, Probe and Jasper. All the redundant actions that found are inverse expect one
problem(12-048) found by probe(see Table A.19), and run times were not improved because
no high number of redundant inverse actions. Although, the number of justified unique
actions was very high the run times were not improved compared with the above results.
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Table A.7 Results of experiments on the plans for Elevators domain(IPC11) found by Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 79 0.1 29 0.03 0 0.02 79 0.5 0.5 0.3 79 0.5 0.5 0.4
2 142 0.9 47 0.1 2 0.07 138 3 2 2 138 6 6 4
3 161 1.6 57 0.1 2 0.08 159 4 4 3 159 9 9 6
4 116 0.4 54 0.07 2 0.03 114 1 1 0.6 114 2 2 1
5 112 0.4 44 0.06 0 0.03 111 1 1 0.6 111 2 2 1
6 186 2 63 0.2 4 0.09 182 5 5 3 182 16 16 11
7 151 1 49 0.1 2 0.07 149 4 3 2 149 8 7 5
8 197 2 66 0.2 4 0.1 192 6 5 4 192 26 25 17
9 226 3 73 0.2 10 0.1 216 8 8 5 216 53 52 35
10 218 3 79 0.3 4 0.1 211 7 7 5 211 32 31 20
11 259 10 89 0.3 2 0.1 256 11 11 7 256 38 38 24
12 281 15 90 0.4 4 0.1 275 13 13 9 275 57 57 39
13 293 7 103 0.5 4 0.1 289 15 15 10 289 51 50 32
14 267 21 85 0.7 6 0.2 261 26 26 19 261 115 114 81
15 339 37 96 1 2 0.3 327 42 42 31 327 312 305 223
16 396 70 112 1 10 0.4 359 50 49 35 359 321 318 212
17 354 52 121 1 0 0.4 353 48 48 33 353 108 106 71

Table A.8 Results of experiments on the plans for Floortile domain(IPC11) found by Yahsp3

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 42 8 13 0.01 6 0.01 35 0.03 0.03 0.02 35 0.1 0.1 0.1
2 43 16 13 0.01 6 0.01 36 0.03 0.03 0.02 36 0.1 0.1 0.1
3 55 156 17 0.01 6 0.01 48 0.07 0.06 0.04 48 0.3 0.2 0.1
4 56 147 16 0.01 6 0.01 50 0.06 0.06 0.04 50 0.2 0.2 0.1
5 53 251 17 0.01 4 0.01 49 0.07 0.07 0.04 49 0.2 0.1 0.1
6 54 251 18 0.01 4 0.01 50 0.07 0.07 0.04 50 0.2 0.2 0.1

Pegsol

The results are presented in Tables A.22, A.23,A.24, A.25 and A.26. For all plans generated
by all planners, no redundant actions were found , but the number of justified unique actions
were high.

Scanalyzer

For Scanalyzer domain, the results are presented in Tables A.27, A.28, A.29, A.30, A.31 .
It can be seen no inverse redundant actions in all plans obtained by all planners and there
is few number of redundant actions in some plans generated by all planners expect plans
obtained by probe. Looking at the number of justified unique action, an interesting result can
be observed. In many cases, the number of justified unique actions are very close to plan
length or all the actions in the plan justified unique actions especially in plans obtained by
bfs and probe planners.
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Table A.9 Results of experiments on the plans for Floortile domain(IPC11) found by Mada-
gascar

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 39 0 15 0 4 0 35 0.03 0.04 0.02 33 0.1 0.1 0.06
2 42 0 14 0 4 0 36 0.03 0.04 0.02 36 0.1 0.1 0.08
3 51 0 17 0 4 0 44 0.06 0.06 0.03 44 0.2 0.2 0.1
4 54 0 15 0.01 2 0 50 0.07 0.06 0.04 50 0.2 0.2 0.1
5 50 0.2 19 0.01 0 0 49 0.07 0.06 0.04 49 0.1 0.1 0.07
6 52 0 17 0.01 0 0 48 0.1 0.07 0.04 48 0.3 0.2 0.1
7 75 0.02 21 0.01 12 0.01 60 0.1 0.1 0.1 60 1 1 0.7
8 64 0.02 21 0.01 2 0.01 59 0.1 0.1 0.07 59 0.5 0.5 0.3
9 91 0.02 24 0.02 12 0.01 76 0.3 0.2 0.1 76 2 2 1
10 74 0 27 0.01 2 0.01 71 0.2 0.1 0.1 71 0.5 0.5 0.3
11 85 0.04 26 0.02 6 0.01 77 0.2 0.2 0.1 77 1 1 0.8
12 86 0.02 27 0.02 4 0.01 82 0.3 0.2 0.1 82 0.7 0.7 0.5
13 118 0.1 31 0.03 20 0.01 97 0.6 0.5 0.3 97 5 4 3
14 132 0.1 38 0.05 14 0.02 115 1 0.8 0.5 115 8 8 5
15 131 0.1 37 0.04 8 0.02 121 1 1 0.6 121 5 5 4
16 178 0.02 43 0.07 36 0.04 140 2 1 1 140 23 22 15
17 159 0.1 43 0.07 18 0.04 139 2 1 1 139 14 14 10
18 182 0.2 50 0.1 24 0.05 155 2 2 1 155 32 30 20

Table A.10 Results of experiments on the plans for Floortile domain(IPC11) found by Probe

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 41 36 13 0 4 0 37 0.03 0.03 0.2 37 0.1 0.1 0.8
2 40 40 13 0 0 0 40 0.03 0.03 0.02 40 0.04 0.04 0.03
3 51 0 17 0.01 2 0 47 0.06 0.06 0.04 47 0.2 0.2 0.1
4 49 0 19 0.01 0 0 48 0.6 0.6 0.04 48 0.1 0.1 0.07

Sokoban

Tables A.32, A.33, A.34 shows results related to the Sokoban domain. As can be seen there
are no inverse redundant actions in all plans obtained by all planners, and the number of
justified unique actions is little and some case not exist. However, run times in both cases
were not improved.

Transport

The results of transport domain are presented in Tables A.35, A.36, A.37, A.38. As can be
seen the number of inverse redundant actions was very high in plan generated by Yahsp3,
and run times were improved in some cases. For the number of justified unique actions, it
was in all plan and run times were improved especially in plans generated by Yahsp3.
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Table A.11 Results of experiments on the plans for Floortile domain(IPC11) found by BFS-F

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 35 1 13 0 0 0 35 0.02 0.02 0.02 35 0.04 0.04 0.03
2 37 1 13 0 3 0 34 0.02 0.02 0.02 34 0.07 0.06 0.05
3 52 253 16 0 2 0 50 0.05 0.05 0.04 50 0.1 0.1 0.08
4 47 9 19 0.01 0 0 47 0.05 0.06 0.04 47 0.06 0.06 0.04
5 50 10 17 0.01 2 0 48 0.06 0.06 0.04 48 0.1 0.1 0.08
6 70 19 21 0.01 3 0 67 0.1 0.1 0.04 67 0.4 0.4 0.2

Table A.12 Results of experiments on the plans for Floortile domain(IPC11) found by Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ♢ Ω ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 45 3 12 0 2 0 43 0.03 0.03 0.03 43 0.1 0.1 0.08
2 47 5 12 0 4 0 42 0.03 0.03 0.02 42 0.1 0.1 0.1
3 53 274 16 0.01 4 0 46 0.06 0.06 0.04 46 0.2 0.2 0.1
4 54 108 17 0.01 4 0 47 0.07 0.07 0.05 47 0.3 0.3 0.2
5 62 82 22 0.01 2 0.01 59 0.1 0.1 0.07 59 0.3 0.3 0.2

Table A.13 Results of experiments on the plans for Nomystery domain(IPC11) found by
Yahsp3

Problem Plan JUA
Ω ♢ ∑ ♢

1 19 0.04 12 0.1
2 21 0.08 14 0.1
3 29 53 16 0.6
4 34 17 17 1
5 44 1.5 22 1
6 43 0.05 26 0.9
7 18 1 12 0.04
9 28 24 16 0.3
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Table A.14 Results of experiments on the plans for Nomystery domain(IPC11) found by
Madagascar

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 23 2 11 0.1 2 0.07 20 0.7 0.7 0.3 20 2 1 0.6
2 23 5 13 0.1 2 0.1 21 1 1 0.3 21 2 1 0.6
3 34 208 18 1 2 1 32 14 13 4 32 24 23 7
4 45 2 16 1 8 1 37 16 13 6 37 62 59 30
5 36 3 22 1 0 1 36 12 11 3 36 10 11 3
6 47 158 25 1 2 0.6 44 12 11 3 44 31 30 8
7 21 5 11 0.05 2 0.03 19 0.3 0.3 0.1 19 0.7 0.5 0.2
8 21 3 14 0.1 0 0.05 21 0.4 0.4 0.1 21 0.4 0.4 0.1
9 29 104 14 0.3 2 0.2 26 2 2 1 26 6 6 2
10 28 3 19 0.6 0 0.4 28 5 5 1 28 5 5 1
11 34 3 20 0.6 0 0.4 34 5 5 2 34 5 5 2
12 40 2 20 0.7 4 0.4 36 7 6 2 36 17 17 7

Table A.15 Results of experiments on the plans for Nomystery domain(IPC11) found by
Probe

Problem Plan JUA
Ω ♢ Ω ∑

p01 21 0.02 12 0.1
p02 24 1 14 0.1
p03 34 179 16 0.6
p04 35 54 18 1
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Table A.16 Results of experiments on the plans for Nomystery domain(IPC11) found by
BfS-F

Problem Plan JUA
Ω ♢ ∑ ♢

p01 20 0.01 12 0.1
p02 22 0.02 14 0.1
p03 32 0.04 16 0.7
p04 34 5 18 1
p05 36 6 21 1
p06 40 3 22 1
p07 48 2 24 2
p08 53 3 26 1
p09 51 23 29 4
p10 57 19 30 2
p11 19 0.02 12 0.1
p12 22 0.7 14 0.1
p13 29 0.01 16 0.3
p14 32 3 19 0.7
p15 35 161 20 0.6
p16 38 31 22 0.7
p18 42 5 26 0.5
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Table A.17 Results of experiments on the plans for Nomystery domain(IPC11) found by
Jasper

Problem Plan JUA
Ω ♢ ∑ ♢

p01 20 0.03 12 0.1
p02 22 0.05 14 0.1
p03 32 0.1 16 0.7
p04 33 0.1 18 1
p05 38 1 20 1
p06 45 32 19 1
p07 49 27 24 2
p08 42 24 27 1
p09 50 102 29 3
p10 53 0.3 30 2
p11 19 0.1 12 0.05
p12 22 0.5 14 0.1
p13 28 2 16 0.3
p14 30 0.1 19 0.6
p15 34 17 20 0.6
p16 37 16 22 0.7
p17 41 204 25 1
p18 42 102 26 0.5
p19 50 76 30 1

Table A.18 Results of experiments on the plans for parking domain(IPC11) found by Yahsp3

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 62 131 28 0.03 2 0.03 62 0.02 0.03 0.02 60 0.1 0.1 0.07
2 75 70 43 0.03 2 0.05 73 0.1 0.05 0.03 73 0.1 0.1 0.07

Table A.19 Results of experiments on the plans for parking domain(IPC11) found by Probe

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 130 68 26 0.05 4 0.04 126 0.1 0.1 0.1 126 0.3 0.3 0.3
2 153 32 19 0.06 2 0.06 151 0.2 0.2 0.2 151 0.4 0.3 0.3
3 156 286 23 0.05 0 0.06 156 0.2 0.2 0.2 156 0.2 0.2 0.2
4 173 242 24 0.06 0 0.07 163 0.2 0.2 0.2 163 0.5 0.4 0.4
5 159 172 27 0.05 2 0.06 157 0.2 0.2 0.2 157 0.4 0.4 0.3
6 149 95 33 0.05 0 0.05 149 0.1 0.1 0.1 149 0.1 0.2 0.1
7 93 103 42 0.02 0 0.02 93 0.08 0.08 0.06 93 0.1 0.1 0.06
8 152 92 38 0.05 2 0.05 150 0.2 0.2 0.1 150 0.4 0.3 0.3
9 122 28 35 0.04 0 0.04 122 0.1 0.1 0.1 122 0.1 0.1 0.1
10 165 222 47 0.06 0 0.06 165 0.2 0.2 0.2 165 0.2 0.3 0.1
11 128 156 52 0.04 4 0.04 121 0.1 0.1 0.1 121 0.5 0.5 2



93

Table A.20 Results of experiments on the plans for parking domain(IPC11) found by BFS-F

Problem Plan JUA
Ω ♢ Ω ♢

1 78 41 29 0.02
2 99 68 30 0.03
3 92 57 39 0.03
4 74 19 41 0.02
5 94 114 30 0.02
6 104 138 34 0.03
7 74 28 43 0.02
8 86 113 37 0.02
9 74 42 44 0.02
10 71 30 44 0.02
11 19 60 45 0.03
12 47 76 41 0.02
14 91 95 41 0.03
15 105 178 41 0.03
17 88 97 50 0.03
18 113 208 49 0.04

Table A.21 Results of experiments on the plans for parking domain(IPC11) found by Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 130 14 22 0.05 0 0.1 130 0.1 0.1 0.1 130 0.1 0.1 0.1
2 60 3 29 0.01 0 0.03 60 0.03 0.03 0.02 60 0.03 0.03 0.03
3 63 7 35 0.01 0 0.04 63 0.04 0.04 0.03 63 0.04 0.04 0.03
4 124 22 24 0.04 2 0.1 122 0.1 0.1 0.1 122 0.2 0.2 0.2
5 69 6 37 0.02 0 0.04 69 0.04 0.04 0.03 69 0.04 0.04 0.03
6 68 7 37 0.01 0 0.04 68 0.04 0.05 0.03 68 0.04 0.05 0.03
7 90 10 34 0.02 0 0.07 90 0.07 0.08 0.05 90 0.07 0.08 0.06
8 75 11 37 0.02 0 0.05 75 0.05 0.06 0.04 75 0.05 0.06 0.04
9 88 8 32 0.02 0 0.07 88 0.06 0.08 0.05 88 0.07 0.08 0.06
10 79 10 32 0.02 2 0.06 77 0.06 0.07 0.05 77 0.1 0.1 0.1
11 141 47 34 0.04 8 0.1 133 0.1 0.2 0.1 133 1 0.8 0.6
12 92 24 34 0.02 2 0.1 90 0.08 0.1 0.06 90 0.1 0.1 0.1
13 84 17 40 0.02 2 0.07 82 0.07 0.08 0.05 82 0.1 0.1 0.1
14 111 33 37 0.03 2 0.1 109 0.1 0.1 0.1 109 0.2 0.2 0.1
15 142 60 43 0.05 0 0.2 142 0.2 0.2 0.1 142 0.2 0.2 0.1
16 108 28 34 0.03 2 0.1 106 0.1 0.1 0.1 106 0.2 0.1 0.1
17 113 32 38 0.03 0 0.1 113 0.1 0.1 0.1 113 0.1 0.1 0.1
18 148 26 43 0.03 0 0.1 107 0.1 0.1 0.08 107 0.1 0.1 0.1
19 146 102 36 0.05 4 0.2 142 0.2 0.2 0.1 142 0.6 0.6 0.4
20 121 122 39 0.04 4 0.1 117 0.1 0.1 0.1 117 0.4 0.4 0.3
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Table A.22 Results of experiments on the plans for Pegsol domain(IPC11) found by Yahsp3

Problem Plan JUA
Ω ♢ Ω ♢

1 26 0.4 12 0.01
2 24 0.1 15 0.01
3 24 0.1 13 0.01
4 28 0.07 11 0.01
5 23 0.09 16 0.01
6 26 0.08 12 0.01
7 28 0.1 13 0.01
8 28 0.08 13 0.01
9 31 0.09 14 0.01
10 27 0.09 14 0.01
11 25 0.1 13 0.01
12 31 0.1 11 0.01
13 23 0.08 13 0.01
14 30 0.06 14 0.01
15 22 0.09 13 0.01
16 32 0.1 17 0.01
17 36 0.1 17 0.01
18 41 2 18 0.01
19 44 0.1 19 0.01
20 54 129 13 0.01
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Table A.23 Results of experiments on the plans for Pegsol domain(IPC11) found by by
Madagascar

Problem Plan JUA
Ω ♢ Ω ♢

1 26 68 12 0.01
2 23 37 16 0.01
3 29 30 13 0.01
4 26 135 14 0.01
5 25 0.8 15 0.01
6 25 6 12 0.01
7 29 22 13 0.01
8 27 70 13 0.01
9 33 15 12 0.01
10 27 4 11 0.01
11 28 10 12 0.01
12 28 155 11 0.01
13 23 29 12 0.01
14 31 63 14 0.01
15 24 4 14 0.01
16 37 61 14 0.01
17 38 23 14 0.01
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Table A.24 Results of experiments on the plans for Pegsol domain(IPC11) found by Probe

Problem Plan JUA
Ω ♢ Ω ♢

1 27 0.5 11 0.1
2 28 0.3 11 0.1
3 27 0.09 14 0.1
4 28 0.2 11 0.1
5 24 0.02 15 0.1
6 26 0.02 13 0.1
7 29 0.02 14 0.1
8 27 0.02 13 0.1
9 29 0.02 13 0.1
10 28 0.01 12 0.1
11 29 0.09 12 0.1
12 32 0.4 11 0.1
13 25 0.04 12 0.1
14 31 0 14 0.1
15 24 0.03 13 0.1
16 32 0.04 14 0.1
17 37 0.04 22 0.1
18 39 0.4 20 0.1
19 45 0.03 17 0.1
20 59 1 15 0.1
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Table A.25 Results of experiments on the plans for Pegsol domain(IPC11) found by BFS-F

Problem Plan JUA
Ω ♢ Ω ♢

1 28 0.4 11 0.01
2 24 0.4 15 0.01
3 22 0.3 16 0.01
4 27 0.6 11 0.01
5 25 0.01 15 0.01
6 22 0 10 0.01
7 27 0 14 0.01
8 26 0.04 13 0.01
9 31 0.1 18 0.01
10 26 0 10 0.01
11 26 0.01 14 0.01
12 29 0.05 11 0.01
13 24 0.06 13 0.01
14 31 0.2 12 0.01
15 25 0.1 13 0.01
16 34 0.07 12 0.01
17 33 0.3 15 0.01
18 41 0.3 18 0.01
19 43 0.9 23 0.01
20 59 1 16 0.01



98 Agile Planners and Plan Optimisation Techniques

Table A.26 Results of experiments on the plans for Pegsol domain(IPC11) found by Jasper

Problem Plan JUA
Ω ♢ Ω ♢

1 28 0.7 11 0.01
2 29 0.06 11 0.01
3 28 0.5 13 0.01
4 27 0 11 0.01
5 25 0 15 0.01
6 28 0.1 13 0.01
7 28 0 14 0.01
8 27 0.02 13 0.01
9 32 0 14 0.01
10 29 0 8 0.01
11 29 0.02 14 0.01
12 31 0.04 15 0.01
13 24 0.01 13 0.01
14 34 0.08 14 0.01
15 25 0.1 13 0.01
16 35 0.02 19 0.01
17 33 0.8 23 0.01
18 44 0.01 18 0.01
19 29 0.02 15 0.01
20 59 0.06 17 0.01

Table A.27 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
Yahsp3

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 96 10 5 0.03 0 0.02 80 0.05 0.05 0.04 80 0.1 0.1 0.1
2 94 0.1 11 0.03 0 0.02 74 0.1 0.1 0.1 74 1 1 1
3 56 0.08 8 0.01 0 0 44 0.03 0.03 0.02 44 0.1 0.1 0.1
4 92 0.09 10 0.02 0 0.01 66 0.07 0.08 0.06 66 0.3 0.3 0.3
5 124 0.2 14 0.04 0 0.03 86 0.3 0.3 0.2 86 3 3 2
6 96 6 7 0.02 0 0.01 80 0.04 0.05 0.04 80 0.1 0.1 0.1
7 160 0.4 16 0.05 0 0.04 128 0.6 0.6 0.5 128 7 6 5
8 130 4 8 0.02 0 0.02 118 0.08 0.09 0.08 118 0.3 0.3 0.3
9 146 0.08 12 0.03 0 0.02 122 0.2 0.2 0.1 122 2 1 1
10 124 0.1 14 0.02 0 0.02 86 0.2 0.2 0.1 86 2 2 1
11 158 0.1 15 0.03 0 0.03 144 0.3 0.3 0.2 144 3 2 2
12 76 0.09 13 0.01 0 0.01 66 0.08 0.09 0.07 66 0.4 0.4 0.3
13 60 0.08 9 0.01 0 0.01 44 0.05 0.05 0.04 44 0.2 0.2 0.2
14 164 0.2 17 0.03 0 0.03 128 0.5 0.5 0.4 128 7 6 5
15 238 0.2 16 0.06 0 0.06 216 0.9 0.8 0.7 216 9 8 8
16 156 4 18 0.04 0 0.04 136 0.6 0.6 0.5 136 5 5 4
17 308 0.3 17 0.09 0 0.1 280 2 1 1 280 21 21 20
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Table A.28 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
Madagascar

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 10 5 6 0 0 0 10 0 0 0 10 0 0 0
2 22 0.3 12 0 0 0 18 0.04 0.04 0.01 18 0.05 0.08 0.02
3 40 0.02 8 0 0 0 38 0.02 0.02 0.01 38 0.02 0.04 0.02
4 66 11 13 0.01 0 0.01 48 0.06 0.06 0.03 48 0.1 0.2 0.1
5 28 0.8 14 0.01 0 0 28 0.06 0.06 0.02 28 0.04 0.05 0.02

Table A.29 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
Probe

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 10 1 8 0 0 0 10 0 0 0 10 0 0.01 0
2 12 0.1 12 0 0 0 12 0.02 0.02 0.01 12 0.02 0.02 0.01
3 26 0.01 10 0 0 0 26 0.01 0.01 0.01 26 0.01 0.01 0.01
4 32 0.04 12 0.01 0 0 30 0.02 0.02 0.02 30 0.04 0.04 0.03
5 14 0.5 14 0.01 0 0 14 0.02 0.02 0.01 14 0.02 0.02 0.01
6 20 1 11 0 0 0 20 0.01 0.01 0.01 20 0.01 0.01 0.01
7 16 1 12 0.01 0 0 16 0.03 0.03 0.01 16 0.03 0.04 0.01
8 56 6 2 0.01 0 0.01 48 0.02 0.02 0.03 48 0.05 0.06 0.06
9 40 0.1 16 0.01 0 0.01 40 0.03 0.03 0.02 40 0.02 0.03 0.02
10 38 0.2 13 0.01 0 0.01 38 0.04 0.04 0.03 38 0.04 0.04 0.02
11 46 0.3 19 0.01 0 0.01 46 0.04 0.04 0.03 46 0.04 0.04 0.02
12 32 0.1 11 0.01 0 0.01 32 0.02 0.02 0.01 32 0.02 0.02 0.03
13 26 0.04 9 0.01 0 0 26 0.01 0.01 0.01 26 0.01 0.01 0.01
14 44 0.8 15 0 0 0 44 0.06 0.06 0.04 44 0.06 0.06 0.01
15 54 1 22 0.01 0 0.01 54 0.07 0.07 0.05 54 0.07 0.07 0.04
16 50 2 17 0.01 0 0.01 50 0.1 0.1 0.06 50 0.1 0.1 0.05
17 60 2 26 0.02 0 0.01 60 0.1 0.1 0.08 60 0.1 0.1 0.06
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Table A.30 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
BFS-F

Problem Plan JUA
Ω ♢ ∑ ♢

1 10 1 6 0
2 12 0.3 12 0
3 32 0 13 0
4 42 0.1 18 0.01
5 14 2 14 0.01
6 34 29 5 0.01
7 16 6 16 0.01
8 42 4 4 0.01
9 52 0.6 21 0.01
10 38 0.4 13 0.01
11 62 2 26 0.01
12 32 0.1 11 0
13 26 0.1 9 0
14 44 1 15 0.01
15 72 10 29 0.02
16 50 4 17 0.01
17 82 39 34 0.02
18 15 47 14 0
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Table A.31 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 14 1 7 0 0 0 10 0 0 0 10 0.01 0.01 0.01
2 12 0.1 12 0 0 0 12 0.01 0.01 0 12 0.02 0.01 0.01
3 30 0.02 12 0.01 0 0 30 0.01 0.01 0.01 30 0.01 0.01 0.02
4 42 0.06 13 0.01 0 0 42 0.02 0.02 0.02 42 0.04 0.04 0.04
5 16 0.3 16 0.01 0 0 16 0.02 0.02 0.01 16 0.03 0.03 0.01
6 24 1 3 0.01 0 0 16 0 0 0 16 0.02 0.01 0.02
7 16 0.6 16 0.01 0 0 16 0.02 0.03 0.01 16 0.03 0.03 0.01
8 22 0.8 6 0.01 0 0 22 0 0 0.01 22 0.01 0.01 0.02
9 50 0.1 16 0.01 0 0 50 0.04 0.04 0.03 50 0.05 0.05 0.05
10 40 0.2 13 0.01 0 0 38 0.05 0.05 0.03 38 0.1 0.1 0.1
11 60 0.3 19 0.01 0 0.01 60 0.07 0.07 0.05 60 0.1 0.08 0.06
12 34 0.1 11 0.01 0 0 32 0.03 0.03 0.02 32 0.06 0.06 0.04
13 26 0.04 9 0.01 0 0 26 0.01 0.01 0.01 26 0.02 0.02 0.01
14 46 0.4 15 0.01 0 0.01 44 0.08 0.08 0.05 44 0.2 0.1 0.1
15 72 0.8 22 0.01 0 0.01 72 0.1 0.1 0.09 72 0.1 0.1 0.1
16 50 1 17 0.01 0 0.01 50 0.1 0.1 0.06 50 0.1 0.1 0.1
17 82 1 25 0.01 0 0.01 82 0.2 0.2 0.1 82 0.2 0.2 0.1
18 39 38 7 0.01 0 0 31 0.03 0.03 0.03 31 0.1 0.1 0.1
19 55 29 8 0.01 0 0.01 55 0.04 0.04 0.03 55 0.04 0.04 0.04
20 63 25 12 0.01 0 0.01 59 0.04 0.05 0.04 59 0.1 0.1 0.1

Table A.32 Results of experiments on the plans for Sokoban domain(IPC11) found by Probe

Problem Plans JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
1 205 1 4 0.1 0 0.01 193 1 1 1 193 3 3 3
2 242 1 0 0.1 0 0.1 228 2 2 2 228 5 5 5
3 132 0.4 7 0.1 0 0.1 132 0.8 0.8 0.7 132 0.8 0.8 0.7
4 245 3 2 0.1 0 0.1 245 2 2 2 245 2 2 2
5 309 6 1 0.1 0 0.2 309 3 3 3 309 3 3 3
6 324 2 1 0.1 0 0.04 324 3 3 3 324 3 3 3
7 111 1 8 0.1 0 0.2 111 0.3 0.3 0.3 111 0.3 0.3 0.3
8 367 10 3 0.04 0 0.6 345 6 6 6 345 18 18 18
9 429 0.6 2 0.1 0 0.2 429 37 37 37 429 37 37 37
10 335 1 2 0.5 0 0.6 323 6 6 6 323 18 18 18
11 592 68 4 0.2 0 0.1 562 26 26 26 562 82 82 82
12 273 106 6 0.5 0 0.1 273 3 3 3 273 3 3 3
13 181 11 2 0.1 0 0.4 181 2 2 2 181 2 2 2
14 536 156 2 0.3 0 0.3 410 8 8 8 408 40 40 40
15 440 79 2 0.2 0 0.2 434 6 6 6 434 13 13 13
16 353 230 4 0.1 0 0.1 353 6 6 6 353 6 6 6
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Table A.33 Results of experiments on the plans for Sokoban domain(IPC11) found by BFS-F

Problem Plan JUA
Ω ♢ ∑

1 185 25 4
2 215 5 0
3 112 2 7
4 203 7 0
5 285 222 0
6 262 12 2
7 94 0.2 9
9 429 0.6 2
11 496 18 2
13 79 20 4
14 137 3 2
15 53 0.5 16

Table A.34 Results of experiments on the plans for Sokoban domain(IPC11) found by Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 177 5 4 0.1 0 0.07 177 1 1 0.1 177 1 0.7 0.7
2 201 1 0 0.1 0 0.1 201 2 2 2 201 2 2 2
3 232 0.5 7 0.1 0 0.1 218 1 1 1 218 5 5 5
4 451 6 0 0.2 0 0.2 401 5 5 5 401 25 25 25
5 473 20 0 0.2 0 0.2 469 6 6 7 469 13 13 13
6 308 3 2 0.1 0 0.1 294 3 3 2 294 9 9 9
7 90 0.3 10 0.03 0 0.2 90 0.2 0.2 0.2 90 0.2 0.2 0.2
8 460 82 3 0.2 0 0.5 434 7 7 7 434 26 26 26
9 445 0.1 2 0.6 0 0.1 445 38 37 37 445 41 41 41
10 305 4 2 0.2 0 0.5 267 4 4 4 267 26 26 25
11 612 11 4 0.6 0 0.04 572 22 22 21 572 134 134 134
13 91 29 4 0.04 0 0.1 91 0.6 0.5 0.5 91 0.6 0.6 0.6
14 225 47 2 0.1 0 0.03 221 3 2 2 221 6 6 5
15 586 138 2 0.4 0 0.4 550 10 10 10 550 39 40 39
16 47 35 14 0.03 0 0.02 47 0.2 0.2 0.1 47 0.2 0.2 0.1
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Table A.35 Results of experiments on the plans for Transport domain(IPC11) found by
Yahsp3

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 201 0.2 27 0.1 0.06 143 4 3 2 143 58 51 44
2 230 0.2 28 0.1 0.07 177 4 3 3 177 68 62 54
3 322 0.4 31 0.1 0.1 214 9 9 7 212 95 95 85
4 222 0.1 21 0.07 0.06 179 4 3 2 179 34 35 32
5 207 0.1 26 0.06 0.06 177 3 3 2 177 22 31 28
6 265 0.2 31 0.1 0.09 211 6 5 4 213 77 95 87
7 371 0.4 29 0.1 0.1 309 15 14 11 309 244 255 234
8 241 0.3 36 0.1 0.09 193 5 5 4 199 25 31 27
9 435 0.7 31 0.2 0.2 348 23 22 19 348 411 331 371
10 343 0.5 40 0.1 0.1 269 12 11 8 293 83 209 184
11 298 0.4 37 0.1 0.1 225 8 7 5 225 161 150 130
12 297 0.4 38 0.1 0.1 248 9 8 6 259 47 95 80

Table A.36 Results of experiments on the plans for Transport domain(IPC11) found by Probe
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 143 4 33 0.1 2 0.1 137 2 2 1 137 5 5 4
2 171 8 39 0.1 4 0.1 155 3 3 2 155 13 13 9
3 221 20 30 0.1 10 0.1 180 6 5 4 180 28 34 27
4 182 3 19 0.1 4 0.1 175 3 3 2 175 9 8 7
5 265 7 24 0.1 6 0.1 239 5 5 4 239 31 30 27
6 298 21 27 0.1 10 0.1 270 9 8 7 270 48 47 43
7 360 36 37 0.1 2 0.1 354 14 14 13 354 28 28 25
8 193 15 39 0.1 4 0.1 180 4 4 3 180 20 19 15
9 388 48 34 0.1 6 0.1 341 21 20 18 341 200 197 179
10 270 31 43 0.1 4 0.1 249 8 7 6 243 44 43 34
11 238 20 45 0.1 6 0.1 219 6 5 4 219 21 20 16
12 234 26 42 0.1 2 0.1 221 6 5 4 221 28 28 22
13 255 21 42 0.1 8 0.1 235 7 6 5 235 32 31 24

Table A.37 Results of experiments on the plans for Transport domain(IPC11) found by BFS-F

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 127 5 35 0.1 2 0.04 124 2 1 1 124 4 4 3
2 133 12 38 0.1 2 0.04 128 2 2 1 128 5 5 3
3 157 20 41 0.1 4 0.04 151 3 3 2 151 10 9 6
4 113 3 30 0.1 4 0.03 108 1 1 0.8 108 4 3 2
5 197 4 30 0.04 4 0.04 193 3 3 2 193 10 9 7
6 230 19 36 0.1 8 0.1 218 5 5 4 218 35 35 28
7 301 34 40 0.1 4 0.1 293 10 12 9 293 41 40 35
8 165 26 46 0.1 4 0.1 161 3 3 2 161 10 9 6
9 299 45 40 0.1 8 0.1 288 13 12 10 288 72 81 68
10 236 51 42 0.1 10 0.1 225 7 6 5 225 46 45 36
11 202 31 48 0.1 4 0.1 198 4 4 3 198 13 12 9
12 176 23 45 0.1 0 0.1 175 3 3 2 175 7 6 4
13 247 38 45 0.1 12 0.1 231 6 6 5 231 37 36 29
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Table A.38 Results of experiments on the plans for Transport domain(IPC11) found by Jasper

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 117 1 32 0.05 8 0.04 104 1 1 0.6 104 6 6 4
2 117 2 40 0.06 8 0.03 107 1 1 0.7 107 7 7 4
3 170 3 25 0.06 8 0.05 150 2 2 1 150 10 10 8
4 223 7 26 0.07 8 0.07 207 4 3 3 207 22 21 19
5 130 3 42 0.08 8 0.05 120 2 1 1 120 9 9 5
6 176 6 43 0.1 8 0.06 160 3 3 2 160 14 13 9
7 245 19 46 0.1 16 0.08 221 7 5 5 221 42 46 36

Table A.39 Results of experiments on the plans for Barman domain(IPC14) found by Probe

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 262 21 12 0.1 6 0.1 230 1 1 1 228 14 14 13
2 194 0.5 17 0.1 2 0.1 192 1 1 0.6 192 1 1 1
3 199 2 15 0.1 2 0.1 186 1 1 1 186 4 4 3
4 196 1 14 0.1 2 0.1 194 1 1 1 194 2 2 1
5 180 0.5 15 0.04 2 0.1 178 0.6 0.6 0.6 178 1 1 1
6 199 1 16 0.1 2 0.1 197 1 1 1 197 2 1 1
7 170 0.4 14 0.04 0 0 167 1 0.6 0.5 167 1 1 1
8 161 0.3 15 0.04 0 0 161 1 0.6 0.5 161 1 0.5 0.5
9 229 26 14 0.1 10 0.1 191 1 1 1 191 8 9 8

Table A.40 Results of experiments on the plans for Barman domain(IPC14) found by BFS-F

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 199 18 12 0.1 16 0.1 183 1 0.7 0.6 183 6 6 5
2 185 22 13 0.1 16 0.1 168 1 0.7 0.6 168 7 6 6
3 154 0.5 17 0.1 0 0.04 154 0.5 0.5 0.5 154 0.5 0.5 0.5
4 144 1 12 0.4 0 0.04 144 0.4 0.4 0.4 144 0.4 0.4 0.4
5 165 1 15 0.04 2 0.1 162 0.5 0.5 0.5 162 2 1 1
6 153 0.4 16 0.04 0 0.04 153 0.5 0.4 0.4 153 0.5 0.5 0.4
7 173 2 16 0.04 6 0.1 166 0.6 0.6 0.5 166 3 2 2
8 203 9 12 0.1 12 0.1 181 1 1 0.7 179 8 7 6
9 141 1 15 0.03 0 0.04 141 0.3 0.3 0.3 141 0.4 0.3 0.3
10 166 1 13 0.04 6 0.04 160 0.5 0.6 0.5 160 2 2 2
11 178 0.6 16 0.04 16 0.1 162 0.7 0.6 0.6 162 5 5 5
12 168 1 16 0.04 0 0.1 167 0.7 0.7 0.6 167 1 1 1
13 175 3 14 0.04 2 0.1 173 0.7 0.7 0.5 173 1 1 1
14 161 1 14 0.04 2 0.04 159 0.6 0.5 0.4 159 1 1 1
15 159 3 15 0.04 0 0.04 159 0.6 0.5 0.4 159 1 0.5 0.5
16 156 2 12 0.04 0 0.04 156 0.5 0.4 0.3 156 0.5 0.5 0.4
17 142 1 12 0.04 0 0.04 142 0.4 0.4 0.3 142 0.4 0.4 0.3
18 176 2 14 0.04 14 0.1 162 0.7 0.5 0.5 162 5 4 4
19 157 4 14 0.04 0 0.04 157 0.6 0.5 0.5 157 0.6 0.5 0.5
20 160 1 16 0.04 2 0.04 158 0.6 0.5 0.5 158 1 1 1
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Table A.41 Results of experiments on the plans for Floortile domain(IPC14) found by Yahsp3

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 52 0.8 14 0.1 8 0 40 0.05 0.05 0.03 40 0.2 0.2 0.1
2 50 0.1 15 0.01 12 0 38 0.04 0.04 0.02 38 0.2 0.2 0.1

Table A.42 Results of experiments on the plans for Floortile domain(IPC14) found by
Madagascar

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 46 0 12 0.01 6 0 38 0.1 0.03 0.03 38 0.2 0.2 0.03
2 87 0.02 24 0.03 6 0.02 78 0.3 0.2 0.1 78 2 1 1
3 104 0.1 31 0.03 10 0.03 92 0.3 0.4 0.3 92 3 3 2
4 103 0.04 34 0.04 10 0.02 91 0.5 0.4 0.3 91 3 3 2
5 80 0.02 21 0.04 10 0.01 68 0.2 0.1 0.1 68 1 1 1
6 81 0.02 27 0.02 4 0.01 75 0.2 0.2 0.1 75 1 1 0.5
7 124 0.1 30 0.03 16 0.03 105 0.6 0.5 0.4 105 7 3 4
8 100 0.04 33 0.03 6 0.02 91 0.5 0.4 0.3 91 2 1 1
9 90 0.02 25 0.02 10 0.01 80 0.3 0.2 0.1 80 1 1 1
10 108 0.1 31 0.03 8 0.02 98 0.5 0.4 0.3 98 3 3 2
11 105 0.02 31 0.03 8 0.02 95 0.5 0.4 0.3 95 3 3 2
12 75 0.02 22 0.01 8 0.01 65 0.2 0.1 0.1 65 1 0.5 0.4
13 98 0.04 25 0.02 12 0.01 83 0.4 0.3 0.2 83 3 3 2
14 116 0.04 32 0.03 14 0.02 101 0.6 0.5 0.3 101 4 4 3
15 106 0.04 34 0.03 14 0.02 91 0.5 0.4 0.3 91 4 3 2
16 40 0.1 15 0 2 0 36 0.03 0.03 0.02 36 0.1 0.1 0.1
17 94 0.1 33 0.03 2 0.01 91 0.4 0.3 0.2 91 1 1 0.6
18 122 0.06 30 0.03 2 0.02 101 0.6 0.5 0.4 101 6 5 4

Table A.43 Results of experiments on the plans for Floortile domain(IPC14) found by Probe,
BFS-F, and Jasper

Planner Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

Probe 1 44 81 12 0 4 0 40 0.03 0.04 0.03 40 0.1 0.1 0.1
2 37 0 15 0 0 0 36 0.03 0.03 0.02 36 0.06 0.06 0.04

BFS-F 1 42 1 12 0.01 2 0.01 38 0.05 0.05 0.4 38 0.1 0.1 0.1
2 78 98 27 0.03 2 0.02 76 0.3 0.2 0 76 0.5 0.4 0
3 83 114 24 0.03 4 0.02 76 0.3 0.2 0.1 76 1 1 0.5
4 38 0.1 14 0.01 0 0 38 0.02 0.2 0.02 38 0.02 0.02 0.02

Jasper 1 44 5 12 0 0 0 44 0.04 0.04 0.04 44 0.06 0.06 0.05
2 46 2 14 0 6 0 38 0.04 0.03 0.03 38 0.2 0.1 0.1
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Table A.44 Results of experiments on the plans for Thoughtful domain(IPC14) found by
problem solved by Yahsp3 planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 46 0.4 14 0.01 0 0 43 0.06 0.07 0.06 43 0.1 0.1 0.1
2 74 0.4 10 0.02 2 0.02 43 0.1 0.1 0.1 43 0.5 0.4 0.4
3 61 0.4 12 0.02 0 0.02 55 0.1 0.1 0.1 55 0.4 0.3 0.3
4 41 0.4 12 0.01 0 0.01 41 0.1 0.05 0.05 41 0.05 0.05 0.05
5 53 0.4 9 0.01 2 0 42 0.1 0.07 0.07 42 0.2 0.2 0.2
6 288 73 7 0.2 0 0 213 2 3 3 238 22 21 21
7 318 0.7 13 0.2 0 0 182 2 3 3 205 35 33 33
8 199 14 12 0.1 0 0 177 2 2 2 177 16 15 14
9 230 14 12 0.1 0 0 171 2 2 2 183 15 15 14
10 246 22 12 0.1 0 0 164 2 2 2 192 18 16 16

Table A.45 Results of experiments on the plans for Thoughtful domain(IPC14) found by
Madagascar planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 34 2 13 0.02 0 0.01 32 0.1 0.1 0.1 32 0.1 0.1 0.1
2 41 3 8 0.02 4 0.01 33 0.1 0.1 0.1 33 0.2 0.2 0.1
3 38 2 15 0.02 0 0.01 34 0.1 0.1 0.1 34 0.1 0.1 0.1
4 48 1 9 0.02 0 0.01 34 0.1 0.1 0.1 42 0.1 0.1 0.1
5 49 12 11 0.03 0 0.02 44 0.1 0.1 0.1 44 0.2 0.2 0.1

Table A.46 Results of experiments on the plans for Thoughtful domain(IPC14) found by
Probe planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 45 0.1 13 0.01 0 0.01 45 0.1 0.1 0.06 45 0.05 0.05 0.05
2 28 0.04 14 0.01 0 0.01 28 0.03 0.03 0.03 28 0.02 0.03 0.02
3 44 0.1 10 0.01 0 0.01 44 0.1 0.1 0.05 44 0.04 0.05 0.04
4 41 0.1 12 0.01 0 0.01 31 0.04 0.04 0.03 31 0.1 0.1 0.1
5 34 0.1 12 0.01 0 0.01 34 0.03 0.03 0.03 34 0.03 0.03 0.03
6 120 4 13 0.1 0 0.1 120 0.5 0.5 0.4 120 0.4 0.4 0.4
7 153 4 14 0.1 0 0.1 146 1 1 1 146 2 2 1
8 157 5 12 0.1 0 0.1 157 1 1 1 157 1 1 1
9 180 11 14 0.1 0 0.1 171 1 1 1 171 4 4 3
10 138 4 13 0.1 0 0.1 138 0.8 0.8 0.7 138 1 1 1
11 190 21 11 0.1 0 0.1 173 2 2 1 173 5 6 5
12 153 14 12 0.1 0 0.1 153 1 1 0.8 153 1 1 1
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Table A.47 Results of experiments on the plans for Thoughtful domain(IPC14) found by
BFS-F planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 29 0 13 0.01 0 0.01 29 0.02 0.03 0.02 29 0.03 0.03 0.02
2 31 0 14 0.01 0 0.01 31 0.02 0.03 0.02 31 0.03 0.03 0.02
3 34 0 14 0.01 0 0.01 34 0.03 0.04 0.03 34 0.04 0.03 0.03
4 32 0 15 0.01 0 0.01 32 0.03 0.03 0.02 32 0.03 0.03 0.02
5 35 0.02 12 0.01 0 0.01 35 0.03 0.03 0.03 35 0.03 0.03 0.03
6 149 4 14 0.1 0 0.1 149 1 1 1 149 1 1 1
7 123 2 13 0.1 0 0.1 121 1 1 1 121 1 1 1
8 143 2 16 0.1 0 0.1 139 1 1 1 139 3 3 2
9 126 4 15 0.1 0 0.1 126 1 1 0.6 126 1 1 0.5
10 173 278 16 0.1 0 0.1 167 1 1 1 167 5 5 5
11 154 5 13 0.1 0 0.1 143 1 1 1 143 4 3 3
12 141 2 16 1 0 1 141 1 1 1 141 1 1 1
13 153 5 14 0.1 0 0.1 151 1 1 1 151 2 2 2
14 146 16 14 0.1 0 0.1 144 1 1 1 144 2 2 2
15 140 11 12 0.1 0 0.1 136 1 1 1 136 3 3 3
16 137 14 13 0.1 0 0.1 137 1 1 1 137 1 1 1

Table A.48 Results of experiments on the plans for Thoughtful domain(IPC14) found by
Jasper planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 30 0.01 11 0.01 0 0.01 30 0.03 0.04 0.03 30 0.03 0.05 0.05
2 29 0.01 13 0.01 0 0.01 29 0.03 0.03 0.03 29 0.03 0.04 0.04
3 33 0.01 13 0.01 2 0.01 31 0.03 0.04 0.03 31 0.03 0.07 0.06
4 30 0.01 15 0.01 0 0.01 30 0.03 0.04 0.03 30 0.03 0.04 0.04
5 32 0.01 13 0.01 0 0.01 32 0.03 0.04 0.03 32 0.03 0.04 0.03
6 133 1 12 0.1 0 0.1 127 0.6 0.6 0.5 127 2 2 2
7 114 2 11 0.1 0 0.1 111 0.4 0.4 0.4 111 1 1 0.6
8 129 2 11 0.1 0 0.1 114 0.7 0.6 0.5 114 0.6 0.6 0.5
9 129 2 13 0.1 0 0.1 129 0.6 0.7 0.7 129 1 1 0.6
10 197 16 14 0.1 0 0.1 129 0.6 0.6 0.6 180 0.6 0.6 0.6
11 152 1 13 0.1 0 0.1 180 1 1 1 152 8 8 8
12 139 2 11 0.1 0 0.1 152 1 1 0.7 139 1 1 1
13 138 2 16 0.1 0 0.1 138 1 1 0.8 138 1 1 1
14 122 2 12 0.1 0 0.1 122 0.6 0.6 0.8 122 0.6 0.6 0.6
15 130 0.4 13 0.1 0 0.1 130 0.6 0.6 0.6 130 2 0.6 0.6
16 138 2 10 0.1 0 0.1 134 1 1 0.8 134 2 2 2
17 143 109 13 0.1 0 0.1 135 1 1 0.8 135 3 3 3

Table A.49 Results of experiments on the plans for Transport domain(IPC14) found by Probe
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 379 50 62 0.2 2 0.1 371 17 16 13 371 66 66 53
2 386 89 53 0.2 8 0.1 331 18 18 15 331 145 144 118
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Table A.50 Results of experiments on the plans for Transport domain(IPC14) found by BFS-F
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 246 61 56 0.1 14 0.1 230 7 6 5 230 33 39 29
2 294 142 64 0.1 6 0.1 287 10 10 7 287 52 51 38
3 242 82 53 0.1 6 0.1 233 7 6 4 233 32 32 23
4 216 189 58 0.1 2 0.1 211 6 6 4 211 19 19 13
5 315 161 66 0.2 8 0.1 305 13 13 10 305 65 64 49
6 245 41 54 0.2 6 0.1 277 8 7 5 277 39 37 26

Table A.51 Results of experiments on the plans for Transport domain(IPC14) found by Jasper
planner

Problem Plan JUA IAE AE AIAE UAIAE GAE GAIAE UGAIAE
Ω ♢ ∑ ♢ ∑ ♢ Ω ♢ ♢ ♢ Ω ♢ ♢ ♢

1 195 12 51 0.1 2 0.1 190 4 4 3 190 13 12 9
2 335 67 59 0.2 32 0.1 286 12 11 8 286 160 182 145
3 260 20 52 0.1 22 0.1 234 7 6 5 234 96 89 69
4 282 113 47 0.1 18 0.1 240 9 8 6 240 100 106 84
5 231 38 66 0.2 6 0.1 225 8 7 5 225 30 30 21
6 242 17 52 0.1 16 0.1 222 8 7 5 222 63 62 45



Appendix B

Anytime Planners against Optimization
Technique

This appendix presents comparison between Anytime Planners (Lama and Mercury) and pre-
optimisation plan technique. It shows different problems of IPC2011 and IPC2014 domains
solved by both planners, and first plans optimised by UAIAE. The column ’initial solution’
contains plan length Ω and plan generation time ♢. The column ’Best solution’ contains the
length of optimised plan Ω and plan optimisation time ♢, and the column ’UAIAE’ contains
the length of optimised plan Ω and plan optimisation time ♢.
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Table B.1 Results of experiments on the plans for Barman domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ Ω ♢ Ω ♢

1 157 1 - - 9 0.04 127 0.3
2 147 0.8 144 1491 10 0.03 124 0.2
3 177 1 167 706 9 0.04 143 0.4
4 154 0.8 - - 9 0.03 136 0.3
5 162 1 - - 12 0.04 136 0.3
6 222 4 - - 10 0.06 156 0.6
6 146 0.4 - - 11 0.03 132 0.3
7 160 1 - - 12 0.04 150 0.4
8 188 2 - - 12 0.05 157 0.5
9 165 1 - - 13 0.04 157 0.5
10 231 191 - - 12 0.07 173 0.7
11 208 2 - - 12 0.06 165 0.7
12 252 9 - - 13 0.08 197 1
13 231 4 - - 13 0.07 181 1
14 213 10 - - 13 0.06 199 0.9
15 225 2 - - 14 0.07 187 1
16 273 7 - - 14 0.09 208 1
17 216 1 - - 13 0.06 190 0.9
18 191 2 - - 16 0.05 172 0.7
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Table B.2 Results of experiments on the plans for Barman domain(IPC11) found by Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ Ω ♢ Ω ♢

1 158 0.4 156 0.8 9 0.03 132 0.3
2 138 0.5 - - 10 0.03 122 0.2
3 155 0.7 - - 9 0.03 123 0.3
4 142 0.5 141 1 9 0.03 128 0.2
5 159 0.8 157 1 12 0.04 135 0.3
6 163 1 162 2 11 0.03 145 0.3
7 157 0.8 - - 11 0.03 137 0.3
8 156 1 154 3 12 0.03 138 0.3
9 202 2 200 5 12 0.05 162 0.5
10 183 1 172 3 13 0.05 161 0.5
11 191 2 189 5 12 0.05 159 0.5
12 196 1 193 3 12 0.05 162 0.5
13 213 1 209 3 13 0.06 181 0.7
14 200 1 198 70 14 0.05 170 0.7
15 204 1 202 3 13 0.05 174 0.7
16 288 5 275 9 12 0.08 215 1
17 232 1 231 3 14 0.06 232 0.9
18 248 2 - - 14 0.07 198 1
19 222 0.9 - - 13 0.06 185 0.9
20 165 3 - - 16 0.05 159 0.5
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Table B.3 Results of experiments on the plans for Elevators domain(IPC11) found by Lama

Problem Initial Solution JUA UAIAE
Ω ♢ ∑ ♢ Ω ♢

1 80 0.1 30 0.04 80 0.4
2 143 2 43 0.1 136 2
3 156 2 55 0.1 151 2
4 118 0.6 55 0.08 115 0.7
5 116 0.4 47 0.06 115 0.8
6 184 3 63 0.2 182 4
7 173 2 49 0.1 161 3
8 205 4 66 0.2 202 5
9 198 5 72 0.2 196 4
10 214 3 81 0.3 214 6
11 254 18 81 0.3 241 9
12 265 18 87 0.4 261 8
13 284 64 94 0.4 274 10
14 289 33 104 0.4 281 11
15 288 26 106 0.5 286 11
16 248 20 81 0.7 248 20
17 312 45 91 0.9 300 31
18 313 34 102 1 313 32
19 380 155 107 1 369 45
20 362 57 118 1 358 40

Table B.4 Results of experiments on the plans for Floortile domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ Ω ♢ Ω ♢

1 44 20 35 78 13 0 37 0.02
2 41 19 36 93 12 0 38 0.02
3 57 304 44 881 16 0.01 50 0.05
4 61 229 52 1407 15 0.01 52 0.06
5 51 429 45 720 16 0.01 47 0.05
6 52 424 52 158 17 0.01 48 0.05
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Table B.5 Results of experiments on the plans for Floortile domain(IPC11) found by Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ Ω ♢ Ω ♢

1 40 3 35 29 12 0 37 0.03
2 38 3 36 73 12 0 36 0.02
2 52 11 44 140 16 0.01 46 0.04
3 56 444 - - 16 0.01 52 0.05
4 53 125 45 653 17 0.01 53 0.05
5 56 44 46 467 17 0.01 56 0.06

Table B.6 Results of experiments on the plans for Parking domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 69 2 37 245 26 0.01 69 0.04
2 46 1 41 3 31 0.01 46 0.02
3 78 6 68 11 28 0.02 78 0.05
4 73 4 - - 35 0.03 69 0.04
5 64 3 62 4 34 0.01 64 0.03
6 59 5 - - 34 0.01 59 0.032
7 78 5 42 425 32 0.02 78 0.05
8 70 7 44 1039 37 0.02 70 0.05
9 81 7 58 12 33 0.02 81 0.07
10 90 8 68 13 32 0.02 88 0.06
11 84 9 48 298 43 0.02 84 0.04
12 68 8 - - 38 0.02 68 0.05
13 77 13 69 34 41 0.02 75 0.05
14 78 18 - - 36 0.02 78 0.05
15 80 11 74 20 45 0.02 80 0.1
16 87 18 - - 40 0.02 87 0.1
17 100 15 53 229 39 0.03 100 0.1
18 90 20 51 118 42 0.03 88 0.1
19 92 21 82 45 44 0.03 92 0.1
20 96 23 60 714 48 0.03 94 0.1
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Table B.7 Results of experiments on the plans for Parking domain(IPC11) found by Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 56 2 - - 26 0.02 56 0.03
2 75 2 42 182 24 0.02 75 0.05
3 65 3 - - 34 0.02 65 0.03
3 62 3 - - 36 0.02 62 0.03
4 67 3 40 206 30 0.02 65 0.03
5 65 3 46 1084 31 0.02 65 0.03
6 71 5 - - 35 0.02 71 0.04
7 82 7 58 9 34 0.02 80 0.05
8 62 5 - - 38 0.02 62 0.03
9 95 5 46 368 31 0.03 85 0.07
10 71 6 - - 45 0.02 69 0.03
11 94 10 84 18 37 0.02 92 0.07
12 72 3 58 648 41 0.02 72 0.04
13 83 8 51 1442 40 0.02 81 0.05
13 98 13 58 648 41 0.02 96 0.08
15 76 6 53 987 44 0.02 64 0.04
16 77 12 - - 46 0.02 77 0.04
17 79 10 67 27 43 0.02 77 0.05
18 85 12 53 630 44 0.02 85 0.06
19 102 27 97 42 39 0.02 102 0.09
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Table B.8 Results of experiments on the plans for Scanalyzer domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 14 1.4 10 2 7 0 10 0
2 12 0.2 - - 12 0 12 0
3 32 0.1 20 313 10 0 32 0
4 40 0.1 26 46 13 0 40 0.01
5 14 0.4 - - 14 0 14 0.01
6 30 1 14 98 5 0 26 0.01
7 16 1 - - 16 0.01 16 0.01
8 30 1 18 1556 6 0 26 0.01
9 50 0.2 44 0.7 16 0.01 50 0.04
10 38 0.3 38 0.4 13 0.01 38 0.03
11 60 0.8 42 1639 19 0.01 60 0.01
12 32 0.1 30 1247 11 0 32 0.01
13 26 0.1 24 115 9 0 26 0.01
14 44 0.7 - - 15 0.01 44 0.04
15 70 1 64 3 22 0.01 70 0.1
16 50 1 - - 17 0.01 50 0.1
17 80 2 76 5 25 0.02 80 0.1
18 23 36 15 60 12 0 15 0.01
19 79 63 35 254 4 0.01 71 0.01
20 75 47 39 1135 11 0.01 71 0.05
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Table B.9 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 10 2 10 13 6 0 10 0
2 22 0.2 12 2 22 0.01 20 0.01
3 30 0.02 20 31 9 0 30 0.01
4 36 0.06 26 547 13 0.01 36 0.02
5 26 0.4 14 4 24 0.01 24 0.02
6 30 1 14 94 4 0.01 26 0.01
7 30 0.8 16 9 28 0.01 28 0.02
8 44 1 18 430 6 0.01 40 0.02
9 44 0.1 34 47 16 0.01 44 0.03
10 38 0.2 - - 13 0.01 38 0.03
11 52 0.4 40 158 19 0.01 52 0.04
12 32 0.1 - - 11 0.01 32 0.01
13 26 0.06 24 280 9 0 26 0.01
14 44 0.4 - - 15 0.01 44 0.04
15 60 0.8 52 2 22 0.01 60 0.07
16 50 0.8 48 82 17 0.01 50 0.06
17 68 2 60 5 25 0.02 68 0.1
18 19 36 15 1299 10 0.01 15 0.01
19 59 32 29 335 5 0.01 45 0.04
20 75 26 39 1717 11 0.02 71 0.07



117

Table B.10 Results of experiments on the plans for Sokoban domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 229 9 157 44 2 0.1 219 2
2 239 2 186 6 0 0.1 239 2
3 129 0.8 115 26 5 0.1 119 0.5
4 309 3 227 21 2 0.1 305 4
5 306 4 200 303 2 0.1 306 3
6 77 0.2 - - 10 0.1 77 0.1
7 366 21 305 779 3 0.2 342 5
8 433 0.2 429 0.3 2 0.5 433 40
9 279 7 226 43 2 0.1 279 4
10 289 154 187 449 6 0.1 289 4
11 95 4 - - 4 0.1 95 0.8
12 249 14 175 137 2 0.1 249 3
13 570 62 414 1529 2 0.4 552 12
14 47 0.1 - - 14 0 47 0.1
15 356 187 - - 2 0.2 328 5
16 455 561 305 1541 4 0.2 455 9
17 245 523 197 1487 2 0.1 245 2
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Table B.11 Results of experiments on the plans for Sokoban domain(IPC11) found by
Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 205 4 167 161 2 0.1 195 1
2 189 0.7 198 17 0 0.1 189 2
3 131 0.7 120 5 5 0.05 131 0.5
4 303 6 225 44 0 0.1 299 3
5 423 6 285 47 0 0.2 395 6
6 260 9 196 573 2 0.1 260 2
7 79 0.3 - - 10 0.03 79 0.1
8 368 29 307 886 3 0.1 348 5
9 433 0.2 429 0.5 2 0.5 433 38
10 291 6 221 502 2 0.1 271 4
11 406 13 - - 4 0.3 400 12
12 299 472 191 1446 4 0.1 299 4
13 111 303 - - 4 0.05 109 1
14 243 11 157 102 2 0.1 243 3
15 550 66 348 1090 2 0.3 550 11
16 83 998 75 1458 14 0.06 83 0.4
17 512 163 318 202 2 0.3 492 9
18 737 1461 - - 4 0.4 617 17
19 277 1465 - - 2 0.08 277 1

Table B.12 Results of experiments on the plans for Transport domain(IPC11) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 191 13 - - 52 0.1 169 2
2 323 33 - - 58 0.2 271 9
3 288 11 - - 50 0.1 204 4
7 336 184 - - 53 0.5 313 35
5 438 1087 - - 62 1 402 64
6 336 184 - - 53 0.5 313 35
7 251 15 - - 52 0.1 244 6
8 242 28 - - 62 0.2 218 5
9 212 13 - - 52 0.1 189 4
10 638 1703 - - 57 0.5 596 96
11 492 599 482 655 45 0.5 453 53
12 482 377 179 55 0.5 339 38
13 377 567 432 1468 60 1 425 71
14 459 52 348 131 46 0.5 321 36
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Table B.13 Results of experiments on the plans for Barman domain(IPC14) found by Lama

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 240 2 - - 14 0.1 189 1
2 221 2 - - 14 0.1 180 1
3 168 2 - - 17 0.1 166 0.5
4 258 46 135 1707 12 0.1 184 1
5 204 5 - - 15 0.1 194 0.5
6 159 2 146 535 16 0.1 157 1
7 218 3 - - 16 0.1 200 1
8 235 7 - - 16 0.1 198 1
9 223 7 - - 12 0.1 191 1
10 262 9 - - 14 0.1 223 1
11 222 6 - - 13 0.1 186 1
12 196 7 - - 15 0.1 179 1
13 310 11 - - 16 0.1 240 1
14 212 2 - - 13 0.1 173 1
15 234 1236 - - 14 0.1 196 1
16 223 6 - - 14 0.1 181 0.6
17 203 1 - - 12 0.1 177 1
18 217 2 - - 14 0.1 185 1
19 238 6 - - 14 0.1 194 1
20 187 3 - - 16 0.1 171 0.5
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Table B.14 Results of experiments on the plans for Barman domain(IPC14) found by Mercury

Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

1 221 1 - - 14 0.1 185 1
2 233 2 159 1798 13 0.1 183 1
3 168 2 151 1230 17 0.1 162 0.5
4 222 2 136 1230 12 0.1 167 0.6
5 195 5 - - 15 0.1 177 0.6
6 197 40 - - 16 0.1 165 0.5
7 196 2 - - 16 0.1 174 0.6
8 295 4 - - 16 0.1 220 1
9 252 3 - - 12 0.1 185 1
10 249 6 - - 14 0.1 200 1
11 226 2 - - 13 0.1 188 1
12 200 5 - - 16 0.1 184 0.6
13 254 34 - - 16 0.1 200 1
14 228 1 - - 13 0.1 184 1
15 239 4 - - 14 0.1 188 1
16 258 48 154 111 14 0.1 212 1
17 201 3 - - 12 0.1 177 0.6
18 227 2 - - 14 0.1 187 0.6
19 308 5 - - 14 0.1 207 1
20 220 2 - - 16 0.1 184 1

Table B.15 Results of experiments on the plans for Floortile domain(IPC11) found Mercury
by Lama and Mercury

Planner Problem Initial Solution Best Solution JUA UAIAE
Ω ♢ Ω ♢ ∑ ♢ Ω ♢

Lama 1 39 17 36 78 14 0 38 0.02
2 39 4 36 5 15 0 36 0.02

Mercury 1 38 0.3 36 28 13 0.01 38 0.02
2 40 0.2 36 6 15 0.01 38 0.02



Appendix C

Plan Repair via Plan Optimisation

This appendix presents comparison between plan repair and plan optimisation technique.
The column ’orginal’ contains the length of the original plan generated by agile planner
Ω, and the column JAE contains the number of justified unique action in the plan ∑. The
column ’UAIAE’ contains the length of optimised plan Ω and plan optimisation time ♢, and
the column ’LPG Repair’ contains the length of repaired plan Ω and plan repair time ♢.
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Table C.1 Results of experiments on the plans for Barman domain(IPC11) found by Probe
(invalidated) and repaired by LPG plan repair

Problem Original JUA LPG Repair UAIAE
Ω ∑ Ω ♢ Ω ♢

1 130 9 277 10 128 0.2
2 117 10 200 0.4 117 0.2
3 118 9 188 0.1 118 0.2
4 120 9 156 58 118 0.2
5 144 12 285 60 144 0.3
5 143 11 149 0.1 143 0.3
6 150 11 214 61 150 0.3
7 132 12 189 5 130 0.2
8 159 12 247 22 149 0.4
9 172 13 462 128 166 0.5
10 145 12 308 156 145 0.3
11 155 12 282 88 151 0.4
12 284 12 325 220 224 1
13 187 13 275 97 181 0.7

Table C.2 Results of experiments on the plans for Elevators domain(IPC11) found by Yahsp3
(invalidated) and repaired by LPG plan repair

Problem Original JUA UAIAE LPG Repair
Ω ∑ Ω ♢ Ω ♢

1 262 12 126 3 302 0.6
2 447 29 244 15 630 44
3 661 32 375 38 677 129
4 298 30 21 4 326 20
5 338 22 187 5 346 40
6 776 40 404 45 982 259
7 480 39 267 17 427 429
8 1350 24 562 134 183 1209
9 649 44 402 36 842 748
10 925 43 481 72 194 1211
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Table C.3 Results of experiments on the plans for Floortile domain(IPC11) found by Mada-
gascar (invalidated) and repaired by LPG plan repair

Problem Original JUA UAIAE LPG Repair
Ω ∑ Ω ♢ Ω ♢

1 39 15 35 0.02 37 0
2 42 14 36 0.02 86 0.04
3 51 17 44 0.03 51 0
4 54 15 50 0.04 52 0.01
5 50 19 49 0.04 77 0.01
6 52 17 48 0.04 50 0.01
7 75 21 60 0.1 75 0.01
8 64 21 59 0.07 63 0.01
9 91 24 76 0.1 92 0.01
10 74 27 71 0.1 77 0.01
11 85 26 77 0.1 97 0.01
12 86 27 82 0.1 94 0.02
13 118 31 97 0.3 118 0.02
14 120 32 97 0.3 115 0.1
15 132 38 115 0.5 137 0.02
16 131 37 121 0.6 129 0.02
17 178 43 140 1 181 0.1
18 159 43 139 1 157 0.04
19 215 49 169 1 225 0.1
20 182 50 155 1 178 0.1
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Table C.4 Results of experiments on the plans for Scanalyzer domain(IPC11) found by
probe(invalidated) and repaired by LPG plan repair

Problem Original JUA UAIAE LPG Repair
Ω ∑ Ω ♢ Ω ♢

1 10 8 10 0 10 1200
2 12 12 12 0.01 12 1
3 26 10 26 0.01 36 0
4 32 12 30 0.02 40 1
5 14 14 14 0.01 20 3
6 20 11 20 0.01 24 878
7 16 12 16 0.01 20 9
8 56 2 48 0.03 58 1201
9 40 16 40 0.02 54 0.3
10 38 13 38 0.03 46 1
11 46 19 46 0.03 50 1
12 32 11 32 0.01 34 0.3
13 26 9 26 0.01 32 0.1
14 44 15 44 0.04 54 3
15 54 22 54 0.05 74 2
16 50 17 50 0.06 58 7
17 60 26 60 0.08 70 6

Table C.5 Results of experiments on the plans for Sokoban domain(IPC11) found by
Jasper(invalidated) and repaired by LPG plan repair

Problem Original JUA UAIAE LPG Repair
Ω ∑ Ω ♢ Ω ♢

1 177 4 177 0.1 203 0.2
2 201 0 201 2 202 7
3 232 7 218 1 123 19
4 451 0 401 5 453 1
5 473 0 469 7 341 15
6 308 2 294 2 302 0.1
7 90 10 90 0.2 91 3
8 460 3 434 7 365 93
9 445 2 445 37 429 19
10 305 2 267 4 331 0.3
11 612 4 572 21 444 33
13 91 4 91 0.5 101 0.3
14 225 2 221 2 225 0.1
15 586 2 550 10 396 46
16 47 14 47 0.1 49 7
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Table C.6 Results of experiments on the plans for Transport domain(IPC11) found by Yahsp3
(invalidated) and repaired by LPG plan repair

Problem Original JUA UAIAE LPG Repair
Ω ∑ Ω ♢ Ω ♢

1 201 27 143 2 269 7
2 230 28 177 3 280 153
3 322 31 214 7 598 94
4 222 21 179 2 249 7
5 207 26 177 2 242 480
6 265 31 211 4 591 9
7 241 36 193 4 395 283
8 435 31 348 19 546 586
9 343 40 269 8 377 866
10 298 37 225 5 454 48
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