
University of Huddersfield Repository

Samson, Grace, Joan, Lu, Usman, Mistura M., Showole, Aminat A. and Hadeel, Hadeel Jazzaa

Large Spatial Database Indexing with aX-tree

Original Citation

Samson, Grace, Joan, Lu, Usman, Mistura M., Showole, Aminat A. and Hadeel, Hadeel Jazzaa
(2018) Large Spatial Database Indexing with aX-tree. International Journal of Scientific Research
in Computer Science, Engineering and Information Technology, 3 (3). pp. 759-773. ISSN 2456-
3307

This version is available at http://eprints.hud.ac.uk/id/eprint/34491/

The University Repository is a digital collection of the research output of the
University, available on Open Access. Copyright and Moral Rights for the items
on this site are retained by the individual author and/or other copyright owners.
Users may access full items free of charge; copies of full text items generally
can be reproduced, displayed or performed and given to third parties in any
format or medium for personal research or study, educational or not-for-profit
purposes without prior permission or charge, provided:

• The authors, title and full bibliographic details is credited in any copy;
• A hyperlink and/or URL is included for the original metadata page; and
• The content is not changed in any way.

For more information, including our policy and submission procedure, please
contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

CSEIT1833236 | Received : 12 March 2018 | Accepted : 24 March 2018 | March-April-2018 [(3) 3 : 759-773]

International Journal of Scientific Research in Computer Science, Engineering and Information Technology

© 2018 IJSRCSEIT | Volume 3 | Issue 3 | ISSN : 2456-3307

759

Large Spatial Database Indexing with aX-tree

Grace L. Samson*1, Mistura M. Usman2, Aminat A. Showole3, Joan Lu4, Hadeel Jazzaa5

*1Department of Informatics, University of Huddersfield, United Kingdom
2Department of Computer Science, University of Abuja, Gwagwalada, Federal Capital Territory, Nigeria
3Department of Computer Science, University of Abuja, Gwagwalada, Federal Capital Territory, Nigeria

4Department of Informatics, University of Huddersfield, United Kingdom
5School of Computing and Engineering, University of Huddersfield, United Kingdom

ABSTRACT

Spatial databases are optimized for the management of data stored based on their geometric space. Researchers

through high degree scalability have proposed several spatial indexing structures towards this effect. Among

these indexing structures is the X-tree. The existing X-trees and its variants are designed for dynamic

environment, with the capability for handling insertions and deletions. Notwithstanding, the X-tree degrades

on retrieval performance as dimensionality increases and brings about poor worst-case performance than

sequential scan. We propose a new X-tree packing techniques for static spatial databases which performs better

in space utilization through cautious packing. This new improved structure yields two basic advantage: It

reduces the space overhead of the index and produces a better response time, because the aX-tree has a higher

fan-out and so the tree always ends up shorter. New model for super-node construction and effective method

for optimal packing using an improved str bulk-loading technique is proposed. The study reveals that proposed

system performs better than many existing spatial indexing structures.

Keywords: Super-Nodes, Bulk-loading, X-tree, Spatial indexing, Sorting, Spatial Data Management, Shape-files,

Spatial Coordinate.

I. INTRODUCTION

Spatial databases are optimized for storing and

querying data that stores objects based on their

geometric space. In [1] and [2], it was established

that recent research on big data has majorly focused

on spatial and temporal data. This according to them

is simply because these kind of data have to monitor

the behaviour and position of an object or event over

time. However, the wide and increasing availability

of collected spatial data and the explosion in the

amounts of spatial data produced daily by several

devices such as space telescopes, smart phones,

medical devices, and many others calls for specialized

systems to handle big spatial data [3]; [4]; [5]. Despite

tremendous effort in spatial data mining research

methodology most recent researches have revealed

that there still exist sensitive areas and issues of

location-time data mining that still needs to be

tackled. these problems according to [6]; [7]; [8];[[9];

[10]; [11]; [12]; [13]; [14]; [2]. Include location

privacy, traffic-aware navigation, scalability,

inconsistency and uncertainty in handling spatial

data. All these according to them arise from Physical

factors which often cause the location-time data to

be inaccurate and noisy as such data analyst are daily

seeking solutions to these problems. The main

components of big spatial data namely, language,

indexing, query processing, and visualization

according to [15] are the major issues to deal with in

the study of large spatial data sets. The reason for an

urgent need for advanced systems for spatial or

http://ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 760

spatio- temporal data is that, while classical big data

is well supported with a variety of Map-Reduce-like

systems and cloud infrastructure (Hadoop, Hive,

HBase, Impala, Dremel, Vertica, and Spark), most of

these systems or infrastructure do not provide any

special support for spatial or spatio-temporal data and

basically, In fact, the only way to support big spatial

data is to either treat it as non-spatial data or to write

a set of functions as wrappers around existing non-

spatial systems. However, doing so does not take any

advantage of the properties of spatial and spatio-

temporal data, hence resulting in sub-par

performance [15]. In this work, we propose a new X-

tree packing technique for indexing static spatial

databases, which performs better in space utilization

through cautious packing. The algorithm

(implemented in c#, with SQL server as the database

engine) allow users to make adjustments based on the

specific need. The rest of the paper is arranged as

follows: section 2 discusses existing theory in the

area of spatial indexing, existing methods for spatial

indexing and their shortcomings and introduced the

original X-tree. In section 3, we looked at different

bulk-loading techniques, sorting techniques and

partitioning techniques. Section 4 introduces the

new system, including the algorithm and its

performance, experiments and results.

II. THEORETICAL REVIEW

A Spatial Data Representation

Spatial data objects in most cases often cover areas in

multidimensional or high dimensional spaces. They

are often not well characterized by point location

(see fig.1), thus; an indexing method that can support

some n-Dimensional range queries based on the

object‟s spatial location is required. A typical query

could be any problem which is related to the spatial

attributes of a given object. However, because of the

non - linearity that exists among large spatial data set,

an effective data structure which has the ability to

tackle the branched structures that exists among a

given spatial data is required. This complex spatial

dataset trait according to [16] are better represented

using graphs and trees because the larger datasets are

always made up of other minor events or objects

which are always difficult to be ordered to form

sequences. Such kind of data include hierarchical

data, such as taxonomies and Xml-3-Dimensional

worlds (which are always easily represented as trees),

and directed or undirected networks such as social

networks (where the edges of the graph denotes

explicit or implicit relationships between media

objects or individuals). Different variants of the tree

data structures are used in specific application for

simple fact of achieving performance optimization.

Normally, evaluations are made between various tree

structures with respect to complexity, query kind

support, data kind support and application [17]

Figure 1. (a) representing spatial data using points, (b) actual spatial data with extent marked by city

boundaries

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 761

B Indexing Spatial Data

The main goal of indexing is to optimize the speed of

query according to [18]. In large databases especially

spatial – temporal ones, the efficiency of searching is

dependent on the extent to which the underlying

data is sorted [19]. The sorting is captured by the data

structure (known as an index) that is meant for

representing the spatial data thus making it more

accessible. According to [20], in order to store objects

in these databases, it is common to map every object

to an attribute vector in a (possibly high-dimensional)

vector space. The attribute vector then serves as the

representation of the object. The traditional role of

the indexes is to sort the data, this means the

ordering of the data. However, since generally no

ordering exists in dimensions greater than 1 without

transforming of the data to one dimension, the role

of the sort process is therefore differentiating

between the data, i.e. (most often) to sort the spatial

objects with respect to the space that they occupy.

The resulting ordering should be implicit rather than

explicit so that the data need not be resorted (i.e., the

index need not be rebuilt) when the queries change.

The indexes are said to order the space [19]. In [21]

spatial indexing techniques are one of the most

effective optimization methods to improve the

quality of large dynamic databases; this is achieved

by applying ordering tools (e.g. Z-order curve,

Hilbert curve or any other dimension or space

reduction tool) which linearizes multidimensional

data. A key property of these ordering functions is

that it can map multidimensional data to one

dimension while preserving the locality of the data

points. Once the data is sorted according to these

orderings, then a spatial data structure is built on top

of it and query results are refined, if necessary, using

information from the original attribute vectors. Any

n-dimensional data structure can be used for

indexing the data, such as binary search trees, B-trees,

R-trees X-trees e.t.c. [20]. Notwithstanding,

according to [22] extended object (always

represented using rectangles) are more difficult to

model than points because they do not fall into a

single cell of a bucket partition, therefore three

strategies have been developed to be able to handle

rectangle data partitioning, these include:

Transformation approach, overlapping bucket

regions, clipping.

1) X-tree Data Structure:

(a)

(b)

Figure 2. (a) X-tree structure, (b) shapes of X-tree in

different dimension of data [26].

The X-tree was offered in order to create a suitable

structure to index point and spatial data in high-

dimensional space and research has shown that the

structure has a greater ability in terms of handling

high dimensional spatio-temporal data [16]; [23]; [17];

[24]; [25]. The X-tree (eXtended node – fig.2) and its

variants are designed for dynamic environment, the

structure is proposed by [26] as a method for

indexing large amounts of point and spatial data in

high-dimensional space. Analysis according to [27],

shows that index structures such as the R-tree and

most of its variants (e.g. R*- tree) are not adequate for

indexing high -dimensional data set. X-tree

according to [26] and M-tree according to [28] are

typically other variants of R-tree. They are also used

for multidimensional data. According to the authors,

the construction of M-tree is fully parametric based

on some distance function (d) and triangle inequality

for efficient queries. The M-tree has overlap of

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 762

regions but no strategy to avoid overlap. Each node

there is of radius r, every node n and leaf node l

residing in node N is at most distance r from N. the

M-tree is balanced tree and does not requires

periodical reorganization. On the other hand the X-

tree prevents overlapping of bounding boxes which is

a problem in high dimensionality. Any node that is

not split will then result into super-nodes and in

some extreme cases tree will linearize. The X-tree

may be seen as a hybrid of a linear array-like and a

hierarchical R-tree-like directory [26]. According to

[16], the increase in the fan-out of the X-tree is the

main positive side effect of the so called super-node

strategy.

Advantage of the X-tree as given by [23]; [16]

indicates that the X- tree is a heterogeneous access

method because it is composed of nodes of different

types. In most cases whereby it has become

impossible to overcome or avoid overlap, super-

nodes are created during the processes of inserting

new entries into an X-tree. These super nodes

accounts for the advantage of X-trees over all other

access methods. Some of the benefits of the super-

nodes include: a) Increase in average storage

utilization due to fewer splits taking place and b)

Reduction in height of tree due to increase in average

tree fan-out. In cases where it is impossible to

construct a hierarchical access method with

minimized overlap between node bounding regions,

then sequential scanning of the dataset is facilitated

for very high-dimensional spaces. Further

description of the structure of the X-tree according

to [29]; as well as the “super-node”, the X-tree makes

use of overlap-free algorithm and uses a the

hierarchical directory structure for low dimensional

vectors and a linear directory structure for high

dimensional vector. These lead to fast access of the

object attribute vector. However, the X-tree degrades

on retrieval performance as dimensionality increases

and brings about poor worst case performance than

sequential scan when the number of dimensions is

greater than 16, for low dimensionality, it means that

there is no overlap between the triangles. The X-tree

applies the overlapping bucket regions which

benefits from the possession of a key. Thus the

Spatial object (or key) falls into a single bucket but

the disadvantage here is that there are always

multiple search paths due to the overlapping bucket

regions. Nevertheless, the tree structure have been

known to possess obvious limitations which include:

(i) possibility of an overflow in the so called „super-

nodes‟ (ii) unnecessary overhead induced by multiple

disk access (iii) plus in some extreme cases the X-

tree will totally linearize as such leads to inefficient

memory management. This research work focuses on

methods of building scalable large spatial database

systems by extending the existing X-tree model to be

able to overcome its limitations and therefore

proposes a new heuristics based spatial indexing

model; the adjusted X- tree (aX-TREE) which is built

upon the improvement of the existing models for

efficient handling large data in a static environment.

Many variations of the X-tree (X+-tree, VA-File, CBF

e.t.c) has been proposed but none of these methods

has shown total efficiency in large spatial data

management.

2) X+-tree Data Structure:

The X+- tree [30] allows the increase of the size of

super-nodes in the X-tree to some degree.

Technically, in order to avoid overlap, which is bad

for performance, a super node might grow during the

insertion. However, the linear scan of a large super

node can be a problem. In the X-tree, the size of a

super-node can be many times larger than size of a

normal node. In the X+-tree, the size of super-node is

at most the size of a normal node multiplied by a

given user parameter MAX_X_SNODE. When the

super-node becomes larger than the upper limit, the

super-node has to be split into two new nodes [30].

The disadvantage of this method is the occurrence of

multiple entries for a single spatial object (not good

as a clustering index due to data redundancy and

replication.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 763

VA-File and the CBF data structure:

The VA-File described in [29] was introduced to

improve the retrieval performance deterioration of

the X-tree, which falls into sequential scan in case of

overgrown super-node in higher dimensional data.

Using vector approximations (see fig.3), the number

of disk I/O accesses is reduced and the high

dimensional vector space is divided into sets of cells,

which then generates an approximation of each cell

to be able to scan the VA-File for a candidate cell

when a user query is given. With this, the attribute

vector within each candidate cells is searched to

obtain its K-NN. The disadvantage of this method is

that the algorithm may result to a conflicting query

operation

Figure 3. the sample vector approximations [29].

III. BULK LOADING TREE DATA STRUCTURE

Applying a bulk loading technique rather than the

insertion operation of the existing X-tree will help to

overcome the slower approach of individually

inserting each object recursively and possible

overcome the over expansion of the super-node.

Once the data is sorted according to the any suitable

ordering for spatial data, then a spatial data structure

is then built on top of it and any n-dimensional data

structure can be used for indexing the data, such as

binary search trees and B-trees, R-trees X-trees e.t.c.

[20]. In this way we may be able to overcome the

challenge of un-expected overflow or overloading of

the so called “super-node” that limits the efficacy of

the existing X-tree. For static data, one of the best

ways of building the data structure is by bulk-

loading. Bulk-loading method builds a tree at a time

instead of iteratively inserting each object into an

initially empty tree one by one. A good bulk loading

method according to [31] would build fast for static

objects and will ensure a lesser amount of

wasted empty spaces on the tree pages. [32]

identified the advantages of the bulk loading a tree

structure as the follows: 1. faster loading of the tree

with all spatial objects at once 2. Reduced empty

spaces in the nodes of the tree and 3. Better splitting

of spatial objects into nodes of the tree.

A Data Sorting

According to [19] the importance of location as a

component of data for the purposes of further

processing (as a means of enhancing the value of the

spatial data and visualization) cannot be over

emphasized. Both of these aforementioned purposes

inevitably involve searching. It then means that the

efficacy of searching is dependent on the extent to

which the underlying data is sorted. However,

according to [18], larger datasets are made up of

other smaller events or objects that might be difficult

to be ordered to form sequences. Therefore, [19],

since generally no ordering exists in dimensions

higher than one without transforming of the data to

one dimension, the role of any sort algorithm is one

of differentiating between the data and most times

the job is majorly to sort the spatial objects with

respect to the space that they occupy. Sorting in the

case of this project, is a way of building an X-tree

algorithm that takes the advantage of having data

pre-processed before it is stored. Pre-processing is

important because 1) for fairly static data where data

is known a priori there is always a good space

utilization. 2) While performing a query, only fewer

nodes needs to be accessed as such there is always an

improved query time. 3. Dynamic algorithms (which

inserts data objects one at a time without pre-

processing) according to [33] does not perform

brilliantly when it comes to query time. Sorting

usually implies the existence of an ordering.

Orderings are fine for one-dimensional data for

example, in the case of individuals we can sort them

by their weight. Unfortunately, in two dimensions

and higher, such a solution does not always work. In

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 764

particular, suppose we sort all of the cities in the US

by their distance from Chicago, the process will be

fine for finding the closest city to Chicago, say with

population greater than 300,000. However, we

cannot use the same ordering to find the closest city

to New York, say with population greater than

300,000, without resorting the cities. The problem

with two dimensions and higher according to [35] is

that the notion of an ordering does not exist unless a

dominance relation holds. This means that a point a

= {ai |1 ≤ i ≤ d} is said to dominate a point b = {bi |1 ≤

i ≤ d} if ai ≤ bi, 1 ≤ i

≤ d. notwithstanding, using a space-filling curve

according to [35]; [36], one can ensure the existence

of an ordering by linearizing the data. Unfortunately

such explicit ordering does not suit the requirements

of having dynamically sorted the index structure

when there is a change in query.

B Partitioning

[34] suggested few possible algorithms for packing a

tree structure, which might help to split a node that

is likely to overflow or already overflowing

(although he limited the algorithms to r-tree packing

only). These methods benefit the choice of

partitioning strategy that has been adopted for

decomposing the underlying space. Among these are:

1) Nearest-X method: [37] where objects are sorted

by their first coordinate ("X") only and then split into

pages of the desired size.

2) Sort-Tile-Recursive (STR): [33] another variation

of Nearest- X, that estimates the total number of

leaves required as⌈l = ⌉ number of objects/capacity of

a node , the required split factor in each dimension

to achieve this as p = l1/d , then repeatedly splits

each dimensions successively into p equal sized

partitions using 1-dimensional sorting for each split.

The resulting pages, if they occupy more than one

page, are again bulk-loaded using the same algorithm.

For point data, the leaf nodes will not overlap, and

the data space would be "tiled" into approximately

equal sized pages.

3) Packed Hilbert R-tree or the Hilbert Sort (HS) :

[38] variation of Nearest-X, but sorting using the

Hilbert value of the centre of a rectangle instead of

using the X coordinate. There is no guarantee that

the pages will not overlap

C Sort-tile Recursive Bulk-Loading

Sort-tile recursive –STR- method for sort - based

(secondary sorting) bulk – loading proposed by [33] is

a simple packing algorithm for efficient bulk-loading

of data into a tree data structure, the algorithm has

the potentials of improving the efficiency of the

existing X-tree by loading the objects in bulk into

memory, rather than the present direct insertion

method. It will lead to an easy to implement

polynomial-time algorithms and might most likely

prove more efficient with larger data sets than the

one used in the existing structure. Following the sort

strategy, the aX-tree is built based on the sorted

MBRs (rectangles) using a bottom – up rectangle

packing approach. Some of the benefits of adopting

this method is as follows for rectangle packing

include:

 It‟s a typical example of a way of bulk-

loading the existing X-tree

 It‟s a method commonly used in DBMS and

GIS at the moment {32]

 Sort-Tile-Recursive has not been applied yet

on the X-tree data structure

1. Simple to implement yet a has a good

performance for query optimization

IV. THE PROPOSED AX-TREE -INDEX

STRUCTURE

A Our Contributions

The proposed aX-tree algorithm is a new X-tree

packing technique for static spatial databases. The

work we present here differs from all the model

described above and any other work in two major

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 765

perspective. First, we argue that this is the first time

that an adjusted X-tree based on secondary sorting is

proposed for multidimensional data. Similar sort-

based- algorithm might have been used in other

spatio-temporal data management indexing

structures (for instance the R-tree but not on the X-

tree). Most other methods for handling

dimensionality majors strictly on dimension

reduction, feature based vector mapping, space

reduction, feature embedding, point transformation

etc. Also, previous work has based majorly on

improving the R-tree and only a few amendments

has been suggested for the improvement of the X-

tree (which research has shown has a greater ability

in terms of handling high dimensional spatio -

temporal data as we have pointed out in section 2B

1)). Second, our system does not adopt the same

similar insertion algorithm with existing X-tree, we

differentiate our method by performing an initial

secondary sort before packing the X-tree. The

proposed aX-tree is expected to carry out the role of a

filtering mechanism to reduce the costly direct

examination of geometric objects induced by the

increased overlap between the MBRs; thus, a

systematic ordering of the intersecting hyper

triangles in addition to reducing the extents of the

MBRs may benefits query efficiency as fewer MBRs

are expected to intersect. This is the goal the

proposed aX-tree Index Structure is set to achieve.

B Motivation for aX-tree

[40], noted that current modelling research tends to

focus on sampling and modelling techniques

themselves and neglect studying and taking the

advantages of characteristics of the underlying

expensive functions. These always leave the

problems of cost in high-dimensional data

management and the problem of computational

complexity un-tackled. For instance it is well

established in the existing X-tree that in low

dimensions the most efficient organization of the

directory is a hierarchical organization which

equates the height of the tree to the number of

required page accesses and it is also recognised, that

for very high dimensionality a linear organization of

the directory is more efficient. Then it suffices it to

say that the X-tree is an inefficient data structure for

high dimensional data management because while it

is faster to access the linear part of the tree, without

having to go through multiple paths, the X-tree still

bear High implementation cost evolved from the

overhead created by the super-node (especially in

cases where a given query does not cover the entire

MBR of the super node) and again it bears cost

resulting from overhead induced by traversing the

nodes of the hierarchical part of the tree. Moreover

in some extreme cases the X-tree will totally

linearizes as such leading to inefficient memory

management. It has also been observed that in

higher-dimensional data, many geometric data

structures (including the X- tree – [26] and X+-tree

which grows to further splitting of the super node

and thereby degenerating to a clipped or disjoint

region [30] fail to work well. Most of the existing

variants of X-tree introduced to improve the X-tree

are Cell/grid based. Cell/grid-based indexing

approach needs point transformations to store spatial

data and therefore does not provide a good spatial

clustering. These disadvantages of the existing

structure motivates a quest for a solution that

overcomes them.

C Packing X-tree (aX-tree construction)

Normally, packing must be done without overlaps

between spatial objects or the container walls. In

some modifications, the main purpose is to find the

optimal setting that packs a single container with the

maximal density. More frequently according to [40],

the aim is to load all the objects into as few vessels as

possible. In some modifications likewise, the

overlapping (of objects with each other and/or with

the boundary of the container) is allowed but should

be minimized. We implemented a sort-tile-recursive

algorithm for an X-tree on a 2D plane. The method

operates on points and extended objects (lines and

regions) by simply approximating their geometry

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 766

using one of two different approaches as descried in

[41]; [42]: (1) by using the objects minimum

bounding rectangles (MBRs – which is the smallest

axis aligned rectangle enclosing a spatial object),

enclosed with the points (xmin, xmax, Ymin, Ymax),

so as to be able to estimate their extent in space using

their minimum and maximum values for single

measurements on each axis, and (2) by using a more

accurate object decomposition technique where the

spatial object (complex) is broken down into simple

and smaller spatial component. If the first approach

is adopted (which we did), then Afterwards, the tree

construction follows steps described below. We

represent spatial object or query as

(xmin,ymin,xmax,ymax) in 2D space so points, lines

and regions (or surfaces) can also be represented

using MBRs.

D Algorithm description and Pre-processing

The algorithm starts with the pre-processing, which

includes refining the table and converting the

LAT/LONG or X/Y coordinate column to standard

geometric shape (points, polygons or lines) for spatial

database, so as to get the extent. Following this phase,

the algorithm then continues by building a bounding

box (envelop) around the object‟s extent. The next

phase consists of computing the midpoint of the

bounding box, which is then sorted first by the X-

coordinate of their centre point and then β (total

nodes (page) required for the data) is computed as

explained later. R is the total database objects or rows

and M is the maximum capacity of the node

(explained later). In the next phase, the packing

begins with the computation of (β 1/d), where d stands

for the dimension. This determines the total number

of partitioning required for the data space. Based on

the outcome of the partitioning, the rectangles are

then loaded into pages in groups of M with rectangle

ID, object ID and maximum node entry M as the

input (i.e The algorithm take as input an array of

pointers to a set rectangles and a description of

maximum children count for each node). This phase

returns the page/Node ID, and the MBR of the spatial

objects. We consider the centroids of the spatial

objects rectangles (MBR) for ordering purpose

because the simple heuristics behind aX-tree

indexing is to first filter the nodes by the first

coordinate (e.g x-coordinate) and then filter the

internal nodes on the subsequent coordinates (e.g y-

and z- coordinates). After a successful partitioning,

the entire dataset can then be scanned and each

object is placed in the right partition based on the

underlying interval (range). Fig.4 shows the general

structure of the aX-tree in 2-dimension. To improve

the space performance of the algorithm, the storage

of data objects in aX-tree is such that the entry

consist of the tree (3) important attribute (the object

rectangle, rectangle id (ID), and the Maximum node

entry (M)), which are the information necessary to

differentiate between the data objects. This measure

ensures a higher fan-out and a smaller directory

(based on approximately 100% node fill), resulting in

a better query performance and ensures that the area

and perimeter of the resulting minimum bounding

rectangles (MBRs) is minimized. Since the fan-out of

the tree is determine by the page size (i.e. the size of

the tree node that matches the page size) of the

external memory, and because we have assumed that

each tree node consume one disk page on the disk

storage (as such, where M is the size of a disk page).

Therefore, each non-leaf node will contain M

children or at least ≤ M/2. We compute the optimal

value of the maximum node entry M to the tree as:

1. → size of database (reduced by storing only the

significant information)

2. → size of the block storage (page), typically

8kb for SQL sever

β → total nodes (page) required for the data

tR → total rows or total number

of database objects T → total

nodes (Extent) required for the

data

Wher

e)(

)(

kb

kb





 -----

 (1)

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 767

 maximum node entry (m)

)2_______(


tR
ceilingm 

For example given a dataset with 0.500mb dataspace,

7313 data objects (rows), 8kb page size, the size of M

will be: 7313/ (0.500*1000KB/7.800KB) .

Alternatively, one could just in get the value of T as

Ω (in mb) * 128 (one extent in the block storage) for

larger data and then get the value of M as tR/ T.

Intuitively, the calculation above guarantees a

smaller directory than other indexes at all time for d

dimension.

Note for this experiment, the value of µ is applied as

8kb – (96 bytes + 36 bytes + 78bytes) = 7.800kb. The

logic is simple: we subtracted 96bytes for the page

header, 36bytes for row-offset and 78bytes free space

on the page as typical of SQL server pages.

The idea of building the rectangles around the

objects (by constructing the smallest enclosing block

around them based on the value of the geometry or

geography column of the database table) is adopted

to capture points and extended objects in a simple

but efficient manner without having to create

separate methods.

E Partitioning and Bulk-loading algorithm

Using the str algorithm, the partitioning is done

logically through an interval (range) partitioning

procedure. Spatially nearby objects are packed into

one parent node. This guarantees that dead space in

the parent MBR is minimized, and the parent MBR

can be densely filled with child MBRs. The entire

space is partitioned recursively until all the selected

dimensions (x, y…N) are considered. Leaf node entry

→ (oId, MBR): oId is the tuple identifier for referring

to an object in the database. MBR describes the

smallest bounding n dimensional region around the

data objects (for a 2d - space, the value of MBR will

be of the form – xmin, xmax, ymin, ymax, and for 3d

space – xmin, xmax, ymin, ymax, zmin, zmax). Non-

leaf node entry → (Cp, MBR, level): Cp is a (child)

pointer to a lower level node and MBR is the

rectangle enclosing it (which covers all regions in

child node). PId identifies the partition (computing

node) where the object is stored.

ALGORITHM 1: Partitioning

Input → (Obj ID, geometric col)
Build bounding box (bb) of objects as

While R > 0
//Convert geometry column (geom) from table

geom → Envelop (xmin, xmax, ymin, ymax)
Compute Midpoint of bb

Midpoint → ([xmax – xmin], [ymax – ymin])/2
Sort rectangles (objects bounding box)

// Use value x-coordinate
Partition sorted rectangles into r → β 1/2 groups of vertical slices (partition)

// β is explained later //for

d >2, r → β 1/d

Sort r on the y – coordinate of the rectangles center.
Repeat 1 to 5 for each selected dimension
Load r rectangles into nodes (pages),

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 768

Output → (MBR, Node ID), for each leaf level node that loaded into a temporary file to be processed in phase

two of the aX-tree algorithm

Procedure two (2) begins with the temporary file that resulted from phase one. In this stage the new aX-tree

is built recursively continuing upwards, until the root node is built starting from the leaves nodes.

ALGORITHM 2: Bulk-Loading

Create leaf nodes → the base level (L = 0)

While R /* in procedure 1*/ > 0
Create a new aX-tree node,
Allocate M rectangles (of R) to this node

/* during node creation avoid overlapping nodes, extend to super-node in the current level (only for

leave level) see algorithm 3 */
Create nodes at higher level (L + 1)
While (nodes at level L > 1)
Sort nodes at level L ≥0 on ascending creation time
Repeat
Return Root

The simple heuristics in procedure 3, logically decides when it‟s appropriate to extend a node to super-node

ALGORITHM 3: Extend a Node (create super-node)

While creating the nodes in procedure 2
Do

Consider total number of MBRs in each partition
Consider the value of M

For each partition
IF remaining RECTANGLE <= (M + ((M / 2) - 1))
&& RECTANGLE > M
&& RECTANGLE != 0

// RECTANGLE is used to represents objects that falls into individual

partitions Create S (maximum number of entry for super-node)

{
S =M*2; M = S;

}
END DO

Fig.4: the structure of the aX –tree in 2-dimension.

F Discussion and Experimental Analysis

We have been able to highlight the problems of the

existing X-tree which include: (i) possibility of an

overflow in the so called „super-nodes‟ (ii)

unnecessary overhead induced by multiple disk

access (iii) plus in some extreme cases the X-tree will

totally linearize as such leads to inefficient memory

management. We know that Construction time and

performance gain are the two primary focus of index

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 769

construction in multidimensional data space when

processing system and user queries. Therefore, Since

overlap of bounding boxes is straight connect to

query performance (because the access path of the

query processing is effected directly by the overlap of

directory nodes), which lead to multiple path and

which according to [27] is the impending problem of

the existing X-tree, and even the extension of the

super- node unfortunately does not offer optimal

solution for this problem in high dimensional data

where overlap problem dominates the index

eventually [43]. Hence, the main significance of our

work is found in the unique technique for extending

a node (to form a super node). From the discussions

above, it is obvious that the ability to produce

minimal, leave centred, non-overflowing super- node

shields the structure from dearly deterioration. The

proposed algorithm was implemented for 2D datasets;

all our experiments were conducted using two-

dimensional data for easy illustration. Nevertheless,

the structure of algorithms can work for any number

of dimensions. For illustrative purposes, we shall

restrict our attention to 2-dimensional aX-trees with

varying branching factor, depending on the

application and resource at hand. It is important to

remember that the nodes we refer to here relates to

the pages on a disk (computer memory) therefore,

building the tree structure should put into

consideration the fact that minimum number of disk

pages needs to be visited for any query operation for

the indexing structure to be considered optimal.

1) Performance: The original X-tree, allows the size

of a super-node to be many times larger than size of a

normal node. In the X+-tree, the size of super-node is

at most the size of a normal node multiplied by a

given user parameter MAX_X_SNODE and when the

super-node becomes larger than the upper limit, it is

split into two new nodes. This two (2) scenarios have

the tendency to deteriorate performance as such, we

have limited the size of the super node to just a size

double (2X) the normal node size and the formation

(leave centric) is just a straightforward consideration

of the value M for each partitions. In addition, to

further improve this behavior, we have restricted the

super node only at the leave level (as you can see in

fig.4), as such, yielding an increased speed because

the block reading of the directory terminates at the

index level. Moreover, increasing the number and

size of super-nodes, causes the height of the X-tree

(which corresponds to the number of page accesses

necessary for point queries) to decrease with

increasing dimension but in our case, we are already

guaranteed that the height only grows exponentially

only at logM(R) – That is log in M base of R which

improves performance as the height of the tree is a

function on M and M is optimized for space and

speed efficiency.

Generally, the Performance of any tree search would

be measured by the number of disk accesses (reads)

necessary to find (or not find) the desired object(s) in

the database. Therefore, the tree branching factor is

chosen (as we have done) such that the size of a node

is equal to (or a multiple of) the size of a disk block

or file system page. In most database applications

with high -dimensional data nearest neighbour

queries are very important [26] therefore the main

concern for nearest neighbour search (if the database

was indexed with a tree data structure) is CPU-time

rate which is always higher because the search is

required to sort all the nodes based on their min-max

distance. Fig.5(a), shows the performance of the

proposed algorithm on a nearest neighbor query to

find the nearest rectangle to a query point from a

database of 81,177 polygon objects representing the

different towns around our study area. fig.5(b) is the

image of the packed rectangles.

2) Space and time complexity: According to [44], [20]

It is obviously difficult to obtain algorithms that are

worst case efficient in terms of space and query time

for dimensions higher than 2, however in the case of

aX-tree, Each node in aX-tree is restricted by the

value of the the maximum number of entries

(rectangles), calculated according to the available

space ranging from 4kb page block size.

Consequently, for the most cost effective optimal I/O

access operation, each tree node in the proposed

algorithm occupies only one disk page (this will give

us the total leave nodes i.e. number of pages at leave).

The aX-tree impairs the two extreme worst cases of

the X-tree: a) When all the data is collected in a

single super-node (the root), the tree becomes a

linear array of the entire dataset and b) When there

is no super node, all the nodes are arranged

hierarchically, and the tree becomes similar to an R-

tree. In the first cases, even if the aX-tree has all its

data in one node (as the worst case of X-tree may be),

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 770

it would not degenerate to a linear scan beyond the

leave level as the super node is only created at the

leave. In the second case, when there is no super

node, the structure still promises a better

performance as against the X-tree because it

guarantees little or no overlap owing to the fact that

the nodes contains equal objects which number is

predetermined. Moreover, even when there are

super nodes, they are quite few as such maintains

overlap minimal partitioning. The only similar

behavior between the two (2) structures is the height

of the tree which behaves similar to that of the X-

tree where the presence of increased number of

super nodes forces the height of the tree to reduce.

The super- node in this case is constructed such that

after the partitioning, where objects are grouped

according to the maximum node entries, I f the last

group is less than the minimum allowed, then the

last node in the partition is extended to super node.

The justification for creating the super node in this

manner, is to handle cases of highly skewed

distributed data (which is very typical of spatial data),

because unlike the case of uniformly distributed data

where the MBRs are guaranteed to contains same

amount of data, skewed datasets may vary by

partition.

3): Basic operation: The algorithm has the

functionalities for processing range queries, nearest

neighbour queries point queries, join (intersection)

queries and containment queries in a fast and

efficient manner: fig (5a) shows the response time -

00:00:00.0000877μs - to a nearest neighbor query

from a database of 81177 polygon objects.

Finally, another interesting thing about the proposed

system is the ability to predict its performance based

on disk page size. That is, great space efficiency is

achieved by accurately predicting the space that

would be consumed from the computation of total

required pages. Moreso, a useful aspect of the

program is the fact that once the program executed

and is running, increasing the table size (in any

dimension) does not have any negative or

overbearing effect on the program.
(a)

(b)

Fig.5: (a) screenshots of the implementation of aX-

tree showing the tree whereas (b) is the Effect of

algorithm on splitting a database with US postal

districts.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 771

Figure 6. Comparison between our aX-tree algorithm and other splitting algorithms on a database with US

postal districts

V. Conclusion

We have discussed spatial indexing for managing

large spatial database. The study reveals that the X-

tree (designed for dynamic environment) has

outstandingly performed well when it comes to

indexing spatial data for efficient query performance.

However, we discovered that the X- tree begins to in

terms of space for large databases, thus this research

examines the possibility of improving the X-tree and

therefore proposes (aX-tree) a method of building a

packed X-tree by bulk-loading the existing X-tree

structure. The packed X-tree (aX -tree) outperforms

the existing system in terms of speed and space

management due to the mode of construction. It

allows for the pre-processing of the data before

loading into the structure. Bulk-loading method

builds a tree at a time instead of iteratively inserting

each object into an initially empty tree one by one. A

good bulk loading method builds fast for static

objects and will ensure a lesser amount of wasted

empty spaces on the tree pages (by ensuring

maximum node occupancy). The new aX-tree is

performs faster by loading the tree with all spatial

objects at once to reduce empty spaces in the nodes

of the tree and thus producing a better splitting of

spatial objects into nodes of the tree. Due to the leave

centric super-node feature of the aX-tree, the

structure benefits from: i) minimum tree height ii)

high directory node quality (being as hierarchical as

possible) iii) minimum overlap and iv) reduced area

the MBR and most importantly, maximized space

efficency.

VI. REFERENCES

[1]. Vieira, M. R. and Tsotras, V. J. (2013) Spatio-

Temporal Databases: Complex Motion Pattern

Queries. Springer

[2]. Tian, Y., Ji, Y., and Scholer, J. (2015) ―A

prototype spatio-temporal database built on top

of relational database‖. Paper presented at the 14-

19. doi:10.1109/ITNG.2015.8

[3]. Samson, G. L., & Lu, J. (2016). PaX-DBSCAN:

A PROPOSED ALGORITHM FOR

IMPROVED CLUSTERING. In M. R.

Pańkowska (Ed.) Studia Ekonomiczne. Zeszyty

Naukowe, (269524th ed.). Katowice:

Wydawnictwo Uniwersytetu Ekonomicznego w

Katowicach. Retrieved from

www.sbc.org.pl/Content/269524

[4]. Samson, G. L., LU, J., and XU, Q. (2016) Large

spatial datasets: Present Challenges, future

opportunities. Int'l Conference on Change,

Innovation, Informaticsand Disruptive

Technology,North America,dec.2016.

Availableat:

<http://proceedings.sriweb.org/repository/index.p

hp/ICCIIDT/icciidtt_london/paper/view/24>.

Date accessed: 28 Dec. 2016.

[5]. Samson, G. L., Lu, J., Usman, M. M., & Xu, Q.

(2017). Spatial Databases: An Overview. In J.

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 772

Lu, & Q. Xu (Eds.), Ontologies and Big Data

Considerations for Effective Intelligence (pp.

111-149). Hershey, PA: IGI Global.

doi:10.4018/978-1-5225-2058-0.ch003.

Available at: http://www.igi-

global.com/chapter/spatial-databases/177391.

[6]. Mauder, M., Emrich, T., Kriegel, H., Renz, M.,

Trajcevski, G.,and Züfle, A. (2015) ―Minimal

spatio-temporal database repairs‖. Paper

presented at the 492-495.

doi:10.1145/2525314.2525468

[7]. Kamlesh, K. Pandey., Rajat, K. Y., Anshu, D.,

and Pradeep, K. S. (2015), ―A Analysis of

Different Type of Advance database System For

Data Mining Based on Basic Factor‖,

International Journal on Recent and Innovation

Trends in Computing and Communication

(IJRITCC), 3 (2) ISSN: 2321-8169, PP: 456 -

460, DOI: 10.17762/ijritcc2321-8169.150206

[8]. Billings, S. (2013) Nonlinear system

identification: NARMAX methods in the time,

frequency, and spatio-temporal domains (1st ed.).

Hoboken: Wiley.

[9]. Meng, X., Ding, Z., and Xu, J. (2014). Moving

objects management: Models, techniques and

applications (2; 2nd 2014; ed.). Dordrecht:

Springer Berlin Heidelberg. doi:10.1007/978-3-

642-38276-5

[10]. Huang, Y., and He, Z. (2015; 2014) ―Processing

continuous K-nearest skyline query with

uncertainty in spatio-temporal databases‖ Journal

of Intelligent Information Systems, 45(2), 165-

186. doi:10.1007/s10844-014-0344-1

[11]. Kang, C., Pugliese, A., Grant, J., &

Subrahmanian, V. S. (2014). STUN: Querying

spatio-temporal uncertain (social) networks.

Social Network Analysis and Mining, 4(1), 1-19.

doi:10.1007/s13278-014-0156-x

[12]. Moussalli, R., Absalyamov, I., Vieira, M. R.,

Najjar, W., and Tsotras, V. J. (2015; 2014;)

―High performance FPGA and GPU complex

pattern matching over spatio-temporal streams‖.

Geoinformatica, 19(2), 405-434.

doi:10.1007/s10707-014-0217-3

[13]. Secchi, P., Vantini, S., and Vitelli, V. (2015)

―Analysis of spatio-temporal mobile phone data:

A case study in the metropolitan area of milan‖

Statistical Methods & Applications, 24(2), 279-

300. doi:10.1007/s10260-014-0294-

[14]. Eldawy, A., Mokbel, M. F., Alharthi, S., Alzaidy,

A., Tarek, K., and Ghani, S. (2015) SHAHED:

―A MapReduce-based system for querying and

visualizing spatio-temporal satellite data‖. Paper

presented at the 1585-1596.

doi:10.1109/ICDE.2015.7113427

[15]. Eldawy, A., & Mokbel, M. F. (2015, June). The

Era of Big Spatial Data: Challenges and

Opportunities. In 2015 16th IEEE International

Conference on Mobile Data Management (Vol.

2, pp. 7-10). IEEE

[16]. Candan, K. S. and Sapino, M. L. (2010). Data

management for multimedia retrieval. Cambridge

University Press.

[17]. Patel, P., and Garg, D. (2012) Comparison of

Advance Tree Data Structures.arXiv preprint

arXiv:1209.6495.

[18]. Ajit, S. and Deepak, G. (2011) "Implementation

and Performance Analysis of Exponential Tree

Sorting" International Journal of Computer

Applications ISBN: 978-93-80752-86-3 24 (3)

pp. 34-38.

[19]. Samet, H. (2009) ―Sorting spatial data by spatial

occupancy‖ GeoSpatial Visual Analytics (pp. 31-

43). Springer Netherlands.

[20]. Cazals, F., Emiris, I. Z., Chazal, F., Gärtner, B.,

Lammersen, C., Giesen, J., and Rote, G. (2013).

―D2. 1: Handling High-Dimensional Data‖.

Computational Geometric Learning (CGL)

Technical Report No.: CGL-TR-01.

[21]. Park, Y., Liu, L., and Yoo, J. (2013) ―fast and

compact indexing technique for moving objects‖

Information Reuse and Integration (IRI), 2013

IEEE 14th International Conference on (pp. 562-

569). IEEE.

[22]. Guting, R. H. (1994) ―An introduction to spatial

database systems‖ The VLDB Journal—The

International Journal on Very Large Data Bases,

3(4), 357-399.

[23]. Manolopoulos, Y., Nanopoulos, A.,

Papadopoulos, A. N., and Theodoridis, Y. (2010)

R-trees: Theory and Applications. Springer

Science and Business Media.

[24]. Jin, S., Kim, O., & Feng, W. (2013, June). MX-

tree: a double hierarchical metric index with

overlap reduction. In International Conference on

Computational Science and Its Applications (pp.

574-589). Springer Berlin Heidelberg.

[25]. Dash, J. Patra, D. & Pradhan C. (2015)‖A

Proposed Hybrid Spatial Indexing: QX Tree‖

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

Volume 3, Issue 3 | March-April-2018 | http:// ijsrcseit.com

Grace L. Samson et al. Int J S Res CSE & IT. 2018 Mar-Apr;3(3) : 759-773

 773

International Journal of Computer Science and

Information Technologies. 6 (2) pp. 1737-1739.

ISBN:0975-9646

[26]. Berchtold, S., Keim, D. A.., Kriegel, and Hans-

Peter (1996). "The X-tree: An Index Structure for

High-Dimensional Data". Proceedings of the

22nd VLDB Conference (Mumbai, India): 28–

39.

[27]. Berchtold, S., Keim, D. A., & Kriegel, H. P.

(2001). An index structure for high-dimensional

data. Readings in multimedia computing and

networking. pp. 451.

[28]. Ciaccia, P., Patella, M., and Zezula, P., 1997. M-

tree: An E cient Access Method for Similarity

Search in Metric Spaces, in VLDB'97, pp. 426-

435

[29]. Stuller, J., Pokorny, J., Bernhard, T. and

Yoshifumi, M. (2000) Current Issues in

Databases and Information Systems: East-

European Conference on Advances in Databases

and Information Systems Held Jointly with

International Conference on Database Systems

for Advanced Applications, ADBIS-DASFAA

2000 Prague, Czech Republic, September 5-9,

2000 Proceedings

[30]. Doja, M. N., Jain, S., and Alam, M. A. (2012)

―SAS: Implementation of scaled association rules

on spatial multidimensional quantitative dataset‖

International Journal of Advanced Computer

Science and Applications Vol. 3,(9) pp. 30-35

[31]. Mamoulis, N. (2012). Spatial data management

(1st ed.). Morgan & Claypool Publishers.

[32]. Giao, B. C., and Anh, D. T. (2015) ―Improving

Sort-Tile-Recusive algorithm for R-tree packing

in indexing time series‖ In Computing &

Communication Technologies-Research,

Innovation, and Vision for the Future (RIVF),

2015 IEEE RIVF International Conference on

(pp. 117-122). IEEE.

[33]. Leutenegger, S. T., Edgington, J. M. and M. A.

Lopez. (1997) "STR: A simple and efficient

algorithm," in Proceedings 13th International

Conference on Data Engineering, p. 497–506

[34]. Preparata F. P. and Shamos M. I. (1985.)

Computational Geometry: An Introduction.

Springer-Verlag, New York.

[35]. Sagan H. (1994). Space-Filling Curves. Nueva

York: Springer-Verlag.

[36]. Samet, H. (2006) Foundations of

Multidimensional and Metric Data Structures:

Mor-ganKaufmann

[37]. Roussopoulos, N., Kelley, S., & Vincent, F.

(1995, June). Nearest neighbor queries. In ACM

sigmod record (Vol. 24, No. 2, pp. 71-79). ACM.

[38]. Kame I., and Faloutsos C. (1993) On Packing R-

trees Proceedings of the second international

conference on Information and knowledge

management Pages 490-499.

[39]. Shan, S., and Wang, G. G. (2010) ―Survey of

modeling and optimization strategies to solve

high-dimensional design problems with

computationally-expensive black-box functions‖

Structural and Multidisciplinary Optimization,

41(2), 219-241.

[40]. Lodi, A., Martello, S., and Monaci, M. (2002)

"Two-dimensional packing problems: A survey".

European Journal of Operational Research

(Elsevier)141: 241–252. doi:10.1016/s0377-

2217(02)00123-6.

[41]. Dolci, C., Salvini, D., Schrattner, M. and Weibel

R. (2010) ―Spatial Partitioning and Indexing‖

Geographic Information Technology Training

Alliance (GITTA). Available at: <

http://www.gitta.info/SpatPartitio/en/text/SpatPar

titio.pdf>. accessed: 30 Dec. 2016.

[42]. Lee, Y. J., Lee, D. M., Ryu, S. J., & Chung, C.

W. (1996, September). Controlled decomposition

strategy for complex spatial objects. In

International Conference on Database and Expert

Systems Applications (pp. 207-223). Springer

Berlin Heidelberg.

[43]. Assent I., Krieger R., Muller E. and Seidl T.

(2007) DUSC: Dimensionality Unbiased

Subspace Clustering IEEE International

Conference on Data Mining (ICDM 2007),

Omaha, Nebraska, USA, pages 409-414

[44]. Arya, S., Mount, D. M., Netanyahu, N.,

Silverman, R., & Wu, A. Y. (1994). An optimal

algorithm for approximate nearest neighbor

searching in fixed dimensions. In Proc. 5th

ACM-SIAM Sympos. Discrete Algorithms (pp.

573-582).

Volume%203,%20Issue%203%20|%20March-April-2018%20
http://www.ijsrcseit.com/

