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A1: We sincerely thank the respected reviewer for pointing out to this important
standard. We have included now a brief statement highlighting the DIN SPEC 91315,
and we have added the standard’s reference to the reference list. The added
paragraph summarises the intention of the standard as follow:
“In this respect and as a first step, the technical standard DIN SPEC 91315:2014-06
was developed, which characterizes the basic physical and technical performance
parameters of CAP sources to be used for bio-medical or biological experiments and
for further development to become medically applicable plasma sources.”

C2.Moreover, wound therapies are in general hard to place, as for instance they affect
biochemical compositions of the wounds. Hence, it might be time to review our
approach to medical devices in the wound care sector in general.

A2: We completely agree with this important remark. The authors discussed about
adding further thoughts about this aspect, however, we had to acknowledge that a brief
highlight of this matter would be insufficient, as it may leave too many legal, medical,
and regulatory aspects unexplained, and a full discussion on the difficulties with current
registration procedures, particularly for wound management devices, would inflate the
manuscript inappropriately. Therefore, we kindly ask the respected reviewer not to
elaborate on this aspect and keep the topic for a separate manuscript in future.
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Background covering mutagenicity, supported by references 53-56. 53 and 54 have,
respectively, the following titles: "Hydroxyl radicals attack metallic gold" and "A solid
state redox buffer as interface of solid-contact ISE - a strategy to improve the
reproducibility and stability of potentials". These do not appear to be primary sources
for the scientific data on mutagenicity. Reference 57 also does not appear, based on
the abstract, to be a primary source of data on "the latter was as result of directly
exposing DNA". Reference 58 does not appear, based on the abstract, to refer to
coagulation but rather it refers to skin disinfection and the thermal aspects of this.
Reference 59 is a report of an in vitro study on plasma, ozone and hydrogen peroxide
using a device that is identified by reference to previous papers (refs 22 and 34) which
does not appear to support the assertion that this is a plasma skin regeneration device.
The device is not identifiable; it should be identified and supported by cinical
references if they are available. Reference 60 is not the MEDDEV Borderline
Guideline. Reference 61 is not a description of the decision by the European Court.
The references cited stop at 61 in the references list but the numbering in the
manuscript continues up to 90.
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and inadequate use of the automated reference manager software have resulted in
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all corrected now. Again, we whole hearty  apologize for the inconvenience caused.
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Abstract 

Background. The use of cold atmospheric pressure plasmas (CAPs) as a new therapeutic 

option for chronic wounds appears to be promising. Currently, uncertainty exists regarding 

their classification as medical device or medical drug.  

Objective. Because the classification of CAP has medical, legal, and economic 

consequences as well as implications for the level of pre-clinical and clinical testing, the 

correct clarification is not an academic debate, but an ethical need. 

Method. A multidisciplinary team of researchers and lawyers has analyzed the physical and 

technical characteristics as well as legal conditions of the biological action of CAP. 

Results. It is concluded that the mode of action of the locally generated CAP with its main 

active components, being different radicals, is pharmacological and not physical in nature. 

Conclusion. Depending on the intended use, CAP should be classified as a drug, which is 

generated by use of a medical device directly at the point of therapeutic application. 

Abstract Click here to download Anonymous manuscript 2-
Abstract.docx
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Background 

Highly energetic physical plasmas comprise a mixture of reactive ionized particles, which can 

be physically adjusted to body temperature by mixing protons, resulting in so-called “cold 

plasma”. Cold atmospheric pressure plasmas (CAPs) are generated under atmospheric 

pressure at ambient temperatures ranging from 20°C to 50°C.1, 2 

Interest in medical applications of CAPs is rapidly increasing. CAPs ignited a technological 

spark in industry, biotechnology, and in the field of hygiene, for indications where the use of 

antimicrobial active agents or heat sterilization is limited. This includes decontamination of 

thermo-labile medical devices, food, packaging materials, waste-water, or indoor air.3 For 

such applications, the question does not arise whether CAPs are a drug or a medical device. 

On the other hand, plasma has shown promising antiseptic results on skin and mucosal 

membranes in infection-related diseases in dermatology4-6 and dentistry7, and has also been 

found to exert anti-carcinogenic effects similar to those of oxygen radicals, mainly by dose-

dependent anti-proliferative8 and apoptotic activity.9-13 First reports on the use of argon 

plasma for tumor removal date back to 198914, followed by successful ablation of non-

neoplastic Barrett's mucosa15 and other neoplastic diseases.16-21 A plasma-activated medium 

has even been claimed to exert anti-tumor effects.22, 23  

Results of in-vitro,24 in-vivo24-28 and initial clinical studies on chronic wounds of domestic 

animals29, 30 and humans31-35 indicate that CAP may be a promising alternative to 

conventional treatment options, based on the following biological premises: 

- A wound cannot heal as long as it is infected36. CAP may support wound healing 

through its antiseptic efficacy in vitro37-39, ex vivo40, in vivo41 and in humans.31, 32, 42-44 

- CAP may facilitate the transformation of the chronic wound from a stagnating wound 

to an acute healing wound, i.e. by inflammatory45,46 and proliferation-supporting 

stimuli 47,48, including stimulation of neovascularization.29,49,50 

However, while the medical applications of CAP are promising, it is vital to ensure the safety 

and reliability of applied CAPs in humans before it may be considered for routine clinical 

Anonymous manuscript R1 Click here to download Anonymous manuscript Manuscript
R1.docx
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practice. Therefore, aside from the clinical effectiveness, the safety for patients and users is 

an important consideration during the registration and approval processes with health 

authorities. Based on the intended use and the potential risks associated with a medical 

intervention, be it supportive, diagnostic, or therapeutic, products may be classified as 

medical devices, or medical drugs. 

In this respect and as a first step, the technical standard DIN SPEC 91315:2014-06 was 

developed, which characterizes the basic physical and technical performance parameters of 

CAP sources to be used for bio-medical or biological experiments and for further 

development to become medically applicable plasma sources.51 However, findings on 

mutagenicity52-54 and transient expression of pre-mutagenic active compounds, even though 

the latter was as result of directly exposing DNA 55, suggest that the current risk assessment 

for plasma applications is still incomplete and there is a need to consider also energy, 

penetration depth, and the body’s detoxification capacity must also be considered. In addition 

to classification issues, both pre-clinical and clinical investigations need to be preceded by 

tests of clinical effectiveness and the exclusion of chronically toxic, mutagenic, and 

carcinogenic risks. 

The final decision on the correct classification of CAP has not only medical, legal, and 

economic consequences, but also fundamental implications for the required level of pre-

clinical testing, and future development of this new technology. To date, the final 

classification of CAPs as a medical drug or medical device has been the subject of academic 

debate, resulting in uncertainty on the required test data for registration with the respective 

health authorities in Europe and the US, product liability, manufacturers’ responsibility, and 

future economic strategies. Therefore, a multidisciplinary team of physicians, surgeons, 

pharmacists, physicists, and lawyers familiar with the medical application of CAPs has 

critically evaluated the requirements for the classification of cold atmospheric pressure 

plasmas as a medical drugs or medical devices from different perspectives.  
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Differentiation between drug and medical device 

In Europe and the US, medical drugs and medical devices are regulated by separate laws, 

which cannot be applied simultaneously. Dual labeling is generally not accepted by drug 

administration agencies and thus entities are regulated by either the medical devices or 

medicines legislation, but not both. Historically, medical drugs were distinguished from 

medical devices by their pharmacological, metabolic, and/or immunologic effects, while the 

mode of action of medical devices was predominately based on physical aspects. 

Furthermore, based on the potential risk associated with the use of medical devices, they 

can be distinguished into 3 classes. Class I medical devices are defined as devices without 

risks to humans due to low invasiveness, temporary use (≤ 60 min), and application with non-

critical skin contact. Class IIa medical devices bear potential risks as they are associated 

with moderate invasiveness, short-term uninterrupted or repeated use (≤ 30 d) within the 

human body (ophthalmological, intestinal, or surgically created body cavities). Class IIb 

medical devices have potential elevated risks, elicit systemic effects, or are intended for use 

beyond 30 days (i.e. non-invasive birth control). Finally, class III medical devices have the 

highest potential risks, e.g. technical solutions for long-term drug application, pacemakers, 

implants, or invasive birth control devices. 

However, the intention of preventing or treating illnesses may apply to both medical drugs 

and medical devices, and therefore does not qualify as a distinguishing characteristic 

between the two. Thus, the only reason to objectively differentiate between a drug and a 

medical device is its pharmacologic, immunologic or metabolic effect, compared to the 

physical effect of the medical device, which may merely support pharmacologic, immunologic 

or metabolic effects. Pertaining to CAP devices, their categorization as drugs or medical 

devices therefore depends solely on their mode of action. For example, surgical CAP devices 

used for cutting or coagulating tissue in humans (so-called “beamers”) 56 or plasma skin 

regeneration devices 57, were previously approved as medical devices class IIb, and based 

on their physical (thermal) mode of action. 
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In contrast, the MEDDEV-Borderline guideline58 defines a pharmacologic effect as an 

interaction between molecules of the substance in question and a cellular component, such 

as a receptor, which either elicits a direct response or blocks another one in response to a 

third agent. The view therefore does not specifically demand an interaction of substance 

molecules with “cellular components of the host”, but merely requires “cellular components” 

only. A recent decision of the European Court 59 supports the definition of a pharmacologic 

effect of a substance as an interaction with any cellular components within the host’s body, 

including foreign targets cells like bacteria, viruses, or parasites. This opinion is also 

supported by the European directive 2004/27/EG, a revised version of the directive 

2001/83/EG section 2, subsection 2, which elevates the MEDDEV-Borderline guideline58 to 

the instrument of choice in cases of uncertainty for defining a new technology. 

However, where pharmacological aspects outweigh the physical therapeutic use of CAP, its 

classification requires a more complex consideration. In the case of CAP, the transferability 

of obvious physical and biological effects between different CAP devices is complex due to 

various potential mixtures of reactive species and the application of energy during plasma 

application.  

 

Physical and chemical characteristics of CAP 

The different available technologies relevant for plasma medicine can be categorized either 

as direct or indirect physical plasmas. In the case of direct plasmas, the patient’s body 

serves as the second electrode through an electric voltage field between the head of the 

device and the skin surface to be treated, i.e. dielectrically impaired discharges (DBE).60,61 

Indirect plasmas (plasma jets) arise between two electrodes, e.g., within a hand-piece, and 

are conveyed outward by an intense gas stream. 1,62 Depending on the type of carrier gas 

(i.e., argon or helium containing atmospheric pressured ambient air plasma), the energy 

supply for plasma generation and the type of plasma generation, the plasma may appear as 

a visible flame-like beam from a nozzle.1 In both directly and indirectly generated plasma, the 

plasma contains charged particles (electrons, ions), excited atoms and molecules (i.e., 
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singulett-oxygen), free radicals (atoms or molecules containing an unpaired electron), 

photons and electromagnetic fields, leading to the emission of visible UV or VUV radiation. 

The chemical composition and the physical characteristics of the generated plasma 

significantly depend on a number of variables such as pressure, gas mixture, design of the 

device, physical stimuli, and others. The reactive compounds, which become biochemically 

active, emerge either during the generation of the plasma in due course of interaction with 

molecules of the surrounding air, and/or with the medium, the bodily fluid, or the tissue to be 

treated.63-65 

In addition to the direct plasma effects due to the composition of the CAP at the effect site, 

there are also subsequent secondary actions within the tissue, based on radical formation 

generated by CAP, similar to physiologically generated radicals. Hydroxyl radicals (•OH) may 

act as second messengers in T-cell activation,66 and induce apoptosis.67 Nitrogen monoxide 

(NO) acts as a vasodilator, influences tissue oxygen metabolism,68 and can prevent 

excessive amplification of Th1 cells.69 NO and peroxynitrite (ONOO-) promote angiogenesis, 

influence cell proliferation and differentiation.70,71 These examples of reactive oxygen and 

nitrogen species are also expected in CAP or in interaction of plasma with fluids,72, 73 and 

could substantially contribute to generating the biological effects of CAP. The major 

difference between plasma species and endogenous radical production is the increased 

amounts of oxygen and nitrogen reactive species during CAP exposure. Although in 

endogenous metabolism, radicals are produced, increased generation of oxygen species can 

lead to direct cell damage.74,75 The effect of electrons and ions in generating radicals in CAPs 

are probably not necessarily of radical nature, but rather consequential reactions of the body 

following oxidative stress. Radicals, in particular, can exert ionizing effects on tissue 

components due to their tendency towards electron donation or uptake. Radical-driven 

reactions attack a variety of chemical bonds during this process.76 

Hydrogen peroxide can be considered a pharmacologically relevant oxidation product.77 The 

reactions following plasma use described above compare to the phenomena seen after the 

exposition of mononuclear blood cells to culture media, in that similar anti-proliferative and 

cytotoxic effects could be elicited by long-term CAP treatment of cell suspensions.78 This is in 
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line with demonstrable anti-microbial effects of saline solution73 and water79 following prior 

treatment with CAP. So far, it remains questionable whether the “induction of the phosphate 

starvation response regulon PhoP by Argon plasma”80 is a primary or secondary 

pharmacological effect.  

The enhanced oxygen radical reactivity has two causes: 

(a) In a thermodynamic capacity, oxygen radicals are relatively strong oxidants. 

(  is significantly larger than the standard potentials of hydrogen peroxide 

and oxygen: , .) 

(b) In a kinetic manner, oxygen radicals are, just like many other simply charged gas radicals, 

quite reactive, because they contribute to one-electron reactions, which in general can occur 

faster than complex redox reactions with oxidation number changes of more than ±1. Due to 

the known relationship between linear-free enthalpies, high constants for the speed of 

oxidation correlate with high standard potentials. Superoxide radicals bear a rather low 

oxidation potential (around –0.3 V), and therefore are only weak oxidants and rather strong 

reductive agents. Nevertheless, the reactions of the superoxide ion in water are quite fast, 

because protonation leads to generation of the hydrogen peroxide radical HO2, and the 

standard potentials for the formation of H2O2 or H2O are rather high: , 

. The risk potential of OH radicals is furthermore emphasized by the fact 

that they even attack seemingly inert substances, such as gold, liberating gold ions, rather 

than forming a stable surface of gold oxide, which could be expected following normal 

thermodynamic rules.81, 82 

 

Classification of CAPs as medical drug or medical device 

The classification of CAPs depends on its intended use. It is crucial to determine whether or 

not solely physically (thermal, such as in coagulation), or pharmacologically active substrates 

are being generated as part of the main effect. Even in the latter case, however, CAPs can 

2OH/H O    2.813 VE 

2 2 2H O /H O  1.763 VE 
2 2O /H O    1.229 VE 

2 2 2HO /H O    1.44 VE 

2 2HO /H O    1.65 VE 
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still be classified as medical device when used for cleaning of artificial surfaces, e.g. biofilm 

removal on dental implants.  

All therapeutic effects of CAP reported to date are mainly based on effects of radical-derived 

reactive products,73,74,83,84 which are associated with a pharmacological/immunological effect. 

Physical effects such as increased body temperature, electromagnetic fields, and (CAP 

source-dependent) UV or VUV radiation can potentially enhance these effects. However, 

therapeutic effects in healing of chronic wounds85 cannot be explained by physical effects 

alone. Moreover, the clinical course of chronic wound healing after the application of plasma 

in domestic animals and humans suggests that the plasma effect may trigger an intermediate 

phase of acute inflammation.86 The underlying immunological and biological mechanisms are 

not yet fully understood, but induction of integrins,87 NO,88 and increased phosphorylation of 

ß-Catenin89 may indicate pharmacological and immunological effects of CAPs. 

 

However, the complex composition of CAP and its generation within the plasma source at 

the time of application further corroborates its systematic classification within the classic drug 

category. In comparison with “classic” medical drugs, this may have the following 

consequences:  

- The CAP compounds cannot be prepared and stored in a carrier substrate in defined 

doses with detailed knowledge about the exact composition before application on a 

patient. 

- For CAP, storage times cannot be defined, as required for drugs or certain medical 

devices such as surgical or medical examination gloves. Instead, routine technical 

service and maintenance of the plasma-generating source will be required. 

- Newly generated plasma intended for medical use can be uniquely different from 

another plasma in terms of its composition, depending on the type of plasma 

generation, the carrier gas used and environmental conditions. Therefore, the actual 

plasma for each current use needs to be thoroughly described in terms of its active 

components. During each use, narrow margins of tolerance need to be defined and 



 8 

followed. Quantifiable parameters of action are: energy application (J/m2), 

temperature, field strength, UV spectrum, gas uses, and, associated with these, 

radicals in plasma. However, due to technical limitations, accurate quantification of 

radicals is not currently feasible. Moreover, it is technically challenging to maintain the 

energy application constant for a particular plasma source. 

- Similar to a drug, CAPs intended for therapeutic application need to be composed of 

a defined content, which is unaltered by changes in environmental conditions, such 

as humidity of the ambient air. Therefore, plasma application needs to be 

independent of the surrounding atmosphere. 

 

Conclusion 

CAP as a new therapeutic option for chronic wounds or for neoplastic formations appears to 

be promising. Nevertheless, potentially deleterious long-term effects need to be ruled out. 

This applies particularly to mutagenic and carcinogenic risks of long-term plasma application. 

Therefore, before CAPs can safely be used in clinical applications for wound and skin 

treatment or treatment of tumors, it is imperative to further evaluate the interaction of living 

pro- and eukaryotic cells with CAP.  

Analysis of physical and pharmacological properties of CAP supports its classification as a 

drug, which is generated by use of a medical device directly at the point of therapeutic 

application. In contrast to conventional drugs, CAP and its biologically active compounds are 

generated at the time of application by use of a medical device. Therefore, the effective 

plasma itself, which is generated at the treatment site could be regarded as a local redox 

modulator, which stimulates the cells and thus represents an applied pharmacological 

principle. The mode of action of the locally generated CAP with its main active components – 

the different radicals – is pharmacological and not physical in nature.  
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