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 

Abstract—The symbolic time series generated by a unimodal 

chaotic map starting from any initial condition creates a binary 

sequence that contains information about the initial condition. A 

binary sequence of a given length generated this way has a one-to-

one correspondence with a given range of the input signal. This 

can be used to construct analogue to digital converters (ADC). 

However, in actual circuit realizations, component imperfections 

and ambient noise result in deviations in the map function from 

the ideal, which, in turn, can cause significant error in signal 

measurement. In this paper, we propose ways of circumventing 

these problems through an algorithmic procedure that takes into 

account the non-idealities. The most common form of non-

ideality—reduction in the height of the map function—alters the 

partitions that correspond to each symbolic sequence. We show 

that it is possible to define the partitions correctly if the height of 

the map function is known. We also propose a method to estimate 

this height from the symbolic sequence obtained. We demonstrate 

the efficacy of the proposed algorithm with simulation as well as 

experiment. With this development, practical ADCs utilizing 

chaotic dynamics may become reality. 

 
Index Terms—initial condition estimation, reduced height map, 

symbolic dynamics, signal measurement 

 

I. INTRODUCTION 

HAOS in nonlinear dynamical systems has been broadly 

studied over the past few decades to understand the 

underlying deterministic principles in the apparent randomness. 

If the factors governing chaotic dynamics are better understood, 

the information of the physical states of such a dynamical 

system can be retrieved consistently. Thus, the presence of 

determinism in chaos has led to many applications in a wide 

range of areas including, but not limited to, control and 

synchronization of systems, secured communication for cipher 

key encryption and data analysis to understand complex 

patterns and cycles. In this work, we are investigating the scope 

of signal measurement using chaotic dynamics as an approach 

for analogue-to-digital (A/D) conversion. We achieve this by 

using a unimodal chaotic map as a tool to generate a symbolic 

sequence corresponding to an unknown initial signal through 
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the iterative dynamics produced by the map. Applying the 

dynamical principles of the chaotic map, we describe an 

algorithmic approach to compute the magnitude of the initial 

signal from the generated sequence. The system thus works as 

an A/D converter (ADC). 

Currently there is a wide range of architectures available for 

A/D converters of which successive approximation, delta-

sigma (ΔΣ), pipelined and modified flash ADC types are the 

most commonly used architectures. Each of these architectures 

has some benefits along with some shortcomings. The selection 

criteria for any particular type depends on the application 

specifications such as precision, speed, chip area and power 

dissipation as each type can be analysed through several 

performance metrics as proposed by Walden [1] and Robert et 

al. [2]. As summarised by Bashir et al. [3], one has to choose a 

trade-off between resolution, power dissipation, and speed for 

a flexible design architecture. For successive approximation 

type ADCs, improved resolution is achieved through higher 

level of design complexity and resource consumption, but at the 

cost of reduced speed. ΔΣ ADCs are mostly preferred for better 

precision and low power consumption; however, due to 

oversampling, it offers moderate speed. Also, higher order 

system implementation requires a large amount of area and the 

stability factors are affected by the order of modulation. 

In the flash type ADCs, the quantisation is mainly done 

through a parallel implementation of comparators and these are 

therefore well known for high speed operations; however, it is 

challenging to achieve higher bit resolution as the number of 

comparators double each time a bit resolution is increased by 1. 

Better resolution is achieved through several hybrids of flash 

architecture such as interpolation type which reduces the 

number of pre-amplification units and drastically reducing the 

chip area. Since the number of latches required is still the same 

as the classical flash architecture, additional folding stages are 

often incorporated to further reduce resources. Each folding 

stage includes a fine grain ADC and a coarse grain ADC with a 

folding circuit whose accuracy is critical and expensive. 

Another flash based architecture is pipelined ADC, which 

involves series implementation of quantisation blocks that are 
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operated in parallel. Although these ADCs improve speed, the 

resources used for the pipelined architecture increases the chip 

area as well as the cost. Thus, it is evident that, for improved 

performance, most of the ADC architectures rely heavily on 

additional quantization blocks such as increased number of 

comparators or coarse ADC/DAC as well as folding circuits 

leading to increased resource consumption, which result in 

increased chip area with greater design complexity and high 

power consumption.  

Recent advances in our understanding of chaotic dynamics 

has brightened the prospect of developing a feasible ADC that 

uses chaotic dynamics to convert a given input signal into a 

string of digital values [4,5,6], which may be able to overcome 

some of the difficulties mentioned above. Metropolis et al. [7] 

as well as Wang and Kazarinoff [8] have shown in theory that 

symbolic codes generated through unimodal chaotic maps can 

be ordered such that they have a correspondence to a point or 

an interval within a measurable state space. Therefore, if such 

codes can be obtained from a physically implemented chaotic 

system, those symbolic identities may be useful for applications 

like signal measurement. Due to the ‘stretching and folding’ 

nature of the unimodal functions, it is also possible to partition 

the phase space into intervals with unique symbolic signature. 

Since chaotic maps are simple mathematical functions which 

can be easily implemented physically, a single block of chaotic 

map can be reused iteratively to generate the dynamics and 

symbolic representations corresponding to an input signal.  

In practice, the analogue signal to be measured is fed as the 

initial condition to a hardware-implemented chaotic circuit. As 

the dynamics evolves in time, a ‘coarse grained’ symbolic code 

is generated that holds the key information of the originating 

point, parametric factors, and the footprints of the dynamics. 

For our application, we have chosen the tent map as the suitable 

chaotic function to generate symbolic dynamics because it is 

simple to implement, and has no window of periodicity within 

the ergodic range of the map parameter [9]. The symbolic 

dynamics produced by the tent map are Gray codes. This code 

can be processed using a straightforward numerical exercise to 

estimate the initial condition. However, this is possible if the 

tent map generated by the circuit is 'ideal' i.e., its domain is 

exactly [0,1]. 

When we implement the map physically, it is subjected to 

several other factors such as component imprecision and noise, 

which may significantly reduce the parametric domain of the 

map. With a reduced height tent map, converting the generated 

Gray code sequences directly into the corresponding decimal 

values leads to an incorrect mapping and therefore 

measurement accuracy suffers, as observed in [4]. If one wants 

to circumvent the problem using a lengthier symbolic time 

series, it becomes demanding in terms of resource required. A 

similar analysis has been conducted theoretically in [5], which 

showed that the use of a map with ideal parameter is preferable. 

This, however, limits the applicability because in a physical 

implementation, deviation of the parameter is inevitable, as can 

be seen from the work of Kapitaniak et al. [6] who had also 

previously attempted to measure electrical signals in a similar 

way. They observed that the measured outcomes were greatly 

affected by the errors introduced due to the offsets and 

tolerances of the components used in the physically 

implemented map, which significantly reduced the parametric 

domain of the map. 

In this paper, we develop an algorithm that enables one to 

measure a signal with reasonable accuracy even when the map 

parameter deviates from the ideal. For this, three problems had 

to be solved. Firstly, when the height of the map is less than 1, 

the map dynamics eventually gets confined within a range of 

the state space. Therefore, some sequences corresponding to the 

points that are not visited by the dynamics will not be appearing 

as well in the symbolic dynamics; those sequences are classified 

as forbidden sequences [10].  We have shown that, even though 

there are forbidden sequences, information regarding the points 

outside the bounding region can still be realised using the 

symbolic dynamics produced within the boundary. Secondly, 

due to such constraints on the dynamics, when sequences are 

converted back to the corresponding initial values, the intervals 

appear to be squeezed in with overlapping or colliding 

partitions within the bounded state space. For a reduced 

parameter, the partitions created on every stage of map 

operation, are shifted away from the ideal positions [11]. Since 

conventional techniques (while estimating the initial condition) 

assume that the subintervals created in each step of iteration to 

be equal and symmetric, correspondence between the symbolic 

sequence and the initial conditions appear to be lost. The 

algorithm we have developed accounts for this shift and enables 

one to estimate the initial condition in spite of the fact that the 

partitions of the phase space of the map are unequal in size. 

Thirdly, since in a practical scenario the map parameter can 

vary from time to time due to changes in the parameters of the 

circuit, we have developed an algorithm to estimate the map 

parameter from the obtained symbolic sequence. All such 

analysis can be carried out in the digital domain, thus making 

the potential system architecture less complicated at the 

hardware level. 

To develop the initial condition estimation algorithm, the 

dynamical properties of both the full height and the reduced 

height tent map have been thoroughly studied and applied. We 

define tent map and its dynamical features that are relevant to 

our work in section II and III, followed by the general view of 

the dynamical attractor in case of reduced parameter in section 

IV, and describe ways to determine the parameter value from 

the symbolic sequences. Also, we show, how the apparent loss 

of definition of the points are still preserved through the 

symbolic dynamics. In section V, we show how the partitioning 

of the state space is carried out according to the orientation 

preserving and reversing nature of the map and how the size of 

the sub-interval is altered corresponding to the parametric value 

of a reduced height map. In section VI, we propose a suitable 

technique to deal with the initial condition estimation problem 

in the form of an algorithm based on interval arithmetic that can 

be implemented easily into processing devices like 

microcontrollers and field programmable gate arrays (FPGA). 

To evaluate the proposed method, mathematical simulations 

with detailed analysis are presented in section VII. In section 

VIII we show the results for a physically implemented system. 
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In section IX we summarize our work and include some 

comments regarding practical applications. 

II. CONTEXT 

We consider a class of chaotic maps called unimodal maps, 

ℱ. If a map f ∊ ℱ such that f : I→I where I = [a,b] ⊂ ℝ, a < b 

satisfies the following conditions: 

1. f has a unique maximum fmax, in the interval I, 

2. fmax = f(xc) (where xc ∊ I is usually called the critical 

point), 

3. f is monotonically increasing in the interval [a,xc] and 

monotonically decreasing in the interval [xc,b], then f is 

unimodal.  

The class ℱ consists of certain maps that can be defined using 

a control parameter, µ, such that fµ(x) ∊ ℱ holds for x ∊ I, µ ∊ J 

⊂ ℝ and fµ(x) is a map on I × J. In particular, the map considered 

for our application, the tent map T ∊ ℱ, belongs to a family of 

parametric self-maps fµ : I→I such that I = [0,1], J = [0,1], and 

T(x) can be defined as 

 

𝑇(𝑥) = 𝑓𝜇(𝑥) = {
2𝜇𝑥                   0 ≤ 𝑥 ≤ 𝑥𝑐

2𝜇(1 − 𝑥)        𝑥𝑐 < 𝑥 ≤ 1
.      (1) 

 

where xc = 0.5 ∊ I is the critical point of the map. For the map 

to be chaotic, J = (0.5,1]. In the closed interval I ⊂ ℝ―also 

known as the state space of the map―the iterates of T(x) is 

defined as xi+1 = T(xi), i ∊ ℕ0 (where ℕ0 = {0} ⋃ ℕ) such that, 

1. x0 = T0(x) = x 

2. xi+1 = Ti+1(x0) = T(Ti(x0)) = T(xi) 

3. T(0) = T(1) = 0 

4. Tmax = T(xc) ≤ 1, where Tmax is the maximum height of 

the map, for 0 ≤ µ ≤ 1 

5. T(Tmax) = T2(xc) ≥ 0, where T(Tmax) is the dynamic 

minimum of the long-term trajectory. 

The collective set of n iterates, i.e. the set of n points visited by 

the trajectory of a tent map can be referred to as the orbit of an 

initial condition x0 and is defined as 𝒪T(x0) = {T0(x0), T1(x0), 

T2(x0), …, Tn(x0)}. In this work the input signal sets the initial 

condition, and so the two terms will be used interchangeably. 

Also, when Tmax = 1 (for µ = 1) we call it an “ideal” case, and 

maps with Tmax ≤ 1 constitute the “non-ideal” case. 

Given that chaotic maps are sensitive to initial conditions, an 

infinitesimally small change in the initial condition may result 

in substantially diverging trajectories and due to the folding 

nature of the map, points in the closed interval I ⊂ 

ℝ will eventually map on to every other point in I ⊂ ℝ, or 

arbitrarily close to it [12]. Therefore, unique trajectories can be 

generated for any arbitrary point in I ⊂ ℝ. For the application 

of ADC, we choose to utilise symbolic dynamics to involve 

lesser resources. In the following section, the symbolic 

sequence generated by tent map has been described with its 

general features and functionalities that are relevant to our 

study. 

III. SYMBOLIC DYNAMICS AND CODING OF INTERVALS 

The orbit of a tent map 𝒪T(x), can be transformed into a 

symbolic sequence 𝒮n+1 of length n+1 where 𝒮n+1(T,x) 

= s(x0)s(x1)s(x2)…s(xn) such that s : [0,1]→{0,1} is defined as 

 

𝑠(𝑥𝑖) = {
0         𝑥𝑖 ≤ 𝑥𝑐

1         𝑥𝑖 > 𝑥𝑐
.              (2) 

 

Furthermore, it has been shown that, the symbolic sequences 

generated are Gray codes [13]. 

As per the desired system (Fig. 1), successful determination 

of an unknown voltage signal x0 ∊ I involves generating 

corresponding symbolic sequence 𝒮n+1(T,x) through T(x) in the 

analogue domain and the 𝒮n+1(T,x) shall be further processed in 

a digital domain. The analogue circuit [14] of the tent map can 

be incorporated in the measurement system. On 

every ith iteration, the state space I is partitioned into 

2i+1 mutually exclusive sub-intervals 𝐼𝑗
𝑖 where 0 ≤ j ≤ (2i+1‒1) is 

the count of the sub-interval increasing from the left endpoint 0 

to the right endpoint 1 within I and i is the iteration count [13]. 

The input signal to the function must therefore belong to any 

one of the sub-intervals. This reduces our problem down to 

identification of the correct sub-interval for the corresponding 

input signal through its symbolic signature. The following 

properties relate the symbolic sequence 𝒮n+1(T,x) to the sub-

intervals generated by the map. 

1. Every x ∊ 𝐼𝑗
𝑖 result into the same symbolic sequence 

𝒮i+1(T,x) 

2. If initial conditions x ∊ 𝐼𝑗
𝑖 and x̑ ∊ 𝐼𝑗+1

𝑖 , then 𝒮i+1(T,x) and 

𝒮i+1(T,x̑) differ by only one bit 

3. 𝐼0
𝑖 ∪ 𝐼1

𝑖 ∪ 𝐼2
𝑖 ∪ … ∪ 𝐼

2𝑖+1−1
𝑖 = 𝐼 

4. 𝐼𝑗
𝑖 ∩ 𝐼𝑘

𝑖  = ∅ for j ≠ k 

Fig.  1. The proposed block diagram of the measurement system 

using tent map implemented in analogue domain where unknown 

signal enters as an initial condition x0 and output of each stage is fed 

back as an input for the next to complete iterations up to n times. The 

iterations can be executed through digitally controlled sample and hold 

technique. The comparator output (symbols) of each ith stage should be 

received by the digital processing block for further processing. 
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Therefore from the properties 1, 2 and 4, the symbolic 

sequence 𝒮n+1(T,x) can be interpreted as n+1 bit long unique 

symbolic identity that corresponds to a sub-interval of the size 

𝐼𝑗
𝑛 and so, the longer the symbolic sequence, the narrower will 

be the size of the intervals. Each such jth interval can be 

identified by the corresponding symbolic sequence 𝒮n+1. The 

order of the symbolic sequences, as shown in [13], corresponds 

to the order j = 1, 2, 3, …, 2n+1 according to which the intervals 

𝐼𝑗
𝑛 are ordered in I. For example, for all 𝒮3(T,x), the order of the 

possible sequences corresponding to j can be seen from Table 

I. Therefore, for 𝒮n+1(T,x), 𝐼𝑗
𝑛can be written as 𝐼𝒮𝑛+1

𝑛 and can be 

used as a basis to identify the originating interval of an initial 

condition. 

The initial conditions directly correspond to their originating 

intervals as long as the map retains the full height, when their 

symbolic signatures 𝒮n+1(T,x) are converted to the 

corresponding binary codes ℬ : b0b1b2...bn  

 

𝑏𝑖 = {
𝑠(𝑥𝑖)                   𝑖 = 0
𝑏𝑖−1 ⊕ 𝑠(𝑥𝑖)    𝑖 > 0

.            (3) 

 
ℬ is further converted to the real values. This conversion from 

𝒮n+1(T,x) to real number is referred to as Gray Ordering Number 

(GON), given by the transformation  

 

GON(𝒮𝑛+1) = ∑ 𝑏𝑖
−(𝑖+1)𝑛

𝑖=0 .            (4) 

 

and can be ordered by its magnitude as described in [13]. Table 

I shows GONs for a 3-bit sequence generated using T2(x0) for 

inputs (x0) with a step-size of 0.125. Considering a longer 

sequence will result in identification of input signals with a 

finer step size. 

IV. DYNAMICS IN REDUCED PARAMETER CONDITIONS 

In a realistic situation, it may not be possible to hold the 

parameter µ = 1 constant. Under such non-deal condition, when 

the map height (parameter) is reduced i.e. µ < 1, it undergoes 

certain changes in its dynamical characteristics. The property of 

the dynamical attractor of the tent map is related to its 

maximum height Tmax = T(xc). Also, due to the folding nature of 

the tent map, the minimum value of the attractor can be 

determined as Tmin = T(Tmax) = T(T(xc)). Thus Tmax = µ, and 

Tmin = 2µ(1‒µ). Over a long term dynamics, it can be observed 

that points originating from arbitrary locations of I will 

eventually be attracted towards and be trapped within I′ = 

[Tmin,Tmax] = [2µ(1‒µ),µ], where I′ < I, when µ < 1 (Fig. 2). The 

dynamics will continue as a never-ending process within I′ 

since both fixed points 0 and 2µ/(1+2µ) are unstable for µ > 0.5, 

and the orbit is chaotic. Also, from the available symbolic 

dynamics, the value of µ can be realised through the symbolic 

signature corresponding to the point Tmax or Tmin. 

The properties of the dynamical maximum and minimum of 

the unimodal maps can also be studied symbolically through 

Milnor-Thurston Kneading Theory. When the critical point xc 

is iterated through a tent map, the corresponding symbolic 

sequence 𝒮n+1 is known as the Kneading Sequence 𝒦 [12] and 

can be expressed as 

 

𝒦 = 𝒮n+1(T,xc) = s(T0(xc))s(T1(xc))s(T2(xc)) 

…s(Tn(xc)), n ∊ ℕ0.    (5) 

 
𝒦 can be a useful tool to realise the sequences corresponding to 

Tmin and Tmax. Considering a shift operator σ such that 

s(Tn+1(x0)) = σ(s(Tn(x0))), operations of σ over 𝒦 gives 𝒮max = 

σ(𝒦) and 𝒮min = σ(σ(𝒦)) which is analogous to the properties 

Tmax = T(xc) = µ and Tmin = T(Tmax) = T(T(xc)) = 2µ(1‒µ) 

respectively. The parameter µ is thus recoverable using 𝒮min or 

𝒮max. For initial conditions x0, we choose a certain number of m 

∊ ℕ transient iterations such that, for i > m, we get xi ∊ 

[Tmin,Tmax]. The choice of m is an empirical estimate, based on 

both the initial condition and the parameter of the map, and 

when both the factors remain to be unknown, m is chosen to be 

large enough to ensure that the subsequent iterates belong to 

[Tmin,Tmax]. For x0 < Tmin, after m iterations when xm+1 ≥ Tmin, the 

corresponding symbolic sequence 𝒮n+1(T,x0) will be a string of 

m zeros followed by a sequence 𝒮n‒m+1(T,xm) ∊ [𝒮min,𝒮max]. For 

x0 > Tmax, x0 ∊ [xc,1], s(x0) = 1, and therefore T(x0) < Tmin ∊ [0,xc] 

will continue with the aforementioned behaviour. Such cases 

will have s(x0) = 1 leading a string of m‒1 zeros followed by a 

sequence 𝒮n‒m+1(T,xm+1) ∊ [𝒮min,𝒮max]. When the m transient 

symbols are discarded, the ordering of the GONs can be 

matched to the ordering of 𝒮min through 𝒮max. 

 

GONmin ≺ … ≺ GONmax  𝒮min ≺ … ≺ 𝒮max    (6) 
 

Then, theoretically speaking, there will be no 𝒮n‒m+1(T,xm) 

sequence appearing in the dynamics of T(x0) for a given µ 

whose corresponding GON can be found outside the range 

[GONmin,GONmax] and then any sequence 𝒮n+1(T,x0) outside 

[𝒮min,𝒮max], are treated as forbidden sequences [10] while all the 

(a)                                                 (b) 

Fig.  2. Cobweb diagram of map attracted within [Tmin,Tmax] for µ = 

0.75; (a) x0 = 0.000124 and (b) x0 = 0.823; n = 300. 

TABLE I 

CORRESPONDENCE BETWEEN SEQUENCES AND INPUT INTERVALS 

j 𝒮3(T,x) Binary GON 

0 000 000 0 

1 001 001 0.125 

2 011 010 0.25 

3 010 011 0.375 

4 110 100 0.5 

5 111 101 0.625 

6 101 110 0.75 

7 100 111 0.875 
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sequences within [𝒮min,𝒮max] are termed as allowed sequence. 

Thus discarding the transient m symbols from 𝒮n+1(T,x0) allows 

one to search for 𝒮min or 𝒮max in the allowed sequence domain, 

which in turn aids us to determine the reduced parameter µ from 

the symbolic trajectories [15,16]. However, in order to 

determine the initial condition x0 successfully, the transient m 

symbols cannot be discarded because the information regarding 

a significant portion of the dynamic trajectory from the 

originating point of x0 is contained in it. The originating interval 

can therefore be determined by realising the partitions 

generated by the map iterations on the state space I with respect 

to the 0’s and 1’s in the available symbolic sequence. Thus, we 

discard m transient symbols to determine µ, but do not discard 

it when determining the initial condition x0. 

When µ < 1, as the partitioning of the state space continues, 

the sub-intervals created are unequal (Fig. 3). The partitioned 

sub-intervals are therefore squeezed in the state space towards 

xc by a factor of µ (described in detail in section VI). The farther 

the parameter is away from its ideal value, the greater will be 

the amount of shift in the partitions from its ideal positions. 

Therefore, the initial points are redistributed to the adjacent 

intervals, causing the points to associate with a different 

symbolic sequence. If any sequence 𝒮n+1 generated with µ < 1 

is converted back to the real value using base 2 (i.e. by 

calculating GON using (3) and (4)), it does not converge to a 

correct solution as can be verified by Table II. In fact, even for 

a small change in parameter (µ = 0.9), GONs deviate 

significantly from their ideal values, as can be seen in Fig. 4. 

However, the originating interval of x0 can be recovered with 

respect to the partitions if the measure of the shift is considered 

for every symbol in 𝒮n+1. Also, many-to-one mapping on 𝒮n+1 
within an interval is overcome by considering adequate number 

of samples, so that partitions of the sub-intervals are suitably 

generated and the codes differ by at least one symbol. The 

number of symbols to be considered will depend upon the 

desired resolution of x0 which has been further elaborated in 

Section VII.  As can be verified from Table II, a collection of 

points with fixed interval size for a given µ, have unique 

symbolic signatures. Therefore, as shown in the following 

sections, to correctly estimate the initial condition, the interval 

arithmetic needs to be modified and performed along the 

symbolic sequence so that the partitioning of the intervals can 

be traced with respect to µ.  

V. INTERVAL ARITHMETIC 

For any initial condition x0 with symbolic sequence 𝒮n+1, we 

know that x0 ∊ 𝐼𝒮𝑛+1

𝑛 . Moreover, the ith symbol in 𝒮n+1 indicates 

whether xi belongs to the left or right of xc, i.e., to 𝐼0
0 or 𝐼1

0. Thus, 

for every s(xi) ∊ {0,1}, if xi = Ti(x0) ∊ 𝐼𝑠(𝑥𝑖)
0 , considering the 

inverse relation we get x0 ∊ T i(𝐼𝑠(𝑥𝑖)
0 ). Therefore, for an n+1-

bit sequence, combining this relation for every xi, the 

originating interval 𝐼𝒮𝑛+1

𝑛 can be defined as  

 

𝐼𝒮𝑛+1

𝑛  ⋂ 𝑇−𝑖(𝐼𝑠(𝑥𝑖)
𝑖𝑛

𝑖=0 ).              (7) 

Fig.  3. The first two successive iterations of a reduced height (µ = 

0.75) tent map are superposed over two iterations of a full-height (µ 

= 1) tent map. In the figure, one of the partitions creating the sub-

intervals in the second iteration, can be seen to be shifted from 0.25 

in case of the full-height map to 0.33 in case of the reduced height 

map. This results in uneven sub-intervals created in the state space. 

Fig.  4. A symbolic sequence is generated, once using µ = 0.90 (solid) 

and once using µ = 1 (dashed) . The GON for the sequence is 

calculated both times and plotted against the initial condition, showing 

signification deviations from the ideal, in case of µ = 0.90. 

TABLE II. 

COMPARISON OF IDEAL AND NON-IDEAL SEQUENCE 

x0 𝒮16 for µ = 1 𝒮16 for µ < 1 
GON(𝒮16) 

for µ < 1 

0. 1951 0010100100001011 0011101101001110 0.17790 

0. 1952 0010100100000100 0011101101001000 0.17796 

0. 1953 0010100100000000 0011101101011010 0.17802 

0. 1954 0010101100000111 0011101101011100 0.17808 

0. 1955 0010101100001010 0011101101010110 0.17814 

An arbitrary set of points with a step size of 0.0001, 𝒮16 generated 

using full (µ = 1) and reduced (µ = 0.95) T(x0) with GON calculated 

for the sequences generated with µ < 1. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

6 

 

To illustrate, if 𝒮n+1 = 010...s(xn) is considered, the first 

symbol indicates that the initial condition, x0 ∊ 𝐼0
0. After 

applying the tent map function once, the iterate T(x0) ∊ 𝐼1
0, 

hence, x0 ∊ T 1(𝐼1
0). So, considering the first two symbols, x0 ∊ 

𝐼0
0 ∩ T 1(𝐼1

0)  𝐼01
1  ⊂ 𝐼0

0 [9,16]. In this manner, following all the 

symbols in the sequence, the originating sub-interval can be 

identified as 

 

𝑥0 ∊ 𝐼0
0 ∩ 𝑇−1(𝐼1

0 ∩ 𝑇−1(𝐼0
0 … ))… ⊂ 𝐼010

2 ⊂ 𝐼01
1 ⊂ 𝐼0

0.  (8)  

 

Since the map is non-invertible (every point has two 

inverses), the immediate question that arises from (7) is that 

when the inverse operation T 1 of the tent map function on an 

interval is performed, how the restriction for T 1 is chosen. This 

depends on the “orientation” of the map on the sub-interval that 

is created by the current iterate [9]. Orientation of an interval is 

determined by the slope of the function in that interval: a 

positive slope implies an orientation-preserving interval while 

a negative slope implies an orientation-reversing interval. The 

orientation reversal is responsible for the reversal of the 

lexicographic order of the symbolic signature (and thus 

generates a Gray code). Therefore, the orientation of the 

interval 𝐼𝒮𝑖+1

𝑖  can be determined from the sequence 𝒮i+1 

associated with the ith iterate. 

In Fig. 5 (a) the fractal nature of the real iterates through a 

tent map can be observed, which when coarse-grained into 

symbols, result in mirroring orientation. As can be seen from 

Fig. 5 (b), if the ith iteration of the tent map occurs on an 

orientation-reversing interval, the orientation of 𝐼𝒮𝑖+1

𝑖  gets 

reversed from that of 𝐼𝒮𝑖

𝑖−1. Hence, up to the ith iteration, 

occurrence of the orientation-reversing iteration for an even 

number of times restores the orientation of 𝐼𝒮𝑖+1

𝑖 , while an odd 

count of the same behaviour results in a reversal. Since each 

orientation-reversing iteration generates the symbol ‘1’, we can 

determine the orientation of the interval 𝐼𝒮𝑖+1

𝑖  by checking if αi 

is even (preserved) or odd (reversed), where αi is given by (9). 

 

𝛼𝑖 = 𝛼𝑖−1 + 𝑠(𝑥𝑖)                (9) 

 

Therefore, the restrictions of the inverse operation T 1 of the 

tent map function can be chosen as 

 

𝐼𝒮𝑖+1

𝑖 = 𝑇−1(𝐼𝒮𝑖

𝑖−1) = {

𝐼𝒮𝑖
𝑖−1

2𝜇
                  𝛼 𝑖𝑠 𝑒𝑣𝑒𝑛

1 −
𝐼𝒮𝑖

𝑖−1

2𝜇
          𝛼 𝑖𝑠 𝑜𝑑𝑑

.     (10) 

 

In the following section, it is shown how the measure of shift 

in partitions is applied to the corresponding sub-intervals 

according to their orientation, given by each symbolic state in 

the sequence starting from s(x0) to s(xn), so that the originating 

interval of the initial condition x0 can sharply be narrowed down 

from the state space I. 

VI. INITIAL CONDITION ESTIMATION 

When the map height is reduced, the magnitude of inequality 

of the resulting asymmetric sub-intervals depends on the 

measure of the µ < 1. Also, while narrowing down to the 

originating interval, the orientation of the current sub-interval 

determines whether the bigger or the smaller sub-interval needs 

to be chosen for the next step. Therefore, a decision needs to be 

taken regarding the direction in which the partition of the 

current state needs to shift (from the midpoint of the previous 

sub-interval) for each symbolic iterate in question. 

As can be seen from Fig. 6, the asymmetrical partitions 

generated by the reduced height map are shifted towards the 

critical point xc. Here, we show how the orientation of the 

forthcoming 𝐼𝒮𝑖+1

𝑖  can be used to determine which direction the 

partition on 𝐼𝒮𝑖

𝑖−1 shifts to, and whether the bigger or the smaller 

sub-interval contains the originating interval of x0. Using 𝒮n+1 = 

01…s(xn) this can be illustrated in the following manner. For x0 

∊ I, s(x0) = 0 ⇒ x0 ∊ 𝐼0
0. s(x1) = 1 ⇒ x1 ∊ 𝐼1

0 and therefore, x0 ∊ 

𝐼0
0 ∩ 𝑇−1(𝐼1

0)  𝐼01
1 , which lies to the right of the newly 

Fig.  6. The shift in the partition due to the reduced parameter is 

always towards the critical point xc. The sub-interval 𝐼010
1  has been 

narrowed down by the reduction in parameter from 1 to 0.75. The 

orientation of the interval is reversed by the 1 in the 2nd symbol, and 

the reversal is maintained by the 0 in the 3rd symbol. 

                         (a)                                                  (b) 

Fig.  5. (a) Fractal nature exhibited by real dynamics of the map 

(shown up to 8 iterations). (b) The fractal orientation of the sub-

intervals according to the symbols shown for up to three levels for up 

to 3 levels. Number of 1's determine the orientaion of the current sub-

interval. Odd 1's result in orientation reversing, even 1's indicate 

orientation is preserved. 
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generated partition as αi is odd for 𝐼01
1  (Fig. 6). Similarly, for 

𝒮n+1 = 11…s(xn), despite s(x1) = 1, αi is even for 𝐼11
1  and 

therefore 𝐼11
1  ∍ x0 lies to the left of the newly generated partition. 

Continuing for n+1 symbols, the originating interval 𝐼𝒮𝑛+1 
𝑛 ∍ x0 

can be obtained.  

For the potential application of signal measurement from the 

symbolic sequence, the aforementioned approach has been 

formulated into a computational algorithm. The task of 

partitioning the intervals, and the subsequent choice of the sub-

intervals has been adapted into a simplified numerical process 

for the ease of implementation in the digital processing domain. 

This is done by shifting one of the boundaries of the interval 

𝐼𝒮𝑖

𝑖−1 towards the other, depending on the orientation of the 

resulting sub-interval 𝐼𝒮𝑖+1

𝑖 ∍ x0, by a factor of µ, in such a way 

that the sub-interval that does not contain x0 is eliminated, 

leaving the correct 𝐼𝒮𝑖+1

𝑖  behind thereby leading to the 

originating interval of x0 on the nth step. 

For any given sequence 𝒮n+1, s(x0) is determined by T0(x0) i.e. 

before any iteration through the map function, as the critical 

point xc already divides the state space I into two equal halves. 

Hence the role of the first symbol s(x0) is simply to determine 

whether the algorithm must be performed on 𝐼0
0 or 𝐼1

0. Since 𝐼1
0 

is a mirror image of 𝐼0
0 about xc = 0.5, for any two symbolic 

sequences that differ only by their first symbol s(x0), their 

originating intervals also mirror each other exactly about xc. 

Therefore, for simplicity, the computations for the symbolic 

Fig.  7. The logical flow diagram of the proposed initial condition estimation (x́0) algorithm from 𝒮n+1. 
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sequence beginning with s(x0) = 1 is performed on the sub-

interval that has a reverse orientation of 𝐼0
0 = [0,0.5]. 

From s(x1) onwards, let us denote the boundaries of the i‒1th 

sub-interval 𝐼𝒮𝑖

𝑖−1 as A(i‒1) and B(i‒1). Therefore, the 

corresponding length of the sub-interval is given by ℓ(i‒1) = 

B(i‒1) ‒ A(i‒1) and δ(i‒1) = ℓ(i‒1)/2µ determines by how much 

one boundary needs to be shifted towards the other for creating 

the ith sub-interval. To evaluate the initial condition, the 

procedure is as follows: 

1. For the interval 𝐼0
0, i.e. for T0(x0), the boundaries are 

referred to as A(0) = 0 and B(0) = 0.5 and ℓ(0) = B(0) ‒ 

A(0) = 0.5 ‒ 0 = 0.5. Similarly, by the previous 

proposition, the boundaries for 𝐼1
0 is A(0) = 0.5 and B(0) 

= 0 and ℓ(0) = B(0) ‒ A(0) = 0 ‒ 0.5 = ‒ 0.5. The negative 

value of the length is taken care of by the orientation of 

the symbols in the sequence.  
2. From s(x1) onwards, the following step is repeated until 

s(xn). For i = 1, 2, …, n‒1: 

 αi is even, A(i) = A(i‒1) and B(i) =  A(i‒1) + δ(i‒1) 

 αi is odd, A(i) = B(i‒1) ‒ δ(i‒1) and B(i) =  B(i‒1) 

3. When the operation is performed with µ < 1, the 

estimated initial condition x0́ is scaled by a factor of µ, 

resulting in x0́ ∊ [0, µ] which needs to be scaled back into 

x0́ ∊ I = [0,1]. Also, if 𝒮n+1 had s(x0) = 1, the final sub-

interval needs to be mirrored back into 𝐼1
0 = [0.5,1]. 

Depending on the orientation of the sub-interval  𝐼𝒮𝑛+1

𝑛  of 

the nth iteration, keeping the conditions in mind, we have 

four cases for determining the initial condition x0 ∊ 

 𝐼𝒮𝑛+1

𝑛 : 

 If αn is even and s(x0) = 0, x0́ = A(n)/µ 

 If αn is odd and s(x0) = 0, x́0 = B(n)/µ 

 If αn is even and s(x0) = 1, x0́ = 1 ‒ [A(n)/µ] 

 If αn is odd and s(x0) = 1, x́0 = 1 ‒ [B(n)/µ] 

This has been summarised into a flow diagram in Fig. 7. The 

algorithm has been employed to confirm that the initial 

conditions originating from I for a range of control parameters 

is retrieved entirely as can be verified by the results in section 

VII.  

VII. EVALUATION OF THE ALGORITHM 

The functionality of the stated algorithm has been simulated 

and tested in a math processor (MatLab) with a set of initial 

conditions covering the entire state space I = [0,1]. A detailed 

insight regarding the behaviour of the algorithm in terms of 

number of symbols used, the resolution of the initial condition, 

and change in the parameter µ, are shown through various cases 

of test scenarios. The parameters for the tests are chosen in the 

range of µ = [0.75,1]. 

In order to generate the symbolic sequences for the tests, the 

selection of initial conditions from the state space I = [0,1] is 

done by dividing I into smaller fragments of size 1/2θ where θ 

∊ ℕ0. The set of initial conditions 𝒳θ can be defined as 𝒳θ = 

{𝑥0
𝑝
 | 𝑥0

𝑝
 = p/2θ} ⊂ ℝ where 𝑥0

𝑝
 is the pth initial condition and 

index p = 0, 1, 2, …, 2θ implying 𝒳θ contains 2θ+1 elements. 

The set of initial conditions 𝒳8 is chosen for most of the cases 

which contains total of 257 real valued test points within I = 

[0,1]. 

The difference between the actual and the estimated initial 

condition is expressed as percent error εp = [(𝑥0
𝑝
 − 𝑥́0

𝑝
)/I]×100= 

100(𝑥0
𝑝
 − 𝑥́0

𝑝
) where 𝑥0

𝑝
 ∊ 𝒳θ is the actual input initial condition 

and 𝑥́0
𝑝
 is the corresponding estimated value of the initial 

condition form symbolic sequence. The elements of 𝒳8 are 

iterated to produce a symbolic sequence of length 16. The 

sequences are used to estimate the respective initial conditions 

Fig.  8. The absolute error between the set of actual and the estimated 

initial conditions for µ = 0.75 using 16 symbols. 

(a)                                                  (b) 

Fig.  9. The (a) absolute error percentage |εp| and (b) its log(|εp|) 

calculated for initial conditions with gradually increasing length of 𝒮. 

(a)                                              (b) 

Fig.  10. The change in logarithmic maximum percent error ln(|εmax|) 

against (a) parameters 0.75, 0.85, 0.95 over a range of iterations (up to 

32 symbols) and (b)  iterations 8, 16, 32 over a range of parameters 

[0.75,1]. 
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using the algorithm and each of the errors, εp is plotted against 

its corresponding 𝑥0
𝑝
 (Fig. 8). 

To observe how the magnitude of error behaves when the 

number of symbols considered for estimation are increased, εp 

is calculated and plotted in Fig. 9 (a), at µ = 0.75 for all 𝑥0
𝑝
, 

estimated for various length of symbols, where the length of 

symbols used for estimation was set each time from 1-32. The 

graph in Fig. 9 (a) shows an exponential drop in the maximum 

error εmax = max(|εp|) with the increase in number of iterations. 

To better observe the reduction in error over the count of 

symbols used, the logarithmic value of each |εp|, is plotted in 

(Fig. 9 (b)). 

Predictably, the εp also depend on the parameter acting on the 

map during the generation of the symbolic sequences. The 

logarithmic εmax of the state-space has been plotted and 

compared (in Fig. 10 (a)) for three different cases of parameters 

µ = 0.75, µ = 0.85 and µ = 0.95 across the number of symbols 

used. It can be seen that the maximum error decreases with 

increase in parameter value. If the number of iterations is fixed, 

then εmax over a range of parameter [0.5,1], has a decreasing 

tendency. Three cases, with iterations 8, 16 and 32, is shown in 

Fig. 10 (b). The rate of decrement of εmax increases with an 

increase in the number of symbol chosen. Thus, it is easily 

observed from the error trends that an optimum choice of 

iterations for an expected range parameter value can lead to a 

feasible system. 

The accuracy of the estimated initial condition also depends 

on how fine the test points were chosen as a set of inputs in the 

first place. Performance of the algorithm is tested for nine sets 

of initial conditions with different resolutions, from 𝒳8–𝒳16. 

Fig. 11 (a and b) shows the εmax over the range of resolution for 

two cases of parameter values, µ = 0.75 and µ = 0.95, calculated 

using 16 symbols. The εmax shows a marked increase for the 

resolutions higher than 𝒳8. In Fig. 11 (c), εmax for µ = 0.85 is 

also plotted, which shows similar trend. Using 32 symbols for 

calculating εmax with µ = 0.85, as in Fig. 11 (d) however, shows 

that the accuracy improves for higher resolutions with 

increment in number of symbols considered.  

For any application, since it is expected that the number of 

iterations to be performed needs to be fixed, while choosing it, 

we must consider relating the error to the range within which 

the parameter of the implemented tent map circuit is likely to 

vary as well as the maximum resolution desired for the 

converted outcome. In the practical implementation, for an 

expected range of parameters and a fixed resolution, the choice 

of the number of iterations is directly related to the desired level 

of accuracy of the estimated outcome. The observations 

described until now can be utilised for software based 

applications. However, in a hardware oriented physical system, 

such fine structuring may not be observed because of the noise 

in the map circuit. The εmax might measure higher due to the 

signal offsets depending on the component specifications. 

VIII. HARDWARE IMPLEMENTATION 

To evaluate the proposed algorithm on a physical system, we 

have implemented a tent map hardware adapted from the circuit 

implementation described in [14] (Fig. 12). A single tent map 

unit is used for iterations with the help of a two-stage sample-

and-hold (S/H) feedback loop with a comparator in the input 

stage to generate the symbol for each iteration. The S/H loop is 

driven with anti-phase clocks using a microcontroller. A ramp 

function of 0–1 V is chosen as the set of input points to the 

circuit. We are taking symbols up to 16 bits for the estimation 

of each initial input point and operated the algorithm on the 

collected symbols. 

In order to determine the map parameter, an input signal of 

500 mV is separately iterated through the map up to 16 bits and 

parameter has been estimated to be approximately 0.90502 

using the algorithm given in IV. 

The 0–1 V ramp is input to the circuit and the estimation 

algorithm is executed using both 8 and 16 bit long sequences. 

                           (c)                                                    (d) 

Fig.  11. The increase in εmax over 𝒳8–𝒳16 for (a) µ = 0.75 and (b) µ = 

0.95. There is a marked increase in εmax after 𝒳8 (symbols used: 16). 

The accuracy improves with increasing number of symbols, as seen in 

the plots generated for (c) 16 and (d) 32 symbols used for the 

estimation (µ = 0.85). 

                       (a)                                                   (b) 

Fig.  12. Hardware implementation of tent map, as adapted from the 

circuit given in [14]. 
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The difference (εp) between the algorithm estimated outcomes 

and the actual input signals are calculated and plotted for 8 and 

16 symbols. The results are shown in Fig. 13 (a and b). 

To understand the errors better, the presence of noise in the 

physical system and the affected behaviour of the symbolic 

dynamics can be observed in further detail. When noise in the 

circuit gets multiplied over the iterations the signatures are 

affected causing the symbols to constantly flip about the critical 

point xc. A range of 0−40dB signal-to-noise-ratio (SNR) is 

studied to see how noise affect the symbolic dynamics. For 

simulation, noise is added to every iterate of an orbit 𝒪T using 

additive white Gaussian Noise (awgn(.)) function. The 

normalised mean of the number of symbols that flipped per 

iteration per decade change in noise in the entire state space I 

for 𝒳8 is shown in Fig. 14. It can be noticed that almost 50% of 

the orbits in 𝒳8 experience bit flipping due to noise, with 

gradually decreasing trend as the SNR improves. However, 

length of the noise free sequences can still be improvised with 

the aid of suitable filtering algorithms [18,19], which, at the 

moment, is beyond the scope of this article. 

IX. CONCLUSION 

In this paper, we have proposed a method of analogue-to-

digital conversion using chaotic dynamics. In this approach, the 

signal to be measured is fed as initial condition to a unimodal 

chaotic map, and the resulting dynamical evolution contains the 

information about the initial condition. This is extracted using 

the symbolic sequence generated by the dynamics. So far, the 

main problem in practical adoption of this approach was that 

non-idealities in the map function in any practical 

implementation would make the measurement erroneous. In 

this paper, we have reported an algorithmic procedure to solve 

the critical problems posed by non-idealities of the map 

function used to generate the symbolic sequence. 

We have shown that the information regarding the initial 

condition can still be recovered through a suitable interval 

arithmetic that employs non-uniform partitioning. The 

algorithm computes the shift in the partitions based on the 

actual value of the parameter of the map. Intervals visited by 

the dynamics could be traced back across the symbolic 

sequence and initial condition could be estimated with a 

reasonable accuracy. Along the way we had to solve the 

problem posed by the fact that while tracing back one has to 

apply the inverse of the map, but for each value two possible 

inverses exist. Since the parameter of the map is likely to 

fluctuate in a practical implementation, our algorithm also 

estimates the map parameter from the symbolic sequence and 

then uses that to compute the shift in the partition boundaries. 

The accuracy of measurement was broadly studied through 

both simulation and hardware implementation. The precision is 

found to be dependent on the map parameter and number of 

iterations considered. There is an optimum range for the 

number of iterations if one knows the range within which the 

map parameter is expected to vary. For the conditions 

prevailing in practical implementations, a symbol length of 16 

proved to be adequate for an effective estimation. Although 

noise in the system reduces a substantial number of meaningful 

symbols that can be accessed for processing, appropriate 

treatment for the noise can be incorporated to improve the 

quality of the symbolic trajectory. Performance can be further 

improved through optimization of the resource consumption, 

which offers scope of future work in this direction. 

In practical terms, signal measurement using chaotic maps 

will have several benefits over the conventional ADC 

techniques in terms of resource consumption. Given the 

present-day ADC techniques, a large number of comparators 

are involved corresponding to the bit precision requirement and 

the structure gets doubled each time a bit is increased, as seen 

in the flash ADCs. Also, other techniques make use of 

additional digital to analogue converters (DACs) to compare 

the output of each stage of conversion and feedback the 

difference for subsequent stages as seen in sigma-delta, 

pipelined and successive-approximation ADCs. Chaotic 

measurement approach however saves resources considerably 

as it uses the same structure iteratively and bits are generated 

about the map threshold involving a single comparator. 

                         (a)                                                    (b) 

Fig.  13. The difference between the estimated initial conditions and 

the actual initial conditions are shown for (a) 8 and (b) 16 symbols. 

Fig.   14. The number of symbols flipped by the noise for every 

iteration over the state space I is counted and normalised (by dividing 

the count by the number of initial conditions considered in 𝒳8). The 

graph shows the normalized mean count of the number of bits flipped 

across I for every length of symbolic sequence for a range of SNR 0-

40dB. 
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