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ABSTRACT 

 

Background 

Identifying the best care for a patient can be extremely challenging. To support the creation of 

multifactorial Decision Support Systems (DSSs), we propose an Umbrella Protocol, focusing on 

prostate cancer. 
 

Materials and Methods 

The PRODIGE project consisted of a workflow for standardizing data, and procedures, to create a 

consistent dataset useful to elaborate DSSs. Techniques from classical statistics and machine 

learning are adopted.  
The general protocol accepted by our Ethical Committee can be downloaded at 

HTTPS://doi.org/10.17195/candat.2016.09.1 (www.cancerdata.org). 

 

Results 

A standardized knowledge sharing process has been implemented by using a semi-formal ontology 

for the representation of relevant clinical variables.  

 

Conclusions  

The development of DSSs, based on standardized knowledge, could be a tool to achieve a 

personalised decision-making. 

 

 

Key Words: Decision Support System, Individualized medicine, Large Database, Machine 

Learning, Ontology, Predictive Model 

 

  

http://www.cancerdata.org/
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INTRODUCTION 

 

Over the past decades, many advances have been made in cancer care, as in radiation oncology [1-

2]. Thanks to these advances, “Personalized medicine” is gaining importance, and it is becoming 

one of the challenges faced by clinicians. In order to adequately support the resulting decision-

making process, there is a need to develop new tools. 
Traditionally, clinical practice has been based on evidence-based guidelines, crafted by considering 

meta-analyses and randomized trials. Generally, the population subgroup enrolled shows 

homogeneous features, often without considering costs, and is impossible to include all possible 

characteristics and values [3]. For this reason, resulting evidence are sometimes hard to adapt in 

daily clinical practice, where actual patients may significantly differ from those enrolled in the 

subgroups. Moreover, trials need a long follow up: resulting evidence could be outdated at the time 

of publication [3].  
Even if large randomized trials and meta-analyses or systematic reviews play a key role, they need 

the integration of emerging new different approaches, also the findings of observational studies and 

the variability of patients’ features [4]. Moreover, a large amount of different types of data, with 

their increased complexity, and also the technologies progress need to be considered in the 

decision-making process [4]. Owing to the heterogeneous features of tumours and patients, the 

decision-making process needs to consider a lot of different variables, without the possibility to trail 

every combination [1]. This increasing amount of covariates is hardly analysed by human cognitive 

capacity, which discriminates a limited number of factors per each decision process [5]. To reach a 

“personalized medicine” level, there is therefore a growing need of decision support systems. 
A clear systematic data-collection, and the identification of variables of interest, are two essential 

steps to create large databases, that can be used for fostering personalized medicine. Collecting data 

for such purposes implies a standardized way to represent the meaning of any variable, and the 

adoption of a well-defined methodology, to share such meaning, addresses the point of frequent 

innovation in cancer care. This problem can be tackled using an explicit representation of the 

involved ontology. In this paper we will adopt the “ontology” definition proposed by Gruber [6]: 

“ontology is a (formal) specification of concepts, relations and functions in a domain and hence 

focus on concepts”.  
The ontology-based methodology supports the creation of large databases. Over the last twenty 

years, Computer Science research has been carried out in order to develop personalized medicine 

goals, providing tools for diagnosis, treatment, supporting decision-making process and knowledge 

representation [7]. Due to the limited number of variables analysed by human capacity [5], solid 

DSSs become relevant in clinical decisions and a significant amount of research is focusing on this 

aspect [8-11]. In a recent publication, the TRIPOD statement introduces recommendations on 

quality of prediction models reporting [12]. 
Several interactive DSSs (Partin Tables, Kattan nomograms, D’Amico tables, CAPRA score, 

CaPSURE/CPDR Recurrence Equation) and many different ontologies (as the Unified Medical 

Language System (UMLS), National Cancer Institute Thesaurus (NCI), etc) have been developed 

for prostate cancer issues in clinical practice, but none of them are: a) specific for radiation therapy 

issues and b) designed to deal with the frequent innovation in radiotherapy and in the broad area of 

oncology.  
The strategy to collect data in a standard and consistent manner, and to analyse data in a way that 

suits decision support purposes, is called “umbrella protocol” [13].  
The aim of PRODIGE project is to elaborate an Umbrella Protocol related to prostate cancer, able 

to: collect a standardized large amount of heterogeneous features in large databases; use both 

retrospective and prospective data; analyse variables by modern and advanced statistical techniques; 

be flexible, for being able to deal with different non pre-determined endpoints.  

This methodology would cover all aspects of prostate cancer care through the mentioned collection 

of heterogeneous data from patients in large database, using the “semi-formal ontology” developed. 
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Furthermore, after testing and validation, DSSs will be delivered according to specific needs and 

used in clinical workflow to choose the better way to treat patient. 
Application of a model into daily clinical practice requires also the comparing, in a “controlled 

way”, with the results of pre-existing trials: future perspectives will also include this comparison 

between DSSs results and “regular” human decisions.  
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MATERIALS AND METHODS 

The Umbrella Protocol workflow developed (Fig. 1) is characterized by the following phases: 
-Standardized Knowledge Sharing (SKS), that is the definition of a system to collect heterogeneous 

data in a standardized way, to create large databases;  
-Standardized DSS Development (SDSSD), concerning the definition of a specific study, analysis 

method identification, model validation, model delivering, and respecting ethical issues at every 

step.  

 
 

 
Fig. 1: The general workflow of PRODIGE Project 
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Standardized Knowledge Sharing 

The steps of this phase are: 

 

 Variable identification: clinical variables, anthropometric measures, clinical outcome, etc. 

are listed and shared among Radiation Oncologists and, subsequently, with other Specialists 

(Radiologists, Urologists, etc.). In this task, the focus is on collecting the largest number of  

widely applicable and significant variables. 
 

 Variable representation: this step reduces ambiguity in sharing the knowledge and allows a 

software system elaboration, representing the domain of interest, by writing a dictionary for 

the previously identified variables. The main output is the production of an “ontology”. A 

Medical Ontology is a linguistic/logical model used to represent the concepts which 

compose the knowledge of a clinical domain; it contains all relevant concepts, related to a 

clinical field, organized in a formal way (or informal, in any explicit case), that allows to 

perform “reasoning” by automatic inference. The developed prostate ontology was written 

in a semi-formal language for Specialists. Attention should be paid to re-using existing and 

validated ontologies, giving a clear reference to collected concepts.  
 

 Variable presentation: to present the chosen variables in a formal way, compatible with the 

state of the art in Medical Informatics, for developing a software architecture supporting 

data entry by specific interfaces and/or interacting directly with existent EHRs, avoiding 

human involvement in data entry.  
 

 Knowledge refinement: to share the output of these steps with other medical centres, collect 

the suggestions, and repeat the entire loop. The success of this step is not the blind 

“agreement” of the proposed representation but the suggestions, feedback, and improvement 

requests obtained from it.  
 

The main goal of SKS is to provide a more formal representation of clinical knowledge, 

overcoming the limitations of natural language ambiguity, which is to attribute the same meanings 

to the variables. The aims are to: a) build a shared knowledge, b) build a semi-formal representation 

of the knowledge, c) enlighten current standards and the feasibility of an IT infrastructure 

supporting the study, d) share the knowledge with other centres, e) support a constant update, to be 

aligned with the advances of the state of the art. 
 

Standardized DSS development  

The main steps of this phase are: 
 

 Data Entry: it can be performed manually into specific electronic forms, assisted by 

software agents (SA) checking that data is correct, or can be totally performed by SA, i.e. by 

an integration with an existing Electronic Health Record (EHR). In this scenario, the 

documents produced in the variable representation and variable presentation steps are 

fundamental. 
 

 Data Analysis: this step has to face several important tasks: 
 

◦ Pre-processing: the actual features to be used for the generation of the models are 

chosen, according to both their mutual correlation or by exploiting some selection 

strategy techniques. Data quality is improved by identification and correction of missing 

data, outliers and bias [14-15]. In order to validate the model, training and validation sets 

can be considered: the training set is used to train the mathematical models, and the 
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testing set to measure performance and confirm the usefulness of models. If an external 

validation set is not available, available data could be split into two groups. Models 

trained can also be used to improve the quality of the chosen features, i.e. by the 

adoption of greedy forward or backward elimination approaches. 
 

◦ Data Quality Assurance: a formal ontology allows the implementation of appropriate 

data quality assurance policies to: a) detect lexical (i.e.: error in data format), or 

semantic errors (i.e.:  the end of a therapy registered before the beginning) b) identify 

and reduce the missing data effect, c) find hidden bias in the enrolled population.  

 

◦ Computation of predictive models is based on two families of data analysis tools: 

techniques from Classical Statistics and from Machine Learning (ML). Classical 

Statistics include inferential regression analysis tools (linear and non-linear), survival 

models, etc.; ML methods include, for instance, Bayesian Network, Support Vector 

Machines, Random Forests, Artificial Neural Networks, etc.  
ML is a branch of artificial intelligence frequently used in cancer diagnosis and 

detection, and more recently also in prognosis and prediction [16-17], modelling the 

main outcomes of cancerous conditions. 

 

◦ Patients' Privacy Protection: the local Ethics Committees (EC) shall approve the 

protocol before patient’s accrual, according to the legislation of each country. Written 

informed consent for anonymized treatment data collection and approval of related 

research will be collected from each patient, according to local practice. 
 

Two methods were adopted to preserve patient's privacy: 

 

(a) Centralized consolidation of data records,  

(b) Distributed Learning approach.  

 

In the former (a), patient’s privacy is protected by the architectural design: data from a 

local repository is anonymously transferred, through an encrypted pipeline, to a main 

repository, either by internet or other channels, without the possibility of associating 

clinical data to the patient. In this scenario, the mapping between data record and 

patients is protected by software procedures and such association never leaves the 

original centre. In this way, the centre's endpoint, queried by other research group 

member’s out the institute, does not expose with any method to associate clinical data to 

the patient [13].  
 

When encryption is considered insufficient, a Distributed Learning approach (b) allows 

no patient data transfer out of the centre, but only the transfer of results, which are 

obtained via the computation on a big set of clinical data (for example the regression 

curve coefficients). This approach, for some algorithms, has been proven to have the 

same performance reached by joining all the datasets [18]. Moreover it can guarantee 

the highest level of patient's privacy, because no clinical data leaves the centre. 
 

 Model Validation: Every model should be built using a training set and validated using an 

independent internal or external testing set, in accordance to TRIPOD statements [12]. The 

choice between internal or external depends on the data availability and the predictor aims. 

In any case, an analytic form of mathematical models is provided in order to rearrange the 

predictor using a different representation (for instance, for internal purposes, an external 

independent testing set is not the best choice). The coefficients of the mathematical models 
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are provided, in order to allow a user to rearrange the predictor using a different 

configuration. Similarly, residual analysis, performance indexes like c-statistics, Area Under 

the Curve (AUC), Receiver Operating Characteristics (ROC), calibration plot, F-score, etc., 

are provided.  
Furthermore, the application of a model into daily clinical practice requires the matching 

between the results of pre-existing trials and meta-analyses, to compare the standard care 

with the personalized care [11]. All the process needs to be clear and published. 
 

 Model Delivery: final model, optimised and validated, can be delivered through many 

channels, such as a nomogram, interactive website, scientific paper, app for smartphone, 

etc., according to specific needs. The product is delivered with clear instructions about the 

population it refers to, methods and results of the experimental phase of its development. 
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RESULTS 

 

The proposed workflow has been developed to provide results for the Variable Identification and 

Representation steps, as showed before (Figure 1). The SKS considers two kinds of partitioning: 

horizontal, where patients’ data come from different centres, and vertical, where data, regarding 

each patient, refers to different features (clinical, pathological, imaging, etc). 

 

Variable Identification and Representation 

All prostate cancer patients can be enrolled, including both retrospective and prospective 

information related to diagnosis and treatment. 

Each feature was included in a terminological system with measurement units’ specification, 

acquisition modality, range, etc., based on pre-existing ontologies, when available. 

Despite these preliminary results, this methodology makes features meaning clearer and shareable, 

allowing data’s re-usability both in space (among different research groups), in time and also in 

different research aims. 

A team of prostate cancer specialists selected more than 200 features, organized into a dictionary 

divided in three tiers, according to the level of granularity. Each concept has been described with a 

unique reference, preferably correlated to a published coding system (e.g. NCI Thesaurus, CTCAE, 

SNOMED-CT etc.) and a trade-off has been adopted between the formal explication of the ontology 

and its effective usability, to increase simplicity. Therefore, this ontology is explicit, furthermore 

not formal, and designed to be “easily” formalized by one of the available languages (i.e. RDFS, 

OWL, etc.). 

In detail, the first and more general tier, Registry level, includes all demographical-epidemiological 

information (Tab. 1).  

The second Procedure level, records all clinical, pathological and treatment information and also 

several outcome features. 

General patient characteristics are more detailed (Tab. 2a, i.e. height, weight, BMI, Prostate Antigen 

Specific-PSA, Testosterone). Tumour features include (Tab. 2b): imaging information; clinical and 

pathological classification according to TNM (American Joint Commission on cancer) [19]; 

histological (ICD-O) [20] and Gleason score classification [21-22], etc. Moreover, all prostate 

cancer treatment characteristics (i.e., hormonal, systemic, radiotherapy or surgical treatments), 

toxicities, according to CTCAE v3.0 or 4.03 [23-24], and RTOG scale [25] are recorded. Finally, 

several outcome features are reported (i.e., Biochemical Disease Free Survival, Overall Survival, 

etc). 

The third Research level (Tab. 3), includes clinical and imaging data, for advanced research 

projects, such as Radiomics [26]. Pre-existing general and prostate quality of life questionnaires 

(EuroQol-5D-5L, EORTC QLQ-C30, EROTC QLQ-PR25, IPSS or EPIC score) and other tumour 

features are collected. Diagnostic imaging and radiotherapy planning information are uploaded for 

future re-elaboration, feature extraction and dose distribution analysis. 

 

In parallel, we began to explore DSSs validation, to clearly identify and describe performance and 

limitations [28]. 

In particular, our methodology and tools have been verified on a small sample of 123 prostate 

cancer patients, to provide a validation of our software, that we will use for our next analysis on a 

big sample [29] to elaborate DSSs. 

We focused our tests on developing techniques and methodologies to train DSS in multi-centric 

environment ensuring patient's privacy, without exchanging patient's data [18].  

The text of the whole umbrella protocol developed for all cancer sites and approved by our Ethical 

Committee is at https://doi.org/10.17195/candat.2016.09.1 (www.cancerdata.org). 

 

  

https://doi.org/10.17195/candat.2016.09.1
http://www.cancerdata.org/
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DISCUSSION 

 

The PRODIGE project created a prostate cancer Umbrella Protocol supporting DSS’ development, 

with the proposal of a procedure and an ontology, in a multi centric/specialistic environment. 

Umbrella Protocol requires a flexible strategy to: collect a large amount of heterogeneous data, and 

also in a flexible manner; data mining; develop DSSs and report outcome [3].  

Building DSSs is a complex task, due to multidisciplinary professionalism interaction, 

heterogeneous data (clinical data, images, molecular/genomic data, etc.) and geographically 

distributed data sources (Clinical Databases, Image Repositories, Excel data sheets, 

ECG/EEG/ABPM, etc.).  

 

After identification of the main features related to prostate cancer in the Variables Identification 

step, patients’ history variables were assorted in categories (e.g., diagnostic variables, staging, or 

treatment) into a dictionary in the subsequent Variable Representation step. Because of the possible 

ambiguity of some terms, we tried to base our dictionary on pre-existing ontologies, looking for a 

reference for each variable. 
Selected variables were encoded as a tabular representation, and defined using a table in natural 

language composed by: <class name, variable name, definition, measurement>. No 

lexical/syntactical rules were defined.  
 

Considering Variable Presentation, we are still developing a model, an ontology and data entry 

workflow, for SA. The dictionary is designed to be compatible to exchange data in a common 

format, for possible future certification. 
To end SKS and complete and integrate the semi-structured knowledge’s representation, a step of 

knowledge optimization will take place towards a consensus achievement of the dictionary among 

other centres.  

The choice of the language to represent ontology was the first critical problem. While many formal 

languages (such RDF, OWL) and software tools are available for this purpose [27], a lot of them are 

not designed to be used by physicians, and will increase the complexity of writing, checking, and 

upgrading [6]. After an in-depth analysis of existing approaches, performed by a multidisciplinary 

team (clinicians, engineers, mathematicians), we identified the best trade-off in terms of simplicity 

and a structured representation of the interested concepts, even if it does not use formal 

representation. For this reason, we used pre-existing formal ontologies (like NCI, etc) to build this 

“semi-formal” tool to collect data in a standardized way. “Semi-formal” is a technical term, 

concerning with the level of “ambiguity” allowed by the language. The so built ontology is explicit, 

even not formal, and can be “easily” formalized by one of the available languages for this purpose 

(i.e. RDFS, OWL, etc.). 
 

In parallel, exploiting SDSSD, another key point was related to the distributed learning architecture: 

due to the high heterogeneity of hospital technologies and policies, in terms of patient's privacy and 

technicalities (firewall rules and IT offices), a team of engineers and mathematicians proposed a 

flexible solution adaptable to local needs and able to work in the general multi-centric framework. 

 

A small sample of 123 prostate cancer patients was used only to validate our methodology and our 

developed software [29]: DSSs elaboration will need a bigger sample, even from multiple centres. 

 

After the previous experience in colo-rectal cancer [3, 7, 13], we are adopting umbrella protocol 

framework for prostate and further for all cancer sites, even if few centres are investing in these new 

tools and methodology; to overcome this possible limitation, a larger network is going to be created, 

to share and consolidate this methodology and elaborate and validate predictive models.  
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The future of cancer research is based on a deeper multidisciplinary collaboration, for a hybrid 

discipline encompassing oncology. The common challenge is to effectively exploit the massive 

amount of data generated by researchers and clinicians, in order to develop accurate and 

scientifically-based decision tools for a shared decision-making process [30]. These decision tools 

will allow moving towards participative medicine [15] and, in the case of expensive treatments, 

involve a-priori individualized cost effectiveness analysis [31]. 
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CONCLUSIONS 
 

Nowadays, emerging observational studies, the so-called “Rapid Learning Approaches”, are crucial 

to confirm trials and meta-analyses results, identifying new population risks groups and check 

whether practice has appropriately changed [32].  

By these research pathways interactions, predictive models could integrate existing guidelines and 

consensus, overcoming risks of patient over/under-treatment [3] hence having an impact also on the 

cost [4]. The analysis of cost-effectiveness will be an important endpoint for further investigations 

and it is a challenge to better address resources. Through designing, developing and testing a 

framework to represent data in a re-usable way, DSSs’ development will be possible, based on 

automatic extraction of the appropriate features for considered outcome. Obtained DSSs will 

provide a practical support to clinical choices for a specifically tailored medicine, by combining 

routinely collected clinical treatment data and innovative features (i.e. outcome information, 

diagnostic and treatment images). It will be an opportunity to move towards participative medicine, 

with evidence level 1 [11, 33]. 

According to the emerging approaches in this field, the DSSs will be able to overcome the 

limitation of classical clinical data and analyse innovative features (i.e. features extracted from 

images, etc.). An emerging necessity of multidisciplinary integration with different figures beside 

the clinicians is a crucial step to answer the need of care of often complex and puzzling diseases as 

cancer [34]. Even a multicentric collaboration is needed to realize this methodology and obtain 

robust DSSs.  

It is pivotal to bear in mind that a predictor can be useful and can show great performance, but it 

remains only a tool; it is not the decision maker that will be the multidisciplinary equip together 

with the patient. 
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Variables Definition Measurement 

Eligibility criteria 

Prostate Cancer 
Classification 
 

According to the ICD-9 classification 
 

http://www.icd9data.com/2014/Volume1/140-
239/default.htm 
 

According to the ICD-10classification 
 

http://www.icd10data.com/ICD10CM/Codes/C00-
D49/C51-C58 

General characteristics 

Institute 
 
 
 

Hospital/Institute where patient was treated 
 
 
 

Europe: EU-Country code (CC)-Institute number (IN) 
North America: AN-CC- IN 
South America: AS-CC-IN 
Asia: AA-CC-IN 
Australia: AU-CC-IN 

Age@at primary Diagnosis At diagnosis Years 

Date@Diagnosis At diagnosis Day/Month/Years 

Age@RT At start of any types of radiotherapy 
treatment (first fraction) 

Years 

Ethnicity  Table 1 

Age at first recurrence 
diagnosis  

 Day/Month/Years 

Age at first metastasis 
diagnosis  

 Day/Month/Years 

Outcome 

Death  0: No – last FUP data (Day/Month/Year) 
1: Yes – data of death (Day/Month/Year) 

Cause of death  Cause of death Table  

Date of death  Day/Month/Years 

Tab. 1: Extract from Prostate Registry Level 

 

 
Variables Definition Measurement 

Body height before start of treatment cm 

Body weight  before start of treatment kg 

BMI Body Mass Index BMI: mass (Kg) / 
(height (m))2 

ACE-27: 
COMORBIDITIES 
SCORING 
 

ACE-27: COMORBIDITIES SCORING 
 
http://www.rtog.org/LinkClick.aspx?fileticket=oClaTCMufRA%3D&tabid=290 

ACE-27: 
COMORBIDITIES 
SCORING 
 

Previous 
Oncological 
History 

Site Specify 

Treatment 0: no 
1: Yes (if yes, 
specify and 
complete relative 
fields) 
999: missing data 

State of previous disease(according to RECIST criteria; if not applicable, refer to specific 
disease’ ontology) 
 
RECIST: http://www.recist.com/recist-comparative/01.html 

0: NED 
1: Stable complete 
response 
2: Stable partial 
response 
3: progression 
disease 
999: missing data 

Multidisciplinary 
(MDT) 
management  
 

yes/no 
 
 

0: no 
1: MDT discussion 
only without 
patient 
2: MDT discussion 
with patient 
999: missing data 

Tab. 2a: Extract from Prostate Procedure Level – General characteristics  

 

 

 

http://www.icd9data.com/2014/Volume1/140-239/default.htm
http://www.icd9data.com/2014/Volume1/140-239/default.htm
http://www.icd10data.com/ICD10CM/Codes/C00-D49/C51-C58
http://www.icd10data.com/ICD10CM/Codes/C00-D49/C51-C58
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Variables Definition Measurement 

Staging System  

0: AJCC – TNM v5.0 
1: AJCC – TNM v6.0 
2: AJCC – TNM v7.0 
999: Missing data 

Tumour Location 
 

Different site of the tumour in the prostate gland and combinations 
 
 

1: Left Lobe 
2: Right Lobe 
3: Apex 
4: Seminal vesicles 
5: Basis 
7: Central part 
8: Peripheral part 
9: Other specify 
999: missing data 
Combination 

Histology modality  Method used to obtain histology 0: TURP 
1: Adenomiectomy 
2: Needle biopsy 
3: Citology 
4: Surgery procedure 
999: missing data 

Date of Histology  Date: dd/mm/yyyy 

Histology 
 
 

Specification of histology (also subtypes if specified) 

 http://whqlibdoc.who.int 
 
http://bioportal.bioontology.org/ontologies/NCIT/?p=classes&conceptid=http%3A%2
F%2Fncicb.nci.nih.gov%2Fxml%2Fowl%2FEVS%2FThesaurus.owl%23C7378 
 
http://bioportal.bioontology.org/ontologies/NCIT/?p=classes&conceptid=http%3A%2
F%2Fncicb.nci.nih.gov%2Fxml%2Fowl%2FEVS%2FThesaurus.owl%23C2919 
 
 

0: Adenocarcinoma, 
NOS 
1: Adenocarcinoma 
2: Neuroendocrine 
tumors 
3: Other (specify) 
999: Missing data 
 
others subtypes 
-Adenocarcinoma, NOS 
- Adenocarcinoma tipo acinare  
- Ductal Carcinoma ì  
- Mucinous Carcinoma  
- Signet RING cells Carcinoma  
-Neuroendocrine carcinoma 
- Oat-cell carcinoma 
- Carcinoma Undifferentiated bot oat 
cells   
- Squamous and Adenosquamous 
Carcinoma  
-Sarcomatoid Carcinoma 
(carcinosarcome) 

Gleason Score 1 The first types of cancer cell present in the samples, numbering each type from 1 for the 
least affected up to 5 for the most affected. 
 
Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966; 50: 
125-128. 
 

Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by 

combined histological grading and clinical staging. J Urol. 1974 Jan;111(1):58-64. 
 
Epstein JI, Allsbrook WC Jr, Amin MB et al. The 2005 International Society of Urological 
Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. 
Am J Surg Pathol 2005 Sep; 29(9): 1228-42 
 
Montironi R, Cheng L, Lopez-Beltran A, et al. Original Gleason system versus 2005 ISUP 
modified Gleason system: the importance of indicating which system is used in the 
patient’s pathology and clinical reports. Eur Urol 2010 Sep; 58(3): 369-73 

0:1 
1:2 
2:3 
3:4 
4:5 
999: missing data 

Gleason Score 2 The second types of cancer cell present in the samples, numbering each type from 1 for 
the least affected up to 5 for the most affected. 
 
Gleason DF. Classification of prostatic carcinomas. Cancer Chemother Rep. 1966; 50: 
125-128. 
 

Gleason DF, Mellinger GT. Prediction of prognosis for prostatic adenocarcinoma by 

combined histological grading and clinical staging. J Urol. 1974 Jan;111(1):58-64. 
 
Epstein JI, Allsbrook WC Jr, Amin MB et al. The 2005 International Society of Urological 
Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma. 
Am J Surg Pathol 2005 Sep; 29(9): 1228-42 
 
Montironi R, Cheng L, Lopez-Beltran A, et al. Original Gleason system versus 2005 ISUP 
modified Gleason system: the importance of indicating which system is used in the 
patient’s pathology and clinical reports. Eur Urol 2010 Sep; 58(3): 369-73 

0:1 
1:2 
2:3 
3:4 
4:5 
999: missing data 

Tab. 2b: Extract from Prostate Procedure Level – Tumour characteristics  
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Variables Definition Measurement 

Study/Trial 
number 

Protocol number Number 

Medication Concomitant medication (not therapeutic) According to the Anatomical Therapeutic 
Chemical (ATC) Classification System Table 4 

http://www.whocc.no/atc_ddd_index/ 
Pre-existing 
QoL general 
challenges 
 

Record the worst grade of general complaints according the 
EORTC QLQ-C30 and EQ-DL5, FACIT_D (Version 4), 
which occurred within 4 weeks before the date of histology 

 

Pre-existing 
QoL prostate 
challenges 
 

Record the worst grade of rectal complaints according the 

EORTC QLQ – PR 25, PROMs, EPIC scoring 2 EPICE 26, 

IPSS which occurred within 4 weeks before the date of 
histology 

 
 

Tumour 

Tumour 
Markers  
 
 

 0: none 
1: K-ras positive  
2: EGFR positive 
3: HER-Neu 
4: p53 
5: CEA 
6: Cromogranin A 
7: CDX2 
8: CK20 
9:MUC2 
999: missing data 

Tumour 
Markers - 
specimen 
 

 0:Biopsy 
1:Surgical specimen 
 

Imaging 
 

Types 1: Trans Rectal Ultrasonography (TR EUS) 
2: MRI (pelvis) 
3: PET 
4: CT 
5: Bone Whole Body Scan (BWBS) 
 combinations  

 
999: Missing data 

 Date Dd/mm/yy 

 DICOM Files  

Tab. 3: Extract from Prostate Research Level 

 

  

http://www.whocc.no/atc_ddd_index/
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SUMMARY POINTS 

 

Personalized Medicine 

 

 “Personalized medicine” is defined by the National Cancer Institute (NCI) as a “form of 

medicine that uses information about a person’s genes, proteins, and environment to 

prevent, diagnose, and treat disease. In cancer, personalized medicine uses specific 

information about a person’s tumour to help diagnose, plan treatment, find out how well 

treatment is working, or make a prognosis”.  

 The tendency towards individualised medicine and the increasing amount and complexity of 

data, makes extremely difficult to identify which clinical decisions are better for a specific 

patients. 

 In daily clinical practice, Decision Support Systems (DSSs) could help to personalize 

clinical choice.  
 We propose a general conceptual/procedural framework (an Umbrella Protocol) which can 

help to represent and share the knowledge in clinical domain and reduce misunderstanding 

and improve efficacy in predictors development, in particular in studies among different 

institutes using large databases. We focus our attention on a specific implementation of such 

framework for prostate cancer.  
 

Umbrella Protocol  

 

 “The strategy to collect data in a standard and consistent manner and to analyze them 

properly for decision support is called <umbrella protocol>.” [13] 

 

PRODIGE 

 

 The main features of an Umbrella Protocol, created in Radiotherapy Division of the 

Fondazione Policlinico Universitario A. Gemelli in Rome, for standardizing data and 

procedures to create a consistent dataset useful to obtain a trustful analysis for a Decision 

Support System (DSS) for prostate cancer are reported.  

 It is a part, specific for prostate cancer, of a whole protocol for all cancer sites, named 

ULISSE, approved by the Ethical Committee of Fondazione Policlinico Universitario A. 

Gemelli, in Rome 

 

Standardized Knowledge Sharing process 

 A phase to realize a formal or semi-formal representation of knowledge, in order to 

overcame the limitations of the ambiguity of the natural language.  

 This phase will benefit of an “ontology”: a linguistic/logical model used to represent the 

concepts which composes the knowledge of a clinical domain. An ontology contains all the 
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relevant concepts, related to a clinical field, organized in a formal (or informal, in any case 

explicit) way that allows to perform reasoning by automatic inference.  
It includes:  

 Variable identification: list of variables of major interest. 

 Variable representation: describing in a non-ambiguous way the identified variables. 

 Variable presentation: to present the identified variables in a formal and structured 

way, compatible with the state of the art of Medical Informatics. 

 Knowledge tuning: for supporting a continuous verification, upgrade and correction 

of the previous steps. 

Standardized DSS development (SDSSD) 

It concerns with the development of Decision Support Systems 

 Data Entry: manually or assisted, it is crucial and it requires the variable representation and 

presentation steps, for a correct input of data in a non-ambiguous way. 
 Data Analysis: ensuring patients privacy protection, it includes: a pre-processing step, to 

correct bias and missing data, and to identify a training and a validation sets to model 

development and test; data quality assurance, and; a computation step, with technique form 

classical statistics and machine learning.  
 Model Validation: every model has to be built using a training set and evaluated by an 

independent internal or external testing set, for validation, with various performance 

measures. 
 Model Delivery: provides a mean for delivering the generated models, under the form of 

nomogram, interactive website, scientific paper, app for smartphone, etc. 
 

Future Perspectives 

 Personalized cancer treatment is a challenge for the modern radiotherapy and for cancer 

disciplines in general. The development of Decision Support System, based on a 

Standardized Knowledge, represent the corner stone of a highly individualized, shared and 

participative decision making process. 
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