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Abstract 
This paper proposes a model to assess train passing a red signal without authorization, a SPAD. The 

approach is based on Big Data techniques so that many types of data may be integrated, or even added 

at a later date, to get a richer view of these complicated events. The proposed approach integrates 

multiple data sources using a graph database. A four-steps data modeling approach for safety data 

model is introduced. The steps are problem formulation, identification of data points, identification 

of relations and calculation of the safety indicators. A graph database was used to store, manage and 

query the data, whereas R software was used to automate the data upload and post-process the 

results. A case study demonstrates how indicators have extracted that warning in the case that the 

SPAD safety envelope is reduced. The technique is demonstrated with a case study that focuses on 

the detection of SPADs and safety distances for SPADs. The latter provides indicators for to assess the 

severity of near-SPAD incidents.  

 

 Introduction 
Railway systems create an incredible amount of data that potentially hold safety learning if it can be 

tapped into. The GB railways are exploring several ways to unlock safety learning (Network Rail, 2014; 

RSSB, 2016). These efforts benefit from the development of new technologies to deal with such data. 

This paper focuses on using graph databases which, are particularly useful for safety analysis and 

management with big data sources (Hoffer et al., 2016; Sadalage and Fowler, 2013). A key feature is 

that various data sources can be stored alongside one another in the same database to create a more 

detailed understanding of safety than is possible by considering each source separately. This bypasses 

the need for computationally expensive join operations for traditional SQL (Structured Query 

Language) data tables (Miller, 2013). 

This paper introduces methods to combine railway data sources in scalable graph databases to 

improve the understanding of the underlying factors of signals passed at danger (SPAD). The approach 

focuses on recognizing SPAD-related safety occurrences in large amounts of data that were, initially, 

not designed to detect SPADs. The approach provides a means to detect near-miss aspects of SPAD 

risk that have not previously been understood which potentially feed into driver behavior 

management. 
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 Background 

2.1 SPADs  
SPADs are events where a train passes a stop signal and proceeds onto a section of track where it does 

not have authority. SPADs can lead to trains colliding with other trains or road vehicles on level 

crossings, derailing, or striking workers and equipment. As such, SPADs present a major safety risk to 

the railway. In Britain, a SPAD at Ladbroke Grove resulted in 31 fatalities in 1999 (Health and Safety 

Executive, 2000; Lawton and Ward, 2005; Stanton and Walker, 2011). Since then, considerable efforts 

have been made by the rail industry to reduce the number of SPADs.  

With the systems currently used on the railway, understanding of the underlying causes of SPADs 

comes largely from analysis by safety experts after a SPAD has occurred. Analysis reports, such as Rail 

Accident Investigation Branch (2016a; 16b) provide examples of such analyses and provide 

recommendations to prevent recurrence of similar incidents. Whilst such a retrospective approach is 

clearly meaningful, it is an aspiration of railway safety staff to be able to identify the causes of 

accidents prior to the accident occurring. 

Nikandros and Tombs (2007) addressed the issue by taking a data-centric approach that takes input 

from the train control systems and allows SPADs to be normalized by the number of times trains 

approach stop signals. This approach allows not only an understanding of the number of SPADs that 

have occurred but also the number of times train drivers successfully stop the train before a stop 

signal. Zhao et al. (2016) extended this approach by analyzing several years’ worth of Train Describer 

(TD) data that was downloaded from the TD-live data stream provided by Network Rail. This was a 

step towards big-data techniques since it consists of almost two billion records in a single year.  

The approach by Nikandros and Tombs (2007) and Zhao et al. (2016) provides useful insights but 

additional data sources could enrich the insights further. Green et al. (2011) described a method of 

using data collected from the On Train Data Recording (OTDR) equipment to assess driver 

performance. Since driver performance is a significant contributor to SPADs (Dhillon, 2007); a number 

of studies, for example, Naweed (2013), Gibson et al. (2007), Kyriakidis et al. (2015) and Wright et al. 

(2007) sought to identify the factors that influence human behavior that could contribute to SPADs. 

This paper progresses beyond the opportunity to extend the work of Nikandros and Tombs (2007), 

Zhao et al. (2016), Green et al. (2011) and Dhillon (2007). The aim is to create an understanding of 

SPADs not only from the state of the signaling and the number of times trains approach stop signals 

but also from the performance of train drivers on the approach to signals. This paper describes an 

efficient data analysis approach for combining this data but, for reasons of confidentiality, cannot 

present real data.  

2.2 Data management and analysis 
Traditional relational databases (or SQL databases) have proven to be effective for relatively “small” 

amounts of data due to their speed and due to unimpeded data access. The key to SQL success is that 

they use a relational table that remembers where data are stored exactly and which type of data it is. 

The relational table enables ACID (atomicity, consistency, isolation, and durability). However, high 

volume datasets and the complex data structures make SQL databases unwieldy and difficult to write 

queries for (Cudré-Mauroux and Elnikety, 2011). A solution to bypass such problems is to omit the 

relational table by simply storing data in a system that, for lack of a better example, finds its analogy 

in an infinitely scalable library card catalog. In a library catalog, numerous pieces of information are 

stored on cards with label indexes in labeled boxes. Only a very basic index, usually alphabetic, states 

the approximate location of cards but the system does not drill down to each exact card. Retrieving 

that information requires a query for that information and a person and/or search engine to find the 
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relevant card. “Not only SQL databases” (aka NoSQL databases) work in that way. In addition to that, 

the data does not have to be of any specific format or stored in any particular order. Numerous pieces 

of digital information (often files of arbitrary type) are stored under a ‘key-value’ index label 

(identifying a unique information file), in an almost infinitely scalable database (Sadalage and Fowler, 

2013). 

For this work, a particular type of NoSQL database is used: a graph database in which a graph overlays 

the data to create connections. The fundamental units of a graph database are nodes and edges. 

Unique labels identify the type and content of the nodes and edges (e.g., Signal, Train). In this way, it 

is possible to develop flexible data models that support data demands in complex domains such as 

medicine, biology, chemistry and social networking (Angles et al., 2013; Jouili and Vansteenberghe, 

2013). Moreover, graph databases provide visual interfaces that enable users to perceive their data 

whilst they are performing their data analysis. Graphs enhance discovery from data which is useful for 

analysis (Figueres-Esteban et al., 2016a; Figueres-Esteban et al., 2016b; Miller, 2013). For safety 

analysis, graph databases provide a flexible platform in the sense that the analyst can introduce 

additional data for his/her risk problem, even if it is of a different type (numeric, visual or text). This 

paper explains how the technology is adopted for SPADs. 

 Method 
The modeling approach comprises of four steps that are described successively in the following 

paragraphs. Three different data sources are used for the SPAD safety data model; viz. TD data, OTDR 

data and signaling location data. The Neo4J software was used to store, manage and query the data. 

R software was used to automate the data upload and post-process the results. The method is 

described in details below. 

3.1 Safety Data model 
The first step is the development of a safety data model. Four key steps were used to construct the 

safety model, viz. the problem formulation, the identification of data points (which are represented 

as nodes), the identification of relationships between the nodes (the edges) and the required 

indicators. Figure 1 shows the four elements of the safety data model for this particular investigation; 

they are described in some more detail below. 

The first part in the development of the safety data model is the problem formulation. For this paper, 

it was derived from a narrowly defined research question: 

 Which train service stopped at a red aspect and/or had a SPAD? 

 

This informs the second part, the definition and content of relevant data points that are required for 

the data model:  

 Service node; defined as the complete service from origin to destination (including data about 
driver number, vehicle number, and start-time).  

 Service-instance node; defined as a single data-row in the OTDR file (including data about 
time, location and speed, amongst others)  

 Signal node; defined as signal as found in the TD feed (including data about signal ID and 
location), 

 Red aspect node; defined by a red-aspect approach algorithm (including data about signal ID, 
starting time and ending time) 

These nodes were created in the graph database by Cypher queries, as shown in Table 1.  
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The relations make up the third part. The relations are represented by edges in the graph. In the case 

presented in this paper, three relations were relevant:  

 The relationship between the service node and service-instance node, 

 The relationship between the signal node and red aspect node, and 

 The relationship between service-instance node and the red aspect node.  
These edges were created by queries, as shown in Table 1.  

The safety indicators represent the final part of the data model. They are queries that filter the 

database to provide insight into the research question from step 1. In this investigation, the following 

safety indicators were used: 

 Number of SPADs per signal;  

 Number of red aspects approached by a service. 

The indicators are extracted by queries; examples are given in Section 3.4.  

 

Problem formulation 

 

 

 

 

Nodes identification 

 

 

 

 

 

 

Relationships 

identification 

Service had Service instance stopped_ at Signal had Red Aspect 

Service had Service-instance passed_ at danger Signal had Red Aspect 

Safety Indicators 
SPADs per signal  

Stopped at red aspect per service 

Figure 1: Four steps of a safety data model. 

3.2 Data sources 
The identification of data sources, the second step in this method, and the design of the safety data 

model typically take place at the same time. However, there is a danger in first identifying data and 

formulating a research question later; it can lead to research bias in the sense that relevant research 

questions might be adjusted or simplified to match the data. In this work, both steps were performed 

Which Service had Service instance stopped_ at/ passed_ 

at_danger Signal had Red Aspect  

Service 

Instance 

Service  Signal  

Red 

Aspect  
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simultaneously. Due to data-sensitivity, this investigation used synthetic data replicated from three 

data sources: OTDR (On Train Data Recorder), TD-data (Train Describer) and Signal location data. The 

use of artificial data also adds to the clarity of this paper as significant efforts for data-parsing and 

cleansing pose distractions for explaining the development of a safety data model. The case study 

treats a small section of railway covering four signals and four services running along the signals. The 

data included four services, 3B01, 3B02, 3B03 and 3B04, and four signals named WP1, WP2, WP3, and 

WP4. Time, speed, and location were simulated for each service, whereas location and red aspect time 

were given per signal.  

3.3 Data handling 
Data handling, the third step, builds the actual safety model based on datasets in the database. Table 

1 illustrates the creation of nodes and relations using Cypher language for queries. Cypher is 

considered as a declarative query language as it focuses on the aspects of the result rather than on 

methods to obtain the result. Examples are given in Table 1 (for more details about Cypher see 

Panzarino, 2014)). 

Table 1: Cypher Query Examples. 

Query database instance 

CREATE(n:ServiceInstance {name: '3B04-
2694', 
             time:2694, 
             location:21669.14, 
             speed:21.26, 
             type: 'Service_Instance'}) 
RETURN n 

name 3B04-2694 

time 2694 

location 21669.14 

speed 21.26 

type Service_Instance 
 

 

CREATE (signal:SIGNAL{name: 
'WP1',type:'SIGNAL'}) 

name WP1 

type SIGNAL 
 

 

CREATE (redAspect:Red_Aspect{name: '800-
1010', 
Signal: 'WP1', 
startTime: 800, endTime: 1010, 
signalLocation:3700,type: 'Red_Aspect'}) 
 
 
 
 

signalLocation 3700 

name 
signal 

800-1010 
WP1 

startTime 800 

endTime 1010 

type Red_Aspect 
 

 

MATCH (n: SIGNAL {name: 'WP1'}),  
              (m : Red_Aspect { signal: “WP1” }) 
MERGE (n) [rel:HAD_STOP_ASPECT_AT]->(m) 
RETURN n, m 
 
 

 

 

3B04-2694 

800-1010 

WP1 

HAD_STOP_ASPECT_AT 
WP1 800-1010 
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3.4 Data analysis  
The last step is the data analysis to identify the safety indicators in the data. The relationships are 
identified by identifying data nodes where several conditions are met simultaneously. The 
relationships were identified based on the synchronization between the OTMR, TD feed and signal 
data. The conditions presented in Table 2 were coded in Cypher in a similar way as in Table 1. 
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Table 2: Relations for indicators.  

 
where: 
𝑡1 is the timestamp (in seconds) of the last service instance in front of a particular signal location, 
𝑡2 is the timestamp (in seconds) of the first service instance behind a particular signal location, 
𝑡𝑠𝑡𝑎𝑟𝑡 is the start time; the second that the particular signal changes to a red aspect,  
𝑡𝑒𝑛𝑑 is the end time; the second that the particular signal clears from a red aspect. 
 
 

Relation Conditions that identify the Relation 

SPAD 

 

(Indicator 1: SPADs per signal) 

Service-instance location(t1)>Signal had a red aspect (tstart,tend) location<Service-instance location(t2 ) 

Service-instance speed(t1 ) >0 

tstart<t1<tend 

t2<tend 

Service-instance stopped at a red aspect 

 

(Indicator 2: Stopped at red aspect per 
service) 

Service-instance location(t1) > Signal had a red aspect (tstart,tend) location < Service-instance location(t2 ) 

Service-instance speed(t1 ) = 0 

tstart<t1<tend 

t2>tend 

services-instance approaching a red aspect  

 

(Indicator 2: Stopped at red aspect per 
service) 

Service-instance location(t1)>Signal had a red aspect (tstart,tend) location<Service-instance location(t2 ) 

Service-instance speed(t1 ) >0 

t1>tend 

t2>tend 
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 Results  
Table 3 summarizes SPAD events for signals. The red aspect start time, end time (in seconds relative to 

the starting time of the train service), the service, and its travel speed at SPAD are given in Table 3. The 

three signals that had SPADs were investigated further to check how many services had to stop by these 

three signals. It should be noted that the data used to illustrate the method is simulated data where SPAD 

had occurred due to simulated over speed profile; in reality, SPADs tend to be rare events. 

Table 3: SPAD per signal.  

Signal  Signal at Red Time of SPAD 

 

t2 (s) 

Travel speed at 
SPAD  

(m/s) 

Train Service 

(Journey 
number) 

Start time 

tstart (s) 

End time 

tend (s) 

WP1  800  1010  898  16 3B03 

WP3  1932  2059  2013  1 3B04 

WP4  1243  1550  1469  21 3B01 

WP4  1942  2093  2055  21 3B03 

 

The analysis was also carried out at the service level, Table 4 presents all information related to Service 

3B01, i.e. the service had stopped twice and had one SPAD.  

Table 4: Stopped/SPAD at red aspect per service for 3B01. 

Signal  Signal at Red Time of SPAD 

 

t2 (s) 

Travel speed at 
SPAD  

(m/s) 

Train service 
Status at signal 

 
Start time 

tstart (s) 

End time 

tend (s) 

WP1 0 230 209 0 Stopped 

WP2 551 799 774 0 Stopped 

WP4 1243 1550 1469 21 SPAD 

 

 Analysis and discussion 
The technique proposed in this paper demonstrates a hands-on safety data modeling problem. It shows 

that it is technically feasible to combine operational data from different sources to identify safety issues. 

The case study demonstrates not only which signals and services have had SPADs but also how many red 

aspect approaches a single service encounters and at what speed red aspects are approached or passed. 
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The techniques allows better insight in SPADs and helps the decision makers develop safety indicators to 

monitor and investigate the link between near-SPADs and actual SPADs.  

The graph database easily facilitates extensions of the analysis to include the braking behavior of the train 

whilst it had a SPAD and the distance to signal where it stopped before a red aspect by extending the 

query. Table 5 shows just how flexible the graph approach is: straightforward analytics can be added to 

the data model to estimate distances to stop based on data that is already in the database. Table 5 gives 

an example where three services were could stop safely using the emergency brake far away from the 

signal.This provides the basis for an automated safety indicator for SPADs without the need for an in-

depth investigation by experts which, potentially, could be completely automated. The traveled speed of 

Service 3B02 was significantly higher than the other two services, which means it would score higher on 

a risk scale.  

It should be noted that the safety margin needed may be affected by the track conditions such as low 

adhesive condition. The simulated data used in this study did not consider the variations in the track 

conditions that may lead to different scenarios such as low adhesive conditions. A number of braking 

behavior simulations such as the one developed by Meli et al. (2014) and Pugi et al. (2013) could be used 

to take into account the impact of track condition on the safety margin. Another approach is to ‘train’ the 

data-model with recorded, real-life approaches to that same signal.  

 

Table 5: Additional analysis on signal cleared prior to a service approach. 

Signal 

Signal at Red Train 
Service 

(Journey 
number) 

Travel 
speed 

(m/s) 

Stop 
distance 

between train 
and signal 

(m) 

Emergency 
braking 
distance 
@12%g 

(m) 

Safety 
margin 

(m) 
Start time 

tstart (s) 

End time 
tend (s) 

WP3 790 986 3B01 11 195 46 149 

WP3 1011 1286 3B02 22 254 202 52 

WP3 1498 1563 3B03 12 241 57 184 
 

 

Using the safety data model approach with graph databases, it is relatively straightforward to extend the 

analysis to incorporate the effects of factors such as weather conditions, wheel adhesion, and service 

disruption to assess the safety state and safety indicators. If additional data is required, the four steps for 

the safety data model simply have to be repeated to identify additional research questions, nodes, 

relationships and indicators. The technique described in this paper lends itself to be indefinitely scaled to 

include additional research questions. The graph database adds the flexibility to deal with these multiple 

research questions, and additional data sources. In that way, this technique paves the way toward 

achieving one of the aspirations of safety management: proactive safety interventions that can be 

demonstrated to have reduced risk even before any accidents occur.  
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A particular application area for this technique is with the signal overrun risk assessment tool (SORAT) 

that assesses the SPAD risk at signals. The UK Network Rail has a rolling five-year program whereby all 

signals have their SPAD risk assessed. Some are looked at in more detail, but it is a largely manual process 

of entering data and running it through a model.  The advantage that the approach described in this paper 

offers is the opportunity to automate some of this analysis and introduce new metrics that can better aid 

the understanding of SPAD risk at signals and their underlying causes. Furthermore, the approach 

described in this paper provides an opportunity to identify underlying causal factors that may otherwise 

not be detected. 

 Conclusion 
This paper demonstrates a Big Data modeling approach for safety based on graph databases. It addresses 

SPAD risk as a case study. The key is a consistent approach to building a safety data model integrating 

multiple sources of data. This paper offers a straightforward method to provide such consistency.  

The results in the case study are limited in the number of data sources used, and in the safety information 

that has been provided. However, the technique demonstrates the basis that can be extended for 

additional data sources, and to uncover additional factors that may affect SPAD risk on the railway. From 

the exercises in the case study we infer that SPAD risk can be understood in new ways by the application 

of new data sources, for example the method can provide a new understanding of human factors and 

driver behavior that affect the risk. Hypothetically further data sources such as localized weather 

conditions including sun angle, or even factors such as timetable data and train on-time running data 

could be included to broaden our understanding. Such new sources of data provide the ability to analyze 

the complexities of SPAD risk to be understood in ways that have not previously been possible. 

In more general terms, the flexibility embedding a safety data model in a graph database makes it useful 

in practically every safety and risk domain. Considering the potential for scaling graph databases to 

extremely large data sets, and developing complex queries, it is not yet clear what limits there are to 

extending the approach. 
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