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Abstract 

Asphaltenes are components in crude oil known to deposit and interrupt flows in critical 

regions during oil production, such as the wellbore and transportation pipelines. Chemical 

dispersants are commonly used to disperse asphaltenes into smaller agglomerates or increase 

asphaltene stability in solution with the goal of preventing deposition. However, in many 

cases, these chemical dispersants fail in the field or even worsen the deposition problems in 

the wellbores. Further understanding of the mechanisms by which dispersants alter asphaltene 

deposition under dynamic flowing conditions are needed to better understand flow assurance 

problems. Here, we describe the use of porous media microfluidic devices to evaluate how 

chemical dispersants change asphaltene deposition. Four commercially used alkyl-phenol 

model chemical dispersants are tested with model oils flowing through porous media, and the 

resulting deposition kinetics are visualized at both the matrix-scale and the pore-scale. 

Interestingly, initial asphaltene deposition worsens in the presence of the tested dispersants, 

but the mechanism by which plugging and permeability reduction in the porous media varies. 

The velocity profiles near the deposit are analyzed to further investigate how shear forces 

affect asphaltene deposition. The deposition tendency is also related to the intermolecular 

interactions governing the asphaltene-dispersant systems. Furthermore, the model system is 

extended to a real case. The use of porous media microfluidic devices offers a unique 
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platform to develop and design effective chemical dispersants for flow assurance problems. 

1. Introduction 

Flow assurance in the oil and gas industry has been focused on preventing asphaltene 

deposition.1–6 Severe asphaltene problems often arise in the porous media near the wellbore 

region, where significant changes either in shear rates or pressure occur. As a result of these 

flow changes, nano- and micro-aggregates of the destabilized asphaltenes form in the crude 

oil.7,8 Additionally, temperature and composition of the crude oil can also vary significantly 

during crude oil recovery, causing asphaltenes to precipitate. In particular, pipeline fouling 

has been reported to be a result of CO2 injection in Enhanced Oil Recovery (EOR)9,10 and 

mixing various crude oil streams.11 Following initial adsorption, asphaltene deposition can 

cause flow assurance problems by plugging small pore throats via the mechanical trapping or 

depositing on rock surfaces.12,13 Both plugging and non-plugging depositions contribute to 

the permeability reduction within the porous media. Depending on the local flow velocity 

gradients, asphaltene deposits can be mobilized from non-plugging deposits to later 

contribute to mechanical trapping and plugging of the porous media, which further depicts 

the complexity of asphaltene deposition to flow assurance. 

Common solutions utilized to tackle this problem include mechanical removal using 

scrapers or solvent washing in the wellbore and near-wellbore region.14,15 Additionally, 

preventive chemical additives, such as asphaltene inhibitors or dispersants, have been 
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proposed to be injected into the wellbore and formation. Inhibitors can be used to shift the 

thermodynamic conditions required for asphaltene precipitation versus dispersants prevent 

destabilized asphaltene agglomerates from flocculating and aggregating with the goal of 

keeping asphaltenes suspended in the crude oil so that they can be carried by the flow instead 

of depositing onto the surface or plugging pore throats.16–21 Previous studies of 

low-molecular-weight alkylbenzene-derived amphiphile dispersants investigate the influence 

of both the polarity of head groups and length of the alkyl tail on stabilizing asphaltenes 

under the scenario that polar moiety attaches to asphaltenes, and alkyl tails offer steric 

repulsion.16,17 Bulk studies of alkylphenol dispersants on the asphaltene aggregation in 

heptane/toluene (Heptol) solutions evaluated dispersant effectiveness in terms of delaying the 

precipitation onset and reducing aggregate size.22 The effectiveness of dispersants is typically 

characterized by quantifying the concentration of suspended asphaltenes in the solution using 

turbidity measurements and dispersancy tests by transmittance under static conditions.16,17,22–

27 However, the performance of dispersants under complex flow conditions is difficult to 

predict solely from static dispersancy tests. Without considering hydrodynamic effects on 

asphaltene aggregates, these chemical dispersants may worsen deposition and hasten flow 

assurance problems in the field.28 Although commercially available alkyl-phenols have 

demonstrated various successes as asphaltene dispersants, it is not clear how these chemicals 

influence plugging and non-plugging asphaltene deposition processes. Therefore, it is 
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important to study the performance of asphaltene dispersants under flowing conditions in 

porous media and integrate these studies with conventional dispersancy tests to form a 

multifaceted screening platform to better understand the influence of chemical additive 

injections for flow assurance. 

Microfluidic systems provide a fast and well-controlled platform to study flow processes 

within porous media, and to date, has been successfully applied to various crude oil and 

asphaltene systems.29–33 The typical length scales of microfluidic devices match the 

representative pore sizes of the near-wellbore region and reservoir rock, and its transparency 

allows processes to be visualized.34–36 The direct visualization capacity provide a platform for 

studying asphaltene deposition dynamics in great detail. Additionally, the high 

surface-to-volume ratio in microfluidic devices gives rise to a highly controllable 

measurement for studying particle-surface interactions and provides a high-throughput 

platform for efficient screening of dispersants. Deposition is a result of competition between 

surface adsorption and erosion. Adsorption is dominated by the diffusion of small asphaltene 

particles to the surface, but erosion is governed by the shear forces exerted by fluid 

convection acting on the deposited aggregates. The convection-diffusion effect has been 

previously highlighted as an important factor on asphaltene deposition.37 In this study, 

dispersants alter the size and the intermolecular interactions between asphaltene aggregates; 

hence influencing both the diffusion and shear removal regarding the deposition process.  
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In this paper, we studied the deposition kinetics of asphaltenes under the influence of 

dispersants with dynamic flow conditions in porous media microfluidic devices. In particular, 

we will identify how various chemical dispersants changes the effective asphaltene size and 

intermolecular interactions, which in turn alters the deposition and shear removal tendencies. 

A microfluidic device was used to analyze different asphaltene deposition growth rates and 

morphologies and provides further insight how altering the chemical interactions among 

asphaltenes can lead to worsening deposition in porous media.	

2. Experimental Methods 

2.1 Asphaltenes in Model Oils and Crude Oil with Dispersants 

The asphaltenes used in this study were extracted from Canadian bitumen samples by 

n-pentane. A model oil was prepared by slowly dissolving the extracted asphaltenes in 

toluene at 90oC in 40 kHz ultrasonication bath (Branson) for a minimum of 30 minutes until a 

final asphaltene concentration of 0.5 wt% was reached. Results with the model oil are also 

compared with Crude Oil S, whose properties at 1 atm and 23 oC are listed in Table 1. 

Commercial dispersants, such as p-dodecylphenol (purity ≥ 96.5%) [Pfaltz & Bauer 

(Connecticut, USA)], p-hexylphenol (98%), p-octylphenol (99%), iso-dodecylphenol and 

other chemicals were reagent grade (purity ≥ 99%) [Sigma-Aldrich (Missouri, USA)] and 

used as is. These various dispersants were premixed into the model oil at the concentration of 

0.01 wt%, characteristic of what would typically be used in field applications. A gravimetric 
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and spectroscopic measurement38 on the model oils confirmed that the dispersants did not 

precipitate additional asphaltenes from the model oil. 

 

 

 

 

 

The required amount of anti-solvent to induce asphaltene precipitation is a measure of 

the stability of the asphaltenes in the oil phase. Titration with n-heptane combined with 

gravimetric and spectroscopic measurements was used to determine that the instantaneous 

precipitation point of asphaltenes from the model oil occurred at 45 vol% of n-heptane. It is 

important to note that previous research has shown that this phase separation is a dynamic 

process, which indicates that the instantaneous precipitation point is time-dependant.39,40 

Therefore, the instantaneous precipitation point measured occurred at approximately 10 

minutes, which is the timescale for which oil would contact the porous media. Asphaltenes 

were forced to precipitate out of the model oil by mixing with n-heptane at the volumetric 

ratio of 20:80, which was well above the instantaneous precipitation point. Zeta potential and 

dynamic light scattering (DLS) measurements were performed using a Delsamax Pro 

(Beckman Coulter) instrument to estimate the effective size and the charge of asphaltene 

Table 1. Properties of Crude Oil S  

Density (g/cm3) 0.826 
Viscosity (cP) 5.36 
Saturates (wt %) 69.60 

22.02 
7.17 

Aromatics (wt %) 
Resins (wt %) 
C5 asphaltenes (wt %) 1.21 
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aggregates in the absence and presence of the various dispersants. Samples were prepared by 

adding the oil-heptane mixture first to ethanol and then further diluted with DI water. The 

final volumetric ratio of oil-heptane mixture to ethanol-water mixture was 1 to 40. The time 

between the sample preparation and measurement was fixed at approximately 10 minutes.41 

The average results were listed in Table 2. SEM images also confirmed that the aggregates 

are globular. (Supporting Information S1)  

 

 

 

 

 

 

2.2 Experimental Setup 

For microfluidic studies, asphaltene deposition in a porous media microfluidic device was 

studied by injecting model oil and a precipitant (n-heptane) via syringe pumps (Harvard 

Apparatus PHD 2000) into the device where they are mixed at a T-junction (IDEX, MicroTee 

Assy PEEK-1/16 in) and then flowed into the porous media, as shown in Figure 1a. The 

length of 10 cm, between the mixing zone and the porous media, was designed so that no 

observable asphaltene deposition occurs before the porous media. The time between the 

Table 2. Characterization of Asphaltene Aggregates 
Precipitated from Model Oil with n-Heptane and Dispersants 

Dispersant 
Zeta Potential 

(mV) 
Particle Size 

(µm) 
No dispersant -35 ± 19 1.05 ± 0.22 
p-Hexylphenol (pC6) -30 ± 5 0.73 ± 0.12 
p-Octylphenol (pC8) -29 ± 8 

-28 ± 6 
-25 ± 3 

0.59 ± 0.18 
iso-Dodecylphenol (isoC12) 0.26 ± 0.18 
p-Dodecylphenol (pC12) 0.27 ± 0.17 
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mixing tee and porous media is around two minutes.  All experiments were conducted at an 

ambient temperature of 23oC. The fabrication of the microfluidic porous media, shown in 

Figure 1b, is described in detail previously.37 The total flow rate of the fluid mixture was 

fixed at 60 µl/min (equivalent superficial velocity u = 0.028 m/s). The mass flux of 

precipitated asphaltenes was approximately 24 g/(s·m2). The microfluidic device was staged 

on an inverted microscope (Olympus IX 71), and the visualization of deposition was recorded 

by a high-speed CMOS camera (Phantom V4.3, Vision Research, Inc.). The images were 

taken near the entrance of the porous media, assuming the red rectangle shown in Figure 1a. 

A differential pressure transducer (Validyne P610) was connected to the microfluidic device 

to measure the pressure drop across the porous media. The experimental images were 

processed using ImageJ42 and a Python image-processing module, scikit-image.43 The 

procedure was to first identify the location of each post in the porous media by image 

registration and determine the pixel count associated with asphaltene deposition around each 

post using Otsu’s method.44 The pixel count was converted to a coverage area.  
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Figure 1. (a) Schematic of experimental setup. (b) SEM image of the porous media used to study deposition. 

The scale bar is 200 µm. The red rectangle represents the recording region.   

2.3 Flow/Aggregate Correlation 

Since dispersants alter asphaltene aggregate size, deposition can be described in terms of the 

Péclet number (𝑃𝑒), which accounts for the relative contributions from convection and 

diffusion in the presence of different chemical dispersants, with the limitation that the 

particles are in the vicinity of an individual post, which acts as the collector surface, and 

within the size range of 0.1 – 10 µm.45 The asphaltene aggregate size, obtained from DLS, is 

used to calculate the Péclet number by Eq. 1-2 to analyze the relative convection-diffusion 

ratio:37,45–47 

 𝑃𝑒 =
2𝑢𝑅'
𝐷)*

 (1) 

 𝐷)* =
𝑘)𝑇
6𝜋𝜇𝑅'

 (2) 

where 𝑅' is the average radius of asphaltene aggregate, 𝐷)* is the Brownian diffusivity 

(m1/𝑠) assuming a spherical aggregate which is supported by our SEM measurements, 𝑢 =

	0.028 m/s is the superficial velocity, 𝜇 is the dynamic viscosity of the oil-precipitant 

mixture (~0.4 cP), and 𝑘) = 1.38´10-23 (m1 ⋅ kg)/(s1 ⋅ K) is the Boltzmann constant.   

3. Results and Discussions 

3.1 Asphaltene Aggregation with Dispersants 

The tendency for asphaltene aggregation is investigated by varying the chain length of the 

alkyl tail on the dispersant. These chemicals have a phenol head group and an alkyl tail. It is 
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thought that the alkyl tail increases the steric repulsion between asphaltene aggregates, as 

shown in Table 2, where smaller aggregates form in the presence of dispersants with longer 

chain lengths. Goual et al. also studied the effects of alkylphenols on asphaltene aggregation 

and found that aggregates became smaller and filamentary because alkylphenols attached to 

the surface of asphaltene aggregates, which increased steric interactions.22 Chang et al. 

conducted a systematic investigation of the effect of dispersants having various functional 

groups and lengths for the alkyl tail on solubilized asphaltenes. It was found that a longer 

alkyl tail better stabilized asphaltenes in the solution.16 

3.2 Deposition Rate and Morphology of Asphaltenes in Micromodel 

Asphaltene deposition from model oils with and without the presence of the dispersants was 

further examined. The representative deposition profiles in porous media are shown in Figure 

2. In the absence of the precipitant, shown in Figure 2a, asphaltenes remain soluble in the oil 

phase and flow within the porous media without depositing. In the presence of the precipitant, 

n-heptane, a cone-shaped deposit is observed to form at the front of the posts, against the 

flow direction as well as the rear of the posts, as shown in Figure 2b. In the presence of 

p-hexylphenol and p-octylphenol, the asphaltene deposits tend to form blunter cone-shape, 

resulting in a wide streamlined shape, as shown in Figure 2c - 2d versus in the presence of 

p-dodecylphenol and iso-dodecylphenol, a smaller streamlined deposit is observed in front of 

the post. Furthermore, the deposition on the rear-side of the post is significantly reduced in 
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the presence of dispersants.  

 

Figure 2. Deposition profiles with and without dispersants in homogeneous porous media taken at 900s near the 

inlet. (a) Only oil. (b) No dispersant. (c) p-hexylphenol (d) p-octylphenol (e) p-dodecylphenol (f) 

iso-dodecylphenol. Scale bar is 200 µm, and the scale bar in the inset is 100 µm. Flow is from left to right. 

The averaged deposition is quantified in Figure 3a, where the deposition rate, the ratio of 

the coverage of deposited asphaltenes and time, is shown in Figure 3b and the pressure drop 

measurements are provided in Figure 3c. Model oils with p-hexylphenol or p-octylphenol 

show higher overall deposition rates than the no-dispersant experiment. Initially, model oils 

with p-dodecylphenol or iso-dodecylphenol also show a higher deposition rate, but the 

deposition rate then reduces; hence the overall deposition is lower than the no-dispersant 

case.  

The Péclet number (𝑃𝑒), based on average aggregates size, is calculated to correlate the 

properties of the flow to the aggregation.37,46,47 Previous research has shown that stable 

asphaltenes are present in oil and deposit on the surface as aggregates in the colloidal size 

range.4 The no-dispersant case has the highest 𝑃𝑒 (1.7 – 4.2 ´ 105). With dispersants, 𝑃𝑒 
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decreases since the aggregate size decreases. Specifically, Pe ranges from 4.0 ´ 104 – 1.7 ´ 

105 for p-hexylphenol, 3.0 ´ 104 - 1.3 ´ 105 for p-octylphenol, 2.1 ´ 103 – 4.0 ´ 104 for 

p-dodecylphenol, and 2.6 ´ 103 – 4.0 ´ 104 for iso-dodecylphenol. With a higher 𝑃𝑒, the 

increased local shear stress exerted on the aggregate is expected to lead to erosion of the 

asphaltene aggregates37, leading to the sharper-cone shape observed in Figure 2b. In the 

experiments with p-hexylphenol and p-octylphenol, asphaltene deposition increases due to 

decreased shear stress and increased possibility of attachment due to higher diffusion. 

However, the deposition rate significantly dropped with both p- and iso-dodecylphenol, even 

though the relative ratio of convection to diffusion is the smallest for these dispersants. One 

possibility is the attractive intermolecular interactions governing asphaltene aggregates have 

weakened, so that shear stress is better able to erode and shear off these “softened” deposited 

asphaltenes from the porous media. Further discussion of this possibility will be explored in 

the following sections. Non-uniform axial deposition profiles are observed along the length 

of the flow direction, as shown in Figure 4. The reason this occurs is that the asphaltene 

concentration is being depleted over the distance, which in turn decreases the mass transfer 

coefficient through the porous media. In Figure 4a, the variation between the first-half and 

second-half sections is not as obvious as Figure 4b. For larger asphaltene aggregates, the 

mass transfer entrance region is longer due to lower diffusivity.48 Therefore, the deposition 

profile in the presence of p-octylphenol has a more prominent difference between these two 
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sections since the concentration of destabilized asphaltenes decreased faster within the 

entrance region of the porous media.   

 
Figure 3. (a) Deposition curves with and without dispersants. The green line represents the oil in the absence of 

dispersants, black line for p-hexylphenol, red line for p-octylphenol, blue line for p-dodecylphenol, and brown 

line for iso-dodecylphenol. (b) The deposition rate obtained from the linear regression of curves in Figure 3a. (c) 

The pressure drop measured with flow tests 
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Figure 4. Deposition profiles with and without p-octylphenol in taken at 900s. (a) No dispersant. (b) 

p-octylphenol. Scale bar is 500 µm. Flow is from left to right. The white dotted line separates the section near 

the inlet and the section near the outlet. 

3.2 Pore-Scale Visualization of Asphaltene Deposition with Dispersants 

The dynamics of the asphaltene deposition at the pore scale are illustrated by deposition 

growth profiles in Figure 5. Previously, we observed asphaltene deposits form sharper 

cone-like deposits on the posts when 𝑃𝑒 increased.37 This sharp-cone shape enables a higher 

shear flow around the deposit, resulting in a competition between attachment and detachment 

of aggregates. Furthermore, this cone-shape is also present for short times (300s) when 

octylphenol and dodecylphenol are also added to the model oil. The deposition profile is 

altered at longer times (600s) in the presence of dispersants in which the deposits experience 

enhanced detachment. The centerline of the deposits for all three conditions are continuously 

growing and eroded when confronting the incoming fluid, resulting in a non-linear growth of 

the asphaltene deposit around a given post. To further investigate the characteristic shape of 

the deposits (streamlined shape) at the pore scale, local flow patterns (the velocity and shear 
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rate profiles of the deposits) are plotted by a Lattice-Boltzmann method, as shown in Figure 6 

(Described in Supporting Information S2.) High-velocity fluid flow zones are found at the 

north and south regions of the post (𝑦 = 45-90 µm), suggesting a higher shear removal effect. 

The locations between posts (𝑥 = 0-100 µm and 200-250 µm) show the highest velocity. The 

streamlined shape formed between these two high-velocity zones (𝑥 = 100-200 µm) is due 

to the fluid stagnation region near the post. High shear rates are also found at the interface of 

the deposit and flowing fluid, resulting in a strong competition between attachment and 

detachment. However, enhanced local shear stress is not able to explain the decrease in the 

overall deposition rate for p- and iso-dodecylphenol. Hence, the intermolecular interactions 

between asphaltenes in the presence of dispersants are discussed in the following section.  

 

Figure 5. Schematic dynamics of asphaltene deposition growth with and without dispersants. (a) No dispersant 

(b) p-octylphenol (c) iso-dodecylphenol. Red line is for 300s. The yellow line is for 600s. Scale bar is 100 µm. 
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Figure 6. Velocity profile and shear rate around representative asphaltene deposits for no dispersant, 

p-octylphenol, and iso-dodecylphenol. Velocity profile: (a) no dispersant, (b) p-octylphenol, and (c) 

iso-dodecylphenol. Shear rate: (d) no dispersant, (e) p-octylphenol, and (f) iso-dodecylphenol. The white area is 

the post. The brown area is the deposit. 

3.3 Forces Between Asphaltene Aggregates 

A schematic illustrating the key factors causing asphaltene attachment and erosion is 

shown in Figure 7. Our hypothesis is that the dispersants increase the steric repulsion 

between asphaltene aggregates, which influences deposition in two competing ways. The first 

is by reducing the aggregate size, the asphaltene aggregate diffusivity increases resulting in 

more collection of aggregates on the posts. The second is by altering the intermolecular 

interactions between the asphaltene molecules, which can lead to “softer” deposited 

asphaltenes that are more easily removed by shear forces exerted by flow. The former will 

cause more deposition while the latter will cause less deposition. Slightly increasing the steric 

repulsion between asphaltene aggregates cannot sufficiently weaken the aggregate adhesion; 

hence, octylphenol and dodecylphenol results in more deposition in the porous media. 
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However, significantly increasing the repulsion between aggregates will more readily enable 

erosion, leading to less asphaltene deposition. After understanding the deposition tendency 

for the various dispersants, intermolecular forces are analyzed to better examine the 

hypothesis. 

 
Figure 7. Illustration of detachment of deposited aggregates with 2D velocity distribution with corresponding 

streamlines. 

Asphaltene self-association is governed by the van der Waals attraction with a major 

contribution from dispersion forces due to induced polarization.49,50 The dispersion 

interaction potential (Φ) in an interacting system is the product of the effective Hamaker 

constant (𝐴) and a function of the geometry of the system. (Eq. 3)  

 Φ = 𝐴 ∙ 𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦  (3) 

In a system of two macroscopic materials and a given medium, the pair-wise summation 

is commonly utilized to calculate the effective Hamaker constant.51–53 Here, the interacting 

system (subscript ama) consists of asphaltenes in bulk solution (subscript a), medium 
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(subscript m), and asphaltenes adsorbed onto a surface.54 If the Hamaker constants for the 

bulk asphaltenes and adsorbed asphaltenes are assumed to be similar, then the effective 

Hamaker constant can be calculated as: 

 𝐴IJI = 𝐴I − 𝐴J
1
 (4) 

where 𝐴I  and 𝐴J  are Hamaker constants of the bulk asphaltenes and bulk medium 

solution, respectively. The Hamaker constant of a pure material can be calculated by Eq. 5 

with the assumption that the dispersive energy component is the main contribution to the 

surface energy, which is a good assumption for these experiments due to lack of the hydrogen 

bonding in solvents (n-heptane and toluene):53  

 𝐴J = 24𝜋𝐿N1𝛾P (5) 

where 𝐿N = 0.165	𝑛𝑚  is defined as the characteristic distance between interacting 

molecules, and 𝛾P is the surface energy. The calculated Hamaker constant (𝐴I = 5.73 ´10-20 

J) was obtained from Gonzalez et al. who used the Lifshitz theory towards a system of 

asphaltenes.50 The Hamaker constant of the medium (𝐴J = 4.22 ´10-20 J) was calculated 

with the measured surface energy (𝛾P = 20.5 ±0.06 mN/m), where the surface tension was 

measured using a force tensiometer (K100, KRÜSS, GmbH).  The effective Hamaker 

constant of the interacting system (𝐴IJI) was estimated to be 1.14 ´10-21 J using Eq. 4. 

Previously, Fotland et al. studied van der Waals forces between asphaltenes by altering the 

medium with different ratios of n-pentane and benzene.55 They found that the effective 
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Hamaker constant was reduced with a smaller fraction of n-pentane, which also explained 

their experimental observations that asphaltene precipitation is directly correlated to the ratio 

of precipitant in the solution.  Additionally, Wang et al. analyzed the interaction forces of 

asphaltene surfaces in heptane-toluene mixtures using atomic force microscopy (AFM). They 

found that the interaction was mainly due to van der Waals attractive forces when asphaltenes 

were in a solvent with high volume ratio of n-heptane, which is similar to the conditions 

reported here.56 

To study the attachment and removal of asphaltenes, the attraction and repulsion are 

estimated as follows. The attraction of asphaltenes to the post is assumed to be a system with 

a particle and a planar surface in contact with a distance (D), and the attractive force (𝐹W) can 

be described by Eq. 6.53 

 𝐹W =
𝐴IJI𝑅'
6𝐷1  (6) 

Since dispersants are known to increase the steric repulsion between asphaltene 

aggregates by adsorbing onto the asphaltenes, then this steric repulsion has a significant 

impact on erosion of asphaltene depostited.16,17,22,24  To evaluate the steric repulsive forces 

(𝐹P), we use the force-distance profile between a particle and a repulsive surface, which is 

shorter than two times of the thickness of the adsorbed layer, (𝐷 < 2𝐿), estimated by Eq. 

7.53,57,58  
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𝐹P(𝐷) = 2𝜋𝑅'

𝑘)𝑇
𝑠Y
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2𝐿
𝐷

[
\
− 1 +

8𝐿
7

𝐷
2𝐿

_
\
− 1 	𝑓𝑜𝑟	𝐷 < 2𝐿 (7) 

where	 𝑠 is the average distance between attachment points59, 𝐿 is the thickness of the 

adsorbed dispersant layer. The first term in Eq. 7 is the osmotic repulsion from the overlap of 

steric surfaces which increases the osmotic pressure and the second term is associated with 

the loss of entropy associated with adsorption.57 (See Supporting Information S3) 

Electrostatic repulsion is neglected because most of the solvents used as the medium are 

non-polar (n-heptane and toluene) and the measured zeta potential for asphaltenes with 

different dispersants are in a similar range, suggesting that the electrostatic repulsion between 

asphaltene aggregates are not a dominant factor. The combination of attraction and repulsion 

forces for different dispersants is plotted in Figure 8.  

Retention of aggregates on the surface is presented in two situations. Aggregates can 

adhere to either favorable sites (depositing without repulsive forces) or unfavorable sites 

(with the secondary minimum or overcoming the repulsive barrier staying with the primary 

minimum). Irreversible deposition occurs at the primary minimum. The combined value of 

the barrier and the secondary minimum represents the energy for an aggregate to deposit in 

the primary minimum. Reversible deposition was reported for aggregates depositing with the 

secondary minimum.60–63 In Figure 8, the maximum value of the energy barrier increases and 

the depth of the secondary minimum decreases when the length of the alkyl tail on the 

dispersant is increased. For aggregates with dodecylphenol, the energy barrier for irreversible 
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deposition is the highest, and the depth for the reversible process is the shallowest. To further 

estimate the potential convection effect discussed in previous sections with the interacting 

forces, the depth of the secondary minimum (reversible deposition) is plotted with the 

hydrodynamic force as a function of the size of the aggregate. The hydrodynamic force is 

estimated as the drag force assuming the particle rolling and sliding are the main 

contributions to the removal as shown in Eq. 8.64 

 𝐹 = 1.7 6𝜋 𝜇𝑅'1𝛾 (8) 

The shear rate (𝛾	~	8400 or 1350 1/𝑠) is estimated as ~6𝑢/ℎ  where ℎ is the height of 

the channel or the distance between posts (the pore size).65 This drag force balances the 

adhesion force from the secondary well. In Figure 9, the crossover between the drag force 

based on the height and the secondary minimum shifts with increasing the length of the alkyl 

tail. This explains the drop in the deposition rate for dodecylphenol. The drag force is also 

calculated based on the pore size but no crossover is obtained. However, this estimation 

requires further consideration, including the deformability of the aggregates (changing the 

contact area) and other removal factors such as lift forces.66,67 Therefore, more investigations 

into the rheological properties of asphaltenes and other forces resulted from hydrodynamics 

are required to analyze the deposition process.  
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Figure 8. Approximation of the interaction between an asphaltene aggregate and an asphaltene-deposited 

surface with dispersants. The inset plot is the zoom-in graph of Figure 8. Black line represents p-hexylphenol, 

red dashed line is p-octylphenol, and blue dotdashed line is p-dodecylphenol.  

 

Figure 9. The depth of the secondary minimum and the hydrodynamic force are functions of the size of the 

asphaltene aggregate. The black line represents p-hexylphenol, red dashed line is p-octylphenol, and blue 

dotdashed line is p-dodecylphenol. The orange dotted line represents the hydrodynamic force based on the 

height of the micromodel and aqua dotted line is the hydrodynamic force based on the pore size calculated from 

Eq. 8. 

Microfluidic investigation on the effect of dispersants was also extended to crude oil S, 

which include asphaltenes along with saturates and resins. The deposition profiles with and 

without the presence of p-octylphenol or p-dodecylphenol are shown in Figure 10 at 

timepoints of 600 and 1200 seconds. The no-dispersant case forms a cone-shape deposition 

profile, as was observed in the model oil deposition. The profiles in the presence of 
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dispersants show more streamlined shapes, as shown in Figure 10e and Figure 10f. This 

streamlined shape is possibly caused by a smaller effective aggregate size. This dynamic 

growth of deposition is quantified, as shown in Figure 11. More deposition is obtained with 

the presence of dispersants, which is the same trend observed in the model oil tests. However, 

the addition of p-dodecylphenol caused more deposition than the case with the presence of 

p-octylphenol. There are two possible reasons for this difference. First, there is a significant 

amount of saturates in crude oil S, which increases the Hamaker constant for the system.55,56 

Hence, the steric repulsion provided by adsorbed dispersants are not strong enough to easily 

disrupt the deposited asphaltenes due to shear flow. Second, the combination of resins in the 

crude oil and dispersants stabilize the asphaltenes better in the crude oil compared to the 

model oil, resulting in even smaller aggregates and less hydrodynamic erosion. Therefore, a 

higher deposition rate is observed with the presence of p-dodecylphenol in crude oil S.    

 

Figure 10. Deposition profiles of crude oil S with and without the presence of dispersants taken at 600s for 

(a)(b)(c) and 1200s for (d)(e)(f). (a) and (d) are no-dispersant cases. (b) and (e) are for p-octylphenol. (c) and (f) 

are for p-dodecylphenol. Scale bar is 500 µm. Flow is from left to right. 
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Figure 11. Asphaltene deposition from crude oil in the microfluidic porous media plotted with time with and 

without the presence of dispersants. The green line represents the crude oil in the absence of dispersants, red 

dashed line for p-octylphenol, and blue dotdashed line for p-dodecylphenol. 

4. Conclusions 

Microfluidic devices offer a well-controlled platform to analyze the relative effects of 

convection-diffusion and intermolecular forces resulting from chemical injections on the 

asphaltene deposition. In general, smaller asphaltene aggregates are better able to resist shear 

flows from the fluid, increasing its probability for deposition.  Injection of chemical 

dispersants effectively reduces their size and resulting in higher initial deposition rates; 

however, these chemical dispersants alter the intermolecular interactions. Stronger repulsive 

interactions result in “softer aggregates” that are readily eroded in shear flow after deposition, 

thereby lowering the overall deposition rate. This is observed for the case with dodecylphenol 

dispersants and model oil, where the deposited asphaltenes for easily removed by shear forces 

due to higher repulsive interactions, which eventually resulted in a lower overall deposition 
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rate. Furthermore, in crude oil systems that include saturates and resins, the asphaltenes are 

not as easily destabilized compared to the model oil system.  The saturates in crude oil 

increase the attractive Hamaker constant for the asphaltene aggregates, while the resins 

combined with dispersants reduce the effective aggregate size.  

Supporting Information 

Images of asphaltene aggregates from optical microscopy and SEM, numerical simulation on 

flow through porous media, parameters for steric repulsion approximation, and videos of 

deposition. 
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