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ABSTRACT 

Aims: Bacteria are considered one of the major driving forces of the mammalian decomposition process and 

have only recently been recognised as forensic tools. At this point, little is known about their potential use as 

‘post-mortem clocks’. This study aimed to establish the proof of concept for using bacterial identification as 

post-mortem interval (PMI) indicators, using a multi-omics approach. 

Methods and Results: Pieces of pork were placed in the University’s outdoor facility and surface swabs were 

taken at regular intervals up to 60 days. Terminal restriction fragment length polymorphism (T-RFLP) of the 16S 

rDNA was used to identify bacterial taxa. It succeeded in detecting two out of three key contributors involved in 

decomposition and represents the first study to reveal Vibrionaceae as abundant on decomposing pork. 

However, a high fraction of present bacterial taxa could not be identified by T-RFLP. Proteomic analyses were 

also performed at selected time points, and they partially succeeded in the identification of precise strains, 

subspecies and species of bacteria that colonized the body after different PMIs. 

Conclusion: T-RFLP is incapable of reliably and fully identifying bacterial taxa, whereas proteomics could help 

in the identification of specific strains of bacteria. Nevertheless, microbial identification by next generation 

sequencing might be used as PMI clock in future investigations and in conjunction with information provided by 

forensic entomologists.  

Significance and Impact of the Study: To the best of our knowledge, this work represents the first attempt to 

find a cheaper and easily accessible, culture-independent alternative to high-throughput techniques to establish a 

‘microbial clock’, in combination with proteomic strategies to address this issue. 

 

Keywords: PMI; bacterial succession; T-RFLP; decomposition; microbiome; forensic science; metagenomics; 

proteomics. 

 

INTRODUCTION 

 Estimating the post-mortem interval (PMI) is a fundamental step within crime scene investigations. 

Common methods available to forensic pathologists, such as the assessment of the extent of post-mortem 

changes including algor, rigor and livor mortis, do not produce sufficiently accurate data, especially if the 

individual has been dead for longer than 48 hours [1]. Forensic entomologists, drawing their inferences from 

insect colonisation patterns of cadavers, may also provide information about the time since death. However, 

errors can range from days to months [2], since the growth rate of maggots can be influenced by various factors 
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such as changes in temperature, geographic location, season, etc. [3].  

 Mammalian decomposition is a complex interplay between a large number of biotic and abiotic factors. 

The speed of cadaver decomposition mainly depends on climatic and environmental conditions, the ante-mortem 

intrinsic properties of an individual, insect and scavenger activity, and on microbial activity [4, 5]. Although 

much research has been done on insect colonisation of cadavers and their potential to aid in forensic 

investigations [6, 7, 8, 9], only little attention has been paid to bacteria, which are considered as one of the major 

driving forces of the human decomposition process [10]. 

 Microbes facilitate the transformation of an individual into its molecular components, providing a pool 

of energy and nutrients to organisms living in the surrounding environment [11]. If a predictable pattern of 

bacterial succession associated with cadaver decomposition can be recognised, it could present a valuable and 

readily accessible tool to complement the analysis of insect colonisation patterns. This study aims to establish 

whether bacterial composition on decomposing tissue changes over time, and if it does so, in a predictable 

fashion that allows PMI estimation. 

 Numerous research groups have attempted to reveal the complexity of the microbiome associated with 

the decomposition process [12, 13, 14, 15, 16, 17, 18, 19, 20]. However, the majority of these studies examined 

the bacterial flora by means of conventional, culture-dependent methods. Since only a minute fraction of 

bacterial species is cultivatable [21], species richness was likely to be underestimated. Recent studies conducted 

by Hyde et al. [4, 10], Damann et al. [22], Metcalf et al. [2], Pechal et al. [23] and Can et al. [24] based their 

findings on next generation sequencing (NGS), a culture-independent approach. Hyde et al. [4, 10] examined the 

human microbiome associated with the bloat and non-bloat stage of the decomposition process, documenting a 

major shift from aerobic to anaerobic bacteria. However, the study further revealed a great variability between 

bodies, making it difficult to determine a universal succession pattern. Damann et al. [22] investigated the 

bacterial microbiome associated with bone. They revealed that bones from partially skeletonised bodies 

maintained a presence of bacteria associated with the human gut, whereas dry skeletal remains increasingly 

equalled the community profile present in soil [22]. Can et al. [24] investigated the human microbiome 

associated with internal organs and blood and whether the absence or presence of particular species could 

potentially be used as PMI predictor. Their main findings indicated that facultative anaerobic bacteria, such as 

Lactobacillus sp. were predominant in all samples obtained at low PMIs, while obligate anaerobic bacteria, such 

as Clostridium sp. were found in large numbers at longer PMIs [24]. Research groups who conducted their 
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studies on animal models have been more successful in establishing a precursor model for PMI estimations [2, 

25]. They reported a significant and predictable change in relative abundances and taxon richness of bacterial 

communities through time. While Pechal et al. [25] provided a model able to estimate a PMI within a few hours 

after death, Metcalf et al. [2] were able to develop a PMI estimation model applicable up to 34 days.  

 

 Nevertheless, these research groups relied on high-throughput techniques, either 454 Pyrosequencing or 

Illumina [2, 25]. However, at the moment, NGS technology is expensive and the equipment is rarely available to 

forensic institutes. For this reason, this study aimed to research the ability of using terminal restriction fragment 

length polymorphism (T-RFLP) to reliably identify bacterial taxa from decomposing pork. In order to establish a 

reliable PMI estimation model, which also applies to humans, it is essential to understand the relative importance 

and interplay of ecological factors influencing the decomposition process. It is necessary to strip the empirical 

data back to the baseline, and control as many variables as possible. T-RFLP relies on the same laboratory 

equipment as human DNA-profiling, which implies it could be easily implemented into forensic laboratories. 

This is an attempt to find a cheaper and more easily accessible, culture-independent alternative to NGS.  

 

 We further explored the possibility to apply other ‘cheap’ non-DNA based methods to this study, to 

overcome the possible limitations that the T-RLFP methodology could lead to. In particular, it has already been 

shown that mass spectrometry performed on proteins or on peptides is a powerful tool to typify microorganisms 

[26], and some of its features like its sensitivity, its rapidity and its broad spectrum in characterising organisms 

make it an intriguing option to address the aims of this work in an easily accessible way. Based on the paradigm 

proposed by Anhalt and Fenselau [27], each individual organism is characterised by a characteristic mass 

spectral “fingerprint”, that can be used to perform taxonomic distinctions based on these assumptions. In 

particular, bottom-up proteomic approaches have already been used to rapidly identify bacteria, both using 

Matrix-Assisted Laser Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry [28] and both 

using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) approaches [29]. For these reasons, we 

also applied both these strategies to this study, to evaluate limits and potentials of these techniques and to 

compare them with the results obtained using the most common DNA-based approach. 
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MATERIALS AND METHODS 

 Three replicate pieces of pork loin were each cut in two (0.25-0.385 kg) for DNA and protein 

analysis and kept in sterile plastic boxes, which allowed airflow, but no insect colonisation, were placed in the 

outdoor decomposition facility at the University of Huddersfield. Sterile wet cotton swabs (FLOQSwabTM Copan 

Diagnostics Inc., USA), were used to sample bacterial DNA and protein at regular intervals ranging from hours 

to 60 days after exposure, never sampling an area of pork twice. Samples were stored at -20°C until processed 

further. 

Weather data was derived from the weather station located in the same facility at the University of 

Huddersfield. The local temperature inside the sampling boxes was measured hourly by RC-5 USB Temperature 

Data Loggers (Elitech, China). Temperature data was converted into accumulated degree-days (ADD) according 

to the method of  Micozzi et al. [30] using a base temperature of 4°C and a maximum of 47°C. 

 

DNA extraction and amplification 

 DNA extractions were carried out based on the Bacterial DNA Isolation CTAB Protocol by William et 

al. [31]. Once DNA was dissolved in 50 µl nuclease-free water (Qiagen, UK), DNA yield was determined by the 

NanoDrop 2000 UV-Vis Spectrophotometer at 260/280 nm (Thermo Scientific, USA). 

 Amplification of the bacterial 16S rDNA marker was performed using two different primer sets in order 

to consider possible preferential amplification. The eubacterial 5’-FAM labelled forward primers 8F (5’-AGA 

GTT TGA TCC TGG CTC AG-3’) and 63F (5’-CAG GCC TAA CAC ATG CAA GTC-3’) were singly 

combined with the 1392R (5’-ACG GGC GGT GTG TAC A-3’) reverse primer (Eurofins, Germany). PCR 

reactions were set up following the manufacturer’s protocol for GoTaq DNA polymerase (Promega, Germany) 

with approximately 70 ng template DNA and 0.6 µmol l-1 forward and reverse primer. Samples underwent the 

following temperature programme: 2 min at 95°C, 28 cycles of 45s at 95°C, 30s at 56°C and 2 min at 72°C. 

Final extension was carried out at 72°C for 7 min. 

 

T-RFLP 

 Generated PCR products were digested by MspI, RsaI and HhaI (Promega, Germany). The selection of 

MspI and HhaI was based on previous studies conducted by Engebretson and Moyer [32] and Quaak and Kuiper 

[33]. These restriction enzymes were found to resolve bacterial populations best by generating fragments 

showing great length polymorphism. However, the use of only two restriction enzymes possibly results in the 
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generation of peaks of multiple bacterial species. In order to limit the number of possible species that could be 

assigned to a single peak, PCR products were additionally digested by RsaI. All reactions were carried out as 

single digests. 20 µl reaction mixtures contained 8 µl PCR product, 10 µl restriction enzyme, 2 µl 10X 

restriction enzyme buffer (Promega, Germany), 0.2 µl BSA (Promega, Germany) and nuclease-free water 

(Qiagen, UK). Samples were incubated for 16 hours at 37°C followed by 20 min heat inactivation at 60°C. 

 

Capillary electrophoresis 

 Capillary electrophoresis (CE) was performed on ABI 3130 Genetic Analyzer with POP-4TM polymer 

and a 36 cm capillary. 1 µl digested PCR product plus 10 µl HiDi-Formamide and 0.25 µl GeneScanTM 

LIZ600 dye size standard (all Applied Biosystems, USA) were denatured at 95°C for 3 min and immediately 

placed on ice. Injection was performed at 3 kV for 30 seconds and fragments were separated at 15 kV at 60°C 

for 2250 seconds. 

 

DNA data analysis 

 The GeneMapperID v3.2 (Applied Biosystems, USA) and the open access tool box Tools for T-RFLP 

data analysis [34] (Fredriksson et al. 2014) were used to process generated CE profiles. Only peaks between 50 

and 900 bp showing higher intensities than 100 relative fluorescence units (RFU) were included in the analysis; 

only peaks that were present in at least two of the three replicates and those showing a relative abundance of at 

least 1% were considered within the analysis. Fragments were binned in 1 bp bins so that peaks with a size 

difference of less than 1 bp were considered as the same peak. 

Bacterial species or families were assigned from consensus profiles by the openly accessible Microbial 

Community Analysis (MiCa) T-RFLP (PAT+) tool [35] (Shyu et al. 2007). The Ribosomal Database Project 

database was used as reference data and only good quality database entries of longer than 1200 bp were 

considered, resulting in approximately 700,000 entries in total.  

 

Protein extraction 

 1 ml of 6M guanidine hydrochloride (GuHCl) and 100 mM Tris (Sigma-Aldrich, UK) at pH 7.4 at 4°C 

were added to each FLOQSwabTM (Copan Diagnostics Inc., USA); after 1 h, 500 µl were separated from the rest 

and frozen for future analyses, whereas the remaining 500 µl were left at 4°C for 18 h and further processed. 

Samples were then ultrafiltered using 10 kDa Molecular Weight Cut-Off (MWCO) ultrafiltration units 
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(Vivaspin, UK), then the buffer was exchanged into 50 mM ammonium bicarbonate (ABC; Fluka, UK) and 

filtered samples were collected in 250 µl of 50 mM ABC. Samples were then reduced using 10.5 µl of 5 mM 

dithiothreitol (DTT; Sigma-Aldrich, UK) for 40 min at room temperature, alkylated with 42 µl of 15 mM 

iodoacetamide (IAM; Sigma-Aldrich, UK) in the dark for 45 min and then quenched with the same volume of 

5mM DTT. The digestion step was performed adding 2 µl of sequencing grade trypsin (Promega, UK) (prepared 

following manufacturer’s protocols) and incubating the samples at 37°C overnight. Digestion was stopped by 

adding 1% trifluoroacetic acid (TFA; Sigma-Aldrich, UK) resulting in a final TFA concentration of 0.1%. 

Samples were desalted, purified and concentrated using C18 reversed-phase Zip-Tips C18 (Agilent 

Technologies, UK) following manufacturer’s protocols. Peptides were finally eluted in 100 µl of 50% 

acetonitrile (ACN)/0.1% TFA, and left to dry under a fume hood at room temperature until completely dry. 

Samples were then re-suspended in 0.1% formic acid (FA; Fluka, UK) / 5% ACN (Fisher Scientific, UK) and 

subsequently analyzed with a Bruker Ultraflex II MALDI mass spectrometer (MS) or by LC-MS/MS using an 

UltiMate 3000 Rapid Separation LC (RSLC, Dionex Corporation, Sunnyvale, CA, USA) coupled with an 

Orbitrap Elite (Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer. 

 

MALDI-TOF mass spectrometry 

 Purified samples were spotted onto a Bruker target plate (1 µl of sample mixed with 1 µl of a-cyano-4-

hydroxycinnamicacid matrix solution) and left dry. Then, mass spectra were collected using the Bruker Ultraflex 

II MALDI mass spectrometer shooting 5000 laser shots per spot, with a range of m/z 700-3700. The calibration 

was performed using five calibrant peptides of 0.9 to 3.7 kDA range (des-Arg1-bradykinin, angiotensin I, Glu1-

fibrinopeptide, ACTH 1–17 clip, ACTH 18–39 clip and ACTH 7–38 clip). Mass peptide fingerprints were then 

analysed using mMass software (v5.5.0). 

 

LC-Orbitrap Elite mass spectrometry 

 Peptides were separated on an Ethylene Bridged Hybrid (BEH) C18 analytical column (75 mm × 250 

μm i.d., 1.7 μM; Waters) using a gradient from 92% buffer A (0.1% FA in water) and 8% buffer B (0.1% FA in 

ACN) to 33% B in 44 min at a flow rate of 300 nL min−1. Peptides were then automatically selected for 

fragmentation by data-dependent analysis; six MS/MS scans (Velos ion trap, product ion scans, rapid scan rate, 

Centroid data; scan event: 500 count minimum signal threshold, top 6) were acquired per cycle, dynamic 

exclusion was employed, and one repeat scan (i.e., two MS/MS scans total) was acquired in a 30 seconds repeat 
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duration with that precursor being excluded for the subsequent 30 seconds (activation: collision-induced 

dissociation (CID), 2+ default charge state, 2 m/z isolation width, 35 eV normalized collision energy, 0.25 

Activation Q, 10.0 ms activation time).  

 

Proteomic data analysis 

 Spectra obtained via LC-MS/MS were searched as .mgf files against the Swiss-Prot database (540,052 

entries) using the Mascot search engine (version 2.4.1; Matrix Science, London, UK). Each search included the 

fixed carbamidomethyl modification of cysteine (+57.02 Da) and the variable modifications for deamidation 

(+0.98 Da) of asparagine/ glutamine and oxidation (+15.99 Da) of lysine, proline, and methionine residues, to 

account for PTMs and diagenetic alterations; the oxidation of lysine and proline is equivalent to hydroxylation. 

Enzyme specificity was set to trypsin with up to 2 missed cleavages allowed; mass tolerances were set at 5 ppm 

for the precursor ions and 0.5 Da for the fragment ions, with all spectra considered as having either 2+ or 3+ 

precursors.  

 Progenesis software (version 2.0; Nonlinear Dynamics, Newcastle, UK) was used to get the 

relative quantitation of the proteins in each sample, to enable comparisons between different experimental 

conditions to highlight differences and to finally express changes in data. To remove unreliable data, proteins 

with only one or no unique peptides were excluded from the study as well as proteins with a confidence score 

smaller than 41 (the score identified by Mascot as reflecting extensive homology). 

 To ensure that the in-depth proteomic analysis was able to identify subspecies- or strain-specific 

bacteria, we performed specific searches in the UniProt database for all the identified bacterial proteins, 

expanding the search to also different subspecies or strains. Then, the amino acidic sequences of the selected 

protein from the various subspecies and/or strains were aligned with BioEdit (version 7.2.6, Ibis biosciences, 

Carlsbad, Ca), and each one of the peptides identified with the LC-MS/MS analysis was searched against each 

sequence, to verify if a specific peptide was detectable only in a specific sequence, giving a subsequent 

subspecies- or strain-specific identification. Phylogenetic analyses were carried out on selected sequences online 

with phylogeny.fr, which uses a MUSCLE alignment and analysis by PhyML (with aLRT) and the tree created 

in TreeDyn. 
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RESULTS 

 The study was conducted over a period of 60 days from April to June 2015. While the ambient 

temperature remained relatively stable throughout the entire sampling period (average 11.8°C ± 2.7°C SD), the 

temperature inside the boxes was subject to great fluctuation (Figure 1). In particular, maximum temperatures 

fluctuated with the presence of sunlight.  

 

 

Although approximately 900 degree-days accumulated after two months of exposure, samples appeared to dry 

out rather than decompose, perhaps due to the exclusion of insects and scavengers or lack of intestinal bacteria. 

All pieces of pork had significantly reduced weights at the end of the study, probably due to the loss of water 

(data not shown). 

Bacterial DNA 

 In order to identify abundant bacterial taxa and to assess the change in bacterial community 

composition, surface swabs were taken at regular intervals. After the DNA had been extracted, 16S rRNA genes 

were amplified; the forward primer was fluorescently labelled. The marker was subsequently digested by the 

restriction endonucleases MspI, RsaI and HhaI. Each digest was carried out singly and every restriction enzyme 

generated unique patterns.  

 As a measure of bacterial community composition, the relative abundance of bacterial phyla and 

families was determined. The relative abundance was finally determined by summing up the height of all present 

peaks and relating it to the height of the consensus peak referring to one bacterial taxa. The fingerprints 

generated from three replicate pieces of pork were combined to create consensus profiles. Over a period of 60 

days, 18 samples were taken to perform DNA extraction. All the samples taken for the DNA extraction yielded 

sufficient bacterial DNA levels for the study, apart from samples taken at 20 and 25 days, that were excluded 

from the analysis. The most abundant bacterial taxa throughout the entire sampling period were Proteobacteria, 

especially Gammaproteobacteria. Betaproteobacteria were mainly present in samples taken during the first few 

days. In contrast, Alphaproteobacteria were mainly abundant from 15 days onwards, which corresponds to 

previous findings [2]. Similarly, Cyanobacteria appeared within later stages of the study, which is in accordance 

with previous studies [4]. Firmicutes were present within the first two days as well as within the last three 

samples taken at 40, 50 and 60 days. However, up to 50% of the abundant bacterial phyla could not be identified 
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by means of T-RFLP (Figure 2). This trend is continued in the relative abundance of bacterial families (Figure 

2); however, it should be noted that by 30 days, up to 75% of the bacterial families present were unknown. 

 

 

Figure 2 Relative abundance of bacterial phyla and families throughout the entire sampling period. Samples have been taken 

from 0 hours up to 60 days at regular intervals, which increased as time proceeded. The T-RFLP data generated by both primer 

sets and by all three restriction enzymes was analysed, averaged and summarised in percentage abundance of bacterial phyla. 

The T-RFLP data generated by both primer sets and by all restriction enzymes was analysed, averaged and summarised in 

percentage abundance of bacterial families. 

  

In general, a decreasing trend in bacterial diversity was evident during the first sampling time points, 

where 11 distinct bacterial families present at time point zero (not considering uncultured and unknown taxa) 

dropped to three within 24 hours after exposure. Vibrionaceae (Gammaproteobacteria) were present in large 

amounts at almost all time points whereas their abundance seemed to increase up to five days followed by a 

decreasing trend (Figure 3).  

 

 

Enterobacteriaceae (Gammaproteobacteria) were highly abundant from 24 hours onwards and their 

presence remained relatively stable within the period of 24 hours to 60 days. Comamonadaceae 

(Betaproteobacteria) and Clostridiaceae (Firmicutes) were only present in samples taken up to 24 hours, which 

is partially contradictory to previous findings. Pechal et al. [23] identified a large fraction of Clostridiaceae in 

samples taken from swine carcasses five days after death, and only minor levels in samples, which were obtained 

one day after death. As in Figure 2, Cyanobacteria only appeared during the last three sampling time points. 

These likely included families such as Microcystaceae, Leptolynbyaceae and Cyanothece. However, an 

unambiguous identification could not be achieved. As Cyanobacteria, Listeriaceae could also be exclusively 

identified in samples of 40, 50 and 60 days. It should be noted that 50 and 51 days after exposure, temperatures 

exceeded the upper threshold of 47°C (Figure 1); while Cyanobacteria increased in abundance between 50 and 

60 days, the relative abundance of all other bacterial families remained unchanged. This was likely due to the 

fact that Cyanobacteria are able to grow at extreme temperatures [36]. In contrast, the majority of bacterial 

species belonging to the Enterobacteriaceae, Vibrionaceae and Listeriaceae families are killed at temperatures 

above 47°C [37, 38], and therefore, were not able to further increase in abundance. 
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Proteomics 

 In order to test the efficacy of the proteomic approach in the identification of unknown bacterial 

species, the pork loins were swabbed at six different time points representative of the overall duration of the 

experiment, as previously described, and proteins were extracted and following analysed with both MALDI-TOF 

and LC-MS/MS. 

 The MALDI-TOF analyses did not give the expected outcome, since the spectra were swamped by 

peaks originated by the pig proteins. In fact, the most abundant peptides visible in the spectra were attributed to 

pig muscle proteins, like myosin-regulatory light chain, different types of myosin light chains, myomesin-2, titin, 

fibronectin and tropomyosin (data not shown).  

 To overcome this limitation, an in-depth sequencing using LC-MS/MS was performed on the same 6 

samples to go past the dominant pig proteins and to better resolve also the bacteria species collected on the pork 

loin. These analyses comprehensively resulted in the identification of 321 different proteins; among these, 43 

where attributed to non-mammalian species (13.4% of the totality). It can be assumed that the mammalian 

proteins recovered were originated from the pig muscles; given the lack of a complete pig proteome database, 

some proteins were identified as originated from pig and some other from different mammalian species (e.g. 

bovid, human etc.). However, they have been excluded from the study given the interest in focusing on the 

microbial proteins instead of on the overall set of recovered proteins. 

 It was possible to identify that different groups of non-mammalian proteins were more abundant after 

specific time points, with 17 proteins out of 43 which levels were higher at time 0 and then decreased, and with 

other smaller groups of proteins with a different behaviour during the time course (e.g. higher levels after 24 

hours than during the other time points, etc.) (Figure 4). It should also be noticed that the average relative 

abundance of the proteins recovered at higher levels at time 0 was at least one order of magnitude bigger than all 

the other groups showed in Figure 4, also in agreement with what observed with the DNA analyses.  

 The analyses done to verify the presence of specific peptides able to give a subspecies- or strain-

specific identification gave some positive results, allowing the recognition of specific strains of microorganisms 

in two cases and the recognition of a specific subspecies in another one. In particular, the peptide 

VPPVVPKNNDNLK identified uniquely the presence of the Saccharomyces cerevisiae strain JAY291 out of 

five different strains, the two peptides LLLGEGR and RNSPCVIIQGSDEKNDPDGAQIIVK allowed the 
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identification of the Rhodopseudomonas palustris strain BisB18 out of three different strains, and the two 

SPEMIALK and NVSGDLK identified uniquely the Buchnera aphidicola subspecies Baizongia pistaciae strain 

Bp out of five different subspecies (Figure 5). Relative abundances per each time point of the three proteins that 

allowed the above-mentioned identifications are also reported in Figure 5, together with the levels of the most 

abundant protein recovered in the samples, the myosin regulatory light chain 2 (MLRS_PIG). It should be 

noticed that the scale used to report the data is a base 10 log, to facilitate the visualisation of the data due to the 

high abundance of the pig protein in comparison with the other proteins in the graph. 

 

 

 

DISCUSSION 

 The data indicated that, although up to 75% of the abundant bacterial families could not be identified by 

means of T-RFLP, it was possible to unambiguously assign a set of detected peaks to specific bacterial phyla and 

families. Some data was generated considering only two restriction enzymes since using all three would have 

resulted in no identification. The method itself is reproducible, as samples, which were analysed twice, resulted 

in identical profiles generated by the Genetic Analyzer. The high fraction of unidentified bacterial taxa might 

also have been due to the paucity of the reference database used, which was restricted to 700,000 entries. 

 The high proportion of unidentifiable bacterial taxa present complicated the assessment of the change in 

bacterial community composition over time. However, results indicated that the bacterial family richness 

decreased over time. While some taxa, such as Vibrionaceae and Enterobacteriaceae were present throughout 

the entire course of the study, at almost all time points, others could exclusively be identified in early or late 

stages such as Comamonadaceae and Clostridiaceae or Cyanobacteria and Listeriaceae, respectively. The 

abundance of Cyanobacteria at later PMIs is in accordance with previous studies [4]. Surprisingly, none of these 

studies identified any species belonging to the Vibrionaceae family, which is one of the two most abundant 

families found here. Vibrionacaeae is a family of gram-negative, rod-shaped, facultatively anaerobic motile 

bacteria found in fresh or sea water and, occasionally, in fish and humans. Campylobacter and Helicobacter, 

responsible for gastroenteritis in humans, are members of this family.  

 Previous studies demonstrated the presence of Clostridiaceae, Moraxellaceae and Xanthomonadaceae 

at some point during decomposition [2, 4, 25], indicating that these might be key contributors to the 

decomposition process. The abundance of Clostridiaceae and Xanthomonadaceae could be confirmed within 
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this study, too. However, no species belonging to the harmless, parasitic Moraxellaceae family could be 

identified within this study.  

 Although the proteomic analyses were only performed on a limited number of samples, it was shown 

that the MALDI-TOF results were not appropriate to identify bacteria-specific peaks due to the high peptide 

signals originating from the muscles proteins. However, it was possible to identify a variety of microorganisms, 

sometimes also at a very low taxonomic level (subspecies or strain specificity) using the in-depth protein 

sequencing. The main limitation in this case was due to the complexity and uncertain limitations of database 

entries within Swiss-Prot, an issue overcome by the standard MALDI-based approach (e.g. [39, 40]) of 

plating/growing bacterial colonies which works in such high-throughput that it has developed vast database 

entries, but without attempting to understand the origins of the peptides present within their fingerprints. 

 This study tried to reduce all external factors such as insect colonisation, microbial composition of soil, 

local and seasonal variations, which could alter the bacterial population present on cadaveric material as it 

decomposes. Insects secrete substances, which have an antimicrobial effect or initiate immune responses 

destroying existing bacterial communities [41]. Carter et al. [42] suggested that the microbial activity is highly 

dependent on seasonal variations. Ambient temperatures and solar irradiance have a significant impact on the 

decomposition process and therefore, on bacterial community compositions [43]. The study also tried to 

eliminate potential variations in bacterial populations caused by factors intrinsic to the deceased individual, by 

using uniform porcine loin meat pieces. Muscle tissue was used to study the decomposition microbiome, as a 

preliminary proof of concept study. This research should serve as a springboard for further research aimed at the 

development of an alternative method for PMI estimations. Bacterial communities inhabiting the gastrointestinal 

tract are highly dependent on diet, local variations and lifestyle of the individual [45]. Future research will 

inevitably have to consider this complex factor. Additionally, Stokes et al. [46] investigated how far animal 

models of muscle tissue loss are able to accurately model human decomposition dynamics, but with pork, beef 

and lamb, they found no single analogue to be a precise approximation modelling human decomposition 

dynamics. However, Pittner et al. [46, 47] have recently revealed promising results by looking at the protein 

changes using Western Blotting and casein zymography. To conclude, the human decomposition process 

presents a complex interplay between all these variables, which inevitably need to be considered in order to 

establish an alternative model to determine the time since death. This will be the most challenging task in future 

research.   
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CONCLUSIONS 

 This study aimed to establish the proof of concept that it is possible to identify which bacterial taxa are 

present on cadaveric material as it decomposes using T-RFLP and MALDI-TOF analyses. It succeeded in 

identifying two out of three previously defined key contributors involved in the decomposition process [4] and 

represents the first study to reveal Vibrionaceae as present on rotting pork at various PMIs. However, currently, 

this model is not yet predictive and precise enough to be used for PMI estimations. Considering the high fraction 

of bacteria, which could not be identified by means of T-RFLP, NGS might lead to the generation of more 

complete and reliable results, and thus, be better used in future death microbiome research. If it succeeds in 

exploring the human decomposition microbiome and identifying bacterial taxa specific to certain PMIs, the 

‘microbial clock’ may be used as an additional measure to estimate the time since death. Nevertheless, it should 

be seen as complementary to conventional means rather than a stand-alone model. Combining this model with 

different expertise such as pathology and entomology and will allow more reliable PMI estimates in future. 
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Figure 1 Temperature data generated by the University’s weather station and by temperature data loggers placed into sampling 

boxes. Weather data was recorded throughout the entire sampling period of 60 days. (▲) Average ambient temperature,             

() minimum and (■) maximum temperatures inside sampling boxes. Dashed lines at 4°C and 47°C represent thresholds on 

which ADD calculations were based. Linear accumulation of heat units up to 60 days after exposure. ADDs were calculated on 

a base of 4°C as follows: (Maximum temperature boxes + minimum temperature boxes) /2 – base temperature. 
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Figure 2 Relative abundance of bacterial phyla and families throughout the entire sampling period. Samples have been taken 

from 0 hours up to 60 days at regular intervals, which increased as time proceeded. The T-RFLP data generated by both primer 

sets and by all three restriction enzymes was analysed, averaged and summarised in percentage abundance of bacterial phyla. 

The T-RFLP data generated by both primer sets and by all restriction enzymes was analysed, averaged and summarised in 

percentage abundance of bacterial families. 
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Figure 3 Relative abundance of selected bacterial families throughout a sampling period of 60 days, obtained by T-RFLP. Some 

bacterial families were abundant at various PMIs throughout the entire sampling period, including (purple  ) Vibrionaceae and 

(red▲) Enterobacteriaceae. Others could only be detected at certain stages of the study. While (green  Comamonadaceae 

and (pink ) Clostridiaceae were present in the beginning, (yellow ) Cyanobacteria and (black) Listeriaceae could be 

identified in samples taken at later stages. 

  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0h 3h 17h 24h 2d 3d 4d 5d 6d 7d 10d 15d 30d 40d 50d 60d

re
la

ti
v
e
 a

b
u

n
d

a
n

c
e
 [

%
]



 22 

 

 

Figure 4 Relative abundances of selected bacterial proteins throughout a sampling period of 60 days. Each box shows bacterial 

proteins with a similar trend over the time. Each colour in each single box represents a different protein, and for each of them, 

the entry name on Uniprot is reported.  

  



 23 

 
 
 
 

 
 
 
 
 
Figure 5 – Phylogenetic (left) and relative abundance analysis (right) of the three proteins identified to the sub-species or strain 

level in all samples; the latter is also in comparison to the myosin regulatory light chain-2 protein as the most abundant pig 

protein recovered in each sample. 

 
 
 
 


