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Comparing Mamdani Sugeno Fuzzy Logic and
RBF ANN Network for PV Fault Detection

Mahmoud Dhimish, Violeta Holmes, Bruce Mehrdadi,rkiBales

School of Computing and Engineering, UniversityHofddersfield, United Kingdom

Abstract

This work proposes a new fault detection algoritftam photovoltaic (PV) systems based on artificial
neural networks (ANN) and fuzzy logic system irded. There are few instances of machine learning
technigues deployed in fault detection algorithmPYV systems, therefore, the main focus of thispép

to create a system capable to detect possiblesfaRV systems using radial basis function (RBRNA
network and both Mamdani, Sugeno fuzzy logic systarerface.

The obtained results indicate that the fault deachlgorithm can detect and locate accuratelyedffit
types of faults such as, faulty PV module, two fiaidV modules and partial shading conditions aiifect
the PV system. In order to achieve high rate oféct@in accuracy, four various ANN networks haverbee
tested. The maximum detection accuracy is equ&@2td%. Furthermore, both examined fuzzy logic
systems show approximately the same output dutirg experiments. However, there are slightly
difference in developing each type of the fuzzyteys such as the output membership functions and th
rules applied for detecting the type of the fagltwrring in the PV plant.

Keywords: Photovoltaic System, Photovoltaic Faults, Fault Detection, ANN Networks, Fuzzy Logic
Systems

1 INTRODUCTION

The monitoring and regular performance supervisiorthe functioning of grid-connected photovoltaic
(GCPV) systems is necessary to ensure an optineatjgmarvesting and reliable power production. The
development of diagnostic methods for fault detectin the PV systems behaviour is particularly
important due to the expansion degree of GCPV systeowadays and the need to optimize their
reliability and performance.

There are existing techniques which were develdpegbossible fault detection in grid-connected PV
systems. Some of these techniques use meteordl@gidasatellite data for predicting the faults fire t
GCPV plants [1 & 2]. However, some of the PV faldtecting algorithms do not require any climateadat
(solar irradiance and module temperature) sucthasearth capacitance measurements established by
Taka-Shima [3].

Other PV fault detection algorithms is based on ¢bmparison of simulated and measured yield by
analysing the losses of the DC side of the GCPYitj#6]. Furthermore, a fault detection methoddohs
on the ratio of DC side and the AC side of the BStem is proposed by W. Chine et al [7]. The method
can detect five different faults such as faulty med in a PV string, faulty DC/AC inverter and fagul
maximum power point tracking (MPPT) units. On thkes hand, S. Silvestre et al [8] proposed a new
procedure for fault detection in GCPV systems basedhe evaluation of the current and the voltage

1



40
41
42

43
44
45
46
47
48

49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
65
66

67
68
69

70
71
72
73
74

75
76
77
78
79
80
81
82

indicators. The main advantage of this algorithrtoiseduce the number of monitoring sensors irPiie
plants and integrating a fault detection algoritimo an inverter without using simulation softwame
additional external hardware devices.

Further fault detection algorithms focus on faoltsurring in the AC-side of GCPV systems, as predos
by M. Dhimish et al [9]. The approach uses math@aak@nalysis technique for identifying faulty
conditions in the DC/AC inverter units. Moreoventispot detection in PV substrings using the AC
parameters characterization was developed by [l5§. hot-spot detection method can be further used
and integrated with DC/DC power converters thatajgs at the subpanel level. A comprehensive review
of the faults, trends and challenges of the gridreated PV systems is shown in [11-13].

Other PV fault detection approaches use statistinalysis techniques for identifying micro cracksl a
their impact of the PV output power as presentedll#). However, T. Zhao at al [15] developed a
decision tree (DT) technique for examining two eliéint types of fault using an over-current protecti
device (OVPD). The first type of fault is the libedine that occurs under low irradiance conditiomsd
the second is line-to-line faults occurring in Ryags equipped with blocking diodes.

PV systems reliability improvement by real-timeldiprogrammable gate array (FPGA) based on switch
failures diagnosis and fault tolerant DC-DC coneestis presented by [16]. B. Chong [17] suggested a
controller design for integrated PV converter medulinder partial shading conditions. The developed
approach is based on a novel model-based, twodonol scheme for a particular MIPC system, where
bidirectional Cuk DC-DC converters are used as lilgpass converters and a terminal Cuk boost
functioning as a while system power conditioner.

Nowadays, fuzzy logic systems widely used with GQ#ahts. R. Boukenoui et al [18] proposed a new
intelligent MPPT method for standalone PV systerarafing under fast transient variations based on
fuzzy logic controller (FLC) with scanning and stgy algorithm. Furthermore, [19] presents an adapti
FLC design technique for PV inverters using diffgi@ search algorithm. Furthermore, N. Sa-ngawong
& |. Ngamroo [20] proposed an intelligent PV fardws robust frequency stabilization in multi-area
interconnected power systems using Sugeno fuzag tmmtrol, similar approach was developed by [21]
for power optimization in standalone PV systems.

In [22 & 23] authors have used a Mamdani fuzzydaogassification system which consists of two isput
the voltage and power ratio, and one output merhgersinction. The results can accurately detect
several faults in the PV system such as partialisgeand short circuited PV modules.

Artificial intelligent networks (ANN) is another rohine leaning technique nowadays is used for
detecting faults in PV systems. A learning methedda on expert systems is developed by [24] to
identify two types of fault (due to the shadingeeffand to the inverter’s failure). Whereas [25]posed

an ANN network that detects faults in the DC sidd”¥ systems which includes faulty bypass diodes
and faulty PV modules in a PV string.

A. Millit et al [26] shows that ANN networks is aogsible solution for modelling and estimating the
output power of a GCPV systems. However, a failnogle prediction and energy harvesting of PV plants
to assist dynamic maintenance tasks using ANN basmtels is proposed by F. Polo et al [27]. Further
investigation on a very short term load forecasfimga distribution system with high PV penetratien
suggested by S. Sepasi [28]. Finally, B. Amrouch¥.&ivert [30] offered an ANN network based daily
local forecasting for global solar radiation (GHThe ANN model is developed to predict the locallGH
based on a daily weather forecast provided by tBeNdtional Oceanic and Atmospheric Administration
(NOAA) for four neighbouring locations.
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The main contribution of this work is to presemew algorithm for isolation and identification dfet
faults accruing in a PV system. The algorithm igatde to detect several faults such as faulty Pduteo
in a PV string, faulty PV string, faulty MPPT, apdrtial shading conditions effects the PV systetre T
proposed algorithm is comparing between two difieegpproaches for detecting failure conditions \whic
can be described as the following:

1. Artificial Neural Network (ANN) Approach:
Four different ANN networks have been compared qusinlogged data of several faulty
conditions affecting the examined PV plant. The imaxn PV fault detection accuracy achieved
by the ANN networks is equal to 92.1%.

2. Fuzzy Logic Fault Classification Approach:
This approach consists of two types of fuzzy lagterface systems: Mamdani and Sugeno. Both
fuzzy interface systems were briefly compared amdetbped using MATLAB/Simulink
software. This approach was tested using a failtg&a which was logged from the examined
1.1 kWp PV plant installed at the University of Higdsfield.

The overall system design is shown in Fig. 1. TMepgRant has a capacity of 1.1 kWp. A computer
interface has two options, a PV fault detectiorodtgms which use MATLAB/Simulink software which
contains the ANN and the fuzzy logic interface egst Furthermore, LabVIEW software is used for the
real-time long-term data monitoring as well asadagging software environment.

This paper is organized as follows: Section 2 prisséhe data acquisition in the PV plant. Section 3
describes the methodology used, Fault detectioorittign and diagnosis rules are presented, while
section 4 lists the results and discussion of thekwFinally, section 5 describes the conclusiod farure

1.1 KkWp GCPV Plant Installed at the
University of Huddersfield

PV Fault Detection
Algorithm

' '

Real-time Long-
term Monitoring
Unit

a

ANN Network
Interface System

Fuzzy Logic Data Logging
Interface System System

v ELAVIEW
SIMULINK

Fig. 1. Overall System Architecture Design for Ehamined PV Plant
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2. Faultsin Photovoltaic Plants

The faults occurring in a PV system are mainlytegldo the PV array, MPPT units, DC/AC inverteng t
storage system and the electrical grid. This wamksao detecting the faults occurring in the PVagrr
and, with reference to Table 1, eleven differenttfare investigated.

It is worthy to mention that PS conditions usedhis work corresponds to an irradiance level affexdt

TABLE 1
DIFFERENTTYPE OFFAULTS OCCURRING IN THEEXAMINED PV PLANT
Type of Faul Symbo
Normal Operation and PS effects the PV system F1

One faulty PV modul F2

Two faulty PV modules F3
Three faulty PV module F4

Four faulty PV modules F5
One fault PV module and PS effects tPV syster F6
Two faultyPV modules and PS effects 1PV syster F7
Three faulty PV modules and PS effects the PV ayste F8
Four faultyPV modules and PS effects 1PV syster F9

Faulty PV String F10
Faulty MPPT un F11

examined PV modules. Thus, during the experimaitgxamined PV modules were tested under the
same PS conditions with different shading percesg480%, 30%, etc.).

3. METHODOLOGY

This section reports the PV data acquisition systevhtheoretical modelling, the overall fault detec
algorithm, and the detailed design of the propaaéficial neural network and the fuzzy logic irfere
system.

31 PV Plant and data Acquisition

The PV system used in this work consists of a gadrected PV plant comprising 5 polycrystalline
silicon PV modules each with a nominal power of 2¥f. The photovoltaic modules are connected in
series. The photovoltaic string is connected toaxiMum Power Point Tracker (MPPT) with an output
efficiency of not less than 95.0% [31 & 32]. The R@rent and voltage are measured using the irdterna
sensors which are part of the Flexmax MPPT unit.

A Vantage Pro monitoring unit is used to receive Global solar irradiance measured by the Davis
weather station which includes a pyranometer. A Hubommunication manager is used to facilitate
acquisition of modules’ temperature using the Daxternal temperature sensor, and the electridal da
for each photovoltaic string. VI LabVIEW software lised to implement data logging and monitoring
functions of the PV system. Fig. 2 illustrates tlverall system architecture of the PV plant.

The real-time measurements are taken by averadirgpfples, gathered at a rate of 1 Hz over a period
of one minute. Therefore, the obtained resultpfiwer, voltage and current are calculated at omeiti
intervals.



TABLE 2
ELECTRICAL CHARACTERISTICS OFSMT6(60) P PV MODULE

Solar Panel Electrical Characteristics Value
Peak Powe 220 W
Voltage at maximum power point &) 28.7V
Current at maximum power point.() 7.67 A
Open Circuit Voltage (oc) 36.74 \
Short Circuit Current }) 8.24 A

Number of cells connected in se 60

Number of cells connected in parallel 1

Rs, Rs 0.53 Ohms , 1890 Ohr
dark saturation current (lo) 2.8 x10A
Ideal diode factor (4 1.kt

Boltzmann’s constant (K)

1.3806 x fu.k*

Five Series Connected Photovotlaic Modules “Max
Power at STC: 1100 Wp”

Davis Weather
Station Console
‘“Pyranometer Is
Used To Measure
The Global Sun
Irradiance Levels™”

=

IFIFI 18

/mm = 950%
Flexmax 80 MPPT I

PV Module
“maximum Power At
STC 220.2 Wp»

Vantage Pro2
Monitoring
Unit

Nimax = 99.3%

Graphical User
Interface

’—> “LabVIEW Software”

— | e
Hasesm
5— Davis External — 29
Temperature Sensors Q
“Used to Measured
All PV Modules ;
Temperature Levels” DC- LOAD — B i . MATE3
Communication Py ehe
Monitoring Unit
Manager

Fig. 2. Examined PV System Installed at the Husliildd University, United Kingdom

131 The SMT6 (60) P solar module manufactured by Ronhag, been used in this work. The electrical
132  characteristics of the solar module are shown blel'a. The standard test condition (STC) for tredar
133 panels are: solar irradiance = 1000 \i//module temperature = 25 °C

134 3.2 Photovoltaic Theoretical Modelling

135 The DC side of the PV system is modelled using 3kfgarameter model. The voltage and current
136

characteristics of the PV module can be obtainégtyube single diode model [29] as follows:



137

138
139
140

141

142

143
144
145
146
147

148

149
150
151

V4IRs V+IR;
I'=Ipn—1I, (9 NsVe — 1) - (R_sh) (1)
wherel,, is the photo-generated current at STig ,is the dark saturation current at STR;, is the

module series resistand®,;, is the panel parallel resistandg, is the number of series cells in the PV

module and/; is the thermal voltage and it can be defined dhase

Ve= 2ot )

whereA the ideal diode factok, is Boltzmann’s constant amgdis the charge of the electron.

The five parameter model is determined by solvihg transcendental equation (1) using Newton-
Raphson algorithm [30] based only on the datasbe¢he available parameters for the examined PV
module that was used in this work as shown in TablEhe power produced by the PV module in watts
can be easily calculated along with the currenta(ijl voltage (V) that is generated by equation (1),
therefore:

tReoreticaI: I xV (3)

The Current-Voltage (I-V) and Power-Voltage (P-Virwes of the examined PV module is shown in Fig.
3(A) and Fig. 3(B) respectively. Three differenmsiation results is explained at 1000, 500, and 100
W/m?. However, the simulation temperature remains & &5 °C).
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The purpose of using the analysis for the |-V ard @rves, is to generate the expected output paifver
the examined PV module, therefore, it can be usqutedict the error between the real-time long-term
PV measured data and the theoretical power andgefperformance.

3.3 Overall PV Fault Detection Algorithm

In order to determine the type of a fault occuiredur PV plant, two ratios have been identifiedw@r
ratio (PR) and voltage ratio (VR) have been usechtegorise the region of the fault because bdtbsra
have the following features:

1) Both ratios are changeable during faulty conditionthe PV system
2) When the power ratio is equal to zero, the voltesg® can still have a value regarding the
voltage open circuit of the PV modules

The power and voltage ratios are given by the Wilg expressions:

PR = Ptheoretical (4)
Pmeasured
V .

VR = theoretical (5)
Vmeasured

wherePqoreticar 1S the theoretical output power generated by Meytem P, .qsurea 1S the measured

10 - .
— 8 i ]
=
€ 6 _
3
S 4rF 4
(&

2| Foown | \ '
0 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40
Voltage (V)
(A

250 |
200 ]
s
» 150 ]
(]

3
S 100 1
50 :
0 . . . . . .
0 5 10 15 20 25 30 35 40
Voltage (V)
(B

Fig. 3. Photovoltaic Theoretical Curves Modelligg) I-V Curve. (B) P-V Curve
7
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output power from PV strind/;ineoreticar 1S the theoretical output voltage generated byRWesystem
andV,casurea 1S the measured output DC voltage from PV string.

Since the internal sensors of the MPPT have a esioveerror rate of 95% as shown in Fig. 2, the grow
ratios are calculated at 5% error tolerance oftkie®retical power which presents the maximum error
condition for the examined PV system. Therefore,tfaximum and minimum power and voltage ratios
are expressed by the following formulas which cmstéhe tolerance rate of the MPPT units and thed to
number of PV modules in the PV string:

. P i
PR min = theoretical (6)
Pmeasured
P .
PR max = theoretical
Pmeasured X MPPT Tolerance Rate
(7)
. V. ;
VR min = theoretical (8)
Vmeasured
V. .
VR max = theoretical
Vmeasured X MPPT Tolerance Rate
9)

The normal operation mode region of the examinedR¥it at STC is shown in Fig. 4 casel, the values
of the PR can be calculated using (6 & 7) as tHeviing:

Ptheoretica\l — 1100 =1
Pmea\sured 1100

Normal Operation Mode — PR min =

Ptheoretical 1100

= = 1.053
Preasured X MPPT Tolerance Rate 1100 X 95%

Normal Operation Mode — PR max =

As can be noticed from Fig. 4 case 2, the maximantigl shading condition detected by the irradiance
sensor is equal to 97.3%, therefore, the maximunsRlculated as the following:

l:)theoretical — 1100 -
Preasured X MPPT Tolerance Rate  23.66 X 95%

Fault Detection Algorithm Maximum PR =

The value of the maximum PR is important becausleeifPR is greater than 50, then the fault detectio
algorithm can specify whether a fault occurrechima MPPT unit or there is a complete disconnectiom o
PV string from the entire PV system. In order teedewhich type of fault accrued in the region & P
50. The value of the voltage ratio has been consitjéwo conditions is selected:

1. If VR >0, then a faulty PV string is detected
2. If VR =0, then a faulty MPPT unit is detected

Furthermore, if the value of the PR does not li¢hiwi the normal operation mode region and it is not
higher than the PR max threshold (PR0), then the value of the PR and VR is passé¢de@econd part
of the fault detection algorithm which consiststwb different machine learning techniques as shiswn
Fig. 5.

The first technique is the artificial neural netWw@ANN). In order to select the most suitable ANNahel
structure, four different ANN models have been deped:

8
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* 2 Inputs, 5 outputs using 1 hidden layers
* 2 Inputs, 5 outputs using 2 hidden layers
* 2 Inputs, 9 outputs using 1 hidden layers
* 2 Inputs, 9 outputs using 2 hidden layers

A brief illustration on the selection of the varde® and ANN model structure is covered in the next
section (section 3.4).

The second machine learning technique used totdatssible faults occurring in the PV system is the
fuzzy logic. In this paper, two different fuzzy logystems have been implemented:

* Mamdani-type fuzzy logic system interface
» Sugeno-type fuzzy logic system interface

The fuzzy logic systems are explained in sectidh Bloreover, the type of the fault which can be
detected using the machine learning techniquestene@n in Table 1.

CASE1I:
Maximum Normal Operation
Condition TMax =99.3%
M Min = 95.0%
Five Series Connected 1100 Wp—»| —Max: 1100%x99.3%= 1092.3 Wp—»
Photovoltaic Modules FLEXmax MPPT Unit l DC LOAD
“PV String” > ——Min: 1100X95%= 1045 Wp—>
CASE2:
Maximum Partial Shading
.. o TMax =99.3%
Condition (97.3%)
M Min = 95.0%
Five Series Connected F—23.66 Wp—» ——Max: 23.66%99.3%= 23.49 Wp—>»
Photovoltaic Modules FLEXmax MPPT Unit I DC LOAD
“PV String” > ——Min: 23.66X95%= 22.48 Wp—>|

Fig. 4. DC side Numerical Calculations at Maximanmd Minimum Operating Points



Pmax = | [ Pmax=

1100Wp MMax = 993% 1092.3Wp
- TMin =95.0% -
Five Series Connected > >
Photovoltaic Modules FLEXmax MPPT Unit I DC LOAD
“PV String” > L —>
1.053 >PR>1
Comparing 4 Different ANN Structure:
YES 2 Inputs> 5 Outputs, 1 Hidden Layer
‘ / 2 Inputs > 5 Outputs, 2 Hidden Layers
2 Inputs > 9 Outputs, 1 Hidden Layers
2 Inputs > 9 Outputs, 2 Hidden Layers
Normal
Fault Operation
Classification F1 ~ Mode N
F11 are illustrated ANN Network ———> Type of Fault Detected
in Table 1
l Fuzzy Logic System > Type of Fault Detected

Comparing 2 Different Fuzzy
Logic Classification Structure:

Mamdani-Type Fuzzy Interface

Sugeno-Type Fuzzy Inference

Faulty PV String| |Faulty MPPT Unit
(F10) (F11)

Rules Based on Theoretical Calculations Machine Learning Techniques Used to Detect Faults In the GCPV Plant

Fig. 5. Detailed PV Fault Detection Approach

214 34 ANN Modd | mplementation

215  The main objective of the ANN model is to detecsgible faults in the examined PV system shown in
216  Fig. 2. The ANN model has been developed as fotlows

217 » Selection of input and output variables
218 « Data set normalization

219 » Selection of network structure

220 * Network training

221 * Network test

222  The input parameters used to configure all testliiN Anodels are the VR and PR ratios which can be
223 calculated using (8 & 9) respectively. The Data(sgdut variables) are normalized within the ran§el
224  and +1 using (10).

225 y = (Ymax~ ¥Ymin) (X— Xmin) + Vinin

(Xmax— Xmin)

226 (10)

10



227
228

229
230
231

232
233
234
235

236
237
238
239
240

241
242
243
244
245

246
247

248
249
250
251
252
253
254
255
256

257
258
259
260
261

262
263
264
265
266
267

where € {Xmin»Xmax} V € VYmin»Ymax} @and x is the original data value and y is the exponding
normalized value witly,,,;, = —1 andy,q = +1.

In order to select the most efficient architectimethe ANN model, a comparison between four défer
ANN models have been performed where the struattir@l tested ANN networks is the Radial Basis
Function (RBF) as shown in Fig. 6.

ANN models A and B are using 2 inputs (VR & PR) dive outputs, where the hidden layers are equal
to one and two respectively. The purpose of inéngathe hidden layers, is to increase the compnati
performance of the ANN network, thus, increasing detection accuracy (DA) of the ANN model. The
faults which can be detected using both ANN modsts

» F1: Partial Shading (PS) affecting the PV system

* F2: One faulty PV Module and PS affecting the Pstemn

* F3: Two faulty PV Modules and PS affecting the Bstem
* F4: Three faulty PV Modules and PS affecting thesystem
* F5: Four faulty PV Modules and PS affecting thedystem

From the research conducted using several daysumagasnts (briefly described in the results section)
the comparison between model A and model B shoashibth models have a low detection accuracy
where the maximum achieved detection accuracyusaldq 77.7%. Therefore, this challenge was solved
by adding new types of faults for the ANN netwoHatt allows the ANN model to detect faulty PV
modules only (No PS on the entire PV plant).

ANN models C and D are using 2 inputs (VR & PR) amtk outputs, where the hidden layers are equal
to one and two respectively. The faults which camlétected using both ANN models are:

» F1: PS affecting the PV system

e F2: One faulty PV Module only

e F3: Two faulty PV Modules only

* F4: Three faulty PV Modules only

* F5: Four faulty PV modules only

* F6: One faulty PV Module and PS affecting the Pstemn

* F7: Two faulty PV Modules and PS affecting the Bstem
» F8: Three faulty PV Modules and PS affecting thesystem
* F9: Four faulty PV Modules and PS affecting thedystem

In this study, the data set have been recorded fhenexperimental setup shown in Fig. 2. The data s
used to train, validate, and test the ANN netwarkstains 6480 measurements logged in 9 days as
shown in Fig. 7, where each day consists of 720p&anDuring the experiment, the PV modules’
temperature is between 15.3 — 187 the value of the VR and PR have been loggecth Bay has a
different fault applied to the PV systems which barsimplified by the following:

» Day 1: Partial shading conditions affecting the $/gtem

« Day 2: One PV module has been disconnected frorRthsystem (faulty PV modules)
» Day 3: Two PV modules have been disconnected fhenPl system

» Day 4: Three PV modules have been disconnectedthierRV system

» Day 5: Four PV modules have been disconnected thenPV system

» Day 6: One PV module has been disconnected angpi@dto all other PV modules

11
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» Day 7: Two PV modules have been disconnected arebpiid to all other PV modules
» Day 8: Three PV modules have been disconnecte®Srapplied to all other PV modules
» Day 9: Four PV modules have been disconnected Srapplied to all only existing PV module

The obtained measurements is then divided intetbubsets:

1. 70% of the data are used to train the ANN networks.

2. 10% of samples are used to validate the ANN netw®His test is not used in the training
process.

3. 20% of samples are used to test the actual ANNar&tdetection accuracy.

12
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276  The implementation of the ANN network has been tgpead using MATLAB/Simulink software. ALL
277  results obtained from the ANN network is discusbédfly in the results section, where the maximum
278  obtained detection accuracy among all tested ANNeat®is equal to 92.1% for the ANN model which
279  contains 2 inputs, 9 outputs using 2 hidden laygireover, the minimum Mean Square Errors (MSE)
280  achieved during the training and test processe8.8665 and 0.007 respectively.

Input Layer Neurons: 5 Output Layer B Input Layer

Neurons: 5x 5 Output Layer

c |mputLayer Neurons: 7 Output Layer Input Layer =~ Neurons: 7x7 Output Layer

N
\\oie
WA
g
A
\

Fig. 6. The Adopted ANN Network. (A) 2 Inputs, ®itputs using 1 Hidden Layer, (B) 2 Inputs, 5 Ouspuging 2 Hidden Layers,
(C) 2 Inputs, 9 Outputs using 1 Hidden Layer, (DipRuts, 9 Outputs using 2 Hidden Layers
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Fig. 7. Dataset used to Train and Validate the Aidivorks

35 Fuzzy Logic Model | mplementation

In this study, the second machine learning techmigged to detect faults in the PV system is theyfuz
logic system interface. In order to select the nmefficient model for the fuzzy logic system fault
detection interface, a comparison between two fuzagels widely utilized for the classification @fults
have been performed: Mamdani fuzzy logic and Suggp® fuzzy system.

Mamdani fuzzy logic systems commonly suited to horimgut interface. However, the Sugeno fuzzy
systems are well established using a linear weightathematical expressions. The main advantages for
both fuzzy logic systems are illustrated by théofeing:

Sugeno-type: M amdani-type:
- Itis computational efficient. - Itis intivie.
- It works well with linear techniques. - Ithaidespread acceptance.
- It works well with optimization methods and -It is well suited to human input
Adaptive techniques. systems interface

- It has guaranteed continuity of the output
Interface surface.
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Both implemented fuzzy logic systems are shownim B. The VR and PR ratios are used as input
variables for the fuzzy logic classification systewhere VR and PR is calculated using (7 & 9)
respectively. The VR and PR regions are illustratedable 3. As can be noticed, ten different ragio
have been selected, where region 1 is the lowagbatiading (PS) condition. Whereas, region 4 isluse
for a faulty PV module with high PS condition (56987.3% PS). The minimum and maximum limits for
each region of the VR and PR is also shown in Tablhe defuzzification process for the input rukes
the centroid type.

All measurements for the theoretical VR and PR Hasen taken from a MATLAB/Simulink model
which is designed the same as the examined PVmsymtesented in Fig. 2 with the consideration of all
PV parameters given in Table 2.

After identifying the input variables VR and PR ia@ts, it is required to set the rulers for the fukagic
system interface. As shown in Fig 8, Mamdani fulkmjic system consists of ten different membership
functions (MF) which are described by the following

* MF1: Low PS affecting the PV system

* MF2: High PS affecting the PV system

e MF3: One faulty PV module and low PS affecting F\é system

e MF4: One faulty PV module and high PS affecting iyesystem

» MF5: Two faulty PV modules and low PS affecting B system

e MF6: Two faulty PV modules and high PS affecting BV system
e MF7: Three faulty PV modules and low PS affectimg PV system
* MF8: Three faulty PV modules and high PS affecthgyPV system
*  MF9: Four faulty PV modules and low PS affecting BV system

e MF10: Four faulty PV modules and high PS affectimg PV system

The Mamdani based system architecture is usingvilue-Min composition technigue with a centroid
type defuzzification process.

TABLE 3
Fuzzy LOGICINPUT REGIONS—VR & PR
Scenari Partial Min Voltage Max Voltage Min Power Max Power Fuzzy
Shading % V) V) (W) (W) Classification
System Region
Partial Shadin 0-49% 1 1.2 1 2.4 1
(PS)
50-97.3% 1.1 14 2.1 28 2
Faulty PV 0-49% 1.2¢ 1t 1.2 3 3
Module and PS
50 -97.3% 1.34 1.7 2.7 35 4
2 Faulty PV 0-49% 1.67 1.9t 1.8 4 5
Module and PS
50 -97.3% 1.76 2.26 3.5 47 6
3 Faulty PV 0-49% 2.52 2.9z 2.t 5.¢ 7
Module and PS
50-97.3% 2.6t 3.4 5.2 7C 8
4 Faulty PV 0-49% 5 5.¢ 5 12 9
Module and PS
50-97.3% 5.2 6.8 10.€ 141 10
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321 Similarly, the fuzzy logic rules obtained for theggno type fuzzy logic interface is equal to 1&kawn

322 in Fig. 8. Where each rule presents the same suldeacribed in the Mamdani fuzzy logic system. The

323  Sugeno based system architecture is using the Maxeddmposition technique with a centroid type
324  defuzzification process.

325 It is worth pointing out that a high number of fydmgic rules ensure both completeness and apatepri

326  resolution of the fault detection accuracy. Howewehigh number of fuzzy rules may lead to an over

327 parameterized system, thus reducing generalizatpability and accuracy of detection the type @&f th

328 fault accruing in the examined PV system. Thereftire number of fuzzy rules depends on the number
329  of input variables, system performance, the exenuime and the membership functions. In this paper
330 ten fuzzy logic rules were decided according t@masgivity analysis made by varying the number and

331  type of the rule. A satisfactory level of performmarwas obtained after a tuning process, i.e. staftom
332 faulty PV module only and progressively modifyifg tfuzzy system to detect all possible faults tlag m
333  occur in the PV plant according to the faults tylisted in Table 1.

334  Both fuzzy logic systems rules are based on: iff atatement. The fuzzy rules are briefly listed in

335  Appendix A. Furthermore, the output surface for Mam and Sugeno fuzzy logic systems are plotted

336 and represented by a 3D curves as shown in Fig) & Fig. 9(B) respectively. Where the x-axis
337  presents the PR ratio, y-axis presents the VR, ratid the fault detection output is on the z-axis.

oltage and Power Ratios are
Shown in Table 3

2 3 4 5 6 7 8 9 10

“1

Degree of 5 10
Membership 1 2 3 4 56 7 8 9
A A A A A A A A A
Fuzzy Sugeno
Classification = g
> System Rules cgree ol
Voltage Ratio : > Membership
A “Mamdani”
1 2 3 4 5 6 7 8 9 10 Or
“Sugeno™
Degree of >
Membership > 1 2 3 4 5 6 7 8 9 10

Type of Fault - Regions

v

Power Ratio

D

Degree of
Membership

0 075 1 1.5° 1i75

o
[
i
o
i

3 325 375 4 45 475 525 55 6 625 6.75 7 7.75
Type of Fault - Regions

Fig. 8. The Adopted Sugeno and Mamdani Fuzzy L8g&tems
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Fig. 9. Fuzzy Logic Systems Classifier Output Scels. (A) Mamdani-Type Fuzzy Logic System Interfg§B@ Sugeno-Type Fuzzy
Logic System Interface

338 4 RESULTS AND DISCUSSION

339  This section reports the results of the develomadt fdetection algorithm. Furthermore, a comparison
340 between the developed machine learning technigitbssame ANN and fuzzy logic systems obtained by
341  various researchers is briefly explained in secfign(discussion section).

342 41 Experimental Data

343 In order to test the effectiveness of the propdaett detection algorithm, a number experimentsewer
344  conducted. Table 4 shows a full day experimentahados which are applied to the PV plant, wheee th
345  perturbation process made to the PV system is slimvwppendix B. Each scenario lasts for an hour and
346 it contains a different condition applied to theesned PV system illustrated previously in Fig. 2.

347  As can be noticed, the data samples for both sé@epnormal operation modes are not included in the
348  evaluation process of the machine learning teclesigaince both scenarios can be detecte3d using the
349  mathematical regions explained in Fig. 5. Furtheenscenarios 3~5 and 7~11 are evaluated by the ANN
350 network and the fuzzy logic system, were the totahber of sample for the faulty conditions is edoal
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351  four hundred and eighty. Moreover, a comparisomeeh the theoretical output power vs. the real time
352 long term measured data of the PV system duringefted faulty conditions are is shown in Fig. 10.

TABLE 4
MULTIPLE FAULTS OCCURRING INTHE EXAMINED PV SYSTEM
Scenario # Start End Condition applied to the PV system Number of sampleplied
time time to the ANN network
1 5:4k 5:57 Sleep mod -
2 5:58 6:59 Normal operation mode -
3 7:0C 7:5¢ 20% partial shadir 60
4 8:00 8:59 Faulty PV module and 20% partial shgdin 60
5 9:0C 9:5¢ Faulty PV module and 40% partial shac 60
6 10:00 10:59 Normal operation mode -
7 11:0C 11:5¢ 2 Faulty PV modules and 30% partial sha 60
8 12:00 12:59 30% partial shading 60
9 13:0C 13:5¢ 4 Faulty PV modules on 60
10 14:00 14:59 3 Faulty PV modules and 20% pastialding 60
11 15:0C 15:5¢ 3 Faulty PV modules on 60
12 16:00 17:57 Normal operation mode -
13 17:5¢ 19:0( Sleep mod -

Sum:48C

1000
——Theoretical Output Power (W)

——Measured DC Output Power (W)

700

POWER (W)

Case 13

o g

5:45:36 6:57:36 8:09:36 9:21:36 10:33:36 11:45:36 12:57:36 14:09:36 15:21:36 16:33:36 17:45:36
GMT TIME [HH:MM:SS]

s
|

300

200 Case 9

Case 10

Case 11 ‘

H‘M

100

Fig. 10. Theoretical Output Power vs. MeasuredpOuPower for All Tested Scenarios Applied on tixafgined PV system, Each
Case is Perturbed as Shown in Appendix B
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4.2 Performance Evaluation of the proposed ANN Networks

In order to verify the performance of the propos@tN networks, the VR and PR ratios of 480 samples
illustrated in Table 4 have been used as an imputdch ANN network shown previously in Fig. 6. For
analyzing the effectiveness of each ANN network, FL(A-D) shows the output classification confusion
matrices for the developed ANN networks.

The cells of each matrix with red and green cofmesents the percentage of faults correctly and not
correctly classified by the ANN network respectiweAdditionally, the fault classification numbegufit
type and number of samples for each examined ANMor& is shown in Table 5. Moreover, the gray
blocks represents the total percentage of the til@tesccuracy in the column and row respectively.

In order to understand how to read the confusiotrices shown in Fig. 11. The first confusion matrix
(Fig. 11(A)) will be explained in brief. In thisdiure, the first five diagonal cells show the numbed
percentage of correct classifications by the trhinetwork. For example, 118 samples for F1 (fagdet
shown in Table 5), are correctly classified. Thosresponds to 24.6% of all tested samples (480 leamp
Similarly, 30 samples are correctly classified asthis corresponds to 6.3% of all 480 samples.

In row 1, 1 sample is incorrectly classified asartl it is classified as F3, this corresponds t&0a2 all
480 samples. Similarly, 2 samples of F5 are inatiyreslassified as F1 and this corresponds to 004%
all 480 samples.

In row 2, 30 samples are correctly classified asE2, this corresponds to 6.3% of all 480 samples

Out of 120 sample corresponds to row 1, 97.5% areect and 2.5% are wrong. Out of 120 samples
corresponds to column 1, 98.3% are correct and ki@ classified incorrectly. For row 2, all samples
have been classified correctly, 100%. However,cfdumn 2, out of 120 samples, 25% are correct and
75% are incorrect.

The overall detection accuracy of the confusionrixabuld be calculated using the diagonal cellshas
following:

1% cell (24.6%) + ¥ cell (6.3%) + &' cell (10.2%) + & cell (17.3%) + 8 cell (11.9%) = 70.2%

This 70.2 corresponds to the percentage of coyretdissified samples (out of all tested sample§, 48
sample). And 29.8% correspond to incorrectly cfassisamples.

From the obtained results in Fig. 11(A) the minimdetection accuracy is associated with column 2,
where 75% of the samples are incorrectly classifigds situation occurred when 3 faulty PV modules
and PS affecting the PV module (F3) is classifisdF2. And this happens when there is a rapid
drop/increase in the irradiance level or PS coodtiaffecting the examined PV modules.

Similar results obtained with the second ANN netw@ontains 2 outputs and 2 hidden layers) shown in
Fig. 11(B). Where the percentage of the error éntilying F3 is increased to 83.3%, shown in coluinn
However, the overall detection accuracy of the sdcBNN network is increased to 77.7% comparing to
70.2% obtained by the first ANN network. This irese in the detection accuracy is due to the second
hidden layer which enables more training and vébdacomputational process for the ANN network
before the testing phase.
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392  As can be noticed, ANN networks one and two hawedgeralldetection accuracy. As mentioned earlier
393 in section 3.4, this challenge was solved by addieny type of faults for the ANN network that allows
394  the ANN model to detect faulty PV modules only (R on the entire PV plant).

395 Fig. 11(C) describes the output classification asitn matrix of the third ANN network (contains 9
396  outputs and 1 hidden layer). The overall detecicturacy of the ANN network is equal to 87.5% where
397 the highest error is associated with F7 (row 7)isThult is related to the samples of F7 which are
398 classified as F8. This situation occurred when fawdty PV modules with high partial shading corwmfiti
399 s detected by the ANN network as three faulty Pdoies with low PS condition affecting the entiké P
400  system.

401  The last ANN network contains 2 inputs, 9 outputd a hidden layers. The overall detection accuadcy
402  the network is 92.1% which means that the ANN nétvaetects accurately 442 samples out of 480, this
403  results is shown in Fig. 11(D).

404  The highest error in identifying the type of thelfds associated with the samples of F6 beingsiiag
405 as F1. The total percentage of error is equal t8%0shown in column 1. Out of 120 samples, 8 sampl
406  are incorrectly classified. This situation occurigen there is a high partial shading conditionglied
407  to the PV system including one faulty PV modules&hon the detected samples, this type of the ifault
408 classified as being F1 (PS affecting the PV system)

409 In conclusion, the obtained results of this secbows that the maximum detection accuracy of all
410 examined ANN networks is equal to 92.1% which isi@eed by the fourth ANN network that includes 2
411  inputs, 9 outputs with 2 hidden layers.

TABLE 5
FAULTS ASSOCIATED WITH THEEXAMINED ANN NETWORKS
ANN network Fault Type of the fau Number of
number samples
ANN network 1 anc F1 PS affecting the PV syst¢ 12C
2 as shown in Fig. F2 1 Faulty PV module & PS affecting the PV mox 12C
11(A) and Fig. 11(B) F3 2 Faulty PV modules & PS affecting the PV mo 6C
respectively F4 3 Faulty PV modules & PS affecting the PV mo 12C
F5 4 Faulty PV modules & PS affecting the PV moi 6C
F1 PS affecting the PV syste 12C
F2 1 Faulty PV modul 0
ANN network 3 and F3 2 Faulty PV module 0
4 as shown in Fig. F4 3 Faulty PV module 6C
11(C) and Fig. 11(D) F5 4 Faulty PV module 6C
respectively F6 1 Faulty PV module & PS affecting the PV mo 12C
F7 2 Faulty PV modules & PS affecting the PV mo 6C
F8 3 Faulty PV modules & PS affecting the PV mo 6C
F9 4 Faulty PV modules & PS affecting the PV moi 0
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using 2 Hidden Layers
4.3 Performance Evaluation of the proposed Fuzzy Logic Systems

In order to test the effectiveness of the propdsedy logic systems (Mamdani and Sugeno) the faulty
samples shown previously in Table 4 have been pseckin each fuzzy system. Furthermore, the
implementation of the fuzzy logic systems are exgld in section 3.5.

A. Mamdani Fuzzy L ogic System:

Fig. 12(A) shows the output membership function the faulty samples which are equal to 480 for
Mamdani fuzzy logic system interface. Each faul¥ ¢®dndition is labelled on the figure. As an exaepl
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419 case 3 presents 20% partial shading condition taffpche PV module, for this particular PV faulty
420  scenario, the output of the fuzzy system is equdl.5, which is the region of PS condition illusdcin
421  Fig. 12(B). Similarly, case 4 and 5 presents atya@V module with 20% and 40% PS respectively. Both
422  cases are within the same membership function medi® to the low PS condition affecting the PV
423  modules, this situation is labeled as case 4 asel 8@n both Figs. 12(A) and 12(B).

424  As can be noticed that all examined faulty condii@re accurately detected by Mamdani fuzzy logic
425  system. However, between case 7 and case 8 theamall amount of error in detecting the regiothef
426  fault, same result accruing between case 8 andcalas situation is occurring in the fuzzy systduoe

427  to the high number of faulty regions identifiedthg fuzzy system, additionally, the VR and PR satice
428  strongly depends on the performance of the voltagkcurrent sensors used to detect the change in th
429 PV parameters (voltage, current and power). Thezetbe fuzzy logic system might need some extna fe
430 seconds to start detecting the exact faulty oaegiin the PV installation.

431 B. Sugeno Fuzzy L ogic System:

432  Fig. 13(A) shows the output membership functionthe. faulty samples for Sugeno fuzzy logic system
433  interface. Each faulty PV condition is labelled the figure. As an example, case 7 presents twayfaul
434 PV modules and low partial shading condition affegtthe PV plant, for this particular PV faulty

435  scenario, the output of the fuzzy system is equd, twhich is the region of PS condition illustihie

8
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5.5 Case 10
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Fig. 12. Output Results Obtained using Mamdanilfuogic System. (A) Membership Functions vs. NumtifeSamples, (B)
Membership Function Explained Previously in SecBdnvs. Type of Fault
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Fig. 13(B). Similarly, case 10 and 11 presents r@ethfaulty PV modules with 20% and 0% PS
respectively. Both cases are within the same meshigfunction region due to the low PS condition
affecting the PV modules, this situation is labedecttase 10 and case 11 on both Figs. 13(A) ag).13(

From the result obtained by the Sugeno fuzzy Isgi&tem, all examined faulty conditions are acclyate
detected. However, between case 7 and case 8isheremall amount of error in detecting the regibn
the fault. This situation is occurring in the fuzgystem due to the high number of faulty regions
identified by the fuzzy system, additionally, theRVand PR ratios are strongly depends on the
performance of the voltage and current sensors wsddtect the change in the PV parameters (vgltage
current, and power). Similar error was also obstwethe Mamdani fuzzy logic system between case 7
and case 8.

In conclusion, this section presents the behavidhefuzzy logic systems developed for detectigty

conditions occurring in the examined PV system.hBozzy logic systems show an accurate results in
detecting various faults comparing to the resultaimed by the ANN networks which has a maximum
detection accuracy equals to 92.1%. A comparisovden both machine learning techniques are

Segeno Fuzzy Logic Classification System Output
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Fig. 13. Output Results Obtained using Sugeno y¥uegic System. (A) Membership Functions vs. NumbeBamples, (B)

Membership Function Explained Previously in SecB8dmvs. Type of Fault
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discussed briefly in the following section: 4.4daission.
44 Discussion

In this study, artificial intelligent network (ANNBnd fuzzy logic system interface have been deeglop
for detecting faults in PV installations. Howevére PV system used for analyzing the performance of
both machine learning techniques is consideredoasclapacity PV installation (1.1 kWp). For that
instance, the output of the fuzzy logic systemsashan accurate detecting accuracy (all examineksfau
have been detected correctly) comparing to the AMNilith has a maximum detection accuracy equals to
92.1% obtained for the fourth ANN structure whiamntains 2 inputs, 9 outputs using 2 hidden layers.
The input membership functions of the fuzzy logistem could be much complicated if the examined
PV installation has much more PV modules (~100 RMufes), since each PV module could affect the
overall input membership functions.

In order to test the effectiveness of the finaledéon accuracy obtained by the ANN network. The
proposed method has been compared with the ANNubtgults presented in [25]. The output confusion
matrix for both obtained studies are compared @n F(A) and Fig. 14(B). As can be noticed, theralle
detection efficiency of the proposed ANN networketgual to 92.1% comparing to 90.3% obtained by
[25]. The faults which are detected by [25] is tethto the bypass diodes in the PV systems which is
quite different than the faults obtained by thisearch. However, both ANN networks are using the
variations of the voltage and the power form thednt as an inputs for the ANN model.

To the best of our knowledge, few of the reviewditkes used a fuzzy logic system to detect faits
PV installations. Therefore, this is one of the elazontribution of this study. A compression betwétge
output membership functions developed by [1] and #tudy are shown in Fig. 15(A) and Fig. 15(B)
respectively. In [1] authors’ are using MamdanizZyzogic system for enhancing the detection ofiphrt
shading conditions effecting the PV plant. The psgnl mathematical calculations of the fuzzy logic
system is also presented in Fig. 15(A). Moreovke fuzzy logic systems (Mamdani and Sugeno)
presented in this paper are used for detectingilgesmults accruing in the examined PV system. The
overall detection accuracy of the proposed fuzatesys is very high, since the examined PV system
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Fig. 14. Classification Confusion Matrix for ANNevork. (A) Results Obtained by W. Chine et al][2B) Results Achieved usil

the Proposed ANN Fault Detection Algorithm
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Sugeno Fuzzy Logic Systems Proposed in this Study

does not contain too many PV modules.

The obtained results for the developed ANN netveor#t the fuzzy logic system are compared in Table 5.
The mathematical modelling on the ANN network iscmgimpler comparing to the creation of the fuzzy
logic membership functions, this situation is cotrepecially for large PV installations. Howevere t
ANN network does require a log of samples in orgevalidate and train the network while the fuzzy
logic systems does not require any log of datareefoeating the membership function, it just neesd t
update the mathematical modelling with the degiadatates of the MPPT units and/or any other
possible source for decreasing the overall efficyesf the PV system such as the DC/AC inverters.
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TABLE 6
CoMPARISONBETWEENANN AND Fuzzy LOGIC SYSTEMS

Compariso ANN Network Fault Detectiol Fuzzy Logic System Fault Detecti
Approach Approach
Mathematical Modelling Does not contain complex For larger PV systems(~100 PV modules)
mathematical modelling, since it  the membership functions does require a
depends on a log of data lot of mathematical expressions
Detection Accurac High High
Detection Time “Response” Fast (milli/micro seconds) Fast (milli/micro secsihd
Photovoltair Parametel Depends on the type of the PV fa  Depends on the type of the PV fault wh
which needs to be detected needs to be detected
Logged Data Required Dose not require any previous logged data
Recent Applications Applie i. Improving the i. Power optimization i
to PV Systems estimation of GCPV standalone PV systems
power output [33] [21]
ii. Forecasting for global ii. PV fault detection based
solar radiation [34 & on multi-resolution
35] signhal decomposition [36
& 37]

484  The overall detection accuracy for both machinenieg techniques are high if they have been built
485  accurately. Finally, Table 6 shows some of thentagplications for ANN networks and the fuzzy ogi
486  systems developed nowadays in PV plants.

487 5. CONCLUSION

488  This paper presents a new photovoltaic (PV) faetection algorithm which comprises both artificial
489  neural network (ANN) and fuzzy logic system intedaThe algorithm is capable for detecting various
490 fault occurring in the PV system such as faulty mA@dule, two faulty PV modules and partial shading
491  conditions affecting the PV system. Both machiranang techniques was validated using a 1.1 kWp PV
492  plant installed at the University of Huddersfidlthited Kingdom.

493  The fault detection algorithm is using the variati®f the voltage and power of the examined PVesyst
494  as an input for both ANN and the fuzzy logic systémorder to achieve high rate of detection accyra
495  four various ANN networks have been tested. Theimam overall detection accuracy was obtained is
496  equal to 92.1% from an ANN network which containisjauts, 9 outputs using 2 hidden layers.

497  Additionally, two different fuzzy logic systems hewbeen examined. Mamdani fuzzy logic system
498 interface and Sugeno type fuzzy system. Both exathifuzzy logic systems show approximately the
499  same output during the experiments. However, thgzeslightly difference in developing each typehs
500 fuzzy systems such as the output membership furectiad the rules applied for detecting the typthef
501 fault occurring in the PV plant
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503
504
505

506
507

508
509
510
511
512
513
514
515
516
517

518

The developed fault detection algorithm has besnudised and compared with various results obtained
from different references in the discussion sectlinally, further investigation of the proposedilfa
detection algorithm is intended to be used withdfigrogrammable gate array (FPGA) platforms which
accelerate the speed of detecting possible facttsrang in PV systems.

Appendix A

Fuzzy logic rules applied for both Mamdani and Swgizzy logic systems interface:

1. If (Voltage-Ratio is 1) and (Power-Ratio is figm (Type-of-Fault-Detected is 1) (1)
2. If (Voltage-Ratio is 2) and (Power-Ratio is B¢n (Type-of-Fault-Detected is 2) (1)
3. If (Voltage-Ratio is 3) and (Power-Ratio is B¢mn (Type-of-Fault-Detected is 3) (1)
4. If (Voltage-Ratio is 4) and (Power-Ratio is B¢mn (Type-of-Fault-Detected is 4) (1)
« 5. If (Voltage-Ratio is 5) and (Power-Ratio is B¢h (Type-of-Fault-Detected is 5) (1)
6. If (Voltage-Ratio is 6) and (Power-Ratio is B¢n (Type-of-Fault-Detected is 6) (1)
7. If (Voltage-Ratio is 7) and (Power-Ratio is fign (Type-of-Fault-Detected is 7) (1)
8. If (Voltage-Ratio is 8) and (Power-Ratio is Bgmh (Type-of-Fault-Detected is 8) (1)
9. If (Voltage-Ratio is 9) and (Power-Ratio is B¢n (Type-of-Fault-Detected is 9) (1)
10. If (Voltage-Ratio is 10) and (Power-Ratio ig fiten (Type-of-Fault-Detected is 10) (1)

Appendix B
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Perturbation process made to test the examinedpbitdic plant:
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Highlights:

e PV fault detection algorithm based on the analysis of the voltage and the power is
presented.

e Two machine learning techniques were developed and compared briefly.

e Four different Artificial neural networks (ANN) are used for detecting PV faults.

e Two fuzzy logic systems (Mamdani & Sugeno) are used for examining faults in PV
systems.



