

University of Huddersfield Repository

Bezin, Yann

Railway turnout damage prediction and design implications

Original Citation

Bezin, Yann (2016) Railway turnout damage prediction and design implications. In: International Conference on Train/Track Interaction & Wheel/Rail Interface, 20-22 June 2016, Hall of Railway Sciences(CARS), Beijing, China. (Unpublished)

This version is available at http://eprints.hud.ac.uk/id/eprint/33745/

The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided:

- The authors, title and full bibliographic details is credited in any copy;
- A hyperlink and/or URL is included for the original metadata page; and
- The content is not changed in any way.

For more information, including our policy and submission procedure, please contact the Repository Team at: E.mailbox@hud.ac.uk.

http://eprints.hud.ac.uk/

International Conference on Train/Track Interaction & Wheel/Rail Interface 20-22 June 2016 Hall of Railway Sciences(CARS), Beijing, China University of HUDDERSFIELD Institute of Railway Research

Railway turnout damage prediction and design implications

Speaker: Dr Yann Bezin (IRR Head of Research, Huddersfield, UK)

Inspiring tomorrow's professionals

Content

- Background
 - Key issues with Switches & Crossings in relation to the Wheel-Rail Interface
- Key areas of research by IRR
 - EU/National research projects
- How to address key challenges
 - Research tools
 - Vi-Rail utilisation
 - Validation aspects
- Future work and challenges
 - Challenges and opportunities

Background

Complexity

- Large # of parts
 Wide range of possible layout configuration
- Moving parts & exposed mechanisms
 Mechanical interfaces
 - •Weak structural components

Non-linearities

- Rail cross sections (bearing surface)
 Structural stiffness (rail bending stiffness, bearers length & ballast support)
 Rail inclination
 - Track curvature
 - Cant deficiency

S&C key components and damages

University of HUDDERSFIELD Institute of Railway Research

Switch Panel		
MA C		
ZAL		

		Crossing Panel
Component	Failures	
Cast manganese		
Casting	transverse fatigue crack (foot or nose)	
Crossing nose	wear, plastic deformation, shelling and spalling	
Wing rail	wear, plastic deformation, shelling and spalling	
bearers	fatigue cracking, voids	
switch rails	lipping, head checks, squats, wear	
points	all the above + fracture by fatigue	
stock rails	lipping, head checks, squats, wear, spalling	
		28 Million Ca
slide plates	poor movement (high friction) and ceisure	
bearers	fatigue cracking, voids	

S&C key components and damages

University of HUDDERSFIELD Institute of Railway Research

Spalling of stock rail

> Lipping of switch/stock rails

Subsurface

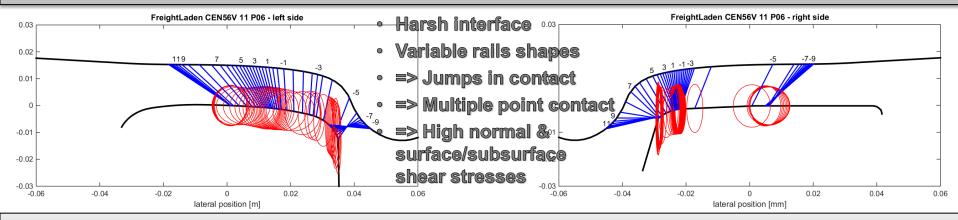
initiated

fatigue

Reference: Capacity4Rail, D131 "Operational failures modes of S&Cs"

S&C key components and damages

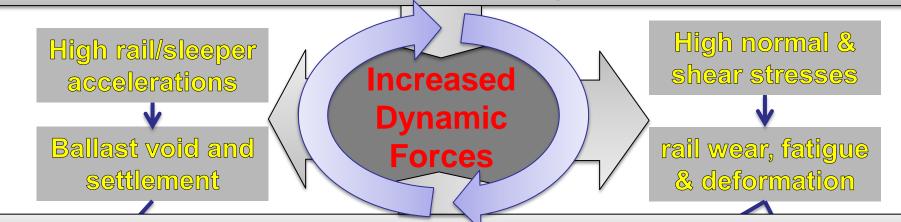
University of HUDDERSFIELD Institute of Railway Research



Reference: Capacity4Rail, D131 "Operational failures modes of S&Cs"


Root causes: dynamic W/R Interaction

Poor compliance of W-R geometries


Poor maintenance + support

Root causes: dynamic W/R Interaction

Poor compliance of W-R geometries

Poor maintenance + support

Root causes – Influential factors

- **Design** (system level => vehicle-track...)
- Environmental (incl. extreme weather)
- Installation/set-up (human factor, tolerances...)
- **Maintenance** (mechanised/manual...)
- Manufacturing (processes/tolerances/...)
- **Operational** (speed, loading regime, traffic mix, tonnages...)

Maintenance & Vehicle characteristics Maintenance & Vehicle characteristics ocal environment Track & Vehicle characteristics Manufacturing

MaintenanceInstallation & set-up

Manufacturing Environment Besign & Manuf

Capacity for Ra

Key areas of research & development

Eslöv-Sweden test site:

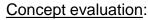
- Kinematic Gauge
 Optimisation
- Resilient stiffness
- Haste-German test site:
- Crossing nose shape (e.g. MaKüDe)
- Material (built-up)
- Simulation software:
- Benchmarking
- KGO optimisation
- Support stiffness variation

Simulation of:

- Derailment analysis
- Switch rail shape optimisation
- Impact of wheel shape
- Under sleeper pads
- Innovative structures

<u>Material</u>

Higher steel grades


FP6

Innotrack

<u>FP7</u> Sustrail Rivas

DRail

Capacity4Rail

- New switch concepts
- New drive and lock devices

In2Rail... ...Shift2Rail

H2020

Towards demonstration of key innovations

University of

HUDDERSFIELD

Simulation tools – what we need...

Vehicle

☑ Unsprung mass
 ☑ Primary stiffness
 ☑ Traction/braking
 ☑ PYS and steering

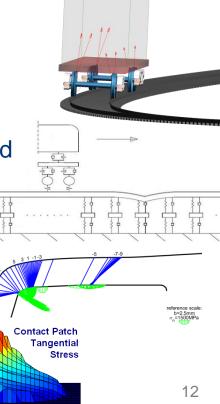
Wheel-Rail

☑ Variable rail (3D interpolation)

 ☑ Variable friction coefficient (switches)
 ☑ Non Hertzian multiple contact

 ☑ Special materials effect on wear and fatigue (Hv)

Track

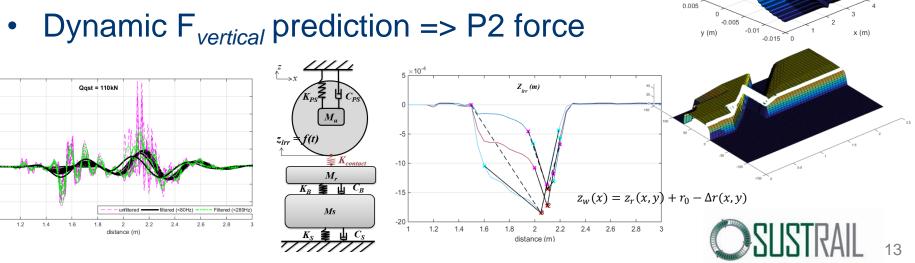

☑ Tuned 9dof model

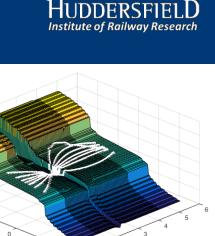
 ☑ Discrete support model (casting, bearer length/mass, baseplates, variable support, ...)
 [FlexTrack]

Available simulation technology

- Vehicle multibody system dynamics
 - Prediction of vehicle behaviour and WRI forces
- Vehicle-track interaction dynamics
 - Prediction of WRI forces based on simplified or detailed track response
- Wheel-rail contact conditions
 - WRI forces and contact conditions (normal and tangential)
- Wear/damage prediction & summation
 - Based on any of the above

University of

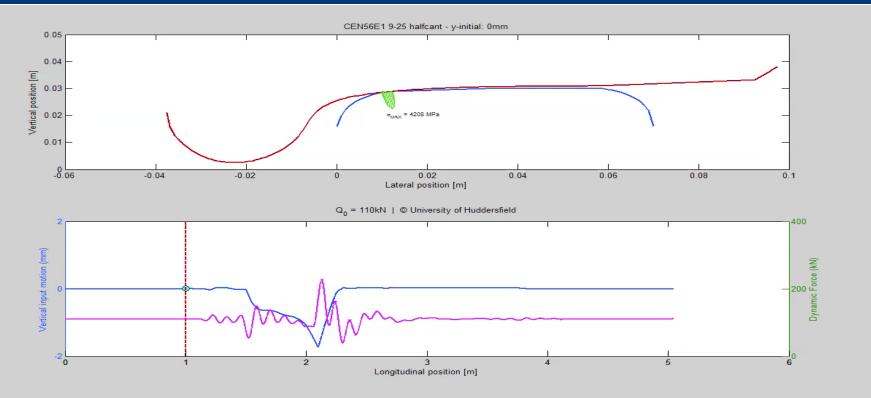

HUDDERSFIELD


Example key output SUSTRAIL

Axle kinematic motion

(Z ≚ 100

- Vertical wheel motion => dip angle
- 3-dof wheel-track MBS model

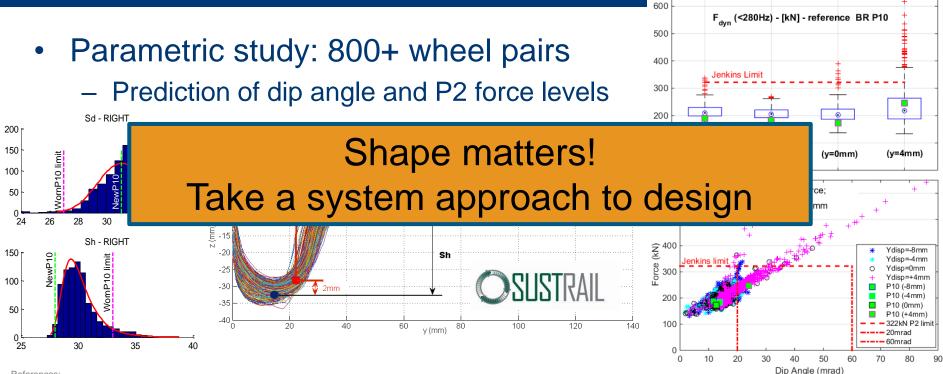


-0.02

-0.03

University of

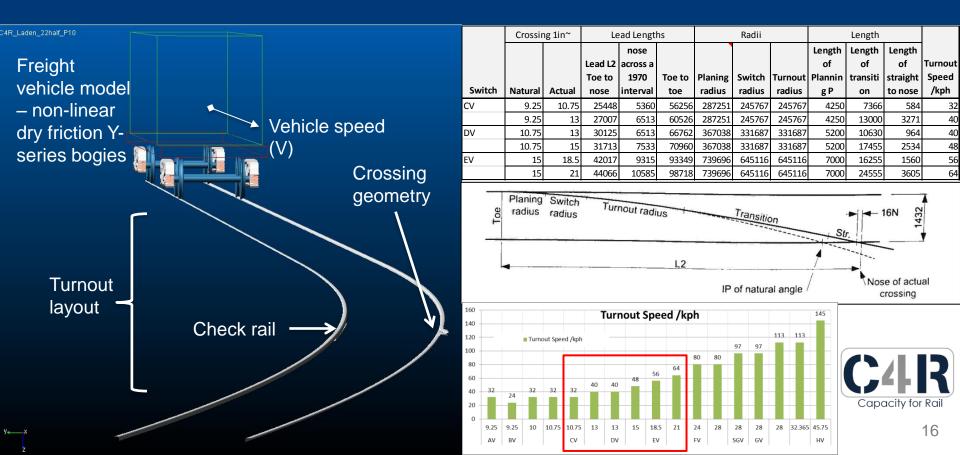
Contact condition and contact stresses



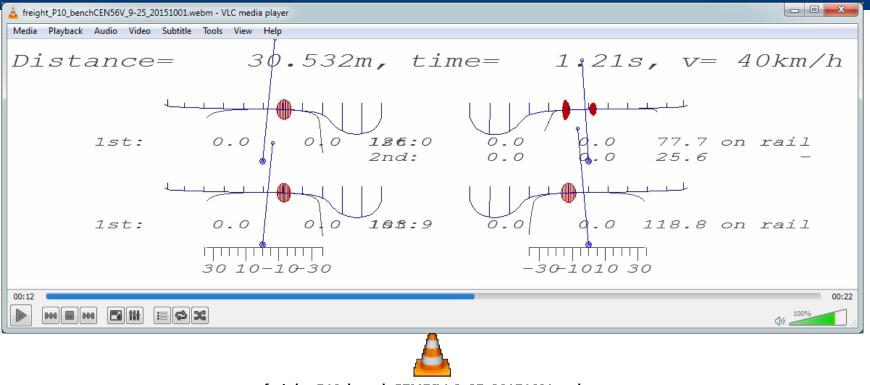
University of

HUDDERSFIELD

Example key output SUSTRAIL

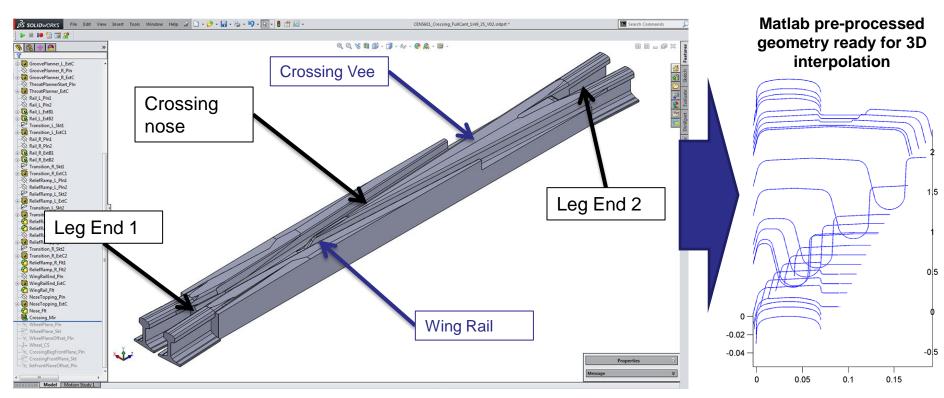

References:

BEZIN, Y., COLEMAN, I., GROSSONI, I., NEVES, S., HYDE, P., BRUNI, S., ALFI, S., RANTATALO, M., JÖNSSON, J., ASLAM, M., LAMBERT, R., BEAGLES, A., FLETCHER, D. & LEWIS, R. 2015. D4.4 Optimised switches and crossings systems, SUSTRAIL 265740 FP7.


BEZIN, Y., GROSSONI, I. & ALONSO, A. 2014. The Assessment of System Maintenance and Design Conditions on Railway Crossing Performance. Proceedings of the 2nd International Conference on Railway Technology: Research, Development and Maintenance. Civil-Comp Press, Stirlingshire, United Kingdom.

Example key activities Capacity4Rail

Contact condition and patch shapes



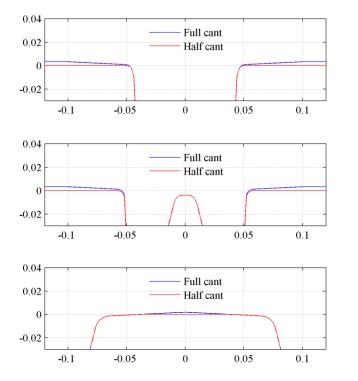
freight_P10_benchCEN56V_9-25_20151001.webm

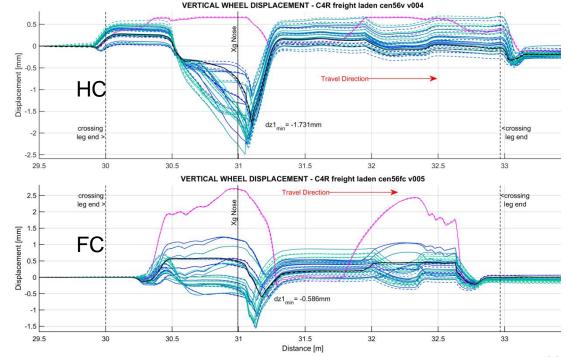
University of

HUDDERSFIELD

Crossing geometry design and input to simulation

University of HUDDERSFIELD


Institute of Railway Research


Example design geometry evaluation

University of HUDDERSFIELD Institute of Railway Research

UK CEN56 vertical HC vs FC

Simulated wheel vertical motion through crossings

Example design geometry evaluation

University of HUDDERSFIELD Institute of Railway Research

UK CEN56 vertical HC vs FC

0.04

0.02

-0.02

0.04

0.02

-0.02

0.04

0.02

-0.02

0

-0

Simulated vertical vertical contact force

21

Example design geometry evaluation

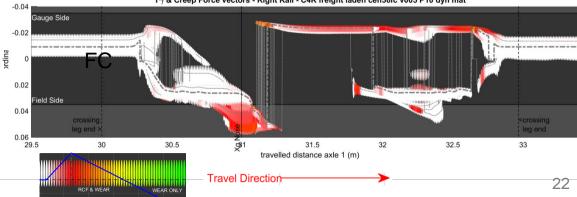
HUDDERSFIELD Institute of Railway Research

32.5

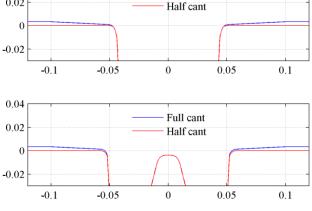
University of

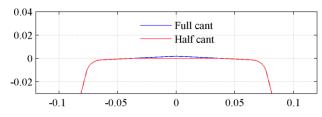
leg end

33


UK CEN56 vertical HC vs FC

Full cant


0.04


0.02

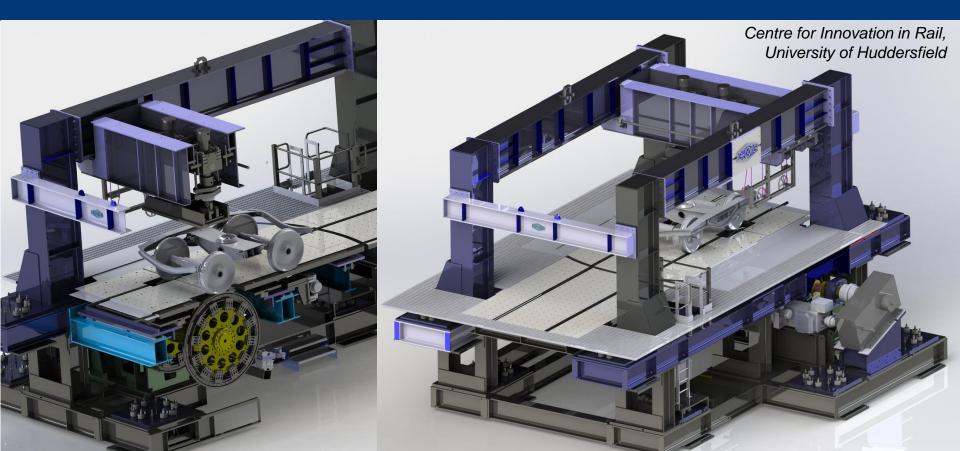
Ty & Creep Force vectors - Right Rail - C4R freight laden cen56v v004 P10 dyn mat -0.04 Gauge Side -0.02 0.02 0.05 0.1 ield Side atel 10.04 0.06 29.5 30 30.5 **5**81 31.5 32 travelled distance axle 1 (m) $T\gamma$ & Creep Force vectors - Right Rail - C4R freight laden cen56fc v005 P10 dyn mat -0.04

Predicted surface damage (crack initiation and wear)

Key conflicting requirements

- Engineering design vs cost
 - Highly engineered material specification (at what cost?)
 - Resilient track construction (at what cost)?
 - Standardisation versus customisation?
- Through vs diverging route
 - Traffic mix consideration in design vs generic design!
 - Trade-off in rail shapes and layout geometry optimisation
 - Acute vs Obtuse
- Facing vs trailing move
 - Trade-off in rail shape and layout geometry optimisation
- Wear vs RCF
 - Competing phenomena

Validation Challenges


- Validation of rail damage prediction
 - Based on specific site observation + stochastic data collection
 - Fast and reliable data collection (vehicle inspection vehicles?)
- Material characterisation data and experiments
 - Twin disc rigs for:
 - Wide range of traction and normal pressure
 - full scale where possible...
 - Replicating S&C 'harsh' conditions (high curvature)
 - Replicating S&C materials (cast Mn, EDH, hardened steel e.g. 350HT)
 - Plastic deformation
 - Residual strains in highly stressed contained material
- Full scale testing for close to reality WRI conditions...

Validation Challenges

University of HUDDERSFIELD Institute of Railway Research

Few words of conclusion

- Key damage mechanisms in S&C relate to wheel-rail interface => heavily strained interface!
- Key areas of collaborative research in EU are geometry/shape optimisation and improved support stiffness (upgrade to ballasted & novel track forms)
- Available simulation techniques enable predicting key damages (location, intensity and accumulation) and qualitative assessment of different designs
- exchange of *data* and *testing resources* is key to validation as a first step towards innovation selection and evaluation in track
- This is a system consider both sides of the interface!

Thank you for your attention.

Contact: Yann Bezin (y.bezin@hud.ac.uk)

Acknowledgements:

Support from European Grants SCPO-GA-2011-265740 (SUSTRAIL), SCP3-GA-2013-60560 (Capacity4Rail) are gratefully acknowledged. Software used: Vi-Rail (<u>www.vi-grade.com</u>) and ArgeCare (<u>argecare.com</u>)

Inspiring tomorrow's professionals

UNIVERSIT

Winner

