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Collaborative Location Recommendation by Integrating
Multi-dimensional Contextual Information

LINA YAO, University of New South Wales
QUAN Z. SHENG, Macquarie University
XIANZHI WANG, Singapore Management University
WEI EMMA ZHANG, Macquarie University
YONGRUI QIN, �e University of Hudders�eld

Point-of-Interest (POI) recommendation is a new type of recommendation task that comes along with
the prevalence of location-based social networks and services in recent years. Compared with traditional
recommendation tasks, POI recommendation focuses more on making personalized and context-aware rec-
ommendations to improve user experience. Traditionally, the most commonly used contextual information
includes geographical and social context information. However, the increasing availability of check-in data
makes it possible to design more e�ective location recommendation applications by modeling and integrating
comprehensive types of contextual information, especially the temporal information. In this paper, we propose
a collaborative �ltering method based on Tensor Factorization, a generalization of the Matrix Factorization
approach, to model the multi-dimensional contextual information. Tensor Factorization naturally extends
Matrix Factorization by increasing the dimensionality of concerns, within which the three-dimensional model
is the one most popularly used. Our method exploits a high-order tensor to fuse heterogeneous contextual
information about users’ check-ins instead of the traditional two dimensional user-location matrix. �e
factorization of this tensor leads to a more compact model of the data which is naturally suitable for inte-
grating contextual information to make POI recommendations. Based on the model, we further improve the
recommendation accuracy by utilizing the internal relations within users and locations to regularize the latent
factors. Experimental results on a large real-world dataset demonstrate the e�ectiveness of our approach.

1 INTRODUCTION
Over the past few years, location-based social network (LBSN) applications have a�racted thousands
of millions of users with the ever growing popularization of mobile devices (especially smart phones)
and the advances in wireless communication technologies. Nowadays, people are increasingly
using LBSN services to contact friends, explore places (e.g., restaurants, shops, cinemas), and share



information about their everyday lives. LBSNs not only provide users with the platforms for social
interaction but also recommend new items, typically places, using the rich contextual location
information (e.g., check-in data). By mining users’ preferences on locations, the location-based
recommenders can suggest places for recreation and healthcare services, as well as be applied in
smart city scenarios. For example, a�er a patient visiting an orthopaedic clinic, the services for
physical therapy might be recommended. In a smart home, when a co�ee pot is detected being
used, a nearby sugar jar might be recommended to the user.
Currently, most commonly used LBSN services, such as Foursquare, Gowalla, and Brightkite,

obtain user locations through their check-in activities. �ese check-in data contain rich contextual
information about users’ preferences. �e availability of check-in data makes it possible to design
e�ective location recommendation applications by modeling and integrating such rich contextual
information. From this point of view, many signi�cant research e�orts have been conducted on
the Point-of-Interest (POI) recommendation, which recommends users with places of potential
interest in the near future [8, 12, 32, 36, 44, 45, 49]. By analyzing users’ check-in history, these
approaches identify the informative pa�erns that are useful for POI recommendation by exploiting
the social constraints, and the geographical and temporal in�uences. Generally, the more clues
considered, the more accurate is the recommendation. For this reason, some recent research e�orts
are dedicated to integrating multiple types of contextual information for the POI recommendation.
For instance, Cheng et al. [6] develop a multi-center Gaussian model that makes recommendation
by fusing social in�uence and geographical in�uence. Bao et al. [2] propose a location-based
preference-aware recommender system by using the sparse geo-social data. Yuan et al. [46] develop
a graph-based POI recommendation framework, which considers the geographical and temporal
in�uences of users’ visits to places to make more accurate recommendation. Gao et al. [14] further
consider the social in�uence, and incorporate the social context with the temporal and spatial
in�uences under a uni�ed matrix factorization framework.

To fully exploit the multi-dimensional contextual information in the check-in data, we propose
a tensor-based uni�ed framework for e�ective POI recommendation. Instead of modeling the
check-in data as a two dimensional user-location matrix (as done by the existing approaches
[1, 19, 30, 42]), we address the POI recommendation problem by modeling the multi-dimensional
contextual information of the check-in data as a three-order tensor, which represents the relations
across users, locations and time frames, respectively. In particular, we propose a regularization
based tensor optimization framework, where we further incorporate users’ social connections and
spatial proximity as additional regularization terms.

Compared with existing recommendation frameworks, our proposed tensor based factorization
approach has several advantages. Firstly, tensor naturally models users’ check-in activities by
incorporating temporal dimension, along with user-location check-in matrix, in a compact represen-
tation. Secondly, tensor based factorization can be considered as a generalization of the traditional
two-dimensional matrix factorization, which inherits the advantages, such as computational sim-
plicity and robustness to the sparse check-in data, of the matrix factorization-based methods.
Finally, the proposed model can be easily extended to embrace more contextual information with
higher order tensor by integrating more relations of check-in data. It should be noted that in a very
similar work, Karatzoglou et al. [16] also propose a tensor-based context-aware recommendation
framework using Tucker’s decomposition. However, they do not consider the internal correlations
among the contextual entities. In contrast, we employ a three-order tensor to uncover the hidden
dependencies within the multi-dimensional contextual information. We further explore the diverse,
multi-dimensional contextual information contained in the check-in data to achieve more accurate
POI recommendations. To sum up, this paper makes the following main contributions:



• We elaborate how multi-dimensional contextual information can improve a POI recom-
mendation system and propose to exploit the high order uni�ed tensor to interpret the
multi-dimensional contextual information, including spatial in�uence, temporal depen-
dency, and users’ social constraints of the check-in data, in a compact manner. Specially, the
tensor construction can address the temporal dependency of users’ dynamic checking-in
activities [7, 41].
• We systematically illustrate the design and generalization of the tensor factorization objec-

tive function with social and spatial regularization terms. �e proposed method is generic
and �exible to integrate more auxiliary information.
• We extensively evaluate our proposed method using a public real-life dataset. �e ex-
perimental results demonstrate the e�ectiveness of our approach. More speci�cally, our
experimental results show that: i) compared to the six baseline two-dimensional matrix
factorization based models, our tensor based method can signi�cantly improve the overall
recommendation accuracy, ii) our tensor-based method also outperforms other six baseline
temporal based recommendation methods, and iii) the spatial proximity between locations
has more signi�cant impact than users’ social connections, and utilizing both of these
in�uences can boost the recommendation performance.

�e remainder of this paper is organized as follows. Section 2 provides an overview of the
major approaches closely related to our proposed method. Section 3 describes some preliminaries
including empirical data analysis and tensor factorization. Section 4 gives the technical details on
our proposed solution based on regularized low-rank tensor based matrix factorization. �e results
of an empirical analysis are presented in Section 5, followed by the conclusion and future work in
Section 6.

2 RELATEDWORK
In this section, we overview the major techniques that are relevant to our work.

2.1 Recommendation Techniques
Recommender systems have been widely adopted by electronic retailers and content providers as a
means of matching customers with the most appropriate products by analyzing the pa�erns of user
interests. Among all recommendation approaches, collaborative �ltering (CF) is one of the most
popular methods. �e CF-based approaches rely only on past user behaviors without requiring
the creation of explicit pro�les. �erefore, when compared with the content �ltering approach,
CF is more suitable for dealing with recommendation problems in di�erent domains. CF-based
approaches can be divided into two categories, namely the memory-based CF (or the neighborhood
methods) and the model-based methods (or latent factor models). �e former utilizes user-item
interaction data (e.g., ratings, check-ins) to calculate the similarity between users or items to make
recommendations [35]. �e la�er tries to explain the interaction by characterizing both items and
users with pa�erns. Matrix Factorization (MF) is a latest realization of the latent factor models that
shows great potential in various recommendation application domains and gains popularity in
recent years. MF-based approaches not only features high prediction accuracy, but also presents
good scalability and �exibility for modeling various real-life situations.

2.2 Methods for POI Recommendation
As a special type of recommender systems, POI recommendation has become increasingly popular
with the rise of social network services and the ubiquity of hand-held smart devices. Currently, most
POI recommendation studies focus on exploiting the various and abundant contextual information



to make more accurate recommendation. Geographical information and social in�uence are the two
types of information mostly considered by the POI recommendation approaches. For example, Ye
et al. [43] [42] harness user-based CF to explore both the social and geographical in�uences under
a linear framework for POI recommendation. Cheng et al. [6] model the geographical information
by a Gaussian mixture model (GMM) and incorporate this model into a matrix factorization based
framework. Liu et al. [26] introduce a probabilistic recommendation framework that employs
three types of data, the geographical in�uence on a user’s check-in behavior, the user mobility
pa�ern, and the user check-in count data, for location recommendation. �e authors in [47]
consider social and geographical in�uence from both user and location perspectives, and develop a
recommendation framework by fusing Kernel density estimation. Hu et al. [15] propose to improve
the recommendation accuracy by incorporating the geographical neighborhood information. In a
very recent work, Liu et al. [29] systematically evaluate 12 state-of-the-art POI recommendation
models.

�eMFmethods are especially suitable for POI recommendation for the following reasons. Firstly,
the check-in data used for POI recommendation usually contains di�erent types of inputs, which
can be easily placed in a matrix with one dimension representing users and the other dimensions
representing items of interest in a MF model. Secondly, MF allows the incorporation of additional
information, including both explicit and implicit feedbacks for the recommendation. It is intuitive
that considering more clues could generally improve the accuracy of POI recommendation. Our
proposed method for POI recommendation belongs to the collaborative �ltering recommendation
frameworks and stems from the matrix factorization methods for CF-based recommendation. Some
other MF-related works are described as follows. Koren et al. [22] propose to factorize the user-item
rating matrix of Net�ix movie ratings. �e approach uses SVD models a�er the related Singular
Value Decomposition. �e key idea behind the SVD models is to factorize the rating matrix to
a product of two lower rank matrices. Two approaches, namely stochastic gradient descent and
alternating least squares, are used to optimize the objective function. �e authors in [3] propose to
only use user-location check-in data in regularized MF based POI recommendation. However, they
use binary and binning preference de�nitions to derive pseudo ratings from check-in data due to
the lack of explicit ratings.

2.3 POI Recommendation Considering Spatial Information
�e spatial information has been exploited as an important means of achieving more accurate POI
recommendation in previous research. Typically, the authors in [27] incorporate location-awareness
in a topic-based POI recommender system and propose a Topic and Location-aware probabilistic
matrix factorization (TL-PMF) method. �e method shows superior performance to several baseline
methods and demonstrates the signi�cance of spatial information for POI recommendation. Later,
Liu et al. [28] continue to propose a general geographical probabilistic factor model (Geo-PFM)
framework which strategically takes into consideration the geographical in�uences on a user’s
check-in behavior together with several other factors to achieve be�er results. Both Lian et al. [25]
and Li et al. [24] focus on the scarcity issue of the check-in data, but the former leverages the spatial
clustering phenomenon to enhance a weighted matrix factorization model for POI recommendation,
and the la�er uses a ranking-based geographical factorization method for POI recommendation.
More recently, Chen et al. [5] introduce information coverage to encode the location categories
of POIs in a city and propose a top-K location category based POI recommendation approach.
�e results show that the performance can be improved through more e�ective organization
and usage of the location information. Lian et. al [25] propose the GeoMF framework, wherein
the clustering phenomenon in human mobilities is exploited by two-dimensional kernel density



estimation to deal with data sparsity and boost performance. Liu et. al [28] design a general
geographical probabilistic factor model for POI recommendation. �ey capture human check-in
behaviors using Poisson distribution embedded into NMF-based factor model for be�er interpreting
the geographical in�uence on the mobility model. Wang et. al [38] design a hybrid predictive model,
which not only takes the regularity of human movements and social conformity into account, but
also explores the mutual reinforcement of the both factors.

2.4 POI Recommendation Considering Temporal Information
Besides the geographical information and social in�uence, some other information, such as temporal
information, has been exploited [20] [39]. Cho et al. [8] propose a generative model to predict
users’ locations by modeling periodical mobility pa�erns. Yuan et al. [45] propose a collaborative
recommendation model by incorporating temporal information. Gao et al. [13] develop a temporal
recommendation framework by exploiting di�erent temporal pa�erns such as consecutiveness
and non-uniformness. As a further step, more researchers have been exploring the integration
of multiple contexts in more e�cient manner to bene�t the recommendation performance. For
example, Yuan et al. [46] propose a graph-based recommendation framework by taking both
geographical and temporal in�uences into account. Since tensor is a natural choice to model high
order contextual information in POI recommendation, Gao et al. [14] propose a two dimensional
matrix factorization framework to recommend point-of-interest by integrating social, temporal
and spatial in�uence together. Karatzoglou et al. [16] also propose a tensor based recommendation
framework, which takes the extra contextual information of time into consideration.

2.5 Summary
As a summary, traditional recommendation methods do not focus on incorporating rich contextual
information, while most existing recommendation approaches for POI recommendation focus on
only the geographical and social contexts. Compared to these approaches, our proposed approach
employs high order tensor to represent the triadic relations among users, locations, and time within
the check-in data. Compared with the traditional two-dimensional user-location matrix, our method
incorporates richer contextual information, which ensures high recommendation accuracy. In
addition, we specially present a uni�ed, regularized tensor factorization method along with graph
Laplacians induced from users’ social constraints and spatial proximity to predict the check-in
probability of a location, and to �nally solve the POI recommendation problem. It should be noted
that the work proposed in [33] is most similar to ours. In this work, the authors develop several
types of tensor-based models for integrating within and cross objects relations. Compared to the
above work, we propose a generic solution to solve a speci�c domain, i.e., the POI recommendation
problem. In addition, we provide an informative optimization process and perform the complexity
analysis. We also present extensive empirical studies to evaluate the proposed approach.

3 PRELIMINARIES
In this section, we �rst analyze the characteristics of the check-in data from social, spatial, and
temporal dimensions’ perspectives. We then brie�y introduce the basic matrix factorization based
recommendation framework before delving to our proposed regularized tensor-based framework.

In this paper, scalars will be denoted by lowercase le�ers (e.g.,m), vectors by boldface lowercase
le�ers (e.g., u), matrices including tensor by boldface capital le�ers (e.g., U and matrix R), and
tensors by boldface Calligraphy (e.g., R). We list the main notations used in this paper in Table 1.



Table 1. Notations

Notation Explanation
m �e number of users
n �e number of locations
q �e number of check-ins
d �e lower dimension used in both matrix factorization and tensor factorization
R ∈ Rm×n �e user-location matrix in matrix factorization
R ∈ Rm×n×q �e user-location matrix in tensor factorization
Ri jk A piece of check-in information in tensor factorization
U ∈ Rm×d �e user feature matrix
V ∈ Rn×d �e location feature matrix
T ∈ Rk×d �e time feature matrix
Ui ∈ R

m×d User i ’s feature in the feature matrix
Vj ∈ R

n×d Location j ’s feature in the feature matrix
λU �e regularization parameter for U
λV �e regularization parameter for V
◦ �e outer product operation
� �e Khatri-Rao operation
∗ �e Hadamard product
| | · | |F �e Frobenius norm

3.1 Empirical Analysis
LBSN users share their current locations by checking-in on websites such as Foursquare, Facebook,
Gowalla, Brightkite etc. �e check-in data can be collected to examine the exact location a user has
visited [8]. To gain a be�er understanding of users’ check-in activities, we study the check-in data
from Brightkite1 (see Section 5.1.1 for details) in terms of social, spatial and temporal dimensions
in the check-in data.

We �rst examine the e�ect of spatial in�uence to users’ check-ins. Speci�cally, for each user, we
calculate the distance between every pair of her visited locations. �en, we aggregate the results
of all users and plot the number of check-ins as a function of distance in Figure 1 (a). From the
�gure, we observe that the probability that a person checks-in at two mutually distant POIs follows
the power-law distribution. �is observation is consistent with the observation made in [43]. �e
results show that users are more likely to visit locations close to their visited locations, and thus the
locations visited by a user form several spatial clusters. To be�er illustrate the spatial aggregation
e�ect, we randomly select a user from the data set and plot the distribution of all the user’s check-in
locations in Figure 1 (b). From the �gure, we observe that most of the locations visited by the user
can be grouped into several dominant geographical regions.
Next, we analyze the temporal pa�erns of users’ check-ins. �e check-in data also show the

periodical features depending on the types of POIs (see Figure 1 (c) - (f)). We only use the day
information of check-in data and decompose a day into 24 hours. For example, restaurants’ peak
time may be in the lunch hours, yet nightclubs or cinemas are mostly during night times and
weekends. In particular, Figure 1 (c) shows the check-in frequencies of a speci�c user at a particular
location over 24 hours a day and 7 days a week, where we use colors to denote di�erent check-in
frequencies. Figure 1 (d) particularly depicts the users’ check-in distributions of a speci�c location
over 24 hours. It shows that the location in the �gure has more check-ins between 10am and 8pm
(e.g., shopping mall). In addition, Figure 1 (e) shows the check-in overlapping probability (i.e.,
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Fig. 1. Illustration of check-in pa�erns along spatial and temporal dimensions (a) check-in probability distri-
bution w.r.t. physical distance; (b) the clustered locations visited by a specific user; (c) check-in distribution
of a specific user over 24 hours a day and 7 days of a week; (d) check-in distribution probability of top 1,000
active users over 24 hours at a particular location; (e) check-in overlapping probability over time distance (in
one-hour time window); and (f) check-in pa�erns in terms of friendship influence

the probability that a user check-in at a same location within di�erent time windows) based on
one-hour time window. We observe that the probability at [0,1] is the highest (e.g., at home); and
it declines as the time di�erence increases (e.g., a user may check in at various locations like bus
stations and o�ces in the morning), and increases again a�er lunch time (e.g., back to o�ce a�er
lunch, back home a�er work). On the other hand, the probability that a user stays at a given region
is a�ected by speci�c days of a week, e.g., users are more likely to stay at the work regions on
weekdays than weekends. Moreover, given a region, users may have di�erent temporal pa�erns on
di�erent days (weekdays or weekends). For example, a user may visit her shopping regions in the
a�ernoon of weekends, or evenings of weekdays. Finally, we investigate the social in�uence on
users’ check-in pa�erns. Users’ social relationships have shown an impact on checking-in activities.
Around 10% of the users’ check-in records have overlapping locations with their friends (as shown
in Figure 1 (f)).

3.2 Matrix Factorization based Recommendation
�e two dimensional matrix factorization based collaborative �ltering recommendation is the most
widely used and successful recommendation model [21]. Let u = {u1, ...,um} be the set of users, and
v = {v1, ...,vn} be the set of locations, the basic idea is to interpret two dimensional user-location
matrix R ∈ Rm×n into two low rank matrices: users’ preference matrix U ∈ Rm×d , and location
matrix V ∈ Rn×d with d � min(m,n) dimensional shared latent space. �e probability of user ui
checking-in location vj will be approximated by solving the following optimization problem:

L(U,V) = min
U,V

m∑
i=1

n∑
j=1
(Ri j − UiVT

j )
2 (1)



To avoid over��ing, two smoothing regularizations are imposed on U and V respectively. �us,
Equation 1 can be rewri�en as:

L(U,V) = min
U,V

m∑
i=1

n∑
j=1
(Ri j − UiVT

j )
2 + λU | |U| |2F + λV | |V| |2F (2)

where λU and λV are regularization parameters. �e optimization process aims at minimizing the
sum-of-squared-errors objective function with quadratic regularization terms and gradient based
approaches can be applied to �nd a local minimum.

3.3 Tensor Factorization
In the standard matrix factorization, each piece of check-in information in the user-location matrix
is determined by the inner product of user feature and location feature. Tensor Factorization
(TF) models their time-evolving behavior by using the tensor notation. We can denote a piece
of check-in information as Ri jk where i , j index users and locations as before, and k indexes the
time slice when the check-in information is given. �en similar to the static case, we can organize
the check-in information into a three-dimensional tensor R ∈ Rm×n×q , whose three dimensions
correspond to user, location, and time slice with the sizes ofm, n, and q, respectively.

Extending the idea of MF, we assume that each entry Ri jk can be expressed as the inner-product
of three d-dimensional vectors:

Ri jk ≈ UiVjTk (3)
�e goal is to estimate matrices Ui , Vj , Tk subject to constraints. �ese include scaling to unit

length vectors, nonnegativity, orthogonality, sparseness and/or smoothness of all or some of the
columns. �is leads to the following optimization problem:

L(U,V,T) =
1
2 min

U,V,T
| |R − R̂ | |2F (4)

where R̂ denotes predicted approximation of R. �e optimization problem can be solved by various
existing methods such as the stochastic gradient descendant methods.
In the above, we introduce the background of the matrix factorization based recommendation

frameworks, which have several intriguing properties: (1) it is very �exible and can easily ac-
commodate the additional information, e.g., spatial proximity or users’ social similarity; (2) its
optimization can be solved in linear time with simple gradient based methods.

4 THE PROPOSED METHOD
In this section, we systematically describe our tensor-based POI recommendation framework with
social and spatial regularizations. Speci�cally, Section 4.1 introduces the check-in data model using
a three-order tensor, Section 4.2 describes how to incorporate users’ social similarity and locations’
spatial proximity to regularize latent factors, and Section 4.3 gives the details of proposed model
optimization process.

4.1 Tensor based Check-in Representation
A three-way tensor can be considered as a higher order generalization of two user-location di-
mensional matrices into a three-dimensional space. �erefore, the check-in data R is described by
three dimensionalities according to user, location, and time other than the two-dimensionalities
w.r.t. users and locations. In particular, the check-in frequency can be represented as points in
the three-dimensional space, with the coordinates of each point corresponding to the index of the



Fig. 2. Tensor-based check-in representation: (a) tensor modeling and (b) CANDECOMP/PARAFAC (CP)
decomposition

triplet in terms of user, location and check-in time. More speci�cally, we model these relations as a
tensor.

�e tensor factorization framework of POI recommendation problem in this paper can be de�ned
as follows. Given the historical check-in records ofm users {ui }mi=1 on n locations {vj }nj=1 and q time
frames {tk }qk=1, recommending the target users a set of locations that they might be interested. We
model the check-in matrix R ∈ Rm×n×q via a third order tensor, where each Ri jk quanti�es users’
preference in terms of frequency, i.e., the times that user ui visits location vj within time period tk .
�e tensor construction from check-in records R ∈ Rm×n×q can be de�ned as Ri jk ⊂ R ∈ Rm×n×q ,
indicating the number of check-ins made by user {ui }mi=1 at location {vj }nj=1 within time period
{tk }

q
k=1, as shown in Figure 2 (a).

�e preference of user {ui }mi=1 on location {vj }nj=1 within time frame {tk }qk=1 can be approxi-
mated via optimizing the following objective function by generalizing Equation 2 into the tensor
factorization framework in Equation 4 where R̂ denotes the predicted approximation of R, which
can be estimated from check-in records using tensor decomposition techniques, such as the High
Order Singular Value decomposition (HOSVD) and CANDECOMP/PARAFAC (CP) decomposition
[10] as follows:

R̂ ≈

D∑
d=1

ud ◦ vd ◦ td (5)



�erefore, Equation 1 can be rewri�en as:

L(U,V,T) =
1
2 min

U,V,T
| |R −

D∑
d

ud ◦ vd ◦ td | |2F (6)

where ud ∈ Rm , vd ∈ Rn and td ∈ Rq , as shown in Figure 2 (b).
We aim at �nding the decomposition R̂ that best approximates the original tensor R to achieve

the best recommendation results. Similarly, to avoid over��ing, the regularization terms associated
with U, V and T are introduced in Equation 6, which is reformulated as:

L(U,V,T) = | |R − R̂ | |2F + λ(| |U| |
2
F + | |V| |

2
F + | |T| |

2
F ) (7)

where U = [u1, ..., uD ] ∈ R
m×D , V = [v1, ..., vD ] ∈ Rn×D , and T = [t1, ..., tD ] ∈ Rq×D are all factor

matrices.

4.2 Integrating Contextual Regularizations
Even though we impose three regularizations, the low-rank assumption is insu�cient by itself
and we still need other assumptions to introduce more prior knowledge of entities of check-in
activities. In particular, we exploit several inherited intriguing features of matrix factorization for
such purposes.
In many cases, we have not only relational information among objects, but also internal infor-

mation within the contextual entities themselves. Under this condition, the model in Equation 7
can be enhanced with relational information across di�erent contextual entities like modeling
as a tensor, but also information on the objects themselves, e.g., users’ mutual friendships, and
location proximity. Fusing the internal relations as regularization terms can e�ectively boost the
recommendation accuracy, especially for the sparse cases [23]. We explain the two kinds of internal
information used in our approach as follows:

• Friends tend to have similar behaviors because they might share common interests, thus
leading to correlated check-in behaviors. For example, two friends may hang out to see a
movie together sometimes, or a user may go to a restaurant highly recommended by his/her
friends. All those possible reasons suggest that friends might provide good recommenda-
tions for a given user due to their potential correlated check-in behavior. In other words, we
can turn to a user’s friends for recommendation, which we call recommendation based social
in�uence from friends. Users’ explicit social friendships tend to improve the recommenda-
tion accuracy, which has been widely used in the two-dimensional matrix factorization
based recommendation frameworks [32]. �e social regularization term can constrain the
matrix factorization objective function and indirectly propagate users’ preferences.
• On the other hand, as mentioned earlier, the check-in activities of users record their physical

interactions (i.e., visits) at POIs. To explore more on geographic information, we now build
a model which depends only on location distance. �e intuition behind the model is that:
i) a user tends to visit locations near his/her home or o�ce, and ii) a user may also favor
several locations within a neighborhood. �us, we assume that the majority locations a
user checks in are within some certain distance.

According to the analysis above and in order to fully exploit the social and spatial information,
in this paper, we further regularize the internal relations within contextual entities w.r.t. users and
locations. To integrate these two relations, the basic idea is to make the latent representations of two
users or two locations to be as close as possible if they have links and are similar enough. �us, the
objective function in Equation 7 can be reformulated by importing social in�uence regularization



and spatial in�uence regularization:

min
U,V,T

L = | |R − R̂ | |2F + λ1

m∑
i=1

m∑
j=1

Ai j | |Ui∗ − Uj∗ | |
2

︸                             ︷︷                             ︸
Social Regularization

+ λ2

n∑
i=1

n∑
j=1

Bi j | |Vi∗ − Vj∗ | |
2

︸                            ︷︷                            ︸
Spatial Regularization

+λ3(| |U| |2 + | |V| |2 + | |T| |2)

(8)

where Ai j ∈ R
m×m indicates the social strength between usersui anduj , and Bi j denotes the spatial

proximity between locations vi and vj . In the following, we will introduce how to calculate user
social strength and location spatial proximity. �e �rst term | |R − R̂ | |2F decomposes the check-in
frequency w.r.t. each entity including user, location, and time tensor R as an outer-product of
three dimensional representations. �e second term poses a regularization term on user’s mutual
friendships and location similarity, forcing the low-dimensional representations of two users and
two locations as close as possible if they are similar. �e last term (| |U| |2 + | |V| |2 + | |T| |2) is used to
avoid over��ing.

Social Similarity. We calculate the social strength between two users i and j based on both of their
common social connections and similarity of check-in activities [18, 42].

Ai j ∝ s
f
i j = ηs

|Fi ∩ Fj |

|Fi ∪ Fj |
+ (1 − ηs )

|Li ∩ Lj |

|Li ∪ Lj |
s .t .j ∈ Ni (9)

whereNi denotes user i’s neighborhood, F · denotes user’s friendship set and L · denotes the locations
checked in by each user. λ is used to balance the importance of friend impact and impact of shared
checked in locations.

Spatial Proximity. �e spatial proximity between two locations is inversely proportional to the
distance between two locations. Given a large number of locations, we propose a local neighborhood
selection method to construct the location similarity matrix.
�e locations vi and vj are considered as neighbors if i) vi is among the k nearest neighbors

of vj or ii) vj is among the k nearest neighbors of vi . We use the inverse orthodromic distance
to determine the weight between two locations. Orthodromic distance is the shortest distance
between two points on the surface of a sphere since the earth is a sphere other than a plane. �us,
the distance between two locations dis(vi ,vj ) is calculated as:

dis(vi ,vj ) = r × ∆σ̂ (10)

where ∆σ̂ = arccos(sinϕi sinϕ j + cosϕi cosϕ j cos(∆λ)), ϕi and ϕ j are the longitude and latitude of
locations vi and vj , ∆(λ) is the absolute value between locations vi and vj , and r is the radius of
the earth.

�erefore, the weight Bi j ∈ R
n×n ∝

1
dis(vi ,vj )

between two locations vi and vj is nonzero only

when vj ∈ Nvi , where Nui denotes the local neighborhood of location vi .



Up to this point, the proposed framework aims at optimizing the following objective function:

min
U,V,T

L = | |R − R̂ | |2F + λ1

m∑
i=1

m∑
j=1

Ai j | |Ui∗ − Uj∗ | |
2

+ λ2

n∑
i=1

n∑
j=1

Bi j | |Vi∗ − Vj∗ | |
2 + λ3(| |U| |2 + | |V| |2 + | |T| |2)

= | |R − R̂ | |2F +
λ1
2 tr(U>LUU) +

λ2
2 tr(V>LVV) + λ3(| |U| |2F + | |V| |

2
F + | |T| |

2
F )

= | |R − R̂ | |2F + tr[U
>(λ3I + λ1LU)U] + tr[V>(λ3I + λ2LV)V] +

λ3
2 tr(TT>)

(11)

where α , β and λ1, λ2, λ3 are the model parameters, LU is the Laplacian matrix induced from users’
social networks matrix A ∈ Rm×m and location proximity B ∈ Rn×n , respectively. LU = DA − A,
where D is the diagonal matrix whose i-th diagonal element is the sum of all the elements in the
i-th row of A, i.e., Dii =

∑
j Ai j .

4.3 Optimization
Our objective function is non-convex, and we can apply an alternative algorithm to �nd optimal
solutions with computing gradients with respect to each factor within U, V and T, while �xing
the others. �e algorithm will keep updating the variables until convergence or reaching the
maximum iterations. We follow a three-step alternating optimization strategy to solve this problem.
Speci�cally, we alternately take derivatives for each factor within U, V and T, while �xing the other
two until convergence to �nd the optimal solution.

Updating U. We optimize U with �xed V and T. Equation 11 can be rewri�en with the mode-1
matricization, which is a special case of mode-n matricization to reorder the elements of a tensor
into a matrix. �e mode-1 matricization of tensor R ∈ Rm×n×q is denoted by R(1). More details can
be found in [17]. At this point, we obtain:

L(U,V,T) =
1
2

(
R(1) − U(V � T)>

)> (
R(1) − U(V � T)>

)
+
λ1
2 tr (U>LUU) + λ3 | |U| |2F

(12)

Taking the derivatives over the objective function of Equation 12, we can obtain:

∇UL(U,V,T) = −R(1)(V � T) + U[(V>V) ∗ (T>T)] + λ1LUU + λ3U

= −U(V � T)>(V � T) + U[(V>V) ∗ (T>T)] + λ1LUU + λ3U
(13)

Updating V. We minimize V with �xed U and T. �e objective function in Equation 11 can be
rewri�en with the mode-1 matricization, we obtain:

L(U,V,T) =
1
2

(
R(2) − V(U � T)>

)> (
R(2) − V(U � T)>

)
+
λ2
2 tr (V>LVV) + λ3 | |V| |2F (14)

Taking the derivatives over the objective function of Equation 14, we can obtain:

∇VL(U,V,T) = −R(2)(U � T) + V[(VT V) ∗ (T>T)] + λ2LVV + λV

= −V(V � T)>(V � T) + V[(V>V) ∗ (TT T)] + λ2LVV + λ3V
(15)



ALGORITHM 1: Learning Algorithm of the Proposed Method
Input: User-Location-Time Tensor R ∈ Rm×n×q ; User friendship matrix A and Location proximity matrix B;
Output: Approximation tensor R̂, three factor matrices Û ∈ Rm×D , V̂ ∈ Rn×D and T̂ ∈ Rq×D

Initializing U ∈ Rm×D , V ∈ Rn×D and T ∈ Rq×D with random values;
while convergence or maximum steps do

Calculating ∇UL(U,V,T) (Equation 13);
Calculating ∇VL(U,V,T) (Equation 15);
Calculating ∇TL(U,V,T) (Equation 17);
Updating Û← U − δ∇UL(U,V,T) ;
Updating V̂← V − δ∇VL(U,V,T) ;
Updating T̂← T − δ∇TL(U,V,T) ;

end

R̂ ←

[ [
Û, V̂, T̂

] ]

Updating T. We optimize T with �xed U and V. �e objective function in Equation 11 can be
rewri�en with the mode-1 matricization, we obtain:

L(U,V,T) =
(
R(3) − T(U � V)>

)> (
R(3) − T(U � V)>

)
+ λ3 | |T| |2F (16)

Taking the derivatives over the objective function of Equation 16, we can obtain:

∇TL(U,V,T) = −R(3)(U � V) + T[(U>U) ∗ (V>V)] + λV

= −T(U � V)>(U � V) + V[(V>V) ∗ (T>T)] + λ3T
(17)

where R(1) ≈ U(V � T)> ∈ Rm×nq , R(2) ≈ V(U � T)> ∈ Rn×mq and R(3) ≈ T(U � T)> ∈ Rn×mq .
Matrix factorization based methods can be calculated in linear time. One key issue of current

optimization is to �nd an appropriate learning rate δ , which on the one hand should be big enough
to have convergence a�er a reasonable number of iterations, and on the other hand be small enough
so that the gradient steps are made towards the minimum which is especially important in the
la�er iteration stages. In this paper, we carry out an annealing procedure to discount δ by a factor
of 0.9 a�er each iteration, as suggested by [19]. �e algorithm loops over all the observations and
updates the parameters by moving in the direction de�ned by the negative gradient. �e algorithm
will keep updating the variables until convergence or reaching the number of maximum iterations.
�e overall solution is shown in Algorithm 1.

5 EXPERIMENTS
In this section, we report the performance evaluation of our proposed method for location recom-
mendation. In particular, we evaluated the following: i) how the proposed framework performs in
comparison with the state-of-the-art models that capture contextual information (Section 5.2.1);
ii) how the proposed framework conducts time-aware recommendation with various contextual
regularization combinations, especially the tensor-based method without or partial social, spatial
regularizations (Section 5.2.2); iii) how the di�erent time granularities can a�ect the temporal
recommendation performance (Section 5.3); and iv) how the tensor density in�uences prediction
accuracy in the sense that the factor matrices dimensionality determines how many the latent fac-
tors have direct in�uence on the prediction accuracy (Section 5.4). Before we delve into experiment
details, we �rst discuss the dataset used in the experiments and the evaluation metrics.



5.1 Experimental Se�ings
5.1.1 Dataset Preprocessing. We selected the check-in occurred during June 2010 to September

2010 from the original Brightkite dataset, and whole June check-ins from the Gowalla dataset [8].
Each check-in contains user, time and location ID information. We removed users who have checked
in fewer than 10 locations and then removed POIs which have checked in by fewer than 10 users. As
expected, a�er spli�ing a day into 24 slots by hours, the data became much sparser. �e densities of
the BrightKite and Gowalla datasets a�er spli�ing are 1.2 × 10−3 and 8.54 × 10−5, respectively. �e
statistics of the preprocessed datasets are shown in Table 2. For each user, we randomly marked o�
20% of locations as testing data to evaluate the e�ectiveness of the recommendation methods. Our
model relies on unique and discrete locations, but the location information is given as continuous
longitude/latitude coordinates in the original datasets. It can be observed from our datasets, that
the check-in frequency commonly changes between a large range (e.g., over 500 times of a location).
We used the mapping function 1/(1 + r−1) (r is the check-in frequency) to convert the check-in
frequency into [0, 1] [13]. Figure 3 (a) and (b) show the corresponding check-in distributions and the
social links over the processed Brightkite dataset. It is noted that the social relations in Brightkite
are asymmetric.

Table 2. Statistics of the Processed Datasets

BrightKite Gowalla
Duration June 1, 2010 - Sept 30, 2010 June 1, 2010 - 30 June, 2010
# of Users 3,081 19,672
# of Locations 4,828 14,403
# of Check-ins 419,507 583,593
# of Friendship Links 31,924 15,568
Check-in Density 2.82 × 10−2 2.06 × 10−3
Check-in Density/Hours 1.2 × 10−3 8.54 × 10−5
User Social Link Density 3.4 × 10−3 3.99 × 10−5

5.1.2 Performance Metrics. To quantitively evaluate how well the proposed method can recover
the POIs in the testing data for a given user at a given time, we used Precision@x and Recall@x to
evaluate our proposed method (x= 5, 10, 15, 20). �e precision@x measures how many previously
marked o� POIs are recommended to the users among the total number of recommended locations,
and recall@x measures how many previously marked o� POIs are recommended to the users
among the total number of marked o� locations. Following the de�nition in [45], the precision and
recall for each time slot t are computed as:

precision@x(t) =

∑
ui ∈U |Res(ui ) ∩Check(ui )|∑

ui ∈U |Res(ui ) ∩Check(ui ) + Res(ui ) ∩Check(ui )|
(18)

recall@x(t) =

∑
ui ∈U |Res(ui ) ∩Check(ui )|∑

ui ∈U |Res(ui ) ∩Check(ui ) + Res(ui ) ∩Check(ui )|
(19)

where Check(ui ) denotes the set of corresponding checked in groundtruth locations in the testing
dataset for a given user ui at time t , and Res(ui ) denotes the set of recommendation locations by
the proposed method for user ui at time t .



(a)

(b)

Fig. 3. (a) Check-in distribution over the processed dataset of BrightKite; (b) User friendships over the
processed BrightKite dataset, each node represents a user. For example, the links of user id = 25 and id = 909
are highlighted in green and yellow respectively

�e overall precision and recall will take the averaging value over all 24 time slots, i.e.,

precision@x =
1
24

24∑
t=1

precision@x(t) (20)

recall@x =
1
24

24∑
t=1

recall@x(t) (21)

5.1.3 Comparison Methods. We evaluated our proposed method, tensor factorization based
location recommendation (TenMF), by comparing with 12 state-of-the-art methods, which were
divided into two categories regarding whether the time factor is considered during prediction
process for a given user. �e �rst group is to evaluate the e�ectiveness of the proposed methods
without a speci�c time frame. �e second group is to evaluate the e�ectiveness of recommendation
given a user in a speci�c time frame.

Group 1: Without utilizing temporal information

NMF. It only considers the 2-D user-location matrix. NMF applies non-negative matrix factorization
on user-location matrix to predict the possibility of check-in. �e user-location matrix can be
decomposed into two lower dimension matrices in this method and contextual in�uence is not
considered:

min
U,V

1
2

m∑
i=1

n∑
j=1
(ri j − uTi vj )2 (22)

User-CF. It predicts a user’s preferences by taking the preferences of other similar users into account
and use Jacaard similarity for similarity computation.

Item-CF. It predicts a user’s preferences on a target location by taking her preferences on similar
locations into account [35] and Jaccard similarity for calculating the preference of similar users.



FA. It implements a friendship-aware (FA) recommendation. �e probability of user i checks in
location j can be calculated as:

Pfi j =

∑
j ∈Fi s

f
i j · c jk∑

j ∈Fi si j
(23)

where c jk = 1 if user j checked in location k , otherwise 0. s fi j is computed as:

s
f
i j = γ

|Fi ∩ Fj |

|Fi ∪ Fj |
+ (1 − γ )

|Li ∩ Lj |

|Li ∪ Lj |
(24)

where F · denotes user’s friendship set and L · denotes the locations checked in by each user. λ is
used to balance the importance of friend impact and the impact of shared checked in locations [43].
γ = 0.4 is the best se�ing based on our empirical study in this work.

GA. It implements the geographical-aware (GA) recommendation using Gaussian Mixture Model
(GMM) to capture the geographical clustering in�uence, where the Gaussian center could be user’s
home, o�ce, or entertainment places like a shopping mall or a restaurant [6]. �e probability that
user i visits a location k is modeled as below:

Pr (lk |i) =
M∑

m=1
qi,mN(lk |µi,m ,Σi,m)

=

M∑
m=1

ql,m√
(2π )D |Σi,m |

exp(−12 (x − µi,m)
T Σ−1i,m(k − µi,m))

(25)

where lk denotes location k , which is represented by longitude and latitude coordinates, andm is
the number of Gaussian clusters. qi,m ,µi,m , and Σi,m form the model parameter set Φi at cluster l .
qm is the mixture weighted factor that describes the prior probability of themth mixture component.
µi,m and Σi,m are the mean and covariance of themth Gaussian distribution.

�e traditional GMM learning process with Expectation Maximization (EM) limits to the manual
determination of how many gaussian components (m) in the GMM. We adopt the Dirichlet Process
Gaussian Mixture Model (DPGMM) [4] in observation probability distribution in this work. It uses
the Dirichlet process as a prior over the distribution of the parameters and there is no need to
explicitly declare the number of components. �e approximate inference algorithm uses a truncated
distribution with a �xed maximum number of components, but the number of components actually
used almost always depends on the data.

Linear Model (LIM). We compare with a linear model (LIM) by integrating three partial contextual
models together. �e overall probability that user i would visit location k can be obtained using:

Pik = w1Ptik +w2P
f
ik + (1 −w1 −w2)P

д
ik (26)

wherew1 = 0.1 andw2 = 0.6 are the best se�ings based on our empirical study.

Group 2: With temporal information

User-based Time (UBT). �is model is the added time decay function based on original user-based
CF model [9]. Given a user ui and time frame tk , the preference prediction is calculated as:

P̂ki j =
∑

tk′ simui ,tk′ f (tk ′, j , tk )∑
k ′ sim(ui , tk ′)

(27)



where time function f (tk ′, j , tk ) = e
|tk−tk′,vj |/H is the time gap between time frame tk ′ checked in

location vj and the time of recommendation tk . We set H=1 according to empirical study in [45].

Item-based Time (IBT). �e same model with the time decay function based on item-based CF,
similar to UBT.

Time-aware. To address the temporal in�uence in users’ check-in behaviors, we decompose the
time over two dimensions of day (Monday to Sunday) and hour (1 to 24). �e probability of check-in
is computed as:

Ptik =
∑L
l=1 I(i, l) · sim(l ,k) · f (T )∑L

l=1 sim(l ,k) · f (T )
(28)

where l denotes a subset closely associated with user i according to her historical check-in records,
sim(l ,k) can be computed using Jaccard similarity, and f (T ) is a temporal adjustment function for
each user, which can be computed by using:

f (T ) = η · Pr (k |h) + (1 − η) · Pr (k |d) (29)

where Pr (k |h) is the probability of checking-in at location k , given the h-hour within a day (24
hours one day). Pr (k |d) is the probability of checking-in at location k , given the d-th day within a
week (7 days one week). All model parameters can be estimated by maximum likelihood estimation
from the training dataset.

BasicTenMF. �e special case of the proposed method without social and spatial regularizations in
Equation 11.

min
U,V,T

L = | |R − R̂ | |2F + λ(| |U| |
2 + | |V| |2 + | |T| |2) (30)

TenMF + Social. It is a special case of our proposed framework that only considers social regulariza-
tion.

min
U,V,T

L = | |R − R̂ | |2F + α
m∑
i=1

m∑
j=1

Ai j | |Ui∗ − Uj∗ | |
2

+ λ(| |U| |2 + | |V| |2 + | |T| |2)

(31)

TenMF + Spatial. It is a special case of our proposed framework that only considers spatial regular-
ization.

min
U,V,T

L = | |R − R̂ | |2F + β
n∑
i=1

n∑
j=1

Bi j | |Vi∗ − Vj∗ | |
2

+ λ(| |U| |2 + | |V| |2 + | |T| |2)

(32)

5.2 Performance Comparison
We conducted two groups of experiments. �e �rst group is used to evaluate the accuracy of
the proposed recommendation methods with given users without considering speci�c time (i.e.,
two-dimensional recommendation). �e second group is used to evaluate the recommendation
accuracy by considering given users at given time frames (i.e., time-aware recommendation).
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Fig. 4. Overall comparison without specific time frames, using the BrightKite dataset (a) and (b); and the
Gowalla dataset (c) and (d) Overall comparison with given specific time frames over BrightKite dataset (e)
and (f); Gowalla dataset (g) and (h); Impact of time granularity (i) and (j); Impact of tensor dimensionality (k)
and (l)

5.2.1 Comparison without Temporal Information. It is noted that some of the methods can
not be directly applied to context-aware prediction problem in a speci�c time frame [48]. So we
employed a special formulation to enable the comparison. We considered the three-dimensional
user-location-time tensor as a set of user-service matrix slices in terms of time intervals. Firstly,
we compressed the tensor into a user-location matrix. Each element of this matrix is the average



Table 3. Comparison with other methods over Gowalla dataset

Methods Precision@5 Precision@10 Recall@5 Recall@10
PMF [34] 0.041 0.027 0.014 0.013
BNMF [37] 0.057 0.022 0.014 0.012
POIFM [31] 0.042 0.048 0.023 0.014
Fu-POIFM [6] 0.094 0.081 0.044 0.029
Geo-BNMF [26] 0.073 0.062 0.032 0.023
Geo-PFM [28] 0.113 0.098 0.048 0.033
TenMF 0.094 0.087 0.086 0.088

of the speci�c user-location pairs during all the time intervals. For each slice of the tensor, the
comparison methods were applied for the prediction. Secondly, we computed precision and recall
of these baselines and made the comparison with our proposed method.
�e overall comparison results using the two datasets are shown in Figure 4, from which we

summarize two main observations. First, our tensor-based recommendation method signi�cantly
outperforms all the compared methods (including both non-context aware methods and context-
awaremethods) in terms of top 5 to top 20 validations. Ourmethod obtains be�er prediction than the
linear model, mostly because the tensor-based factorization can be�er reveal the hidden information.
Second, all context-aware methods (e.g., the linear model fully combined with friendship, spatial
and temporal in�uence) have be�er performance than the ones without or with only partial context-
awareness, such as GA integrating spatial in�uence. It is interesting to note that user-based CF and
item-based CF seem to be more e�ective than the basic matrix factorization method NMF, which
has the worst accuracy. �e reason may be that it only works on user-location matrix and does not
integrate any contextual information. It also includes no regularizations for avoiding over-��ing.

We also compared our proposed TenMF model with several recent representative latent factoriza-
tion based models, including Probabilistic Matrix Factorization (PMF) [34], Bayesian Non-negative
Factorization (BNMF) [37], Poisson Factor Model (PFM) [31], Fused Poisson factor model (Fu-PoiFM)
[6], Geo-BNMF [26], and Geo-PMF [28] using the Gowalla dataset. Table 3 shows the �nal results.
From the table, we can �nd that our TenMF performs be�er than these state-of-the-art works except
Geo-PFM [28]. Although Geo-PFM achieves be�er performance in terms of precision, our model
produces be�er recall results.

To sum up, the results demonstrate the e�ectiveness of incorporating multi-dimensional contex-
tual information in a uni�ed tensor-based approach for improving the recommendation perfor-
mance.

5.2.2 Comparison with Temporal Information. �e second group is to evaluate the accuracy of
our proposed recommendation method by utilizing speci�c time frames. We compared methods
UBT, IBT, BayesianTA, TenMF+Social, BasicTenMF, TenMF+Spatial, TenMF. From the results shown
in Figure 4 (e) - (h), we can draw several observations.

First, our proposed tensor-based method consistently outperforms all other comparison methods
over the BrightKite dataset, even the data become more sparse a�er spli�ing by 24 hours. �e
results show that our proposed method is robust to deal with sparse check-in data and can make
a be�er prediction. However, the performance is not quite consistent over the Gowalla dataset.
For example, basic TenMF performs be�er than basic TenMF with social and TenMF with spatial
information on recommending top 15 and 20 POIs though it underperforms when dealing with
top 5 and top 10 recommendations. �e reason lies in that the Gowalla dataset is more sparse
than the BrightKite dataset in terms of check-in density and number of friendship links, while the



social in�uence is not su�cient to calibrate the prediction results especially for a bigger size of
recommendation list.

Second, BasicTenMF with spatial regularity is slightly be�er than BasicTenMF with social regu-
larization, which indicates that spatial in�uence performs more dominant in�uence on recommen-
dation results compared with social in�uence. �ird, user-based time decay method and item-based
time decay method play the worst prediction, and the reason lies in their weak capabilities of
handling sparse datasets. �e BayesianTR method has a stable performance.
�erefore, we can draw the general conclusion a�er the analysis of the results above, that

our proposed method TenMF achieves the best results in most cases in terms of the evaluation
metrics, within the se�ings including i) POI recommendation given the speci�c users and ii) POI
recommendation given the speci�c users and time frames. �e result demonstrates the advantage
of modeling di�erent context types in check-in data as compact tensors, as well as combining with
internal relations within context types. �e experimental result also shows the e�ectiveness of our
proposed method.

5.3 Impact of Time Granularity
�is experiment was designed to study the impact of di�erent time granularity on POI recommen-
dation accuracy. We varied the length of time frames as 1 hour, 2 hours, 4 hours, 8 hours, 12 hours
and 24 hours. We performed the experiments using two datasets and achieved similar results. Due
to space constraints, Figure 4 (i) and (j). shows the results from the BrightKite dataset. We can
observe that the performance is generally ge�ing be�er with longer length of time frames. �e
reason is that with a longer time frame, more discriminative information and more check-in data
will be integrated and the data is ge�ing denser, all of which can contribute to be�er accuracy. In
this way, we can also observe that the e�ect of the time dimension is actually keeping decreasing
with a wider time window. �us, although the recall slightly decreases with larger time windows
in some cases, the overall performance is ge�ing improved. �is �nding is also consistent with the
results observed in [45].

5.4 Tensor Dimensionality Sensitivity
As parameter dimensionality fundamentally determines the number of latent factors involved in
the tensor factorization, in this section, we investigate the impact of this dimensionality by varying
the value of dimensionality from 10 to 60 with a step size 5.
Figure 4 (k) and (l) shows the precision and recall at top 5, 10, 15 and 20 under di�erent tensor

dimensions using the BrightKite dataset. We observe that the precision and recall keep increasing
with larger dimensions. However, they begin to slightly drop when dimensions reach around
35. �e results reveal the fact that a larger dimensionality can e�ectively uncover information of
check-ins and improve the recommendation performance. But when the dimensionality exceeds a
certain threshold (35 in our case), the performance may degrade because of over-��ing. In addition,
larger dimensionality also commits more computational cost.

5.5 Impact of Regularization Parameter λ
For tuning the regularization parameter λ3, we varied its value from {10−4, 10−3, ..., 103} with 10x
where x = −4,−3, ..., 3. Figure 5 shows the variations of precision and recall along with di�erent λ.
As demonstrated from the �gure, precision increases until λ hits 10−3 and later decreases when λ
has a bigger value. Recall exhibits the similar trend. �e results demonstrate that the performance
of the proposed model is sensitive to the regularization parameters. For example, in most cases,
with bigger regularization, the precision@5 gets be�er and reaches the best when λ is around 0.1
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to 1, and then gradually degrades when the value becomes bigger than 10. �e recall follows the
similar trend. We set λ = 10−3 by default in this paper.

5.6 Discussion
In this section, we draw some discussions on the e�ciency concerns of the proposed model. For
the complexity of the current algorithm, at each step for deriving gradient, and at each iteration
for calculating ∇UL(U,V,T), the time complexity is O(mnq). Similarly, the time complexity of
∇VL(U,V,T) w .r .t location V is O(mnq). Given that the number of iterations is K , the time
complexity is O(K(mnq)). We implement the optimization process using MATLAB Tensor Toolbox2.
However, since this approach is not e�cient enough, some recent e�orts have proposed to use

the alternating direction method of multipliers (ADMM) to e�ciently solve the tensor problem [11].
It has been successful in solving large scale problems and optimization problems with multiple
nonsmooth terms in the objective function, and has been widely used in many tensor-related
applications. We develop an ADMM based optimization process to solve the objective function in
Equation 11, which can be wri�en by augmenting Lagrangian function as follows:

L = | | |R − R̂ | |2F +
λ1
2 tr(U>LUU) +

λ2
2 tr(V>LVV) + λ3(| |U| |2F + | |V| |

2
F + | |T| |

2
F )

+ < Y1,Z1 − U > + < Y2,Z2 − V > +α(| |Z1 − U| | + | |Z2 − V| |)
s .t .Z1 = U,Z2 = V

(33)

whereY is thematrix of Lagrangemultipliers. We run some preliminary evaluation on the BrightKite
dataset. �e results, as shown in Table 4, indicate the consistent improvement achieved by the
ADMM based optimization (TenMF(A)), comparing with TenMF based optimization.

6 CONCLUSION
In this paper, we have proposed a novel Point-of-Interest (POI) recommendation approach based
on tensor factorization with users’ social constraints and spatial in�uence as regularization terms.
In particular, we model the check-in records of POI as a three-dimensional tensor and employ the
tensor factorization method to enable e�ective POI recommendation in a higher dimensional space.
We also propose to impose two relations within contextual entities as regularization terms of the
tensor factorization to further improve the recommendation accuracy. Our proposed approach
2h�p://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html



Table 4. Comparison with di�erent optimization process

Metrics Methods @5 @10 @15 @20

Precision TenMF 0.1032 0.0967 0.09325 0.07452
TenMF(A) 0.1044 0.1003 0.09411 0.07724

Recall TenMF 0.2489 0.2633 0.2779 0.2912
TenMF(A) 0.2517 0.2639 0.2793 0.2996

achieves be�er performance than the state-of-the-art methods, which has been demonstrated from
the results of our extensive experimental studies using two large real-life datasets.

Our future work will focus on two main directions. Firstly, the SGD (stochastic gradient descent)
algorithm used in this paper su�ers from high complexity and slow convergence. We plan to
develop more e�cient optimization algorithms to solve the objective function in Equation 11,
e.g., using parallel factorization to accelerate the convergence process. We will also investigate
a non-SGD optimization approach, e.g., reformulating the objective function in Equation 16 into
tr(U> ∗ U) − 2tr(U> ∗ B), which would have a closed-form solution U = inv(A) ∗ B. Secondly,
we will extend our TenMF model to integrate more temporal pa�erns, such as the dependency
between adjacent time slots and the periodical relations of POI check-in behaviors. Finally, we
plan to further validate our approach using more recent large-scale check-in datasets such as the
Foursquare dataset [40] and compare our approach with some other existing POI recommendation
methods as discussed in [29].
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