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Influence of distortion on guitar chord structures: Acoustic effects 

and perceptual correlates 
 

Jan-Peter Herbst 

Abstract 

Since the exploration of distortion as a means of expression in the 1950s, the electric guitar has 

become a primary instrument in popular music, especially in rock and metal music. Despite this 

development, there is little musicological research on the use and perception of distorted guitar 

chords. This work aimed at exploring the influence of distortion on guitar chord structures, at 

identifying acoustic features potentially causing dissonance and at finding explanations for the 

common use of simple chords in rock and metal music genres. The research followed a two-step 

experimental design. Based on Terhardt’s (1984) and Aures’ (1985) two-component framework 

of musical consonance, the main study statistically evaluated acoustic characteristics of 270 elec-

tric guitar chords produced with different sound settings, instruments and amplifiers. In a second 

step, data of a listening test with 171 participants were triangulated with the acoustic results for 

considering the perceptual perspective as well. The findings largely confirmed distortion to de-

crease sensory pleasantness especially for complex guitar chords. The parameters of sensory con-

sonance strongly correlated with the listeners’ perceptions. Surprisingly, roughness as the key 

criterion for dissonance in Helmholtz’ tradition was found the least reliable variable for explaining 

decreased sonority of distorted guitar sounds. 

Keywords: guitar distortion, rock music, acoustics, music perception, consonance, pleasantness 

 

Zusammenfassung 

Die E-Gitarre avancierte mit dem Beginn der künstlerischen Nutzung von Verzerrung ab den 

1950er Jahren zu einem wesentlichen Instrument der populären Musik, insbesondere im Rock und 

Metal. Trotz dieser Entwicklung existiert kaum Forschung zum Gebrauch und zur Wahrnehmung 

von verzerrten Gitarrenakkorden. Ziel der vorliegenden Untersuchung war es, den Einfluss von 

Verzerrung auf Gitarrenakkorde zu bestimmen, den Zusammenhang zwischen akustischen 

Charakteristika und Dissonanzempfinden zu untersuchen sowie Erklärungen für die verbreitete 

Nutzung von einfachen Akkordstrukturen in Rock und Metal Genres zu finden. Die Studie bestand 

aus einem zweistufigen experimentellen Design. Auf Grundlage des theoretischen Rahmens von 

musikalischer Konsonanz von Terhardt (1984) und Aures (1985) evaluierte die Hauptstudie 

akustische Eigenschaften von 270 E-Gitarrenakkorden, die mit verschiedenen 

Klangeigenschaften, Instrumenten und Verstärkern produziert wurden. Um auch die 

Wahrnehmungsperspektive zu berücksichtigen, wurden die Ergebnisse eines Hörexperiments mit 

171 Teilnehmern in einem zweiten Schritt mit den akustischen Werten trianguliert. Die Resultate 

bestätigten größtenteils die negative Wirkung von Verzerrung auf den sensorischen Wohlklang, 

insbesondere bei komplexen Gitarrenakkorden. Die gemessenen Parameter der sensorischen 

Konsonanz korrelierten stark mit den Höreindrücken. Überraschenderweise eignete sich Rauheit 

als das Hauptkriterium von Dissonanz in Helmholtz Tradition am wenigsten, um den verringerten 

Wohlklang verzerrter Gitarrenakkorde zu erklären. 

Stichwörter: Gitarrenverzerrung, Rockmusik, Akustik, musikalische Wahrnehmung, Konsonanz, Wohlklang 
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1. Introduction 

”The most important aural sign of heavy metal is the sound of an extremely distorted electric guitar. Any-

time this sound is musically dominant, the song is arguably either metal or hard rock; any performance that 

lacks it cannot be included in the genre.” (Walser, 1993, p. 41) 

In his pioneering work, Walser claimed the sound of the electric guitar to be particularly relevant 

for rock and metal music. In the development of the rock and metal music studies as an interdis-

ciplinary academic field, the profound analysis of distorted guitar sounds and the conventions of 

rhythm guitar playing have been on the fringes. Instead, research on the rock guitar paid special 

attention to cultural identity, ethnicity and political subversion (Waksman, 1999), genre definition 

(Gracyk, 1996), gender (Frith & McRobbie, 1978; Walser, 1993; Bourdage, 2010) or communi-

cation (Herbst, 2014). Within musicology, some research has focused on the distorted guitar 

sound. Discussing the genre characteristics of heavy metal, Walser (1993, pp. 41ff) devoted three 

pages to distortion, highlighting its expressive potential. By spectral analysis of original records 

and experimental guitar recordings, Einbrodt (1997) identified acoustic elements having contrib-

uted to the emergence of the rock guitar sound. Psychological and music theoretical issues were 

of secondary importance to his work. In contrast to Einbrodt, Elflein (2010) considered the guitar 

riff as the central element of his systematic analysis of rock and metal music. Although Elflein 

identified form, rhythm and sound as the main parameters for stylistic differences, he analysed 

the guitar sound only by description of his listening experience due to methodical difficulties 

(Elflein, 2010, pp. 71ff). In the same vein, Cope (2010) explored the separation of hard rock and 

heavy metal by analysing different guitar riffs of prototypical bands.  

An issue neglected even more is the perception of the distorted guitar sound. Lilja (2005, 

2015) has been one among a few researchers dealing with the influence of guitar distortion on the 

perception of harmonic structures and the conventional use of certain chord types in heavy metal. 

Methodically, he combined theoretical (2005) with spectral-analytical (2015) approaches to ex-

plain the common absence of complex chord structures. Juchniewicz and Silverman (2011) stud-

ied the issue of chord perception with a quantitative evaluation of the influence of chord progres-

sion and distortion on the perception of terminal power chords. By tracking the perceived heavi-

ness of the distorted rhythm guitar in heavy metal from 1970 to 2000, Berger and Fales (2005) 

aimed at presenting a new method of analysing timbre by combining verbal description with 

acoustic characteristics.  

All of this work provided valuable information on the electric guitar in cultural studies and 

musicology. However, due to methodical challenges (Einbrodt, 1997; Elflein, 2010) most work 

payed little attention to the underlying acoustic and psychoacoustic processes of guitar playing. 

As Einbrodt (1997), Lilja (2005, 2015) and Elflein (2010) pointed out, the spectral characteristics 

of the distorted guitar sound tempt guitarists to play simple harmonic structures, mostly single 

notes or power chords (fifths intervals) rather than triads and more complex chords. The harmonic 

structures of rock and metal music, mainly produced by guitar and bass, are subject to the sonic 

characteristics of these instruments. Hence, exploring the influence of guitar distortion on chord 

structures may be addressing the sonic centre of rock and metal music genres (Walser, 1993; 

Herbst, 2016). This also offers a promising academic basis for analysing genre development, per-

formance conventions and rock music’s psychological effects.  

This study aimed at exploring the influence of distortion on guitar chord structures, at identi-

fying acoustic features potentially causing dissonance and at finding explanations for the common 

use of simple chords in rock and metal music genres (Walser, 1993; Lilja, 2015). It followed a 

two-step experimental design. Based on Terhardt’s (1984) and Aures’ (1985) two-component 

framework of musical consonance, the main study statistically evaluated acoustic characteristics 

of 270 electric guitar chords with different sound settings, instruments and amplifiers. In a second 
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step, data of a listening test with 171 participants were triangulated with the acoustic results for 

considering the perceptual perspective as well. 

 

2. The electric guitar sound and its effects on chord perception 

Musical instruments such as the guitar produce periodic waves; the lowest vibration generally is 

the fundamental (f0) and the higher ones are harmonic partials (Roederer, 2008, pp. 49ff). Har-

monic partials are integer multiples of the fundamental frequency that add specific intervals to the 

perceived pitch; first octave, fifth and double octave, then major third and minor seventh (Müller, 

2015, pp. 23f). The number of partials, their relative intensities and the temporal development 

contribute to the spectrum and perceived timbre (Müller, 2015, pp. 26ff). Several parameters de-

termine the complex sound of the electric guitar: The scale length of the string, the string material 

and tension, the bridge and tail-piece, the wood and potential resonance chambers, the instrument 

formants, the position and kind of pickup (single coil or humbucker), the material (finger or plec-

trum), strength and position (towards the bridge or the neck) of impulse, the angle and hardness 

of the plectrum and the pitch (Einbrodt, 1997; Zollner, 2014). Due to the missing resonance cham-

ber, the solid body guitar only works with amplification (Gracyk, 1996, p. 120). The guitar am-

plifier does not simply intensify the signal but produces distortion. In acoustics and electronics, 

distortion is defined as “any change in a signal that alters the basic waveform or the relationship 

between various frequency components; it is usually a degradation of the signal“ (Encyclopaedia 

Britannica). Distortion results from the nonlinear transfer of the instrument pickups, the pream-

plifier and power amplifier and the loudspeakers that only reproduce a frequency range approxi-

mately between 75 and 5,000 Hz (Einbrodt, 1997, p. 198). The most important characteristic of 

guitar distortion is the modified waveform resulting from an amplification beyond fidelity repro-

duction. Quiet sound components are intensified and the amplitude increasingly is clipped, leading 

to a square wave (Elflein, 2010, p. 352). This modification produces a compressed signal with an 

increased noise ratio, added overtones, more sustain and a flatter dynamic envelope (Berger & 

Fales, 2005, p. 184). Inharmonic overtones additionally arise from the bending stiffness of the 

string. The stiffness, gauge and winding of the string lead to inharmonic spectra with frequencies 

of a few hertz next to the frequencies of the fundamental notes and their harmonic partials (Zoll-

ner, 2014, pp. 10-222-224; Zwicker & Fastl, 1997, p. 364). This inharmonicity combined with 

distortion produces a brighter sound and the beats of close frequencies result in roughness and 

amplitude fluctuations that are perceived as periodic “pseudo-noise” (Zollner, 2014, p. 10-224). 

With these alterations, the distorted timbre is noisier, rougher and presenter than a clean sound. 

The power chord, a fifth interval with an optional octave, is the chord most commonly played 

on the distorted guitar. It produces a powerful and consonant sound since many of the fundamen-

tals’ partials coincide (Lilja, 2005, pp. 10f). The difference tone below the chord’s root, an im-

portant component of the powerful sensation, is only physically present with a distorted sound 

(Walser, 1993, p. 43; Lilja, 2015). Most subgenres of metal music restrict the harmonic complex-

ity of the distorted guitar to single notes and power chords (Elflein, 2010) as these are expected 

to be less dissonant than triads or more complex chords. Hard rock bands in the tradition of Led 

Zeppelin, Van Halen and AC/DC, however, often integrate triadic harmony into their riffs (Cope, 

2010; Lilja, 2015). Many of those rock riffs solely consist of major chords (Lilja, 2015). Research 

using spectral analyses indicated that power and major chords have identical overtone spectra due 

to combination tones (Lilja, 2015; Herbst, 2016), which would explain why distorted major chords 

commonly were not considered dissonant. Minor chords are used on the distorted guitar less often. 

This custom could be explained by greater dissonance resulting from beats of the more complex 

interval relations (Einbrodt, 1997, pp. 160ff; Lilja, 2015, p. 397). A special chord is the altered 

dominant-seventh with an augmented ninth, known as the “Hendrix chord” (Lilja, 2015, p. 398). 
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Containing both major and minor third, this chord has been claimed to be aurally inseparable from 

a minor chord (Lilja, 2015, p. 398). The altered chord is likely to be affected by beats between the 

major third and augmented ninth (equals halftone interval) and between the major third and minor 

seventh (tritone interval).  

 

3. Duality of harmony and sensory pleasantness 

Terhardt (1984) presented a two-component concept of musical consonance consisting of har-

mony and sensory consonance. The affinity of tones, the fundamental-note relation and the com-

patibility of chords and melodic segments describe the harmonic element (Terhardt, 1984, pp. 

278f). In extension of Helmholtz’ theory (1863), sensory consonance is defined “as the more or 

less complete lack of annoying features of a sound; it is pertinent to such sensory parameters as 

roughness and sharpness (i.e., on the physical side, amplitude fluctuations and presence of spectral 

energy at high frequencies)“ (Terhardt, 1984, p. 282). Aures (1985) differentiated Terhardt’s 

(1984) model by empirically extrapolating its four main components: Roughness (Rauhigkeit), 

sharpness (Schärfe), tonalness (Klanghaftigkeit) and loudness (Lautheit). Sensory consonance, or 

pleasantness as termed by Aures (1985), is decreased by high values of roughness, sharpness and 

loudness, a high tonalness increases it (Aures, 1985, p. 289). In contrast to interval relation, the 

perception of sensory pleasantness has been argued to be more consistent among cultures and 

between musicians and non-musicians too (Cook & Fujisawa, 2006; Roberts, 1986).  

Roughness, as defined by Helmholtz (1863) and extended by Plomp and Levelt (1965), is 

considered the most important attribute for dissonance since it reduces the sound’s smoothness by 

beatings of adjacent partials that excite the same critical band. Therefore, musical sounds with a 

rich harmonic spectrum are prone to producing roughness (MacCallum & Einbond, 2008, p. 203), 

which goes along with amplitude fluctuations. For modulation frequencies below 20 Hz, fluctua-

tion induces perceivable beats, above this value, the modulation falls into the critical bandwidth 

causing a rough sensation (Zwicker & Fastl, 2007, p. 247). Consequently, (psycho)acoustic anal-

ysis should not only aim at frequency spectra but also include spectral fluctuations as a measure 

of the temporal development of a spectrum (Lartillot & Toivianinen, 2007, p. 2). Contrary to 

Plomp and Levelt (1965), Zwicker and Fastl (2007, p. 245) advocate sharpness as the most im-

portant factor related to sensory pleasantness. Sharpness can be measured by the spectral content 

of a sound and computed by the spectral centroid as the mean frequency of the spectrum (McAd-

ams, Depalle & Clarke, 2004, p. 191). A higher centroid caused by loud upper partials correlates 

with a brighter texture that is likely to be perceived as unpleasant (Grey & Gordon, 1978). The 

frequency between 2 and 5 kHz is very important because the human ear is most sensitive in this 

range (Zwicker & Fastl, 2007, pp. 17, 20). Loudness is a subjective parameter related to the sen-

sation of roughness and sharpness reducing sensory pleasantness (Aures, 1985) – even if only to 

a minor degree as argued by Zwicker and Fastl (1997, p. 364). Tonalness, defined by the “close-

ness of the partials to a harmonic series” (Sethares, 2005, pp. 79f), is the only parameter increasing 

pleasantness.  

From a music theory perspective, intervals and chord structures have been essential for dis-

cussing consonance (Tenney, 1988; Sethares, 2005; Cook & Fujisawa, 2006). For intervals, the 

complexity of frequency relation correlates with perceived dissonance (Roederer, 2008, pp. 170ff) 

whilst for chords, the affinity of tones and the fundamental-note relation matter (Terhardt, 1984, 

pp. 278f). Empirical studies have confirmed the decreasing sonority and stability as well as the 

increasing tension of major, minor, diminished and augmented triads in Western music (Roberts, 

1986; Cook & Fujisawa, 2006). The (psycho)acoustic perspective highlights several aspects un-

derrepresented in music theory. Sethares (2005, p. 80) described three implications. First, every 

natural tone with harmonics added to its fundamental is adherent to dissonance due to roughness. 
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Second, the sound spectrum must be considered besides the interval relations when determining 

the chords’ sonorities. Third, consonance and dissonance do not fall into strictly defined catego-

ries, and the sounds are perceived on a continuum with individual differences that are subject to 

developmental change (Cazden, 1945).   

 

4. Method of the main study 

4.1 Aims and hypotheses 

The acoustic analysis aimed at systematically exploring the influence of distortion on guitar chord 

structures and at identifying acoustic properties potentially causing dissonance within the theoret-

ical framework of Terhardt (1984) and Aures (1985). This study served as pre-study for a listening 

test (Herbst, 2018). For triangulating the acoustic characteristics with the perceptual perspective, 

the data of the listening study (Herbst, 2018) were correlated with the chords’ features in a second 

step. Seven hypotheses guided the acoustic analysis of the 270 guitar chords regarding sensory 

pleasantness: 

 
(1) Relevance of equipment  

H1: The different acoustic characteristics of guitar models take effect on the perception of sen-

sory pleasantness. 

H2: The different acoustic characteristics of amplifier models affect the perception of sensory 

pleasantness. 

(2) Interrelation of structural complexity, sound setting, and sensory pleasantness 

H3: Roughness, spectral flux, spectral centroid and loudness correlate positively amongst them-

selves and they all correlate negatively with tonalness (for all sound settings and structures). 

H4: All three sound settings (clean, overdrive, distortion) differ significantly regarding sensory 

pleasantness. 

H5: For distorted sounds (overdrive, distortion), there are different consonance groups: 1. single 

notes, 2. power chords, 3. major chords, 4. minor chords and altered dominant chords.  

H6: There are interaction effects between chord structures and sound settings for all parameters 

of sensory pleasantness. 

H7: Distortion takes greater effect on all parameters of sensory pleasantness than the chord struc-

ture does, hence it contributes more to overall sensory dissonance. 

 

4.2 Experimental design and sample 

The study was based on an experimental sample. To systematically investigate the effect of guitar 

distortion, six different structures on the root C3 (131 Hz) played on the A-string were recorded: 

1. single notes (abbreviated SN), 2. power chords with root and fifth (PC5), 3. power chords with 

root, fifth and octave (PC8), 4. major chords (Ma), 5. minor chords (Mi), 6. dominant-seventh 

chords without fifth but with added augmented ninth (7#9). All chord voicings followed the order 

root, fifth, octave and third, except for the altered chord, where it was root, third, minor seventh 

and augmented ninth. Each of these structures was recorded with three common guitar types: A 

Stratocaster (Fender American Standard), a “Superstrat” (Music Man John Petrucci 6 Signature) 

and a Les Paul (Gibson Standard). All guitars had humbucker pickups at the bridge position. The 

signals of 2.5 seconds’ length were recorded into Apple Logic Pro X with a Roland OctaCapture 

audio-card and they were re-amped with the Palmer Daccapo box into five valve amplifiers: Laney 
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GH50L, Marshall JCM2000 TSL100, Mesa Boogie Triaxis, Orange Dual Terror and Peavey 5150 

MKI. These amplifiers covered a range of the traditional American and British rock guitar sounds. 

Transistor and modelling amplifiers were not taken into account due to their different spectral and 

dynamic characteristics (Berger & Fales, 2005, p. 185) and their rare use in rock music history 

(Herbst, 2016). All signals were recorded with three different sounds (clean, overdrive, distortion). 

They were produced with the same amplifier channel to ensure that only the distortion level var-

ied. The distortion sound was achieved by adding a Fulltone OCD pedal to the overdrive setting 

with gain on 25%, and level on 60%, to boost the amplifier’s valves. Based on listening impres-

sion, for all amplifiers the gain increase was similar from clean to overdrive and from overdrive 

to distortion. Slight differences were accepted as they represent the tonal spectrum of valve am-

plifiers and because they were averaged by the number of recordings. A Marshall 4x12 cabinet 

with Celestion G12 Vintage 30 speakers (1960BV model) was recorded with a Shure SM57 dy-

namic microphone slightly off-centre and in close position at 100 dB. The recorded audio files 

were normalised during the Logic export to compensate for slightly different amplifier volumes. 

As normalisation reacts to peak volumes, the average RMS volumes (in dBFS) were hardly af-

fected, allowing loudness to be analysed (Einbrodt, 1997, p. 21). In total, the sample consisted of 

270 audio files (without the direct signals): 90 for each guitar, 54 per amplifier, 90 per sound 

setting and 45 for each chord type. These multiple recordings produced sufficient random variance 

for each chord and guitar sound to enable statistical analyses. 

 

4.3 Music information retrieval 

The functionality of computer-assisted music analysis has improved over the last years (Lartillot 

& Toiviainen, 2007; Genesis, 2009; Müller, 2015) and modern music information retrieval tech-

nology can nowadays be used efficiently for measuring acoustic characteristics of diverse sounds. 

The data was created by an audio-based feature extraction with the MIR-Toolbox (Lartillot & 

Toiviainen, 2007) and the Loudness-Toolbox (Genesis, 2009) that were executed in the program-

ming environment MathWorks Matlab. Roughness was calculated in the MIR-Toolbox following 

Plomp and Levelt’s (1965) model of sensory dissonance which uses Sethares’ (1998) algorithm. 

Spectral fluctuation strength was gathered with the MIR-Toolbox’s function of calculating the 

distance between spectra of successive frames (Lartillot, 2014, p. 60). For measuring sharpness, 

the average frequency (spectral centroid) was determined in the MIR-Toolbox. Operationalising 

sharpness with spectral centroid concurred with empirical findings (Grey & Gordon, 1978; Schu-

bert, Wolfe & Tarnopolsky, 2004; Schubert & Wolfe, 2006). Loudness was calculated in the 

Loudness-Toolbox (Genesis, 2009) according to the ASNI S3.4-2007 norm (Moore, Glasberg & 

Baer, 1997). The parameter tonalness was extracted by an inversion of the MIR-Toolbox’s inhar-

monicity algorithm (Lartillot, 2014, pp. 143f). The modified algorithm estimated the root note and 

analysed the amount of energy close to the harmonic series compared to the rest of the signal 

(Sethares, 2005, pp. 79f). Extractions of the features roughness, spectral flux, spectral centroid 

and tonalness used the standard values of the MIR-Toolbox (Lartillot, 2014) based on the Ham-

ming window. Loudness was measured with several parallel Fourier transformations and different 

window widths of 64, 32, 16, 8, 4 and 2 ms (Genesis, 2009). Subsequent to the feature extraction, 

the data was imported to IBM SPSS 23 for statistical analysis. 
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5. Results 

(1) Relevance of equipment: The equipment’s influence on the parameters of sensory pleasantness 

was tested with the full sample (N = 270). For the guitar models, the ANOVA F-test was negative 

for all five parameters. The amplifiers showed no significant variance in roughness, spectral flux 

and tonalness. Small to medium differences were found in loudness (F(4, 89) = 3.04, p = .018, ηp
2 

= .044) and spectral centroid (F(4, 89) = 6.30, p < .001, ηp
2 = .087). For both parameters, the 

Tukey HSD post-hoc test reported the Orange Tiny Terror to differ significantly. It was less quiet 

and bright than any other amplifier. Hence, H1 was rejected, H2 accepted. 

(2) Interrelation of structural complexity, sound setting and sensory pleasantness: Since nonlinear 

distortion adds harmonic and inharmonic content to the signal, it was expected to alter the percep-

tion of sensory pleasantness. Table 1 shows the correlation matrix of the parameters. All parame-

ters of sensory pleasantness but tonalness correlated positively among each other. The strongest 

connection was between loudness and spectral centroid. Tonalness was affected most by rough-

ness; loudness took least impact on tonalness. The hypothesis H3 was accepted. 

Table 1: Correlation matrix of the parameters of sensory pleasantness 

 Roughness Spectral flux Spectral centroid Loudness 

Spectral flux .612    

Spectral centroid .640 .684   

Loudness .766 .774 .802  

Tonalness –.657 –.488 –.539 –.352 

Note: All correlations on probability level p < .001, N = 270. 

Hypothesis 4 assumed that all sound settings differed significantly regarding the parameters of 

sensory pleasantness. The ANOVAs (Table 2) verified this except for loudness where no signifi-

cant variance between the overdriven and distorted sounds was found. Apart from that, H4 was 

confirmed. 

Table 2: Descriptive statistics and ANOVA of the parameters of sensory pleasantness for all sound 

settings 

 Clean Overdrive Distortion ηp
2 

Roughness 576 (330) (ovd, dist) 2,234 (1,157) (cln, dist) 2,695 (1,338) (cln, ovd) .437*** 

Spectral flux 19.51 (6.51) (ovd, dist) 53.45 (26.08) (cln, dist) 83.42 (29.55) (cln, ovd) .564*** 

Spectral centroid 1,168 (253) (ovd, dist) 1,512 (351) (cln, dist) 2,322 (265) (cln, ovd) .734*** 

Loudness 309 (38) (ovd, dist) 447 (33) (cln, dist) 516 (51) (cln, ovd) .812*** 

Tonalness 0.667 (0.098) (ovd, dist) 0.612 (0.122) (cln) 0.577 (0.116) (cln) .102*** 

Note: Values represent M (SD). Abbreviations in brackets are the sounds that differ significantly from the value 

according to Tukey HSD post-hoc test. Cln: clean, ovd: overdrive, dist: distortion. * p < .05, ** p < .01, *** p < .001, 

N = 270. 

Analysing the issue of whether the chords’ consonance differed between undistorted and distorted 

guitar sounds was central to determining the effect of distortion. The ANOVAs with Tukey HSD 

post-hoc test (Table 3) did not verify the anticipated hierarchy of consonance for clean sounds. 

Especially the key components of the theoretical framework, roughness, spectral flux and tonal-

ness, did not meet the expectations. Yet, both distorted sound settings not only showed some 

differences to the clean sound but also between each other, indicating the distortion level to be 

relevant (Table 4). The post-hoc test (Table 3) revealed conflicting results between the parameters 

concerning the interval beatings: Roughness and spectral flux. The spectral flux values complied 

with the hierarchy of consonance in the overdriven and distorted sample, however the roughness 
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values did not. While the less complex power chords exhibited more roughness than minor and 

altered dominant chords, the major chord was the roughest in the heavily distorted sample. The 

fluctuation strength was thus the only parameter with distinguishable consonance groups: 1. single 

notes and power chords, 2. major triads, 3. minor triads, 4. altered dominant-seventh chords. Re-

garding the interval structure, for all sound settings the spectral centroid was raising from single 

notes to major chords and then falling again from minor to altered dominant chords. This order 

complied with the interval structures of the chords. Regarding loudness, all groups showed little 

differences whilst the variance among them was huge in tonalness. Single notes differed signifi-

cantly from all chords. Hypothesis 5 was not fully supported. Concerning sensory pleasantness, 

only the fluctuation strength met the theoretical hierarchy of consonance.  

Table 3: Descriptive statistics and ANOVAs of the parameters of sensory pleasantness for all 

structures 

  SN PC5 PC8 Ma Mi 7#9 ηp
2 

R
o

u
g
h

n
es

s 

cln 181 (65) 

(all) 

663 (276) 

(SN) 

511 (308) 

(SN) 

745 (399) 

(SN) 

774 (261) 

(SN) 

579 (195) 

(SN) 

.364*** 

ovd 296 (77) 

(all) 

2,699 (795) 

(SN) 

2,582 (1,055) 

(SN) 

2,825 (583) 

(SN) 

2,901 (740) 

(SN, 7#9) 

2,099 (782) 

(SN, Mi) 

.618*** 

dist 654 (295) 

(all) 

3,311 (635) 

(SN) 

3,209 (645) 

(SN) 

3,887 (1,357) 

(SN, Mi, 7#9) 

2,653 (963) 

(SN, Ma) 

2,452 (983) 

(SN, Ma) 

.592*** 

S
p

ec
tr

al
 f

lu
x
 

cln 17.82 (4.00) 

(7#9) 

16.52 (2.52) 

(7#9) 

14.79 (3.53) 

(Mi, 7#9) 

18.11 (4.03) 

(7#9) 

19.45 (3.19) 

(PC8, 7#9) 

30.36 (6.57)  

(all) 

.612*** 

ovd 33.36 (4.41) 

(Ma, Mi, 

7#9) 

36.00 (5.43) 

(Mi, 7#9) 

36.54 (6.61) 

(Mi, 7#9) 

46.42 (7.70) 

(SN, Mi, 7#9) 

71.98 (15.67) 

(all) 

96.38 (21.60) 

(all) 

.800*** 

dist 54.11 (5.95) 

(Ma, Mi, 

7#9) 

64.62 (9.24) 

(Ma, Mi, 

7#9) 

63.18 (10.93) 

(Ma, Mi, 

7#9) 

81.92 (10.49) 

(all) 

108.09 

(18.66)  

(all) 

128.62 

(16.43) 

(all) 

.825*** 

S
p

ec
tr

al
 c

en
tr

o
id

 

cln 951 (179) 

(PC8, Ma, 

Mi, 7#9) 

1,003 (216) 

(Ma, Mi, 

7#9) 

1,202 (211) 

(SN) 

1,292 (244) 

(SN, PC5) 

1,264 (227) 

(SN, PC5) 

1,297 (217) 

(SN, PC5) 

.307*** 

ovd 1,058 (222) 

(PC8, Ma, 

Mi, 7#9) 

1,271 (239) 

(PC8, Ma, 

Mi, 7#9) 

1,716 (249) 

(SN, PC5) 

1,765 (290) 

(SN, PC5) 

1,676 (238)  

(SN, PC5) 

1,588 (206) 

(SN, PC5) 

.551*** 

dist 2,076 (240) 

(PC5, PC8, 

Ma, Mi) 

2,237 (232) 

(Ma) 

2,406 (232) 

(SN) 

2,519 (222) 

(SN) 

2,386 (229) 

(SN) 

2,306 (228) 

 

.284*** 

L
o

u
d

n
es

s 

cln 313 (44) 287 (22) 

(Ma) 

289 (37) 

(Ma) 

331 (40) 

(PC5, PC8) 

323 (30) 313 (34) .190** 

ovd 439 (24) 428 (35) 

(Ma) 

440 (32) 464 (32) 

(PC5) 

456 (31) 454 (34) .139* 

dist 486 (48) 513 (45) 515 (35) 539 (54) 516 (53) 525 (62) .097ns 

T
o

n
al

n
es

s 

cln 0.849 (0.029) 

(all) 

0.633 (0.077) 

(SN) 

0.664 (0.044) 

(SN, 7#9) 

0.628 (0.063) 

(SN) 

0.642 (0.039) 

(SN, 7#9) 

0.583 (0.016) 

(SN, PC8, 

Mi) 

.761*** 

ovd 0.864 (0.034) 

(all) 

0.596 (0.059) 

(SN, 7#9) 

0.561 (0.064) 

(SN) 

0.553 (0.030) 

(SN) 

0.559 (0.023) 

(SN) 

0.541 (0.027) 

(SN, PC5) 

.885*** 

dist 0.819 (0.025) 

(all) 

0.531 (0.016) 

(SN) 

0.542 (0.033) 

(SN, 7#9) 

0.524 (0.009) 

(SN) 

0.528 (0.013) 

(SN) 

0.516 (0.007) 

(SN, PC8) 

.970*** 

Note: Values represent M (SD). Abbreviations in brackets are the structures that differ significantly from the value 

according to Tukey HSD post-hoc test. SN: single note, PC5: power chord, PC8: power chord with octave, Ma: major 

chord, Mi: minor chord, 7#9: altered dominant chord. * p < .05, ** p < .01, *** p < .001, ns = not significant, N = 

270. 
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Table 4: Correlation matrix of sound settings and parameters of sensory pleasantness for all 

structures 

 SN PC5 PC8 Ma Mi 7#9 

Roughness .744 .790 .777 .842 .662 .754 

Spectral flux .937 .943 .937 .943 .914 .891 

Spectral centroid .782 .853 .907 .886 .882 .853 

Loudness .853 .918 .918 .891 .866 .851 

Tonalness –.352 –.526 –.631 –.639 –.838 –.809 

Note: All correlations on probability level p < .001, N = 270. SN = single note; PC5: power chord, PC8: power chord 

with octave, Ma: major chord, Mi: minor chord, 7#9: altered dominant chord. 

Two-way ANOVAs were calculated for every parameter to determine the interrelation of struc-

tural complexity, sound setting and sensory pleasantness (Table 5). For roughness, spectral flux 

and tonalness, which are closely related to interval relations, the results demonstrated strong in-

teraction effects between structure and sound. Less dependent on chord structure, loudness and 

spectral centroid showed little or no significant interaction between structure and sound. With the 

corrected models’ effect sizes between .772 and .917 (p < .001), the variables structure and sound 

explained most variance within the sample. Hypothesis 6 was partly accepted. Structure in con-

junction with sound interacted with all parameters but loudness. 

 

Table 5: Between-subjects-effects of two-way ANOVAs of the parameters of sensory pleasant-

ness  

 Structure Sound Interaction structure * 

sound 

Corrected Model 

 df F ηp
2 df F ηp

2 df F ηp
2  df F ηp

2 

Roughness 5 55.64 .525*** 2 241.44 .658*** 10 9.22 .268*** 17 50.19 .772*** 

Spectral 

flux 

5 164.08 .765*** 2 855.00 .872*** 10 24.71 .495*** 17 163.38 .917*** 

Spectral 

centroid 

5 31.30 .383*** 2 597.04 .826*** 10 2.42 .088** 17 80.87 .845*** 

Loudness 5 5.46 .098*** 2 625.41 .832*** 10 1.09 .041ns 17 75.82 .836*** 

Tonalness 5 362.12 .878*** 2 119.53 .487*** 10 5.32 .174*** 17 123.70 .893*** 

Note: * p < .05, ** p < .01, *** p < .001, N = 270, df error = 252 

The relative impact of structural complexity and distortion level was estimated by categorical 

regression models for each of the five parameters (Table 6). For tonalness, the structural complex-

ity was more relevant than the sound. In contrast, sharpness and especially loudness depended 

significantly more on distortion level. For the parameters roughness and spectral flux that both 

measure roughness, the ratio between structure and sound was more balanced, even if the distor-

tion level affected fluctuation strength more. Summing up, all parameters of sensory pleasantness 

were affected by distortion level more than by chord structure. Hence H7 was accepted. 
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Table 6: Categorical regression models of the parameters of sensory pleasantness  

  Regression ANOVA 

 Beta F Sig. adj. R2 F Sig. 

Roughness Structure .480 126.84 < .001 .660 131.73 < .001 

 Sound  .659 455.89 < .001    

Spectral flux Structure .498 358.10 < .001 .851 221.26 < .001 

 Sound  .779 684.55 < .001    

Spectral centroid Structure .262 73.29 < .001 .781 192.61 < .001 

 Sound  .846 1857.07 < .001    

Loudness Structure .097 11.15 .001 .809 285.17 < .001 

 Sound .896 4448.84 < .001    

Tonalness Structure –.843 1046.01 < .001 .810 191.73 < .001 

 Sound –.322 89.36 < .001    

Note: Parameters of sensory pleasantness were set as interval, structure and sound as ordinal variables. 

 

6. Additional listening test 

Acoustic analyses can provide valuable insights into features potentially affecting the perception. 

Yet, the impact of distortion on perceiving guitar chords cannot be determined without any veri-

fication by listeners. For this reason, the acoustic data were triangulated with the results of the 

author’s listening test (Herbst, 2018). 

 

6.1 Design 

In the period from 11 April to 13 May 2016, 171 students (95% undergraduate) aged between 18 

and 39 (M = 22.06; SD = 3.33; 53% female) from six universities in Northern Germany partici-

pated in the listening test. 76% of them were studying music-related courses (N = 127), the re-

maining 24% were enrolled in arts education (N = 16), social work (N = 11) and other courses (N 

= 17). The mean preference for rock and metal music was 3.21 (SD = 1.33; scale: 1 = strong 

dislike; 5 = strong like) without any significant differences between the sexes. 21% of the students 

played the electric guitar. 

Amongst other elements, the test included three sections in which samples of power, major, 

minor and 7#9 chords were evaluated. For clean, overdriven and distorted sounds, every chord 

was rated three times to minimise order effects. The participants rated the pleasantness on a 10-

point scale with labels on the anchors, signing (1) as “unpleasant” and (10) as “pleasant”. This 

procedure resulted in 6,156 chord ratings, 1,539 per chord. As the samples were taken from the 

acoustic study (equipment: Fender Stratocaster guitar and Laney GH50L amplifier), data correla-

tion was permitted.  

Modified sound files of a power chord were an additional element to the systematic rating of 

regular recordings. Altering the sounds with the sequencer software (Logic Pro X) allowed com-

paring manipulated recordings with the originals. Regarding the parameters of sensory pleasant-

ness, loudness and roughness could not be varied in a controlled manner, in contrast to sharpness. 

The frequency content between 1.5 and 20 kHz was intensified by 15 dB with an equaliser, giving 

it a harsh sound (spectral centroid: original 2,017 Hz, high boost 3,157 Hz). For a booming sound, 

the high frequencies were attenuated by 15 dB (spectral centroid: 988 Hz). Tonalness was varied 

by mixing an artificial upper fifth and lower forth interval with 20% intensity to the signal with a 

pitch shifter, which obscured the root (tonalness: original 0.466, modified 0.437). The participants 

evaluated the manipulated signal on a 7-point scale to be “less pleasant” (1), “equally pleasant/un-

pleasant” (4), or “more pleasant” (7). With an open question at the end of the questionnaire, the 

participants were asked to describe how distortion affected their perception. 
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6.2 Results 

The chord ratings followed the expected order of consonance (Tenney, 1988; Sethares, 2005; 

Cook & Fujisawa, 2006): The major chord as the most pleasant and the altered 7#9 chord as the 

least pleasant. This hierarchy was confirmed for all three sounds except for the power chord, 

which was rated significantly more pleasant than the major chord for the overdriven and distorted 

sounds, even if only with small effects. Adding overdrive to clean sounds affected the ratings of 

the chords differently. For minor and altered chords, the pleasantness was reduced with a medium 

to strong effect, whereas for the power and major chords the effect was small. Increasing the gain 

from overdrive to distortion had a small to medium effect on all chords but least on the power 

chord. In general, the step from clean to overdrive had a greater effect than from overdrive to 

distortion.  

Person-related factors proved to affect the ratings significantly. Regression analyses demon-

strated the preference for rock and metal music to be the best indicator for liking overdriven and 

distorted sounds. Gender only played a significant role for the highly distorted chords. Being an 

electric guitar player did not influence the rating of clean chords. The overdriven and distorted 

chords, however, were rated significantly more pleasant by them. The playing experience was 

another factor increasing the tolerance for both distorted sounds with a small to medium effect. 

With regard to the manipulated recordings, raising the spectral centroid reduced pleasantness with 

a very strong effect. Attenuating the high frequencies resulted in an insignificant increase of pleas-

antness. Reducing tonalness decreased pleasantness significantly but with a small effect.  

154 of the 171 participants answered the open question. 250 codes were divided into specific 

categories. Within ‘sound characteristics’, most of the statements addressed issues related to fre-

quency. Sharpness was explicitly emphasised by mentioning the unpleasant treble resulting from 

distortion. Other parameters of the theoretical framework such as clarity, roughness and loudness 

were also found in the answers. Statements within the category ‘listening habits’ indicated that 

rock and metal music listeners are prone to be accustomed to distorted sounds, highly tolerating 

dissonant or harsh sounds. The category ‘effects’ comprised mainly negative attributes as for in-

stance exhaustion, painfulness, aggressiveness, menace, inner disturbance, hardness, coldness and 

emotions like fear. Again, music preference played a central role for such feelings. 

 

6.3 Triangulation 

Using identical sound files allowed correlating data of the acoustic study and the listening test. 

Spearman correlation indicated a close connection between the listeners’ ratings and the acoustic 

values of most parameters. In compliance with the theoretical model, all parameters but tonalness 

(r = .668; p < .001) reduced the pleasantness of the chords. Roughness (r = −.409; p = .013) 

correlated least with the listeners’ ratings. In contrast, spectral flux (r = −.899; p < .001) as an 

alternative parameter for roughness had an almost perfect negative correlation. Strong correlations 

of spectral centroid (r = −.744; p < .001) and loudness (r = −.668; p < .001) were also confirmed 

for having a negative effect on perception. Regarding the overarching variables, a close connec-

tion between perceived pleasantness and structural complexity (r = −.627; p < .001) as well as 

between pleasantness and sound setting (r = −.717; p < .001) has been found. More complex 

chords and higher distortion levels reduced the liking for many listeners. 

 

7. Discussion 

This research is the first one that has explored the influence of guitar distortion on the sensory 

pleasantness of various chord types based on an acoustical analysis in combination with a listening 
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test. The statistical analysis of acoustic data gathered by feature extraction investigated the pa-

rameters of sensory pleasantness within the framework of Terhardt (1984) and Aures (1985). Both 

sides of the two-component concept were addressed; distortion level and choice of instrument 

equipment matched the acoustic aspects, different chord types met the music theoretical aspects. 

The results indicated a negligible effect of equipment (guitar model and amplifier) on the acoustic 

characteristics contributing to consonance perception. The amplifiers only differed significantly 

in loudness and sharpness, yet these parameters can be compensated with the equaliser and volume 

controls.  

In compliance with the framework of Terhardt (1984) and Aures (1985), all parameters of 

sensory pleasantness correlated positively among each other except for tonalness, which corre-

lated negatively. The strongest positive correlation was measured between loudness and spectral 

centroid, suggesting that sharper sounds increase the perceived loudness of a signal, particularly 

enhancing its unpleasantness (Aures, 1985). Tonalness was affected mainly by roughness as 

claimed by Helmholtz (1863), Terhardt (1984) and Aures (1985). It also correlated with sharpness 

in compliance with Zwicker and Fastl’s (2007) argument. Regarding the theoretical framework, 

it remains unclear why some parameters, in particular roughness and spectral flux, correlated 

strongly while at the same time differing significantly in the ANOVAs (Table 3), and then again 

correlating in varying degrees with the listeners’ ratings.  

In line with the expectation, both acoustic analysis and listening test confirmed the increasing 

of distortion level and structural complexity to result in diminished sensory pleasantness. Com-

paring the influence of sound setting with the structural complexity on sensory pleasantness, the 

regression models and the ANOVAs indicated that distortion had a greater effect. Correlating the 

data confirmed this in both studies, even though in the listening test the effect of distortion was 

only slightly stronger than the effect of structure. Nonetheless, there was sufficient evidence for 

concluding that distortion, in complex chords above all, is likely to decrease perceived pleasant-

ness. These findings contribute to empirical evidence for common claims found in rock and metal 

music studies (Walser, 1993; Lilja, 2015) and musicology (Einbrodt, 1997). However, the influ-

ence of person-related factors including music preferences and guitar playing experience must be 

considered too. 

The acoustic study did not discover conclusive evidence for distinct consonance groups com-

plying with the hierarchy advocated by Roberts (1986) as well as by Cook and Fujisawa (2006). 

Neither did the results match the research on distorted guitar chords (Einbrodt, 1997; Lilja, 2005, 

2015). Except for spectral flux, the statistical tests did not prove the expected order of sensory 

pleasantness. The distorted major chords as the roughest chord types and the power chords as 

being rougher than minor and altered dominant chords contradicted existing research and likewise 

theory on interval beatings. In the listening test, however, the theoretical assumptions were con-

firmed. The power and major chords differed only slightly, and they were rated significantly more 

pleasant than the minor and altered chords were. Besides, the pleasantness of power and major 

chords also decreased only slightly with growing increase of distortion level contrary to the more 

complex chords.  

Reflecting the findings of both studies, roughness may not be an optimal indicator for disso-

nance. Roughness neither fitted any theoretical model nor correlated with the listeners’ ratings as 

strongly as the other parameters did. Speculating on the problematic role of roughness when dis-

cussing the different perception of major and minor chords, Parncutt (2006, pp. 205f) claimed the 

decisive factor of consonance to be the clear identifiability of the root: “Perhaps root ambiguity 

makes a bigger contribution than roughness to the difference in overall dissonance and prevalence 

between these two chords.“ Evidence for this argument was found in some of the listening test’s 

open answers where it was stressed that distortion reduced transparency and clarity. Tonalness 

and roughness showed the strongest negative correlation in the acoustic analysis too (Table 1). 

The potentially overestimated role of roughness has also been addressed by Plack (2010, p. 2): 
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”A possible explanation for why consonance is not linked to beating preference is that beating is unreliable 

as a cue. The salience of beats will vary greatly depending on the amplitudes, and relative amplitudes, of 

the interacting harmonics in the chord. The pattern of harmonic amplitudes is different for different instru-

ments, helping to determine their distinct timbres. Hence, the salience of beating for a given musical interval 

will vary depending on which instrument or instruments are combined in the chord. Harmonicity does not 

depend on this, and so provides a more general basis for consonance preference.“  

Parncutt’s (2006) argument of root identifiability, Plack’s (2010) claim on harmonicity and Lilja’s 

(2015) theory on guitar chords coincide, yet, they contradict some findings of the acoustic study. 

Regarding both parameters in question, roughness and tonalness, the major, minor and altered 

dominant chords deviate from those theories. The chords did not differ significantly in tonalness, 

and roughness was highest for major and lowest for dominant chords. However, Plack (2010) 

pointed to differences of consonance perception between diverse instruments, which is in line with 

Voigt (1985). The electric guitar with its distorted sound thus is likely to be special. Spectral flux 

in combination with loudness is suspected to be the primary indicator for dissonance in relation 

with the specific characteristics of the overdriven and distorted guitar. The natural fluctuations 

resulting from interval relations with clean sounds are increased by distortion’s compression effect 

that accentuates the uneven envelope by acceleration and increased density, which ultimately di-

minishes the chord’s pleasantness. Indicators for spectral flux as the prime factor are its highly 

significant differences: 1. between all three sound settings (Table 2), 2. between most chords for 

overdriven and distorted sounds but not for clean sounds (Table 3), 3. strong correlations of r > 

.900 for all chords between increasingly distorted sounds and spectral flux (Table 4). A close 

connection of spectral flux and loudness is likely because of their high correlation (Table 1). Both 

interrelate closely with distortion level too (Tables 1, 2, 4, 6). Hence, investigating the potentially 

dissonant effect of overdriven and distorted guitars requires considering temporal and loudness-

related aspects rather than the spectral ones. This conclusion of the acoustic study largely complies 

with the results of the listening test. Spectral fluctuations showed an almost linear negative corre-

lation with the listeners’ ratings thus emphasising its central role. Loudness was confirmed a de-

cisive factor as well. Although it correlated with the listeners’ ratings less than all other parameters 

but roughness did, many participants stressed its effect in their open statements. Sharpness clearly 

affected the perception too as the strong correlation between acoustic data and subjective ratings 

showed. The results of the modified recordings and the emphasis on harsh frequencies in the open 

answers contributed to further proof for this connection. Tonalness affected the perceived pleas-

antness as well.  

Summing up, the triangulated results indicate that loudness, spectral centroid, spectral flux 

and tonalness, calculated with the MIR and Loudness toolboxes, are suitable parameters for pre-

dicting the generally perceived pleasantness of electric guitar chords played with different sounds. 

Some parameters like spectral centroid and loudness seem predicators more reliable for the impact 

of sounds whilst others such as spectral flux and tonalness rather are suitable for predicting the 

effect of chords structures. Spectral flux seems to be most promising for predicting the generally 

perceived pleasantness of chords based on acoustic features. Evidently, acoustic analyses must 

still include person-related aspects as demonstrated by the listening test. 

 

Limitations 

The results of this study are subject to certain limitations. Based on acoustic data of isolated chords 

created in an experimental environment, the findings may differ from guitar playing in authentic 

musical contexts. In either way, be it a live situation or a studio production, the guitar sound is 

affected by playing techniques, other instruments and sound engineering, which all influence vol-

ume, frequency and tonal composition. Moreover, person-related aspects affect the perception of 

distorted guitar sounds as the listening test revealed. Music preference and experience with an 
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instrument certainly are main factors causing variance. This result highlights the need to consider 

learning, development and acculturation in research on consonance perception (Parncutt, 2006). 

Furthermore, the listening situation influences the perception of distorted guitars. In a concert, 

much distorted guitars might support the exciting atmosphere desired for bodily perception and 

their sharpness may be suitable for complementing the low bass drum and electric bass. In a re-

laxed or in a stressful situation, distortion may be perceived very differently (Berlyne, 1971). 

Methodically, experimental designs are prone to errors. For example, the recordings of the 

chords have been subject to the author’s playing style, and so the possibility cannot be ruled out 

that other factors, notably unintended variance in the string attack and tone fretting, have occurred. 

Another limitation might be the signals’ length of 2.5 seconds that possibly prevented phenomena 

in the decay time to be captured. Regarding the acoustic feature extraction with music information 

retrieval technology, the unexpected values of roughness contrary to the theoretical expectations 

give rise to challenge Sethares’ algorithm. Thus, errors due to a low-quality algorithm when cal-

culating roughness cannot be excluded. 

 

8. Conclusion 

This study set out to assess the influence of distortion on the perception of guitar chord structures, 

to identify acoustic properties potentially causing dissonance and to find explanations for the com-

mon use of simple chords in rock and metal music genres. Although various genres of popular 

music have used the electric guitar as an accompanying harmonic instrument since the 1950s, 

there has been little research on this issue up to now. The study found evidence for the reduced 

pleasantness of heavily distorted guitar chords and indicated that spectral fluctuation in connection 

with distortion’s compression effect, intensified loudness and increased sharpness due to the ex-

tended overtone spectrum are central for this effect. However, the common use of single notes 

and power chords in rock and metal music riffs could not solely be explained by the acoustic 

characteristics of the distorted sound. Since on the one hand the guitar sound in rock and metal 

music genres became increasingly more distorted, the chord complexity could have been reduced 

to compensate for the diminished sensory pleasantness of the instrument. On the other hand, the 

listening test demonstrated rock and metal music enthusiasts having great tolerance if not even a 

liking of heavily distorted chords regardless of its complexity. Thus, it appears that additional 

research should be carried out to explore why the harmonic complexity in many rock and metal 

music genres has not increased, especially since metal musicians and listeners have thrived for 

increased heaviness in genre history (Berger & Fales, 2005; Herbst, 2017).  

Previous studies on guitar distortion have mostly been descriptive based on listening analysis 

and genre observation, or analytical by means of visual representations of spectra. Such ap-

proaches do not allow a statistical investigation on the effects of guitar distortion and they lack a 

theoretical framework supported by empirical findings within psychology of music and acoustics. 

The present study contributes to existing knowledge in various respects: It offers findings on the 

characteristics of distortion in relation to underlying harmonic structures, provides an acoustic 

framework, contributes results on whether or not and to which extent the respective parameters 

affect sensory pleasantness and it uncovers the influence of instrument equipment on acoustic 

properties. Future research in psychology of music and acoustics could proceed with paying spe-

cial attention to the issue of temporal modulation investigating the interrelation of spectral flux 

and roughness for distorted sounds. Moreover, since remaining unclear why some parameters cor-

related strongly but differed in the ANOVAs and in the listening test, further research is needed 

to determine whether the strong correlations result from the sound characteristics or rather arise 

from the algorithms of the features themselves.  
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The findings also contribute to the interdisciplinary field of popular music studies by laying 

an empirical foundation for structure-oriented music analysis, aesthetics and reception research. 

Building upon these results, genre development, performance conventions and the psychological 

effects of rock music can be explored. The study may inspire future research on the perception of 

the sounds of modern electronic or digital instruments, including issues as for instance different 

consonance perceptions resulting from various forms of technological production.  
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