Baran, Jakub D., Eames, Christopher, Takahashi, Keisuke, Molinari, Marco, Islam, M. Saiful and Parker, Stephen C. (2017) Structural, Electronic, and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces. Chemistry of Materials, 29 (17). pp. 7364-7370. ISSN 1520-5002

Hybrid materials composed of different functional structural units offer the possibility of tuning both the thermal and electronic properties of a material independently. Using quantum mechanical calculations, we investigate the change in the electronic and thermoelectric transport properties of graphene and hydrogen-terminated carbon nanoribbons (CNRs) when these are placed on the SrTiO3 (001) surface (STO). We predict that both p-type and n-type composite materials can be achieved by coupling graphene/CNR to different surface terminations of STO. We show that the electronic properties of graphene and CNR are significantly altered on SrO-terminated STO but are preserved upon interaction with TiO2-terminated STO and that CNRs possess distinct electronic states around the Fermi level because of their quasi-one-dimensional nature, leading to a calculated Seebeck coefficient much higher than that of a pristine graphene sheet. Moreover, our calculations reveal that in the TiO2-SrTiO3/CNR system there is a favorable electronic level alignment between the CNR and STO, where the highest occupied molecular orbital of the CNR is positioned in the middle of the STO band gap, resembling n-type doping of the substrate. Our results offer design principles for guiding the engineering of future hybrid thermoelectric materials and, more generally, nanoelectronic materials comprising oxide and graphitic components.

STO-Graphene.pdf - Accepted Version

Download (949kB) | Preview


Downloads per month over past year

Add to AnyAdd to TwitterAdd to FacebookAdd to LinkedinAdd to PinterestAdd to Email