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Abstract

The International Planning Competition (IPC) is a prominent event of the AI planning

community that has been organised since 1998; it aims at fostering the development and

comparison of planning approaches, assessing the state-of-the-art in planning, and identifying

new challenging benchmarks. IPC has a strong impact also outside the planning community, by

providing a large number of ready-to-use planning engines and testing pioneering applications of

planning techniques.

This paper focuses on the deterministic part of IPC 2014, and describes format, participants,

benchmarks as well as a thorough analysis of the results. Generally, results of the competition

indicates some significant progress, but they also highlight issues and challenges that the planning

community will have to face in the future.

1 Introduction

The International Planning Competition (IPC) is an event organised in the context of the

International Conference on Planning and Scheduling (ICAPS). It has been traditionally

organised biennially, even though it is recently organised every 3 years. The competition has

various goals, including:

• providing an empirical comparison of the state of the art of planning systems;

• highlighting challenges the Planning community has to face;

• proposing new directions for research and new links with other fields of AI;

• providing new data sets to be used by the research community as benchmarks.

Planning engines taking part in the competition are then made available (including their source

code), which is very useful within and outside of the Planning community. In summary, the IPC

is nowadays a reference source when building technology related to AI Planning, including new

planning engines, planning domain model tools, problem reformulation tools, etc. The IPC also

provides benchmarks in terms of problems, and evaluating metrics.

The IPC 2014 was held in three distinct parts: deterministic, learning and probabilistic.

The deterministic part, which has been running since IPC 1998, is focused on fully observable

environments with instantaneous and deterministic actions. The learning part focuses on the

ability of planners in learning from prior experience in order to improve their performance.

The probabilistic part considers problems with stochastic transitions, and (optionally) partial
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observability. This paper focuses on the deterministic part, the main part of the IPC since 1998.

Details and information about all the parts of IPC 2014 can be found in a survey paper (Vallati

et al., 2015a) or on the corresponding website.1

The deterministic part of IPC 2014 followed the example given in IPC 2011 (López et al.,

2015) in terms of continuity: IPC 2014 structure included the same tracks of IPC 2011, the same

evaluation metrics and the same version of the input language. Also, along with new domains

exploring new directions for planning research, domains from previous editions of IPC were

used, in order to allow a good assessment of the progress in the field, and to exploit a large set

of benchmark domains. Moreover, continuing the effort of previous IPC organisers in terms of

transparency and reproducibility of the results, all the benchmark, source code (and description)

of solvers and the huge amount of generated data have been made publicly available on the

website of the deterministic part of IPC 2014.2

The deterministic part of IPC 2014 introduced three main innovations:

1. the agile track: this evaluated how quickly planners solve challenging problems. This has been

done in order to foster the exploitation of planning-based techniques in real-time planning

applications where plans are required as soon as possible.

2. A larger set of core features: to reflect the growing need to increase the expressiveness of

input languages, the set of core features that participants were required to support has

been extended to include negative preconditions and conditional effects. The reason behind

extending the requirements was to promote the formerly neglected features that we believe

are very important for real-world applications. We acknowledge that negative preconditions

can be safely compiled away, as already done by some planners (see, e.g., Fast Downward

and FF (Hoffmann and Nebel, 2001; Helmert, 2006)), but having a large number of planners

that can natively support such preconditions will help the knowledge engineering process

in many applications. In fact, some of the introduced domains were inspired by real-world

applications and require these features (see Section 3.1)

3. A protocol for problem selection: a critical step of every competition is the selection of test

instances. IPC 2014 introduced a transparent and general protocol for the effective selection

of testing problem instances.

The deterministic part of IPC 2014 attracted a record number of 67 submitted planners.

In total 66 researchers took part in the competition, from 15 countries: Australia, Canada,

Czech Republic, Finland, France, Germany, Iran, Israel, New Zealand, Spain, Switzerland, United

Kingdom, Venezuela and USA. The competition results were presented at an IPC dedicated

session during ICAPS 2014. After the competition, a thorough analysis of performance and data

has been performed. The overall aim of this paper is to present the results of the analysis,

specifically on the following points:

• Structure: Section 2 describes the structure of the deterministic part of IPC 2014 in terms

of rules, tracks and adopted scoring schema.

• Benchmarks: domains used, protocols used for selecting challenging planning tasks, and the

final benchmark set, are described in Section 3.

• Results: the main results are presented and discussed in Section 4. Section 5 analyses the

complementarity of participants’ performance with regards to the considered benchmarks

and metrics. The progress of the state of the art of domain-independent planning systems is

assessed in Section 6.

• General trends: overall trends and general questions are discussed in Section 7.

1http://www.icaps-conference.org/index.php/Main/Competitions
2https://helios.hud.ac.uk/scommv/IPC-14/
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Figure 1 The structure of the deterministic part of IPC 2014. Dashes indicate tracks that have been
cancelled.

2 The Competition

The deterministic part of the IPC was divided into three components: sequential, temporal and

preferences. Although a deterministic and fully observable environment is considered for all of

them, domain and problem models differ in terms of expressiveness, and the corresponding

instances have different objective functions to optimise. In sequential planning, every action

has an associated cost, and the metric considered is to minimise the cost of the provided plans.

In temporal planning, actions have an associated duration and the objective is to minimise

makespan, i.e., time needed to execute the plan. Planning with preferences considers soft goals or

trajectory constraints, which allow users to indicate some preferences with regards to the shape

of the generated plans (Jorge et al., 2009). Preferences are described in terms of penalties for

not achieving them, thus the quality of plans is measured in terms of net benefit, which includes

penalties and the total action costs.

Each of the participating planners had to accept domain and problem descriptions in PDDL

and provide output in a specified format such that plans could be validated by the VAL

tool (Howey et al., 2004). There were no specific restrictions for the planners (e.g. techniques,

programming languages, libraries), except that the planners were executable on the cluster used

for running experiments, and supported a specified command line invocation. The number of

submitted planners was restricted to two per one team in one track. This was done for avoiding an

uncontrolled proliferation of very similar planning engines based, for instance, on small variations

of the same planner.

Domains and problems that we used in the competition were kept secret all through the

process, until the results had been announced.

2.1 Tracks

The deterministic part of the IPC 2014 had three main tracks. Figure 1 shows the overall structure

of the deterministic part of competition. In the following we provide a description of each of them.
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For detailed descriptions of solvers, the interested reader is referred to (Vallati et al., 2014) or to

the IPC website3.

2.1.1 Sequential

The sequential track is the longest running track of the IPC. It focuses on classical planning, that

is, the environment is static, deterministic and fully observable, and actions are instantaneous.

In terms of required PDDL features (core features), apart of those that were required in the

IPC 2011, we also required negative preconditions and conditional effects to be supported by

participating planners. It was not mandatory for submitted planners to support all the core

PDDL features; on the other hand supporting only a subset of them reduced the chances to win

a track. We ran 4 sequential tracks, namely satisficing, optimal, agile and multi-core. Whereas

the satisficing, optimal and multi-core tracks were present in the last competition, the agile track

was new. The reason for the agile track was to re-introduce a metric for evaluating how fast we

can generate plans for challenging problems. This motivates the development of “fast” planning

engines that can be exploited in applications.

In the sequential satisficing track, the emphasis was given to the quality of solution plans, but

optimality was not required. In other words, the planners had to optimise for total action-cost

of solution plans (i.e., the sum of the costs of all actions in the plan) and were given 30 minutes

for each problem and 4GB of RAM. When no action costs were explicitly provided, the total

number of actions in the plans had to be minimised. Notice that the time spent for finding the

best solution plan was not considered: planners were awarded the same score if they produced

the same quality plans regardless of the time needed to produce them. For the satisficing track

we received 43 registrations out of which 21 planners were submitted for the competition.

In the sequential optimal track, the planners had to produce optimal solution plans in the

time limit of 30 minutes and 4GB of available RAM. Planners that generated a sub-optimal

solution plan for some problems were awarded 0 points for the whole domain, and disqualified

if they provided sub-optimal solution plans in more than one domain. In the event, none of the

competing planners had to be penalised. For the optimal track we received 34 registrations out

of which 17 planners were submitted for the competition.

In the sequential agile track, the emphasis was on the speed of plan generation. In other

words, the planners had to generate solution plans as quickly as possible (the time limit was 5

minutes), using at most 4 GB of RAM. In this track the quality of solution plans was not taken

into account during competition scoring. For the agile track we received 21 registrations out of

which 16 planners were submitted for the competition.

In the multi-core track, the emphasis was given to quality of solution plans as in the satisficing

sub-track, and the time limit was also 30 minutes. In contrast to the satisficing track, 4 cores

could be exploited, but the same overall amount of RAM (4 GB) was made available. For the

multi-core track we received 17 registrations out of which 9 planners were submitted for the

competition.

2.1.2 Temporal

The temporal track extends the sequential track by explicitly considering time, i.e., action

execution is not instantaneous. The requirements of the temporal track in terms of PDDL features

were the same as in the IPC 2011. In particular, neither of the extended features of negative

preconditions and conditional effects was required. In the temporal track, the emphasis was to

optimise makespan, i.e., total plan execution time. Originally, we designed two temporal tracks:

satisficing and optimal. For the temporal satisficing track we received 9 registrations out of which

6 planners were submitted for the competition. For the temporal optimal track, only 1 planner

has been submitted. Hence, this track was cancelled.

3https://helios.hud.ac.uk/scommv/IPC-14/planners_actual.html
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2.1.3 Preferences
The preferences track extends the sequential track by specifying preferences under the form of soft

goals. If they are not satisfied, the total cost of the plan is increased. Similarly to the sequential

track, the emphasis was given to optimise total cost of solution plans, including the “penalties” for

not satisfying soft goals. We had opened two preferences tracks: satisficing and optimal. However,

in both tracks we received a very few submissions (2 for satisficing and 0 for optimal) and thus

we decided to cancel the whole track.

2.2 Evaluation

The competing planners were evaluated using the well-known IPC score, as in recent IPCs. For

each track, the planner which achieved the highest score was declared the winner.

In detail, participants of the sequential satisficing and multi-core tracks were evaluated as

follows. Given a planner C and a problem p, score(C, p) is defined as:

score(C, p) =

 0 if p is unsolved

N∗p
Np(C) otherwise

where Np(C) is the cost of the solution plan of p obtained by C, and N∗p is the minimal cost of the

solution plan of p among all the considered planners. The total IPC score is the sum of the scores

achieved on each considered problem. The time limit was 30 CPU-time minutes (wall-clock) per

problem.

The solvers that took part in the sequential optimal track were evaluated as follows. For a

planner C and a problem p, score(C, p) is 0 if p is unsolved, and 1 if solved (optimally). The

total IPC score is the sum the scores achieved on each considered problem. The time limit was

30 CPU-time minutes per problem. Note that a planner that returned sub-optimal plans was

awarded 0 points for the whole domain, or disqualified if such a behaviour occurred in more than

one domain.

The sequential agile track participants were evaluated as follows. For a planner C and a problem

p, score(C, p) is defined as:

score(C, p) =


0 if p is unsolved

1

1+log10(
Tp(C)
T∗p

)
otherwise

where Tp(C) is the CPU time needed by planner C to solve problem p and T ∗p is the CPU-time

needed by the best considered planner, otherwise. The total IPC score is the sum the scores

achieved on each considered problem. The time limit was 5 CPU-time minutes per problem.

Given the large variability of runtime performance, there may be a large difference between

the values of T ∗p and Tp. The usage of an evaluation score such as the one introduced for the

satisficing track would have lead to a high percentage of scores close to 0. In particular, planners

with good overall coverage performance, but not excelling in minimising runtime, would have

been significantly penalised. For limiting such strong penalisation, the logarithmic function has

been introduced, originally in the learning part of IPC 2011.

Finally, the solvers in the temporal satisficing track were evaluated as follows. For a planner

C and a problem p, score(C, p) is:

score(C, p) =

 0 if p is unsolved

M∗p
Mp(C) otherwise
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where Mp(C) is the makespan of the solution plan of p, obtained by C and M∗p is the minimal

makespan of the solution plan of p among all the considered planners, otherwise. The total IPC

score is the sum the scores achieved on each considered problem. The time limit was 30 CPU-time

minutes per problem.

2.3 The DES system

With an increasing number of complex and sophisticated competing planners, the traditional

way of submitting planners (via email) becomes extremely time consuming on the organisers.

Typically, issues might arise with different configurations of the hardware, of the operating system,

different versions of libraries, etc. Therefore, in case of any complication, the organisers must

firstly identify the exact issue and then have to communicate with the authors of the planner, in

order to fix any problems with the running of the planner. However, giving the authors the ability

to compile and test their planners directly on the machine used for the competition, eliminates

this significant overhead. Moreover, the competitors are able to form a view of the performance

of their system on the competition premises, as different hardware or software configurations can

affect the performance of solvers (Howe and Dahlman, 2002).

Hence, we introduced the DES system for the submission and on-site testing phase of the

planners. Several months before the submission deadline of the planning software, each team

was granted ssh access to a node of the actual competition cluster. More than 10 GB of space

for user data was made available to each team, which had a private directory assigned. In each

private directory we put a set of example instances –also provided via the IPC website– including

a number of problems from several domains with different PDDL features requirements.

Authors were able to compile and test their system on the provided set of simple example

instances, or on other instances that they uploaded to the cluster. For running tests, 1 GB of

RAM and 1 CPU was available for each team, and a maximum of 64 simultaneous accesses was

allowed to the DES system.

In the case of specific requirements, such as installing required packages or libraries, the authors

exploited a ticketing system. Tickets were handled by cluster administrators and recorded for

security purposes.

The DES system was also exploited for submitting planners. By the submission deadline, the

authors were required to upload to their home directory the source code –following a naming

convention described on the competition website and circulated using the competition mailing

list– and a PDDL support questionnaire.

2.4 Bug-fixing

By using the DES system, authors were able on their own to identify bugs and issues in their

planners that were related to the hardware and software configuration of our cluster. This was

evidenced by email exchanges with authors and DES system administrators. Although it was

the authors’ responsibility to submit bug-free planners, we allowed bug fixing after the planners’

submission deadline after a request from the authors or when we identified some issues with the

planners. Hence authors were allowed to fix bugs, but not to update other parts of the code. For

this reason, patches were analysed in order to avoid major changes. In the case where we identified

that a planner behaves oddly, i.e., no or very few problems solved in several domains –with a

focus on newly introduced domains–, we investigated the planner’s logs in order to identify the

source of such odd behaviour. If the evidence of potential bugs was found, we tried to replicate

it on different instances: small problems from domains not considered in the benchmark set. In

the end, logs and small problems were then sent to teams, who were given one week for fixing

the bugs and providing a patch. This happened for three teams.
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3 Benchmarks

The process used in the selection of benchmark domains, benchmark domain models, and

subsequently benchmark problem instances within those domains, is of central importance to

the competition. Given a domain and its requirements, there are many domain models that can

be chosen to represent it, and for each model, there are many choices of problem instances. The

selection process is an important issue for the whole research area, as competition benchmarks

are used for evaluating and assessing subsequent works in planning. Substantial work has been

done by organisers of previous editions of the IPC for identifying “good” benchmarks (Hoffmann

et al., 2006). Our guide was to make choices in line with the reasoning behind past IPCs, and

hence we constructed a set of explicit requirements as follows. The set of IPC benchmarks should:

• be externally interesting: they should support the potential exploitation of automated

planning in real-world scenarios;

• be interesting in relation to representation: collectively they should test the full range of the

core PDDL features;

• preserve competition continuity: a significant proportion of the benchmarks used should be

extracted from past competitions;

• be encoded with only the declared core PDDL features: every submitted planner should be

capable of attempting to solve the planning problems;

Further, problem instances of each domain model must be selected:

• to be challenging and discriminating: selected instances must be hard to solve, at least for

proven state-of-the-art planning systems, within the time allotted; and they must provide

a way to rank the planners (rather than, for example, being too easy or too hard for all of

them);

• to be without any bias (apart from the point above) the instances must be generated by a

process without hidden bias, except to make the set challenging and discriminating.

From the start of the competition till the revealing of the results, all the choices made were

kept secret from the competitors.

3.1 Selection of Domains and Domain Models

A total of 23 different domain models were used in IPC 2014, each encoding a different domain.

To retain continuity, 14 were reused from previous IPCs, and 9 domains were new. Also, following

the reasoned decision taken by the IPC 2011 organisers, a single PDDL model per domain was

used (López et al., 2015). Among the new domains, 5 were designed by the organisers:

• citycar: this domain aims to simulate the impact of road building / demolition on traffic

flows. A city is represented as a directed graph, in which each node is a junction and edges

are “potential” roads. Cars start from their initial positions and have to reach their final

destination as soon as possible. There is a finite number of roads available, which can be

built for connecting two junctions and allowing a car to move between them. Roads can also

be removed, and placed somewhere else, if needed. In order to place roads or to move cars,

the destination junction must be clear, i.e., no cars should be in there.

• hiking: this domain has been designed for planning a long –multiple days– hike for small

groups of people. A planner has to deal with decisions such as transporting tents, where to

park cars for later use, etc.

• mapanalyser: this is a temporal version of the citycar domain, extended by considering that

vehicles can have different speed, and that the time needed for building or removing roads

depend on their length.
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• rtam: this domain deals with a situation which arises immediately after a traffic accident has

been reported. This involves police for securing the area, fire brigades for extinguishing fire or

freeing trapped victims, paramedics and ambulances for providing first aid and transporting

accident victims to hospitals, and tow trucks for removing damaged vehicles from the accident

scene.

• tetris: this is a simplified version of the well-known Tetris game. All the pieces are randomly

distributed on a NxN grid. The goal is to move them in order to free the upper half of the

grid. The pieces can be rotated or translated. Each movement action has a different cost,

according to the size of the piece.

4 domains were collected via the call for domains:

• cavediving: a number of divers has to explore an underwater cave, by taking pictures of some

specified areas of the cave. There are a set of available divers, each of who can carry 4 tanks

of air that are needed for exploring the cave. These divers must be hired before going to

the cave and either take photos or prepare the way for other divers by dropping full tanks

of air. Certain divers have no confidence in other divers and will refuse to work if someone

they have no confidence in has already been in the cave. Divers have hiring costs inversely

proportional to how hard they are to work with.

• childsnack: this domain is focused on the problem of making and serving sandwiches to a

group of children, in which some are allergic to gluten. The available ingredients have to be

combined in order to prepare the required number of sandwiches.

• ged: the problem is to find a min-cost sequence of operations that transforms one genome

(signed permutation of genes) into another. The purpose of this is to use this cost as a

measure of the distance between the two genomes, which is used to construct hypotheses

about the evolutionary relationship between the organisms.

• maintenance: this is a simplified planning/scheduling problem. There are mechan-

ics/equipment who on any day may work at one of several airports (hubs) where the

maintenance facilities are present, in order to check or repair airplanes. The airplanes are

visiting some of the airports on given days. The problem is to schedule the presence of the

mechanics/equipment so that each plane will get maintenance once during the required time

period.

Five additional domains were submitted by researchers in response to the call for domains,

but were not included in the competition. Some of them required non-core PDDL features that

only few planners supported and thus were not consistent with our requirements; while with

others it was not possible to identify a suitable set of benchmark problem instances, due to low

randomisation of generators or the high complexity of even small instances for state-of-the-art

planners.

Tables 1 and 2 show the list of domain models used in the sequential and temporal tracks,

respectively. As an exception, tidybot was used in the sequential optimal track only; it substituted

thoughtful, which was used in other tracks. This was due to the fact that no generator is provided

for the thoughtful domain, and the instances used in the learning track of IPC 2008 were too

complex for the submitted optimal planners. thoughtful was intentionally selected for the other

tracks, however, because its large number of operators makes it a particularly challenging domain

model for planners.

Some of the newly introduced domains were selected due to the fact that they test planners’

ability in solving problems which involve different, and possibly large, sets of PDDL require-

ments. This is the case of cavediving, hiking, maintenance and tetris, that require negative

precondition and/or conditional effects. Furthermore, a few domains deal with (simplified) real-

world problems, that can represent a potential future application of planning techniques. This is

the case for domains dealing with different aspects of traffic control4, such as rtam, citycar and

4inspired by the European Network in Autonomic Road Transport: www.cost-arts.org



Deterministic Part of IPC 2014 9

Table 1 Domains used in the sequential-satisficing, sequential-optimal, sequential-agile and multi-core
tracks of IPC 2014. It should be noted that tidybot has been used in sequential-optimal track only; in
other tracks it has been substituted by thoughtful.

Name PDDL requirements Origin
barman :typing IPC 2011
cavediving :typing :action-costs :negative-precondition :conditional-effects New
childsnack :typing New
citycar :typing :action-costs :negative-precondition :conditional-effects New
floortile :typing :action-costs IPC 2011
ged :typing :equality :action-costs New
hiking :equality :typing :negative-precondition New
maintenance :typing :conditional-effects New
openstacks :typing :action-costs IPC 2008
parking :typing :action-costs IPC 2008 (learning)
tetris :typing :action-costs :negative-preconditions :equality New
thoughtful :typing IPC 2008 (learning)
tidybot :typing :equality IPC 2011
transport :typing :action-costs IPC 2008
visitall :typing IPC 2011

Table 2 Domains used in the temporal-satisficing track of IPC 2014.

Name PDDL requirements Origin
driverlog :typing :durative-actions IPC 2002
floortile :typing :durative-actions IPC 2011
mapanalyser :typing :durative-actions New
matchcellar :typing :durative-actions IPC 2011
parking :typing :durative-actions IPC 2008 (learning)
rtam :typing :durative-actions New
satellite :typing :durative-actions IPC 2002
storage :typing :durative-actions IPC 2008
tms :typing :durative-actions IPC 2011
turnandopen :typing :durative-actions IPC 2011

mapanalyser, and the problem of finding a minimum cost sequence of operations for transforming

one genome into another (Haslum, 2011), encoded in the ged domain. The childsnack domain

is interesting in that it requires planners to take into account limited resources.

In all the domain models that include conditional effects, i.e. cavediving, citycar, and

maintenance, there is one operator of the model that has one conditional effect. It is worth

mentioning that in the maintenance domain model there is only one operator, and its only

effect is a conditional effect. This makes the maintenance domain model of particular interest

for assessing the ability of planners in dealing with conditional effects.

After the competition, it was reported by participants that some planner parsers may have

faced issues in a few of the benchmark domain models, which included domain models used in

previous editions of the IPC. These issues are as follows:

• In thoughtful, a domain model introduced in IPC 2008, a predicate and a type have the

same name. Remarkably, this is not forbidden by the PDDL specification, and it is accepted

by PDDL-related tools, such as the VAL validator (Howey et al., 2004).

• In cavediving and maintenance, conditional effects were not explicitly listed in the PDDL

features requirements, though the :adl requirement, which encompasses conditional effects,

was listed.

• Action costs requirements were not listed in ged and floortile domain models.

• The rtam domain model had one dummy operator, not needed for solving planning instances,

which requires a not defined predicate.

Updated versions of the benchmarks have been made available on the IPC website. Discussion

about the potential impact of the described PDDL issues on the results is left to Section 4.
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3.2 Selection of Problem Instances

Once we selected a domain and encoded a representation of the domain’s actions within a model,

the difficult problem of producing a set of benchmark problem instances has to be solved. As in

IPC 2011, we decided to select 20 problems per domain, requiring 460 problems in total.

We required a systematic, transparent and general method, that is one which others

can follow in order to produce the same (sort of) problems, and can apply to any set of planners,

on any domain. Also, the method must produce instances satisfying the overall requirements in

terms of producing benchmark problem instances which are challenging and discriminating for

the considered set of solvers that have to be compared. Hence the instances generated must not

result in all problems being solved trivially, or all unsolvable, by each competitor.

In some areas of Artificial Intelligence, the complexity of problems can be evaluated statically,

before the use of solvers, by considering the phase transition (Rossi et al., 2006; Kanefsky

and Taylor, 1991). This is not generally the case in planning, where phase transition has been

demonstrated only for randomly-generated graphs (Bylander, 1996; Rintanen et al., 2004) but

where the features that make an instance hard to solve are unknown. Moreover, in automated

planning complexity is also related to the domain model used, and the space of instances that can

be generated is constrained by available random generators. Remarkably, some work has been

done in automated planning for assessing, to some extent, the complexity of planning instances.

The recently introduced Torchlight tool (Hoffmann, 2011) provides a route to analyse search

space topology under the delete-relaxation heuristic. On the other hand, it does not provide

information about the performance of planners based on different approaches. Therefore, the

only viable way for selecting benchmark problem instances based on how difficult they are, is

dynamically – in other words trying to solve them with a planner. Assuming that in general,

the performance of competition planners has improved over current state of the art planners, in

IPC 2014 we used a protocol for selecting, within a given domain, a suitable set of instances by

utilising the competition planners, as follows:

For each target domain:

1. identify size, in terms of number of objects involved;

2. given the sizes, generate between 30 and 50 instances per domain, using available random

generators;

3. anonymise planners;

4. run all the planners on the generated instances;

5. collect results, in terms of solved problems and quality of solutions;

6. order problems by number of planners which solved them;

7. select 20 benchmarks.

In the first step, if the domain was used already in previous IPCs, then the sizes of larger

benchmark problems (top half) are taken, and possibly extended following the “trend” used by

organisers. The size of a benchmark is given by the number of objects involved. Specifically,

if random generators are available, the value of required input parameters describe the size.

Since different sizes are usually considered within a set of benchmark instances, the sequence of

increasing number of different objects give us the trend. Otherwise, some well-known planners,

namely LPG (Gerevini et al., 2003), Metric-FF (Hoffmann, 2003), LAMA-11 (Richter and

Westphal, 2010), probe-11 (Lipovetzky and Geffner, 2011), Madagascar-11 (Rintanen, 2012) and

SGPlan5 (Chen et al., 2006), are used for identifying a reasonable size range. These planners have

been selected due to their good performance in previous IPCs, and to the fact that they exploit

very different planning approaches, hence limiting the bias towards a specific approach. However,

given the small number of parameters that is usually made available by random planning problem

generators, and the diversity of the planning approaches exploited by participants, it is not always

possible to generate and select –even with a good selection protocol– a suitable benchmark set.

If no random generator is available, all the available instances have been considered.
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Figure 2 For each domain, the percentages of sequential satisficing planners able to solve: more than 16
instances (blue); between 11 and 15 instances (green); between 6 and 10 instances (yellow) and between
0 and 5 instances (orange).

In step 7, 20 instances are selected according to the observed coverage performance, so that

they show the following properties:

• Interestingness: no more than the 80% of the anonymised solvers are able to solve all the

20 instances;

• Solvability: no more than the 80% of the anonymised solvers are unable to solve any instance;

• Short-lead: the delta of solved instances between first and second solvers, according to

coverage, is less than 50%.

The rationale behind the first and second properties is very intuitive, i.e. avoid too trivial and

too complex instances. The third property aims at avoiding the selection of benchmarks in which

only a single planner excels.

The most complex set of instances that satisfies the mentioned properties, is selected. Here

complexity is measured in terms of coverage. Ties are broken by considering the length of the

best plan for each problem: the problem with the highest cost is identified as the most complex.

If there is no set of 20 benchmarks that satisfies all the three properties above, then the process

is started again from step 1, by considering different sizes.

The described protocol was used for selecting benchmarks for the sequential satisficing and

temporal satisficing tracks. Exactly the same instances were used in the sequential agile track.

Benchmarks for the other tracks were then derived from such sets as follows. Slightly smaller

benchmarks have been selected (following steps 3–7) for the sequential optimal track, and some

slightly larger instances have been selected for two domains (barman and thoughtful) of the

multi-core track. This was done because optimal planning is harder than satisficing in practice

(Helmert, 2003; Helmert et al., 2008), and because parallel planners can exploit more resources

than purely sequential solvers. Some overlaps are present in the different sets.

Figure 2 shows for each domain the percentage of planners, from the sequential satisficing

track, able to solve different number of problems. We focus on four classes, with a step of 5

instances. In a nutshell, this gives an overview of planners with a large coverage (16–20 instances

solved), planners struggling to solve instances from the considered domain (0–5), and planners
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that solve a bit more (11–15) or a bit less (6–10) than 50% of the instances. In most of the

domains, at least 40% of the solvers are able to solve a large number of instances. This does not

apply to cavediving, in which at most 7 instances are solved by 60% of the solvers, and citycar,

where a single planner is able to solve more than 15 instances, but the 20% of the competitors

are able to solve between 11 and 15 instances. All in all, Figure 2 confirms that selected instances

are not favouring a single planner, because a large number of instances is usually solved by a

significant percentage of solvers. At the same time, the fact that not all the planners are able

to solve all the instances from a domain, and that the set of planners solving all the instances

varies among domains, indicate that the benchmarks are useful for comparing and discriminating

planners’ performance.

From a general point of view, the proposed protocol introduces a potentially strong bias

towards the participating planners. This is because, out of the initial large set of instances,

the actual benchmarks are selected by considering the performance of the participants. Even

though this reduces the generality of the benchmarks, i.e. solvers that are based on very different

approaches than those used by participants can show unpredictable performance, the focus on

participants guarantees that benchmarks can provide useful information for ranking submitted

solvers, which is one of the aims of the competition. Moreover, given the range of approaches

exploited by submitted solvers, and given the number of existing planners considered in step 1,

we are confident that benchmarks are also of interest for planners that did not take part in the

IPC. Also, in other prominent AI competitions, such as the SAT competition, similar selection

protocols for benchmarks have been used since 2012 Vallati and Vaquero (2015); Balint et al.

(2012, 2013); Belov et al. (2014).

Specifically, in SAT competitions benchmarks for application and hard combinatorial tracks

are selected as follows. Firstly, the empirical hardness of SAT instances is evaluated by using five

well-performing solvers, taken from the previous edition of the competition. Instances are then

divided into 4 classes, according to the average runtime and to the solvability: easy, medium, hard

and too-hard. Easy instances, corresponding to instances solved by all the considered solvers in

less then 1/10th of the competition’s timeout– are removed because they are believed to be

uninformative. Then the selection process is guided by considering a few constraints, aiming at

maximising the number of new instances –i.e., not used in previous competitions–, and keeping

a 50-50 ratio between medium and hard instances. Evidently, the described protocol suffers from

potentially strong biases towards the solvers used for classifying instances.

Finally, in recent Answer-Set Programming (ASP) competitions a protocol very similar to

the described above –strongly based on the observed performance of existing solvers– is used

(Calimeri et al., 2016).

3.3 Empirical Complexity of Selected Benchmarks

In order to evaluate the empirical complexity of benchmarks used in the deterministic part of

IPC 2014, we performed a domain by domain analysis. We carried out an investigation for each

track both from the problems’ and from the planners’ perspective. The former is represented as

the fraction of problems solved by all the participants for the given domain, and it was calculated

as follows: Solved Problems = (
∑P

n=1
Cn

P∗N ) ∗ 100, where P is the number of planners, N the

number of problems of the domains and Cn the number of problems of the considered domain

solved by the n-th planner.

A value of 100 indicates that all the planners solved all the instances of the given domain; on

the contrary, a value of 0 indicates that no planner solved any instance. Similarly, the planners

perspective is represented as the fraction of planners that solved all the problems of the domain.

Figure 3 shows the results of the domain by domain analysis on (a) sequential agile, (b) multi-

core, (c) sequential satisficing, and (d) sequential optimal tracks. Domains are ordered according

to the percentage of solved problems. Given the results shown, it is possible to derive that: (i)

the PDDL requirements do not strongly affect the complexity of selected benchmarks. Domain
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(a) (b)

(c) (d)

Figure 3 Fractions (in percentage) of problems solved by all the participants (green) and fractions of
planners that solved all the problems (blue) of a specific domain in the (a) sequential-agile, (b) multi-core,
(c) sequential-satisficing and (d) sequential-optimal tracks.

Figure 4 Percentages of problems solved by all the participants (green) and percentages of planners
that solved all the problems (blue) of a specific domain in the temporal-satisficing track.

models with various requirements are spread among the graphs; (ii) multi-core planners are not

as mature as sequential planners. Considering that benchmarks are the same for all domains but

two, results clearly indicates that multi-core planners are less performant, and (iii) few problems

are solved in the optimal track. We noticed that selecting problems for the optimal track is very

challenging, mainly because performance of solvers do not scale smoothly; therefore planners tend

to be very fast or to not solve at all.

Figure 4 shows the results of the domain by domain analysis on the temporal satisficing track;

also in this case, domains are ordered according to the percentage of solved problems. Most of

the instances selected for the newly introduced mapanalyser and rtam domains are solved by the
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participants, even though –especially in mapanalyser– only a few planners are able to solve all

the benchmarks. Remarkably, as observed also in IPC 2011, concurrency makes planning tasks

hard to solve: this is the case of instances from matchcellar, tms and turnandopen domains.

On the other hand, the complexity of driverlog and storage instances is due to their size: in

order to make them challenging, a large number of objects are involved.

With regards to the previously given intuition of good benchmarks, we observed that

in sequential agile and temporal satisficing tracks benchmarks are generally informative. In

sequential satisficing, it can be noticed that benchmarks of some domains look too easy. Multi-core

and satisficing optimal benchmarks were challenging for the participants.

4 The Results of the Competition

This section is devoted to comparing planners’ performance and to identify those that won awards.

Our underlying assumption is that planning problems are considered as solved by a given planner

if it returns a valid plan, and unsolved otherwise. Validity of plans was assessed using VAL (Howey

et al., 2004). Given that, our analysis is focused on three features:

• the quality of provided solutions using metrics based on solution size,

• the coverage of planners using metrics based on number of solved instances,

• the efficiency of planners using metrics based on runtime.

In order to provide an improved view of the performance of participants, as well as presenting

the results using the IPC score, we present how planners would have been ranked according to

the Borda count. In addition, we use statistical analyses to place planners into groups depending

on whether their ranking is statistically significant. Furthermore, we provide a summary level

discussion of the potential impact of PDDL issues (presented in Section 3.1) on the results.

The Borda Count is a single-winner method used in elections and in other AI competitions

(e.g., International Competition on Computational Models of Argumentation5 (Thimm et al.,

2015)). We used it in the following way. Given a track, for each domain participants are ranked

according to the evaluated metric (i.e., IPC score or coverage). Given n participants, the first

planners for the specific domain get n points, the second n− 1, the third n− 2, etc. The Borda

count of a planner in a track is the sum of the points that planner got among the considered

domains. Intuitively, the Borda count ranks planners according to their “general” performance on

the full set of considered domains. The performance of participants in terms of quality and runtime

was compared using a statistical analysis based on the Wilcoxon sign-rank test (Wilcoxon and

Wilcox, 1964) and the Binomial test. These tests have been applied to a set of paired observations

and allow us to decide if it is possible to assume that there is no correlation between the pairwise

observed quantities. In order to deal with the well-known issue related to the use of multiple

pairwise tests, namely the increased risk of type I error, the Bonferroni correction has been

exploited. However, it should be noted that the use of such correction may lead to an increased

number of type II errors –i.e., observations are believed not be statistically different, while they

are–. For the sake of our analysis, given the fact that statistical tests are used among other

approaches for comparing planners’ performance, the potential presence of type II errors is not

critical, as planners can be compared using the other provided metrics.

The Binomial test has been used for comparing the number of solved instances of planners

participating in a track. This is an exact two-tailed test that measures if the provided distributions

–in terms of successes– are statistically different. Data points are pairs of 0 and 1: “1” for instances

solved by the considered planner, and 0 otherwise. The Null hypothesis is that the two planners

perform similarly, and it is accepted for p-value > 0.05; otherwise the hypothesis that the solvers

perform differently is accepted for the given confidence level.

The Wilcoxon sign-rank test is used for comparing performance in terms of either quality

or runtime of two participants in a track on the instances of the corresponding track. When

5http://argumentationcompetition.org
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considering the quality of solution plans, for instance, “no correlation” between the observed

quantities indicates that it is equally like that one solver provides a better quality problem than

the second solver, than the vice-versa. For the purposes of this analysis, the Wilcoxon sign-rank

test is appropriate because it does not require any knowledge about the sample distribution, and

makes no assumption about the distribution.

Given a sufficiently large number of samples, the T-distribution used by the Wilcoxon sign-

rank test is an approximation of a normal distribution, which is characterised by the z-value and

the p-value. The higher the z-value, the more significant the difference of the performance of the

compared solvers is. The p-value indicates the required level of significance of the performance

gap. In our analysis we considered that the null-hypothesis, i.e. the performance of compared

solvers is statistically similar, is accepted when p-value > 0.05. Otherwise, the null-hypothesis is

rejected, and therefore the compared solvers performance is statistically different.

Since the Wilcoxon sign-rank test compares sets of paired observations, it is of critical

importance to deal with cases in which one observation has an unknown value. This happens when

considering unsolved instances. For dealing with unknown entry values, we reviewed approaches

exploited in previous IPCs (specifically 3rd, 5th and 7th) (Long and Fox, 2003; Gerevini et al.,

2009; López et al., 2015) and decided to handle such cases by mainly following the method used

by the organisers of IPC 2011. When comparing plans quality we considered only double hits,

i.e. pairwise entries in which both values are known; this is done for reducing the impact of

covering, otherwise dramatically favouring participants that solve a large number of instances.

When analysing runtime (agile track only) we assigned twice the cutoff time (600 seconds) to cases

that were not solved. On the contrary, in previous IPCs the cutoff time was assigned to unsolved

instances. In the agile track, given the short amount of time available for solving benchmarks,

assigning exactly the cutoff time is penalising solvers that provided solutions with runtimes close

to the maximum allotted CPU-time. Therefore, we preferred to emphasise the difference between

solved and unsolved instances, by considering 600 seconds for unsolved ones. If the actual cutoff

time is used, we observed that the performance of many planners tend to be indistinguishable,

thus the informativeness of the statistical analysis is reduced.

The results of the statistical tests are used to generate a directed graph per track of the

deterministic part of IPC 2014. The nodes of the graph are the participants, and an edge from a

node N1 to a node N2 indicates that N1 performed statistically better than N2. Similar graphs

have been used for presenting the results of previous IPCs (Long and Fox, 2003; López et al.,

2015) and also for configuring portfolio-based planning approaches (Gerevini et al., 2014). For

the sake of readability, planners are grouped. Members of the same group have no statistically

significant difference in their performance. Considering two groups Gi and Gj , with Gi→Gj :

the fact that a planner p1 is a member of group Gj indicates that at least one planner from

Gi is statistically better than p1. Specifically, this indicates that all the planners in a group Gn

represent the pareto frontier, considering the evaluated metric, with regards to following groups.

It should be noted that the results of the statistical analysis shown in this section cannot

necessarily be easily generalised. They refer to the considered planners solving the selected

benchmarks, run on the specific hardware and software configuration used during the competition.

It is well-known that: (i) hardware and software differently affect solvers (Howe and Dahlman,

2002); (ii) the exploitation of different benchmarks can lead to different results (Howe and

Dahlman, 2002); (iii) running more than once randomised solvers can show different runtime

distribution (Hurley and O’Sullivan, 2015); and finally, even considering the same benchmarks,

(iv) different configurations of the domain and problem models can affect the overall results

(Howe and Dahlman, 2002; Vallati et al., 2015c).

4.1 Performance of Sequential Satisficing Track Participants

The sequential satisficing track is the track with the largest number of participants. In the

following the results of this track are analysed from different perspectives.
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Table 3 IPC score, number of problems solved, success rate, Borda score and average Borda score for
the sequential satisficing track participants. Bold indicates best result, according to the corresponding
metrics. Solvers are ordered following IPC score.

Planner Score # Solved % Solved Borda Avg Borda
IBaCoP2 166.2 198 70.7 205 14.6
IBaCoP 162.7 196 70.0 206 14.7
Mercury 153.0 172 61.4 189 13.5
MIPlan 150.0 168 60.0 192 13.7
Jasper 144.9 173 61.8 201 14.4
FD-Uniform 143.3 172 61.4 196 14.0
FD-Cedalion 137.3 160 57.1 189 13.5
ArvandHerd 137.1 158 56.4 197 14.1
FDSS-2014 127.9 151 53.9 184 13.1
DPMPlan 125.5 147 52.5 158 11.3
USE 107.1 163 58.2 140 10.0
NuCeLaR 101.4 122 43.6 162 11.6
RPT 98.3 127 45.4 144 10.3
BFS(f) 96.1 104 37.1 146 10.4
BiFD 87.0 112 40.0 130 9.3
DAE-YAHSP 64.2 100 35.7 107 7.6
Freelunch 61.2 110 39.3 111 7.9
YAHSP3-MT 58.5 118 42.1 104 7.4
YAHSP3 48.1 92 32.9 95 6.8
Planets 25.0 26 9.3 72 5.1

Figure 5 Partial order for planners in the sequential satisficing track in terms of coverage.

4.1.1 Number of Problems Solved
Table 3 shows the results of the sequential satisficing track in terms of IPC score, number of

solved problems, success rate and Borda score for all the entrants. It is evident that the two

versions of IBaCoP ranked first both in terms of coverage and IPC score. Remarkably, IBaCoP

and IBaCoP2 are the only systems that were able to solve problems in all the considered domains.

These planners are portfolio-based, and exploit a sequential portfolio of a large number of “basic”

solvers for solving a given planning task. IBaCoP solves each instance by using a fixed 12-planner

portfolio, configured according to planners’ performance on some training data. IBaCoP2 instead

selects, for solving each instance, the 5 planners that –accordingly to its predictive models– have

the highest chances to solve the considered instance.

Interestingly, only a few planners would have been ranked differently by using the number of

solved problems as metric.

Figure 5 shows the partial order of participants according to the statistical test on coverage.

Most of the participants are distributed in three large groups. This is possibly due to the fact

that many engines were able to solve very similar sets of planning tasks. The first group include

planners solving between 192 and 168 instances (70.7% – 60.0%). Then planners solving between

163 and 127 instances (58.2% – 45.4%) have been grouped together. The third group includes

planners able to solve between 122 and 92 planning tasks. The last group is composed by Planets,

only. This solver was able to successfully handle 9.3% of the considered benchmarks.

4.1.2 Quality of Plans
According to results shown in Table 3, the best performing planner in terms of quality of solutions

found is IBaCoP2, that obtained 3.5 points more than IBaCoP. The third system according to IPC
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Figure 6 Partial order for planners in the sequential satisficing track in terms of plan quality
according to the Wilcoxon signed-rank test using double hits only.

score is then Mercury, with an overall score of 153.0 points. It can be noted that in the top half

of the table there are no large IPC score differences between differently ranked participants; this

is not true for the second half, where large differences can be observed between the performance

of DPMPlan and USE, BiFD and DAE-YAHSP and, finally, YAHSP3 and Planets.

It is worth noting that Planets obtained the best ratio between coverage and IPC score (0.96).

Such good ratio indicates that almost every time Planets solved a problem, it found the best

quality plan. It solved problems from 5 domains and most of the instances (14) have been solved

in thoughtful.

Evaluating the performance of planners in terms of Borda score leads to ranks similar to those

achieved by considering IPC score. Generally, this indicates that performances are evenly spread

across the competition domains. The only exception is ArvandHerd, that according to Borda

would have been ranked fourth. This planner obtained the best IPC score in four domains, and

the second best in two.

Figure 6 shows the partial order of sequential satisficing entrants according to the Wilcoxon

signed-rank test, on plan quality, with a p-value of 0.05. Differently from Figure 5, in this case

solvers are spread across a large number of groups. The largest group includes 6 planning engines,

while the average size is approximately two. This suggests that the performance of planners tend

to be statistically different and there is a high complementarity between the planners.

4.1.3 Potential Impact of Reported PDDL Issues

To the best of our knowledge, PDDL issues described in Section 3.1 in the Maintenance,

cavediving, ged, and floortile domains did not significantly affect any of the participants.

With regards to the PDDL issue in the thoughtful domain, this affected all the planners of

the track that exploit the Fast Downward PDDL parser, namely, all the competitors except for

DAE-YAHSP, BFS(f), Planets, YAHSP3-MT, and YAHSP3. However, planners were affected

differently. Portfolio-based planners, such as IBaCoP and MIPlan, were affected, but were

still able to solve a large number of instances by running non-Fast Downward-based solvers.

Hence, portfolio-based planners that include solvers which are not based on the Fast Downward

framework are not expected to obtain a significant performance improvement. For this reason, it

is hard to assess how the picture changes when using a modified PDDL domain model, supported

by the Fast Downward translator.

Recall that 20.0 IPC score points can be gained –in the satisficing track– by a planner that

is able to provide the best solution on all the 20 benchmarks of a single domain. Among the

participants that were able to solve problems from the thoughtful domain, achieved IPC scores

are between 17.1 and 5.0. If the competition was rerun, Mercury, the top ranked planner which did
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Table 4 IPC time score, number of problems solved, success rate, Borda score and average Borda
score for the agile track participants. Bold indicates best result, according to the corresponding metrics.
Solvers are ordered following IPC score.

Planner Score # Solved % Solved Borda Avg Borda
YAHSP3 81.6 87 31.1 112 9.1
Madagascar-pC 70.0 90 32.1 126 9.5
Madagascar 67.6 78 27.9 115 8.4
PROBE 66.7 93 33.2 121 9.4
BFS(f) 62.9 88 31.4 122 9.1
FD-Cedalion 62.0 114 40.7 122 9.7
Freelunch 60.1 79 28.2 111 8.1
YAHSP3-MT 53.3 66 23.6 107 7.9
ArvandHerd 53.2 113 40.4 118 8.9
IBaCoP 50.7 107 38.2 138 10.5
USE 47.4 99 35.4 115 9.1
Jasper 42.3 87 31.1 108 8.6
Mercury 36.7 80 28.6 114 8.9
SIW 35.8 44 15.7 81 6.1
IBaCoP2 34.3 91 32.5 105 8.1

not solve any problems in the thoughtful domain, would need to score more than 9.7 points to

obtain second position, and would need to score more that 13.2 points to achieve best position.

In both cases, however, this assumes that the scores of IBaCoP and IBaCoP2 would not also

improve. Picking out other planners affected, Freelunch, given the small gap from DAE-YAHSP,

could gain one position; Jasper and FD-Uniform could overcome MIPlan.

4.1.4 Distinguished Performers
According to results, in terms of IPC score, shown in Table 3, the following planners were

distinguished by their performance in the sequential satisficing track of IPC 2014:

• Winner: instead of nominating two variants of the same planner as winners, the one that

achieved the best IPC score was chosen as winner. The planner selected was IBaCoP2, which

scored 166.2 points in total.

• Runner-up: Mercury was chosen as runner-up.

The declared winner, IBaCoP2, is a portfolio-based planner, a different type of planner to

the winner of IPC 2011. Since 2011 portfolio-based planners have undergone significant research

and development resulting in new planning features being proposed (see, e.g., (Cenamor et al.,

2012; Fawcett et al., 2014)), and different techniques for combining planners into a portfolio

being developed (Vallati et al., 2015b). As a result of the work done in the area, portfolio-based

solvers are more reliable and effective, in that they can better predict the performance of basic

components in order to combine them effectively. Also, most of the portfolios that took part in IPC

2011 were using different heuristics, within the same planning framework, as basic components.

This was not the case in IPC 2014, where portfolios are exploiting very different solvers, with

a clear benefit in terms of robustness: using different frameworks limits the potential impact of

bugs or inefficiencies of the code.

The above discussion and the observed results lend much weight to the hypothesis: for

satisficing planning, when a large amount of CPU time is given, it is possible to effectively combine

different planners.

4.2 Performance of Sequential Agile Track Participants

The agile track was firstly introduced in the IPC in 2014, in order to evaluate how quickly

planners solve challenging problems and foster the development of fast solvers. In many planning

applications it might not be possible to wait a long time until a plan is available; satisficing

plans are required as soon as possible in order to provide a first response. Plans can possibly be

optimised in a second step.
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Figure 7 Partial order for planners in the agile track in terms of coverage.

4.2.1 Number of Problems Solved
Table 4 shows the results of agile track in terms of IPC time score, number of solved problems,

success rate and Borda score for all the entrants.

In terms of coverage, FD-Cedalion and ArvandHerd are the planners that solved the largest

number of planning tasks, respectively 114 (40.7%) and 113 (40.4%). Differently from the other

tracks of IPC 2014, no entrant solved very few benchmarks. SIW, the system that solved the

smallest number of problems, showed a coverage of 15.7%.

Figure 7 shows results for the statistical test on coverage. It is easy to identify three sets

of similarly-performing planning engines. Remarkably, 1st and 2nd groups include most of the

participants. This is because the number and the set of solved problems are very similar between

them. The 3rd group includes SIW only, that solved less than 24% of the considered benchmarks.

4.2.2 Analysis of CPU-time
The results shown in Table 4 clearly indicate that the “fastest” solver (according to IPC time

score) is YAHSP3, that obtained 81.6 points. A large number of planners obtained a score in

the ranges 70.0 – 60.0 and 53.3 – 47.4. Remarkably, YAHSP3 is also the solver with the highest

coefficient of ratio between the number of problems solved and the IPC time score (0.94). This

means that when YAHSP3 solved a planning task, it was usually the fastest solver. However,

it is worth noting that about 60 points out of 81.6 were obtained in three domains only: ged,

transport and visitall. In other words, YAHSP3 obtained the best IPC time score because

it excelled in a very small set of benchmarks. This behaviour is also emphasised by the very

different rankings that the 3 metrics shown in Table 4 (IPC time score, coverage and Borda

score) lead to. FD-Cedalion and ArvandHerd provided the best coverage, but tend to be slow.

In the case of FD-Cedalion, this is possibly due to a known aspect of static sequential portfolios

configuration: it is generally “easy” to select an effective set of solvers, but ordering the selected

engines for minimising runtime is extremely hard. The version of ArvandHerd that took part in

the agile track runs a random-walk based planner for the first 3 minutes, and then uses LAMA as

a backup solver. In several cases, planning tasks have been solved by the LAMA system. Despite

their impressive performance in the sequential satisficing track, in the agile track IBaCoP and

IBaCoP2 suffered from issues similar to those faced by FD-Cedalion. In IBaCoP, a fixed sequential

portfolio –exploiting short runs of different solvers– is used: as already mentioned, this approach

leads to good coverage results, but does not really optimise runtime. IBaCoP2 instead selects 5

solvers using its learnt predictive model and order them according to the confidence. Each solver

is then allocated 60 CPU-time seconds. According to the observed results, IBaCoP2 ordering

strategy is not able to effectively identify the most promising solver to be run first. Moreover,

the chosen portfolio members could not solve the problems in less than 60 seconds each.

The Borda score provides a different perspective on results, and highlights the generally good

performance of IBaCoP. Even though IBaCoP did not excel neither in terms of runtime nor

coverage, it obtained the highest Borda score. A domain by domain analysis revealed that
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Figure 8 Partial order for planners in the agile track in terms of runtime according to the Wilcoxon
signed-rank test. For this analysis, unsolved planning instances have been assigned the double of the
cutoff CPU-time (i.e., 600 CPU-time seconds).

regardless of runtime, its good coverage allows IBaCoP to achieve an average rank of 5th on

considered domains.

Figure 8 shows the partial order of agile entrants according to the Wilcoxon signed-rank test,

on runtime. It is worth reminding that in this analysis unsolved planning instances have been

assigned the double of the cutoff CPU-time (i.e., 600 CPU-time seconds). Remarkably, a large

group of similarly-performing solvers have been identified. The 1st group includes Madagascar,

FD-Cedalion, Freelunch and YAHSP3. This is possibly because such solvers provide either a

good trade-off between runtime and coverage, or are able to quickly solve a number of instances.

The largest group is the 2nd, which includes almost all the remaining planners. The last group

includes SIW and IBaCoP2: the first has been penalised because of the small number of solved

problems. IBaCoP2 is the solver with the smallest ratio between IPC time score and coverage.

4.2.3 Potential Impact of Reported PDDL Issues
PDDL issues reported for the Maintenance, cavediving, ged, and floortile domains did not

affect any of the participants. With regards to thoughtful domain, the reported issue affected all

the planners which exploit the Fast Downward PDDL parser, namely: ArvandHerd, FD-Cedalion,

Freelunch, IBaCoP2, IBaCoP, Jasper, Mercury, and USE. From the IPC results perspective, the

situation differs from the sequential satisficing track: the winner of this track was almost 20 points

ahead of the nearest affected planner (Freelunch). Additionally, the thoughtful domain model

results in a huge number of grounded actions which the Fast Downward PDDL parser, with its

reliance on I/O operations, is sensitive to.

4.2.4 Distinguished Performers
According to the results, in terms of IPC score, shown in Table 4, the following planners were

distinguished by their performance in the sequential agile track of IPC 2014:

• Winner: YAHSP3, with an overall score of 81.6 and 87 problems solved.

• Runner-up: Madagascar-pC was chosen as runner-up, with a final score of 70.0 and 90

problems solved.

4.3 Performance of Multi-core Track Participants

The multi-core track was introduced in IPC 2011 to foster the development and to evaluate the

performance of this planning trend. Rules of this track have been described in Section 2.1.

4.3.1 Number of Problems Solved
Table 5 shows the results of multi-core track in terms of IPC score, number of solved problems,

success rate and Borda score for all the entrants.
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Table 5 IPC score, number of problems solved, success rate, Borda score and average Borda score for
the multi-core track participants. Bold indicates best result, according to the corresponding metrics.
Solvers are ordered following IPC score.

Planner Score # Solved % Solved Borda Avg Borda
ArvandHerd 153.3 161 57.5 95 6.8
IBaCoP 121.9 132 47.1 91 6.5
USE 108.6 144 51.4 84 6.0
IBaCoP2 90.3 99 35.4 86 6.1
NuCeLaR 83.4 91 32.5 77 5.5
MIPlan 83.1 87 31.1 82 5.9
YAHSP3-MT 74.5 129 46.1 76 5.4
DAE-YAHSP 7.5 12 4.3 49 3.5
Planets 2.9 3 1.1 43 3.1

Figure 9 Partial order for planners in the multi-core track in terms of coverage.

In terms of coverage, ArvandHerd solved the largest number of problems (161) and outper-

formed the second best planner in terms of coverage, USE (144 solved problems) by 17 planning

tasks. A domain by domain analysis indicates that the better coverage of ArvandHerd mainly

comes from two domains: citycar and tetris.

Two planners, namely DAE-YAHSP and Planets, solved a small number of planning tasks.

Interestingly, these 2 solvers took also part in the sequential satisficing track, but in that case

they solved a larger number of problems. It should be noted that benchmarks between sequential

and multi-core tracks are different in two domains only: barman and thoughtful. Even if we

ignore such domains, performance of the sequential versions are significantly better than multi-

core performance. Interestingly, also IBaCoP and IBaCoP2 planners solved a larger number of

planning instances in the satisficing track. Evidence suggests this can be due to the different

scheduling strategies. IBaCoP systems exploit a sequential portfolio while in the multi-core track,

they run concurrently one basic solver on each available CPU. Since the available amount of RAM

is limited to 4GB for both tracks, this means that less memory is available for the basic solvers

in the multi-core track, leading to a large number of cases in which the portfolios run out of

memory.

It is also noticeable that YAHSP3-MT solved a large number of problems: it would have been

ranked 4th according to coverage. On the other hand, the quality of provided solutions is usually

quite low.

Figure 9 shows results for the statistical test on coverage. Planners have been divided in three

groups of similarly-performing solvers. Unsurprisingly, ArvandHerd, USE, IBaCoP, and YAHSP3-

MT are in the first group. This is due to the fact that these planners solve a large number of

benchmark instances. The second group includes solvers that successfully handled between 99

and 87 tasks. Finally, DAE-YAHSP and Planets are in the last group.

4.3.2 Quality of Plans

According to the results shown in Table 5, the best performing planner in terms of quality of

solutions found is ArvandHerd, which obtained 153.3 points. Such remarkable results is probably

due to the fact that ArvandHerd exploits both anytime search on each core, exploiting both

LAMA (Richter and Westphal, 2010) and specifically-configured random walks algorithms, and

post-processing optimisation: every solution found is analysed using the Aras system (Nakhost
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Figure 10 Partial order for planners in the multi-core track in terms of plan quality according to the
Wilcoxon signed-rank test using double hits only.

and Müller, 2010) in order to be improved. ArvandHerd is the best one also according to the

Borda score. This indicates that it was usually able to achieve good performance on all the

benchmark domains. Generally, the Borda score (as well as the average Borda score) leads to a

ranking that is very similar to the ranking resulting by considering the IPC score. Intuitively, it

is reasonable to conclude that multi-core participants performance are homogeneous among the

considered domains.

Figure 10 shows the partial order of multi-core entrants according to the Wilcoxon signed-

rank test, on plan quality, considering only double hits –i.e. instances solved by both compared

planners. As it is apparent, partial orders in Figures 10 and 9 are very different. In terms of

plan quality, five groups have been identified. ArvandHerd and IBaCOP are in the first group,

and many of the solvers have been moved to the 4th group. USE and YAHSP3-MT, which were

indistinguishable in terms of coverage, show statistically different performance according to plan

quality.

It should be noted that statistical comparisons involving Planets and DAE-YAHSP lead to

very small sample sizes. It is well-known that in such cases, the rank test may not have sufficient

information to detect a significant difference between the performances. Even though this was not

observed in most of the comparisons of our analysis, this could explain the reason why Planets

and DAE-YAHSP have been included in the same group.

4.3.3 Potential Impact of Reported PDDL Issues

To the best of our knowledge, PDDL issues reported for the Maintenance, cavediving, ged, and

floortile domains did not affect any of the participants. With regards to the PDDL issue in the

thoughtful domain, this affected all the planners of the track that exploit the Fast Downward

PDDL parser, namely: ArvandHerd, IBaCoP, IBaCoP2, MIPlan, NuCeLaR, and USE. This means

that all the top six planners, according to official results, have been affected. Evidence suggests

that significant result changes are hard to imagine. Portfolio-based planners, such as IBaCoP

systems, MIPlan and NuCeLaR were still able to solve a number of instances by running non-

Fast Downward-based solvers: therefore no significant improvements are expected for this type of

planners. The gap between ArvandHerd and IBaCoP is expected to furtherly increase, assuming

that ArvandHerd system solves a few instances. Finally, based on the assumption that out of 20.0

IPC points that can be gained from the instances of a single domain, around 10.0 can be gained

by solvers based on the Fast Downward framework, the rank of USE would not change, given the

13.3 IPC points gap from IBaCoP.

4.3.4 Distinguished performers

According to the results, in terms of IPC score, shown in Table 5, the following planners were

distinguished by their performance in the multi-core track of IPC 2014:

• Winner: ArvandHerd, with an overall score of 153.3 and 161 problems solved.

• Runner-up: IBaCoP was chosen as runner-up, with a final score of 121.9 and 132 problems

solved.
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Table 6 Number of problems solved (optimally), success rate, Borda score and average Borda score for
the sequential optimal track participants. Bold indicates best result, according to the corresponding
metrics. Solvers are ordered following coverage

Planner # Solved % Solved Borda Avg Borda
SymBA*-2 151 53.9 199 14.2
SymBA*-1 143 51.1 190 13.6
cGamer-bd 120 42.9 166 11.9
SPM&S 114 40.7 161 11.5
RIDA 113 40.4 183 13.1
Dynamic-Gamer 99 35.4 141 10.1
AllPaca 98 35.0 162 11.6
FD-Cedalion 93 33.2 157 11.2
Metis 91 32.5 166 11.9
NuCeLaR 90 32.1 164 11.7
Rational Lazy A* 88 31.4 150 10.7
Gamer 83 29.6 133 9.5
hflow 53 18.9 128 9.1
MIPlan 47 16.8 119 8.5
DPMPlan 43 15.4 126 9.0
hppce 15 5.4 88 6.3
hpp 14 5.0 87 6.2

Figure 11 Partial order for planners in the sequential optimal track in terms of coverage.

4.4 Performance of Sequential Optimal Track Participants

As in IPC 2011, no optimal domain specific planners were developed for any of the benchmarks.

Therefore, it is not guaranteed that the solutions provided were always optimal. However, we

believe it is safe to assume that if all the planners –or at least those able to solve it– found a

solution of the same cost for a given planning task, this solution can be reasonably considered as

the optimal one. Additionally, we found no evidence to suggest that any of the planners returned

non-optimal solutions.

4.4.1 Number of Problems Solved
Table 6 shows the results in terms of number of solved problems (coverage) and Borda score

for the sequential optimal track participants. We do not show the IPC score. This is because

we checked that all the solutions were of the same quality: therefore, the score assigned to each

planner for a given planning task can be either 1 (optimally solved) or 0 (unsolved). This exactly

corresponds to the number of solved problems. No planner generated invalid solutions.

In terms of Borda score, planners ranking is quite similar to ranking obtained by considering

the number of solved problems, in most of the cases minor changes –1 or 2 ranks– can be

observed. This indicates that planners solved problems from all the considered domains. The most

remarkable differences are Metis and NuCeLaR, that would have been 4th and 5th, respectively,

following the Borda score. This indicates that these two planners perform generally good in all

the considered domains: the average Borda scores show they are usually ranked as 6th on the

considered domains. On the other hand, they do not excel in any of them.

Figure 11 shows results for the statistical test on coverage. It is easy to identify four different

groups of solvers. The first group includes the two top-ranked systems, that solved 151 and 143
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instances, and cGamer-bd. The second group includes solvers that optimally solved between 114

(SPM&S) and 83 (Gamer) planning tasks. The third group considers systems solving between 53

(hflow) and 43 (DPMPlan) instances. The last group comprises the two versions of hpp solving,

respectively, 15 and 14 instances. We also notice that there is a large overlap when comparing the

number of problems simultaneously solved by planners in the first group. For instance, cGamer-

bd solved only 7 problems that SymBA*-2 was not able to solve. This is not always the case for

pairs of planners from the second or third group.

4.4.2 Potential Impact of Reported PDDL Issues
To the best of our knowledge, empirical evidence suggest that the PDDL issues reported for the

Maintenance, ged, and floortile domains did not significantly affect any of the participants.

It has been reported that RIDA solver requires conditional effect to be explicitly listed in the

PDDL feature list of the domain model: for this reason, RIDA performance on instances from

the cavediving domain could be affected. Given the fact that no participating solver has been

able to solve more than 7 instances in that domain, we can safely estimate the maximum impact

as a +4 on the number of solved instances, which would allow RIDA to gain one position in the

table.

It has also been reported that in Barman, Maintenance, and Tetris, the problem generators

provided, respectively, 6, 15, and 3 unsolvable tasks. Given the limited coverage shown by

participants, it is not believed that this issue, in the Barman and Tetris domains, had any

significant impact on the rankings. In contrast, most of the participants solved almost all the

(solvable) Maintenance instances. Exceptions are cGamer-bd and gamer, which did not solve

any instance; therefore, in the presence of a larger number of solvable instances from this domain,

these two planners would have been penalised, with regards to the current competition outcome.

4.4.3 Distinguished Performers
According to results, in terms of number of solved instances, shown in Table 6, and to the

statistical analysis performed, the following planners were distinguished by their performance in

the sequential optimal track of IPC 2014:

• Winner: instead of nominating two variants of the same planner as winners, the one that

solved the larger number of problems was chosen as winner. The planner selected was

SymBA*-2, which solved 151 problems in total.

• Runner-up: cGamer-bd was chosen as runner-up, given the number of problems solved, 120

in total.

In contrast to the results of IPC 2011, no portfolio-based solvers gained awards. Evidence

points to there being a set of reasons for this break in trend. First, it has been empirically shown

that algorithm selection and combination approaches for optimal planning do not generalise

well on previously unseen domains (Rizzini et al., 2015). Second, all the portfolio approaches

that took part in the optimal track of IPC 2014 exploited a very similar set of basic solvers,

which is a subset of the participants of IPC 2011. Third, binary decision diagrams-based solvers

significantly improved their performance since IPC 2011 (Edelkamp et al., 2015), mainly because

of advancements in techniques which are responsible of the computation of successors and in

approaches for pruning the search space (Torralba et al., 2013; Torralba and Alcázar, 2013).

Fourth, most of the top performing planners of IPC 2014 exploited some form of bidirectional

search, which has recently achieved remarkable results in many domains.

4.5 Performance of Temporal Satisficing Track Participants

This subsection is devoted to the analysis of performance of entrants in the temporal satisficing

track. In this track, planners are required to solve planning tasks that involve durative actions
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Table 7 IPC score, number of problems solved, success rate, Borda score and average Borda score for
the temporal satisficing track participants. Bold indicates best result, according to the corresponding
metrics. Solvers are ordered following IPC score.

Planner Score # Solved % Solved Borda Avg Borda
YAHSP3-MT 86.5 97 48.5 50 5.0
Temporal-FD 79.2 94 47.0 40 4.0
YAHSP3 66.6 103 51.5 45 4.5
ITSAT 65.6 71 35.5 37 3.7
DAE-YAHSP 55.0 75 37.5 42 4.2
tBURTON 0.0 0 0.0 28 2.8

Figure 12 Partial order for planners in the temporal satisficing track in terms of coverage.

Figure 13 Partial order for planners in the temporal satisficing track in terms of plan quality
according to the Wilcoxon signed-rank test using double hits only. It should be noted that tBURTON
can not be related to any other planner due to the fact that it did not solve any planning task.

which can temporarily overlap and/or interfere. Also, quality of plans is not measured in terms

of plan cost, as in other tracks, but in terms of makespan. In fact, no cost has been defined for

any action, but the duration of actions represent their “cost”, for the competition purposes.

As already discussed, concurrency is a critical aspect of temporal planning, and is generally

hard to handle by existing planning approaches. Moreover, the presence of concurrency does

not allow a planner to find sequential plans by ignoring temporal constraints, but it requires to

explicitly consider temporal relations between actions. In IPC 2014, three domains (taken from

IPC 2011) required concurrency: matchcellar, tms and turnandopen. In all three domains, the

plans found by DAE-YAHSP, YAHSP3 and YAHSP3-MT were invalid, according to validator

VAL, because of missing information about the time-epsilons. It was not possible to clearly

identify the time-espilons, despite several manual tests. Such invalid plans are not considered in

the rest of this subsection.

4.5.1 Number of Problems Solved

Table 7 shows the results of the temporal satisficing track in terms of IPC score, number of solved

problems, success rate and Borda score for all the entrants.

One planner did not solve a single problem: tBurton. The reason of such behaviour is unclear,

it can either be due to not very optimised code or to poor algorithm design, since the planner

was able to solve very small instances –which were used for checking the presence of bugs– only.

According to the Binomial test, which results are shown in Figure 12, three groups of similarly-

performing planners can be identified. In the first group, planners solving from 103 to 94 instances

are included. The second group includes solvers that solved between 71 and 75 instances. The

last group includes tBurton, only.
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4.5.2 Quality of Plans
According to the results shown in Table 7, the best performing planner is YAHSP3-MT, with an

IPC score of 86.5 Interestingly, this planner did not solve any instance that required concurrency,

but performed extremely well on the remaining planning tasks. This justifies the high IPC score.

The high Borda score is due to the fact that 3 participants were not able to provide valid solutions

to problems from the domains that require concurrency, that the number of participants is small,

and that tBURTON did not solve any of the problems. Therefore, even if no problem from

matchcellar, tms and turnandopen has been solved, the Borda score is still very high, as well

as the average Borda score. It is worth noting that the highest coefficient of ratio between the

number of problems solved and the IPC score was achieved by ITSAT (0.92). On the other hand,

this is mainly due to the results obtained in three domains: floortile (18.8 score), matchcellar

(19.0 score) and tms (18.0 score).

Figure 13 shows the partial order of temporal satisficing entrants according to the Wilcoxon

signed-rank test, on plan quality, with a p-value of 0.05. The reported analysis considered only

double hits, therefore tBURTON could not be ranked. Temporal-FD and YAHSP3-MT do not

show statistically different performance, but they are statistically better than YAHSP3. Finally,

ITSAT and DAE-YAHSP are included in the final group. The fact that ITSAT is in the third

group, even though it showed the best ratio between solved problems and IPC score is mainly

due to the use of double hits: many of the problems solved by ITSAT are not solved by other

participants.

4.5.3 Potential Impact of Reported PDDL Issues
According to the results of the competition, Temporal-FD did not solve any instance from the

rtam domain. This seems to be due to the PDDL issue described in Section 3.1. When using

the updated domain model, Temporal-FD can handle instances from this domain; however, plans

provided by YAHSP3-MT tend to be of better quality, thus we do not expect any significant

change in ranks of the competition.

The other reported issues did not affect the performance of any of the competitors.

4.5.4 Distinguished Performers
According to the results, in terms of IPC score, shown in Table 7, the following planners were

distinguished by their performance in the temporal satisficing track of IPC 2014:

• Winner: YAHSP3-MT is the planner that obtained the best IPC score, 86.5.

• Runner-up: Temporal-FD was chosen as runner-up.

4.6 Most Innovative Planning Systems

With the aim of fostering the development of new and innovative planning approaches, IPC 2014

introduced the most innovative planning systems award. In contrast to the newcomer award of

IPC 2002 (Long and Fox, 2003), the focus of the award for the most innovative planning system

is on promoting new ideas, rather than acknowledging the difficulty of building new planning

systems. In fact, because of the number of planning frameworks available, the deployment of a

new planner is nowadays a task that does not require a large team of programmers and developers.

For selecting the most innovative planning systems, the organisers took into account: (i)

the novelty of the exploited planning techniques –qualitatively assessed by considering planner

descriptions–, and (ii) the overall performance. Two planners were jointly given the award:

Mercury and RPT. The former is based on the red-black heuristic, which relaxes only some

state variables in order to achieve a balance between taking advantage of delete-relaxation and

mitigating its drawbacks (Domshlak et al., 2015). RPT exploits rapidly exploring random trees

(RRTs) in order to decompose planning tasks into much smaller subtasks that connect randomly

generated (non-spurious) states (Alcázar et al., 2011).
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5 Complementarity of Planners

In this section we evaluate the complementarity of planners that took part in the tracks of IPC

2014. Specifically, we are interested in investigating if different solvers provide good performance

(according to the considered metrics) on different sets of planning tasks, thus can be combined

in order to improve overall performance. A related concern is to investigate if a set of planning

engines outperforms the winner of each track. We should be careful, however, in generalising these

results as they refer to the competition planners and benchmarks: using different benchmarks may

lead to significantly different complementarity results.

The data used in this analysis were obtained as follows. Given a track of the deterministic part

of IPC 2014, we considered all the possible portfolios Pi of respectively, 2, 3 and 4 component

planners cij . Each component cij is a planner j that took part in the analysed track. For each

planning instance, the performance of a portfolio Pi corresponds to the performance of the best

component cib. In other words, we show the performance of the Virtual Best Solver: an Oracle

that, given a planning problem and a set of between 2 and 4 planning engines, is always able

to select the best solver according to the considered metric. The number of generated portfolios

ranges between 510 (temporal track) and 123,500 (sequential satisficing track).

The outlined approach allows us to assess the usefulness of combining different planning

techniques, regardless of training issues. Specifically, it provides the best result achievable by

combining different planners. It should be noted that here we are interested in evaluating the

best possible complementarity of planning engines rather than in understanding the capabilities of

portfolio approaches in combining IPC 2014 participants or learning from IPC 2014 benchmarks.

In terms of learning approaches, the learning track of IPC 2014 compared the state of the art

of learning for planning. For information about portfolio approaches in planning, the interested

reader is referred to (Vallati et al., 2015b; Núñez et al., 2015; Rizzini et al., 2015); a thorough

discussion about mining IPC 2011 results can be found in (Cenamor et al., 2012).

Table 8 shows the results of the performed analysis in terms of selected planners, IPC score and

coverage of portfolios of different sizes, on the tracks of IPC 2014. For the sake of readability, and

for assessing the maximum achievable performance, only results of the best portfolios are shown.

Portfolios (in terms of both components and planner selected for solving a specific planning

instance) can be different according to the optimised metric. We do not report IPC score results

of portfolios on the optimal track, since in that track only coverage is considered.

According to results shown in Table 8, it is possible to effectively combine planners that took

part in the sequential agile track. Remarkably, the set of benchmarks where YAHSP3, Madagascar

and Freelunch achieve good performance are almost disjoint. This is because, by combining them

using the Oracle portfolio, the IPC score achieved is very similar to the sum of the IPC scores

of each single planner (see Table 4). Interestingly, adding a fourth system (PROBE) can still

improve the overall performance in terms of IPC score, but not as much as in the previous cases.

IPC score is also improved when considering the “worst” possible portfolios, i.e. the combination

of planners achieving the lowest IPC score, ranging between 50.7 points (2 planners) to 66.2

(4 planners). The presence of complementary planning engines in the sequential agile track is

confirmed also in terms of coverage.

Results obtained in multi-core, sequential satisficing and temporal satisficing tracks in terms

of IPC score are similar to the results shown for the agile track. Also in these tracks combining

more planners lead to better IPC scores. On the other hand, while the improvement obtained

by considering two planners instead of one is usually significant, adding more planners leads

to small improvements. Beside the complementarity of planners, this difference is also possibly

emphasised by a number of circumstances: (i) sequential agile track participants generally solved

less problems than other tracks participants, and (ii) runtime performance can vary much (orders

of magnitude), while quality of plans tends to be more similar between solved instances. Also in

the case of coverage, the outlined behaviour is confirmed: a large improvement is obtained by
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Table 8 Size, selected solvers (alphabetically ordered), IPC score and percentage of solved problems
achieved by portfolios including from 2 to 4 components, and the best single solver.

Agile track
IPC score Solved Instances

Size Selected Planners score Selected Planners %
1 YAHSP3 81.6 FD-Cedalion 40.7
2 Madagascar, YAHSP3 144.0 FD-Cedalion, Madagascar 59.3
3 Freelunch, Madagascar,

YAHSP3
186.6 FD-Cedalion, Madagascar,

YAHSP3
71.8

4 Freelunch, Madagascar,
PROBE, YAHSP3

219.3 FD-Cedalion, Freelunch,
Madagascar, YAHSP3

82.9

Multi-core Track
1 ArvandHerd 153.3 ArvandHerd 57.5
2 ArvandHerd, IBaCoP 201.0 ArvandHerd, YAHSP3-MT 77.1
3 ArvandHerd, IBaCoP,

YAHSP3-MT
223.7 ArvandHerd, IBaCoP,

YAHSP3-MT
82.9

4 ArvandHerd, IBaCoP, MIPlan,
YAHSP3-MT

236.8 ArvandHerd, IBaCoP, USE,
YAHSP3-MT

86.1

Sequential Satisficing Track
1 IBaCoP2 153.3 IBaCoP2 70.7
2 IBaCoP2, Mercury 225.4 IBaCoP2, Mercury 88.9
3 ArvandHerd, IBaCoP2, Mer-

cury
244.6 ArvandHerd, IBaCoP2, Mer-

cury
93.9

4 ArvandHerd, Freelunch, IBa-
CoP2, Mercury

251.1 ArvandHerd, Freelunch, IBa-
CoP2, Mercury

95.0

Sequential Optimal Track
1 – – SymBA*-2 53.9
2 – – AllPaca, SymBA*-2 60.0
3 – – AllPaca, Dynamic-Gamer,

SymBA*-2
62.1

4 – – AllPaca, cGamer-bd,
Dynamic-Gamer, SymBA*-2

63.9

Temporal Satisficing Track
1 YAHSP3-MT 86.5 YAHSP3 51.5
2 ITSAT, YAHSP3-MT 145.5 ITSAT, YAHSP3 80.0
3 ITSAT, YAHSP3-MT,

Temporal-FD
161.0 ITSAT, YAHSP3, Temporal-

FD
87.6

4 DAE-YAHSP, ITSAT,
YAHSP3-MT, Temporal-FD

171.4 DAE-YAHSP, ITSAT,
YAHSP3, Temporal-FD

88.0

considering two-planner portfolios. When considering larger sets of planners, improvements are

less significant.

Table 8 also shows that planners that took part in the Optimal track show a low level of

complementarity. The largest improvement is obtained by considering two planners instead of one:

this results in 17 (6.1%) more planning instances being solved. In the other tracks of IPC 2014,

the smallest improvement, in terms of coverage, obtained by considering two-planner portfolios

instead of a single solver has been achieved in the sequential satisficing track, where 51 (18.2%)

more planning instances can be solved. To some extent, the low complementarity of optimal track

participants can also be due to the selected benchmarks: according to the results shown in Section

3.3, benchmarks used in the optimal track are extremely challenging.

6 Comparisons between 2014 Planners and Older Planners

In this section we compare the performance of the winners of IPC 2014 with previous IPC winners.

This can provide evidence about the progress of the state of the art of domain-independent

planning engines, though there are various factors and biases that have to be taken into account:

1. IPC benchmarks are used extensively for testing planners and for tuning purposes. The

default values of planners’ parameters are set –either manually or automatically– by

evaluating the impact of the possible values on the available benchmarks; such benchmarks
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largely come from previous editions of the IPC. Similarly, portfolios are combined according

to the performance of planning engines on those benchmarks. This is common practice in

the planning community, and providing challenging benchmarks is one of the contributions

of the IPC. However, it is likely that IPC 2014 competitors have been tested and “tuned” on

benchmarks from previous IPCs. Further, while planners in previous competitions were tuned

this way, the latest batch of planners would have access to a greater range of benchmarks

than previous planners. Therefore, IPC 2014 planners tested on benchmarks from previous

competitions may provide a flawed or biased progress evaluation.

2. The generation of benchmarks for IPC 2014 involved the competition planners themselves, to

ensure that problem instances were challenging (but not too much). In part, the generation

also involved past winners of competitions in the first step of benchmark generation. These

factors can be seen as a bias towards the planners (or the set of planners) involved, as the

benchmarks were chosen dependent on the results.

Given these factors, we decided to compare past IPC winning planners (in particular from

IPC 2011) with IPC 2014 benchmarks, and if improved versions of past winners were available,

these were used in this analysis. This in the spirit of providing a fair comparison: it is well known

that competition submissions are usually the result of very deadline-oriented development, which

can possibly lead to bugs or poorly engineered code. Also, where possible, we compared the

performance of planners that took part in both 2011 and 2014 planning competitions, with the

aim of providing more reliable evidence of progress.

6.1 Sequential Agile Track

The agile track in its current form has been introduced in IPC 2014, therefore there are no winners

of previous editions to compare with. In order to investigate the progress of the state of the art in

terms of runtime, we decided to consider three domain-independent planners that are commonly

seen as “fast” satisficing solvers: FF (Hoffmann and Nebel, 2001), LPG (Gerevini et al., 2003),

and the latest available version of the well-known LAMA (Richter et al., 2011) solver, which was

stopped after it found the first solution. They were executed on the same hardware and software

configuration used for running the IPC 2014. As with the competition planners, these planners

may be subject to some bias as they (or versions of them) were involved in benchmark selection.

The results were that LAMA would have been ranked 11th, LPG would have been ranked

13th, and FF would have been ranked 17th out of 17 participants. LAMA solved a large number

of instances, 97 (34.6%), but obtained an IPC score of 48.2. The other two planners solved many

fewer instances, but were generally faster: LPG solved 54 (19.3%) instances and obtained an IPC

score of 39.6; FF solved 28 (10%) planning tasks and obtained an IPC score of 21.9. The Wilcoxon

test confirmed the statistically significant difference between LAMA, LPG, and FF performance

and the winner of the IPC 2014 agile track, YAHSP3.

In IPC 2014 a number of core PDDL features have been introduced and are used in a few

domain models (see Table 1). In particular, conditional effects are not supported by LPG. For

this reason we decided to remove domain models exploiting such features (namely, mapanalyser,

maintenance and cavediving) from the comparison. In that case, LPG would have been ranked

9th, between Madagascar and USE. Also in this case, however, the performance of YAHSP3 are

statistically better than the performance of LPG.

The results of the performed analysis are twofold. On the one hand, there is a significant

difference in runtime performance between previous fast solvers and the winners of the 2014

Agile competition using the 2014 benchmarks. However, this improvement in runtime has not

been driven by recent IPCs, which focused on quality of plans. On the other hand, both LPG

and FF were released more than a decade ago, and they did not have the benefit of being tuned

on recent benchmarks, yet their performances are still comparable with those of the IPC 2014
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participants. This indicates that, although there is a recognisable progress, it could have been

more marked.

6.2 Multi-core Track

The multi-core track was first introduced in IPC 2011 (López et al., 2015). As observed in

2011, the participation is usually much lower than in the traditional sequential tracks. This was

confirmed also in 2014.

The winner of the multi-core track in 2011 was ArvandHerd (Valenzano et al., 2012)

(hereinafter, ArvandHerd11). A significantly improved version of ArvandHerd (hereinafter

ArvandHerd14) is also the winner of the 2014 edition. In order to assess the improvement of

the state of the art, we ran ArvarndHerd11 –in which a few bugs have been fixed by the

authors– on the IPC 2014 benchmarks, and compared its performance against the current

winner. The results indicate that ArvandHerd11 is able to solve 136 instances (47.6%) against

161 (57.5%) of ArvandHerd14. In terms of the IPC score, ArvandHerd11 obtained 134 points,

while ArvandHerd14 obtained 154.7. Performances are similar in terms of the number of best

solutions found: 109 versus 104 for the 2014 version. The most prominent difference was noticed

in the GED domain, where the 2011 version of ArvandHerd was not able to solve any instance,

while ArvandHerd14 solved all of them. According to the authors, this is very likely due to the

exploitation of a newly developed translator –used for encoding PDDL problems into SAS+–

by ArvandHerd14. Most of the difference between the two planning engines derives from the

performance gap in the GED domain. The results therefore suggest that there is not a significant

improvement in the state of the art of multi core planning, at least with regard to the IPC 2014

benchmarks.

In order to compare the performance of state-of-the-art multi-core and sequential planning

systems, we ran the winner of sequential satisficing track, namely IBaCoP2, on the multi-core

benchmarks. IBaCoP2 has been run on a single core, according to the rules of the sequential track.

Benchmarks between these two tracks are different in two domains only, barman and thoughtful.

Results indicate that on the multi-core benchmarks, IBaCoP2 shows a better coverage than

ArvandHerd14: they solved 179 and 161 problems, respectively. Moreover, IBaCoP2 is usually able

to provide better quality plans, as indicated by the better IPC score: 167.0 and 155.6 for IBaCoP2

and ArvandHerd14, respectively. Finally, by simulating a new competition which includes all the

multi-core systems and the winner of the sequential satisficing track, we observed that IBaCoP2

would have been able to win such a competition. Interestingly, a multi-core version of IBaCoP2

took part in the 2014 multi-core track, but it performed poorly: we believe this is due to design

/ engineering issues and, as discussed in previous sections, also to the fact that IBaCoP system

runs four different planners concurrently, thus reducing the available amount of RAM for each

solver. It should be noted that the analysis was performed using the same time bounds. However,

for the multi-core track 30 minutes is the wall-clock time –this basically means that a multi-core

planner can exploit 2 hours of CPU-time– while the sequential satisficing planner got 30 minutes

CPU-time. From the outlined results, it is still appears to be the case that –as it was in 2011–

multi-core planners perform worse than single-core satisficing planners.

6.3 Sequential Optimal Track

The winner of the sequential optimal track in IPC 2011 was FDSS-1 (Helmert et al., 2011). Since

it was not entered in IPC 2014, a refined version of FDSS-1 was used for performance comparison.

Given the fact that FDSS-1 is built on top of the Fast Downward framework, we considered the

latest available version of the framework, and ran the planner using the FDSS-1 configuration6.

In this way, FDSS-1 is also able to handle the PDDL core features that have been introduced in

IPC 2014.

6more details can be found here: http://www.fast-downward.org/IpcPlanners
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According to the analysis performed, the optimal planner that won IPC 2014 shows signifi-

cantly better performance than FDSS-1 in terms of coverage on the IPC 2014 testing instances.

SymBA*-2 solved 53.9% of the IPC 2014 benchmarks, while FDSS-1 was able to solve 36.8%:

FDSS-1 solved 48 less instances than SymBA*-2. The difference in performance is statistically

significant also according to the Binomial test. On the other hand, FDSS-1 solved 18 planning

tasks that were not solved by SymBA*-2.

In the IPC 2014 competition, FDSS-1 would have been ranked 6th out of 18 participants. In

three of the considered domains, FDSS-1 was able to solve as many problems as the best solver:

maintenance, parking and cavediving. In two domains, namely barman and childsnack, the

planner did not solve any problems due to the complexity of the problem instances7.

In order to provide a better overview of the progress of the state of the art of optimal planning

between IPC 2011 and IPC 2014, we also evaluate the performance of Merge-and-Shrink (Nissim

et al., 2011), LM-cut (Helmert and Domshlak, 2011) and the 2011 version of gamer, hereinafter

gamer-11. Merge-and-Shrink and LM-cut show very good performance in the 2011 optimal track;

they were ranked 4th and 5th, respectively. They are both built on top of Fast Downward

framework. Therefore, as previously done for the evaluation of FDSS-1, the latest available version

of the framework has been used. In our experimental analysis, Merge-and-Shrink solved 29.6%

of the IPC 2014 benchmarks, and LM-cut was able to solve the 26.8%. They would have both

been ranked 14th out of 18 participants (17 IPC 2014 participants plus the considered solver).

They did not solve any instance from the barman, childsnack and citycar domains, due to the

hardness of the benchmark set.

A version of the gamer planner also took part in the sequential optimal track of IPC 2014:

we will refer to such version as gamer-14. gamer-11 was able to solve the 18.2% of the IPC 2014

benchmarks, and would have been ranked 14th out of 18 participants. It solved 32 instances less

than gamer14. Most of the differences comes from the citycar domain, where gamer11 did not

solve any problems, while gamer14 solved 18.

The reported results seem to indicate a recognisable progress of the state of the art of optimal

planning between IPC 2011 and IPC 2014.

6.4 Sequential Satisficing Track

The winner of the sequential satisficing track in IPC 2011 was LAMA-11 (Richter et al., 2011).

LAMA-11 is built on top of Fast Downward framework; therefore we considered the latest available

version of FD and ran it using the LAMA-11 configuration. LAMA-11 would have been ranked

12th out of 21 in the sequential satisficing track of IPC 2014, with a coverage of 134 planning tasks

(47.9%) and an IPC score of 105.9. For the sake of comparison, we report that in this simulated

IPC, the winner achieved an IPC score of 166.2, and the planner ranked as 21st obtained 25.0

points.

A comparison between LAMA-11 and IBaCoP2 –the current winner of the sequential satisficing

track– shows that IBaCoP2 solves 64 (22%) more problems than LAMA-11, and that their

performance are statistically different on the IPC 2014 benchmarks. We also observed that

LAMA-11 did not solve any problem from the childsnack and thoughtful domains. On the

former domain, LAMA-11 ran quickly out of RAM, while on the latter, the result is due to the

issues discussed in Section 3.1. Given that they were 20 problems per domain used, leaving aside

thoughtful from the comparison would not make a difference to the relative result between the

two planners.

In order to provide a better overview on the progress, the performance of some of the

planners that took part in both IPC 2011 and IPC 2014 satisficing tracks have been compared.

Specifically, we considered ArvandHerd and YAHSP-MT. For both solvers, the 2014 version

7Note that if FDDS-1 was entered into 2014, it would have been involved in benchmark generation.
Not being able to generate any solutions to a set of problems would not necessarily force that set to be
replaced however - there were a number of IPC 2014 planners in this situation.
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solved a significantly larger number of benchmark instances: ArvandHerd edition 2011 solved 124

planning instances, while the 2014 version solved 158 problems. Similarly, YAHSP2-MT is able

to solve 62 benchmarks, while YAHSP3-MT demonstrated to be able to solve 118 instances.

IPC scores comparison shows similar figures, and the scores achieved by YAHSP2-MT and

ArvandHerd-11 on the IPC 2014 benchmarks, are significantly lower than the performance of

the winner of IPC 2014 satisficing track.

The reported results seem to indicate a remarkable progress of the state of the art of satisficing

planning between IPC 2011 and IPC 2014.

6.5 Temporal Satisficing Track

The winner of the temporal satisficing track in IPC 2011 was DAE-YAHSP (Dréo et al., 2011).

An improved version of this planner –where the overall algorithm was not changed, but the

implementation has been done by exploiting the ParadisEO framework8 instead of specifically-

developed code– took part in IPC 2014, and is therefore considered for the comparison with the

winner of the IPC 2014 temporal satisficing track, YAHSP3-MT.

Table 7 shows that DAE-YAHSP solved 22 (11%) problem less than YAHSP3-MT, and

obtained an IPC score of 55.0, that is 31.5 points less than the score achieved by YAHSP3-

MT. Also in terms of Borda ranking, YAHSP3-MT performed better than DAE-YAHSP, even

though DAE-YAHSP outperformed the winner of IPC 2014 in terms of IPC score, in two of the

benchmark domains. Interestingly, both DAE-YAHSP and YAHSP3-MT are not able to deal with

concurrency, as shown by the fact that they did not solve any problem from the turnandopen,

TMS and matchcellar domains. According to Figure 12, the winner of IPC 2014 is able to

achieve statistically better performance in terms of coverage. This is also true for the quality of

the solutions found, as shown in Figure 13.

We also considered the version of YAHSP3 and YAHSP3-MT that took part in IPC 2011,

respectively YAHSP2 and YAHSP2-MT. The performance of IPC 2011 and IPC 2014 versions of

such planners are almost identical. This is also due to the fact that the main difference between

version 2 and 3 of YAHSP-based solvers is bug fixing (Vallati et al., 2014), that apparently does

not affect the performance on the temporal benchmarks.

7 Conclusions

The deterministic part of IPC 2014 was a major event requiring a great deal of community

involvement, computational power, and supporting resources, with a record number of 67

submitted planners from around the world. In contrast to empirical-driven research normally

associated with one research group, this event can be seen as a large community-driven scientific

experiment, leaving an open legacy of benchmarks, solvers, and experimental results. Previous

competitions have helped accelerate developments in planning technology, with past competitors

being deployed as effective planning components in real-world applications and intelligent

systems; see, for instance Gulić et al. (2016); ?); Matloob and Soutchanski. The wide range of

ready-to-use planners and domain models collected for IPC 2014 will drive further developments

in the area, not least in the applications of automated planning.

In this paper we have presented the results of a thorough analysis of performance data

generated from the deterministic part of IPC 2014. The results of the competition reflect the

performance of the participant planners on the selected benchmarks that have been run on

a specific hardware and software configuration. It is well-known that each of these aspects –

benchmarks, hardware and software– affect the overall competition results (Howe and Dahlman,

2002). Moreover, how the planners are implemented is also a determining factor in their

performance. For example, the baseline planner running at the optimal track of IPC 2008 was close

to winning despite using only “blind” heuristics. These factors, therefore, should be considered

8http://paradiseo.gforge.inria.fr/
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when interpreting the competition results. Rather than determining “winners” and “losers”, the

results of running such large-scale experiments can point out trends, highlight challenges and

research questions facing the community, and indicate directions for future work.

7.1 Portfolios and Planner Complementarity

Overall, 29 portfolio-based systems took part in the deterministic part of IPC 2014. This was a

rise from the less than 10 entries in IPC 2011, in line with the increased use of portfolio approaches

in other areas of AI such as in solving satisfiability problems. The results indicate an improvement

in the performance of such systems with the winning entry in the sequential satisficing track being

portfolio-based. This outcome puts more weight to the hypothesis that, when a large amount of

CPU time is given, it is possible to effectively combine different planners and predict the most

promising ones. This is also the result of the large number of available efficient and effective

satisficing planning techniques, as well as benchmark instances: it guarantees the presence of

a generous pool of candidates for portfolios, and the availability of a large amount of data for

predicting solvers’ performance.

On the other hand, portfolio approaches tended to underperform in the Optimal and Agile

tracks. This suggests that, at least for optimal planning, it is hard to effectively combine different

approaches. Either the predictive models provide not very accurate predictions of optimal solvers’

behaviour, or the number of optimal planners using different approaches is limited, or there is a

combination of both these factors. In fact, in IPC 2014, it appeared that a number of portfolio-

based planners in the optimal track were based on similar approaches. In the Agile track, evidences

indicated that combining techniques usually increases coverage, but at the expense of runtime

performance.

To further the investigation of the potential of portfolio-based planners, in Section 5 we

considered the complementarity of planners that took part in IPC 2014. We tested the

performance of oracle portfolios –i.e., where the best planner among those considered is used

for solving a given problem– including groups of from 2 to 5 different planners. According to

the results, there is generally much to gain by using this kind of portfolio approach, and a

significant improvement can be achieved by combining 2 planners only. Hence, with the benefit of

more research, there is potential for further improvement in the performance of portfolio-based

planners.

7.2 Comparisons with Planners from Previous IPCs

In Section 6 we compared the performance of planners entered in previous competitions to those

entered to IPC 2014. As discussed, this process is fraught with difficulties because of the potential

of benchmark bias and the tuning of planners using past benchmarks. From the results of the

experiments involving the Optimal and Sequential Saticficing tracks however, we can see that the

best IPC 2014 competitors performed better than the best planners entered in IPC 2011, using

the IPC 2014 benchmark set. Given the potential biases discussed above, it is not certain that the

state of the art in optimal/saticficing planning has increased since IPC 2011, but the available

evidence points in that direction. This does not seem to be the case in temporal satisficing

or multi-core planning. Here the comparative results do not seem to point to any significant

improvement.

7.3 Observations drawn from the Competition

Dominant Trends: Due to the availability of well-documented and supported planning

platforms, such as FF (Hoffmann and Nebel, 2001), Fast Downward (Helmert, 2006) and the

recent LAPKT (Ramirez et al., 2014), it is nowadays relatively easy to develop a planner. On

the other hand, this leads to a large number of planning systems which are similar, and therefore

share most of the weaknesses and strengths; for instance, 29 systems out of 67 are built on top of
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Fast-Downward. With the same number of submitted planners being portfolio-based, these two

can be seen as the dominant trends for planner architecture in 2014.

Multi-core planning: The competition results show evidence that no significant progress

has been made in this area since IPC 2011. Also we observed that the best sequential planner

using a single core was able to show better performance on the IPC 2014 benchmark set than all

the submitted multi-core planners. Thus our experiments suggest that, even though multi-core

machines are now commonly available, planning systems are not able to easily exploit this extra

source of computational power. This area is therefore demanding more research and development.

Temporal and Preference Planning: We observe that there was a small number of planners

submitted to the temporal planning and planning with preferences tracks. While a topic such as

temporal planning is certainly not seen as marginal in the planning community, the fact that the

number of entrants of the IPC 2014 temporal satisficing track was lower than the corresponding

2011 track is worrying.

7.4 Lessons Learned for Future IPCs

Introducing the DES system has shown to be useful for the organisers as well as for the com-

petitors. The competitors could tailor their planners for the hardware and software configuration

of the cluster themselves, so they were able to compile and test them, which resulted in less

communication between the organisers and the competitors than in the last IPCs (López et al.,

2015). With the increasing numbers of competitors we believe that using such a system will

become inevitable in future competitions.

Although the DES system mitigates issues in terms of compatibility of the planners with the

cluster, the planners might still contain bugs that might negatively affect their results. We have

allowed bug fixing after the planner submission deadline as discussed in Section 2.4, though this

focused only on cases of bugs with major effects (i.e., failing to solve problems in several domains).

This approach was, however, criticised by competitors whose planners had bugs that remained

undetected. On the other hand, it should be noted that with a large number of competitors

and benchmarks it is basically impossible to detect every bug and thus the competitors should

be responsible for having their planners bug free. According to our experience we incline to

recommend future organisers not to allow bug fixing after the planner submission deadline since

it is easier to handle and is fairer to all competitors.

With regards to the specification of the competition domains, some issues arose after the

competition (see Section 3.1). The reason why such issues were unnoticed during the competition

is that we relied on the VAL tool (Howey et al., 2004) that does not consider some issues

such as missing PDDL requirements or ambiguity of names (as happened in the specification

of the Thoughtful domain). Moreover, “PDDL requirements” declarations are not considered by

majority of the planners. Although ambiguity of names in the PDDL domain model description

is not explicitly forbidden (Fox and Long, 2003), many planners were affected by this issue.

Therefore, it is necessary to identify as much as possible issues with the representation before the

competition to avoid a possible negative impact to some of the competitiors.

Before the competition had been announced, there was a large debate about distinguishing

between “basic solvers” and portfolio approaches. The reason is that the number of portfolio

approaches in planning is rapidly growing and it might become harder for “basic solvers” to be

recognised in the competition. A similar trend has been observed in the SAT competitions and

has led into introducing specific tracks for “basic solvers” and portfolios (Balint et al., 2012, 2013;

Belov et al., 2014). However, there is no clear definition of portfolios in planning (Vallati et al.,

2015b) and therefore there are some “grey areas” (e.g. whether FF that implements two different

search algorithms is a portfolio). Hence, we decided not to distinguish between portfolios and

“basic solvers” in the competition. On the other hand, with the current trend, some distinction

might become inevitable in future IPCs.
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With regards to the newly introduced Agile track, given the number of participating planners,

we are confident to state that introducing it was successful. Moreover, its introduction generated

some interesting discussions on the importance of either fast planning systems or systems focusing

on quality of solutions, only. We believe that future organisers should consider this point carefully

when designing the next IPC.

7.5 Directions for Future IPCs

Competitions in AI are a useful focal point which help in driving forward developments and assist

in the creation and sharing of tools and benchmarks. They can provide a focus for particular issues,

such as community - backed developments. On the other hand, the form of the competition could

drive developments in one particular not very desirable way. It may be argued that clever coding

and the relentless effort involved in tuning plan -generating programs to a particular kind of

benchmark, while helping a planner to perform well in the competition, does not progress the

academic area. Hence, future runs of the competition should have clear academic goals on how the

huge community effort will improve the academic field, help to create or discover new knowledge,

and/or accelerate technological development that would lead to tool deployment in prototype

applications. The primary condition of a successful competition, however, must not be forgotten:

that is to attract competitors, and the organisers first job would be to check that there would

be enough potential competitors to make the competition worthwhile. Some runs of the IPCs

sister competition, the ICKEPS (Chrpa et al., 2017), have suffered from this problem, with only

a handful of competitors taking part in ICKEPS 2012. Thus organisers have to ensure that there

are enough potential competitors who are motivated to devote the required effort.

The overwhelming majority of planners submitted to the IPC reported here were “classical

planners, taking their input language as PDDL 2.1. To further the academic field, organisers of a

future run of the IPC may decide to pro-actively encourage more competition in a particular area

of planning by creating a distinct track for this (such as in the existing separate probabilistic track

at IPC 2014). As more planning technology finds its way into applications, the competition could

support this by encouraging application-related features. A good example would be to design a

track which had the goal of encouraging the development of mixed discrete-continuous planners.

With the rise in interest in robotics and engineering applications, such a competition may be

designed to accelerate developments in this area.

Another potential future extension would be to design a competition track which invited

planners to solve difficult or previously unsolved problems; or, similarly, to design challenge

problems that are far off from solution by current technology, but stand as long term goals which

can be used to measure improvements. This works well in some AI competitions such as RoboCup,

where the long term challenge is to produce a team of robots which can play soccer at a human

skill level.

Finally, it would be wise for organisers to investigate ways of expanding the number

of competitors in some under-represented existing tracks: as mentioned above, the current

competition did not seem to generate enough interest or improvements among certain types

of planner (multicore, temporal, preference). Organisers of future competitions should carefully

consider how to overcome this challenge, perhaps by introducing challenge problems in these

areas.

Another vital consideration for future competitions is to consider carefully the objectivity

and generalisation of competition results. The discussions above indicates that there are biases

in benchmark sets that reduce the strength of comparative results. While continuity is ensured

by the re-use of some benchmark domains from previous competitions, this also introduces a

bias in that competition planners are likely to have been tuned towards the solution of previous

benchmarks. Recently, it has been shown that even the ordering of features within a domain file

can affect the performance of plan generation in current planners (Vallati et al., 2015c), and so

comparisons of planners with one particular benchmark set can be called into question. Future
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IPC event designers need to be aware of such challenges, and work on ways to ameliorate them,

so that the results of the competition can be more useful and generalisable.

Future competition organisers need to have a clear ratonale for the choice of benchmark set.

To support this, we also encourage the organisers to investigate the static analysis of models

to influence those choices e.g. by acquiring models which fit into various classes. Currently, new

benchmark domain models are generated by the community and inspired by real-word application.

The benchmarks of IPC 2004 were carefully analysed by two methods - the computational

complexity of the general problems they represented, and the topology of the h+ heuristic

(Hoffmann et al., 2006) using the concrete models. While this work proved a good start to

the area, further insights into the characteristics of domain models, and the “spread” of domain

models within a benchmark set, are needed. Leaving aside the inherent computational complexity

of a problem, no generally accepted planner-independent properties or characteristics have been

proposed that we are aware of in order to statically classify domain models. The work on

Torchlight (Hoffmann, 2011), though related to a particular planner heuristic and applicable

to domain models exploiting a limited set of PDDL features, clearly demonstrated the value of

such work.

In summary, we believe that as long as future competitions remain relevant –e.g. by supporting

the solution of research challenges, or by developing or including real-world benchmarks– future

competitions can continue to drive the progress in planning research and applications.
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