Search:
Computing and Library Services - delivering an inspiring information environment

Role of Surface Energy and Nano-Roughness in the Removal Efficiency of Bacterial Contamination by Nonwoven Wipes from Frequently Touched Surfaces

Edwards, Nicholas W. M., Best, Emma L., Connell, Simon D., Goswami, Parikshit, Carr, Chris M., Wilcox, Mark H. and Russell, Stephen J. (2017) Role of Surface Energy and Nano-Roughness in the Removal Efficiency of Bacterial Contamination by Nonwoven Wipes from Frequently Touched Surfaces. Science and Technology of Advanced Materials, 18 (1). pp. 197-209. ISSN 1468-6996

[img]
Preview
PDF - Published Version
Available under License Creative Commons Attribution.

Download (2MB) | Preview

Abstract

Healthcare associated infections (HCAIs) are responsible for substantial patient morbidity, mortality and economic cost. Infection control strategies for reducing rates of transmission include the use of nonwoven wipes to remove pathogenic bacteria from frequently touched surfaces. Wiping is a dynamic process that involves physicochemical mechanisms to detach and transfer bacteria to fibre surfaces within the wipe. The purpose of this study was to determine the extent to which systematic changes in fibre surface energy and nano-roughness influence removal of bacteria from an abiotic polymer surface in dry wiping conditions, without liquid detergents or disinfectants. Nonwoven wipe substrates composed of two commonly used fibre types, lyocell (cellulosic) and polypropylene, with different surface energies and nano-roughnesses, were manufactured using pilot-scale nonwoven facilities to produce samples of comparable structure and dimensional properties. The surface energy and nano-roughness of some lyocell substrates were further adjusted by either oxygen (O2) or hexafluoroethane (C2F6) gas plasma treatment. Static adpression wiping of an inoculated surface under dry conditions produced removal efficiencies of between 9.4% and 15.7%, with no significant difference (p < 0.05) in the relative removal efficiencies of Escherichia coli, Staphylococcus aureus or Enterococcus faecalis. However, dynamic wiping markedly increased peak wiping efficiencies to over 50%, with a minimum increase in removal efficiency of 12.5% and a maximum increase in removal efficiency of 37.9% (all significant at p < 0.05) compared with static wiping, depending on fibre type and bacterium. In dry, dynamic wiping conditions, nonwoven wipe substrates with a surface energy closest to that of the contaminated surface produced the highest E. coli removal efficiency, while the associated increase in fibre nano-roughness abrogated this trend with S. aureus and E. faecalis.
Plasma modification of the nano-roughness and surface energy of fibres in nonwoven wipes was found to influence the relative removal efficiencies of common bacterial pathogens from model healthcare surfaces under dynamic wiping conditions.

Item Type: Article
Uncontrolled Keywords: nonwoven; pathogen; surface energy; nano-roughness; decontamination; medical; plasma
Subjects: R Medicine > RS Pharmacy and materia medica
Schools: School of Art, Design and Architecture
Related URLs:
Depositing User: Jonathan Cook
Date Deposited: 06 Sep 2017 10:02
Last Modified: 26 Oct 2017 08:49
URI: http://eprints.hud.ac.uk/id/eprint/33132

Downloads

Downloads per month over past year

Repository Staff Only: item control page

View Item View Item

University of Huddersfield, Queensgate, Huddersfield, HD1 3DH Copyright and Disclaimer All rights reserved ©